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Abstract

Serotonin plays an important role in the etiology of depression. Serotonin is also crucial for
brain development. For instance, animal studies have demonstrated that early disruptions
in the serotonin system affect brain development and emotion regulation in later life. A plau-
sible explanation is that environmental stressors reprogram the serotonin system through
epigenetic processes by altering serotonin system gene expression. This in turn may affect
brain development, including the hippocampus, a region with dense serotonergic innerva-
tions and important in stress-regulation. The aim of this study was to test whether greater
DNA methylation in specific CpG sites at the serotonin transporter promoter in peripheral
cells is associated with childhood trauma, depression, and smaller hippocampal volume.
We were particularly interested in those CpG sites whose state of methylation in peripheral
cells had previously been associated with in vivo measures of brain serotonin synthesis.
Thirty-three adults with Major Depressive Disorder (MDD) (23 females) and 36 matched
healthy controls (21 females) were included in the study. Depressive symptoms, childhood
trauma, and high-resolution structural MRI for hippocampal volume were assessed. Site-
specific serotonin transporter methylation was assessed using pyrosequencing. Childhood
trauma, being male, and smaller hippocampal volume were independently associated with
greater peripheral serotonin transporter methylation. Greater serotonin transporter methyla-
tion in the depressed group was observed only in SSRI-treated patients. These results
suggest that serotonin transporter methylation may be involved in physiological gene-
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environment interaction in the development of stress-related brain alterations. The results
provide some indications that site-specific serotonin transporter methylation may be a bio-
marker for serotonin-associated stress-related psychopathology.

Introduction

Stress is believed to play an important role in the pathogenesis of Major Depressive Disorder
(MDD). There is much debate about the effect of childhood adversity on later psychopatholo-
gy, including MDD [1,2], and on brain structure [3]. The hippocampus may be a highly rele-
vant brain structure, given the widely reported associations among childhood trauma,
dysregulated physiological and emotional stress responses, and structural changes in the hip-
pocampus in stress-related disorders [3-6].

Current neurobiological theories of MDD postulate that altered serotonin (5-HT) neuro-
transmission may represent a biological risk factor, which is more likely to be expressed in the
presence of adversity [7]. Consistent with this model, researchers have identified a number of
5-HT polymorphic genes that may increase the risk of developing a mental disorder. The most
widely studied is the 5-HTTLPR polymorphism of the 5-HT transporter (SLC6A4) gene. The
s allele of the 5-HTTLPR polymorphism has been associated with increased risk for MDD in
the presence of early adversity (e.g., [8]). Although research is still inconsistent (e.g., [9]), some
of the inconsistencies can likely be attributed to methodological differences [10,11]. Imaging
studies showed that carriers of the s allele of the 5-HTTLPR polymorphism show amygdala
hyper-reactivity upon exposure to emotional stimuli [12]. Results of these latter studies are
consistent with SLC6A4 deletion studies in rodents [13,14] and further support the role of
5-HT (including SLC6A4) in brain development [15]. Moreover, we found that, in patients
with MDD, those with a history of childhood maltreatment and at least one s allele of the
5-HTTLPR had significantly smaller hippocampal volumes [16]. The underlying mechanism
accounting for such gene by environment (GxE) interactions are, however, unknown.

