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Abstract

The motivation for this thesis has been to improve the robustness of image processing appli-
cations to motion estimation failure and in particular applications for the restoration of archived
film. The thesis has been divided into two parts.

The first part is concerned with the development of an missing data detection algorithm that
is robust to Pathological Motion (PM). PM can cause clean image data to be misdiagnosed as
missing data. The proposed algorithm uses a probabilistic framework to jointly detect PM and
missing data. A five frame window is employed to detect missing data instead of the typical
three frame window. This allows the temporally impulsive intensity profile of blotches to be
distinguished from the quasi-periodic profile of PM. A second diagnostic for PM is defined on
the local motion fields of the five frame window. This follows the observation that Pathologi-
cal Motion causes the Smooth Local Flow Assumption of motion estimators to be violated. A
ground truth comparison with standard missing data detectors shows that the proposed algo-
rithm dramatically reduces the number of falsely detected missing data regions but also results
in an increased missed detection rate.

The second part is concerned with the applications of Global Motion Estimation. The
first contribution of this part is to introduce a robust and precise algorithm for Global Motion
Estimation (GME) using motion information from an MPEG-2 stream, which uses a hybrid
of two existing GME algorithms. The first algorithm estimates the parameters from the block
based motion field obtained from an MPEG-2 stream and also generates a coarse motion-based
background segmentation of the frame. The second is a gradient-based technique which estimates
the parameters from the image data directly. In this work, an initial estimate for the global
motion is obtained using the first approach. The parameters are then refined using the gradient
based technique, producing a final global motion estimate in the form of a six-parameter affine
model. Unlike existing gradient-based techniques, the motion-based segmentation is used to
weight out local motion rather than the size of the image residuals. The performance of the
hybrid algorithm is compared to an existing gradient-based technique over a range of challenging
sequences and is shown to be more robust to local motion than the existing approaches. The
hybrid algorithm is then applied to the problem of mosaicking in sports sequences in which the
global motion parameters can be used to make a panorama of an entire shot.

The final contribution of the thesis is a new algorithm to segment frames affected by film
tear. Film Tear is a form of degradation in archived film and is the physical ripping of the film
material. Tear causes displacement of a region of the degraded frame and the loss of image
data along the boundary of tear. In [21], a restoration algorithm was proposed to correct the
displacement in the frame introduced by the tear by estimating the global motion of the 2
regions either side of the tear. However, the algorithm depended on a user-defined segmentation

to divide the frame. This thesis presents a new fully-automated segmentation algorithm which
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divides affected frames along the tear. The algorithm employs the graph cuts optimisation
technique and uses temporal intensity differences, rather than spatial gradient, to describe the
boundary properties of the segmentation. Segmentations produced with the proposed algorithm
agree well with the perceived correct segmentation. A strength of the algorithm is that, although
the segementation can proceed automatically, a user initialised segmentation is still possible in

cases where the automatic segmentation fails.
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Introduction

The rise of Digital Visual Transmission in last decade of the 20*" century dramatically changed
the landscape of the broadcasting industry for content providers, broadcasters and viewers.
It allowed for a dramatic increases in the number of available broadcast channels available,
increasing opportunities for providers and promised higher visual quality for viewers, free from
the noise associated with the old analogue systems. With the introduction of Digital TV in
particular, broadcasters realised that the value of archives had greatly increased as they were
required to provide the content for all the extra broadcast channels.

However, as broadcasters turned to archives to fill the extra channels two things became
apparent. As archived media had been subjected over the years to wear and tear, the quality
of the material had been reduced. Consequently, archived footage often fails to live up to the
expectations of visual quality in the digital age. The second consideration is that degraded
footage consumes more bandwidth than higher quality material, making it more expensive to
broadcast. Hence, a requirement for digital restoration of archived media was born.

A wide variety of visual impairments have been observed in archived media'. These include
film shake caused by unintentional camera motion or problems during scanning. This can be
observed in image sequences as a high frequency global motion. Another degradation type is
film flicker which manifests as brightness fluctuations in image sequences. Dirt & Sparkle are
frequently occurring degradation artefacts. It occurs when material adheres to the film surface
or when the film is abraded. It also is commonly referred to as blotches. The visual impact

is that of temporally impulsive dark and bright spots distributed randomly across an image

See [57] for a more extensive taxonomy of degradations found in archived media
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sequence. Essentially blotches are a missing data problem as the spots are hiding patches of the
true image.

Digital restoration of these artefacts often depends on the estimation of object motion in
sequences to achieve a reliable and high quality restoration. For instance, knowledge of the
global motion of a sequence is required to stabilise image sequences effected by shake. However,
these restoration algorithms assume that all the motion in the image sequence can be reliably
estimated. Consequently, the quality of motion estimation is a key factor affecting the quality
of restoration. Poor quality restoration is often caused by failures in motion estimation.

The motivation behind this work has been to develop an understanding of the causes of
motion estimation failure and to improve the robustness of applications dependent on motion
estimation, especially those in the restoration domain. This can be achieved by either developing
more robust motion estimation algorithms or, where that is not possible, by detecting regions

of motion estimation failure and by treating such regions as special cases.

1.1 Pathological Motion Detection in Missing Data Treatment

Missing Data Treatment is a restoration application which refers to the removal of temporally
impulsive blotches from image sequences. In the 1980’s, a BBC research team led by Richard
Storey [98] was the first to consider that blotches could be digitally restored. However, this
work focused on blotch removal without motion compensation. Kokaram [52] recognised that
this approach could be enhanced by considering motion estimation as an integral part of the
process, especially for the detection of larger blotches.

However, like all applications dependent on motion estimation, missing data treatment algo-
rithms are susceptible to motion estimation failures. In particular, the certain motions of objects
cannot be estimated accurately no matter how sophisticated the motion estimation algorithm
is. Such motion is an issue as it often causes false detections of blotches, resulting in destruction
of true image data. This motion is known as Pathological Motion(PM) [8,84].

The first contribution of this thesis is to develop a new missing data treatment algorithm
which is robust to Pathological Motion. The strategy employed is to detect regions of Patholog-
ical Motion and to reject these regions as possibilities for blotch detection, thereby eliminating
false positives caused by motion estimation failure. This distinction is made possible by consid-
ering more sequence data, an approach first adopted by Bornard [8]. The detection is augmented
by diagnosis of PM on the generated motion information. Detection is made using a probabilistic
framework derived using Bayes Law which allows both the observed data and prior knowledge
of blotches and PM to be considered.
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1.2 Global Motion Estimation

Global Motion Estimation (GME) is the process by which the frame-to-frame camera motion
is computed from the image sequence data. It has been heavily used in the restoration world
to mitigate against the effects of shake. However, with the advent of the MPEG standards in
video compression, it has gained prominence as a means of improving the compression ratios of
sequences.

This thesis addresses some of the issues which affect the robustness of Global Motion Estima-
tion algorithms. The main concern is the impact of local motion (i.e. motion that is independent
of the global or camera motion) which often acts as a bias in the result. A popular method of
diagnosis of local motion is based on the computation of camera-motion compensated intensity
differences. However, this approach assumes knowledge of an approximation to the global mo-
tion. When this approximation is erroneous, the diagnosis of local motion breaks down, resulting
in further inaccuracies in the estimate. The contribution of this thesis is to adopt a diagnosis
technique which is not so reliant on knowledge an accurate approximation to the camera motion,
ensuring that this kind of failure is avoided. The resulting algorithm is a hybrid approach to
global motion estimation, for which the chosen application is the computation of mosaics from

image sequences.

1.2.1 Film Tear Restoration

Film tear is a degradation artefact in archived film caused by the physical ripping of the film
material, dividing the film in two. Principally, film tear restoration is a problem of Missing Data
Treatment since the tearing results in the destruction of image data. However, tear restoration
cannot be considered purely as a missing data problem, as it also results in a regional displace-
ment induced by the separation of the two halves of the film. This issue must be addressed
before any Missing Data Treatment process is employed. Displacement correction is in essence
a problem of global motion estimation since knowledge of the global motion of each region is
sufficient for correction.

Correction of this regional displacement was a problem first addressed in [21]. It outlines a
framework to detect film tear, to divide torn frames and to estimate and correct the induced
displacement. The contribution of this thesis is to propose a novel frame segmentation algorithm
to isolate the regions of the frame separated by the tear. The algorithm is derived from the
interactive segmentation technique outlined by Boykov et al. in [11] which requires a description
of the region and boundary properties of the desired segmentation. The boundary conditions of
the segmentation are characterised using knowledge of the image intensities of the tear region.
The segmentation also draws upon some of the local motion diagnosis techniques used in the

hybrid GME algorithm to describe the region properties of the segmentation.
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1.3 Thesis outline

The thesis is divided into two parts along the lines of the above sections. Part I (chapters 2
& 3) deals with the issue of Pathological Motion, while part II (chapters 4, 5 and 6) outlines
the work on Global Motion Estimation. The novel contributions of the thesis are outlined in

chapters 3, 5 and 6. The following is a summary of each chapter of the thesis.

Chapter 2: An Introduction to the Problem of Pathological Motion in Missing
Data Treatment

This chapter provides a description of the phenomenon of Pathological Motion and how it affects
Missing Data Detection algorithms. First of all, an brief outline of popular motion estimation
techniques are outlined. This is followed by a description of the causes of motion estimation
failure in general and of Pathological Motion in particular. Finally the chapter outlines the state
of the art in missing data detection, describing both the classic techniques that assume perfect
knowledge of the motion and the newer techniques which allow for the presence of Pathological
Motion.

Chapter 3: Pathological Motion Detection for Robust Missing Data Treatment

This chapter outlines the novel blotch detection algorithm. It provides a description of the
algorithm as well as description of the experiments performed to evaluate it. The performance
of the algorithm is compared to a number of existing blotch detectors. A ground truth for
blotches was available and each algorithm is compared in terms of its correct detection and false

alarm rates.

Chapter 4: A Brief Review of the Global Motion Estimation State of the Art

This chapter introduces some of the Global Motion Estimation algorithms described in the
literature. It also discusses the limitations of the existing techniques and introduces the concept

of a hybrid approach to Global Motion Estimation.

Chapter 5: A Hybrid Algorithm for Robust and Precise Global Motion Esti-
mation from MPEG Streams

The novel hybrid GME algorithm is introduced in this chapter. It gives an in-dept description
of the algorithm and how it is applied to the process of mosaicking from MPEG-2 streams. A
ground truth evaluation of the algorithm is performed and it is also compared to an existing

prominent global motion estimation technique.
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Chapter 6: Global Motion Estimation in Restoration: Automated Film Tear
Restoration

The novel torn frame segmentation algorithm is described here. An outline of the tear restoration
framework is presented and is followed by a detailed description of the segmentation algorithm.
Summaries of the results of the segmentation and the overall restoration framework are outlined.
The final sections of the chapter outline a further possible application of the algorithm, namely

to the detection of dirty splices in iamges.

Chapter 7: Conclusions

The final chapter assesses the contributions of this thesis and outlines some directions for future

work.

1.4 Publications

Portions of the work described in this thesis have appeared in the following publications:

[19] D. Corrigan, N. Harte and A. Kokaram. Pathological Motion Detection for Robust Missing

Data Treatment. In the IEEE International Conference on Image Processing, pages 621-
624, 2006.

[23] D. Corrigan, A. Kokaram, R. Coudray and B. Besserer. Robust Global Motion Estima-
tion From Mpeg Streams with a Gradient Based Refinement. In the IEEE International
Conference on Acoustics, Speech and Signal Processing, volume 2, pages 11-285 - 11-288,
2006.

[20] D. Corrigan and N. Harte and A. Kokaram. Automated Segmentation of Torn Frames
using the Graph Cuts Technique. To appear in the IEEE International Conference on
Image Processing, 2007.

Other Publications

[21] D. Corrigan and A. Kokaram. Automated Tear Treatment in Degraded Archived Media.

In the IEEE International Conference on Image Processing, volume 3, pages 1823-1826,
2004.

[22] D. Corrigan and A. Kokaram. Detection and Treatment of Film Tear in Degraded Archived
Media. In the IEEE International Conference on Image Processing, volume 4, pages 779-
782, 2004.
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Pathological Motion Detection



An Introduction to the Problem of Pathological

Motion in Missing Data Treatment

The treatment of missing image data is one of the most common problems in the restoration
of archived film. Degradation artefacts known as blotches (also called dirt and sparkle) appear
at random positions in the frame as regions of high spatial contrast to the neighbouring pixels
and replace the true image data at their location (Fig. 2.1). Blotches can be of varying shapes
and sizes, although the majority of blotches take up less than 10 x 10 pel in size. Usually, the
intensities of the blotches are at the extrema of the intensity range. The intensities for dirt,
which is the result of accumulation of particles on the film surface, are typically low, while
sparkle, caused by abrasion of the film emulsion, is normally associated with high intensities.
Another important characteristic of blotches is that they rarely occur in the same location in
consecutive frames. Consequently, blotches cause temporal discontinuities in the image intensity
function in both the forward and backward directions and are often considered as being temporal
impulses. The goal of Missing Data Treatment (MDT) algorithms in restoration is to remove

these blotches from a sequence. Typically, this problem is broken down in to 2 stages,

1. to detect the locations of the blotches which is referred to as Missing Data Detection
(MDD). Missing data detectors commonly exploit the temporal characteristic of blotches,
specifically that blotches cause temporal intensity discontinuities [15,61,75,89,92,98,104].
Due to the variable size, shape and intensity statistics of blotches, the use of purely spatial

methods is not suitable for the detection of blotches.



Figure 2.1: Fach image highlights a frame with blotches present. The red shapes highlight
regions with dirt which are the dark spots in the highlighted regions. The blue circle highlights

an area with sparkle present which is the bright spot in the circle.

2. to find the true image data at these locations (also known as Missing Data Interpolation
(MDI)). While purely spatial techniques for interpolation do exist (e.g. image inpainting
[87] and texture synthesis [34,36]), most MDI algorithms exploit the temporal redundancy

of image sequences and also consider data from neighbouring frames [57, 60, 62].

Motion Estimation is a vital component in MDT algorithms. It is employed in detection to
compensate for object or camera motion, ensuring that false alarms do not occur due to their
motion. Accurate Motion Estimation also ensures that the correct temporal data is used to
“fill in” blotches in the interpolation stage. However, any improvement in the robustness of the
algorithm is mitigated if the estimated motion is not accurate. Bad motion estimates can cause
clean areas of the image to be flagged as a blotch and will cause blotches being “filled in” with
the wrong data (Fig. 2.2).

For the purposes of this work, the causes of motion estimation failures are broken down into

three main categories.

1. Motion estimation failure can be caused by the artefacts themselves. As blotches are
impulsive defects, they obviously cannot be tracked and so will cause motion estimation
failure. Large blotches, especially those larger than the block size of the motion estimator,
significantly bias the value of the estimated motion. This problem was taken into account
by Kokaram et al. by designing integrated MDT algorithms which refines the motion field,

as well as detecting and recovering the missing data, in an iterative fashion [53,57,60].

2. Failures can occur when the quality of the image data is not suitable for accurate estima-
tion of the motion. There are certain spatial textures of the image data, from which an

unambiguous estimate of the motion can not be estimated. Such data is referred to as
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Figure 2.2: Left: A frame of a sequence where the the propeller blades is not accurately
estimated; Right: The image after MDT using [60]. The arrows indicate the removal of the

blades due to the blades being misdiagnosed as missing data.

ill-conditioned image data [48,54]. Examples of these textures include flat homogeneous
regions of an image (e.g. a clear sky), straight object edges and periodic textures. The
aperture effect (Fig. 2.3) is a well-known example of ill-conditioning in motion estimation
and is due to the block size of the motion estimator! (i.e. the aperture) is too small to

allow an unambiguous estimate of the motion to be found.

3. Failure can be caused by a phenomenon referred to as Pathological Motion (PM). PM is
associated with erratic motion patterns which cannot be estimated accurately by a motion
estimator (Section 2.2). It also causes false alarms in MDD, resulting in damage to clean
image data during MDT (Fig. 2.2).

This thesis is concerned with improving the robustness of MDD algorithms to Pathological
Motion. In this chapter the notion of Pathological Motion and how, in the past, PM has been
addressed in the context of blotch detection. First of all, a brief overview of motion estimation
is presented which describes the most popular motion estimation techniques. This is followed by
an introduction to Pathological Motion which intoduces some of the motion patterns which are
commonly pathological. In section 2.3 a review is presented of some existing MDD algorithms
which do not include models for PM. Finally, the state of the art of PM detection for Missing

Data Detection is presented.

2.1 An Introduction to Motion Estimation

Motion estimation is a vital tool in many digital video processing applications and has been a

prominent research here. This section gives an overview of the most prominent motion estimation

1See Section 2.1
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N
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Key:

[ ] Object in current frame

1 Object in previous frame

WK, True Object Motion

g Apparent motion

Figure 2.3: This figure demonstrates the aperture effect which is an example of motion esti-
mation failure due to ill-conditioned data. Because the aperture (the red box), in which the
motion of the square is being estimated, is too small, the true motion of the square cannot
be estimated. It appears from the aperture that the line is moving horizontally. However, the
vertical motion of the line cannot be determined. The motion could be estimated accurately by
estimating motion with the aperture centred on one of the corners or by increasing the aperture

size.

strategies and discusses their common traits. A more comprehensive review of motion estimation
algorithms can be found in one of the many detailed review publications in the literature (e.g.
[49,54,70,97,100]).

In order to estimate motion in image sequences, a model must be defined which describes

the relationship between neighbouring frames. Such an image sequence model is given by

= Int1(9(x)) + e(x) (2.1)

where [, is the intensity function for frame n of the sequence, where f(x) and g(x) are functions
describing the motion between frame n and frames n—1 and n+ 1 respectively at a pixel location
x and e(x) is the gaussian distributed error of the model. In other words, the intensity every
pixel in the current image is the same intensity as a pixel at some location in both the current
and previous frames plus some error.

Estimators fall into one of two categories. The first is Global Motion Estimation (GME),
which attempts to find a single set of motion parameters that describes the motion of the entire
frame. GME is not discussed further in this chapter, but Part II of this thesis discusses this
topic in more detail. The second class of motion estimator, known as local motion estimation
or optic flow, allows each pixel to have different motion parameters. In this way, the motion of

individual objects in a sequence can be measured. The motion model for each pixel is usually
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chosen to be purely translational which results in an image sequence model given by

In(x) = I1(x + dppn-1(%)) + e(x)
= Int1(x+ dpypt1(x)) + e(x) (2.2)

where d,, ,—1(x) and d;, ,+1(x) are the translational displacements between frames n — 1 and
n and between n + 1 and n respectively. dj, ,—1(x) and d,, »4+1(x) describe the backward and
forward motion fields for the frame n and are vector valued functions of the form d(x) =
[d.(x), dy(x)]. By defining the Displaced Frame Difference (DFD) as follows

App-1(x) = In(x) = In—1(x + dpn-1(x)), (2.3)
equation 2.2 can be expressed in the form

Apn-1(x) = e(x)
Ay 1 (x) = e(x). (2.4)

The size of the DFD describes the error in the motion model. A small DFD value at a pixel site
suggests that the estimated motion vector accurately describes the motion of the pixel, larger
values indicate that the estimated vector is not accurate.

Independently estimating a motion vector for every single pixel is an ill-posed problem and
another piece of information on the nature of motion fields needs to taken into account. This
is provided from the observation that in a neighbourhood the motion field is smooth, an obser-
vation known as the Smooth Local Flow Assumption. Instead of estimating a vector for each
pixel, the image is divided into blocks of N x N pixels and a single vector is estimated which
describes the motion of a block. The choice of block size is significant the performance of the
estimator. Choosing a larger block size makes the estimator more robust to image noise and
to ill-conditioned data. However, if more than one object is moving within the block, then the
estimated motion is not likely to match the motion of either object.

There are many classes of motion estimation algorithms, the most popular of which are
e Block Matching
e Gradient-Based Motion Estimation

e Phase Correlation

Block Matching

Block Matching (BM) algorithms estimate motion of each block in the current frame by finding
the most similar block in a reference frame. The estimated motion vector is the relative position
between the block in the current frame and the block in the reference frame (Fig. 2.4). Suitable

similarity measures include the Mean Square Error (MSE) or Mean Absolute Difference (MAD)
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Figure 2.4: This diagram represents the BM technique using a full motion search. The motion
of each block in the current frame is estimated by finding the most similar block in the reference

frame within a user-defined search window.

of the DFD of the block, and the most similar block is the reference block that minimises the
similarity measure. An obvious strategy for performing Block Matching is to test every possible
vector in a user-defined range. Known as a Full Motion Search, this strategy, selects the motion
vector in the range with the optimum similarity measure. The main disadvantage of the Full
Motion Search is the heavy computational load involved in taking the similarity measures for
every possible motion vector. Computational complexity increases with increasing motion vector
range and depends on the motion vector precision, which is also user defined. In an effort to
reduce the computational load, algorithms have been proposed which use alternative search
strategies to the Full Motion Search [38,67], searching only a subset of the candidate motion
vectors in the given range. Such methods are no longer guaranteed to find the vector with the

optimum similarity measure.

Gradient-Based Methods

An alternative strategy to block matching is gradient-based motion estimation which solves for
the motion d of each block? by expressing the right hand side of equation 2.2 using a Taylor

Series expansion as follows
I(x) = I,_1(x) + dT VI, 1(x) + €(x) (2.5)

where VI,,_;(x) is the spatial gradient of I,,_;(x). The Taylor Series expansion allows direct
access to d. By applying the expansion to each pixel in the block, an over-determined system
of equations is obtained and the motion vector d can be solved directly using a pseudo-inverse

approach. The main advantage of gradient-based methods over BM is that they are much less

2The subscript ,,n—1 has been dropped for sake of brevity of notation.
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computationally intensive and can, in theory, estimate vectors to an infinitely fine precision.
However, the Taylor Series expansion is only valid over very small distances and consequently,
only small motions may be estimated with this method. In order to overcome this limitation,
a series of recursive methods have been proposed [4, 54, 76] which iteratively solve for d, by

expanding the Taylor Series about the current estimate of the motion.

Phase Correlation

Phase Correlation techniques [46, 66] exploit the properties of the Discrete Fourier Transform
(DFT) to solve for the motion of each block. Since a block in the current frame is assumed to
be a shifted version of a block in the reference frame (I,,(x) = I,,—1(x + d)), the 2D DFT of the
block, F,(w), is given by

Fp(w) = AW R (w) (2.6)

Like the Taylor Series expansion in the gradient-based method, Eq. 2.6 allows direct access to
the motion vector d. By manipulating this equation, it can be shown that the inverse DFT of the
normalised cross-power spectrum of I, and I,,_1 yields a two-dimensional delta function with the
impulse offset by the vector d. Consequently, the motion can be found by finding the position
of the impulse. The main advantage of the phase correlation technique is its relatively small
computational complexity. However, unless the phase correlation function is interpolated [101],

the vectors cannot be estimated to sub-pixel precision.

2.1.1 Motion Estimation Failure and Temporal Discontinuities

Motion Estimation Failure occurs when the estimated motion vector does not match the true
motion of the pixels. In the introduction to this chapter, these failures were broken into 3
categories; failures due to degradation, ill-conditioned image data and PM. Other contributory
factors include the wrong choice of block size and the complexity of the motion estimator.
Obviously, in most cases, prior knowledge of the true motion does not exist. This calls
for another method of quantifying failures. A convenient measure of failure is the size of DFD
defined in equation 2.3. It has already been stated that, according to the motion model (Eq. 2.2),
small DFD values correspond to a good motion match and that a large DFD value corresponds
to bad motion match. In effect, the sequence intensity function is considered to be temporally
smooth along motion trajectories and this smoothness is violated when the motion estimator
fails. Therefore, failures are associated with temporal discontinuities in the intensity function.
Temporally impulsive degradation artefacts (i.e. blotches) cause temporal discontinuities
(Fig. 2.5), as the intensity of the artefact is significantly different from the true intensity, and
this is a characteristic exploited by most missing data detectors (See Section 2.3). On the other
hand, errors due to ill-conditioned image data do not typically result in temporal discontinuities
(Fig. 2.6). The problem is that there are many candidate vectors that result in low DFD values.

The algorithm of Kokaram [52,54] proposes a modified gradient-based motion estimator which
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Figure 2.5: This figure demonstrates that blotches cause temporal discontinuities. The right
image shows the DFD between the frame depicted in left image and the previous frame in the
sequence. The dark region in the DFD indicates high values caused by the blotch. High DFD

values correspond to temporal discontinuities in the image sequence.

Figure 2.6: This figure shows shows that motion estimation failures due to ill-conditioning
do not normally result in temporal discontinuities. The arrows in the left image indicate the
motion of each image block. The image blocks in the flat region in the middle of the image
are ill-conditioned and the vector field in this region contains large motion vectors eventhough
this region is not moving. In the DFD for the left frame (right image), there is no temporal
discontinuity in this region. Although the vectors are clearly wrong, they still match with a

similar block in the reference frame.

incorporates a model for ill-conditioned data. It expands on earlier work by Martinez [70] and
Driessen et al. [31] and constrains the motion estimate to be in the direction of maximum spatial
contrast if the data is ill-conditioned.

The third category of motion estimation failure is Pathological Motion and this motion
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Figure 2.7: This figure shows and example of occlusion and uncovering. The top row shows
2 examples of isolated occlusion. On the left the actors are walking behind foreground objects
and on the right the train is occluding the calender. The bottom row shows an example of
intermittent motion. In these two consecutive frames the aircrafts’ propellors are appearing and

disappearing. This pattern is repeated over the sequence.

phenomenon is described in the following section. Like impulsive artefacts, PM can cause
temporal discontinuities and can consequently be confused with missing data (Section 2.3). This
is followed in section 2.4 by a review of MDD algorithms which include models for Pathological
Motion.

2.2 Pathological Motion

State of the Art motion estimators contain models for a wide variety of motions including
translation, affine motion and perspective distortions. However, there are motion patterns which
fall outside these models and so can not be estimated properly. These motion patterns are

considered to be pathological.
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Figure 2.8: The 2 images are examples of non-rigid motion. In the left image the shape of the
jacket changes in an erratic manner. It is an-example of self-occluding motion as the sleeves are
momentarily hidden behind the body of the jacket. The right shows an example of flames which

also move in an erratic manner.

Figure 2.9: This figure shows two images with fast motion which results in motion blur. Blurred
objects appear to be elongated along their motion trajectories. In the left image the forearm,

racket and ball are all blurred, as are the rotor blades in the right image.

For the purposes of this thesis, Pathological Motion is defined as the motion of objects which
cause motion estimation failure. This definition distinguishes PM from motion estimation fail-
ures caused by artefacts and by ill-conditioned data. PM is specific to the indicator of motion
estimation failure used, which in this work is the presence of temporal intensity discontinuities.
Furthermore, PM is motion estimator specific. Some motion patterns may cause failure in one
estimator and not in another, although a given motion pattern is likely to be pathological for
the majority of estimators.

Both Rares et al. [84,86] and Bornard [8] have presented taxonomies on common PM patterns.
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Figure 2.10: Examples of motion superposition are shown in this figure. Left: A sequence

with semi-transparent smoke. Right: Water with light reflecting on the surface.

The following list of PM types further evaluates the taxonomies of Rares and Bornard and
discusses patterns in terms of their underlying causes and how they cause motion estimation

failures.

e Occlusions and Uncovering (Fig. 2.7) - This motion pattern can either isolated or repeti-
tive. The isolated occlusion and uncovering typically occurs when the a foreground object
is moving over the background. As the object moves, regions of the background near the
boundary of the object are occluded and uncovered. Repetitive occlusion and uncovering
occurs when an object is periodically appearing or disappearing. Examples include the
flapping of a bird’s wing where one side of the wing is visible in one frame and the other
side is visible in the next frame. This repetitive occlusion can be considered a temporal
aliasing of the moving object and is referred to as intermittent motion by both Rares and

Bornard.

e Non-Rigid Motion or Erratic Motion (Fig. 2.8) - This category deals with the motion of
non-rigid bodies whose shape is changing rapidly with time. This pattern typically causes
motion estimation failure because the resolution of the estimated motion field is coarser
than the true resolution of the motion field. This motion pattern can also be self-occluding,

as part of the object may be occluded by the object itself.

e Fast Motion (Fig. 2.9) - Most motion estimators are restricted in the size of motion they
can estimate. BM algorithms have an explicit limit on the size of vector, while gradient-
based methods lose accuracy with large motions. If the size of the motion exceeds that
limit, the estimator will fail. Fast motion also may also result in motion blur. Motion blur
occurs when there is significant motion over the the exposure time of the camera which

causes the moving object to be smeared over the background. As a result, the visible
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intensity profile and shape of the moving object is changed.

e Motion Superposition (Fig. 2.10) - Motion Superposition occurs when two or more motions
are associated with a particular site. This is typically associated with the motion of
transparent and semi-transparent objects but may also be caused by reflections on the

surface of an object.

2.3 A Brief Review of Missing Data Detection Algorithms

The most effective Missing Data Detection algorithms exploit the temporal characteristics of
blotches. Blotches are detected by searching for temporal discontinuities in the sequence. If a
blotch is present at a location in a frame, then temporal discontinuities exist at that location
between the current frame and the previous frame and also between the current frame and the
next frame. Therefore, in order to detect blotches, it is necessary to compare the intensities of
a three frame window centred on the frame under test. This section outlines some of the more

well-known MDD algorithms. It considers both deterministic and probabilistic approaches.

2.3.1 Deterministic Blotch Detection

The simplest method of detecting blotches is to look for sites which have temporal discontinuities
in both the forward and backwards motion vectors. In section 2.1.1 the link between high DFD
values and temporal discontinuities was introduced. By defining the backward (A;) and forward
(Ay) DFDs as follows

Ap(x)
Ap(x) =

[n(X) — In_l(x + dn,n—l(x))
In(x) = Ing1(x + dnjny1(x)), (2.7)

temporal discontinuities can be detected by applying a threshold to the DFDs. This results in
a detector known as the SDIa (Spike Detection Index - a), outlined by Kokaram et al. in [61],
which is defined by the following equation

bapra (x) — 1 If |[Ap(x)] > 0 AND [As(x)| > 6 2.8)
0 otherwise

where d; is the value of the threshold. A blotch is detected at pixel site x if bgpra(x) = 1.
Although the SDIa algorithm detects temporal discontinuities, it makes no distinction about
the sign of the DFD value. Given that the intensity of blotches is either much higher or lower
than the image data they replace, and are by extension much higher or lower than the local
intensities in the surrounding frames, this implies that the temporal intensity profile of a blotch
is an impulse. Therefore, not only should the size of the DFDs be large, they should also

either be both positive or negative (i.e. have the same sign). This observation was first made
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Figure 2.11: This diagram illustrates the pixels used in ROD detector.

by Storey [98] who incorporated it in a detector that did not use motion compensation. The

motion compensated extension of this algorithm, called the SDIp [55], is given by

1 If [Ap(x)] > 6 AND |As(x)| > 6 AND (sign(Ay) = sign(Ay))
bSDlp(X) = (2.9)
0 otherwise

Obviously, the condition for a blotch in SDIp is stricter than in SDIa. It employs a more
complete blotch model and in theory should have a lower false alarm rate than SDIa.

A similar detector to the SDIp is outlined in [92], in which Schallauer et al. enforce the
impulse condition in a different manner. Instead of constraining the sign of the DFDs to be the
same, the intensities of the motion compensated backward and forward frames are compared.
Even if a blotch is present in the current frame, the intensities in the backward forward frames
should be similar. The detector in [92] proceeds on this basis by applying a second smaller
threshold to the difference between the forward and backward intensities. The detector now

becomes

1 If |Ab(X)| > 6 AND |Af(X)| > 0y
bsen (%) = AND [I 11 (% + dp 1 (%) = Tn1(X + dip1())] < 6 (2.10)

0 otherwise

where d; is a user-defined threshold such that §; < §;. In practice, this constraint is stricter than
the sign constraint in the SDIp technique. Depending on the size of §;, the detection rate for
this algorithm will be lower than for the SDIp.

