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Abstract

With increased competition in the market place, it is essential that product qual-

ity and process performance are consistently competitive. Statistical Process

Control (SPC) strives to differentiate between stochastic and assignable causes

of variation.

This work outlines multivariate methods used for fault detection and classifi-

cation in a high volume semiconductor device batch testing process. The routine

capture of large quantities of test information and storage of historical results to

databases occurs in most all processes. Subsequent data analysis and modelling

is required for process monitoring, fault detection and classification.

Traditional exploratory methods of clustering and parallel coordinate analysis

(parallel-coord) plots are used to demonstrate process contributions and diag-

nose out of control variables. They also serve as a low level monitoring scheme

for process operatives and technicians. Principal Component Analysis (PCA) is

applied to the semiconductor device batch test data as a dimension reduction

method in order to represent the process through a reduced set of uncorrelated

variables. The application of PCA to mixed-mode data, (i.e. analogue and digital

variables), and the construction of a Normal Operating Condition (NOC) model

is shown to offer fault detection and classification capabilities.

Supervised learning through decision tree induction is implemented with the

batch test data for the purpose of fault classification. Use of the C4.5 tree induc-

tion algorithm is evaluated. Results for this nontraditional exploratory method

are presented through confusion matrices.

In conclusion, the methods have been described in the context of semiconduc-

tor device batch testing but are widely applicable to other data rich environments.

xiv



Chapter 1

Introduction

Contents

1.1 Quality Improvement . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Industrial Application . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Process Description and Data Collection . . . . . . . . 4

1.3 Problem Solving Methodology . . . . . . . . . . . . . . . . . 5

1.4 Statistical Methods in Industry . . . . . . . . . . . . . . . . . 6

1.5 Thesis Aim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.6 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 7

“The time you enjoy wasting is not wasted time.”

(Bertrand Russell, 1872-1970)

1.1 Quality Improvement

Increasing market competition and performance indices demand both lean manu-

facturing methodologies and a thorough knowledge of a process. It is paramount

in this era of consumer driven quality for a company to be recognised as a lead-

ing quality provider. The competitiveness in the manufacturing sector, for one,

has brought about the need for consistent production at lower costs. Quality Im-

provement, QI, is ubiquitous in process and product consistency and has provided

the tools which enable such transformations.

1



1.2. Industrial Application Introduction

It is difficult to encapsulate the differences that effectively discriminate processes

and products of bad quality with processes and products of good quality. Statis-

tical Quality Control (SQC), is infact a subset of a higher level philosophy known

as Total Quality Management (TQM). This philosophy is expanded upon in table

2.1.1, but suffice it to say that TQM is essentially a framework of collective ideas,

a synergistic set of ideals that spreads across an entire organisation. Caulcutt

(1995) suggests that although the ideas that define TQM are well established,

proper application of the principles result in a more coherent business.

There are a number of key buzzwords and acronyms used frequently within

quality circles. Where one company is interested in implementing SQC, another

may want Statistical Process Control (SPC). There is tremendous talk of TQM,

Quality Function Deployment (QFD), Just-in-Time methodologies (JIT) and

World Class Manufacturing (WCM). Although there is a link between quality

and productivity, and hence profitability, any improvement requires an organisa-

tion or business to fully comprehend their processes and products needs. Two

main components that dictate the success of these efforts are a systematic reduc-

tion in variability and a focus on statistical methods for process (and product)

improvement. Clearly from this, it is difficult to succinctly define a TQM frame-

work but in general it is concerned with people, processes and performance.

1.2 Industrial Application

In the semiconductor industry, success is a function of a product being unveiled

swiftly and in accordance to market demands. In principle, this success is influ-

enced by:

• Wafer defects

• Contamination

• IC manufacturing defects

• Design errors

• Handling problems

• Packaging problems

2



1.2. Industrial Application Introduction
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Figure 1.1. Total Quality Management model (Oakland (1999))

• External influences

• Process variations

• Product variations

A systematic long term goal for this work was an improvement in the yield of the

devices under test (DUT), specifically for First-Pass Yield, (FPY). Improvement

in this area could result in positive knock on effects such as reducing re-test

batches, batches on hold, scrappage and being able to increase tester capacity.

The old adage ‘time is money’ is truly relevant when it comes to the testing of

electronic components.

A simplified view of yield is a pass statistic on a batch. This can change

significantly depending on process type, DUT type and tester programme. The

main hypothesis of this thesis is to capture process variation and determine op-

timal operational characteristics. Prior analysis was preformed at a high level

where the yield indices and batch statistics were generated both in real time and

on completion of each batch. This approach is useful in providing information

on high (or low) yielding testers, high (or low) yielding products, product test

3



1.2. Industrial Application Introduction

Product Attributes Process Attributes

Site-to-Site

Wafer-to-Wafer Socket-to-Socket

Lot-to-Lot Picker-to-Picker

Batch-to-Batch DIB-to-DIB

DUT-to-DUT Handler-to-Handler

Tester-to-Tester

Table 1.1. Product and process variation. Some common attributes that

constitute variation (both product and process). This table gives an insight

to some of the variation sources in the testing process.

distributions, pareto of failures, cross platform correlations and expected lot re-

turn. This method does not provide information on the variables responsible

for the process, and hence any process disruptions. Low level monitoring of the

process is achieved through multivariate methods that capture any process trend

from the raw data itself. In the context of this work, no explicit feedback link is

available to the tester to allow for setpoint adjustment or process tuning. The

test programs were static and derived off line in accordance to a set of testing

protocols, which are either derived in-house or vendor supplied.

As the process is a complex entity, splitting it into sub-processes, which are

easier to study enables a breakdown of the variation sources. This low level

sub-process analysis is shown in Table 1.1.

1.2.1 Process Description and Data Collection

The data were extracted from the mainframe UNIX/AIX servers and initial analy-

sis suggested it contained both continuous (analogue) and discrete (digital) test

variables. Initial tests were carried out under ‘hand plug mode’, where a DUT is

placed into the device interface board (DIB) by hand and testing is performed off

line. This has the advantage of bypassing the DUT handler and loading trays,

thus minimising mechanical variations. The process of testing a randomly selected

DUT was repeated a total of five times. This method is closer to a simulation

and so is not totally representative of a generic batch but it is a good and reliable
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method to extract useful data from the testers for presentation, analysis and a

insight into potential sources of variability. The data format from the tester is

a commonly used standard in the semiconductor industry, Standard Test Data

Format (STDF). This proprietary format is specific to each tester and a priori

preparation is essential. The MST1C semiconductor device was chosen due to

its high volume nature and analogue and digital test vectors.

1.3 Problem Solving Methodology

Prior to any analysis, it is important to have a problem solving protocol in place.

This specific protocol was similar to the one set out in Montgomery & Runger

(2003),

Step 1 Develop a clear and precise description of the problem.

Step 2 Identify (tentatively), the important factors affecting the problem.

Step 3 Propose a model for the problem (stating limitation and assumptions).

Step 4 Conduct appropriate experimentation and/or collect data to validate the

tentative model (as per Steps 2 and 3).

Step 5 Refine the model based on observed data.

Step 6 Manipulate the model to assist developing a solution.

Step 7 Test the proposed solution.

Step 8 Infer and conclude based on the solution.

This proposed framework summarises the basics of statistical thinking when it

comes to analysing a system or process. Deming (1993) uses the words ‘process’

and ‘system’ interchangeably. They can be differentiated with respect to their

boundaries, but essentially they amount to the same thing, i.e. a network of in-

terdependent components which must work together to try and achieve common

aims. The ‘interdependent’ reference hints at the complexity of components that

make up systems, such as handlers, testers, lot feeders and telemetry infrastruc-

tures.
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1.4 Statistical Methods in Industry

There are many algorithms capable of performing SPC, fault detection and clas-

sification and pattern recognition. An important subset of these techniques is

revealing features that were previously unexpected and being able to classify or

predict instances on a model based approach. The routine capture of high vol-

umes of operational data has become common place in many organisations with

the decrease in cost of data storage devices and the increase in levels of computing

power. Historical data are becoming more complex and this has led to the devel-

opment of more efficient and robust techniques for data analysis. The process of

using historical data to discover regularities and improve future decisions is a ma-

chine learning area commonly called Knowledge Discovery in Databases (KDD).

This phrase was coined by Piatetsky-Shapiro (1991) whilst describing analytical

data analysis and knowledge extraction on large volume databases. The term

Data Mining is often used in place of KDD and has very similar connotations.

The subtle difference is however, data mining is an application of specific al-

gorithms for pattern extraction from data and is therefore a step in the KDD

process. KDD is more focussed on an entire framework i.e. where data are

stored, accessed, analysed, modelled and presented. Fayyad et al. (1996) intro-

duce KDD as the nontrivial process of identifying valid, novel, potentially useful,

and ultimately understandable patterns in data. Machine learning paradigms can

be separated into two main areas

Unsupervised Learning ‘Learning without a teacher’. This offers the possibil-

ity of exploring the data without guidance in the form of class information

and the aim is to establish the existence of classes or clusters in the data.

D (x)→ f(x)

Where x = {x1, x2, ..., xp} are variables in x-space and D is a distance

metric. Clustering, dimensionality reduction, feature selection and anomaly

detection are examples of unsupervised machine learning techniques.

Supervised Learning ‘Learning with a teacher’. The training data are accom-

panied by labels indicating the class. The new data is classified based on

the training set.

(x, f(x))→ f̂(x)
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Where x = {x1, x2, ..., xp} are inputs and f(x) is an output (or class label).

The objective is to determine a good approximation to f̂ . Classification,

regression trees and neural networks are supervised machine learning tech-

niques as they require class patterns with known class assignments. Clas-

sification is used in the prediction of categorial class labels (either discrete

or nominal) and regression is used for continuous-valued functions.

1.5 Thesis Aim

The aim of this thesis is to present a detailed study on multivariate statistical

methods used for fault detection and classification in the semiconductor device

testing industry.

1.6 Thesis Overview

• Chapter 1: Introduction. This chapter presents an overview of the in-

dustrial background of this thesis. It also introduces concepts of Quality

Improvement, statistical methods used in industry and data analysis para-

digms.

• Chapter 2: Literature review. This Chapter presents a philosophy of

quality for both processes and products and gives a descriptive overview

of variation. Statistical methods in process control are described and the

distinction between unsupervised and supervised methods is discussed.

• Chapter 3: Unsupervised Learning Methods. This Chapter outlines

the use of unsupervised machine learning methods such as Clustering, Par-

allel coordinates analysis and Principal Component Analysis. A mathemat-

ical introduction to PCA and the concept of multivariate fault detection is

presented also.

• Chapter 4: Supervised Learning Methods. This Chapter outlines the

use of supervised machine learning methods such as One-Rule (1-R) classi-

fication and Decision Trees induction. Classifier performance is presented

through a confusion matrix.
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• Chapter 5: Results. This Chapter details the application of semicon-

ductor batch test data to both unsupervised and supervised exploratory

methods. It provides a description of parallel-coord plots for process visu-

alisation. The development of a Normal Operating Condition (NOC) model

is detailed as is fault detection and classification score plots and multivariate

indices.

• Chapter 6: Discussion This Chapter illustrates how the multivariate tools

and analysis techniques are used in the context of this thesis. Two process

states are described and discussed through parallel-coord Figures, PCA

score plots and contribution plots.

• Chapter 7: Conclusion This Chapter concludes and summarises points

made throughout this thesis. It also identified areas of future work.

• Bibliography

• Appendix A Principal Component Loadings

• Appendix B Cumulative Model Variance

• Appendix C PC1-PC2-PC3 NOC ellipsoid with subplots

8



Chapter 2

Literature Review

Contents

2.1 The Philosophy of Quality . . . . . . . . . . . . . . . . . . . . 10

2.1.1 The TQM Philosophy . . . . . . . . . . . . . . . . . . 12

2.2 Process Quality and Product Quality . . . . . . . . . . . . . 13

2.3 Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Probability Distributions . . . . . . . . . . . . . . . . 17

2.4 Statistical Process Control . . . . . . . . . . . . . . . . . . . . 18

2.4.1 Control Charts . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Multivariate Statistical Process Control . . . . . . . . . . . . 22

2.5.1 Process Operation Data Characteristics . . . . . . . . 23

2.5.2 Classification of Batch Processes . . . . . . . . . . . . 23

2.6 Unsupervised Learning Methods . . . . . . . . . . . . . . . . 25

2.6.1 Principal Component Analysis . . . . . . . . . . . . . 25

2.6.2 Monitoring Indices . . . . . . . . . . . . . . . . . . . . 25

2.7 Supervised Learning Methods . . . . . . . . . . . . . . . . . . 26

2.7.1 Neural Networks . . . . . . . . . . . . . . . . . . . . . 26

2.8 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . 27

“Quality is not an act, it is a habit.” (Aristotle, 384BC-322BC )

9



2.1. The Philosophy of Quality Literature Review

2.1 The Philosophy of Quality

The study of quality is not as recent a phenomenon as one might imagine. Quality

concepts and ideas have significantly influenced and helped develop both mankind

and the environment. The fundamental underpinnings of quality, it seems, have

been present (albeit latent), in many early product development and processing

techniques. Table 2.1 briefly outlines the important chronological developments.

For a further, more detailed synopsis see Montgomery (2001).

Milestone Year

European guilds maintain standards 1700-1800

Industrial revolution brings change 1800-1900

AT&T begin product testing & inspection 1907-1908

Shewhart pioneers control charting 1924

Dodge et al. refine acceptance sampling 1928

Wald develops sequential sampling 1942

Deming in Japan delivering SQC seminars 1946

Taguchi pioneers experimental design 1948

Page develops CUSUM chart 1954

Roberts develops EWMA chart 1959

Zero-defects model popularised in America 1960’s

Introduction of Total Quality Management (TQM) 1970’s

Taguchi methods introduced to companies 1980

Widespread use of experimental design methods in Japan 1980’s

Emergence of Statistical Process Control (SPC) 1980’s

Motorola initiates Six-Sigma (6σ) thinking 1989

Quality standards formalised 1990’s

Extension to Multivariate SPC 1995-today

Chemometric & Process Analytical techniques devised 1996-today

6σ Methodology for Industry Standard 2000-today

Table 2.1. A history of quality.
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Quality was largely determined by the efforts of an individual craftsman, Eli

Whitney. In 1794 he influenced the American mass-production concept with his

system of standardised, interchangeable parts whilst manufacturing muskets for

the government. Frederick W. Taylor introduced some principles of scientific

management as mass production industries began to develop prior to 1900. His

main area of interest was in the improvement of productivity, and he pioneered

dividing work into tasks so that the product could be manufactured and assembled

with ease.

During the 1920’s, Walter A. Shewhart of Bell Telephone Laboratories (Bell

Labs) pioneered the use of statistical techniques for monitoring and controlling

quality. Bell laboratories wanted to economically monitor and control the vari-

ation in quality of components and finished products. Shewhart recognised that

inspecting and rejecting (or reworking) a product was not the most economical

way to produce a high quality product. He demonstrated that monitoring and

controlling variation throughout production was a far superior way of controlling

quality. Shewhart invented a visual tool for monitoring process variation which

he called control charts. These subsequently became Shewhart control charts in

honour of their inventor. In the 1930’s, the United States telecommunications

industry operated by Bell Labs was recognised as the international standard for

quality, with a great deal of credit due to Shewhart for his control charting tech-

niques.

At this time it was realised that SPC methodologies were of importance, and

hence, they began to spread to other industries, including the Bureau of the Cen-

sus. With the onset of World War II, the need for high volume and consistently

high quality armament production arose. To assist these efforts, Bell Labs offered

training in SPC techniques at Universities such as Stanford and Columbia. It was

around this time that the first quality control (QC) journal, Industrial Quality

Control, was published (1944), and a QC professional society was formed, namely

the American Society for Quality Control (ASQC) in 1946. The ASQC is now

known as the American Society for Quality (ASQ). After the war, there followed

a period where Statistical Process Control (SPC) methodologies were ‘laid off’

and the rather rigorous quality control tools were eased. With a stable economy,

and a high demand for consumer goods, many manufacturers felt little need to

invest into SPC techniques. In the United States, it remained like this for several
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years postwar, and indeed the growth of SPC outside of the defence industry

was sluggish at best. In Japan, the postwar situation was different. Since the

economy had been devastated during the war, the industries required rebuilding

from the ground upwards. In the late 1940’s, Joseph M. Juran and W. Edwards

Deming, both understudies of Shewhart, traveled to Japan. Juran’s mission was

to educate the Japanese on quality management and Deming’s to help with the

census. They had found little interest amongst U.S. companies with their quality-

management philosophies, but the Japanese welcomed them Juran (1988). The

1950’s and 1960’s saw the emergence of reliability engineering, the introduction of

several important textbooks on statistical quality control and the viewpoint that

quality is a way of managing an organisation. The impact of quality manage-

ment on the Japanese industry was phenomenal, and thus the same philosophies,

previously overlooked, were adopted as a matter of urgency to compete with the

quality conscious Japanese.

2.1.1 The TQM Philosophy

Statistical Process Control (SPC), is a high level abstraction of the Total Quality

Management (TQM) philosophy. Deming (1993), with his ‘system of profound

knowledge’, alluded to how complex organisations operate, and that an under-

standing of this complexity can bring long-term improvements in quality and

efficiency. The so called four pillars of profound knowledge are:

Appreciation for a system Organisations are interactive systems and must be

managed as systems. Management has a role in plant wide optimisation.

Knowledge about variation Variation is always present. The most important

thing is not to just measure and quantify it, but also to understand it.

Theory of knowledge Increase ones knowledge of the way a system (or process)

operates. This can be achieved through the Plan-Do-Check-Act cycle.

Psychology A basic knowledge of human interaction and behaviour in different

situations and the ability to extract the most from a person is essential.
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Figure 2.1. Definition of a process (Caulcutt (1995))

2.2 Process Quality and Product Quality

In order to define the nature of the quality methodology, a distinction has to

be made with regard to process quality and product quality. Caulcutt (1995)

describes a process as a collection of inputs and outputs. This structure is shown

in Figure 2.1, where there are multiple inputs, a process and outputs. The ba-

sic purpose of a quality system is quality planning, quality control and quality

improvement. Process quality can be conceptualised through 11 process dimen-

sions (Table 2.2). These reflect the quality of the technological process, or the

means by which inputs are transformed into desirable outputs. A transformation

can be defined as the process in which an input is remodelled into a desirable

output. Misterek et al. (1990) suggests that process quality is a state of superior

performance on a number of process dimensions. In a more recent paper, Dooley

et al. (2000), the authors cite the importance of a process quality knowledge base

(PQKB). The PQKD is subsequently defined as an information system that ac-

quires process knowledge and represents it for the purpose of quality performance,

quality control and quality improvement.
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Table 2.2. The Eleven Dimensions of Process Quality, Misterek et al.

(1990)

Capability The ratio of the width of specification limits

on a characteristic relative to the natural

variation of that characteristic

Stability The predictability of a process

Requisite Variety A process under differing environments

Robustness Sensitivity of a process

to different environment conditions

Flexibility The variety of outputs available

Reliability The frequency with which a process fails

Serviceability The effort required to repair a process

Efficiency The addition of value to the output

Technical The level of technical sophistication required

Compatibility Comparison between processes within the same

operational environment

Safety The risk of harm to process operators

Product quality is a parametric entity and many quality practitioners have sought

to identify the key characteristics. The byproduct of this has created a signifi-

cant amount of information in literature. While the notion of quality is multi-

dimensional, normally it is perceived that quality represents “fitness for use”

Juran (1988), is “inversely proportional to variability” Montgomery (2001), repre-

sents “value” Feigenbaum (1991), “conformance to requirements” Crosby (1979)

and “meets expectations” Buzzell & Gale (1987). More recently Stone-Romero

et al. (1997) defined product quality as a perception by customers based upon
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Table 2.3. The Eight Dimensions of Product Quality, Garvin (1987)

Performance The primary operating characteristics of a product

Reliability The frequency of failure of a product

Durability The length of time before a replacement product

Serviceability The ease of product failure repair

Aesthetics The appearance of a product

Features The secondary characteristics of a product

Perceived Quality Indirect association: brand name, image, advertising

Conformance The degree in which the characteristics of a product

fall within specified limits

their appraisal of four criteria: flawlessness, durability, appearance and distinc-

tiveness.

Garvin (1987) in his review of available literature, succinctly identified five

approaches in defining product quality, and subsequently extracted eight dimen-

sions, which he considered to be the basic elements of product quality. These

eight dimensions are shown in Table 2.3.

2.3 Variation

The inherent or natural variability in any process is the cumulative effect of

many small, unavoidable and difficult to identify stochastic or common causes. A

process is in control or more formally in a ‘State of Statistical control’, when only

stochastic causes are present, Montgomery (2001). A process is out of control

when the constant system of common causes changes, or when any additional

source of variation is temporarily present. The sources of variation that are

not part of the stochastic variation pattern are known as assignable causes of

variation and mainly arise from operator errors, defective products, raw materials

or improperly functioning processes. A process that is in control is a stable process

but this does not necessarily mean that the output is within the specification
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limits for the process. Shewhart (1986) introduced a theory of variability to

describe the differences between these two causes.

