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Abstract— General circulation models (GCMs) are used for 

estimating future climate scenarios, run on a very coarse scale, so 

the outputs from GCMs need to be downscaled to obtain a finer 

spatial resolution. This paper provides a methodology for GCM-

Ensembles performance evaluation using a GIS platform by 

applying statistical spatial downscaling methods. Statistical 

downscaling methods were used in the projection process after 

validation and performance evaluation using several techniques 

such as Taylor diagram for each GCM-ensembles within 

independent sub-periods. Climate change projections for the 

Shannon River catchment in Ireland were developed for 

temperature and precipitation from multi-GCM ensembles for 

three future time intervals forcing by different Representative 

Concentration Pathways (RCP). The changes in temperature and 

precipitation were spatially projected at a very fine spatial scale.   

Keywords—GCM; RCP; downscaling; climate change; GIS 

modelling 

I.  INTRODUCTION 

Continued increases in greenhouse gas emissions at or above 

current rates would cause further warming during the 21st 

century which has been predicted to be greater than that 

observed during the 20th century [1, 2]. Projections of future 

climate change under scenarios obtained using climate system 

models have important practical significance, particularly for 

climate impact assessment studies and future emission control 

strategies [2, 3]. 

General circulation models (GCMs) are an essential technique 

in order to understand and predict the impacts of climate 

change. These numerical coupled models combine several 

earth systems including the atmosphere, oceans, land surface 

and sea-ice and offer considerable potential for the study of 

climate change and variability [4]. These climate models have 

been evolving steadily over the past several decades and in 

addition, are the most adapted tools for studying the impact of 

climate change at a regional scale. Recently, fully coupled 

Atmosphere–Ocean GCMs, along with transient methods of 

forcing the concentration of greenhouse gases, have brought 

considerable improvement in the climate model results [5].  

The current resolution of the GCMs, in average, is more than 

2o, two polar degrees on the earth’s surface, for both directions 

in each pixel, which is close to a few hundred kilometers 

between grid points. Hence, GCMs typically provide output at 

grid boxes, which are tens of thousands of square kilometers in 

area, whereas the scale of interest with respect to most 

environmental system impact studies is of the order of a few 

hundred square kilometers, or even less.  Several downscaling 

methodologies have thus been developed to deal with this 

problem of mismatch of spatial scales [5]. 

The spatial resolution mismatch between GCM outputs and the 

data requirements of environmental systems impacts models is 

a major problem. It is therefore necessary to produce some 

GCM-results processing to improve upon these global-scale 

models for impact studies. In order to overcome this obstacle, 

dynamical downscaling (regional climate models, RCMs) and 

statistical downscaling methods have been developed to fill this 

gap. RCMs are developed based on dynamic formulations 

using initial and time-dependent lateral boundary conditions of 

GCMs to achieve a higher spatial resolution at the expense of 

limited area modeling. The main problem of RCMs is the 

computational cost and so it is only available for limited 

regions. Moreover, despite improvements, outputs of RCMs 

are still too coarse for some practical applications, such as 

hydrological catchment impact studies, which need local and 

site-specific climate scenarios. Hence, statistical downscaling 

techniques have been developed to overcome these challenges 

[6-9]. In such environmental system impact studies, the 

emission scenario and the GCM are the main sources of 

uncertainty [10, 11]. Unfortunately, each step of the 

downscaling procedure also has associated uncertainties which 

all add up and constitute a cascade of uncertainty that must be 
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taken into account [8]. Recently, a set of scenarios known as 

Representative Concentration Pathways (RCPs) have been 

adopted by climate researchers to provide a range of possible 

futures for the evolution of atmospheric composition. These 

RCPs are competing and are going to replace earlier scenario-

based projections of atmospheric composition. For example, 

the RCPs are being used to drive climate model simulations 

planned as part of the World Climate Research Programme’s 

Fifth Coupled Model Intercomparison Project (CMIP5)  and 

other comparison exercises [12-15]. Since climate change 

projections obviously depend on the climate model results, the 

scientific community have set up an international project to 

compare these models. The various phases of the CMIP have 

grown steadily as testified both in terms of participants’ 

number and scientific impacts [16]. 

