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SEMI-LAGRANGIAN METHODS 

A. McDonald, 
Meteorological Service, 

Dublin, Ireland 

1. INTRODUCTION 

My original intention for this lecture was to present a review of semi-Lagrangian 

integration schemes for atmospheric models. However, a paper by Staniforth and Cote 

(1991) has just appeared doing exactly that. May I recommend it for its thoroughness, 

clarity and extensive bibliography. In order to avoid duplicating it I will refrain from 

giving an overview of the subject and wncentrate instead on a small number of topics 

and treat them in more depth than is possible in a review. 

The plan, therefore, is to apply semi-Lagrangian methods to simple equations in 

order to illustrate the fundamentals of the subject unencumbered by excessive technical 

detail. Hopefully, sufficient insight can be gained in this way to enable those interested 

to apply the methods in a more general context. Thus, in section 2 the one dimensional 

advection equation is used to show how the semi-Lagrangian approach works and why 

it should be superior to the Eulerian approach. In section 3 the barotropic vorticity 

equation is used to demonstrate the implementation of the scheme in practice and to 

trace the historical evolution of the basic ideas underpinning the method . Finally, in 

section 4 the one dimensional continuity equation is used to point out a potential flaw 

in the method, at least as presently implemented, that is, the fact that it is not exactly 

conserving, which may make it unsuitable for climate modelling. Possible methods of 

overcoming this problem are then discussed. 

2. ACCURACY AND STABILITY 

Consider the one dimensional linear advection equation 

where e is the constant advecting velocity. If it is integrated numerically using an 

Eulerian scheme then instabilities develop unless cAt/Az < 1, where At and Az are 

the increments into which space and time have been divided for the purpose of the 

integration. See, for example, section 5.3 of Haltiner and W i a m s  (1980), hereinafter 

called HW ). As has been pointed out by Robert (1981), this condition limits At to a 



value six times smaller than is typically required for accuracy in weather forecasting. 

Therefore, computer time can be saved if an alternative, equally accurate, computa- 

tionally inexpensive integration method which avoids this restriction can be invented. 

In what follows it will be argued that the multiply-upstream semi-Lagrangian scheme 

fulfils these requirements. 

I t  is founded on the 'Lagrangian' property of Eq.(2.1) that its solution at time t 

is given in terms of its initial value by $(z,t)  = $(z - ct,O). In order to  see how this 

can give rise to an unconditionally stable integration scheme consider what happens if 

Eq.(2.1) is integrated forward for one time step. The field at the arrival point z = I A z  

at time t = (n+l )At  is given in terms of the field at the departure point z, = IAz-cAt 

at time t = nAt by 

${IAz, (n + 1)At) = ${z,, nAt}. (2.2) 

Since z, is not necessarily a grid point, some approximation method is obviously needed 

to interpolate to it from the known values of the fields at the grid points. 

The choice of interpolation points dictates the stability of the scheme. This can be 

seen by looking at the linear Lagrange method, the simplest non-trivial interpolation. 

For any two grid points this gives ( J  > K without loss of generality) 

where the notation $; = $(JAz,nAt)  has been introduced. Assuming that Eq.(2.2) 

has a solution of the form 4; = An exp[ikIAx] and substituting z = o. = I A z  - cAt 

in Eq.(2.3) yields 

where a = cAt/Az. Inspection of this equation yields the condition lA IZ  < 1 if 0 5 
2(1 - a - J ) / ( K  - J )  < 2, that is, if K 5 ( I  - a )  < J, or equivalently, K A z  5 
x. < JAx.  Thus, stability is guaranteed for any c provided the grid points used in the 

interpolation surround the departure point. Although this has been demonstrated only 

for the simplest possible interpolation it will be used as a guiding principle from now on. 

Thus, the method avoids the CFL stability restriction by 'going multiply upstream'. 

