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NUMERICAL FORECRSTING USING LAPLACE TRFINS,FORMSr 
TH&ORY AND APPL,ICATION TO DRTA QSSIMILQTION. 

Rbs t rac t  

The Lapiace Transform technique is used to  develop a numerical 

scheme for  integrating the primitive equations. The scheme is capable of 

faithfully simulating the dynamics of the low frequency components of the 

flow, whitst the high frequency components are strongly attenuated. Thus. it 

models the meteorologically significant synoptic flow. uncontaminated by gravity 

wave noise. 

The Lapiace Transform (LT) method has been compared t o  a standard 

Rdams Bashforth (RBI method in the context o f  a one dimensional model. The L,T 

method with a one hour timestep gives results very similar to  the RB scheme 

with a 30 second step. The scheme is subject to  a stability crKerion similer t o  

that of the semi-implicit method, and depending on the edvection velocity. If 

the advection is integrated in a Lagrangian manner this restriction is relexed. 

The Laplace transform method is particularly suitable for  inseption of 

data during an integration: since the gravky waves are strongly damped. the 

model can abso~b the inserted information without undue shock. Other schemes 

generally require ceinitialization af ter  data inse~tion. or else the imposition of 

strong divergence damping. Thus, the method would appear to  be a useFul 

meens for continuous data assimilbtion. 
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1. INTRODUCTION 

The main objective of Numerical Weather Prediction (NWP) is to  

provide accurate guidance on the development of synoptic weather systems 

evolving from a specified initial state. The basic equations o f  current NWP 

models - the primitive equations - have been Found to be capable of faithfully 

simulating the dynamics of these systems. However. these equations also have 

high frequency solutions corresponding to  gravity waves. These are of l i t t le 

meteorological importance. but they cause computational and other problems. 

and are generally regarded as undesirable noise. 

We can deal with gravity wave noise in two ways. Historically. the 

f i r s t  method was t o  modify the equations of motion so that the only solutions 

remaining were the low frequency meteorological motions. The resulting fikered 

equations - the quasi-geostrophic equations - were used successfully for  the 

f i r s t  computer forecasts. and are noise-free. However. they involve 

approximations which are not always justified. with consequent errors in the 

forecasts. Therefore, the primitive equations are gensrally used nowadays for  

NWP. and the corruption of Forecasts by noise is prevented, by imposing balance 

conditions on the initial fields. This process is called initialization. 

Properly initialized fields result in smoothly evolving flow patterns 

during the forecast. provided that the integration proceeds undisturbed. If we 

wish t o  modify the fields during the integration, e.g. t o  correct them in the 

light of new observational data. the balance may be disturbed and noise 

generated. Flgain. we may prevent this in two ways: the fields may be 

reinitialized af ter  data insertion. or a numerical. scheme may be chosen which 

prevents or suppresses noise. The reinitialization of the. fields may be 

computationally expenshe, particularly i f  data is being assimilated at. frequent 

intervals. Therefore. we consider in this report a scheme which suppresses 

noise by allowing the lbw frequenc.y motions to  evolve uninhibited while strongly 

damping the high frequency motions. 



A solution method using the Laplace transform technique was 

developed by Lynch (1985a) and applied to  the problem of initialization. In the 

present study the same method is used to  devise a numerical scheme For 

integrating the equations of motion. The method forecasts the low frequency 

motions while the high frequency components are strongly attenuated. The 

method is compared to  a well-tried Rdams Bashforth method in the context of 

a simple one-dimentional model. Both methods give very slmllar forecasts o f  the 

rotational component of the flow. The evolution of the divergence is much 

smoother For the Laplace transform method.. 

The stability properties of the Laplace transform method are 

considered. The approximation of the inversion integral by a sum introduces an 

error; this has been investigated by Van lsacker and Struylaert t1985). Their 

results can be used to  derive a stability criterion for  the maximum allowsbte 

timestep. It turns out to  be a very lenient and easily satisfied condition. The 

practical limit on timestep arises through the nonlinear advection terms: the 

stability condition is the same as that resulting from the semi-implicit scheme. 

and depends on the maximum advection velocity. This restriction can be 

circumvented by the use of a Lagrangian treatment of advection. resulting in a 

practically unrestricted scheme. 

The Laplace transform scheme is of particular interest in the 

context of continuws data assimilation. This process involves the rnodlfication 

of the meteorological fields durlng a forecast run by insertion of new data. 

