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Abstract

Esophageal adenocarcinoma is the eighth most common malignancy worldwide. The
overall prognosis is poor, with 5-year survival ranges of approximately 15-25%, and
30-50% for patients who can be treated with curative intent. There has been a marked
increase in incidence of esophageal adenocarcinoma over the last 30 years, with chronic
and severe reflux, diet and obesity identified as principal factors fuelling this rise in the
West. Esophageal adenocarcinoma is an exemplar model of an inflammation-associated
cancer. The key molecular pathways driving tumor development and influencing tumor
biology are the subject of considerable research efforts, and is the principal focus of this
review. In addition, the diverse range of changes occurring in the local immune response,

tissue microenvironment, metabolic profile, intracellular signaling mechanisms and
microRNA signatures are discussed, as well as novel targeted therapies.

The incidence of esophageal adenocarcinoma
(EAC) has risen rapidly over the past three
decades, particularly in the West. [1. More
recently, a report of EAC incidence from the
Surveillance, Epidemiology and End Results
program (SEER) confirms a continued rise
from 13.4 per million in 1973 to 51.4 per
million in 2009. This represents an almost
fourfold increase, suggesting that EAC in the
USA has increased more than any other malig-
nancy and that the observed increase is true,
sustained and not an artifact of surveillance [2)
[3). Epidemiologically, the rise parallels the
increasing prevalence of gastroesophageal reflux
disease (GERD), Barrett’s esophagus (BE) and
obesity in affected societies [34]. EAC is cur-
rently the sixth leading cause of cancer death
worldwide [s]. The overall prognosis is poor,
with | 5-year survival ranging from 15 to 25%
and between 30 and 50% in patients that can
be treated with curative intent [6].

EAC has been described as an ‘exemplar
model’ of inflammation-associated cancer [7].
BE, characterized by specialized intestinal
metaplasia (SIM), is the sole recognized patho-
logic precursor of EAC. It is associated with
an annual risk of progression of between
0.12 and 0.25% (REF). GERD, particularly
severe or chronic GERD, may predispose to
BE and is also independently associated with
risk of EAC (s]. In BE, targeting inflammation

through the use of aspirin and other anti-
inflammatory drugs has shown promise. Aspi-
rin is being studied in the large APECT trial,
which is underway at present [9,10]. The emerg-
ing consensus is that multiple proinflammatory
pathways fueled by GERD, BE and obesity
are important to the pathogenesis of EAC.
Furthermore, an improved understanding of
the key pathways linking inflammation and
esophageal carcinogenesis may provide thera-
peutic targets. This review focuses on current
understanding of these molecular pathways by
first describing the factors initiating the
inflammatory response, specifically bile reflux
and obesity. We then discuss the tumor micro-
environment and move sequentially deeper
into the cell microstructure, discussing the
impact of transcriptional regulation, mitochon-
drial alterations and miRNAs and genomic
instability within the nudeus in the context
of inflammation.

Inflammation & cancer

The idea that tumors behave like a ‘never heal-
ing wound’ is not novel [11]. Virchow in
1863 observed the presence of leucocytes in
malignant tissue and first linked cancer with a
state of chronic inflammation [12]. Increased
understanding of the inflammatory microenvi-
ronment has produced evidence supportive of
the role of inflammation in tumorigenesis. As
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Figure 1. Factors contributing to inflammation of the lower oesophagus. Acid/bile reflux results from transient relaxations at the
lower esophageal sphincter therefore exposing the oesophageal mucosa to bile and acid.
CRP: C-reactive protein; TLESRs: Transient lower esophageal sphincter relaxations.

such, ‘inflammation’ is now accepted as the seventh hallmark of
cancer complementing the existing six — the ability of cancer
cells to proliferate, resistance to inhibitory signals and apoptosis,
angiogenesis, immortlity and the ability to metastasize [13].
Wound healing and tumor stroma formation exhibit many simi-
larities, supporting Virchow’s postulate [11]. In response to tissue
damage, a multifactorial network of cellular signals raises a host
response designed to infiltrate the area with immune cells and
‘heal’ the wound. The difference in tumor tssue is that unlike
wound healing, tumors lead to a persistent state of extracellular
matrix (ECM) generation. The ECM serves to form a scaffold
allowing fibroblasts and endothelial cells to proliferate and
migrate. The persistence of acute inflammatory initiating factors
results in a chronic state of inflammation. Host leucocytes infil-
trate both the stroma and tumor itself [14). Tumor-associated
macrophages exhibit duality of function, with classically activated
macrophages retaining the ability to kill neoplastic cells following
activation by IL-2, IEN-y and IL-12, whereas alternatively acti-
vated macrophages also infiltrate tumors and produce growth
and angiogenic factors as well as initiating ECM degradation [1s].
This leads to proliferation, angiogenesis and metastasis. Tumor
cells exhibit the capacity to produce a network of inflammatory
cytokines and chemokines, which contribute to malignant

progression [16. Epidemiological studies conducted in recent
years have demonstrated a strong link between inflammatory
responses and the development of cancer [17].