The next question to ask is whether it as accurate as the Eulerian schemes which 

it seeks to supplant. Eq.(2.2) can be written as 



The task is to find an interpolation method which ensures that this finite difference 

equation approximates Eq.(2.1) at least to O ( A t 9  and O ( A z 2 ) ,  Not surprisingly, it 

turns out that the Lagrange linear method is not accurate enough. Consider, therefore, a 

Lagrange quadratic interpolation using the three grid points closest to, and surrounding 

the point z :  

Let K = I - p ,  p being aninteger chosen such that ( I -p-0 .5)Az  5 z < ( I -p+0.5)Az  

and let 6 be defined by 

A26 = ( I  - p ) A z  - z ,  (2.6) 

(See fig.1). Clearly, the choice of p means that -0.5 < ir 5 0.5. Then Eq.(2.5) becomes 

If this is now substituted in Eq.(2.4) with z = z. = I A z  - c A t  it is not difficult to 

show this schemeis also unconditionally stable because the interpolation points surround 

the departure point; see Bates and McDonald (1982). How accurate is it? In order to 

find out, first expand + in a Taylor series about ( I A z , n A t )  giving 

+ ( z , n A t )  = 4; - ( p  + & ) A z [ ~ / ~ z ] ;  + ( p  + 6 ) 2 ( ~ z 2 / 2 ) [ a 2 + / a z 2 ] ;  + o ( A z ~ ) ,  (2.8) 

where the leading O ( A z 3 )  term is (Ax3/6)[a3$/i3z3]; WZ3, and 

P = 5 + ( p  - 1 )  + ( 1  - ( 1  + 6)(-p)3  - 0 5 (  - 6 ) -  + I ) .  (2.9) 

With z = z ,  = IAx - c A t  in Eq.(2.6) giving 

substitution of $ ( z , n A t )  from Eq.(2.8) in Eq.(2.4) and expansion of +;+I yields 

[ { I  + ( ~ t / z ) ( a / a t  - ~ a / a ~ ) ) ( w / a t  + c ~ / ~ z ) I ;  + o(at2) + o ( A z ~ / A ~ )  = o., (2.10) 
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where the leading 0(Az3/At)  term is given by [-Az3/(6At)][P$/8z3]; W'. It is 

important to  examine this term carefully to make sure it does not misbehave as At  

and Az approach zero. Otherwise, the approximation is not consistent. Recall in what 

follows that pis always chosen so that -0.5 < & 5 0.5. There are three cases to consider. 

Case 1. The grid is refined in such a way that At/Az + 0 as At and Az  -+ 0. 

Then p + 0 and & -+ cAt/Az. In that case W,3 + -cAt/Az and the term which seems 

to be 0(Az3/At)  is seen to be O(AzZ). 

Case 2. The grid is refined in such a way that At/Az + g, a constant, as At and 

Az + 0. Then, since At = gAz and (Az/At)W,3 + gW;(&,& - gc), a constant, the 

O(Az3/At) term is again seen to be O(Az2). 

Case 3. The grid is refined in such a way that AzlAt  + 0 as At and Az + 0. 

Then lclAt/Az >> and p + cAt/Az. In that case W,3 + ( ~ A t l A z ) ~  and the term 

which seems to be O(Az3/At) term is seen to be O(At2). Since At >> Az in case 3, 

the quadratic interpolation yields an O(AzZ) and O(AtZ) accurate scheme in all three 

cases. Thus the scheme is consistent and attains the required accuracy. In what follows 

the notation O(A) will be used as shorthand for O(At) or O(Az) or O(Az2/At) in this 

sense. 

There remains the important question of efficiency. Since Eq.(2.7) combined with 

Eq.(2.4) form a Lax Wendroff scheme when p = 0, (see Eq.(5-116) of HW ), it is dear 

that in the one dimensional case the semi-Lagrangian and Eulerian methods of treating 

the advection equation with constant velocity are approximately equally expensive. 

These results are very encouraging. Will they survive in a more hostile environ- 

ment? To find out, consider the advection equation with non-constant velocity, 

where u(z , t )  is a given function. Again, the the field is conserved following the parcel 

of fluid. That is, Eq.(2.4) is still valid but with 2, now obtained by solving the equation 

See Ince(1956), page 45-50, for example. Thus, a new difficulty arises , that of solving 

Eq.(2.12). It can also be written 



This highly implicit system must be solved for the departure point z(i) = z.,  assuming 

the arrival point z(t + At) to have the known value IAx. 