One of the potential mechanisms by which gene and environment interact and affect brain
development is via environmentally induced stable changes in genetic expression [7,17,18].
These changes in stable expression are most probably caused by epigenetic mechanisms
[7,17,18]. Following the observation of tissue-specific DNA methylation changes in the hippo-
campal glucocorticoid receptor gene in post-mortem brains of victims of childhood abuse [19],
a number of researchers have studied DNA methylation processes in peripheral tissues. With
regard to the 5-HT system, an increasing number of studies have found associations between
peripheral methylation in the SLC6A4 gene and both early life adversity (see [7]) and depres-
sion [18]. Specifically, studies demonstrated that early stress, including a history of childhood
abuse, was associated with altered levels of peripheral methylation in SLC6A4 gene promoter
regions later in life [20-24]. In addition, we found that peripheral DNA methylation at the
SLC6A4 gene promoter in white blood cells of healthy adults was associated with lower in vivo
measures of brain 5-HT synthesis in the orbitofrontal cortex, irrespective of 5>-HTTLPR geno-
type [25]. The functional relevance of DNA methylation in SLC6A4 promoter regulation was
further demonstrated by an in vitro experiment that showed that SLC6A4 methylation resulted
in loss of promoter activity in transient transfection promoter-luciferase reporter assays [25].
Taking these findings together suggests that DNA methylation at the SLC6A4 promoter is not
limited to peripheral tissues and is paralleled in the brain, where it may be one of the physiolog-
ical mechanisms underlying how early stress could translate into altered brain development
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[26]. Hippocampal changes may be particularly relevant, since this brain region is densely in-
nervated with 5-HT and is highly involved in stress regulation [3,5].

The aim of the present study was to test the hypothesis that DNA methylation in specific
CpG sites at the SLC6A4 promoter in peripheral cells is associated with childhood trauma, de-
pressive symptomatology, and smaller hippocampal volume. To this end, we assessed DNA
methylation at the SLC6A4 promoter in whole blood DNA in depressed patients and in age-
and sex-matched healthy controls, all of whom previously underwent high-resolution structur-
al Magnetic Resonance Imaging (MRI) to measure hippocampal volume [27]. Secondary aims
of the study were to examine the association between demographic and (sub)clinical character-
istics of depression and between DNA methylation at the SLC6A4 promoter. We focused on
DNA methylation in a region of the SLC6A4 promoter and associated specific CpG sites that
were previously shown to be most strongly associated with in vivo measures of 5-HT synthesis
[25].

Materials and Methods
Participants

Sixty-nine adult participants were included. The sample included 33 adult patients with MDD,
recruited from the mental health services of either the Tallaght Hospital or St. James’s Hospital,
Dublin, Ireland. MDD diagnosis was based on DSM-IV criteria and was confirmed by an inde-
pendent psychiatrist using the SCID interview. Thirty-six healthy controls from the local com-
munity were also recruited and the groups were balanced for age and sex (Table 1).
Participants were excluded (1) if they were taking antipsychotics or mood stabilizers, (2) if they
were not between the ages of 18 and 65, or (3) if they had a history of neurological or comorbid
psychiatric disorders (Axis I or Axis II), other severe medical illness, head injury, or substance
abuse. Demographic variables as well as inclusion and exclusion criteria were documented by
using a standardized questionnaire and a structured interview conducted by a psychiatrist.
Written informed consent was obtained from all participants following a verbal and written
detailed description of the study, which was designed and performed in accordance with the
ethical standards laid out by the Declaration of Helsinki and which was approved by the ethics
committees of (1) St. James and Tallaght Hospitals, Dublin, Ireland, (2) McGill University,
Montreal, Canada, and (3) Queen’s University, Kingston, Canada. Specialists in psychiatry as-
sessed all participants with regard to their ability to consent, and only patients who had full ca-
pacity to understand the study procedures and to provide consent took part in the study.

Rating Instruments

Self- and observer-rated scales administered to all participants included the Hamilton Rating
Scale for Depression [28], the Beck Depression Inventory (BDI-II) [29], and the Childhood
Trauma Questionnaire (CTQ) [30]. The Structured Clinical Interview for DSM-IV Axis II Per-
sonality Disorders (SCID-II) [31] was applied as well, since comorbidity with personality disor-
ders was one of the exclusion criteria. The CTQ is a standardized self-report instrument that
assesses five types of childhood maltreatment: emotional, physical, and sexual abuse, and emo-
tional and physical neglect. Reliability and validity of the CTQ have been established, including
measures of convergent and discriminative validity from structured interviews, stability over
time, and corroboration [32]. In the study we primarily focused on abuse, rather than neglect,
and we established a sum score from emotional, physical, and sexual abuse as a measure of the
severity of overall childhood abuse.
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Table 1. Characteristics of the sample.

