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INTERDISCIPLINARY TRANSPORT PHENOMENA V

Numerical Investigation of Bubble Induced
Marangoni Convection

Séamus M. O’Shaughnessy and Anthony J. Robinson

Department of Mechanical & Manufacturing Engineering, Trinity College Dublin, Ireland

The liquid motion induced by surface tension variation, termed the thermocapillary
or Marangoni effect, and its contribution to boiling heat transfer has long been a very
controversial issue. In the past this convection was not the subject of much attention
because, under terrestrial conditions, it is superimposed by the strong buoyancy convec-
tion, which makes it difficult to obtain quantitative experimental results. The scenario
under consideration in this paper may be applicable to the analysis of boiling heat
transfer, specifically the bubble waiting period and, possibly, the bubble growth period.
To elucidate the influence of Marangoni convection on local heat transfer, this work
numerically investigates the presence of a hemispherical bubble of constant radius,
Rb = 1.0 mm, situated on a heated wall immersed in a liquid silicone oil (Pr = 82.5)
layer of constant depth H = 5.0 mm. A comprehensive description of the flow driven by
surface tension gradients along the liquid–vapor interface required the solution of the
nonlinear equations of free-surface hydrodynamics. For this problem, the procedure in-
volved solution of the coupled equations of fluid mechanics and heat transfer using the
finite-difference numerical technique. Simulations were carried out under zero-gravity
conditions for temperatures of 50, 40, 30, 20, 10, and 1 K, corresponding to Marangoni
numbers of 915, 732, 550, 366, 183, and 18.3, respectively. The predicted thermal and flow
fields have been used to describe the enhancement of the heat transfer as a result of
thermocapillary convection around a stationary bubble maintained on a heated surface.
It was found that the heat transfer enhancement, as quantified by both the radius of
enhancement and the ratio of Marangoni heat transfer to that of pure molecular dif-
fusion, increases asymptotically with increasing Marangoni number. For the range of
Marangoni numbers tested, a 1.18-fold improvement in the heat transfer was predicted
within the region of Rb ≤ r ≤ 7Rb.

Key words: Marangoni; thermocapillary; convection; bubble; microgravity; heat
transfer; numerical

Nomenclature
Bo Bond number
Cp specific heat [J·kg−1K−1]
H liquid layer height [m]
k thermal conductivity

[W·m−1K−1]
Ma Marangoni number
n unit normal vector
p pressure [N·m−2]
Pr Prandtl number

Address for correspondence: Dr. Anthony J. Robinson, Department
of Mechanical & Manufacturing Engineering, Parsons Building, Trinity
College, Dublin 2, Ireland. Voice: +353 1 896 3919. arobins@tcd.ie

q′′ heat flux [W·m−2]
r radial direction [m]
Rb bubble radius [m]
Reff effective radius [m]
Renhancement enhancement radius [m]
T temperature [K]
v velocity [m·s−1]
x axial direction [m]

Greek Symbols

α thermal diffusivity [m2·s−1]
� difference
θ azimuthal direction [rad]
μ dynamic viscosity [kg·m−1s−1]
ρ density [kg·m−3]
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2 Annals of the New York Academy of Sciences

σ surface tension [N·m−1]
τ shear stress [N·m−2]
υ kinematic viscosity [m2·s−1]

Subscripts

2D two-dimensional
3D three-dimensional
c cold side
cond conduction
crit critical point property
h hot side
Ma Marangoni
oil oil property
r radial
w wall
x axial

Introduction

Most natural convection processes in terres-
trial environments are buoyancy driven and
caused by unstable density gradients that are
due to temperature differences within the sys-
tem.1 The presence of a liquid–vapor inter-
face subject to a temperature gradient can
initiate another form of natural convection,
which is independent of gravitational accelera-
tion and therefore the only natural convection
mechanism for microgravity applications. This
other mode of convection is dependent on sur-
face tension variations with temperature and
is termed thermocapillary convection and/or
thermal Marangoni convection.

The temperature dependence of surface ten-
sion was described by Straub2 and Larkin.3

At a liquid–vapor interface, attractive forces
among liquid molecules cause surface tension
effects. These interfacial tension forces increase
or decrease with temperature, depending on
the working fluids. In most cases, higher tem-
peratures cause a reduction in strength of the
intermolecular forces that bind the liquid to-
gether at the surface. The surface tension con-
sequently decreases and becomes equal to zero
at a critical temperature Tcrit . If a temperature
gradient is present at the surface, local stresses

diminish toward the hot side and intensify to-
ward the cold side. The surface tension varia-
tion induces a “tank-treadlike” motion of the
vapor–liquid interface that, owing to the no-
slip condition, causes a convective flow tangen-
tial to the interface. For the case of a bubble
affixed to a heated surface, the thermocapil-
lary or Marangoni convection can influence
the wall heat transfer by acting as a pump that
transports hot fluid near the wall into the cool
bulk liquid, as depicted in Figure 1.

