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NUMERICAL FORECASTING USING LAPLACE TRANSFORMS:
THEGRY AND APPLICATION TO DATA ASSIMILATION.

Rbstract

The Leplece Transform technique is used to develop a numericel
scheme for integrating the primitive equstions. The scheme is capable of
feithfully simuleting the dynemics of the low frequency components of the
Flow, whilst the high frequency components ere strongly sttenuated. Thus, it
models the meteorologicelly significant synoptic flow, uncontaminated by gravity
wave noise.

The Leplece Trensform (LT) method has been compared to a2 standard
Adems Bashforth {RB) method in the context of & one dimensionel model. The LT
method with & one hour timestep gives results very similer to the RB scheme
with a 30 second step. The scheme is subject to e stability criterion similer to
that of the semi-implicit method, and depending on the edvection velocity. If
the sdvection is integrated in & Lagrangian manner this restriction Is relexed.

The Laplace trensform method is- particularly sultable for insertion of
dets during an integrstion: since the gravity weves sre strongly damped, the
model cen absorb the inserted information without undue shock. Other schemes
generally require reinitielization after data insertion, or else the imposition of
strong divergence damping. Thus, the method would appear to be a useful
meens for continuous date assimilation.
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1. INTRODUCTION

The main objective of Numerical Weather Prediction (NWP) is to
provide accurate guidance on the development of synoptic weether systems
evolving from a specified initisl state. The basic equations of current NWP
models — the primitive equstions — have bean found to be cepable of faithfully
simulsting the dynamics of these systems. However, these equations also have
high frequency solutions corresponding to gravity waves. These are of little
meteocalogical importence, but they cause computstional and other problems,
and are generelly regerded es undesirsble noise.

We can deel with grevity wave noise in two ways. Historicelly, the
first method was to modify the equations of motion so that the only solutions
remaining were the low frequency meteorological motions. The resulting filtered
equations — the quasi-geostrophic equations — were used successfully for the
first computer forecasts, and are noise-free. However, they Iinvolve
approximations which are not slways justified, with consequent errors in the
forecasts. Therefore, the primitive equations ere generally used noweadeys for
NWP, and the corruption of forecasts by noise is prevented by imposing bslance
conditions on the initiel fields. This process is celled initialization.

Properly initislized figids result in smoothly evolving flow patterns
during the forecast, provided that the integration proceeds undisturbed. If we
wish to modify the fields during the integration, e.g. to correct them in the
light of new observational data, the balance may be disturbed and noise
generated. HAgain, we mey prevent this in two weys: the fields may be
reinitialized after dalts insertion, or a numerical. scheme may be chosen which
prevents or suppresses noise. The reinitielization of the fields may be
computationelly expensive, perticulerly if dets is being assimileted at. freqguent
intervalg, Therefore, we consider in this report a scheme which suppresses
noise by allowing the low frequency motions to evolve uninhibited while strongly

damping the high freguency motions.



A solution method using the Laplece transform technique was
developed by Lynch (1985a) and applied to the problem of initialization. in the
present study the seme method Is used to devise a numerical scheme Ffor
Integrating the equations of motion. The method forecasts the low frequency
motions while the high frequency components are strongly attenuated. The
method is compered to a well-tried Adams Bashforth method in the context of
a simple one-dimentional madel. Both methads give very similer forecests of the
rotational component of the flow. The evolution of the divergence is much
smoother for the Laplace transform method.

The stability properties of the Laplece transform method sre
considered. The epproximetion of. the inversion integral by a sum Introduces &n
error; this has bean investigated by Van Isacker and Struylsert (1985). Their
results cen be used to derive 8 stability criterion for the maximum sllowable
timestep. It turns out to be a very lenient and easily satisfied condition. The
practical limit on timestep erises through the nonlinear advection terms: the
stability condition is the same es that resulting from the semi-implicit schame,
end depends on the maximum eadvection velocity. This restriction can be
circumvented by the use of e Lagrangian treatment of advection, resulting in a
practically unrestricted scheme.

