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Transition levels of defects are commonly calculated using either methods based on total energies
of defects in relevant charge states or energy band single particle eigenvalues. The former method
requires calculation of total energies of charged, perfect bulk supercells, as well as charged defect
supercells, to obtain defect formation energies for various charge states. The latter method depends
on Janak’s theorem to obtain differences in defect formation energies for various charge states. Tran-
sition levels of VZn, VO, and VZnO vacancy defects in ZnO are calculated using both methods. The
mean absolute deviation in transition level calculated using either method is 0.3 eV. Relative com-
putational costs and accuracies of the methods are discussed. © 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4739316]

I. INTRODUCTION

Transition levels (TL) of a defect are Fermi level po-
sitions at which the energies of the defect in two distinct
charge states are equal. Sweeping the Fermi level position
through the TL results in a change of charge state. For
example, the oxygen vacancy defect in ZnO, VO, can ex-
ist in neutral, 1+, and 2+ states and the ε(+ /2+) TL
is the Fermi level position at which the total energies of
V+

O and V2+
O become equal. Defect TL is important in un-

derstanding the absorption and emission properties of off-
stoichiometrically grown semiconductor materials. In this
work, we compare two different methods for calculating
TL: a total energy (TE) method requires total energies of
defect and perfect bulk supercells in either charge state
and a method based on Janak’s theorem1 requires single-
particle eigenvalues (SPE) for the defect supercell in either
charge state. The former method is relatively inexpensive in
computer time, but contains approximations which are not
made in the latter. We apply both methods to acceptor and
donor vacancy defects in ZnO in order to compare their
performance.

TL for defects in ZnO and other oxides have been esti-
mated using both TE (Refs. 2–7) and SPE (Ref. 8) methods.
Earlier work mainly used local density approximation (LDA)
or LDA+U (Ref. 2) Hamiltonians. These methods underes-
timate the band gaps of wide gap oxides2 and so corrections
to the band gap are necessary when calculating TL. Here, we
use the B3LYP hybrid density functional9, 10 which predicts a
single particle band gap for ZnO (3.17 eV, this work) in good
agreement with experiment (3.47 eV (Ref. 11)). The B3LYP
functional has previously been applied to calculations of TL
in ZnO.8, 12

While it is widely recognized that relaxation of defect
supercells is important for obtaining accurate TL, the drastic
changes which can occur in predicted TL when supercells

a)Present address: Max-Planck-Institut für Eisenforschung GmbH, D-40237
Düsseldorf, Germany. Electronic mail: chakraa@tcd.ie.

are relaxed may not be fully appreciated. In particular, hybrid
density functional theory (DFT) methods are particularly
expensive in computer time. In this work, all supercells have
been fully relaxed for all charge states considered. However,
in some cases supercells are relaxed using less expensive,
non-hybrid DFT methods before hybrid DFT methods are
used to calculate TL. This may lead to significant error in
predicted TL in some defects where there is a large lattice
relaxation.

In Sec. II, we outline the TE and SPE methods. This is
followed by results of calculations of TL of three intrinsic
vacancy defects in ZnO: the oxygen vacancy, VO, the zinc
vacancy, VZn, and the ZnO divacancy, VZnO.

II. FORMATION ENERGIES AND TRANSITION LEVELS

The formation energy for defect X with charge q,
E

f

Xq , is13, 14

E
f

Xq = EXq − Ebulk0 + niμi + q(EF − EV ), (1)

where Ebulk0 and EXq are total energies from supercell calcu-
lations for the bulk crystal and the bulk crystal with a defect,
X, in charge state, q, respectively. ni is the change in number
of species, i, removed from or added to the supercell to cre-
ate the defect, μi is the chemical potential of species i, and
EF−EV is the position of the Fermi level relative to the va-
lence band maximum level.