One consequence of data insertion is the disruption o f  the fine balance between 

the fields, resulting in spurious gravity wave nolse. Since frequent 

reinitialization is imprbctical. the noise must be eliminated in some other way. 

Most methods of damping. such as dbvergence damping. which are designed to  

control high frequenc.~ waves. atso af fect  the rotational motions, altering the 

forecast. The Laplace transform technique specifically selects the high 

frequency gravity wave components for  elimination. and leaves the 

meteorological motions virtually unaffected.. As a resuk., data may be inserted 

continuously and assimilated by the model without undue shock. Parallel runs 

using the Rdarns Bashforth (RBI and Lapiace transform (LT) schemes- for data 



assimilation show that the lat ter  scheme absorbs inserted data without 

appreciable noise in the ensuing forecast. The AB scheme suffers from 

noticeable residual noise even when the fields are reinitialized after data 

insertion. 

The Laplace transform scheme bears a close resemblance to  a scheme 

using normal modes, proposed by Daley (1980). Both methods forecast the 

slowly varying rotational components of the flow while diagnosing appropriate 

gravity wave components. Since the LT scheme does not require expliclt 

knowledge of the model normal modes, it may be more useful in the context of 

limited area modelling. Both methods involve costly transformations between 

physical space and normal mode or  image space. It is possible to  derive a set 

of equations in physical space ( I  call them the slow equations) with properties 

similar t o  tho scheme of Daley, but avoiding transformations a t  each timestep. 

It is proposed that these equations would provide an efficient and effective 

method for  forecasting the meteorologically significant components of the flow 

and for continuous data assimilation. 



2, THE LRPLACE TRANSFORM METHOD 

In this section we describe the Laplace transform method of 

integrating the equations of motion. In section 2a we outline the theory of the 

method: section 2b deals with the effects o f  discretization of the inversion 

operator: and in section 2c we consider the question of stability. T h e  numerical 

model used in this study is outlined in section 2d. 

2a. Theory. 

We consider a system whose state a t  time t is specifisd by the 

vector XCt,). which is governed by an equation of the form 

where 1 is a linear operator and W a nonlinear vector function. IF the system 

0 
is in the state X at  time t = 0 then the Laplace transform of this equation is 

where n {s )  = (sl+l) with I the identity matrix. s is the transform variable and 

carets denote Laplace transforms. 

I f  we consider the evolution of the system over a short time 

interval C O . A t ) ,  and assume that the nonlinear term does not vary. we may 

solve (2.2) as follows 

where d = d). Then, to  find- the solution a t  time t = A t -  we apply the inverse 

Laplace transform 



If we are interested only in the slowly varying components of the flow we may 

replace 2-' by the modified inverse f *  (.see Appendlx4 which acts to  f i l ter out 

the high frequency components: 

Having the solut~on a t  t = A t  we may proceed stepwise to  extend the forecast. 

However, it is better to  employ a leapfrog timestepping technique: thus. the 

solution X' at time 2At can be approximated by 

where W' =N(x') is evaluated a t  the centre of the interval (0.2At). In gsneral. 

having the solutions f-' and f a t  times (n-1 ) A t  and nAt, we advance the 

solution to  time (n+l)At as Follows: . 

Here the origin of time for the inverse transform is (n-1)At so that f' is 

the 'Initial condition'. and the nonlinear terms are evaluated a t  the centre o f  

the interval. 

An alternative timestepping scheme was proposed by Van lsacker and 

Struyieert: We assume that the solutions a t  nAt and (n*t)At are f and w"". 
Then we make two steps as follows: 

The nonlineer terms are calculated only once. This scheme is also started by a 

forward step. Unlike the kepfrog method.. it has no computational mode. We 

refer t o  this method as the two-step scheme. 



2b. Discretization o f  the Inverse Transform 

We have defmed the mod~fied Inverse transform 

To evaluate 2' numerically. we replace the circular contour C' by a 

circumscribed regular N-gon tN. (see Figure I). The integrand is evaluated a t  tho 

midpoints sn of the edges of $ 

Now consider the number sn raised to  the power k a m+rN where O<m<N. We can 

easily show that 

Thus, the function snk (qua function defined on tN.1 looks like the function s: 

multiplied by a constant (-rNlr. This means that only the f i r s t  N 

powers o f  sn are linearly independent: 

is a bas~s for  functions defined on ti. Thus. we truncate Taylor series 
st expansions af ter  N terms. so the exponent~al function e is replaced by 

The discrete modified inverse Laplace transform is now defined as follows 

(where the correction factor K = (tan(x/N) )/(a/N) is discussed In Lynch. 



