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Summary

Applying a range of time series econometric techniques, this thesis comprehensively models

the Dublin market for new, private sector housing over the period 1980-2000.

Chapter 1 details the rationale for the study and outlines the structure of the remaining

chapters. An overview of the theoretical functioning of the market for housing, along with the

baseline model that underlies the empirical sections of the thesis, is provided in Chapter 2.

To facilitate the identification of variables that could potentially influence demand, supply

and price inflation in the Dublin marketplace, Chapter 3 presents the empirical findings of

selected Irish and international studies that adopt a time series, macroeconomic approach to

modelling housing. Overall, the literature appears to be in agreement as to the key factors at

play in the housing market. These include price, income, interest rates, building costs, the

existing housing stock, demographics, land and government policies.

Chapter 4 provides a detailed description of the data series that feed into the empirical

sections, while Chapter 5 presents a synopsis of the modelling techniques applied in the study.

Chapter 6 undertakes an empirical analysis of the Dublin market for new, private sector

housing with the aim of uncovering the nature of the long run relations at play in this

marketplace. Econometric modelling adopts the Johansen cointegration approach and in line

with expectations, identifies the presence of two long run relationships. The demand relation,



which is normalised on the housing stock variable, shows that the stock of housing was below

its desired level - that is the level consistent with the prevailing level of house prices, income,

mortgage interest rates and demographics - over the time periods 1986-1989, 1993-1997 and

1999. The supply vector is normalised on house prices and suggests that from the end of 1987

to 1989, and from 1994 onwards, prices were relatively high given the prevailing level of

mortgage interest rates, building costs and land. However, an analysis of the adjustment

properties of the above relationships reveals a failure on the part of both the stock and price of

housing to adjust to steady state deviations and restore the market to equilibrium.

Accordingly, Chapter 7 considers adjustment behaviour in the Dublin market for new private

sector housing in greater detail. In doing so, short run house price determination is modelled

within a linear and non-linear error correction framework. The resultant findings indicate that

a range of explanatory variables including income, demographics, the housing stock,

government interventionist policies and mortgage interest rates are significant determinants of

price inflation. Moreover, house prices are found not to adjust in either of the extreme

regimes of the smooth transition regression model. As such, it may be concluded that the long

run demand and supply relations identified in Chapter 6 do not define equilibrium for the

Dublin market.

Finally, as the existence of a bubble could potentially account for the part of house price

determination that is left unexplained by the models estimated in Chapter 7, Chapter 8

examines the Dublin new private sector housing market for evidence of speculative

behaviour. The regime-switching approach applied suggests the presence of a fad. Fads give

rise to a situation whereby prices deviate temporarily from, but will eventually revert to,

underlying fundamentals. On this basis, a ’soft landing’ may be anticipated for the future path

of the Dublin housing market rather than the collapse type scenario associated with a bubble.

Chapter 9 concludes.
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Chapter 1:

Introduction

1.1. Study Rationale

Developments ill national and regional housing markets have a number of implications for the

wider economy. From a macroeconomic perspective, investment in housing directly

contributes to economic growth, while the wealth effects associated with rising prices may

impact on consumer behaviour. At a micro level, the purchase of a house is typically the most

important transaction made by a household. Rising prices can therefore lead to affordability

concerns which limit access to the marketplace or alternatively, distort household location

choice with knock-on effects for physical and social infrastructure.

In an Irish context, the Dublin market has periodically experienced incidents of excess

demand, supply constraints and rising house prices; the latest of which has persisted since the

mid-nineties. Given the dominance of this marketplace, such incidents can be expected to

have had significant economy wide effects. However, before considering the broader impact

of housing market disequilibria, a clear understanding of the empirical conditions that

characterise the Dublin marketplace is first needed.

Notwithstanding the importance of such knowledge, little research into the factors that lie

behind developments in the Dublin housing market has been carried out to date. In order to

address this deficit, further empirical modelling is necessary. Accordingly, the aim of this

thesis is to comprehensively model the Dublin market for new, private sector housing over the



period 1980-2000. Specifically, the empirical work presented in later chapters seeks to

identify the nature of the long run demand and supply relations at play in the Dublin

marketplace, model short run house price determination and test for the possibility of

speculative behaviour. In doing so, a range of time series econometric techniques are adopted.

1.2. Study Structure

An overview of the structure of the study, along with a brief outline of the content of each

chapter and its contribution to the literature where relevant, is set out below.

Chapter 2. The Theoretical Framework

As any empirical analysis must be conducted within the framework of economic theory,

Chapter 2 begins by considering the theoretical functioning of the housing market. In

particular, the special characteristics associated with housing are discussed, as is the manner

in which these characteristics are modified so as to enable standard time series modelling of

the housing market. The baseline model that underlies the empirical sections of the study is

then presented, along with the key theoretical relationships that apply in a housing context.

Chapter 3." Literature Review

Chapter 3 draws together the empirical findings of various Irish and international studies that

adopt a time series, macroeconomic approach to modelling housing. The intention in detailing

these findings is to facilitate the identification of appropriate factors for inclusion when

modelling the Dublin housing market. To this end, attention is paid to the nature of the

explanatory variables put forward by the selected studies and to the validity of the modelling

techniques adopted.

2



Chapter 4." Data Description

Chapter 4 provides a detailed description of the data series that feed into the empirical

sections of the study. Given the limitations of the available information, it proved necessary to

refine much of the data and to generate a measure of the stock of zoned housing land. The

methodology and refinement techniques applied when doing so are set out in this chapter. An

overview of the data sources and time series properties of the constructed variables is also

presented.

Chapter 5. Methodology

Chapter 5 presents a technical synopsis of the modelling techniques adopted in the course of

the study’s empirical analyses of the Dublin market; namely, the Johansen cointegration

methodology, smooth transition regression modelling and regime-switching tests for

stochastic bubbles. These techniques draw on the time series properties of the data.

Chapter 6. A Long Run Analysis of the Dublin Housing Market

Chapter 6 undertakes an empirical analysis of the Dublin market for new, private sector

housing within a long run framework. Econometric modelling adopts the Johansen

cointegration approach and applies it to the time-series dataset described in Chapter 4. A

priori, the presence of two equilibrium relations is postulated, one for the demand-side of the

market and one representing supply.

In terms of its contribution to the literature, this chapter represents the first attempt to include

a land availability variable in a long run model of the housing market. The potentially

important role of land is often referred to in international studies, but due to a lack of data on

costs and availability, is typically not modelled. While recent work on the national market has

3



incorporated somewhat crude measures of land prices, no effort has been made to consider

land in empirical studies of the Dublin marketplace. Moreover, the shortage of zoned and

serviced housing land in the Dublin area implies that availability rather than price is the

appropriate land measure in this context.

Chapter 7." An Analysis of Adjustment in the Dublin Housing Market

Building on the preceding analysis, Chapter 7 seeks to examine adjustment behaviour in the

Dublin market for new private sector housing. In particular, it seems appropriate to examine

the response of prices to deviations from the long run relations. As such, this chapter models

short run house price determination within an adjustment type framework. In doing so, error

correction models of both a linear (ordinary least squares estimation) and non-linear (smooth

transition regression modelling) nature are developed and applied to the dataset detailed in

Chapter 4.

The estimation of error correction models goes considerably beyond the scope of current

empirical work on the Dublin housing market, and in the case of the non-linear model, also

beyond that at national level. Indeed, the study’s use of the smooth transition regression

modelling approach is only the second time in which this technique has been applied in a

housing framework. Furthermore, by including a range of variables designed to capture the

effectiveness of government interventionist policies, this chapter allows for a more complete

modelling of house price determination than has been undertaken to date.

Chapter 8." Testing for the Presence of a Bubble in the Dublin Housing Market

determination that

As the existence of a bubble could potentially account for the part of house price

is left unexplained by the models estimated in Chapter 7, Chapter 8

4



examines the Dublin new private sector housing market for evidence of speculative

behaviour. A regime-switching approach which enables testing of the hypothesis that house

prices are being driven solely by fundamental market factors, against the alternative of a

bubble, is adopted for this purpose.

The contribution of Chapter 8 to the wider literature centres on the attention paid to modelling

the fundamental component of house prices. Whereas existing empirical research has

modelled underlying fundamentals in the Dublin marketplace on a partial basis, this study

includes both demand and supply-side variables. Most notably, the fundamentals model

presented here is the first to incorporate a measure of land availability.

Chapter 9: Conclusion

Chapter 9 concludes with a summary of the main

comprehensive modelling of the Dublin housing market.

findings arising from the study’s

Overall, this thesis should add to the current body of literature by facilitating an improved

understanding of the empirical conditions that characterise the Dublin market for new, private

sector housing.

5



Chapter 2:

The Theoretical Framework

2.1. Introduction

From a theoretical perspective, housing can be viewed as a commodity that is, in a similar

manner to other goods and services, subject to the rigours of the market process. However, in

contrast to most commodities, it is a good that embodies a number of distinct attributes, the

interaction of which serves to complicate economic analyses. While the heterogeneity and

durability properties of housing are foremost amongst its distinguishing characteristics,

features such as spatial fixity and government involvement also identify it as a unique

commodity (Smith, Rosen and Fallis, 1988). Given that an appreciation of both the theoretical

and empirical functioning of the housing market requires an understanding of these attributes,

the main aim of this chapter is to discuss the special characteristics of housing. Building on

this discussion, the modelling implications of housing market peculiarities are then

considered, particularly the need for simplifying assumptions. The latter arise from the

difficulties associated with any attempt to combine the above diverse range of concepts into a

single model. Thus, a further objective of the chapter is to describe the simplified housing

model that is typically applied in time series studies of the type undertaken in this thesis.

The remainder of the chapter is organised as follows: Section 2.2 begins by defining the

concepts of heterogeneity, durability, spatial fixity and government involvement. The manner

in which these characteristics are then modified so as to enable standard modelling of the

housing market is detailed in Section 2.3, along with the baseline theoretical model that

6



underlies the empirical estimations presented in Chapters 6 and 7. The theoretical

relationships applicable in a housing context are set out in Section 2.4. Section 2.5 concludes.

2.2. Housing Attributes

Housing may be distinguished from other goods and services on the basis of its heterogeneity,

durability, spatial fixity and the extensive involvement of government in its marketplace. As

noted overleaf, a necessary prerequisite for appreciating the complexity of housing market

economics is an understanding of the various attributes of housing, and the means by which

the interaction of these features complicates theoretical and empirical analyses of the market.

Fortunately, such an understanding has been aided by the emergence of a large volume of

literature - the different strands of which ’may be categorised according to which of these

characteristics is emphasized and formally modelled in the analysis’ (Smith, Rosen and Fallis,

1988). The principal concerns of the literature, as they relate to each characteristic of housing,

are briefly summarised below. In addition, the following sub-sections define these attributes.

2.2.1. Heterogeneity

Heterogeneity implies that no two houses are the same in every respect. This assertion is

borne out by the fact that it is possible to differentiate between dwelling units on many

grounds, including those of size, age and design. With regard to the explicit modelling of

heterogeneity, housing economics tends to adopt one of two methods; either a characteristics

based approach or an approach that focuses on the quantity and quality aspects of housing

(Smith, Rosen and Fallis, 1988)~. The former encapsulates the idea of hedonic pricing in that

each housing unit is described in terms of a bundle of characteristics that commands a price in

the marketplace. This price is subsequently regressed on the individual characteristics of the

The characteristics based approached was formally proposed by Rosen (1974) within a framework
that allowed for product differentiation in a competitive market.
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bundle so as to reveal their implicit or hedonic prices. In contrast, the second approach tbrms

part of the literature concerned with the maintenance and renovation decisions of house

owners.

2.2.2. Durability

A second feature contributing to the distinctiveness of housing is that of durability. This refers

to the long lasting nature of housing and implies that ’the existing stock is quite important

relative to the flow of newly constructed stock’ (Smith, Rosen and Fallis, 1988)2. A partial

treatment of durability allows for stock-flow adjustment in the housing market, with the

intersection of demand and a perfectly inelastic short run supply curve for housing stock /

services yielding the unit price of the latter. A capital value per unit of housing stock is then

determined by the interaction of the unit price of housing services and factors such as risk

premia and the yields on various other assets. Ultimately, the flow of new construction

depends on the supply price of new stock relative to the capital value derived above.

However, Smith, Rosen and Fallis (1988) argue that a full treatment of durability requires

more than an inelastic short run supply curve, and that the markets for housing stock and

housing services need to be thought of as distinct concepts. Furthermore, they suggest that

these two markets can again be differentiated by means of tenure choice; a topic that in itself

has given rise to a huge body of literature.

2.2.3. Spatial Fixity

The uniqueness of housing is also reinforced by the importance of the location of the physical

stock. This characteristic, known as spatial fixity, is related to the heterogeneity of housing

and suggests that housing units, physically similar but located in different neighbourhoods,

2 Note that a further implication of this attribute of housing is the importance of housing finance (Muth

and Goodman, 1989).



may sell for different prices. Location in this context comprises three aspects, namely the

distance from important areas such as the employment centre, shopping facilitates and

transport routes, the nature of land use in the relevant neighbourhood, and local government

services and tax levels. Modelling the first aspect of spatial fixity can be undertaken within a

general equilibrium framework as proposed by the new urban economics school or

alternatively, via computer simulation. In examining the second aspect, the hedonic pricing

technique mentioned earlier may be adopted, whereas the third is often discussed as part of

the literature arising from Tiebout’s (1956) paper on local government.

2.2.4. Government Involvement

The final attribute associated with housing is the extent of government involvement in this

marketplace. While the intervention mechanisms pursued across countries differ

considerably - ranging from taxation and regulatory control to non-market provision - ’the

level of involvement compared to other product markets is uniformly high’ (Smith, Rosen and

Fallis, 1988). The volume of literature in this area is extensive, although it is possible to

broadly categorise it in terms of studies that take a normative perspective and those that adopt

a positive economics approach. Typically, the latter aim to analyse the end affects of various

policy measures and housing programmes whereas, the more normative studies are largely

concerned with issues such as what the role of the government vis-~,-vis housing ought to be.

2.3. The Theoretical Model

Given the impossibility of incorporating all of the above characteristics into a single model,

empirical analyses of housing

relationship between the price

markets based on time series data and focussing on the

or quantity of housing and an array of other variables,

necessarily impose a number of simplifying assumptions. The twofold purpose of this section
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is to firstly set out these assumptions, and secondly, to present the theoretical housing model

that they give rise to.

Principal amongst the employed assumptions is the existence of a theoretical and

unobservable homogeneous commodity called housing service. Allowing for each dwelling

unit ’to yield some quantity of this good during each time period’, and assuming that it is ’the

only thing in a dwelling unit to which consumers attach value’, enables the issue of

heterogeneity to be successfully overcome (Olsen, 1969). However, as housing service is an

unobservable entity, it is not possible to directly test this proposition, though arguably, a

relationship between housing service and certain observable phenomena may be defined and

then tested (Muth, 1960 and Olsen, 1969).

In terms of accounting for the durability characteristic of housing, empirical analyses usually

consider some variant of the adjustment process discussed in Section 2.2.2. The key

assumption made in this regard concerns the flow of services provided by housing. This flow

is assumed to be proportional to the stock of housing whereas a full treatment of durability

requires that the markets for housing stock and housing services be further distinguished.

Lastly, the spatial aspects of housing are generally ignored.

The theoretical model derived as a result of combining the above assumptions is discussed in

Hendry (1984). This model is commonly adopted as the starting point of time series studies of

the housing market, including those undertaken in Chapters 6 and 7 of the present research.

Such analyses begin with an equilibrium model for the demand and supply of housing, where

the term equilibrium refers to ’no inherent tendency to change’ (Hendry, 1984). Within this

framework, adjustment in the market occurs in a stock-flow manner; both the markets for

existing housing stock and the flow of new construction must be balanced to eliminate

disequilibria. The long run static situation is characterised by a perfectly elastic supply curve.
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Depreciation of the existing stock is exactly offset by new construction such that C -- 6.H,

where C is new construction, 6represents depreciation and H is the physical stock of housing.

Demand is downward sloping and the intersection of demand and supply determine the

equilibrium price Phl,~e and quantity Hl~e. At this price, perfect competition implies that the

construction market is earning a normal profit. As a result, the stock and flow markets are in

long run equilibrium and demand is said to determine quantity but not price (Hendry, 1984).

Figure 2.1: Long Run Housing Equilibrium
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In practice, it is unlikely that supply is perfectly elastic even in the long run. Miles (1994) and

Poterba (1984) consider an upward sloping long run housing supply schedule, suggesting that

such a schedule can be derived under the assumptions of either diminishing or constant

returns to scale - a binding land availability constraint can give rise to the second

outcome - and in this case house prices should exhibit some response to changing demand

conditions. In an Irish context, the notion of such a constraint is readily applicable given the

shortage of zoned and serviced land, especially in the Dublin area (IMF, 2000).