Consider the consequences for the accuracy of the method of using the simplest 

possible approximation, that is, assuming u[z(T),T] to be the constant tr;"12. From 

Eq.(2.13), z. = I A x  - A~u;"'~, which on substitution in Eq.(2.6) yields p + & = 

U ; ' ~ ' ~ A ~ / A Z .  Putting this in Eq.(2.8), (again using the quadratic scheme to estimate 

at I,), enables one to expand +{x. ,nAt) about (IAx,nAt). Subsequent substitution 

in Eq.(2.4) shows it causes an O(A) error. So this estimate is not accurate enough. 

Robert(l981) suggested the following iterative method which overcomes this prob- 

lem. The idea is to get as good an estimate of u at the centre of the trajectory as 

possible, and then approximate Eq.(2.13) as 

z(t) = z(t + At) - Atu[z(t + At/2),t + At/2], 

thus restoring 0(A2)  accuracy. The estimate of z(t + At/2) is taken ss half of the the 

arrival point position plus the previous best estimate of the departure point position: 

d"(t  + At/2) = 0.5[z(t + At) + z(')(t)], (2.14) 

where Eq.(2.13) is approximated as follows to get the next estimate of dk): 

x("')(t) = z(t + At) - ~ t u [ x ( ' ) ( t  + At/2),t + At/2]. (2.15) 

Thus, for example, if the zeroth order guess for %.is taken as 

n t l l 2  z?) = d O ) ( t )  = I A z  - Atu, , 

then Eqs. (2.14) and (2.15) give the first order estimate of 2.: 

x!" = I A z  - Atu[IAz - (~ t /2)u ' f" '~ , (n  + 1/2)At]. (2.16) 

This process can be continued until convergence. Defining ir@) = u;"'~, the procedure 

can be summarised as follows 

z. = I A x  - Atd t+ ' ) .  (2.18) 

Once x, has been found by this method, $(x.,nAt) can be evaluated by a suitable 

interpolation. 
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In order to see whether accuracy has been improved, consider the simplest possible 

implementation of the ~rocedure, using a Lagrange linear interpolation to compute the 

first guess of x!') in Eq.(2.16): 

n + l / 2  n + l / 2  u[IAz - u, At/2,(n + 1/2)At] = (1 - j)u,-, + +"'+112 I - ~ - I  (2.19) 

where j = -m + A ~ U ~ + ' / ~ / ( ~ A X )  and m is an integer chosen so that 0 < j < 1. 

Expanding about (IAx,nAt) and substitution in Eq.(2.16) yields 

Now, Eq.(2.20) and (2.6) give p+ & = (At/Az)[u + (&/a -u&/az)At/2];. Using 

this to expand $(z,nAt) about ( IAx,nAt)  in Eq.(2.8) and then substituting the result 

in Eq.(2.4) yields 

Thus, the required accuracy has been restored . 
There is a small computational cost, that of the extra linear interpolation, (2.19). 

In addition, as Pudykiewicz et. al. (1985) pointed out, there is a condition for the 

convergence of the iterative procedure, that is, max[Atl&/azl] 5 1. In a meteorological 

context this is not severe since an upper bound on max(au/az(  is s-' . Hence, the 

method remains attractive and one is encouraged to examine it further. 

Therefore, consider the following more realistic equation which contains all of the 

terms one meets in integrating the primitive equations of motion: 

For instance, in the momentum equation, ( would contain the Coriolis and the pressure 

gradient terms, etc. What additional problems does it pose for the semi-Lagrangian 

approach? 

Solving Eq.(2.21) is equivalent to solving the system of ordinary differential equa- 

tions (see Ince(l956) p 47) d$/( = dxlu = dl. The solutions are given by Eq.(2.13) 

plus the following: 

i+01 

$[z(t + At),t  + At] - $[x(t),t] = 1 t [ z ( ~ ) ,  d d ~ .  (2.22) 

Let t = L + N where the terms in L must be integrated implicitly to maintain stability 

whereas those in N are small enough to be integrated explicitly. The integral on the 



right hand side of Eq.(2.22) can be approximated in a number of ways. For the L-terms 

a 'Lagrangian implicit' choice would be an obvious one (the mean of points A and B in 

Fig. 1): 

It "' 
L[z(T),T]~T = 0.5At[LYt1 + L(IAz - iiAt,nAt)]. (2.23) 

