
Qualitative Comparison of Open-Source SDN Controllers

 

Andrei Bondkovskii 
* #

, John Keeney 
#
, Sven van der Meer 

#
, Stefan Weber 

*
 

*
 School of Computer Science and Statistics, Trinity College Dublin, Dublin, Ireland 

bondkowski@gmail.com Stefan.Weber@scss.tcd.ie  
#
 Network Management Lab, Ericsson, Athlone, Ireland. 

John.Keeney@ericsson.com Sven.van.der.Meer@ericsson.com 

 

Abstract—Telecommunication companies with expensive 

networks may become the biggest beneficiaries of SDN; however, in 

contrast to traditional routers, the development of SDN controllers is 

driven by open-source projects with involvement of the industry. 

Two prevalent projects in SDN development are the OpenDaylight 

and the ONOS controllers. These SDN controllers are advanced in 

their development - having gone through a number of releases - and 

have been described as being useful for a large number of use-cases. 

In this work, we compare and evaluate these controllers, in particular 

their northbound interfaces, by configuring them for a representative 

use-case, port-mirroring. 

I. INTRODUCTION  

The adoption of software-defined networking (SDN) 
promises significant benefits and cost reductions to operators 
of data networks. The ultimate goal of SDN is to provide 
networks as abstractions to applications that use the network 
and remove the need to physically configure network 
connections. In this work we examine the northbound 
interfaces for two of the major open-source SDN controllers, 
particularly because these interfaces are not standardized parts 
of SDN controllers and are currently poorly described. 
Northbound interfaces (fig 1) are mechanisms that network 
owners use to create abstractions of network services for 
application developers. We focus on the usability and maturity 
of these northbound interfaces motivated by a representative 
telecommunications network management use-case: 
duplicating control-plane and user-plane traffic using traffic-
mirroring to direct the traffic to a network probe performing 
Deep-Packet-Inspection (DPI).  

II. BACKGROUND 

While SDN is gaining industry traction the concept of 
network programmability is not new. One of the first 
significant attempts dates from the mid 1990s with ATM [1], 
when IP was not considered as the protocol of choice for future 
networks. Open Signaling [2] and DCAN [3] promoted the idea 
of separating the control plane from the data plane in 
networking devices, while Active Networking [4] proposed 
that routers should recognize the application using the network 
and treat their traffic in an application-appropriate manner. In 
the mid 2000s, the 4D Project [5], predecessor of NOX [6] the 
first SDN controller, proposed delegating control of network 
devices to a single device. At the same time the NETCONF [7] 
protocol was standardized as a candidate replacement for 
SNMP, and later became one of driving forces for SDN.  

The simplest definition of SDN describes a network 
architecture where a separate controller manages networking 

devices. Alternatively, SDN is a framework where networks 
are treated as abstractions and are controlled programmatically, 
with minimal direct manipulation of individual network 
components [8]. Different points of view reflect the diversity of 
expectations of SDN however the centralized control of the 
network remains the primary feature of SDN. The OpenFlow 
protocol [8], first presented in 2008, is a communications 
protocol to remotely manipulate the forwarding function of 
routers and switches, thus supporting a separation of network 
controllers from network elements. OpenFlow is considered by 
some as a synonym for SDN and is now a key constituent of 
most industrial SDN initiatives by acting as a southbound 
protocol used by SDN controllers (fig 1). 

The CORONET [11] developers proposed to use VLAN 
mechanisms installed into switches to simplify packet 
forwarding and minimize the size of flow tables. Microflow 
[12] goes even further and proposes to deal with small flows in 
the data plane without a controller, which means that 
forwarding devices would share the control plane with a 
controller. This approach aimed at data centers but violates one 
of the main principles of SDN - control and data plane 
separation. Another principle of SDN - centralized control - is 
also sometimes sacrificed to achieve scalability. Kandoo [13] 
propose to divide control tasks between a "root" controller for 
task requiring network-wide state and "leaf" controllers for 
applications that that require only local information. 
Distributed controllers are also supported by the Open Network 
Foundation (ONF) 