Extending the above analysis, Poterba (1984) employs a type of Tobin q-theory of

investment, suggesting that the production decisions of firms are based on a comparison of

current house prices and the current costs of production. As this may be considered a little
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na’fve, uncertainty can be incorporated into the model (see for example, Salo (1994)) and the

impact on the supply of housing of exogenous variables such as land availability and the

proportion of production pre-sold, can also be assessed.

The short run situation differs from that of the long run in the sense that supply is assumed to

be perfectly inelastic or fixed initially. Therefore, an increase in the demand for housing

necessitates an increase in price in order to restore equilibrium to the market. In this

framework changing demand conditions drive house price determination. However,

disequilibrium is likely to prevail in the market for new construction given that the short run

price Ph.v~ exceeds Phzj~e resulting in positive profits, which in turn, entice entry and an

outward shift of the supply curve for construction flows. Eventually supply increases

sufficiently to satisfy demand, excess profits are eliminated and the flows market balances at

the long run price.

Figure 2.2: Short Run Housing Equilibrium
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Figures 2.1 and 2.2 respectively illustrate the above verbal descriptions of the long and short

run theoretical situations.
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2.4. Theoretical Relationships

Drawing on the above, this section sets out the key theoretical relations that apply in a

housing context. The intention in doing so is to provide some indication as to the nature of

relationships that might be expected when it comes to the empirical analysis of the Dublin

housing market. While comprehensive, note that the list of variables presented below is not

exhaustive-~.

where:

Hd

ph

Y

MR

D

P

M

T

Ha = f {ph, Y, MR, D, p, M, T)

= housing demand;

= real house prices;

= permanent income;

= nominal mortgage interest rates;

= demographics;

= the real rental rate;

= the stock of mortgages;

= the tax rate;

(2.1)

where:

HS

5

Ht_l

Ct

LAt

Hs = (l-8)Ht_l + Ct + LAt

= stock supply of housing;

= the rate of depreciation;

= housing stock in the previous period;

= completions of new private sector houses at time t;

= sale / transfer of Local Authority houses at time t;

(2.2)

3 See also Hendry (1984) and Giussani and Hadjimatheou (1990) for further details.
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C = f {MR, credit, bc, Is, Ip} (2.3)

where:

C

credit

be

Is

lp

= completions of new private sector houses;

= availability of credit;

= real building costs;

= the stock of zoned housing land;

= real land prices;

where:

Ph

Ph = f {Y, MR, D, p, M, T, credit, bc, Is, Ip}

= house prices.

(2.4)

2.5. Conclusion

As any empirical analysis must be conducted within the framework of economic theory, this

chapter sought to provide a clear outline of the theoretical issues that arise in a housing

context. Against this background, the special characteristics associated with housing were

discussed, as was the standard time series approach to the modelling of this marketplace.

Finally, some key theoretical relationships were presented.
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Chapter 3:

Literature Review

3.1. Introduction

A testimony to the growth of academic and policy interest in housing market economics over

the past decades is the extensive body of literature that currently exists in this field. To date,

housing research covers a broad spectrum of topics ranging from analyses of price

determination and tenure and location choice to issues such as urban regeneration,

neighbourhood externalities, densities and the housing needs of the under-privileged. While

each of these strands is of interest, the focus of the present study is such that it is considered

appropriate to limit the following discussion to a review of literature that is of a time series

econometric and macroeconomic orientation. Accordingly, this chapter presents the empirical

findings of relevant Irish and international studies that adopt a time series, macro approach to

modelling housing. In presenting these findings, the intention is to facilitate the identification

of variables that could potentially influence demand, supply and price inflation in the Dublin

marketplace, bearing in mind the theoretical relationships set out in Chapter 2.

The chapter is structured as follows: to begin with, Section 3.2 provides a brief overview of a

priori theoretical expectations. Respectively, Sections 3.3 and 3.4 then consider the findings

of recent empirical research on the Irish housing market and the results of selected

international studies. Section 3.5 concludes with a summary of the variables, which in terms

of precedents set by the literature, may act as determinants of Dublin housing demand, supply

and price.
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3.2. A Priori Expectations

To lend to the interpretability of the empirical findings discussed below in Sections 3.3 and

3.4, Table 3. ! lists several factors that are generally cited as playing a key role in the housing

market. The variables presented are those that, on a priori economic grounds, are assumed to

affect the demand, supply and price of housing in the long run. The perceived effect, that is

whether an increase in the factor in question impacts in a positive or negative manner on

housing demand, supply or price, is signified by either a (+) or (-) sign. As with the variables

listed in Table 3.1, these signs follow from theoretical predictions.

Table 3.1: Key Factors affecting Housing Demand, Supply and Prices

Factors
Demand Supply Price

House prices _ +

Income + +

Interest rates - 9

Demographics + +

Building costs (labour and material) +

Land + _

Notes:
1. Assuming perfect capital markets and a binding land constraint

3.3. Empirical Research on Ireland

Taking as the starting point the above expectations and the validity of the chosen modelling

techniques, this section considers the findings of recent empirical work on the Irish market.

Thus far, housing research in Ireland has primarily focussed on developments at a national

level, though some limited work has been carried out in respect of the Dublin marketplace as

detailed below.
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3.3.1. National Housing Market Studies

The most prominent study on the national housing market to date is a series of three reports

known as the ’Bacon Reports’. Of these, the 1998 and 2000 papers (Bacon 1 and 3

respectively) undertake an econometric analysis of house price determinants while the 1999

report provides a descriptive update of the post Bacon 1 situation.

Bacon 1 (Bacon et al., 1998) adopts an econometric approach to the modelling of the national

housing market that is

completions equation.

methodology and is

comprised of two parts, namely

Estimation of both equations

applied to a dataset covering the

an inverse demand and a house

uses the ordinary least squares

period 1974-1996. As regards the

inverted demand model, the log of real second-hand house prices is taken as the dependent

variable while the set of explanatory variables incorporates the change in the log of real

personal disposable income per capita, the log of real personal disposable income per capita

lagged, the log of per capita housing stock, user costs and the population aged 25-34 as a

percentage of the total population. Excepting the first independent variable, all regressors are

correctly signed and statistically significant, with the overall model explaining 86% of the

variation in existing house prices.

Turning next to the supply equation, the empirical estimation - which relates the log of private

house completions to the current and lagged log of real new house prices and to lags of

logged completions - gives rise to an adjusted R squared statistic of 0.821. In line with initial

expectations, the above explanatory variables are found to be significant and correctly signed.

On the other hand, when potential determinants such as real building costs and real interest

rates were tested for possible explanatory power, they proved to be either incorrectly signed

or statistically insignificant. The authors also point out that the failure to include the real cost

of land as a regressor in the model is due to the fact that a time series of residential land prices

is not available in an Irish context. However, it is noted that even if such a series did exist, it
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would be necessary to allow for high short run correlation between residential land and house

prices given that "the demand for residential land is a derived demand’ (Bacon et al, 1998).

Overall, Bacon 1 (Bacon et al., 1998) presents a standard textbook model of the housing

market, the results of which appear plausible. However, important limitations of the analysis

are the incomplete modelling of the supply-side of the market and the failure to consider the

time series properties of the data. As the model is expressed in levels, the presence of non-

stationary variables could give rise to spurious regression. In this case, inference using the

usual OLS procedures may be misleading. As such, it would have been desirable to test for

the possibility of unit roots amongst the data series.

Murphy and Brereton (2001) seeks to update and expand the empirical aspect of the Bacon 1

study. The data range is increased to 1999 and the econometric analysis presents a model of

the second-hand housing market using the same technique and variables as in the previous

report. Unsurprisingly, the findings are close to those of Bacon 1; though the adjusted R

squared statistics appear to be higher for both the inverted demand and house completions

equations over the extended sample period. In light of the above discussion, these results

should be treated with caution.

Similar to its predecessor, Bacon 3 (Bacon and MacCabe, 2000) estimates an inverse demand

and a completions equation. Data for the former is annual and covers the years 1972-1996 and

1972-1999. For both time periods, the inverted demand equation seeks to explain logged

second-hand house prices in terms of the current and lagged log of the stock of housing,

logged personal disposable income, the base mortgage rate, population aged 25-34 and the log

of lagged second-hand prices. Estimation again applies the ordinary least squares technique.

Subsequent empirical results indicate adjusted R squared statistics of 0.755 and 0.949 for the

respective sample periods. For the years 1972-1996, the income and demographic variables

are found to be significant and signed as expected whereas for the extended sample,
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statistically significant and correctly signed parameter estimates include those of income,

mortgage rates and lagged house prices. With respect to the latter, the authors consider

"gathering momentum in demand, based on price expectations’ to be ’consistent with the

emergence of a significant speculative or transitory demand factor in the Irish housing

market’ (Bacon and MacCabe, 2000).

in terms of the supply-side of the market, the private house completions equation incorporates

as explanatory variables the log of current and lagged house prices, the log of current and

lagged building costs (where such costs include material and labour expenses but not land

costs) and the log of lagged completions. While the resultant empirical findings reveal an

adjusted R squared value of 0.879, only current prices and lagged completions emerge as

statistically significant from zero and correctly signed.

In commenting on these results, the starting point is again the failure to examine the statistical

properties of the underlying data series. If these are non-stationary in nature, the OLS

inference procedures applied in the analysis are likely to be misleading. This calls into

question the reliability of the resultant findings. In addition, the incompleteness of the supply-

side equation is notable.

In contrast to Bacon 1 and 3, Kenny (1998) does consider the statistical properties of the data

and finding evidence of non-stationary behaviour, models the interaction between house

prices and a range of macroeconomic factors within a cointegration framework. For the

sample period 1975 (first quarter) to 1997 (last quarter), the empirical results identify the

presence of two long run / equilibrium relations, one for the demand-side of the market and

one representing supply. The demand vector relates the log of the housing stock, the log of

real house prices (where house prices are constructed as a weighted average of the price of

new and second-hand homes), real gross national product logged and the building society

mortgage interest rate. The second vector incorporates supply-side elements, namely the log
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of real house prices, the building society mortgage interest rate and the log of a composite

index of costs that includes material, labour and development land costs. The end results are

plausible with each variable bearing the anticipated sign.

in order to capture the dynamic nature of the housing market, the paper also examines the

matrix of alpha coefficients in the vector error correction model and undertakes an impulse

response analysis. The former reveals that house prices adjust positively (albeit reasonably

slowly) to situations of excess demand whereas the latter indicates that in response to a shock

to income, "the stock of housing increased by only 1/10th of the proportional increase in the

demand for housing’ (Kenny, 1998). The author suggests that severe supply-side constraints,

such as a lack of available land or services infrastructure, offer a possible explanation for this

occurrence.

While the choice of cointegration as a modelling tool is appropriate in this case, one aspect of

the above analysis is questionable, namely the derivation of the land cost measure from house

prices.

More recently, the Irish housing market has been re-modelled by McQuinn (2004) who

presents an econometric analysis based on quarterly data covering the period 1980:1 to

2002:4. As in Kenny (1998), the Johansen technique is adopted to test for possible

cointegration. The empirical findings identify two forms of a long run inverted demand /

house price equation and a long run supply relation. The first cointegrating house price vector

relates the log of average house prices (new and second-hand prices combined), the real rental

price, logged housing stock per capita, the level of net migration, logged income per capita

and the log of the average mortgage approved. All of the variables are signed correctly with

the exception of the rental rate. Given this, the second cointegrating relation for house prices

replaces the rental measure with the real interest rate. Regarding the supply-side of the
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market, the uncovered equilibrium vector is comprised of the log of total house completions

(private and Local Authority), average house prices logged, the log of house prices divided by

an index of builders’ costs and land costs. These variables enter the supply relation signed as

expected a priori.

Building on the above cointegration analysis, the paper then estimates error correction models

that incorporate the identified long run relationships. As in the static framework, two short run

specifications are estimated for the change in the log of house prices while one such equation

is estimated for the change in log of total completions. In terms of the impact of deviations

from the equilibrium house price and supply relations on the respective dependent variables,

the empirical findings indicate that the house price error correction term enters both house

price equations significantly and negatively signed, while the supply-side term similarly

enters the completions equation significantly and bearing the expected negative sign.

Lastly, the paper plots the fitted values of the second house price error correction model

against actual prices. On the basis of this graph, it is suggested that as actual prices were in

excess of the fitted ’fundamental’ house price for 1998 and 1999, some degree of over-

valuation may have existed. However, from late 2000 onwards, the series are ’practically the

same’ implying that recent movements in the housing market have been motivated by

fundamentals (McQuinn, 2004).

Overall, McQuinn (2004) presents a comprehensive model of the Irish housing market, the

results of which appear plausible. While the chosen statistical technique is also appropriate,

the issue of potential endogeneity between land and house prices is again relevant and merits

attention going forward.

In contrast to the above, the main focus of Roche’s (2003) analysis of the Irish housing

market is on explaining price inflation in the context of fads, bubbles and fundamentals. In
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this case, the observed house price is decomposed into a ’fundamental’ and ’non-

fundamental’ component and a regime-switching approach is adopted to test the market for

evidence of speculative behaviour. The reduced form ~fundamentals’ model (which is [bund

to be a long run cointegrating relationship) takes real new house prices as the dependent

variable and is estimated using ordinary least squares over the sample period 1979:1 to

2003:1. Explanatory variables include a combination of demand and supply factors, namely

an index of builders’ costs, land costs, net immigrants, the loan amount, user costs, disposable

income per capita and a trend to proxy influences such as household formation~. The resultant

coefficients are correctly signed and significant.

The difference between the fit of the estimated ’fundamentals’ model and actual prices, - the

non-fundamental price - acts as a measure of over or under-valuation. In order to examine the

claims of the IMF (2003) and ’The Economist’ (2003) that Irish house prices were over-

valued in 2002, the paper then proceeds to estimate two other models of ’fundamental’ house

prices based on the methodologies employed by these bodies. Firstly, following the IMF

(2003), second-hand house prices are related to real disposable income, real mortgage interest

rates and the young house buying population as a percentage of the total population. The

second additional specification seeks to explain real second-hand house prices using real

personal disposable income per capita and is close to the non-econometric approach adopted

by ’The Economist’ (2003). Subsequent empirical findings reveal that when Irish house prices

in 2002 are modelled solely in terms of demand-side factors (as in the analyses undertaken by

the IMF and ’The Economist’); they are over-valued by some 11% to 75%. In contrast, the

use of both supply and demand factors (as in Roche’s model) confines the extent of over-

valuation to between 0.2% and 4.6%.

Using three different methods, the paper tests for the possibility that land costs are endogenous. Such
a situation implies that changes in new house prices could cause changes in land prices and vice versa.
However, in all cases, it was found that land costs could be treated as exogenous.
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With regard to testing |br the existence of a bubble in the new housing market (namely a

sharp rise in price, with the initial rise generating expectations of further increases - the

probability of continued growth falls as the bubble expands and the rise is usually followed by

a partial collapse), the fact that the estimated demand and supply ’fundamentals’ model

constitutes a cointegrating relation suggests that a bubble is not present2. Further support for

the lack of a bubble component is provided by the empirical outcome of the regime-switching

model which finds evidence of a ~fad’ in the market (whereby prices deviate temporarily from

underlying fundamentals but eventually mean revert) as opposed to a bubble.

On the contrary, Roche (1999) does find evidence of a speculative bubble in the Irish second-

hand housing market for the sample period 1976:4 to 1998:4. Moreover, the paper suggests

that the probability of a crash had increased to about 2 per cent by the late 1990s.

Interestingly, the measures of the ’fundamental’ price in this paper assume a relatively

inelastic supply curve and therefore, estimate inverted demand type models that relate real

second-hand house prices to real permanent income per capita, expected real mortgage rates,

demographics and the real rental price.

3.3.2. Dublin Housing Market Studies

The variables adopted when analysing the Dublin housing market should in principle be the

same as those applied in the above assessments of the national market. However, Bacon et al.

(1998) found that gaps in the data prevented them from undertaking a carbon copy of their

national analysis for the Dublin market. As such, they derive a model for logged Dublin house

prices relative to national house prices using an average of new and second-hand prices. The

estimated OLS inverted demand equation for the sample 1974-1996 exhibits some evidence

of instability, and hence, the empirical results are deemed ’suggestive but appear very

2 However, as acknowledged by Roche, the use of cointegration as a test for speculative behaviour is

not very powerful if a partially collapsing bubble is present (Evans, 1991).
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plausible" (Bacon et al., 1998).

income and the population share

relative to the rest of the country.

In particular, lagged real per capita personal disposable

aged 25-34 were found to favour Dublin houses prices

In terms of modelling the supply-side of the market, the log of private house completions in

Dublin is taken as the dependent variable with the explanatory variables including lagged

completions, lagged real Dublin house prices (comprised of average new and second-hand

house prices) and the change in the log of real Dublin house prices. With the exception of the

latter, the regressors are statistically significant and all are correctly signed. The adjusted R

squared statistic indicates that the estimated model explains 57% of the variation in

completions. Furthermore, the long run price elasticity of supply in the Dublin market is

found to be roughly half the national figure. The authors note that ’this is consistent with the

view that non-economic constraints reduce the elasticity of supply in the Dublin area’ (Bacon

et al., 1998).

