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Abstract 

A pertinent question about precipitation trends is how to distinguish a climate change 

signal from natural variability. This is particularly important for Ireland where, in 

addition to the high spatial variability, precipitation also has a high level of temporal 

variability. Future precipitation projections for Ireland are highly uncertain due to 

conflicting results from climate models. Due to this, using an observation-derived 

dataset we determined the magnitude of the changes in the spatially-averaged 

precipitation over Ireland that need to occur, and the length of the record that needs to 

be available, to separate an externally forced anthropogenic change from changes due to 

natural variability. We used a 71-year (1942-2012) 1km gridded dataset, derived from 

precipitation observations over Ireland, to generate a de-trended dataset of annual 

average precipitation for the country. Using this data, we then created artificial time 

series of annual precipitation of varying length in terms of years. These datasets had the 

same underlying natural variability as the original dataset but in addition to this we 

applied predefined external forcings. We then used statistical testing to determine the 

minimum length of the time series of annual precipitation and the magnitude of the 

external forcing required to separate the external trend from the natural variability with 

statistical confidence. We examined trends in annual, Boreal summer and Boreal winter 

precipitation using the Mann-Kendall test. For example, in the case of annual 

precipitation we found that an increase of at least 20% over a period of 30 years (for a 

monotonically increasing external forcing of 20%) was the minimum needed for the 

result to be statistically significant at the p<0.1 level.  The number of years required to 

statistically decouple external from natural forcings increases by a factor of 3 or 4 when 

the external forcing is applied non-montonically, and also when the results are 

considered by season. 

Keywords 

Irish precipitation, temporal variability, external forcings, climate change, trend 

analysis, Mann-Kendall.
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1 Introduction  

Over the past number of decades, increased surface temperatures have been observed 

over many parts of the globe (Sánchez-lugo et al., 2012; Morice et al., 2012). These 

increases have been attributed to anthropogenic forcing (Hegerl et al., 2007; Stott et al., 

2010). It is expected that higher temperatures will be accompanied by an amplification 

of the hydrological cycle (IPCC, 2007; IPCC 2013). Precipitation is the most easily 

observed component of the hydrological cycle but it is noisy and highly variable and 

this is particularly true in the case of Ireland. Changes in precipitation may have more 

important impacts on human and environmental systems than any change in 

temperature. 

Ireland is located between 5
o
W and 11

o
W, and 51

o
N and 56

o
N, at the eastern edge of the 

North Atlantic Ocean, the influence of which dominates its mild climate. The prevailing 

westerly winds and the local orography largely determine the country’s precipitation 

patterns (Betts, 1990; Sweeney, 2014). Other influences include the North Atlantic sea 

level pressure, the North Atlantic Drift and large-scale oscillations such as the North 

Atlantic Oscillation (NAO), the East Atlantic pattern and the Arctic Oscillation 

(Murphy and Washington, 2001; Hurrell, 1995; Wibig, 1999; Beranová & Huth, 2008).  

Ireland's precipitation is very variable both spatially and temporally (Rohan, 1986; 

Sweeney, 2014) and is characterised by low intensity and long duration events 

(Fitzgerald, 2007). The national average annual rainfall is 1230mm (Walsh, 2012a) with 

a west-to-east decrease as shown in the 1981-2010 average annual precipitation in 

Figure 1(a), where mountainous areas in the west receive over 3000mm annually 

compared to approximately 750mm in sheltered parts of the east.  

 

 

Figure 1: (a) Mean annual precipitation for Ireland over the period 1981-2012 illustrating 

the archetypal west-to-east decline. (b) Locations of the stations used in the generation of 

the 1942-2012 gridded precipitation dataset.  
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As well as this spatial variability, Ireland's precipitation also varies temporally as shown 

in Figure 2 and Table 1. Figure 2 shows the spatial variation of interannual standard 

deviation and normalised standard deviation (% variability or interannual standard 

deviation divided by the mean over the period (Sauro, 2014)) for the 1942-2012 annual, 

summer and winter periods. In absolute terms, the interannual standard deviation is 

highest over mountainous regions as expected but the normalised standard deviation 

reveals a more interesting northwest to southeast pattern in the rainfall variability for 

summer and winter. Spatial averages of the mean and variability of Irish precipitation 

are summarised in Table 1. 

 

 

 

 

Figure 2: (a) The interannual (b) the interannual JJA (Boreal summer) and (c) the interannual 

DJF (Boreal winter) standard deviation (mm) in Irish precipitation over the period 1942-2012. 

(d) The interannual, (e) the JJA (f) the DJF normalised standard deviation (%), a measure of 

variability, in Irish precipitation over the period 1942-2012, where normalised standard deviation 

is the standard deviation divided by the mean precipitation over the same period. 
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DJF   

(mm) 

MAM 

(mm) 

JJA    

(mm) 

SON   

(mm) 

Annual 

(mm) 

1961-1990 

average 

 

350.4 
 

 

244.8  
 

 

243.3  
 

 

347.9  
 

 

1186.4  
 

1961-1990 

stdev 

80.1   

 (22.9%) 

60.6  

 (24.8%) 

58.0  

 (23.8%) 

58.2  

 (16.7%) 

108.8  

 (9.2%) 

1981-2010 

average 

 

360.4  
 

 

260.3  
 

 

266.6  
 

 

362.1  
 

1246.5  

1981-2010 

stdev 

89.1  

 (24.7%) 

57.2  

 (22.0%) 

76.7  

 (28.8%) 

70.0  

 (19.3%) 

125.3  

 (10.1%) 

1942-2012 

average 

 

351.0  
 

241.8  264.7  354.8  1213.3  

1942-2012 

stdev 

78.8  

 (22.5%) 

56.3  

 (23.3%) 

70.4  

 (26.6%) 

67.2  

 (18.9%) 

122.3  

(10.1%) 

 

 

 

 

Several studies have been published on precipitation over Ireland and Britain. Most of 

these have analysed trends in station data or climate model data to discriminate between 

natural and externally forced changes in precipitation. Here we discuss some of these 

studies and highlight the differences and potential uses of our new study.  