Figure 1 .  



198Sb). Using the fac t  tha t  Asm/sn = 2 u t - ~ / N  we can rewr i t e  this transform as 

(this is the form used by Vanlsacker and Struylaert. 1985). We have shown in 

Lynch (19BSa) tha t  2.y is a per fect  low-pass f i l t e r  (see also the Appendix). 

It is o f  interest t o  investigate the response o f  the numerical f i l t e r  FN defined 

by 

This question has been considered by Van lsacher and Struylaert. who showed tha t  

where the response function HN is glven by 

Thus FN is a double action f i l te r !  it damps the input function etwt by HN(w), 

but also truncates the Taylor series expansion a t  N terms. Graphs o f  the 

response function HN(o) fur various values o f  N are shown in Figure 2. 

The operator FN leaves the function eNfOt unchanged. Thus, it is 

ldempotent o f  order two. However, since i t  is not bounded ( in the supremum 

or Lmnorm) it is not  a projection in the Hilbert space sense. 

2c. Stability 

We consider the stability properties o f  the Laplace transform method 

by applying It t o  a simple linear oscllletion equation. first with all terms 

transformed explicitly, and then with a term held- constant during each 

timestep and representing the nonlinear adbection. 



Argument 

Figure 2 .  



Consider the oscillation equation 

Let x ~ '  = X((n-1 )At) and X" X(nAt). We use the leapfrog method described in 

section 2a to  integrate this equation. Transforming the equation with the origin 

of time taken a t  t = (n-1)At we have 

* 
Then. applying the (continuous.) inversion operator wlth t =2At we g& 

-1u2At 
Since 1 a I = 1, we have unconditjonal stab~lity. 1.e. for the continuous 

* 
operator 2' the timestep A t  is unrestricted. In reality we must replace 

by 2;. Recall that 

Thus. applying 2; to (2.13) with t =2At we get the numerical solution 

Far stability it is sufficient that the quantity multiplying x ~ '  have modulus not 

greater than unity. i.8. 

Now, using Taylor',~ theorem with remainder we can show that 



and since the response function HN is given by (2.1 1 ) .  we get, as a sufficient 
N N 

condition for  stability, that (0-2Ak) /N! h/r) . or 

Defining the cutoff period To= 2r/7. and using Stirling's formula, we may write 

(2.16) in a simpler, though slightly less sharp. form: 

A t .  <. Nr,/4ne. (2-17) 

This is a very lenient stability criterion: for  example. with typical values N = 8  

and T,, = 12 hours it implies 

This is a longer timestep than we are llkely t o  wish t o  use in practice. 

If the two-step scheme is used instead o f  the leapfrog scheme, the 

permissible timestep for  linear stability is doubted. Note that. in any case. this 

stability criterion does not depend upon the spatial resolution: this is 

particularly Important for  variable grids., where a rocally fine resolution might 

otherwise impose an over-restrictive CFL criterion. 

The advection terms impose a more stringent limitation upon the 

timestep. Consider (2.124 again on the interval (,0.2A&) and svaluate the second 

term a t  time A t .  Then the transform may be writ ten 

If we invert this by applying 2.. with t =2At and assume that x"-R"x' we- get 



It is straightforward- t o  show tha t  the roo ts  o f  this quadratic f o r  A are 

unimoduiar provided that  

whereas one o f  the roots has modulus greeter than unity if this condition is 

violated. Thus. (2.18) is the condition f o r  stability. The advection term is o f  

the form fixx. which f o r  wavenumber k and grid dlstance Ax becomes 

Therefore, stability is ensured provided we have 

Thls is the usual CFL criterion. just as we have f o r  the semi-impiicit method 

where advection is treated explicitly. 

In the integrations we f ~ u n d  tha t  the leapfrog scheme remained 

stable provided tha t  ('2-19) was satisfied. However. the two step method 

became unstable if CrAt/Ax was greeter than about 0.35. The reesun f o r  tMs is 

not precisely understood, but presumably it is due t o  the unwntered nature o f  

(2-  6b). The results presented below are f o r  runs using the leepfrog scheme. 