Acid/bile reflux induces esophageal inflammation

The first reports of esophageal inflammatory injury being
caused by gastric reflux were made by Quincke at the end of
the 19th century, and further by Winkelstein in 1935 [15].
Reflux is enabled by deficient lower esophageal sphincter (LES)
pressure; this may be evident in association with a hiatus her-
nia. In recent times, transient LES relaxations (TLESRs) Ficue 1
are accepted as important pathophysiological abnormalities seen
in patients with GERD. Refluxate may be acid alone com-
monly, occasionally bile alone or a combination of acid and
bile, this latter combination being common in BE. Bile in the
esophagus is linked to less effective esophageal motility [19:20].
Salts of taurocholic and glycocholic acid represent approxi-
mately 80% of bile salts, which are conjugated versions of bile
acid [21]. The pKA of each acid is 7. It has been demonstrated
in vivo that bile acid concentrations are higher in the esoph-
ageal aspirates of patients with GERD and BE compared with
controls and that mixed acid/bile reflux is more harmful than
acid reflux alone [22]. Animal models have demonstrated that



esophageal bile exposure via either direct perfusion or total gas-
trectomy with esophagojejunal anastomosis results in severe
esophagitis, Barrett’s metaplasia and EAC (23). Reflux of bile
acids in concentrations greater than 200 micromolar has been
demonstrated in 50% of patients with severe esophagitis and
BE, and there is a synergistic effect resulting from the presence
of bile with low concentrations of bile acids, with epithelial
damage seen only at high acid levels [21]. Activation of the
IL-6/STAT-3 anti-apoptotic pathway following exposure to bile
acids has been cited as a potential explanation of the develop-
ment of dysplasia and tumor progression [24].

In patents with GERD, chronic inflammation is the result of
continued acid exposure, which may also be combined with bile
refluxate. Although healing is possible via regeneration of squa-
mous cells, it also occurs via replacement of squamous with
columnar cells and SIM, resulting in BE [25]. This persistent state
of chronic inflammation gives rise to release of proinflammatory
mediators, which promote cell growth and invasion, thus sup-
porting the transformation and initiation of tumor develop-
ment [26.. Key cytokines implicated in this process to date
include IL-8, IL-6, TGF-B and IL-1B [27-29]. Although further
work is required to understand the exact mechanism by which
the stromal compartment can induce cancer in patients with BE,
it is increasingly likely to be playing a role in the recruitment of
inflammatory cells in response to reflux injury.

Obesity is a proinflammatory state
A recent meta-analysis by Singh ez a/. has confirmed the assodia-
tion between central adiposity, independent of body mass index,
and esophageal inflammation, metaplasia and neoplasia [30]. The
authors concluded that the effects were mediated by both reflux-
dependent and -independent mechanisms (30 Two main
hypotheses have been utilized to explain this association to date.
First, the association between increased BMI and GERD, and
consequently, BE is well established (31). This has long been
attributed to the mechanical hypothesis, whereby the increased
intragastric pressure resulting from abdominal obesity disrupts
the structure and function of the LES and is permissive to reflux.
However, studies suggest that obesity does not per se cause
increased acid exposure, and consequently, there is an emerging
focus on non-mechanical influences driving this association [32].
Obesity represents a chronic state of low-grade inflammation
characterized by increased storage of fatty acids in an expanded tis-
sue mass [33]. Obese children and adults have increased plasma lev-
els of C-reactive protein, IL-6, TNE-¢t and leptin [34]. An increase
in the levels of non-esterified fatty acids resulting from an inability
of existing adipose tissue to buffer excess nutrient intake is typical
of the metabolic syndrome [35]. Higher lipolytic activity in visceral
adipocytes allows more rapid mobilizaton of free fatty acids,
which are reflected in the systemic circulation of obese individu-
als [3637]. Excess adipose tissue results in an increase in proinflam-
matory cytokines, leading to systemic low-grade inflammation [34).
Insulin resistance and Type 2 diabetes mellitus are also associated
with the presence of systemic inflammation. Nutritionally induced
insulin resistance is the result of adaptation to the ongoing release