The stochastic cause/assignable cause paradigm is often difficult to distin-

guish between in practice as assignable causes will appear, seemingly at random.

A fundamental objective of statistical process control is to readily identify the

occurrence of any assignable causes of variation (e.g. a process shift) so that a

corrective action can be applied in order to alleviate the variation. A statistical

hypothesis is used, formulating a statement about the probability distribution of

a random variable or indeed, about the parameters of one or more populations.

This creates two decision based errors, namely type I and type II, associated with

the corrective action:

Type I Decision Error (False Alarm) This occurs when the process is judged

to be out of control when in fact it is in control.

Type II Decision Error (Failed Alarm or miss) This occurs when the process

is judged to be in control when in fact it is out of control.

The probability of making a type I error is denoted by α,

α = P{type I error} = P{reject Ho|Ho is true}

The probability of making a type II error is denoted by β,

β = P{type II error} = P{fail to reject Ho|Ho is false}

Where Ho is the null hypothesis. Both types of error are typically associated with

process disruption and economic loss. Sometimes it is convenient to report the

power of a test, where the power can be interpreted as the probability of correctly

rejecting a false null hypothesis. This is calculated from 1 - β,

Power = 1− β = P{reject Ho|Ho is false}

A summary of hypothesis testing type errors is shown in Table 2.4. The confu-

sion matrix, 4.6, outlines this concept in a machine learning framework. Type I

errors are False Positive entries and Type II errors are False Negative

entries in a confusion matrix.
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Decision Ho Is True Ho Is False

Fail to reject Ho No error Type II error

Reject Ho Type I error No error

Table 2.4. Decisions in hypothesis testing. In this decision matrix, 2

instances show no error, i.e. a correct decision and the remaining 2 show

different types errors.

2.3.1 Probability Distributions

A probability distribution is a mathematical model that relates to the probability

of occurrence of a particular variable in a population. Two types of probability

distributions are described:

• Continuous distributions Where the variable measured can be expressed

on a continuous scale.

• Discrete distributions Where the variable measured can only take on

certain values, such as integers 0,1,2..,k.

A probability density function (PDF) commonly used to describe a continuous

process is the normal distribution or Gaussian. If x is a normal random variable,

the normal distribution is described as:

f(x) =
1

σ
√

2π
e

1

2
(x−µ

σ
)2 −∞ < x <∞

where µ is the mean and σ is the standard deviation. The normal distribution

is used very frequently and has a special notation, x ∼ N(µ, σ2), which suggests

that x is normally distributed with a mean of µ and a variance of σ. In prac-

tice, it is often convenient to convert a normal distribution into a standardised

normal distribution with zero mean and unit variance, x ∼ N(0, 1), through the

standardised normal variate, z = x−µ

σ
. The exponential term thus changes to

e
−z2

2 .
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µ µ + σ µ + 2σ µ + 3σµ − 3σ µ − 2σ µ − σ

Figure 2.2. A normal distribution. This shows the area under the normal

‘bell-shaped’ curve representing the probability of a value being between ±σ,

±2σ and ±3σ. A précis is shown in Table 2.5.

Table 2.5. The normal distribution with σ levels

σ Level Probability Percentage

± σ 0.6827 68.27 %

± 2σ 0.9545 95.45 %

± 3σ 0.9973 99.73 %

In contrast, when an outcome is classed as either a ‘success’ or a ‘failure’, a

binomial distribution is used. The binomial PDF is described as:

f(x) =

(
n

x

)
px(1− p)n−x x = 1, 2, ..., n

which is interpreted as the probability of obtaining x outcomes from n indepen-

dent events. The mean is np and the variance is np(1− p).
(

n

x

)
is combinatorial notation for n!

x!(n−x)!
.

2.4 Statistical Process Control

Statistical methodologies used in process control form both process performance

monitoring and fault detection schemes. A high level objective of SPC is to
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monitor the performance of a process over a period of time and verify that the

process remains in a ‘state of statistical control’ as defined by a certain limit or

statistical hypothesis. SPC is used to detect an assignable cause deviation so that

a corrective action may be taken before quality is adversely affected. In general,

the philosophy of SPC is to accept variation as inevitable, whilst recognising that

quality improvement is more heavily skewed towards defect prevention than defect

detection. SPC uses statistics in the collection, processing and analysis of data

in order to achieve and maintain control of variation. Thus, an understanding of

variation is highly significant in the comprehension of SPC.

SPC is a collection of problem solving tools used in quality improvement.

Montgomery (2001) and Oakland (1999) outline seven major tools used for this

process, commonly quoted as the ‘Magnificent Seven’ :

1. Histogram

2. Check sheet

3. Pareto diagram

4. Cause and Effect diagram

5. Defect concentration diagram

6. Scatter diagram

7. Control chart

Traditional SPC is achieved through univariate monitoring of process parame-

ters and the most commonly used tool is the control chart. Specific charts such

as Shewhart charts, cumulative sum (CUSUM) charts Woodward & Goldsmith

(1964), exponentially weighted moving average (EWMA) charts Roberts (1959)

and Hunter (1986) and range/dispersion (R) charts are used for slightly different

purposes. These charts are conventionally applied to process data under normal

process (steady state) conditions where the process mean, µ, and standard devi-

ation, σ, are monitored. Changes or deviations in either parameter may indicate

an out of control condition. There is an assumption of normality and indepen-

dence in the underlying theory of control charting, i.e. the data come from a
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normal distribution and are independent and identically distributed (i.i.d.) ran-

dom variables. Autocorrelation in a data structure can frequent the presence of

false alarms, a Type I error, especially when there tends to be a large number of

variables that affect the overall quality of the process. The central limit theorem

(CLT) states that if a large number of independent random variables are added

together, the sum is normally distributed under general conditions contrary to

the distributions of the original variables. Sachs et al. (1995) define SPC as a

binary view of the condition of a process, i.e. either the process is within specifi-

cation limits or it is not. An out of control condition may be caused by a single

variable or multiple variables.

2.4.1 Control Charts

Shewhart (1986) introduced a theory of variability to describe his control charting

technique. This theory refers to the normal variability, or noise, that occur within

a system. Through a series of equations, the Shewhart chart has the ability

to translate all the dependencies of a system into one compact analytical tool.

Shewhart (1986) outlined the following relationship:

xt = µ0 + et (2.1)

where xt is the process mean at time t, µ0 is the in control process mean of the

sample and et is the random noise of the sample at time t. The relationship in

Equation 2.1 enabled Shewhart to develop charts capable of plotting variability

within a system. This type of control chart is applied to the monitoring of vari-

ables or quality characteristics that follow a normal distribution. When variables

have numerical measurements on a continuous scale, x, σ and R charts can be

used. Variables not readily represented on a continuous scale are classed as either

‘Conforming’ or ‘Non-Conforming’ and quality characteristics of this type are

known as attributes Montgomery (2001). A common example of such an event

is the proportion of failed semiconductor units upon completion of a test process

run. There are four types of charts used in the monitoring of attributes, the p

chart (fraction of defects), np chart (number of defects), c chart (number of de-

fects) and the u chart (number of defects per unit). Attribute control charts are

applied to data that follow a discrete distribution. Fraction non-conforming and
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fraction conforming charts and indices are used frequently in the calculation of

First Pass Yield (FPY). FPY is simply the ratio of failures to total batch starts

and is often quoted as percentage yield:

[1− Failures

Entire batch
] ∗ 100

Monitoring FPY is a high level solution to a low level problem and is often used

as an economic index to describe a process.

Space precludes the inclusion of the entire complement of SPC charts, but

Figure 2.3 outlines a control chart calculated from µ test data. This is a univariate

control chart, only showing one process parameter point outside of a ±2σ control

limit. A univariate chart, such as Figure 2.3, is useful to determine variation in

a process parameter and track changes in the process. Its usefulness, however,

decreases as the amount of process parameters per test operation increases.
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2.5 Multivariate Statistical Process Control

Multivariate Statistical Process Control (MSPC) is simply a multivariate exten-

sion of SPC. MSPC is increasingly recognised as a useful tool for providing an

early warning of process changes, assignable plant faults, process disturbances

and for giving the analyst a deeper understanding of the process. Computing

technology, with improved data logging and analysis features, has increased the

importance of multivariate analysis whereby the main objective is to identify

the root causes of variation and take corrective action. Martin et al. (1999) use

the term Multivariate Statistical Process Monitoring (MSPM) in place of MSPC,

which conceptually gives a more appropriate description of the monitoring as-

pect of process control strategies. Kourti et al. (1996) state that univariate SPC

procedures are inadequate for most modern industrial processes, as they are tradi-

tionally based on charting only a small number of final product quality variables.

In Kourti (2002) the problem with monitoring a complex process through a uni-

variate control strategy is illustrated. The author states that many industries

made the transgression to MSPC a decade ago as monitoring a small number of

variables (usually the final product quality variables) is totally inadequate and

does not explain the underlying process fault conditions and emergence of ab-

normal situations. Most industrial processes generate massive amounts of data

on hundreds of process variables through various sensors arrays. The univariate

SPC methodology of examining each variable singularly and independently makes

the interpretation and diagnosis of a fault condition very difficult and convoluted

MacGregor & Kourti (1995). This method only considers the magnitude of de-

viation inherent in a single process variable independently of all other process

variables. Simultaneous monitoring of individual variables separately will fail to

recognise possible cross-correlations that may exist and will increase the insen-

sitivity of the control charts for detection of out-of-control conditions, Samanta

(2001). This can be quite misleading as not all the variables are independent and

only a few underlying events are driving the process at any one time. The final

product quality is defined by the simultaneous correct values of each variable,

and therefore is a multivariate property. In summary, the product quality is a

logical ‘AND’ of the test metrics.

With this in mind, it becomes apparent that to monitor a reduced set of
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variables for a particular process, fault conditions and abnormal situation can be

detected more accurately.

Process monitoring is usually conducted at two levels, Marlin (2000). The first

level is the immediate operation of the process by test operatives and technicians

and the second is long term performance analysis by test engineers. Long term

performance degradation is more difficult to diagnose than sudden process failure

and is often dictated by the quality and quantity of historical data and any

methods applied to extract relevant features.

When the data being analysed are large and correlated, the signal-to-noise

ratio (SNR) is low in each variable. One of the main objectives in data compres-

sion is to enhance the SNR, i.e. to minimise the noise terms which are assumed

to be totally stochastic components.

2.5.1 Process Operation Data Characteristics

Data characteristics are vitally important in both process description and mod-

elling. Wang (1999) lists the basics characteristics of process data where data

volume, data dimension, uncertainty, noise, dynamic trends, sampling frequen-

cies, data redundancy and complex interactions are important.

2.5.2 Classification of Batch Processes

Most industrial processes consist of three main components, input, processing

and output and control procedures may be established on any or all of these

process components. A batch process, by definition, assumes a batches as an

input, Fuchs & Kenett (1998). Batches can also occur when a process is changed

at a specified time intervals, giving rise to the nature of temporal batch data.

This is common in many industries, i.e. process, pharmaceutical, microelectronic

and chemometric. Temporal batch data can arise when a process is altered or

reset. The relationships between process variables are maintained however, until

shifted to allow for another process configuration. Mason et al. (2001) define

Category 1 and Category 2 batch processes. A category 1 (Cat1) batch process

has limited between batch variation and observations are assumed to come from

the same d-dimensional normal distribution, Nd(µ,
∑

) with a common mean

vector, µ, and covariance matrix,
∑

. A category 2 (Cat2) batch process operates
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Figure 2.4. Control ellipsoids. The elliptical regions represent in-control

data from separate batches, with the ‘•’ points representing each mean and

the ‘•’ points represents the overall mean for (a) category 1 batch process

and (b) category 2 batch process.

with a significant separation between batch mean vectors. The observations are

assumed to come from different multivariate normal distributions, Nd(µi,
∑

),

where µi, i = 1, 2, ..., k, represents the population mean of the ith batch. The

difference among the batch means may be due to known of unknown causes.

Figure 2.4 details each categorical condition. Figure 2.4 (a) shows in control

production regions for batches taken from a Cat1 process containing two process

variables, X1 and X2. The ellipsoids represent in control data from three separate

batches whose individual mean vectors are shown by ‘•’. Overall, the mean is

shown by ‘•’. It is clear to observe that the individual batch means are close in

proximity to the overall global mean indicating a closeness between the batches.

In Figure 2.4 (b), the small ellipsoids represent the in control process regions

of individual batches while the larger ellipse represents the overall global mean.

This shows several batches, whilst maintaining in-control relationships between

the process variables, may be out of control relative to the global mean.
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2.6 Unsupervised Learning Methods

The unsupervised learning methods of clustering and Principal Component Analy-

sis (PCA) were used to analyse and reduce the dimensionality of the test data.

These methods are discussed in Chapter 3.

2.6.1 Principal Component Analysis

Principal Component Analysis (PCA), is a key technique in the analysis of mul-

tivariate data. It encompasses three possible objectives: description, interpreta-

tion and modelling of the data, Krzanowski (2000). The methodology of PCA

is reviewed in Section 3.2.2 and is comprehensively described in Jackson (1991)

and Jolliffe (1986). Lane et al. (2001) develop a multi-group process represen-

tation that overcomes the problem of having a single model for every product.

In many industrial applications, the Principal Components (PCs) actually have

physical interpretation and thus can be used as control variables in their own

right. Jackson (1991) used PCA to examine audiometric data from a large num-

ber of employees. The experimentation, while neither process or product related,

made use of the data reduction feature inherent in PCA. PCA is used extensively

within the Chemometrics field, Wold & Sjöström (1998), Ku et al. (1995) and

Wise & Gallagher (1996), Semiconductor Etch and Monitoring Wise et al. (1999),

Goodlin et al. (2002) and Skinner et al. (2002), Multivariate Statistical Process

Control Kourti (2002), Wise et al. (1999), Lane et al. (2003), Simoglou et al.

(2000), Exploratory data analysis in the food industry Pravdova et al. (2002)

and Penza et al. (2001). Zuendorf (2003) detail the use of PCA in functional

brain imaging in order to determine the patterns causing the greatest variance

in the images. Asgharian & Hansson (2003) detail the use of PCA in determin-

ing factors that are important in calculating expected market returns and risk

management of financial portfolios.

2.6.2 Monitoring Indices

An extension to the univariate control charting techniques is required to capture

possible cross-correlations, simultaneously monitor many variables and provide

an accurate fault index, Mason et al. (2001). If an anomaly is detected through
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process monitoring then fault diagnosis should be performed to identify the cause

(source) of the fault for corrective action. Process monitoring evaluates the op-

erating condition of the process and assesses whether it is operating within a

predefined operating region, Leung (2002).

2.7 Supervised Learning Methods

In contrast to latent variable modelling, a supervised learning technique known

as decision tree learning was employed with the same test data. The decision tree

algorithm provides a tree capable of classifying test data with a high degree of

accuracy. It is then tested with unseen data (i.e. data not used in the construction

of the tree) for the purpose of fault classification and the performance evaluation.

This is dependent on the induction method and cross-validation. A detailed

description of decision trees and supervised classification is given in Chapter 4.1.

In short, a decision tree is represented as a multi stage decision system in which

the classes are sequentially rejected upon the arrival of a feature vector until the

destination class (terminal node) is reached. A decision tree is constructed by

recursively partitioning a learning sample of data in which the class label and the

value of the predictor variables for each case is known

• Each internal node tests an attribute

• Each branch corresponds to an attribute value

• Each leaf node assigns a classification

2.7.1 Neural Networks

System representation, modelling and identification are fundamental to process

engineering and other problem domains. It is often required to approximate a

real system with an appropriate model given an input - output data set.

An Artificial Neural Network (ANN or NN) is an information processing struc-

ture that largely mimics and has been inspired by the way in which biological

networks (i.e. the brain) process information. NNs, like the human brain, have

the ability to learn by example and by the surrounding environment, which in

turn enables them to perform a classification or recognition task.
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NNs have been successfully applied to a number of real-world problems of

large scale complexity. Their success can be attributed to their ability to offer a

complex non-linear solution to a given problem not suitably accommodated by

an algorithmic solution, Ritter et al. (1992).

Wong et al. (1997) survey and review journal articles on neural networks in

business applications. The application base is diverse, but the largest problem

domain is in production/process operation and the second largest is in finance.

NN’s have the to ability to present viable solutions to real-world problems,

but in general form an appropriate part of a solution to a large scale problem.

Noorossana et al. (2003) present a application of NNs to detection and classifica-

tion of out-of-control signals.

Whilst supervised learning algorithms can perform well given adequate train-

ing data, they have a number of drawbacks. Typically, they require a large

training data set. This is of little importance in the data-rich environments of

micro-electronics, batch process control and time series data but generation of a

suitable training data set can be costly. Furthermore, in general it is not possible

to incrementally add to the training data whilst training the classifier. If the

training data is changed in any way then the entire training data set must be

used to retrain the classifier.

2.8 Chapter summary

This chapter introduces the concept of quality, in terms of both process and

product. It also differentiates between stochastic and assignable variation. Sta-

tistical Process Control (SPC) is described along with its multivariate counterpart

(MSPC). Univariate methods to monitor complex data rich processes are quite

limited and the extension to multivariate methods give a better representation of

the underlying process. Unsupervised and supervised machine learning methods

are introduced and some examples are given.
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“Make the model as simple as possible, but not simpler.”

(Albert Einstein, 1879-1955)
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3.1 Exploratory Data Analysis

Statistical methods of analysis are only capable of ‘data modelling’ not ‘actual

process modelling’ and this is an important realisation in any model develop-

ment. Simply put, models are mathematical abstractions of a system which can

vary greatly in complexity and usefulness. The primary goal is to capture the

behaviour and to organise this information into a concise set of rules or metrics.

In a multivariate framework, the structural complexity of a system is changed

into a problem of high dimensionality. Abbott (1884) wrote of this very problem

of dimensionality and visualisation in ‘Flatland, A romance of many dimensions’.

The ‘curse of dimensionality’ Bellman (1961) is the description of a problem

that occurs when working with data in a high dimensional space. The complexity

is exponential to the number of dimensions, which in statistical terms are the

degrees of freedom. This dimensionality problem is illustrated in Figure 3.1 where

Euclidean R
3 space is defined by (x1, x2, x3). Modelling a non-linear relationship

through a set of input variables xi and output y can be achieved on the basis of

training data and partitioning the sample space. This however, is not an optimal

solution. Firstly, the input variable is split into a number of intervals so that the

value of a variable can be specified by indicating in which interval it lies. This

leads to the division of the entire input space into a large number of cells (or

blocks). Each of the training examples corresponds to a point in one of the cells

and carries with it an associated value of the output variable y. Given a set of

new input vectors xnew the corresponding output ynew could be determined by

finding which cell xnew falls in and returning the average for the the training

points in that cell. Increased precision requires the increase of the number of

divisions along each axis.

The fundamental problem is however, exponential growth of the sample space.

If each input variable is divided into M divisions then the total number of cells

is Md, where d is the dimension. With limited quantities of data, increasing

the dimensionality of the space rapidly leads to sparsity where the input-output

mapping is very poorly represented. Figure 3.2 represents a input space with 10

divisions in 3 dimensions, which has 103 cells.
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Figure 3.1. d- dimensional Euclidean space R
d. One method of mapping

a d-dimensional space, (x1, x2, ..., xd), to an output variable y is to split the

space into a number of cells (or blocks) and specify a value of y for each of

the cells. One major drawback of this method is the exponential growth of

the space with respect to d.
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along the principal diagonal. For any (xi, yj , zk) triplet, an output y is

available.
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Figure 3.3. Methods of data representation in R
2. (a) Cartesian (b)

Parallel Coordinate Plot.

3.1.1 Parallel Coordinates Analysis

Parallel Coordinates Analysis (parallel-coords) was introduced by Inselberg (1981),

in an attempt to rationalise high dimensional data structures. Parallel-coords is a

two-dimensional technique for multidimensional data visualisation. It has proper-

ties of low representational complexity, uniform treatment of all variables, works

for any d-dimension and the display intuitively conveys information about the

d-dimensional object it represents. Parallel-coords is an exploratory technique

without any a priori bias. Any d-dimensional tuple (x1, x2, ..., xd) can be vi-

sualised as a polyline in parallel-coords, connecting the points x1, x2, ..., xd in d

parallel ordinates.

Figure 3.3 shows the representation of two vectors, x1 and x2, in both carte-

sian and parallel-coords. This is a trivial example, but it does convey the latter’s

ability to extend beyond R
2. Figure 3.3 (a) shows a cartesian or scatter plot of

the two vectors. Figure 3.3 (b) shows two ordinates along the abscissa (x-axis)

each displaying a vector. The transition from x1 → x2 is through a polyline and

each polyline passes through an axis at a location that indicates the observation’s

value relative to all other values. Inselberg (1997) introduces the idea of parallel-

coords as a space efficient method for representing large data sets and modelling

relations between variables.