It is not  possible t o  explicitly transform the nonlinear terms. 

However, the CFL rest r ic t ion may be circumvented in another way! the 

advection may be integrated by the semi-Lagrangian technique, which is 

unconditionally stable. In tha t  case the only rest r ic t ion is tha t  dlle. t o  the 

discretization of the Laplace transform. namely L2.16) above. 

2d. The Forecast Model 

The model used in t h ~ s  study is the simple one-dlmunsional modal 

DYNAMO described in Lynch (1984). The basic equations may be wri t ten: 



The variables 5, 6 and @ are specified on a staggered grid o f  M points, and 

periodic boundary conditions are assumed. Thus, the state o f  the system a t  

any time is completely defined by the vector 

The Laplace transfarm o f  X is wr i t ten  i. When the system C2.20)-(.2-22,) is 

transformed, the resulting equatjons may be wr i t ten  as a single vecto_r 

equation: 

where M is a matrix depending on s, W is the vector o f  n o n l i m r  terms and fl 
is formed from the initial values ( f a r  more detaits see Lynch, 1984). Equation 

c2-23) is formally identical t o  12,2,), so tha t  the msthod o f  integration 

outlined in section 2a may now be applied. 

In the model runs described below we chose a channel length 
7 

L = 10 m. where M.Ax = L with M = 50 and Ax = 200 km. Far the chosen parameter 

values the maximum Rossby wave frequenc,~ and minimum gravity wave frequency 

have the (nondimensionai) values: 

= 0.203 ; I. vG m,n I "R mar = 2.224.. 

Flny value o f  7 lying between these values should serve t o  separate the 

timescales. The value 7 = 1 was chosen. The contour C* was approximated- by an 

octogon C; (Figure I ) ;  only the upper half o f  this contour need be considered 



(Lynch, 1985b). The matrix tl was evaluated a t  the centre points sn o f  the 

four upper edges AS,. inverted and stored fo r  use during the forecast. The 

forecasts were evaluated by reference t o  a run  using an Rdams Beshfocth time 

scheme with A t  =30sec., f rom which the rms differences in  vor t icky,  

divergence and geopotential were cdculated. 



3. NUMEfflCAL RESULTS 

3a. Comoarlson between the Ladace Transform (LT) end 

Rdems Bashfor th  (RBI Timesteoo~ns Schemes 

In order to show that the Laplace transform (LT) scheme described 

above IS an effectwe method of ~ntegrating the equations of motion. we 

incorporated it into the model DYNAMO (Lynch. 1984) and compared the results 

to  those using the well-tried Adams Bashforth (AB) method. 

The parameter values chosen far - the parallel runs are as follows? 

Gridpoints 50 Forecast Length 40 hours 

Channel Length 10 ;000 km Timestep (LT) 1 hour 

Gridtength 200 km Timestep (AB) 30 secs. 

The initial conditians consisted o f  a superposition of ten wave components with 

randomly chosen phases and amplltudes such that the energy spectrum was 

-5/3 
proportional to  k, . where k is the wavenumber. The wind was derived using 

the geostrophic relationship, and then the fields were initdlzed using the 

Laplece transform technique (Lynch. 1.9858). The value Y = 1.0 was chosen, 

correspondlng to  a cutoff of components with periods less- than 12 hours.- (5) 

modlfication of the iteration procedure was proposed by Vanlsacker and 

Struylaert C1985); this results in improved convergence properties of the 

scheme and was incorporated in the version used in this study). Paraifel runs 

of the model using the LT and AB schemes were made. and the results written 

to dlsk for  subsequent- analysis-. The root mean square (rms) vaiws of the 

dlf fersnces between the geopotential. vorticiky and divergence fields for  the 

two runs were calculated.. The initial geopotential fiekl- (noridlrnensionalized-3 is 

shown in Figure 3Ca). and the 48 hour- forecasts Nag- the AB and LT schemes in 

Figure 3(b). The two Focecasts are virtuaik idantid.! the rms dlfference is 

I J ~  = 15 m2s-2; this is- minute compared to  the standard deviation of the- ftdds 

4 2;P 
(.which is of o ~ d e r  t O  m s 1. The two curves o f  forecast- geopotentid in 
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Figure 4. 