 
Fig 1: Common SDN Controller Architecture 

 

An SDN controller or network operating system (NOS) is a 
software based component that implements the control 
functions of the network and is usually represented as a 
collection of applications providing different functions of the 
controller [15]. The architecture of a controller can be broadly 



broken into 3 parts as shown in fig 1: the northbound interface, 
the core and the southbound interface. Northbound interfaces 
are a collection of API's that supports higher level applications 
with controller services such as synchronized topology views 
of the network, connectivity oriented services, QoS etc. 
Southbound interfaces provides control functions to the 
underlying infrastructure level devices as switches and routers, 
usually using a control protocol like OpenFlow, NetConf, 
OVSDB etc. Southbound interfaces collect information from 
network devices such as status, notifications, alarms, etc., while 
updating the networks devices with forwarding rules.  

Most of the networking industry leaders have now 
announced their own SDN controllers (e.g.: Cisco ACI, Juniper 
Contrail, Big Switch's BNC, Brocade Vyatta Controller, etc). 
Nonetheless SDN research and development remains 
concentrated in open-source projects, including: the 
OpenDaylight [9] controller hosted by the Linux foundation; 
the Open Network Operating System (ONOS) [10] initiated by 
Stanford and Berkeley Universities; the Floodlight project 
currently sponsored by Big Switch Networks; and 
OpenContrail driven by Juniper and others.  

III. SDN CONTROLLERS – NORTHBOUND INTERFACES 

To compare the functionality of the northbound interfaces 
of different SDN controllers we chose the two most popular 
open-source SDN controllers: OpenDaylight and ONOS. These 
two controllers have multiple northbound interfaces. For 
OpenDaylight we chose the Yang interface (a basic controller 
interface) and the Group Based Policy interface (the primary 
interface for controller developers). For ONOS we examine the 
Intent Framework which has a graphical user interface (GUI), a 
command-line interface (CLI), and a REST API. Using these 
controller interfaces we attempt a simple use case (traffic 
mirroring), and analyze their suitability for this task. 

The chosen SDN controllers primarily use OpenFlow as the 
underlying southbound interface. However, unlike some 
fundamental network functions (e.g. topology discovery, 
forwarding, filtering) traffic mirroring unusually is not natively 
implemented in OpenFlow but can be implemented using 
“group tables” (introduced in OpenFlow 1.3). Group tables are 
used to implement network functions that need to be aware of 
group of device ports instead of single port. For this reason 
traffic mirroring is a non-trivial task for SDN controllers, and is 
useful for comparing SDN controllers.  

A.  Open Network Operation System - ONOS 

ONOS [10] is an open-source SDN controller driven by 
ON.Lab (OpenNetworks Laboratory) – a non-profit 
organization founded in 2012 with the assistance of Stanford 
University and University of Berkeley to develop the ONOS 
SDN controller. ONOS is positioned as an SDN controller for 
telecommunications companies and service providers, with a 
focus on scalability, high availability and performance. The 
controller is implemented as a collection of OSGi Java 
applications (running as Apache Karaf components) that 
interact through Java APIs and REST APIs. ONOS provides a 
wide range of instruments for developing new controller-based 
applications, including templates and simple integration into 
command line or graphical user interfaces. ONOS provides two 

main northbound interfaces: the global network topology view 
and the intent framework. Applications can use the topology 
API to calculate paths, provision flows and perform other 
network functions. Since an the ONOS controller can be 
distributed the primary concern for the topology view is to 
maintain the consistency of the view. Each distributed 
controller instance maintains a global view and that is 
synchronized with another randomly chosen controller 
instance. ONOS Intents are an abstraction to represent the 
desire to connect two or more points, but does not specify a 
particular path between those points. When an intent is 
installed the controller calculates a best path and configures the 
underlying network devices to maintain the necessary routes 
(flows) to achieve the intent. If the network topology changes 
the controller must dynamically update the underlying flows. 