The Laplece transform scheme Is of psrticuler interest in the
context of continugus date essimilation. This process involves the modification
of the meteorologicel fields during e forecast run by Insertion of new date.
One consequence of datae insertion is the disruption of the fine balance between
the flelds, resulting in spurious gravity wave nolse. Since Ffrequent
reinitislization is imprécticel, the noise must be eliminated in some other way.
Most methods of demping, such as divergence demping, which are designed teo
contral high frequency waves, slso affect the rotational motions, saltering the
forecast. The Laplace transform technique specifically saelects the high
frequency gravity wave components for eglimination, and leaves the
meteorological motions virtually unaffected. As a result, dete may be inserted
continuously and assimilated by the model without vundue. shock. Parallel runs

using the Rdems Beshforth (RB) and Laplece transform (LT) schemes for data
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assimilation show that the latter scheme absorbs inserted dests without
appreciable noise in the ensuing forecest. The AB scheme suffers from
noticeeble residual noise even when the fields are reinitielized after dsts
insertion.

The Laplace trensform scheme besrs s close resemblance to & scheme
using normel modes, proposed by Daleyr (1980). Both methods forecast the
slowly varying rotetional components of the flow while diagnosing sppropriste
gravity wave components. Since the LT scheme does not require explicit
knowledge of the model normal modes, it may be more useful in the context of
limited ares modelling. Both methods involve costly transformetions between
physicel space end normal mode or imege spece. It is possible to derive s set
of equations in physical space (I call them the slow equations) with properties
similar to the scheme of Dealey, but évoiding transformations at each timestep.
It is proposed that these eguations would provide an efficient end effective
mathod for forecasting the meteorologically significant components of the fiow

and for continuous deta assimilation.



2. THE LAPLACE TRANSFORM METHOD -

in this section we describe the Laplece transform method of
integrating the equations of motion. In section 28 we outline the theory of the
method; section 2b deals with the effects of discretization of the inversion
oparator: and in section 2¢ we consider the question of stability. The numericel

model used in this study is outlined in section 2d.

Z2a. Theory.

We consider a system whose state at time t Is specified by the

vector X(t), which is governed by an equation of the form

+ LX +« N =0 : : (2N

IS

where L is a linear operator and N a nonlineer vector function. If the system

is in the state X° at time £ =0 then the Leplace trensform of this equetion is

~

MK « N = X° (2-2)

where M{s) = (gl+L) with ) the identity matrix, s is the transform veriable and
cerets denote Laplace trensforms.

If we consider the evolution of the system over a short time
interval (0,At), and assume that the nonlingar term does not very, we may

solve (2-2) as follows

"~

X = Mx°-nNs3 (2-3)

where N =N(X®). Then, to find the solution st time t = At we apply the inverse

Laplace transform

xcat) = @ {M'-Wrs1} |
E=at



If we are interested only in the slowly varying components of the flow we may
replace S_] by the modified inverse S* (see Appendix} which acts to Ffilter out

the high frequency components:
x' = x"@t) = L (M- } | (2-4)
t=a¢

. Heving the- solution at- t =At we may proceed stepwise to extend the forecast. -
However, it is better to employ a leepfrog timestepping technique; thus, the

solution X st time 24t can be approximated by

X = O {MW'-wa} |
t=ast

where B =M(X') is eveluated st the. centre of the interval (0,28t). In general,
having the solutions X" and X" et times (n-1)At and nAt, we edvence the

solution to time (n+1)AL as follows:

e @M -Wrs} | | (2+5)
t=2at
Here the origin of time for the inverse transform is (n-1)4t so that X s
the ‘initial condition®, end the nonlinger terms sre evalusted et the centre of
the Intervaii.
An elternative timestepping scheme was proposed by Yanlisacker and
Struyleert: We assume that the solutions at nAt eand (n+#)At ere X" and X"'*.