Parallel-coords and other clustering methods can break down a high dimen-
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sional space into correlated subsets that are more readily analysed.

3.1.2 Cluster Analysis

Cluster analysis is a pattern search method used in multivariate data structures

and it can be applied to data that is quantitative (numerical), qualitative (cate-

gorical) or a mixture of both. The goal of clustering is to find an optimal grouping

for which the variables within each cluster are similar but the clusters are dissimi-

lar. This, in effect, has the tendency to find the natural groupings within the data

which can be of significant benefit to the researcher or analyst. Clustering is a

method where each data point is associated with its next closest point and likewise

onwards until a specified amount of cluster centres are formed. There are many

different clustering methods which attempt to identify and group similar data.

It is necessary to have a measure of similarity or distance between the vectors in

order to achieve this. Since distance increases as two points diverge, distance is

actually a measure of ‘dissimilarity’, i.e. distance = similarity−1. Assuming a

R
d Euclidean space, the distance d(x,y) between two vectors x = (x1, x2, ..., xn)T

and y = (y1, y2, ..., yn)
T can be defined using one of the following distance mea-

sures

Euclidean =

√√√√
n∑

i=1

(xi − yi)2 (3.1a)

Manhattan =
n∑

i=1

| (xi − yi) | (3.1b)

Minkowski =

[
n∑

i=1

(| (xi − yi) |)p

] 1

p

(3.1c)

The Minkowski metric, Equation 3.1 c, becomes the Euclidean distance when

p = 2 and the Manhattan or ‘city block’ distance when p = 1. The distance is

called a metric if it satisfies to the following four axioms

• d(i, j) ≥ 0 (non-negative distance)

• d(i, j) = 0 (when i = j)

• d(i, j) = d(j, i) (commutative)
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• d(i, j) ≤ d(i, k) + d(k, j) (triangle inequality)

Another distance metric which accounts for the differing variances and co-

variance amongst the variables in the data set is Mahalanobis distance and it is

defined as

Mahalanobis =

√
(xi − yi)T

∑−1
(xi − yi) (3.2)

where
∑

is the covariance matrix.

Tryon & Bailey (1970) outline the concept of cluster analysis which was first

introduced by Tryon in 1939 although an earlier reference to clustering and the

concept of measuring likeness was given by Karl Pearson in his 1926 paper ”On

the Coefficient of Radical Likeness”.

Clustering techniques and algorithms are well documented in literature. Bha-

tia & Deogun (1998) and Carpineto & Romano (1996) describe information re-

trieval and document classification using conceptual clustering techniques. Judd

et al. (1998) use clustering in data mining and image analysis. Hartigan (1984)

describes data clustering and unsupervised learning in multidimensional data.

An indepth and thorough review of clustering is given in Kain et al. (1999). The

term clustering is used widely in different research communities to describe meth-

ods of grouping unlabelled data. Humans perform competitively with automatic

clustering procedures in two dimensions, but most real problems involve cluster-

ing in higher dimensions, Kain et al. (1999). Successful clustering is achieved

when there is high within class similarity (homogeneity) and low between class

similarity (heterogeneity) between the cluster groups. Clustering also has the

ability to discover some hidden patterns in the data and organise large amounts

of data both quickly and efficiently. Clustering performance is dependent upon

the distance metric and its implementation.

A distance matrix is constructed using the inter-variable distances (or dis-

similarities) from an appropriate metric. This matrix, D, is a square symmetric

matrix with its principal diagonal elements equal to zero. Two common clustering

methods are hierarchical and non-hierarchical algorithms. Hierarchical clustering

creates a hierarchical decomposition of the data set using a particular criterion.

Non-hierarchical clustering, more commonly known as partitioning methods, con-

struct various partitions and evaluate them with respect to a particular criterion.
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3.1.3 Hierarchical Clustering

Hierarchical methods work by grouping the data into a tree of clusters using a

computationally efficient technique. When the dimension of the data set is large,

it is generally not feasible to examine all possible clustering possibilities. The

number of ways of partitioning a set of n items into g clusters is given by

N(n, g) =
1

g!

g∑

k=1

(
g

k

)
(−1)g−kkn (3.3)

in Seber (1984). This can be further approximated by

N(n, g) ≅
gn

g!

which is large even for moderate values of n and g. For example, the number

of ways of partitioning 20 items into 10 groups, N(20, 10) from Equation 3.3 is

≅ 2.76 × 1013. Hierarchical methods therefore permit the analyst to search for

reasonable solutions without having to look at all the possible clustering arrange-

ments. This grouping can be either agglomerative or divisive. Agglomerative

clustering methods is a bottom-up approach and starts with each object forming

a separate cluster. This cluster successively merges the items (or groups of items)

until a stopping criterion is reached. Divisive clustering is a top-down approach

and starts with all items clustered together. This cluster is iteratively split into

smaller clusters until a stopping criterion is reached. Of the two, agglomerative

methods are more commonly used.

Agglomerative Clustering

One of the most commonly used agglomerative clustering methods is simple link-

age, more commonly known as Nearest Neighbour clustering. In essence, this is

the minimum distance between a point yi in cluster A and a point yj in cluster

B and is defined as

D(A, B) = min{ d(y1, yj), for yi in A and yj in B} (3.4)

where d(y1, yj) is a distance metric such as the Euclidean distance in Equa-

tion 3.1 a. At each step in the nearest neighbour method, the distance in Equa-

tion 3.4 is calculated for each pair of clusters and the two clusters with the
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smallest distance are merged. This is an iterative process and the final result is

achieved when the pair with the minimal distance is merged into a single clus-

ter. It is perhaps useful to visualise the concept of nearest neighbour clustering

with an example. Figure 3.4 (a) shows a Voronoi diagram on a two class data

set−→{•,⋆}. This is a simplified classification problem given a new vector

(query point q) to classify. A voronoi diagram is constructed by partitioning a

plane with n points into convex polygons such that each polygon contains ex-

actly one generating point and every point in each given polygon is closer to its

generating point than to any other. Query points outside the convex polygons

are closer to some other training example. In Figure 3.4 (a), the 1-NN algorithm

classifies q as ‘⋆’ whereas in Figure 3.4 (b) the 7-NN algorithm classifies q as ‘•’
from a majority count in the decision region. This region is depicted by ‘©’.

Mitchell (1997) states that the hypothesis space H is not implicity considered by

the k-NN algorithm, but rather, the algorithm computes the classification of each

new query point or instance as needed. The data set used to construct the voronoi

diagram can be represented through a connection dendrogram. As clustering is

an unsupervised learning technique, the data are without any class labels. This

is shown in Figure 3.5, where each sample is treated as a singleton cluster at the

onset of the analysis and subsequently pooled with its nearest neighbour to form

a new cluster, Cnew. The colouring of lines in the dendrogram in Figures 3.5 (a)

and (b) is to illustrate the clustering effect inherent in the data. Figure 3.5 (a)

shows two main cluster groups, indicated by the blue and red lines. The vertical

lines indicate which samples are linked and the horizontal lines indicate the length

of a link, i.e. the distance between the linked groups. Of interest to note is that

data points 11 & 13 have the smallest distance metric (i.e. they are the closest

together) and points 12 & 14 are somewhat removed from both cluster centres.

Figure 3.5 (b) shows the result from the k-means algorithm. It can be seen that

there is a slight difference in cluster assignments between the points (shown by

the green lines). Clustering techniques are widely used for pattern recognition

and it is possible to use a cluster dendrogram to assign a class to an unknown

sample based on the k-nearest neighbours or kmeans methods but not without

the risk of misclassifications.
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Figure 3.4. Voronoi Tesselation in R
2 showing Query Point, q with Near-

est Neighbours (NN). (a) 1-NN classifies q as ⋆ (b) 7-NN classifies q as

•, from a {4,3 } count of {•,⋆} in the decision region©.
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Figure 3.5. Cluster Dendrogram. (a) A connection dendrogram con-

structed using the k-NN algorithm and (b) The k-means algorithm, using

the same data set as Figure 3.4. The ‘ |’ lines indicate which samples are

linked together, and the ‘ —’ lines indicate the length of the link (i.e. the

distance between two linked groups).

3.1.4 Non-Hierarchical Clustering

A common non-hierarchical method is k-means clustering. This method allows

items to be moved from one cluster to another, a reallocation not applicable in

hierarchical clustering. Initially, k items are chosen as seeds and data is assigned

to the cluster with the nearest seed based on a distance metric (Euclidean). When

the cluster has more than one member, the cluster seed is replaced by the centroid.

This procedure is sensitive to the initial seed choice, but can be an improvement

in clustering performance due to the reallocation of points. Clustering techniques

can be problematical for very high dimensional data and time series data as many

clustering algorithms are computationally expensive.

3.2 Dimension Reduction Methods

Dimension reduction methods (DRM) are commonplace when dealing with high

dimensional multivariate data. Also known as latent variable modelling tech-

niques, they are applicable when a reduced set of variables are required for process

monitoring. The rationale behind using DRM is to reduce stochastic noise com-
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ponents, monitor fewer process variables, uncorrelate data and assess process

performance. Perhaps the most widely used technique is Principal Component

Analysis.

3.2.1 Multivariate Data Modelling

Choosing the correct procedure to successfully represent and model multivariate

data structures is a difficult task. Martens & Martens (2001) define Bi-Linear

Modelling (BLM) as a multivariate method of information extraction which is

dependent upon both the data type and modelling algorithm. BLM is built on

a combination of multivariate analysis and statistical regression theory, where a

methodology is used to extract relevant information from input data and com-

bined with cross-validation and graphical analysis. Models can be used to give a

concise and simplified representation of an otherwise complex system (or process)

and these allow for quantitative interpretation and prediction. There is a trade

off between model complexity and cognisance, therefore a trade-off between the

two is important.

The methods used in modelling data are multi-disciplinarian as they can be

analogously used in Chemometrics, Econometrics, Psychology, Biology, Statis-

tics, Mathematics and Engineering. The factors that are different between these

disciplines are data structures (i.e. numerical, continuous, discrete, categorical or

mixed mode) and the required ‘input-output’ relationships. There are other fac-

tors that are very significant to the outcome such as philosophical and technical

issues that also need consideration.

3.2.2 Principal Component Analysis

Principal Component Analysis (PCA) is derived from the hypothesis that data

variance carries with it information. This is an underlying assumption of PCA.

The basic methodology of PCA is used in many different disciplines, each with

their own definitions and conventions. In statistics it is known as PCA, in nu-

merical analysis as Singular Value Decomposition (SVD) or Eigenanalysis and in

Pattern Classification and Signal Processing as Karhunen-Loéve transform.

PCA is a mathematically efficient technique and its roots and development

took place throughout the 20th century. PCA is one of the most heavily used
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multivariate techniques which has found wide spread application in a variety

of substantive areas, Krzanowski (2002). PCA was first introduced by Pearson

(1901) in his paper entitled “On lines and planes of closest fit to systems of

points in space”, The London, Edinburgh and Dublin Philosophical Magazine

and Journal of Science. Pearson, through a geometrical viewpoint, introduced

the concept of ‘line of best fit’ and the ‘line of worst fit’ through the data,

subsequently known as Principal Components. Some thirty years later, Hotelling

(1933) independently made reference to principal components, and in contrast,

took an algebraic approach that established Pearson’s principal components were

also the orthogonal directions in space that successively maximised the variance

of the data. Therefore it holds that the d-dimensional subspace of closest fit to

the data is also the subspace in which the variance is maximised. Much has been

built on the earlier contributions to PCA and Anderson (1963) developed the

distributional theory underlying PCA from a statistical perspective.

PCA is concerned with explaining the variance-covariance structure of a data

set through a reduced set of linear combinations of the original variables. In short,

the objective of PCA is to represent a variable in terms of several underlying

factors. Succinctly, PCA can perform:

Data Reduction Although the original data set may contain p variables, it is

often the case that much of the variability can be accounted for by a smaller

number (m) of principal components.

Data Interpretation Relationships that were previously unsuspected can com-

monly be identified through PCA.

In Montgomery (2001), PCA is referred to as a Latent Structures Modelling

technique because of the analogy with photographic film where a hidden or latent

image resides as a result of light interacting with the chemical surface of the film.

PCA is similar in nature Factor Analysis and these two techniques ‘look inside’

a set of variables and attempt to assess the structure of the data. The most simple

theoretical model for describing a variable in terms of several other variables is

a linear one thus, PCA linearly transforms an original set of variables X =

[X1, X2, ..., Xp]
T into a substantially smaller set of uncorrelated variables Z. The

new variable Z represents most of the information contained in the original set
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of variables. This implies

Z = a1X1 + a2X2 + ... + apXp (3.5)

where a1, a2, ..., ap are loading weights or eigenvectors assigned to the original

X variables. Equation 3.5 is similar to the technique used in Multiple Linear

Regression (MLR). MLR can be expressed as

y = β0 + β1X + ε (3.6)

where y is analogous to the dependent variable or regressand Z, β1 is the weight

a1 and X are the independent variables or regressors. In Equation 3.5 however,

there is no intercept, β0 and no residual ε.

PCA is used extensively within the field of Chemometrics, where the com-

plement data reduction and latent variable extraction abilities are most useful

techniques in dealing with highly dimensional, correlated data matrices. Wise &

Gallagher (1996) define Chemometrics as ‘the science of relating measurements

made on a chemical system to the state of the system via application of math-

ematical and statistical methods’. From this definition, it can be inferred that

Chemometrics is a data-based methodology and the goal of many techniques is

the production of a data derived empirical model that permits an estimate of one

or more properties of a system from measurements.

PCA is an overall technique that drawns upon SVD matrix processing routines

to encompass data reduction, latent variable extraction, score and loading vectors,

PC modelling and regression. The mathematics of PCA are expanded upon in

Section 3.2.3.

3.2.3 Singular Value Decomposition

Singular Value Decomposition (SVD) is a matrix processing procedure rather

than a direct statistical technique. SVD is an extension to the Eigenvalue De-

composition (ED) technique for non-square matrices, i.e it shows any real matrix

can be diagonalised using two orthogonal matrices. ED on the other hand, works

only on square matrices and uses one matrix (and its inverse) to achieve diago-

nalisation. If a matrix is square and symmetric, the two orthogonal matrices of

SVD become equal, thus SVD and ED become one and the same thing.
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Any real (m×m) symmetric matrix A can be decomposed into

A = UΛ2UT

where U is orthonormal (UTU = I) and Λ2 is diagonal. This gives the normal

eigenvalue equation

Aui = uiλi
2 (3.7)

where ui is the ith column in U and λi
2 = Λ2

i,i or principal diagonal value.

It follows that decomposition on any rectangular (m×n) matrix can be given

by

X = USVT (3.8)

where X is a (m × n) matrix, U is a (m × n) column-orthonormal matrix (i.e.

orthogonal and normalised) containing the eigenvectors of the symmetric matrix

XXT (left singular vectors), S is a (n×n) diagonal symmetric matrix containing

the singular values of matrix X and VT is a (n×n) row-orthonormal matrix con-

taining the eigenvectors of the symmetric matrix XT X (right singular vectors).

It is useful to give an explanatory example of SVD and its intrinsic link with

PCA. Consider the matrix

X =





1 2 3

3 5 8

2 4 7



 (3.9)

SVD of X yields

U =





−0.278 −0.108 −0.955

−0.736 −0.615 0.284

−0.617 0.782 0.091



 (3.10)

S =





13.444 0 0

0 0.48 0

0 0 0.155



 (3.11)

V =





−0.277 −0.81 0.518

−0.499 −0.34 −0.798

−0.821 0.479 0.31



 (3.12)

The Trace(S) = 14.08. Dividing each diagonal element (eigenvalue) of S by the

Trace(S) gives its % contribution.
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reconstructing the original matrix X, using the two largest singular values (eigen-

values) of S gives

X̂ =





1.08 1.88 3.045

2.98 5.04 7.99

1.99 4.01 6.995



 (3.13)

The residual elements between Equation 3.9 and Equation 3.13 are due to fact

that the third singular value of S was not included when reconstructing the

matrix. The significance of this result is that two of the three singular values

or ‘factors’ can reproduce the original data matrix to a reasonable degree. The

trace of the symmetric matrix S (tr (S)) outlines the data variance captured by

each singular value. In this case, the cumulative variance of two factors is 98.9%.

This is an important concept in PCA.

PCA can identify combinations of variables that describe major trends in the

data, and as mentioned previously, PCA relies upon SVD of a data matrix. This

methodology is based upon explaining the variance-covariance structure of the

original data matrix in terms of a minority of linear combinations of the original

variables.

The principal component decomposition of an m-dimensional data set X =

[x1,x2, ...,xm] can be defined as

X = TPT + E =
k∑

i=1

tip
T
i + E (3.14)

where k=min(m, n), n is the number of samples, T = [t1, t2, ..., tk] is the matrix

containing the principal component scores, P = [p1,p2, ...,pk] is the matrix

containing the principal component loadings and E is the residual matrix. The

nomenclature in Equation 3.14 is used frequently within the Chemometrics field.

The score vectors, ti, contain information on how the samples relate to each

other and the loading vectors, pi, contain information on how the variables relate

to each other. The successful implementation of PCA is dependent upon the data

structure (i.e. raw data, variance-covariance matrix, correlation matrix) and the

scaling parameters used. The variance-covariance matrix and the correlation

matrix are equal when the original data has been standardised but are not equal

with the raw data matrix.

The majority of analysis is performed on variance-covariance and correlation

matrices of the original process variables rather than raw data matrices. Given a
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data matrix X with m rows and n columns, the covariance matrix of X is defined

as

S = cov (X) =
XTX

m− 1
(3.15)

where m − 1 in the denominator of Equation 3.15 is the degree of freedom and

it is used to give an unbiased estimate of the covariance matrix, from a sample

population. The true covariance matrix, Λ is unknown and therefore an estimate

S is calculated.

As PCA is scale dependent, the raw data must be scaled in a meaningful way.

This can be achieved by mean centering, variance scaling, logarithmic scaling

or combinations of these. A frequently used method is ‘autoscaling’ whereby

the columns of the original data matrix X are adjusted to zero mean and unit

variance. This is commonly known as the Z-score normalisation routine, which

creates a new data matrix (of the same dimension as X) with zero mean and

unit variance. In short, this is often expressed as N ∼ (0, 1). The reasoning

behind scaling is to alleviate different magnitudes between variables and remove

the effect of numerically large values. This difference has a significant impact on

the analysis.

The PCA decomposition in Equation 3.14 can be rewritten in terms of the

score vectors ti

T = XP (3.16)

where X is the normalised data matrix, P is the matrix of loading coefficients

which provide information as to which variables influence the direction of individ-

ual principal components and T is a matrix of principal component scores which

act ad interim for the process data. Equation 3.16 holds as the score vector ti is

a linear combination of the original data X defined by pi.

The loadings (P) are the eigenvectors of the variance-covariance matrix and

from the normal eigenvalue relation (Equation 3.7), are related to the eigenvalues

of the variance-covariance matrix

Spi = λipi (3.17)

where λi is the eigenvalue associated with the eigenvector pi. The eigenvalues of

the variance-covariance matrix are a measure of the variance explained by each

individual principal component and in this context, variance can be thought of
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as information. The scores ti form an orthogonal set tT
i tj = 0 for i 6= j, and

the loadings pi form an orthonormal set pT
i pj = 0 for i 6= j and pT

i pj = 1

for i = j. Maximising Equation 3.17 and rewriting in standard matrix notation

yields

[ S− λI ]pi = 0 (3.18)

where the inclusion of an identity matrix I is to allow matrix subtraction. Equa-

tion 3.18 is solved for non-trivial solutions, i.e. pi 6= 0. Jackson (1991) outlines

computational methods used to obtain principal component scores and loading

vectors as well as characteristic scaling and PCA implementation.

The score and loading pairs (ti,pi) are arranged in descending order according

to the associated eigenvalue (λi), therefore the λi are a measure of the amount of

variance described by the ti,pi pair. The greatest amount of variance is captured

by the first ti,pi pair, the second greatest amount of variation that is orthogonal

is captured by the second ti,pi pair and so on. Sign inversion is well known in

PCA and it comes from the equality

X = u1s1v
′

1 + u2s2v
′

2 + E

= (−u1)s1(v1)
′

+ u2s2v
′

2 + E (3.19)

and this means that any pair of scores and loadings can be mirrored. It also means

that small differences between algorithms that perform PCA may give mirrored

results but favourably, both the scores and loadings are mirrored together.

After the transformation, there are as many principal components as original

variables. As they are computed in descending order, the lower order components

constitute lesser quantities of information and hence can be regarded as process

noise (a stochastic component). In practice, it is rarely necessary to compute all

pi eigenvectors, since the majority of the variance is contained in the first few

principal components and generally it is found that the data can be adequately

described using far fewer principal components (k) than original variables (m),

i.e. k ≪ m.