Previous studies on precipitation changes only considered changes where long time 

series of observed station data were available. McElwain and Sweeney (2003) analysed 

data from 15 Irish stations up to the year 2000 and drew the general conclusion that 

northern areas are getting wetter and southern areas slightly drier, in line with outputs 

from earlier climate models (IPCC, 2001; McGrath & Lynch, 2008). An older study by 

Jones & Conway (1997) spatially averaged data over Ireland (22 stations including 8 

from Northern Ireland). This showed no trend in annual rainfall over the period 1940-

1995 but found similar seasonal results to McElwain & Sweeney (2003). However, 

neither study attempted to conclusively separate natural variability from any externally 

forced changes, with 10-year moving averages or decadal Gaussian filters used in an 

attempt to eliminate the natural variability. More recently, comparisons were made 

between the 1961-1990 and 1981-2010 station long-term averages (LTA) (Walsh, 

2012a; Walsh 2012b). This indicated an approximate 6% increase in national average 

annual rainfall (RoI only) between the two averaging periods ranging from 2-3% in the 

Table 1: Spatially averaged precipitation means and standard deviations over the 

1961-1990, 1981-2010 and 1942-2012 periods for the Republic of Ireland. Values are 

also quoted for each Boreal season.  

 



 

4 
 

east to 8-9% in the west. Most seasons recorded increases, but the south and east 

recorded decreases in winter. No attempt was made to explain the changes.  

An analysis of UK precipitation extremes, derived from Met Office gridded data by 

Simpson and Jones (2013), found that observed trends in UK precipitation are mostly 

consistent with projections from climate models. They suggested that the changes in 

seasonal precipitation totals are likely associated with the NAO and that in recent years 

it has become harder to determine a detectable anthropogenic influence on UK 

precipitation than on temperature. 

Reconstruction data have also been used as a means of discriminating climate change 

signals from natural variability. For example, using a 1500-year temperature 

reconstruction dataset, Hegerl et al. (2007) found that enhanced variability in the past 

was mainly due to external forcing, in particular from volcanoes, which meant that it 

could be quantified and hence separated from later greenhouse gas-induced changes. 

While their area of study included Ireland, the analysis was not split by geographical 

area nor did it include precipitation. Reconstructed precipitation datasets are scarcer and 

mostly exist for specific sites or small areas (Hodell et al., 1991; Graumlich, 1993; 

Casty et al., 2005 among others). However, the European reconstructed precipitation 

dataset from 1500 to 2000 (Pauling et al., 2006) covers Ireland. No studies have been 

done using this dataset to separate natural from anthropogenic precipitation changes. 

However, its relatively coarse resolution (0.5 degrees or ~56km over Ireland) and the 

fact that it doesn’t capture the present day (years 1942-2000 overlap with our 1km 

dataset – see Section 2 for further details on this 1km dataset) mean or variability in 

precipitation over Ireland restricts its use for the study we proposed.  

A popular approach used to discriminate between trends in precipitation due to natural 

variability and external forcings is the use of climate simulations. The huge importance 

of the detection and attribution of externally forced climate changes is emphasised by 

the fact that an entire chapter of IPCC, 2013 is devoted to it (Bindoff et al., 2013). It is 

thus an important area of further research, in particular for precipitation, which is 

considered much more uncertain than temperature.  

Regarding the use of climate models, common methods include running the models 

with and without anthropogenic forcings or using the natural variability from a control 

simulation using pre-industrial greenhouse gas concentrations as a means of separating 

the anthropogenic signal. The expected anthropogenic fingerprints of change in zonal 

mean precipitation have been detected in annual and some seasonal data. For example, 

Zhang et al. (2007) and Noake et al. (2012) used CMIP3 (Coupled Model 

Intercomparison Project) multi-model data to separate anthropogenically forced zonal 

mean precipitation changes over land from natural forcings and similarly Polson et al. 

(2013) and Balan et al. (2012) used CMIP5 multi-model data. However, the detection of 

regional scale trends is much more difficult though an anthropogenic signal has been 

detected at high northern latitudes (Min et al., 2008; Polson et al., 2013).  

Regional-scale attribution of precipitation change is still problematic and to date there 

has been no such study carried out for Ireland specifically. Observational uncertainties, 

in addition to challenges in precipitation modelling, limit confidence in the assessment 

of changes in precipitation, as the following projections highlight. The results from 
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Scheff and Frierson (2012) using a suite of 36 global CMIP5 models show some 

confidence in wetter winters and drier summers for Ireland under the RCP8.5 scenario 

(van Vuuren et al., 2011) but low confidence in changes for the other seasons. These 

results for summer are in agreement with the larger CMIP5 ensemble presented in the 

IPCC AR5 report for the end of the century (Flato et al., 2013) but the results for winter 

are not statistically significant, showing the large uncertainty that still exists. The 

relatively low resolution of global climate models hinders their ability to capture local 

climate details making it necessary to downscale the data to a finer grid. Dynamical 

downscaling of 25 CMIP3 models to a 25km grid over Europe for the EU 

ENSEMBLES project (van der Linden et al., 2009) also showed a signal for future drier 

summers, with greater uncertainty for the other seasons. C4I, an Irish project, further 

downscaled to a 14km grid over Ireland and the UK (McGrath et al., 2008). This 

indicated drier summers and springs and wetter winters and autumns, though the trends 

were not statistically tested. Nevertheless, the models captured the spatial and seasonal 

observed precipitation patterns of the past climate which gives some confidence in the 

models (Wang et al., 2006). A 10 model ensemble of EURO-CORDEX data on a 

12.5km grid mostly shows a robust increase in annual precipitation over Ireland under 

