

Modu lar Data Serialisation

and Mobile Code

Ciarán O’Leary B.Sc.

A dissertation submitted to the University of Dublin in partial

fulfilment of the requirements for the degree of Master of Science

in Computer Science

September 2000

 ii

Declaration

I declare that the work described in this dissertation is, except where

otherwise stated, entirely my own work and has not been submitted as an

exercise for a degree at this or any other university.

Signed:

Date: 15 September 2000

 iii

Permiss ion to lend and/or copy

I agree that Trinity College Library may lend or copy this dissertation upon

request.

Signed:

Date: 15 September 2000

 iv

Acknowledgements

I would like to thank sincerely my supervisor Dr. Simon Dobson for all his help

over the past number of months. I would also like to thank Tim Walsh for his

assistance when it was required.

 v

Abstract

Since its creation the World Wide Web has revolutionised how we work.

Academics have used it as a media to exchange research information,

businesses use it to access markets previously unavailable to them and a

growing percentage of society at large has been able to use it to access a

global database of information. In short it has forced a rethink of the concepts

of boundaries and limits.

The aim of the research outlined in this dissertation is to assess the possibility

of stretching the functionality of the web a little further, by developing

programming languages which exploit the availability of the web as a massive

data store. The objective is to use web documents, traditionally HTML

documents but in the future, XML documents, as a store of data values and

types for programming languages. Values created by programming languages

will be saved in available data space on the web. This will in turn lead to the

increased interaction between programs on the web which will be able to

exchange information in the form of a XML documents. Serialisation of

programming language functions and sections of code as well as values will

open the door to the development of mobile programming languages.

Processing of code can take place wherever sufficient resources are available

on the web, or can be moved to an area where the data required is more

easily accessible.

Vanilla, a component based programming language development tool will be

used to create prototypical programming languages that contain these

capabilities.

 vi

Table of Contents

1. Introdu ction ..1

1.1 MOTIVATION .. 1

1.2 PROPOSED SOLUTION .. 1

1.3 OBJECTIVES .. 3

1.4 ROADMAP .. 4

1.5 SUMMARY.. 5

2. Background ..6

2.1 INTRODUCTION .. 6

2.2 VANILLA & PROGRAMMING LANGUAGES .. 6

2.2.1 Programming Languages .. 7

2.2.1.1 Overview ... 7

2.2.1.2 Compiler Design .. 7

2.2.2 Vanilla ... 10

2.2.2.1 Overview ... 10

2.2.2.2 Vanilla Architecture ... 11

2.2.2.3 Vanilla Pods.. 12

2.2.2.4 Vanilla Types & Values... 13

2.2.2.5 Running Vanilla.. 14

2.2.2.6 Summary... 15

2.3 XML .. 15

2.3.1 Overview .. 15

2.3.2 The Extensible Markup Language ... 17

2.3.2.1 Document.. 17

2.3.2.2 Markup .. 18

2.3.3 Document Type Declarations.. 18

2.3.4 XML Schema ... 19

2.3.5 XSL.. 20

2.3.6 XLink ... 20

2.3.7 XPointer.. 21

 vii

2.3.8 XML Namespaces .. 21

2.3.9 Parsing XML .. 22

2.3.10 Summary .. 24

2.4 SERIALISATION & COMMUNICATION MECHANISMS .. 24

2.4.1 Overview .. 24

2.4.2 Java Serialisation.. 25

2.4.3 SOAP .. 26

2.4.4 Jiki ... 28

2.4.5 Summary .. 28

2.5 CODE MOBILITY .. 28

2.5.1 Overview .. 28

2.5.2 Mobile Code Systems .. 29

2.5.3 Design of Mobile Code Systems .. 31

2.5.3.1 Introduction ... 31

2.5.3.2 Remote Evaluation .. 32

2.5.3.3 Code on Demand .. 32

2.5.3.4 Mobile Agent .. 32

2.5.4 Mobile Agent Technologies ... 32

2.5.4.1 Java ... 33

2.5.4.2 Java Aglets ... 33

2.5.4.3 Voyager ... 35

2.5.4.4 Agent TCL... 36

2.5.4.5 Obliq .. 36

2.5.5 Other Systems... 36

2.5.6 Summary .. 37

2.6 SUMMARY.. 37

3. Design ...38

3.1 INTRODUCTION .. 38

3.2 REQUIREMENTS .. 38

3.2.1 Identification of Types and Values ... 39

3.2.2 XML Representation... 40

3.2.3 Vanilla Subsystem .. 44

3.2.3.1 Subsystem architecture .. 44

 viii

3.2.3.2 Individual Components ... 45

3.2.4 Serialising Functions .. 47

3.2.4.1 Body... 48

3.2.4.2 Environment ... 50

3.2.4.3 A Function in XML ... 52

3.2.5 Executing Functions ... 54

3.2.6 Migrating Function Execution.. 56

3.3 REMOTE ACCESS .. 57

3.3.1 Local / Network.. 58

3.3.2 Remote Read .. 58

3.3.3 Remote Write... 58

3.4 OTHER DESIGN ISSUES .. 60

3.4.1 XML Parser .. 61

3.5 SUMMARY.. 61

4. Implementation...63

4.1 INTRODUCTION .. 63

4.2 VANILLA COMPONENTS... 63

4.2.1 Serialisation Subsystem .. 63

4.2.1.1 XML Approach ... 64

4.2.1.2 Component Methods... 65

4.2.2 Code Serialisation... 66

4.2.2.1 ComponentWrite.. 66

4.2.2.2 ComponentRead.. 67

4.2.3 Environment Serialisation.. 67

4.2.3.1 ComponentWrite.. 67

4.2.3.2 ComponentRead.. 67

4.2.4 Other Subsystems .. 68

4.2.4.1 Type Matching.. 68

4.2.5 System Overview .. 68

4.3 MOBILITY / REMOTE ACCESS ... 69

4.3.1 Introduction .. 69

4.3.2 Additions to Subsystem ... 69

4.3.3 Vanilla Enabled Server .. 70

 ix

4.3.3.1 vanilla/write ... 71

4.3.3.2 vanilla/run.. 71

4.4 OTHER IMPLEMENTATION ISSUES... 72

4.4.1 Serialise Pod.. 72

4.5 SUMMARY.. 72

5. Evaluation ...74

5.1 INTRODUCTION .. 74

5.2 AIMS .. 74

5.3 TYPES & VALUES AS XML.. 74

5.4 DISK ACCESS .. 75

5.5 SERIALISATION TO WEB.. 77

5.6 FUNCTIONS.. 78

5.6.1 Issues.. 81

5.7 APPLICATIONS ... 81

5.8 MOBILITY ANALYSIS .. 82

5.8.1 Code Mobility in Vanilla.. 82

5.8.2 Strength .. 83

5.8.3 Comparison.. 83

5.8.4 Mobility Summary ... 84

5.9 SUMMARY.. 84

6. Conclusion ...85

6.1 INTRODUCTION .. 85

6.2 ACHIEVEMENTS ... 85

6.3 FURTHER WORK ... 85

6.3.1 Current Issues ... 86

6.3.1.1 Handling of Multiple Returns.. 86

6.3.1.2 Nested Environments.. 87

6.3.1.3 Object Serialisation ... 87

6.3.2 Remaining Types .. 89

6.4.2 Vanilla ... 90

6.4 SUMMARY.. 91

7. References..93

 x

Table of Figures

Figure 2.1: Standard architecture for a compiler from [3]8

Figure 2.2: Architecture of f ront end o f a compiler from [3]8

Figure 2.3(a): Example Parse Tree..9

Figure 2.3(b): Example Abstract Syntax Tree..9

Figure 2.4: Vanilla Architecture from [1] ..13

Figure 2.5: A Simple XML Document..17

Figure 2.6: Common XML markup ..18

Figure 2.7: Sample DTD Entries..19

Figure 2.8: Use of Simple types and constraints in XML Schema...........20

Figure 2.9: Namespace Declaration for TCD ...21

Figure 2.10: Namespace Usage for TCD ..22

Figure 2.11: DOM and SAX..23

Figure 2.12(a): SOAP Request ..26

Figure 2.12(b): SOAP Respon se ...27

Figure 2.13: HTTP Header for SOAP Request ...27

Figure 2.14(a): Traditional Distributed System from [15]30

Figure 2.14(b): Mobile Code System from [15] ..31

Figure 2.15: Sample Aglet Code ...35

Figure 3.1: Type latt ice ..40

Figure 3.2: XML representation o f type value pair41

Figure 3.3: XML representation o f a String ..42

Figure 3.4: XML representation o f a Record ..43

Figure 3.5: Relationship between compon ents ...45

Figure 3.6: Functions required of serialiser compon ents46

 xi

Figure 3.7: A simple program in Abstract Syntax48

Figure 3.8: Abstract Syntax Tree as XML...50

Figure 3.9: A Function with its Environment ...51

Figure 3.10: An Environment in XML..52

Figure 3.11: A Function in XML ..54

Figure 3.12: Executing XML Fun ction ..55

Figure 3.13: Migrating XML Fun ction ...57

Figure 3.14: The architecture for writing to remote server space60

Figure 4.1: Complete view of Vanil la System ..68

Figure 5.1: A Vanill a Integer as XML ..75

Figure 5.2: Example code to write a record locally76

Figure 5.3: Output f rom above code...77

Figure 5.4: Example code to write a record locally77

Figure 5.5: Output f rom code in Figure 5.4..78

Figure 5.6: Write a function ...79

Figure 5.7: Read function b ack in as value..79

Figure 5.8: Output f rom Figure 5.7 ...79

Figure 5.9: Execute function from XML file ...79

Figure 5.10: Output f rom Figure 5.9 ...79

Figure 5.11: Runn ing a function with its environment remotely..............80

Figure 5.12: Output f rom Figure 5.11 ...81

Figure 6.1: Function with sing le return statement86

Figure 6.2: Function with many return statements86

Figure 6.3: An Object in a Vanil la test language88

Figure 6.4: The above object in XML (edited) ..89

Modular Data Serialisation & Mobile Code 1. Introduction

 1

1. Introdu ction

1.1 Motivation

Jon Bosak [12], one of the developers of the Extensible Markup Language

(XML) argues that the revolution started by the combination of the global

Internet and hypertext will be completed by the addition of XML. XML will add

to the ability of the web to understand data and perform functions where a

greater understanding of web content is required.

David Kotx [17] puts forward the same argument for mobility. He maintains

that within five years “nearly all major Internet sites will be capable of hosting

and willing to host some form of mobile agent”. Mobile code will be a critical

near term part of the Internet. It makes new applications possible, improves

significantly on the performance of traditional distributed processing

techniques, but most importantly it will provide a single general framework to

allow the simple and efficient implementation of distributed, information

processing applications. This framework will facilitate the division of

programming tasks among the various sites on the Internet which are willing

to host processing of some sort.

What is required is a prototypical programming language which exploits the

suitability of XML as a means for describing data, and which implements a

certain degree of mobility in order to demonstrate the future uses of the web.

Such uses will be demonstrated in this dissertation to include the addition of

processing power to systems through mobility and the opening of file space to

allow for sharing and storage of programming language values.

1.2 Propo sed Solution

The aim of this dissertation is to produce prototypical programming languages

that implement the required functionality to assess the possibility of using the

World Wide Web as a store for programming language values and a host for

code mobility and migration.

Modular Data Serialisation & Mobile Code 1. Introduction

 2

In doing so extensive use will be made of XML, Vanilla and current theory in

the area of mobile code and programming language design. Analysis will be

made of the various techniques being employed in the area of mobile code to

see how the web could be utilised as a global environment for data

processing. Also, if data can be serialised to a local disk then why not allow

for its serialisation to any available space on the web. If this data is available

elsewhere on the web then other programs will be able to access and

understand it. If the same serialisation is implemented for programming

language code then the processing burden incurred locally can be distributed

among the available resources on the web.

XML adds to the contents of web documents. It replaces the “dumb” HTML

that could only format the public view of the data, with a richer more powerful

form of markup. XML insists on the specification of domain specific markup

tags. It does so by providing a null set of previously defined tags. If a

developer has the power to describe his/her data as (s)he chooses then the

tags used to describe his/her data will have been enriched by the addition of

semantics. Currently XML is being used in an ever-growing number of

domains as a structured data description format. These domains range from

Medicare (Health Level Seven http://www.hl7.org) to Real Estate (Real Estate

Data Interchange Standard http://www.rets-wg.org/) to the News Industry

(News Industry Text Format http://www.nitf.org/).

The use of XML for the purposes of this dissertation will be confined to

defining the data content of programming language values and types. These

values will then be written as web documents to available space on remote

web servers. In effect web content will no longer be simply data for display to

be read by humans, web documents will represent programming language

values. Programming languages will be able to read the contents of an XML

document and extract meaning from it, in much the same way as, say Java,

can read a serialised Java object from disk and construct an in memory

version of it.

Much has been said about programming languages in the preceding

paragraphs. The programming languages of which we spoke will be

developed using the Vanilla [1] tool. Vanilla is a completely component based

Modular Data Serialisation & Mobile Code 1. Introduction

 3

programming language builder. It separates the various parts of traditional

compiler builders (parser, type checker, interpreter) and implements them

independently for the different sections of a programming language (functions,

objects, conditionals and so on). Currently, any language built using Vanilla

will not have disk access. The aim of this dissertation is to add new

components to the existing set of Vanilla components in order to provide

serialisation functionality.

Serialisation of programming language values will be the primary focus of the

dissertation. However, the additional aim of integrating mobility into Vanilla

can be provided by exploiting the fact that Vanilla functions are treated as if

they are values. If we can successfully serialise programming language

functions to the web then will we have ways of making it run. If so, will it be

able to run with the same resources it had on its original host, how will it keep

its environment consistent with where it was originally located and how will it

communicate with its parent to return values.

1.3 Objectives

For clarity the individual objectives of this dissertation can be specified as

follows:

1. The development of some standard mechanism for the representation

of Vanilla types and values as well as functions as XML documents. At

this stage the aim is simply to be able to take in-memory values and

display how they may be represented as an XML document.

2. The extension of the current Vanilla framework to add disk access

functionality. Initially all that will be allowed for will be the serialisation

of simple text strings to the local disk. Following the implementation of

this, however, the basic write(filename, String) will be

extended to allow for functions such as write(filename, Value) .

The data will be serialised to the disk as an XML web document.

3. The remote serialisation of values. This refers to the ability to write the

values as XML documents to file space that is not located on the

Modular Data Serialisation & Mobile Code 1. Introduction

 4

machine or possibly not even on the network on which the program

that generated the value is running. When this has been successfully

completed possible applications for this functionality will be looked at.