The proportion of variability in the original data explained by k principal

components can be readily calculated by computing the cumulative sum of k

eigenvalues and dividing by the total amount of eigenvalues, i.e. the sum of the
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principal diagonal or trace of (S),

λk

tr (S)
(3.20)

3.2.4 Multivariate Fault Detection

Kourti (2002) addresses process analysis and abnormal situation detection from

both a theoretical and applications viewpoint. If there is significant correlation

amongst variables, univariate monitoring of process variables does not provide an

adequate process monitoring scheme as only a few underlying events are likely to

be driving a process at any time Kourti & MacGregor (1995) and these measure-

ments are simply different reflections of the same underlying events Kourti et al.

(1996). Therefore, by treating the variables uniquely and independently, signifi-

cant deviations from normal are difficult to detect as such methods only look at

the magnitude of the deviations in each variable independently of all others.

Conventional SPC charting techniques (see Section 2.4) are well established

statistical procedures for monitoring stable (and unstable) univariate processes.

The difficulty in using independent charts is highlighted in a simplified process

schematic, Figure 3.6, where two quality variables X1 and X2 are shown for a

certain number of samples. Supposing each variable is drawn from a normal dis-

tribution and treating each variable independently, it is clear that the stochastic

variation is well contained by 3σ Upper and Lower Control Limits (U / L CL).

This is not the case in a bivariate or multivariate sense (whereby the control

region is shown by an ellipsoidal confidence region). Since process (and product)

quality are multivariate properties, many constituent variables may be correlated

and simultaneous monitoring of these can show any significant departure from

the multivariate normal control region. The univariate probability that either X1

of X2 exceed the 3σ control limits is (1-0.9973) or 0.0027. The joint probabil-

ity that both variables exceed their control limits simultaneously when they are

both in control is (0.0027)2 which is considerably less than 0.0027. Conversely,

the probability that both X1 and X2 will simultaneously plot inside the control

limits when the process is in control is (0.9973)2 or 0.9964. In summary, an in-

dication of an out of control process can be seen by the • point outside of the

main ellipsoidal region but it is not possible to detect an assignable cause by

maintaining independent control charts.
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Figure 3.6. Bivariate Control Region. Quality control of two variables

illustrating both the ellipsoidal joint confidence region and the misleading

nature of univariate control charting.

If the X1 and X2 variables are independent the correlation between them is

zero, i.e. σ12 = 0, and the principal axes of the ellipsoidal control region are

parallel to the original X1 and X2 axes. If however, the X1 and X2 variables

are dependent, i.e. σ12 6= 0, then the principal axes of the ellipsoidal region are

no longer parallel to the X1 and X2 axes or equal, thus the ellipse undergoes a

rotation. This is shown in Figure 3.6. There are some difficulties with the control

ellipse however, as it removes the temporal sequence of the sample run and it is

significantly more inefficient to calculate for more than two variables.

Fault detection in multivariate subspaces can be achieved in many different

ways, but perhaps the two most commonly used and well known methods are the

Hotelling’s T2 statistic and the squared prediction error (SPE) or Q statistic, He

et al. (2004). The T2 statistic is a measure of variation within a PCA model and

it is calculated as the sum of the normalised squared scores. The Q statistic on

the other hand indicates how well each sample conforms to the PCA model and

is calculated by the projection of a sample vector on a residual space, Chen et al.

(2004).
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Figure 3.7. Principal Component Model. PCA representation of a 3-

dimensional data set showing control ellipsoid, T2 sample outlier and Q

sample outlier. The points shown by • are abnormal for PCA model. The

data in this case are adequately described by a 2 PC model. Adapted from

Wise et al. (1999).

Wise et al. (1999) outline the concept of PCA monitoring with multivariate

indices on a three-dimensional data set, lying primarily in a single plane. Fig-

ure 3.7 depicts a three dimensional principal component subspace (with arbitrary

axes) with a 3-σ control ellipsoid. The major axis of the ellipsoid is the 1st PC

and the minor axis is the 2nd PC. The data are shown to be adequately described

by a two component model. Included in the Figure are two outliers, one a T2

outlier which is a measure of the Mahalanobis distance in the principal compo-

nent subspace between the position of a sample and the average behaviour of the

process (i.e. the locus on the ellipsoidal confidence region in the multidimensional

subspace, Jackson (1991) and Ku et al. (1995)), the other a Q outlier where the

sample is not adequately described by the model. A nominal threshold limit for

both indices signals whether the process is operating normally or if a disturbance

has occurred.

The diagnosis of abnormal process behaviour can be greatly enhanced if sim-

ilar process conditions and plant performance can be located in historical data-

bases, thus essentially reducing this to a pattern recognition problem. Although

not all of the faults will have occurred in historical records, the most common

ones may reside in a similar process subspace, which in turn may assist fault
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identification. Diagnosis of disturbances for low-dimensional processes can be

achieved visually with cylindrical or ellipsoidal control regions, but the sensitiv-

ity decreases as the number of dimensions increase.

Fault identification can be inferred from a PCA model, with both the T2 and

Q statistics producing an ‘out-of-control’ signal when a fault occurs. In a process,

it is possible to distinguish between two classes of change. The first class is a

change in process operation which may result in greater variation in some process

variables. The relationship between the variables remains the same however, the

result being a shift in the mean value of one or more process variable. The metric

used to detect this change is Hotelling’s T2. The second class is associated with

a change in the correlation structure of the process variables and the metric used

to signal this change is the Q statistic, Martin et al. (2002). Neither of these,

however, provide any information about the cause of the fault, i.e. they are

non-causal, Ündey & Çinar (2002). Contribution plots indicate which variable(s)

are responsible for the deviation from normal process behaviour and are used to

successfully diagnose a fault condition. Raich & Çinar (1997) introduce statistical

distance and angle measures in fault diagnosis, where the trimmed PCA model,

i.e. model with redundant dimensions removed, is tested for outlier sensitivity

using both indices.

Hotelling’s T2 Statistic

A traditional multivariate SPC approach to process monitoring is achieved through

the use of the T2 statistic. Given a vector of measurements or quality characteris-

tics z on n normally distributed variables, with an in-control variance-covariance

matrix, the current mean of the multivariate process can be compared to the

population mean µ by computing the chi-squared statistic (χ2) through

χ2 = n(z− µ)′
∑−1

(z− µ) (3.21)

where µ = (µ1, µ2, ..., µp)
′ is a (p×1) vector of in-control means,

∑
is the variance-

covariance matrix. The χ2 statistic can be plotted against time with an upper

control limit (UCL) given by χ2
α,n, where α is an appropriate significance level

(e.g., α=0.01 or 0.05). The χ2 statistic in Equation 3.21 represents the Maha-

lanobis distance of any point from µ, Montgomery (2001) and Jackson (1991).
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In practice it is usually necessary to estimate the mean and variance-covariance

from a sample n of an entire population P . This sample is assumed to be ex-

tracted from the process operating under steady state conditions and follow a

multivariate normal distribution. The mean and variance of a population sample

are calculated in the normal manner

x =
1

n

n∑

i=1

xi

and

S =
1

n− 1

n∑

i=1

(xi − x)(xi − x)′

S is often expressed in variance-covariance matrix form (with n = 3) Maesschalck

et al. (2000)

S =





S11 S12 S13

S21 S22 S23

S31 S32 S33





then the average of the sample variance-covariance matrix S is an unbiased esti-

mate of
∑

when the process is in-control.

Replacing µ with x and
∑

with S in Equation 3.21 yields Hotelling’s test

statistic

T2 = n(z− µ)′S−1(z− µ)

commonly the subgroup size n is equal to one, thus

T2 = (z− µ)′S−1(z− µ) (3.22)

T2 is directly related to the F distribution, and depends upon the degrees of

freedom in S, Jackson (1991) and Jolliffe (1986). An upper limit, T2
UCL can be

calculated from

T2
UCL =

(m2 − 1)n

m(m − n)
Fα,n,m−n (3.23)

where m is the number of samples used to develop the PCA model and n is the

number of principal components (pc’s) retained, Fα,n,m−n is the upper 100(1 −
α) % critical point of the F distribution with (n, m− n) degrees of freedom. As

this statistic is squared, the lower limit is equal to zero, i.e. T2
LCL = 0.
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T2 in Equation 3.22 can also be expressed in terms of the first ith pc’s of the

PCA model, Kourti & MacGregor (1996) and Jackson (1991), thus

T2 =

n∑

i=1

t2i
λi

=

n∑

i=1

t2i
s2

i

(3.24)

where λi are the eigenvalues of S and ti are the scores from the pc transform. si

is the estimated variance of the corresponding latent variable ti as the variances

of the pc’s are the eigenvalues of S.

Q Statistic

The Q statistic is a scalar measurement of the ‘goodness-of-fit’ of a sample x to

a PCA model. Once a model has been developed from nominal data (a NOC

model) using a reduced set of principal components, the squared prediction error

(SPE) can be calculated. The SPE provides the facility to identify the onset

of a new event not previously captured within the data. This is significant for

identifying incipient drift, small dynamic differences and ill-fitting models.

A special event will generate new pc’s and this has the effect of moving the

new observation, xnew off the plane described by the k pc’s. Such special events

can be detected by computing the SPE of the residuals of xnew

Q = SPEx =

n∑

i=1

(xnew,i − x̂new,i)
2 (3.25)

where the predicted values are given by X̂ = TPT, MacGregor et al. (2005). In

matrix notation this becomes

Q = xT
i (I−PkP

T
k )xi (3.26)

where I is an identity matrix, Pk is a matrix of k loading vectors retained in the

PCA model and xi is the ith sample in X.

A confidence limit for Q can be established from the standard normal deviate

which corresponds to the 100(1− α) percentile

c = θ1

[
( Q

θ1

)h − θ2h0(h0−1)
θ2

1

− 1
]

√
2θ2h

2
0

(3.27)
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where c is N ∼ (0, 1), Jackson & Mudholkar (1979). Consequently, the critical

value Qα is

Qα = θ1

[
cα

√
2θ2h

2
0

θ1
+

θ2h0(h0 − 1)

θ2
1

+ 1

] 1

h0

(3.28)

where

θi =

n∑

j=k+1

λi
j for i = (1, 2, 3) (3.29)

and

h0 = 1− 2θ1θ3

3θ2
2

(3.30)

where k is the number of pc’s retained in the model and n is the total number of

pc’s.

Subsequent analysis is required in order to ascertain the variables that account

for process change and this is achieved through contribution plots and this concept

is further developed in Section 5.2.6.

3.3 Chapter summary

The application of unsupervised learning is reviewed as a preconditioning method-

ology for input to a control strategy. This chapter describes unsupervised learn-

ing methods. Clustering and parallel coordinate analysis are introduced for ex-

ploratory data analysis. Multivariate data modelling in the form of Principal

Component Analysis (PCA) is introduced as a dimension reduction method. The

mathematics of singular value decomposition are outlined with a small example.

The concept of multivariate fault detection is introduced along with some com-

mon fault indices.
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“Statistics in the hands of an engineer are like a lampost to a drunk-

they’re used more for support than illumination.”

(B. Sangster)

4.1 Supervised Learning Methods

Supervised learning requires one to be confident of the true classes of the original

data used to build the model. Classification and prediction algorithms are in

general computational means for reducing the amount of information in data.
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The input is likely to be information rich sequence data but the output may be a

class or predicted number, or in the simplest case a dichotomy representing two

classes.

The definition of machine learning differs according to each author, but in

general, a widely accepted definition is ‘A computer program is said to learn

from experience E with respect to some class of tasks T and performance measure

P , it its performance at task T , as measured by performance P , improves with

experience E’, Mitchell (1997). Witten & Frank (2003) outline a more general

description of ‘things learn when they change their behaviour in a way that makes

them perform better in the future’.

4.1.1 Machine Learning Terminology

Machine learning is a mutli-disciplinary field of research devoted to the formal

study of learning systems. As this is a synergistic combination of many sub-

communities, machine learning has roots in statistics, computer science, artifi-

cial intelligence, engineering, control theory, optimisation theory, philosophy and

many other disciplines of science and mathematics. Therefore, the terminology

associated with each communities is analogous to one another. For clarify it is

useful to define the terminology most commonly associated with machine learn-

ing.

Instance A single example in a data set. A row vector in a data matrix.

Attribute An attribute is a characteristic (or property) of an instance and can

take on either categorical or numeric values. Alternatively known as vec-

tor, pattern, case, sample, dimension and observation. These can be used

interchangeably without a loss of generality.

Value Either categorial or numerical.

Concept The ‘thing’ to be learned.

4.2 One-Rule Algorithm

Simplicity is an important concept in statistical model building. Many authors

recommend a ‘simplicity-first’ methodology when analysing practical data sets
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Witten & Frank (2003) and Fielding (1999). Surprisingly, many of the ‘simple’

algorithms will perform well and some interesting information can be gleaned

from the process. Often, latent structures exist within the data and a rudimen-

tary algorithm is sufficient for good classifier performance. The rules induced by

machine learning systems (e.g. classification, regression, etc.) are judged on two

criteria:

1. Classification accuracy on independent test sets (accuracy),

2. Complexity component

The one-rule (1R) algorithm generates a set of rules that all test on one

particular attribute. This is equivalent to a one-level decision tree. The aim

is to infer a rule that predicts a class given certain attribute values. The basic

version, assuming nominal attributes, has one branch for each of the attribute’s

values and each branch assigns the most frequent class, Holte (1993). The error

rate associated with 1R is the proportion of instances that do not belong to the

majority class of their corresponding branch. The attribute with the lowest error

rate is chosen. The pseudo code for the implementation of 1R is shown. This is

taken from Nevill-Manning et al. (1995).

Pseudo code for 1R

---------------------------------------------------------------

For each attribute a, form a rule as follows:

For each value, v, from the domain of a,

count class frequency

find the most frequent class

make the following rule:

if a has a value, v, then class is c

Calculate the accuracy/error rate of the rule

Choose rules with the greatest accuracy/smallest error rate.

===============================================================

1R ranks attributes according to their accuracy/error rates as opposed to entropy

based measures such as those used in decision tree induction. The algorithm

treats all valued attributes as continuous and uses a straight forward method to

divide the range of values into several disjoint intervals. It is common practice in
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Outlook Temp Humidity Windy Class

sunny hot high false Don’t Play

sunny hot high true Don’t Play

overcast hot high false Play

rain mild high false Play

rain cool normal false Play

rain cool normal true Don’t Play

overcast cool normal true Play

sunny mild high false Don’t Play

sunny cool normal false Play

rain mild normal false Play

sunny mild normal true Play

overcast mild high true Play

overcast hot normal false Play

rain mild high true Don’t Play

Table 4.1. Weather data from Quinlan (1993). Both temperature and

humidity are nominal representations of the Fahrenheit scale (oF ) and %

humidity. Both these attributes can be expressed on a continuous scale.
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Rule Attribute Rules Errors Total Errors

1 outlook sunny → don’t play 2
5

4
14

overcast → play 4
4

rain → play 2
5

2 temp hot → don’t play∗ 2
4

5
14

mild → play 2
6

cool → play 1
4

3 humidity high → don’t play 3
7

4
14

normal → play 1
7

4 windy false → play 2
8

5
14

true → don’t play∗ 3
6

Table 4.2. 1R evaluation of attributes. The incidence of don’t play∗

denotes a random choice made between 2 equally likely outcomes. The rule

with the lowest error rate is chose as the classifier.

data mining and machine learning to make use of an established data set for test

purposes and benchmarking. Table 4.1, Quinlan (1993), is an illustrative data

set in which there are four attributes (two nominal and two continuous) and two

classes. A decision is made on whether to play golf or not based on four different

input attributes.

To classify on the outcome (play or don’t play), 1R considers four sets of rules,

one for each of the attributes. There are two outcomes, the number of errors per

rule and the total number of errors for the rule set. These rules are shown in

Table 4.2. 1R chooses the attribute that produces rules with the smallest number

of errors, and for Table 4.2, these are the first and the third rule sets. The first

rule is determined through the attribute ‘outlook’, and forecasts whether to play

or not only on this attribute. Inference from this yields the following precedent:

outlook: sunny --> don’t play

overcast --> play

rain --> play

This data set is a hypothetical one often used to demonstrate machine learn-

ing algorithms. Using outlook as the key attribute, the 1R algorithm success-
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4.3. Decision Tree Induction Supervised Learning

fully classifies six out of a total of fourteen instances, thus giving an accuracy of

42.86%. Application of 1R to the weather data is for demonstration only and cer-

tain improvements in algorithm performance can be achieved through attribute

discretisation, Witten & Frank (2003).

4.3 Decision Tree Induction

Decision tree induction is a popular method of classification (and prediction)

in supervised learning. It is a hierarchical model whereby the local region (or

problem space) is identified in a sequence of recursive splits. The theoretical

framework can be traced back to the seminal work of Hoveland and Hunt in the

late 1950’s. Hunt et al. (1966) describe the implementation of Concept Learning

Systems (CLS).

The concept of decision trees as a learning paradigm was invented separately

in two different fields of research. Classification And Regression Trees (CART)

were developed in 1984 by researchers in the statistical sciences, Breiman et al.

(1984), and the ID3 tree was invented in the machine learning community, Quin-

lan (1986). Quinlan refined this algorithm and released C4.5, Quinlan (1993).

In Hunt’s CLS algorithm, Hunt et al. (1966), a decision tree is grown in a

recursive manner by partitioning the training cases into successively purer subsets.

This method for constructing a decision tree is quite elegant and simple. If Dt is

the set of training cases that are associated with a node t and y = {y1, y2, ..., yc}
are the class labels, a recursive definition of Hunt’s algorithm can be outlined:

Step 1 If all the records in Dt belong to the same class yt, then t is a leaf node

labeled as yt.

Step 2 If Dt contains instances that belong to more than one class, an attribute

test condition is selected to partition the instances into smaller subsets. A

child node is created for each outcome of the test condition and the instances

in Dt are distributed to the children based on the outcomes. (C4.5 uses the

most frequent class as parent of this node).

Step 3 This algorithm is then recursively applied to each child node.
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Outlook

sunny overcast rain

humidity windy

{play=4}

high low

{don’t play=3} {play=2}

true false

{don’t play=2} {play=3}

Figure 4.1. Decision tree representation of weather data, Quinlan (1993)

Decision trees are the single most commonly used paradigm in data mining,

Mitchell (1997). One advantage that decision tree modelling has over other clas-

sification techniques lies in the interpretability of the constructed model, Myles

et al. (2004). Some other advantages are ease of implementation and use, cost to

construct (inexpensive), speed of classification and computational load.

Perhaps the best method of illustrating a decision tree is to give an example.

Figure 4.1 shows a decision tree generated from the weather data, Quinlan (1986).

The temperature and humidity attributes are described in nominal form but

extensibility to continuous attributes is possible in C4.5.

Weather decision tree rules.

--------------------------------

outlook = sunny

| humidity = low:--> yes (2.0)

| humidity = high:--> no (3.0)

outlook = overcast:--> yes (4.0)

outlook = rain

| windy = TRUE:--> no (2.0)

| windy = FALSE:--> yes (3.0)

--------------------------------
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4.3. Decision Tree Induction Supervised Learning

Number of Leaves: 5

Size of the tree: 8

In Figure 4.1, the root node is outlook which has no incoming graph edges and

three outgoing edges. Humidity and windy are internal nodes, each of which

have one incoming edge and two or more outgoing edges. Leaf or terminal

nodes have one incoming edge and no outgoing edges and these are shown by

the yes (play) and no (don’t play) decisions. Each leaf node is assigned

a class label and the non-terminal nodes contain attribute test conditions to

separate instances that have different characteristics. For example, in Figure 4.1,

the attribute test condition for the root node is to separate outlook into three

subcategories sunny, overcast and rain. In summary, any decision tree is

composed of the following nodes:

• A root node that has no incoming graph edges and zero or more outgoing

edges.

• Internal nodes, each of which has exactly one incoming edge and two or

more outgoing edges.

• Leaf or terminal node, each of which has exactly one incoming edge and

no outgoing edges.

A decision tree is constructed by recursively partitioning the feature space of

the training set. The objective is to find a set of decision rules that naturally

partition the feature space to provide an informative and hierarchical classification

model. Decision tree partition rules can differ but certain scoring criteria have

been established to evaluate the partition rules as the induction algorithm must

address how to best split the training instances, Murthy (1998). Each recursive

step of the decision tree growing process selects an attribute test condition to

divide the instances into smaller subsets and provide a measure for evaluating

the goodness of each test condition, Loh & Shin (1997)

4.3.1 Attribute Types

Decision tree induction algorithms have to be extensible to different attribute

types. A Binary attribute test condition generates two potential outcomes. A
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{pass} {fail}

Windy

or

{0}

or

{1}

Figure 4.2. Binary attribute test condition

Outlook

sunny� overcast rain

Figure 4.3. Nominal attribute multiway split test condition

binary attribute is a special case of a discrete attribute, and is expressed in

dichotomous terms, i.e. true/false, pass/fail or 0,1. This schema is shown in

Figure 4.2. A nominal attribute may have many values, and therefore, subse-

quent test conditions are expressed in two ways. Figure 4.3 shows a multiway

split from the attribute outlook. Alternatively, Figure 4.4 shows three different

ways of grouping the nominal attribute outlook into binary subsets. Ordinal

attributes can also be handled in this manner. Continuous attributes contain a

Outlook Outlook Outlook

{sunny} {overcast,
rain}

{rain} {sunny,
overcast}

{overcast} {rain,
sunny}

(a) (b) (c)

or or

Figure 4.4. Nominal attribute binary split test condition. Attributes are

shown grouped together.
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{no}

or
Humidity
> 80%

Humidity %

{<70}

{71-75}

{76-80}

{81-85}

{>86}

{yes}

(a) (b)

Figure 4.5. Test conditions for a continuous attribute. These can be

expressed as either a comparison test (a) or a range query (b).

test condition that is either a comparison or range query. The difference between

these two is shown in Figure 4.5.