of circulating free fatty acids, resisin and TNE-o, which are
released from visceral fat stores in addition to decreased release of
adiponectin [38]. The result is reduced responsiveness in muscle,
liver and adipose tissues to insulin, as well as compensatory hyper-
insulinemia [39]. The state of hyperinsulinemia results in downre-
gulation of insulin receptor levels and also dampened
responsiveness of intracellular signaling pathways mediating its
effects [40]. Insulin itself has been shown to exhibit tumorigenic
effects in a number of tissue types, which are mediated by insulin
receptors in the preneoplastic target cells, or changes in endogenous
hormone metabolism secondary to hyperinsulinemia [3841-43].
Intracellular signaling pathways hypothesized to link inflammation
and insulin resistance include JNK and IKKB. Genetic or chemical
inhibition of these pathways can improve insulin resistance [4445].
Systemic markers for oxidative stress also increase with adiposity,
consistent with the role of reactive oxygen species (ROS) in the
development of obesity-induced insulin resistance [46]. The accu-
mulation of lipids and resultant activation of nicotinamide adenine
dinucleotide phosphate-oxidase increases ROS production, which
in turn, increases TNF-ot, IL-6 and MCP-1 production and
decreases adiponectin level [38]. Among patients with BE, increased
levels of leptin and insulin resistance are associated with an
increased risk of EAC, while adiponectin levels demonstrate a nega-
tive association [47-50].

Proinflammatory cytokines contribute to the initiation
& promotion of tumor growth

In BE, the maximal degree of inflammation characterized by cyto-
kines such as IL-1P is centered in the squamous mucosa adjacent
to the tumor. An inflammatory gradient is reported, with molecu-
lar inflammation reduced distally and characterized by a signifi-
cant increase in anti-inflammatory IL-10 expression [s1). In a
transgenic mouse model of BE, esophageal overexpression of
IL-1B phenocopies human pathology with the evolution of esoph-
agitis, Barrett-like metaplasia and EAC, suggesting that tumor
promoting IL-1B and also upregulation of IL-6 signaling are
important in the BE/EAC paradigm (s2). Moreover, IL-8 and
IL-1B are markedly elevated in biopsy specimens of esophagitis
and BE, with further increases observed in EAC [s3]. The source
of cytokines may be not only infiltrating inflammatory cells.
Barrett’s epithelial cells are capable of expressing IL-8 and IL-1.
Also, bile acids, in particular deoxycholic acid, is capable of induc-
ing both via activation of NE-xB [53. TNF-o is upregulated in
the BE/EAC progression and induces the oncogene c-myc expres-
sion via beta-catenin-mediated transcription independent of
NE-xB [s4. IL-6 and IL-6 mRNA expression are increased in
transformed Barrett’s cell lines compared with non-transformed
lines along with STAT?3 (s5].

TGE-B1 has anti-inflammatory and tumor-suppressive proper-
ties under normal conditions; however it is linked with tumori-
genesis in an abnormal microenvironment [s¢. In a series of
resected Barrett’s adenocarcinoma of the distal esophagus, relative
expression of the TGF-B1 gene was significantly higher in tumor
tissue compared with squamous epithelium and Barrett’s mucosa
(57]. It was also found to be associated with advanced-stage, nodal
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Figure 2. Environmental, local and intracellular processes resulting from inflammation in the oesophagus which facilitate

tumour initiation and progression.
MMP: Matrix metalloproteinase.

involvement and lymphatic vessel invasion with overexpression
associated with a negative impact on survival ([57).
TGE-B1 signaling is initiated by activation of type I and II trans-
membrane serine/threonine kinase receptors (TBRI and TBRII),
leading to phosphorylation of the intracellular signaling molecules
Smad2 and Smad3 [s8]. This complex is associated with Smad4.
When translocated to the nucleus, the result is transcriptional reg-
ulation of a number of target genes including c-Myc- and cyclin-
dependent kinase inhibitors, allowing it to potentially function as
a negative growth factor [s9]. TGF-B1 responsiveness is reduced
during all stages of the Barrett’s-metaplasia-dysplasia sequence
due to abnormalities at several points in the signaling pathway,
but primarily Smad4 [s9].