Then we msake two steps as follows:
= {7 -N" 1 } | (2-62)
t=at

32 M- s | (2-6b)
£=34872
The nonlineer terms sre celculated only once. This scheme is eiso started by a
forward step. Unlike the leepfrog method, it has no computationel mode. We

refer to this method as the two-step scheme.
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2b. Discretizetion of the inverse Trensform

We have defined the modified inverse transform

Fwy o= 8 {F} - g—,laﬂ, e Fls)-ds 2N

To evaluste S' numerically, we replace the circuler contour " by e
circumscribed reguler N-gon C; (see Figure 1). The integrend is evaluated st the

midpoints s_ of the edges of C;:
s, = 7 expl{{2n-1)1x/N]

Now consider the number s reaised to the power k=m+cN where O<m<N. We cen

easily show thst

k _ N.r m
s, = (-7} s

Thus, the function s: {qua function defined on C;) looks like the function sn'"
multiplied by a constant (-7")r. This aliasing means that only the first N

powers of s_ere linearly independent:
{ o 1 2 . SN-I }
Sn2S0 Sy n

iIs 8 basis for functions defined on C;. Thus, we truncete Taylor -series

expansions after N terms, so the exponential function 93" is replaced by
P P P

|
o 'i (st)"/m! (2:8)
m=0

The discrete modified inverse Laplace trensform is now defined es follows

Wi, - 5'2—;’,'?; Fis et as . (2-9)

(where the correction factor «=(tan(x/N))/(a/N} is discussed in Lynch,
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1985b). Using the fect that As /s = 2mi-x/N we can rewrite this trensform as

53;1{‘}} |'t y ﬁ ifi‘sn)e,:”tﬁ,,. (2-10)
b

(this is the form used by Venlsacker and Struylsert, 1985). We have shown in
Lynch (19858) that 2.2 is @ perfect low-pess filter (see also the Appendix).
It is of Interest to investigate the response of the numerica! filter FN defined

by
Fu . z'u S
This question has been considered by Van Isacker and Struyleert, who showed that

F{ et} - norat

where the response Function Hy Is glven by
Hfo) = 1/ 81+io/7M. (2-11)

Thus, Fn is a double adiog filter: it demps the input function ewt by Hy(e),
but aiso truncetes the Teylor series expansion at N terms. Graphs of the
response Function Hy(e) for verious values of N are shown in Figure 2.

The operator F" leeves the function e;"t unchanged. Thus, it is
idempotent of order two. However, since it is not bounded (in the supremum

or L_norm) it is not e projection in the Hilbert space sense.

2c. Stability
We consider the stability properties of the Laplece -transf.‘orm method

by applying it to o simple linesr oscilletion equation, first with all terms
transformed explicitly, and then with a term held constant during each

timestep and representing the nonlinear advection.
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Consider the oscillation equation
fviox = 0, x@® = X 2-12)
Let X™' =X((n-1)8t) and X"=X(nbt). We use the ieepfrog method described In
section 2a to integrate this equation. Transforming the equation with the origin
of time taken at t =(n-1)At we have

X = X"'/ts+io) | (2-13)

Then, applying the (continuous) inversion operator 2‘ with t =28t we get

g—lo?ﬂtxn-l-' |9|<7'
xn‘-i _
g, lof>~
Since |¢“| =1, we have unconditionel stability, /.e. Ffor the continuous

operator §° the timestep At is unrestricted. In reslity we must replace *
P P

by 2; Recall that

tob

2;{ 1/(s+ia) } = HN(O)'O; .
Thus, epplying 2; to (2-13) with t =2At we get the numericsl solution

XN = H o) gy T (2-14)

For stability it Is sufficient that the quantity multiplying X! have modulus not

greater than unity, i.e.

| Ho)er“®t | < 1 (2+15)

Now, using Taylor"s theorem with remainder we can show that

-]U‘.