In a total energy calculation, the absolute positions of the
valence band maximum or conduction band minimum are un-
known and the energy required to transfer an electron from
the valence band maximum (VBM) to an acceptor defect or
from a donor defect to the conduction band minimum (CBM)
must be calculated directly. As noted above, a defect TL is
the Fermi level position at which the formation energies of
a defect in its two different charge states become equal. The
position of an acceptor level relative to the CBM is equal to
the energy released when an electron moves from the CBM to
the acceptor level. For a donor, it is the energy released when

0021-9606/2012/137(5)/054709/5/$30.00 © 2012 American Institute of Physics137, 054709-1
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a hole moves from the VBM to the donor level. For ease of
comparison of TL for both acceptor and donor defects, we
refer acceptor levels to the VBM rather than the CBM using
the band gap energy, Eg, obtained from the ionization poten-
tial and electron affinity of the bulk supercell.7 A TL is de-
noted ε(q′/q), where q and q′ are two different charge states
of the defect, and is obtained from the difference in formation
energies of a defect in two distinct charge states using Eq. (1),

ε(q ′/q) = Ev + E
f

Xq − E
f

Xq′

q ′ − q
. (2)

In the TE method, differences in total energies of defects
in different charge states are calculated from the energies of
the bulk supercell and the bulk supercell with a defect and the
TL is given by7

ε(q ′/q) = [EXq − Ebulkq ] − [EXq′ − Ebulkq′ ]

q ′ − q
, (3)

where, as before, EXq is the total energy of the supercell with
defect X in charge state q and Ebulkq is the bulk supercell with
the same charge state. Equation (3) is used for a donor defect.
An acceptor defect is charged by adding an electron to the
supercell. Equation (3) yields the TL with respect to the con-
duction band in this case; the TL with respect to the valence
band maximum is obtained by adding the band gap energy.
The TL for an acceptor defect is therefore given by

ε(q ′/q) = [EXq − Ebulkq ] − [EXq′ − Ebulkq′ ]

q ′ − q
+ Eg, (4)

where Eg = IP−EA is the band gap calculated from the dif-
ference of the ionization potential (IP = Ebulk+ − Ebulk0 ) and
electron affinity (EA = Ebulk0 − Ebulk−). The values of IP and
EA for ZnO are 7.14 eV and 11.06 eV (Ref. 7) from differ-
ences in total energies of charged and neutral bulk 3 × 3 × 3
supercells. The absolute IP and EA values have no meaning

since they are obtained using charged unit cells. Their differ-
ence, however, gives the band gap, which is 3.92 eV.

Gallino et al.8 have shown that TL in ZnO can be esti-
mated from Janak’s theorem.1 This theorem states that the ith
eigenvalue of a Kohn-Sham Hamiltonian, εi, is equal to the
change in total energy with respect to occupancy of the level,

∂E

∂ni

= εi . (5)

The change in total energy as a defect energy level be-
comes occupied is obtained from the change in its eigenvalue
with occupation,

EXq−1 − EXq =
∫ 1

0
eh+1(N + n)dn, (6)

where eh+1(N) is the � point eigenvalue of the lowest un-
occupied state for the N-electron defect supercell in charge
state, q, and n is the fraction of an electron added. In practice,
Eq. (6) is simplified to

EXq−1 − EXq ≈ eh+1(N ) + eh+1(N + 1)

2
. (7)

III. RESULTS

TL of three intrinsic vacancies, VO, VZn, and VZnO, were
calculated using both methods for fully relaxed supercells for
each charge state. When the bulk supercell is charged, the
electron in the conduction band or hole in the valence band
results in a metallic state. A high k-point density is there-
fore necessary to achieve accurate calculations of the total
energies of these states. The Crystal code was used for all
calculations.15 Details of calculations, including basis sets
and k-point sampling densities used in the calculations are
given in the Appendix.

FIG. 1. Energy band diagrams for VZnO, majority spin V−
ZnO and V2−

ZnO (left to right). Green/dashed and red/solid lines denote energy bands before and after
lattice relaxation, respectively. Bands which are relevant for the estimation of TL values are indicated (see text for details).
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TABLE I. Comparison of transition levels (eV) predicted by TE and SPE
methods obtained using 3 × 3 × 3 supercells. Differences in predictions of
the two methods are given under the � heading.