Murphy and Brereton (2001) expand the timeframe of the above empirical house completions

model from 1996 to 1999. As expected, the findings are much the same, though the estimated

equation now explains 73% of the variation in the dependent variable.

However, to the extent that the models presented in these studies are expressed in levels and

include non-stationary variables; OLS is not an appropriate estimation technique and its use

may undermine the reliability of the reported results. Furthermore, as in the national models,

the supply-side equations are incomplete - no attempt made is made to include cost variables

or a land measure. The latter is particularly striking given the above reference to the impact of

non-economic constraints on housing supply in the Dublin area.

Roche (2001) seeks to explain whether bubbles, fads or fundamentals are driving new house

prices in Dublin over the period 1976:1 to 1999:1. As in his corresponding papers for the
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national market (1999 and 2003), the observed house price is decomposed into a

’fundamental’ and ~non-fundamental’ component and a regime-switching approach is adopted

to test the market for evidence of speculative behaviour. With respect to the calculation of the

"non-fundamental’ price, four possible proxies are estimated. The first adopts an inverted

demand type approach and relates real new house prices to expected real disposable income,

expected real mortgage interest rates and net migrants. The resultant OLS coefficient

estimates are statistically different from zero and are correctly signed. The residual from this

’fundamentals’ equation is then taken as a measure of the ’non-fundamental’ price. In

contrast, the second proxy is based on the standard asset pricing model and defines the ’non-

fundamental’ price as the real house price minus the mean price-rent ratio multiplied by the

real rent. The third method assumes that the ’non-fundamental’ house price is correlated with

the real growth rate of new house mortgages, while the last measure assumes a correlation

between the ’non-fundamental’ house price and the new house price-building cost ratio

(where development land prices are excluded).

These various measures of the ’non-fundamental’ price are subsequently fed into a general

regime-switching model in order to test their predictive power. The overall empirical findings

indicate that there is some evidence of a speculative bubble in Dublin house prices.

While Roche’s (2001) analysis is thorough in the sense that alternative measures of the

fundamental price are considered, when modelling underlying fundamentals in the Dublin

market, demand and supply variables should be considered in tandem. Moreover, the use of

OLS as an estimation technique in this case is also questionable.

3.4. International Empirical Research

In addition to the above findings, further insight into the range of variables that may

potentially influence demand, supply and price inflation in the Dublin housing market can be
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gained by considering the empirical results of relevant international research. Reflecting this,

the following aims to provide an overview of the broader literature that informed the present

study.

When considering international housing literature of a time series, macroeconomic nature,

research undertaken in respect of the UK market represents a natural starting point given the

structural similarities between the markets for housing in Ireland and the United Kingdom.

For this same reason, empirical studies on the UK market also proved the most informative

and consequently, account for the bulk of the international literature reviewed below.

Of the many studies carried out on housing in the United Kingdom, Hendry (1984) presents

what is perhaps the best known econometric model of UK house prices3. Using quarterly data

covering the period 1959:1 to 1982:2, the paper adopts an error correction approach that

enables the estimation of a dynamic model of second-hand house prices, which in turn, is

solved to yield a static equation. With regard to the latter, the empirical results find that the

loan to income ratio, real income per household, the interest rate and the rate of inflation

constitute the long run determinants of the average house price to household income ratio.

In terms of the dynamics, the estimated specification relates the change in the dependant

variable to the lagged change in second-hand house prices, the change in real personal

disposable income, an error correction term defined as the ratio of borrowing to own equity,

the ratio of real personal disposable income to the stock of housing, retail prices, real lending

and levels and differences of the interest rate. With the exception of the interest rate, all the

variables are expressed as logs. In addition, the coefficients are correctly signed, significant

and explain some 78% of the change in second-hand house prices.

3 For a detailed overview of UK housing market studies, see Meen (I 993).
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A particularly interesting feature of the above specification is the inclusion of a cubic price

difference term, which allows for a non-linear response on the part of house prices to excess

demand. While the inclusion of this term is valid in so far as its coefficient is significant,

Hendry (1984) asserts that ’in a sense, the cubic transformation is too extreme: for

IAlph] < 0.1, the effect of the cubic term is trivial, whereas it dominates for IA~phl > 0.3’.

Ter~isvirta (1998) re-estimates the dynamic equation for house prices set out in Hendry

(1984) using a smooth transition regression (STR) model. The objective in doing so is to

determine if an improved specification can be achieved using this specific non-linear

technique. The author concludes that this is indeed the case, stating that the estimated STR

model "contributes to the general understanding of the mechanism generating UK house price

expectations during 1960-1981’ ( Ter~isvirta, 1998).

Similar to Hendry (1984), Giussani and Hadjimatheou (1990) model the static and dynamic

determinants of second-hand house prices in the United Kingdom. For the sample period

1961:1 to 1988:2, the empirical results suggest a long run relationship between the log of

second-hand house prices and the log of the number of households, the log of real personal

disposable income per capita, the log of new construction costs, the rental rate and the log of

the housing stock. The potentially important role of land is also referred to, but due to a lack

of data on costs and availability, is not modelled. The resultant coefficients all bear the

expected sign and are statistically significant. Moreover, on the basis of the Dickey Fuller and

Cointegrating Regression Durbin-Watson (CRDW) tests, the residuals of the estimated long

run equation are found to be stationary, implying that the above variables are in fact

cointegrated. While valid, one drawback of the Engle-Granger approach adopted in this paper

is the difficultly in testing for rank. This implies that the number of cointegrating relations

must be known a priori, which is not always the case.
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The associated short run model seeks to relate the change in logged second-hand house prices

to changes in, inter alia, the log of second-hand house prices squared and cubed, the log of

real personal disposable income per capita, the log of the stock of mortgages, the log of retail

prices, the log of new construction costs, the log of net advances of mortgages and the rental

rate. The lagged residuals of the estimated long run equation are also included as an error

correction term. This term is negatively signed implying the gradual elimination of any

deviations from the equilibrium house price relation. Overall, the coefficients of the dynamic

model are significant and signed as expected a priori.

Lastly, note that the presence of the squared and cubic terms in the short run specification

gives rise to a non-linear relationship between current and lagged house price changes. The

nature of this relationship is illustrated by Giussani and Hadjimatheou (1990) who, taking the

range of values for Aph, from their sample as the starting point, show that ’for values in the

range between 0 and O. 15, the relationship is positive, ie. increases in house prices will trigger

expectations of even higher prices. For values outside this range, that is negative and larger

than O. 15, the relationship is negative’.

In contrast to the Engle-Granger methodology adopted by Giussani and Hadjimatheou (1990),

Drake (1993) models UK house prices using the Johansen cointegration technique. Over the

period 1981:1 to 1990: 1, the findings identify a long run equilibrium relation between logged

house prices and the log of real personal disposable income, the building society mortgage

interest rate, the log of private sector housing starts and a dummy variable. The latter is

designed to capture the impact on house prices of the 1988 Budget announcement that dual

tax relief on mortgage borrowing would end later that year. The coefficients of the estimated

relation are all correctly signed.

Interestingly, changes in income and the interest rate variable do not enter the preferred

dynamic specification. Conversely, the error correction term, which is constructed as the
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lagged residuals of the cointegrating vector, enters significantly and bearing a negative sign as

anticipated.

However, the use of the Johansen technique may not be appropriate in this case given the very

small size of the sample. As Juselius (forthcoming) notes ’many simulation studies have

demonstrated that the asymptotic distribution [of the Trace statistic] can be a poor

approximation to the true distribution when the sample size is small resulting in substantial

size and power distortions’4.

Finally, Salo (1994) presents two models of the Finnish housing market over the period 1960

to 1988. The first is a standard demand model based on slow adjustment, while the second

takes the form of a simultaneous model of demand and supply. Particularly noteworthy are

the inclusion of an explicit land variable and the adoption of an inter-temporal focus when

developing the supply-side equation. In this respect, the paper assumes that the firm’s

production decision depends not only on current variables such as the real price of the

existing stock, construction costs and an index of the price of building lots, but also on

expectations concerning the future market situation5. Reflecting the fact that all dwellings

may not necessarily be sold in the period in which they are produced, a variable measuring

the expected cost of unsold production is incorporated into the model. In addition,

technological development is captured by the inclusion of a trend.

The empirical results indicate that the coefficients of the estimated supply equation are for the

most part significant and signed as expected a priori. Specifically, current house prices and

technology play a positive role in influencing production, whereas the price of building lots is

found to negatively impact on the decision to supply housing. On the other hand, the t value

4 [ ] parenthesis inserted.
5 Note that in the presence of a binding constraint for building lots, the production decision would

depend on the availability rather than on the price of such lots (Salo, 1994).
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for the variable capturing future market conditions is somewhat on the low side and the index

of construction costs proves incorrectly signed throughout.

3.5. Conclusion

In keeping with the focus of the present research, this chapter sought to provide an overview

of the findings of Irish and international studies that have adopted a time series,

macroeconomic approach to modelling housing. The aim in doing so was to facilitate the

identification of appropriate factors for inclusion in the empirical models of the Dublin

marketplace presented in later chapters. To this end, particular attention was paid to the nature

of the explanatory variables put forward by the selected studies and to the validity of the

modelling techniques used.

Overall, the literature appears to be in agreement as to the key factors at play in the housing

market. Allowing for definitional variations, these broadly encompass price, income, interest

rates, credit, building costs, the existing housing stock, demographics, land and government

interventionist policies. As anticipated, the empirical findings in this respect also fit well with

a priori theoretical expectations as to the determinants of housing demand, supply and price

inflation.

As such, the above variables can be viewed as representing a sound starting point when

modelling the Dublin housing market. However, it should be noted that of these potential

determinants, credit is typically only relevant if explicit rationing is in place, while the

shortage of zoned and serviced land in the Dublin area implies that availability rather than

price is the appropriate land measure.
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Chapter 4:

Data Description

4.1. Introduction

The aim of this chapter is to provide a detailed description of the data series that underlie the

empirical sections of the study. Such an aim is motivated by the fact that it was necessary to

refine much of the available data, the consequent result being a need to explain how the

individual series are constructed.

The chapter is organised as follows: Section 4.2 defines the variables, data sources and based

on a graphical analysis, discusses their time series properties~. Section 4.3 briefly concludes.

4.2. Data Description

The data needed to construct an econometric model of the housing market is reasonably

extensive in nature. In identifying potential data series, Chapter 3’s analysis of existing

housing literature proved useful as it facilitated the identification of a range of variables,

which in terms of precedents, may act as key determinants of demand, supply and price

inflation in the Dublin housing market. A priori expectations in this respect posit that

variables such as income, mortgage interest rates, building costs, the existing housing stock,

demographics, land availability and government interventionist policies all play an important

role in the market, and therefore, should be considered when modelling housing. The precise

These properties are formally tested in Chapter 6.
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definition of the variables used in this study, along with the time series characteristics of the

data, are outlined below for the sample period 1980 quarter one to 2000 quarter four. Note

that most variables are transformed into logs. This allows for the coefficient estimates

presented in later chapters to be interpreted as elasticities. For variables expressed in levels,

the corresponding coefficients are interpretable as semi-elasticities.

4.2.1. New House Prices (nph)

The variable nph measures the average price of new houses in Dublin in real terms. Nominal

house price data is available on a quarterly basis from the ’Housing Statistics Bulletin’

published by the Department of the Environment, Heritage and Local Government. These

figures are in turn derived from information on loan approvals supplied by the main mortgage

lenders. The data is not mix adjusted and therefore does not account for heterogeneity across

new completions.

Figure 4.1: Log of New House Prices expressed in Levels and First Differences
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While a mix adjusted series, beginning in 1996, is published by the Economic and Social

Research Institute and Permanent TSB, it is not used in the empirical analysis as the number
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of observations available is considered too small for making sensible inference in a long run

framework2. In converting house prices from nominal to real terms, the consumer price index

(sourced from the Central Statistics Office) is used as the deflator.

With respect to the time series properties of the new house price variable, it can be seen from

Figure 4.1 that prices are non-stationary in levels but are potentially just stationary in first

differences.

Lastly, the interaction between new and second-hand house prices over the sample period was

examined. The results of a standard Granger causality test indicate that movements in new

house prices caused movements in second-hand house prices, but not vice versa3. As such,

second-hand prices can be disregarded from the present analysis of the Dublin housing

market.

4.2.2. Income (inc)

Ideally, permanent income should be modelled given that a household / individual’s house

purchase decision making process tends to be related to lifetime earnings along the lines of

Friedman’s Permanent Income and Modigliani and Ando’s Life Cycle Hypotheses4. However,

as this variable is unobservable in practice, a second best outcome is needed. Measuring

income in terms of real personal disposable income is widely regarded as the most

representative proxy of permanent income and this is the approach adopted here.

2 For the period where both are available, the mix adjusted and unadjusted house price series are found

to be highly correlated (coefficient = 0.99).
3 Roche (2003) reports a similar finding for the national market. For details of the Granger causality

test, see Granger (1969).
4 These theories are based on the proposition that the demand for consumer spending is determined by

average long run income rather than by current earnings. For further details please refer to Friedman
(1957) and Modigliani and Ando (1963).
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In defining the income variable as above, it was necessary to overcome a number of data

constraints. Firstly, nominal personal disposable income per capita figures are only available

on a regional basis for the years 1991-1999 in the CSO’s "Households, Incomes, Regions and

Counties 1991-1999’ report. As such, there is a need for approximation. Annual total personal

disposable income figures are given for the State as a whole in the ’National Income and

Expenditure Accounts’ published by the Central Statistics Office for the entire sample period

1980-2000. In addition, national and Dublin population data is available from the CSO’s

’Labour Force Survey’ and ’Population and Migration Estimates’ for 1983-2000. National

figures for the preceding three years are obtainable from the statistical databank at

www.cso.ie but unfortunately, population figures for Dublin are not available. Combining

these various data series, it is possible to construct a measure of real personal disposable

income per capita at a national level by taking total personal disposable income, dividing by

population and then deflating by the consumer price index.

When constructing a Dublin income measure, real personal disposable income per capita

figures are assumed to be 115.4% of the national figure for each year. This assumption is

based on an analysis of the State and Dublin figures for the 1990s as presented in the

’Households, Incomes, Regions and Counties 1991-1999’ report, and is in line with the view

of the Economic and Social Research Institute5. Figures 4.2 and 4.3 provide a graphical

overview of this analysis. Expressing Dublin figures as a percentage of national figures over

the period 1991-1999, it is clear that they are moving together at a stable rate and that the

growth rate is relatively constant. There is no reason to expect that the relationship between

the series would have differed during the 1980s.

5 It would of course be preferable to have a data series measuring income in the Dublin region - be it

personal disposable income, household income or Gross National Product - for the entire sample
period. Unfortunately, no such series is available.

34



Figure 4.2: Real Personal Disposable Income per Capita
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A second issue that arises when working with income data relates to its frequency. The

empirical models of later chapters are expressed in quarterly terms, but as income data is

unavailable at this frequency, annual figures were interpolated using the Denton method6. The

seasonally adjusted volume of retail sales index, published by the Central Statistics Office,

acted as the interpolation series used to obtain quarterly values.

From Figure 4.4, it can be seen that the final income variable is non-stationary in levels and

contains both a trending component and possibly a level shift in the data about 1990. The

variable is however stationary when differences are taken.

6 See http://www.imf.org/external/pubs/fi/qna/2OOO/Textbook/index.htm for further details.
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Figure 4.4: Log of Income expressed in Levels and First Differences
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4.2.3. Mortgage Interest Rates (MR)

The nominal mortgage interest rate variable refers to the representative rate of building

society mortgage loans at the end of each period. The data was transformed from monthly into

quarterly values by simple averaging and is available in its raw format from the Central

Bank’s ’Quarterly Bulletin’ and the ’Economic Series’ published by the CSO.

Figure 4.5: Mortgage Interest Rates expressed in Levels and First Differences
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Regarding the time series properties of the variable, in levels it is non-stationary with Figure

4.5 suggesting that a transitory shock (namely the exchange rate mechanism crisis) occurred

at the end of 1992. This shock is also evident when looking at the data in first differences.

While mortgage interest rates are now integrated of order one, the fact that there is a sudden

drop in the graph followed quickly by a return to the previous level implies that the shock was

not permanent.

4.2.4. Building Costs (bc)

The variable bc is defined as the nationwide index of building costs taken from the ’Housing

Statistics Bulletin’ published by the Department of the Environment, Heritage and Local

Government. A separate index for the Dublin region is not available. Monthly figures are

averaged to obtain quarterly values and the series is then deflated by the consumer price index

to convert it into real termsv. This index relates solely to material and labour costs - these

normally do not exceed 65% of the total price of a house. Other costs facing suppliers in the

construction industry, such as land, are not included.