Variable Patients (n = 33)
Mean (SD)/frequency

Age 40.3 (9.5)

Sex (Female/Male) 23/10

Height (cm) 170.3 (8.9)

Weight (kg) 76.3 (17.2)

# smokers 9

5-HTTLPR genotype:

S/S, S/L, L/L 8,16, 8

Hamilton depression score 28.7 (6.0)

Beck depression score 33.7 (11.5)

CTQ-Abuse 26.9 (12.6)

CTQ-Neglect 20.3 (8.5)

CTQ-Total 47.2 (19.7)

Age of onset 23.6 (11.1)

Cumulative illness duration (months) 8.9 (8.9)

Days treated 2084.5 (2656.9)

Days depressed and not treated 1874.8 (2876.0)

Medication (none/SSRI/dual acting) 11/13/9

Controls (n = 36)
Mean (SD)/frequency
35.3 (12.8)

21/15

173.4 (11.0)

71.3 (16.3)

7

6,18, 10
2.4 (2.2)
2.6 (3.6)
175 (2.9)
13.4 (3.3)
30.9 (5.5)

CTQ = Childhood Trauma Questionnaire; SSRI = Selective Serotonin Reuptake Inhibitor; n.s. = not significant

doi:10.1371/journal.pone.0119061.t001

MRI Data Acquisition

Diagnosis Effect

n.s.
n.s.

n.s.

n.s.

n.s.

n.s.

t=23.8, p < .001
t=14.9, p < .001
t=4.1,p < .001
t=4.3,p < .001
t=4.5,p < .001

Magnetic resonance images were obtained with a Philips Achieva MRI scanner (Philips Medi-
cal System, Netherland B.V., Veenphuis 4-6, 5684 PC Best, The Netherlands) operating at 3

Tesla. A sagittal T1 three-dimensional TFE (turbo field echo) was used to scan all participants
(TR user defined of 8.5 msec; TE user defined of 3.9 msec; total acquisition time of 7 minutes;

CAl

CA2/3
CAL/DG
subiculum
presubiculum

Fig 1. Example for hippocampal subfield delineation. Shown are subfields CA1, CA2/3, CA4/DG,
subiculum and presubiculum. The program FreeSurfer automatically assessed volumes of subfields which
were then manually viewed and checked for quality.

doi:10.1371/journal.pone.0119061.9001

PLOS ONE | DOI:10.1371/journal.pone.0119061 March 17,2015

4/14



@'PLOS ‘ ONE

Peripheral DNA Methylation and Hippocampal Volume

field of view of foot to head: 256 mm, AP [anterior to posterior]: 256 mm, RL [right to left]:
160 mm; and a matrix of 256x256). Slice thickness was 1 mm and voxel size was 1x1x1 mm.

Definition of Hippocampus

In the present study, we assessed whole hippocampal volume, as well as hippocampal subre-
gions including the dentate gyrus and the cornu ammonis, as these have different functions
and seem to have different stress sensitivities [33, 34].

Hippocampal subfields volumes were assessed automatically with the program FreeSurfer.
We identified the main hippocampal subfields belonging to the cornu ammonis and dentate
gyrus: CA1, CA2/3, and CA4/DG (Fig. 1). It was previously shown that automatically calculat-
ed volumes of CA2/3 and CA4/DG are strongly correlated with those volumes derived from
manual delineation, with a correlation coefficient of. 91 (p <. 0002) and. 83 (p <. 0028), re-
spectively [35].

DNA Methylation, mMRNA Expression and SLC6A4 Genotype

Pyrosequencing. Whole blood DNA methylation was assessed using our assay that was
previously applied and validated in T cells and in monocytes DNA [25]. We previously targeted
the entire 214-625 bp regulatory region upstream of the SLC6A4 gene promoter (CpG 1-24)
[25]. In the present study, we targeted CpG sites 5-15, as the CpG sites within this region were
previously shown to be most strongly associated with in vivo measures of brain 5-HT synthesis
(CpG sites 5&6 and 11&12 in particular [25]), and thus most relevant to test our current hy-
potheses. The methylation percentage at each CpG site was analyzed using the PyroMark Q24
Software (Qiagen).

mRNA Expression and SLC6A4 Genotype. These were determined and analyzed accord-
ing to standardized protocols (see [16,36]). See supplement file (S1 File) for more details.