To administer networks ONOS provides a REST API, a 
Command-line interface (CLI) and a web-based graphical GUI 
interface. The REST API is primary used by developers but 
can also be used for day-to-day network administration (with 
some difficulty). The CLI, provided as an extended version of 
the Apache Karaf CLI, provides access to the main network 
functions such as maintaining flows on switches and the 
provision network elements such as switches and hosts. The 
CLI also provides an interface to the intent framework in a 
manner that is suitable for network administrators. The primary 
function of the GUI is to provide graphical representations of 
the network topology and support easily installation (but not 
modification or deletion) of intents.  

B. OpenDaylight - ODL 

OpenDaylight (ODL)[9] is an open-source SDN controller 
project maintained as part of the Linux foundation. The ODL 
project was started in 2013 and is widely supported by industry 
members and researchers, with the goal to make SDN more 
transparent and to act as basis for Network Function 
Virtualization (NFV). The controller is written in Java with the 
main development decisions voted on by an elected Technical 
Steering Committee. Similar to ONOS ODL uses Apache 
Karaf OSGI components. One of the main non-commercial use 
cases for ODL is providing network services for the OpenStack 
cloud platform. 

The ODL controller provides two northbound interfaces for 
applications: The OSGi interface for applications that are in the 
same address space as the controller and a web-based REST 
interface. Unlike ONOS, ODL does not provide any user-
friendly interface that would allow configuration or data 
collection by untrained users. Most of interfaces of the 
controller are represented in web-based interface DLUX, which 
is a collection of interfaces that provide access to the 
controller's functions as visualized REST and YANG 
interfaces. The ODL topology module provides a simple 
schema or map of interconnections of devices (usually 
switches) connected to the controller and hosts known to the 
switches. The ODL YANG UI module consist of a collection 
of all accessible REST API's in the controller along with 
information about the data structures used to communicate with 
the devices. Using this non-trivial YANG UI module a user can 
configure a network or query detailed information. 



ODL also supports Group Based Policies, a concept 
inherited from Cisco. Group based policies are similar to 
ONOS intents but are more flexible and comprehensive. Group 
based policies cannot be manipulated by the CLI interface but 
can be accessed by the REST API and has a well-defined 
DLUX graphical interface. Group based policies require 
advanced skills and deep understanding of the ODL network 
model, however they provide flexibility to define intents or 
connections at the transport layer as well as at the network and 
data-link layers. 

IV. USE CASE: PORT/TRAFFIC MIRRORING TO SUPPORT 

TRAFFIC ANALYSIS IN MOBILE CORE NETWORKS  

A key requirement for any Operating Support System 
(OSS) monitoring and managing a mobile telecommunications 
network is to understand the quality of the data connections 
experienced by network subscribers. Each of the nodes in a 
managed network provide a plethora of monitoring data that 
must be gathered, correlated and aggregated by the OSS 
system. However, examining the control-plane traffic and user-
plane traffic itself using network probing is another source of 
useful information about traffic characteristics and network 
behavior.  

 
Fig 2: Traffic probing in a mobile telecoms network 

 
Fig 3: Port Mirroring for DPI network probing  

 

In an LTE mobile telecommunications network (fig 2) user 
plane traffic flows to/from the Radio Access Network 
(EUTRAN) from/to the internet where all traffic is 
encapsulated in GTP (GPRS Tunneling Protocol) tunnels, and 
traffic must be extracted and reassembled before it can be 
examined. Therefore to perform traffic analysis requires 
massive-volume deep-packet-inspection (DPI) network probes 
to analyze user-plane and control-plane traffic. To avoid 
jeopardizing network throughput and performance this analysis 
should not be performed in-line but should instead operate on a 
copy of the user-plane and control-plane traffic. Unlike existing 
approaches requiring expensive hardware network taps, a 
simpler way to achieve this is to mirror the traffic being carried 
over a number of core-network connections using port-
mirroring at a small number of strategic network 
switches/nodes (fig 3), for example at Serving-Gateways (S-
GW) or PDN-Gateways (PDN-GW) (fig 2). As these network 
switches and nodes become virtualized, and networks between 

them become virtualized and much more dynamic, it is 
necessary to consider SDN techniques to achieve this traffic 
mirroring. In the following sections we examine the feasibility 
of executing such port-mirroring using the current off-the-shelf 
versions of the ONOS and ODL SDN controllers.  