RCP8.5 (Jacob et al., 2014). It also shows statistically robust decreases for summer, 

increases for autumn and winter but no clear signal for spring. A separate study was 

undertaken by Nolan (2014 under review) and Gleeson et al. (2013), using a mixture of 

CMIP3 and CMIP5 downscaled simulations under the RCP8.5 emission scenario over 

Ireland on a 4-7km grid (i.e. the highest resolution regional climate simulation for 

Ireland). This showed a likely decrease in summer, spring and annual precipitation, a 

slight decrease in winter with no signal for autumn (Gleeson et al., 2013; Nolan, 2014 

under review).  

The general uncertainties in climate model simulations of precipitation make 

quantitative comparisons of model output and observations difficult (Stephens et al., 

2010 for global; Nolan, 2014 under review) for Ireland which also limits confidence in 

the detection and attribution of precipitation changes. The analysis of model simulated 

precipitation variability for Ireland is smaller than observed variability (Nolan, 2014 

under review).  

Clearly, with the exception of summer, there is still considerable uncertainty regarding 

precipitation projections for Ireland and this is one of the main reasons why we chose to 

use observation-derived data rather than climate model simulations in our approach.  

Our study differs significantly from the studies we have discussed here. It focuses on 

the temporal rather than the spatial variability and how natural temporal variability can 

complicate the recognition of long-term externally forced trends. We use spatially 

averaged annual mean precipitation amounts over the Republic of Ireland (RoI) by 

averaging a 1km monthly mean 71-year gridded dataset of precipitation for Ireland 

produced by Met Éireann from observation data. This gives a much better spatial 

average than the sparse synoptic network of stations that are used in the global and 

larger-scale observation datasets currently available (e.g. CRU (Harris et al., 2014), E-

OBS (Haylock et al., 2008), GPCC (Schneider et al., 2011)). We removed any existing 

trends from this dataset but retained its natural variability. We then used these data to 

generate our own artificial annual time series of precipitation to which we added pre-

defined external forcing, where external forcing here implies anthropogenic forcing 



 

6 
 

only. Our goal is also different from other studies. Firstly, we do not consider large 

latitude bands or wide geographic areas. In addition to being able to attribute a trend to 

anthropogenic or external forcing other than natural variability, our study investigates 

the length of a time series of annual precipitation needed and the size of the 

anthropogenic forcing required, before it becomes possible to separate an externally 

forced change in precipitation from natural variability.  

Section 2 outlines the datasets used in this analysis. In Section 3 we discuss the 

treatment of the data and statistical testing. The results are given in Section 4, with 

discussions and conclusions in Section 5.  

2 Data 

71 years of historical Irish (Republic of Ireland only) gridded monthly precipitation data 

were available for use. These datasets were prepared by Met Éireann from monthly 

station data archived in their climate database. The number of stations available varies 

from year to year, but currently consists of approximately 500 stations. At most of these 

stations precipitation is measured once a day at 0900 UTC, in a standard 5 inch 

raingauge, but at 25 synoptic stations measurements are accumulations derived from 

tipping bucket raingauges, and at some remote locations monthly precipitation readings 

are taken. A map of the precipitation measurement stations in Ireland for the period 

1941-2012 is shown in Figure 1(b). 

 

A number of geostatistical methods are used for interpolation of climate data. A 

comprehensive review is given by Dyras et al. (2005). Perry and Hollis (2005) 

generated monthly climate grids for a range of parameters for the UK using inverse 

distance weighted interpolation, Haylock et al. (2008) produced monthly and daily 

European gridded datasets using thin plated spline and kriging methods, while Zolina et 

al. (2014) used kriging and grid cell averaging to produce daily grids. Generally these 

methods involve interpolating fractional anomalies from long term background values. 

Regression-kriging, (Hengl, 2007), was applied to the Irish rainfall data as a 

comprehensive robust method which is widely used amongst the climatological 

community. It combines regression of a dependent variable, which may be normalised, 

on independent variables such as elevation, latitude, longitude etc., with kriging of the 

regression residuals. The large scale variability of the target variable is explained by the 

regression trend, while the residual kriging accounts for the local variability. 

 

Firstly long-term average (LTA) station values and monthly rainfall grids were 

generated (Walsh, 2012b). Monthly station totals were normalised by dividing by their 

LTA and a regression model was applied to the normalised rainfall using geophysical 

parameters (elevation, distance to sea, easting, northing) as independent variables. The 

regression residuals were interpolated onto a 1km grid by ordinary kriging. The 

regression trend was then evaluated at each grid point and added to the interpolated 

residual grid and the final monthly value was obtained by de-normalising. The accuracy 

of the predictions was estimated using the leave-one-out cross-validation method 

(LOOCV), where each station value is omitted in turn and its value estimated using the 

remainder of the dataset. Table 2 shows the average root-mean-square error RMSE for 

all months and its variation across the data period, and the average normalised RMSE, 
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RMSEr, that is the RMSE divided by the standard deviation of the data. The RMSEr 

gives a normalised accuracy of prediction. The RMSEr can be considered satisfactory if 

it is less than 0.4; in this case the model accounts for more than 85% (R-square=85%) of 

the variability at the validation points, while values greater than 0.71 account for less 

than 50% of the variability (Hengl, 2007). 