[ei ™| < 1+ lo-28td"/N)

end since the response Function H, is given by (2-11), we get, es e sufficient

condition for stability. thet (o-28t2"/N¥ < (a/9)", or

At < 5y (2-16)

Defining the cutoff period 7 = 2n/7, end using Stirling’s formule, we may write

(2-16) in @ simpler, though slightly less sharp, form:
At: & Nt /dze. (2-11)

This is @ very lenient stabliity criterion; for exsmple, with typical values N=8

and 7, =12hours it implies
At & 24/me = 2-Bhours.

This is a longer timestep than we are likely to wish to use in practice.

If the two-step scheme is used instead of the leapfrog schems, the
permissible timestep for linger stability Is doubled. Note that. In any cese, this
stability criterion does not depend upon the spatial resolution; this s
perticularly importent for varieble grids, where a locally fine resolution might
otherwise impose an over-restrictive CFL criterion.

The advection terms Impose a more stringent limitation upon the
timestep. Consider (2-12) sgain on the interval (0,2At) and evaluete the second
term at time At. Then the trensform may be written

N

X = - ix's
* n_ 4n,b
iIf we invert this by applying S: with t =24t and sssume that X =RA'X" we get

A2+ 2i(obtIA -1 = O

-11-



it Is straightforward to show that the roots of this quadretic for A are

unimoduler provided that
odt < 1 : (2-18)
whereas one of the roots hes modulus greeter than unity if this condition is

violated. Thus, (2:18) is the condition for stability. The advection term is of

the form UX , which for wavenumber k and grid distance Ax becomes
¢ sinkdxy - .
¢ ( “Ax )Ux = ioX.

Therefore, stability Is ensured provided we have

Qf—*—» < 1 (2-19)
X

This is the usual CFL criterion, just s we have for the semi-implicit method
where advection is treated explicitly.

In the integrations we found thet the lespfrog scheme remained
stable provided that (2:19) wes seatisfied. However, the two step method
became unstable if UAt/8x was greeter than about B-35. The reeson for this is
not precisely understood, but presumebly it is due to the uncentered nature of
(2- 6b). The results presented below are for runs using the leepfrog scheme.

It is not possible to explicitly transform the nonlinesr terms.
However, the CFL restriction may be circumvented in another way: the
advection may be in'tegrated by the semi~Lagrangian technique, which is
unconditionally stable. In that case the only restriction is that due to the

discretization of the Leplace transform, namely (2-16) above.

2d. The Forecast Model

The model used In this study is the simple one-dimensional model

OYNAMO described in Lynch (1984). Tha basic- equations may be written:
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Lt v g5 +pv = D o (2-20)
&, ¢+ W& - fLrp 0 = 0 (2-21)
0, + (u®) -~ fiv+8 = 0 (2-22)

The variables {, & and & are specified on & staggered grid of M points, and
periodic boundary conditions are assumed. Thus, the stste of the system st
any time is completely defined by the vector

x = (14'[_'6|'01' res l(mvam’cemt £ 'cﬁ.é‘n.ﬂﬁ7
The Laplace transform of X is written i When the system (2:20)-(2-22) is

transformed, the resulting equations may be written as & single vector

squation:
MX + 8 = (2-23)

where M is a matrix depending on s, N is the vector of nonlineer terms and x°
is formed from the initial values (for more detsils see Lynch, 1984). Eguation
(2-23) is formally identical to (2-2), so thst the method of Integration
outlined In section 2e may now be applied.