Figure 4.6: Log of Building Costs expressed in Levels and First Differences
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7 As the base quarter for both indices is set at 1990:1 -- 100, it is possible to divide one by the other.
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From the graphical analysis presented in Figure 4.6, it can be seen that building costs are non-

stationary in levels but stationary when differenced. There is also evidence of a trend and a

level shift in the data. This shift is reflected in the levels graph by the movement to a higher

path in 1985 and in the corresponding blip in the graph of the first differences. In addition, a

transitory shock occurs in 1981 and an outlier is clearly evident for the final observation of

the bc variable. The latter may be explainable by the fact that the index, since October 2000,

includes the first phase of a review of rates of pay and grading structures for the construction

industry, and, the first phase increase under the ’Programme for Prosperity and Fairness’

(’Housing Statistics Bulletin’, DELG).

4.2.5. Private Housing Stock (phs)

The private housing stock variable is compiled using data on private house completions and

the sale of Local Authority houses. As the starting point, the stock of private housing in

Dublin in 1971 is assumed to be 5% greater than the number of households in the region as

given by the 1971 ’Census of Population’s. The stock is then cumulated applying the

perpetual inventory methodology which is formalised as followsg:

Ht--(1-8)Ht_~ + Ct-[- LAt (4.1)

where:

Ht

8

= private housing stock at time t;

= the rate of depreciation of the existing stock (assumed to be 0.125% per quarter1°);

Ht_~ = private housing stock at time t- l ;

8 This assumption is in line with the assumptions that underlie the Economic and Social Research

Institute’s construction of a national housing stock series. This series is available on an annual basis
from their ’Macroeconomic Database’.
9 Census 2006 provides a figure for the total housing stock in Dublin. If such figures were available for

earlier Census years, it would be possible to take them as a reference point, and to calculate the stock
for each intercensal period by subtracting newly constructed dwellings and making some allowance for
depreciation of the existing stock over the relevant period (See Fitzgerald, 2005). However, data on the
stock of housing in Dublin is not available prior to 2006.
~0 Again, this assumption is consistent with the approach adopted by the Economic and Social Research

Institute, which assumes a depreciation rate of 0.5% per annum for the above national housing stock
series.
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Ct = completions of new private sector houses at time t;

LAt = sale / transfer of Local Authority houses at time t.

Data on the number of private completions and sales / transfers of Local Authority houses in

the Dublin region is sourced from the Department of the Environment, Heritage and Local

Government’s "Housing Statistics Bulletin’. While the former series is compiled on a

quarterly basis for the entire sample period, data for the latter is only available in this format

from 1993 onwards. As such, annual figures prior to 1993 are simply divided by four to

obtain quarterly values.

Figure 4.7: Log of Private Housing Stock expressed in Levels and First Differences
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Figure 4.7 provides a graphical illustration of the constructed private housing stock variable.

In levels, the data exhibits a strong trending component and is obviously non-stationary. It is

less clear if this finding of non-stationarity carries over to the first difference of the variable.
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4.2.6. Household Formation (h)�)

The variable hfmeasures new household formation. Ideally, this series should be constructed

as the change in the number of households but while the Central Statistics Office’s ’Labour

Force Survey’ details household numbers on an annual basis, data for Dublin was not

gathered prior to 1988. It is therefore necessary to proxy household formation and following

Hadjimatheou (1976); the seasonally adjusted number of marriages is used. In justifying this

choice of proxy, note that marriages undoubtedly constituted the largest component of

household fonnation throughout the 1980s and early 1990s. This implies that the proxy is

reasonable for most of the sample period.

Quarterly data on the number of registered marriages is sourced from the ’Quarterly Report

on Vital Statistics’ published by the Department of Health in association with the Central

Statistics Office. Seasonal adjustment is undertaken in Eviews 4.1 and applies the US Census

Bureau’s X12 method. An overview of the final series is presented in Figure 4.8. From the

graph, the hfvariable appears to be non-stationary in levels but stationary in first differences.

There is also some weak evidence of possible transitory shocks.

Figure 4.8: Log of Household Formation expressed in Levels and First Differences
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Finally, with respect to the construction of a demographic variable, alternative measures to

household formation that were considered in the course of this study included the number of

individuals in Dublin of house buying age in absolute terms, along with these individuals as a

percentage of total Dublin population. Annual figures for these potential series are available

from the CSO’s ’Labour Force Survey’ and ’Population and Migration Estimates’. However,

as discussed in Section 4.2.2, population data is not available for Dublin for the years 1980-

1982. Moreover, while the 1981 ’Census of Population’ does contain such data for Dublin,

the age classifications differ from those adopted by other data sources, and thus, a consistent

series cannot be constructed. Overall, the range of difficulties encountered meant that it

proved impossible to capture demographic effects on housing using any series other than that

of the proxy for new household formation.

4.2.7. Land Stock (ls)

The Is variable represents an attempt to quantify the stock of land available for housing in

Dublin over the sample period 1980-2000. The term ’available for housing’ refers to the fact

that the land is both zoned residential and is provided with services such as water and

sewerage. As this information has not been gathered by any state or private organisation prior

to 1997, it was necessary to generate it for inclusion in the study. In doing so, the minutes of

the various Local Authorities’ full council, housing, planning and development committee

meetings were consulted. It should be noted that from 1980-1993, local government in Dublin

was administered by two County Councils

responsible for the city centre area and its

- Dublin City Council, which was mainly

immediate surroundings, and Dublin County

Council which looked after the remainder of the county. However, in 1993, the latter was sub-

divided into three councils, those of Fingal, South Dublin and Dun Laoghaire-Rathdown.

Regarding governance and scope, County Councils have autonomous decision-making

powers with respect to issues of land use zoning and the granting of planning permissions. In

41



addition, each is required by legislation to prepare a Development Plan for its administrative

area on a five yearly basis. The aim of these plans is to set out the proposed nature of

development for the given area for the five-year period in question. Plans must also be

accompanied by a series of maps indicating the zoning objective(s) applicable to individual

areas within the broad administrative area of the Local Authority. Unfbrtunately,

Development Plans do not give a breakdown of the amount of land zoned for a specific

purpose, and as the associated maps are not to scale; it is not possible to obtain a quantifiable

figure for zoned housing land from this source. However, the making of the above Plans

requires a public viewing process of draft versions, the tabling of motions, discussions

amongst elected Council members and finally, the carrying or otherwise of the proposed

motions by the Council and the passing of the Plan. The outcome of the voting process is

recorded at each stage in the minutes of the relevant meeting and thus it is possible to glean

information on land use decisions related to housing from this source.

There are however two drawbacks to the above approach. The first relates to the fact that

occasionally the number of hectares involved in a zoning decision is simply not stated. In this

case, the construction of a land availability variable using data recorded in council minutes

may be somewhat biased. Secondly, it is not possible to reconcile data concerning a decision

to zone a particular plot of land for housing with a later decision to service it. This disparity

arises due to the manner in which the details of initiated serviced schemes are reported - they

tend to be referred to under broad title headings and cover large, loosely defined locations. As

such, it is impossible to isolate out a particular plot of housing land to determine whether it

has been included in a specific service scheme or not.

While the bulk of large-scale zoning / re-zoning decisions are undertaken as part of the

preparation process for the making of the next Development Plan~, land use changes also

~ This process usually includes a review by Council members of the existing Development Plan, along
with the preparation of a draft version of the forthcoming Plan.
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come about as a result of amendments to the existing Plan, Section 4 motions and material

contraventions. The latter two refer to situations whereby planning permission is sought but

the proposed land use in the application is in conflict with the zoning objective(s) for that land

as outlined in the relevant Development Plan. For example, a developer may apply to a Local

Authority for permission to build a residential estate on land that is zoned industrial in that

County Council’s Development Plan. If planning permission is granted in these

circumstances, a material contravention is said to have occurred.

The final decision to grant a planning application that contravenes the existing Development

Plan rests with the elected members of the Council, and is decided by a vote following

discussion and consideration of the views of relevant County Council Departments such as

Planning, Development and Services. These decisions, along with amendments, are recorded

as part of the minutes of Council meetings and therefore, this source can again be exploited to

obtain data needed for the construction of a land availability variable. Note though that the

drawbacks discussed above also apply here.

Overall, it was decided to proceed and measure the availability of housing land in Dublin on

the basis of data sourced from the minutes of the meetings of the various Local Authorities.

Despite the limitations mentioned previously, working with this data represents the sole

means of compiling a sensible land availability series. There is simply no other information

source that quantifies the changing patterns of land usage in Dublin for the sample period

1980-200012.

~2 The Department of the Environment, Heritage and Local Government publishes a series (beginning

in 1999) in its ’Housing Statistics Bulletin’ that details the number of units of zoned serviced land
available on an annual and county basis. Some ad hoc sources that provide one off estimates include
the Bacon 3 Report (Bacon and MacCabe, 2000), which gives an annual figure for available units of
zoned serviced land in Dublin in 1998, the Bacon 1 Report and a joint publication on the part of the
Dublin Local Authorities (Bacon et al, 1998 and Dublin Corporation et al, 1999). The latter two both
provide a figure for 1997.
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The ls series used in the empirical analyses of later chapters is precisely defined as the stock

of zoned housing land. Using the perpetual inventory method~, the chosen base stock is

augmented in each quarter by the net number of hectares newly zoned (mainly in

Development Plan years) and re-zoned (mainly material contraventions and amendments) for

residential purposes. The initial value of the stock

Dublin County Council’s Planning Department in

is taken from a survey carried out by

1977; that quantifies the amount of

privately owned land zoned for housing within the Council’s administrative area at that time.

Unfortunately, Dublin City Council did not carry out a similar survey, though minutes do

refer to the fact that most privately owned housing land within the City’s boundaries had been

fully developed by 1977. Given this, the stock identified by Dublin County Council is

assumed to be representative and as such, it is taken as the starting point of the analysis. With

respect to the practical construction of the flows aspect of the ls variable, the methodology

applied involved noting the size of the plot of land concerned and the month in which a

housing related zoning motion was passed, and subsequently recorded in the various Local

Authorities’ minutes. These figures were then combined to obtain quarterly flow values for

land availability in Dublin as a whole.

Figure 4.9 illustrates the time series properties of the land stock variable. While clearly non-

stationary in levels, the series appears to be stationary when differenced once and to contain a

number of shift effects. These shifts are reflected in the levels graph by the movement to a

higher path about 1981, 1982, 1993 and 1998 and also in the corresponding blips in the graph

of the first differences. In fact, both shifts and blips correspond perfectly to the years in which

the different Dublin Local Authorities authorised massive residential zoning / re-zoning as

part of the making of their respective Development Plans. The 1981-1982 shift captures the

changing land usage that materialised in the run up to Dublin County Council’s 1983 Plan,

with the 1993 shift measuring change under its’ 1993 Plan. The activity around 1998-1999

~3 Please refer back to Section 4.2.5 for a formal definition of this methodology.
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corresponds to the review processes and the making of Development Plans on the part of the

new Local Authorities of Fingal, South Dublin and Dun Laoghaire-Rathdown.

Figure 4.9: Log of Land Stock expressed in Levels and First Differences
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4.2.8. Government Policies (CGT, dumrpt, dumib and dums2327)

Government intervention in the residential property market may take many forms. In an Irish

context, intervention in the new housing market has ranged over the years from property and

capital gains taxation to investment incentives such as ’Section 23/27’ relief and the tax

deductibility of interest on borrowings14. The following discussion considers each of these

policies in turn while Figures 4.10 and 4.11 present a graphical overview of the constructed

series.

In April 1983, a property tax chargeable on the market value of residential property owned

and occupied on April 5 each year, came into being. The tax was charged at a rate of 1.5% on

14 Additionally, on foot of recommendations made in the Bacon 3 Report (Bacon and MacCabe, 2000),

an anti-speculative tax was proposed as part of the measures in the ’Finance (No.2) Bill 2000’. This tax
was aimed at reducing speculation in the marketplace and was due to take a self-assessment format
lasting three years and to apply to residential property in the State that was not the principal private
residence of the new owner. However, changes to the Bill announced in February 2001 reversed the
above decision and the proposed anti-speculative tax did not go ahead. Therefore, it is not included as
part of the study’s empirical analysis.
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the excess of the market value of the property over an exemption limit, provided that the

income of the household also exceeded an income exemption limit. The abolition of the tax

was announced in December 1996 with effect from April 1997. With regard to the empirical

analysis, residential property taxation is modelled as a dummy variable set equal to one for

each quarter in which the tax applied and zero otherwise.

Figure 4.10: Capital Gains Tax Rates expressed in Levels and First Differences
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Capital gains taxes on the other hand are not assigned dummy values. Rather, this variable

measures the rate of tax payable on the disposal of non-principal private residencesIS. Capital

gains taxation was levied at a single rate of 30% over the period 1980 to March 1982 whereas

a rate of 40% applied from April 1992 up to the beginning of December 1997, when it was

replaced by a lower one of 20%. For the intervening period (April 1982 to March 1992), the

tax was levied at various rates ranging from 30% to 60% depending on the length of time the

asset was owned. Given this, the empirical analysis takes an average of the applicable rates as

an approximation of the typical rate payable at any point during these years.

~5 For the period covered by this study, capital gains were indexed to the consumer price index.
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With respect to investment incentives, Section 23 of the ’Finance Act 1981’ enacted the first

tax relief scheme linked to the provision of rented residential accommodation. This scheme

allowed for expenditure incurred in the course of constructing, converting or refurbishing

rented residential accommodation to be offset in full against all rental income. The initial

scheme, which was due to end in March 1984, was extended for a further three years but

modified so that costs could only be offset against rents from the property in respect of which

the expenditure was incurred. The scheme subsequently lapsed for a short while before being

reintroduced in its original format by Section 27 of the ’Finance Act 1988’. From an

investment perspective, the greater the offsetting potential of ’Section 23/27’ relief the more

beneficial the scheme and as such, the associated dummy variable is set equal to one for the

years in which the relief covered all rental income and takes a value of zero when it either did

not apply, or related solely to rents from the residential property in question.

Figure 4.11: Intervention Dummy Variables expressed in Levels
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Finally, a dummy is constructed to capture the effect of interest relief on borrowings. This

incentive allowed for the interest payable on loans used to purchase residential

accommodation for rental purposes, to be written off in full when calculating tax liabilities.

On the basis of recommendations outlined in the first Bacon Report (Bacon et al, 1998), the
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incentive was abolished ill April 1998. The dummy variable is thus assigned a value of zero

for sample observations post quarter two of 1998 and one for the earlier periods in which tax

deductibility was in place.

Data relating to the various taxes and incentives discussed in this section is available from

www.irishstatutebook.ie and www.revenue.ie.

4.2.9. Consunwr Price Index (CPI)

In the context of this study, the consumer price index acts as the deflating mechanism used to

convert variables from nominal into real terms. The index, which represents the value of a

basket of typical consumer goods and services, is available from the Central Statistics Office

at State level16 . Averages of monthly figures are taken to obtain quarterly values and the base

quarter is set at 1990:1 = 100.

Figure 4.12: Log of Consumer Price Index expressed in Levels and First Differences
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16 A ’Dublin and Outside of Dublin’ breakdown of prices is not available prior to 2004. Of the 73 items

included in the most recent analysis (November 2006), average prices in Dublin were higher for 39
items and lower for 34.
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Regarding time series properties, Figure 4. i 2 shows that the data is trending upwards over the

sample period 1980-2000 and appears to be potentially stationary in differences. Although it

is not entirely clear from the graphs, there is some weak evidence that a level shift occurs in

the index about 1988.

4.3. Conclusion

This chapter sought to provide a detailed description of the data series that underlie the

empirical sections of the study. In doing so, source materials and refinement techniques were

discussed, along with the time series properties of the constructed variables. Overall findings

indicate considerable limitations with respect to the available data. In terms of scope, there are

a number of gaps and a general failure to adequately disaggregate data on a Dublin regional

basis. In addition, the annual frequency of many series results in the extensive use of

interpolation procedures. However, as is evident from the discussion in Section 4.2, the study

has largely overcome the above limitations to compile a comprehensive dataset of housing

market variables for the period 1980-2000.
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Chapter 5:

Methodology

5.1. Introduction

This chapter provides a detailed overview of the modelling techniques applied in the course of

the study’s empirical analyses of the Dublin housing market. As the estimation methods

adopted are reasonably technical,

statistical and mathematical theory

a thorough discussion of the underlying econometric,

is warranted. Accordingly, the following sections are

concerned with describing the key features of the chosen methodologies from a theoretical

perspective. Intuitive explanations and issues associated with implementation from a practical

viewpoint are typically reserved for discussion, as they arise, in later chapters.

The chapter is organised as follows: Section 5.2 describes the cointegrating technique that

underlies the long run analysis of the Dublin housing market while Appendix 5A and Section

5.3 respectively, consider the ordinary least squares and smooth transition regression models

estimated as part of the adjustment analysis. The regime switching approach adopted when

testing for the presence of a bubble component in the marketplace is outlined in Section 5.4.

Section 5.5 concludes.

5.2. Cointegration Methodology

The concept of cointegration dates back to the 1980s and a number of influential papers

published at that time including Granger (1981), Granger and Weiss (1983), Engle and
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Granger (1987), Stock (1987), Johansen and Juselius (1990) and Johansen (1988 and 1991).