The ROD Detectors

Nadenau and Mitra [75] introduced another blotch detector in image sequences known as the
Rank Order Difference (ROD) Detector. It incorporates some spatial information into the detec-
tion by considering a neighbourhood of pixels in the forward and backward motion compensated

frames.
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Considering the following list of pixels, reperesented visually in Fig. 2.11,

p1 = Lioi(x+dpn-1(x))

p2 = In_1(x+dyp-1(x) +[0 1)

p3 = Lii(x+dpp_1(x)+[0 —1])

ps = Ipi(x+dyp(x)

ps = Inpi(x+dppsi(x)+1[01])

pe = Inp1i(x+dpnsi(x)+[0 —1])

I, = I,(x), (2.11)

the ROD detector proceeds by arranging p; to pg in ascending order forming a list [ry, ro, r3, r4, rs5, 7g].
The median of the pixels is then calculated as M = (rs + r4)/2. From this three motion com-

pensated difference values are calculated according to

If1,>M
er =1, —rg
ex =1, —r5
e3=1Ip—ry4
Ifr, <M
e1=r1—1,
e2 =12 — I

€3 = T3 — Ip (2.12)

Blotches are detected by examining the values of the motion compensated differences. Three

thresholds are selected and detection proceeds according to

1 If (61 > 51) OR (62 > 52) OR (61 > 53)
brop (x) = (2.13)
0 otherwise
where §1, d9 and 03 are the thresholds such that d; < do < d3. The choice of §; is the most
critical as the e; > ¢; condition is typically the first to be satisfied. In [5,104] a simplified ROD
(sROD) detector was outlined. By setting both d2 and d3 to infinity, the detector becomes

1 If (61 > (51)
bsROD(X) = (2.14)
0 otherwise
The inclusion of the extra spatial information in the ROD detectors gives them improved
robustness over the SDI detectors, especially to image noise. If there is a large variance in the
values p1 to pg, then the range of intensities for which the pixel under test can be flagged as a

blotch is restricted to the top or bottom of the intensity range (Fig. 2.12).
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Figure 2.12: The red bands indicate the range of intensities for which a blotch would be
detected. As the difference between ry and rg increases, the range of blotch intensities reduces,

making detection of blotches less likely.

The 3D AR Detector

In [61], Kokaram et al. outlines another blotch detector that, like the ROD detectors, includes
spatial information from the motion compensated neighbouring frames in the decision process.
It is also used in the integrated MDT frameworks outlined in [53,60]. A 3D AR prediction model
predicts the intensity of the current pixel, I,,(x), which is modelled as a linear combination of a

neighbourhood of pixels in the neighbouring frames. The model for I,,(x) is given by

N
L(x) = Y aplp-1(x + dpp-1(x) + ax) + e5(x)

k=1
N

= bpIpi1(x + dn g1 (x) + pr) + ep(x) (2.15)
k=1

where ay, and by, are the model coefficients, where q;, and pj, are spatial offsets and where e; and ey
are the model errors for the backward and forward frames. The model coefficients are estimated
by finding the set of coefficients which minimise the model error for the given set of spatial
offsets (Fig. 2.13). The size of this model error is used as an indicator for blotches. If temporal
discontinuities exist then the intensity of the current pixel does not behave in accordance with
this model and consequently the model error will be large. Hence, a blotch detector can be

defined as follows

1 If ep(x)| > 6 AND |ef(x)| > 6

b3pAR(X) = (2.16)

0 otherwise

When estimating the model coefficients, it is assumed that they are constant over a spatial
window. The choice of window size is important. If a blotch exits which is significant with
respect to the size of the window, then the blotch will bias the coefficient values. The coefficients
model the blotch rather than the true image data and therefore the model error will be low.

Therefore this detector is only suitable for detecting small blotches.

2.3.2 Probabilistic Approaches

All the MDD algorithms discussed so far have used hard thresholds to detect temporal discon-

tinuities. No method has attempted to include any prior knowledge of temporal discontinuities
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Motion Compensated Frame n
Frame n-1

Figure 2.13: The shaded pixel in frame n is assumed to be a linear combination of the blue
pixels in the previous frame. The spatial offsets in this case are [—1 —1], [0 —1], [1 —1], [-1 0],
[0 0], [1 0], [-1 1], [0 1] and [1 1].

in the decision process. Temporal discontinuities tend to form as a regions and are not spatially
impulsive events. In other words, Temporal Discontinuity Fields (TDF) are spatially smooth.

This information can be introduced into the decision process using a probabilistic framework.
In probabilistic frameworks, the field to be estimated is modelled as a Markov Random Field
(MRF). This implies that the value of the field at any site somehow depends on the values of
the field in its neighbourhood, allowing the spatial properties of temporal discontinuity fields to
be modelled.

Framework - Taking the detection of the backward temporal discontinuity field for the current
frame t,(x) as an example, the problem can be expressed in probabilistic terms as finding the
field that maximises the PDF given by

P(ty(x)[Ap(x), Tp) (2.17)

where T} is the value of the neighbourhood of field values about site x. Using Bayes Law this

posterior distribution can be factorised as follows
P(ty(x)|Ap(x), Tp) oc Py (Ap(x)[ts(x)) x Ps(ty(x)[T3) (2.18)

where P;(.) is known as the data likelihood and Pj(.) is known as a prior.

Data Likelihood - The likelihood expresses the expected distribution of the observed data
(i.e. Ap) in both the presence and absence of temporal discontinuity. When temporal discon-
tinuities do not exist, the DFD values are expected to be small. A suitable expression of the

likelihood is given by

Pi(Ap(x)[sp(x)) o exp

N
S)
o N

(2.19)
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When a temporal discontinuity does not exist the distribution of the DFD assumed to be gaussian
with a variance o2 given by the variance of the motion model error (i.e. Equation 2.2 is valid).
The « value is effectively a soft threshold on the size of the DFD. If Ay(x)? > o202, the
Maximum Likelihood (ML) solution for #;(x) is t5(x) = 1.

Prior - The second term in the expansion, Ps(t,(x)|7}p), is a probability prior on ¢, which
enforces the spatial smoothness constraint. An MRF model is used for ¢, and, from the
Hammersley-Clifford Theorem [2], it follows that the prior can be described using a Gibbs
Distribution. A suitable expression that articulates the spatial smoothness constraint is given
by

p0IT) xep {8 3 Akt )]} (220)

yENs(x)

where N;(x) is the spatial neighbourhood? of x, where A is the scaling factor between the prior

and the likelihood terms and where )y is a weight inversely proportional to ||x — y]l.

Solving for t¢,(x) - The optimum solution for t;(x) is the Maximum a Posteriori (MAP)
configuration according to equation 2.18. Given that every pixel can have two values, there
are 2" possible configurations where n is the number of pixels in the image. Consequently, it
is computationally intractable to estimate the posterior probability for every configuration of
the field. There are a number of different optimisation strategies for finding a solution. These
include Gibbs Sampling coupled with Simulated Annealing [37,51], Iterated Conditional Modes
(ICM) [3] and Graph Cuts [11,39]. The Gibbs Sampling technique converges to the globally
optimum solution irrespective of the the initial configuration of the field but typically slow.
ICM is a less computationally intensive method. However, it only finds the a local maximum
of the posterior expression and so the result is heavily dependent on the initial configuration of
the result. The Graph Cuts technique is guaranteed to find the optimum technique and is also

less computationally intensive, however it only finds the optimum solution in the two state case.

The Morris Algorithm

In [73], Morris proposes a blotch detection algorithm which uses a probabilistic framework,
similar to that described above, to evaluate both forward and backward temporal discontinuity
fields. The blotch detector is defined by

1 Iftb:1ANth:1

bMorris(X) = (2.21)

0 otherwise

where t;, and ¢ are the binary backward and forward temporal discontinuities respectively. This
detector is similar to the SDIa technique. Instead of using a threshold, d;, on the DFDs to detect

temporal discontinuities, a probabilistic framework is used.

3The four or 8 pixel first-order neighbourhoods are commonly used
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= O = O

Table 2.1: The Blotch Model.

In [15], Chong et al. introduced a modified Morris detector. The authors make the obser-
vation that a major reason for false alarms in MDD are motion estimation failures associated
with moving edges. A moving edge detector is introduced and is included in the temporal

discontinuity detection frame work. The likelihood expression now becomes

Ay (x)?

202 tb(X) = 0
Py(Ap(x)]ty(x)) o exp e (2.22)
—(T +o(x) hx)=1
and the prior expression becomes
P xexp—{4 3 (4 + oG0)60 £ tiy)l | (2.23)

yENs(x)

where ¢(x) is an energy penalty associated with the output of the moving edge detector. ¢(x)
contains non-zero values only at moving edge sites and its size is proportional to the gradient
magnitude at the edge. Effectively temporal discontinuity detection has been made more con-
servative. In this detector, the Maximum Likelihood (ML) solution for #;(x) is #5(x) = 1 when
A% > 02(a? + 2¢(x)).

2.3.3 Direct Modelling of Blotches

In the probabilistic approach outlined above, the blotch detection occurred in two stages. The
first stage estimated forward and backward temporal discontinuity fields using a probabilistic
framework. The second setects blotches by interpreting the discontinuity information according
to Eq. 2.21. A logical extension to this approach would be to merge the two stages into
a single probabilistic framework. Detecting blotches in this manner, would allow a spatial
smoothness prior to be introduced on the blotch field itself. The problem is one of finding the
MAP estimate of the binary blotch field, b(x), given both forward and backward DFD fields
(i.e. P(b(x)|Ap,Ay)).

Table 2.1 gives an example of an appropriate blotch model. For each site x there are two
binary temporal discontinuity values ¢;(x) and ¢(x) which represent the values of the backward
and forward temporal discontinuity fields respectively. Consequently, there are four possible

configurations of these values for each x. To represent this, a new state variable s(x) is defined
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for the site, which can have four values corresponding to each configuration of ¢, and t;. If
and only if both ¢, and ty are high, then a blotch is considered to exist (i.e. b(x) = 1). This
corresponds to s(x) = 3. According to table 2.1, s(x) = 1 and s(x) = 2 correspond to the
case where only one temporal discontinuity exists. Including these two states in the framework

prevents false alarms when only one DFD is large.

Framework - There are now two variables to estimate, s(x) and b(x), and the relationship
between these variables is governed by table 2.1. The problem can now be expressed in bayesian
terms by

P(s(x)|Ap, Ay) o< P(Ap(x), Af(x)]s(x)) x Pr(s(x)) (2.24)

This expression consists of one likelihood and a prior on the state field s(x).

Likelihood - The likelihood expression is given by

[ Aux)? A

502 502 if s(x) =0
—Agg)Q — %2 if s(x)=1
P8y Ay )fs) cexp {2 2 (2.25)
-% - =15 if s(x) =2
—%2 - %2 if s(x) = 3.

Using this expression prevents falsely detected blotches when only one DFD is large. If, for
example, Ay(x) is large and Af(x) is small, then the ML state will be s(x) = 1 and hence
b(x) = 0.

Prior - The second term in the expansion is the prior on s(x). Like the probabilistic temporal
discontinuity detector, the result should be spatially smooth. A suitable expression for P, (s(x))
is

Fr(s(x)) = Ps(s(x)|5) x Ps(b(x)|B) (2.26)
where P;(s(x)|S) and Ps(b(x)|B) are spatial smoothness priors on the state field s(x) and blotch
field b(x). The same spatial smoothness priors are used for Ps(s(x)[S) and Ps(b(x)|B), and are

given respectively by
pls60lS) e {3 A Jstx) £ 5ty
YEN;(x)

p(b(x)|Th) x exp—{Ab T Al # b<y>|} (2.27)

YEN;(x)

Solving for s and b -  As the relationship between s(x) and b(x) is fixed according to table

2.1, the value of b(x) can be derived directly from the value of s(x). For each site x there are
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four possible values of s(x) (or states). The posterior probability for the four possible states of

x is evaluated according to

P(s = 0|Ap, Af) o B(Ay, Agls = 0) x Py(s = 0|S) x Py(b=0|B)
P(s = 1|Ap, Af)  B(Ay, Agls = 1) x Py(s = 1|S) x Py(b = 0|B)
P(s = 2|Ap, Af) o Bi(Ay, Afls = 2) x Py(s = 2|S) x Py(b=0|B)
P(s = 3|Ap, Af) o Bi(Ay, Afls = 3) x Py(s = 3|S) x Py(b=1|B) (2.28)

where the site index x has been dropped for sake of brevity.
This model for blotch detection is incorporated into the JONDI missing data treatment
framework [57]. This framework has been used in a variety of other applications including tear

delineation [21], video matting [58] and foreground/background segmentation [50].

2.4 The Pathological Motion Detection State of the Art

The missing data detectors outlined in the previous section suffer from false alarms in the
presence of Pathological Motion. This occurs when PM causes forward and backward temporal
discontinuities. Although these techniques are robust to isolated occlusions (when only one
discontinuity exists), PM regions which persist over a longer temporal window will result in
discontinuities in a number of consecutive frames. In effect, the temporal intensity profile is
quasi-periodic as opposed to the impulse profile of the blotches. Since the window over which
the MDD algorithms operate is restricted to three frames, PM can not be distinguished from
missing data (See Fig. 2.14).

This section introduces the Missing Data Detection techniques in the literature which have
attempted to model for the presence of Pathological Motion in image sequences. The algorithms
outlined fall into two broad categories. The first category attempts to detect regions of motion
estimation failure and then classifies them into regions of failure due to artefacts such as blotches
and due to PM [8,84]. The second category attempts to find possible PM regions in an image

and to make MDD more conservative in these areas [50].

2.4.1 Long-Term Pathological Motion Detection [8]

One method of making Missing Data Detection robust is to extend the temporal window over
which blotches are detected, allowing long-term PM to be distinguished from missing data.
This approach was first suggested by van Roosmalen [104], who extended the sROD detector
(sRODex) to include three extra reference pixels from both frames n — 2 and n + 2, resulting in
lower false alarm rate than the standard sROD detector( Fig. 2.15).

In his thesis [8], Bornard outlines a probabilistic MDD technique, inspired by the Morris
detector, that also operates over a larger temporal window. The idea is to make MDD more

conservative by preventing any suspected PM sites being detected as a blotch. It extends the
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(a) Frame n — 2 (b) Frame n — 1 (c) Frame n

(d) Frame n + 1 (e) Frame n + 2 (f) Frame n after MDT

Figure 2.14: This figure shows 5 consecutive frames (a-e) from the “propellors” sequence. The
motion of the propellors is intermittent and the blades appear and disappear repeatedly. If the
MDD window is three frames about frame n, the blades will be falsely detected as a blotch and

will be removed after interpolation (f).

(a) Frame n (b) sROD mask (c) sRODex mask

Figure 2.15: This figure illustrates the lower false alarm rate of the sSRODex detector. In the
sROD detector, the blades are a major source of false alarms. In sRODex the majority of these

sites are no longer detected as a blotch
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In ! 1n+1 t In+2

Z In-I tn nn+l n+ln+2
Figure 2.16: This figure illustrates the arrangement of the five frames (blue) and four temporal

n-1,n-2 -1

discontinuity fields (red).

blotch detection window from three to five frames centred on the frame to be tested. Between
these frames, four temporal discontinuity fields are estimated for each pair of consecutive frames
(Fig. 2.16). As blotches are characterised by an impulsive profile, there should be discontinuities
in both of the two fields closest to the central frame (t,,—1 and ¢, »+1) and no discontinuities
in either of outer fields (t,—1,—2 and t,+1n+2). If discontinuities also exist in the outer field,
then the site is considered to be a Pathological Motion site and not a Missing Data site.

Like the Morris detector, Bornard outlines an algorithm which operates in two stages. In the
first stage the four temporal discontinuity fields are estimated using a probabilistic framework
similar to that in Section 2.3.2. In this framework, a further temporal prior is introduced that
discriminates against temporal discontinuities occurring at the same sites in multiple frames.
The second stage is a deterministic interpretation stage, which labels pixels as being blotches,

PM sites or unaffected sites.

Temporal Discontinuity Detection

Bornard’s method calculates temporal discontinuities over a five frame window. For each frame
in the sequence the window is centred on the current frame and the remaining frames are motion
compensated with respect to the current frame. Fig. 2.17 depicts the motion compensation
scheme over the window. For a five frame window defined by the frame intensity functions,

[In—2(x), In—1(x), In(x), In+1(x), I 42], a set of 5 motion compensated frames are defined as

I, (x) = I, (x +dnpo1 (%) + dpo 1o (x + dn,n—l(x)))

— 1, (x + dn,n-l(X))

=1, (x + dn,n+1(x))
(

X + dn,n-i—l(x) +dpt1n42 (X + dn,n-i—l(x))) (2.29)
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Frame n-2 Frame n-1 Frame n Frame n+1 Frame n+2

Figure 2.17: This figure shows the motion compensation scheme over the 5 frame window.

FEach frame is motion compensated with respect to the central frame.

Framework - A Temporal Discontinuity Field is calculated between each set of two consecu-
tive frames resulting in four Temporal Discontinuity Fields per five frame window (Fig. 2.16).
Taking the estimation of ¢, ,41 as an example, the posterior, P(t, n+1|.), is factorised into a

likelihood and priors using Bayes Law as follows:

P(tn,n-l—l ‘I;“ I;H—l ; Tn,n-‘,—l: ZL/n,n—la tn+17n+2) X
PI(I;w I;H—l |tn,n+1> Tn,n—i—l) X Ps(tn,n+1|Tn,n+1) X Pt(tn,n+1|tn,n—17 tn+1,n+2) (230)

where P)(.) is the likelihood, Ps(.) is the spatial smoothness prior and P;(.) is the temporal prior.

Likelihood - The expression for the likelihood is given as follows

BTy Tyl Tonst) = exp [— (160 112 60)* (1 tunia) +ﬁltn,n+1<x>)] (2.31)

Like the framework in Section 2.3.2, the ML solution for ¢,, ;,+1(x) = 0 occurs when the DFD,
I,(x) — I}, (x), is low. In this case, the condition for the ML solution of ¢, 41 = 1is (I, (x) —

LX) > 6.

Priors - There are two priors associated with the framework. The first is a spatial smoothness

prior and is expressed as follows

p(tn,n+1|:r’n,n+1>=exp[—(—ﬂz S (tunna() = 5) (fnnsrs) — 5) (1—uk<x,y>)>]

YENs(x)
(2.32)

where Ng(x) is an 8-pixel first-order spatial neighbourhood. The (3 parameter controls the
weighting of the spatial smoothness energy. uy(x,y) is a binary field which is equal to 1 when
an image edge (i.e. spatial discontinuity) lies between x and y. This term results in the spatial
smoothness prior being turned off across image edges. It is derived from the assumption that

the boundaries of temporal discontinuities often coincide with edges.
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Figure 2.18: This Figure shows the layout of a section of the fields on 3 consecutive levels.
On the left is the finest level and contains a 4 x 4 block of field sites. The layout of the next
coarsest level is shown in the middle. Each site corresponds to a 2 x 2 block of sites at the finer
level. On the right is the coarsest level of the 3 and a site on this level corresponds to a 2 X 2
block on the middle level and a 4 x 4 block on the lowest level.

The second prior is a temporal prior which penalises temporal discontinuities being detected

at sites in consecutive fields. The prior is defined by the equation

Pi(tnns1ltnn—1, tnrin+2) €Xp —Batnn1(X) (En—1,n(X) + tns1ns2(x)) (2.33)

where 33 is a weighting parameter. If the neighbouring TDFs ¢,y , and t,,11 42 are 0, then
there is a 0 penalty. If both are equal to one, then the penalty is 2033.

A multiresolution framework [41] is used to improve the efficiency of the discontinuity de-
tection. A set of discontinuity fields of coarser resolution is organised into a hierarchical set of
levels, with the full resolution field at the bottom and the coarsest resolution at the top level.
Fach field site at a level, 7, consists of a 2 x 2 block of sites at the level below, ¢ — 1. Fig. 2.18
illustrates how the sites are grouped into blocks. If the full resolution of the field is 720 x 576
the resolution of the next level will be 360 x 288 and so on. The MAP estimate for the discon-
tinuity field is calculated at the coarser resolution and that result is then used to initialise the
estimation at the level below, until the result is estimated at the full-resolution. Figure 2.19

shows an example four TDFs estimated from a five frame window.

Interpretation Step

After the discontinuity fields have been calculated an interpretation step is performed to classify
the temporal discontinuities in terms of Pathological Motion and Missing Data. Firstly the
discontinuity fields between the current and previous and current and next frames are examined.

There are 3 possible cases for each site:

1. No temporal discontinuities exist in either field - No PM or Missing Data present. No

action is necessary.
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Figure 2.19: This figure shows 4 consecutive discontinuity fields (middle column) from a
sequence exhibiting Pathological Motion. The frames in the left and right columns show the
frames between which the discontinuity fields were estimated. In this case the discontinuities
are caused by the intermittent motion of the scissors and the uncovering of the woman in the
background. The interpretation step examines sites where discontinuities occur in both of the
central fields and tries to classify them in terms of Pathological Motion and Missing Data. In

this examples, all the detected discontinuities are due to long term Pathological Motion.
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2. A temporal discontinuity exists in one of the fields - This is caused by an occlusion or
uncovering. No action is necessary as this form of PM is not usually confused with Missing
Data.

3. Temporal discontinuities exist in both fields - This case is equivalent to Missing Data
detected using a three frame window. However it is possible that it could also be a form
of PM. To distinguish between them the other discontinuity fields are examined. A search
for temporal discontinuities is conducted in a radius about the pixel under consideration
under test and if the number discontinuities exceeds a threshold the pixel is flagged as a
PM rather than a Missing Data site.

2.4.2 Classification of Motion Blur [84, 85]

In his thesis [84], Rares outlines another PM detection algorithm which classifies motion esti-
mation failures as either PM or blotch regions, based on their colour statistics. The form of PM
detected by the algorithm is motion blur which is associated with fast moving objects. Areas
of motion estimation failure are detected using a Complex Event Detector, developed by van
Roosmalen [103], and classification between Motion Blur and blotches is performed by segment-
ing the image and examining the colour characteristics of segments corresponding to detected

complex motion regions.

Colour Characteristics of Motion Blur

In an earlier paper [86], the author performs an analysis of the RGB colour histograms of images
effected by Motion Blur and artefacts. The observation is made that artefacts are usually
characterised by extreme pixel intensities and, therefore, one or more of the RGB channels will
have very low or high values. Motion Blur is observed to cause a blending of the foreground
object colour and the background colour. It is noted that the weighting of the average is not
uniform and is dependent on the degree of blur. However, it is also noted that the degree of
blurring is approximately equal in each of the RGB channels. This observation is expressed as
follows ’ ’ ) )
My — B My = He  fpy — e

r _,r 9 _ ;97 b _ b

'ubg He Nbg He /ng He

(2.34)

where p1 , 1 and pb are the average RGB intensities of the blurred object in the current frame;
where p7, pd and p are the average RGB intensities of the unblurred object in a neighbouring
frame and where uzg, Ni ; and ,uzg are the RGB intensities of the background in a neighbouring

frame.

Algorithm Outline

The first stage of the algorithm involves detecting areas of motion estimation failure using a

complex event detector outlined by van Roosmalen [103]. The image is then segmented using
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Motion Estimation
Failure Detection
Segment Selection Segment Merging Temporal Matching PM Classification Blotch Classification
Image Segmentation

Figure 2.20: A flow chart for the Rares algorithm.

a watershed segmentation [105]. As the algorithm is only interested in regions where motion
estimation failure occurs, segments corresponding to detected motion estimation failure regions
are isolated. An overlap of 80% between each segment and detected motion estimation failure
regions is suggested as a valid criterion for isolating the relevant segments. This is followed by
a segment merging stage, in which neighbouring segments whose mean sum-squared-difference
RGB value is within a threshold are merged.

At this stage classification between PM and blotches can begin. First of all, segments
are classified, by temporally matching the classification in previously processed frames. Each
candidate segment in the current frame is compared to a list of segments in the previously
processed frame. If the candidate matches a segment in the previous frame (i.e. their colour
similarity falls within a threshold), then the candidate segment is assigned the classification of
the matched segment.

All remaining unclassified segments are then checked to see if they are regions of motion
blur. By applying equation 2.34 to each candidate segment, where u", ;19 and ;i are the average
RGB intensities of the candidate segment, the segment can by classified as PM by any finding
two segments from the motion estimation failure region of the previously processed frame that

satisfy the condition

r__ T g _ ,,9 b__ b
var| 2Bt B P B Tl ) oy, (2.35)
Hgo = Hs1 Hgo = Hs1 Hgo — Mgy

where [uly, pd), pb ] and [uly, pudy, uly] are the average RGB values of the two segments from
the previously processed frame and where Tpy; is some small threshold.
Segments that are not classified as PM are now checked to see if they are blotches. As

blotches are either dark or bright regions, it follows that the RGB values of blotches will also

be high or low. A segment is classified as a blotch if the following condition is satisfied
(min(u", 19, 1) < Tgioren) OR (max(u”, 4, 1) > (1= Thioien) (2.36)

where Tgjoten 18 a threshold and where the intensities are normalised to the scale from 0 to 1.

The flowchart in Fig. 2.20 describes the relationship between each stage of the algorithm.
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2.4.3 Two Level Segmentation for Handling Pathological Motion [50]

Pathological Motion is generally associated with the local motion of foreground objects in a
sequence. Therefore by segmenting each frame into foreground objects and background the
frame can be discriminated into regions where PM is likely to occur (i.e. foreground areas) and
extremely unlikely to occur (i.e. The image background). In the paper [50], Kent et al. propose
a method to perform a foreground/background segmentation and then to make Missing Data

Detection more conservative in foreground areas.

Foreground/Background Segmentation

In order to detect local motion in a frame n, frames n — 1 and n + 1 are compensated for global
affine motion with respect to frame n such that the respective backward and forward global

DFDs are given by
AZ = I, (x) — In_l(AZm_lx +d? )

n,n—1

AT = L(x) = Lopa (A2 x + L) (2.37)

where A%’n_l and dgm_l and where A%,n 41 and d%}n 41 describe the global affine motion between
frames n and n — 1 and frames n and n + 1 respectively. The motion of the background areas
should be the same as the estimated global motion and therefore the global DFDs should be
low in these regions. Alternatively in foreground objects where local motion is present relative

to the global motion the DFDs should be large.

Framework - A probabilistic framework is used to perform the segmentation. A state model
similar to the Blotch model in Section 2.3.2 (See Table 2.1) is adopted. The factorisation for

the posterior is given as follows
P(s(x)|A7(x), A%(x),5) o R(AJ(x), A%(x)] s(x)) x Py(s(x)[S) (2.38)

where s is the state variable. States s = 0, s = 1 and s = 2 correspond to background states

while state s = 3 corresponds to the foreground state.

Likelihood - The likelihood expression is given by

(exp - < (Ag(x))QJr(A?(x))Z) s=0

2
207

<az (A?<x>)2>
exp — 7+T s=1

Pi(A}(x), A%(x) | s(x)) o (8360)° (2.39)
exp — % + 0‘72> s=2
exp — a2> s=3

where « is a bias against the foreground state. A value of o = 2.76 as this corresponds to the

99% confidence level given that a gaussian distribution is assumed for the DFDs.
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Prior - The prior expresses a spatial smoothness constraint on s and is given by

Py(s(x)| S) exp—<A5 > Ay\s(x)¢s(y)|> (2.40)

yENg(x)

The value of s that maximises the posterior is chosen for each pixel and the ICM algorithm [3] is
used to iterate the result. A multiresolution framework [41] is employed to improve robustness.

In the proposed algorithm, the MDD framework described in Section 2.3.3 is employed to
detect blotches. In detected foreground areas (i.e. s(x) = 3), the alpha penalty in the framework
is increased. Furthermore, a post-process is applied to reject detected blotches that do not have

high spatial contrast. In effect, MDD is made more conservative in the foreground regions.

2.5 Scope for a New Algorithm

In [50], the authors discuss the limitations of Bornard’s algorithm [8]. They point out that PM
regions are assumed to be slow moving, as the size of any movement is restricted by the size of
the neighbourhood used to search for temporal discontinuities in the interpretation step. The
difficulties in dealing with blotches in PM regions are also discussed. If PM regions are excluded
from blotch detection, these blotches will be ignored. On the other hand, if the PM regions are
treated differently in blotch detection, and hence blotches have to be detected in a second pass,
they point out the costly nature of implementing such a scheme on a large scale. As the authors
are interested in developing a robust MDD algorithm for a movie post-production application,
an algorithm which is easy to implement on a large scale* and which has the lowest possible false
alarm rate is required. Therefore, a more cautious and compact technique is adopted whereby
likely PM regions are treated differently in Missing Data Treatment.

There is some potential for improvement in Bornard’s technique. In the algorithm, motion
estimation failures are detected by looking for high DFD values. However, diagnosis of motion
estimation failure could also be performed on the motion field itself. Motion Estimators make
the assumption that motion vectors vary little over a spatial neighbourhood®. When motion
estimation failure occurs, this assumption may no longer be valid. Therefore PM could be
detected by finding areas of the motion vector field which are not smooth. A suitable measure
of smoothness of a vector field is its divergence and so high divergence values are indicators of
motion estimation failure (See Fig. 2.21).

Bornard’s algorithm is the extension of the Morris algorithm [73] for blotch detection to a five
frame temporal window. Like the Morris algorithm, it does not apply the probabilistic framework
to detecting blotches or PM directly, but rather the temporal discontinuities are estimated from
the probabilistic framework and are then interpreted in a separate stage. In section 2.3.3, it

was discussed how a probabilistic framework could be used to detect missing data over a three

1A feature length film will contain tens of thousands of frames
5The Smooth Local Flow Assumption
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e

(a) Frame with superimposed motion (b) Vector Field Divergence

Figure 2.21: The jacket in the left image is an example of non-rigid motion and is pathological.
The motion field in this region is not smooth and as a result the divergence of the motion field in

this region has a high absolute value (right). The dark colours represent high divergence values.

frame window. It follows logically, that there is a possibility for a new robust MDD algorithm
algorithm along the lines of Bornard’s technique which integrates the interpretation stage into
a single probabilistic framework that classifies between regions of PM and missing data directly.
Such an algorithm, would allow more prior information on blotches and PM into the framework,
leading to a better performing algorithm.

Motivated by the potential for improvement in the Bornard technique, a new robust Missing
Data Detection algorithm along these lines was developed as part of this work. The algorithm
exploits the Smooth Local Flow Assumption to generate a new additional measure of motion
estimation and also exploits the unified probabilistic framework to introduce new priors which
improve the performance of the algorithm. The new algorithm is presented in the following

chapter.



Pathological Motion Detection for Robust Missing

Data Treatment

In this chapter a new robust Missing Data Detection algorithm is introduced which models for
Pathological Motion. The algorithm employs an approach similar to the Bornard algorithm [8]
but, inspired by the probabilistic model for blotch detection (Section 2.3.3), introduces a unified
probabilistic framework to solve for the blotch detection problem. The unified framework models
the blotch field as an MRF and, consequently, allows priors to be introduced on the blotch field.
Another novel feature of the algorithm is the introduction of a new measure of motion estimation
failure, given by the size of the motion field divergence, which considers areas of motion that
are not smooth as Pathological.