For example Vanilla based programs could interact over the web by

exchanging values as XML documents.

4. Ultimately the ability to serialise code and execute it remotely ought to

be implemented. This will lead to the area of code mobility. A number

of things need to be examined at this stage. For instance the benefits

and drawbacks of weak versus strong migration of code between hosts

will be analysed to see what is required to add sufficient power to the

programming language.

1.4 Roadmap

The next chapter of this dissertation will be present background information

on the various areas explored in the project. Subsequent chapters will outline

the design, implementation and evaluation of the system. Here is a clearer

outline of the remaining chapters.

• 2. Background

o In this chapter the following technologies and research areas will

be examined in detail

1. Vanilla and Programming Languages

2. XML

3. Serialisation and Communication Mechanisms

4. Code Mobility

• 3. Design

o The design of the system. What is required, what approach will

be taken, what will the architecture appear like from a high level

and so on.

• 4. Implementation

Modular Data Serialisation & Mobile Code 1. Introduction

 5

o What choices were made on how to implement the system, what

issues were encountered when implementing it and how was it

implemented?

• 5. Evaluation

o What results did testing of the system produce, what are the

possible uses of the system and how do these function at

present? What is required to make the system better or more

adaptable to other potential uses?

• 6. Conclusion

o What has the research outlined in this dissertation produced?

What future research is possible?

• 7. References

o A list of all sources

1.5 Summary

It is the aim of this dissertation to produce an extension to the current set of

components that comprise the Vanilla system in order to add functionality to

allow for access to the disk on local and remote machines. How values that

are stored within Vanilla can be represented using the Extensible Markup

Language will be assessed. Ultimately it is hoped that a system will be

produced to permit languages built using Vanilla to incorporate both local and

remote data serialisation as well as code mobility, using the functionality that

will have been built as part of the project.

Modular Data Serialisation & Mobile Code 2. Background

 6

2. Background

2.1 Introdu ction

In this section the various technologies that will be used in this project will be

examined in details as well as what other work is being done in the various

research areas relating to these technologies and how these technologies

function.

The main sections with be as follows:

• Vanilla

o In this section on overview of programming language theory will be

presented before a more detailed discussion of the Vanilla system,

the technology that is core to the research in this dissertation.

• XML

o The Extensible Markup Language is a subset of the Standard

Generalised Markup Language which provides a structure for data

so it can be represented in a standard machine understandable

manner.

• Serialisation & Communication Mechanisms

o This section will contain a detailed discussion of two technologies,

SOAP and Jiki, that may be used as the basis of the communication

mechanism in this project.

• Code Mobility

o What is code mobility, what different types of mobility exist and

what implementations are available. All these questions will be

addressed and answered.

2.2 Vanill a & Programming L angu ages

Computer programs are created using programming language compilers.

Programming language compilers are built using compiler compilers. Very

often interpreters will be used in place of compilers so that the output of a

Modular Data Serialisation & Mobile Code 2. Background

 7

program can be seen from processing the source code, rather than machine

code. Vanilla is a tool that will build an interpreter for a programming

language.

The next section will give a general introduction to compiler design, the

lessons from which can just as easily be applied to interpreters. The next

section following this will give a complete overview of the Vanilla tool.

2.2.1 Programming L angu ages

2.2.1.1 Overview

A compiler is a program that translates an program in one language into an

executable program in another language. The output produced by the

compiler should be better in some way than the original input. For example if

some Java code is processed by a Java compiler then the output, Java byte

code, will be in a format that is directly understandable by the Java Virtual

Machine.

An interpreter is a program that reads an executable program and produces

the results of running that program. Typically this will involve executing the

source code in some fashion. For example if some Java code is presented to

a Java interpreter then the output of running that code will be presented

immediately, without the intermediate step of compilation into byte code.

Languages such as Perl are usually interpreted rather than compiled into

machine code of some sort.

2.2.1.2 Compiler Design

Figure 2.1 below gives a view of the general architecture of a well-designed

compiler [3]. A front end reads in the source code and produces some kind of

intermediate representation (IR), probably in the form of an Abstract Syntax

Tree. The back end will then read the IR and produce the correct machine

code for the target machine. Along the way any errors that are encountered

will be thrown.

Modular Data Serialisation & Mobile Code 2. Background

 8

Figure 2.1: Standard architecture for a compiler from [3]

The structure of the front end (Figure 2.2) will be similar for both compilers

and interpreters. The source code is scanned and parsed to check for

syntactic correctness and to construct the intermediate representation that will

be used at the back end, throwing any errors encountered along the way.

Figure 2.2: Architecture of f ront end o f a compiler from [3]

 The processing that takes place for a small piece of code, such as

x + 2 – y

can result in a large parse tree, as seen in Figure 2.3(a), so most compilers

prefer to use an Abstract Syntax Tree to represent the piece of code.

Abstract syntax makes a clean interface between the parser and the later

phases of the compiler. The Abstract Syntax Tree conveys the phase

structure of the source program with all parsing issues resolved but without

any semantic interpretation. This tree can be presented to the type checker

that can traverse it resolving further issues. In essence, however, it represents

a simple intermediate representation for passing a program between the front

end of a compiler and the back end.

Modular Data Serialisation & Mobile Code 2. Background

 9

Figure 2.3(a): Example Parse Tree Figure 2.3(b): Example Abstract

Syntax Tree

The type checker will usually operate as a recursive function of the Abstract

Syntax Tree. Its function is to use entries in Symbol Tables to map symbols to

bindings. The main aim is to determine type equivalence, to ensure that types,

values and objects are only used where it is appropriate to do so. One of the

following approaches is taken when checking type equivalence.

• In name equivalence, two types are equivalent if they are named and

have the same name.

• In structural equivalence, two types are equivalent if they have the

same structure.

• In structural equivalence under naming, two types are equivalent if they

have the same structure and the named components of each structure

have the same names.

The back end will relate the intermediate representation onto the environment

where the program will be run. If the program is to be interpreted at the back

end the output of the program will be generated and displayed. If a compiled

Modular Data Serialisation & Mobile Code 2. Background

 10

machine code version of the program is required then the necessary code will

be generated for the relevant environment.

The three phases of a compiler can therefore be seen as

1. Parser

• Read in source code and construct Abstract Syntax Tree

2. Type Checker

• Check the types of the nodes in the Abstract Syntax Tree in order to

ensure that the left and right hand sides of expressions evaluate to

compatible types, and so on.

3. Interpreter

• Produce output, whether this is compiled executable code, or

simply the output of running the code.

2.2.2 Vanill a

2.2.2.1 Overview

The Jakarta Tool Suite (JTS) [2] is a set of domain independent tools for

creating domain specific languages. A language is constructed using JTS by

extending an existing programming language, called a host language. The

benefits of using this suite of tools for language creation are three fold.

1. Common programming constructs need not be re-implemented. The

functionality of the host language is re-used in the new language.

2. The extensions of the host language need only be transformed to a

point where they can be expressible in the host language

3. The existing infrastructure can be used.

This method of programming encourages the re-use of tried and tested code,

and as a result reduces significantly on the time for development of a new

language.

The thinking behind the development of the JTS is much akin to the

inspiration for the Vanilla language [1]. Vanilla defines a set of components

that are used together to define a language. A set of completely independent

Modular Data Serialisation & Mobile Code 2. Background

 11

components provides all the functionality (parser, type checker, interpreter) for

an individual part of a programming language, say loops. Such components

are provided for all the basic parts of a language. To alter or extend the

language to create a new language only a few components will need to be

changed.

This type of programming is a part of the growing area of component based

software design. Standard components which provide a certain amount of

functionality and that functionality alone can be integrated with other

components with confidence that their independent behaviours will not be tied

to any other components except for how is specified by the programmer. In

this way systems such as JTS and Vanilla can be used to create new

languages through the re-use of existing components integrated with a

minimal set of newly created components.

2.2.2.2 Vanill a Architecture

Vanilla provides an overall framework (Figure 2.4) into which components for

the language can be plugged. It provides a number of components, or

subsystems, which mirror the overall architecture of a well-designed

interpreter, i.e. parser, type checker, interpreter. Each of these subsystems is

implemented as a set of components.

Each individual part of a programming language is implemented as a Vanilla

pod. A Vanilla pod will implement a parser, type checker and interpreter for

that pod alone. When loaded the different components register themselves

with the root component of the subsystem. All pods are loaded at run time.

The registry that is constructed for each subsystem is queried each time a

parser (or type checker / interpreter / any other subsystem component) is

required for an individual piece of code. The registry will then find the

appropriate component to perform the operation required.

Vanilla allows the programmer construct simple prototype languages by

making it easy to remove components and add in other components in its

place. A language can be added to as required, and changed when

necessary. If a language is required to handle a number of features that are

not included in the basic Vanilla package a developer need only write the

Modular Data Serialisation & Mobile Code 2. Background

 12

parser, type checker and interpreter for that feature and include the names of

those components in the language definition file. In order to change a

subsystem, or to include a new one (for say, serialisation), a set of

components must be created and included as a new subsystem in the Vanilla

properties file.

Since the language is loaded as well as he program at run time a large set of

potential languages can co-exist together, with the language definition file for

each language specifying what components are required for each language.

2.2.2.3 Vanill a Pods

A Vanilla pod is a set of components that implement a single language feature

and only that feature. Separate pods exist for each of the following:

Core : Ground types, arithmetic, sequence

Variables : Put & get from environment

Sequences : Arrays

Conditionals : If-then-else

Loops : For (…)

Very Common

Functions : Higher order closures

Universals : Like C++ Templates

Existentials : Partially abstract types
� -recursive

types

: Types containing themselves

The basis of

functional

programming

Objects : Abadi & Cardelli Style

Classes :

Very general

object model

Modular Data Serialisation & Mobile Code 2. Background

 13

Figure 2.4: Vanill a Architecture from [1]

2.2.2.4 Vanill a Types & Values

All Vanilla Value s have an associated Type . Type and Value components

are provided for all the basic types within a programming language i.e.

Boolean , Integer , String , Record , Object . All Type classes extend the

root Type class and likewise all Vanilla Value s extend the root IValue

class. In order to create new Type s or Value s these root classes must be

extended.

In Vanilla a Function is also treated as a Value . This was a decision that

was made when designing the basic functionality that is provided with Vanilla,

but could be easily altered thanks to the decoupled component nature of

Vanilla. The research outlined in this dissertation takes advantage of the fact

that functions are treated as values.

A Value must have an associated Type . Type s may also have a Kind

associated with them, where the relationship from Value to Type is similar to

the relationship from Type to Kind . We do not deal with Kind s to a

sufficiently large degree in the course of this dissertation to necessitate a

discussion of them in any great detail.

Modular Data Serialisation & Mobile Code 2. Background

 14

2.2.2.5 Runn ing Vanill a

Vanilla can be downloaded for free from www.vanilla.ie. The current version is

Vanilla 1.6 but the version that will be released following the successful

completion of this dissertation will be version 1.7 and will include all the

serialisation and mobile code capabilities that will be developed as part of this

project.

In order to run Vanilla all the compiled classes must be downloaded and

installed and the classpath must be set appropriately. Extra components can

then be added or amended as required.

There are a number of tests provided which can then be used to test the

installation.

1. vc

• The batch-mode shell. Most commonly used

2. avc

• A more intelligent batch-mode shell

3. vint

• The interactive shell

4. vprint

• The AST print utility

5. vp

• The parser component generator

6. vpod

• The pod compiler

7. vic

• The interpreter compiler

In order to run Vanilla using one of these tools on a file such as test.v , run

the following command

vc test.v

Modular Data Serialisation & Mobile Code 2. Background

 15

2.2.2.6 Summary

In brief, Vanilla is a tool that provides a language designer with a means to

“throw together” a language in a short time. It saves the designer from the

burden of having to implement functionality that is common to most

languages, allowing him/her to focus solely on the central part of the

language, or the part that they wish to implement differently. Vanilla obeys all

rules for language design, and in this respect implements languages in the

same way as is done by more conventional systems, i.e. it contains parse,

type check, interpret phases, it implements Types, Kinds and Values.

What it does differently (i.e. component based, plug in architecture) is what

makes it useful for developing prototypical languages. Because it is mainly

supposed to be used for this theoretical work its designers concentrated on

getting everything to work correctly, rather than optimising it in terms of speed

or performance. As would be expected from a system that requires a large

number of components to be loaded at run time, its performance can be quite

slow in comparison to conventional systems.

2.3 XML

2.3.1 Overview

Documents containing any sort of meaningful information must have some

structure if the content is to be understood by a machine. The structured

information should contain both content and some indication of what role that

content plays. For machines to understand the content they must be

presented with a description of the overall structure of information within the

document. A markup language is a mechanism to identify structures in a

document.

The Extensible Markup Language was specified in February 1998 by the

World Wide Web Consortium [4]. It was proposed as a standard means for

the structuring of information and since its specification it has literally spread

like wild fire through all industries. XML has been defined as an application

friendly cut down version of the Standard Generalised Markup Language

previously defined in ISO 8879. SGML is capable of providing the same

Modular Data Serialisation & Mobile Code 2. Background

 16

functions as XML, but its complexity does not lend itself nicely to simpler

tasks, such as representation of web data. XML, as a restricted form of

SGML, can easily accomplish this task and much more.

The magic of XML lies in the freedom that is given to the programmer in

describing the overall structure and semantics of his/her data within a single

document. Although it is a markup language just like HTML it does not specify

any tags. Thus any person, or more typically, any industry can specify a set of

tags and an overall XML document structure that should be used to represent

the information that is used within the industry.

Originally XML was just seen as a natural successor to the afore-mentioned

Hyper Text Markup Language (HTML). Indeed it is probably the case that

XML in tandem with its sibling XSL will become the standard method for

displaying data on the web, but XML is far too rich to be constrained to that

use alone.

There are a number of “extras” that come along with XML to add to its power.

1. XSL – The Extensible Stylesheet Language

2. XLink – The XML Linking Language

3. XPointer – The XML Pointer Language

As well as these, the mass of research taking place in this area has also

produced numerous APIs for the processing of XML documents in different

ways, as well as a wealth of different environments in which XML can be

developed.

XML is already becoming a standard for information representation. It will

ultimately be the standard means for creating web documents. It will be

discussed in detail in the following sections, concentrating mainly but not

exclusively on the parts of it that will be used in the course of this dissertation

project.