Originating from the important finding that macroeconomic time series may contain unit

roots, which in turn spurred the theoretical development of non-stationary time series

analysis; the main idea underlying cointegration theory is the realisation that a set of non-

stationary variables may be linearly related in a stationary manner. If such a linear

combination exists, the non-stationary series are cointegrated. Another way of expressing this

is to say that if two or several variables have common stochastic (or deterministic) trends,

they will exhibit a tendency to move together. Moreover, from an economic viewpoint, a

cointegrating vector can be interpreted as an equilibrium relationship.

With respect to the empirical specification of a housing model for Dublin, the decision to test

for possible cointegration amongst the chosen variables followed naturally from the non-

stationary nature of the series, and from reasonable a priori expectations that long run housing

demand, supply and price relationships should be identifiable from the data1. As regards

actual estimation of the model, the Johansen cointegration technique is applied in preference

to the more traditional Engle-Granger methodology. The reasoning that underlies this choice

is presented below. The remainder of the section discusses representation theory and

inference in Johansen’s cointegrated vector autoregressive model.

5.2.1. Johansen versus Engle-Granger Cointegration Analysis

Table 5.1 overleaf outlines the most popular methodologies employed in testing for possible

cointegration amongst a set of non-stationary variables, namely those of Engle and Granger

(1987) and Johansen (1995). The advantages and disadvantages of these contrasting

techniques are also noted. Overall, the Johansen VAR analysis allows for greater flexibility

Table 6.1 reports the results of Dickey-Fuller and Augmented-Dickey Fuller tests for unit roots in the
housing dataset. These tests fail to reject the null hypothesis of a unit root when the series are expressed
in levels. However, once the data is differenced, the tests reject the null for each of the variables.
Chapter 4’s graphical analysis of the time series properties of the data also serves to highlight the non-
stationary nature of these series.
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and contains a number of desirable properties that are lacking in the Engle-Granger approach.

As such, the empirical model outlined in Chapter 6 of this study is estimated on the basis of

the former.

Table 5.1: Cointegration Testing - A Comparison of Methods

Let (y,, x~., x:.) be the dataset to be investigated for cointe~;rating properties:

Engle-Granger Regression

(1)
Regress y. on x. and x2t and define the residuals:

ecmt = y,- j~l Xlt- ~2 X2t - ]~0

(2)

Using some parametric or non-parametric method,
test if the ecmt process is stationary.

(3)

Take ,8, as given and estimate the model:

Ayt = Otecmt_l + "}tlmXlt q- ~2Ax2t q- lagged A + at

The usual chi squared inference can be made on
the remaining parameters.

Characteristics:
¯ Simple regression analysis;

¯ /3 is super consistent for 13;

Inference on 13~ and 132 is complicated by
the presence of nuisance parameters;
In a multivariate setting, the models
corresponding to r -- 1, 2, 3 are not nested
in each other and it is difficult to test for
rank;
xjt and x2t should not cointegrate.

Johansen VAR Analysis2

(1)
Regress Xt = (Yt, xu. X2t)p on its lags to obtain
white noise errors:

VAR: Xt = ]-IlXt_l + I-I2Xt.2 + ~t

VECM: AXt = I-IXt.1 + F1AXt.I +8t

(2)
Using reduced rank regression, test the rank of
FI by estimating the model:

Hr: AXt = (x13’Xt.I + FlmXt.I + Gt

Next, determine the cointegrating rank by
applying the likelihood ratio test.

(3)

For fixed fl, estimate the model:

AXt = o~ j~ ’Xt.I + FiAXt.I + 8t

Chi squared inference can be made on c~ and F.

Characteristics:
¯ Usual inference on 13;
¯ Simultaneous modelling of short and long

run effects;
¯ Models are nested and it is possible to test

for rank;
¯ A combination of I(1 ) and I(0) variables

can be included;
¯ The model needs to describe variation in

the data which may prove problematic.

2 It is important to note that the Johansen approach allows for long run effects and short term

adjustment patterns to be modelled simultaneously. The sequential manner in which the technique is
presented here is merely for convenience.
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5.2.2. Johansen Cointegration Analysis ~

The Johansen approach to the estimation of full system models containing cointegrated

variables is based on estimating a vector autoregressive model using maximum likelihood.

The use of full information maximum likelihood (FIML) to estimate the linear space spanned

by the cointegrating vectors is advantageous for a number of reasons. Firstly, it overcomes the

need to impose arbitrary normalisations to uniquely define cointegrating vectors, and

secondly, it is possible to test for rank as opposed to forming ex-ante assumptions regarding

the number of cointegrating relations (Hamilton, 1994).

As the starting point, consider an unrestricted vector autoregressive model (VAR) expressed

in levels"

Xt = l-IlXt_1 -Jr- .... -{- 1-[kXt_k h- (I)Dt +Et (t= 1, .... , T) (5.1)

where the errors ~t are independent Gaussian with mean zero and variance f2. The

deterministic term Dt is a vector of non-stochastic variables and can contain a constant, a

linear trend, seasonal dummies, intervention dummies and so on, as desired. The initial values

X_k+~, .... , X0 are fixed while the parameters HI, .... ,1-Ik, ¯ and f) are unrestricted. The

individual variables in Xt are assumed to be integrated of order one at most, but could be

stationary.

Now define a stacked vector Z, of dimension pk+m as Z’t = (X’t_~, .... , X’t-k, D’t) and a matrix

B’ of dimension p x (pk+m) as B’ = (FIl, .... ,1-Ik, ~) for the corresponding parameters. On the

basis of this stacking, model (5.1) may be rewritten as:

X, = B’Zt +e, (t = 1, .... , T) (5.2)

In estimating the unrestricted VAR, the ordinary least squares estimators are derived as

3 See Johansen (1995) for a more thorough treatment of the models and concepts presented in this

section of the chapter.

53



maximum likelihood estimators, with the Gaussian errors facilitating an analysis of the log

likelihood function as follows:

)/’

IogL(B,f2) =- ’A Tlog(2n) - 1A Tloglf2[ - ½ ~ (Xt-B’Z0’ U2-’ (X,-B’Zd
t=l

(5.3)

In turn, this analysis lends itself to the formulation of equations for estimating B and the

A A

regression estimators Band f2. These are presented below in expressions (5.4), (5.5) and

(5.6) respectively. The maximal value (excluding the constant term) is given by (5.7).

ZtZ’, (5.4)

A T T -I
9= ( = s:, (5.5)

t=t t=l

A ]’ A A
-1

C2 = T-~ Z (X,- B Zt) (X,- B Zt)’ = s~: = ,s x- sx- s :- s -_x
t=l

(5.6)

A
-2IT

Lmax =1~1 (5.7)

As inference is based on asymptotic results, the asymptotic properties of the estimators are

detailed in the appendix to this chapter for the case of a stationary process.

While the above unrestricted vector autoregressive model with k lags is easily fitted, the

validity of the derived procedures requires the satisfaction of a number of assumptions;

namely that the linear conditional mean is explained by past observations and the

deterministic trends, the conditional variance is constant and the errors are independent and

normal. Though not all of these assumptions are crucial, it is important to test for model

misspecification. As such, the statistical formulae underlying the tests applied for this purpose

in Chapter 6, along with those relating to model selection, are presented in Table 5.24.

4 Misspecification testing was carried out using CATS 1.0 and Givewin 2.20. For further details as to

how these tests are implemented in the above software programmes, refer respectively to Hansen and
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Table 5.2: VAR Model Selection and Misspecification Tests - Statistical Formulae

Residual Correlations:

Correlation Coefficient

~,, o-;, (i : 1, ...., p)

Information Criteria:

Likelihood Ratio Test for Model Reduction

Hk is the null hypothesis that k lags are appropriate:
Hk+~ is the alternative that the VAR needs k+llags:
-21nQ is asymptotically distributed as chi squared with
p squared degrees of freedom.

Schwartz Information Criteria (SIC)

Hannan-Quinn (HQ)

The above tests are based on the maximal value of
the likelihood function. They each impose a different
penalty factor associated with the increase in the

model’s parameters as a result of adding more lags.
The decision criteria involves calculating the tests
for various lag lengths k and choosing the value ofk
that corresponds to the smallest test statistic.

A

-21nQ(Hk/Hk+t) = T0nl ~2~ I - lnl ~÷, l)

’ lnT
lnl ~ I + ( P: k)--

7"

A

lnl ~ I + ( p~ k)

Residual Autocorrelation:

LM Test

The LM test for first and fourth order autocorrelation is

calculated using an auxiliary regression as outlined in
Godfrey (1988). Wiiks" ratio test with a small sample
correction is then applied (Anderson, 1984 and Rao,

1973):
The test is asymptotically distributed as chi squared
with p degrees of freedom.

AR Test

See Table 5A.2 for a description of this test.

I//LM(j) =-(T-p(k+l)-’A) In I ~(j) l
A

If21

(j = 1,4)

Juselius (1995) and Doornik and Hendry (2001). Table 5.2 reports additional references when
appropriate.
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Table 5.2 (contd): VAR Model Selection and Misspecification Tests - Statistical Formulae

Residual Heteroscedasticity:

ARCH Test
(T-k) R2

where R2 is taken from the auxiliary regression

A2 k A2

0% : y0 + L 7J C,., _, + error
/:1

Normality Tests:

Multivariate Test

The test is approximately chi squared distributed with
2p degrees of freedom and includes a small sample
correction;
See Doornik and Hansen (1994) and Shenton and
Bowman (1977) for further details.

Univariate Jarque-Bera Test

This test is asymptotically chi squared distributed with
2 degrees of freedom.

T(skewness)2 / 6+ T(kurtosis-3)2 / 24

where:

A                ]"

Skewness (g’,,) = TJZ    ’
t:l

\~,)

Kurtosis ( g’,., ) = T-1Z

’-~ \cr, j

Parameter Constancy:

Trace Test

Refer to equation (5.26) for further details.

P

-21ogQ(H(r)lH(p)) : -T Z log(l- 2, )
i=r+l

Test of Constancy of Beta A

-21n(Q(HI3~ I fl,., )) =
/" A m

t, Z (ln( 1- p,.,,,, ) - ln( 1- 2, ,,,, ))
t=l

The hypothesis tested is HI3"r: ]~ e sp( ,/3 ,,)),

t~ = (To,. .... T), in which ,8 is a known matrix;

t l = (To, .... , T)

where p,.,,,, are the solutions of:
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Table 5.2 (contd): VAR Model Selection and Misspecification Tests - Statistical Formulae

The test statistic is asymptotically distributed as chi
squared with (pl-r)r degrees of freedom (Hansen and
Johansen, 1993).

Log Likelihood Value

s,,,,,s,,,,,, s ’00,,,, so,,,,  l:0

A

and ,�,(r) are the r largest eigenvalues in the
unrestricted eigenvalue problem:

-1
I)~S,,,,,,- S,,,,,,, S 00.(11) S01,,,, I: 0

-2/h In ( ~ (r)) :

( r )In S, (t,) +Y~ln(l-,~ (t~))
t=|

tl =(To,. .... ,T)

with the 95% confidence bound calculated
as follows:

+ 2~p/t,

The next step in the analysis is to move from consideration of the unrestricted VAR model to

consideration of the cointegrated version of such a model. However, before doing so, some

basic definitions and concepts are needed5.

Definition 5.1." A stochastic process Xt is said to be integrated of order d, I(d), d = 1,2, .... if

Ad(Xt-E(Xt)) is I(0).

Definition 5.2: Let Xt be an I(1) process. Then Xt is cointegrated with the cointegrating vector

[3i� 0 if [3’Xt can be made stationary by a suitable choice of its initial distribution. The

cointegrating rank refers to the number of linearly independent cointegrating relations while

the space spanned by these relations is known as the cointegrating space.

5 See Johansen (1995) for examples and a more detailed discussion of these definitions.
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Definition 5.3: The l(d) process Xt is said to be cointegrated Cl(d,b) with cointegrating vector

13i ~: 0 if [3iXt is l(d-b) where b = 1, .... , d and d --- 1, ....

Using the above definitions as building blocks, consider again the p dimensional process X,

set out in equation (5.1). Reparametrising the model in so-called error correction form gives

the following expression:

k I

AXt-- I-IXt-1 + Z FiAXt-i + (I)Dt +Et (t = 1, .... , T)
i=1

(5.8)

where FI =’~-’~i~, Hi- I, with the short-term dynamics F, and V defined as Vi =- --,~-’k+, rlj and

F = I- ~--’~i~.’ FI (Johansen, 1995). Furthermore, the characteristic polynominal for the process

X, in (5.8) may be written as6:

k-I

A(z) = (I-z)/- Flz- Z Fi(1-z)zi (5.9)

In describing a non-stationary I(1) process, that is allowing for unit roots, A(1) = -H must be

singular. Such a singular matrix of rank r has the representation H = ~[3’ for some p x r

matrices ~ and [3. For illustrative purposes, Johansen (1995) suggests letting [3’ denote r

linearly independent rows of H, with a denoting the coefficients that are necessary in order to

express the rows of H as linear combinations of the rows [3’. The rank condition H = ~[3’ then

becomes clear. Decomposing the H matrix within the autoregressive framework, [3 determines

the common long run relations while ~ reflects the loadings. More formally, the ’Granger

Representation Theorem’ states that:

6 The reciprocal values of the roots of the characteristic polynominal are referred to as the eigenvalues

of the companion matrix. The cointegrated VAR model discussed here requires that these eigenvalues
lie inside or on the unit circle. Values outside the unit circle correspond to explosive processes and in
such cases, the I(l) model provides a poor description of the data.
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Theorem 5.1: (Engle and Granger, 1987) If IA(z)l = 0 implies that JzI >1 or z = 1, and H has

rank r < p, then there exist p x r matrices c~ and 13 of rank r such that:

rI = a13’ (5.10)

A necessary and sufficient condition for AXt-E(AXt) and 13’Xt-E(13’X,) to be given initial

distributions so as to induce stationarity is:

la’±F13±l 0

or, alternatively, that there are exactly p-r unit roots7.

equation (5.8) has the following representation:

(5.11)

In either case, the solution Xt to

!

Xt-- CZ(Ei+ ~Di) + C1(L)(Et+ ~Dt) + A (5.12)
t~

where A depends on initial conditions such that 13’A = 0 and C = 13±(ot’±F13±)-lc~’±.Thus, it

follows that Xt is an I(1) process with cointegrating vectors 13. In addition, note that Cl(z) is

convergent for Izl < 1+~ for some 8 > 0.

The importance of Theorem 5.1 lies in the fact that it shows the equivalence between the

notions of cointegration and error correction models. From (5.12), it can be seen that

13’Xt-E(13’Xt) is stationary as 13’C = 0, while ]3’C~(L)(et + ~Dt) may be viewed as a

representation of the equilibrium error 13’Xt. The C matrix also makes a valuable contribution

towards the understanding of I(l) models and is interpretable as being indicative of the

manner in which the common trends a’± Y/,=~ c, influence the various variables through the

matrix 13±.

In analysing the structure of these common trends, the vector moving average representation,

as opposed to the vector autoregressive model, is used. There is, however, complete duality

between the two. For example, the decomposition of the matrix C (as presented in Theorem

7 If 13 is any p x r matrix of full rank, 13± can be defined as a p x (p-r) matrix of full rank, such that

13’13± = 0.
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5.1) is similar to that of the H matrix. If the former is expressed as C = ,9±c~’l with

/~ ± = I3±(~’±F[3z)-I, Gt’z determines the common stochastic trends and /7 z denotes the Ioadings

to these trends, whereas for the reduced rank condition H = Gt[3’ in the AR representation, [3

determines the common long run relations while c~ reflects the Ioadings. Thus, taken together

the above definitions of the C matrix show that ’non-stationarity in the process Xt originates

from the cumulative sum of the p-r combinations c~’lZi=1’ (Juselius, forthcoming).

For a more intuitive understanding of the above discussion, briefly consider a simple reduced

form error correction modelS:

AXt = otl3’Xt_l + p ++t (t= l, ....,T) (5.t3)

where the initial value is X0 and as before, c~ and 13 are p x r matrices. Note also that in this

model short run dynamics have been excluded. Defining the underlying economic relations as

[YXt -E(I3’Xt) = 0, equation (5.13) illustrates how the process is pulled towards the steady state

with the a coefficient capturing the reaction of agents to any disequilibrium error [YXt.

The common trends representation on the other hand, shows how the cumulated disturbances

~’±Zl,=l push the economic variables around in the space spanned by 13±, the attractor set,

which is in turn defined by the long run relations. The two concepts of error correction and

common trends are of course complementary and respectively represent the pulling and

pushing forces of the system. Figure 5.1 provides a graphical illustration of these forces at

work.

s This example draws primarily on Juselius (forthcoming). A similar discussion is also presented in

Johansen (1995).
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Figure 5.1: Pulling and Pushing Forces

Mt

sp([3±)

Yt

In the diagram, a bivariate system is depicted with the process Xt comprising Mt and Yt

Assume that the steady state position is given by M-Y = p. In this case, [3’ = [l,-1] and the

attractor set may be written as [3± = [1,1]. The 45° line captures the notion of such a set and

shows that Mt = Yt in the steady state. If there is any deviation from this long run equilibrium

relationship, the adjustment coefficients c~ will become active pulling the process back

towards the attractor set, with the speed of adjustment depending on the size of both c~ and the

disequilibrium error [3’Xt. Movement up and down the attractor set is dictated by the nature of

the cumulated shocks or common trends. Positive shocks will push the process higher along

[31 whereas negative shocks will move it downwards.