Like Bornard’s algorithm, the new algorithm includes extra temporal information to classify
regions of motion estimation failure as being caused by PM or blotches. In effect, the aim is to
distinguish between the impulsive temporal intensity profile of botches and the quasi-periodic
profile of persistent or long-term PM. If a five frame window centred on the current frame is used,
then four TDFs can be computed between consecutive frames over the window. When a blotch
exists in the current frame, temporal discontinuities will occur in the two TDFs neighbouring
the current frame. However, temporal discontinuities should not occur in the two other fields.

The algorithms differ in the method of classification between PM and missing data. Bornard

does not directly detect PM and blotches using a probabilistic model. Instead the probabilistic

This work has been published in part in [19].
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framework is used to detect temporal discontinuities and this information is subsequently inter-
preted in a non-probabilistic manner. The goal of the new algorithm is to develop an integrated
probabilistic framework to directly detect blotches and PM. This is achieved by considering all
the possible combinations of temporal discontinuity in the five frame window. The configura-
tions of the temporal discontinuities at a pixel directly determines the result at that site. Each
pixel can be either a part of a blotch, be in a region of PM and a normal well-behaved site. The
integrated framework gives more control over the final result by allowing prior knowledge of the
PM and blotch fields to be incorporated into the estimation, something which is not possible
with the Bornard algorithm.

Apart from the temporal discontinuity feature, there are many other features that are also in-
dicators of PM. Recognising this, the new algorithm augments the temporal discontinuity-based
detection outlined above by incorporating another feature into the probabilistic framework. The
chosen feature is the smoothness of the motion vector fields of the frame under consideration
and also of the motion fields of the neighbouring frames. This stems from the observation that
PM often results in the smoothness assumption of the motion field being violated. This is espe-
cially true with non-rigid body motion, where the motion of the object is varying rapidly along
its contour. As the resolutions of motion fields are typically lower than the image resolution,
diagnosis of PM from motion fields gives a coarser diagnosis and so is more suited for finding
large regions of PM.

The new algorithm incorporates both measures of motion estimation failure into the prob-
abilistic framework. The smoothness information is used as a guide for a more traditional
temporal discontinuity based detector. Including the smoothness information improves the ro-
bustness of the algorithm by indicating blocks of the image which are likely to be PM regions.
In these blocks, a bias is introduced toward the detection of PM. The next section of the chapter
introduces the new algorithm. Before the probabilistic framework is introduced in Section 3.3,
the blotch model is introduced. The outline of the framework is followed by a description of the
implementation details of the algorithm. Section 3.4 evaluates the algorithm, comparing it with
both the Bornard algorithm and a selection of 3-frame blotch detectors (e.g. SDIp, ROD). Fi-
nally comments are made on the algorithm and directions for further research and development

in this area are discussed.

3.1 Algorithm Overview

The goal of the algorithm is to segment the current frame into regions of PM, missing data and

uncorrupted sites. To achieve this, a label field, I(x), is defined as follows

0 No missing data or Pathological Motion
I(x) =41 Missing Data (3.1)
2 Pathological Motion.
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Every pixel in the image is assigned one of the three labels. Like the Bornard algorithm,
a pixel can not be both a missing data site and PM site. Although there is no reason why
a blotch could not occur in a PM region, it would not be possible to reliably detect a blotch
using a purely temporal discontinuity based detector. Furthermore, a PM detection implies that
the data at any blotch cannot be interpolated temporally. Consequently, interpolation must be
performed using spatial rather than temporal information. In short, the blotch model outlined
here aims to reliably detect as much missing data as possible, while also highlighting the regions
of the image where missing data cannot be robustly detected. These regions must be processed
separately using an alternative MDT strategy. Two features are used to estimate the label field,

the configuration of temporal discontinuities and the smoothness of the motion field.

3.1.1 Temporal Discontinuity Based Detection

The Displaced Frame Difference between a pair of neighbouring frames is used as the measure
of temporal discontinuity. A temporal discontinuity is said to exist at a given site if the absolute
value of the DFD at the site is sufficiently large. In the five frame window there are four pairs
of neighbouring frames where the frames are denoted by I,,_2(x), I,—1(X), In(x), In+1(x) and
I+2(x). A DFD can be measured between each pair, with a binary Temporal Discontinuity
Field (TDF) associated with each DFD. Consequently, four DFDs (A, _2(x), Ap—1(%x), Apy1(x)
and A, 42(x)) and TDFs (t,—2(x), t,—1(X), th+1(x) and t,42(x)) are estimated over the five-
frame window. There are sixteen possible configurations of the four TDFs and a state field s(x)
is defined which describes the configuration of a site. Each configuration is directly mapped to
a value of [(x) (Table 3.1).

Missing data regions are characterised by an impulsive temporal intensity profile. Therefore,
if a blotch exists in frame n, the absolute values of the DFDs between both frames n and n — 1
(Ap—1(x)) and frames n and n + 1 (A,4+1(x)) will be large but the other two DFDs will have
small values. This results in a predictable temporal discontinuity profile described by s(x) = 6 in
table 3.1. On the other hand, the quasi-periodic profile of long-term PM will result high absolute
values in more than two DFDs. Consequently, any temporal discontinuity configuration with
two or more temporal discontinuities present, apart from the missing data case, is considered to
be associated with PM (Table 3.1).

3.2 Motion Field Smoothness Based Detection

The second feature used to detect PM is the smoothness of the motion field. The vector field
divergence is used the as the basis of the smoothness measure. Smooth vector fields have
low divergences while high divergences result from vector fields that are not spatially smooth.
By estimating the divergences of all the motion fields in the five-frame window, a smoothness

energy term, Fg;y(x), can be defined which describes the smoothness of the motion fields. This
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State, s(x) | Configuration, t(x)|/(x) || State, s(x) | Configuration, t(x) |/(x)
0 0,0,0,0 0 8 1,0,0,0 0
1 0,0,0,1 0 9 1,0,0,1 P
2 0,0,1,0 0 10 1,0,1,0 2
3 0,0,1,1 2 11 1,0,1,1 2
4 0,1,0,0 0 12 1,1,0,0 2
5 0,1,0,1 2 13 1,1,0,1 2
6 0,1,1,0 1 14 1,1,1,0
7 0,1,1,1 P 15 1,1,1,1

Table 3.1: The temporal discontinuity state model for the probabilistic framework. s(x) = 6
represents the missing data case. Long-term PM is given by any configuration or state where
at least two discontinuities exist except for the missind data configuration, s(x) = 6. *States 3
and 12 can correspond to missing data in the neighbouring frames. It is considered here as PM

as it is not caused by missing data in the current frame.

Divergence State, v(x) |l(x)
0 0,1
1 2

Table 3.2: The divergence state model for the probabilistic framework.

measure of divergence will be large in the presence of long-term PM and low in other cases.
The divergence measure is associated with a binary field v(x), where a value of 0 corresponds
to a low divergence measure and a value of 1 corresponds to a high divergence measure. A high
divergence measure corresponds to Pathological Motion and so [(x) = 2. A low value indicates a
well-behaved or missing data site, and consequently [(x) = 0 or 1. This relationship is described
in Table 3.2.

The fields s and v act as auxiliary variables which dictate the final value of [(x) in the
probabilistic framework. For a given value of s or v the value of [ is directly defined through
tables 3.1 and 3.2. Before the description of the probabilistic framework can proceed, measures

for temporal discontinuity and divergence need to be introduced.

3.3 Probabilistic Framework

The framework derives an estimate of s(x) from the posterior P(s(x)|A, (x), Fqiv(x)). For

convenience of notation, the four DFDs have been grouped into a vector valued function A,
where Ap(x) = [An—2(x), Ap_1(x), Apg1(x), Apia(x)].
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The posterior is factorised in a Bayesian fashion as follows

P(s|An, Egiv) o< P(s, An, Edgiy)
x Pi(Ayls) x Piy(Eqiv]s) x P.(s) (3.2)

where the index x has been dropped for clarity. There are two likelihoods associated with
the framework, P;(.) associated with the DFDs of the window and Py(.) associated with the
divergence measure. The final term is a prior on the state field s(x). Mathematically, the
correct form of this expansion is Py(A,|Egiv,s) X Py(Egiv|s) X Ps(s). Although it seems likely
that some relationship between the DFDs and divergence measure exists, for the purposes of
this framework it assumed that they are statistically independent.

Rather than considering the unknown variables I(x), v(x) and s(x) as separate random
variables, only one random variable s(x) is considered. The values of [(x) and v(x) can then be
determined from the estimate of s(x) according to tables 3.1 and 3.2. This is a reinterpretation
of the probabilistic frameworks proposed by Kokaram (eg [58]) in which each variable is treated
as a separate random variable. In effect, the framework attempts to maximise the joint posterior
distribution of all the variables (i.e. P(l,s,v|.)). However, the factorisation employed in that
framework considers the variables to be statistically independent (i.e. P(l,s,v) = P(l)P(s)P(v))
which is clearly not the case as these variables share a deterministic relationship according to
tables 3.1 and 3.2.

3.3.1 Temporal Discontinuity Likelihood

Before the temporal discontinuity likelihood can be introduced, the method for calculating the
DFDs must be outlined. As has been outlined in Section 3.1.1 there are four DFDs to be
estimated described by the four dimensional DFD vector A, (x). The DFDs are calculated by
compensating the motion of each frame of window relative to the central frame. If the image

sequence model is the local translation model given by

I(x) = I—1(x + dppn-1(x)) + e(x)
= Int1(x+dppt1(x)) +e(x), (3.3)

then the five motion compensated frames (I o, I' |,

/ / / :
o I, I 4, 1), 5) are given by
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Consequently, the four DFDs of the window are given by

Ana(x) =1, 1 (x) = I, »(x)

Ap-1(x) = I (x) = I, 1 (x)

Apy1(x) = I(x) = [ 11 (x)

Anta(x) = I 1 (x) = I (x). (3.5)

Motion Estimation

The motion fields used to perform the motion compensation above are performed as a pre-
process to the algorithm. For every frame of the sequence, a backward and forward motion field
must be estimated (i.e. for motion in the current frame relative to the previous and next frames
of the sequence respectively). Any motion estimator can be used to generate the motion fields.
Local or Global estimators can be used. In fact, the algorithm can be performed without any
motion estimation. The choice or motion estimator affects the correct detection and false alarm
rate for missing data and also the PM detection rate. In the tests described in Section 3.4 the

gradient-based algorithm outlined in [54] is used.

The Likelihood Expression

The data likelihood P;(A,|s) constrains each DFD to be low when a temporal discontinuity

does not exist. The expression for the likelihood can be expressed in vector form as

3 2 o2
Pi(A,|s) o exp—Z{Azna[f] (1 —t[k]) +7’ft[k]} (3.6)
k=0 €

where o2 is the variance of the model error e(x).
The overall likelihood energy is the sum of four components, where each component is equiv-
alent to the likelihood energy of a probabilistic temporal discontinuity detector'. For each

component the ML condition for a temporal discontinuity is
2
(Anlk)(z))” > olai. (3.7)

The temporal discontinuity vector t(x) is equivalent to a binary representation of s(x). The

'See Equation 2.19 in Chapter 2, Section 2.3.2
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likelihood energy for each value of s(x) is given by

A2, A2 A2

A2 .
307 T 907+ agr T ppr i s(x) =0
A2 A2 A2 2 .
St S+ 2251 T sk =1
A2 .
277?2‘ + 202‘ + 3+ n+2 if 5(x) =2
A2 A2 .
=+ —2221 + & +4 if 5(x) = 3
Aii2 'n+1 A%+2 1
203 + + 20.2 + 203 lf S(X) = 4
Ai—Q n+1 a421 1
e T 7 + 207 +7 if 5(x) =5
A2 i
22%2 +7 + % + 2232 if 5(x) =6
AZ i
n2 _|_ + —|— if S(X) =7
—log(PuAls) o { 2 LGP . (3.8)
7t oot T e if 5(x) =8
2 A AQ 2 .
T+ 27721"" 27;51""% if s(x) =9
2
T+ 2?}21 + ad + 2232 if 5(x) = 10
2_|__2_+°‘3+ if s(x) =11
S 2;;;1 + Lup if 5(x) = 12
2
Oll + 042 + 'n+1 + % lf S(X) - 13
g+ Ly i 5(x) = 14
a% Oé% 1 =
74_74_74-7 if s(x) =15

The value of the model error variance, U , is determined by estimating the variance of the
DFDs when s(x) = 0. The threshold « is allowed to vary for each component of the likelihood.
The as and a3 thresholds for the central DFDs (A,,_9 and A,, 1) are linked to the 99% confidence
values and have a value of 2.76. Alternatively, the value can be linked to a deterministic threshold
on the DFD, é;. The equivalent « threshold to §; can be derived from equation 3.7 and is given
by

o
202

g = (xg = (39)

Detection of missing data is made more conservative by using a lower « (i.e. for ay and ay)
on the outer DFDs (i.e. A,,_ and A, ;2) than on the central DFDs. The outer threshold ratio,
a,., is defined as the ratio of outer thresholds a; and a4 to the inner thresholds as and ag as
follows

a, = Z—; - Z—i (3.10)

A typical value of «;. is 0.5.



3.3. Probabilistic Framework 44

e

(a) Frame with superimposed motion (b) Vector Field Divergence

Figure 3.1: The motion of the jacket in the left image is an example of PM. The motion field
in this region is not smooth and as a result the divergence of the motion field in this region has

a high absolute value. The dark colours represent high divergence values.

3.3.2 Divergence Likelihood

The divergence of a vector or flow field measures the rate at which flow exits a given point of
the flow field. The divergence of a 2D motion field, d(x), is defined as

div(d(x)) = V.d(x)

o. 0,
= <%1 + a—yJ).d(x)
_0dg(x) n od,(x)
Oz dy

(3.11)

where d;, and d, are the horizontal and vertical components of the motion field respectively.
When PM occurs, the smoothness of the motion field is violated and the absolute value of the
divergence is large (Fig. 3.1). When PM persists in a number of frames, then the divergences of
a series of motion fields will be large. By finding the divergence of the motion fields involved in

the motion-compensation of the 5-frame window, a divergence measure Fg;,(x) can be derived

as follows
n n+1
Bav(x) = Y |div(dix—1(x))| + D |div(diper1(x))]- (3.12)
k=n—1 k=n

In other words, Egiy(x) is the sum of the absolute divergences of the four motion fields used for
motion compensation.

The divergence likelihood constrains Eg;,, to be low for either missing data or unaffected
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— r=0.25

0 20 40 60 80 100

Figure 3.2: This figure shows three plots of ¢(a) for a € [0,100]. In this example ¢ = 50. As r

increases the drop in energy about e; becomes the more abrupt.

states. The expression used for the likelihood energy in the the framework is

Ad(l _ qﬁ(Ediv(x))) if s = {0,1,2,4,6,8}
—log(Pa(Eaiv(x)[s(x))) o € 0 if s = {3,5,7,9, 10, (3.13)
11,12,13,14,15}
where A4 is the weight of the divergence likelihood? in the framework and where s = {3, 5, 7,
9, 10, 11, 12, 13, 14, 15}) is the set of PM or missing data states (i.e. I = {1,2}, v = 1) and
s ={0, 1, 2, 4, 6, 8}) is the set of unaffected sites (i.e. { =0, v =0). ¢(Eqiv(x)) is a sigmoid

function defined on the divergence measure, Eg;y, and is given by

14 elet e—r(a—et)
T eret X 1+ e—7la—er)

¢(a) (3.14)

where r and e; are positive real numbers (See Fig. 3.2). Effectively, the divergence likelihood
acts as a bias towards the detection of PM when the divergence measure is large. e; acts as a

threshold for detecting high divergences.

3.3.3 Priors

The prior expression used in the framework is
Pr(s(x)) = Ps(I(x)|L) (3.15)

which is a spatial smoothness prior on [(x). A spatial smoothness prior on s(x) is not included in

the framework. The main reason for excluding the prior is to save on computational complexity.

2A value of Ay = 1 is typically used in the experiments outlined in Section 3.4.
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Figure 3.3: This figure shows the 8-pixel first order neighbourhood of the grey pixel x. The
value of Ay is assigned a value corresponding of the pixel y’s distance from x. For the pixels

aligned either horizontally or vertically with x, Ay = 1. For the diagonal neighbours, Ay = 1/V2.

The complexity of evaluating the prior on a field is proportional to the number of possible values.
As there are 16 possible values for s(x) and 3 values for [(x), it follows that evaluating the prior
on [ is less computationally intensive. As [(x) is the field of interest the spatial smoothness of
the result is not compromised.

The prior on [ is given by

P(l(x)|L) x exp —{Al Z Ay (1 — u(x, y))p(l(x), l(y)) } (3.16)

YENs(x)

where A; is the weight of the prior in the framework (a value of i is commonly used), where
N;(x) is a spatial neighbourhood of x and where Ay is a weight inversely proportional to ||x —y||
(See Fig. 3.3). p(l(x), l(y)) is the energy penalty for neighbours x and y having the labels I(x)
and [(y).

u(x,y) is a binary edge field which is 1 when an image edge exists between x and y and
is derived from the central frame I,(x). The effect of u(x,y) is to turn off the smoothness
across image edges, allowing sharp transitions in [(x) across edges [65]. This is a particularly
appropriate model for blotches, as the boundary of a blotch typically coincides with an image

edge.

The PM Bias

Usually the value of p is 0 for all [(x) = I(y) and 1 for all [(x) # I(y). However, in this framework
a bias is introduced into p to prevent a part of an “object” being classified as PM and another
as missing data (Fig. 3.4). This is achieved by increasing the penalty for p(1,2) (i.e. increasing
the penalty for assigning a site which has a neighbouring PM site as a missing data site). The

effect is to make blotch detection more conservative by favouring PM detection at such sites.
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(a) Result without the Missing Data Bias (b) Result with the Missing Data Bias

Figure 3.4: This figure shows the effect of including the missing data bias in the framework.
In the images above a propellor blade undergoing PM is highlighted by the blue circle. Detected
PM is highlighted in red and detected missing data is highlighted in green. When the standard
smoothness prior is used (i.e. K = 1) , the top part of the blade is incorrectly detected as
missing data. Introducing the PM bias penalises against such a configuration by favouring the
detection of PM over missing data. Consequently, the entire blade has been classified as PM

when the bias is introduced.

The expression used for p is

0 ifi(x)=1Uy)
p(l(x),l(y)) — K ifl(x) =1 AND i(y) = 2 (3.17)

1  otherwise

where K > 1. A value of 5 is used for K in the experiments performed in Section 3.4.

3.3.4 Solving for [(x)

An estimate for [(x) is found by finding an estimate of s(x). The ICM optimisation strategy [3]
is used to find estimates of s(x). For every pixel in the image, x, the MAP state is chosen
as the new estimate for s(x). As a new value of s(x) is estimated for each pixel, the updated
s(x) is used to generate the new estimate of the next pixel. This process is iterated until the

result converges, with a maximum of 20 iterations. The posterior for each value of s is evaluated
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according to

P(s =0|Ap) x Pi(Apls =0) x Py(E4iv|s = 0) x Ps(l =0|L)
P(s =1|Ap) x P(Anls =1) x Py(Eqiv|s = 1) x Ps(l =0|L)
P(s =2|Ap) x Pi(Apl|s =2) X Py(Eav|s = 2) x Ps(l =0|L)
P(s = 3|An) x P(Apnls = 3) x Py(Egiv|s = 3) x Ps(l =2|L)
P(s =4|Ay) x P(Anls =4) x Py(Eqiv|s =4) x Ps(l=0|L)
P(s =5|Ap) x P(Anls =5) x Py(Eqiv|s =5) x Ps(l =2|L)
P(s =6|An) x P(Anls = 6) x Py(Egiv|s = 6) x Ps(l = 1|L)
P(s =T7|Apn) x P(An|s =7) x Py(Egiv|s =7) x Ps(l = 2|L)
P(s = 8|Ap) x Pi(An|s =8) x Py(Eaiv|s =8) x Ps(l=0|L)
P(s =9|Ap) x Pi(Apnls =9) x Py(Eaiv|s =9) x Ps(l =2|L)
P(s = 10|Apn) x P;(Apnls = 10) x Py(Egiv|s = 10) x Ps(l = 2|L)
P(s = 11|Ap) x Pi(Ap|s = 11) X Py(Egv|s = 11) x Ps(l = 2|L)
P(s = 12|Ap) x P(Anls = 12) x Py(Egiv|s = 12) x Ps(l = 2|L)
P(s =13|Ap) x P(Ap|s = 13) X Py(Eqgiv|s = 13) x Ps(l = 2|L)
P(s = 14|Ap) x P(Anls = 14) x Py(Egiv|s = 14) x Ps(l = 2|L)
P(s =15|Ap) < Pi(Anls = 15) x Py(Egiv|s = 15) x Ps(l = 2|L). (3.18)

The above expression outlines exactly how the posterior probability for each possible value of s.

In particular, it describes how the prior probability is estimated for each value of s given that

the spatial smoothness prior is enforced on the label field [ rather than s.

ICM gives a sub-optimal estimate of s. The converged estimate represents a local maximum

in the posterior PDF. Consequently, a good initialisation of the s is necessary to ensure that

the converged result is close to the global maximum. A deterministic temporal discontinuity

detector is used to estimate t(x) and is described by

1 if An_Q(X) > O 1 if An_l(X) > Oy
tn—2(x) = s tn—l(x) = 5
0 otherwise 0 otherwise
1 if An+1(X) > 0y 1 if An+2(X) > 0
tny1(x) = ‘ , tnya(x) = ‘ (3.19)
0 otherwise 0 otherwise

where
t(x) =

[tn—2(x), tn—1(X), tn i1 (%), tnya (X)].
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Figure 3.5: This figure illustrates the operation of the checkerboard scan. Each square in the
above image represents a pixel. The checkerboard scan simultaneously updates every third pixel
along each row and column (the shaded pixels). In the first pass the pixels marked 1 are updated
concurrently and in the second the pixels marked 2 are updated etc. . Accordingly, it takes 9

passes of the checkerboard scan to update every pixel.

From the initial estimate of t(x), estimates of s(x) and [(x) can be found.

The order in which the pixels are updated at each iteration can bias the estimate. For
example, a simple top-left to bottom-right raster scan can lead to a propagation of errors in the
direction of the scan. In this algorithm, a “checkerboard” scan is used (See Fig. 3.5). The main
advantage of the checkerboard scan is that error propagation at each iteration is limited to a
3 x 3 grid at each iteration. Furthermore, using the checkerboard scan can lead to significant

computational efficiencies, due to the concurrent estimation of the new pixel values.

Multiresolution

A multiresolution scheme [41] is incorporated into the algorithm. Using the mulitresolution
scheme results in faster convergence and the state field, s(x), is more likely to converge to the
global maximum of the posterior PDF.

A hierarchical pyramid of state fields of differing resolution is constructed, with the full
resolution field at the bottom level of the pyramid (level 0) and with fields of successively
coarser resolution at the higher levels of the pyramid. The horizontal and vertical resolution of
the field at each level is half the resolution of the field at the level below. A similar pyramid is
constructed for each of the DFDs and for the divergence measure, with each being filtered with
a gaussian filter of variance 2.5 and then subsampled by a factor of two both horizontally and
vertically. The coarser levels of these pyramids are generated by filtering the relevant DFD or
divergence measure with a low pass filter.

The algorithm proceeds by initialising the state field, s(x), at the coarsest level of the
pyramid using equation 3.19. A new estimate of s(x) at the coarsest level is obtained from the

probabilistic framework and the new estimate is then used to initialising the framework at the
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(a) Level 0 (b) Level 1 (c) Level 2

Figure 3.6: Each image is a representation of a section of the state field at 3 lowest levels of the
multiresolution framework. FEach square represents a pixel in the field and the lines represent
the links connecting neighbouring pixels. At the full resolution (level 0) each pixel as a single
link to every pixel in its neighbourhood. However, at higher levels of the pyramid, the number
of links between neighbouring vertical and horizontal pixels is greater than one, owing to the
neighbourhood links at the full resolution. As a result, the spatial correlation between each pixel

and its horizontal and vertical neighbours is increased relative to its diagonal neighbours.

level below. This process continues until s(x) has been estimated at full resolution.

An adjustment is made to the prior energy expression when estimating s(x) at the coarser
resolution. The weight Ay is modified to reflect the increased spatial correlation between a pixel
and horizontal and vertical neighbours relative its diagonal neighbours (See Fig. 3.6). At a level

i of the pyramid , the value of )y is given by

20 +1/2(2/ — 1) for vertical and horizontal neighbours
Ay = . (3.20)

7 for diagonal neighbours

3.4 Results

The main contribution of the proposed algorithm is the introduction of a joint MRF model for
blotches and PM (the label field I(x)). Pixels can either be clean, a blotch or PM. Even though
blotches can exist at PM sites, such sites cannot be detected as blotches. Effectively, the correct
detection rate for blotches is compromised in order to prevent the false detection of blotches due
to PM. Another feature of the algorithm is the application a smoothness prior to the label field
l[(x) instead of the full state field s(x). This allows smoothness to be maximised on the field of
interest (i.e. I(x)) while at the same time minimising the computational cost of estimating the

spatial smoothness energy. This facilitates the introduction of a PM bias, which penalises the
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detection of neighbouring blotch and PM sites by adding an energy penalty K to the assignment
of the site as a blotch for every PM site in its neighbourhood (See Fig. 3.4). The other significant
features of the algorithm are the divergence likelihood and the outer threshold ratio «;.. The
inclusion of the divergence likelihood introduces a new metric for measuring motion estimation
failure while the outer threshold makes the detection of PM more likely by allowing a lower
threshold for the detection of temporal discontinuities in the “outer” DFDs.

This section presents an evaluation of the proposed algorithm. It attempts to assess the
contribution of the individual features to the overall performance of the algorithm, in partic-
ular the value of the divergence weight A4, the PM bias K and the outer threshold ratio .
It also compares the performance of the algorithm to other missing data detectors, including
conventional missing data detectors such as SDIp [55] and also the Bornard missing data/PM
detection algorithm. This is achieved by comparing the results for /(x) generated by each al-
gorithm against a ground truth for blotches. Ground truths for dirt are generated using both
Infra-Red scans and by manual detection of blotches. The correct detection and false alarm
rates for missing data in the sequence are measured and are arranged in the form of Receiver
Operating Characteristics (ROCs), with the control parameter being the value of the threshold
0.

However, ROCs cannot give a clear picture of the performance of the detector. They merely
show the overall correct detection and false alarm rates for a frame or a sequence, giving no
description of their distributions in the frame. Blotch detectors that model Pathological Motion
will perform poorly in terms of correct detections as they are typically designed to prevent
detection of blotches in regions of motion estimation failure. ROCs also cannot completely
describe how effective the algorithm is at reducing false alarms, since they would not distinguish
between PM and non-PM regions in a frame. Ideally, it would be desirable to ignore ground
truth blotches in PM regions when estimating the correct detection rates. This could be achieved
by using the masks for PM generated by the proposed algorithm as a ground truth for PM.
However, not only would this bias the results in favour of the proposed algorithm, but it would
also exclude blotches wrongly classified as PM (e.g. when blotches are located in similar positions
in consecutive frames). In order to gain a complete understanding of the performance of the
algorithm it is necessary to augment the ROC plots with a visual evaluation of the masks
generated by the algorithm and also examine the detection rates of PM.

The remainder of this section outlines the experiments used to evaluate the performance of
the algorithm. The algorithm is tested on two sequences with PM for which a ground truth
for blotches was available and also on sequences for which no ground truth exists. Initially, the
evaluation focuses on determining the contribution of the divergence likelihood, PM bias and
the value of the outer threshold ratio to the performance of the algorithm (Section 3.4.3). The
performance of the proposed algorithm is then compared to other blotch detectors in Section
3.4.4, including conventional detection algorithms as well as the Bornard algorithm. Finally a

discussion of the results is presented. But before the evaluation begins, the two ground truth
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Figure 3.7: The “dance” sequence is the first of the ground truth sequences. The movement
of the dancer in the foreground is pathological. Its motion is self-occluding which also causes

occlusion and uncovering of the background.

sequences are introduced and a description of the experimental procedure is given.

3.4.1 Ground Truth Acquisition

The first ground truth sequence is known as the “dance” sequence (See Fig. 3.7). The motion
of the dancer in the foreground is pathological. As the dancer turns, her arms become occluded
behind the rest of her body. There is also occlusion of the background.

The blotch ground truth for this sequence is acquired using an Infra-Red IR scanner. The
Infra-Red scans were provided by INA [44] as part of the EU Prestospace project [83]. IR
scanners are used to produce a transparency map of each frame, where the intensity of each
pixel in the map is proportional to the degree of transparency of the pixel. A useful property of
dirt is that it is opaque to IR and as a result is associated with low intensities in the transparency
map. By applying a threshold to the map, a binary ground truth for dirt can be obtained. In
the “dance” sequence a ground truth is estimated for 125 frames of 720 x 576 pixels. The ground
truth is obtained by applying a threshold of 150 to each 8-bit transparency map. Pixels with
transparency intensities below this threshold are considered to be dirt.

Using IR scans is a good way to automatically generate a ground truth for dirt. However
there are a number of drawbacks to using IR scans. IR scans detect dirt even when the dirt
intensities are similar to the true image intensity. Such dirt can not be detected by image-based
missing data detectors. IR scans will also detect non-impulsive dirt such as line scratches which
are vertical lines of dirt in an image which can persist in the same location in a number of
frames. As a result of these factors, the reported correct detection rate will be lower than the
effective rate.

The second method used to generate a ground truth is to mark blotches in each frame by
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(a) 2 frames from the jacket sequence

(b) Frames with blotches highlighted in white

Figure 3.8: The second ground truth sequence is the “jacket” sequence. As the person in
the sequence removes his jacket, the motion of the jacket is pathological and is an example of

non-rigid object motion. This sequence has a higher blotch frequency than the “dance” sequence.

hand. Acquiring a ground truth in this manner ensures that only perceivable dirt is marked,
allowing for a more realistic ground truth. The obvious drawback of manually marking blotches,
is the tediousness of the task given that the ground truth needs to be defined on a pixel scale. A
ground truth for 22 frames of the “jacket” sequence (See Fig. 3.8) was generated in this manner.
The resolution of this sequence is also 720 x 576. The motion of the jacket is an example of the
erratic motion of non-rigid bodies. This sequence also has a higher frequency of blotches than

the “dance” sequence.
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3.4.2 Experimental Procedure

Motion Estimation - The gradient based motion estimator described by Kokaram in [54]

is used to generate motion vectors for all the test sequences. The block size of vector field is

17 x 17 pixels with a 2 pixel horizontal and vertical overlap.

Standard parameter values of the proposed algorithm - The standard parameter con-

figuration for the proposed algorithm is as follows

The deterministic threshold d; is used as the control parameter for the ROC plots. The
chosen values of 0; are {5, 7, 9, 11, 13, 15, 17.5, 20, 25, 30, 35, 40}. These values are
also used for the equivalent thresholds in the other missing data detectors used in the
comparison (Section 3.4.4), ensuring that each detector is detected over an equivalent

range.

Four levels are used in the multiresolution framework. There is a maximum of twenty

iterations per level.

Temporal Discontinuity Likelihood - The value of as and ag is directly related to the

threshold §; on the DFDs used in the initialisation stage according to equation 3.9. The

2

¢ is estimated before the first stage at each multiresolution level by finding

model error o
the variance of the four DFDs when s(x) = 0 (i.e. when no temporal discontinuity exists).
The values of oy and a4 are derived from the value of the outer threshold ratio «,. The

standard value of . is 0.5.

Divergence Likelihood - The standard value of the divergence weight Ay is 1, the value

of the divergence measure threshold e; is 50 and the roll off rate r is 0.5.

Spatial Smoothness Prior - The value of the smoothness weight A; is 1 and the standard
value of the PM bias K is 5.