Statistics

Differences in demographic variables between depressed patients and controls were tested
using Student’s t-test and Chi-square test when appropriate. Morphometric measurements in
both groups were normally distributed (using Kolmogorov-Smirnov test) and their variances
were homogenous (using Levene’s test). ANOVAs and ANCOV As were conducted to assess
group differences in methylation.

Linear regression analyses were used to test our primary hypotheses. Childhood abuse,
MDD diagnosis, and hippocampal volume were included as independent variables. We also in-
cluded sex and age as independent variables in the model based on previous studies showing
sex differences [37,38] and the observation of age-related methylation increases [39,40]. Three
primary tests were performed. In the first analysis, mean percentage in methylation across all
investigated CpG sites was the dependent variable. For the second and third analyses, the aver-
age percentage of methylation of CpG sites 5 and 6 (CpG 5&6) and the average percentage of
methylation of CpG sites 11 and 12 (CpG 11&12) were the dependent variables, respectively
[25]. To further explore interactions between the variables of interest, we also evaluated the ef-
fects of two- and three-way interactions between hippocampal volume, MDD, and abuse on
SLC6A4 methylation (i.e., hippocampal volume x MDD, abuse x MDD, hippocampal volume x
MDD x abuse). Specifically, we re-ran each of the three primary models (using mean percent-
age in methylation across (1) all investigated CpG sites, (2) CpG sites 5&6, and (3) CpG sites
11&12, as the respective dependent variables) after adding to each analysis a second block of
variables representing the interactions between the primary independent variables
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(hippocampus, MDD, and abuse) in a stepwise manner, in order to study the association be-
tween these higher order interactions and SLC6A4 methylation.

Finally, stability and generalizability for the model with the best fit were evaluated by using
multicollinearity diagnostic tests (i.e., correlations among predictors), a leave-one-out proce-
dure (i.e., the jack-knife procedure), and post-hoc power calculations [41].

In the entire sample (MDD and controls), we also explored the specific types of abuse that
were most strongly associated with DNA methylation. Based on previous studies reporting
complex three-way interactions [23,42], we also investigated the associations among SLC6A4
methylation, 5-HTTLPR, genotype, and mRNA expression.

Within the MDD sample, we explored the association between DNA methylation and type
of antidepressant (SSRI, dual antidepressant, none), family history of MDD, cumulative illness
duration, age of onset, and Hamilton depresssion score. We used AN(C)OVAs in case of a
group variable, and Pearson correlation in case of an interval variable. In case of a significant
association with any of these variables, the associated variable was included in a second block
in the regression model mentioned above, while controlling for the a priori-selected indepen-
dent variables of interest.

For each of the regression models, overall p was set at. 0166, in order to correct for the num-
ber of primary regression models run (.05/3). P values for the individual predictors were set at.
05.

Results

Patients and controls were well matched (Table 1). Smoking behaviour (defined either categor-
ically [present/absent] and/or by the number of cigarettes smoked per day did not differ be-
tween patients and controls, nor did it correlate with any of the methylation measures, and it
was thus left out of further analyses. A regression model including age, sex, abuse, diagnosis,
and whole hippocampal volume as predictors (N = 69) explained 29% variance of SLC6A4
methylation (F(5,63) = 5.12, p = .001). Being male, increased age, greater childhood abuse, and
smaller hippocampal volume were each associated with greater percentage of SLC6A4 methyla-
tion across the investigated promoter region (Table 2, Fig. 2-3, and Fig. A in S1 File). MDD di-
agnosis was not significantly associated with DNA methylation (p = .28). The model had
adequate stability (range r*:. 27-.42) and a large effect size (f2 = 0.41). We also tested for associ-
ations between the same independent variables (sex, age, abuse, hippocampal volume, MDD)
and SLC6A4 site-specific methylation. Hippocampal volume was found to be very similar to
the association observed with methylation across the whole region (CpG 5&6: F(5,63) = 4.29,