Modular Data Serialisation & Mobile Code 2. Background

 17

2.3.2 The Extensible Markup L angu age

2.3.2.1 Document

All XML data is contained within an XML document. An example of a simple

XML document (that seemingly has become the “Hello World” standard

example in XML tutorials) is given below in Figure 2.5. Note that all XML

examples presented below are either from the XML tutorial on XML.com [11]

or from the myriad of papers written on XML and available off the World Wide

Web Consortium web site [4 – 10]

<?xml version="1.0"?>

 <oldjoke>

 <burns>
 Say
 <quote>goodnight</quote>
 ,Gracie.
 </burns>

 <allen>
 <quote>Goodnight, Gracie.</quote>
 </allen>

 <applause/>

</oldjoke>

Figure 2.5: A Simple XML Document

All XML documents must begin with the code shown in the first line of Figure

2.5 above. This, quite obviously, is an indication of the version of XML being

used in the document. Documents must also be well formed, meaning start

tags must have corresponding end tags and must not overlap and must be

valid if a structure is given for the document. This will be explained in more

detail below.

Modular Data Serialisation & Mobile Code 2. Background

 18

2.3.2.2 Markup

An XML document is comprised of both markup and content. There are six

different types of markup in XML. They are Elements, Attributes, Entity

References, Comments, Processing Instructions and CDATA sections.

Most important for the purposes of this dissertation are Elements and

Attributes. These represent the structure of the document and the values that

may optionally be associated with them. An example is given below in Figure

2.6.

<elementname attribute1=something>
 Blah blah blah
</elementname>

Figure 2.6: Common XML markup

2.3.3 Document Type Declarations

As alluded to earlier, one of the great strengths of XML is that it allows the

programmer create his/her own tags, thus giving him/her the power to add

semantics to their documents by specifying tags that are meaningful to the

application in question.

A Document Type Declaration (DTD) describes the Meta data. It gives the

structure of the document, saying which tags occur at which point in the

document. Documents need not necessarily conform to a DTD but if it does it

is said to be valid. If present in a document, the DTD must be the first thing in

the document. If not located within the document, there may be a reference to

an external DTD or there may be both internal and external DTDs associated

with a document.

The DTD’s main function is in communicating Meta information to the parser

to give the machine some “understanding” of what is contained within the

document.

An example DTD is given overleaf in Figure 2.7.

Modular Data Serialisation & Mobile Code 2. Background

 19

<!ELEMENT oldjoke (burns+, allen, applause?)>
<!ELEMENT burns (#PCDATA | quote)*>
<!ELEMENT allen (#PCDATA | quote)*>
<!ELEMENT quote (#PCDATA)*>
<!ELEMENT applause EMPTY>

<!ATTLIST oldjoke name ID label CDATA
 status (funny | notfunny) 'funny'>

Figure 2.7: Sample DTD Entries

2.3.4 XML Schema

Document Type Declarations are typically used to define the structure of an

XML document. However DTDs often lack sufficient power. XML Schema

attempt to provide an alternative method for describing data that does not lack

the power that DTDs do. An advantage of Schema over DTDs is that they are

expressed entirely in XML and do no t require a knowledge of a different

syntax (Extended Baukus Naur Form for DTDs) to be constructed.

The purpose of XML Schema, according to its specification [8] is to define a

class of XML documents. Schemas have many different parts and are

probably best understood through the use of an example. Such an example

exists in the W3C spec [8], but is far too complex to deal with here. Suffice it

to say that XML schemas appear similar to a DTD expressed in XML.

Obviously the power to express data definitions using your own tags can add

to the power of the definition. There are a number of built in types and

constants available to the document writer. The use of a small subset of these

should be apparent from the example piece of code in Figure 2.8.

Modular Data Serialisation & Mobile Code 2. Background

 20

<xsd:complexType name="Address" >
 <xsd:element name="name" type=" xsd:string" />
 <xsd:element name="street" type="xsd:string" />
 <xsd:element name="city" type="xsd:string" />
 <xsd:element name="state" type="xsd:string" />
 <xsd:eleme nt name="zip" type=" xsd:decimal" />
 <xsd:attribute name="country" type="xsd:NMTOKEN"
 use="fixed" value="US"/>
</xsd:complexType>

Figure 2.8: Use of Simple types and constraints in XML Schema

2.3.5 XSL

The Extensible Stylesheet Language [9] specifies the presentation of a class

of XML documents as web documents, by describing how a document in the

class can be transformed into a document that conforms to the formatting

rules for web presentation. For example, some mechanism may be given to

specify how the XML content can be formatted in HTML.

2.3.6 XLink

The XML Linking Language [6] allows elements to be inserted into XML

documents in order to create and describe links between resources. A link is a

relationship between two resources, made explicit by an XLink linking

element. XLink allows XML documents to

• Assert linking relationships among two or more resources.

• Associate Meta data with a link.

• Create link databases that reside in a location separate from the

linked resources.

XLink is used to reference documents at URLs in much the same way as

pointer variables reference values in a programming language. This may be of

relevance to the implementation of this project.

Modular Data Serialisation & Mobile Code 2. Background

 21

2.3.7 XPointer

The XML Pointer Language [7] is a language that specifies the means for

addressing into the internal structures of an XML document. In particular it

provides for specific reference to elements, character strings and other parts

of XML documents. In short XPointer provides a means for locating elements

and other resources within a document, relative to the root, or any other

location within the document. The potential use for this would lie in the ability

to navigate through documents pulling information from various sections,

where a document contains say, two sets of information, possibly type and

value.

2.3.8 XML Namespaces

Namespaces in XML [10] provide a simple method for qualifying element and

attribute names used in XML documents by associating them with

namespaces associated with URI references. According to its specification

[10] an XML namespace is “a collection of names, identified by a URI

reference, which are used in XML documents as element types and attribute

names”.

An XML namespace is declared using a family of reserved attributes. Such an

attribute’s name must have either xmlns: or xmlns as a prefix. An example

namespace declaration which associates the namespace tcd with the

namespace name http://www.tcd.ie/ is given in Figure 2.9 below.

<x xmlns:tcd=’http:// www.tcd.ie’>

<! —the “tcd” prefix is bound to http://www.tcd.ie/

for the x element and contents -- >

</x>

Figure 2.9: Namespace Declaration for TCD

Once a namespace has been declared then some names in an XML

document may be given qualified names. A qualified name begins with the

namespace name, followed by a colon, and terminates with the name given to

Modular Data Serialisation & Mobile Code 2. Background

 22

the element. Consider for example the declaration of people as a qualified

name for tcd

<x xmlns:tcd=’http://www.tcd.ie’>

<! —the ‘people’ element’s name space is

http://www.tcd.ie/ -- >

<tcd:people type=’Staff’>1000</tcd:people>

</x>

Figure 2.10: Namespace Usage for TCD

When all sorts of XML Schema are declared then there are likely to be

conflicts, where size, for instance, means one thing in one industry and

something completely different in another industry. The use of namespaces is

aimed at preventing the likely confusion, by qualifying the names according to

how they are being used and who is using them.

2.3.9 Parsing XML

Since one of the primary functions of XML is the exchange of data between

computer programs, the necessity for a mechanism to parse and hence,

understand, XML is paramount. To do so, Sun provide two APIs for parsing

XML documents. These APIs represent different approaches to processing

XML, and as such are better suited to different types of applications. They

closely related to each other, as will be seen in Figure 2.11.

The "Simple API" for XML (SAX) is the event-driven, serial-access

mechanism that does element-by-element processing. The API for this mode

reads and writes XML to a data repository or the Web. This mode is best

suited to server-side and high-performance applications.

The DOM API is also an easier API to use. It hides the intricacies of the SAX

API, and provides a relatively familiar tree structure of objects. It also provides

a framework to help output the object tree as XML data. On the other hand,

constructing the DOM requires reading the entire XML structure and holding

the object tree in memory, so it is much more CPU and memory intensive. For

Modular Data Serialisation & Mobile Code 2. Background

 23

that reason, the SAX API will tend to be preferred for server-side applications

and data filters that do not require an in-memory representation of the data.

The DOM API builds on the SAX API as shown here in Figure 2.11.

Figure 2.11: DOM and SAX

The essential difference between the two lies in the fact that the DOM [5]

produces an actual object for each part of the contents of the XML document.

This makes it far easier to use for the programmer. It allows for easy

navigation of the tree structure of the document and easy processing of the

objects at each stage. However, concerns about efficiency may make the

SAX parser more favourable where performance is a large factor.

Modular Data Serialisation & Mobile Code 2. Background

 24

There are a number of different implementations of the two XML parsers

available, including the Apache Xerces parser. This wraps up the Sun

implementation with some extra functionality.

2.3.10 Summary

XML has been seen to take its place where it belongs, everywhere. It is

destined to become a standard wherever interchange of any sort of structured

information is required. This section has presented an outline of how XML

documents are constructed, linked, traversed, described and parsed.

2.4 Serialisation & Communication Mechanisms

2.4.1 Overview

The core of this dissertation involves the writing, or serialising of data to disk.

This will involve the specification of some mechanism for representing the

data, and the development and incorporation of some algorithm that will

ensure that the correct data is being collected, to allow for the rebuilding of

the data when read from disk.

The Java serialisation mechanism is first looked at to see how Java

approaches the issue of serialisation. It is shown why this is insufficient for

what is required here.

However, the serialisation in this project takes place in the form of XML

documents. In order to look at how data might be represented in XML an

examination of the Simple Object Access Protocol (SOAP) is made. This

protocol involves the encoding of requests and responses in XML for

communication in a distributed programming environment.

Since the data being written will not simply be written out locally, but may also

be done remotely ways of communicating between servers will also need to

be examined. To see this we will look at web servers and Java Servlets, as

well as the Jiki architecture. Jiki is a prototypical web server currently being

developed further, which provides fully open access to any web client.

Modular Data Serialisation & Mobile Code 2. Background

 25

2.4.2 Java Serialisation

Sun Microsystems [23] describes the ability to store and retrieve Java objects

as being essential to building all but the simplest applications. The key to

storing and retrieving objects in a serialised form is representing the state of

objects sufficient to reconstruct the object(s). Objects to be saved in the

stream may support either the Serializable or the Externalizable

interface. For Java objects, the serialised form must be able to identify and

verify the Java class from which the contents of the object were saved and to

restore the contents to a new instance. For serialisable objects, the stream

includes sufficient information to restore the fields in the stream to a

compatible version of the class. For Externalisable objects, the class is

solely responsible for the external format of its contents. Objects to be stored

and retrieved frequently refer to other objects. Those other objects must be

stored and retrieved at the same time to maintain the relationships between

the objects. When an object is stored, all of the objects that are reachable

from that object are stored as well. The goals for serialising Java objects

according to Sun Microsystems [23] given here.

• Have a simple yet extensible mechanism.

• Maintain the Java object type and safety properties in the serialized

form.

• Be extensible to support marshaling and unmarshaling as needed

for remote objects.

• Be extensible to support simple persistence of Java objects.

• Require per class implementation only for customisation.

• Allow the object to define its external format.

The Java serialisation mechanism is insufficient for a number of reasons. The

serialisation of objects by one version of Java may not be understood by

subsequent implementations of Java. XML can combat this problem by having

sets of DTDs describing data.

Modular Data Serialisation & Mobile Code 2. Background

 26

2.4.3 SOAP

The Simple Object Access Protocol [13] is a minimal set of conventions for

invoking code using XML over HTTP. It was submitted to the IETF as an

Internet Draft in December 1999, by DevelopMentor, Microsoft and UserLand.

It is an evolution of XML-RPC, which was the first result of the concept of

calling remote methods over HTTP using XML.

SOAP works by encoding a method name and its associated parameters in

an XML document and sending it over HTTP to the required destination. The

amount of information used is minute compared to the requirement of

encoding complex values in XML, but for primitive data types it is reasonably

closely related.

Figure 2.12(a) below shows a SOAP request. Things to note here are the use

of namespaces, the envelope notion for storing the information and the way

the method name is encoded in XML.

Since SOAP is a request response based approach, a response must follow a

request. The response to the request in Figure 2.12(a) is given below in

Figure 2.12(b).

<SOAP:Envelope xmlns:SOAP="urn:schemas - xmlsoap -

org:soap.v1">

<SOAP:Body>

<m:GetLastTradePrice xmlns:m="Some - Namespace-

URI">

<symbol>DIS</symbol>

</m:GetLastTradePrice>

</SOAP:Body>

</SOAP:Envelope>

Figure 2.12(a): SOAP Request

Modular Data Serialisation & Mobile Code 2. Background

 27

<SOAP:Envelope xmlns:SOAP="urn:schema s- xmlsoap -

org:soap.v1">

<SOAP:Body>

<m:GetLastTradePriceResponse xmlns:m="Some -

Namespace- URI">

<return>34.5</return>

</m:GetLastTradePriceResponse>

</SOAP:Body>

</SOAP:Envelope>

Figure 2.12(b): SOAP Respon se

SOAP operates entirely over HTTP. The chief advantage of this is that web

servers whose firewalls permit communication only on port 80 will not stop

SOAP data from being communicated. Other protocols such as the IIOP,

which work on other ports, can be stopped by suspicious firewalls.

In HTTP headers SOAP uses the Content-Type of "text/xml ". This is used

to specify the body of the HTTP request containing a XML encoded method

call. To disambiguate the headers it adds to HTTP, SOAP permits use of the

HTTP Extension Framework specification. The extension framework allows

use of the HTTP verb M- POST. An example HTTP header for the request in

Figure 2.12(a) is given below in Figure 2.13.

POST /StockQuote HTTP/1.1

Host: www.stockquoteserver.com

Content - Type: text/xml

Content - Length: nnnn

SOAPMethodName: S ome- Namespace- URI#GetLastTradePrice

Figure 2.13: HTTP Header for SOAP Request

Modular Data Serialisation & Mobile Code 2. Background

 28

2.4.4 Jiki

Jiki [14] is an open web server architecture that provides access to all

documents stored in its file space to any web client. Clients accessing a

document stored on a Jiki web server are presented with the opportunity to

edit the contents of the page. No security has so far been implemented so

anyone who wishes to do so may edit any page on a Jiki web server. This

concept of openness is something that could be exploited for the purposes of

this dissertation, where a mechanism for writing from one machine to another

is required. Although Jiki may not be ideal a lot can be learned from how it is

implemented.

1. It is a system written entirely using Java Servlets.

2. It uses simple HTTP POSTs to input all its values, thus avoiding the

need for HTTP extensions

3. It keeps everything nice and simple

2.4.5 Summary

Each of Java serialisation, SOAP and Jiki have been introduced to attempt to

explain some mechanisms for representing data and sending this data

between machines. Java serialisation is a data representation format, SOAP

is simply a communications protocol and Jiki is a web server architecture.