For the explicitly integrated terms there are two obvious choices; the 'centered La- 

grangian explicit (1)' (point C in Fig.l), 

1""' N[z(T),T]~T = AtN{IAz - iiAt/2,(n + 1/2)At), (2.24) 

and the 'centered Lagrangian explicit (2)' (the mean of points D and E in Fig.1)' 

Accuracy to 0(A2)) is again guaranteed by the Lmultiply upstream' quadratic 

scheme, provided z, is obtained by iterating once with the linear scheme as can be 

verified by using Eqs.(2.20), (2.6) and (2.8) in expanding the terms in Eqs.(2.23), (2.24) 

and (2.25) about (IAz,nAt) to get for both explicit schemes 

[{I + ( ~ t p ) ( a / a t  - ~ a j a ~ ) ) ( w / a t  + ~ a $ / a ~  - L - N)]; + O ( A ~ )  = 0. 

An 0(A2)  discretization of Eq.(2.21) using scheme (2) for N would be 

where the * subscript means evaluation at the departure point given by Eq.(2.18). 

Computationally, it appears at first glance that three interpolations are now required, 

thus increasing the cost substantially. This is not true. All of the fields to be evaluated 

at the departure point can first be gathered together and then a single interpolation 

performed: 

This is formally the same equation as arises in an Eulerian implicit model (see, for 

example, section 5-7-4 of HW ). Hence, the main additional expence remains that of 



iterating to find the departure point position. Notice, however, that use of scheme (1) 

for N would involve an extra interpolation. 

As far as stability is concerned, the explicit integration of the N terms introduces 

a potential instability for large enough At. In the models constructed so far they have 

not been a source of difficulty, but they bear watching. 

Thus, for the most general type of equation likely to be encountered an analysis 

in one dimension indicates that accuracy is maintained, the additional computational 

expence is minimal, and instability can only arise from terms that are expected to be 

very small in a meteorological context. 

The above derivation has been for a two time level scheme. (In fact, it can also be 

thought of as for a three time level scheme with a time step of At12 and with the fields 

at level (n + 112) being known entities.) In the two time level context, the fields at level 

(n + 112) must be computed. The simplest estimate which is accurate to O(At2) is 

which must be used in Eqs.(2.17), (2.24) and (2.25). This is a minor additional compu- 

tational expence. 

It is now obvious how the spatial accuracy of the semi-lagrangian scheme can 

be further improved, that is, use a higher order interpolation to find the fields at  the 

departure points. For consistency these must be accompanied by additional iterations 

of Eq.(2.17) using appropriately higher order interpolations. See McDonald (1984) for 

details. In all of this, one is not restricted to the Lagrange interpolation. As far as is 

known, any method which surrounds the departure point is satisfactory. For instance, 

splines can be used. 

3. APPLICATION TO A METEOROLOGICAL MODEL 

Historically, the barotropic vorticity equation played a major role in the develop- 

ment of numerical weather prediction in general and of the semi-Lagrangian technique 

in particular. It might be interesting, therefore, to demonstrate the practical implemen- 

tation of the methods outlined in section 2 by applying them to this equation, and in 

the process see how they evolved over time. 

For arguments that this equation is a reasonable approximation to the primitive 

meteorological equations for mid- tropospheric flow see, for example, chapter 3 of HW. 

It is written as 



where v is the advecting velocity, 7 = ( + f ,  with f equal to the Coriolis parameter 

and the vorticit~ given by C = k.V x v. Since the divergence is assumed to  be zero, the 

velocity can be defined in terms of a stream function # by 

giving 

Generalising the arguments from section 2 to two dimensions, the solution to  

Eq.(3.1) is 

where r( t )  is the solution of the equation 

r(t + At) - r(t) = l+"' v[r(r) ,  ~ ] d r .  

In general, the integration of Eq.(3.1) using the Lagrangian approach proceeds as 

follows: 

Step 1. Construct 7, at time t = 0. 

Step 2. Integrate Eq.(3.5) using an appropriate approximation method dividing At 

into M increments AtlM. 

Step 3. Use Eqs. (3.4) to  get the forecast value of 7,[r(t + At),t + At)] . 
Step 4. Although 7,[r(t +At), t +At)] is now known, in order to  proceed to the next 

step v[r(t  +At),  t+At)] is also required. It is obtained by first of all solving the Poisson 

equation, (3.3), for #[r(t + At), t + At)] and from that getting v[r(t  + At),t + At)] from 

Eq.(3.2). 