TABLE 1 

Root Mean Square differences of  the Geopotentlal, Vortkity and Olvergence 

Fields, between the Adams-Bashforth (RBI run (At = 30sec- 

and the Laplace Transfarm (LT) runs wlth various thesteps .  

At 

+ hr.  

I hr. 

2 hr6. 

"0 

1 .0401 

I -5.1 0' 

2.040' 

U Z 

5.0~10*~ 

r .o=104 
2.0.10+ 

"6 

1 -7-1 o4 
2.0.104 

3.0810~ 



Figure 3(b) are indistinguishable; a plat  of the- diffnrence, scaled-by 100, ts 

also shown, 

Although the geopotentiel forecasts are almost identicap. there are 

some visible diffwences in the manner in which the divergence fields evolve in 

the two cases. In Flgure 4 we show the divergent kinetic energy a t  a central 

point during the 48hour run. The AB run (solid line) Is noticeably miser than 

the LT run (dashed line). The Laplace transform method is better at  controlling 

gravity wave noise during the forecast. Howwer, it.. should be observed that 

the noise in the AB run is of small amplitude and unlikely to  be of slgnif'iance 

- this is so since the fields have been well initialized.. 

lo Tabk. 1 we show the rms dlffwence between the geopotenbii. 

vort4Cit.y and divergence fields., a F k r  4% hours. of the reference Fun (RB 

scheme, bt -30 sec. and the LJ scheme with various- time step^^ We can see 

that even wlth a 2hour timestep the L,T scheme yields resuCts very close to  

the reference run. T h i s  implies the posslbllity that i t  may provide e w r y  

efficient meens of integrating the equations oP motion. 

3b. Experiments vCth Data /hserClon during Che Run 

Parallel runs to  48 hours were made with the AB and- LX schemes, In 

each case the fields were perturbed aCter 12 hours in the following way: a 

small increment A@ is added to  the O field and a corresponding g e o s t r o p h l d ~  

balanced increment is added to  t h e  meridional wind field.. The integration is 

continued by making a forward step of length At/2, Followed by normal 

centered steps. The O field a t  12 hours. and the perturbation Ad are shovn in 

Figure Wa). The mecldional wind Eleld and perturbation ace shown in Flgure 

S(b). The perturbation is meant t o  simulate the insekbiin of observational 

information &ring the forecast run. The subsequent evolution is then examined-. 

lh the case of the AB scheme the data insertion results in the 

generation of,noise in the ensuing Eocecast, T h i s  ts b- to  the &iscupt.lon of 

the delicate balance between the mass- and wind- fields. The divergent-k#:k 

energy of the orlginal run Is plotted as a sorK)-curve in Flgure 6(d, an& the 

results for the run perturbed af ter  12. hours is. shown by the dashed' c u ~ w -  
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The system cteerly su f fws  shock due to  the insertlon of the data, and the 

forecast is noisy thereafter. The corresponding plot of-the results udng fmlds 

which were re-lnltlalized af ter  data insertion is atso shown (Figure 6(a), 

dotted line). The shock due to  data insertion is much reduced.. but there is 

sti l l  some noise remaining. 

In FIgure 6Gb) we show the diffwence between the originei and 

pertu~bed runs using the LT scheme. In this case the fields were. & 

re-lnitieiized af ter  data insertion: nevertheless, there is no evidence of' shock. 

The model Forecast- adjusts immedlatel.y to  the new field v&s, and the 

subsequent evolution is noise-fi-ee.. 

The rms diEfrences between the original and- perturbed- forecast 

fields were calculated and compared. In Figure 7Ca) the differences in the 

geopotentiel f ldd are shown. The runs are broadly dm i l a r ,  bukthere ts cteecl~ 

more noise in the runs using the AB scheme. even when reinitialized after d a b  

insertion. The vooticity fields. shown in Flgure 7(b), are an Edriy sWar- .  

Finally, in Figure 8 we see plots of the divergence %Ids. The shock- due to  the 

data insertion is manifest (Figure Ma), solid h e ) .  This is reduced, but not 

enUrel\/, by reinitdlzatlon Cdashed line. Figures 8(e3 and B('b)). That the 

Laplace transform scheme can absorb the inserted data smoothly is cLear1.y 

shown in the dotted curve in Figure N b )  (note the expanded vertkal scab). 