A. Port mirroring using the ONOS SDN controller 

As mentioned, there are two main mechanisms employed 
by the ONOS SDN controller, the ONOS Intent framework, 
and the ONOS Flow framework. The ONOS Intent framework 
is an application that allows users to express forwarding 
policies in forms of intents, using abstract representations of 
switch ports as anchors. There are two interfaces provided: a 
CLI combined with Karaf's command line interface and limited 
functionality provided into ONOS's graphic user interface. For 
the purpose of this work we use CLI to install intents. The 
ONOS Flow framework support direct REST manipulation of 
individual switches. Both methods can provide port mirroring 
for this use case, but the main difference is that the Intent 
approach will itself evaluate how to configure the appropriate 
switches, whereas the Flow approach requires explicit 
instructions to install flows on particular switches. 

1) ONOS Intent Faramework – CLI 
To implement port mirroring on a network switch (e.g. 

switch of:0000000000000001) using the ONOS Intent 
framework one must simply create two intents that will match 
all incoming traffic on the appropriate incoming ports (e.g. all 
traffic from/to port 1 to/from port 2) and broadcast all traffic to 
another port (e.g. port 3). This can be achieved using the 
following Karaf CLI commands:  

> add-single-to-multi-intent of:0000000000000001/1  

 of:0000000000000001/2 of:0000000000000001/3 

> add-single-to-multi-intent of:0000000000000001/2  

 of:0000000000000001/1 of:0000000000000001/3  

These commands create the two intents, which are 
automatically translated to required OpenFlow commands to be 
installed in the switch. To verify configuration one can execute 

the intents CLI command or using the graphical user interface. 

2) ONOS Intent Framework – REST 
To implement similar port-mirroring intents using the 

ONOS REST API a pair of JSON REST request similar to the 
following is required:  

{  "type": "SinglePointToMultiPointIntent", 

   "appId": "DefaultApplicationId{id=35, name=org.onosproject.cli}", 

   "details": "SinglePointToMultiPointIntent{ 

         appId=DefaultApplicationId {id=35, name=org.onosproject.cli}, 

         priority=100,  

         ingress=ConnectPoint{ elementId=of:0000000000000001, 

                  portNumber=1}, 

         egress=[ConnectPoint{elementId=of:0000000000000001, 

                               portNumber=2}, 

                           ConnectPoint{elementId=of:0000000000000001, 

                               portNumber=3}],    

         …   " }    … 

} 

This request is sent to the REST endpoint: 

http://w.x.y.z:8181/onos/v1/intents where the IP address of 

the controller’s host is represented as w.x.y.z and /onos/v1 is 



common address for all REST interfaces for ONOS. There is 
no REST mechanism to change an intent, instead it must be 
removed and re-added. Installed intents can be inspected using 
a similar REST request.  

3) ONOS Flow framework – REST 

To install the necessary flows to perform port mirroring on 

a particular switch a pair of REST GET requests similar to the 

following can be sent to http://w.x.y.z:8181/onos/v1/flows : 

{ "priority":5, "isPermanent":true, 

   "deviceId":"of:0000000000000001",  

   "treatment": {"instructions": [ 

 {"type":"OUTPUT","port":2},{"type":"OUTPUT","port":3}]}, 

   "selector": {"criteria": [ 

 {"type": "IN_PORT","port": 1}]} 

}  … 

B. Port Mirroring using the OpenDaylight SDN Controller 

As mentioned, OpenDaylight provides two mechanisms to 
achieve port mirroring for our use case: using the REST/Yang 
interface, or using the Group-based Policy interface. However, 
it is important to note, in the current version of OpenDaylight 
some OSGi bundles cannot be installed at the same time, for 
example the Group Based Policy bundle is not compatible with 
OpenDaylight OpenFlow bundle. 