Defect q/q′ TE SPE �

VO +/0 1.7 1.5 − 0.2
2+/+ 2.5 2.1 − 0.4
2+/0 2.1 1.8 − 0.3

VZn −/0 0.6 0.2 − 0.4
2−/− 0.6 0.4 − 0.2
2−/0 0.6 0.4 − 0.2

VZnO 2+/0 1.5 2.0 0.5
2+/+ 0.9 1.0 0.1
+/0 0.6 0.8 0.2
−/0 2.4 1.9 − 0.5

2−/− 1.9 2.2 0.3
2−/0 2.2 2.1 − 0.1

Figure 1 shows how the electronic structure of the VZnO

divacancy depends on charge state and structure relaxation.
The left panel shows the band structure of the neutral state
of VZnO with and without relaxation. In what follows, unre-
laxed supercell energy levels are denoted NR and relaxed su-
percell energy levels are denoted R. The lowest unoccupied
state of the unrelaxed, neutral supercell is localized mainly on
Zn 4s states on Zn ions neighboring the vacant O site and is
marked NRL0. It shifts upward by over 1 eV when the cell is
relaxed (RL0) and the degree of dispersion increases consid-
erably. The states immediately below the NRL0 level are O 2p
states associated with the vacant Zn site in VZnO (Ref. 7) and
these shift downward by 0.5 eV on relaxation. The position of
the defect free bulk VBM (BVBM) is also shown.

The majority spin band structure for V−
ZnO is shown in the

center panel of Fig. 1 and the shifted (N)RL0 levels contain-
ing the added electron are marked (N)RL1. When an electron
is added to form V−

ZnO it enters the (N)RL0 level which
then shifts downward by over 1 eV. The energy difference,
EV −

ZnO
− EV 0

ZnO
, is obtained from the mean value of the

RL0 and RL1 levels measured with respect to BVBM
(Eq. (7)). The energy difference and corresponding ε(0/−)
TL (Eq. (2)) is 1.9 eV, which compares to 2.4 eV using the
TE method (Table I).

The band structure for the doubly charged defect is
shown in the right panel in Fig. 1. The positions of the doubly
occupied levels which accommodate the two added electrons
in the unrelaxed or relaxed supercells are marked NRL2 and
RL2. In this case, the relaxed level, RL2, shows considerably
less dispersion than the unrelaxed level. The ε(−/2−) TL is
the average of the V−

ZnO minority spin, empty state partners of
the RL1 (not shown) and RL2 levels. The energy difference,
EV 2−

ZnO
− EV −

ZnO
, is 2.2 eV, which compares to 1.9 eV obtained

using the TE method (Table I).
Results for transition levels of all defects considered us-

ing both methods are given in Table I. TL obtained by either
method are compared in graphical format in Fig. 2, which
shows that there is good overall agreement between the two
methods for the vacancies and charge states considered. The
mean absolute difference between TE and SPE methods is
0.3 eV. The largest differences in TL predicted by TE and SPE

FIG. 2. Transition levels for VZnO, VZn, and VO calculated using SPE and
TE methods.

methods are ±0.5 eV for the ε(2+/0) and ε(−/0) levels for
VZnO.

Figure 1 shows the importance of full relaxation of
atomic positions in defect TL calculations. It also shows that
the dispersion of a defect level can increase or decrease sig-
nificantly on change of occupancy or lattice relaxation. For
example, the vacant RL0 level in VZnO has a bandwidth of
around 1 eV which decreases to less than 0.5 eV when it be-
comes occupied in RL1 or RL2. An increase in the degree of
dispersion of a level implies a more diffuse defect wave func-
tion. Hence, filling of this level results in a more compact de-
fect wave function. The approximation that has been used to
calculate SPE TL (Eq. (7)) implicitly assumes that the degree
of dispersion does not change when the occupancy of a defect
level changes, since the position of the level is calculated at
the � point only. In an extreme case, such as the VZnO ε(−/0)
transition, neglect of the decrease in bandwidth of the defect
level when it accepts an electron will lead to an underestimate
of the TL position by up to 0.5 eV. This could be corrected by
sampling the band position over the Brillouin zone. The part
of the Crystal09 code used in this work15 to calculate band
structures is not parallelized (although the self-consistent field
part is), hence a full sampling of the Brillouin zone in the SPE
method would greatly increase the time taken and the effi-
ciency of the method vis-a-vis the TE method would be lost.
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TABLE II. Transition levels in eV relative to EV compared to literature
values.