The epidemiologic link between the use of NSAIDs and
reduced incidence of esophageal cancer has prompted investiga-
tion into the inflammation and carcinogenesis-associated expres-
sion of cyclooxygenase-2 (COX-2) [w60]. Bile acid exposure
results in substantial up-regulation of COX-2 in esophageal tissue
and COX-2 expression is significantly higher in patients with
SIM, dysplasia and adenocarcinoma compared with normal
squamous epithelium [61]. As one of the two isoforms of the
COX enzyme, it is thought to be involved in resisting apoptosis,
increasing cell proliferation, stimulating angiogenesis and

modulating the invasive properties of cancer cells, and COX-2 is
associated with increased lymph-node metastases and reduced
survival in Barrett’s-associated EAC [62).

Inflammation & immune modulation of the tumor
microenvironment

Chronic inflammation results in a microenvironment conducive to
neoplastic change. Inflammatory immune cells including neutro-
phils, macrophages, dendritic cells and lymphocytes infiltrate the
site of inflammation Ficure 2. Myeloid and plasmacytoid dendritic
cells are recruited during the metaplasia to carcinoma sequence in
the esophagus [63]. /7 vitro, myeloid dendritic cells co-cultured
with BE and EAC cells stimulate regulatory T' celldifferentiation
from naive CD4" T cells promoting tumor progression [63]. Meta-
plastic cells in BE either as a consequence of TGF-at or of TNFE-o
stimulation secrete VEGF, which can promote adjacent endothe-
lial cell growth via phosphorylation of beta-catenin and vascular
endothelial cadherin [64]. An additonal source of VEGF is macro-
phages. While present in similar numbers in reflux esophagitis and
BE, macrophages are increased in EAC and also produce matrix
metalloproteinase (MMP)-12, which increases across the BE to
EAC spectrum [65]. This may result in acceleration of angiogenesis
and increased microvascular invasion. Inflammation at the site of



metaplasia is characterized by an increase predominantly in
Th2 effector cells and also Thl effector cells in comparison with
reflux esophagits, supporting the hypothesis that specific esophageal
immune responses may influence disease progression [66]. Infiltration
of eosinophils has also been demonstrated in the mucosa of a subset
of BE patients associated with basal cell hyperplasia [s6].

The ECM is modified to support the infiltration of immune celks.
Matricellular proteins represent a unique group of proteins, and
secreted protein acidic and rich in cysteine is increased in both BE
and EAC. Secreted protein acidic and rich in cysteine demonstrates
counter-adhesive and anti-proliferative functions and can modify the
cell cycle and remodel matrix [67]. It is thought to be overexpressed
in the tumor microenvironment in an attempt to inhibit tumor
growth [7]. Thrombospondin-1 is another matricellular protein with
angiogenic effects and the capacity to regulate TGE-B;. It is differen-
tially up-regulated across the EAC sequence [7]. Matrix metallopro-
teinases are a family of protein-degrading enzymes, which function
as endopeptidases. There are currently 25 members, which can be
divided into collagenases, gelatinases, stromelysins, matrilysins and
the membrane-type MMPs. They have the ability to degrade the
basement membrane of vessels, which is an essential requirement for
tumor invasion into blood and lymphatic vessels [¢s]. MMP-1
expression has been found in a major population of proliferating
Barrett’s and adenocarcinoma cells i7 vitro and may promote tumor
growth [68]. It also correlates with lymph node metastasis and poor
prognosis [6869]. MMP-3, -7 and -9 have also been found to be prog-
nostic biomarkers for EAC and MMP-9 is increased in the imma-
ture blood vessels seen in BE [69;70).

Transcription factors mediate tumor promotion &
metastasis

The major inflammatory signaling pathways associated with can-
cer progression in the esophagus are NF-xB and STAT 3.
STAT3 mediates the activity of a number of cytokines involved
with cancer-promoting inflammatory responses by promoting at
least three hallmarks of cancer, namely proliferation, survival and
angiogenesis [71]. Closely integrated with NF-xB signaling,
STAT3 activation occurs secondary to binding of a wide range of
cytokines incuding IL-2, IL-6, IL-9, IL-10, IL-11, IL-15,
IL-17 and leptin to their cognate receptor with subsequent phos-
phorylation, dimerization and nuclear translocation. Binding
to specific DNA sites, gene transcription is induced within
30—60 min of activation producing up-regulation of a number of
proinflammatory, pro-metastatic, pro-angiogenic and anti-
apoptotic genes, as well as initiation of a positive feed-forward
loop resulting in further STAT3 expression [7273].