1) OpenDaylight REST / Yang interface 
OpenDaylight interfaces are also expressed using Yang 

data structure definition, and a graphical Yang user interface is 
provided based on the ODL DLUX graphical user interface. 
Using the Yang UI it is possible to directly manipulate the data 

structures provided by the opendaylight-inventory (ODLI), 
which is in turn translated to REST commands, which are 
further translated by the ODL controller and sent via one of its 
southbound interfaces (OpenFlow, NETCONF, OVSDB, etc.) 
to the underlying network elements. The graphical Yang 
interface for the controller is available at the address 

http://w.x.y.z:8181/index.html/yangui/index.  

To implement port mirroring using the Yang interface 
requires the creation of two flows where each flow defines a 
“match” for all input from a port and sends it to two output 
ports using a pair of “output-actions”. The action is available at 

config/opendaylight-inventory:nodes/node/XXX/flow-node-

inventory:table/0 where XXX refers to the node name, 

(openflow:1 in the following example), and where this flow is 
defined for table 0. The Yang interface then creates a REST 
request to create both flows similar to the request below: 

 {  "table": [{ "id": "0", 

         "flow": [ { "id": "probeflow1", 

               "match": {"in-port": "openflow:1:1"}, 

               "instructions": { "instruction": [{ "order": "0", 

                        "apply-actions": { 

                           "action": [{ "order": 1, 

                                 "output-action": { "max-length": 65535, 

                                    "output-node-connector": "3" 

                                 }},{"order": "0" 

                                 "output-action": {"max-length": 65535, 

                                    "output-node-connector": "2" 

                                 }, 

                              }]}}] 

               },   ...  

               "table_id": "0"},  

         "flow": [ { "id": "probeflow2", … } …   ] }] 

} 

2) OpenDaylight Group-based Policy Interface 
OpenDaylight Group Based Policies (GBP) allows users to 

express forwarding rules in form of policies between endpoint 
groups, thus expressing network configurations in a declarative 
versus imperative way [9] matching application connectivity 
requirements to the underlying details of the network 
infrastructure. Group-based policies can be manipulated using 
either the REST API or using the DLUX graphical interface. 
To define a GBP policy it is necessary to define endpoints, and 
grouping rules/selectors for endpoints to form endpoint groups. 
Endpoint groups are then referenced (selected) in contracts, 
either as providers of some capability or as consumers of some 
required capability. In the contract itself subject rules define 
how two endpoints are allowed to communicate, where these 
rules match against traffic and perform any necessary actions 
on that traffic. Currently there are only two types of action: 1) 
allow and 2) redirect to a separate service function chain. The 
allow action does not provide support for flooding or copying 
of traffic, thus cannot be used for purpose of port mirroring. 
Service function chains do not yet provide a port mirroring 
service either, but such service will likely appear in the near 
future. Additionally the rule classifiers are also limited 
(classifiers are the conditions in the rules that define which 
traffic is applicable for the rules). Currently classifiers support 
three options: 1) Ethernet type, 2) IP protocol, 3) L4 protocol, 
so there is no support for switch port selection, however a more 
flexible traffic type classifier would likely suffice to select all 
traffic required for our GTP traffic selection use case. 
Therefore, while port -mirroring is not currently supported with 
OpenDaylight Group-based Policies, the approach is flexible 
and useful for other use cases.  

V. COMPARISON 

To verify the correct operation of each of the mechanisms 
described above, each was implemented and tested (except for 
the ODL Group-based Policy interface, which at time of 
writing does not support a port mirroring function, however a 
hypothetical implementation can still be imagined). Each 
implementation was tested in an identical test environment and 
manually verified using a packet analyzer to ensure all traffic 
from/to switch port 1 to/from switch port 2 was mirrored to 
switch port 3 and correctly redirected to the probe appliance.  