Defect q′/q LDAa LDA + Ua B3LYPb B3LYPc HSEd

VO +/0 0.1 0.5 1.7 1.8
2+/+ 1.0 1.4 2.5 2.7
2+/0 2.1 2.2 2.2

VZn −/0 0.1 0.1 0.6 0.9
2−/− 0.3 0.4 0.6 2.5
2−/0 0.6

VZnO 2+/0 1.5
2+/+ 0.9
+/0 0.6
−/0 2.4

2−/− 1.9
2−/0 2.2

aReference 3.
bThis work.
cReference 8.
dReference 4.

IV. SUMMARY

In this paper, we have compared two methods for calcu-
lating the transition levels of point defects. In the TE method,
TL values are calculated from the total energies of bulk super-
cells and supercells containig defects. In the SPE method, TL
values are calculated using single-particle eigenvalues. Com-
parison of results from the two methods shows that they agree
to within 0.5 eV, with a mean average deviation of 0.3 eV.
This deviation arises from the systematic and numerical error
sources contained in the two methods considered here for pre-
dicting defect transition levels. The B3LYP functional used
offers improved estimates of the band gaps of semiconduct-
ing and insulating oxides16–19 compared to the LDA, but pre-
dicted and measured optical band gaps still differ. There is
little experimental information available on defect transition
levels, which makes it impossible to be certain that defect
transition levels are predicted correctly, even when the optical
band gap is in agreement with experiment. Numerical errors
in these calculations arise from limited k-point sampling, use
of an incomplete local orbital basis and approximations in-
herent in solving Eq. (6) numerically via the approximation in
Eq. (7). Predictions for transition levels also depend on defect-
defect separation. Various schemes have been devised to elim-
inate contributions of defect-defect interactions to defect tran-
sition levels by extrapolating the calculations to large defect
separation using several defect supercell sizes.20, 21 This has
not been done here as we are simply comparing predictions of
the two methods. Table II shows a comparison of TL values
in literature with the values obtained in this work using the
TE method. The k-point 6×6×6 Monkhorst-Pack sampling
density22 used here was found to be sufficient to yield IP and
EA values which extrapolate correctly to the single particle
band gap. Effects of varying the basis set on predicted transi-
tion levels have not been investigated.

The mean absolute difference of 0.3 eV between TL cal-
culated by TE and SPE methods is acceptable when TL are
of the order of 1-2 eV in a wide gap oxide, however shal-
low levels such as the donor H interstitial in ZnO (Ref. 8)
lie within 0.1 eV of the band edge, where such a difference

is unacceptable. In this case, the SPE method is likely to be
more accurate as it requires only shifts in band positions with
occupation, whereas the TE method requires pairs of differ-
ences in large total energies of the order of 105 eV. In any
case, calculation of TL positions by both methods will pro-
vide an important check on the reliability of a calculation and
the SPE calculation can be performed at little extra expense
in comparison to the TE calculation.
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APPENDIX: DETAILS OF CALCULATION

All calculations were performed using the Crystal
program.15 The Gaussian orbital basis for Zn (Ref. 23) is the
basis previously used by Jaffe and co-workers. The Gaus-
sian orbital basis for O (Ref. 24) is the basis previously
used by Towler and co-workers.23 A 6×6×6 Monkhorst-Pack
net was used for self-consistent field calculations; a denser
12×12×12 net was used for total energy evaluations. It was
necessary to use this high k-point density to obtained con-
verged total energies for metallic states which are encountered
when an electron is added to (or removed from) the perfect
bulk cell in transition level calculations. Tolerances for lattice
sum convergence within the Crystal program were chosen to
be 8, 8, 8, 8, and 16.
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