4.3.2 Selecting The Root Node Attribute

The key idea in decision tree induction is to determine which attributes best

classify the data. The central choice is to select certain attributes at each node

of the tree. The root node of the decision tree contains all the data. There are

many measures that can be used to determine the best split and they are often

based upon measuring the degree of purity (or impurity) at each node in the tree

Frank et al. (1997). This continues until no further split is possible and thus

a terminal node is reached. At each node, the data are split according to the

values of one particular feature and the splits are chosen to maximise the gain

in information. This was originally proposed by Shannon in 1948 in his seminal

paper ‘A Mathematical Theory Of Communication’, Shannon (1948). The most

basic of decision tree learning algorithms, ID3 Quinlan (1986), is a top-down

approach that searches through the given sets to test each attribute at every tree

node. This approach of ID3 implementation is summarised in Table 4.3.

In order to introduce the statistical property, information gain, is used to de-

fine a common measure in information theory, entropy. Entropy, H , is a measure

of the (im)purity of an arbitrary collection of instances. It is the reciprocal of

homogeneity and is measured in binary digits or bits. Letting S represent the

set of all instances which contain positive (p ⊕) and negative (p ⊖) examples of a
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Loop Algorithm description

1. A ← the ‘best’ decision attribute for next node

2. Assign A as decision attribute for node

3. For each value of A, create new descendent of node

4. Sort training examples to leaf nodes

5. IF training examples perfectly classified THEN stop

6. ELSE iterate over new leaf nodes

Table 4.3. Top-Down Induction of Decision Trees (TDIDT). This algo-

rithm determines the most useful attribute for classifying instances. This

process continues until the tree perfectly classifies the instances or until all

the attributes have been used.

target class, the entropy of S relative to the boolean classification is

Entropy (S) ≡ H(S) ≡ − p ⊕ log2 p ⊕ − p ⊖ log2 p ⊖ (4.1)

where p ⊕ is the proportion of positive examples in S and p ⊖ is the proportion of

negative examples in S. H(S) = 0 bits if the sample is pure (i.e. either all p ⊕ or

p ⊖) and H(S) = 1 bit if equally distributed (i.e. p ⊕ = p ⊖). Naively computing

the function f(p) = −p log2 p with p = 0 is problematical as dividing a finite

number by zero leads to an infinite number. Therefore in all calculations, entropy

is defined to be 0 when p = 0, i.e. 0 log2 0 = 0.

In Figure 4.6, H is monotonically increasing in the domain {0 < p ⊕ < 0.5},
and decreasing in the domain {0.5 < p ⊕ < 1}. When all the members of S belong

to the same class, H = 0. Likewise, with an equal number of classes, (p ⊕ = p ⊖),

H = 1. With an unequal numbers of classes (p ⊕ 6= p ⊖), H is between 0 → 1.

This is summarised in Table 4.4.

To illustrate this the weather data, Quinlan (1986), is used once more. Let

S be the boolean concept of {play or don’t play}. There are nine positive exam-

ples and five negative examples. Mitchell (1997) adopts the following notation

[9+,5-], to indicate boolean class memberships. The entropy of S relative to this

classification can be determined from Equation 4.1,

H(S : [9+, 5−]) = −
(

9

14

)
log2

(
9

14

)
−

(
5

14

)
log2

(
5

14

)

= 0.9403 bits
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0 0.5 1.0
0

0.5

1.0

p ⊕

H
(S

)

Figure 4.6. Entropy function of a boolean classification. This shows the

entropy function, H(S), relative to a boolean classification, as p⊕ varies

between 0 and 1.

Class membership Entropy (H)
p⊕

p⊕+p ⊖
= 0 0

p⊕

p⊕+p ⊖
= 0.5 1

p⊕

p⊕+p ⊖
= 1 0

Table 4.4. Class membership and entropy from Figure 4.6. H is monoton-

ically increasing with class membership in the range 0→ 0.5 and decreasing

in the range 0.5 → 1.
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The information theoretic interpretation of H is the number of bits required

to encode the classification of an arbitrary member of S, thus it represents the

average information needed for a class distinction. A more general form of entropy

when the target attribute can take on c different values is given as

H (S) ≡
c∑

i=1

−p i log2 p i (4.2)

Information gain is the expected reduction in entropy due to sorting on a partic-

ular attribute. The information gain, Gain(S, A), of an attribute A, relative to

a collection of instances S is defined as

Gain(S, A) ≡ H (S)−
∑

v ∈V alues (A)

| Sv |
| S | H (S) (4.3)

where V alues(A) is the set of all possible values for attribute A, Sv is the subset

of S for which attribute A has value v, i.e. Sv = {s ∈ S | A(s) = v}, Quinlan

(1993), Mitchell (1997), Mantaras (1991) and Witten & Frank (2003).

4.3.3 Computing Attribute Information Gain

Information gain is used by the ID3 algorithm to select the best attribute at each

stage in growing the decision tree. There are four attributes in the data set so

therefore, four information gain calculations are carried out and the one which

gains the most information is split on. The class membership for the attribute

outlook is shown in Figure 4.7. Information gain on the attribute outlook,

Gain(S, outlook), is calculated from Equation 4.3.

Gain(S, outlook) = H(S)−
∑ | Sv |
| S | H(Sv)

Gain(S, outlook) = H(S)−
[ | Ssunny |
| S | H(Ssunny) + .. +

| Srain |
| S | H(Srain)

]

Gain(S, outlook) = 0.9403−
[(

5

14

)
0.971−

(
4

14

)
0−

(
5

14

)
0.971

]

Gain(S, outlook) = 0.2464 bits (4.4)

(4.5)

Calculation of information gain for the other attributes is achieved analogously.

These are succinctly shown in Table 4.5. The result shows that outlook provides
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Outlook

sunny overcast rain

S: [9+,5-]
H=0.9403

S: [2+,3-]
H=0.971

S: [4+,0-]
H=0

S: [3+,2-]
H=0.971

Figure 4.7. Information gain for the outlook attribute

the best prediction of the target class as it gains the most information and thus

is chosen as the root node. Outlook is a nominal attribute and the branches

emanating from the root node are represented by multiway split to each of the

possible values, (i.e. sunny, overcast and rain). Figure 4.1, the original de-

cision tree and Figure 4.7 both show this concept. Intuition suggests that the

root attribute should be outlook as this would result in one of the internal nodes

(child nodes) being completely pure.

The process of selecting a new attribute is recursive repeated and attributes

Attribute Gain (bits)

Gain(S, outlook) 0.2464

Gain(S, humidity) 0.1519

Gain(S, wind) 0.0481

Gain(S, temperature) 0.0292

Table 4.5. Information gain for all 4 attributes. According to the re-

sult, outlook provides the best prediction of the target class, {play, don’t

play}.
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that have been incorporated higher in the decision tree are excluded. Termination

occurs when the data can not be split any further. This is most easily visualised

in Figure 4.1.

4.3.4 Issues in Decision Tree Induction

There is a certain inductive bias in ID3 that favours the shorter decision trees.

This is derived from the fact that there are many more complex hypotheses

that fit the training data, but fail to generalise correctly and accurately with

subsequent data. Simpler trees do not partition the feature space into too many

small boxes. This was first proposed circa 1320 by William of Occam, a medieval

philosopher, apparently whilst shaving. This bias therefore is known as Occam’s

razor and it states ‘to prefer the simplest hypothesis that fits the data’ and simpler

explanations are more plausible and unnecessary complexity should be ‘shaved

off’, Alpaydin (2004).

If the algorithm perfectly classifies the training data, then there is a risk that

the decision tree overfits the data and thus will perform less accurately on unseen,

new instances. Larger trees tend to have a better training data accuracy than

test data accuracy. Termination of the tree before perfect classification and post-

pruning are two methods commonly used to avoid overfitting. This minimises

the risk of over-training the classifier and incorporating too much noise.

The original algorithm, ID3, originated for discrete attributes only. Extensi-

bility to continuous attributes was made possible with C4.5, Quinlan (1986) and

the java version J4.8, Witten & Frank (2003).

There are other methods of measuring information gain. In Classification and

Regression Trees, CART, Breiman et al. (1984), the impurity is defined as the

Gini index. This statistic is defined as

Gini = 1−
c∑

j=1

(nj

n

)2

(4.6)

where nj is the number of objects from class j present in the node.

4.3.5 Measuring Error

Evaluation of classifier performance is based on the number of correctly and

incorrectly classified instances. Counts of misclassifications are tabulated in a
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confusion matrix and this is a commonly used error metric. Table 4.6 depicts the

confusion matrix for the dichotomous pass/fail classification problem.

Predicted Class

pass fail

Actual pass True Positive (TP) False Negative (FN)

Class fail False Positive (FP) True Negative(TN)

Table 4.6. Summary confusion matrix. The matrix is comprised of 4 in-

dices which outline the classifiers predictive ability. Ideally the off-diagonal

elements should be equal to 0 for zero misclassification.

where True Positive (TP) and True Negative (TN) entries are correct clas-

sification predictions made by the model and False Positive (FP) and False

Negative (FN) are incorrect classification predictions.

• TP is the number of correct predictions that an instance is a pass

• TN is the number of correct predictions that an instance is a fail

• FP is the number of incorrect predictions that an instance is a pass

• FN is the number of incorrect predictions that an instance is a fail

Although the confusion matrix provides all the information needed to deter-

mine how well a classifier performs, summarising the information into a single

performance metric is convenient and allows direct comparison of different mod-

els. There are a number of standard terms for a two class matrix. Most classifi-

cation algorithms seek to attain the highest accuracy, or equivalently, the lowest

error rate when applied to a test data set. Accuracy and error rate are therefore

common metrics.

Accuracy =
Number of Correct Predictions

Total Number of Predictions
=

TP + TN

TP + TN + FP + FN
(4.7)

and

Error rate =
Number of Incorrect Predictions

Total Number of Predictions
=

FP + FN

TP + TN + FP + FN
(4.8)
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4.4 Chapter Summary

This chapter describes supervised learning methods. A brief introduction to ma-

chine learning terminology is given and then the chapter describes, with examples,

one-rule classification and decision tree induction. Methods of selecting attributes

and computing the information gain are discussed. Error metrics are discussed

along with the presence of false positives and false negatives in a confusion matrix.

In Chapter 5, exploratory data methods are evaluated with semiconductor

batch test data. Parallel coordinate monitoring plots are constructed and a PCA

model is developed to reduce the dimension of the monitored variables. Fault

detection and classification methods are discussed. Decision tree induction is

also described for the semiconductor batch test data. Chapter 6 outlines two

process states and shows how fault detection and classification is performed.
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5.1 Exploratory Data Analysis

Traditional methods of monitoring via control limits can work well for smaller

data sets but when dimensions are large, the requirements for an accurate moni-

toring scheme become more arduous.

One of the most fundamental stages in data analysis is interpretation of re-

sults and this understanding is heavily influenced by exploratory data analytical

techniques (EDA). EDA can be used to signal data quality, formulate ideas and

turn raw data into information. One of the greatest challenges in modelling a

data set with a large number of dimensions is spatial representation. Parallel

coordinate analysis (parallel-coords) is a visualisation technique that has been

universally recognised as an effective method of dealing with multidimensional

numerical data.

5.1.1 Parallel-coords Monitoring Plots

A slight adaption to the method of parallel-coords is shown in Figure 5.1 (a). A

third dimension allows for each successive cycle, n (n ≈ 50), to be plotted and

generates a three dimensional representation of a multivariate test batch. Each

cycle represents a device under test (DUT) from a batch. The importance of this

visualisation method is that the outcome (pass or fail) can be quickly identified

as testing is in operation. It can serve as a low level monitoring system, with a

control window, n, representing the process in real-time with all of the constituent

variables. If there are too many successive fails, the test can be stopped and the

rogue variables can be identified through the coordinate plot.

The semiconductor data contains a outcome sort index which is known as

the bin-sort index and the results are ‘binned’ into common groups in the range

between 0 to 100. Test passes are binned as 1 and test fails take on a value

greater than 1, i.e. fail > 1. This enables specific targeting of faults and fault

conditions. Developing this idea further is Figure 5.2, where the response sur-

face of a normally operating process is compared with the response surface of an

abnormally operating process. The differences shown represent actual fault con-

ditions throughout a test. The benefit of this technique is that it rapidly provides

a graphical perspective of the problem domain.

Figure 5.3 shows the normal behaviour of a tester complete with operational
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Figure 5.1. A monitoring Parallel Coordinate plot. (a) 50 cycles of

semiconductor batch data visualised in 3-d clearly showing particular fails

and significant failure outliers. (b) X-Z axes of (a) showing similar parallel-

coords plot to that in Figure 5.6 (a).
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Figure 5.2. Response surface monitoring plots. Comparison of tester response surfaces. The top plot shows test passes

only and the bottom plot shows both passes and fails. As both figures are scaled identically, the incidence of a fail is clearly

visible.
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limits. It is important to stress that the upper and lower limits in this Figure are

derived from the batch statistics and not from an arbitrary external source. There

are three main clusters in this data set, which are populated by the majority of

the process variables. However, a distinction between pass and fail is not evident

in all of the variables. This is a limitation in this method of analysis, but it

does serve as a useful direct data visualisation tool. Subsequent analysis based

on these assumptions are developed in the next Sections, 5.2 and 5.3. A parallel-

coord plot is a generalisation of a two-dimensional Cartesian plot. The idea is

to reduce the number of orthogonal axes by drawing the axes parallel to each

other in order to obtain a planar diagram in which each d-dimensional point has

a unique representation. This allows interpretation of these plots in a manner

analogous to two-dimensional Cartesian scatter plots. A major benefit of parallel-

coords analysis is the ability to visualise dense information with each dimension

being of equal importance.

The fundamental reason for this type of analysis is to identify different system

operational states though the raw data structures. It also provides the oppor-

tunity for human Pattern Recognition, which is by far one of the most efficient

(in two dimensions). Visualisation of variable correlation in parallel-coords is

achieved by observing the polylines that connect two variables together. Any

occurrence of a cross-over point, Wegman (1990), or an intersection between two

ordinates gives is an indication of correlation. When x1 ∝ 1
x2

, the intersection

point takes place between the two ordinates, its exact position determined by the

slope, m. If m = −1, then this occurs at midpoint. If however, x1 ∝ x2, the

intersection point lies outside that of the two ordinates. When m = 1, in Euclid-

ean projective geometry, coincident lines meet at infinity and hence all coincident

lines with the same slope will meet at the same ideal point. This is illustrated in

Figure 5.4.

The transition between the test variables gives a dynamic view of the process

and of the combination of variables yielding conditions of pass and fail. It is

relatively easy to isolate any variables that do not change significantly or indeed

at all. These are known as a redundant test variables in modelling because the

information they yield is neither useful in distinguishing between class or in de-

scribing the process. An example of this redundancy is shown in Figure 5.5 where

the data are pseudo labelled from X1 → X124. It is clear that certain regions of
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Figure 5.3. Normal and abnormal process operation states. (a) The blue and red lines represent normal operational limits

for the process variables and (b) the black lines indicate test failure and abnormal operation. It is evident that the incidence

of a fail can occur within the normal operational limits for some variables. Variables that require more consideration in a

model are depicted by the departure from normal.
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Figure 5.4. Correlation and intersection characteristics. (a) x1-x2 scatter

plot, with slope m = 1, (b) Parallel coordinate representation of (a), (c) x1-

x2 scatter plot, with slope m = −1, (d) Parallel coordinate representation

of (c).
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5.1. Exploratory Data Analysis Results

sparsity exist in the data and three such regions are readily identifiable

1. Variables X1 ⇒ X14

2. Variables X19 ⇒ X33

3. Variables X84 ⇒ X85

This is illustrated with semiconductor batch test data. Figure 5.5 (a) and (b),

detail a high dimensional data set (d = 125) mapped to a two dimensional space.

The process dynamics become apparent and can be further emphasised through

variable brushing. Brushing is an interactive way of identifying trends and com-

mon characteristics amongst variables and for visualisation purposes. Brushed

variables are shown in ‘green’. In Figure 5.5 (a), the brushed polylines are rep-

resentative of a normally operating process. This delineation can be thought of

as the process operating normally (sometimes referred to as steady state) subject

to stochastic disturbances. In Figure 5.5 (b), the brushed polylines represent ab-

normal process operation and test failures. This concept is reinforced through

careful scrutiny of Figure 5.5 (a) and (b) and Figure 5.8. It is evident that certain

variables do not contribute to a distinction between pass and fail or to the sys-

tematic trend of the process. The dependent variable in this case is test outcome

(i.e. pass or fail) and there are a number of redundant test vectors in the data.

From this ‘eye-balling’ approach, it is reasonable to assume that certain variables

will not contribute towards a model and therefore can be excluded in the building

phase. On subsequent analysis, the majority of the redundant variables were dig-

ital (i.e. discrete) tests which held a constant value. Parallel-coord plots have the

ability to show either commonly or independently scaled variables. Common or

global scaling represents an overall picture of variability between each variable,

but can be heavily skewed by differences in variable magnitude. Independent

scaling removes the requirement for data normalisation and allows each ordinate

to represent the full variable range. This is shown in Figure 5.6. In Figure 5.6 (a),

common scaling of the variables reveal definite outliers and variable behaviour

when a test fail occurs. The dynamics of the process are not as evident however,

as the variables with the largest magnitudes dominate the plot. The trend depicts

test passes. In Figure 5.6 (b), the influence of individual scaling can be seen.
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Figure 5.5. Parallel-coord plot. The data are pseudo labelled X1,X2, ..,Xd for brevity. (a) Semiconductor batch data

visualised through parallel-coords analysis. The 1st variable is test sort (pass = 1 and fail > 1) and all subsequent 124

variables shown. Bin-sort 1 (test pass) is shown through the ‘green highlighting’ or brushing of observations. (b) The

brushed polygonal lines indicating test failures and abnormal situations.
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5.2. Unsupervised Learning and Fault Detection Results

With parallel-coords, it is possible to select high yield batches and directly

compare them to low yield batches. This helps identify the variables that are

more likely to have an effect on the outcome of the test.

To further explore the use of parallel-coords, the summary statistics of eigh-

teen semiconductor batch tests are plotted together. These data, as depicted

in Figure 5.7 (a), are extracted from the same tester over differing time periods

and it can be seen that there is considerable variation in batch yields (84.2% →
98.8%). Prediction of yield is a difficult task in this non-deterministic system.

Ideally, the null hypothesis states that all batches tested will yield identically on

the same tester, but Figure 5.7 (b) reveals this not to be the case as there is signif-

icant differences in the variable contributions which determine yield. Therefore,

in order to successfully predict yield, the stochastic component is needed in order

to understand what is a likely outcome and what is not. This emphasises that a

test fail may be due to the tester and not the device under test (DUT). The top

three yielding batches are identified through brushing in the reduced subsection

of variables.

It is important to mention that the tester constraints are the same on each

tester. There is a certain similarity in the performance of three different testers

in examining different batches of the same product. This is shown in Figure 5.8.

So, whilst there is similarity between the testers, there is an inherent variation

within the actual test itself. This was expected, but to what degree was unknown.

5.2 Unsupervised Learning and Fault Detection

The goal of Principal Component Analysis (PCA) is to determine a new set of

dimensions (attributes) that better capture the variability of the data and it has

several appealing characteristics. Firstly, PCA tends to identify the strongest

pattern in the data. Secondly, often most of the variability of the data can be

captured by a small number of dimensions. Thirdly, the effect of filtering the

data by variability reduction can eliminate noise.

An appealing characteristic of PCA is data compression or a reduction in

data dimension. The primary objective of data compression for this application

is to minimise the amount of monitored variables for a given process. The term
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Figure 5.6. Variable scaling in parallel-coords. (a) Global or common scaling which clearly shows definite outliers (test

fails) and variable magnitudes and (b) Individual scaling which shows the systematic trend or dynamics of the process.

Bin-sort 1 (test pass) is brushed in green.