In the model runs described below we chose @ chennel length
L=10"m, where M-Ax=L with M =50 and Ax =200km. For the chosen paramegter
values the maximum Rﬁssby wave frequency and minimum gravity wave frequency

have the (nondimensional) values:

| vg = 0.203 ; Ly I = 2.224.

max min

Any value of » lying between these values should serve to separate the
timescales. The value » =1 was chosen. The contour € was approximated by an

octogon C; (Figure 1); only the upper half of this contour need be considered
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(tynch, 1985b). The maetrix M was evaluated at the centre points s of the
Four upper edges As , inverted end stored for use during the forecast. The
forecasts were evaiuated by reference to & run using en Rdems Bashforth time
scheme with At =30sec., from which the rms differences in vorticity,

divergence and geopotential were cealculated.
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3. NUMERICAL RESULTS

3a. Comparison between the Laplace Transform (LT) end

Rdams Bashforth {AB) Timestepping Schameas

In order to show that the Laplece trensform (LT} scheme described
above is en effective method of integrating the equations of motion, we
incorporated it into the model DYNAMO (Lynch, 1984) and compered the resul&.é
to those using the weli-tcied Adems Beshforth (AB) method.

The parameter values chosen for~the parallel runs ere as followst

Gridpoints 50 Forecest- Langth 48 hours
Chennel Length 10,000 km Timestep (LT} 1 hour
Gridiength 200 km Timestep (RB) 30 secs.

The Initial conditiens consisted of a superposition of ten wave components with
randomly chosen pheses and amplitudes such thet the energy spectrum wes

proportional to k'

+ where k is the wavenumber. The wind was derived using
the geostrophic re}ationéhip. end then the fields were Initislized using :the
Lsplece l_',rrar-iéForm technique (tynch, 19858}. The velue »=1.0 wss chosen,
corresponding to a cutoff of components with periods fess than 12 hours. (R
modification of the iteration procedure was proposed by Vanisacker and
Struyleert (1985); this results in improved convergence properties of the
scheme and was Incorporated in the version used in this study). Parallel runs
of the model using the LT and AB schemes were made, end the results written
to disk for subsequent- analysis. The root mean square (rms) velues of the
differences between the geopotentisl, vorticity eand divergence Fields for the
two runs were csiculated. The initisl. geopotential field- (nondimensionslized) is
shown in Figure 3(a), and the 48 hour- forecasts using the AB and LT schemes In
Figure 3(b). The two forecasts are virtually identicel: the rms difference is
oy 15 m?s%; this is- minute compared to the standerd deviation of the flelds

(which is of oeder 10°m° ™). The two curves of Fforecast. geopotentiel In

—-15-
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TABLE 1

Root Meen Squere differences of the Geopotentlal, Vorticity and Divergence
Fields, between the Adems-Bashforth (AB) run (At = 30sec.)

and the Laplace Transform (LT) runs with verious timesteps.

At Ty o’z g

4 hr. 1.0:10' 5.0:10" 1.7:10"
I he. 1.510' 1.040" 2.0-10"
2 hre. 2.0:0' 2.040" 3.0:10"
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Figure 3(b) ere Indistinguishsble; a piot. of the difference, scaled by 100, Is
also shown,

Although the geopotentiel forecasts are aimost Identical, there ere
some vislble differences in the manner in which the divergence fields evolve in
the two ceses. In Figure 4 we show the divergent kinetic energy at a central
point during the 48hour run. The RB run (solid line) is noticeably noiser than
the LT run (dashed line). The Laplace trensform method is better at controlling
_gravlty wave noise during the forecest. However, it should be observed that
the noise in the AB run is of small amplitude and unlikely to be of significance
— this is so since the fislds have been well initlalized.

In Table. | wo show the rms difference between the geopotentisl,
vorticity end divergence fislds, after 48 hours, of the reference run (RB
schemea, At =30 sec.) and the LT scheme with verious- timesteps. We cen see
thet even with a 2hour timestep the LT scheme yields results very close to
the reference run. This implies the possibility thet it. may provide & very

efficient. meens of integrating the equations of motion.