ROC plots - An ROC curve is generated as follows

1.

For a given set of parameters, the algorithm under test is applied to the ground truth

sequences for every value of d;.

The missing data correct detection rate, r., and false alarm rate, ry, are estimated for

each frame (and for each d;), and are given by

roo— ZX bgt(x)bdet(x)
‘ Zm bgt (X)
2 x (1 = byt (%))baer (%)

T ) 20

where by (x) is the binary ground truth blotch mask for the frame and bge¢(x) is the binary

output of the blotch detector under test.
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(a) Validation image (b) PM/blotch detection

Figure 3.9: This figures shows a validation image and a PM/blotch detection for the “jacket”
sequence (correct detections - green, missed detections - blue, false alarms - red). The PM /blotch
(red/green) images can be used to indicate whether or not a missed blotch detection occurs to
the pixel being detected as PM (blue circle).

3. The average correct detection and false alarm rates are then calculated for the ground

truth sequences, giving a separate value for each ¢;.

4. The ROC plot for the test sequence is then generated from the average correct detection

and false alarm rates.

PM rate plots - Plots of PM rate, 7,, against the DFD threshold ¢; are evaluated by finding

the average relative frequency of PM in a sequence at each threshold. The PM rate is given by

rp= > x |l(x) == 2] (3.22)

21

where PM occurs when I(x) = 2.

Visual Evaluation - Two types of image are used for the visual evaluation. They are valida-
tion images and PM /blotch detections (See Fig. 3.9). Validation images compare the estimated
blotch masks to the ground truth and highlight correct detections (green), missed detections
(blue) and false alarms (red). PM/blotch detections display the masks generated by the proposed
algorithm and the Bornard algorithm with PM regions highlighted red and blotches highlighted

green.
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Implementation of the Algorithm

The tests outlined on the proposed algorithm in this chapter utilised a C++ implementation of
the algorithm, incorporating the IPP libraries [45] where appropriate. The algorithm was tested
on a PC with a 1.4 GHz Pentium M processor with 1 GB of RAM. The Morris, Bornard and
Blotch MRF algorithms were also implemented in C++, while the SDIp and sROD algorithms

were implemented in Matlab.

3.4.3 Algorithm Evaluation

Fig. 3.10 gives an example of the evolution of the label field configuration for a frame of the
“dance” sequence. Detection of missing data and PM at the coarser resolutions allows large
PM and blotch features to be detected. As the resolution at which the optimisation occurs
increases, the precision of the result increases allowing small features to be detected. In general
convergence at the coarser levels is fast as spatial information propagates quickly through the
field, but as the resolution increases the speed of convergence decreases. In the example shown
in Fig. 3.10 the convergence occurs after six iterations at both Level 3 and Level 2. At the finer
resolutions of Level 1 and Level 0 the maximum iteration limit of twenty iterations is reached.
Computation time for this example is approximately ten seconds.

Applying the algorithm to all the frames of the test sequences, gives the ROC and PM rate
curves shown in Fig. 3.11. Overall the maximum correct detection rates, r., for both sequences
are quite low (approximately 25% for the “dance” sequence and 40% for the “jacket” sequence).
However there is also a low false alarm rate, ¢, which does not increase above 0.1% (roughly
400 pixels in a 720 x 576 image) even at low threshold values. The PM rate plots for both test
sequences (Fig. 3.11 (b) and (d)) show that the rate of PM detection increases exponentially as
0; decreases.

An unusual feature of the ROC plots for the test sequences is the apparent ceiling on the
correct detection rates at lower values of the DFD threshold §;. The expected trend in an
ROC plot of a blotch detector is to have low correct detection and false alarm rates at higher
threshold values and for the rates to increase as the value of the threshold drops, tending to
a notional correct detection and false alarm rate of 100% at a zero threshold when every pixel
in the image is detected as a blotch. The lowest value of the threshold used therefore gives
the highest false alarm and correct detection rate. However the ROC curves show that this
pattern does not apply to the proposed algorithm. While the expected pattern is followed at
high values of the threshold d;, at lower values of the threshold a value is reached, below which
the correct detection rate no longer increases and continues to drop off. Although the rate at
which temporal discontinuities are detected in the five frame window continues to increase, an
increasing number of pixels are classified as PM (See Fig. 3.12) since the likelihood of temporal
discontinuities at the same location between multiple frames greatly increases. This is confirmed

by the exponentially increasing PM rate at lower threshold values. Consequently, less pixels are
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(a) A frame from the “dance”

sequence

(d) Field after 1 iteration at
Level 2 (7 iterations in total)

(g) Final Field at Level 1 (32
iterations)

(b) Configuration after Deter-

ministic Initialisation

(e) Final Field at Level 2 (12
iterations)

(h) Field after 15" iteration at
full resolution (33 iterations)

(c) Final Field at level 3 (6 it-
erations in total)

(f) Field after 1°" iteration at
Level 1 (13 iterations)

(i) Field after final iteration
(52 iterations)

Figure 3.10: This figure shows intermediate values of the label field (PM - Red, Blotches

- Green) at various iterations of the ICM optimisation process for a frame from the “dance”

sequence. The standard parameter set is used (Section 3.4.2) and the value of &; is 7. Level

0 corresponds to the full resolution; the resolution at level 1 is 360 x 288 and so on. At the

coarsest resolution (Level 3) the resolution is 90 x 72 pixels.
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Figure 3.11: This figure shows ROC and PM rate plots (r, v &;) for both test sequences

obtained from the proposed algorithm using the standard set of parameters.

detected as missing data and the correct detection rate decreases. For this detector, the notional

false alarm rate and correct detection rate at the zero threshold level is 0% as all pixels will be

detected as Pathological Motion. The following sections describe how the Divergence Likelihood,
the PM Bias and the Outer Threshold Ratio influence the performance of the algorithm.

The Divergence Likelihood

An ROC curve and PM rate curve is plotted for four different values of Ay (Fig. 3.13). The

values chosen are Ay = {0, 1, 2, 5}. The other parameter values are the standard parameter
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(a) Validation image for §; = 5 (b) Validation image for d; = 7

(c) PM/blotch detection for é; =5 (d) PM/blotch detection for 6, =7

Figure 3.12: This figure illustrates how lowering the DFD threshold ; results in a lower
correct detection rate. The blue circle highlights a large blotch which is not detected at the
lower threshold ((a) and (b) - correct detections in green, missed detections in blue). At the
lower threshold this blotch is classified as PM ((c) and (d) - red for PM, green for blotches).

values defined in Section 3.4.2. The value 0 is equivalent to the divergence likelihood being
excluded from the framework. As the value of the divergence weight increases the influence of
the divergence likelihood in the framework increases.

The ROC and PM rate curves highlight the mixed influence of the Divergence Likelihood
(Fig. 3.13) on the performance of the algorithm for the two test sequences. The introduction
of the divergence likelihood (when Ay = 1) improves the performance of the algorithm on the

the “dance” sequence (Fig. 3.13 (a), Fig. 3.14). There is a notable reduction in the false alarm
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Figure 3.13: This figure shows the ROC and PM rate curves (r, v ¢;) for the four chosen
values of the divergence likelihood weight Ay (i.e. 0, 1, 2 and 5).

rate (ry) for a negligible drop in the correct detection rate (r.). Increasing the weight of the
Divergence Likelihood further does not reduce the false alarm rate further. However, there is
a drop-off in the maximum correct detection rate. Increasing the weight of the likelihood also
increases the rate of PM detection (Fig. 3.13 (b)).

On the other hand, the weight of the divergence likelihood does not significantly alter the
performance of the algorithm on the “jacket” sequence (Fig. 3.13 (c)). The PM rate is not
significantly affected either (Fig. 3.13 (d)). This is further highlighted in Fig. 3.15 where
the introduction of the likelihood does not change the blotch detection rate and only slightly
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(a) Validation image without Divergence Likeli- (b) Validation image with Divergence Likeli-
hood (Agq = 0) (red - false alarms, blue - missed hood (Aq =1)
detections, green - correct detections)

(c) PM/blotch detection without Divergence (d) PM/blotch detection with Divergence Like-
Likelihood (A4 = 0) (red - detected pm, green - lihood (Ag = 1)
detected blotches)

Figure 3.14: This figure highlights a reduction in the number of incorrectly detected blotches
caused by the introduction of the Divergence Likelihood. The blue circles highlight the false
alarms that are removed when Ay = 1. Introduction of the likelihood also results in more
Pathological Motion being detected ((c) and (d))
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(a) PM/blotch detection without Divergence (b) PM/blotch detection without Divergence
Likelihood (Aq = 0) Likelihood (Ag = 1)

Figure 3.15: This figure shows detected PM (red) and missing data (green) on a frame of the

“jacket” sequence.

increases the amount of PM that is detected.

The PM bias

ROC and PM rate curves are plotted for four values of the missing data bias K (Fig. 3.16).
The values chosen are K = {1, 2, 5, 10} where K = 1 corresponds to the case where no bias
exists and where the bias towards detecting PM increases with K.

The results of the quantitative evaluation show that introducing the PM bias generally aids
the performance of the algorithm. Although there is a small drop off in the correct detection
rates, especially at low values of the threshold d;, the false alarm rate is reduced as the strength
of the bias is increased. The value of K has no significant difference on the rate of detected PM
in either test sequence.

The effect of the bias on the results can be seen more clearly in Fig. 3.17. The large false
alarm highlighted in the blue circle is removed by the bias, as the label of the neighbouring PM
sites is interpolated into the false alarm region. However, the bias also causes blotches to be
detected as PM. In this example, it is preferable to use the higher value of K, as the visual

damaged caused by interpolating the large false alarm is significant (Fig. 3.18).

The Outer Threshold Ratio

Once more ROC and PM rate curves are generated for four different values of a,.. The values

are o, = {1, %, %, ﬁ} When «, = 1, the values of a; and a4 are the same as oy and «g.
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Figure 3.16: This figure shows the quantitive evaluation for the four chosen values of K.

As «, decreases the effective threshold on the outer DFDs decreases and so the likelihood of the
detecting PM increases.

Reducing the threshold on the “outer” DFDs is intended to bias detection toward Patho-
logical Motion over Missing Data and this is evident from the quantitive evaluation of the test
sequences (Fig. 3.19). Decreasing the outer threshold ratio decreases the false alarm rate and
the correct detection rate and increases the rate of detected PM. Reduction of the threshold d;
at which the maximum correct detection rate occurs is another consequence of using a outer
threshold ratio smaller than 1 (See Table 3.3).

The example shown in Fig. 3.20 is indicative of the effect of using an outer threshold ratio

less than one. When the ratio is one (i.e. the same « threshold is used for all DFDs), there
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(a) Validation image for K = 1 (red - false (b) Validation image for K =5
alarms, green - correct detections, blue - missed

detections)

(c) PM/blotch (red/green) detection for K =1 (d) PM/blotch detection for K =5

Figure 3.17: This figure shows validation images and PM/blotch detections for a frame of the
jacket sequence for K = 1 (no bias) and K = 5 (suggested bias). The blue circles indicate an
area where a false alarm is removed by the introduction of the bias. The yellow circle highlights
where the bias has caused blotches to be detected as PM.
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(a) Restored Image for K = 1 blotch mask (b) Restored Image for K = 5 blotch mask

Figure 3.18: The false alarm highlighted in the blue circle causes the hand to be removed in
the restored image(left). The bias prevents this from happening in the right image, although
the circle highlights a blotch that has not been removed.

Outer Threshold Ratio, «, || “Dance” Sequence | “Jacket” Sequence

1 ) 7
1

7 5 11
1

3 7 13
1

3 9 20

Table 3.3: This table outlines the value of 0; at which the maximum correct detection rate

occurs in the ROC curves in Fig. 3.19. As the value of «, decreases the value of ¢; increases.

are more false alarms present. Using a smaller ratio causes most of the falsely detected blotches
to be detected as PM, resulting in a reduced false alarm rate. The reduction in the blotch
detection rate, 7., can also result in an increased frequency of missed detectections (See Fig.
3.21). However, the ROC curves in Fig. 3.19 demonstrate that the reduction in the false alarm

rate is more significant than the reduction in the correct detection rate.

3.4.4 Comparison with other Missing Data Detectors

The proposed algorithm is compared with five existing missing data detectors. These include
four conventional algorithms and the Bornard Missing Data Detection algorithm. The four other
algorithms are the SDIp algorithm [54, 61], the sSROD detector [5,104], the Morris algorithm
[61,73] and the Blotch MRF model [50] (see chapter 2, section 2.3.3).
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Figure 3.19: This figure shows the quantitive evaluation for the four chosen values of the outer

threshold ration o,..

Detector Configuration

Both the SDIp and sROD algorithms have one associated parameter d; and are implemented
directly from the description of the algorithms (see chapter 2, section 2.3). The four proba-
bilistic algorithms are implemented with as similar parameter values as possible to ensure the
fairness of the comparison. A multiresolution framework is employed for each algorithm, with
a maximum of twenty iterations per level. An eight-pixel first order spatial neighbourhood is
used for either the blotch field (blotch MRF algorithm), the temporal discontinuity field (TDF's)
(morris/bornard algorithms) or the blotch/PM field (the proposed algorithm). The Bornard al-
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(a) Validation image for o, = 1 (red - false (b) Validation image for o, = 1
alarms, green - correct detections, blue - missed

detections)

(¢) PM/blotch (red/green) detection for a, =1 (d) PM/blotch detection for a, = 1

Figure 3.20: This figure visually demonstrates the effect of reducing the outer threshold ratio

on a frame in the “dance” sequence.

gorithm also employs a two-pixel temporal neighbourhood linking the TDF's. Like the proposed
algorithm, in the Blotch MRF algorithm a smoothness prior is only enforced on the blotch field
and not on the state field (i.e. Ay =1, Ay =0).

The value of the spatial smoothness weight in the Morris and Bornard algorithms is 1, and the
temporal prior weight of the Bornard algorithm, 3, is —0.1. As the value of the parameter has a
negative value, the prior is effectively a smoothness prior, rather than a dissimilarity prior, which

encourages temporal discontinuities to appear at the same spatial location in consecutive tdfs.
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(a) Validation image for o, = 1 (red - false (b) Validation image for o, = 1

alarms, green - correct detections, blue - missed

detections)

Figure 3.21: This figure shows validation images of a frame from the “jacket” sequence for
two outer threshold ratio values. The blue ellipse indicates where false alarms that are removed
by using a lower ratio, while the yellow circle highlights a missed blotch detection at the lower

ration value.

This reflects the setup recommended by Bornard in his thesis ( [8] Section 5.7.1.2), where the
temporal prior weight is roughly one tenth the size of the spatial weight, with a negative value.
The search radius in the interpretation stage is 20 pixels with a temporal discontinuity threshold
of 1. Although less conservative than the recommended setup (a radius of 38 pixels), PM will
be flagged if a temporal discontinuity exists in one of 2 x 20?7 pixels which is approximately
two and a half thousand pixels. For the proposed algorithm, the standard set of parameters

described in Section 3.4.2 is applied.

Comparison with the Conventional Detectors

ROC curves are plotted for each detector, with the same set of values of ¢; as before (0; = {5, 7,
9, 11, 13, 15, 17.5, 20, 25, 30, 35, 40}). PM rate, r,, plots are also generated for the proposed
algorithm.

Experimental comparison of the missing data detectors shows that both the proposed algo-
rithm and the Bornard algorithm achieve a significantly reduced false alarm rate when compared
to the four standard missing data detectors, although the correct detection rates are also re-
duced. At higher values of the DFD threshold d; (i.e. before the max correct detection rate
is reached), the false alarm rate of the proposed algorithm is 75% to 90% less for the “dance”
sequence and 50% to 80% less for the “jacket” sequence. On the other hand, both the Bornard
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Figure 3.22: This figure shows the ROC curves for the 6 detectors under test for each test
sequence. The standard parameter set is used for the proposed algorithm. The set up of each

detector is described in Section 3.4.2.

and proposed algorithms have an upper limit on the rate of correct blotch detections. The av-
erage maximum correct detection rate of the proposed algorithm is two to three times less than
the correct detection rates at the lowest threshold tested (d; = 5), although the false alarm rate
is 30 to 50 times lower.

Figures 3.23 and 3.24 visually highlight the difference in performance between the proposed
algorithm and the Blotch MRF algorithm, the standard blotch detector most closely related to
the proposed algorithm. In the highlighted frames the proposed algorithm reduces the number
of false alarms in the Pathological Motion regions (i.e. the jacket and the female dancer),
preventing damage to image data (Fig. 3.25). The drop in blotch detections can mainly be
attributed to two factors. Firstly blotches which are located near objects undergoing PM are
likely to be missed (Fig. 3.26). This is an intended consequence of the algorithm design, which
is encouraged to maintain image quality rather than remove the maximum number of blotches.
The second major cause of missed detections occurs because of a high frequency of blotches over
a number of frames. A fundamental assumption made by missing data detectors is that blotches
are rarely located at the same spatial location in neighbouring frames. However, if there is a
high frequency of blotches in a sequence, then the probability of blotches occurring at the same
location in neighbouring frames increases. In such situations, a blotch is likely to be incorrectly
classified as Pathological Motion (Fig. 3.27).
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(a) Validation image for the Blotch MRF Detec- (b) Validation image for the proposed algorithm

tor (green - correct detections, red - false alarms,

blue - missing data)

(c) PM/blotch detection for the proposed algo-
rithm (red - pm, green - blotches)

Figure 3.23: This figure consists of validation images for the Blotch MRF' algorithm and the
proposed algorithm for a frame from the “dance” sequence. The value of the DFD threshold,
¢, Is 15. Also shown is the PM/blotch detection for the proposed algorithm. The blue square
highlights the region of the image where the proposed algorithm eliminates false alarms caused
by Pathological Motion. The yellow circles highlight missed blotch detections in the proposed
algorithm, which have been wrongly detected as PM.
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(a) Validation image for the Blotch MRF Detec- (b) Validation image for the proposed algorithm
tor (green - correct detections, red - false alarms,

blue - missing data)

(c) PM/blotch detection for the proposed algo-
rithm (red - pm, green - blotches)

Figure 3.24: This figure consists of validation images for the Blotch MRF algorithm and
the proposed algorithm for a frame from the “jacket” sequence, as well as the corresponding
PM/blotch detection for the proposed algorithm. The value of the DFD threshold, d;, is 15.
Using the proposed algorithm reduces the number of false alarms in the region of the head of

the female dancer.
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(a) Restored image using the Blotch MRF De- (b) Restored image using the proposed algo-
tector rithm

Figure 3.25: This figure highlights a region of the frame shown in Fig. 3.23 which is restored
using the Blotch MRF detector and the proposed algorithm. If the Blotch MRF detector is
used to restore the frame significant damage occurs in the region of the jacket. This damage is

prevented if the proposed algorithm is used.

Comparison with the Bornard Algorithm

The missing data ROC curves in Fig. 3.22 also highlight the variable performance of the pro-
posed algorithm when compared with the Bornard algorithm. The Bornard algorithm generally
performs better on the “dance” sequence. At high thresholds the false alarm rate, ry, of the
Bornard algorithm is lower for similar correct detection rates, r.. However, at lower threshold
values the difference in the false alarm rates decreases and the proposed algorithm achieves a
higher maximum correct detection rate. On the other hand, the proposed algorithm is much
more effective on the “jacket” sequence and achieves a much higher blotch detection rate. The
maximum correct detection rate is approximately 40%, roughly twice the maximum correct
detection rate of the Bornard algorithm.

The poor correct detection rates of the Bornard algorithm on the “jacket” is clearly visible
in the frame from the “jacket” sequence highlighted in Fig. 3.28. Many of the blotches in the
frame are detected as PM by the Bornard algorithm, caused by the high frequency of visible
blotches in the sequence. The proposed algorithm is less prone to missed detections in such
circumstances.

It is reasonable to conclude that the Bornard detector is more conservative than the proposed
algorithm. The interpretation stage of the Bornard is more conservative than the cumulative
effect of the divergence likelihood, the PM bias and the outer threshold ratio. The interpretation
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(a) A frame from the “dance” sequence (b) A PM/blotch (red/green) detection for the
frame (6, = 11)

Figure 3.26: This blue circle in the highlights a blotch located near a region of motion blur.
Due to its location the blotch is detected as PM by the proposed algorithm.

Figure 3.27: This figure shows two consecutive frames from the “jacket” sequence. The blue
rectangle highlights a region with a high frequency of blotches. The increased frequency of

blotches increases the probability of blotches occurring at the same location, causing such
blotches to be detected as PM.
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(a) Validation image for the Bornard detector (b) PM/blotch detection for the Bornard detec-
(green - correct detections, red - false alarms, tor (red - pm, green - blotches)
blue - missing data)

(c) Validation image for the proposed algorithm (d) PM/blotch detection for the proposed algo-

rithm

Figure 3.28: This figures illustrates the superior blotch detection rate of the proposed algo-
rithm. The highlighted regions of the frame indicate blotches missed by the Bornard algorithm
(image (a)) that are detected by the proposed algorithm (c). The blotches missed by the Bornard

algorithm are detected as PM (b). The value of §; used to generate the images in this figure is
15.
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stage acts as a “maximum caution” classifier, rejecting any candidate blotch site if a single
temporal discontinuity exists within a radius (20 pixels) of the candidate in either of the outer
temporal discontinuity fields. The ultra cautious nature of the interpretation allows the Bornard
detector to achieve lower false alarm rates. However, it also results in more missed detections
at lower threshold values or when there is a high frequency of blotches in a sequence.

On the other hand, the proposed algorithm tries to make an informed decision and as such
is less indiscriminate than the Bornard algorithm. For a site to be detected as PM rather than
a blotch, the proposed algorithm requires either a temporal discontinuity to exist in at least one
outer temporal discontinuity field at the same location or spatial propagation from neighbouring
PM sites by means of the smoothness prior. The divergence likelihood, the PM bias and the
outer threshold are all intended to make the proposed algorithm more likely to detect PM and
have been shown, for the most part, to reduce the false alarm rate , r¢, without reducing the
correct detection rate, r.. The divergence likelihood increases the probability of sites with high
motion field divergences being detected as PM, the PM bias encourages the spatial propagation
of PM states and the outer threshold ratio increases the likelihood of temporal discontinuities

being detected in the outer fields.

3.4.5 Blotch Restoration using the Proposed Algorithm

The critical design criteria of the proposed algorithm is that it eliminates image damage during
missing data treatment. A primitive missing data treatment algorithm was implemented that
takes a blotch mask from any detector and interpolates detected blotches with the mean motion
compensated intensity of the previous and next frames.

Fig. 3.29 compares images restored using both the Blotch MRF algorithm and the proposed
algorithm (0; = 15). Frames from four sequences are shown. The first is the “jacket” sequence
used in the ground truth experiments, in which the motion of the jacket is an example of self-

“vj” sequence

occluding and non-rigid object motion. The second sequence shown is called the
and is an example of repetitive occlusions, as the aircraft propellors appear and disappear in
alternative frames. The third sequence is the “birds” sequence. This sequence contains another
example of repetitive occlusion (the bird’s wings), however, in this case, the region of PM is
moving across the frame. The final sequence (the “chopper” sequence) contains an example of
motion blur. The rotation of the rotors is also an issue, as the motion estimator employs a
purely translational motion model.

The four examples shown in Fig. 3.29 highlight the effectiveness of the proposed algorithm.
Using the proposed algorithm prevents significant damage to each of the four images shown.
However, the proposed algorithm is not always able to prevent all image damage, especially in
cases where the region of PM is undergoing a translation (i.e. the motion of an object is the
sum of PM and a non-pathological translation (see Fig. 3.30)). The assumption is made that

motion compensation can be performed accurately, even in regions of PM. Consequently, the



3.4. Results 76

(b) PM/blotch detections of the four frames for the proposed algorithm

ey

(c) Frames restored with the Blotch MRF algorithm

- =

(d) Frames restored with the proposed algorithm

Figure 3.29: This figure shows frames from four sequences restored using the the Blotch MRF
and proposed algorithms as blotch detectors. The highlighted frames show image damage present
if the Blotch MRF is used instead of the proposed algorithm.



3.4. Results vé

(a) A frame from the “dance” sequence (b) Restored frame
(¢) A frame from the “birds” sequence (d) Restored frame

Figure 3.30: This figure shows two examples where the proposed algorithm fails to prevent
damage to image data (the highlighted regions). In each example, the object undergoing PM is
also undergoing a translation ( the motion of the arm in the “dance” sequence and the motion

of the bird in the “birds” sequence).

algorithm is prone to failure as it involves the motion compensation of four frames with respect
to the central frame. However, it should also be noted that while some image damage may occur,
any damage will be much less than the damage caused by performing missing data treatment

without detection of PM.
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3.4.6 Computational Complexity

Estimation of the prior energy and estimation of the MAP state at each pixel is the most
computationally intensive aspect of the algorithm, amounting to approximately 90% of the
execution time for a single frame. The upper bound for the complexity of the ICM optimisation
is O(# iterations x # pixels X # states X #neighbours) where the number of states is 16 and
the number of pixels in a given neighbourhood is eight. The actual order of complexity is slightly
reduced as the smoothness prior is enforced on the label field (three states) rather than the full
state field (16 states). The number of iterations necessary for convergence also depends on the
number of states and the size of the neighbourhood, with a higher number of states and greater
neighbourhood size requiring more iterations for convergence. From observation of the algorithm,
the size of the ¢; threshold also impacts on the number iterations required. The average number
of iterations performs decreases as J; increases. Computation time varies between 5 and 15

seconds per frame, depending on the number iterations performed.

3.5 Final Comments

In this chapter a robust Missing Data Detector designed to prevent false alarms caused by
Pathological Motion was presented. The algorithm prevents false alarms by detecting regions
of PM and excluding these regions from being detected as blotches. An integrated Bayesian
framework is used to classify pixels as either PM or missing data based on the pattern of
temporal discontinuities over a motion-compensated five-frame window. The algorithm also
employs a divergence likelihood which biases the algorithm toward the detection of PM when
the local motion fields of the window have high divergences.

The proposed algorithm was shown to reduce image damage when used as a detector in a
Missing Data Treatment Framework (Section 3.4.5). A quantitative evaluation of the algorithm
was presented by comparing it with four standard blotch detectors [50, 55, 61, 104] and the
Bornard algorithm [8]. The mean correct detection and false alarm rates for missing data
sequences of each detector were estimated on two ground truth sequences for which a ground
truth exists. The comparison shows that the proposed algorithm gives a significantly reduced
false alarm rate when compared with the standard detectors. Although a lower false alarm rate
can be obtained with the Bornard algorithm at high thresholds, higher correct rates are possible
with the proposed algorithm. In one of the test sequences the maximum correct detection rate
is twice that of the Bornard algorithm.

The form of the divergence likelihood requires further consideration. Currently the diver-
gence likelihood is evaluated from a divergence energy measure derived from the divergences
of the motion fields over the five frame window. Use of the divergence information can give
another independent measure of PM, improving the performance of the algorithm. Although

the likelihood contains a model for the divergences of PM regions, it ignores the divergence of
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the motion field regions of missing data which can be large in the presence of large blotches. The
quantitative evaluation of the algorithm also highlighted the variable influence on the two test
sequences, indicating that the motion field divergence can not be used as a universal indicator
of Pathological Motion. Furthermore, the influence of divergence may be affected by the choice
of motion estimator - e.g. whether the motion field is defined on a block scale (like the motion
estimator used in the experiments described in this chapter) or on a pixel scale.

The major area of further development in this area would be to integrate the algorithm into
a Missing Data Treatment framework. The algorithm outlined in this chapter is presented as a
stand-alone blotch detector which operates independently of a missing data interpolation stage.
Previous work in Missing Data Treatment [53,57,60] has shown that integrating the detection,
interpolation and motion estimation stages into a single bayesian framework allows for a more
visually pleasing restoration. A new missing data treatment algorithm along the lines of the
JONDI algorithm [57] using the proposed algorithm for the detection stage could result in an

integrated algorithm resistant to Pathological Motion.
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Global Motion Estimation
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A Brief Review of the Globlal Motion Estimation
State of the Art

In general, the observed motion between two images in a sequence is due to both object motion
in the scene and global motion of the camera or entire scene. Local motion estimation typically
refers to the process of estimating that portion of the motion in the sequece due to object
motion. Global Motion Estimation is the process of estimating the component of motion due
to camera or scene behaviour. In global motion estimation, a single set of motion parameters is
used to describe the motion of the entire frame, rather than a set of parameters for each pixel
or block of pixels. It has gained prominence recently in the video compression domain. Recent
compression standards such as MPEG-4 [74] and H.264 [40] have used knowledge of the global
motion parameters to improve the compression efficiency [32]. Global Motion Estimation is also
used in restoration applications, most notably in image stabilisation [27,69,72] which aims to
remove unintended high frequency camera motion (i.e. camera shake) from sequences.

While a simple two-parameter translation model is commonly sufficient for local motion
estimation, in general more elaborate motion models are employed in global motion estimators,
allowing them to represent the global motion more precisely. These models range from the simple
two parameter translation model to the more complex affine models which are sufficient to model
camera rotation and zoom, the eight parameter projective model which can detect perspective
distortions and the twelve parameter quadratic model which allows for transformations with a
parabolic curvature (See Table 4.1). The choice of model is effectively a compromise between

precision and robustness. More complex models can give a more complete description of the
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Number of

Motion Model Definiton
Parameters
translational 2 (x,y) = (z+mo, y+ mq)
zoom & translation 3 (z,y) — (mox + mg, may + mq)

zoom & rotation &

translation 4 (z,y) = (max — may + mo, maz + may + mq)
affine 6 (,y) — (mox + m3y + mg, max + msy + my)
o : (o9) — CREEAT St
quadratic/ parabolic 12 (z,y) = (maz + mgy + mex? + mry? + mszy + mo,

max + msy + mox? + myoy? + mury + my)

Table 4.1: This table describes some common motion models used in global motion estimation
algorithms. The right column describes the transformation of a pixel x = (x,y) by a parameter
vector m = {my, ....,my_1} where k is the number of parameters in the model (i.e. it describes

the transformation x — f(x,m) for each model).

dominant motion. However, they are also less robust, requiring a greater amount of reliable data
to generate reliable estimates. A typical compromise is the six parameter affine model which
gives a sufficient approximation of the camera motion especially over small temporal intervals.

The most established method of estimating the dominant motion is to use the image sequence
intensity function itself. The goal is to find the parameters that give the best match between
two frames by minimizing the size of the global motion compensated difference over the full set
of image pixels (e.g. minimum mean squared difference). An alternative strategy is to compute
the global parameters from a local motion field by finding the parameters that most closely
represents the dominant motion in the field. If access to the motion information of the sequence
exists (e.g. for MPEG streams), algorithms using this strategy are typically less computationally
intensive due to the lower resolution of most motion fields. However, the estimates are normally
less precise, with the quality of the estimate being reliant on the quality of the algorithm used
to calculate the local motion field.

Overcoming the influence of local motion is a major issue in the design of a global motion
estimation algorithm. Foreground objects which are moving independently of the dominant
motion can bias the estimation to the extant that the estimate is an average of the true global
motion and the local motion. Consequently, foreground/background segmentation is often em-

ployed to reject objects undergoing local motion from the estimation process. Ill-conditioned
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image data is also a problem for global motion estimation. Although not as significant a factor
as in local motion estimation where the support region is much smaller (i.e. a block of pixels
rather than an entire image), the reliability of the estimate can be affected when large regions
of an image are ill-conditioned, especially when more complex motion models are used.

This chapter presents a brief literature review of global motion estimation algorithms. It
considers both image based and motion based algorithms. Each technique is assessed in terms
of both the accuracy and robustness of the result and particular attention is paid to how each
technique deals with local motion. Finally, the possibility for a new hybrid global motion

estimation algorithm using both image based and motion field based techniques is explored.