STAT3 may also link obesity with esophageal inflammation,
as a number of the proinflammatory cytokines activating STAT?3
signaling are secreted by adipose tissue including leptin, IL-G,
IL-8, IL-1B, oncostatin M, TNF-0. and MCP-1, [71),. In addi-
tion, the role of bile and gastric acids in STAT3/NF-xB signaling
has been studied in HET-1A cells indicating increased activation
of both following exposure compared with parental cells and
supporting a role for bile and acid reflux at a signaling level [74.
Activated phospho-STAT3 has been demonstrated only in

transformed Barrett’s cells with resultant inhibition of apopto-
sis [75). STAT3 knockdown has been demonstrated to reduce cell
proliferation and migration in Barrett’s adenocarcinoma [76].

The NF-xB family consists of five Rel proteins and persistent
activation of one, RELA, is STAT?3 dependent. RELA codes for a
number of cytokines and growth factors that in turn activate
STATS3 resulting in a positive feed-forward loop (71]. NE-XB tran-
scription is up-regulated along the sequence of BE to EAC with
concurrent down-regulation of its negative regulator I-xB [77].

ROS mediate mucosal damage

ROS is constantly generated under normal conditions such as
oxidative phosphorylation in the mitochondria or T-cell activa-
tion [78]. Increased levels of ROS are seen in esophagitis and
BE and may be relevant to tumor initiation, growth and sur-
vival [79]. One mechanism by which this occurs is the induction
of double-strand DNA breaks. /n wvitro, exposure of benign
Barrett’s epithelial cell lines to acid results in ROS production
and causes a time-dependent increase in levels of phospho-
H2AX — a marker of double-strand DNA breaks [s0]. Superox-
ide dismutase (SOD) and the glutathione redox system are
each considered to play a role in the defense mechanism against
oxidative stress. Levels of glutathione and SOD observed in BE
are lower than in normal esophageal mucosa [81]. Myeloperoxi-
dase is released from the cytoplasmic granules of neutrophils
and monocytes and amplifies the oxidative potential of hydro-
gen peroxide by generating highly reactive species such as hypo-
chlorous acid [82]. Concentrations are higher in BE, and it is
hypothesized to play a crucial role in carcinogenesis [83].

PDGE receptor and EGF receptors signal in part via ROS-
dependent mechanisms [8485]. Activation of these receptors results
in the production of phosphatidylinositol [3,4,5])-triphosphate
and Akt activation, which plays a role in cellular proliferation
and inhibition of apoptosis. Phosphatidylinositol [3,4,5]-triphos-
phate also activates NADPH oxidase, which can be converted to
H,0; by SOD and result in a major source of O, [86].

Hypoxia is a common state in tumors, resulting in induction of
hypoxia-inducible factors (HIF-1 and -2); resultant reoxygenation
can result in significant oxidative stress via ROS, nitric oxide and
H,0; production [7]. Nitric oxide can increase invasiveness of dys-
plastic and cancerous cells via regulation of MMPs and tissue
inhibitor of metalloproteinases [87]. HIF-1¢ is increased in BE and
correlates with the degree of inflammation, but since this does not
increase in dysplasia and neoplasia, it is hypothesized to be an early
event in neoplastic progression and inflammation (ss). HIE-20. on
the other hand is increased in dysplasia and further in EAC, while
it is not expressed in BE, suggesting that it is active later in the
neoplastic process (89]. Considered collectively, there is significant
evidence to support the hypothesis of oxidative stress playing a role
in the progression of esophageal inflammation to neoplasia.

Inflammation induces genomic instability

Widespread genomic instability is believed to facilitate neoplastic
progression in BE. The process is possibly facilitated by the loss and
mutation of cell cycle checkpoint machinery and tumor-suppressor



loci such p16 and p53 [90]. There is however controversy regarding
the timing of changes in tumor-suppressor genes in relation to geno-
mic instability with some evidence to suggest that it occurs prior to
changes in p53 and adenomatous polyposis coli [91]. Shortened telo-
mere length and chromosomal instability have been demonstrated
using fluorescence in situ hybridization in BE [5293]. It has been
demonstrated using quantitative FISH that carcinoma in situ of the
esophagus arises from epithelium with short telomeres and chromo-
somal instability [94]. Additionally, copy number alteration and/or
loss of heterozygosity at chromosomal fragile sites such as FRA3B
are frequent and early events in BE, supportive of the concept of a
specific DNA damage profile attributable to Barrett’s [90].
Examination of sister chromatid exchange and micronudleus
frequencies in BE demonstrates a significant increase of both in
Barrett’s patients compared with controls, supporting the
hypothesis of deficiency in DNA repair capacity [95].