p =.002; CpG 11&12: F(5,63) = 3.6, p = .006). Sex, however, was not significantly associated
with site-specific SLC6A4 methylation. There was also no significant association between abuse
and methylation in CpG 5&6 (p = .08), nor between age and methylation in CpG 11&12 (see
Table A and Table B in S1 File) while controlling for the other main variables in the equations.
The interactions between (1) hippocampus and MDD, (2) abuse and MDD, and (3) hippocam-
pus, MDD, and abuse did not provide a significant additional contribution to the

regression models.

Results were overall very similar when the different hippocampal subfields CA1, CA2/3 and
CA4/DG, rather than the whole hippocampus, were used as variables in the models (see
Table C, Table D, and Table E in S1 File).

Further examination of the regression diagnostics of the model with the best fit showed very
low multicollinearity (indicating low correlations among predictors) (VIF = 1.4, criteria for
multicollinearity usually > 10), thereby further supporting the stability of the models (see
Table A in S1 File).
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Table 2. Parameters of the investigated regression model that includes sex, age, MDD diagnosis, childhood abuse, and hippocampal volume as
independent variables, and SLC6A4 methylation as the outcome variable.

Statistical Model Standardized beta
Sex 0.23
Age 0.27
MDD diagnosis 0.14
Childhood trauma 0.27
Hippocampal volume -0.35

MDD = Major Depressive Disorder.

t p value standardized beta Range standardized beta when N-1* (minimum, maximum)
2.1 0.039 0.19; 0.27

2.4 0.018 0.24; 0.31

1.1 0.277 0.10; 0.17

2.2 0.029 0.19; 0.31

-3.2 0.002 -0.31; -0.38

* Mean standardized beta’s when rerunning the analyses N times, minus 1 participant.
Multiple R = .537, p <. 001. Maximum Variance Inflation Factor = 1.4; effect size f2 = 0.41. Power at p = .05: 0.987

doi:10.1371/journal.pone.0119061.t002

Effects of Type of Abuse

Among the different types of abuse, physical abuse was most strongly associated with DNA
methylation across the promoter region (r = .33, p = .006). Methylation did not correlate with
sum scores of emotional abuse, sexual abuse, emotional neglect, or physical neglect (p >. 10).
Defining the same types of abuse and neglect as categorical variables (present/absent, based on
standardized cutoff scores), physical abuse was most strongly associated with DNA SLC6A4
methylation (F(1,66) = 9.74, p = .003), while the associations between other types of abuse/ne-
glect and methylation were not significant. Like in our previous study [25], we found no associ-
ations between SLC6A4 methylation and 5-HTTLPR genotype (p >. 27). However, further
secondary exploratory analyses investigating 5-HTTLPR genotype x adversity interactions
showed that those with the /Il genotype and a history of abuse (n = 7) had greater SLC6A4 meth-
ylation levels relative to s-carriers with or without a history of abuse. Results remained very

10

Mean hippocampus (ml)

T T T
3 4 5

Mean Methylation of SLC6A4 (%)

o —
o —

Fig 2. Scatterplot showing the association between hippocampal volumes and methylation of
SLC6A4. There was a negative correlation between both variables indicating that smaller hippocampal
volumes were associated with higher levels of methylation.

doi:10.1371/journal.pone.0119061.9002
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it

Total abuse [scores]

T T T T T
2 3 4 5 6

Mean Methylation of SLC6A4 (%)
Fig 3. Scatterplot showing the association between total childhood abuse and methylation of

SLC6A4. There was a positive correlation between both variables indicating that more abuse is associated
with higher levels of methylation.

doi:10.1371/journal.pone.0119061.g003

similar after controlling for age, sex, MDD diagnosis, and hippocampal volume (F(1,57) = 4.75,
p =.033). There were no associations between SLC6A4 methylation and SLC6A4 mRNA ex-
pression (p >. 68), nor were there higher order interactions with 5-HTTLPR genotype (p >.
52). Within the MDD group, none of the (sub)clinical variables of investigation correlated with
overall or site-specific percentage of SLC6A4 methylation.