 

The dataset used in this study are spatial averages of this 1km dataset (over RoI or the 

area east or west of 8
o
W). The advantage of using 1km gridded data, as opposed to 

station data, is that it can provide a mean for the Republic of Ireland which takes high 

resolution topography into account. 

 

Variation across period 1942-2012 

 Average Standard Deviation Minimum Maximum 

RMSE 

(mm) 
13.61 4.48 3.55 31.93 

RMSEr 0.35 0.08 0.17 0.7 
 

 

 

 

3  Methods  

The spatially averaged precipitation data over Ireland used in this study were derived 

from the 71-year 1km gridded observation dataset available for the country. The areal 

averages considered include the country as a whole and both the eastern (east of 8
o
W) 

and western (west of 8
o
W) areas separately for annual, Boreal summer (June, July, 

August – JJA) and Boreal winter (December, January, February – DJF) time periods.  

We used these data to generate artificial time series of precipitation. Two types of time-

series were considered – one where artificial time series (denoted ATS hereafter) of 

length y years were generated and the other where the artificially generated time series 

ATS were appended to the end of the de-trended (see next paragraph in this section for 

details on the de-trending) historical 71-year time series (denoted AH hereafter). It is 

important to note at this point that we applied increases or decreases to each ATS or the 

ATS part of AH, but not to the de-trended 71-year historical time series, as a means of 

mimicking anthropogenic climate change. The details regarding the generation of these 

data series are outlined later in this section. 

As the ultimate goal of the experiments was the discrimination of externally forced 

anthropogenic changes from natural variability, the 71-year historical dataset was de-

trended before use in the experiments. This was necessary because, for example, the  

Mann-Kendall trend test on the annual data series for the country as a whole returned a 

p-value of 0.04 indicating a very likely (Mastrandrea et al., 2010) increase in 

precipitation with a magnitude of  1.58 ± 1.47 mm/year (p<0.05) using Sen's slope test. 

Table 2: Summary of cross validation statistics for the monthly rainfall gridding. The average 

RMSE for all months in the 71-year period, its variation across the data period and the average 

normalised RMSE, RMSEr are given. RMSEr is the RMSE divided by the standard deviation of 

the data. 
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De-trending, done by subtracting the least-squares fit line from the data (Borchers, 

2014), removes trends in a dataset while preserving its underlying variability and 

magnitude characteristics. A histogram and density plot comparing the original and de-

trended annual data for Ireland is shown in Figure 3. The non-significant Kolmogorov-

Smirnov (K-S) test (Young, 1977) and non-parametric Kendall tau correlation 

coefficient (Meals, 2011) of 0.85 provide the necessary statistical evidence that the de-

trended dataset contains the same magnitude and variability characteristics as the 

original dataset. Similarly, the eastern, western, JJA and DJF time series were de-

trended. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Below we outline how the ATS of annual average precipitation over Ireland were 

generated to which increasing trends were then applied. Increasing trends were also 

applied to DJF data but decreasing trends to the JJA time series for consistency with 

CMIP5 and downscaled projections for Ireland's future precipitation (Flato et al., 2013; 

Jacob et al., 2014; Nolan, 2014 under review). The same techniques were applied for the 

3 different areas considered – Ireland as a whole, the area east of 8
o
W and the area west 

of 8
o
W. In the AH experiments, the artificially generated time series (ATS), with 

applied trends, were appended to the end of the de-trended 1942- 2012 historical time 

series of Irish precipitation in chronological order. 

 

Figure 3: Histogram and density plot of the original and de-trended annual spatially-averaged 

precipitation data for Ireland. The results of the Kolmogorov-Smirnov (K-S) test and non-

parametric Kendall tau correlation coefficient from comparison of the two datasets are included. 
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We firstly focus on the generation of ATS of annual average precipitation for Ireland of 

length y years where y was limited to between 10 and 150 years, depending on the 

experiment. The selection was done by randomly selecting any y years from the 71-year 

de-trended dataset using the standard random selection functions in the R statistics 

package (Dutang, 2014). We repeated this process 30,000 times, i.e. we generated an 

ensemble of 30,000 time series of length y, to take account of possible time series that 

could arise due to the temporal variability in Ireland’s precipitation. 30,000 iterations 

was deemed sufficient as the results were consistent to within 1%  i.e. the proportion of 

the ensemble returning statistically significant results was consistent to within 1% even 

if we increased the ensemble size further. 

The second step in the process was to apply a forcing, to mimic anthropogenic induced 

changes, to each of the 30,000 time series of length y years. This was done by applying 

increases to each of the y years in the time series. By year y a net change of x% was 

applied, where x% is the fraction of the 1942-2012 annual mean precipitation over 

Ireland. In our experiments the forcings were applied linearly monotonically and non-

monotonically across the time series. We limited x to the range 4-20%, as 20% is at the 

upper end of the changes projected by the latest climate simulations (Flato et al., 2013; 

Jacob et al., 2014; Nolan, 2014 under review). 

For the linearly monotonic case the applied change grew monotonically with each 

successive year up to the final year y where the net change was x%. In the non-

monotonic case where the net result was a positive trend, the forcing applied to each 

year could be positive or negative and hence was not necessarily always greater than the 

forcing applied to the previous year. The sign of the forcing was allowed to vary to try 

to account for the variability of Irish precipitation, since there is no reason to assume 

that each year in a series would see a positive change in precipitation. The non-

monotonic trend was generated randomly but the net forcing was always x% by year y. 