3b. Experiments with Uste Insertion during the Run

Parallel runs to 48 hours were made with the AB and L1 schemes. In
each case the fields were perturbed after 12 hours in the fullowing way: a8
small increment A9 is added to the § fleld end a corresponding gecstrophically
balanced increment is edded to the meridional wind field. The Integration is
continued by making a forward step of tength At/2, Ffollowed by normal
centered steps. The & field at 12 hours, end the perturbstion A® ere shown in
Figure S(a). The maridional wind Ffleld and perturbstion ere shown in Figure
5{b). The perturbation is meant to simulate the insertion of observational
information during the forecast run. The subsequent evolution is then examined.

in the cese of the BB scheme ths dats insertién results in the
generation of-noise in the ensuing forecest. This is- due. to the disruption of
the delicate balance between the mass- and wind- fields. The divergent_kinetic
energy of the original run Is plotted as & solid-curve In Figure 6(e}, and the
results for the run perturbed after 12 hours Is shown by the dashed curve.

_I 8‘-
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The system cleerly suffers shock due to the insertion of the data, and the
forecast is noisy thereafter. The corresponding plot of the results using fields
which were re-initislized after data insertion is saiso shown (Figure 6&(a),
dotted line). The shock due to dete insertion is much reduced, but there is
still some noise remaining. _

In Figure 6(b) we show the difference between the originet and
perturbed runs using the LT scheme. In this case the flelds were. not
re-initielized after deta insertion; nevertheless, there is no evidence of* shock.
The model forecest- adjusts immedistely to the new field velues, and the
subsequent evolution is nolse-free. '

~ The rms differences: betwesn the original and- perturbed- forecast
fields were calculated and compared. In Figure 7(e) the differences In the
geopotentiel fleld ere shown. The runs sre broedly similer, but-there is cleecly
more noise in the runs using the AB scheme, even when reinitishized after date
Insertion. The vorticity fields, shown in Figure 7(b), are all fairly similer.
Finally, in Figure B we see plots of the divergence fields. The shock due to the
data insertion is manifest (Figure B(a), solid Line). This is reduced, but not
entirely, by reinitislizetlon (dashed line, Figures B8(e) and B(b)}. That the
Leplece transform scheme can absorb the inserted desta smoothly is clearly
shown In the dotted curve in Figure 8(b) (note the expsnded verticel scele).

The sbove results show that the LT scheme is cepable of absorbing
new observationsl information during the forecest. run, without undue shock or
noise in the ensuing forecast. The AB scheme suffers from acute noise due to
data sssimilation, and this is not entirely eliminated by re-initislizion of the
fields.

Severs! parsllsl runs were mede with the AB and LT schemes, In
which the fields were modified frequently during the runs, to simulste
continuous deta assimilation. In some cases dozens of ‘observations' were
introduced. The results coofirmed the above findings: the. LT Iintegretion
proceded smoothly, adjusting to a new stete of slow evolutien whenever new
date were introduced, wherees the BB scheme was incapable- of ~essimilating the

data without shocks.
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4. THE LAGRANGIAN ADVECTION SCHEME

The LT scheme hendles the lingar terms In such a manner as to allow
a large timestep; the only restriction, due to the discretization of the
inversion integral. is a very tenient one (2-16). This mesns that-the fast
gravity weves do not limit the timestep. However, the nonlinear advection
terms are hendled in an explicit. manner, and this results in & CFL criterion
depending on the advection speed (2-19}. For reelistic atmospheric flows this
limitation can be problematic, s the advective windspesd mey be locslly large. A
meens of ciccumventing this restriction is to use & Legrengian scheme for
advection (Robert. 1981; Bates and McDonald, 1982).

To test- the sbove idea the model was modifled- in such a way thei
the edvection by the mean flow U was integrated in o Legrangien meaner. Thus,

we have, for example,

@n;} - mn:‘l
such thet the velue at. gridpoint. k at time (n+1)At equals- the vaiue ai- some
departure point (denated by the star) at time (n-1)8t. The depsrture point is
a distance 20At upstreem from the gridpoint k and the variebles are evslusted
there by quertic Interpolation (using the nearest five gridpoints). The source
term (-fﬁv=v§9) is ailso an advective term and was integrated in a Lagrangian
manner; however, in order to avoid spurious energy generation it was found to
be necessary to use the meridional velocity at the arrival point in celculeting
this term. We discuss this further below.