The above example thus concludes a relatively detailed introduction to the concepts of

integration, cointegration and the cointegrated VAR. The remainder of this section presents

the method of reduced rank regression that solves the estimation problem for the cointegrating

vectors and facilitates the derivation of a test statistic for determining the rank.

As the first step, recall the reduced rank condition H = ~[Y for some p x r matrices ot and [3.

Secondly, define the I(1) model H(r) as the sub-model of the VAR obtained under the above

condition. Note that the I(1) model forms part of a nested sequence of models:
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H(0) c .... H(r) c .... H(p) (5.14)

where H(p) corresponds to the unrestricted VAR or !(0) model, H(r) sets the rank of 1-I <_ r

and H(0) imposes the restriction FI = 0. Lying between the two extremes of (5.14) are a range

of models, H(I) to H(p-l), which ensure cointegration. Given this formulation, it is possible

to derive likelihood ratio tests for H(r) in H(r+l) and H(r) in H(p). These tests can

subsequently be applied to construct an estimator of the cointegrating rank.

The statistical analysis of the 1(1) model begins with the following definition of the reduced

form error correction model:

k I

AXt = (~[3’ Xt-I + Z FiAXt-I + ~Dt -]-Et (t = 1, .... , T) (5.15)
i=1

where ~t are independent Np(0, ~) and the parameters e¢, [3, F~, .... , Fk-1, ~ and ~) vary freely.

As before, the [3 vectors are the cointegrating relations while a is the adjustment coefficient.

Now define Z0t = AXt, Z~t = Xt_~, Z2t = the stacked variables AXt.~, .... , AXt_k+1 and Dt, and let

be the matrix of parameters F~, .... , Fk.1 and ¯ that correspond to Z2t Expressing the model

in terms of these variables gives the reduced rank regression:

Z0t = o~[31 Zlt-k- ~ Z2t-+- Et (t = 1, ...., T)

and the Gaussian log likelihood function (apart from a constant):

1’

-- - ½ Tlogl l - ’/2 (Z0t-(x[3cZlt- Z2t)
t=l

(5.16)

(5.17)

Concentrating equation (5.17) by regressing Z0t and Z~t on Z2t leads to a definition of the

residuals Rot and R~t and the cross moment matrices:

S~i= T-~ Z R,tR’jt (i,j = 0,1) (5.18)
t=l

The associated concentrated likelihood function also takes the form of a reduced rank

regression (the parameters ~P having been eliminated in the course of the regression) and may
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be written as9"

Rot= ot13’R, + ~ (5.19)

Fixing [3, it is now possible to estimate c~ and ~ by regressing Rot on 13’Rit. The subsequent

estimates are presented below in expressions (5.20) and (5.21) respectively, with the maximal

value given by (5.22).

c~ (13) = s0,13(13’s,,13)-’ (5.20)

A

f~ (13) = Soo-So,13(13,s,,13)-|13,S,o (5.21)

-2/T

Lmax (13)= ISoolllY(S,,-S,oSoo-’So,)131 / IIYS,,13)I (5.22)

To determine 13, equation (5.22) is minimised by means of solving the eigenvalue problem:

(~,= l-p) (5.23)

for the eigenvalues 1 > ~ > .... > ,~p > 0 and the corresponding eigenvectors I) = ( ~, .... , ~)p ),

where the latter are normalised by I)’Sll V = I. Taking the eigenvectors for the r largest

eigenvalues, the cointegrating relations are thus estimated by:

/~ = ( ~., .... , ~, ) (5.24)

Normalising/~ on S,, (so that /~’S,,/~= 1 and /~’(S,,-S,oSoo-’So,)/3= diag(3~,, .... , 2r )), the

maximised likelihood function is subsequently found to be:

-2/7’

Lmax (H(r)) = IS001 ~ (1- ~, ) (5.25)
/=l

Finally, a comparison of two expressions like (5.25) leads to a definition of the likelihood

ratio test statistic Q(H(r)[H(p)) for H(r) in H(p):

9 Refer to Anderson (1971 ) for a further discussion.
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P

-21ogQ(H(r)lH(p)) = -T Z log( 1- )~, ) (5.26)

This LR test statistic (also known as the Trace statistic) determines the cointegrating rank.

Under I(l) assumptions and setting the rank equal to r, the asymptotic distribution of (5.26) is

a function of a Brownian motion of dimension p-r. The precise distribution depends on the

type of deterministic trends present~°.

Referring back to equation (5.15) for a moment, note that the parameters ~ and 13 are not

uniquely identified in the sense that ’given any choice ofc~ and 13 and any non-singular matrix

~(r x r), the choice et~ and [3(~’)-1 will give the same matrix FI and hence determine the same

probability distributions for the variable’ (Johansen, 1995). Given this outcome, it is

necessary to identify [3 before its individual coefficients can be estimated. Typical methods of

doing so

different

restrictions.

include the imposition of zero restrictions and normalisations or alternatively,

restrictions can be imposed on the individual relations, as

However, attention is also drawn to the fact that some

parameters ot and [3 can be tested without necessarily identifying the system.

concludes this section by providing an overview of the latter~1.

can cross equation

hypotheses on the

Table 5.3

~0 Johansen (1988, 1991 and 1994) mathematically derives asymptotic distributions for models with

different types of deterministic components. Also, see Johansen and Nielsen (1993).
~ These model specific data properties are empirically tested in Chapter 6 of the study using the CATS
1.0 software programme. Further details of the precise formulation of the hypotheses can be found in
the accompanying manual (Hansen and Juselius, 1995).
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Table 5.3: Model Specific Data Properties - Hypothesis Testing

A general linear hypothesis for [3 may be expressed as:
HI3:13 =(Hiq~l, H2~2, .... , H,cp~)

where Hi is p x s, and known, the parameter to be estimated ~, is s, x I and 1 _< s~ < p. All hypotheses
concerning [3 are nested in this formulation with H~ specifying structural restrictions on each of the
cointegrating vectors.

Now consider some special cases of the above:

(!) The same p-s restrictions can be imposed on all r cointegrating vectors by applying the hypothesis:
HI: [3 = Hop

where H is p x s and q) is s x r. This condition may also be written geometrically as sp([3) c sp(H), thus
restricting the subspace to lie in the given subspace sp(H) of Rp.

Example l: Testing for long run exclusion

Assume that X, = (Yt, xlt, x2,)’. The hypothesis that
can be formulated as HI with:

H

say x2t can be omitted from the cointegrating space

[,0]Ol

00

(2) The following hypothesis completely specifies the coefficients of the first cointegration relationship
while allowing the remaining r2 vectors to vary freely:

H2:[3 = (H,q3)

where H is p x rl, q~ is p x r2 and rl+r2 = r.

Example 2: Testing for stationarity

Assume again that Xt =(Yt, Xlt, X2t)’. H2 can be combined with H (as given below) in order to investigate
if the variable x2t is stationary:

As with restrictions on [3, hypotheses can also be formed with respect to the adjustment coefficient oc;
the most common being a hypothesis of long run weak exogeneity which is formulated as:

where A is p x m and known and ~b is the m x r parameter to be estimated. Geometrically, sp(o0 --sp(A).

Example 3: Testing for long run weak exogeneity

As in the previous examples, let Xt= (Yt, x~,, x20’. In addition assume a cointegrating rank of one. By
imposing restrictions on 01 it is possible to test if say x~t and x2t are weakly exogeneous; that is, while
these variables may influence the long run stochastic path of other variables in the system, they are not
influenced by them. This hypothesis is expressed as:
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5.3. Smooth Transition Regression Methodology

While linear regression models often constitute a valid approximation to underlying non-

linear behaviour, in certain cases it may hold that an explicitly non-linear specification is

capable of better describing such phenomena. Reflecting this, an array of non-linear time

series models, loosely grouped as those that do not nest a linear model and those that do, have

been proposed in recent years~2. Popular examples of the latter include the switching

regression model originally introduced by Quandt (1958), and the smooth transition

regression model developed by Bacon and Watts (1971) as a generalisation of a particular

switching regression specification. Both of the above approaches attempt to characterise the

theoretical notion ’that the economy behaves differently if some variable lies in one region

rather than in another’; the main distinction being that the smooth transition regression model

allows for a smooth transition between regimes rather than a discrete, sharp switch (Granger

and Ter~isvirta, 1993).

With regard to the Dublin housing market, a prompt and uniform response on the part of all

economic agents to news requiring action is unlikely given the range of individuals and firms

at play in this marketplace. From an aggregate viewpoint, this implies that a smooth model is

more appropriate in a housing context than the discrete switching alternative. As such, the

non-linear dynamic model estimated in Chapter 7 applies the smooth transition regression

technique. Drawing on Granger and Ter~isvirta (1993) and Ter~isvirta (1998), the following

discussion provides an overview of this methodology.

As the starting point, consider the smooth transition regression model (STR):

: ’ ’ (t : 1 T)Yt x, q) + ( x~ 0)G(~,, c; st) + ut , ...., (5.27)

J2 See Granger and Ter~isvirta (1993) for a detailed treatment of non-linear modelling techniques.
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where xt = (1, xlt, .... , Xpt)’ = (1, Yt-i, .... , Yt-k; Zlt, ...., Zmt)’, p = k+m, represents a vector of

explanatory variables, q~ = (q00, q~l, .... , q0p)’ and 0 = (00, Oi, .... , Op)’ are parameter vectors and

ut is a sequence of error terms which are independent and identically distributed. A priori,

some of the % and Oj parameters can be set equal to zero and the restriction that % = -Oj may

also be imposed. The transition function G(y, c; s,), which is continuous and typically

bounded between zero and one, comprises the continuous transition variable st (a stochastic

variable that is often an element of xt, though it could be a linear combination of several

variables or a linear time trend), the slope parameter y (indicating the smoothness of the

regime change) and the location parameter c (identifying the point at which transition occurs).

In terms of defining G, a transition function that takes the logistic form and monotonically

increases as a function of st is labelled an LSTR1 model:

Gl(7, c; s,) = (1 + exp{-7(st- c)})-I (7>0) (5.28)

where 7 > 0 is an identifying restriction. A simple non-monotonic alternative is the LSTR2

model with the restrictions on 7, cl and c2 acting as identifying restrictions in this case:

G2(7, c;st)=(l+exp{-7(st-cl)(st-c2)})-I (7>0, c1<c2) (5.29)

In addition, an exponential ESTR model may be defined as follows:

G(7, c; st) = 1 - exp{-7(st- c)2}    (7 > 0) (5.30)

Note that when 7 = 0 and G(7, c; st) = 1/2, the STR model presented in equation (5.27) nests

the linear model whereas when 7 --~ ~, the LSTRI model approaches a switching regression

model with two regimes while the LSTR2 model becomes a three regime switching

regression model in which the outer two regimes are equal.

With respect to inference in the smooth transition regression model, hypothesis testing

requires that additional assumptions be made concerning equation (5.27). Firstly, the

individual stochastic variables among z~,, .... , Zkt are assumed to be stationary, with the non-

stochastic ones representing dummy variables. It may also hold that some of the variables in
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zj, are stationary linear combinations of I(1) variables~~. Secondly, it is assumed that all cross

moments exist and that the error terms are uncorrelated with xt and st.

Taking the above conditions as given, inference in the STR model necessarily begins with

iinearity testing. Following Ter~isvirta (1998), rewrite equation (5.27) as:

t ty, = x, q~ + ( x, 0)G*(?, c; st) + ut (’/> 0) (5.31 )

where G* = G-l/2, with G referring to any of the transition functions defined in equations

(5.28) to (5.30), and ut- nid(0,o2). The conditional log likelihood function of the model is

given by:

T T 2 1 T
C((p,O,7, c;y, x,,s,)=a---log0- ---t~lu. (5.32)

t=l 2 20-2 =

The null hypothesis of linearity, expressed as H0: ~, = 0 in equation (5.31), is then tested

against the alternative of STR type non-linearity, HA: y > 0. However, the fact that the null

could equally be formulated as Hi: 0 = 0 implies an identification issue as the model is

identified under the alternative, but not under the null hypothesis. Consequently, applying a

likelihood ratio test in order to test H0 is problematic given that 0 and c are now nuisance

parameters whose values do

equation (5.31) cannot be consistently estimated under H0

Lagrange multiplier statistics

distributions.

not affect the likelihood value. As such, the parameters of

and the likelihood ratio and

no longer have their standard asymptotic chi squared

The property of nuisance parameters is not exclusive to smooth transition regression

modelling; many other non-linear models nesting a linear model share this same propertyt4.

However in the STR case, the identification problem can be circumvented by approximating

the transition function G* = G-I/2 in equation (5.31) by a Taylor expansion around the null

13 The super consistency of the least squares estimates of these parameters means that they can be

treated as known (Ter~isvirta, 1998).
~4 See Hansen (1996) for a general discussion.
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hypothesis 7 = 015. Taking st to be an element of xt and applying a third order approximation

yields the auxiliary regression:

F ~ 3 *y, : x, 130 + (~, st)’13,+ ( x,s/)’132 + (~,s:~ )’133 + u,(5.33)

where uT= u, + ( x; 0) R3(’/, C; St) with remainder R3(’¢, c; st), and 13j= ~,/), j = 1, 2, 3. The null

hypothesis H0: y = 0 in equation (5.31) now becomes H’0¯ 13j = 0, j = 1, 2, 3, in equation (5.33)

with H’A¯ at least one 13j :x 0. Moreover, given that equation (5.33) is linear in parameters and

that u~ = ut under the null, an LM-type test can be applied to test H’0"

t

" = u,w, (M, ~,,#4-’ ^ )
t=l - ,,o M,,~ w,U¯ ’ t=l

(5.34)

’ ~’ ~ 3 )t ¯term estimated under the null hypothesis, zt xt and w, (£c,s,, x,s[ -’= = , x,s, When the

moments implied by equation (5.34) and wt exist, the

squared distribution with 3p degrees of freedom.

LM statistic has an asymptotic chi

Unfortunately, the above chi squared statistic is likely to be severely size distorted in small

samples. Given this, Granger and Ter~isvirta (1993) recommend an F approximation:

(SSR,, -SSR,)/3p
F = (5.35)

SSR, /(T-4p-1)

"1~
"1 A")

where the residual sum of squares SSR0 =(l/T)ff~t=lh" and SSR1 = (1/T)ZTt_lV[ are

respectively obtained from a regression ofyt on xt, and a regression ofeitherh or yt on xt, 2; st,

2"s2 and ~,s2. Under H0¯ 131 = 132 = 133 = 0, the corresponding F statistic has an approximate F

distribution with 3p and T-4p- 1 degrees of freedom.

~5 This method of circumvention originates from the work of Saikkonen and Luukkonen (1988) and

Luukkonen, Saikkonen and Te¢isvirta (1988).
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In terms of selecting an appropriate variable to act as the transition variable under the

alternative, it may arise that the choice is obvious from economic theory. If not, Luukkonen,

Saikkonen and Ter~isvirta (1988) suggest choosing from all the elements of ~, as follows.

Firstly, define the linear combinationa’~t such that a is a pxl vector = (0, .... , 1, 0, 0, .... ,0)’,

with the unit element corresponding to the true but unknown transition variable. Secondly,

substituting this for st in equation (5.28) leads to the auxiliary regression:

P P P P P P

y. : x;Po + Z E p...x..x.. + E Z + Z E            /L.x..x..-+ ,."
i=lj=i - i=1 j=l i=1 j=l "

(5.36)

and a re-formulated null of linearity, namelyH’0 : 131ij = 0 where i = 1, .... , p,j = i, i+l, .... , p

and [32,i = 133ij = 0, i, j = 1, .... , p. As before, an LM-type test statistic, which in this case is

asymptotically distributed under H’0 as chi squared with p(p+l)/2+2p2 degrees of freedom, can

then be derived16.

Thus, the statistical theory discussed so far results in standard asymptotic distributions about

the null and testing procedures that can be undertaken using the ordinary least squares

method. If these tests subsequently reject the hypothesis of linearity in favour of a STR model

with transition variable xjt, the next step in the specification process is the selection of a

particular type of smooth transition regression model. In making this selection, the following

test sequence is applicable:

H04:133 = 0

H03:132 = 0]133 = 0

H02:131 = 01132 = 133 = 0

where H04, H03 and H02 represent a series of null hypotheses within equation (5.33). The

associated decision rule is based on the fact that the coefficient vectors 13j, j = 1, 2, 3, are

functions of the parameters of the original STR specification and depend on the type of

~6 Note that as p increases, the test statistic also tends to grow rapidly. As such, Luukkonen, Saikkonen

and Ter~isvirta (1988) propose an ’economy version’ of equation (5.36). Please refer to this paper for
further details.
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model. Accordingly, if the test of H03 yields the strongest rejection when

values, either an ESTR or LSTR2 model should be selected; otherwise, an LSTRI

chosen ~ 7

measured in p

model is

Having decided on a model type, estimation of the parameters of the STR model is carried out

using conditional maximum likelihood. The algorithm used for the purpose of numerically

maximising the log likelihood is dependent on good starting values, which can be obtained by

fixing ~, and c in the transition function so that the initial STR model, as presented in equation

(5.27), is linear in parameters~8. This in turn, suggests the construction of a grid and

estimation of the remaining parameters q~ and 0 conditional on (~,, c) in the LSTR1 case, and

on (¥, c~, c2) for the LSTR2 model. The residual sum of squares is then computed for N

combinations of these parameters, with the parameter values that minimise this sum being

taken as the starting values. However, note that as ~, is not a scale-free parameter, effective

grid construction requires the standardisation of the exponent of the transition function, by

dividing it by the Kth power of the sample standard deviation of the transition variable.