To try to account for the range of possible non-monotonic trends terminating at x% by 

year y, the non-monotonic trend applied to each of the 30,000 time series generated for 

each experiment of length y years, was also generated randomly. A non-monotonic 

change is the more realistic scenario, as Irish precipitation is very variable in time, and 

there are no reasons why we should expect a change to occur monotonically.  

Sample time series are illustrated in Figure 4. A linear monotonic trend and non-

monotonic trend of 10% by year y where y = 30 years is shown in Figure 4(a). In Figure 

4(b) the effect of both trends on a sample ATS of length y is shown where ATS-mono is 

the ATS time series plus the monotonic linearly increasing trend and ATS-non-mono is 

the ATS time series plus a non-monotonic trend.   

There were two main reasons for the experiments using the AH series, which is a 

combination of the de-trended historical series and ATS. The first is that the de-trended 

historical part of this time series is similar to a control (pre-industrial) period (Sterl et 

al., 2012) in climate model simulations. In such simulations greenhouse gas 

concentrations are held constant, for example at the levels of the year 1850. Therefore, 

any variability in such data is natural rather than anthropogenic. In our experiments, the 

anthropogenic forcings are applied to the ATS subsets of the AH data series only. 

Hence, our AH time series is analogous to a control period in climate simulations 

followed by an industrial period where known forcings are applied. The second reason 
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for using AH time series, where the historical section was firstly de-trended, is that it is 

unknown when (or if) anthropogenically caused changes in precipitation over Ireland 

occurred. De-trending eliminates this uncertainty. In any comparison study, it is good to 

have a “before period” – in our case the de-trended historical time series can be 

considered the “before period” i.e. the period before anthropogenic forcings were in 

effect. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Finally, we provide a brief outline of the statistical approach taken in this study. The 

non-parametric two-tailed Mann-Kendall test (Meals et al., 2011; Önöz and Bayazit, 

2003; Drápela and Drápelová, 2011; Mondal et al., 2012) was used in the analysis 

because, despite the nature of the trend being known, variability itself can introduce 

trends which can occur in either direction. The presence of a trend in the precipitation 

time series was tested using three confidence levels: 90
th

 (p<0.1), 95
th

 (p<0.05), and 99
th

 

(p<0.01); the 90
th

 and 95
th

 levels are referred to as “very likely” probabilities in IPCC 

AR5 (Mastrandrea et al., 2010) and the 99
th

 level denotes “virtually certain” 

probabilities. This test checks whether a time-ordered dataset exhibits an increasing or 

decreasing trend, which may or may not be linear (Frei, 2013), at a predetermined 

significance level.   

 

 

 

 
Figure 4: (a) Sample linear monotonic and non-monotonic trends of x=10% by year y where y = 

30 years. (b) Sample artificial time series (ATS) of length y years to which the linear monotonic 

(ATS-mono) and the non-monotonic trends (ATS-non-mono) were added. It is not possible to 

discern the trend visually because of the large temporal variability of the underlying dataset. 
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4  Results 

The results section is ordered as follows. The results of the ATS and AH experiments 

on annually averaged precipitation over Ireland as a whole are covered in section 4.1. 

The seasonal breakdown (JJA and DJF) of the experiments is included in section 4.2 

and in section 4.3 areas east of 8
o
W and west of 8

o
W are considered separately. 

In the contour figures presented in this section (Figures 5-9), the length of the time 

series in years, y, is shown on the y-axis. Here we mean the part of the time series to 

which we applied the forcing. The x% forcing applied by year y, either linear 

monotonically or non-monotonically (to represent anthropogenic forcing), is shown on 

the x-axis. The contour lines refer to the percentage of the 30,000 member ensemble of 

time series generated for the experiment that return statistically significant results for 

the Mann-Kendall trend test at a given confidence level (p<0.1, p<0.05 or p<0.1). 

Although, the contour plots show the full range of percentages (of the 30,000 time 

series that return statistically significant results for a given confidence level), we have 

chosen 90% as the cut-off point; all of the results quoted in this section, including the 

tables, refer to this level of filtering. The 90% level was chosen to provide a rigorous 

level on which to base our findings. It is not the same as the p<0.1 confidence interval.  

In each experiment the minimum time series length and forcing where 90% of the 

30,000 iterations return a statistically significant trend at the relevant confidence level is 

determined from the corresponding contour plots. For the ATS series the minimum 

length is y, while for the AH series the minimum length is y+71. In the AH plots we 

have only shown the ATS part of the series i.e. the part to which the forcings were 

applied. An uncertainty of ± 5 years was considered most appropriate as the time series 

length was incremented in steps of 5 years in each experiment. The results are discussed 

in the following sections. 

4.1 Annual ATS and AH precipitation time series 

The results of the experiments on the artificial annual time series (ATS and AH) of 

spatially averaged precipitation over the Republic of Ireland are shown in Figures 5 and 

6 for different confidence levels. The interpretation of the axes and contours is as given 

earlier in this section and in the figure captions. The ATS results for linear monotonic 

trends of x% over y years are shown in Figure 5(a) at the 95
th

 or p<0.05 confidence 

level. An increase or forcing of 20% applied incrementally and linearly across a time 

series of length y (and reaching 20% by year y) is only statistically significant (for at 

least 90% of the 30,000 ensemble of possible time series used) for y greater than 40 ± 5 

years. As can be seen from Figure 5(a), for smaller x%, longer time series (y years) are 

required at the same confidence level (p <0.05 here) as expected. 
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The AH results for the same confidence level (p<0.05) are shown in Figure 5(b). Here 

the length of the ATS part of this time series (i.e. the artificial series concatenated to the 

end of the de-trended time series of 1942-2012 historical data) only needs to be 20 ± 5 

years (i.e. 20 years + 71) for a 20% increase to be statistically significant. A 10% 

increase in spatially averaged precipitation requires 50 ± 5 years (in addition to the 71 

years of historical data) for the same confidence level. 