For Marangoni convection around a bub-
ble of radius Rb within a channel of height H ,
the mass and heat transport mechanisms are
characterized by the Prandtl and Marangoni
numbers, defined, respectively, as4–6:

Pr = υ

α
(1)

Ma = −
(

∂σ

∂T

)
× Th − Tc

μα
× R 2

b

H
(2)

The Prandtl number represents the ratio of vis-
cous to thermal diffusivity in the fluid, and may
be assumed constant for a particular liquid if
variations in viscosity and thermal diffusivity
with temperature can be neglected, as is the
case in this study. The Marangoni number rep-
resents the ratio of heat transfer by convec-
tion to that by conduction and is synonymous
with the Peclet number. In experimental inves-
tigations, Ma is typically varied by changing
the temperature difference within the system
or by varying the height of the test domain
channel. The latter method is sometimes the
preferred approach as it prohibits any change
in thermophysical conditions due to changing
temperatures.

Many practical applications require that
large amounts of heat be transferred quickly,
efficiently, and with small temperature dif-
ferences. Evaporation and condensation offer
these desirable qualities and have thus been
investigated to such an extent that they are
used widely in countless technologies. How-
ever, owing to the complexity of the boiling and
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O’Shaughnessy & Robinson: Bubble-Induced Marangoni Convection 3

Figure 1. Surface-tension-induced flow around an air bubble at a heated wall.

condensation phenomena, the mechanisms of
heat transfer are still poorly understood in the
sense that predictive capabilities of theories and
empirical correlations break down quickly once
outside the parameter range in which they were
developed.7,8 For both terrestrial and space ap-
plications, research has indicated that the often
neglected Marangoni convection may play an
important role in the heat transfer during phase
change processes.2,9,10

Thermocapillary convection has been the
subject of some experimental work. Much of
the recent literature focuses on flow analysis
techniques and flow imaging of thermocapil-
lary convection. Wozniak and colleagues11–13

utilized particle-image-velocimetry and liquid-
tracer techniques as well as interferometry to
investigate the flow field resulting from the pres-
ence of a bubble in a fluid test cell with an ap-
plied temperature gradient under both terres-
trial and microgravity conditions. Priede et al.14

studied the effect of a free-surface contami-
nant in liquid semiconductors, highlighting an
increase in surface tension with temperature,
which resulted in an anomalous flow direction.
There have also been analytical studies of ther-
mocapillary convection concerned specifically
with the temperature–velocity coupling at low
Marangoni numbers.15,16

Young et al.17 were the first to examine the ef-
fect of spherical free surfaces in the presence of
a temperature gradient. They discovered that
small air bubbles in a liquid sample could be

held stationary or even driven against gravity
with a sufficiently strong temperature gradient
in the direction adverse to gravity. This was at-
tributed to the variation in surface tension along
the bubble surface, a condition caused by varia-
tions in the temperature field of the fluid. Some
years later, McGrew et al.18 argued that high
boiling heat transfer rates are due to intense
vapor bubble agitation of the liquid boundary
layer close to the heating surface and bulk liquid
disturbance due to bubble detachment from the
surface. Utilizing tracer particles to observe the
flow pattern around air bubbles placed on the
heating surface and vapor bubbles produced
during boiling, they conducted experiments in
which the liquid was heated from above and
cooled from the bottom, with slowly increasing
heat flux levels. The flow profiles were identi-
cal for both air and vapor bubbles. They con-
cluded that Marangoni convection would occur
around any bubble present in a region subjected
to a temperature gradient. They also suggested
that this served as a primary factor in the heat
transfer mechanism in those situations in which
bubbles remained attached to the surface for
relatively long periods of time.