4.1 Image Based Estimation

A similar image sequence model to that used in local motion estimation (See Section 2.1, Eq.

2.1) is also used for global motion estimation and is described by

In(x) = In—1(f (x, m)) + e(x) (4.1)

where I, and I,,_; are the intensity functions of the n'* and (n — 1) frames and where f(x, m)
describes the transformation function of each pixel, x, between the two images given the global
motion parameters m. e(x) is the assumed gaussian-distributed error in the model. The signifi-
cant difference is that unlike local motion estimation the parameters m are fixed over the entire
image. An appropriate method of finding the motion parameters is to chose the parameters,
m, that minimises some enrergy function or the model error e(x). Typically the mean square

residual (model) error is used as follows

= arg n"#lan(In(x) — I (f(x,m))? (4.2)

One could use a direct approach to estimation by finding the parameters that minimise the
motion compensated difference between the two reference frames. However, such an approach
would be computationally intractable especially when more elaborate motion models are used

due to the high number of unique parameter sets.

4.1.1 Parameter estimation using the Gauss-Newton Algorithm

A gradient based strategy can be employed to find the optimum set of parameters. A Taylor
series expansion of the right hand side of equation 4.1 about an initial guess for the motion

results in the approximation

I,(x) ~ I,—1(f(x,mp)) + uTVmIn_l(f(x, my)) (4.3)
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where the higher order terms of the expansion and the model error have been ignored and u is
a parameter update vector the same length as my such that the new parameter estimate,my, is
then given by

m; = u+ my (4.4)

Vm is a multi-dimensional gradient operator and for a k-parameter motion model is defined

vm:i:{a . L} (45)

8m0’ aml’ ’ 8mk_1

as

with mg being the 1%¢ parameter of the model etc. . Equation 4.3 is an equation for a single
pixel with & unknowns. Similar equations can be written for every pixel in the image resulting

in an over-determined system of equations with a least squares solution of
i = (G7G)"'G"z (4.6)

For convenience, the Vi I,—1(f(x,mp)) terms for each pixel have been collect into the matrix
G (with dimensions of > 1 x k) where each row corresponds to the values VI, 1(f(x,mg))
for the corresponding pixels. Likewise the I,,(x) — I,—1(f(x,mg)) are gathered into a vector z.
This process can be iterated by expanding Eq. 4.1 about the new parameter estimate until
the difference between successive thresholds is below a threshold. The chosen estimate m is the
value of the parameters at the iteration with the least mean square residual error.
The Levenberg-Marquardt algorithm [82] elaborates on the Gauss-Newton method by adding

a damping term to Eq. 4.6 which becomes
i = (GTG+ul) "Gz (4.7)

where [ is the k x k identity matrix. The non-negative damping term p increases the stability
of the solution when GTG is ill-conditioned. Equation 4.7 is similar to the wiener solution of
the least squares problem. It handles the higher order terms of the Taylor series by considering
them to contribute a gaussian white noise. The wiener solution is the parameter update vector
u that minimises the expect value of the squared error between u the true update u. A full

derivation can be found in [4].

Robust Estimation of the Global Motion Parameters

The advantage of Gauss-Newton and Levenberg-Marquardt methods is that the global motion
parameters can be estimated to an infinite precision. Furthermore, the method is compatible
with all of the most common motion models. Global motion estimation algorithms have been
implemented using the six parameter affine [59,79,94], eight parameter projective [32,99] and

12-parameter parabolic [96] models.
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The major weakness in the strategy is its failure to deal with local motion. Local motion is
independent of the global motion and is thus considered an outlier. As a least squares approach
is used significant local motion will bias the estimates of a global motion. Therefore, regions
of local motion need to be excluded from the optimisation to achieve a robust estimate. To
this end a weighting function w(x) is defined. Regions that belong to the background and
obey the camera motion are given high weights close to 1 and local motion regions are assigned
low weights close to 0. The problem becomes one of minimising the mean square error of the

weighted residual as follows

m = arg Inniln Z w(x)e(x)?

X

= argmin > w(x)(In(x) = In-1(f(x,m)) (4.8)

X

The least squares estimate for the parameter update term 1t then becomes
a = ("WaQ) "Wz (4.9)

where W is a diagonal matrix collecting the weights w(x) over all pixel sites.

In effect, the problem now is to estimate the local/global segmentation of the frame defined
by w(x) and to perform the estimation of the parameters at pixels where w(x) is close to
1. This problem is solved iteratively bu alternating between estimates of the segmentation
and the motion parameters. At each step, the next estimate of the global motion is obtained
using the most recent estimate of the segmentation and the segmentation is estimated given the
new global motion estimate. This approach is known as Iteratively Re-weighted Least Squares
(IRLS) [29,43]. The next sections outline two approaches to computing the weights at each

iteration.

M-Estimation

M-Estimation [43] presents a robust alternative to the least squares formulation by limiting the
influence of outliers. In the standard least squares optimisation the contribution of each pixel
to the overall energy function is a quadratic function of the residual value. Therefore, a single
outlier can bias the overall energy as its energy will be greater than the energies of several inliers.

In M-Estimation an energy function p(.) is defined such that the optimisation problem becomes
m = arg min Z ple(x)). (4.10)
X

The function p is known as the M-estimator which should limit the energy contributions of
outliers. Several different M-estimators have been used in Global Motion Estimation including
the Geman-McLure function used by Sawhney and Ayer [91] and Tukey’s Biweight function used
by Odobez and Bouthemy [79]. It can be shown the M-Estimation problem is equivalent to the
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IRLS problem if the weighting function is defined by

_ )

w(x) = 2e(x) (4.11)

with p(.) being the derivative of the M-estimator, %. Using either of the M-estimators described
above results in a continuous weighting function with values close to 1 for low residual values,
the value of the weight tending to 0 as the residual value increases. Hence, the influence of

outliers is curtailed.

Truncated Quadratic

An alternate strategy is to define a binary weight function which gives 0 weight to residual
values above a threshold [32,59,95] and is equivalent to a M-estimator defined by a truncated

quadratic (See Fig. 4.1). The binary weighting function is given by
w(x) = (4.12)

where ¢; is the threshold. In [95], Smolic and Ohm evaluate the threshold as being a multiple of
the mean square residual (a factor of 1 is recommended). An alternative method of selecting the
threshold is proposed by Dufaux and Konrad [32] to the select the residual value which would
exclude the largest T% residual values.

Kokaram and Delacourt expand on the algorithm of Dufaux et al. by using the Levenberg-

Marquardt extension of the IRLS framework. Consequently, equation 4.9 becomes
i = (GTWG+pul) ' G"™Waz (4.13)
with the damping parameter i in being adpatively set at

= a3 (4.14)
where A\pax and Apmin are the maximum and minimum eigenvalues of the matrix GTWG. The
ratio of maximum to minimum eigenvalue is a measure of the condition of the matrix GTWG.
Therefore, defining 4 in this manner increases the damping when GTW( is ill-conditioned en-
suring the stability of the system. A comparison of the different approaches to robust estimation

is given in [28,29].

4.1.2 Phase Correlation

Phase Correlation [66] is another image based method which is more robust to local motion

than the standard least squares approach. For the pure translation case (i.e. a 2 parameter
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(a) Quadratic, M-Estimator (b) Quadratic, Weighting Function
(¢) Truncated Quadratic, M- (d) Truncated Quadratic, Weighting
Estimator Function
(e) Geman-McLure, M-Estimator (f) Geman-McLure, Weighting Func-
tion

Figure 4.1: Each row shows the 3 different M-Estimators (p(e(x)) v e(x)) and their respective

weighting functions (w(x) v e(x), w(x) = £ ;(:((;)))). The requirement for the weighting function
is that it gives high weights for low residual values and low weights for high residual values.
The quadratic M-Estimator represents the case when a standard least squares regression (i.e.
uniform weights) is performed, the truncated quadratic represents the binary weighting case
and the Geman-McLure M-estimator is an example of an M-estimator that has a continuous

weighting function.
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translation model), where I,,(x) = I,,_1(x + d), the 2-D Fourier Transform of I,,(x), F,(w) is
given by
Fp(w) = 27@dWp(w) (4.15)

The normalised cross-power spectrum of I, and I; is given by

Fn(W)E7_ (W)

n—

|[En(w)Ey ()]

= e7ir(dw), (4.16)

the inverse Fourier transform of the which results in a delta function, §(x—d), where the impulse
is located at the displacement d. For real images with local motion, a pure delta function is not
obtained, but rather a surface which can be thought of as the pdf of the possible displacements
between the images. Because the translation is typically estimated by choosing the location of
the histogram mode, the algorithm is robust to local motion as long as the global motion is the
dominant motion in the frame.

In [42] a technique for using phase correlation to estimate global motion using the four-

parameter affine model given by

o) — B cos(f,) —sin(fy)
In(x) In_l( " [sin(@n) cos(6p)

X+ d) (4.17)

is outlined where z, is the zoom parameter and 6,, is the angle of rotation. Using the affine the-
orem for 2-D Fourier Transforms [13] and using log-polar coordinates, the magnitude spectrum

of I,,(x), M, (w), is given by
M, (logr,0) = M,,_1(logr — log z,,0 — 6,,) (4.18)

which is a shifted version of the magnitude spectrum of I,_1(x). Therefore, the zoom and
rotation parameters can be estimated using standard phase correlation on the magnitude spectra
and, after compensating for the zoom and rotation, the translation parameters are calculated
as before.

The main advantage of phase correlation is its robustness to local motion and hence seg-
mentation is not required. Furthermore, the process is not iterative which means that phase
correlation is typically less computationally intensive than the gradient-based least squares tech-
niques. However, estimating more than 4 parameters with phase correlation is substantially more
complicated. This is in contrast with the gradient-based techniques which can be easily applied

to more sophisticated motion models.

4.2 Motion Field Based Estimation

The common thread among many motion field based algorithms is that they recognise that the

global motion parameters can be used to model a motion field over the entire image. Given
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a set of parameters defined by the vector m, a motion vector field (v(x,m)) modelled on the

parameters is described by
v(x,m) = f(x,m) — x. (4.19)

The aim is to find the motion parameters that results in the modelled motion field that is
closest to the obseved motion field d(x). This problem can be approached in a least squares
fashion by trying to minimise the sum squared euclidean distance between the two motion fields

as follows
= argmin Y _ [|d(x) - v(x, m)|?
— argmin 3" [(d(x) + ) — £, m) (4.20)

where m is the optimum set of parameters.

Taking the six parameter affine model described by

f(x,m) = Ax + d,

A=|" m3] ,dy = mo] (4.21)
myg My ma
as an example (See also Table 4.1), the f(x,m) and x + d(x) terms can be expressed in matrix
form as
f(x,m) = Bm
and x +d(x) =c (4.22)
(4.23)
where

10 2 y 00
01 0 0 2 vy

T
m=|mg mip M2 M3 My Tn5:|

[+ dw(ac,y)]
v+ dy(x,y)

and where = and y are the horizontal and vertical components of the pixel location vector x
respectively (d, and d, represent the horizontal and vertical components of the observed motion
field). By collecting the B and c terms for all the vectors defined in the motion field, an over-
determined system of equations (Bm = c) results which can be solved using a pseudo-inverse

as follows

m=(B'B)"'BTc (4.24)
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Robust Estimation

Like the least squares techniques used in the image based methods, the above approach suffers
from a lack of robustness to outliers in the observed motion fields. Once more an IRLS approach
can be used to increase robustness to outliers. Inspired by the use of M-estimators in the image
based techniques, Smolic et al. [94] proposed an M-estimator approach using a residual energy
function defined by

e(x) = [0, m) — dy(x)| + [0, (x,m) — d, ()], (4.25)

the sum of the absolute values of the horizontal and vertical differences between the modeled
and observed motion fields.

Other approaches have adopted a binary weighting scheme. Tse and Baker [102] use an
arbitrarily chosen threshold on the magnitude of the difference between d(x) and v(x,m). An
adaptive method for determining the threshold is proposed by McManus in [71]. Outliers are
rejected based on the size ratio of ||d(x)—v(x, m)|| to d(x). If this ratio is greater than a threshold
0.5, the corresponding image locations are rejected as outliers. This ratio is recomputed if the
proportion of outliers is less than 30%, ensuring that the proportion of outliers does not drop
below this limit. Pilu [81] pre-filters the observed motion field in two stages to reject outliers.
In the first stage, motion vectors in ill-conditioned regions are rejected by measuring the spatial
gradient of the image intensities. This is followed by a spatial median-filtering of the observed

motion field to reject isolated vectors.

4.2.1 Least Median of Squares Regression

Least Median of Squares (LMedS) Regression [90] can also be used to estimate the parameters.
It has the advantage of being able to compute robust estimates for an outlier rate as high as
50%. In [68] Li et al. propose a motion field based algorithm. The optimum set of parameters

is determined by minimising the median of the motion field difference as follows
m = argmin ( median(||d(x) — v(x, m)|[%) ). (4.26)

In the LMedS framework a number of candidates for the motion parameters are generated.
The Median of the square error is evaluated for each candidate and the candidate with the
minimum value is chosen as the result. Each candidate is generated from the minimum amount
of data required to produce a system of equations with a unique solution (i.e. m = B~'c).
Consequently, for a 2D motion field, the number of data samples required is half the number of
parameters in the motion model (e.g. Three motion vectors are required for the six parameter
affine model).

For a robust estimate to be obtained, the data set of at least one candidate must not contain
any outliers. For a known outlier rate in the data of ¢ and a user-defined required probability

of a robust estimate p, the minimum number of candidates, m, required for a robust estimate
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of the global motion is given by

_— log(1 —p)
log(1—(1—e)k/2)

(4.27)

where k is the number of parameters in the motion model [68]. So for a six parameter motion
model and a required probability of robustness of 99%, 35 samples are required if the proportion
of outliers in the data is expected to be 50%. A brief derivation of this equation is given in

appendix C

4.2.2 Estimation using Histograms

The lower resolution of motion fields when compared with images makes the use of histograms
for Global Motion Estimation computationally viable. Using histograms is a robust method of
estimating the parameters as the modal parameter value is chosen as the estimate. However,
computation of the histogram requires quantisation of the parameter space, resulting in a loss
of precision.

Chiew et al. [14] describe a global motion estimation algorithm inspired by the Hough Trans-
form [1] using the six parameter affine model. The algorithm involves the computation of a six
dimensional histogram to describe the parameter pace. Each motion vector in the motion field
polls for every set of global motion parameters that could model the vector. In the six pa-
rameter affine model the relationship between the observed motion vector d(x) and the motion
parameters is defined by

dx) = f(x,m) —x=(A—-I)x+d, (4.28)

. For every possible set of affine parameters (A) the translation vector d, is estimated and the
corresponding histogram bin is incremented. The final parameter estimate corresponds to the
histogram bin with the most votes.

Estimating the parameters in such a manner is a laborious process due to the high dimension-
ality of the histogram and the number of possible combinations of parameters for each motion
vector!. The computational load can be reduced if separate histograms are used to estimate
single parameters or pairs of parameters and if a neighbourhood of motion vectors votes for
the one combination of motion parameters that can describe the motion parameters. Such an
approach was adopted by Jozawa et al. in [47] which estimate a three parameter zoom and
translation global motion model (See Table 4.1). Three histograms are used to estimate the
parameters, with the modal parameter of each histogram being chosen as the estimate.

A similar approach is adopted by Coudray and Besserer to estimate global motion using
the four [24] and six [26] parameter affine models. The translation parameters are estimated
using a 2D histogram, with the remaining affine parameters are estimated using separate 1D

histograms. The key observation of the algorithm is that the affine parameters are related to

! Assuming that n bins are used for each of the non-translation parameters there are n*~2 combinations for

each vector.
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the horizontal and vertical partial derivatives of the two components of the motion field. The
parameters are estimated in two stages. First of all, the histograms on the affine parameters
are accumulated by estimating the partial derivatives of the motion field. Once the affine
parameters are known, the detected affine motion is removed from the motion field. Finally,
the translation parameters are estimated by generating a 2D histogram of the compensated
motion fields. In [26], an interesting application of the algorithm is introduced. A motion based
segmentation is performed using watershed algorithm to isolate the peaks of the 2D translation
histogram. Each peak corresponds to a different motion pattern in the image, one of which
corresponds to the global motion. Consequently, this algorithm can be used to perform a

foreground /background segmentation.

4.3 Discussion

In the ideal case, a Global Motion Estimation algorithm must be both robust and precise. It
should be able to give accurate results even when significant local motion is present. Of all
the methods outlined above the image gradient-based methods give the best precision, with
the theoretical possibility of the parameters being estimated to an infinite precision. Both the
phase correlation and the motion field based algorithms using histograms require quantisation of
the parameter space limiting the precision of the final estimate. Furthermore, the motion field
techniques have the added drawback of being dependent on the quality of the motion estimator
used to compute the local motion field, adding a further source of imprecision to the estimate,

However, the gradient-based methods are not without their drawbacks. As has been outlined
already, these methods are not robust to local motion and consequently, the IRLS framework
was introduced to allow for local motion areas to be weighted out of the estimation process.
Another limitation of the gradient based technique is that only small updates can be accurately
computed at each iteration and, as a result, is not suitable for estimating large displacements.
This limitation is a consequence of the truncated Taylor’s Series expansion of I,(f(x,m)),
and hence the Taylor series only converges in a neighbourhood of the current guess of the
motion mg. In the literature, this limitation has been mitigated by adopting a hierarchical
approach [32,59,79,91,96,99]. Similar to the multi-resolution approaches used in probabilistic
frameworks (Section 3.3.4), a pyramid of images is created by successively low-pass filtering and
down-sampling the target images. An initial estimate of the global motion at a given level of the
pyramid is obtained by estimating the global motion at the next level up on the pyramid. Some
algorithms have mitigated against this limitation further by adopting hybrid approaches. In
these algorithms the hierarchical gradient based estimation is initialised using another technique,
often using a less elaborate motion model than in the gradient based framework. These have
included phase correlation [99], feature matching [96] and n-step search bock matching [17,32].

The state of the art gradient based algorithms are reliant on accurate weighting to obtain

robust estimates. However, when the residual based weighting methods outlined in Section 4.1.1
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are used, a bad weighting can occur if the current estimate of the global motion is inaccurate.
This in turn can lead to an erroneous motion estimate after the next estimate. Consequently, a
vicious circle would result, whereby the estimated global motion would converge to a different
value than the true global motion.

The fundamental problem is the suitability of using the residual values as a basis for fore-

ground /background segmentation (Fig. 4.2). There are two ways in which failure can occur.

1. Because the segmentation is reliant on the estimation of motion compensated differences,
inaccuracies in the motion compensation will result in high residual values in high spatial
gradient regions (i.e. edges), even when these edges occur in the background. Conse-
quently, these edges will be given low weights and will be excluded from the estimation.
Background edges are important features in the estimation process and their exclusion

could lead to ill-conditioning of the GT G matrix resulting in an unstable estimate.

2. Foreground objects with interiors of uniform intensities can be mistaken as background.
The possibility exists that parts of the interior will be have low residual values and will be

assigned high weights (i.e. for the background).

Noting this weakness in the residual based segmentation, it is useful to consider a new Global
Motion Estimation algorithm based on the IRLS framework which does not employ a residual
based segmentation scheme. There are two issues to be resolved, how to compute an initial
estimate of global motion and how to perform the segmentation.

These issues are addressed by taking inspiration from the earlier work of Coudray and
Besserer who propsed a robust method of estimating global motion from a local motion field [24].
This algorithm can be used to initialise the IRLS framework. Furthermore, the motion based
segmentation algorithm of Coudray and Besserer [26] can be used as the basis for computing
the weighting function. This new hybrid algorithm would be retain the precision of the gradi-
ent based methods and, through the use of the motion based segementation, would obtain the

robustness of the motion based algorithm.

4.4 Final Comments

As part of this work, Global Motion Estimation was applied to two image processing applications,

namely image sequence mosaicking and film tear correction.

Chapter 5 introduces the new hybrid algorithm for Global Motion Estimation (GME) for
creating mosaics using motion information from an MPEG-2 stream. Mosaicking is the process
of creating a single image consisting of a panaorama of an entire shot. It involves estimating the
camera motion over the shot and the concatenation of the estimates over the shot to register each
frame to a reference frame. As such, mosaicking is a suitable application to test the algorithm

as any errors in the estimate will propagate through the mosaic.
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(a) A frame from a sequence (b) Residual of the frame

Figure 4.2: This figure highlights the limitations of using the residual value to perform fore-
ground segmentation. In this sequence, the objects undergoing local motion are the calender
(translating downwards), the train (translating left) and the ball (translation to the left and
anti-clockwise rotation). The right image shows the residual computed with slightly inaccurate
motion parameters. The bright regions indicate low residual values and high residual values are
represented by dark regions. The blue circles a section of the background where high residual
values can be seen at edges due to inaccurate motion compensation. These background edges
are likely to be misclassified as foreground. The red circles highlight the regions of local motion

in which low residual values exist and so would be mistaken as background.

Chapter 6 outlines a framework to correct regional displacement introduced by the tearing
of film material and is an example of global motion estimation applied to an image restoration
application. In particular, the chapter introduces a novel algorithm to segment torn frames

which draws on the motion based segmentation algorithm of Coudray and Besserer [26].



A Hybrid Algorithm for Robust and Precise Global
Motion Estimation from MPEG Streams

MPEG standards exploit the temporal redundancy in image sequences in order to achieve
a more efficient compression of the sequence. MPEG streams contain local motion fields which
allow frames to be reconstructed from a reference frame and the motion information linking
the two frames. Exploitation of the motion information in MPEG streams is desirable since
the motion information is provided in the stream itself. However, MPEG motion vectors are
generally unsuitable for image manipulation applications due to the poor quality of the motion
fields (See Fig. 5.1).

In [24,71] Global Motion Estimation (GME) algorithms are outlined which derive the es-
timates of the global motion parameters from vector fields obtained from an MPEG stream.
Extracting the global motion parameters from MPEG streams is an attractive prospect because
it allows for quick estimation of the parameters. In [24] GME is performed by using histograms
of the local motion field between two frames to derive the global motion parameters, and hence
it is robust to local motion. Furthermore, it allows for a quick and coarse motion-based back-
ground segmentation and allows for global motion estimates between consecutive I-frames, which
are typically 12 to 15 frames apart. However, the precision of the estimate is dependent on the
accuracy of the motion field. In other words, poor quality MPEG vectors will result in a poor

parameter estimate. For clarity, it is referred to here as the Robust Accumulation for Global

This work has been published in part in [23].
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Figure 5.1: This figure shows an example of the problems encountered when using MPEG-
vectors for image manipulation. The bottom left image shows the motion compensation error
(dark colours represent high errors) if MPEG motion vectors are used to compensate between
the two images on the top row. The alignment of the pitch lines and the advertising hoardings
is poor because of the poor quality of the MPEG vectors. The bottom right image shows the
compensation error for the hybrid GME algorithm. In this image, the lines are much better

aligned and hence the compensation error is lower.

Motion-field mODelling (RAGMOD) algorithm.

In order to overcome these limitations, gradient-based techniques, [59,79], can be used to re-
fine the estimate obtained from the RAGMOD algorithm. Gradient-based GME techniques can
precisely estimate small global motions. However, gradient-based techniques are easily biased
by local motion and so a background/foreground segmentation is needed to ensure robustness
to local motion. The resulting hybrid algorithm aims to combine the robustness to local motion
of RAGMOD with the precision of the gradient-based techniques.

A challenging application for the hybrid algorithm is mosaicking from MPEG-2 streams.
Mosaicking is the formation of a panorama from a group of images or an image sequence. It
is a well established application in Image Processing [77,91,99] and is also incorporated into
MPEG-4 as the notion of sprites [106]. The major task in mosaicking is the estimation of the

relative positions of each of the images in the sequence, which requires Global Motion Estimation
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(GME). Typically, the position of each frame in the sequence is estimated relative to the first
frame by combining the global motion estimates of all frames between the first and the current
frames. This results in a single Global Motion Estimate which describes the transformation
from the current to first frame of the sequence. Because matching is performed in this manner,
an error in a global motion estimate between any two consecutive frames will affect the relative
position of all subsequent images in the mosaic. Therefore, precise and robust Global Motion
Estimation is essential for creating accurate mosaics.

This chapter outlines a hybrid GME algorithm which generates estimates from MPEG-2
streams. An initial guess for the global motion is obtained from the RAGMOD algorithm,
which also produces a coarse background segmentation. The estimate and the background
segmentation are then used to initialise a gradient-based GME framework producing the final
result. Before the hybrid algorithm is outlined, a brief review of previous GME techniques is
presented. The subsequent sections detail the hybrid algorithm, including a brief overview of
the RAGMOD and gradient-based techniques. Finally, sections outlining the simulation results

and conclusions are presented.

5.1 The Hybrid Algorithm

The Hybrid algorithm is a robust and precise Global Motion Estimation algorithm which exploits

the motion information used in MPEG-2 streams. The algorithm proceeds in 3 stages.

Vector field aggregation The first stage of the algorithm involves preparing the MPEG
motion information for GME (Appendix A). The current application for the GME algorithm is
mosaicking and so it is not necessary to estimate motion between each frame. Since MPEG-2
streams are to be used and I-frames are the only frames which contain all spatial information,
estimates of the global motion are obtained between consecutive I-frames. To achieve this goal,
a motion vector field mapping consecutive I-frames is calculated by aggregating the motion
information between two I-frames. With the standard MPEG profile, I-frames appear every 12
or 15 frames. Thus the mosaics are typically composed from images a half second apart in an
image sequence. This also has the advantage of speeding up the mosaicking process as fewer
estimates have to be carried out.

The vector field is then weighted by the texture information in each of the image macroblocks.
Blocks with few texture features (e.g. a clear sky) are given a low weight, while blocks with
significant texture features (e.g. edges) are given high weights. This ensures that vectors in
flat textureless regions are weighted out of the estimation, making the GME more robust to the
aperture effect. At the end of the first stage, a vector field mapping two consecutive I-frames
has been obtained, where each vector is weighted according to the texture information in the

corresponding image block.
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Initial estimation using RAGMOD After the aggregation stage, the RAGMOD algorithm
is used to estimate the global motion parameters from the aggregated vector field (Appendix
B). The algorithm uses histograms of the motion field and so is robust to local motion. A four-
parameter zoom and rotation affine model is employed, and the zoom and rotation parameters
are estimated initially. Compensation of the motion field for the zoom and rotation is then
performed, in theory leaving a purely translational motion field. A further histogram is then
used to estimate the translation parameters from the compensated motion field. This histogram
is also used as the basis for a motion-based segmentation, which is achieved by extracting the
distinct peaks in the histogram. The translation histogram is typically multi-modal. Each peak
corresponds to the different motion patterns in the motion field, one of which represents the
background. By selecting this peak, the background is segmented. As the motion field is block-
based, the segmentation map is coarse. However, it has the advantage of its accuracy being
independent of the precision of the global motion estimate. At the end of the second stage, an
initial estimate of the global motion parameters is obtained. Additionally, a coarse background

segmentation map has been obtained from the motion based segmentation

Refinement using a gradient-based estimation A gradient-based framework using a six
parameter affine model is used to refine the estimate obtained from the RAGMOD algorithm.
Firstly, the four parameter result from the RAGMOD algorithm is converted to a six parameter
estimate. The four parameters of the RAGMOD algorithm are the zoom and rotation parameters

r and z and the translation parameters d, and d,. This corresponds to a six parameter motion
model as follows
f(x,m) = Ax +d,

d d
ap ag _ ’ dg _ 1 _ x (51)
a3 a4 d2 dy
The result is then used to initialise the gradient-based framework. In the hybrid algorithm,

a standard IRLS framework based on the Gauss-Newton Algorithm (See Section 4.1.1 in the

previous chapter) is employed at full image resolution which attempts to minimise the weighted

1+2z —r
r 142

A=

sum squares residual according to
N~ . 2
m = arg min E w(x) (I (x) — L—1(f(x,m))“. (5.2)
m
X

The novelty is in the method of rejection of local motion (i.e. of estimating w(x)). Instead of
using the residual values (i.e. I,(x) — I,,—1(f(x,m)), the motion based segmentation is used to
reject local motion regions. The weighting function at each iteration, is given by the overlapping
background of the current and motion compensated previous frames as computes by the motion

based segmentation algorithm, the expression for which is

w(x) = hyp(x) X hy—1(f(x,m)) (5.3)
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where h,, and h,,_1 are the binary background maps of frames n and n — 1 estimated from the
motion based segmentation. The motion based segmentation is not updated at each iteration.
However, the weighting function is updated at each iteration according to Eq. 5.3 and the

current value of the motion parameters.

5.2 Results

Finding an objective measure to assess the performance of a Global Motion Estimation algorithm
is not a simple proposition. Ideally, the true global motion parameters for a sequence would be
known, and the estimated parameters would be compared with this ground truth. Practically, for
most image sequences, no such ground truth exists and an alternative measure of performance is
needed. One practical measure of performance is to use the mean square value of the Displaced
Frame Difference as an error measure of the estimation. The minimal value of the mean square
DFD is said to represent the optimal global motion estimate. The main drawback with such
a method is that local motion would bias the error measures as local motion causes high DFD
values. A solution to this problem would be to consider the mean square value of a DED weighted
by a background segmentation. However, unless a ground truth segmentation exists, the fidelity
of the error measure is affected be the choice of background segmentation used. In fact, it has
already been mentioned in last chapter (Section 4.1.1, Eq. 4.8) that gradient-based techniques
are optimised with respect to the local motion rejection strategy used and so using the same
strategy for evaluation will bias the result in favour of the algorithm.

Another strategy for evaluation of performance is by visual inspection of the motion com-
pensated images. Obviously, such a subjective measure is imprecise by its very nature. In this
chapter, mosaicking is also used as a form of visual evaluation. As errors in GME propagate
through the mosaic, a systematic error in the GME algorithm will be more easily detected in a
mosaic than from visual inspection of a single estimation.

A number of experiments have been performed in order to evaluate the performance of the
Hybrid GME algorithm. In order to have available a “ground truth” sequence, a sequence
was shot of a scene in which markers were strategically placed to allow a set of parameters to
be estimated by tracking the markers’ positions in each frame. The hybrid algorithm is also
compared to a gradient-based technique using M-estimation, the significant difference being the
different segmentation strategies employed (i.e. picture-based v motion-based segmentation).

The following sections detail the results over the sequences tested.

5.2.1 Ground Truth Estimation

The most obvious method to get ground truth data is to record all camera motion parameters
while acquiring the video using a camera turret (and zoom controller) which would allow the

camera to undergo a known predefined motion. This was attempted with a primative turret,
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Figure 5.2: Ground truth : parameters computed from marker tracking (x) constitute the
reference estimation. RAGMOD estimation (black lines) is already close to the reference one,
and hybrid estimation (orange lines) is similar. Improvements given by Hybrid estimation are

clearly visible on scale parameters (a1 and ay).

but the results were unreliable. Another option, although not strictly “ground truth”, is to add
visual markers to the scene, which can be easily tracked and therefore deliver global motion
parameters by different method to the hybrid algorithm. An attempt was made to capture a
scene in which markers were positioned allowing them to be subsequently tracked (Fig. 5.5a).
A road is part of the recorded sequence, so passing vehicles are a source of local motion and a
possible disturber for the GME. During filming the camera was placed on a fixed tripod and
moved by hand. Initially the camera moves to the left. This is followed by a zoom in and then
another pan to the left. Finally the camera zooms out, revealing more of the scene.