Finally, as with linear modelling, it is important to evaluate the quality of the estimated STR

model and to check the residuals for evidence of misspecification. In this respect, the

goodness of fit measures and information criteria outlined in Table 5.4 are applicable.

Furthermore, Ter~isvirta (2004) discusses generalisations of standard misspecification tests to

the STR framework, including those of no error autocorrelation, parameter constancy and no

additive non-linearity. Given that these tests dominate the diagnostic checks implemented in

Chapter 7, the remainder of this section is concerned with detailing their statistical formulae19.

17 See Ter~isvirta (1994) for a simulation of this testing procedure.
18 The software package JMulTi (which is used for the empirical STR estimations in Chapter 7) applies

the iterative BFGS algorithm with numerical derivatives. Further details are provided in Hendry
(1995).
~9 Misspecification testing was carried out using JMulTi 3.11. For further details as to how these tests

are implemented in this software programme, refer to the package ’Help’ system.
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Table 5.4: STR Model Misspecification Tests- Statistical Formulae

Residual Autocorrelation:

AR Test

This test. which is a variant of Godfrey’s LM test, is

approximately distributed as F(q, T-n-q):
As the LM asymptotic chi squared statistic can be
severely size distorted in small samples, the empirical
analysis in Chapter 7 reports the F-lbrm of the test:

Refer to Teriisvirta (1998) for a detailed discussion.

( SSR - SSR, ) / q

SSR~ /(T - n - q)

where:

SSR0 = the sum of squared residuals from

the STR model

And

SSRj -- the sum of squared residuals from

the auxiliary regression of

fi, on t~, ~ .....u,,t and the

partial derivatives of the log likelihood function
with respect to the parameters of the model

Residual Heteroscedasticity:

ARCH Test

The ARCtt LM test is approximately distributed as chi
squared with q degrees of freedom:
As above, the empirical analysis reports an F version of
this test so as to counteract small sample distortionary

effects.

TR2

where R2 is taken from the auxiliary regression:

^ 2

t2 I t2 qu, = fl, + fl h_ + .... + fl~h_ +error,

Normality Test:

The associated test statistic is that of the Jarque-Bera
test described in Table 5.2.

Parameter Constancy:

Again, the F version of the test for parameter constancy
is reported in Chapter 7. The associated degrees of
freedom are 3(p0+pl) and T-4(p0+pj);

Further details are provided in Teriisvirta (1998).

Consider the STR model:

(x" ’)’0"y, =. , )’qf (t) + (x (t)G(?’, c; s, ) + u,

where:

(p" (t) = (,o" + A~H(t;Tl,Cl)

and

0" (t) = 0" + A2H(yI, q ; st ) ;

Next define the transition functions Hi, j -- l, 2, 3:

Hf( l, cl;st) = (1 + exp{-rl (t - cl)})-I _ 1 / 2
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Table 5.4 (contd): STR Model Misspecification Tests - Statistical Formulae

H2 (Yl, q ; s; ) :

(I + exp{-yl (t - c,, )(t - c,~ )} )-j -1/2

H3 (?’1, cl ; st ) =

(I + exp{-yI (t - c,, )(t - % )(t - c,, )})-J - 1 / 2

where ~,~ > 0 and c~ _< Cl2 -< Cl3;

Assuming that the parameters in the exponent of G
are constant, the null hypothesis is then H0:71 = 0.

In testing parameter constancy against q~°(t) and
0°(t), let H = H3 (H~ and H2 are special cases
of H3) and apply a Taylor approximation to

overcome the identification problem.
This yields the auxiliary regression:

(Xo
o � o 2 ,

.xOt3y, : , )’~o +(xt) ~, +(xt ) P2 +~ , )’~

+{(x’)’p~ +(xlt)’~~ +(xf )’A

+(xl t3 )’ A/a(r, c; s ) + u)

14
!

where:

[3i=?’z/3,j=1,2,3,4,5,6,7

and
¢1 0\f    0               I’ 0

:ut +(tx,)(p +(xi)O G(yl,c;s )}R(7,c;t)

The null hypothesis of parameter
constancy now becomes:

H’0" [31 = [32 = [3s = 0, [35 = [36 = [37 ----- 0

and the test statistic given in equation (5.34) has

an asymptotic chi squared distribution under H’0

No Remaining Non-Linearity:

The empirical analysis in Chapter 7 reports the F
form of the test for no remaining non-linearity. The test
statistic is distributed with 3p and T-4p-1 degrees of
freedom;
Refer to TerS.svirta (I 998) for a detailed discussion.

Define an additive STR model as:

y, = x~+(x~O)G(r,,~,;~,)

+(x~)H(r2,c2;s2,) + u,

(t = 1, .... , T)

where H is another transition function and s2t is
assumed to be an element of xt;
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Table 5.4 (contd): STR Model Misspecification Tests - Statistical Formulae

The corresponding null hypothesis is H0:Y2 = 0.

As the additive STR model is not identified under
this null, a Taylor approximation is again

applied. The resultant auxiliary
regression is as follows:

y, : +(x;O)a(r,,c,;s,)
� ~ 2 � ~ ’~ *

,0 +(xs2,) +(x,%)’,O,+u,

U
!

where:

[3j =7’2/3 ,j= 1,2,3

and

= ut +(x~u)R,(L,c2:s:,)

In this case, the null hypothesis of no remaining
non-linearity is given by:

H’o" [3, = [32 = [33 = 0

and the associated test statistic is asymptotically

chi squared distributed under H’o

Notes.
1. In order for the asymptotic statistical theory underlying the tests of no error autocorrelation, constant parameters

and no remaining non-linearity to be valid, the maximum likelihood estimators must be consistent and
asymptotically normal. Further details are provided in Wooldridge (1994) and Escribano and Mira (1995)

5.4. Regime-Switching Methodology and Bubble Testing

A relatively new approach to testing for behaviour indicative of a bubble is to estimate a

regime-switching model along the lines proposed by van Norden (1993) and van Norden and

Schaller (1993a, 1993b). The move towards such models, away from the more traditional unit

root and cointegration tests, has been largely motivated by the findings of Evans (1991) who

used Monte Carlo simulations to show that the latter tests frequently reject the presence of a

bubble, even when a bubble is present by construction. Developing this idea further, van

Norden and Vigfusson (1996a) find that the finite sample properties of regime-switching tests

for bubbles are also better than those of the alternatives. As such, Chapter 8 adopts a regime-
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switching approach when empirically testing for the presence of a bubble component in the

Dublin housing market. An overview of this technique is presented below2°.

To begin, consider the following simplified asset-pricing model:

pt= Xt + aEt(Pt~ l) (5.37)

where P, is the price of the asset, Xt is a vector of explanatory variables, Et is the expectations

operator conditional on information available at time t and 0<a<l. Solving equation (5.37)

forward gives rise to the general result:

to which there is more than one solution. For example, when it holds that:

lim aT+l.Et(PT+l) = 0 (5.39)

the standard fundamentals solution applies:

p, = .E, (X,+,)
j =0

(5.40)

whereby the asset price is treated solely as a function of the current and expected behaviour of

the other variables in the model. However, a bubbles solution may also exist. Defining the

latter as any alternative set of actual and expected asset prices that satisfy equation (5.37), but

where Pt :#: P~, leads to an expression for the size of the bubble:

bt- pt- p~ (5.41)

Furthermore, as p~ satisfies equation (5.37), it follows from equations (5.37) and (5.41)that

the bubbles solution is of the form"

b,= aEt(bt+~) (5.42)

where a<l indicates the anticipated growth of the bubble over time.

20 Further details are provided in van Norden (1996).
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With respect to the specification of a process that satisfies equation (5.42), Bianchard (1979)

and Blanchard and Watson (1982) propose a stochastic bubbles model in which two states of

nature are considered - state S in which the bubble survives and continues to grow, and state

C in which it crashes. The expected value of the bubble over both these states of nature may

then be written as:

Et(bt+,) = (l-q) E,(b,+, ]C) + q Et(b,+, IS) (5.43)

where state S occurs with a constant probability q. In addition, the process assumes that:

Et(b,+, ]C) = 0 (5.44)

which implies:

E,(bt+~ S)- b (5.45)
a.q

when this condition is combined with that of equation (5.42).

While the above process offers a solution to equation (5.42), van Norden (1996) and Schaller

and van Norden (1997) argue that the assumptions underlying the model are overly restrictive.

Instead, they suggest a process that allows for a partial collapse in state C and for the

probability of the bubble’s continued growth to fall as the bubble expands2~. Formally re-

defining equation (5.44), so that the expected size of the collapse becomes a function of the

relative size of the bubble, gives rise to equation (5.46):

where u( )

E,(b,~, ]C) = u(b0 (5.46)

is a continuous and everywhere differentiable function such that u(0) = 0 and

1 > u’ > 0. Similarly, a revised counterpart to equation (5.45) can be derived as:

b

ll-q(b’)u(b))
E,(b,+~ S)- ’ (5.47)

a.q(bI ) q(b )

2J The underlying argument against an instantaneous and complete collapse of the bubble relates to the

fact that financial institutions or the government would be expected to intervene to prevent such an
occurrence. For a detailed description of the typical life cycle of bubbles, see Kindleberger (1989).
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by drawing on equations (5.42), (5.46) and replacing q in expression (5.45) with:

d
q = q(bt), d b, q(bt) < 0 (5.48)

where q(bt) allows for the probability of survival to decrease as the bubble grows. In turn,

equations (5.46) and (5.47) may be used to formulate a series for excess returns in each state:

b
Et(Rt+~ C) = u(bt) --- (5.49)

a

E,(R,,, I S) -
l-q(b,)

a.q(b,)
.[ b , - a.u( b , )] (5.50)

With regard to the actual estimation of equations (5.49) and (5.50), the particular state

generating a given observation of Rt+~ is not necessarily known a priori. As such, the use of

ordinary least squares results in inconsistent and biased estimates22. Fortunately, ’consistent,

efficient, asymptotically normal parameter estimates of such systems can be obtained by

maximum likelihood methods’ as illustrated in van Norden (1996)23. As the starting point,

suppose that in regime C:

C

Rt+l = R~, = hc(bt) + e,+, (5.5 l)

whereas in regime S:

Rt+l= RI+~        = hs(bt) +             et+S, (5.52)

On the basis of these expressions, the probability density function of an observation,

conditional on the fact that it has been generated by a given regime, may be written as:

~c ( etc, ) = ~)c (Rt+~- hc(bt)) (5.53)

and

~s ( e,S+, ) = qbs (Rt+,- hs(b0) (5.54)

22 Refer to Lee and Porter (1984) for a detailed discussion.
23 Note that inference requires the series under consideration to be stationary. As the bubble process

described above is clearly not, it is necessary to formulate the null hypothesis as a hypothesis of no
bubbles. Under this null, the data is assumed to be stationary and as such, standard inference
procedures apply. Simulation results are provided in van Norden and Vigfusson (1996a).
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Next, assuming a set of variables M~ and imperfect information as to which regime generates

each observation, the probability that Rt~=RI+~ is denoted by q(M0. The unconditional

probability density function of each observation is thus:

q(Mt). OO~ (R,~ ,- h~(b,)) + [ l-q(Md].~c (R, ,- h~(b,))

while the likelihood function for a set ofT observations is given by"

T
I-I {q(M,). ~s(Rt+,- h~(b,)) + [l-q(Md].~c (R,+,- he(b0) }
t--I

(5.55)

(5.56)

Subsequent maximisation of this likelihood function facilitates the simultaneous estimation of

both equations (5.51) and (5.52) and a set of parameters for q(Mt). Moreover, the resultant

estimates are not only consistent and efficient, but are also obtained without prior knowledge

as to which observations correspond to a given regime.

However, additional information is required before the bubble process described in equations

(5.49) and (5.50) can be estimated; namely functional forms for hc(bt), h~(bt) and q(Mt), along

with distributional forms foret~+~ and e,~+,. In acquiring this information, the starting point is an

approximation of Et(Rt+l C) and Et(Rt+l [ S) by a first order Taylor expansion about some

m

arbitrary value b. This yields the following expressions for hc(bt) and hs(bt):

h~(bt) = 13~0 + [3cbbt (5.57)

hs(b0 = [3s0 + [3sbbt (5.58)

where [3c < 0 and [3sb > 0. Secondly, equation (5.45) implies that Mt can be set equal to bt.

Furthermore, as the logit function satisfies equation (5.48) and ensures that q(Mt) = q(bt) is

bounded between zero and one, it constitutes an appropriate functional form for the latter:

(5.59)

c    n s
where [3qb > 0 and ¯ is the logistic cumulative distribution function. Thirdly, et,~ a de,+~ are

assumed independently and identically distributed with mean zero and standard deviations cy~

and Cys.
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Combining the above information gives rise to the general switching regression model:

Et(Rt,, I C) = [3co + [3cbbt

Et(Rt~, IS) = 13so + 13sbb,

Prob(Statet, ,=S) = q(bt) =@ (13q0 + 13qb bl )

(5.60)

(5.61)

(5.62)

which, as previously discussed, can be estimated by maximising the associated log likelihood

function:

T
logL([3c0, 13cb, [3~0, [3~b, 13q0, 13qb, CYc, CY~)= Z In

t=l
+

(5.63)

where qb ( ) is the standard normal probability density function. Note, however, that a property

of switching regressions is that they allow for the model to be identified only up to a

particular renaming of the parameters, that is, the names of the C and S regimes could be

swapped around. The implication for the bubbles model of such equivalence is the need to

impose the following restrictions on equations (5.60) to (5.62):

13c0 ~ [3so (5.64)

and either

(13cb < 0, ~sb> 0, [~qb> 0) or ([~cb> 0, 13sb < 0, [3qb < 0) (5.65)

Using Wald and t tests, these parameter restrictions may then be tested and if found to hold,

they provide evidence in favour of the stochastic bubbles model proposed by van Norden

(1996) and Schaller and van Norden (1997). To lend further support to the presence of this

type of bubble, the general switching regressing model should also be able to reject a range of

simpler models nested within it. One such model is that of the mixture of normal distributions

which implies [3cb= ~sb= ]3qb= 0 in equations (5.60) through to (5.62). Applying the likelihood

ratio test, this model can be tested against the switching regression alternative, with the failed

rejection of the null having the interpretation that fundamentals are driving excess returns.
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Finally, after estimating the model and carrying out the above hypothesis tests, diagnostic

checks should be implemented so as to eliminate the possibility of inconsistent estimates and

invalid inferences that may arise in the case of model misspecification. Table 5.5 details the

tests implemented for this purpose in Chapter 8 of the study24. In addition, an overview of the

Wald and likelihood ratio test principles is provided.

Table 5.5: Switching Regression Hypothesis and Misspecification Tests - Statistical Formulae

Hypothesis Testing:
Consider a K dimensional parameter vector 0

estimated by maximum likelihood.

Restrictions on 0 may be written as:
H0:R0 = q

where:

q -- a fixed J dimensional vector
And

R -- a J x K matrix.

Subsequent testing of these restrictions can be
achieved using the Wald and likelihood

ratio test statistics defined below.

Wald Test

The Wald test statistic reported in the empirical analysis
is obtained by running a Gauss procedure written by
van Norden and Vigfusson (1996b). This procedure
calculates the Wald statistic using the inverse of the
hessian:
The test statistic has a chi squared distribution with J
degrees of freedom;
See Verbeek (2000) tbr a general discussion.

Generally:

T(Rt~ - q)’[ RI~R’] ’ ( RO - q)

where:

x/rT(RO- RO) --. N (0, RVR)

Likelihood Ratio Test

The LR test also follows a chi squared distribution with
J degrees of freedom:
Further details are provided in Verbeek (2000).

2[log L(tg)- log L(t~)]

24 The misspecification tests presented in Table 5.5 are included as part of the Gauss procedures for

estimating regime-switching models kindly provided by Simon van Norden. For further details on the
nature of these tests, see van Norden and Vigfusson (1996b), White (1987) and Hamiliton (1990 and
1996).
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Table 5.5 (contd): Switching Regression Hypothesis and Misspecification Tests - Formulae

Misspecification Testing:

Residual Autocorrelation
and Heteroscedasticity

Let L(yt I x,, 0)denote the likelihood function of a
given observation Yt conditional on xt and a set

of parameters 0. The gradient of L(ytl xt, 0)
with respect to 0 defines the score ht(0).