NE-xB activation in inflamed epithelial cells is involved not
only in the regulation of cell survival, proliferation and growth,
but it also regulates activation-induced cytidine deaminase
(AID), a nudeotide-editing enzyme which is directly involved
in DNA instability [96]. Specific to the esophagus, NF-xB is
activated by bile components and AID is aberrantly expressed
in the columnar cell-lined BE in addition to Barrett’s adenocar-
cinoma, while low levels of expression are observed in normal
squamous epithelial cells [s397]. Furthermore, in witro experi-
ments using non-neoplastic esophageal squamous-derived cells
showed that exposure to deoxycholic acid induces endogenous
AID expression via NE-XB activation [9g].

Profiling of the genomic landscape of EAC has revealed a total
of 117 genes with predicted coding alterations, of which poten-
tially actionable coding mutations were identified in 67 [98]. The
most frequently mutated genes identified were TP53, SYNEI and
ARIDI1A. Although these mutations are hypothesized to be later
events and necessary for tumor initiation, their identification does
identify potential new therapeutic targets [98]. Studies examining
the genomic differences between EAC and squamous cell cardi-
noma revealed substantial disparity in the spectrum of mutations
between histological types and interestingly that the majority of
mutations present in adenocarcinoma were already present in
matched BE samples [99]. Analysis of data from high-density geno-
mic profiling arrays identified focal RUNXI deletions at
21q22.12 in 15% of adenocarcinomas examined. RUNXI is
known to behave as a tumor-suppressor gene in leukemia, thus
making it an interesting focus. The potential function of RUNX1
was then further evaluated by reintroduction into an OE33 cell
line carrying a deletion, resulting in a 69% reduction in anchor-
age-independent growth and supporting a potential role as a
tumor suppressor in EAC [100].

Recombinase (hsRADS1) is a key component of homologous
recombination and repair in evolving genomic changes. Expres-
sion of RADS51 is elevated in Barrett’s adenocarcinoma cell lines
and tissue specimens relative to normal cells, and its suppression
was demonstrated to significantly prevent Barrett’s adenocarci-
noma cells from acquiring genomic changes to either copy
number or heterozygosity in several independent experiments

employing single-nucleotide polymorphism arrays [101). It is
therefore likely that hsRADS1 contributes significantly to geno-
mic evolution during serial propagation of these cells and corre-
lates with disease progression.

Reciprocal mechanisms link energy metabolism with
inflammation in the esophagus

Alteration in energy metabolism pathways is one of the new
emerging hallmarks of cancer and disease progression [102].
Various studies linking energy metabolism with angiogenesis,
hypoxia and inflammation all highlight how dual processes,
such as energy metabolism and inflammation, can act jointly to
significantly alter the local microenvironment and attenuate dis-
ease progression [103-106]. While little is known about the state
of energy metabolism in Barrett’s metaplasia, even less is
known about how energy metabolism and inflammation coop-
erate to facilitate metaplastic progression, despite some current
insight into metabolic signatures in esophageal cancer [107].

The proinflammatory cytokine IL-6, known to inhibit apo-
ptosis, enhances glycolysis by activating STAT3, thus increasing
the expression of two key glycolytic enzymes, hexokinase 2 and
PEKFB3 [108]. In one study, secreted levels of IL-6 and STAT3
were found in Barrett’s tissue compared to normal adjacent
squamous epithelium [ss]. In addition to increased IL-6 mRNA
in the Barrett’s tissue, immunological studies confirmed increased
IL-6 expression in the intestinal glandular epithelium [ss). There-
fore, increased expression of IL-6 may lead to activation of
STAT3 and a subsequent increase in expression of anti-
apoptotic genes and glycolytic pathway components. Tumor-
suppressor protein p53 mediates the expression of a number of
genes resulting in an increased rate of oxidative phosphoryla-
tion. It is well characterized as being mutated in Barrett’s tissue
from metaplasia to dysplasia and adenocarcinoma [109.110].
Interestingly, unlike wild-type p53, mutated p53 enhances
IL-6 promoter activity and thus may play a role in the upregu-
lation of IL-6 in Barrett’s metaplasia [111]. In addition, p53 has
been shown to indirectly regulate glycolysis through
NE-xP [112. NE-xP can organize energy metabolism networks
by controlling the balance between oxidative and glycolytic
pathways through the upregulation of mitochondrial synthesis
of cytochrome c oxidase 2 [113]. p53 also links inflammation
with energy metabolism in an HIFlo-dependent interaction
with TP53-inducible glycolysis and apoptosis regulator, a key
mediator of glycolysis under hypoxic conditions [109]. More-
over, HIF1o protein expression is associated with the inflam-
matory processes in Barrett’s metaplasia [88]. Therefore, further
studies linking inflammation with energy metabolism through
some of these pathways in the esophagus would enhance our
understanding of the mechanisms involved in tumor progres-
sion and allow more accurate diagnosis of pre-neoplastic
lesions more amenable to cancer development.