2.5 Code Mobili ty

2.5.1 Overview

The creator of the TCL scripting language, John Ousterhout, once

characterised code mobility and mobile agents as a “solution in search of a

problem”. Indeed it is true that existing mechanisms for distributed computing

are sufficient to do the job that can be performed by mobility. However, in

much the same way as CD technology replaced Audio cassettes, which could

doubtlessly do the job they were required to do, mobility can provide an

Modular Data Serialisation & Mobile Code 2. Background

 29

alternative to traditional RPC mechanisms by proving to be a better way to

perform the same task.

Code mobility refers to the ability to move code around a network exploiting

available resources at the various nodes to provide a quicker, more efficient

result, or often, just to enable the computation of some meaningful result.

There are three main approaches taken in code mobility, which will be

elaborated upon. In brief, however, the main methods of making code mobile

are as follows [18].

1. The Remote Evaluation Approach

2. The Mobile Agent Approach

3. The Code on Demand Approach

The three approaches differ in the way the code is moved, how the result is

achieved and who performs the computation.

When code is moved, or migrated, the level of detail that accompanies it to its

destination determines whether the type of migration is weak or strong. Weak

migration involves the transfer of the code alone. Strong migration requires

that all information about state accompany the code. Intermediate levels of

migration strength may also be possible, as discussed by Walsh [15].

The next few sections will outline how code mobility with an examination of

how mobility contrasts with traditional distributed computing mechanisms such

as CORBA, what are the various approaches taken and what systems

currently exist.

2.5.2 Mobile Code Systems

Figure 2.14(a) [19] below gives an outline of a traditional distributed system.

These types of systems typically employ some sort of Virtual Machine to give

the impression of a single machine, rather than a whole network of connected

resources. From the diagram it is obvious that the network and lower layers

are all made transparent through the True Distributed System layer. Any time

a service is called the caller will not know of which node on the network is

responsible for the provision of the service, but will only know that the service

is available in the system. In CORBA systems such calls take place through

Modular Data Serialisation & Mobile Code 2. Background

 30

an object broker who knows of who provides what services. All that is required

of anyone who requires the services is that they know how to locate the object

broker.

Fuggetta [19] gives a clear explanation of the differences between this sort of

True Distributed System and what he terms a Mobile Code System. Figure

2.14(b) shows the architecture of a Mobile Code System (MCS). The top layer

in the True Distributed System is replaced by a set of Computational

Environments located at each node. Therefore the underlying computer

network is not hidden from the programmer; rather the programmer is given

the power to relocate the processing of an application to any of the nodes.

A Computational Environment (CE) is an environment on a machine in a

network that can host the execution of a unit of code, or Executing Unit (EU).

An executing unit is a sequential flow of execution, for example a single

threaded process. An executing unit will have a number of components. Its

Code Segment will provide a static description of the execution of the EU. Its

Data Space represents the set of resources that can be accessed by it. Its

Execution State represents the private data that cannot be shared, as well as

control information related to the EU’s state. CEs can also host what are

called Resources. Resources represent entities that may be shared among

multiple EUs.

• NOS:

o Network Operating

System

• OS

o Core Operating System

Figure 2.14(a): Traditional Distributed System from [15]

Modular Data Serialisation & Mobile Code 2. Background

 31

• NOS:

o Network Operating

System

• OS

o Core Operating System

Figure 2.14(b): Mobile Code System from [15]

In standard, non-mobile systems an EU is tied to a single CE for its entire

lifetime. In Mobile Code Systems, however, an EU can be relocated to a

different CE. The portion of the EU that needs to be moved is determined by

the strength of the migration that is required.

Strong mobility is the ability of an MCS to allow migration of both the code and

the execution state of the EU to a different CE. Weak mobility is the ability of

an MCS to allow code transfer across different CEs, optionally accompanied

by some initialisation data, but without any migration of execution state.

Mechanisms supporting weak mobility provide the capability to transfer code

across CEs and either link it dynamically to a running EU or use it as a code

segment for a new EU to be created and initialised.

2.5.3 Design o f Mobile Code Systems

2.5.3.1 Introdu ction

Fuggetta [19], explains that traditional approaches to software design are not

sufficient when designing large scale distributed applications that exploit code

mobility and dynamic reconfiguration of software components. In these cases,

he continues, the concepts of location, distribution of components among

locations and migration of components to different locations need to be taken

into account at the design stage.

The three main design paradigms exploiting code mobility are

Modular Data Serialisation & Mobile Code 2. Background

 32

1. Remote Evaluation

2. Code on Demand

3. Mobile Agents

2.5.3.2 Remote Evaluation

A and B are two components located respectively at sites SA and SB. A

requires some service to be performed, and has the know how to complete it,

but does not have the resources to do so. A sends the service know how to B.

B executes the code using the resources available at SB. B then sends the

results of the computation back to A.

2.5.3.3 Code on Demand

Once again we have two components A and B are located at sites SA and SB.

However in this paradigm A can access the resources it requires since they

are located with it at SA. A interacts with B to acquire the know how to perform

the service, which is located at SB. B delivers the code to A, and A executes

the code at SA using the resources available to it.

2.5.3.4 Mobile Agent

A has the know-how and some of the resources, but lacks some other

resources vital to the correct computation of the piece of code. Therefore it

takes the code and some intermediate results that it has computed at SA and

travels to SB where it completes the computation.

The first two paradigms deal with the transfer of code. The final one involves

the movement of the entire computational component and possible details

about its environment and state.

2.5.4 Mobile Agent Techno logies

There are many different mobile technologies currently available. A great deal

of these systems use the Java technology set, due to its ability to work on any

number of different platforms, among other reasons. There follows a

Modular Data Serialisation & Mobile Code 2. Background

 33

discussion of some of these systems. For a broader analysis and evaluation

of some of these systems see Walsh [16] and Kiniry [20].

2.5.4.1 Java

The Java Virtual Machine (JVM) can be viewed as a Computational

Environment. The class loader that is provided by Java dynamically links and

retrieves classes in a JVM. It is invoked by the Java run time when the code

currently in execution contains an unresolved class name. The class loader

will retrieve the code from a possibly remote host and load the class into the

JVM. For example imagine an applet that is running in a browser. The

browser will contain it’s own JVM. When the applet calls a class that it has not

got locally the class will be retrieved from the host from which the applet was

originally downloaded. In this situation we can view the browser with its in built

JVM as the computational environment and the applet as the Executing Unit.

We can view this as a simple form of code mobility. It is the weakest form of

mobility as the only thing being migrated is stand-alone code that is moving

while not running. More complex systems will be dealt with below, but it

should be understood that these systems are built using Java and run in a

Java Virtual Machine, so they build on the functionality dealt with above.

2.5.4.2 Java Aglets

Aglets [21] are Java classes that can move from one host on the Internet to

another. An aglet that executes on one host can suddenly suspend execution,

move and then resume execution and another host. Aglets appear to be the

most popular of any of the currently available mobility systems, some reasons

for which are outlined by Kiniry [20].

1. They are easy to install and use for a Java programmer.

2. The example applications supplied with the installation are flashy and

come equipped with attractive APIs (people are easily convinced by

aesthetics).

3. They have the strength of the IBM Empire pushing them.

Modular Data Serialisation & Mobile Code 2. Background

 34

Alongside these reasons comes the fact that the Aglet system has a nice

clean design. They take their name from a pun on the two words applet and

agent, and their usage largely reflects the implementation of applets. The

aglet system mirrors a great deal of the applet model, for instance

• dispatch(...) mirrors run(...)

• deactivate(...) mirrors stop(...)

• run(...) mirrors run(...)

• getAgletContext(...) mirrors getAppletContext(...)

Aglets, the Executing Units are threads in a Java Virtual Machine, the

Computational Environment. The way in which the Aglet API supports

migration is through the primitives dispatch(...) and retract(...) .

dispatch performs code shipping of the stand alone code to a new context

supplied as a parameter. A context of an aglet is the environment within which

it is currently located. Services provided in a context include the facility to list

the current set of aglets resident within the context, or add new aglets to the

context. The second migration primitive, retract , is the same as dispatch

except for the requirement that the aglet return to where retract was called

from upon completion of its task.

With both dispatch and retract the aglet is re-executed from scratch

when it is migrated, although the values of its object attributes are retained to

provide an initial state for its computation.

Figure 2.15 below gives some sample Aglet code from the Java Aglet API

specification [21]. The run() method is invoked when the aglet begins.

Once dis patch(url) is called the aglet relocates to the url supplied. Before

it leaves it calls the onDispatching(...) method. When it arrives at its

new location it calls the onArrival() method.

Modular Data Serialisation & Mobile Code 2. Background

 35

import aglet.*;

public class DispatchingExample extends Aglet {

 public void onDispatching(URL url) {
 ...
 }

 public void onArrival() {
 ...
 }

 public void run() {
 ...
 dispatch(url)
 ...
 }

Figure 2.15: Sample Aglet Code

2.5.4.3 Voyager

ObjectSpace developed Voyager [22] in 1997. Voyager is a Java based

mobile agent system that “exhibits several unique and innovative features”

[20]. The chief innovative feature of Voyager is its Virtual Object. The Virtual

Object is Voyager’s key communication framework and tool to support inter-

agent communication. Conventional RPC based systems such as Java’s

Remote Method Invocation (RMI) mechanism, require the developer to go

through a series of steps to describe first the interface and then the

implementation of an object. Voyager simplifies this by providing the ”vcc ”

tool (Virtual Code Compiler). This tool will take any existing Java class and

modify it to create the Virtual Object mirror of the source class.

Any object that has been processed with the Virtual Class Compiler will then

exhibit the properties of an agent. It can be migrated from server to server and

accessed remotely by other Virtual Objects in an RPC-like fashion, and it will

also have its own life cycle. Unless designed differently a Virtual Object will be

a simple passive object, however it is possible to create them, like any Java

object, so that they run in their own thread of control.

Modular Data Serialisation & Mobile Code 2. Background

 36

Another advantage of Voyager over other agent systems is that it can migrate

into any Java runtime of another Virtual Object. It is not necessary to have an

Agent server located on every node that you wish to use as a Computational

Environment.

Voyager increases development time by providing a number of mechanisms

that make it simple to move from a simple environment space to a distributed,

agent based, mobile processing environment.

2.5.4.4 Agent TCL

This is a simple TCL interpreter extended with support for strong mobility. An

Executing Unit or Agent is implemented as a Unix process. The

Computational Environment abstraction is implemented by the Operating

System. EUs can jump to another CE, fork a new EU at a remote CE or

submit some code to a remote CE to process.

2.5.4.5 Obliq

Obliq is an untyped, object based, lexically scoped interpreted language. It

allows for remote execution of procedures by means of an execution engine,

which implement the CE idea. The EU, implemented as a thread can request

the execution of a procedure on a remote execution engine. The code is sent

to the destination and executed there in a new EU.

2.5.5 Other Systems

Examples of other Mobile Code Systems include the following:

• M0 from the University of Geneva

• Mole form the University of Stuttgart

• Sumatra from the University of Maryland

• Odyssey from General Magic

• A full list of currently available commercial mobile code systems is

available from Kiniry [20].

Modular Data Serialisation & Mobile Code 2. Background

 37

2.5.6 Summary

Mobile code is code whose execution can take place on a number of nodes,

through migration around a network. This chapter has discussed in detail how

Mobile Code Systems operate and the different design paradigms to be

considered when creating a MCS. It has also presented an overview of some

currently available Mobile Code Systems, focussing mainly on IBM’s Aglets

and ObjectSpace’s Voyager.

2.6 Summary

The purpose of this Literature Survey has been to outline the main

technologies that will be used and referred to for the duration of the

dissertation. The following are the topics that were discussed above:

1. Programming Languages & Vanilla

2. XML

3. Serialisation & Communication Mechanisms

4. Code Mobility

Modular Data Serialisation & Mobile Code 3. Design

 38

3. Design

3.1 Introdu ction

The last chapter, entitled “Literature Survey” outlined what technologies are

available to be used in the course of this dissertation project. Vanilla, the

technology that will form the core of the project was discussed in detail, as

was XML. Code Mobility was introduced, analysed and assessed for

background information on how systems such as the one being developed

here are built. In this chapter a detailed design of the system will be

presented, making reference back to the technologies discussed above. By

then end of the chapter a design of a Data Serialisation and Mobile Code

system in Vanilla will have been presented in full.

3.2 Requirements

The requirements of this dissertation can be summarised as follows.

1. Identify the different types/values than should be serialised.

2. Construct an XML representation for each type/value identified.

3. Design a Vanilla subsystem to handle overall serialisation

mechanism and an individual component for each of the

types/values to be serialised.

4. Design a mechanism for serialising/deserialising functions.

5. Design a mechanism for executing functions delivered as an XML

document.

6. Design a mechanism and communications protocol for migrating

execution of a function to another machine/environment.

Modular Data Serialisation & Mobile Code 3. Design

 39

3.2.1 Identification o f Types and Values

The complete set of types implemented in Vanilla is as follows

1. String

2. Integer

3. Boolean

4. Ok

5. Record

6. Function

7. Universals

8. Existentials

9. Autos

10. Mu

11. Top

12. Bottom

The main focus of the serialisation section of this dissertation will be on the

types that are central to the functionality of a programming language i.e. the

entire set of core types; String s, Integer s, Boolean s, Oks. Serialisation

components for Record s will also be implemented, and Function s, as a

special type of type/value will also have serialisation components built.

Top and Bottom represent the different ends of the typing lattice. A Top is a

type from which all other types inherit. In effect it is a super type. Every other

type that exists is a sub type of Top. Bottom is the opposite. It is a sub type

of every other type, from Top down. This relationship is shown in Figure 3.1

below. Because of their presence and their simplicity serialisation components

will be implemented for these types and their associated values as well.

Modular Data Serialisation & Mobile Code 3. Design

 40

Figure 3.1: Type latt ice

3.2.2 XML Representation

The very first decision that is required before the XML structure for each type-

value pair is decided upon is how treat types and values should be treated. A

number of possibilities existed at this stage.

• Firstly, all information about the Vanilla pods being used for the

type/value could have been serialised. This way, when the value was

being deserialised the class name of the type could be read in, leaving

it up to Vanilla to decide how to handle it.

• Alternatively no information on the type of the serialised value could

have been serialised. This could then be decided upon by Vanilla

based on the type of the variable to which it was assigned upon

deserialisation.