Step 5. Repeat steps 2-4 N times to get the forecast at  time NAt. 

Fjortoft (1952) seems to have been the first to introduce the use of Lagrangian 

techniques in meteorology. He simplified Eq.(3.1) slightly by making the geostrophic as- 

sumption. He performed all of the steps graphically, starting from the andysed 500hPa. 

height field ( 2 ) .  Thus, step 1 resulted in a chart, at time zero, of the isolines of 



Then in steps 2 and 3, by means of a wind ruler the geostrophic wind was used t o  

advect these lines of constant q. This was done in one step At = 24h. Knowing q,z 

was obtained via step 4, again using a graphical method combined with a set of tables. 

This paper is remarkable not only because it represents the first use of Lagrangian 

methods in weather prediction, and not only for the ingenuity involved in carrying out 

the program graphically, but also for the impressive accuracy of the forecasts, the same 

as that obtained by the first computer model of Charney, Fjortoft, and von Neumann 

(1950). It is also interesting that one man could produce a 24h forecast for the whole 

north Atlantic area in 2-3 hours. 

Further progress was made when Wiin Nielsen (1959) tried to implement Fjortoft's 

program on a computer. In the process he encountered a difficulty, the solution to  which 

takes us on the next step toward our present day methodology. He wanted his arrival 

points to be grid points so that he could perform step 4, solving the Poisson equation, by 

conventional methods. He computed the departure point positions (step 2) by taking M 

small steps, assuming v constant in time. Because he was using Lagrangian coordinates, 

that is, following the parcels, he found that his initially square grid embedded in the 

flow became so distorted as to introduce unacceptable truncation errors after 12h. He 

therefore introduced the idea of abandoning the strict Lagrangian approach of following 

the parcels for the full duration of the forecast. He suggested instead following the 

parcels for At = 12h, after which steps 3 and 4 are completed. When the cycle is 

restarted at step 2 he does not follow the original set of parcels but a new set which 

arrive at the grid points at time 2At. He used the term quasi-Lagrangian to  describe 

this procedure. 

The next leap was made by Okland (1962) and Sawyer (1963) who decided to 

abandon the Lagrange coordinates and to switch parcels 'as often as possible'. Thus, 

they solved Eq.(3.5) in one step ( M  = 1) using a simple approximation. Robert (1981) 

subsequently improved this estimate of the departure point position when he invented 

the iterative method which, of course, is a two-dimensional generalization of Eqs.(2.17) 

and (2.18). This brings us up to the present where we would proceed as follows. 

Let t = nAt and choose r(t + At) to be a set of grid points r:,, . Then the details 

of steps 2 and 3 are as follows. 

2. Taking M = 1 solve Eq.(3.5) iteratively at each grid point using G(O) = v;,, : 

Then the departure point position associated with each arrival point (I, J) is given by 



3. Since r(t)  is now known ~ [ r ( t ) ,  t] can be found by a suitable interpolation of the 

known T$, , using, for example, a Lagrange biquadratic interpolation so enabling us to  

proceed with steps 4 and 5. 

Robert's other contribution, Robert(l981, 1982), was to realise that semi-implicit 

methods could be combined with semi-Lagrangian methods to yield a discretization of 

the primitive equations of motion with an extremely lenient stability criterion. This was 

the final breakthrough which made the method attractive for modelling the evolution of 

the atmosphere using unapproximated equations. See Staniforth and Cote (1991) and 

the references therein for the rest of the story, 

4. AN UNSOLVED PROBLEM 

If the primitive equations of motion are integrated over the entire atmosphere a set 

of conservation relations can be derived. These relations have important implications as 

was demonstrated by Fjortoft (1953) who examined the conservation properties of the 

barotropic vorticity equation (3.1). He showed that mean enstrophy and mean kinetic 

energy are conserved and as a result that energy cannot cascade toward higher wave 

numbers; see section 5.11 of HW for an introduction. It is therefore felt desirable that 

these properties of the differential equations should also hold exactly for the finite dif- 

ference equations, especially for climate models. Eulerian models have been constructed 

which achieve this; see chapter 7 of HW for an example of one. Doing the same for a 

semi-Lagrangian model has not yet been achieved. This problem will become important 

if it is found that prolonged integrations using the present semi-Lagrangian schemes fail 

to model the mean structure of the atmosphere accurately. In that case the potential 

increase in efficiency proffered by the method will not be available to  those who might 

appreciate it most, climate modellers. 