Each edvection step was followed by an adjustment. step which used
the Leplace transform technique to integrate the remsining terms. We call the
combined scheme the Laplace-Lagrange (LL) modet.

Three peraflel runs were made using the Rdams Bsashforth (fB)

scheme, the Laplace teansform (LT) wmethod- with the advection terms
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integrated explicitly, and the Laplace-Lagrenge (LL) scheme described above.
The initial condition wes a geostrophically balanced wevenumber one perturbation
superimposed on a zonal meen flow G. The stability of the LT scheme is
determined by the nondimensional number Le = GAt/Ax (denoted Le for Lewy, who
discovered the stability criterion (see Reid, 1976, pl16)). For the AB scheme
we set At =30sec., and for the LT and LL runs At = 3600 sec. =1 hour. The grid
interval was Ax=200km in all cases. Thus, the criticel velocity for stability Is

=555 ms'-'. We chose two values of the zonal velocity as follows:

0-90

50 msq' :  Le

[~}
]

60 ms'-’ i te = 1-08

[ =]
n

The forecast geopotentiel after 48 hours is shown in Figure 9. For Uu=50m/s
the three schemes give very similar results —- it is difficult- to distinguish
between the three curves in Figure 9(a). For U=60m/s the stability critercion
(Le< 1) is violated end the LT scheme becomes unstabie. This is cleariy seen in
Figure 9(b}. The Rdems Bashforth and Lsplece-Lagrange schemes remsin stable,
and both give very similar results — the RB and LL curves are almosleeét-icaL

Further runs with u=100m/s and with other initial conditions
confirmed that the LL scheme remasins stable- for strong advection. This scheme
gives us @ method of integrating the equations using timesteps of "the order of
an hour, without the problem of pumerical instability. The only restriction is
the critecion (2-16} due te the discretization of the inversion integral.

In the case where all three schemes remsined stable the errors in
the LL scheme, though small, were larger than those using the LT scheme
(errors were relstive to the AB run). This is believed to be due to the handling
of the source term (-fuv). In the case of geostrophic. flow this term exactly
belences the mesn advection U® , and-in genersl it-seems that speciel care must
be tsken in modelling the small residual. The results with the LL scheme were
found to be quite sensitive to the precise menner in which this term was
integrated. The question was not- examined further, since in more general

models the advection is-not separsted into components in this-way.
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S. DISCUSSION

The numerical technique discussed in this report allows us to
forecast the meteorologicelly significant components of the flow whilst
attenuating the high frequency components to the level necessary for nonlinger
balance of the rotational modes. The spplication of the method does not require
explicit-knowledge of the normal modes of the forecest model.

Van isacker and Struylsert (1985) heve epplied the Laplace transfocm
method to & three dimensional global spectrel model. They report thet the
method provides an efficient means of Integreting the primitive equations,
alfowing them to use 2 lerge timestep, and that the evolution of the
meteorologicel fields is much smoother that that obtasined using explicit
integration methods.

Daley (19800 has used the ideas of normal mode initislization to
develop 8 method of Integrating the primitive equations efficiently. The original

equations can be written

X » LX + NX =0 : (5+1)

where X is the state vector of unknowns, L is a constent lineer operstor
(matrix)} and N is a nonlinger vector function. When transformed to Hough mode

space, the system splits into two subsystems:

{5-2)

1
<

+ AY + NATD

T
2 - A2 - NOVD) (5-3)

Where Y. end 2 are respectively the coefficients of the slow and fest
components of the flow and A,. A, are diagonal matcices of sigenfrequencies.
Assuming Machenhauers criterion (2=0) to hold throughout tha integration,
Daley replaced (5-2)-15-3) by the system
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(5-4)
(5-5)

T o+ AL + N(YD
A+ NOYD

giving a prognostic equation for the slow modes and a diegnostic equation for

the fest modes. | will call (5-4)-(5-5) the Slow Equatlions. Using the slow

equetions, Daley developed an integration scheme which was stable, officient
and accurate: he compsred s run with the slow equations and At-=40min. to o
control run with the primitive equations and 8t =10min.; the rms differences
in surface pressure and 500 hPa winds at 48 hours were only B-6hPa and 1 m/s.
These dif ferences are minute.