 

Figure 5: The length of the ATS spatially averaged annual precipitation over Ireland, y years, is 

given on the y-axis. The x-axis represents the applied forcing, x, given as a % of the annual mean 

of the 1942-2012 de-trended spatially averaged historical precipitation dataset for Ireland. The 

contour levels show the percentage of the 30,000 time series for a given x and y, that return 

statistically significant results at the p<0.05 confidence level. (a) ATS with linear monotonic 

trend of x% by year y (b) AH with linear monotonic trend where the time series length is in fact 

y+71 (c) ATS with non-monotonic trend of x% by year y (d) AH with non-monotonic trend 

(again time series length is in fact y+71). 
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As outlined in the Introduction, a linear monotonically increasing incremental trend is 

not a realistic representation of possible changes in precipitation over time due to the 

large number of factors that affect precipitation. The results for non-monotonic 

increases to annual precipitation time series at the p<0.05 confidence level are shown in 

Figure 5 (c) and (d). As expected, the number of years required before a trend could be 

considered statistically significant at the same confidence level, increased considerably. 

For an increase or forcing of 20% a time series longer than 150 years is required in the 

ATS case or 115 ± 5 years (i.e. 115 ± 5 years +71) in the AH case. Note that simulations 

of length greater than 150 years (or 71+150 years in the AH experiments) were not 

carried out due to computational resource limitations.  

Non-monotonic AH test results for the lower confidence level of p<0.1 (Figure 6(a)) 

and the higher level of p<0.01 (Figure 6(b)) are illustrated in Figure 6. For p<0.01 and 

an increase or forcing of 20%, more than 150 years was required for the results to be 

statistically significant. For p<0.1, 80 ± 5 years was required (in each case the number 

of years does not include the 71 year historical time appended to the time series). A 

summary of these results, along with others from subsequent sections are summarised in 

Table 3 where forcings of 20% were applied. Annual and seasonal results are presented 

for the p<0.1 (90
th

), p<0.05 (95
th

) and p<0.01 (99
th

) confidence levels. The forcings are 

applied both linearly monotonically and non-monotonically and in all cases the numbers 

quoted refer to where at least 90% of the 30,000 ensemble members in the particular test 

return statistically significant results at the relevant level.  

 

 

 

 

 

Linear 

monotonic 

Annual 

ATS 

(years)         

± 5 years 

Annual 

AH 

(years)         

± 5 years 

JJA 

 ATS 

(years)              

± 5 years 

JJA 

 AH 

(years)         

± 5 years 

DJF 

ATS 

(years)         

± 5 years 

DJF 

AH 

(years)         

± 5 years 

p<0.1 30 15 140 45 130 60 

p<0.05 40 20 >150 60 >150 70 

p<0.01 55 25 >150 100 >150 105 

       

Non-

monotonic 

Annual 

ATS 

(years)         

± 5 years 

Annual 

AH 

(years)         

± 5 years 

JJA 

 ATS 

(years)              

± 5 years 

JJA 

 AH 

(years)         

± 5 years 

DJF 

 ATS 

(years)         

± 5 years 

DJF 

 AH 

(years)         

± 5 years 

p<0.1 >150 80 >150 >150 >150 >150 

p<0.05 >150 115 >150 >150 >150 >150 

p<0.01 >150 >150 >150 >150 >150 >150 

Table 3: A summary of the test results where a 20% forcing (linear monotonic and non-

monotonic) was applied to annual, JJA and DJF ATS and AH time where the overall forcing was 

+20% by the end of the annual and DJF time series but -20% for JJA. The values quoted in this 

table are the minimum number of years required, for at least 90% of the 30,000 ensemble 

members used for each time series length to return statically significant results at the confidence 

level p given in the left most column of the table. Hence, these values represent the minimum 

number of years required to separate an external trend from the natural variability with statistical 

confidence. In the AH columns the values refer to the number of years succeeding the 71-year 

historical section of the time series. 
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4.2 JJA and DJF ATS and AH precipitation time series 

As shown in Figure 2, the relative standard deviation or % variability of summer and 

winter precipitation over Ireland exceeds the interannual % variability. This is also 

reflected in the results by season shown in Figure 7 (longer time series are needed for 

trends to become statically significant) where the forcings applied to the summer or JJA 

data were negative and positive forcings were applied to the DJF data.  

For example, we can see from Figure 7 (a) that a 20% linear monotonic decrease in 

precipitation, applied decrementally across the JJA ATS time series only becomes 

statistically significant at the p<0.05 levels after more than 150 years. In the more 

realistic AH case (Figure 7 (b)) this reduces to 60 ± 5 years, where 60 denotes 131 years 

in total, 60 years to which forcings were applied along with the 71 years of de-trended 

historical JJA data.  

Similarly a 20% forced increase in DJF precipitation takes >150 years and 70 ± 5 years 

in the ATS and AH linear monotonic cases respectively (Figure 7 (e) and (f)). For the 

non-monotonic ATS and AH summer and winter cases (Figure 7 (c), (d), (g), (h)) it 

takes greater than 150 years for the trends to be statistically significant for a 20% 

decrease or increase respectively for each confidence interval considered. These 

seasonal results, where forcings of 20% were applied, are summarised in Table 3 for 

p<0.1 (90th), p<0.05 (95th) and p<0.01 (99th) confidence levels.  