To demonstrate the difficulty consider a one dimensional continuity equation of the 

form 

with boundary conditions u(0,t) = u(L,t) and $(O,t) = $(L,t). This equation can also 

be written in flux form as 



Integration over z yields 

or a q / a t  = O., where 

that is, mass is conserved. 

The objective, therefore, is to construct a discretization of this equation for which 

@'+I = $? . Before pointing out the difficulties which this poses for the semi- Lagrangian 

method recall the Eulerian solution to this problem. Assuming a(u$)/az is small 

enough to be integrated explicitly then a conserving discretisation Eq.(4.1) is, assuming 

uniform Ax (see section 5-11-2 of HW) 

The judicious choice of spatial discretization gives a term by term cancellation on the 

right hand side of this equation when the summation over I is performed and the result 

is that mass is conserved exactly (L = PAz): 

Now consider what happens when the simplest possible semi-Lagrangian discretiza- 

tion of Eq.(4.1) is used, that is, in Eq.(2.22) put 

Assume p is constant first of all. Using a Lagrange linear interpolation gives 

Now, when the summation is performed there is no term by term cancellation, and 

mass is not conserved. This is not due to the choice of a Lagrange linear scheme for the 

interpolation; quadratic does not eliminate the problem. 



A possible way forward is the following. Returning to Eq.(2.22) discretise the 

integral term in a different way, 

. n + 1 / 2  . " + l / 2  
* ( z ,  T ) ~ u ( ~ , T ) / ~ z ~ T  = -(AtlAz)*;- ,  (u,+ , - u, , ( 4 . 4 )  

while retaining the Lagrange linear scheme for the evaluation of $J:. Then, since p+& = 

G A t l A z ,  *is again conserved because the approximation (4 .4)  has been carefully chosen 

to restore conservation: 

and the term by term cancellation will once again occur when the sum over I is per- 

formed. This scheme is O(A) accurate. Increasing the accuracy to O ( A 2 )  would not 

be difficult. In fact, one can make a good guess at the answer by looking at the Crow- 

ley (1969)  conserving scheme. Unfortunately, there remains a problem, the solution to 

which may point to a different approach entirely. It is the following. 

The number p was assumed to 'be constant when deriving Eq.(4.5) from Eq.(4.4) 

which, using p, + &I = ( A t / A z ) G l ,  becomes 

when p varies from point to point. When the sum over I is now performed the term 

by term cancellation only occurs as long as pr = p,, , ; what might be termed 'partial 

conservation'. Each jump in p contributes an unwanted term to the mass. For instance, 

if p, = p for I  = 1, N and PI = p + 1 for I = N + 1 ,  M exact mass conservation will be 

violated by the additional term bN+, [ d ( N  - p -  1 )  - d ( N  - p ) ] .  It is not the magnitude 

of p that is causing exact mass conservation to fail in this approach , but its variability. 

It is interesting that the property which maintains the stability of the method seems to 

be conspiring to prevent exact conservation. 

This leads to the following question. Does there exist a clever choice of local 

interpolations which gives an exactly conserving scheme for non-constant p? If not, 

a possible way out is to abandon local interpolation and to consider instead global 

interpolation, that is, to postulate a solution of the kind 

P 

$ J y t l  = E M I , J ( ~ I ) $ J Y ,  

J = l  

and to demand that the matrix M have certain properties. The first and most important 

is that when ii and $J are expanded about ( I , n )  then Eq.(4.1) must hold to 0 ( A 2 ) .  Mass 



conservation can be imposed by demanding that 

These conditions are not sufficient to define M uniquely. Others are obviously needed. 

A first step in the direction of providing them has been taken by Bermejo(l990) who 

solves this problem for the simpler case of au/az = 0 using a combination of finite 

elements and basis splines. It would be interesting to see if the method generalises t o  

the more important au/az # 0 case. 
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