79



5
.2

.
U

n
s
u
p
e
r
v
is

e
d

L
e
a
r
n
in

g
a
n
d

F
a
u
lt

D
e
t
e
c
t
io

n
R
esu

lts

Yield X5 X10 X15 X20 X25 X30 X35 X40 X45 X50 X55 X60 X65 X70 X75 X80 X85 X90 X95 X100 X105 X110 X115 X120

(a)

Yield X15 X16 X17 X35 X37 X38 X48 X52 X67 X68 X79 X80 X86 X87 X91 X101 X102 X103 X104 X105 X108 X114 X115

(b)

Figure 5.7. Summary parallel coordinate plot. (a) Summary statistics of 18 batches shown with yield as dependent
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variable contributions for the 3 highest yielding batches.
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(a)

(b)

(c)

Figure 5.8. Similarity of tester performance. 3 independent batches from

3 different testers, indicating both similar process dynamics and redundant

variables. This inspection allows for variable selection in the model building

phase.
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5.2. Unsupervised Learning and Fault Detection Results

dimensionality reduction is often reserved for those techniques that reduce the di-

mension of a data set by creating new attributes that are a weighted combination

of the original variables.

PCA can be used for database exploration for seeking periods of abnormal

process behaviour and diagnosing possible causes for such behaviour. Examining

the behaviour of the process data in the reduced projected space as defined by the

latent variables can identify stable operation, process drifts and sudden, abrupt

changes.

5.2.1 Data Preparation

The purpose of data preparation is to manipulate and transform raw data so that

the information content can be exposed, or at least be made more accessible. This

is based on two a priori assumptions,

• the proposed solutions

• the proposed analysis methods

both of which can change significantly. The data referred to in this thesis are

multivariate, of high dimension and contain different internal structures. There-

fore constructing a suitable model is a continual process which requires many

iterative stages and pre-processing. The terms ‘data’ and ‘data sets’ are used

to describe the attribute -v- instance relationships in standard matrix or table

format. These are obviously intrinsically linked together but at different stages

as data are used in the initial model building phase and data sets are used exclu-

sively in the modelling phase. The initial exploratory work carried out showed

the data as both mixed-mode (i.e. analogue and discrete test vectors) and corre-

lated (i.e. positively and negatively). The dichotomous outcome of the process

(i.e. pass or fail) was converted to a yield statistic.

5.2.2 Data Pre-Processing

Data pre-processing is used to filter out any noise components that may influ-

ence the analysis, extract features and reduce the dimensionality of the original

signal. Pre-processing also attempts to retain as much relevant information as
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5.2. Unsupervised Learning and Fault Detection Results

possible without redundancy. It is found that often the information lies not with

the individual variable but rather how the variables change with respect to one

another, i.e. how they co-vary. Therefore, some sensor measurements are effec-

tively redundant and complementary and PCA seeks to identify this, Gallagher

et al. (1997b) and Gallagher et al. (1997a). One main pre-processing task is

to ensure high quality data samples to guarantee a valid process description for

extracting knowledge and model based diagnosis as well as detecting structured

relationships among variables, Sobrino & Bravo (1999).

Pre-processing was initially achieved through data classification. The major-

ity of the variables in the semiconductor test were analogue (continuous) and the

remainder digital (discrete). As the test is preformed digitally, the analogue sig-

nals are quantized digital signals, as opposed to traditional analogue/continuous

signals. The distinction between the two classes (continuous and discrete) is per-

formed on the basis of sampling rate and quantized levels. Not all the digital

variables are of binary (0,1) type and some are quantized signals that exist on

a number of different levels. The distinction is a question of sampling granular-

ity, with a highly quantized digital signal being a close approximation to a true

analogue signal.

Matrix conditioning is important in PCA where the occurrence of a zero (im-

plying a near singular matrix ) causes problems in singular value decomposition.

In order to prevent this, a certain number of digital test vectors were removed

from the data in the pre-processing stage. This was achieved by calculating sum-

mary statistics of the batch data and eliminating variables devoid of higher order

statistical moments (i.e. Skewness and Kurtosis).

5.2.3 Normal Operating Condition Model

In developing a process model it is usual to focus on data that have favourable

trends (i.e.‘test passes’ ). This heuristic approach enables the construction of a

Normal Operating Condition or NOC model. This model is a representation of

the process operating normally and without fault and is similar in concept to

the parallel-coord plot in Figure 5.5. It is usual for process data to be compared

at certain stages. Commonly, data that is extracted from a process operating

normally and within bounds may be compared to that when the process has been

83



5.2. Unsupervised Learning and Fault Detection Results

known to drift or behave abnormally. This concept is used frequently in process

monitoring and is known as fault (anomaly) detection.

A thorough knowledge of the process dictates the overall success of the mon-

itoring and fault diagnosis scheme. An essential starting point is analysis of

historical data. The first stage is pre-processing the data, applying limit files

(to remove redundancy) and data normalisation N ∼ (0, 1). Next, the data are

partitioned and a subset of known goods (i.e. test passes) are analysed. PCA is

performed on the subset of data, yielding a latent variable representation of the

problem domain. Subsequent batch data are normalised with respect to the NOC

model statistics (µ, σ), and the result can be used to identify a shift from normal

to abnormal operation. Visualisation is achieved through two or three dimen-

sional score plots which contain information on how the samples relate to each

other. These PC score plots represent linear combinations of the original data.

However, when the number of dimensions d increase, i.e. d > 3, three-dimensional

score plots do not fully represent the model, and other combinatorial indices are

used. Variable selection can be achieved through contribution plots, which form

an integral part of a fault detection and isolation scheme. Table 5.1 outlines each

stage in the development and application of a NOC model.

5.2.4 Model Validation and Cross Validation

Cross Validation (CV) is a procedure that is used to fine tune model complexity.

It is intended to avoid the possible bias introduced by relying on one particular

division into test and training components. As bias is incalculable, the total

error is used. The error on the validation set decreases up to a certain level

of complexity, then stops decreasing any further, or even increases if there is

significant noise. This error is known as the Root-Mean-Square Error of Cross

Validation or RMSECV. The primary purpose of CV is to determine the number

of Principal Components (PCs) used in the model. Normal procedure in PCA

is to list a table of eigenvalues or PCs along with percentage variance for each

eigenvalue. This summarises how well the model describes the original data

through a given number of PCs.
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Data Warehouse ↔ Database

⇓
Data matrix [m rows, n cols]

⇓
Pre-process & partition [pass & fail]

⇓
Reduced data set, k (k ≤ min [m, n])

⇓
Normalisation, kN (kN ∼ (0, 1))

⇓
Covariance matrix

⇓
Singular Value Decomposition

⇓
Model Eigenvalue %

⇓
Score & loading vectors

⇓
Apply NOC stats [µ, σ] to batch data

⇓
PC score plots [2 & 3D]

⇓
T2 & Q indices

⇓
Contribution plots

⇓ ⇓ ⇓
Fault Detection & Isolation

Table 5.1. NOC model flowchart. Flowchart outlining each constituent

stage in the development and application of a NOC model. Grouping out-

lines the similarity between stages. Multivariate quality control charts form

an inherent part of any FDI scheme.
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Principal Eigenvalue % Variance % Variance

Component of Captured Captured

Number Cov Matrix per PC Total

--------- ---------- ---------- ----------

1 2.31e+001 24.09 24.09

2 1.33e+001 13.87 37.95

3 1.05e+001 10.91 48.87

4 6.76e+000 7.05 55.91

5 4.71e+000 4.91 60.82

6 3.68e+000 3.83 64.65

7 2.78e+000 2.89 67.54

8 2.34e+000 2.44 69.98

9 1.96e+000 2.04 72.03

10 1.83e+000 1.91 73.93

11 1.60e+000 1.67 75.60

Most commonly, as a first indication of the model, the eigenvalues are plotted

in a plot. Raymond B. Cattell is credited with the name scree plot and it is

essentially an eigenvalue fallout and it takes the name ‘scree’ from the rubble

or fallout at the bottom of a cliff. Figure 5.9 shows a combined eigenvalue scree

and RMSECV plot. In the scree plot, the line stabilises after the 8TH PC and a

subjective decision is required as to the number of PCs used. A more thorough

method is to calculate the RMSECV, and plot the error function. The error

decreases until a point of inflection (saddle point) where it begins to rise again.

Although a subjective process, the amount of PCs to include will influence the

overall result. Too many PCs will over parameterise the model and add noise and

too few will give an incomplete, inaccurate representation of the process. Jackson

(1991) outlines four ways of choosing the number of PCs in a model:

1. Scree plots to identify elbow/knee point in plot

2. Disregard lower order eigenvalues i.e. λ < 1

3. Include 70 - 90% cumulative variation

4. RMSECV to identify saddle point
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Figure 5.9. Combined scree and RMSECV plot. A scree plot of the

eigenvalues is shown including a subjective decision region. In the RM-

SECV plot, the error decreases but subsequently increases with the number

of PCs. The number of PCs, based on the RMSECV projection, should be

between 8 and 14.
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Figure 5.10. Cumulative variance and eigenvalue plot. This shows the

cumulative variance in a combined barchart-pareto plot. The eigenvalue

contributions are shown below.

5.2.5 PCA Score Plots

Figure 5.10 shows a cumulative variance Pareto plot and eigenvalue contribution

input to the model. Figure 5.11 shows normal operating condition batch data

projected on the first three PC score vectors with accompanying 2σ and 3σ con-

fidence ellipses. This model has been created with batch data extracted under

normal process conditions and can be used to test subsequent batch data to in-

dicate significant departure from the normal model. This indicates a change in

process condition or development of an abnormal situation. It is important to

note that although Figure 5.11 is a very detailed and useful visualisation tool, a

3-dimensional score plot will only fully represent a NOC model with three score

loading vectors. For instances with more than three loading vectors multivariate

monitoring indices are more frequently employed. For this model, there were six

loading vectors which explain 72.6% of the variation in the data. This reduces

the dimension of the problem domain from d = 80→ d = 6. Figure 5.12 details a
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Figure 5.11. NOC score plot. A visual representation of the NOC model

including 2σ and 3σ confidence ellipses. This is constructed from the first

3 PC’s, each showing their particular % contribution to the model. The

PC1-PC2-PC3 space describes 57.4% variation in the data.

steady state NOC model used with batch data. This is a 2-dimensional abstrac-

tion as PC scores 1 and 2 are plotted together. This shows batch data projected

onto a NOC model and it is apparent that there are instances of significant depar-

ture from the NOC cluster (indicated as ‘•’ in Figure 5.12). Disassociation with

the NOC cluster is reflective of underlying differences in the data and gives an

indication of anomalous patterns and these findings are further verified through

the use of a Hotelling T2 chart.

Figure 5.13 shows both T2 and Q multivariate indices. These control charts

are derived from a six component PCA model which represents 71% of the orig-

inal variation within a semiconductor batch test data of 50 observations of 145

process variables. These control charts effectively represent the batch run as a

univariate metric for quick fault identification. Figure 5.13 (a) shows a T2 chart
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Figure 5.12. Batch Data and NOC Model. This shows batch data pro-

jected onto a 6 PC NOC Model. Outliers from the NOC cluster are test

failures, as shown in the Figure. The PC1-PC2 space describes 42.6%

variation in the data.
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with three points exceeding the 95% (2σ) confidence limit. This is an indication

that variation within the plane of the first k PCs of the model has exceeded that

of normal stochastic or common cause variation. However, it may be insensitive

to a totally new type of event, i.e. assignable causes. Figure 5.13 (b) shows a

Q chart where one sample exceeds the 95% (2σ) confidence limit. This is an ex-

ample of a new assignable or special event occurring. Together these two indices

signal four faults within the batch duration of fifty DUT samples and on further

examination of the original data, the yield sort code reveals this to be correct. A

major benefit is the original dimension of the data is reduced and faults (fails)

are identified by the two charts. Invariably, Hotelling’s T2 statistic is used in

conjunction with the Q statistic as together they characterise two orthogonal

subspaces of the transformed data.

5.2.6 Contribution Plots

Although both the T2 and Q indices detect deviations from normal behaviour,

they do not indicate reasons for such deviations. Variable contribution plots are

required to determine the root cause of an anomaly (fail condition). A contribu-

tion plot provides an overview of the ‘weighting’ for each of the k variables in the

original data. The contributions that exhibit the greatest change are typically

indicative of process variables which may be exhibit non-conforming behaviour.

In essence, the application of contribution plots complete the loop from ‘fault

detection’ to ‘fault classification’. In Martin & Morris (2002), contribution plots

are also known as ‘root-cause’ plots as they are used to analyse the score con-

tributions to determine variables exhibiting non-normal behaviour. Contribution

plots are best described figuratively and this is done using a smaller data set.

Firstly, a fail matrix is shown which outlines a particular DUT failure (the

sample number of the batch), the bin-sort code (in square brackets) and the

multivariate signalling index (Q or T2). The corresponding variable contribution

plots are shown in Figure 5.14. In each sub-figure, the dominant process variables

are representative of a particular state or fault condition. The contribution plots

are derived from the multivariate control charts in Figure 5.13. The sign of each

variable represents whether the shift away from the mean (i.e. normality) for a
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Figure 5.13. T2 and Q multivariate fault indices. (a) The T2 statistic

which shows 3 samples clearly exceeding the 95% (2σ) control limit. T2
UCL

as derived from Equation 3.23 is shown, T2
UCL=25.445 and (b) The Q

statistic which shows 1 sample exceeding the 95% (2σ) control limit. QUCL

as derived from Equation 3.28 is shown, QUCL=24.714. These data are

extracted from a 6 component PCA model (cum var = 71%) based upon 50

observations of a semiconductor batch test, with 145 test vectors. 92
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given fault was in a positive or negative direction for each of the variables.

Fails (Figure 5.13) =





14 → [4] → Q

20 → [7] → T2

22 → [65] → T2

37 → [11] → T2




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Figure 5.14. Contribution plot. This figure shows variable contributions to each of the 4 faults. In (a) sample 14 Q

residual is shown, In (b) sample 20 T2, In (c) sample 22 T2 and (d) sample 37 T2. Each subplot details a different fault

condition and the variables which account for that fault, signalling a shift from normal → abnormal operation.
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5.3. Supervised Learning and Decision Tree Induction Results

5.3 Supervised Learning and Decision Tree In-

duction

In the previous section, no class label information was used in the analysis of the

data. In supervised learning however, class label information is used as an integral

part of the analysis. Supervised learning in its simplest form is generalising a

dichotomous class (i.e. both positive and negative class examples) and finding a

description that is shared by all the positive examples and none of the negative

examples. This is termed class learning. In doing this, a prediction can be

made on new data to provide or assign a class label. New data is commonly

referred to as unseen data in supervised learning. In essence, unseen data is quite

simply data that has not been used to construct the supervised learning model.

In the semiconductor batch test data, a class label was available through the

bin-sort code index. Although different classes were assigned to each particular

fault condition, the overall classification was a dichotomous index of pass or fail.

Techniques of supervised learning and anomaly detection require the existence

of a training set with both normal and abnormal operation class information.

This task of assigning objects to a particular predefined category is known as

Classification.

5.3.1 Supervised Learning Through Test Constraints

In order to use the raw data to understand the process operation, the test limits

were not considered in the analysis. These test limits are arbitrarily prescribed

based on historical data, process capability and vendor constraints. Therefore, to

consider the process without bias, these constraints were removed. However, as

a visualisation exercise, it is possible to derive a test result matrix from the data

using the constraints. An example of this dichotomous test matrix is given in

Figure 5.15. This matrix illustrates any variable that exceeds a prescribed high

or low limit during the test process. The batch size (x-axis) is plotted against

the number of variables (y-axis) in matrix style format. Blue circles represent a

high level failure and red circles represent a low level failure. This perspective

of the data and can be used to determine the existence of failure patterns and

expose fault clusters. It can also signal certain variables that consistently fail at
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5.4. Decision Tree Induction Results

A Low level failure of variables 113 & 120 ⇒ Sort 7

B Low level failure of variable 40 ⇒ Sort 42

C Low level failure of variable 48 ⇒ Sort 50

D High level failure of variables 95 & 109 ⇒ Sort 87

E Low & high level failure of multiple variables ⇒ Sort 65

F High level failure of variable 118 ⇒ Sort 19

Table 5.2. Fault identification. This table lists the variable & fault combi-

nations shown in Figure 5.16. These combinations are consistent through

the test.

either level, or in a cluster with other variables. In Figure 5.16, the correlation

between variable failure (both high and low limits) and tester fail sort code is

shown. The ‘⋆’ represent actual test failures. The test failure sort code for each

‘⋆’ can be read directly from the y-axis. For clarity, a non exhaustive list is show

and Table 5.2 details these combinations.

This information can be used in developing IF-THEN rules from which it is

possible to classify alternative data sets. This is shown in the sample association

rule base.

Sample Association Rule Base

------------------------------------------------------

IF variables 113 & 120 fail low ---> THEN sort code 7

IF variable 40 fail low ---> THEN sort code 42

.. .. .. .. ..

.. .. .. .. ..

IF variable 118 fail high ---> THEN sort code 19

5.4 Decision Tree Induction

A decision tree is composed of a root node, internal decision nodes and terminal

nodes. Each decision node implements a test function whose resultant outcome

dictates the split. Decision tree induction is a recursive process and is repeated

until a terminal node or leaf node is reached, at which point the value of the node
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shows which variables breach either/both of the limits. This plot is useful in exposing failure patterns or fault clusters.

Batch size is plotted against variable number .
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Figure 5.16. Combination of fails. A scaled down version of Figure 5.15,

showing the instances of (a) Low level fails and (b) High level fails with

associated variable(s). Combination of failures are tabulated in Table 5.2.
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constitutes the output. Each terminal node is labelled with the majority vote of

the data contained at that node. More information on this topic is available in

Section 4.1.

As with all regression techniques, it is assumed that there is a single response

variable and one or more predictor variables. If the response variable is cate-

gorical then classification trees are produced whereas if the response variable is

continuous regression trees are produced.

5.4.1 Decision Tree Setup

Data pre-processing is fundamental in decision tree construction. In essence, data

quality dictates the performance of a decision tree successfully classifying new,

unseen data.

The decision tree classifier works to recursively partition data into subsets

of similar information content. The open-source GNU machine learning pack-

age WEKA was used to construct the decision trees. WEKA implements a java

variant of Quinlan’s C4.5 algorithm, Quinlan (1993), called J4.8. For more infor-

mation see http://www.cs.waikato.ac.nz/ml/weka.

The classifier was constructed using 10 fold cross-validation. This is a common

evaluation technique to ensure that results are representative of what would be

obtained on an independent data set.

Figure 5.17 shows a decision tree representation of a semiconductor batch

test. The classifier is trained on the Pass/Fail attribute and shows a recursive

partitioning schema common to all tree-based methods.
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5.4. Decision Tree Induction Results

Figure 5.17. Sample decision tree. A sample classification tree showing

pass (P) and fail (F) instances through a series of attribute tests on a subset

of semiconductor batch data.

The tree can also be represented concisely through a series of logical conjunctions

or IF-THEN rules (shown in DT Rules).

DT Rules.

--------------------------------------------

GainSlope CELLB <= 139.898

| GainSlope CELLB <= 139.544:--> F (6.0)

| GainSlope CELLB > 139.544:--> P (19.0)

GainSlope CELLB > 139.898

| IDD IN CELLA <= 0.075033

| | IDD RF CELLA <= 0.026159:--> F (5.0)

| | IDD RF CELLA > 0.026159:--> P (19.0)

| IDD IN CELLA > 0.075033:--> P (451.0)

--------------------------------------------

Number of leaves: 5

Size of Tree: 9

Correctly classified Instances: 498

Incorrectly classified Instances: 2
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5.4. Decision Tree Induction Results

5.4.2 Decision Tree Test

It is important to make certain that the classifier can handle unseen data and

the most common method is to provide new data to the decision nodes of the

tree. The result of this analysis is neatly summarised in a confusion matrix. The

confusion matrix for Figure 5.17 shows the number of correctly classified instances

to be 498 and incorrectly classified instances to be 2.

As a test, a decision tree was derived from a test batch of data and sub-

sequently tested with fresh, unseen batch data. This, in effect, is testing the

predictive ability and accuracy of the classification tree. This is shown on Fig-

ure 5.18. In order to logically interpret the tree and test alternative data sets,

rules are extracted and these logical conjunctions are shown in batch data decision

tree rules.

Batch data decision tree rules.

------------------------------------------------------

CW OUTPUT 10 CELLB <= -64.4551

| IDDtotal CELLAPout <= 0.098714

| | IDDtotal Idle <= 0.000048

| | | RXNOISE CDMA CELLA <= -133.609:--> P (19.0)

| | | RXNOISE CDMA CELLA > -133.609:--> F (4.0)

| | IDDtotal Idle > 0.000048:--> F (2.0)

| IDDtotal CELLAPout > 0.098714:--> P (950.0/3.0)

CW OUTPUT 10 CELLB > -64.4551

| CW OUTPUT 10 CELLB <= -64.2989:--> P (7.0)

| CW OUTPUT 10 CELLB > -64.2989:--> F (18.0)

------------------------------------------------------

Number of leaves: 6

Size of Tree: 11

Correctly classified Instances: 990

Incorrectly classified Instances: 10

The confusion matrix is shown in Table 5.3. This represents a measure of the

accuracy of the model and gives details of any errors. There are 990 correctly

classified instances. This is made up of 971 True Positives (passes) and 19

True Negatives (fails). The classifier incorrectly classifies 10 instances, 8 False
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Figure 5.18. Batch data decision tree. A classification tree derived from an entire batch of data, also showing pass (P)

and fail (F) instances through attribute tests. The terminal node represents both class assignment and number of classes.
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5.4. Decision Tree Induction Results

Predicted Class

pass fail

Actual pass 971 2

Class fail 8 19

Table 5.3. Classifier confusion matrix. This matrix is representative of

the classifier in Figure 5.18 and outlines its ability to correctly associate a

class.