For the case of a bubble affixed to a heated
surface, Larkin3 was likely the first to investigate
the contribution of Marangoni convection to
local heat transfer, obtaining time-dependent
numerical solutions of flow and temperature
fields for varying Prandtl and Marangoni num-
bers. The liquid was seen to move toward the
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4 Annals of the New York Academy of Sciences

wall before being dragged along the bubble, fi-
nally leaving the bubble as a jet, the strength
of which increased with increasing Marangoni
number. Larkin investigated the influence of
the surface-tension-driven flow on the Nusselt
number, concluding that above a Marangoni
number of 105, an increase in the rate of heat
transfer of 30% was achievable. It was assumed
that until this critical Marangoni number was
reached, thermocapillary convection was not
an important heat transfer mechanism. Unfor-
tunately, owing to computational limitations of
the time, Larkin was unable to continue the
solution to steady state.

Later, Straub et al.9 produced surprising re-
sults that indicated that the heat transfer co-
efficients measured for nucleate boiling in mi-
crogravity were similar in magnitude to those
measured for terrestrial gravity. Since the mi-
crogravity experiments rule out buoyant natu-
ral convection as a heat transfer mechanism in
the regions on the heated surface where bubble
activity is not influential, Straub et al. proposed
that the results could be attributed to the pres-
ence of thermocapillary convection.

Arlabosse et al.5 investigated experimentally
the contribution of Marangoni convection to
heat transfer around bubbles attached to a
heated surface within a channel. A test cell con-
sisting of an upper heated flat plate, a lower
cooled plate and plexiglass walls enclosed a sil-
icone oil layer, into which an air bubble was
injected and maintained on the upper heated
surface. Tests were carried out for Prandtl num-
bers of 220, 440, and 880, and for a range of
Marangoni numbers from 0 to 600. From the
results obtained, it was determined that the ra-
tio of heat transfer by Marangoni convection
to that solely by conduction was well correlated
by the relation

q ′′
Ma

q ′′
cond

= 1 + 0.00841Ma 0.5 (3)

In a similar study, Reynard et al.8,19 performed
experiments on test fluids of silicone oil with
Prandtl numbers of 16.3 and 228 and FC-72 of

Prandtl number 12.3, investigating the onset of
the 3D oscillatory thermocapillary convection
and the effect of test cell height.

Petrovic et al.10 carried out experiments in or-
der to examine the contribution of Marangoni
convection to the rate of heat transfer in sub-
cooled nucleate pool boiling using distilled wa-
ter heated on a copper heater surface at atmo-
spheric pressure and subcooling levels of 40◦,
50◦, 60◦, and 70◦C. The surface heat flux was
incrementally increased from zero to a value
sufficiently high to induce nucleate boiling. As
the surface heat flux was increased for fixed liq-
uid subcooling, the surface temperature contin-
ually increased and buoyant natural convection
was the sole mechanism of heat transfer. How-
ever, at a critical surface heat flux, large and
stationary air bubbles formed spontaneously Q1

on the surface with a significant increase in
the heat transfer coefficient. The heat transfer
mechanism was determined to be Marangoni
convection and the heat transfer measurements
were in agreement with the relationship pro-
posed by Arlabosse et al.5 for air bubbles of
similar size, albeit in silicone oils.

Currently there is still very little quanti-
tative information regarding the influence of
Marangoni convection on the heat transfer that
is due to bubbles fixed to heated surfaces. The
objective of this paper is to provide preliminary
numerical results that quantify the influence of
Marangoni convection on the local and surface
average wall heat transfer. With the view of de-
veloping the model for more complex situations
such as nucleate pool boiling, this study consid-
ers the simplified case of a 2.0-mm-diameter
stationary and hemispherical air bubble im-
mersed in silicone oil. The simulated test vessel
consists of two isothermal surfaces spaced 5
mm apart and the simulations are carried out
in microgravity.

Mathematical Formulation

Since it is not driven by a gravitational
field, much of the work done on Marangoni
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O’Shaughnessy & Robinson: Bubble-Induced Marangoni Convection 5

convection is concerned with its possible appli-
cation to thermal management in space appli-
cations. According to Bhunia and Kamotani,20

two-phase liquid control systems have been
identified as a superior alternative to single-
phase pumped liquid loops to meet the rising
power demand for spacecraft thermal manage-
ment. It is, however, impossible to separate the
effects caused simultaneously by buoyancy and
surface tension convection in experiments on
earth. Owing to the high cost and limited avail-
ability of microgravity experimentation, much
of the work concerning thermocapillary con-
vection has been implemented by numericalQ2

methods.1–3,21,22 The accurate description of
flows driven by surface tension gradients along
an interface generally requires the solution of
the full three-dimensional nonlinear equations
of free-surface hydrodynamics.22

For the problem considered here, the proce-
dure involves solving simultaneously the cou-
pled equations of fluid mechanics and heat
transfer. For low enough Marangoni numbers
it is known that the resulting flow field is sym-
metric about the vertical bubble axis above
the bubble centerline. Thus, a complicated and
computationally expensive full 3D model is not
utilized in favor of 2D axisymmetric formula-
tions. From experimental observations,5,6,19 it
is known that a strong jet-type flow is produced
immediately after the appearance of a bubble
on the surface. The liquid is projected verti-
cally away from the center of the bubble with
the colder liquid being drawn inward toward
the heated surface and the regions of the bub-
ble close to the heated surface.