In this study, climate change projections for the Shannon River 

[17, 18] catchment are presented for several temperature and 

precipitation from multi-GCM ensembles for three future time 

intervals using a range of different Representative 

Concentration Pathways (RCPs). The projection process used a 

statistical downscaling procedure based on statistical 

relationships linking a set of large-scale atmospheric variables 

to regional climate variables in an observational calibration 

period. After validation and performance evaluation using 

several techniques such as the Taylor diagram for each GCM-

ensemble within independent sub-periods, the established 

statistical relationships was used to predict the response of 

future regional climates from the simulated climate model 

changes of the large-scale variables. This paper presents the 

innovative use of a Geographical Information System (GIS) as 

a downscaling environment, which is unprecedented in 

literature. 

II. METHODS 

A multi-stage formulation modelling was carried out entirely 

within the Geographic Information System (GIS) environment 

in order to evaluate the performance of climate model multi-

GCM ensembles and thereby adequately describe the future 

climate over Shannon river basin.  

A set of weather variables (temperature and precipitation) were 

downscaled from climate change models at high quality 

resolution (cell size 50m*50m) from the GIS model and 

projected to three future time periods, the 2020s, 2050s and 

2080s. Climate change models based on two different RCPs 

(using radiative forcing of 4.5 W/m2 and 8.5 W/m2 

respectively) were produced from median and 3rd quartile of 

multi-GCM ensembles simulation results. The performance 

evaluation process for climate models results using the Taylor 

diagram and different statistical tests then lead to the 

development of high spatial resolution projected maps for 

temperature and precipitation. 

A. Model Data  

Observed daily data for precipitation and temperature were 

obtained from all available stations (96 stations) in the Shannon 

Catchment from the national Irish meteorology organisation 

(Met Éireann), for the period 1961-2014 (according to each 

station records). For baseline calculation purposes, data from 

1961 to 2000 were used and the remaining data from 2000 to 

2014 were used for the calibration and evaluation processes. 

Large-scale surface and atmospheric data were obtained from 

the datasets of the International Centre for Tropical Agriculture 

(CIAT) and the CGIAR Research Program on Climate Change, 

Agriculture and Food Security (CCAFS) [19-21]. Standardised 

reanalysis variables were then used as candidate predictor 

variables to calibrate the transfer functions, linking the large-

scale surface and atmospheric variables to the observed stations 

data. 

GCM data were obtained, for five models from the Hadley 

Centre, Canadian Centre for Climate Modelling and Analysis, 

Centre for Climate Research in Japan, the Commonwealth 

Scientific and Industrial Research Organization and National 

Centre for Atmospheric Research, USA for both representative 

concentration pathways RCP 4.5and RCP 8.5. All the modelled 

datasets exist on a common grid resolution that is varied 

between 125 Km and 370 Km and were obtained for the grid 

box representing Ireland in the GCM domain. 

B. Selecting RCPs, modeling procesure and ensembles 

Statistical or empirical downscaling is an alternative approach 

for obtaining regional-scale climate information from large-

scale simulations to bridge the gap between global climate 

models and local impacts. The main idea behind statistical 

downscaling is to use statistical relationships to link resolved 

behaviors in GCMs with the climate in a study area. The study 

area’s size can be as small as a single point. This approach 

encompasses a range of statistical techniques as simple linear 

regression, delta change method, multiple regression, weather 

generators, canonical correlation analysis and artificial neural 

networks [22-28]. 

In this research, statistical tests (according to normality) for 

observed data, delta change and multiple regression methods 

were used to downscale future climate resulted from 50% 

(median) and 75% (3rd quartile) multi GCM-Ensembles forced 

by RCP 4.5 and RCP 8.5. 