In this section we evaluate different aspects of the four 
candidate approaches described above: ONOS's Intent 
Framework, ONOS's REST API, ODL's Yang interface and 
ODL's Group-based Policy interface. For the evaluation we 
defined four basic functions required to support port mirroring 
as a service. 1) Discovery: support to examine the network 
topology, identify the particular device and traffic ports 
(ingress, egress, mirror), and to examine the current 
configuration of device(s) involved. 2) Setup: ease and clarity 
to define and install the port-mirroring function. 3) Change:  
the extent to which is possible to change of port-mirroring 
function on the fly, e.g. add new switch ports without stopping 
the service. 4) Removal: the ease of removal of the function. 



A. Discovery 

Discovery consists of two main functions: topology view 
and presentation of the current configuration. In each of the 
systems their topology view component is implemented 
separately from the controller component itself, however the 
topology view often includes aspects of the controller interface. 
For example the ONOS Intent Framework GUI is integrated 
into the topology view, so it is possible to identify or change 
intent configurations directly with the topology view. The 
ONOS Intent Framework's CLI is also coupled with the 
topology CLI. The ONOS REST API also provides a topology 
view, although it is not as expressive, since results are 
represented only as JSON strings. For topology discovery in 
ONOS it is recommended to use web-based ONOS GUI rather 
than the REST API.  

ODL's Yang and Group-based Policy interfaces are 
integrated into the graphical DLUX interface with a graphical 
topology representation; however the topology viewer is not as 
informative as in ONOS. It is also possible to query topology 
using the Yang interface, but again results are presented only as 
JSON strings.  

Configuration representation in the ONOS Intent 
Framework is simple with both interfaces, GUI and CLI. The 
difference is that in the GUI the path that packets are forwarded 
through can be visualized in the current topology, i.e. by 
selecting a device all related intents’ connections are 
highlighted, however with this approach it is difficult to 
identify the effect of individual intents when multiple intents 
are installed. The ONOS CLI presents a representation of 
intents so users can easily understand an intent’s functionality 
and also define ingress and egress ports. The ONOS REST API 
provides very similar representation of intents as JSON objects, 
which also contain some control information, but remain 
readable.  

The ODL Yang interface provides a good representation of 
the configuration supported with Yang data structures. Instead 
of raw JSON strings or XML, the user can observe the 
information already parsed and presented graphically as the 
populated tables, pull down menus, radio buttons, comments, 
etc., as defined in the Yang interface. This automatic parsing 
significantly improves the quality of representation. The major 
drawback is a lack of documentation for the Yang interface, for 
example it is difficult to define the URL to send the GET 
REST request. Troubleshooting is also difficult as error 
messages are often inconsistent. The ODL Group-based Policy 
interface has a graphical representation of the current 
configuration, which shows all configured policies in a 
topology view. This representation is natively understandable 
once the user is familiar with the abstractions provided by 
interface, e.g. endpoints, subjects, contracts, etc..  

B. Setup  

The ONOS Intent Framework has two mechanisms to 
install intents. The first is to select two host icons in GUI and 

then select setup intent from the mouse context menu. This is 
suitable only for host-to-host or switch-to-switch intents and so 
is not applicable for port mirroring. The second mechanism 

uses the CLI, which is aided by context-sensitive text-
completion for the options and parameters being configured. 

There is a significant lack of documentation for the ONOS 
REST API, requiring manual specification of the JSON string 
to be sent. Some strategies to assist in forming the JSON string 
include: querying for similar intents and then changing the 
returned string, trial and error by examining error messages 
indicating incorrect requests, directly examine the source code 
for hints about data-structures, etc.. Although the ONOS REST 
API is the most expressive and reliable mechanism to install 
intents, the lack of documentation is a significant inhibitor. 