The following work involves the numerical
simulation of Marangoni convection and fo-
cuses on the problem of thermocapillary flow
induced by the presence of a hemispherical
bubble attached to a heated planar surface.
A two-dimensional axisymmetric model of the
problem was formulated using the commer-
cial software package FLUENT. The govern-
ing equations that were solved were the steady-
state continuity, momentum, and energy
equations:

Continuity:

∂

∂x
(ρv x ) + ∂

∂r
(ρv r ) + ρv r

r
= 0. (4)

Energy:

v x

∂T

∂x
+ v r

∂T

∂r
= α

(
∂2T

∂x 2
+ 1

r

∂T

∂r
+ ∂2T

∂r 2

)
.

(5)

Axial momentum:

1
r

∂

∂x

(
r ρv 2

x

) + 1
r

∂

∂r
(r ρv x v r ) = −∂p

∂x
+ 1

r

∂

∂x

×
[

r μ

(
2
∂v x

∂x
− 2

3
(∇ · �v )

)]
+ 1

r

∂

∂r

×
[

r μ

(
∂v x

∂r
+ ∂v r

∂x

)]
.

(6)

Radial momentum:

1
r

∂

∂x
(r ρv x v r ) + 1

r

∂

∂r

(
r ρv 2

r

) = −∂p

∂r
+ 1

r

∂

∂x

×
[

r μ

(
∂v r

∂x
+ ∂v x

∂r

)]
+ 1

r

∂

∂r

×
[

r μ

(
2
∂v r

∂r
− 2

3
(∇ · �v )

)]
− 2μ

v r

r 2

+2
3

μ

r
(∇ · �v ) . (7)

Here

∇ · �v = ∂v x

∂x
+ ∂v r

∂r
+ v r

r
. (8)

In accordance with previous numerical in-
vestigations on Marangoni convection, the fol-
lowing assumptions are made in the analysis:

1. Motion is 2D axisymmetric in cylindrical
coordinates.

2. A bubble can be represented by a hemi-
spherical interface.

3. Heat flux is zero at the bubble interface.
4. Incompressibility of the liquid (ρ = con-

stant).
5. Constant physical properties [μ, k �= f (T ,

t . . .) etc.].
6. Gravitational acceleration is zero.
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Since this work is approximate and not an
exact numerical simulation, it is important to
briefly discuss the major assumptions that were
made during the physical modeling of the prob-
lem, since they ultimately determine the useful-
ness of any conclusions that are drawn from
the results. The assumption that the flow is
2D is valid since it has been established that
unsteady oscillatory and 3D flow occurs at a
critical Marangoni number, Ma ∼ 12,000,23

which is considerably higher than the maxi-
mum Marangoni number tested in this study.

Another major assumption is that the bub-
ble interface maintained a spherical shape and
did not deform from the presence of a pressure
field. In order to determine the shape of the
gas–liquid interface, two parameters are gener-
ally required24; the size of the bubble or drop
and the contact angle. Experimental data con-
cerning the material-dependent static contact
angle for a 1.0-mm-radius air bubble immersed
in silicone oil (Pr = 82.5) are not available.
Thus, the concept of a macroscopic contact
angle as discussed by Vafaei and Podowski24

is used. In that study, the gas–liquid contact
angles were influenced by size and external
conditions.

An example of this type of analysis can been
seen in the work of Arlabosse et al.,5 who noted
that for their experiments, up to a radius of
1.3 mm, the bubble maintained a spherical
shape. Under similar conditions, albeit at a
lower Prandtl number, the bubble radius for this
numerical study is 1.0 mm. Furthermore, in the
work of Arlabosse et al. the macroscopic contact
angle increased from 52◦ to 71.5◦ for bubbles
of equivalent radius 2.0 mm and 1.5 mm, re-
spectively. This resulted in Bond numbers of
approximately Bo = 0.64 and Bo = 0.36 for
the 2.0 mm and 1.5 mm bubbles, respectively,
which suggests that bubble size influences the
contact angle and at lower values of the Bond
number, bubbles tend toward a hemispherical
shape. The Bond number for this study under
conditions similar to those in Arlabosse et al.5 is
approximately Bo = 0.2, which suggests that a
macroscopic contact angle of 90◦ is reasonable.