In order to estimate the ground truth estimation, all visible markers are manually selected
and tracked using the post-production compositing software Combustion 4 [18]. A minimum of
three markers are required in each frame along the sequence for the ground truth to be estimated
using a six parameter affine model. The GME parameters are calculated from I-frame to I-frame
by using a linear least squares fit (f(x,a) = Ax + d) to the motion of the markers located in
each frame.

To compare the results, parameters of the different estimations are plotted in the same
reference chart (GOP (I-frame) index as x-axis, GME parameters (affine model) on the y-axis
(Fig. 5.2). Although the complete affine model is used, rotation parameters ay and as are close

to zero for this sequence and hence are not plotted.
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Figure 5.3: Hybrid estimation (orange lines) is compared here to compared to Motion2D
estimation. Black lines represent results when estimation is made frame by frame (parameters
are combined along each GOP), and dotted lines when estimation is made directly between each
I-Frames. Hybrid and frame-to-frame estimation give similar parameters, but direct estimation

between I-Frames is impossible with Motion2D.

The test sequence used for the “ground truth” data is encoded by the Cinemacraft [16]
encoder (GOP=15, IBBPBBPBBPBBPBBI, VBR), and the hybrid algorithm is used to estimate
the motion from the resulting MPEG sequence. These first plots show good GME with using the
RAGMOD algorithm only, and an accuracy improvement after the second stage of the hybrid
algorithm.

One advantage of making a initial estimation on MPEG data is to allow global motion
estimation between distant frames in the time, while the precision (comparable to frame by
frame estimation) is added by the second stage. To demonstrate this, the results of our method
should be compared with estimations provided by a reference frame-by-frame estimation method.
For this purpose the motion estimation tool Motion2D [78] based on work of the IRISA team [79]
was chosen. Unlike the hybrid algorithm, Motion2D does not use any of the motion information
from the MPEG stream and uses M-estimation for the local motion rejection in the gradient-
based framework. Motion2D uses the fully decoded frames from the input MPEG stream, but
the timestep for the results has be adapted for direct comparison with the hybrid method.
Therefore, using Motion2D, two sets of estimation are computed. The first one is a frame by
frame estimation, with the the estimated parameters being chained over the 15 frames in order to

produce one estimation for a time span that matches a GOP. The second estimation is performed
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Figure 5.4: Mean square difference between background pixels of current frame (given by
motion based segmentation) and compensated previous frame. RAGMOD estimation (dot lines)
is the worst (mean of 10.29) and hybrid estimation the best (7.31). Motion2D (black line) and

estimation made from markers (crosses) are between (respectively 9.90 and 8.58).

on a “l-out-of-15” basis (i.e. direct estimation over 15 frames), the chosen frames matching the
I-frames of the MPEG sequence.

The estimated parameters are plotted on the same scales in Fig. 5.3. It can be clearly seen
that an I-Frame to I-Frame (1-out-of-15) estimation with Motion2D leads to poor results as
this time span is too large to allow direct estimation between I-frames. The results provided
by the Hybrid method which calculates directly between I-frames gives results equivalent to a
frame-to-frame estimation computed by Motion2D.

The mean square DFD between each frame, I;, and the registered (motion compensated)
previous frame, I;_1, computed on background luminance pixels (Fig. 5.4) is used to compare
the performance of the hybrid and Motion2D algorithms. As with the refinement stage, the
common background obtained from the motion-based segmentation between the current and
motion compensated previous frame is used to compute the mean square DFD. Although this
would naturally bias the results in favour of the hybrid algorithm, this method was chosen
because it is less likely to reject important background edges (See Fig. 5.5, Fig. 5.9). Despite
little detected difference between the results, the hybrid estimation scheme gives a slightly better
estimation. It was discovered that, besides error accumulation while chaining the frame-by-frame
estimations, most differences between the parameter values are due to influence of local motion
and the strategy used to reject the local motion.

Fig. 5.5 illustrates these differences. Although the Motion2D segmentation is more precise,
many background edges (tree borders, marker borders, window borders) are rejected because of
remaining estimation errors. Consequently, these edges are not considered in recursive GME,
despite the fact that these edges are very important in motion estimation (aperture problem). In

the hybrid method, these edges are labeled as background and so the estimation is made on more
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(a) I-Frame n (b) I-Frame n + 1

(c) White pixels represent background pixels (d) Luminance represents the weight of each
given by MPEG motion based segmentation for pixel in the Motion2D algorithm. (sample taken
I-frame n+ 1. This result is used in the gradient between two consecutive frames and not be-
based refinement. tween I-Frames)

Figure 5.5: MPEG segmentation is not very accurate (blockwise and noisy data) but some

important background edges are rejected in Motion2D algorithm (markers,windows...).

reliable data. Furthermore, imprecise estimates give high DFD values in the neighbourhood of
these edges and hence rejecting these edges for evaluation purposes gives a false impression
of the performance of the GME algorithm. Therefore, in order to evaluate the algorithms, is
preferable to conserve the majority of these edges even if some background is ignored and so the
motion-based segmentation is used.

In summary, it has been shown that the Hybrid GME algorithm gives an estimation with

high accuracy, even in the presence of local motion. The initial estimation is made once per
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Figure 5.6: This figures plots the motion parameters of “Mobile and calendar” sequence. The
top row plots the translation parameters d, and do while the middle and bottom rows show the
affine parameters. Estimation made frame-to-frame by Motion2D (thin black lines) is biased by
the calendar motion in the beginning of the sequence. The three other estimations (dot lines
for RAGMOD only, orange lines for Hybrid and back lines for I-frame-to-I-frame Motion2D)
give equivalent results except when calendar is prominent in the frame in which case Motion2D

cannot distinguish between the background and calendar (See Fig. 5.9).

GOP (depending of MPEG profile, every 12 or 15 frames) in real-time, and the second estimation
stage provides an equivalent accuracy to a frame-by-frame robust estimator. The subsequent
sections emphasise the advantages and also the limitations of the Hybrid algorithm, especially

with regard to the motion-based segmentation.

5.2.2 Picture-based v Motion-based segmentation

For the ground truth sequence, the choice of segmentation method is not critical because there
is enough texture present in the background to allow the Motion2D method to generate accurate
results. However, this will not be the case for all sequences and an example of such a sequence

will now be discussed.

“Mobile and Calendar”

To illustrate the hybrid method’s resilience to bias caused by local motion, a sequence exhibiting
widespread and slow local motion is used as a test sequence. This sequence is the well-known

“Mobile and calendar” sequence, a commonly used reference in the research community in testing
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Figure 5.7: Mean square DFD comparison on “Mobile and calendar” sequence. Frame-to-
frame Motion2D estimation (thin black lines) gives the worst estimation because the calendar
motion is not well rejected (mean of 23.23). Hybrid estimation (orange lines - 14.95) improves
RAGMOD estimation (dot lines - 19.51), and I-frame-to-I-frame Motion2D estimation (black
lines - 17.92) give intermediate quality.

motion detection & segmentation algorithms. In this sequence the camera moves to the left,
and slightly zooms-out. Additionally the scene contains many local motions (e.g. the calender
is moving vertically and the train is moving to the left pushing the ball along the track). Since
the camera motion is gentle, the Motion2D software is able to estimate global motion using a
1-out-of-12 scheme (estimation of the parameters directly from I-frame to I-frame). As with the
previous test sequence, two estimation sets have been computed (frame-to-frame and I-frame-to-
I-frame) with the Motion2D software. All obtained parameters have been plotted on the same
scales in Fig. 5.6.

The Motion2D algorithm, or more generally all GME estimators using robust regression,
could fail on this particular sequence. If global motion is estimated on a frame-by-frame basis,
the calendar motion is not important enough to be “rejected”. In fact, since the calendar shows a
vertical motion (it is falling down) in the right area of the scene, a non-existent “global rotation”
is estimated (See Fig. 5.8). This occurs because the motion of the calender is not different
enough from the global motion. Therefore, the residual error in the Motion 2D segmentation is
not large enough to allow the calender to be rejected and so the calender is mistakenly segmented
as background (See Fig. 5.9).

However, when the estimation is performed over a complete GOP with Motion2D, the calen-
der is correctly rejected and the estimation is more accurate because the global warping over the
GOP is sufficiently large. Considering the hybrid approach, the motion-based segmentation is
not as perturbed by the calendar motion. Therefore, the hybrid algorithm is more robust to local
motion in this sequence. Once again, the hybrid approach is better at segmenting background

edges, and so gives better error performance (Fig. 5.7).
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(a) Mosaic using the Hybrid algorithm

(b) Mosaic using Motion2D on a frame-by-frame basis

Figure 5.8: This figure demonstrates the failure in the frame-by-frame Motion2D estimation.
In this sequence no global rotation is present. However, when using Motion 2D, a false clock-
wise rotation, introduced by the calender motion, is detected and the mosaic appears to ramp

upwards.

The hybrid algorithm is able to estimate global motion between distant frames (not easy
for more traditional methods) with more robust local motion rejection based on motion seg-
mentation. In order to be less time consuming, the motion-based segmentation uses the motion
vectors from an MPEG-2 stream. The next section illustrates some limitations of using the

MPEG motion information for segmentation in sequences with more complex motion.

The “cathedral” sequence

A sequence exhibiting more complex motion is now discussed. In this “cathedral” sequence, the
camera is focused on the top of the cathedral and then quickly tilts down with a rotation, until
the queued people in front of the cathedral are revealed. As in the “ground truth” sequence,
the warping is too large for estimating global motion directly between each I-frame (1-out-of-
15) with Motion2D. Therefore a comparison is only made between the RAGMOD, Hybrid and

Motion2D frame-to-frame methods.
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(a) MPEG background selec- (b) Motion2D frame-to-frame (¢) Motion2D  “l-out-of-12”

tion background selection background selection

Figure 5.9: White pixels represent pixels used in the compensation error minimization by Hy-
brid method(a) and by Motion2D frame-to-frame(b) and I-frame-to-I-frame(c). In the Motion2D
frame-to-frame map(b)the motion of the calender is not different enough from the background
and is incorrectly segmented as background. In (c) the motion of the calender is large enough
and is largely correctly detected (apart from the bottom of the calender which has low texture).

Again background edges are not taken into account with the Motion2D algorithm.
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Figure 5.10: Mean square difference comparison on the “Cathedral” sequence. Hybrid estima-
tion (orange lines) gives better results than MPEG (dot lines) or Motion2D (black lines), except
for GOP 5.

Fig. 5.12 shows that the parameters estimated by the RAGMOD algorithm give significantly
different values from those of Motion2D. Only after the refinement step in the Hybrid method
do the results converge to the frame-by-frame method. Looking at the mean square DFDs for
the sequence in Fig. 5.10, it can be seen that the Motion 2D algorithm gives a lower error than
the hybrid estimation for the estimation between I-frames 4 and 5, despite the motion-based
segmentation being used to weight the DFDs. This error is also apparent in the mosaic for this

sequence (shown in Fig. 5.13 by the orange circles), where it can be seen that the cathedral
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(a) MPEG motion based segmentation (b) 4th I-frame

Figure 5.11: The motion-based background segmentation of I-frame 4. In some cases, the the
quality of the motion-based segmentation is not sufficient. Here only one part of the cathedral
is segmented as background (the red segment), so the second estimation will ignore a large part

of the background and accuracy will be affected.

edges are not aligned correctly over the boundary between the frames.

This weakness is introduced by the RAGMOD algorithm and the motion-based segmentation.
In all previously described cases, the global motion was not so complex, and the motion-based
segmentation was relatively good. For I-frame 4, the RAGMOD estimation is not sufficiently
accurate, and camera rotation and zoom are not correctly compensated to correctly segment
translations. As a consequence, only one part of the cathedral is considered for global motion
estimation (Fig. 5.11) and the precision is not at its maximum. Clearly the 4-parameter affine
model used in the RAGMOD algorithm is not suitable to describe the global motion in this
sequence. The dramatic camera-motion, and the small distance from the camera to the building,
result in a more complex global motion than a 4 parameter model can describe. Therefore, using
a 6-parameter affine model or an 8-parameter perspective model in the RAGMOD technique
might improve the reliability of the segmentation.

It has already been shown that the motion-based segmentation is efficient for selecting back-
ground area while preserving all of the interesting edges. However, if global motion is too
complex, the quality of the segmentation will be affected. Despite the fact that in this sequence
the hybrid algorithm is only using a section of the available background in the gradient-based
framework, it can still obtain a reasonable estimate and minimise the error introduced by the

motion-based segmentation.
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Figure 5.12: Global motion estimation on “Cathedral” sequence. When affine motion is large,

the RAGMOD parameters (dot lines) are not very accurate, but are well corrected by hybrid

estimation (orange lines) which gives similar results to frame-to-frame Motion2D estimation

(black lines).

Figure 5.13: A section of the “Cathedral” sequence mosaic created with Hybrid algorithm.

The circles highlight the errors introduced into the mosaic by the poor estimates for GME given

by the hybrid algorithm between I-frames 4 and 5. In the circles the edges jag as they are not

correctly aligned over the boundary of the 2 frames.
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(a) First I-frame

(b) Final I-frame
(¢) Mosaic

Figure 5.14: Mosaic built on cricket sequence : In this sequence there is a strong zoom as the
camera zooms-in to show a close-up of the batsman. The white box indicates the position of
the last frame on the mosaic. In the last frame a false rotation is detected as the batsman is

too prominent in the frame. See Fig. 5.19 for more details.

5.2.3 Mosaicking of Sports Sequences

Mosaicking is a useful tool for summarisation of sports sequences. In many sports (e.g. football,
cricket) the camera motion can be indicative of the the state of a game [59]. Typically, motion
in sports sequences is faster than in the test sequences shown above and consists of combinations
of panning and zoom. Figures 5.14 to 5.17 show examples of mosaics produced from footage of
a number of sports events each with their own distinct camera motions.

The hybrid algorithm is very appropriate for this application, due to the fact that the
broadcasted MPEG streams (DVB-S or DVB-T') hold motion compensation vectors of relatively
high accuracy. Of course, this accuracy depends of the MPEG encoder. The broadcaster desires
the best picture quality for a given limited bandwidth, and as a result high quality MPEG
encoders are used. The use of such encoders results in higher quality motion fields which implies
that lower error data rate is encoded. According to our experience, MPEG encoders used by
major broadcasters deliver very good compensation information.

For all the mosaics shown in this section, the MPEG streams have been recorded from digital
TV channels and are used as is. For the hybrid method, I-frames have been de-interlaced before
being forwarded to the gradient-based refinement. As stated earlier, GME directly between

I-frames is advantageous for moasaicking since not every frame needs to be included and it
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(a) First I-frame

(b) Final I-frame (c) Mosaic

Figure 5.15: Athletics : In this sequence the camera zooms, pans and tilts as it tracks the

athletes. For comprehension, a red frame frame is drawn around each compensated frame.

reduces the computational load. However, in some circumstances it may be desirable to vary
the length of the window over which GME is performed (e.g. if the motion is too fast/slow or for
visualisation purposes) in order to optimise the visual quality of the mosaics. Furthermore, for
the mosaics shown here, a primitive blending scheme is used, whereby every frame added to the
mosaic overwrites the existing mosaic. Choosing a more suitable blending scheme would further
improve the visual quality of the mosaics. The remainder of this section highlights various the
various detected cases where the hybrid algorithm fails.

Lack of texture is a common occurrence in sequences acquired from some sports, like soccer,
where the playing field has a largely homogeneous colour. In such scenes, often the only back-
ground features in a frame are the field markings (typically lines), which makes segmentation of
these features crucial for robust GME. The motion-based segmentation has already been shown
to be effective at correctly segmenting background edges. However, when there are not enough
field markings present in the frame, the robustness of the hybrid algorithm will be reduced (See
Figs. 5.17 and 5.18).

Another cause of failure in the hybrid algorithm manifests itself in the cricket mosaic (See
Fig. 5.14). In this mosaic, a false global rotation is estimated in the final frame. Looking at
Fig. 5.19 it can be seen that this error results from a failure in the motion-based segmentation.
In the segmentation map shown, it can seen that the detected background largely consists of
the batsman, an object undergoing a local motion. This results in the motion of the batsman

being confused with the camera motion, causing the false rotation to be detected.
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(a) (b)
First Final

I-frame I-frame
(¢) Mosaic

Figure 5.16: Mosaic built on a soccer sequence : The camera pans left and zooms in as it

tracks the play. The white box indicates the position of the last frame in the mosaic.

(a) (b)
First Final

I-frame I-frame (c) Mosaic

Figure 5.17: Mosaic built on a soccer sequence : Initially the camera pans left from the centre
circle before panning right revealing the entire pitch. The white box shows the position of
the last frame in the mosaic. The hybrid algorithm estimates the global motion accurately for
most frames. However the orange box indicates an error in the mosaic caused by failure of the
hybrid algorithm. This results in the remaining frames placed in the mosaic being tilted slightly

upwards. See Fig. 5.18 for a more detailed description of the error.

5.2.4 Computational Evaluation

The hybrid algorithm was implemented into the mosaicking interface developed by Renan
Coudray. The four stages involved are the aggregation of the motion information over the
GOP, the texture discrimination stage, the estimation of the motion parameters and motion
based segmentation using the RAGMOD algorithm and refinement of the parameters using the
modified IRLS framework. All test were run on a laptop with a 1.4 Ghz Pentium M processor
and 1 GB of RAM. The first three stages take approximately 0.25 seconds per frame while the
refinement stage takes about 0.065 seconds per iteration per frame when run on a sequence with
a resolution of 720 x 576.

The computational complexity of the modified IRLS framework at each iteration consists
mainly of performing motion compensation and of estimating the GTWG and GT Wz matrices.
Motion compensation is performed using bilinear interpolation and must be preformed at each

iteration on the both frame n — 1 and also on the foreground/background segmentation map
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(a) I-frame with superimposed motion vec- (b) Segmented background for I-frame

tors

Figure 5.18: This figure highlights an example when there is not enough background texture
to allow for robust estimation of the parameters. In this sequence the background texture is
largely determined by the field markings and the advertising hoardings. However, it can be
seen from the segmented background that these features are not segmented, which results in an
inaccurate global motion estimate for this frame. Additionally, it should be noted that there is
a significant border at the margins of the frame which contains no motion information (shown

as 0 vectors) and so are automatically excluded from the segmentation.

of frame n — 1. The Complexity is of O(# number of pixels). Due to memory considerations,
the GTWG and GTWz matrices (sizes of 6 x 6 and 6 x 1) are computed directly rather than
by first generating the matrices G and z and performing the appropriate operations. As the
foreground pixels are given zero weights, they can be ignored when estimating the matrices.
Hence, the computational complexity of estimating the GTW G and GT Wz matrices is O(36 x
# number of background pixels) and O(6 x # number of background pixels) respectively.
The parameters chosen as the final estimate are the parameters at the iteration of the IRLS
framework which minimises the mean squared error of the weighted residual rather than the
value of the parameters at convergence. In the tests it was found that these points do not
typically coincide and, as a result, choosing the number of iterations is a difficult decision. In
the examples outlined in this chapter a hundred iterations were performed, although, in most
frames, the optimum estimate was found in the first ten iterations. A reasonable compromise
would be about 20 iterations of the IRLS framework resulting in an expected computation time
of 1.3 seconds per frame for the modified IRLS framework and 1.55 seconds for the complete
hybrid algorithm. As the mosaicking algorithm requires global motion estimation over a twelve
frame interval, the required computation time is for a real time implementation time is 0.48

seconds per frame if the frame rate is assumed to be 25 frames per second. A real time C++
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(a) I-frame (b) Segmented background for I-frame

Figure 5.19: In this example the failure occurs because the motion of the batsman is confused
as the camera motion. Thus the batsman is detected as the background rather than the true

background. This results in a false global rotation being detected (See Fig. 5.14)

implementation of the mosaicking software could be realised in the short term future.

5.3 Final Remarks

In this chapter, a hybrid approach to Global Motion Estimation from MPEG-2 streams has
been presented. Firstly, an initial global motion estimate is obtained between I-frames from the
motion information in the MPEG-2 stream using the RAGMOD algorithm and is refined using
a gradient-based GME technique. The hybrid algorithm uses a motion-based segmentation to
weight out local motion sites from the estimation, unlike previous gradient-based algorithms
which rely on a residual-based weighting. It has been shown that although the motion-based
segmentation is less precise than residual-based segmentations, it is better at correctly segment-
ing background edges which are important features for robust GME. It is this, along with the
fact that the motion-based segmentation’s robustness is independent of the accuracy of the cur-
rent Global Motion Estimate, that makes the hybrid GME algorithm more robust than existing
gradient-based approaches for the equivalent precision. Another advantageous feature of the
hybrid algorithm is its ability to robustly and precisely estimate the camera motion directly
over a larger temporal window (a typical window of 12 and 15 frames for the sequences shown
here). Further work in this area would focus on making the hybrid algorithm more robust in
cases where insufficient background texture is present and in cases where a foreground object

provides the most prominent motion in an image.



Global Motion Estimation in Restoration: Automated

Film Tear Restoration

In the previous chapter, Global Motion Estimation is used in a mosaicking application. GME
is also commonly used in restoration applications, most notably in stabilisation. In stabilisation,
unintentional camera motion is eliminated by either using a low-pass filter on the global motion
parameters of the sequence to smoothen the motion trajectory of the camera or by locking the
camera to a fixed position [27]. This chapter is concerned with another restoration application,
namely Film-Tear Restoration, which uses GME to digitally restore degraded frames.

Film tear is a common form of degradation in archived media. It is caused by the physical
ripping of the film material, dividing the film in two. The two main problems resulting from

film tear are

1. Relative displacements of the film sections either side of the tear (See Fig. 6.1). Looking
at the local motion fields of each region (Fig. 6.2), it can clearly be seen that their
distributions are significantly different. Also the edges crossing the tear boundary are no
longer aligned (Fig. 6.1 (b)).

2. Destruction of Image Data along the tear boundary (Fig. 6.1). As the film has been torn,
the film material along the boundary of the tear is deformed and so the image data in

these areas is damaged. This damaged data can be considered as missing data.

This work has been published in part in [20].
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(a) Frame from “BBC” sequence (b) Frame from “scissors” sequence

Figure 6.1: This figure shows an example of two real tears. The arrows indicate the relative
displacement of the regions either side of the tear in each image. The image data along the edge

of the tear has been destroyed.

In order to restore a sequence degraded by tear, the relative displacement of the film must
be corrected and the destroyed image data needs to be recovered. A general image-processing

framework for restoring tear is given by the following stages:
1. Any torn frames which exist must be detected.

2. On torn frames the contour of the tear across the frame is delineated so that the frame

can be divided into two regions.

3. The motion of each region is then estimated using a global motion estimator and the

relative displacement between each region is corrected.

4. Finally a missing data treatment algorithm is applied to the torn frame to recover the

damaged image data.

Until [21] no automated algorithm to digitally restore film tear had been proposed. Previ-
ously tear was restored by manually shifting the film sections into their correct position and
using a transparent adhesive tape to fix the sections in place [88] (a process known as splicing)
or by using image editing software to manually copy and paste one of the regions so that the
edges align across the tear. Both these methods involve significant user-interaction and neither
method can recover the damaged image data. [21] makes an attempt at producing an automated
algorithm to restore film tear. It uses GME to estimate the dominant motion of the two regions

separated by the tear boundary and compensates for tear by moving a region by the relative
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(a) Torn frame from “BBC” sequence with su- (b) Smoothened histogram of the motion field

perimposed motion vectors

Figure 6.2: This figure demonstrates the different motion field distributions either side of the
tear. This results in a histogram (right) which has 2 distinct peaks. A gradient-based motion
estimator [56] is used to generate the motion field (shown left) which shows the relative position

of each block in the previous frame.

motion between the two regions. The translational motion of each region is estimated by choos-
ing the modal local motion vector of each region. It then suggests that a missing data treatment
algorithm be used to recover the damaged data once the displacement has been corrected.

However, no satisfactory method to divide the frame into two regions is proposed in that
paper. It proposes a Bayesian framework to detect the tear boundary. Applying this algorithm
to real torn sequences leaves gaps in the detected boundary (Fig. 6.3) and so is not sufficient to
allow the frame to be divided into two regions. The contribution of this thesis is to introduce
a new method of dividing torn frames which is fully automatic. The Graph-Cuts segmentation
method proposed by Kolmogorov and Boykov in [12] is used to divide the frame in two. In [12]
a field is divided into 2 segments given some initial hard-constraints and these constraints are
derived from the local motion field of the torn frame. This technique has numerous advantages.
As the problem is a 2-label problem, the graph-cuts technique will produce a global minimum
energy solution [11]. Furthermore, the frame is divided directly, rather than detecting the tear
boundary first as in [21].

The remaining sections of this chapter describes the novel frame division algorithm and
outlines how the segmentations obtained from the algorithm can be used to restore torn frames

Subsequently, the results of experiments on both real and artificially torn sequences are
presented. Section 6.6 describes how the tear division algorithm might be applied to dirty splice

detection, before some final remarks are made.



6.1. Tear Delineation 118

(a) Torn frame (b) Binary result of tear delineation in [21]

Figure 6.3: This figure shows the results of the tear delineation algorithm in [21] which detects
the tear boundary (The black areas indicate the detected tear boundary). As there are gaps

present in the detected tear boundary, the result is not sufficient to allow the frame to be divided.

6.1 Tear Delineation

In order to compensate for the relative displacement between the 2 regions, an accurate seg-
mentation of the frame is needed. In [21], it was proposed that the image be segmented by first
detecting the tear boundary using a bayesian framework. The boundary is detected by looking
for locations where the forward and backward Displaced Frame Differences (DFDs) are large.
This comes from the observation that at the location of the tear boundary,there is a temporal
impulse in the image intensity function similar to Missing Data or Pathological Motion.

This is demonstrated in Fig. 6.4 which shows the backward DFD for a torn frame. The
large DFD values at the tear boundary are clearly visible. Intuitively the correct segmentation
boundary can be considered to be the dark line in the DFD which follows the path of the tear. In
other words, all pixels located on the same side of the ridge belong to the same region. Therefore,
the DFD describes the boundary properties of the segmentation. Where the DFD is small, the
local neighbourhood should all belong to the same region with the segmentation boundary
coinciding with high DFD sites. The DFD is not used in this way in [21], which employs the
DFD as the likelihood (in other words the region conditions) in a bayesian framework.

The use of the DFD as boundary information is the most novel feature of the segmentation
algorithm outlined here. Typically, spatial gradient models are used as boundary information.
However, while high gradient magnitudes are associated with the tear boundary, any other edge
in the image will also have large gradients.

Sections 6.1.1 and 6.1.2 describe the background to some of the techniques used in the
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s
pos
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(a) Torn frame (b) Backward DFD of Torn Frame

Figure 6.4: The right image shows the absolute value of the DFD between the current (left

image) and motion compensated previous frames. Dark intensities represent high DF'D values.

tear delineation algorithm. This is followed by a detailed description on how the delineation

algorithm is implemented in practice.

6.1.1 Segmentation using the Graph-Cuts technique [11]

The Graph-Cuts technique is an optimisation strategy for minimising an energy function defined
over an image. The main advantage of using Graph-Cuts technique over other optimisation
strategies such as ICM [3] is that it finds the global minimum of the defined energy function for
a two label problem.

The goal is to find the segmentation, [, that minimises some energy cost function given the
initial conditions ly. The problem here is to segment an image into two regions, therefore, the
field [ is a two-label field in which each pixel can have a value of 0 or 1. The value of [ indicates
the region the pixel belongs to. [y is a seeding function which indicates that certain pixels
must belong to one region or another (I = 0 or 1) while other pixels are classed as ambiguous
(lp # 0 or 1). The cost functions typically used in Graph-Cuts are similar to those used in
bayesian frameworks using MRFs (e.g. Chapter 2, Section 2.3.2). The cost function for the

segmentation is described by
E(l) = AR(l) + B(l) (6.1)



6.1. Tear Delineation 120

where
R(l) = Ry(I(x)) (6.2)
Bl)=>_ Y Bpyllx) £yl (6.3)

X yeNs(x)

In Eq. 6.1, R(l) gives the likelihood (or regional) energy of a labelling of the image [ and B(l)
gives the boundary cost of [, which describes the spatial smoothness energy of the segmentation.
R« (l(x)) is the region energy for each pixel and is the cost of assigning site x to a value of 0 or
1. The boundary term By y) is the cost of a discontinuity in the labelling between x and y,
where y is in the spatial neighbourhood of x, Ns(x). The region energy bias A describes the
weighting between the region and boundary terms.

In segmentation algorithms which use the graph cuts technique, the image is modelled as a
Graph G = (V, €) which is the set of nodes V and a set of edges £. These graphs can either be
directed or undirected graphs. Each pixel, x, corresponds to a node which has an edge between
itself and every pixel y in its spatial neighbourhood Ns(x) (called n-links). Every node also has
two further links (called t-links) to a “source” node and a “sink” node which are associated with
the two possible label values for each node (0 for the source and 1 for the sink). The edges in
the graph are assigned a cost according to table 6.1. The cost of each n-link is related to the
boundary energy between the two pixels connected to the n-link while the cost of the t-links is
related to the energy of each pixel being assigned to either region.

Segmentation is performed by cutting a subset of the edges in the graph such that the
graph is divided into two separate sub-graphs, one containing the source node and the other
containing the sink. All pixels, x, that belong to the the sub-graph containing the source are
assigned [(x) = 0. Likewise, pixels in the other sub-graph are assigned I(x) = 1. The cost of the
cut is given by the cost of all the n and t-links which are cut to divide the graph. [11] describes
how the cut of minimum cost corresponds to the segmentation that minimises the cost function
in Eq. 6.1. Thus the optimal segmentation for the image is given by the cut of minimum cost.

The tear segmentation model can be solved using this technique. In this application, the
boundary energy (n-link) terms can be given by the size of the DFD. Since each region is under-
going a separate global motion, the region energy terms (t-links) of the graph can be described
by the similarity of the motion at a site to the global motions of both regions.! The nearer the
motion of a pixel is to the global motion of a region, the more likely the site is a member of that
region. However one outstanding issue still remains, namely how to automatically produce the

seed function [y to initialise the graph-cuts segmentation.

!Precise definitions of these energy terms will be given later in section 6.1.3.
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edge cost for
n-link: {x,y} Bixy y € Ns(x)
t-link to source K lo(x) =0
0 lo(x) =
AR (0) lo(x) #0or 1
t-link to sink K lo(x) =1
0 lo(x) =0
AR(1) lo(x) #0or 1

Table 6.1: The cost of each edge in the graph. K is some large number. Setting K large

ensures that seeded sites cannot change label during segmentation.

6.1.2 Initialising the Graph Cuts Segmentation

The segmentation is initialised by defining a seeding function in which pixels have one of 3
possible states. The pixels are marked as either belonging to one of the 2 required regions or as
a pixel whose region is ambiguous. Only pixels which are certain to belong to a region should
be labelled as such and it is imperative that no pixels are assigned to the wrong region since the
labels of these pixels cannot be changed during the segmentation.

The seeding function in the tear delineation algorithm is derived from the vector field of
the torn frame. Looking at Fig. 6.6(a), which shows the vector field superimposed on the torn
frame, it can be seen that the motion either side of the tear is distributed differently. This
difference is visible in the histogram of the motion field (Fig. 6.6(b)), in which two significant
peaks are visible. The larger peak in the histogram corresponds to the motion on the top right
side of the tear boundary, while the smaller peak corresponds to the motion in the bottom left
corner of the image.

In appendix B, it was described how these histograms could be used to perform a coarse
background segmentation using the watershed algorithm [26,105]. Revisiting this idea, the wa-
tershed algorithm can also be used to segment the two main peaks in the motion field histogram
(Fig. 6.6(c)). Like the motion-based background segmentation in [26], the segmentation can be
generated by selecting which motion vectors contribute to the two segmented peaks. This allows
a seeding function to be generated for the image, with blocks either contributing to one of the
segmented peaks or to other less significant peaks (i.e. for ambiguous pixels) (Fig. 6.6(d)).