Associations Between SLC6A4 Methylation and (Sub)Clinical and
Demographic Variables

Further exploratory analyses revealed that patients who were taking SSRIs had greater methyla-
tion levels at CpG 11&12 than patients who did not use any medications or who were on dual
antidepressants (F(2,30) = 6.16, p = .006). Subsequent t-tests showed that SSRI-treated patients
had greater methylation levels in CpG 11&12 relative to those patients who were on dual anti-
depressants (#(20) = 2.88, p = .009) and relative to those who did not use medication (#(22) =
-2.51, p =.02). Inclusion of medication (non/dual vs. SSRI) in the regression equation showed
that, after controlling for sex, age, childhood trauma, and hippocampal volume, SSRI use pre-
dicted greater DNA methylation in CpG 11&12 (1* = 0.28, Fchange = 5.21, p = .026). Such ef-
fects were not seen at CpG 5&6.

Please see Table F and Table G in S1 File for individual participant data.

Discussion

The present study showed for the first time that methylation in a regulatory region of the
SLC6A4 gene in whole blood DNA is independently associated with hippocampal volume,
childhood adversity, being male, and an older age. Almost one third of the variance in SLC6A4
methylation was explained by these variables.
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Childhood abuse was previously found to be associated with altered levels of peripheral
methylation states in SLC6A4 promoter regions later in life [20-22,24]. The present study con-
firmed these findings and showed that the results were most pronounced in those CpG sites
specifically associated with brain 5-HT synthesis [25].

Among the selected variables of investigation, lower hippocampal volume was most strongly
associated with SLC6A4 regulatory region methylation state across CpG sites, as well as in the
specific, a priori-selected CpG sites [25]. Interestingly, this was the case for the whole hippo-
campus and also for CA1 as well as the hippocampal subfields gyrus dentate and CA2/3. The
relatively strong association between peripheral methylation of SLC6A4 regulatory region and
hippocampal volumes expands on our previous study showing that childhood adversity inter-
acts with the polymorphism in the promoter region of the SLC6A4 gene on hippocampal vol-
umes [16]. It suggests that SLC6A4 methylation may be an underlying physiological
mechanism of how gene and environment interact to affect hippocampal development.

Although the present study was cross-sectional and correlational, and causality as well as
formal mediation models could thus not be tested, it could be speculated that peripheral meth-
ylation of SLC6A4 regulatory region might affect hippocampal development in different ways,
one of which may be through disruption of 5-HT homeostasis, thereby affecting 5-HT as neu-
rotrophic factor [26]. Specifically, the 5-HT system is known to play a prominent role in neuro-
genesis, which takes part in the gyrus dentate [43,44]. Thus, increased methylation of SLC6A4
owing to environmental factors like childhood abuse [7]—which appears to be functionally rel-
evant [25]—might alter the neurotrophic properties of 5-HT, which in turn has consequences
for brain development.

The 5-HT system is highly interactive with other biological systems. Being one of the brain
areas implicated in MDD, the hippocampus may have a particular role in the interactions be-
tween the 5-HT system and the hypothalamic-pituitary-adrenal (HPA) axis [27,45]. Lower
mRNA expression of cortisol-inducible genes, which can be seen as a marker for a blunted cor-
tisol response, was previously found to be associated with smaller hippocampal volumes in
MDD patients [27]. Thus, it could also be hypothesized that stress-induced alterations in pe-
ripheral SLC6A4 methylation states may affect hippocampal volume through modulation of
HPA axis functioning. Further research is necessary to understand the interplay of HPA-axis—
associated (epi)genetic factors, the role of mediators and moderators, and their effects on dif-
ferent brain regions.