The great_ majority of the additional computational effort_ (per
timestep) in Osley's- scheme is due to the trensformations between spectest
(spherical harmonic) space and normal (Hough-)mode space; for a gridpoiat
model the transformations would be even wmore expensive. The Laplace
treansform technique avoids these transformetions but involves, insteed,
transformations to end from image space (s-space), which are also expensive.
Using the ideas of implicit normal mode imitislization (Temperton, 1985; Juvanon
du Vachat, 1986), | have derived a set of eguations, expressed in terms of the
physical varisbles (not normal modes), which forecast the low frequency
motions while diegnosing appropriate gravity wave components.. These sfow
equations in physical space obviate the need for costly -transformations. The
stow equations are similar to the balence system. but not identical to It. They
would eppeer to provide us with a meens of selectively forecasting those
components of the atmospheric motion which are important, while avoiding the
troubles assoclated with the gravity weaves. They would also seem to provide a
suitable means for the essimilation of observational data during a forecast,- es
they can sbsorb inserted data without suffering high frequency shocks.

The three methods mentioned here are obviously all closely related to
eech other, and may be expected to behave similerly in their handling of -gravity
wave nolse. All would seem to show promise in the. eree of conlinuous data

assimilation. Since the slow equations in physical space require no
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teansformations, they would seem to offer the most atiractive prospect. They
involve the solution of Helmholtz and Poisson equations at each timestep and
would therefore be most economicelly incorporated in a spectral (sphericel
harmonic) context. It is hoped to test the slow equstions in a full baroclinic

model and to present the results in & further report.
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APPENDIX
Laplace Transform Theory

The basic definitions and properties of Laplace
transforms needed in this study are summarized, and
the method of filtering is described. A good compre-
hensive guide to the theory, from a practical viewpoint,
is Doetsch (1971).

The Laplace transform of a function f{f) of time ¢
is defined as:

LI} =fs) = fo } Anevdt (A1)

and is a function of the associated complex variable
5. Thus, a constant g transforms to afs. The complex
exponential function representing a wavemotion is
transformed to an algebraic function

Lie™'} = 145 — iw). {A2)

Since .L is linear, the superposition of a number of
waves may be transformed component-wise:

J r
L{Z ae™'} = 2 af(s — iw). A3)

j=1 J=t

The higher the frequency w;, the further the corre-
sponding pole s = iw; lies from the origin.

If the transform of f{f) is f(s) then the time-
derivative, f'{f), transforms as

LIf()} = s-fis) — fI0) (A4)

where f{0) is the initial value of f{f). Thus, differen-
tiating in f-space corresponds to algebraic operations
in s-space. This is the power of the Laplace transform
method: it lowers the level of transcendence of func-
tions and operators. Ordinary differential equations
transform to algebraic ones.

A modification of the Fourier theorem gives us the
complex inversion formula for the Laplace transform:

- H -
S = LHA = 32l J;ﬂs)e"ds (A5)

where the contour C is parallel to the imaginary axis,
and to the right of all singularities of f(5). We assume
that f(s) is meromorphic, that is, analytic except for
isolated poles; and that the contour C can be com-
pleted by an asymptoticaily large semicircular arc in
the left half plane.

The contributions to f{#) in (A5) come from the
poles of f{s). Since the high-frequency components
correspond to poles far from the origin, they can be
eliminated by shrinking the contour to a circle C* of
radius r centered at the origin. This is the motivation
for the definition of the operator .L* {Eqg. (7), Section
2h], and we see that £*.L acting on f{t) will select
the components with frequency < r and filter out
the high-frequency components of f(¢).
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