The image shown in (Fig. 6.6(d)) gives a coarse seeding function for the image. The segments
shown in this map correspond roughly to the perception of what the regions should be. However
there are a number of blocks which have been assigned to the wrong region. Furthermore, the
true boundary (along the tear) between the two regions is coarsely and imprecisely defined and
since graph-cuts will not change these labels, it is necessary to create a gap between the two

regions so that the graph-cuts segmentation can define the boundary precisely. Therefore, an
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erosion operation is performed on the seeding function which removes the labels from blocks
whose neighbours do not all have the same label. Fig. 6.6(e) shows the seeding function after
the erosion operation applied. This map is then used to initialise the graph-cuts segmentation

which generates the final segmentation shown in Fig. 6.6(f).

6.1.3 Algorithm Outline

Fig. 6.6(a) shows a flowchart of the tear delineation algorithm. Before the algorithm can proceed
local motion estimation needs to be performed on the torn frame to generate the motion field
which is to be included. The gradient-based motion estimator described in [4,54] is used in the
examples shown the chapter. This motion estimator employs a block size of 17 x 17 pixels with
a 2 pixel overlap, resulting in a coarse representation of the motion information. Two motion
fields are estimated per frame, one for motion in the current frame with respect to the previous

frame and one for motion with respect to the next frame.

Motion Field Accumulation

The main consideration is to compute a histogram whose two highest local maxima correspond
to the global translational motion of the two regions. The histogram is computed directly from
the motion field supplied. The choice of the histogram bin width is important in computing
the histogram. A relatively large bin width should be chosen to prevent multiple local maxima
being associated with the motion of one region. A typical value used is 0.5 pel in the vertical
and horizontal directions. After the histogram is computed, it filtered with a low-pass gaussian

filter. The gaussian kernel has a size of 15 x 15 and a variance of 2.5.

Watershed Segmentation

The watershed algorithm is applied on the filtered histogram. As the standard implementation
of the watershed algorithm [105] is to segment troughs rather than peaks, the histogram is first
subtracted from its maximum before the watershed algorithm is applied. After the watershed
algorithm is applied, the two most significant peaks are isolated. This can be decided by a
number of criteria, including the size of the maxima (i.e. choosing the two largest peaks) or the
number of vectors contributing to a segment (i.e. choosing the two peaks greatest number of
vectors). In this implementation the size of the maxima is chosen as the criterion for selecting
the segments. Once the two segments have been isolated, all vector blocks in the motion field
are labelled as belonging to their respective segments or are marked as ambiguous if they belong

to other peaks in the histogram.
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Motion vector field Histogram Generation Watershed Segmentation Initial Seeding Function

@ Eroded Seeding Function Graph Cuts Segmentation Optimal Segmentation

Figure 6.5: The tear delineation algorithm

(a) Motion Field of Torn frame (b) 2D Histogram of the Mo-
tion Field

(c) First two histogram peaks
segmented by watershed algo-

rithm

T

(d) Segmented Image after Wa- (e) Segmented Image after Ero-
tershed Segmentation sion

(f) Segmentation after Graph-
Cuts

Figure 6.6: This figure shows the results of each stage of the frame division algorithm for the
torn frame shown in (b). In figures (d-g), the blue and green colours represent vectors (d), vector

blocks (e-f) or pixels (g) belonging to the two desired regions, while the red colour represents
unlabelled pixel sites.
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Erosion

The erosion operation is applied on the initial seeding function in two stages. The first erosion
stage is mandatory as a band of unassigned blocks needs to be created at the tear boundary, so
as to let the boundary be defined precisely. This band is created by marking blocks which have
neighbour any blocks belonging to the other region as ambiguous. The second erosion stage
is optional and involves changing the labels of blocks with neighbours of different labels (i.e.
either blocks belonging to the other region or ambiguous blocks) to ambiguous. This stage can
be iterated a number of times at the users discretion. If too few iterations are performed (or none
at all), some blocks may be assigned to the wrong region, while choosing too many iterations
would shorten the perimeter of the seeded regions to the extent where “shrinking” [10, 11, 64]
occurs in the graph cuts segmentation. Typically one iteration of the second erosion stage is

appropriate for motion fields generated from images of 720 x 576 pixels.

Graph-Cuts Segmentation

Before running the graph-cuts algorithm, the seeding function is upsampled to the full image

resolution. Furthermore, an energy function of the form in Eq. 6.1 is defined as follows:

e The Region Term, Ry(I(x)), for a site, x, is associated with the distance between
the actual motion at x and the global motion of each of the two regions. The global
motion of each region is given by the modal vector of the portion motion-field histogram
corresponding to the region. If the motion between the current frame n and a neighbouring

frame k at x is given by d,, ;(x) then the region term is given by
R (1) = 0) = [l (%) — dy (1) = O)]
Ry (I(x) = 1) = [|dp x(x) — dy(I(x) = 1)] (6.4)

where dy(I(x)) is the global motion of a given region and ||.|| is the euclidean distance
metric. As Rx(l(x)) gives the cost of assigning x to label {(x), the local motion of each

region is constrained to be close to its global motion.
e The Boundary term, By y}, is given by the size of the DFD. If the DFD is given by
An,k = [n(x) - [k(x + Vd7k(X))

where [, and [ are the intensity functions of the current and neighbouring frames, then

the boundary term is as follows

Biayy = max{| A k(9]} — 3 (180 k(0] + 120 4(3)). (65)

which is the difference between the maximum absolute value of the DFD in the image
and the mean absolute DFD of the pixels x and y. This term is designed to penalise
discontinuities in the segmented image when the mean absolute DFD of the neighouring

sites is small and encourages discontinuity when the mean is large.
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The algorithm proceeds by setting up a graph with edge costs given in table 6.1. A 4
connected neighbourhood is used for the graph. The max-flow/min-cut algorithm presented
in [12] by Boykov and Kolmogorov is used to find the segmentation. At the most basic level
max-flow algorithms work by modeling the graph as a network flow, with the link energies
corresponding to a flow capacity. The algorithm proceeds by finding a non-saturated path
between the source and sink nodes on the graph and pushing a flow down the path until an
edge on the path becomes saturated (i.e. The edge is cut). This process is repeated until no
more paths can be found. The Boykov and Kolmogorov algorithm finds source/sink paths by
building 2 search trees, with routes at the source and sink nodes, using a breadth first search.
The theoretical upper bound on the computational complexity of the algorithm is O(mn?|C|),
where m is the number of edges on the graph, n is the number of nodes and |C| is cost of the
minimum cut. The complexity also depends on the length of the paths as it takes more time to
find the saturated edge on a longer path, and on the number of paths found before the cut has

been completed.

6.2 Displacement Correction [21]

The goal is to estimate and correct the relative displacement between the two segmented regions.

The tear displacement model is defined by
dp o (x) = d}, (x) + A7, + di(I(x)) (6.6)

where d,, .(x) is the observed motion vector at x, d, , (x) is the foreground motion at the current
location, d? , is the true global motion of the frame? and d;(I(x)) is the displacement? resulting

from the tear. Therefore, the observed global motion is given by
dy(l(x)) = di,k + di(I(x)). (6.7)
It follows that the relative tear displacement,

d(I(x) = 0)

dye = dt(l(x) = 1)
— 1) — d,(I(x) = 0). (6.8)

=dy(l(x) =1) -
Hence, the relative tear displacement can be calculated by estimating the global translational
motion of each region.

Histograms of the motion field for each region are used to calculate its global motion. The
advantage? of using histograms is that such methods are more robust to local motion than

IRLS methods. Furthermore, using the vector-field is more computationally efficient than using

2For simplicity it is assumed to be purely translational.
3 Again assumed to be purely translational.
4See chapter 4 for a more detailed discussion on the merits of different motion estimators.
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intensity based GME algorithms. However, there is a trade off in the precision of the estimate,
which is constrained by the bin width of the histogram and the precision of the motion field.
The histograms for each region are computed from the motion field and the segmentation
map given by the tear delineation algorithm. The precision of the estimate is more important
here than in the tear delineation stage and so a smaller bin width is used. A typical size is 0.125
pel. In order to discriminate against vectors calculated from ill-suited image data, each vector
is assigned a weight based on the texture information of the block. The weighting discriminates
against blocks with flat or noisy textures and encourages the motion vector to be similar in
phase to the spatial gradient to mitigate against the aperture effect. The expression for the

weight at a pixel x belonging to a block B is given by

w(x) = wy(x) X cos(é(dn,k(x)) - Aﬂg(x)))' (6.9)
where 5 v(y)
~ B VY
fig(x) = =LX=—— (6.10)
! ZyEB 1
is the mean gradient vector of the block B and where
1 ||z >
() = g ()l > g0 (6.11)

0 otherwise

g¢ is a threshold (a typical value of g; is 2). w(x) consists of two components. The first component
wy(x) weights out blocks with flat or noisy textures since the magnitude of the mean gradient
vector will be small. The second component assigns low weights to motion vectors which are
approximately perpendicular to the mean gradient vector and high weights when the vectors are
parallel.

The global motion vector of the regions is given by the mode of their histograms. The
tear displacement is corrected by moving one of the regions by the relative displacement d,.;.

Examples of frames with corrected displacements are shown in Fig. 6.7.

6.3 Frame Restoration

The final task in tear restoration process is to recover the image data damaged by the tearing
of the film. This is a conventional missing data problem, as the true image data can be said
to have been replaced by some random replacement noise. Therefore, any conventional missing
data treatment algorithm can be used to recover the damaged data. The missing data treatment

algorithm outlined in [60] is an example of such an algorithm which also acts as a noise reducer.

6.4 Results

The two fundamental components of the tear restoration process are the delineation and dis-

placement estimation process. Accurate results for both processes are necessary for the good



6.4. Results 127

(a) “BBC” Sequence (b) “Scissors” Sequence

Figure 6.7: This figure shows two examples of torn frames compensated for tear displacement.

performance of the displacement correction stage. A poor segmentation would cause parts of
the frame to be wrongly compensated for (or not) and a poor displacement estimation would
leave a visible displacement of a region after the displacement correction.

This section consists of two main parts. Firstly, the results of a ground truth are outlined
which assess the performance of the algorithm. The second major part of the section tests the

algorithm on real sequences damaged by tear.

6.4.1 Ground Truth Experiments

In order to evaluate the performance of the process, a ground truth is needed. This is created
by digitally “tearing” a sequence by displacing a region of a number of frames by a pre-defined
displacement using a pre-defined segmentation mask. The results for two test sequences are

presented in this section.

1. The first sequence tested is the “mobile and calendar” sequence previously discussed in
Chapter 5. This sequence is a relatively clean sequence, without any missing data or
significant noise, and has plenty of texture detail in the foreground and background. It
also contains relatively large objects (the calendar, the train) undergoing local motion.

Because of these properties, it is a relatively easy sequence for motion estimation.

2. The second sequence is the “jumper” sequence which is a more difficult sequence for motion
estimation. The sequence is badly degraded, with high noise levels and a large amount of

missing data. Furthermore, the motion of the jumper is pathological.

Five non-consecutive frames from each sequence are selected. Every frame is then split into

two regions using pre-defined masks and a region is then displaced by the set displacement. A
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uh

(a) Frame 1 (b) Frame 2 (c) Frame 3

(d) Frame 4 (e) Frame 5

Figure 6.8: This figure shows the pre-defined masks for the 5 selected frames in ground truth
sequences. The blue and green colours represent the two regions, and the red colours represents

pixel whose region is unknown.

Frame | Horizontal Displacement | Vertical displacement
1 —2 7
2 5.439 —0.872
3 —1.345 6.254
4 0.1 —7.872
5 4.567 5.212

Table 6.2: This table shows the displacements for each of the “torn” frames in the ground
truth sequences. The region of the frame labelled green in the masks in Fig. 6.8 is the region

that is displaced.

table of each frame and their displacements is given in table 6.2 and the masks are shown in
Fig. 6.8. For simplicity of implementation and comparison, the respective displacements and
masks are the same for both ground truth sequences. The frames from the test sequences and

their torn versions are shown in Figures 6.9 and 6.10.
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(a) Frame 1 (b) Frame 2 (c) Frame 3

(d) Frame 4 (e) Frame 5

(f) Torn Frame 1 (g) Torn Frame 2 (h) Torn Frame 3

(i) Torn Frame 4 (j) Torn Frame 5

Figure 6.9: The torn frames of the mobile and calendar sequence.
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(a) Frame 1 (b) Frame 2 (c) Frame 3

(h) Torn Frame 3

(i) Torn Frame 4 (j) Torn Frame 5

Figure 6.10: The torn frames of the jumper sequence.
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oA

(a) Frame 1 (b) Frame 2 (c) Frame 3

(d) Frame 4 (e) Frame 5

Figure 6.11: This figure shows the tri-maps for the 5 selected frames in ground truth sequences.
The red region represents the tear boundary where there is no preference as to which region the

pixels belongs.

It is easy to quantify the accuracy of the estimated displacement as it can be compared to the
ground truth displacement. However, quantifying the performance of the delineation algorithm
is not as straightforward. The main constraint on the segmentation is that all pixels on the
same side of the tear boundary should belong to the same region. However, the tear boundary
has a width and is not a sharp transition between the two regions. Therefore, any segmentation
boundary which is located within the tear boundary will satisfy the constraint. As a result,
there are three classes of pixel in a torn image. Two classes are for pixels which lie outside
the tear boundary and belong to either region and a third which describes pixels in the tear
boundary which could belong to both regions. For the purposes of this segmentation, the tear
boundary is assigned to a third region, labeled in Fig. 6.11 by the red colour. Pixels with this

label can belong to either region in the final segmentation.
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6.4.2 Tear Delineation

There are two parameters in the tear delineation process which impact on the accuracy of the

segmentation as well as the computational overhead of the algorithm. These parameters are,

1. The Region Energy Bias (A) - which is the weighting factor between region and boundary
information in the graph-cuts framework (Fg. 6.1) and is a non-negative real number. A
value of 0 excludes region information from the segmentation, while a large value biases

the segmentation towards the region information (i.e. the likelihood).

2. The number of erosion iterations - the number of times the second erosion stage is iterated
(See section 6.1.3) and is a non-negative integer. If the number is too small, then some
pixels might be assigned to the wrong region. If the number is too large, then “shrinking”
[10,11,64] might occur.

Notes on the Experimental Setup

e For this experiment, the tear restoration algorithm was implemented in Matlab. The graph
cuts implementation used for delineation was adapted from the C++ implementation [9]
of the max-flow/min-cut algorithm presented by Boykov and Kolmogorov in [12] and was
incorporated into the matlab code. All other sections of the algorithm were implemented
directly in Matlab. The algorithm was tested on a PC with a 1.4 GHz Pentium M processor
with 1 GB of RAM.

e Both test sequences have a resolution of 720 x 576 and contain 8-bit grayscale images.

e The gradient-based motion estimator described in [4, 54] is used to generate the motion
field for accumulation. The motion estimator produces one motion vector block of pixels
with a block size of 17 x 17 pixels with a horizontal and vertical overlap of 2 pixels. As
the resolution of the test sequences is 720 x 576 pixels, the resolution of the vector field
is 47 x 38 blocks. The backward motion field (i.e. The vectors shows relative position of

each block in the previous frame.) is used for the accumulation.

e The quality measurement used in the experiments is given by

. no. correct detections in region 1 = mno. corr. detect. in reg. 2
quality (%) = —

1) %100
>(6.12)

This value ranges from 0 to 100. The quality is 0 if the labels in the segmentation are

true size of region 1 true size of reg. 2

evenly distributed in the two ground truth regions and is 100 if the the labels agree exactly
with the ground truth. The computation time is measured by using the “tic” and “toc”

functions in Matlab to measure the time it takes to execute the algorithmic code.
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edge cost for
n-link: {x,y} Bixy y € Ns(x)
t-link to source AR(0) Vx
t-link to sink AR(1) Vx

Table 6.3: The cost of each edge in the graph when segmenting without initialisation.

e The values of the region energy bias , A, used in the experiment are
A ={0.001,0.005,0.01,0.05,0.1,0.5,1, 5,10, 50, 100 } (6.13)

A significant feature of the implementation of the graph-cuts at [9] is that the energy terms
are implemented as integers rather than floating point numbers. This requires that the
energy terms are scaled to some maximum value. The value chosen for this is 255 which
is the maximum value of the DFD in an 8-bit grayscale image and hence is the maximum
value of the boundary energy term. As A represents the influence of the region energy
term in the segmentation framework, any value of A below the critical value of 85% ~ 0.002
is equivalent to a value of 0. Hence, the region energy is 0 and the segmentation relies

entirely on the initialisation and the boundary terms.

e When varying the region bias, quality and computation measurements are also taken
for a segmentation which does not use the seeding function to initialise the graph-cut
segmentation. In effect, all pixels are considered to belong to the ambiguous state. Table

6.3 shows the configuration of the graph used when not initialising the segmentation.

e The integer values between 0 and 20 are chosen for the erosion parameter and represents the
number of iterations performed in the second erosion stage. The experiment is performed in
the case where no region information is included (i.e. A = 0) and when region information

is included.

The Region Energy Bias, A

Fig. 6.12 gives a typical example of how varying A affects the quality of the segmentation. Each
graph consists of two plots, for segmentations generated with (blue -) and without (red - -)
initialisation by the seeding function.

Looking at the quality measurements, it can be seen that when A is small the quality for
the segmentation without seeding is 0 and this occurs because A is below the critical limit. For
values of A greater than the critical value, the qualities of the segmentations are similar. For
smaller values of A, in this case between 0.005 and 0.01, the segmentation is at its optimum (Fig.
6.13 (b)). However, as A increases and the region information has a greater weighting on the

segmentation, there is a slight drop off in the quality of the segmentation. Since a block-based
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Figure 6.12: This figure shows plots of the segmentation quality against A for the five torn
frames of the mobile and calendar sequence. The blue line marks the plot with initialisation of the
graph cuts algorithm and the dashed red line represents the measurements of the segmentation

without initialisation.

motion field [54] is used, the region energy is also defined on a block scale and this causes the
segmentation to obtain a “blocky” boundary (Fig. 6.13 (c)).

Fig. 6.15 shows the relationship of the computation time with respect to the region bias.
On examination of the plot, it can be seen that increasing the bias above the critical value
(i.e. using region information in addition to the boundary information), causes an increase in
computation time for segmentation with initialisation. Effectively, more edges have been added
to the graph as extra non-saturated t-links have been introduced (See Fig. 6.14). However, this
computational penalty is mitigated as the bias increases.

It is also clear from the plot that, for small values of A (< 0.01), initialisation dramatically
reduces the computation time. This difference does not exist for higher values of A.In fact, the
computation time without initialisation is slightly less, which is due the computational cost of

performing the initialisation.
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(a) Torn Frame (b) Good Segmentation with (c) Blocky Segmentation with
Small A Large A

Figure 6.13: This figures demonstrates the affect of the value of A on the visual quality of the
segmentation. For smaller values of the region bias, the boundary of segmentation agrees with
the path of the tear. The red and green colours represent the segmentation map of the image.
However, for larger values, the segmentation boundary becomes blocky which is due to the

influence of the motion field. The arrows point to locations where pixels have been mislabelled.

1000

5 1000

(a) Graph using boundary information (b) Graph using both boundary and region

only information

Figure 6.14: This figure demonstrates how including region information adds to the computa-
tion time of the segmentation. There are five nodes in the graphs shown above: a source node a
sink node and 3 numbered nodes that are to be assigned labels using the graph cuts algorithm.
In both examples, node 1 is seeded as belonging to the source and node 3 is seeded as belonging
to the sink. Node 2 remains unassigned. When boundary information is used exclusively, there
are no non-saturated t-links connected to the source or sink (left). When region information
is added to the framework (right), there are 2 non-saturated t-links at Node 2, the capacities
of which describe the region information at Node 2. Effectively there are 2 extra edges on the
graph and this increases the number of possible paths between the source and the sink. Hence,

the computational complexity of the algorithm is increased.
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Figure 6.15: This figure shows the computation time against A for the five torn frames of the
mobile and calendar. Measurements are only given for values of A where the quality is non-zero
(i.e. for the non-initialised measurements when the region energy bias is less than the critical

value).

The Erosion Parameter

The erosion parameter controls the number of extra erosion iterations performed on the seeding
function (See Fig. 6.16) before it is used to initialise the graph-cuts segmentation. Fig. 6.17
shows how the quality of the segmentation is affected by the erosion parameter when region
information is excluded from the segmentation (i.e. A = 0). Typically, the quality is unaffected
by the number of iterations performed (although for some examples there is a slight quality
penalty if no extra erosion is performed Fig. 6.17(b) and (e)) up to a breaking point after which
the quality collapses. Examination of the initial seeding function and final segmentation map
in this scenario shows that the boundary of the final segmentation “shrinks” to the boundary
of one of the regions in the seeding function (See Fig. 6.19). This “shrinking” has been reffered
to by Boykov and others in the past [10,11,64] and it occurs because the cost of cutting along
the length of the seeding function boundary is lower than the tear boundary, due to its much
shorter length.

From the graph in Fig. 6.18, the computation time is roughly proportional to the number of
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(a) Tri-map after the water- (b) Tri-map after the first com- (c) after 1 extra iteration
shed segmentation pulsory erosion stage
(d) 5 extra iterations (e) 9 iterations (f) 12 iterations

Figure 6.16: This figure shows the seeding function after a number of different points of the
erosion stage. The blue and green colours represent blocks assigned to the two regions and the

red colour represents unassigned blocks.

erosion iterations performed. There are two significant reasons for this relationship. Firstly, the
overhead associated with the erosion operation itself increases with the number of iterations.
More significant, however, is the increased computational overhead of the graph-cut segmen-
tation. As the number of erosion iterations increases, the size of the seeded regions decreases
and the number of unassigned pixels increases. Hence, the computational complexity of the
algorithm increases. This relationship no longer applies once shrinking occurs.

When region information is included in the segmentation framework (i.e. A > 0), shrinking
no longer occurs and the quality remains constant (Fig. 6.20). Although the computation time
initially increases with the number of iterations for small values of A (= 0.01), it tends to level

off after a number of iterations (Fig. 6.21).

The Optimum Set of Parameters

It is desirable at this stage to decide on a set of parameters that would allow the segmentation

algorithm to achieve good performance over the widest variety of frames. The main choice is
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Figure 6.17: Parts a to e give a plot of the segmentation quality against the number of erosion

iterations for the five torn frames of the “mobile and calendar” sequence.

to decide whether or not to initialise the graph-cuts segmentation using the seeding function.
From Fig. 6.12 it can been seen that, for values of A greater than the critical value, initialisation
does not greatly change the quality or the computational overhead of the result. Furthermore,
shrinking is no longer a factor and, if initialisation is not performed, erosion becomes unnecessary.
The main advantage of seeding the segmentation, however, is that it allows user interactivity
to be introduced into the result. It allows the user to improve the quality of the result by
manually adjusting the seeding function used for initialisation. This is important in restoration
applications as the quality of the result is more important than automation of the process. If
a seeding function is used, then the erosion operation becomes necessary and the number of
iterations of the second erosion stage needs to be chosen.

The second choice to be made is what value of A is to be used. For values of A above the
critical limit, it has been shown that increasing A reduces the computation time (Fig. 6.15).
However, if A is too large, there is a drop off in quality. Furthermore, using a seeding function
allows segmentation which excludes any region information for any pixels marked as ambiguous
in the seeding function. This has been shown to be more computationally efficient than using

small values of A.
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Figure 6.18: This figure shows the relationship between the number of erosion iterations and
computation time of the algorithm for the second torn frame. The blue line indicates the
relationship before shrinking and the dashed green line indicates the relationship after shrinking

occurs.

Taking these considerations into account, the most suitable setup for the algorithm is to use
a seeding function to initialise the segmentation and to choose A = 0. Two iterations of the
second erosion stage are chosen to make sure that all mislabelled blocks are removed from the
seeding function before it is used to seed the graph cuts algorithm. Effectively, the segmentation
relies entirely on the boundary conditions given the initialisation provided by the eroded seeding
function. Table 6.4 shows the quality measurements for all the torn frames in both test sequences
using this configuration.

For eight out of the ten frames, a high quality segmentation is obtained (See Fig. 6.22)
including all of the frames from the mobile and calendar sequence. However, there are significant
errors in two of the frames in the jumper sequence (Fig. 6.23). This sequence exhibits many
forms of degradation, compared to the mobile and calendar sequence which is dirt free and
largely noise free. Also regions of the background in the jumper have low texture content.

The frame with the worst quality is the second torn frame of the jumper sequence. Errors

in the seeding function (Fig. 6.24) used to seed the segmentation are the cause for the failure
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(a) seeding function after 2 it- (b) Segmentation map for 2 it-

erations erations

(c) seeding function after 10 it- (d) Segmentation map for 10

erations iterations

Figure 6.19: An example of shrinking. For 2 erosion iterations the segmentation gives a good
result. However when 10 iterations are performed the segmentation boundary shrinks to the

boundary of the green region in the seeding function.

Torn Frame Quality (%)
Mobile and Calendar Sequence | Jumper Sequence
1 99.998 99.990
2 100.000 69.954
3 99.998 99.949
4 99.989 99.845
5 99.996 93.764

Table 6.4: The Segmentation quality values on all the test frames for the selected configuration.

in this frame. These errors occur because of motion estimation failure in the frame due to
lack of texture and the aperture effect. This causes vectors in the right region of the image to

be similar in value to the global motion of the left region and consequently these vectors are
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Figure 6.20: This figure gives a plot of the segmentation quality against the number of erosion
iterations for the second torn frame for two values of A. When region information is included

(right), shrinking does not occur.
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Figure 6.21: This figure shows how including region information affects the relationship be-
tween the computation time and the number of erosion iterations. Initially, the time increases

more rapidly as the number of iterations increases but levels off for larger numbers of iterations.

mislabelled in the seeding function. A higher value of the erosion parameter is needed to mark
all mislabelled blocks as ambiguous. Another possible strategy to prevent this problem from
happening would be to weight blocks on their texture content. However, this could significantly
reduce the number of vectors used in the histogram and make shrinking more likely. The other
frame which gives a bad result is the fifth frame of the jumper sequence. This failure is a result
of shrinking. No blocks are mislabelled in the seeding function (Fig. 6.25). As the segmentation
has been seeded, a good segmentation can be achieved for these frames by allowing the user to
edit the seeding function (Fig. 6.26).
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(a) Mobile and Calendar Se- (b) M. and C. Sequence Frame (c¢) Third frame

quence Frame 1 2

(d) Fourth frame

(f) Jumper frame 1 (g) Jumper frame 3 (h) Fourth frame

Figure 6.22: Fach image shows the frames which had a good quality segmentation with the

chosen set of parameters. The segmentation quality measure for each image is above 99.5%.
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(a) Jumper Sequence Frame 2 (b) Jumper Sequence Frame 5

Figure 6.23: This figures shows the 2 frames for which the segmentation fails with the current

set of parameters.

6.4.3 Displacement Estimation

Table 6.5 lists the estimated displacements of the ground truth sequences and compares them
to the “mobile and calendar” and “jumper” sequences. For all of the frames in the ground
truth, the estimated displacement is accurate to within a pixel of the true displacements. The
estimates are more accurate for the mobile and calendar sequence which has a mean estimate
distance of 0.23 pixels compared to 0.38 pixels for the jumper sequence. This is unsurprising
given the relative high quality and the better texture content of the mobile and calendar which
benefit the performance of the motion estimator. Since the displacement estimates are derived
from the motion field directly, the accuracy of the estimate is dependent on the accuracy of the
motion estimator.

In order to get a better idea as to the sufficiency of the estimates, it is necessary to correct
the estimated tear displacement and to compare the result with the original image. As the
sections of the tear boundary will still be present after the displacement is corrected, missing
data treatment must also be applied. Fig. 6.27 shows a section of a frame of each ground-truth
sequence at 4 different stages of the process. Comparing the original and restored images, any
remaining tear displacement is hard to perceive.

Some artefacts have been introduced into final restored images(Fig. 6.29). These artefacts
have been introduced, for the most part, by the Missing Data Treatment (MDT) algorithm
[60]. Another noticeable feature of the restored images is that they are blurred compared
to the originals. One cause of the blurring is the tear displacement compensation. It uses
bilinear interpolation to compensate for non-integer displacements which acts as smoothing
filter. Another cause of the blurring is the missing data treatment algorithm that is used, which

also acts as a noise reducer in the image.
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31 3

(a) Second Torn Frame (b) Seeding Function used to (c) Segmentation mask

Initialise Segmentation

Figure 6.24: This figure shows the seeding function for the segmentation and the segmentation
result for the second torn frame of the jumper sequence. The green and blue colours represents
the two regions and the red region in the seeding function represents pixels whose region is
ambiguous. Blocks in the top right region of the frame and in the dark region are mislabelled

as belonging to the blue region even when they should be located in the green region.

(a) Second Torn Frame (b) Seeding function used to (c) Segmentation mask

Initialise Segmentation

Figure 6.25: This figure shows the seeding function for the segmentation and the segmentation
result for the fifth torn frame. In the seeding function (centre), no blocks are assigned to the
wrong region. Shrinking occurs because the cost of the shorter path is lower even though the

average energy of each cut edge is higher.

6.4.4 Real Examples

The segmentation algorithm was tested on 4 torn frames in 3 sequences (Fig. 6.30). The first
“BBC” sequence contains 2 torn frames on consecutive frames. In fact, the tear in both frames
is caused by a single tear the boundary of which starts on the left of the first frame and passes
through the bottom of the frame to the top of the second frame and then to the right of the

image. This means that the relative tear displacement should be the same in both frames and
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(a) Edited Tri-Map for Frame (b) New Segmentation Mask (c) Segmentation overlaid on

2 frame

(d) Edited Tri-Map for Frame (e) New Segmentation Mask (f) Segmentation overlayed on
5 frame

Figure 6.26: This figure shows the segmentation masks (middle & right) obtained from the
edited seeding functions (left).

(a) “Torn” Image (b) Tear Displacement Cor- (c) Fully Restored Image

rected

Figure 6.27: This figure shows the close up of the fully restored first frame from the mobile
and calendar sequence (c). Image (a) is from the artificially torn sequence and (b) is the image

after the tear displacement has been removed.
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Torn Frame || Ground Mobile and Calendar || Jumper Sequence
Truth Sequence
d, d, d, d, distance d, d, |distance
1 -2 7 -2 7.5 0.50 —1.875| 6.375 0.64
2 5.439 | —0.87215.375| —1.25 0.38 5.375 |—1.125| 0.28*
3 —1.345| 6.254 || —1.5| 6.25 0.16 —1.625| 6.25 0.28
4 0.1 |-=7.872]/0.125|—7.875| 0.03 0.375 | —8.25 | 047
5 4.567 | 5.212 || 4.5 | 5.125 0.11 4.375 | 5.375 | 0.25%

Table 6.5: A table of the estimated tear displacements for the ground truth sequences. The
distance measurements is the euclidean distance between the ground truth and the estimated
displacements. Displacements are measured to an accuracy of 0.125 pel.

*The measurement for the second frame in the jumper sequence is obtained using the segmen-
tation from the edited seeding function. The measurement for the fifth frame of the sequence is

the same whether the bad segmentation or the edited segmentation is used.

(a) “Torn” Image (b) Tear Displacement Cor- (c¢) Fully Restored Image

rected

Figure 6.28: This figure shows the close up of the fully restored fifth frame from the jumper
sequence (c). Image (a) is from the artificially torn sequence and (b) is the image after the tear
displacement has been removed. The segmentation obtained from the edited seeding function is

used to restore this frame.

appears to be roughly vertical. The second “scissors” sequence consists of a single torn frame.
In this sequence, the relative displacement is approximately horizontal as can be seen from the
misalignment of the vertical edges across the tear boundary. The final sequence is referred to
here as the “singer” sequence in which one frame is torn.