Similar to the ONOS REST API, the ODL Yang interface 
uses REST to perform flow configuration operations, however, 
the Yang interface visualizes data structures used to generate 
the REST JSON string with inputs specified using named text 
areas, radio buttons, pull down menus, etc.. The Yang interface 
is poorly documented, and most available tutorials and 
resources quickly become out of date as the interface evolves. 
For example, there is no indication of which inputs are 
compulsory or optional. On other hand, once familiar with the 
interface users can easily use it for a wide range of 
configurations.  

As described in the previous section the ODL Group-based 
Policy mechanism is not currently suitable for port mirroring, 
however other operations are easy to perform in the fully 
visualized interface. Although the Group-based Policy model is 
complicated, once it is understood then it becomes easy to use 
when creating new rules. As the other interfaces, this interface 
is new and still under active development, and again similar to 
other interfaces, this suffers from a significant lack of 
documentation.  

C. Change  

The ONOS Intent Framework GUI does not support 
changing existing intents. Instead it is necessary to delete 
existing intents and create new ones. For our use case this is 
not a major impediment. To configure port mirroring, we used 
the ONOS REST API to use both intents and flows. As with 
the Intent Framework interface, changing intents is not 
possible. Using the ONOS REST API it is possible to change 
flows on the switch by sending new configurations with the 
same table-/flow-ID. As with the difficulty in setting up flows 
or intents data structures are poorly documented.  

With the ODL Yang interface, one creates flows to install 
them to switches. These flows can also be easily changed by 
sending new configuration with same table-/flow-ID. As with 
initial flow creation, this operation becomes easier as the user 
becomes familiar with the interface and data structures. 
Although ODL Group-based policies cannot currently be used 
for port mirroring, we expect that once available, such port-
mirroring configuration changes will be as easy to use as other 
configuration changes supported by this interface.  

D. Removal  

With the graphical ONOS Intent Framework interface it is 
not possible to remove intents, but it is easy to locate and delete 
intents using the CLI interface. To remove intent using the 

ONOS CLI requires the remove-intent command along with 



the intent ID. Once an intent is removed it is not deleted, but 

rather its status is changed to withdrawn and remains in intent 
database. Removal of intents using the ONOS REST API is 

easier then creation (perform a GET followed by a DELETE for 
the required intent), but still far from obvious due to the lack of 
documentation. Removal of flows using the ONOS REST API 
is largely similar to the process of removing intents, so is easy 
once the installation process has been understood.  

Using the ODL Yang interface to remove a flow is 

symmetrical to discovery, except uses the DELETE operation 

after using the GET method to find the appropriate flow. Similar 
to discovery, this interface is difficult to use without 
experience. The ODL Group-based Policy interface provides 
easy to use methods to delete any part of a configuration 
depending on the operation required. For example, to delete a 
forwarding rule, a specific contract can be excluded from the 
contract list for an endpoint or endpoint group. 

VI. CONCLUSIONS 

Numerous approaches to manipulate and managed network 
as Software-Defined Networks (SDNs) have been previously 
presented, but recently a number of tools have presented 
themselves as ready for use. However, these tools, which are 
currently in very active development, largely remain poorly 
documented and their standardization remains uncertain, 
especially their northbound interfaces. In this work we have 
assessed the assorted northbound interfaces of two of the most 
popular SDN controllers (ONOS and OpenDaylight), which 
showed significant diversity in these northbound interfaces as 
summarized in Table 1. We based this evaluation on our 
experiences implementing traffic-mirroring – a basic 
mandatory networking function required to support real-time 
deep packet inspection in telecommunications network. We 
have defined and used simple evaluation criteria, based on how 
easy it was to: 1) examine the network (discovery), 2) add a 
new network function (setup), 3) change an existing function 
(change), and 4) remove a function (removal). While our 
evaluation was restricted to just two SDN controllers (ONOS 
and ODL) and a single network function (port-/traffic-
mirroring), we feel that these criteria will be useful to evaluate 
other SDN controllers and other supported network functions. 
It is clear from our evaluation that huge advances have been 
made, however, as expected there remains gaps in the 
northbound interfaces of these systems, particularly with 

respect to ease of use, documentation and completeness of 
functionality. 