This paper presents a GIS-based python algorithm for GCM-

Ensembles downscaling and performance evaluation 

simulations. This algorithm uses GIS as platform for 

simulation process through spatial geo-processors. The 

algorithm has a loop of process to downscale climate variable 

and evaluate the performance the designed GCM-Ensemble 

experiment. The observed weather data for Shannon, GCMs 

data and the selected RCPs are employed as a case study with 

different experiments in this GIS-based algorithm. 

1. The algorithm spatial simulation steps are as follow: 

2. Choose the GCMs that participated in the ensembles, 

which is illustrated in the previous sections 

3. Choose the forcing RCPs that targeted in each 

experiments. 

4. Feed the multidimensional files for each global model 

experiment into the algorithm, which based on the 

GCMs simulation data. 

5. Calculate the temporal scale mean for each simulated 

multidimensional file of each GCM experiment, in 



order to fix the temporal resolution between all the 

experiments that participated in the ensemble. 

6. Resample the grid size for each resulted gridded file 

from each experiment to unify the large scale 

resolutions. 

7. Overlap the simulated grids for all GCMs that 

participated in the experiments. 

8. Choose the downscaling method for each climatic 

variable in each experiment. In this case study, the 

developed GIS-based algorithm applies delta change 

method and multiple regression models as selected 

statistical downscaling methods under GIS platform.  

9. Run a sub-algorithm for the selected downscaling 

method for the specific experiment with the observed 

data as input.   

10. Evaluate the results for each experiment through 

statistics and Tylor diagram. 

Ensembles or weighting of the downscaled results was 

developed to overcome different GCM results risk in climate 

change projections. This ensembles or weighting was based on 

the individual GCMs ability to reproduce the properties of the 

observed climate. The modified impacts relevant climate 

prediction index is weighted based on the individual GCMs 

ability to reproduce the properties of the observed climate and 

is derived from the root-mean-square difference between 

modelled and observed climatological data [29, 30], median 

and 75 percentile (3rd quartile), assessed over the baseline 

period. The median and 75 percentile ensembles, produced 

from the weighted median and 75 percentile results for multi-

GCM described above, were developed for Shannon catchment 

and assessed over the baseline. 

The delta method or change factor is the ratio between GCM 

simulations of future and current climate.  It is used as a 

multiplicative factor to obtain future regional conditions so that 

the differences between the control and future GCM 

simulations are applied to baseline observations by adding or 

scaling the mean climatic to each time step. The method 

assumes that GCMs more accurately simulate relative change 

more than absolute values. In addition, the change factors only 

scale the mean, maximum and minimum of the climatic 

variables, ignoring changes in variability and assuming the 

spatial pattern of climate will remain constant [4].   

In order to evaluate the performance of models in a single 

diagram, Taylor diagrams [31] provide an efficient way of 

graphically summarizing how closely a model or ensemble fits 

observations. The similarity between two patterns is quantified 

in terms of their correlation, their centered root-mean-square 

difference and the amplitude of their variations. In this paper 

Taylor diagrams have been used to validate and evaluate the 

performance of climate models and ensembles. 

III. RESULTS AND DISCUTIONS 

In order to validate the climate models results, observed data 

for each modeled climate variable for the 1961-2014 periods 

were used for the validation process. High correlations were 

obtained for climate models validation as shown in Table (1) 

which illustrated statistical tests results (R2 values) for all 

modeled variable for Shannon catchment. 

 

Table 1: climate models validation statistical tests results. 

Predictands Predictors R R2 
Adjusted 

R2 

Standard 

error of 

the 

estimate 

Temperature Temperature 0.997 0.995 0.994 0.02047 

Precipitation Precipitation 0.997 0.994 0.993 1.58028 

 

For climate models and ensembles performance evaluations, 

Taylor diagrams and box-whisker plots have been prepared for 

each modeled monthly climate variable. In the Taylor diagram 

(Fig. 1), statistics for 8 models were computed with a colored 

point assigned to each model. The position of each point 

appearing on the plot quantifies how closely the model's 

simulated results match the observations. First of all, it can be 

seen that the pattern correlations are generally high (higher 

than 0.7 in all cases). Secondly, one can notice that the 

variance is generally underestimated by the models, whatever 

the climatic variable, RCP or ensemble. This was actually 

expected from the high values of R-square for validation 

period. It is also interesting to note that there is high coherence 

between the models: they share similar qualities or deficiencies 

(see the clusters of color points for each climatic variable).   