• The decision that was made was to provide type information but keep it

separate from the value. For instance, in the first section of the XML

document information about the value to be serialised is provided i.e.

and indication is given that the value is, say, an Inte ger or a Record .

All type information would be specified here. In the next section of the

document all value information would be specified. The type

Modular Data Serialisation & Mobile Code 3. Design

 41

information given would be simply an indication of the name of the

types, and any attributes it may have, all reduced down to primitive

values. This separation of type and value information means that the

serialisation and deserialisation of types and values could be handled

separately by different Vanilla components.

The overall structure of the XML document that was decided upon is as

follows:

<?xml version="1.0" encoding="UTF - 8"?>

<vanilla - serialized - value>

 <vanilla - type>

 <! -- all type information -- >

 </vanilla - type>

 <vanilla - value>

 <! -- all value information -- >

 </vanilla - value>

</vanilla - serialized - value>

Figure 3.2: XML representation o f type value pair

All the core types will be represented in a manner that will be similar to the

String example given overleaf in Figure 3.3.

Modular Data Serialisation & Mobile Code 3. Design

 42

<?xml version="1.0" encoding="UTF - 8"?>

<vanilla - serialized - value>

 <vanilla - type>

 <String/>

 </vanilla - type>

 <vanilla - value>

 <string - value> This is a String</string - value>

 </vanilla - value>

</vanilla - serialized - value>

Figure 3.3: XML representation o f a String

Records are more complicated in that they contain a set of values. The

example (Figure 3.4) below shows how data describing type and value are

kept separate. rather than providing type and value information for each of the

fields together. The type and value for field b is given in bold.

Functions are more complicated still but they are dealt with in further detail

below, in the section on Serialising Functions.

Modular Data Serialisation & Mobile Code 3. Design

 43

<?xml version="1.0" encoding="UTF - 8"?>

<vanilla - serialized - value>

 <vanilla - type>

 <Rec ord>

 <record-field field-name="b">

 <Boolean/>

 </record-field>

 <record - field field - name="s">

 <String/>

 </record - field>

 </Record>

 </vanilla - type>

 <vanilla - value>

 <record - value>

 <record-field field-name="b">

 <boolean-value>false</boolean-value>

 </record-field>

 <record - field field - name="s">

 <string - value>hello world</string - value>

 </record - field>

 </record - value>

 </vanilla - value>

</vanilla - serialized - value>

Figure 3.4: XML representation o f a Record

Modular Data Serialisation & Mobile Code 3. Design

 44

3.2.3 Vanill a Subsystem

3.2.3.1 Subsystem architecture

A Vanilla language is constructed by “plugging-in” various components to

perform the functions of the language. These components may be individual

pods to implement aspects of the language such as loops or conditionals, or

they may be components that constitute a new subsystem. A subsystem

stretches over all pods with an individual component of that subsystem for

each pod. An example of a subsystem is a type-checker. A type checker will

have to be implemented for each different type within Vanilla, so the type

checking subsystem sprawls across all pods implementing the type checker

for functions, records, objects etc.

What is required for the purposes of the functionality to be implemented in this

project is something similar to this, to implement a serialiser. A root serialiser

class will be inherited from to create a serialiser subsystem capable of

serialising each of the types and values identified above. An individual

serialisation component will be implemented for each type and value and

added into the appropriate pod, so that for the, say, Record s pod we have

each of the following components

• Parser

• Type Checker

• Interpreter

• Serialiser

The diagram below in Figure 3.5 shows how these components relate to each

other. The root of each subsystem, in red below gets the request to parse,

type check, interpret or serialise a specific value. It then goes and locates the

component that is willing to do this. For instance if an Integer is to be

serialised then the root serialiser will get passed the integer value. It will then

ask each of the registered components if they are capable of performing the

serialisation of an Integer . The Record s pod will reply that it cannot. The

Modular Data Serialisation & Mobile Code 3. Design

 45

Core pod will reply that it is willing to perform this serialisation, and will

proceed to do so.

Figure 3.5: Relationship between compon ents

The serialiser subsystem will form the central part of the implementation. The

subsystem’s root will need to be implemented and then a component for each

of the pods that contains a type/value that will be serialised.

3.2.3.2 Ind ividual Compon ents

Each of the components that perform a serialisation of a value will be required

to implement the same interface as the root component. They will have to

separate Type and Value and Serialisation and Deserialisation. The four

functions they must implement are shown in Figure 3.6 below.

Modular Data Serialisation & Mobile Code 3. Design

 46

Figure 3.6: Functions required of serialiser compon ents

The naming and implementation of the actual methods within the classes will

be dealt with in greater detail in the Implementation chapter. Here the

intention is only to give a brief overview of what will be performed by each of

the methods:

Type Serialisation

• The type will be passed in to the method. The decision is made

internally in the method about whether it is possible for this component

to perform serialisation of that type. If so then an XML representation of

the type will be generated. This will be written to an output stream or an

XML document that is also passed as a parameter into the method.

Type Deserialisation

• An input stream or XML document that has been read and parsed by

the DOM parser will be passed to the root component’s method. This in

turn queries all the components to see who can deserialise the type

that is within the document. When a successful candidate is found the

type is deserialised and returned back to the interpreter.

Value Serialisation

• This is performed in precisely the same manner as type serialisation

with the obvious exception that rather than passing a type to the

method a value is passed instead.

Modular Data Serialisation & Mobile Code 3. Design

 47

Value Deserialisation

• To deserialise a value it is necessary to know the type of the value.

Therefore prior to deserialisation of a value the type of the value must

have been deserialised from the same document or its type must be

known. This may be fine for core/primitive types where the type is

relatively straightforward, but for more complex types such as Record s

and Function s where types contain types and so on, the situation is a

great deal trickier. In most cases the type is first deserialised and then

passed to the value deserialiser with the XML representation of the

value, which can then be deserialised. The decision on which

component to use to deserialise a value is made based on the type that

is passed in as an argument.

3.2.4 Serialising Fun ctions

Vanilla functions are the same as any Vanilla value in that they implement the

IValue interface. Therefore functions can be serialised and deserialised in

the same way as normal types and values such as the Core types and

Record s.

However functions differ from more basic types in each of the ways described

below

• Body

o A function value contains a piece of code that must be

serialised, as it is the central part of the function. This is a great

deal more complicated than simply writing a value, as is the

case for say, Integer s.

• Environment

o For a function to operate correctly when it is deserialised it must

still have access to all the variables that were in its scope when

it was serialised. The variables in its scope form a set that is

referred to as its environment. Serialising all variables that are in

the environment of a function is necessary in order to make

them available to the function again when it is deserialised.

Modular Data Serialisation & Mobile Code 3. Design

 48

3.2.4.1 Body

3.2.4.1.1 Abstract Syntax

In the Introduction chapter the basic concepts behind programming language

implementations were introduced. In the section on Compiler Design the

concept behind the internal representation of code was dealt with. In that

section Abstract Syntax was first mentioned as a means for representing

code. Vanilla, like most other compilers and interpreters forms an abstract

syntax tree naming all expressions as nodes. Vanilla considers all parts of

code to be expressions with the overall program being an expression itself.

Various Abstract Syntax Nodes represent the expressions in the tree. Figure

3.7 below shows a simple program and its representation as an Abstract

Syntax Tree.

Int year = 2001;

if(year > 2000) (

 println("Future");

)

else

 println("Past");

ASTSequential

 ASTIntroduce

 ASTIntegerType

 ASTIdentifier <year>

 ASTIntegerLiter al <2001>

 ASTIf

 ASTGreaterThan

 ASTIdentifier <year>

 ASTIntegerLiteral <2000>

 ASTSequential

 ASTPrint

 ASTExpressionList

 ASTStringLiteral <Future>

 ASTPrint

 ASTExpressionList

 ASTStringLiteral <Past>

Figure 3.7: A simple program in Abstract Syntax

Modular Data Serialisation & Mobile Code 3. Design

 49

All code is transformed into abstract syntax as soon as it is parsed. From that

point on the type checker and interpreter deal with abstract syntax rather than

code.

3.2.4.1.2 Serialising the Body

A function is comprised of the arguments, the body and the return type. The

arguments and the return type are typically primitive types and can be

handled by the serialiser. The body however is abstract syntax. A means of

representing abstract syntax as XML is required before functions can be

serialised.

It was decided to maintain the overall tree structure of the Abstract Syntax

and simply convert the tree into an XML tree, with each node in the tree

associated with the class name of the Abstract Syntax Tree node. Where

these nodes may have additional attributes they will also be included as

attributes of the nodes in the XML tree, or as child nodes.

An example of a small piece of code is given overleaf in Figure 3.8. It is

shown as a Vanilla Abstract Syntax Tree and as an XML tree.

Modular Data Serialisation & Mobile Code 3. Design

 50

Int nextyear = 2000 + 1;

ASTSequential

 ASTIntroduce

 ASTIntegerType

 ASTIdentifier <nextyear>

 ASTAdd

 ASTIntegerLiteral <2000>

 ASTIntegerLiteral <1>

<code - node class - name="ie.vanilla.pods.core.ASTSequential">

 <code - node class - name="ie.vanilla.pods.variables.ASTIntroduce">

 <code - node class - name="ie.vanilla.pods.core.ASTIntegerType"/>

 <code - node class - name="ie.vanilla.syntax.ASTIdentifier">

 <identifier - name name - value="nextyear"/>

 </code - node>

 <code - node class - name="ie.vanilla.pods.core.ASTAdd">

 <code - node class - name="ie.vanilla.pods.core.ASTIntegerLiteral">

 <primary - literal - value primary - value="2000"/>

 </code - node>

 <code - node class - name="ie.vanilla.pods.core.ASTIntegerLiteral">

 <primary - literal - value primary - value="1"/>

 </code - node>

 </code - node>

 </code - node>

</code - node>

Figure 3.8: Abstract Syntax Tree as XML

This method of converting Abstract Syntax to XML will be used for the

serialisation of the body of functions.

3.2.4.2 Environment

Below in Figure 3.9 we can see an example of a Function.

Modular Data Serialisation & Mobile Code 3. Design

 51

Int currentyear = 2000;

Function() Int nextyear;

nextyear = fun() (

 currentyear + 1;

);

Int answer = nextyear();

print("Next year is : ");

println(answer);

Figure 3.9: A Function with its Environment

In the above code segment it is seen that the function nextyear() uses the

variable currentyear even though it is not declared within the function

itself. This variable is within the scope of the function, Such variables are

termed loose variables. The set of all variables in the scope of a function is

termed the environment of the function.

When a function is serialised and subsequently deserialised it should be able

to operate as it normally would. Therefore it is necessary to write all variables

from the environment out to the XML document when the function is being

written. When writing out a function the code for the function must be followed

by a set of serialised values to represent the environment.

Figure 3.10 overleaf shows the overall structure of an environment in XML.

The parent is simply the environment in whose scope this environment is

located. This is not used in the implementation of this project but is there to

accommodate the ongoing work on object serialisation.

Modular Data Serialisation & Mobile Code 3. Design

 52

 <environment - value>

 <parent/>

 <in - scope - variables>

 <in-scope-variable variable - name="squaring">

 <in - scope - variable - type>

 <String/>

 </in - scope - variable - ty pe>

 <in - scope - variable - value>

 <string - value>Squaring...</string - value>

 </in - scope - variable - value>

 </in - scope - variable>

 <in-scope-variable variable - name="squareV al">

 <in - scope - variable - type>

 <Function>

 <arguments - type/>

 <return - type>

 <Top/>

 </return - type>

 </Function>

 </in - scope - variable - type>

 <in - scope - variable - value>

 <! —and so on -- >

 </in - scope - variable - value>

 </in - scope - variable>

 </in - scope - variables>

 </environment - value>

Figure 3.10: An Environment in XML

3.2.4.3 A Function in XML

As already mentioned, a function in XML is fully specified by arguments, body,

return and environment components.

The type of a function can be reconstructed once we supply the following

information.

Modular Data Serialisation & Mobile Code 3. Design

 53

• Argument Types & Names

• Return Type

The value of a function can be reconstructed from an XML document once the

following is provided.

• Body in Abstract Syntax

In order to do anything useful with the function the following is also required

• Environment

The structure of an XML document containing a function is given overleaf in

Figure 3.11.

Modular Data Serialisation & Mobile Code 3. Design

 54

<?xml version="1.0" encoding="UTF - 8"?>

<vanilla - serialized - value>

 <vanilla - type>

 <Function>

 <arg uments - type>

 <argument argument - name="...">

 <! -- Argument Type e.g. Integer -- >

 </argument>

 </arguments - type>

 <return - type>

 <! -- Return Type e.g. Integer -- >

 </return - type>

 </Function>

 </vanilla - type>

 <vanilla - value>

 <body - value>

 <! -- The AST code nodes -- >

 </body - value>

 <environment - value>

 <! -- The Environment -- >

 </environment - value>

 </vanilla - value>

</vanilla - serialized - value>

Figure 3.11: A Function in XML

3.2.5 Executing Fun ctions

Now that there exists a means for representing Vanilla functions cleanly and

completely as XML the possibility of executing functions that are stored as

XML on the web can become a reality. Here is how this problem was

approached.

Modular Data Serialisation & Mobile Code 3. Design

 55

The section “Remote Access” below will deal with writing and reading values

onto the World Wide Web. All that is required here is a knowledge of the fact

that deserialisation from the Web is as simple as deserialisation from the local

disk in terms of what is required by the programmer.

In order to execute a function from the local disk or the web, in fact any XML

document regardless of how or where it is stored the following steps must be

followed

1. Download the file from its location, be that the web or the local disk.

2. Parse the XML to generate a value. This value will be a Vanilla function

value, read in as if it were a normal value being deserialised from an

XML document.

3. Call the Vanilla interpreter on the function with appropriate values as

arguments.

4. This will return a value if the function returns a value. It is precisely the

same as if the function were run normally, except now it is not

necessary to run the type checker since this would have been done at

the serialisation stage.

The diagram below takes you through the steps graphically.

Figure 3.12: Executing XML Fun ction

Modular Data Serialisation & Mobile Code 3. Design

 56

3.2.6 Migrating Fun ction Execution

Rather than executing a function that is an XML file at some location on the

web it may be preferred to wrap your local function up as XML and send it to

some other machine. It will attempt to execute itself on that other machine and

will then return the value it obtained to the function which first attempted to

execute it.

Migration of functions is the mobile section of this dissertation. It has already

been shown how the function is wrapped up to include the environment in

which it is operating. This will save the state and this provide some degree of

strength in terms of where the implementation lies between weak and strong

mobility. The means by which the execution of a function is migrated from one

machine to another is as follows.