EAC demonstrates a unique miRNA signature
miRNAs are small non-coding RNAs that typically inhibit
the translation and stability of messenger mRNAs controlling



genes involved in cellular processes such as inflammation, cell-
cycle regulation, stress response, differentiation, apoptosis and
migration [114]. They have been found to play an essential role
in the progression and development of cancer via their ability
to function as oncogenes or tumor suppressors [115]. Inflamma-
tory gene and miRNA signatures derived from tumor and
adjacent non-tumor tissues have been demonstrated as a poten-
tially useful prognostic classifier in Barrett’s-associated adeno-
carcinoma when used in combination [116]. Measuring the
expression of 23 inflammation-associated genes in tumors and
adjacent normal tissues from 93 patients using quantitative
reverse transcription polymerase chain reaction, an inflamma-
tory risk model has been reported with IEN-y, IL-1ct, IL-8,
IL-21, IL-23 and proteoglycan expression in both tumor and
non-tumor samples associated with poor prognosis. This rela-
tionship allowed generation of an inflammatory risk score , and
when used in combination with miRNA-375 and the miR sig-
nature, an improved prognostic classifier was generated [116).

Histological subtype analysis of Barrett’s metaplasia has
revealed metaplasia-specific signatures and identified five miR-
NAs, which are significantly dysregulated across the histological
subtypes — two overexpressed has —miR-192, —-miR-215 and
three underexpressed has —-miR18a*, -miR-203 and —-miR-205.
Furthermore, the expression of three miRNAs [miR-99b and
miR-199a_3p and _5p] has been demonstrated to be associated
with the presence of lymph-node metastases, suggesting that
miRNA profiling may provide a useful prognostic tool in the
staging of esophageal cancer [117].

Expert commentary

Esophageal cancer continues to present a significant challenge to
both translational research and clinical management. An unprece-
dented rise in obesity levels in the western world and concurrent
rise in obesity-associated malignancy has forced investigators to
scrutinize this important association. The rising incidence of ade-
nocarcinoma of the esophagus highlights the importance of under-
standing the molecular mechanisms underpinning its association
with inflammation to identify key chemopreventative strategies.
A wide range of alterations in the tissue microenvironment,
metabolic profile, intracellular signaling pathways and miRNA
signatures contribute to Barrett’s-associated adenocarcinoma. Phar-
macological strategies to reduce systemic inflammation investi-
gated to date include aspirin and statins. Whilst there is currently
insufficient evidence to recommend routine Aspirin use as a che-
mopreventative agent, the results from a number of key clinical tri-
als such as the AspECT trial are hotly anticipated. This area of
investigation will undoubtedly expand in the coming years and
remains a key focus of both clinical and translational research.

Five year view: current & future anti-inflammatory
therapeutic targets

Pharmacological inhibition of COX-2

As a NSAID compound, aspirin irreversibly inhibits both COX-1
and COX-2 isoenzymes. It has been demonstrated to produce a
protective effect against EAC by a number of studies and a

recently published meta-analysis of nine studies has confirmed
this association and also suggested an increased degree of protec-
tion relative to the duration of usage [118]. As COX-2 induces the
production of Th2 cytokines and reduces the Th1 cytokine levels,
it could modulate the inflammatory disease sequence [119]. The
AspECT trial was designed to examine the chemopreventatve
properties of both aspirin and acid-suppression therapy and is due
to be completed in 2019 [8120]. Until it is completed, there is cur-
rendy insufficient evidence to recommend NSAIDs for use in the
prevention of esophageal cancer.