 

 

Figure 6: The length of the AH spatially averaged annual precipitation over Ireland is y+71 

years where the varying y is given on the y-axis. The x-axis represents the applied forcing, x, 

given as a % of the annual mean of the 1942-2012 de-trended spatially averaged historical 

precipitation dataset for Ireland. The contour levels show the percentage of the 30,000 time 

series for a given x and y, that return statistically significant results at a given confidence 

level. AH with a non-monotonic trend of x% by year y for (a) p<0.1 and (b) p<0.01 

confidence levels. 
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4.3 East of 8oW and west of 8oW ATS and AH annual precipitation time series 

The final suite of tests involved splitting the country into two areas: east of 8
o
W and 

west of 8
o
W. Non-monotonic forcings were only considered and annual, JJA and DJF 

time periods were investigated. For the ATS annual time series (both east and west of 

8
o
W), and a non-monotonic forcing of 20% by the end of the time series, more than 150 

years are required for the trend to be statistically significant for p<0.05 (Figures 8(a) 

and 9(a)). Under similar conditions but for the AH time series this reduces to 120 ± 5 

years for the west and 125 ± 5 years for the east (+71 years of historical data) for the 

trend to be statistically significant for p<0.05 (Figures 8(b) and 9(b)). As before 

significant results by season take longer to detect (i.e. require longer time series): > 150 

years in all cases (Figure 8 (c) to (f) and Figure 9 (c) to (f)). These east/west results, 

where forcings of 20% were applied, are summarised in Table 4 for p<0.1 (90th), 

p<0.05 (95th) and p<0.01 (99th) confidence levels.  

 

 

 

 

Figure 7: The length of the time series of spatially averaged JJA or DJF precipitation over 

Ireland, y years (or y+71 for the AH cases), is given on the y-axis. The x-axis represents the 

applied forcing, x, given as a % of the mean of the JJA or DJF 1941-2012 de-trended 

spatially averaged historical precipitation dataset for Ireland. The contour levels show the 

percentage of the 30,000 time series for a given x and y, that return statistically significant 

results at the p<0.05 confidence level. (a) ATS with linear monotonic trend of x% by year y 

for JJA (b) AH with linear monotonic trend where the time series length is in fact y+71 for 

JJA (c) ATS with non-monotonic trend of x% by year y for JJA (d) AH with non-

monotonic trend (again time series length is in fact y+71) for JJA. (e) to (h) similar to (a) to 

(d) but DJF. x is negative for JJA but positive for DJF. 
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Figure 8: The length of the time series of spatially averaged precipitation over Ireland but 

west of 8
o
W, y years (or y+71 for the AH cases), is given on the y-axis. The x-axis represents 

the applied forcing, x, given as a % of the mean of the1942-2012 de-trended spatially averaged 

historical precipitation dataset for Ireland but again west of 8W. The contour levels show the 

percentage of the 30,000 time series for a given x and y, that return statistically significant 

results at the p<0.05 confidence level. (a) ATS annual time series (b) AH annual (c) ATS JJA 

(d) AH JJA (e) ATS DJF (f) AH DJF. x is negative for JJA but positive for DJF. 

 



 

17 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

East 

Annual 

ATS 

(years)         

± 5 years 

Annual 

AH 

(years)         

± 5 years 

JJA 

 ATS 

(years)         

± 5 years 

JJA 

AH 

(years)         

± 5 years 

DJF 

 ATS 

(years)         

± 5 years 

DJF 

 AH 

(years)         

± 5 years 

p<0.1 >150 85 >150 >150 >150 >150 

p<0.05 >150 125 >150 >150 >150 >150 

p<0.01 >150 >150 >150 >150 >150 >150 

       

West 

Annual 

ATS 

(years)         

± 5 years 

Annual 

AH 

(years)         

± 5 years 

JJA 

 ATS 

(years)         

± 5 years 

JJA 

AH 

(years)         

± 5 years 

DJF 

ATS 

(years)         

± 5 years 

DJF 

 AH 

(years)         

± 5 years 

p<0.1 >150 80 >150 >150 >150 >150 

p<0.05 >150 120 >150 >150 >150 >150 

p<0.01 >150 >150 >150 >150 >150 >150 

 

Table 4: This table is similar to table 3 except the results are for the area of Ireland east of 8
o
W 

(denoted East in the table) and west of 8
o
W (denoted west in the table), and all of the results 

refer to non-monotonic increases/decreases. See table 3 for further information. 

 

 
Figure 9: The length of the time series of spatially averaged precipitation over Ireland but east 

of 8
o
W, x years (or x+71 for the AH cases), is given on the y-axis. The x-axis represents the 

applied forcing, y, given as a % of the mean of the1941-2012 de-trended spatially averaged 

historical precipitation dataset for Ireland but again east of 8W. The contour levels show the 

percentage of the 30,000 time series for a given x and y, that return statistically significant 

results at the p<0.05 confidence level. (a) ATS annual time series (b) AH annual (c) ATS JJA 

(d) AH JJA (e) ATS DJF (f) AH DJF. x is negative for JJA but positive for DJF. 
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5 Discussion/Conclusion 

Precipitation over Ireland is highly variable, both spatially and temporally. Changes in 

amounts or variability may have more important effects on humans and environmental 

systems than temperature changes. Attributing changes in precipitation to anthropogenic 

forcing rather than natural variability is therefore an important area of study. To date, 

only limited studies related to this topic exist for Ireland, and in these studies no attempt 

was made to explain the changes in precipitation (e.g. McElwain & Sweeney, 2003; 

Walsh, 2012a; Walsh 2012b). 