The above results show that the LT scheme- is capable of abso~bing 

new observational information durlng the forecast- run. without undue shock or 

noise in the ensuing forecast. The AB scheme suffers from acute noise d m  to 

data assimilation, and this is not entirely eliminated by re-initializion of the 

fields. 

Several parallel runs were made with the A8 and LT schemes.. In 

which the fields were modtfid Freqwenbly durlng the runs. to  simulate 

continuous data assimilbt,ion. In some cases dozens o f -  'obsecvabions' were 

introduced. TThe results confrmed' the. above Einctiiingsi the- LT' integcation 

proceded smoothly,. adjosting- to  a oew s t a b  of-slow evoIuUon whenew n e u  

data- were- introduce&, whereas the FIB scheme w a s  incapable- of-assimdbbiig the 

data without shocks. 
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4. THE,.LAGRRblGIRN ADVECTION SCHEME 

The LT scheme handles the linear terms in such a manner as t o  allow 

a large timestep: the only restriction. due t o  the discretization of the 

inversion integral. is a very lenient one ('2.16). This means t h a t -  the fas t  

gravity waves do not limlt the timestep. However. the nonlinear advection 

terms are handled in an explidt. manner. and this results in a CFL cr i ter ion 

dependlng on the adbeckion speed (2-19). For reel ist ic etmospheric flows thls 

limitation can bo pcobtematic, as the advective windspeed may be locally large. A 

mmns o f  ciccumveclting this restrlckion ts Eo use a Lagcan* scheme f o r  

advectioa (Robert .- 1981 : Bates and McDonald, 1982). 

To test -  the above idea the model was modiflad- in such a way that 

the advection by the mean flow 6' was integrated in a Lagrangran manner. Thus. 

we have, f a r  example. 

such tha t  the vakrs a t  gridpoint- k a t  time (n+l  ) A t  equals- the v& at- some 

departure point (denoted by the s ta r )  a t  tlme (n-1 )At, the depwture point ls 

a distance 23At upstream from the gridpoint k and the variables are evaluated 

there by quartic interpolation (using the nearest five gridpoints). The source 

term (-fGv = v6.) is also an adbective term and was integrated in a Lagranglan 
Y 

manner; however, In order t o  avoid spurious energy generation it was found t o  

be necessary t o  use the meri&onal velocity a t  the arrival point in calculating 

this term. Ue discuss this fu r ther  below. 

Each advection step was followed by an adjustment--step which used 

the taplace transform technique- t o  integrate the remainiog terms, We call. the 

combined scheme the Laplace-Lagcange (LL ) modd .  

Three paraflel runs were made using the Rdams Bashforth (8B) 

scheme, the Laplace teansform K T )  method- wi th the advect.ion terms 
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integrated explicibl.y, and Che Laplace-Lagrange ('CL.1. scheme described above. 

The initial condition was a geostrophically balanced wavenumber one perturbation 

superimposed on a zonal meen flow 6 .  The stability o f  the LT scheme is 

determined by the nondimensional number Le = 6At/'Ax (denoted Le f o r  Lewy, who 

discovered the stability cr i ter ion (see Reid, 1976. p l l 6 ) ) .  For the RE scheme 

we set At = 30sec.. and f o r  the LT and LL runs At =3600sec. = I hour. The grid 

interval was Ax = 200 km in all cases. Thus, the crit ical velocity f o r  stability is 

C I =  55.5' m s;'. We chose two values o f  the zonal velocity as follows! 

The forecast geopotentiil. a f t e r  48 hours is shown in Figure 9. For Ci = 50 m/s 

the three schemes give very similar results -- it is d l f f i cu lb  t o  distinguish 

between the three curves in Figure 9(a). Fbr 5 = 60 m/s the stability criterion 

CLe < 1 )  is violated and the LT scheme becomes unstable- This is dearly seen in 

Figure 9(.b). The Rdams Bashfarth and Laplace-Lagrange schemes remain stable, 

and both give very similar results - the RE and LL curves are almost-ident,icat. 

Further runs with Ci = 100 m/s and with othec initial conditions 

confirmed t h a t  the LL scheme remains stable- f o r  strong advection. This scheme 

gives us a method o f  integrating the equations using timesteps of . the order o f  

an hour. ui thout the problem o f  numerical instability. The only rest r ic t ion is 

the cr i ter ion (2.16) dbe t o  the discretization o f  the inversion integral. 