As a means of provisionally investigating the in-
fluence of the contact angle, some simulations
were conducted for a 1.0-mm bubble with a
contact angle of approximately 80◦. The differ-
ence in the resulting heat transfer enhancement
was found to be insignificant compared with the
hemispherical bubble. Moreover, the present
simulations are also performed under micro-
gravity conditions, so there is no deformation
of the interface from gravitational effects. Con-
sistent with simulations performed by Straub2

and Larkin,3 a hemispherical bubble shape is
employed.

Another key assumption that was made in
developing the model was that no heat trans-
fer occurred across the bubble interface. Thus
the results presented herein are not immedi-
ately applicable to nucleate pool boiling cir-
cumstances, where evaporation at the interface
creates a much more uniform temperature at
the surface and thus acts to suppress the ther-
mocapillary flow. The actual mechanism for the
onset of thermocapillary flow during boiling is
uncertain, although evidence seems to indicate
that it is caused by variation in the evaporation
and condensation heat transfer coefficient at
the vapor–liquid interface,25–27 which can pos-
sibly arise from the presence of noncondens-
able gas.25,28,29 Thus the assumption is consis-
tent with the Marangoni heat transfer regime
discovered by Petrovic et al.,10 where air bub-
bles caused a significant enhancement in the
heat transfer even when the heated wall tem-
perature was below the saturation temperature.
The work is also qualitatively comparable to the
situation of gas-saturated liquids, for example,
the experimental results of Henry.29

Following these assumptions, it is possible to
model thermocapillary convection caused by
the bubble without modeling motion within the
bubble itself. The bubble is represented by a
boundary upon which a Marangoni stress is
applied.

The model domain is shown in Figure 2.
A bubble of radius 1.0 mm is placed at the
center of the coordinate plane. The vertical wall
denoted “sym” signifies the axis of symmetry.
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O’Shaughnessy & Robinson: Bubble-Induced Marangoni Convection 7

Figure 2. Model domain schematic.

TABLE 1. Properties of Silicone Oil 7.5cSt

ρ (k·gm−3) υ (m2·s−1) k (W·m−1K−1) Cp (J·kg−1K−1) dσ/dT (N·m−1K−1)

930 7.5e−6 0.125 1480 −5.8e−5

The two horizontal walls are separated by a
distance H , which is equivalent to five times
the bubble radius. The upper wall is no-slip,
constant temperature:

�v = 0, T = T0 (9)

and is maintained at 300 K for all simulations.
The lower horizontal wall is also no-slip, con-
stant temperature:

�v = 0, T = T0 (10)

and the temperature of this wall is changed
from one simulation to the next. The vertical
wall placed 20 bubble radii from the center of
the bubble has a no-slip, adiabatic condition:

�v = 0, �n · (k∇T ) = 0 (11)

The bubble surface is comprised of a slip con-
dition, an adiabatic condition, and a directly
applied Marangoni stress:

�n · �v = 0, �n · (k∇T ) = 0 (12)

�τ = d σ

d T
∇T, (13)

which relates the shear stress on the surface to
the temperature derivative of surface tension.
The test fluid was selected to have the same
properties as silicone oil of kinematic viscos-
ity 7.5cSt. The relevant physical properties are
given in Table 1.

The commercial code FLUENT release
6.2.16 was utilized to solve the problem. From
calculations of the Reynolds number, it was
known that the resulting flow would be laminar.
The segregated solver was selected on the ba-
sis of computing power. The numerical scheme
adopted was second order upwind. Solutions
were carried out for temperature differences of
50, 40, 30, 20, 10, and 1 Kelvin, correspond-
ing to Marangoni numbers of 915, 732, 550,
366, 183, and 18.3, respectively. Grid indepen-
dence was achieved by increasing the number
of quadrilateral cells from 1260 to 81,000, plot-
ting the convergence of certain parameters of
interest such as free surface velocity, and track-
ing global parameters such as total rate of heat
transfer through the system.