Studies using CMIP3 and CMIP5 multi-model climate simulation ensembles have also 

been used for this purpose. However, regional-scale attribution of precipitation change 

is still problematic and to date no such study has been carried out for Ireland 

specifically. The CMIP3 and CMIP5 multi-model global simulations, as well as various 

regional downscaled ensembles, highlight the large uncertainty in precipitation 

projections for Ireland (Zhang et al., 2007; Noake et al., 2012; Polson et al., 2013; Balan 

et al., 2012). While studies suggest decreases in Boreal summer precipitation for 

Ireland, there is still considerable uncertainty regarding the other seasons. This limits 

confidence in detection and attribution of precipitation changes for Ireland and is one of 

the main reasons why we chose to use observation-derived data. 

We have used spatially averaged annual mean precipitation amounts over the Republic 

of Ireland (RoI) by averaging a 1km monthly mean 71-year gridded dataset of 

precipitation for Ireland produced by Met Éireann from its observation data. This gives 

a much better spatial average than the sparse synoptic network of stations used in the 

global and larger scale observation datasets currently available. 

We examined the temporal rather than the spatial variability of precipitation over 

Ireland and how natural temporal variability can act to mask long-term externally forced 

trends. We removed any existing trends from this 71-year dataset but retained its natural 

variability. We then used this data to generate an artificial annual time series (ATS) of 

precipitation to which we added pre-defined external forcing, where external forcing 

here implies anthropogenic forcing only. In addition to being able to attribute a trend to 

external forcing rather than natural variability, our study investigated the length of a 

time series of annual precipitation needed and the size of the external forcing required, 

before it becomes possible to separate an externally forced change in precipitation from 

natural variability with high statistical confidence (p<0.1 or higher).  

We considered both artificial time series (ATS) and artificial time series appended to 

the end of the de-trended 71-year time series (AH) for 3 areas - the country as a whole 

(RoI), east of 8
o
W and west of 8

o
W, separated for annual, JJA and DJF time periods. 

We applied the external forcing both linearly monotonically and non-monotonically to 

capture the easiest (linear monotonic) and most difficult detection scenarios. Changes in 

precipitation amounts (positive or negative) of up to 20% were considered as this is the 

upper limit of the range predicted by the latest climate simulations. Time series of up to 

150 years were used (limited by computational resources). For each experiment (ATS, 

AH, season, area) a 30,000 member ensemble was generated using the de-trended past 

data. Results for which 90% of these were statistically significant (Mann Kendall trend 

test) at a particular confidence level (p<0.1, p<0.05, p<0.1) were considered. 
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As expected, the Mann-Kendall trend tests return statistically significant results more 

readily for longer time series (y) and larger applied percentages of anthropogenic 

change (x). In addition, for the AH time series the trends are statically significant after 

fewer years, y, but note that the true time series length in the AH experiments is y+71 as 

y only denotes the number of years over which the forcing is applied.  

In the case of the dataset covering the whole country (RoI), at the p<0.05 confidence 

level our results show that an ATS of at least 40± 5 years is required for a 20% forced 

(anthropogenic) linear monotonic increase in annual precipitation to be statistically 

attributed to its anthropogenic origin rather than natural variability. The same 

experiment using AH time series requires a shorter ATS time period of 20±5 years but 

the full AH time series is actually 71+ (20±5) years in length. Higher/lower significant 

levels (p<0.01, p<0.1) required longer/shorter time series and smaller forcings are also 

more difficult to detect (Figure 5).  

The linear monotonic trend is more readily detectable than the non-monotonic trends 

because in the non-monotonic cases the applied forcings can vary in sign from year-to-

year, while the net percentage forcing of x% is applied by the final year, y, in the time 

series. A different non-monotonic trend was applied randomly to each of the 30,000 

ensemble members in each experiment. Non-monotonic changes are more realistic, as 

Irish precipitation is highly variable in time, and there are no reasons why we should 

expect a change to occur monotonically. 

For the non-monotonic case (at the p<0.05 confidence level) our results show that an 

ATS of >150 years is required for a net 20% forced increase (anthropogenic) in annual 

precipitation to be statistically attributed to its anthropogenic origin rather than natural 

variability and 115±5 (i.e. 71+(115±5) years)) for the AH case. At the p<0.1 level this 

reduces to 80±5 (i.e. 71+(80±5) years). Other variations of trends are possible (though 

not tested here) including a non-linear monotonic trend. It would also be possible to 

change the length of the de-trended historical time series appended to the ATS to try 

and ascertain how long a data series is required, prior to applying an external forcing, 

for the forcing to be detectable. Detections by season were harder to achieve, requiring 

more than 150 years for non-monotonic trends to be statistically significant even at the 

p<0.1 level and 40-60 years for linear monotonic AH time series. This is due to the 

higher interannual variability of JJA and DJF precipitation compared to on an annual 

time scale (Figure 2 and Table 1). Similarly, considering areas east and west of 8
o
W 

separately, because of the large west-to-east decrease in average annual precipitation (as 

shown in Figure 1(a)), makes detection more difficult. Again, more than 150 years are 

needed to detect trends by season or 80-90 years at the p<0.1 level for AH data series. 

This is the first detection and attribution study of its kind for Ireland. Future possibilities 

include carrying out the calculations on the 1km grid to include both spatial and 

temporal variability. A new climate reanalysis study is currently in progress for Ireland 

using the mesoscale HARMONIE model (HiRLAM Aladin Research for Mesoscale 

Operational Numerical Weather Prediction in Euromed) (Seity et al., 2011; Brousseau, 

et al., 2011) on a 2.5km grid covering the period 1980 to the present day with future 

plans to extend the reanalysis to the entire twentieth century. Such a dataset would be of 

extreme value in a precipitation detection and attribution study. 
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