1. Wrap the function and all the parameters to the function up as separate

XML documents and HTTP POST them to another machine.

2. A servlet running on that machine will receive the POST and start up its

own Vanilla environment.

3. A Vanilla environment is now trying to execute a function that was sent

to it as XML. This problem is resolved in the same manner as was

demonstrated in the last section “Executing Functions”.

4. The resulting value is translated into XML and POSTed back to the

client.

This is all shown graphically overleaf.

Modular Data Serialisation & Mobile Code 3. Design

 57

Figure 3.13: Migrating XML Fun ction

Migration of functions while represented as XML is all dependent on the ability

to read and write Vanilla values from local and remote disk space. The

approach that was taken in order to make file space available on a community

of machines is dealt with in the following section. For a greater understanding

of the technical issues encountered in this part of the project see the

Implementation chapter.

3.3 Remote Access

One of the main points of this dissertation was to produce some means of

migrating code to another execution environment. The success of this was

dependent of two other aspects of the dissertation

1. Correct and accurate serialisation of values including functions to an

XML document.

2. A means of writing the XML document to each of the following

o Local machine

o Network

o World Wide Web

Modular Data Serialisation & Mobile Code 3. Design

 58

The serialisation to XML aspect of the dissertation has already been dealt with

in detail and the writing out of these files has been touched on in the

discussion of remote execution and function migration. This section is quite

technical and will therefore be dealt with in greater detail in the

Implementation chapter. However in this section you will be given on overview

of what the architecture built for remote access will look like and why this

architecture was chosen over alternatives such as Jiki.

3.3.1 Local / Network

In order to read or write a file locally all that is required is some file access

mechanism. All file access is handled by Java and so there is no difficulty in

reading or writing files to the local disk or any local network drive.

3.3.2 Remote Read

A remote read could also be referred to as a file download. Effectively what is

being done is the same as what happens when any web browser accesses a

Web page and reads its contents. A file is being downloaded and its content is

being interpreter. Reading a file from the web is therefore almost as simple as

reading it from the local disk.

3.3.3 Remote Write

A remote write is nowhere near as simple as a local write however. When

attempting a remote write, i.e. a write of a value to the web, a number of

issues are encountered.

1. First of all some means is required to access file space on another

machine.

2. Secondly, all security must be taken care of transparently, if there are

any security considerations to be taken into account.

3. Most importantly there needs to be some way of dropping your own

files on another machine.

Modular Data Serialisation & Mobile Code 3. Design

 59

The alternatives that were considered here were the following:

• FTP

o When a new file is created FTP it to a location on file space

elsewhere. For this to work it would be necessary to provide

sufficient security rights to each Vanilla client in order to allow it

access space on the web server. This had potential security

risks.

• Jiki

o Jiki (www.jiki.org) provides a whole web architecture that allows

all files on a web server to be accessed by any client. In much

the same way as the web at the moment allows any user read a

page, Jiki also allows any user edit the page. This kind of

architecture mirrors what is required for the purposes of this

dissertation. However the decision was made not to use the Jiki

web server as it is still largely untested, and besides it offered

little benefit over the eventual approach that was taken.

• Vanilla Enabled Web Server

o The architecture that was eventually designed is similar to the

Jiki architecture in that it allows fully open access to any Vanilla

client that wishes to access the Vanilla space on a Vanilla

enabled web server. All transactions take place over the web via

HTTP POSTs and all files are stored as XML.

o In order to use space on a Web server as a vanilla repository

the following must be done

1. The Vanilla JAR file must be installed on the server.

2. The two servlets, vanilla/run and vanilla/write

must be made accessible from your server.

3. Some file space must be made available on the web

server for values to be stored, typically in the directory

http://host:port/vanillavalues .

Modular Data Serialisation & Mobile Code 3. Design

 60

The vanilla/run servlet is the servlet that will execute a file handed to it.

This was discussed above in the section on Migrating Functions. A further

discussion on this servlet will take place in the next chapter, Implementation.

The vanilla/write servlet is the servlet that allows a Vanilla client write a

Vanilla value as an XML document to the vanillavalues directory on a

Vanilla enabled web server. Its architecture is rather simple. It is simply a

servlet that is constantly running expecting HTTP POST requests with XML

content. The XML that is received is written out the vanillavalues

directory. To read the values back the XML file can then be downloaded from

http://host:port/vanillavalues/filename.xml . The architecture is

show graphically below in Figure 3.14.

Figure 3.14: The architecture for writing to remote server space

3.4 Other Design Issues

Besides the decisions that were made on the design of the XML documents to

represent the Vanilla values and the overall architecture for writing these files

the only major design decision came in the choice of XML parser.

Modular Data Serialisation & Mobile Code 3. Design

 61

3.4.1 XML Parser

It was decided to use the Apache Xerces DOM parser for the purposes of this

project. This parser is still being developed and has not fully completed all

stages of its implementation. The reason it was chosen was because of its

support for XML validation using XML Schema.

Although it is not intended to implement an XML Schema for the various XML

documents described above it is hoped that this would be done at some point

in the future, when namespaces are being introduced to Vanilla XML

documents. Since Xerces parsers already support schema the only change

that would be required in order to validate would be to include a URL for a

schema in each document. No great change to the design of the system

would be required.

DOM is favoured over SAX for the simple reason that memory is not a major

concern in this project, and that the benefits of having a document presented

in a tree like structure makes the handling of recursive calls to the serialiser

mush more easy and less time consuming to implement.

3.5 Summary

In this chapter the overall structure of the system being designed has been

outlined. Any decisions that have been made regarding technologies have

been described. By now the application and operation of Vanilla Serialisation

should be a great deal clearer, at least from a high level.

In this chapter the following has been detailed:

1. How to design a new subsystem to implement a new set of functionality

2. How to structure a document comprised of a type and value

3. What types / values to serialise

4. How to represent each type / value in XML

5. How to migrate / execute functions

6. How to write values locally and remotely

7. How decisions were reached on technologies such as Jiki, Servlets &

Xerces.

Modular Data Serialisation & Mobile Code 3. Design

 62

The next chapter will deal with the same issues but will present a more

technical insight into some of the issues encountered while implementing the

system.

Modular Data Serialisation & Mobile Code 4. Implementation

 63

4. Implementation

4.1 Introdu ction

The chapter on Design will have already presented a reasonably detailed

account of how the goals of this dissertation were designed. The

implementation of the Data Serialisation and Mobile Code system using

Vanilla will be discussed here with the main focus being on technical issues.

4.2 Vanill a Compon ents

A Vanilla subsystem is a set of components that implement a single aspect of

the functionality for a programming language. The manner in which they

operate is introduced above in the Design chapter. Essentially a subsystem

will gather together a set of components implemented across a set of pods

with a registry. The root of the subsystem will decide which of the registered

components will handle each call to the subsystem.

4.2.1 Serialisation Subsystem

Type and Value serialisation is the central part of the project being

implemented. A new subsystem called Serializer was implemented to

handle all aspects of the serialisation functionality.

Any component that forms a part of this subsystem (i.e. any component

implemented to serialise any type value pair) must implement the following

methods:

1. boolean componentWriteType (Type type, Environment

env, ElementWrapper wrapper)

2. boolean componentWri teValue (IValue val, Environment

env, ElementWrapper wrapper)

3. Type componentReadType (Environment env,

ElementWrapper wrapper)

Modular Data Serialisation & Mobile Code 4. Implementation

 64

4. IValue componentReadValue (Type type, Environment

env, ElementWrapper wrapper)

All of these methods take an Environment object and an ElementWrapper

object as parameters.

The Environment object is the set of all values that exist within the same

scope as the value that is being serialised.

The ElementWrapper object is the means used for passing an XML

document between components. For a fuller understanding of this a short

description of the XML approach follows.

4.2.1.1 XML Approach

The Apache Xerces DOM parser was used for the purposes of this

dissertation. The DOM parser allowed an XML document to be treated as a

tree, thus making the serialisation of large amounts of nested levels of values

a great deal simpler.

The DOM parser allows the programmer to create a new document that is

simply the root node in a tree. Children can be added to the nodes thus

extending the tree.

The ElementWrapper objects that can be seen as a parameter in the four

methods introduced above are simply a means of storing a pair of nodes in an

XML tree. The two nodes that are stored are

a. The root of the tree.

b. The node in the tree to which a child must be added.

4.2.1.1.1 Writing

A new XML document is created and put into an ElementWrapper object.

This is passed between the various components that are serialising values;

say for a Record where many values are being written. At each serialisation

stage a child is added to the tree. When all children have been added the

Xerces parser is able to handle writing out the whole XML tree as a document

to any output stream.

Modular Data Serialisation & Mobile Code 4. Implementation

 65

In order to serialise any value in Vanilla the serialiser is called firstly on the

type and secondly on the value. This keeps type and value information

separate in line with the design given in the previous chapter.

4.2.1.1.2 Reading

A new DOM object is set up by reading in an XML document. An

ElementWrapper object is created using the root of the tree and passed

between the various deserialisation components which are responsible for

extracting sufficient information to be able to create a type or value.

Deserialisation takes place by first calling the (de)serialiser on the type of the

value in the document. This will read in the type from the document. This type

is then passed to the serialiser method for deserialising values. Using the type

the serialiser can read in the value and create a new IValue object (further

explanation below).

4.2.1.2 Compon ent Method s

The four different methods in the serialiser subsystem are described below.

4.2.1.2.1 ComponentWriteType

This method takes a Type object as a parameter. An XML representation of

the Type is generated and added as a child node to the node in the

ElementWrapper object that is being passed around through the

components.

4.2.1.2.2 ComponentWriteValue

This method takes an IValue object as a parameter. An IValue is an

interface that must be implemented by any class that represents values in

Vanilla. An XML representation of the IValue is generated and added as a

child node to the node in the ElementWrapper object that is being passed

around through the components.

4.2.1.2.3 ComponentReadType

The XML document in the ElementWrapper is looked at and the Vanilla type

information is extracted. This method will generate and return a Type object.

Modular Data Serialisation & Mobile Code 4. Implementation

 66

This method is called recursively for complex types such as Record s and

Function s.

4.2.1.2.4 ComponentReadValue

The Type is always deserialised, or at the very least known before this

method is called. This method takes the type as a parameter and deserialises

the value based on this type.

4.2.2 Code Serialisation

The Design chapter dealt with the necessity for a means of serialising code.

This is necessary for writing Function s, as the body of a function is an

Abstract Syntax Tree. The code serialisation subsystem provides the two

methods listed below. The code serialiser is called from the

FunctionSerialiserComponent .

1. boolean componentWrite (Node codeNod e, Environment

env, ElementWrapper wrapper)

2. Node componentRead (Environment env, ElementWrapper

wrapper)

4.2.2.1 Compon entWrite

A Node object, which is simply a node in Vanilla’s internal Abstract Syntax

Tree representation of the code, is passed in. The class of the node is

established and written out as a node in an XML tree. The default serialiser

simply writes the class name (e.g.

ie.vanilla.pods.functions.ASTFunction). Where necessary the

default serialiser is overridden by a method which can write out additional

attributes from the Abstract Syntax Tree, for example for an

ASTIntegerLiteral class the value of the integer would also have to be

serialised. For an example of this see the Design chapter.

Modular Data Serialisation & Mobile Code 4. Implementation

 67

4.2.2.2 Compon entRead

The reflection API is used to rebuild the AST expression that was serialised.

Since class names were written out, instances of these classes can be rebuilt

quite easily. Where necessary additional attributes can be added to the AST

Expression by over riding the default serialiser.

4.2.3 Environment Serialisation

Environment s, like abstract syntax, also need to be serialised with

Function s, for reasons that have been outlined in detail in the Design

chapter. Although a subsystem has been implemented for this there is still

only one version of Environment implemented. The idea of using a whole

subsystem for serialisation of Environment s is that new types of

Environment s can be added and have serialisation components added with

them.

The methods that are available for Environment serialisers are as follows:

1. boolean componentWrite (Environment env,

ElementWrapper wrapper)

2. Environment componentRead (ElementWrapper wrapper)

4.2.3.1 Compon entWrite

Writing an Environment consists of calling the basic serialiser on all the

various types and values in the Environment , before travelling up the

Environment tree and serialising its parent.

4.2.3.2 Compon entRead

Similarly, deserialising an Environment is no more than calling the serialiser

read methods on the types and values, and injecting the retrieved values into

a new Environment object. If the deserialised Environment had a parent

deserialised with it then this must be deserialised too and set as the parent of

the newly created Environment object.

Modular Data Serialisation & Mobile Code 4. Implementation

 68

4.2.4 Other Subsystems

Only one other subsystem was implemented. It played a relatively minor but

nonetheless necessary role. That was the TypeMatch subsystem.

4.2.4.1 Type Matching

Following the type checking stage the types of Vanilla values are often

discarded since the interpreter does not require them. However this can prove

troublesome for the serialiser that always serialises a type with a value. If the

type has been discarded then Vanilla needs some other way of finding out

what the type is. The TypeMatch components implement one method, which

is used to query all registered components to ask if anyone can tell the Type

of a particular IValue .

4.2.5 System Overview

Once all the components were integrated into Vanilla the new view of the

Vanilla system was a shown below in Figure 4.1

Figure 4.1: Complete view of Vanill a System

Modular Data Serialisation & Mobile Code 4. Implementation

 69

4.3 Mobili ty / Remote Access

4.3.1 Introdu ction

In order to integrate some type of mobility into the system several different

tasks have to be completed. Firstly an extra method needed to be added to

the serialiser interface to allow for execution of XML documents downloaded

from the web and for running functions on remote machines. Secondly the

Xerces parser needs to be modified slightly so that, as is the case with

running functions remotely, the XML is needed as a string and not as a file.

Thirdly the two servlets required for the implementation of a Vanilla-enabled

server need to be written and the changes to the server outlined in the Design

chapter need to be made.

Changing the Xerces parser was relatively simple. A new output stream writer

and a new input stream reader were implemented. Both implemented the

interfaces that all writer and readers in Java implement. However they did not

take their input from a file or write to a file, instead all writing took place to

memory and all reading from memory. This way the XML parser, which could

only work when reading from or writing to a file, still operated in the same way

and did not require any changes to its own code.

The other tasks were slightly more complicated and a re dealt with in some

detail below.

4.3.2 Additions to Subsystem

In order to allow execution of an XML file downloaded from the web some

extra functionality needed to be added to the serialiser component. Any

component that could be executed should implement the extra method that

was added. This method is only going to be implemented by the

FunctionSerialiserComponent for the purposes of this project.