Numerical Validation

The correctness of the physical modeling and
numerical solution technique has been con-
firmed by comparing the simulations against
existing numerical work as well as some experi-
mental data. In order to establish confidence in
the accuracy of the CFD software used in this
investigation, the benchmark numerical data
for thermocapillary flow in a rectangular enclo-
sure provided by Zebib et al.30 were reproduced
and excellent agreement is shown in Figure 3
for a sufficient range of Reynolds numbers.
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8 Annals of the New York Academy of Sciences

Figure 3. Free surface temperature at Pr = 50 and Re = 0, 20, 100, 200, and 500.

Figure 4. Nondimensional velocity profile along the bubble interface for Pr = 220,
Bo = 0.35, and Ma = 80.

Figures 4 and 5 show the comparison of the
numerical simulations with the experimental
data provided by Arlabosse et al.5 Their experi-
mental data were obtained at terrestrial gravity
for air bubbles affixed on the underside of a
heated wall with the cooled wall below, such
that buoyancy acted in opposition to the ther-
mocapillary convection. In order to simulate
this condition, the Boussinesq approximation
was applied within FLUENT as a body force
FB on the right-hand side of the axial momen-

tum equation [Eq. (6)] and simulations for Bo =
0.35, Pr = 220, and Ma = 80 were carried out,
where the Bond number is calculated from the
expression

Bo = ρoilβoil g R 2
b

∂σ

∂T

(14)

As shown in Figure 4 the agreement be-
tween the measured nondimensional interface
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Figure 5. Change in the ratio of heat transferred with and without the bubble
for Bo ≈ 0.25.

velocity and the simulation is quite good. Any
deviations are possibly due to small variations
in the thermophysical properties with tempera-
ture or the small difference in shape of the bub-
ble in Arlabosse et al.,5 which, although very
nearly hemispherical with a contact angle of
71.5◦, is slightly ellipsoidal.

Since the primary objective of this investi-
gation is to quantify the local heat transfer
behavior in the vicinity of bubbles affixed to
a heated surface, it is imperative that the nu-
merical simulations be validated against avail-
able empirical heat transfer data. Utilizing a
heat flux sensor glued to the cold wall below
the bubble, Arlabosse et al.5 quantified the in-
crease in the average heat flux across the sen-
sor situated on the wall opposite to that of the
bubble. Comparison between the experimental
and numerically simulated heat flux enhance-
ment ratio shown in Figure 5 is acceptable.
For this comparison, the net power across a
fixed area of 57 mm2 was chosen to determine
the heat flux for the simulations. This is the
same, typical, active area of 10 × 10 mm2 heat
flux sensors as was used in that work. It should
be noted that the Bond number for the ex-
periments was Bo = 0.25, which corresponds
to the small bubbles that retain their spherical
shape,5 which is consistent with the simulated
geometry.

Results and Discussion

Marangoni Number = 915

Figure 6 shows the temperature and velocity
profile for Ma = 915. For the fixed geometry,
this was the largest Marangoni number sim-
ulated and corresponds to the largest temper-
ature differential across the upper and lower
plates. The vector plot details the motion of the
fluid. The flow field consists of a major vortex
that recirculates colder fluid from the upper re-
gion, pulling it toward the hot surface to the
point where the bubble meets the heated wall.
Interestingly, the fluid begins to accelerate be-
fore reaching the vapor–liquid interface. The
fluid is then dragged along the bubble surface.
In this region the highest velocities are found
as the fluid is accelerated by surface tension
effects. The fluid then leaves the bubble as a
jet, which decelerates with increasing distance
from the bubble. This type of flow pattern has
been seen in various experiments.5,6,19

The focus of this paper is to quantify the con-
tribution of Marangoni convection to local heat
transfer from the heated surface in the vicinity
of the bubble. Initially, simulations were carried
out over a similar domain in the absence of the
bubble to predict the heat transfer due to pure
molecular diffusion and establish a “base-line”
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Figure 6. Temperature contours/velocity vectors for Ma = 915.

Figure 7. Surface heat flux along the heated wall.

to which subsequent conditions can be com-
pared. Consistent with analytical predictions,
the heat flux along the channel walls was con-
stant in the absence of the bubble.

Figure 7 illustrates the heat flux profile along
the heated wall caused by Marangoni convec-
tion for Ma = 915. The heat flux from pure con-
duction in the absence of the bubble is depicted
by the horizontal dashed line. It is evident that
the presence of the bubble causes a sharp in-
crease in surface heat transfer in the immediate
vicinity of the bubble. The peak heat flux oc-
curs at a distance of just over two radii from the
bubble. Moving further away from the bubble
in the radial direction, the surface heat transfer
decreases and eventually approaches the pure
conduction heat flux as expected. Most impor-
tantly, it is noted that significant heat trans-

fer enhancement is observed over a consider-
able distance from the contact line, in this case
nearly r ∼ 8Rb, which is significant.