Positives and 2 False Negatives. This gives a classification accuracy of 99%.

The confusion matrix is summarised in Table 5.4, but a more complete description

is given in Section 4.3.4.

Predicted Class

pass fail

Actual pass True Positive (TP) False Negative (FN)

Class fail False Positive (FP) True Negative(TN)

Table 5.4. Summary confusion matrix. The matrix is comprised of 4

indices which outline the classifiers predictive ability.

Once the tree has been generated and the logical rules are in place, the next step

is to test the classifier with unseen data and hence determine its predictive ability.

The classifier, Figure 5.18, is used to test four data sets extracted from the same

tester. The results are presented through a series of confusion matrices shown in

Tables 5.5 - 5.10.

Predicted Class

pass fail

Actual pass 938 3

Class fail 9 50

Table 5.5. Batch 1 confusion matrix. This matrix is representative of the

classifier in Figure 5.18 testing batch 1. Classification accuracy is 98.8%.
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Predicted Class

pass fail

Actual pass 950 3

Class fail 2 45

Table 5.6. Batch 2 confusion matrix. This matrix is representative of the

classifier in Figure 5.18 testing batch 2. Classification accuracy is 99.5%.

Predicted Class

pass fail

Actual pass 900 5

Class fail 8 87

Table 5.7. Batch 3 confusion matrix. This matrix is representative of the

classifier in Figure 5.18 testing batch 3. Classification accuracy is 98.7%

Predicted Class

pass fail

Actual pass 942 1

Class fail 5 52

Table 5.8. Batch 4 confusion matrix. This matrix is representative of the

classifier in Figure 5.18 testing batch 4. Classification accuracy is 99.4%
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5.5. Chapter summary Results

Predicted Class

pass fail

Actual pass 940 2

Class fail 45 12

Table 5.9. Tester HP004 confusion matrix. This matrix is representative

of the classifier in Figure 5.18 testing a batch extracted from an alternate

tester-handler combination, HP004. Classification accuracy is 95.295%

Predicted Class

pass fail

Actual pass 971 3

Class fail 12 14

Table 5.10. Tester HP005 confusion matrix. This matrix is representative

of the classifier in Figure 5.18 testing a batch extracted from an alternate

tester-handler combination, HP005. Classification accuracy is 98.5%

The ultimate goal is to create a classifier that has good generalisation perfor-

mance. In order to determine this robustness, the classifier was tested with two

data sets from totally separate testers. The predictive capability of the classi-

fier under these conditions is shown in Tables 5.7 - 5.8. The incidence of False

Negative detection rate (incorrectly classifying a pass as a fail) is increased

compared to previous results. Conversely, the False Positive rate (incorrectly

classifying a fail as a pass) is consistent with previous findings. Of these two

prediction errors, a lower False Positive rate is more desirable. This decrease

in sensitivity is due to differences in tester-handler combinations.

5.5 Chapter summary

This Chapter has given a broad description of methods used in Exploratory Data

Analysis (EDA), Unsupervised Learning and Supervised Learning. In order to

illustrate how these tools can be used in the context of semiconductor batch test

data, two process states are identified and will be discussed in Chapter 6. These
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5.5. Chapter summary Results

process states are:

• Known good operation

• Normal batch operation (including abnormal situations)

Clustering, parallel-coords and NOC modelling are evaluated with the process in

each state. This is presented in Section 6.1.
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Chapter 6

Discussion
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“If you can’t convince them, confuse them”

(Harry S. Truman (1884-1972))

6.1 Differential Process States

In order to illustrate the different process modelling and classification techniques

and their relevance, two process states are identified and subsequent analysis is

described and evaluated. These are taken from normal process batch data and

are representative of different modes of operation

(a) Known good operation (without anomalies i.e. pass only)

(b) Normal batch operation (including anomalies i.e. pass & fail)
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6.1. Differential Process States Discussion

6.1.1 Exploratory Data Analysis

In this section, the Exploratory Data Analysis (EDA) methods explained in Chap-

ter 5 are outlined and discussed for each of the two process states.

6.1.2 Clustering

To begin, a cluster dendrogram of known good data is constructed through K-

Nearest Neighbour KNN analysis. Cluster analysis is an unsupervised learning

technique used for classification of data and most clustering methods are based

around the assumption that samples that are close together in the measurement

space are similar and therefore likely to belong to the same class. Figure 6.1 shows

a cluster dendrogram of batch data that were extracted when the process was op-

erating normally and without anomalies. The vertical lines in the dendrogram

indicate which samples are linked and the horizontal lines in the dendrogram

indicate the length of the link (i.e. the distance between the linked groups).

The data are autoscaled which involved mean centering and standard deviation

adjustment. Mean centering ensures that data are interpretable in terms of vari-

ation about the mean and normalising to unit variance removes the influence of

different variable scales. A dendrogram is a picture of how the data relate to one

another, and in general three pieces of information can be extracted from them

Weight. Approximate cluster membership. The weight of each cluster is rep-

resented by the number of leaves the dendrogram leads to. As each leaf

(endpoint) is equally spaced along the y-axis of the dendrogram, the weight

of a cluster is its percentage of the total height of the dendrogram.

Compactness. Within cluster similarity. This represents the minimum distance

at which the cluster comes into existence.

Distinctness. Between group dissimilarity. This represents the distance along

the x-axis from the point it comes into existence to the point at which it is

aggregated into a larger cluster.

In Figure 6.1, the dendrogram shows the existence of similarly clustered sam-

ples based on their Euclidean distance. The most significantly different sample in

the dendrogram is sample number 9 (the branch leading to the leaf is distinct).
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The relative compactness of the clusters is approximately equal as the structure

is flat and therefore the distance at which the clusters are formed is similar.

The most similar cluster are sample numbers 45 & 29, with the least distance

to KNN. The data used in this clustering assignment were extracted when the

process was operating normally and without any fail conditions or anomalies. In

conclusion, the sample sequence of the clustering assignment (i.e. the y-axis)

would undoubtedly change with respect to the data set, but for normal operating

conditions, the distance to KNN would be within a certain threshold. This point

is illustrated in Figure 6.2. Figure 6.2 illustrates a cluster dendrogram which has

been generated using batch data selected from a tester. For the purpose of the

illustration, the data contained both pass and fail conditions and the number of

samples is small for clarity purposes. It is evident that there is a significantly

different cluster located at the bottom of the Figure. The sample numbers which

constitute this cluster are [49, 53, 56, 51] and based on their departure from the

normal cluster, one would suspect these samples to be failures. In addition to

these, sample numbers [65, 1, 5, 61, 41] at the top of the dendrogram would

appear to be located away from the mean cluster assignment. As clustering is

an unsupervised method, i.e. there are no associated classes for the data, the

easiest error checking method is to reference the original data set and determine

the class assignments for the outlying clusters. Arunajadai et al. (2004) look at a

failure model which is based on fault type occurrence and frequency. Figure 6.3

uses the same data as Figure 6.2 except the samples are clustered with respect

to their classes instead of their sequence. This is for visualisation purposes and

it is seen from Figure 6.3 that these extremities in the dendrogram are indeed

test fails. The class label information (P → pass and F → fail) is given on the

y-axis, and two failure cluster are identified. These clusters are consistent with

Figure 6.2 and represent fails in the data. In summary, clustering is a useful

method to show which samples in the d-dimensional data space are similar but it

does not convey any information as to which process variables are useful for class

separation, i.e. distinguishing a pass from a fail.
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Figure 6.1. Known good operation cluster dendrogram. The data were

extracted for the clustering assignment when the process was performing

normally and without anomalies. DUT cycles are shown on the y-axis. 110
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6.1.3 Parallel Coordinate Analysis

An exploratory method which gives an indication of the differentiating class vari-

ables is parallel coordinates analysis. In this thesis, parallel-coords are used for

data visualisation in an attempt to capture and rationalise process dynamics.

The method of parallel-coord monitoring plots is discussed more completely in

Section 5.1.1 and their inclusion here is to highlight the inherent differences in

process states. In Figure 6.4, the process is known to be operating in control

and yielding at 100%. The two subplots in Figure 6.4 reveal the dynamics of

the process and the stochastic behaviour of constituent variables. One aim of

data exploration is to identify correlation between variables and two regions are

identified in Figure 6.4 (b). The polylines representing the data in region 1 and

region 2 are consistent and do not change when standardised. This suggests

that they are correlated or redundant. The resulting parallel-coord plot when

the data contains anomalies are shown in Figure 6.5. The slight difference in the

parallel-coord plots of Figure 6.4 and Figure 6.5 is due to the fact that the data

belongs to different testers. In Figure 6.5 , three regions are indicated where the

variables remain stationary. This hints at the fact that both test passes and test

fails follow the same path in these regions, and thus a class is indistinguishable.

The variables in regions 1 → 3 are discrete test vectors which, on first account,

do not contain much information. This finding is the main factor in develop-

ing a solution that looks for a smaller representative subspace for the process

data, and hence employs data reduction principles. In Section 5.1.1, Figure 5.3

shows a parallel-coord plot with upper and lower confidence limits. This can be

compared with univariate control charting techniques when process evolution is

viewed dynamically (i.e. a batch test) and any significant variable contributions

are apparent. The importance of the upper and lower limits are to distinguish

between normal process operation and abnormal process operation and have the

desired effect of determining process variable contribution in the data. Figure 6.6

shows four different fault conditions together with normal process data. The rea-

son for this type of plot is to identify, if possible, variables that account for fails.

In Figure 6.6 (a), normal process data is plotted with a Sort 42 fail. Although the

plot is highly populated, variable number 104 exceeds the minimum level (Min)

for normal process operation. This may gives an insight into the fail status. This
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is shown more clearly in Figure 6.7 where the plot is rescaled. Similarly, in Fig-

ures 6.6 (b)→(d), the fail trends can be interpreted analogously where some are

more immediately obvious than others. Figure 6.8 details a fail which exceeds

both the upper and lower limits.

In Figure 6.9, a response surface plot conveys areas of variation in the data

set. The sparse areas represent process stationarity while the undulations, peaks

and troughs represent process variation, the magnitude of which is proportional

to the shape and severity of the surface. These surface anomalies represent the

variables which influence the test outcome.

While these data exploration methods can provide an insight into the process

dynamics they are not generally useful in determining causation variables. In

Multivariate Statistical Process Monitoring (MSPM), one of the most important

facets of the analysis is closing the loop between fault detection and fault classifi-

cation. Therefore, the cause of the fault is as important to detect as the fault itself.

Chou et al. (1999) suggest that data visualisation plays an indispensable role in

uncovering hidden structures or patterns for information retrieval and parallel-

coord plots are indeed important tools in such analysis. One disadvantage of

parallel-coord plots is overcrowding when the measurement space becomes too

populated. There are many methods to overcome this, such as brushing, opac-

ity plotting, colour plotting, marker plotting and even using higher order star

glyphs, Ward et al. (2003) and Chernoff faces, Chernoff (1973) and Chernoff &

Rizvi (1975).

6.1.4 Principal Component Analysis

As with all highly automated manufacturing and testing processes, there is a

superfluous level of process variables and product characteristics. Therefore, any

method that reduces the dimension of the problem domain is a highly applicable

and worthwhile investment. PCA is used to determine a systematic pattern of

variation in a data set. It is also known as latent variable modelling, where the PC

score is a non-measurable latent variable that is computed as linear combinations

of a set of manifest input variables.
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Figure 6.4. Normal process parallel-coord plot. (a) A 3-d parallel-coord

representation of normal process operation data. The data are known

passes. (b) X-Z axes of (a) outlining 2-d parallel-coord plot. The stochastic

nature of the process can be seen in both subplots.
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Figure 6.5. Abnormal process parallel-coord plot. (a) A 3-d parallel-coord

representation of abnormal process operation data. The data is both pass

& fail. (b) X-Z axes of (a) outlining 2-d parallel-coord plot. 3 stationary

regions are identified.
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In order to classify a process state, or indeed, adequately describe a process using

fewer dimensions, it is necessary to build a suitable model which can be used as

a reference set for any subsequent data that may be generated. It is imperative

to isolate normal process data from a mixture of normal and abnormal historical

data, He et al. (2004). Referring to Table 5.1, the data are prepared through pre-

processing and partitioning, and a Normal Operating Condition (NOC) model is

developed (Section 5.2.3). For the purpose of the discussion, and in keeping with

the parallel-coord plots, two process states are identified. Figure 6.13 shows the

first three PCs as time-series plots with their respective sample numbers. The PCA

Model Summary shows each eigenvalue contribution to the model. The decision to

retain 8 PCs in the model was motivated by the fact that a reduction in feature

space from R
124 → R

8 occurs. These PCs represent 73.14% of the variance in the

original data. If the data has been autoscaled to N ∼ (0, 1), the eigenvalues will

sum to the number of original variables, and the eigenvalues can be interpreted

as the number of original variables each PC is worth. In this PCA model, the

first PC captures as much variance as 24 original variables, while the second PC

captures as much variance as 15 original variables. This suggests a high degree

of correlation in the data set, as two PCs capture as much variance as 39 original

process variables.

---PCA Model Summary---

Principal Eigenvalue % Variance % Variance

Component of Captured Captured

Number Cov Matrix per PC Total

--------- ---------- ---------- ----------

1 2.30e+001 23.96 23.96

2 1.45e+001 15.09 39.06

3 1.03e+001 10.76 49.82

4 7.36e+000 7.66 57.49

5 4.97e+000 5.17 62.66

6 3.71e+000 3.87 66.53

7 3.48e+000 3.63 70.16

8 2.86e+000 2.98 73.14

PCA produces linear combinations of the original variables, or latent variables,
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through a transform equation of

Score on PC1 = w1x1 + w2x2 + ... + wdxd

where x is the original data and w is the loading or weight of the variables on the

score. Figure 6.13 shows three the first three score vectors and respective limits.

The scores contain information on how the samples relate to each other and the

three component model contains just under 50% of the variance in the original

data. The loadings give information about the variables and outline the dominant

process variables for each score vector. Space precludes listing the loadings for

the PCA model here but the first three PCs are given in Appendix A.

In Figure 6.11 , variables 7−16 and 19−32 are not loaded by any components.

The reason for this is similar in concept to Figure 6.5 where the original variables

have little or no input to the process, and thus are excluded in the model as they

contain no information. Appendix B shows a complete breakdown of how the

variance is captured by each PC. Figure 6.12 shows both score and loading plots.

These can be used to reveal any correlation in the data and also the variables

which influence the scores the most. Furthermore, a bi-plot may be generated

by superimposing the score plot and the loading plots into one Figure. This

shows which samples scores are similar and which are not. In Figure 6.12, two

clusters of loadings are identified. These clusters suggest that some loadings are

similar to one another and hence may influence the scores in the same way. As

the loadings represent the variables, one would expect these to be similar also.

The clusters are pseudo labelled (X1 → Xd) and described in LOADING Cluster

Assignments.

LOADING Cluster Assignments

CLUSTER 1 X108 Gainslope PCSB CLUSTER 2 X106 OUTPUT 10 PCSB

X111 Gainslope PCSA X107 OUTPUT MIN PCSB

X114 Gainslope CELLB X109 OUTPUT 10 PCSA

X121 Gainslope CELLA X110 OUTPUT MIN PCSA

X112 OUTPUT 10 CELLB

X113 OUTPUT MIN CELLB

X119 OUTPUT 10 CELLA

X120 OUTPUT MIN CELLA
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6.1. Differential Process States Discussion

When the cluster assignment is cross checked with the process variables, it is

confirmed that they are indeed similar measurements. Variables which load most

significantly in the first PC (PC1) are those which are located furthest away

from the centroid (x-axis and y-axis intersection) of the data. These two clusters

were chosen to illustrate this. Another point to note is they load with opposite

signs, which indicates they are anti-correlated. Scores in the lower left quadrant,

-PC1 and -PC2, would tend to be dominated by the cluster 1 loadings and

likewise scores in the upper right quadrant +PC1 and +PC2 would tend to

be dominated by cluster 2. This information is not immediately obvious when

analysing univariate score and loading plots, and thus reinforces the importance

of bivariate and multivariate plotting. Another important contribution to the

score and loading plots are the x and y-axis lines indicating zero. Depending on

the plot type, these indicate different things. For instance in a PCA model, a zero

loading means that the variable does not contribute to the displayed component

and a zero score means that the sample shown is close to the mean (centroid) of

the data.

Similarly, model visualisation can be extended to R
3 space, with a PC1,PC2

and PC3 score and loading plot. The transition from Figure 6.13 to Figure 6.14 is

achieved by incorporating the third PC axis, PC3. This is not fully representative

of the PCA model however, as there are an additional five orthogonal axes but

it serves as a useful indicator. As this model is a NOC model, one would expect

the scores to be quite closely clustered about the centroid (X-Y-Z intersection)

and this is visible in Figure 6.14. Figure 6.15 shows a slightly more advanced

visualisation method where the PC scores and a confidence interval are plotted

together. A departure from the NOC centroid indicates that a sample is not

described exclusively by the model and therefore is an outlier. An outlier is

an observation that deviates so much from the other observations as to arouse

suspicion that it was generated from a different mechanism. An outlier can be the

onset of abnormal behaviour and it may carry important diagnostic information as

to the root cause of the anomaly but before abnormal observations can be singled

out, it is necessary to characterise normal process observations accurately.

In order to test the PCA model and display new fault conditions, unseen

process data is introduced. This data is standardised with respect to the mean

and standard deviation of the NOC model. It is then possible to show the model
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result through a NOC ellipsoid plot. This is shown in Figure 6.16. In this figure,

2σ and 3σ confidence ellipses have been calculated from normal process data, i.e.

data devoid of anomalies or failures. The NOC scores dictating the ellipsoids are

shown by the ‘•’ and the new batch scores are shown by ‘H’. On inspection, there

are a number of ‘H’ points disassociated with the NOC ellipsoid, suggesting they

may have been generated by a different mechanism and therefore are not sampled

from the same distribution. The resolve is a method which seeks to classify new,

unseen data in order to pass judgement on it.

It is however, important to look at the remaining PCs, the so called lower order

components, to see if they represent any patterns or trends within the data. The

PCA model used to generate the NOC ellipsoid contains eight components, which

give ≈ 73% of the variance in the original data. The model gives a reduction in

feature space from R
124 → R

8, which in any monitoring environment is a useful

result. It would be naive to suggest that the feature space reduction represents

entirely, and that discarding ≈ 25% of the variance does not loose any information

but one of the strengths of this analysis is decorrelation of original data into

linear, orthogonal axes. A supervisory system monitoring the NOC model and

subsequent test scores can then be used, with a certain level of confidence, to

classify new process data. The model is not predictive in nature, i.e. it cannot

forecast a result prior to a test but heuristic information can assign a certain

expectation level based on historical data.

The multivariate indices of T2 and Q are used to monitor the entire PC

subspace of the model. Figure 6.17 shows both indices and sample contributions.

Sample number 26 arouses suspicion due to the fact that it is so dominant in both

indices. Other samples exceed the 95% confidence level but the plot has to be

rescaled accordingly to show them. Figure 6.18 shows the rescaled indices which

indicate model performance on the test data. Samples in both control charts

exceed the confidence intervals indicating a departure from the normal. As the

latent variable space of the PCA model has been calculated with fail free process

data, comparing new data with the normal or common-cause variation captured

by the model signals any abnormal situations. The T2 control chart only detects

variation in the plane of the first k PCs that is greater than what can be explained

by the common-cause variation and the Q represents fluctuations that cannot be

accounted for by the PCA model. When an unusual event occurs that results in
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a change of the process mean or covariance structure, it will be detected as a high

value of this statistic. Section 3.2.4 offers a more detailed review on multivariate

indices.

A fail matrix indicating the sample number, bin-sort code (in square brackets)

and multivariate signalling index (Q or T2) summarises Figure 6.18.

Fails (Figure 6.18) =





2 → [7] → T2

10 → [7] → T2

12 → [11] → T2&Q

14 → [11] → T2

18 → [55] → T2&Q

21 → [50] → Q

24 → [42] → T2&Q

25 → [FN] → T2

26 → [42] → Q

43 → [FN] → T2





Two entries in the fail matrix are False Negatives (FN), i.e. when the outcome

is incorrectly predicted by the model to be a fail, giving an indication that the

model is sensitive to the loadings that generate those particular scores. There are

no False Positives (FP) in this model, i.e. when the outcome is incorrectly

predicted by the model as a pass, which of the two is more important to prevent.