However, should there be other components in the future that could be

executed directly from XML they need only implement this extra method, the

signature for which is given below.

Modular Data Serialisation & Mobile Code 4. Implementation

 70

• IValue componentExecute (ElementWrapper element,

IValue [] paramValues, Environment env)

The ElementWrapper object contains the XML for the function that is to be

executed. The paramValues array contains the set of IValue objects that

are the parameters to the function. Execution of the function takes place by

first parsing the XML to create an IClosure object, the Vanilla

representation of a function, deserialising the environment, declaring the

parameters in the environment and then calling the Vanilla interpreter on the

function. An IValue object will be returned.

4.3.3 Vanill a Enabled Server

The concept of a Vanilla Enabled server was introduced in the Design

chapter. Such a server will be able to handle

• Writing a Vanilla value as XML to the file space on the server

• Running a Vanilla function in the Vanilla environment on the server

To allow for this, a number of configuration changes had to be made to the

Apache Web server that was used for this implementation. The changes were

as follows.

1. A new directory had to be created in the document root of the server.

This directory was named vanillavalues and serves as the store for

all Vanilla values that are written to the server. The location of this

directory is specified in the Vanilla.properties file.

2. A new Vanilla servlet zone was created. This simply meant that any

Vanilla servlets that were written would be located at a URL similar to

http://host:port/vanilla/ rather than at a standard servlet

URL which would more likely be http://host:port/servlets/ .

3. Vanilla was installed on the host machine and the classpath to locate it

was added to the configuration files of the web server.

Modular Data Serialisation & Mobile Code 4. Implementation

 71

4. Two new servlets were written. These servlets are called write and run

and would be located at http://host:port/vanilla/write and

http://host:port/vanilla/run on a Vanilla enabled server.

Further explanation of both of these servlets follows below.

4.3.3.1 vanill a/write

This servlet is relatively straightforward. It received two parameters in a HTTP

POST. The first parameter is the URL encoded contents of an XML document

representing a Vanilla value. The second parameter is the name that will be

given to the value when it is stored as a file. As is standard practice with file

writes the writing of a Vanilla value as a file overwrites any previous file of the

same name in the same directory.

4.3.3.2 vanill a/run

This servlet is a great deal more complicated than the write servlet since

execution of this servlet requires the loading up of a new Vanilla environment

and execution of a function that is passed to it as an XML document.

In order to execute a function from a servlet the following extra functionality

had to be implemented. This is described below.

• Ordinarily Vanilla is run from the command line. A batch file runs which

passes in a number of parameters to a Vanilla tool that sets up a

Vanilla environment, in which the code is executed. Since Vanilla will

not be run in this fashion when it is run from a servlet a new Vanilla tool

is required. The new tool that was created was implemented in the

VanillaComponent class. All loading of properties and so on is

handled there.

• The servlet receives a URL encoded XML document representing a

Vanilla function in the form of a HTTP POST. All other HTTP

parameters that are POSTed represent parameters to the function.

• The operation of this functionality is as follows: The VanillaComponent

class is loaded, the function and parameters are converted from XML

to Vanilla values, the function is executed in the same way as was

described above for execution of remote files, the value is converted

Modular Data Serialisation & Mobile Code 4. Implementation

 72

back to XML and then POSTed back to the client. All this is described

in greater detail in the Design chapter.

4.4 Other Implementation Issues

The only other major part of the implementation was the Vanilla pod to test

the functionality. This is described below.

4.4.1 Serialise Pod

In order to test and evaluate the functionality a pod named serialise was

implemented. This added four extra functions to one of the Vanilla test

languages.

These functions were as follows:

• write (FileName/URL, Value);

• read (FileName/URL);

• execute (FileName/URL, parameter1, parameter2, ...,

parameter n);

• run (host, function, parameter1, parameter2, ...,

parameter n);

The first two test the local and remote read and write capabilities. The third

one tests the functionality for executing functions that are stored as XML

documents and the third one implements the code migration functionality. To

see these functions in operation see the Evaluation chapter.

4.5 Summary

This chapter has outlined all the issues that were encountered when

implementing the project. Rather than concentrate on the system from a high

level this chapter has gone into the detail about how everything was

implemented at the lowest level deemed appropriate.

Modular Data Serialisation & Mobile Code 4. Implementation

 73

The implementation issues, decisions and approaches covered in this chapter

include the implementation of the various subsystems and components and

the approach taken to mobility using an Apache Web Server.

Modular Data Serialisation & Mobile Code 5. Evaluation

 74

5. Evaluation

5.1 Introdu ction

In the preceding chapters the aims, design and implementation of this

dissertation have been covered in detail.

 In this chapter the testing of the implementation will be described. An

assessment of the different aspects of the implementation is presented in

order to see what are the conditions under which it performs best, where it

does not perform well and where there is room for further work, which will be

outlined in full in the Conclusions chapter.

5.2 Aims

The aims, as outlined in the introduction were listed below. Each of these will

be assessed in turn.

1. The development of some standard mechanism for the representation

of Vanilla types and values as well as functions as XML documents.

2. Extending the current Vanilla framework by adding disk access

functionality. The data will be serialised to the disk as an XML web

document.

3. Values serialised to elsewhere on the web as XML documents.

4. Serialisation of code as XML, leading to the implementation of a mobile

code system.

5.3 Types & Values as XML

It has been shown in earlier chapters how types and values have been

represented as XML. A structure for documents that separates Type and

Value information for all the basic types including Record s has been

provided. An example of the code for an Integer value is given below in Figure

5.1.

Modular Data Serialisation & Mobile Code 5. Evaluation

 75

<?xml version="1.0" encoding="UTF - 8"?>

<vanilla - serialized - value>

 <vanilla-type>

 <Integer/>

 </vanilla-type>

 <vanilla-value>

 <integer-value>1000</integer-value>

 </vanilla-value>

</vanilla - serialized - value>

Figure 5.1: A Vanill a Integer as XML

Although an XML DTD or Schema for the types and values in Vanilla has yet

to be defined it was found that the data lacks nothing because of this. Since

all the XML will be both produced and consumed by the Vanilla components

discussed earlier it was not found to be of great importance to provide an

outline for how this data should be structured. Should the data be produced

by non-Vanilla programs such a description would be necessary. However, for

the purposes of what was done here, it was found that the use of a non-

validating XML parser was sufficient so no DTD was required. This will be

implemented in the future.

5.4 Disk Access

Once a means for describing the data in XML had been provided the next

step was to enable disk reads and writes with the values. This functionality

was implemented and tested for each of the following Type/Value pairs.

1. Integer

2. String

3. Boolean

4. Ok

5. Record

6. Function

Modular Data Serialisation & Mobile Code 5. Evaluation

 76

7. Top

8. Bottom

For each of the above Types/Values the XML representation of the data

contained sufficient information to be able to reconstruct the value in the

deserialisation stage.

Provided below is a sample piece of code and the output produced, showing

that records, as an example could be serialised and then deserialised from

the local disk. Please note that the language shown below, as with all the

examples is simply a Vanilla test language. Any number of languages with

any type of syntax can be designed. The language below is the one provided

with the Vanilla installation that implements all the basic functionality including

serialisation.

Record (

 Boolean b;

 String s;

)

rec;

rec.b = false;

rec.s = "I am a string";

println("Writing Record Locally...");

write("record.xml", rec);

Top x = read("record.xml");

println(" \ "x \ " has be en deserialized as... ");

println(x);

Figure 5.2: Example code to write a record locally

Modular Data Serialisation & Mobile Code 5. Evaluation

 77

Z: \ Vanilla>vc example_1.v

Writing Record Locally...

"x" has been deserialized as...

record(b = false; s = I am a string;)

bottom

Figure 5.3: Output f rom above code

5.5 Serialisation to Web

In the same way as the code above writes the data to the local disk, it has

been seen that it is possible to write the same data to space available on the

web. This has been outlined in full in the design and implementation chapters,

so all that is necessary here is to show that is can be done in the same way

as for the local disk, simply by substituting a URL for a filename. Note that for

writing the URL must be for a server that is Vanilla enabled

Record(

 Boolean b;

 String s;

)

rec;

rec.b = false;

rec.s = "I am a string";

println("Writing Record to pc678.cs.tcd.ie...");

WRITE("HTTP://PC678.CS.TCD.IE/VANILLAVALUES/RECORD.XML",REC);

Top x =

 read("http://pc678.cs.tcd.ie/vanillavalues/record.xml");

println(" \ "x \ " has been deserialized as... ");

println(x);

Figure 5.4: Example code to write a record locally

Modular Data Serialisation & Mobile Code 5. Evaluation

 78

Z: \ Vanilla>vc example_2.v

Writing Record to pc678.cs.tcd.ie...

"x" has been deserialized as...

record(b = false; s = I am a string;)

Figure 5.5: Output f rom code in Figure 5.4

5.6 Functions

Although they are just values there are a number of differences that have to

be dealt with when serialising and deserialising functions. Firstly, since

functions contain actual code that is stored as Abstract Syntax there must be

a means for reconstructing the Abstract Syntax from the serialised XML. Also,

for functions to be migrated to other machines there needs to be a

mechanism for implementing some degree of strong migration. The migration

employed in this case, as is outlined in the preceding chapters, simply wraps

up the environment in which the function is operating.

The goals for functions were as follows:

1. Serialise functions as if they are simply values.

2. Read a function back in as if it is a value.

3. Read a function in from an XML document and execute it.

4. Migrate a function to another Vanilla environment, or machine, execute

it there and return it to the original Vanilla environment.

All of these goals have been achieved as shown in the figures overleaf

Modular Data Serialisation & Mobile Code 5. Evaluation

 79

Func tion(Int val) Int square_val;

square_val = fun(Int val) (

 val * val;

);

write("function.xml", square_val);

Figure 5.6: Write a function

Function(Int val) Int sq;

multiply = read("function.xml");

Int answer = sq(10);

print("Answer : ");

println(answer);

Figure 5.7: Read function b ack in as value

Z: \ Vanilla>vc example_4.v

Answer : 100

Bottom

Figure 5.8: Output f rom Figure 5.7

Int answer = execute("function.xml", 5);

print("Answer : ");

println(answer);

Figure 5.9: Execute function from XML file

Z: \ Vanilla>vc example_5.v

Answer : 25

Bottom

Figure 5.10: Output f rom Figure 5.9

Modular Data Serialisation & Mobile Code 5. Evaluation

 80

Figure 5.11 shows a piece of code that includes a number of functions and

values all contained within an environment. For the function to execute when

migrated it requires all the values within the environment. This means that all

these values will have to be serialised with the function and inserted into the

new environment that will be created in the remote Vanilla environment. It can

be seen below that the function operated correctly, proving that the entire

environment must also have been serialised along with the function. The

values used in the environment are in italics and the uses of these variables

are shown in bold.

Boolean square_answer = true;

Function(Int val) Int square_val;

square_val = fun(Int val) (

 val * val;

);

Function(Int m, Int n) Int multiply;

multiply = fun(Int m, Int n) (

 Int ret_val = 0;

 if(square_answer) (

 ret_val = square_val(m * n);

)

 else

 ret_val = m * n;

 ret_val;

);

Int answ er = run("http://pc678.cs.tcd.ie/vanilla/run",

 multiply, 5, 10);

print("Answer : ");

println(answer);

Figure 5.11: Runn ing a function with its environment remotely

Modular Data Serialisation & Mobile Code 5. Evaluation

 81

Z: \ Vanilla>vc example_6.v

Answer : 2500

Bottom

Figure 5.12: Output f rom Figure 5.11

5.6.1 Issues

The only issue that was encountered when working with the above values

was that the environment constructed from the XML file did not correspond

correctly to the original environment that was serialised if the function that was

serialised contained multiple return statements. This was due to the fact

that a hook was placed in the Environment to specify where the function

should escape to in the event of encountering a return statement. This hook

would not be maintained while serialising the environment and since there is

no explicit call to the function matching the abstract syntax of the original call

a failure occurs. At the time of writing no fix for this issue has been

implemented although work is continuing in this area.

All other issues relate to the serialisation of objects. Although not originally

part of the requirements for the project it was soon realised that once

Record s and Function s were working work on serialising Object s could

begin since they are effectively a combination of the two. Object serialisation

is currently being implemented although at the current time it has not been

completed. The main issues being dealt with are nested environments and the

subtle differences between functions and object methods.

5.7 Applications

What has been implemented here is a simple mobile code system. An existing

language development system has been extended to allow languages migrate

execution of a function from one machine to another. The primary aim was to

prove that this was possible using Vanilla. Further applications of this could

Modular Data Serialisation & Mobile Code 5. Evaluation

 82

carry on the path that has been started. Obviously some agent technology

using Vanilla could be implemented. Such a technology would be similar to

Java Aglets by allowing communities of Vanilla environments that could

communicate among themselves through the serialisation of values and code.

A prototypical version of such a system could easily be implemented using the

work that has so far been done.

The fact that a clean XML representation of Vanilla values has been

implemented also opens the door to the possibility of some interesting

applications in this area. It would be possible to implement a system where a

single data repository on the web could be used to store a set of XML

documents that all represent Vanilla values. Various applications built using

Vanilla could share these values, and thus work in tandem on collaborative

projects, where a value’s name could be a URL, which by definition would be

unique. Such a system could be easily built using the current Vanilla version

since URLs of web pages already represent values within Vanilla.

5.8 Mobili ty Analysis

5.8.1 Code Mobili ty in Vanill a

The Background chapter has already presented an overview of what is meant

by terms such as Mobile Code System (MCS), Computational Environment

(CE) and Executing Unit (EU).

A MCS is a system that allows a piece of code that is executing on one

machine migrate to another location to complete its execution. A distinction is

made between this type of system and a Distributed System (DS). A DS also

allows execution over a number of nodes but with the appearance of

execution on one node, or one environment. A DS hides the boundaries

between nodes and distributes processing transparently. A MCS requires the

programmer (or some algorithm) to actively tell a piece of code to migrate to

another node. In this sense the functionality that has been implemented in

Vanilla is truly a MCS. The run(…) method that has been added to the test

language is the tool that is used to migrate execution between nodes. This

needs to be actively called within the program to force migration to another

Modular Data Serialisation & Mobile Code 5. Evaluation

 83

node. The method of migrating the execution of a Vanilla function makes it a

Remote Evaluation MCS. A discussion of Remote Evaluation MCSs alone

with other types of MCS is presented in the Background chapter.