By magnifying the region immediately ad-
jacent to the triple interface, a sharp rise in
heat flux is predicted. This trend is detailed
in Figure 8. In an effort to understand the
phenomenon the triple contact point was scru-
tinized more closely with regard to the flow
regime in the area. In particular, the vortic-
ity, which is extreme in this region since the
fluid rapidly changes from a nearly horizontal
to a nearly vertical flow direction, is considered.
Figure 9 shows a magnified view of the vortic-
ity contours in a region near the triple contact
line. Evidently, in the region where the bubble
meets the wall there is a relatively small zone
of high vorticity. Although the flow velocity is
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Figure 8. Surface heat flux near the triple interface.

Figure 9. Vorticity near the triple interface.

quite low in this region, the increased mixing
associated with the high vorticity has the ef-
fect of increasing the rate of heat transfer. In
the near region, the vorticity drops dispropor-
tionately to the increase in bulk convection. Af-
ter this point the heat transfer begins to rise
considerably as the primary and largely irro-
tational vortex becomes the primary mecha-
nism for heat transport. This is highlighted by
the velocity vector plot shown in Figure 10.
The no-slip wall boundary condition ensures
that minimal fluid velocities are found near the
triple interface. The geometry of the bubble
causes a rotation in the fluid as it approaches
the bubble. The no-slip point between the bub-
ble and the wall results in a sudden and sharp

rotation of the fluid, resulting in high vorticity
in this region. By comparing the vorticity and
velocity plots it is evident that the region of low
vorticity corresponds to the region where the
velocity vectors travel mostly in the same di-
rection. This region represents the bulk cooler
fluid being recirculated from above by thermo-
capillary convection.

Effect of Marangoni Number on Flow
and Heat Transfer

Velocity and temperature data have been ob-
tained for each of the six test cases.

Figure 11A–E show the temperature con-
tours and velocity streamlines for different
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Figure 10. Velocity near the triple interface: (A) �T = 50 K, Ma = 915; (B) �T = 40 Q3

K, Ma = 732; (C) �T = 30 K, Ma = 550; (D) �T = 20 K, Ma = 366; (E) �T = 10 K,
Ma = 183.

Figure 11. (A–E) Temperature contours/velocity streamlines for varying Marangoni number.
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Figure 12. Velocity along bubble for varying Marangoni number.

Marangoni numbers. By applying the same
temperature and stream function scales to each
plot, it is evident that with decreasing tem-
perature the thermocapillary effect decreases
in strength. The plot for Ma = 18.3 is not
presented as there is little distinguishable dif-
ference for the selected grayscale. In particu-
lar, the intensity of the jetlike flow diminishes
with decreasing Marangoni number. The figure
also shows the temperature contours, which are
characteristic of this phenomenon. In the ab-
sence of the bubble, the contours would form
parallel vertical lines. This scenario is charac-
teristic of conduction only flows and would also
be seen far from the bubble. In the vicinity of
the bubble, the temperature contours bend to-
ward the heated wall. This is caused by the
flow of cooler liquid toward the hot wall. The
liquid jet, in flowing outward from the apex of
the bubble, causes the temperature contours to
project outward. The proximity of the upper
wall, which has a no-slip condition, limits the
extent the jet can travel in this scenario. From
these images, it is evident that the thermocap-
illary flow field is increasing heat transfer by
stripping it from the wall in the vicinity of the
bubble and convecting it into the bulk region
above the bubble.

Figure 12 shows the velocity profile around
the bubble for different Marangoni numbers.
Angles are computed from the heated wall

to the center point of the bubble. The angle
corresponding to maximum velocity decreases
slightly with increasing Marangoni number. A
possible explanation for this may be that with
greater Marangoni number the surface tension
gradients along the surface of the bubble are
steeper, which accelerates the fluid moving to-
ward the triple interface. The cooler fluid then
encounters a region of high vorticity at the triple
interface, which could cause the local fluid ve-
locity to increase.