In Taylor diagram the horizontal and vertical axes represent the 

ratio of the standard deviations of the reference and simulated 

fields. The radial axis indicates the spatial correlation between 

the reference and simulated fields. The distance between the 

origin and any point is proportional to the RMSE.  

 
Figure 1: Taylor diagram for the mean temperature and 

precipitation of each forced RCP for the median (50%) and 3rd 

quartile 75% ensembles of the historical period (1961–2014).  



 
Also for the multi-GCM ensembles performance evaluation, 

Figures (2-9) were developed for each projected climatic 

variables and for each climate scenario changes from baseline 

values. Each table has box-whisker diagrams in which the 

center lines show the medians, the box limits indicate the 25th 

and 75th percentiles as determined by R software, the whiskers 

extend to 1.5 times the interquartile range from the 25th and 

75th percentiles, outliers are represented by dots, crosses 

represent sample means, bars indicate 95% confidence 

intervals of the means, and notches are defined as +/-1.58* 

inter quartile range /sqrt(n) and represent the 95% confidence 

interval for each median. Non-overlapping notches give 95% 

confidence that two medians are different.  It is clear that the 

absolute values and the changes from baseline values for each 

climate variable increase with increasing projected years and 

by moving from left to right side in each table from RCP 4.5 

(50%) to RCP 8.5 (75%).  

 
Figure 2: Monthly differences from baseline values box-

whisker plots for each year of predicted temperature (oC) forced 

by RCP 4.5(50%). 

 

 

 
Figure 3: Monthly differences from baseline values box-

whisker plots for each year of predicted temperature (oC) forced 

by RCP 4.5(75%). 

 

 

 
Figure 4: Monthly differences from baseline values box-

whisker plots for each year of predicted temperature (oC) forced 

by RCP 8.5(50%). 

 

 
Figure 5: Monthly differences from baseline values box-

whisker plots for each year of predicted temperature (oC) forced 

by RCP 8.5(75%). 

 

 

 
Figure 6: Monthly differences from baseline values box-

whisker plots for each year of predicted precipitation (mm) 

forced by RCP 4.5(50%). 
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Figure 7: Monthly differences from baseline values box-

whisker plots for each year of predicted precipitation (mm) 

forced by RCP 4.5(75%). 

 

 
Figure 8: Monthly differences from baseline values box-

whisker plots for each year of predicted precipitation (mm) 

forced by RCP 8.5(50%). 

 
Figure 9: Monthly differences from baseline values box-

whisker plots for each year of predicted precipitation (mm) 

forced by RCP 8.5(75%). 

IV. CONCLUSIONS 

This paper presents a performance evaluation for GCM-

Ensembles projections using an integrated statistical and GIS 

platform. The study shows that the differences between 

ensembles mainly depend on the original GCMs that were used 

in the ensembles. In this study, the comparisons between 

ensembles forced by two different RCPs show that there are 

some agreements in the climate change signal simulation in the 

study area. However, it is not easy to locate the changes with 

spatially precision and accuracy especially for precipitation, 

which makes the use of such results for decision-making 

difficult by relevant stakeholders and practitioners.  

The study of temperature shows that there are important 

differences between the ensembles, especially in summer 

months. These differences may of interest because of how they 

affect the accuracy of the simulations of hydrological 

processes. The study shows that downscaling is a crucial step 

when only one climate model is used to study the impacts of 

climate change because of the wide uncertainty related to GCM 

choosing process; it is important to apply multi-climate model 

in climate change simulation studies especially on hydrological 

impacts studies. 

The paper outlines the importance of using a GIS platform with 

raster data as a downscaling environment in order to derive 

very fine scale resolution future-projected changes in climate, 

especially for hydrological modeling purposes. 
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