In the case where all three schemes remained stabte the errors in 

the LL scheme, though small. were larger than those using the LT scheme 

(errors were relative t o  the RE run).  This is believed t o  be due t o  the handling 

o f  the source term (-f53). In the case o f  geostrophic~ flow this term exactly 

balances the mean adbection C@=, and- in general it- seems tha t  special care must 

be taken in modelling the small residual. The results wi th the LL. scheme were 

found t o  be quite seasitkw t o  the precise manner in which this term was 

integrated. T h e  quesCion was not- examined Fucther.  since in more general 

models the adbeckion is-not  separated into components in this-way. 



5. DISCUSSION 

The numerical technique diecussed in this report allows us to  

forecast the m&eorologlcally significant components of the flow whilst 

attenuating the high frequency components to  the level necessary for nonlinear 

balance of the rotational modes. The application of the method does not require 

explicit-knowledge of the normal modes of the forecast. modef. 

Van lsackec and Stcuylaect ('1985) have appbed- the Laplace tcansEorm 

method to  a three dimensional global spectrat model.. They cepo~t  that the 

method prov'kles an eff ident means of integcating the primitive equations. 

altowing them t o  use a large timestep, and that, the evolution oE the 

meteorological fields is much smoother that that obtained uslng explicit 

intsgration methods. 

Datey C1980) has used the ideas of normal mode inikblization t o  

develop a method of integrating the primi tive equations efficientiy . The original 

equations can be writ ten 

where X IS the state vector of- unknowns. L is a constant beer  operator 

(matrix) and W is a nonlinear vector function. When transformed to  Hough mode 

space. the system splits into two subsystems: 

Where Y- and Z are respectively the coefficients of the slow and F a s t  

componenfs of the flow and 4. A, are- diagonal matrices of eigenfrequencies.. 

Rssuming Machenhauer's criterion ( 2  = 0) to hold thcoughout- the integcation. 

Daby replaced (5'2,)-(5'3) by the system 



giving a prognostic equation fo r  the slow modes and a diagnostic equation f o r  

the fas t  modes. I will call (5.4')-(5.5) the Slow E~IJations. Using the stow 

equations, Oaloy developed an integration scheme which was stable, eff ic ient 

and accucate: he compared a run with the slow equations and A t - -  40 min. t o  a 

control run with the primitive equat4ons and b t  = I 0  min.: the rms differences 

in surface pressure and 500 hPa winds a t  4 9  hours were only 0-6 hPa and 1 m k  

These dif fwences are minute. 

The great- majority of-  the additional computat;ional e f  f o d -  (per 

timestep) In Daley's- scheme k dus t o  the transformabiins between specbwl 

('spherical harmortic) space and normal (Hough-)mode space.: f o r  a- gridpoint 

model the transformations would be even more expensive. T Laplace 

transform technique avoids these transformetions but invoCves, insteed, 

transformations t o  and from image space (s-space), which are also expensive- 

Using the ideas o f  implicit normal mode imt.ialization (T.emperton. 1985:- Juvanon 

du Vachat. 1986). 1 have derived-a s&- o f  equations. expressed in terms o f  the 

physical variables (not normal modes). which forecast the low frequency 

motions while diagnosing appropriate 9ravit.y wave components.. . These stow 

equations in physical space obviate the need f o r  costly transformations. The 

slow equations are similar t o  the balence system. but not identical t o  it. They 

would appear t o  provide us with a means o f  selectively forecasting those 

components o f  the atmospheric mot:in which are important. while avoiding the 

troubles associated with the gravity waves-. They would atso seem to provide a 

suitable means For the assirnilat.ion o f  observational data during a- forecast,. as 

they can abso~b  inserEed data without sufrering high frequency shocks. 

The three methods mentioned here are obviously all. cJosely related t o  

eech other. and may be expected t o  behave similarly in their handling of.gcavity 

wave noise. All would seem t o  show promise in the area o f  cont.muous daka 

assimilation. Smce the slow equations in physicai space require no 



tcansEormabiins. t h s y  would seem t o  o f f e r  the most at t ract ive prospect. They 

involve the solut,ion of Helmholtz and Poisson equations at each tAmestep and 

would therefore be most economically ~ncorporated in a spectral Csphericd 

harmonic3 context. It is hoped t o  tes t  the slow equations in a ful l  barodinic 

model and t o  present the results in a fu r ther  report .  
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APPENDIX 

Laplace Transform Theory 

The basic definitions and properties of Laplace 
transforms needed in this study are summarized, and 
the method of filtering is described. A good compre- 
hensive guide to the theory, from a practical viewpoint, 
is Doetsch (1971). 