Enhancement of Heat Transfer

The enhancement of local heat transfer is
best expressed as the ratio of heat transfer in the
presence of Marangoni convection to that by
pure molecular diffusion. Figure 13 shows this
enhancement ratio for increasing Marangoni
number. For a Ma = 18.3, there is a large peak
immediately at the triple interface. This behav-
ior is in agreement with that seen previously
in Figure 7 for Ma = 915. In this case, how-
ever, the high vorticity causes a large increase
in the relative heat transfer near the triple inter-
face, but the interface fluid motion is not strong
enough to cause significant bulk motion of the
fluid. As expected, the maximum enhancement
factor increases with increasing Marangoni
number, reaching over 65% for Ma = 915.
Interestingly, all curves between Ma = 18.3 and
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Figure 13. Hot wall heat flux enhancement.

Figure 14. Enhancement radius vs. Marangoni number.

Ma = 915 seem to converge to their qcond value
at almost the same radial location of approx-
imately r = 7Rb. Consequently, an enhance-
ment range may be roughly defined. The en-
hancement region appears to be nearly con-
stant for a particular range of Marangoni num-
bers tested, but may depend on the definition
of the Marangoni number itself, in particular
in the choice of length scale. Furthermore, in
this study, the Marangoni number was chosen
to include the height of the domain, H , as has
been used in experimental practices.5,8,19 The
enhancement region may be defined in terms
of a radius measured outward from the center
point of the bubble. The enhancement criterion
for this investigation is defined as the location
at which the heat transfer due to Marangoni

convection falls to within 5% of the value due
to pure conduction, or equivalently

Renhancement = r

Rb

∣∣∣∣
1.05×q ′′

cond

(15)

Figure 14 shows the enhancement radius
against Marangoni number. At the low values
of Ma there is a steep increase in the effective
radius of enhancement, until the curve begins
to level off at Ma ∼ 200. This suggests that
large Marangoni numbers are not required for
the influence of the bubble to be felt almost
three diameters away. Although the enhance-
ment radius continues to increase with increas-
ing Marangoni number, the increase is not
profound. Indeed the trend suggests that the
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Figure 15. Heat transfer enhancement vs. Marangoni number.

effective radius of enhancement approaches an
asymptotic value of approximately r ∼ 7Rb.
Furthermore, the enhancement radius also im-
plies that with increasing Marangoni number,
the size of the main vortex does not increase
greatly, but perhaps its intensity does, thus in-
creasing local heat transfer. By defining an ef-
fective radius and corresponding area of heat
transfer such that

Reff = 7Rb , A eff = π
(

R 2
eff − R 2

b

)
, (16)

the increase in total heat transfer relative to
conduction can be expressed in terms of this
value.

Figure 15 charts this increase versus
Marangoni number. Following experimental
investigations by Arlabosse et al.5 and Petrovic
et al.,10 a similar heat exchange correlation was
derived:

q ′′
Ma

q ′′
cond

= 1 + 0.005Ma 0.5 (17)

When Ma = 0 (without any temperature gra-
dient or without a bubble) q′′

Ma/q′′
cond = 1, which

corresponds to conductive heat transfer. It must
be noted that the authors referenced in Arla-
bosse et al.5 studied the effective heat transfer on
the cooler wall away from the bubble. The co-
efficient also depends on the choice of affected
area.

Conclusions and Outlook

The influence of the Marangoni number on
the local heat transfer in the vicinity of an
air bubble with radius of 1 mm was investi-
gated numerically for a liquid silicone oil layer
(Pr = 82.5) of a constant depth of 5 mm, for
Marangoni numbers in the range 0 ≤ Ma ≤ 915
under microgravity conditions. The increase in
the local and surface average heat flux on the
wall to which the bubble is attached was com-
puted and it was determined that, compared to
pure conduction, thermocapillary convection
enhanced the local heat flux more than 65%. Q4

Furthermore, the enhanced heat transfer pene-
trated a distance of approximately seven bubble
radii. The numerical results indicate that the
ratio of Marangoni heat transfer to conduction
over the area of enhancement changes approx-
imately with the square root of the Marangoni
number. For the range of Marangoni numbers
tested, an 18% improvement in the average
heat transfer in the vicinity of the bubble was
calculated.

In the near term simulations are planned
to cover a greater range of Marangoni and
Rayleigh numbers, including full 3D models, so
that unsteady and oscillatory thermocapillary
flow can be investigated. Since understanding
of the heat transfer mechanisms during nucle-
ate pool boiling is the ultimate goal of this re-
search, the adiabatic boundary condition will
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be lifted and replaced with appropriate evapo-
ration and condensation boundary conditions,
perhaps similar to those suggested by Raj and
Kim.25 In the longer term it is expected that the
contribution of Marangoni convection to heat
transfer during rapid bubble growth in boiling
will be quantified.
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