In our present study we did not find that MDD diagnosis was significantly associated with
methylation. Such a finding is in line with the hypothesis that SLC6A4 methylation represents
risk for developing depression and that other biological or social risk factors, as well as protec-
tive factors, need to be taken into account too [7].

The present observation that higher DNA methylation is associated with age is of interest
given the results of a previous study comparing genome-wide methylation rates between cente-
narians and newborns, which showed that age-associated increase of DNA methylation of the
regulatory regions is gene specific [40]. The present study is the first to show age-related meth-
ylation increases in the SLC6A4 gene specifically in a sample with a much smaller age range.
With regard to sex, in a recent review [38], it was explored whether methylation of DNA might
play a role in contributing to the observed sex differences in the prevalence of stress-related
mental disorders like posttraumatic stress disorder (PTSD) and depression. It was suggested
that sex differences in methylation should be investigated in future studies in order to find an
explanation for sex differences in mental disorders [38]. Yet, research since that study has been
inconclusive; a previous study showed that females had lower SLC6A4 methylation than men
[46]. About one third of the participants of that study had a history of MDD, and the large ma-
jority of the participants had no current MDD symptomatology. In another study in healthy
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young adults, no sex differences were found. In the present study, males had significantly
higher methylation in SLC6A4 compared to females, independent of childhood abuse or MDD
diagnosis. These differing results highlight that there is no convincing evidence that methyla-
tion in the SLC6A4 gene contributes to sex differences in prevalence of depression.

Interestingly, MDD patients currently receiving SSRIs showed increased methylation of
SLC6A4 compared to patients who were currently medication-free, while controlling for the
other predictors. In an experimental study, mice treated with fluoxetine after an experimental
brain injury showed increased neurogenesis, increased methylation, and increased histone H3
acetylation in the dentate gyrus [47]. This finding might point toward an acute effect of SSRIs
on DNA methylation, but needs to be extended to human studies using longitudinal designs.

We did not find SLC6A4 genotype to be associated with DNA methylation, which is consis-
tent with our previous study in healthy volunteers [25], with a study that used participants
with various levels (sub)clinical depressive symptoms [48], and with one that used a large sam-
ple of healthy adults [49].

A previous study found that higher SLC6A4 methylation was associated with increased re-
sponses to loss or other trauma in carriers of the Il genotype [23]. The observation in the pres-
ent study of higher methylation levels in carriers of the Il genotype who were also exposed to
childhood trauma, relative to s carriers with or without childhood trauma, is consistent with
this previous finding [23].

As in our previous study, mRNA expression was not related to DNA methylation [25], nor
was it associated with any of our outcome measures. The relationship between SLC6A4 methyl-
ation and mRNA expression appears to be complex; some studies report an association or re-
port that the association is genotype-specific [50], while in others there is no association
between mRNA expression and SLC6A4 methylation (e.g., [49]). The non-significant associa-
tions may be caused by degradation owing to sensitivity to fast processing time [51]. In con-
trast, DNA is more robust and methylation remains more constant over time. This supports
the conclusion that DNA methylation in peripheral cells might be a more reliable biomarker
than mRNA [7,25,52].

Moreover, in the present study we confirmed that the hippocampus, and the cornu ammo-
nis and dentate gyrus volumes in particular, are significantly smaller in patients with MDD
compared to healthy controls, which is in agreement with another study on hippocampal sub-
fields and the results of some meta-analyses [34,53].

The results of our study are consistent with those of our PET study [25] and with the major-
ity of studies from other research groups, showing that higher SLC6A4 methylation is associat-
ed with increased behavioural depressive symptomatology or early life adversity [20,21,24,48].
Interestingly, however, a very recent study showed that SLC6A4 methylation was positively cor-
related with hippocampal volume [54]. Notably, methylation rates in the Dannlowski et al.