The Laplace transform of a function flf) of time f 
is defined as: 

and is a function of the associated complex variable 
s. Thus, a constant a transforms to a/s. The complex 
exponential function representing a wavemotion is 
transformed to an algebraic function 

L {e"'} = I/(s - iw). (A21 

Since L is linear, the superposition of a number of 
waves may be transformed component-wise: 

J I 

L {C  ajeimj) = 2 aj/(s - iw,). (A3) 
j= 1 j=1 

The higher the frequency wj, the further the come- 
sponding pole s = iwj lies from the origin. 

If the transform of flf) is fls) then the time- 
derivative, f'(t), transforms as 

L{f( t )}  = $.As) - f l ~  (A4) 

where flO) is the initial value off(t). Thus, differen- 
tiating in t-space corresponds to algebraic operations 
in s-space. This is the power of the Laplace transform 
method: it lowers the Level of transcendence of func- 
tions and operators. Ordinary differential equations 
transform to algebraic ones. 

A modification of the Fourier theorem gives us the 
complex inversion formula for the Laplace transform: 

flf) = L -'{As)] = - As)eS'ds (A5) 
2m ' S  c 

where the contour C is parallel to thejmaginary axis, 
and tp the right of all singularities offls). We assume 
that f(s) is meromorphic, that is, analytic except for 
isolated poles; and that the contour C can be com- 
pleted by an asymptotically large semicircular arc in 
the leR half plane. 

The contributions to f(t) in (AS) come from the 
poles of As). Since the high-frequency components 
correspond to poles far from the origin, they can be 
eliminated by shrinking the contour to a circle C* of 
radius r centered at the origin. This is the motivation 
for the definition of the operator La [Eq. (I), Section 
2bl, and we see that L*L acting on flt) will select 
the components with frequency w < r and filter out 
the high-frequency components off@). 



References: 

Bates. J.R. and A. McDonald, 1982: Multiply-upstream semi-Lagrangien advectwe 

schemes: analysis and application t o  a muki-level primikwe equatlon 

model. Man. Weather Rev., 110, 1831-184.2- 

Daley. R.. 1980: The development o f  eff icient time integration schemes using 

normal mode models. J. Rtmos. Sci.. 108. 100-110. 

Ooetsch. G.. 1971 : Guide t o  the R D D / ~ c ~ ~ ~ o ~ s  o f  the Laplace and Z-Transforms. 

Van Nostrand Reinhold, 240 pp. 

Juvanon du Vachat. R.. 1986: A general formulation o f  normal modes fo r  llmited 

area models; application t o  initialization. (accepted fo r  publlcation. 

Mon. Weather Rev.,) - 

Lynch, Peter, 19841 DYNAMO - A one dimensional primkive equation model. Tech. 

Note No. 44, Ir ish Meteorological Service. Dublin. 

Lynch. Peter, 1985a: I&.iaiization using Laplace Transforms. J .  ROY. Met. 

SOC.. I l l ,  243-258. - 

Lynch. Peter. 1985b: IAiel izat ion o f  a Barotropic LimCted-Rrea Model using the 

Laplece Transform Technique. Man. Wuether Rev;. 113. 1338-1344- 

Machenhauer, 8.. 1.977: On the dynamics o f  gravity oscillations in a shalbw 

water model, with applications t o  normal mode inltialkation. Beitr, 
Phrs. Rbmos. . 50. 253-271. 

Reid, C., 1976: Courant in Giittfntaen and New York. Springer-Verlag. New York. 

Heidelberg. Berlin. 

Robert. R., 1981: R stabte numerical integration scheme f o r  the primitive 

meteorological equations. Rtmos. -Ocean. 19, 35-46. 

Temperton. C., 1985: Applications o f  a new principle fo r  normal mode 

initiaiization. Preprint Volume, Seventh Conference on Numerical 

Weather Predlction. June 17-20 1985, Montreal, P.O., American 

Meteorological Society. Boston. Mass. 

Van Isacker. J. and W Struylae~t,  1985: Numerical Fbrecasting using Laplace 

Transfocms. Roy. Belgian Net.  Inst.. Pub. Sar. A - No. 115. 