Anti-reflux therapy

There is no evidence that either pharmacological or surgical anti-
reflux therapy has the capacity to eradicate BE [121]. However, a
multicenter prospective cohort of 540 patients with Barrett’s
recently demonstrated that the risk of neoplastic progresson was
reduced during the follow-up period of 5.2 years [122]. Additional
research has demonstrated the antioxidant and immune-modulatory
properties of proton pump inhibitors [123]. Nonetheless, valid data
supportive of any overall cancer preventative effect are limited [124].

Weight loss

Despite the epidemiological evidence linking obesity with cancer
of the esophagus, the potentially therapeutic or preventative role
of weight loss in the context is unknown. A systematic review of
the incidence of esophageal cancer after bariatric surgery has
revealed a deficit in the reported incidence in the setting of bar-
iatric surgery [125]. Further studies are required to quantify the
potential benefit of weight loss in reducing the risk of EAC.

Statins

There is evidence to suggest that statin, a _hydroxymethylglutaryl-
CoA reductase inhibitor (HMG-CoA), use is associated with a
reduced risk of neoplastic progression in BE [126). /n vitro studies
have demonstrated the ability of statins to inhibit proliferation and
induce apoptosis in both malignant and non-malignant Barrett’s
cell lines (OE33, Flo-1, QhERT) [127]. Their efficacy is thought to
be due to a number of effects including reduction of Ras activity
and inhibition of both extracellular signal-regulated kinase and pro-
tein kinase B (AKT). Additionally, statin treatment increased
mRNA and protein expression of the anti-apoptotic proteins Bax
and Bad [127]. A recent study has advocated the use of statins in
combination with COX inhibition to demonstrate a reduced inci-
dence of progression of BE to EAC [128]. A cost-benefit analysis
concluded that in combination with aspirin, statins were an expen-
sive form of chemoprevention but could be cost—effective in a
cohort of patients at higher risk of progression to EAC [129]. Ran-
domized controlled trials are required to further determine whether
statins have chemopreventative effects in high-risk groups [130].

Dietary chemoprevention

Examination of the modulatory effect of Omega-3 fatty acids
on BE is currently underway and a Phase IV double-blind ran-
domized controlled trial is due for completion in 2014 [131].

This is based on the ability of both eicosapentenoic acid and



docosahexaenoic acid to compete with arachidonic acid for the
COX enzyme, thus inhibiting its metabolism [132]. Eicosapente-
noic acid has been shown to be associated with preservation of
lean body mass post esophagectomy, demonstrating its ability to
modulate immune function and limit catabolism in advanced
cancer [133].

Honokiol, a polyphenol in herbal tea, has pro-apoptotic effects
associated with the inhibition of STAT?3. It has been shown to
increase necrosis and apoptosis in transformed but not in non-
transformed Barrett’s cells and exhibit a similar effect on adeno-
carcinoma cells [134]. There is a great deal of preliminary work
required on the effect of STAT3 inhibition in BE and EAC; how-
ever, it remains a potential future therapeutic target.

Curcumin, the yellow pigment derived from turmeric, has been
a recent focus of investigation. It has been suggested to possess a
number of health benefits such as anti-oxidant, anti-inflammatory
and anti-carcinogenic properties [135]. Significant abrogation of
DNA damage and NF-xB activation produced by bile exposure
has been demonstrated 77 vitro with curcumin pre-treatment capa-
ble of abolishing the ability of deoxycholic acid to activate
NE-xB [135). The cytotoxic properties of curcumin are associated
with accumulation in the G2/M cell-cycle phases and chromatin
morphology consistent with mitotic catastrophe, indicating a non-
apoptotic mechanism of action for the compound. It also doubles
apoptotic frequency # vivo in Barrett’s epithelial cells [79,135].

Antioxidant therapy

Administration of a number of antioxidants has been shown to
prevent mucosal damage in models of esophagitis, suggesting a
role for anti-oxidant therapy in that setting [136]. /2 vitro studies
have demonstrated that treatment with antioxidants such as
vitamin C and C-PTIO (2-[4-Carboxylphenyl]-4,4,5,5,-tetra-
methylimidazoline-1-oxyl-3-oxide) can prevent DNA damage
by bile acid in OE33 cells and indeed are potentially more
effective used in combination with acid-suppression ther-
apy [137]. Further epidemiological studies have demonstrated a
potential link between the intake of B-carotene and decreased
risk of dysplastic BE [138). While it remains an interesting
potential treatment strategy, further studies are required to
investigate the potential of antioxidant therapy.
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