The segmentation algorithm was applied to these frames using the parameters discussed in
Section 6.4.2 (i.e. A =0 and a value of 2 for the erosion parameter) and the results are shown

in Fig. 6.31. For the “BBC” and “scissor” sequences, the segmentation agrees well with the
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(a) Mobile & Calendar, 4'" Frame (b) Jumper, 4'" Frame

Figure 6.29: This figure shows 2 fully restored images which contain some artefacts introduced

by the tear restoration process. These artefacts are highlighted by the arrows.

perceived correct segmentation (i.e. The segmentation boundary follows the path of the tear).
However, some shrinking occurs near the edge of the first “BBC” frame and the torn frame from
the “scissor” sequence (Fig. 6.32). Instead of following the tear boundary, the segmentation
boundary follows the shortest path to perimeter of the frame.

As has been stated previously, the motion estimator used in the segmentation algorithm [4,54]
produces 2 motion fields per frame for motion with respect to the previous or next frame in the
sequence. Normally, for isolated torn frames, either motion field can be used (e.g. all the torn
frames in the ground truth sequences). However, this choice is restricted when two or more
consecutive frames are torn, as is the case in the “BBC” sequence. A problem occurs because
the displacement introduced by the tear in the first frame biases the backward motion field of
the second torn frame (i.e. motion with respect to the first frame). This results in failure of
the motion-based segmentation which seeds the graph-cuts segmentation (See Fig. 6.33). This
problem can be overcome in a number of ways. One method is the use the backward motion
field for the first torn frame and forward motion field for the second torn frame as in Fig. 6.31.
Another possible method is to first segment and correct the displacement in the first torn using
the backward motion field and to recompute the motion before restoring the next torn frame.

The segmentation map in Fig. 6.34 for the “singer” sequence is not a visually agreeable
segmentation of the frame. The segmentation fails because the two largest peaks in the 2-D
motion histogram do not correspond to the regions divided by the tear which in turn causes the
graph-cuts segmentation to fail. Neither the forward nor the backward motion fields for this
frame, shown in Fig. 6.35, are well behaved. There are large areas of the frame undergoing

local motion and the motion in the background is also erratic which makes it difficult to find
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(c) “scissors” sequence (d) “singer” sequence

Figure 6.30: This figure shows the 4 torn frames. The arrows indicate the displacement

introduced by the tear.

the translational global motion from the motion field. A better segmentation can be obtained

with a user defined seeding function (Fig. 6.36).

Frame Restoration

Having estimated the segmentation map for each frame, the tear displacements for the frames
are estimated and then corrected. The estimated displacements are shown in table 6.6 and the
corresponding compensated images are shown in Fig. 6.37. As expected, the displacements for
the two frames in the “BBC” sequence are roughly similar, although there is a slight difference.

The torn frame from “scissors” sequence (Fig. 6.37(c)) gives a good visual indication of the
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Figure 6.31: First Column (from left): The torn frames from the “BBC” and “scissors”
sequences; Second Column: The tri-maps after the watershed segmentation; Third: The tri-

maps after the erosion stage; Fourth: The torn frames with super-imposed segmentation maps.

Torn Frame Horizontal Displacement | Vertical Displacement
“BBC” Sequence, frame 1 0 6
“BBC” Sequence, frame 2 —0.05 7.25
“Scissors” Sequence —4.5 4
“Singer” Sequence, backward motion field —0.25 8
“Singer” Sequence, forward motion field 0 0

Table 6.6: This table gives the estimated relative tear displacements for the listed frames. The
global motion for each region is estimated from the backward motion field for the first “BBC”

frame and the frame from the “scissors” sequence. The forward motion field is used for the 2"¢

“BBC” frame.

correctness of the displacement estimate for the frame. The edges which cross the tear are now
visibly aligned. The estimated displacements for the “singer” sequence are not as accurate.
A zero relative displacement is estimated using the forward motion field. Even the non-zero
displacement, estimated from the backward motion field, does not give a good visible result (Fig.
6.37(d)) as the edges are not aligned correctly across the tear. This failure of the displacement

estimation is a direct consequence of the poor quality of the motion field for this frame (Fig.
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(b) Segmentation Map

(¢) Torn Frame from “scissors” sequence (d) Segmentation map

Figure 6.32: This figure demonstrates shrinking in two of the torn frames. The arrows indicate
where the segmentation boundary follows the shortest path to edge of the frame rather than

following the tear boundary.

6.35).
The frames from the “BBC” and “scissors” sequences are fully restored by recovering the
lost image data along the tear using the missing data treatment outlined in [60]. Summaries of

the restoration of these frames are given in Fig. 6.38

6.5 Computation Complexity of the Segmentation Algorithm

In order to determine the computational complexity of the algorithm, the complexity of each

stage of the algorithm must be estimated. The following list is a breakdown for the complexity
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(a) 2™ Torn Frame from “BBC” sequence with (b) Tri-map after watershed segmentation

superimposed backward motion field

Figure 6.33: The circle on the left indicates a section of the image whose motion is different
from the the motion in that region of the image. It corresponds to a region in the previous
torn frame. If the motion-based segmentation was applied to this motion field, then the circled

section is assigned to the wrong region (right).

Figure 6.34: First Column (from left): The torn frames from the “singer” sequence; Second
Column: The seeding function after the watershed segmentation; Third: The seeding function

after the erosion stage; Fourth: The resulting segmentation map.

of each stage.

1. 2D Histogram computation - The histogram is populated by incrementing the appropriate
bin in the histogram for every motion vector. The complexity is linear with respect to
the number of vectors which is roughly proportional to the number of pixels in the image.
After the histogram is computed it is filtered with a low pass filter using a 2-D convolution.
The complexity of this operation is linear with respect to the histogram size and also the
filter size which is fixed. Therefore, the overall complexity for the first stage is O(n) +

O(# histogram bins), where n is the number of pixels in the image

2. Watershed Segmentation - According to [105] the computational complexity of the water-
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(a) Backward Motion Field (b) Forward Motion Field

Figure 6.35: The two images show the 2 motion fields for the torn frame of the “singer”

sequence superimposed on the frame.

(a) Manually edited Tri-Map (b) Segmented Image

Figure 6.36: This figure presents the segmentation of the torn frame in the “singer” sequence
obtained from the edited seeding function. A band of pixels at the top and bottom of the image

are marked as belonging to the two regions.
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(a) “BBC” frame 1 (b) “BBC” frame 2 (c) “Scissors” Sequence

(d) “Singer Sequence” using (e) “Singer Sequence” using

backward motion field forward motion field

Figure 6.37: This figure shows each torn frame compensated for tear displacement. The seg-
mentation masks computed from the estimated tri-maps are used for the “BBC” and “scissors”
sequence and the segmentation mask estimated from the edit seeding function (Fig. 6.36) is

used for the frame in the “singer” sequence.

shed segmentation is linear with respect to the size of the input image, which in this case
is the 2D histogram. The initial seeding function must subsequently be constructed from
the segmented histogram. This operation is linear with respect to the size of the seeding
function(i.e. the number of vectors in the motion field). Therefore, the complexity of this
stage is O(n) + O(# histogram bins).

3. Erosion - The complexity of each erosion iteration is linear with respect to the size of the
seeding function. Therefore, the complexity of the entire erosion operation is given by

O(n x # erosion iterations).

4. Graph Cuts Segmentation - The theoretical upper limit on the computational complexity
is given by O(mn?|C|) [12], where m is the number of edges in the graph and |C| is the

cost of the minimum cut.
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Figure 6.38: First Column (from left): Close-up of torn frames; Second Column: Close-up of
the segmentation; Third: The torn frame with compensated displacement. The edges should
now correctly align across the tear boundary; Fourth: The fully restored frame after missing

data treatment. The missing data treatment algorithm used [60] also acts as a noise reducer.

The overall computational complexity of the segmentation algorithm is therefore O(mn?|C|)+
O(n) + O(# histogram bins) + O(n X # erosion iterations).

6.6 Other Applications of the Segmentation Algorithm

An interesting feature of the segmentation algorithm used for tear delineation is that the bound-
ary conditions (or the spatial smoothness conditions) are derived from the temporal DFD rather
than the spatial gradient, which is often used in segmentation algorithms. This allows temporally
impulsive edge features (such as tear) to be distinguished from actual image edges. Further-
more, the segmentation framework outlined in this chapter allows for segmentation without
region information if the seeding function used to initialise the segmentation is user-defined.

Dirty splices are another form of degradation sometimes present in archived media (Fig.
6.39). In the past, footage was often edited by splicing together film strips from each different
shot with scotch tape. Over time, dirt tends to accumulate on the film at both edges of the
splice. This results in a horizontal band of dirt, visible on the two frames either side of the shot
cut.

Like tear, a dirty splice is a temporally impulsive defect which forms a band across a frame.
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(a) Before Shot Cut (b) After Shot Cut

Figure 6.39: This figure shows two frames with dirty splices either side of a shot cut. The

horizontal lines of dirt in the images are the consequence of the splice.

Therefore, the tear delineation algorithm could also be used to divide a frame along the path
of a splice (Fig. 6.40). The DFD again describes the boundary properties of the segmentation.
However, unlike tear, splices do not induce a relative displacement either side of the tear. This
means that the segmentation cannot be initialised using a motion-based segmentation. The
segmentation can still be performed automatically by exploiting the observation that dirty splices
forms a horizontal band spanning the image. As the path of the splice is horizontal, the top
and bottom rows of the image must be located on opposite sides of the splice. Therefore, the
segmentation could be initialised automatically by seeding the segmentation frame work in that
manner.

This raises the possibility of using the segmentation algorithm to detect dirty splices in film
sequences. In effect, the goal is to detect temporally impulsive defects which form horizontal
lines in an image. As splices are associated with shot cuts, only frames close to shot cuts need
to be tested. If the segmentation algorithm is applied to a suspect frame and the segmentation
boundary follows a horizontal path, then that indicates the presence of a dirty splice. However,
if the segmentation algorithm is initialised in the manner described above, the boundary will
always follow a horizontal path on any frame. The outstanding issue is to find a method of
initialising the segmentation framework that would allow frames with and without dirty splices
to be distinguished (Fig. 6.41).



6.7. Final Remarks 156

|
{

e

1

L8 L | = PSR - SR =

(a) Frame with dirty splice (b) DFD of frame, the circle highlights the loca-

tion of the splice

(c) Seeding Tri-Map (d) Segmented Image

Figure 6.40: This figure presents an example of the segmentation algorithm applied to a frame
with a dirty splice. In the segmented image, the segmentation boundary follows the the path of

the splice across the image.

6.7 Final Remarks

This chapter has described a new automated algorithm for segmenting torn frames using the
graph cuts segmentation framework outlined in [11]. The segmentation algorithm forms part of
a restoration framework for torn frames, which was first outlined in [21]. The main advantage of
the Graph Cuts optimisation technique over other techniques such as ICM [3] is that it estimates
the globally optimum segmentation for the two label segmentation algorithm.

The algorithm was tested on two ground truth sequences in order to quantify the accuracy
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(a) Seeding Tri-Map (b) Segmentation for frame (¢c) Segmentation for frame

with no splice with splice

Figure 6.41: A possible method to initialise the segmentation is to only label sections of the
top and bottom row (a). If a dirty splice is not present in the frame, then the segmentation
boundary may shrink to the boundary of the labelled section. In this case, the segmentation
boundary would not completely span the image (b). If a splice is present, then the boundary
will still span the image (c).

and computational efficiency of the algorithm. Various configurations of the algorithm were
tested, including applying the algorithm without any initialisation. However, it has been shown
that initialising the graph-cuts segmentation was preferable as it allows for user-intervention to
improve the segmentation in cases where the automated segmentation fails.

There are number of outstanding issues which need to be addressed with regard to both
the segmentation algorithm and the tear restoration framework. Failures in the segmentation
framework tend to occur in frames due to the nature of the frame’s motion field. These failures
typically are associated with local motion or motion estimation failure due to either pathological
motion or ill-conditioned image data. Further development of the algorithm is necessary to make
it more robust to these types of failure. Also, further investigation into the choice of energy
function for the boundary conditions of the segmentation (given by equation 6.5) would be
desirable. A better defined function might reduce the frequency of shrinking in the segmentation.

Currently, the tear displacement estimation algorithm in the restoration framework uses a
translational model for global motion. Consequently, the tear displacement algorithm is not
suitable for torn frames where rotation of a region occurs or where the motion of the camera
is non-affine. The performance of the displacement correction process could be improved by
considering an affine global motion model. Furthermore, additional testing of the torn frame

detection algorithm proposed in [21] is needed.



Conclusions

This thesis was focused on improving the robustness of image processing applications to motion
estimation failure. It was divided into two parts, with the first being concerned with applications
involving local motion estimation and the second with applications involving global motion
estimation. The following sections give a brief review of the work presented in this thesis and

propose some ideas for future work in these areas.

7.1 Pathological Motion Detection

Chapter 2 introduced and described the phenomenon of Pathological Motion as well as presenting
a review of the prominent missing data detection algorithms. It introduced a classification of the
different forms of PM in terms of their cause and manifestation in sequences. The missing data
detectors were classified in terms of the how they deal with long term Pathological Motion. These
included the standard detectors that made no direct effort to model PM, those that make missing
data detection more conservative in suspected PM regions and those that take a preventative
approach of preventing the detection of blotches in detected PM regions. The deterministic
and probabilistic methods were also discussed. Finally, the scope for a new PM-robust blotch
detection algorithm using a fully probabilistic framework was highlighted.

The new PM-robust blotch detector was then introduced in chapter 3. The ground truth
comparison with the standard detectors showed that the effect of the new algorithm was to
significantly reduce the rate of false detections of blotches. The reduction in false alarms had

the positive impact of reducing the damage to images caused by the false detection of blotches
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in PM regions. However, the new algorithm also had the effect of capping the correct detection
rate of blotches.

The algorithm was also compared with the algorithm of Bornard, another blotch detector
which allows for PM. The comparison showed that the new algorithm had a higher false alarm
rate but also had a higher correct detection rate. The new algorithm performed significantly
better on the dirtier of the two test sequences and achieved a much higher correct detection rate
than the Bornard algorithm. This difference in performance occurs because the new algorithm
uses a more discriminate method of classifying between blotches PM. Instead of employing
maximum caution approach of the Bornard algorithm, the new algorithms tries to make informed

guesses of the true classification of each candidate.

7.2 Global Motion Estimation

A review of the global motion estimation state of the art was presented in chapter 4. It introduced
the IRLS framework for estimating the motion parameters from either the image intensities or
local motion fields. The IRLS method attempts to exclude the influence of local motion by
weighting out the local motion regions based on the size of the residual. The limitations of the
IRLS framework were discussed and in particular the suitability of using the residual as the
means of rejecting local motion. This led to the conclusion that the robustness of the IRLS
framework could be improved by using a motion based segmentation to reject local motion,
resulting in a hybrid approach to local motion.

The hybrid algorithm was then introduced in the following chapter. It was applied to the
generation of mosaics from MPEG-2 sequences. The most significant novelty in the algorithm
is the use of the motion based segmentation to reject local motion. This ensures that the
robustness to local motion of the histogram techniques is combined with the precision of the
least squares techniques. Mosaicking was a good test application of the hybrid technique as
errors in the motion parameters will propagate through the mosaic. For this reason, mosaicking
demands both robustness and precision of the motion parameters. It was also demonstrated
how the algorithm can be used to estimate global motion over long inter-frame differences by

aggregating the motion information over the temporal window.

7.2.1 Film Tear Restoration

A new segmentation algorithm for torn frames was introduced in chapter 6. The algorithm
allows torn frames to be divided into two regions so that the relative displacement between
the two regions can be computed. An interactive segmentation framework is adopted using the
Graphs Cut technique. The algorithm uses the DFD to define the boundary conditions of the
segmentation, with the frame being cut along the line of the ridge in the DFD surface. A note-

worthy strength of the algorithm is its flexibility. It allows for an automated segmentation using
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a motion based initialisation and, when failure occurs in the initialisation, the algorithm allows
for a user defined initialisation. Another feature of the algorithm is that it can proceed solely
with the given initialisation and knowledge of the boundary conditions. Thus, the algorithm
can be used in many situations where knowledge of the region properties does not readily exist.

The example given in this chapter was the detection of dirty splices in archived media.

7.3 Future Work

There is no end in sight in the demand for image processing applications in the digital age. With
improvements in technology the demand for applications is only likely to increase, with motion
estimation remaining an integral process in many of these applications. Consequently, robustness
to motion estimation failure will remain an issue. This section outlines the outstanding issues
and possible extensions that can be made to the algorithms described in this thesis and outlines

potential applications of these techniques.

Pathological Motion Detection

The test results highlighted that the divergence likelihood had a varied impact on the test
sequences chosen. In the tests carried out in the thesis it was shown that the inclusion of the
motion field smoothness information in the framework helps to reduce the false alarm rate on
one of test sequences while not having any affect on the second test sequence. Further testing
to obtain a proper evaluation of the likelihood is required. This would require testing on more
sequences exhibiting a wide range of PM patterns and testing using a number of different motion
estimation algorithms. However, the main limitation of the algorithm is that it assumes that
motion compensation can always be performed in a reliable manner, even in the presence of PM.
Obviously, this cannot be the case and hence such methods can never detect all of the harmful
Pathological Motion. In that sense the problem is a “chicken and egg” type problem. The goal
is to detect PM but all PM cannot be detected due to the presence of PM. However, using the
approach outlined here it has been shown that the damage to image data caused by PM can be
dramatically reduced.

The logical application for the new blotch detector would be to integrate it into an integrated
missing data treatment framework. The integrated frameworks recognise that by treating the
blotch detection and blotch interpolation and motion estimation process in an integrated manner
rather than as stand-alone stages improvement is possible in the overall performance of the

overall process. A suitable example of an integrated technique is the JONDI algorithm [57].

The Hybrid Global Motion Estimation Algorithm

The biggest outstanding issue to be addressed with the hybrid algorithm how to deal with

cases when the entire background is ill-conditioned. This problem can be seen to affect the
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mosaics of the football sequences shown in chapter 5, which contain backgrounds with very
little texture. Another mode of failure occurs when foreground objects become more prominent
in a frame than the background, a problem that affects the mosaic of the cricket sequence. The
obvious solution would be to interpolate the motion parameters temporally from frames where
the motion parameters can be estimated reliably. Such an approach was considered by Kelly in
his PhD thesis [49] who used a particle filter to predict the motion parameters of each frame.

Mosaicking of sports sequences is an interesting application of the hybrid algorithm. It has
been shown in this work it is possible to generate mosaics from only a fraction of the frames
in a sequence if knowledge of the motion information over the sequence exists. This raises the
prospect of quick estimation of good quality mosaics. These mosaics can be used as a means
of summarising the action of an entire shot in a single image, possibly in the form of a motion
history image [7,30,63].

Film Tear Restoration

At the present stage of development of the tear restoration framework, reliable algorithms exist
to fully restore torn frames given a frame that is known to be torn. These stages include the
segmentation algorithm outlined in this thesis, a relative tear displacement correction stage
which is followed by an image stabilisation stage and a missing data treatment stage. The only
outstanding stage in the framework that needs to be addressed is the torn frame detection stage.
An algorithm to achieve this was mooted in [21]. It proposed that histograms of spatial gradient
be used to diagnose torn frames as torn frames are high gradient features in an image. However,
further testing of this algorithm is required to verify its correctness.

There is also further room for improvement in displacement correction algorithm. Currently
the translational motion of each segmented region is estimated from a histogram of the local
motion field. Obviously the quality of the estimated displacement is reliant on the quality of the
motion field and a more elaborate motion model should be used, the ideal compromise being the
six parameter affine model. In global estimation algorithms these limitations are straightforward
to overcome. However, there is an additional drawback in the tear displacement algorithm in
that the region size is smaller than the entire frame. Consequently, it is more difficult to get

reliable estimates of the regional displacement with elaborate motion models.

7.4 Final Thoughts

The problems affecting both local and global motion estimation have much in common. Patho-
logical Motion occurs when local motion estimators cannot model the motion at a given pixel
or block. This can occur due to natural phenomena such as occlusion or if the resolution of
the motion field is too coarse to fully represent the motion of the object (i.e. in regions of
motion discontinuity). The presence of local motion is the equivalent problem in global motion

estimation. The difference being that the block is now the entire image which contains within
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it, with one motion pattern corresponding to the global motion of the image and other motion
patterns corresponding to the various local motions. In global motion estimation local motion
is rejected by the selection of a suitable M-estimator. A similar approach has been used in local
motion estimation algorithm of Black and Anandan [6] to model spatial discontinuities in the
motion field.

Both processes also suffer from problems of ill-conditioning (e.g. the aperture effect in local
motion estimation, textureless regions in global motion estimation). As global motion estima-
tion uses more image data to estimate the motion parameters (i.e. an entire image rather than
a small block), it is generally more robust to ill-conditioning. In both global and local motion
estimators, stability to ill-conditioning can be improved by increasing the damping coefficient
in the Levenberg-Marquardt framework (e.g. [31] in local motion estimation and [59] in global
motion estimation). Beyond this, a guess for the motion of ill-conditioned blocks by interpola-
tion from well-conditioned neighbours. In local motion estimation the motion information can
be interpolated spatially from neighbouring blocks [54]. As spatial interpolation of motion infor-
mation is not possible in global motion estimation, the motion parameters must be interpolated
temporally [49].

In closing, it appears that motion estimation development should be at the stage where the
effort is concentrated on real phenomena that have always concentration estimators. The notion

of handling motion blur [80] and transparent motion [93] holds much material for future work.



Vector Field Aggregation

In the hybrid algorithm, Global Motion is estimated between consecutive I-frames. In order to
achieve this, a local motion field between the two frames must be constructed from the motion
information encoded in the MPEG stream [25]. The most important feature of MPEG streams

is that there are three picture types:
e [-frame which has no motion information.
e P-frame which has a motion field for prediction (forward motion compensation)

e B-frame which has two motion fields for prediction (backward and forward motion com-

pensation)

Fig. A.1 represents a Group Of Pictures (GOP) profile and indicates how motion information
in the MPEG stream can be used to construct one motion vector field between two I-frames.
The motion field is constructed in two phases. Firstly, each P-frame motion field (blue line)
is accumulated into a single field. Since the motion fields are block based and the vectors are
given in sub-block precision, the predicted location of the corresponding macroblock can overlap
with up to four macroblocks in the previous frame. Therefore the vector at these positions are
calculated using an average of the overlapping blocks weighted by the respective overlapping
area of each block. In order to construct the motion field from the last P-frame to the end of
the GOP, the bidirectional information (green line) of the last B-frames is added together (with
a negative sign for backward prediction data) and is aggregated with the motion field for the

rest of the GOP, resulting in a motion field describing the combined motion over the GOP.
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P-frame : forward prediction B-frame : bidirectional prediction

Figure A.1: Motion prediction scheme for a GOP. The blue lines represent the motion in-
formation for the P-frames, a motion prediction field from the previous P(or I)-frame to the
current P-frame. The green lines outline the prediction scheme for the B-frames. Each B-frame
is associated with a prediction field from the previous and next P-frame or I-frame. Aggregation
of these fields is needed to compute the motion field between two consecutive I-frames (yellow

line).

A.1 Texture Discrimination

Blocks which contain no texture information are unreliable for motion estimation. It is possible
to use the DCT coefficients of an 8 x 8 image block to generate indicators of horizontal and
vertical texture, as presented in [35]. This yields an efficiently generated weighting directly from
information present in the MPEG-2 stream. Eq. A.1 gives the horizontal (g,) and vertical (gy)
gradient indicators of a DCT block B.

9:(B) = XL, B(0,i)* g,(B) = 11, B(i,0)? (A1)

In fact, there is one motion vector (16 x 16 pel block) (or two if odd and even lines are

separately compensated) for four DCT blocks (8 x 8) (which can contain separated odd or even

lines). By combining all DCT blocks (B1, Bs, Bs, By) into a single block (B) [33], an equation
to compute gradient indicators,G, and Gy, related to the four DCT blocks can be given by

Gx(B) _ 1 <gw(Bl4+ B3) + gm(B24+ B4)>

2
2
j& <B1(0,0) ; B3(0,0)  B5(0,0) -534(@0)) (A.2)
¢,(B) = % (gy(&: Bs) | gy(334+ B4>>
2
. i (Bl(0,0) —;Bz(O,O) _ B3(0,0) -2F B4(070)> (A.3)

The G, and G, indicators are then used to weight the aggregated vector field in the RAG-
MOD algorithm. Precise details of how the weighting is applied is given in the following chapter.



Initialisation of the Hybrid Global Motion Estimator
using the RAGMOD algorithm

This algorithm was first presented in [24] and estimates a four-parameter affine global motion
model from a local motion field. Although in this work motion fields from MPEG-2 streams are
used, the algorithm can be applied to any type of motion field. The algorithm uses histograms to
estimate zoom, rotation and translation parameters and is robust to local motion. It is also much
less computationally intensive than the Hough transform methods because instead of estimating
every possible set of motion parameters from a single motion vector, a neighbourhood of vectors
is used to estimate the only possible set of global motion parameters which describes the vectors.
Additionally, the parameters are estimated independently (a histogram each for zoom, rotation
and translation) and so the dimensionality of the histogram space is reduced. The algorithm
was extended to a six-parameter affine model in [26]. Although this approach gives more precise
results than the four parameter case, it is not as robust. Due to this robustness issue, the four
parameter implementation of the this approach is used in the hybrid algorithm.

[26] also introduces the motion based segmentation algorithm which is used here to perform
background /foreground segmentation. The segmentation exploits the translation histogram used
in the GME algorithm to generate a coarse segmentation. Although the segmentation is coarse,
its accuracy is not reliant on the accuracy of the global motion estimate. This is because, unlike
the IRLS approaches, the segmentation is not based on a residual error measure calculated from
the image intensity data. The following sections briefly describe both the global estimation

algorithm and the motion based segmentation algorithm.
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B.1 Global Motion Estimation

The global motion is estimated, using a 4-parameter model which includes parameters for zoom,
rotation and translation, from a motion vector field V(z,y) where (x,y) are the spatial co-
ordinates of the motion vector. It is achieved by modeling motion fields as a linear combination

of pure zoom, rotation and translation motion fields as follows

_y] (B.1)

xT

V(z,y) = + 2. + 7.

X

dy Y

where d, and d, are the horizontal and vertical components of the translation and where z and

r are the zoom and rotation parameters respectively. Rearranging Fq. B.1 it can be seen that

. WV 9V i OV, 0V,
o oy’ Oy Oz’
dy = Vo —zx+ry,
andd, = V,—zy—rx. (B.2)

where V,, and V,, are the horizontal and vertical components of the vector field. The algorithm
proceeds by using Fq. B.2to generate estimates of the parameters from the vector field obtained
from the MPEG stream. From the expressions of d, and d,, it can be seen that zoom and
rotation must be compensated for before the translation parameters can be calculated. z and r
are calculated by generating histograms of the appropriate partial derivatives of the vector field.
The contribution of each block to the histogram is given by a gaussian distribution weighted
according its confidence value. Here V, and V, are weighted according to the horizontal (G,) and
vertical (G) gradient indicators respectively. In order to overcome the problem of quantisation
1 a second order regression centred about the mode of the each histogram is preformed and the
estimated values of z and r are given by the maxima of these regressions

The translation parameters are then estimated by first compensating V' (z,y) for zoom and
rotation and then by computing a 2D histogram of the compensated field. Once more, contri-
butions from each block are given by a (2-D) gaussian distribution and are weighted according
to the texture information of the block. The weights are given by the lesser gradient indicator
(G5 and Gy) of each block. A 2-D second order regression is carried out centred on the mode of
the histogram and the values of d, and d, are given by the coordinates of the maxima. A full
flow chart of the algorithm is given in Fig. B.1.

This result is equivalent to the six parameter affine motion model where the affine matrix A

and translation d are given by A =[1+ 2z —r; r 1+ z] (matlab notation) and d = [d;; d,].

'MPEG vectors are typically given in half-pixel precision
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Figure B.1: The non-parametric Global Motion Estimation Algorithm.

B.2 Motion-based segmentation

The motion segmentation algorithm segments the vectors in V(z,y) into those contributing to
each motion pattern in the motion field. This is performed by using a watershed segmentation
[105] on the 2D translation histogram to extract the major peaks from the histogram. Each
peak in the histogram describes a different motion pattern which includes both the background
motion and local motions in the field. An example of the peak extraction is shown in Fig. B.2.
The motion field is then segmented according to the peaks to which each vector contributes. The
background is segmented by selecting the segment whose vectors contribute to the modal peak
of the translation histogram, resulting in a binary field, b(x), where a value of 1 indicates that
site x is in the background. Fig. B.3 shows an example of the segmentation algorithm applied
to an image. In addition [26] proposes an alternative peak extraction technique to the standard
watershed method. This method takes into account the sparsity of the histogram space in order
to optimise the extraction process.

In contrast to many other state of the art algorithms, the motion-based segmentation has
the advantage of being non-recursive. In other words, a global motion estimate is not needed to
estimate the segmentation. In recursive segmentation algorithms such as IRLS [32,79], the first
global motion estimation can easily be biased by local motion if the local motion is significant
in the image. Local motion rejection based on this first estimation would then be erroneous. To
achieve a good segmentation with the motion based segmentation, the background of the image
must only be associated with the most prevalent motion in the image (i.e. represented by the
mode in translation histogram) and not necessarily associated with the size of the error between

each motion vector and the estimated global motion.
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Figure B.2: This figures shows an example of the histogram peak extraction. The graph on
the left shows a typical 2-D translation histogram generated by the GME algorithm. The graph
on the right shows the results of the peak extraction. The colours correspond to each extracted

peak.

Figure B.3: This figures shows an example of the segmentation algorithm applied to a frame
(shown on the left) from the “mobile and calender” sequence. In this sequence the global
motion comes from a camera pan to left. The calender in this sequence is undergoing local
motion (moving downwards) and the train and ball is also undergoing local motion. The image
on the right shows the results of the motion based segmentation. The red segment corresponds

to the motion of the background and the other colours correspond to the various local motions.



The Number of Samples required for Robust Least

Median of Squares Regression

For a robust estimate to be obtained, the least Median of Squares estimate must correspond
to a candidate estimate calculated from data containing no outliers. It is assumed that the
median square error of a candidate containing an outlier is always greater than a candidate
uncontaminated by outliers. Thus for a robust estimate to exist, it is necessary for at least one
candidate to correspond from a sample consisting of inliers only.

The outlier probability of a data element is known and is given by € say. Hence the probability
of the data point being an inlier is 1 — e. When estimating a k-parameter global motion model
from a 2D vector field, exactly half the number of data elements (i.e. vectors) are required.

There the probability of a data sample being outlier free is
P(sample has no outliers) = (1 — ¢)*/2 (C.1)
and hence
P(sample contains outliers) = 1 — (1 — ¢)/2. (C.2)
If the number of candidates to be estimated is m, then the probability of one of the candidates

being outlier free can be estimated by considering a binomial distribution aas follows

p = P(at least one sample outlier free) = 1 — P(no sample outlier free)
m! k 0 m—0
—1-—" (1= (1= (1 =€)/
0!(m — 0)! (( €) )) ( ( €) ))

=1-(1-(1—-eH™ (C.3)
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Rearranging the above equation, the minimum number of samples required for a required

probability of robustness to outliers of p is given by

_ log(1 —p)
log(1— (1 —e)k/2)

(C.4)
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