REFERENCES 

[1] Juha Heinanen. Rfc1483: “Multiprotocol encapsulation over atm 
adaptation layer 5”. https://tools.ietf.org/html/rfc1483. 1993.  

[2] Campbell, A.T., Katzela, I., Miki, K., Vicente, J. “Open signaling for atm, 
internet and mobile networks” ACM SIGCOMM Comput. Commun. 
Rev., 29(1), 1999 

[3] University of Cambridge. “Dcan, devolved control of atm networks”. 
http://www.cl.cam.ac.uk/research/srg/netos/old-projects/dcan [Online; 
accessed 2015] 

[4] Tennenhouse, D.L., Wetherall, D.J. “Towards an active network 
architecture”. DARPA Active NEtworks Conference and Exposition, 
2002.  

[5] Greenberg, A., Hjalmtysson, G., Maltz, D.A., Myers, A., Rexford, J., Xie, 
G., Yan, H., Zhan, J., Zhang, H. “A clean slate 4d approach to network 
control and management. ACM SIGCOMM Comput. Commun. Rev., 
35(5), 2005. 

[6] Gude, N., Koponen, T., Pettit, J., Pfaff, B., Casado, M., McKeown, N., 
Shenker, S., “Nox: towards an operating system for networks”. ACM 
SIGCOMM Comput. Commun. Rev., 38(3), 2008. 

[7] Enns, R. “Rfc4741: Netconf configuration protocol” http://www. 
ietf.org/rfc/rfc4741. 2006. 

[8] Marschke, D., Doyle, J., Moyer, P. “Software-Defined Networking: 
Anatomy of Openflow”. Lulu publishing, 2015. 

[9] Linux Foundation. “The OpenDaylight Platform” 
https://www.opendaylight.org [Online; accessed 2015] 

[10] ON.Labs “ONOS Open Network Operating System”, 
http://onosproject.org [Online; accessed 2015] 

[11] Kim, H., Santos, R.R., Turner, Y., Schlansker, M., Tourrilhes, J., 
Feamster, N. “Coronet: Fault tolerance for software defined networks”. 
IEEE Intl. Conf. on Network Protocols (ICNP 2012), 2012. 

[12] Narayanan, R., Kotha, S., Lin, G., Khan, A., Rizvi, S., Javed, W., Khan, 
H., Khayam, S.S. “Macro flowows and micro flowows: Enabling rapid 
network innovation through a split sdn data plane”, Eur. Wksp on 
Software Defined Networking (EWSDN 2012), 2012. 

[13] Yeganeh, S.H., Ganjali, Y. “Kandoo: a framework for efficient and 
scalable offoading of control applications”, Wksp. on Hot topics in 
software defined networks (HotSDN 2012), 2012. 

[14] Tanenbaum, A.S., Wetherall, D.J. “Computer Networks” 5th ed. Pearson 
publishing, 2011. 

[15] Nunes, B., Mendonca, M., Nguyen, X.-M., Obraczka, K., Turletti, T., et 
al. “A survey of software-defined networking: Past, present, and future of 
programmable networks”. IEEE Commun. Surveys Tuts., 16(3), 2014. 

Table 1 Summary of Functionality Comparison of Northbound Interfaces 

 
ONOS Intent 
Framework 

ONOS REST API ODL Yang Interface ODL GBP Interface 

Discovery Easy but incomplete with 
GUI. CLI is more complete 
but more complicated  

Moderate Moderate, not documented Simple, fully visualized 

Setup Straightforward with CLI, 
limited with GUI 

Difficult, data structures 
not documented 

Difficult, not documented Not implemented 

Change Not implemented Not implemented with 
intents, difficult with flows 

Difficult / easy after previous 
step, not documented 

Not implemented 

Removal Easy with CLI, not 
implemented in GUI 

Moderate, data structures 
not documented 

Moderate/easy after previous 
step, not documented 

Not implemented 

 