[54] study were on average 48%, while in most of the SLC6A4 methylation studies, including
ours, methylation rates lie between 4 and 15% [20,21,24,25,48]. The observed discrepancy is
likely due to differences in methodology. For instance, the location of the methylation region
in Dannlowski et al. [54] differed from the one used in our study. Moreover, while our study
sample consisted of MDD patients and controls, the sample in Dannlowski et al. [54] consisted
of healthy individuals with very low depression scores and who were free of lifetime psychiatric
disorder and therefore possibly low on early adversity (although trauma was not assessed in
that study). Finally, differences in statistical imaging methodology may have also contributed
to a results discrepancy.

Nevertheless, while there is now emerging evidence for the relevance of peripheral SLC6A4
methylation for brain processes as shown by research from different groups, these findings
taken together suggest that the association is not a simple, static one-to-one correlation. Rather,
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the strength and direction of effect seems to be a complex, dynamic interplay between other bi-
ological factors or experiences and variable across specific methylation regions / CpG sites
within a gene.

One particular strength of the study was that the investigated SLC6A4 region and primary
CpG sites were chosen a priori, based on previous work and validation in vivo and in vitro in
an independent sample [25]. The finding that the associations between states of methylation of
SLC6A4 and hippocampal volume and abuse were primarily observed in the same CpG sites
that were previously associated with brain 5-HT synthesis [25] points to the possibility that
site-specific SLC6A4 methylation may be a biomarker for 5-HT-associated stress-
related psychopathology.

The findings of the present study rest upon the following limitations. First, the CTQ was
filled out retrospectively, which could have led to inaccurate recollection of events, thereby af-
fecting CTQ scores. Thus the interpretation of the trauma effect should be interpreted with
caution. Nevertheless, the scores obtained in the current sample are overall similar to those ob-
tained in many other studies using the same questionnaire. Second, it is important to mention
that the observed associations in the present study were correlational and cross-sectional.
Hence, we cannot draw a conclusion about cause and effect, nor test formal mediation models.
Intervention studies are currently under way to further determine the direction of effect. Third,
although the observation of the association between early life trauma and methylation is con-
sistent with other studies, we cannot rule out that the association is directly due to or mediated
by abuse or environmental stress in adulthood. Fourth, the control group had very low levels of
childhood abuse. Hence, this did not allow us to investigate the association between abuse and
SLC6A4 methylation in the control group. On the other hand, our regression analyses showed
an association between childhood abuse and SLC6A4 methylation while controlling for depres-
sive symptoms. Fifth, the present study was not primarily designed to investigate the effect of
different medication types on peripheral methylation of SLC6A4. Thus, we did not randomize
treatment prior to study participation, and the link between medication and methylation could
therefore be confounded by other clinical characteristics. Future studies could be designed spe-
cifically to study the effects of (previous) antidepressant treatment on methylation and also to
investigate, with longitudinal designs, whether those subjects who have higher SLC6A4 methyl-
ation respond best to SSRIs, compared to those with lower SLC6A4 methylation.

Notwithstanding these limitations, this is one of the first studies using MDD patients and
controls that shows an association between methylation states at the SLC6A4 gene promoter
with hippocampal volumes, specifically in the subfields dentate gyrus and CA2/3. The findings
expand on our previous reports of interactions between childhood abuse and the s-allele of the
serotonin transporter polymorphism and on the association between peripheral SLC6A4 meth-
ylation and 5-HT synthesis measured with Positron Emission Tomography. The present study
suggests that epigenetic mechanisms may biologically underlie environment by gene interac-
tions that influence hippocampal development. This might in turn, directly or through brain
development, make individuals more vulnerable to developing depression or other stress-
related disorders.

Supporting Information

S1 File. Supporting Figure and Tables. Fig. A. Scatterplot showing the association between
age and methylation of SLC6A4. There was a positive correlation between both variables indi-
cating that older age is associated with higher levels of methylation. Table A. Parameters of the
investigated regression model, including sex, age, MDD diagnosis, childhood trauma, and hip-
pocampal volume as independent variables, and SLC6A4 methylation (CpG 5&6) as outcome
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