A CE is an environment on a machine the can host the execution of a unit of

code. The Implementation chapter above will have outlined what changes

need to be made to a standard web server to make it capable of hosting the

execution of some Vanilla code. Such a server is referred to as a Vanilla

Enabled server and corresponds directly to the definition of a Computational

Environment.

An EU is a single sequential flow of execution. Any Vanilla function that is

being serialised represents a single flow of execution as it is a normal

function. Therefore any Vanilla function is potentially an Executing Unit.

The type of

5.8.2 Strength

Strong migration requires that all information about the state of the code to be

migrated is passed with the code to its new location in order for it to execute

correctly. Weak migration requires that the code alone is passed. No

information about state is sent.

Vanilla functions are accompanied by their environment when they are sent to

be executed elsewhere. This stores a good deal of information about the state

of the function, as variables would have values associated with them and so

on. Therefore the type of migration that takes place in Vanilla has a degree of

strength associated with it.

5.8.3 Comparison

The type of code migration that has been shown here is similar in structure to

the IBM Aglet [21] system. Aglets allows the programmer to specify that some

code should move to another environment and execute there, which is

precisely what has been implemented here. The run(…) method that has

been implemented for Vanilla is similar to the dispatch(…) method in

Aglets.

Both Aglets and Vanilla Mobility require that a special environment exist on

any node on which a piece of migrating code wishes to run. In Vanilla this

Modular Data Serialisation & Mobile Code 5. Evaluation

 84

means any server to which code is migrates must be Vanilla enabled. This

contrasts with a mobile code implementation such as Voyager by

ObjectSpace [22]. This system, which is based on the idea of a Virtual Object,

allows migration to any Java runtime of another Virtual Object. This is outlined

in greater detail in the chapter entitled Background.

5.8.4 Mobili ty Summary

Vanilla is a Mobile Code System based on the Remote Evaluation Design. A

Vanilla Enabled server corresponds to a Computational Environment and any

function could potentially be an Executing Unit, becoming one when it is

actively migrated. The migration in the Vanilla MCS has a degree of strength

associated with it due to the serialisation of the environment with the function.

A Vanilla MCS is similar to the IBM Aglets system.

5.9 Summary

The four main aims of the dissertation have been achieved and can be seen

to be working. The next chapter will briefly discuss where this work could lead

to and what further work could be done using the work done for the purpose

of this dissertation. Earlier sections alluded to potential applications for what

has been achieved thus far. Further development could lead to further

applications.

There now exists a system that can allow a language developer create a

language to serialise values from his/her programming language to any

Vanilla enabled web server’s file space. A basic mobile code system is now a

part of Vanilla so should a programmer wish to create a language

incorporating this functionality his/her task would be a great deal simpler using

Vanilla.

Modular Data Serialisation & Mobile Code 6. Conclusion

 85

6. Conclusion

6.1 Introdu ction

The Evaluation chapter has shown how the four stated aims of the

dissertation have been achieved. It has also outlined a number of applications

that are possible using this version of Vanilla. This chapter will summarise

what has been achieved and briefly mention the potential for further

development of the system.

6.2 Achievements

All the goals have been achieved. Serialisation and deserialisation of Vanilla

values will take place without error, with some minor exceptions that will be

outlined in the Further Work section below. Also all Mobile Code functionality

has been tested and seen to be operating correctly, as was shown in the last

chapter.

6.3 Further Work

A number of issues have arisen in the course of this dissertation. The

resolution of these issues would be a priority for any further work on this

version of Vanilla. Issues such as the handling of multiple return statements in

a serialised function, the handling of nested environments and the completion

of the object serialisation components in the system ought to be the main

focus of any future effort. Subsequent to this it would be desirable to

implement serialisation components for other values within Vanilla, examples

of which are provided below in the section Remaining Types.

Vanilla is a very young system and as such is open to work in a number of

areas. Many examples of such areas are also given below.

Modular Data Serialisation & Mobile Code 6. Conclusion

 86

6.3.1 Current Issues

6.3.1.1 Handling o f Multiple Returns

Most functions just return a single value, the value contained in the final

statement of the function. An example of such a function is given below in

Figure 6.1. However other functions return from multiple points within the

code in the body of the function, as shown in Figure 6.2.

Function (Int x, Int y) Int multiply;

multiply = fun(Int x, Int y) (

 x * y;

);

Figure 6.1: Function with sing le return statement

Function (Int x, Int y) Int greater;

greater = fun(Int x, Int y) (

 if(x > y) (

 return x;

)

 else return y;

);

Figure 6.2: Function with many return statements

As outlined in the Implementation chapter the serialisation of code, and

therefore functions takes place by representing the Abstract Syntax Tree

using XML. Deserialisation takes place by reading in the XML representation

and reconstructing the Abstract Syntax Tree. When a function is encountered

by the Vanilla interpreter a hook is put in the Environment to indicate the point

to which the function should return when it is completed. If the function runs

through to the end then this hook is not used. However if it escapes at some

point within the code the hook is required. The Environment that is serialised

does not include such a hook since it is only added by Vanilla when there is a

Modular Data Serialisation & Mobile Code 6. Conclusion

 87

call to the function. In the mobile case the call to the function takes place with

the execute statement, rather than a conventional call. The absence of the

hook means that functions with multiple returns will not operate correctly when

being executed directly from an XML file. This problem was encountered late

in the implementation of the project, so a fix for it has not yet been

implemented. It is expected that the problem could be resolved by the

insertion of a hook at some point, although early attempts to insert this hook

failed to make the functions run correctly.

6.3.1.2 Nested Environments

The current implementation of the Environment serialiser is built to handle the

case where Environments have parents. For example should a language be

designed where a function is located within another function then the

environment of the nested function would be a child of the environment of the

outer function. The serialiser that is implemented is built to handle such

situations but has not been tested. The closest we have come to such a

situation is with the object serialisation components, which are discussed in

the next section.

6.3.1.3 Object Serialisation

An object is similar to a record in that both are just collections of fields. In a

record the fields are all just primitive values or further records so serialisation

of records amounts to little more than simply writing out a set of values. There

are no further issues here. Objects differ from records in that the fields in an

object can be a method rather than a primitive value. This ought not pose

much of a problem since a means for serialising functions has already been

implemented, and a method is simply a function that is associated with an

object. The difficulty with serialisation of methods lies in the fact that each

method must also have a reference to its associated object. This is what

distinguishes it from a function.

What is required for the successful serialisation of objects is a means for

treating methods and functions differently so that the relationship between a

method and the object with which it is associated can be preserved. A good

deal of this work has already been completed, and as alluded to in the

Modular Data Serialisation & Mobile Code 6. Conclusion

 88

previous section we have implemented a means for serialising nested

environments. The remainder of the implementation for basic objects will not

require an enormous amount of effort. Further issues could arise when we

attempt to deal with more complex types of objects.

The object model that as been implemented in Vanilla, according to the

documentation provided with Vanilla “provides a second-order polymorphic

object model with covariant self types and imperative semantics. It is

modelled directly on the second-order type systems and calculi of Abadi and

Cardelli”. An example of some object code is given below in Figure 6.3,

alongside a small segment of XML code showing the current representation of

this object in Figure 6.4. Note the inclusion of the variance variable and the

self attribute for when a method includes a return type that matches the

object itself. self is used in order to avoid recursive loops.

Type Object(X)

 {

 Int total;

 Function() X timesTen;

 } O;

O o = object(Y = O)

 {

 total = 0;

 timesTen =

 method(Y self) fun()

 (

 Y y = clone(self);

 y.total = y.total * 10;

 y;

);

 };

o.total = 10;

Figure 6.3: An Object in a Vanilla test langu age

Modular Data Serialisation & Mobile Code 6. Conclusion

 89

<?xml version="1.0" encoding="UTF - 8"?>

<vanilla - serialized - value>

 <vanilla - type>

 <Object>

 <object - field field - name="total"

 variance="0">

 <Integer/>

 </object - field>

 <object - field field - name="timesTen"

 variance="0">

 <Function>

 <arguments - type/>

 <return - type self="1"/>

 </Function>

 </object - field>

 </Object>

 </vanilla - type>

 <vanilla - value>

 <object - value>

 <! —Values as per usual, including environments

 -- >

 </object - value>

 </vanilla - value>

</vanilla - serialized - value>

Figure 6.4: The above object in XML (edited)

6.3.2 Remaining Types

Although serialisation for the more common types and values that you would

expect to find in a programming language has been implemented, there are

still a number of extra types that are implemented in Vanilla that, as of yet, do

not have any serialisation components implemented for them.

Examples of these are as follows:

Modular Data Serialisation & Mobile Code 6. Conclusion

 90

1. Universals

• Universally quantified (parameterised) types

o These allow functions to take types as parameters, enabling

the construction of functions and values that behave

uniformly across a family of types.

2. Existentials

• Existentially quantified (abstract) types

o May be used to model certain kinds of partially abstract data

types.

3. Autos

• Run-time type information

o Values that combine a value with a type. The types may be

examined at run-time and used to extract the value.

4. Mu pod

• Recursive types

Extensions to the current Vanilla serialisation model should include the

capability to serialise these types and values of these types.

6.4.2 Vanill a

Should all the serialisation components be implemented fully and correctly the

next step would be to implement some extra functionality that could for

example

1. Allow a client access an arbitrary XML document and treat it as a

Vanilla value. For example if some XML document included dental

records it could be read in and treated as if it were a Vanilla Record

value. This could add massive power to Vanilla programming

languages in that any web page could conceivably be treated as if it

were a value. The whole web is then a set of values.

2. Through associating the current Vanilla architecture with a truly open

architecture such as future versions of Jiki we could be able to write

any value as a web page to anywhere on the web. This is possible at

Modular Data Serialisation & Mobile Code 6. Conclusion

 91

the moment on Vanilla enables web servers, where the web server

contains a servlet repository for Vanilla servlets. In the future a truly

open architecture could allow values to be read and written all over the

web as web documents, allowing large amounts of sharing of data and

collaboration.

3. If such a repository of objects were to exist checks would need to be

made to avoid duplication of objects or values. It may also be

necessary to maintain links between documents to specify

relationships between objects. In order to do this an XML technology

such as XLink or XPointer could be used. An XML namespace for

these documents should also be created. This could help distinguish

between the semantics of types/values created by different

programmers.

4. In the future it is hoped that using Vanilla languages could be

downloaded from the web with programs so that as well as writing a

program the developer could write a language to run the program. In

much the same way as an applet is downloaded the code and

language could be downloaded together and run.

Vanilla is a very young system with great potential for the future. There are

several different ideas that could be implemented using Vanilla. It is hoped

that a large Vanilla community will develop and that the work taking place

using Vanilla will increase in order to see how these ideas may or may not

work.

6.4 Summary

This chapter has summed up how languages built using Vanilla will now have

access to the disk of the machines on which they are running. In addition to

this, programs written using these languages will be able to read and write

XML documents from around the World Wide Web and treat them as Vanilla

values. Vanilla languages will also be able to incorporate a basic level of code

Modular Data Serialisation & Mobile Code 6. Conclusion

 92

mobility into their functionality. This will allow code written in Vanilla to be

migrated between Vanilla enabled machines.

The above paragraph outlines the achievements of this dissertation. Rather

than being the end of the work, it only serves to show what can be done with

Vanilla. It can be seen from the basic mobile code system that there is great

potential for further related work in this area, as detailed in the previous

sections.

The research outlined in this dissertation have proven the concept, shown that

serialisation of types and values as well as code can be done using Vanilla

and examples given have displayed how the achievements, when reached,

were used and could be used in the future.

Modular Data Serialisation & Mobile Code 7. References

 93

7. References

1. Simon Dobson, Paddy Nixon, Vincent Wade, Sotirios Terzis and John

Fuller, Vanilla: An Open Language Framework. Generative and

Component Based Software Engineering, 1999.

2. Don Batory, Bernie Lofaso, Yannis Smaragdakis, JTS: A Tool for

Implementing Domain Specific Languages. Proceedings of the 5th

International Conference on Software Reuse, 1998.

3. Andrew W. Appel, Modern Compiler Implementation in Java.

Cambridge, 1998.

4. Tim Bray, Jean Poli, C.M. Sperberg - McQueen, Extensible Markup

Language (XML) 1.0, W3C. 1998.

5. Jonathan Robie, What is the Document Object Model?, W3C. 1998.

6. DeRose, Maler, Orchard, Trafford, XML Linking Language (XLink) 1.0,

W3C. 2000.

7. Eve Maler, Steve DeRose, XML Pointer Language (XPointer), W3C.

1998.

8. David C. Fallside, XML Schema, W3C. 2000.

9. Adler, Berglund, Caruso, Deach, Grosso, Gutentag, Milowski, Parnell,

Richman, Zilles, Extensible Stylesheet Language (XSL) 1.0, W3C.

2000.

10. Tim Bray, Dave Hollander, Andrew Layman, Namespaces in XML,

W3C. 1999.

11. Norman Walsh, What is XML? www.xml.com. 1998.

12. Jon Bosak, Tim Bray, XML and the Second Generation Web. Scientific

American. 1999.

13. Box, Kakivaya, Layman, Thatte, Winer, SOAP: The Simple Object

Access Protocol, IETF. 1999.

14. Jiki, www.jiki.org.

15. Tim Walsh, Paddy Nixon, Simon Dobson, As strong as possible

mobility: An Architecture for stateful object migration on the Internet.

Trinity College Dublin.

Modular Data Serialisation & Mobile Code 7. References

 94

16. Tim Walsh, Paddy Nixon, Simon Dobson, Review of Mobility Systems,

Trinity College Dublin Computer Science Technical Report. 2000.

17. David Kotz, Robert S. Gray, Mobile Code: The Future of the Internet,

Department of Computer Science / Thayer School of Engineering,

Dartmouth College: Hanover, New Hampshire. 1999.

18. Gianpaolo Cugolo, Carlo Ghezzi, Gian Pietro Picco and Giovanni

Vigna, A Characterization of Mobility and State Distribution in Mobile

Code Language, Proceedings of the ECOOP Workshop on Mobile

Objects. 1996.

19. Alfonso Fuggetta, Gian Pietro Picco, Giovanni Vigna, Understanding

Code Mobility, IEEE Transactions on Software Engineering. 1998.

20. Joseph Kiniry, Daniel Zimmerman, A Hands-On Look at Java Mobile

Agents, IEEE Internet Computing. 1997.

21. Danny B. Lange, Java Aglet API White Paper, IBM Tokyo Research

Laboratory. 1997.

22. Graham Glass, Reducing Development Effort using the ObjectSpace

Voyager ORB, ObjectSpace. 1999.

23. Sun Microsystems, Java Object Serialization Specification. 1998.