A FN can be considered a false alarm where a FP is a failed alarm or miss. In

Figure 6.18 , both of the FN entries are signalled by the T2 index. In practice,

violations of the T2 and Q limits occur for different reasons. A T2 fault indicates

that the process has gone outside the usual range of operation but in a direction of

variation that is common to the process, i.e. there may be too much or too little

of a particular variable normally present in the model. A Q fault indicates that

the process has gone in an entirely different direction and something new, not

included in the model, has happened. Traditional MSPC philosophies calculate

and observe both indices as they compliment each other.

Contribution plots are diagnostic tools used to complete the loop between

fault detection and fault identification. They are individual cases in which the

loadings of a sample score can be isolated and inspected. This diagnostic in-

formation is extracted from the underlying PCA model at the point where the
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abnormal event or fail has been detected. Figure 6.19 and Figure 6.20 outline T2

and Q contribution plots for different samples from Figure 6.18. In Figure 6.19,

two contribution plots are shown. Figure 6.19 (a) shows a T2 contribution plot

for a normal process sample score and in comparison, Figure 6.19 (b) shows a

T2 contribution plot for an abnormal process sample score. Similarly, Q con-

tribution plots for two process states are shown in Figure 6.20 (a) and (b). The

green and red bar charts represent pass and fail for the respective indices. The

dominant variables are apparent in both Figures, and these give an indication

of the process variables that most influence the result on that score. This fault

finding methodology is normally applied to each score that breaches either of the

indices.

When a fail is diagnosed in this manner, the root cause can be attributed to

either a single variable or a number of variables. Translating this information

into a successful control strategy is achieved either through actual process inter-

action with setpoint adjustment or by discrete recommendations made to process

operatives with the root cause of the fail.

6.1.5 Decision Tree Classification

Decision tree classification of process data is performed differently. Partitioned

data, i.e. subsets of pass and fail, are important in classification routines that

seek to compare one sample with another. This is the philosophy of unsupervised

learning techniques. However, using the same partitioned data in supervised

classification techniques will result in reduced predictive ability. The reason for

this is due to the fact the a supervised model relies on good training data to make

an accurate prediction.

A generic method of decision tree induction is to build a model based on

a set of training data known to consist of both normal and abnormal process

operation conditions. This ensures that the model has an accurate description

of the process running normally and more importantly, a description of any fails

that occur. Section 5.4.2 describes the evaluation of decision trees that have been

trained on mixed signal data.

125



6.1. Differential Process States Discussion

10 20 30 40 50 60 70 80 90 100
−20

−10

0

10

20

Sample

S
co

re
s 

on
 P

C
 1

 (
23

.9
6%

) Principal Component Score Plots

10 20 30 40 50 60 70 80 90 100

−10

0

10

Sample

S
co

re
s 

on
 P

C
 2

 (
15

.0
9%

)

10 20 30 40 50 60 70 80 90 100

−10

−5

0

5

10

Sample

S
co

re
s 

on
 P

C
 3

 (
10

.7
6%

)

Figure 6.10. PC score plot. The first 3 PC scores plotted individually with

respective 95% control limits. The PC1-PC2-PC3 space describes 49.82%

variation in the data.

126



6.1. Differential Process States Discussion

20 40 60 80 100 120
−0.2

−0.1

0

0.1

0.2

Variable

Lo
ad

in
gs

 o
n 

P
C

 1
 (

23
.9

6%
) Principal Component Loading Plot

20 40 60 80 100 120
−0.2

−0.1

0

0.1

0.2

Variable

Lo
ad

in
gs

 o
n 

P
C

 2
 (

15
.0

9%
)

20 40 60 80 100 120
−0.5

0

0.5

Variable

Lo
ad

in
gs

 o
n 

P
C

 3
 (

10
.7

6%
)

Figure 6.11. PC loading plot. Contributions of the process variables to

PCA model. The dominant loadings show the process variables that are

responsible for the PC scores.
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Figure 6.12. PC1-PC2 score & loading plots. (a) PC1-PC2 score plot

with 95% confidence interval. (b) PC1-PC2 loading plot .

128



6.1. Differential Process States Discussion

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

PC 1 (23.96%)

P
C

 2
 (

1
5

.0
9

%
)

Biplot

Bi−plot
Scores
Loadings
x−axis zero

y−axis zero

Cluster 1

Cluster 2

Figure 6.13. Biplot of PC scores & loadings. Scores and loadings plotted

simultaneously showing the loadings which influence the scores. 2 loading

clusters are identified and their constituent variables described.
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plotted simultaneously for the first 3 PCs. Again, loadings which influence

the scores are clearly visible.
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Figure 6.15. PC1-PC2-PC3 NOC ellipsoid. NOC scores with 2σ (95%)

and 3σ (99%) confidence ellipses. As NOC model is derived from good

process data, all scores fall with in ellipses.

Figure 6.16. PC1-PC2-PC3 NOC ellipsoid with new batch scores. A

certain number of the new scores, ‘H’, are located away from the 3σ (99%)

confidence ellipse. This suggests they are significantly different from the

NOC model and are not sampled from the same distribution. This method

of representation can be used to detect an anomaly.
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Figure 6.17. Multivariate detection indices. T2 and Q chart for the PCA

model. Sample number 26 has a significant impact on both indices, and is

a suspected abnormal result or failure.
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Figure 6.19. T2 contribution plots for samples 21 & 12. (a) T2 contri-

bution to sample 21, a pass NOC score and (b) T2 contribution to sample

12, a fail batch score. The green and red bar charts represent pass and fail.

The dominant variables are apparent.
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Figure 6.20. Q contribution plots for sample 6 & 12. (a) Q contribution

to sample 6, a pass NOC score and (b) Q contribution to sample 12, a

fail batch score. The green and red bar charts represent pass and fail. The

dominant variables are apparent.
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6.2 Chapter summary

In this chapter, it has been shown that the application of exploratory data analy-

sis methods in semiconductor batch test data can effectively differentiate be-

tween normal process operation and abnormal process operation. Fault detection

with parallel coordinate monitoring plots is achieved and the identification of the

process variables responsible is also shown. Parallel-coords gives an indication

of the process variables at fault and corresponding magnitude. The method of

PCA gives a reduced subspace in which the process is described. New batch data

can be classified by the model based on score location and variable contribution

plots. A score loading bi-plot details the exact process variables that influence a

sample score. Variables clustered together are seen to influence the scores in the

same manner. It is seen from Figure 6.16 that departure from the centroid of the

NOC scores is an indication of an abnormal process condition or fail.

Independent univariate monitoring of the original process variables will not

sufficiently capture and diagnose abnormal operating conditions. This is due to

the fact that most of the time variables are not independent of one another, and

in fact, the quality index is a multivariate property that can not be explained by

one factor alone.

Multivariate monitoring indices provide information on PCA model fit and

residual contributions. These indices provide a summary of the process condition

in a single control chart which allows easy monitoring and fault detection and

classification.
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Chapter 7

Conclusions
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“If all economists were laid end to end, they would not reach a

conclusion”

(George Bernard Shaw (1856-1950)

7.1 Main Conclusions

This work investigates the application of multivariate statistical methods for fault

detection and classification in a semiconductor device testing process. Current

approaches to process monitoring can be grouped into three categories

1. Analytical model based methods

2. Knowledge based and expert systems

3. Historical data driven methods

Analytical methods are theoretically elegant but are limited in a real world

senario. Knowledge based and expert systems for fault classification are relatively

straight forward to develop but have the disadvantage of being time consuming

and sensitive to training information. Historical data driven methods are the
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most widely applied to industrial processes. This thesis explores different mul-

tivariate methods based on historical data and is separated into unsupervised

(Chapter 3) and supervised (Chapter 4) analytical techniques.

The purpose of implementing a quality initiative is to improve the quality of

a product by reducing the variability in a process. In the context of this thesis,

only the process is controllable so the emphasis is on a reduction in variability

where the product is actually used to test the process. This work demonstrates

the difficulty in separating product and process variation. As presented in Chap-

ter 6, one method is to look at process variable contributions in order to see any

underlying trends. It is not sufficient to monitor a high level quality index such

as yield in total isolation from a process. In one particular example in this thesis,

125 process variables are tested for every semiconductor device. Although the

dichotomous yield index summarises the outcome in the form of pass/fail, much

more information is available from the process variables themselves.

The nature of the process data in this thesis can best be described as mixed-

mode, i.e. composed of both analogue and digital test variables. This thesis

presents a methodology of pre-processing mixed-mode data as an input to a

control strategy.

Exploratory methods are applied to the data in Chapter 3. The inherent

variability in the test process can be seen from the Parallel Coordinate Analysis

(parallel-coord) plots. The development of a 3-dimensional visualisation tech-

nique based on parallel-coords is shown as a process monitoring tool which por-

trays the process through the variables.

The use of Principal Component Analysis (PCA) results in a reduced subspace

or internal structure that is used to describe the process in fewer dimensions.

PCA is successfully applied to high dimension semiconductor batch test data

which results in a reduction of monitored variables and the ability to diagnose

abnormal situations or fails. Multivariate monitoring indices such as the Q and

Hotelling’s T2 statistics provide fault detection capability. Variable contribution

plots provide diagnostic information as to the root cause of the initial problem.

The use of decision trees with the high volume, mixed-mode semiconductor

batch test data is discussed in Chapter 4. The results show supervised learning

methods are useful in dealing with this data type for the purpose of classifica-

tion. Typical performance on unseen data is presented in the form of a confusion
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matrix. Non-traditional exploratory methods such as decision tree induction are

very sensitive to the training data used and success is a function of data type,

attribute selection, quantity of data, induction method and class label distinction

(i.e. good and bad process description).

This thesis provides a methodology that can be extended to any data rich en-

vironment and it demonstrates the importance of multivariate methods in fault

detection and classification. The techniques have been described in the context

of semiconductor device batch testing but they are widely applicable and the

solution approaches suggested are very adaptable. This thesis suggests a data

handling strategy that is sufficient for capturing the required information but

allows for a reduction in the number of monitored variables. The original hy-

pothesis of the thesis was to gain a greater understanding of the process through

analytical methods described in the preceding Chapters.

7.2 Future Work

This thesis outlines a strategy which indicates when the process is performing

abnormally and through various multivariate techniques, allows for diagnosis and

classification of the problem. The semiconductor test process does not allow for

set point adjustment in any of the process variables. Therefore, the application

of statistical methods to the process is at a supervisory level instead of an in-

teraction level. Run to run control (R2R), allows actual tester interaction where

self diagnostic models duly supervise and alter any process variables at fault for

process degradation.

An important factor in the success of a monitoring scheme is to have consis-

tency in the process. In the context of semiconductor batch testing, this requires

similar batches be tested on similar platforms with minimal set up and transition.

Although batch scheduling is beyond the scope of this thesis, as it is dictated by

economics and global market demand, removing any unnecessary variation would

benefit the process.

This thesis presents a selection of multivariate methods that have been applied

to a specific problem domain. These approaches are widely applicable to other

areas and it is of interest to the Author to apply these methods to stock market

trading data for the purpose of fault detection and outlier detection.
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Appendix A

Principal Component Loadings

This table outlines the first three PCs for each variable from the PCA model

described in Section 6.1.4. The model has 8 PCs which describe 73.14% of the

variation in the original data. The variable names are taken from the semicon-

ductor device test process and are listed in testing order.

-------------------------------------------------------------------

Variable PC1 PC2 PC3

-------------------------------------------------------------------

Calc CellALoss -0.098911 0.12087 0.22035

Calc CellBLoss -0.098911 0.12087 0.22035

Calc PCSALoss -0.098911 0.12087 0.22035

Calc PCSBLoss -0.098911 0.12087 0.22035

SBST Continuity 1.4664E-19 3.2614E-18 4.2482E-17

SBCK Continuity -2.2161E-21 -1.2903E-19 1.9715E-17

SBDT Continuity -1.3663E-21 -1.1618E-19 2.7257E-17

PAON Continuity 7.4139E-22 1.5514E-19 -1.6252E-16

SBST leakage hi 2.9478E-23 1.1056E-20 -1.893E-17

SBCK leakage hi -1.6935E-24 -1.0695E-21 2.7583E-18

SELECT A leakage hi 2.56E-26 2.6765E-23 -1.0151E-19

PAON leakage hi -4.8379E-27 -8.4649E-24 4.8005E-20

SBDT leakage hi 2.0186E-28 6.0221E-25 -5.2156E-21

LOCK DET leakage hi -4.6208E-30 -2.2966E-26 2.947E-22

IDD IN IDLE -0.044396 0.034747 0.058924

IDD RF IDLE -0.013285 0.053541 -0.032405
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Principal Component Loadings

IDD MSM IDLE 0.011103 0.0030656 -0.026379

IDDtotal Idle -0.030479 0.062005 -0.0037004

DeviceID -3.9403E-38 -2.253E-33 1.8199E-28

Reg02 Default 7.9243E-40 7.389E-35 -8.6262E-30

Reg03 Default -1.6228E-41 -2.4663E-36 4.1588E-31

Reg04 Default 4.1992E-44 1.0337E-38 -2.5002E-33

Reg05 Default -3.2217E-45 -1.2813E-39 4.4302E-34

Reg06 Default -1.1203E-46 -7.2434E-41 3.6064E-35

Reg07 Default -1.2098E-48 -1.2698E-42 9.0887E-37

Reg08 Default -5.6165E-50 -9.5073E-44 9.7106E-38

Reg09 Default 3.1807E-52 8.7783E-46 -1.2954E-39

Reg10 Default 6.9211E-54 3.073E-47 -6.4519E-41

Reg11 Default -2.2857E-58 -1.0029E-51 8.8693E-46

Reg12 Default -7.6027E-58 -8.7439E-51 3.7201E-44

Reg10Value CELL -1.7898E-60 -3.3678E-53 2.0772E-46

Reg8Value CELL 3.0227E-62 9.0284E-55 -7.8078E-48

Reg9Value CELL 9.8914E-64 4.7625E-56 -5.8727E-49

IDD IN Puncture -0.04619 0.17417 -0.010088

IDD IN Puncture2 -0.051676 0.15433 -0.027143

Idd Delta VCO -0.006705 0.095103 0.02585

IDD RF Puncture -0.01469 0.11404 -0.060386

IDD MSM Puncture 0.00082744 -0.065483 -0.0098582

IDDtotal Puncture -0.046001 0.16675 -0.015106

PDCP UP 0.0069478 -0.0044909 -0.039106

PDCP DN 0.0036439 0.12926 0.0072363

N div ratio 0.046572 0.01595 0.00017212

N div ratio -0.011488 0.033802 -0.0076266

N div ratio -0.0010003 0.032312 0.019269

R div ratio 0.019457 -0.0032966 -0.013848

R div ratio -0.018713 0.065668 0.013877

R div ratio -0.0078352 -0.0087374 -0.026351

LD Freq -0.0065331 0.023636 -0.0045178

CPcurr DN lowV1 -0.00025849 0.065347 0.019482

CPcurr DN highV1 -0.011458 0.073051 0.034894
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CPcurr UP lowV1 0.013321 -0.11571 0.00011945

CPcurr UP highV1 0.013365 -0.11519 -0.01391

CPcurr DN lowV1 0.011188 0.11937 0.0086351

CPcurr DN highV1 0.0039958 0.12893 0.0071261

CPcurr UP lowV1 -0.01276 -0.1349 0.047482

CPcurr UP highV1 -0.02728 -0.10443 0.036221

Mstic2 DC Current 0.084634 0.051505 0.094439

IQ IMPEDANCE -0.063631 -0.082033 0.074691

Mstic2 Math result 0.03375 0.017865 -0.032836

Voffset 0.079493 0.037735 0.094592

Vpeak 0.070821 0.0329 0.11305

CDMA InputGain 0.070819 0.032898 0.11305

MaxCDMA Pout CELLA 0.095019 -0.16588 0.11514

Mean Pout CELLA 0.19041 -0.024266 0.063275

Mn ACPR rated CA CP 0.19058 -0.023043 0.063326

Mn ACPR rated CA WC 0.17793 0.010922 -0.0055102

IDD IN CELLA 0.093238 0.17068 -0.043287

IDD RF CELLA 0.094481 0.089905 0.075511

IDD MSM CELLA 0.038665 -0.10024 -0.071253

Mn RXNOISE CDMA CA 0.1654 -0.099476 -0.1121

ACPR rated CELLA WC -0.10007 0.077033 -0.16265

RXNOISE CDMA CELLA -0.087083 -0.081493 -0.22241

IDDtotal CELLAPout 0.17538 0.071623 0.0016349

MaxCDMA Pout CELLB 0.12199 -0.16944 -0.0054337

Mn Pout CELLB 0.19452 -0.05364 -0.020356

Mn ACPR rated CB CP 0.19361 -0.055345 -0.022459

Mn ACPR rated CB WC 0.17594 0.0376 0.016034

IDD IN CELLB 0.092068 0.16939 -0.046741

IDD RF CELLB 0.062805 0.1291 0.06947

Mn RXNOISE CDMA CB 0.16902 -0.09978 -0.10381

ACPR rated CELLB WC -0.10165 0.17693 0.073102

RXNOISE CDMA CELLB 0.17832 -0.089725 -0.084092

IDDtotal CELLBPout 0.15613 0.11148 0.0085752

Reg10Value PCS 0 0 0
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Reg8Value PCS 0 0 0

MaxCDMA Pout PCSA 0.042467 -0.13866 0.17273

Mean Pout PCSA 0.14786 -0.082112 0.14923

Mn ACPR rated PCSA CP 0.14754 -0.083134 0.15012

Mn ACPR rated PCSA WC 0.13195 0.061921 0.059398

IDD IN PCSA -0.014063 0.15612 -0.082528

IDD RF PCSA 0.085654 0.073602 0.035866

Mn RXNOISE CDMA PCSA -0.11666 0.12907 0.19016

ACPR rated PCSA WC -0.031031 0.17574 -0.11851

RXNOISE CDMA PCSA -0.096827 0.12014 0.2212

IDDtotal PCSAPout 0.069465 0.12651 0.16985

MaxCDMA Pout PCSB 0.034277 -0.15823 0.20496

Mn Pout PCSB 0.098822 -0.10244 0.23123

Mn ACPR rated PCSB CP 0.099647 -0.10261 0.2298

Mn ACPR rated PCSB WC 0.039676 0.034842 0.22448

IDD IN PCSB -0.0065487 0.1501 -0.097348

IDD RF PCSB 0.097493 0.093249 -0.056841

Mn RXNOISE CDMA PCSB 0.035425 -0.13274 0.23168

ACPR rated PCSB WC -0.078699 0.1712 -0.023121

RXNOISE CDMA PCSB -0.033681 -0.13315 0.1838

IDDtotal PCSBPout 0.097363 0.12704 0.071893

CW OUTPUT 10 PCSB 0.15439 0.1024 -0.015066

CW OUTPUT MIN PCSB 0.15439 0.1024 -0.015066

GainSlope PCSB -0.15439 -0.1024 0.01507

CW OUTPUT 10 PCSA 0.15964 0.094146 -0.032951

CW OUTPUT MIN PCSA 0.15964 0.094145 -0.03295

GainSlope PCSA -0.15964 -0.09415 0.032954

CW OUTPUT 10 CELLB 0.15593 0.10194 -0.00004123

CW OUTPUT MIN CELLB 0.15593 0.10195 -0.000041399

GainSlope CELLB -0.15592 -0.10195 0.000033709

OUTPUT CELLA 0.18669 -0.080949 -0.063318

CarrierSup CellA -0.016053 0.071739 0.0028572

ImageRej CELLA -0.018154 -0.01623 0.017195

Image Carrier Comp -0.021892 0.04032 0.0089787
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CW OUTPUT 10 CELLA 0.14914 0.10947 0.017316

CW OUTPUT MIN CELLA 0.14914 0.10947 0.017316

GainSlope CELLA -0.14914 -0.10947 -0.017311

VCO Osc S11 delta 0.085948 -0.03388 -0.2321

RI internal 0 0 0

Test time-sec -0.012206 0.03473 -0.024098
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Appendix B

Model Variance Captured

The variance captured by each component in the PCA model described in Sec-

tion 6.1.4 is shown overpage. Figure B.1 summarises the percentage contribution

each PC loading vector has on the original variables. The higher order PCs are

dominant on variables 105 → 115, indication significant variation. The sparse

regions indicate variables that have no input to the model.
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Figure B.1. PCA model variance. A summary of % contribution to the original variables for each PC. This shows the

variance captured by the PCA model in each original variable.
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Appendix C

NOC Model with PC1-PC2-PC3

Subplots

Figure C.1 shows a NOC ellipsoid in 3-D and its constituent 2-D subplots. the

purpose for the plot is to identify different regions of PC space as a visualisation

method to classify the new scores from the existing NOC model.
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Figure C.1. NOC model with PC1-PC2-PC3 subplots. This figure details the result of testing new scores with the existing

model. The graphical result shows which new scores fall within the model and which do not.
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