Subject to certain conditions, it holds that at the
true parameter estimates 00, ht(00) cannot be

forecasted from any information available
at time t-l, including that of ht.j(00).

As the vector h,(0) has the same dimensions as 0,
it follows that the absence of first order serial

correlation in ht(00) gives rise to m x m
testable restrictions.

A general test of such restrictions may then be
constructed. In doing so, the l elements of the

m x m matrix ht(0).ht(0)’ to be tested as
part of the l x l vector ct(0) are listed.

The resultant matrix product has a chi squared
asymptotic distribution with l degrees of freedom:

AR Test

This LM test is approximately distributed as chi
squared with 1 degree of freedom;
Testing the gradients is carried out under the
Assumption of a constant in each of the level equations.

In turn, this matrix product can be used to define a
range ofmisspecification test statistics.

Note that the Gauss procedures written by van
Norden and Vigfusson (1996b) require:

(1) the T x m matrix of gradients evaluated at
the parameter estimates; (2) a column vector that
lists the numbers of the columns in the gradient

vector to be included in the test. On the basis
of the above, test statistics and associated chi

squared significance levels are then produced.

The gradients gtl and ga are tested for evidence
of serial correlation. If present, the implication

is that there is persistence / serial correlation
in the residuals

ARCH Test

The ARCH LM test is also approximately distributed
as chi squared with 1 degree of freedom.

The gradients ofcyc and ~ are tested
for persistence effects

Notes:
1. As these tests have a tendency to over-reject the null hypothesis in small samples, interpretation at the 1% level

is deemed more appropriate than at the 5% level. Please refer to Hamilton (1990) for further details
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Allowing for the rejection of nested models and satisfaction of the coefficient requirements

and diagnostic checks implied by the stochastic bubbles model, it would seem logical to

conclude that the bubbly component of the asset has a significant influence on returns in the

following period. However, it should be noted that a major drawback of the regime switching

approach, and indeed of all such bubble tests, is that behaviour indicative of a bubble

component is not proof that a bubble exists (Flood and Hodrick, 1990). For example, Flood

and Hodrick (1986) point out that bubbles are observationally equivalent to regime switching

in fundamentals. Conversely, the failure to find evidence of a bubble may be suggestive of

misspecification errors with respect to the chosen measure of non-fundamentals25.

Alternatively, it could be that the stochastic bubble described in this section simply does not

exist.

5.5. Conclusion

This chapter aimed to provide a technical overview of the modelling techniques adopted in

the course of the study’s empirical analyses of the Dublin housing market; namely those of

Johansen cointegration, ordinary least squares estimation, smooth transition regression

modelling and regime-switching tests for stochastic bubbles. In achieving this objective,

attention was paid to describing these methodologies from the perspectives of estimation,

inference and hypothesis testing. In addition, the tabulations of the statistical formulae

underlying the diagnostic checks applied in forthcoming chapters should act as a reference

point for subsequent model evaluation.

25 In the case of the van Norden bubble test, misspecification is highly unlikely to result in the false

finding of a bubble. As both the likelihood ratio tests and the signs on the coefficient restrictions are
invariant to linear transformations of the bubble, the test is robust to misspecification in either the level
or the scale of the bubble (van Norden, 1996).
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5A. Appendix

5A.I. Cointegration Methodology

As inference in the unrestricted vector autoregressive model (VAR) is based on asymptotic

results, the asymptotic properties of the estimators are set out below for the case of a stationary

process.

Theorem 5A.1. (Johansen, 1995) Assuming that the errors are independent and identically

distributed with mean zero and variance ~, that the process X, is stationary and that (I)Dt = ~t; then

the asymptotic distribution of the maximum likelihood estimator of the parameters

B’ = (HI, .... , Hk, p) is Gaussian and given by:

W

T’/2( B- B) -~ N(0, z-’ ® fl) (5A.1)

where:

A P
U2 -+ if2 and Z’t = (X’t-1, .... , X’t-k, 1)

As such, for any vectors ~ and q, it holds that:

/x

TI/2 ¢’ ( B- B)n

5A.2. Ordinary Least Squares Methodology

To quote Verbeek (2000), the linear regression model and the ordinary least squares method of
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estimation (OLS) respectively represent ’one of the cornerstones of’ and the ’most important

technique in’ econometrics. This assertion is borne out by the fact that undergraduate textbooks

typically take the standard linear regression model and OLS as the starting point of their

econometric analyses~. As such, the following discussion assumes some prior knowledge and

focuses primarily on re-iterating the main features of this methodology from a time series

perspective.

To begin, consider the multiple extension of the simple linear regression model:

Yt = [30 q" [~lXtl q" .... -4- I~kXtk A- Ut (t = 1, .... , T) (5A.3)

where x,j = (x,~, .... , Xtk) and u, is a sequence of disturbance or error terms. The corresponding

estimates fl,,,/~, .... ,/~ are obtainable by means of the ordinary least squares method which

chooses k+l estimates to minimise the sum of squared residuals:

Z(yi -/3 - fl X,, - .... - fl Xtk)2 (5A.4)
t=l

Solving the above minimisation problem results in k+l linear equations in k+l unknowns referred

to as the OLS first order conditions:

Z(Yi-~"-/}’Xtl- ..---~, Xtk)----- 0

X,l (Yi-~,,-/~,Xtl- "" "" -~/~ Xtk) = O

]"

E xlk (y~-/~,,- ~, xt, - .... -/) Xtk)

J~

=0 (5A.5)

See, for example, Gujarati (1995).
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If it holds that none of the independent variables in equation (5A.3) are perfectly collinear, the

equations in (5A.5) can in turn be uniquely solved for/~.

In estimating the parameters of the underlying population model, the statistical properties of the

OLS estimators come into play. The large sample properties of OLS, namely those of consistency

and asymptotic normality are discussed in Theorems 5A.2 and 5A.32. The assumptions

underlying these asymptotic properties are outlined in Table 5A. 1.

Table 5A.I: Large Sample Assumptions

(i): Linear in Parameters and Weak Dependency

The stochastic process (xt~ ..... , Xtk, Yt) follows the linear model:

Yt = P0 + PlXtl + .... + PkXtk + Ut

where u, is the sequence of errors. In addition, (xt,Yt) where t = 1, ...., is weakly dependent. As the 13, do
not change over time, a form ofstationarity is also assumed.

(ii): Zero Conditional Mean

For each t: E(ut [Xt) : 0

(iii): No Perfect Collinearity

In the sample and consequently, in the underlying time series process, no independent variable is either
constant or a perfect linear combination of the other explanatory variables.

(iv): Homoscedasticity

For all t: Var(ut Ixt) : ~-

(v): No Serial Correlation

For all t ~: s: E(ut,u~ [xt,xs) = 0

2 For a proof of the large sample properties of OLS estimators, refer to Wooldridge (1994).
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Theorem 5A.2. Under the large sample assumptions (i) to (iii), the OLS estimators are consistent:

P

/~, ~ [3.i (j =0, !, .... , k) (5A.6)

Theorem 5A.3." Assumptions (i) to (v) imply that the OLS estimators are asymptotically normally

distributed. Thus, OLS standard errors along with the usual t, F and LM statistics are

asymptotically valid.

Having established the asymptotic properties of the OLS estimators, the remainder of this section

is concerned with inference. In particular, the statistical formulae that motivate the hypothesis and

misspecification tests applied in Chapter 7 are presented in Table 5A.2. Furthermore, the criteria

adopted when choosing between various OLS estimations of dynamic price determination in the

Dublin housing market are also defined3.

Table 5A.2: OLS Model Selection, Hypothesis and Misspecification Tests - Statistical Formulae

Goodness of Fit:

?R Squared
~

SSE / SST = 1 ’:’

where:

SSE = the explained sum of squares

and

SST = the total sum of squares

3Testing was carried out using Givewin 2.20 and Eviews 3.1. For further details as to how these tests are
implemented in the above software programmes, refer respectively to Doornik and Hendry (2001) and the
Eviews User’s Guide.

86



Table 5A.2 (contd): OLS Model Selection, Hypothesis and Misspecification Tests - Formulae

Adjusted R Squared
SSE /(r - k )

1
STT /(T - 1)

Information Criteria:

Akaike Information Criteria (AIO

Schwartz lnJormation Criteria (SIC)

log 62+2k/T

log d-~ + k (log T) / T

Hannan-Quinn (HQ)

As in the VAR specification, these tests make use of the
maximum likelihood function. With respect to model
selection, smaller values of the criteria are preferred.

log 6"2 + 2k [log (log T)] / T

where:

~2
cr = (T-k / T) ~2

Hypothesis Testing:

T Values

The test approximates a student t distribution with T-k
degrees of freedom.

Exclusion Test

If the null hypothesis that the coefficient of the variable
in question equals zero is true, the F statistic is
distributed as F(j.+_k).

F

R2 _ 82 / J
IIF          F

(I - R,2 )/(T- k)

where:

R2 -- the R squared from the unrestricted model
Ilr

and

R2 = the R squared from the restricted model
F

Residual Autocorrelation:

AR Test

This test is approximately distributed as F(s, T-k-s);

The empirical analysis in Chapter 7 reports the F-form
of the test, as opposed to the LM version, on the
grounds that the former is likely to be better behaved in
small samples;
Refer to Harvey (I 990) for a detailed discussion.

R2 T-k-s

1-R2     s

where R2 is taken from the regression of

ht on Xtl ...... Xtk,Ut-I ..... ~lt-r
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Table 5A.2 (contd): OLS Model Selection, Hypothesis and Misspecification Tests - Formulae

Residual Heteroscedasticity:

ARCH Test

As in the AR case, the ARCH test is approximately

distributed as F(s, T-k-s):
Again, the empirical analysis reports the F version of

the test when testing for the presence of ARCH as it
tends to be better behaved in small samples than its LM

counterpart.

R2 T-k-s

I-R2     s

where R2 is taken from the regression of

2 2 2
^         ^

u, on a constant and u, i to U,-r

Normality Test:

The associated test statistic is that of the multivariate
test described in Table 5.2.
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Chapter 6:

A Long Run Analysis of the Dublin Housing Market

6.1. Introduction

Chapter 2’s discussion of the theoretical structure of the housing market suggests that similar

to other commodities, housing can be modelled within a demand and supply framework. It

then follows that it should be possible to identify a long run demand and supply curve for

housing in a Dublin context. Moreover, a clear understanding of the empirical conditions that

characterise the market is a necessary prerequisite for solving current housing disequilibrium.

This chapter seeks to facilitate such an understanding in that it undertakes an empirical

analysis of the Dublin market for new, private sector housing with the aim of uncovering the

nature of the long run relationships at play in this marketplace. Econometric modelling adopts

the Johansen cointegration approach and applies it to the time-series dataset described in

Chapter 4j.

The chapter is organised as follows2: Section 6.2 provides an overview of a priori

expectations while the time series properties of the data are discussed in Section 6.3. Sections

6.4 and 6.5 present respectively, the statistical model and apply a range of diagnostic checks.

Following the determination of the cointegrating rank in Section 6.6, Section 6.7 carries out

an examination of model specific data properties. The findings of the latter indicate the need

As noted in Chapter 5, the Johansen approach allows for long run effects and short term adjustment
patterns to be modelled simultaneously. In practice, long run identification is often considered first.
This is a matter of convenience and does not reflect the actual estimation procedure.
2 Econometric modelling undertaken in the course of this chapter was carried out in RATS 5 / CATS

1.0, GiveWin 2.20 / PcGive 10.0 and EViews 4.1.
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to move to a partial model as discussed in Section 6.8. Long run identification is undertaken

in Section 6.9 while Section 6.10 concludes the analysis.

6.2. A Priori Expectations

Before embarking upon the empirical aspect of this study, it is necessary to form initial

expectations as to what factors are likely to have a role to play in the housing market. On the

basis of economic theory and precedents set by relevant studies, a number of variables can be

identified as potentially important when modelling housing in the long run3. These include

house prices, income, mortgage interest rates, building costs, the stock of housing, household

formation and land availability4. This chapter begins its analysis of the Dublin new housing

market by postulating the existence of two equilibrium relations amongst these variables - one

for the demand-side of the market and one representing supply.

With respect to specifying a housing demand vector, four variables - house prices, mortgage

interest rates, income and household formation - are predicted to play a prominent part in

determining the desired stock of housing in the long run. Of these, prices and interest rates

should exhibit a negative relationship with demand whereas income and the demographic

measure are expected to enter the equation with a positive sign.

Given the theoretical inter-connection between the housing and construction markets, a priori

expectations imply a long run relationship between the supply of housing units, house prices,

land availability and construction and interest costs. A positive sign is expected on the house

price and land coefficients while cost coefficients should be characterised by negative signs.

3 Please refer back to Chapter 3 for further details.
4 These variables are defined as in Section 4.2.
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6.3. Data Properties

Formal testing of the long run relationships postulated above can be achieved by applying the

Johansen cointegration technique5. The objective of this method is to uncover stationary

relationships amongst a set of non-stationary data. Assuming that all series are integrated of

order one or lower, the presence of one or more cointegrating vectors implies that non-

stationary variables are linearly related in a stationary manner, and can thus be interpreted as

an equilibrium relationship.

Table 6.1: Unit Root Testing and Degree of Integration6

Variable DF & ADF Test Statistics

Levels First Differences

Degree of lntegration

lognph 2.30 -2.67* 1(1)
Ioginc 1.84 -8.11"** 1(1)
MR -1.67 -4.48*** 1(I)
logbc 0.33 -10.39"** I(l )
logphs 3.20 -6.62"** I(1)
loghf -2.22 -l 1.48"** 1(1)
logls - 1.67 -6.60 * * * I( 1 )

Notes:
l. Ho: The process contains a unit root
2. * (***) denotes rejection of the hypothesis at the 10% (1%) level
3. The test equations include a constant in each case. The addition of a linear trend to the housing stock

regression results in test statistics of 0.93 and -7.43 in levels and first differences respectively
4. Lag lengths are chosen on the basis of the Schwartz Information Criteria. This automatic selection method

chooses P lagged difference terms to minimise the term:
-2(l / 7) + kl og(7) / T

where l is the value of the log of the likelihood function and k refers to the number of estimated parameters

Table 6.1 reports the results of Dickey-Fuller and Augmented-Dickey Fuller tests for unit

roots in the Dublin housing market data7. These tests fail to reject the null hypothesis of a unit

root when the series are expressed in levels. However, once the data is differenced, the tests

reject the null for each of the variables. Chapter 4’s graphical analysis of the time series

5 For a detailed discussion of this technique refer to Section 5.2.1 and Johansen (1995).
6 For further practical information on unit root testing, refer to the Eviews User’s Guide.
7 See Davidson and MacKinnon (1993) and Hamilton (1994) for furlher details of these tests.
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properties of the data lends additional weight to these findings. As there is no evidence of I(2)

behaviour, it is appropriate to proceed using the Johansen technique.

In addition, note that a nominal to real transformation has been performed in respect of the

house price, income and building cost series. The validity of this approach is dependent on the

assumed long run homogeneity of consumer prices and the nominal values of these variables.

When tested, this hypothesis is found to hold. The mortgage interest rate is not transformed

given the explanatory power associated with the decomposition of this series into its

component parts - an inflationary and a real effect - in the empirical analysis8.

6.4. The Statistical Model

The statistical vector autoregressive (VAR) model estimated as part of the empirical analysis

of the Dublin housing market is defined as:

where:

X

Dumlbc

Dumlls

Xt = l-IlXt_1 -t- l-I2Xt_2 --F ~t,-IDumlbct + ~plDumllst + ~p2Dum2lst + ~p3Dum31st

+ (I)p4Dum41st + (I)tr2Dum2bct + cI)t,-3Dummrt + (I)psDum3bct

(6.1)9

= a vector comprising the log of real new house prices, the log of real personal

disposable income per capita, nominal mortgage interest rates, the log of

real building costs, the log of private housing stock, the log of household

formation and the log of the stock of zoned housing land;

= a transitory shock dummy = 1 for 2000:4 and 0 otherwise;

= a permanent shock dummy = 1 for 1982:2 and 0 otherwise;

8 Kenny (1998) adopts a similar approach.
9 While a linear trend was included as part of the initial VAR

indicated that this could be excluded from the analysis.

specification, subsequent testing
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Dum21s

Dum31s

Dum4ls

Dum2bc

Dummr

Dum3bc

Dq

= a permanent shock dummy = 1 for 1993:2 and 0 otherwise;

= a permanent shock dummy = 1 for 1998:3 and 0 otherwise;

= a permanent shock dummy = 1 for 1981:3 and 0 otherwise;

= a transitory shock dummy = 1 for 1981:2, 0 for 1981:3, - 1 for 1981:4 and

0 otherwise;

= a transitory shock dummy = 1 for 1992:4, -1 for 1993:1 and 0 otherwise;

= a permanent shock dummy = 1 for 1985:2 and 0 otherwise;

= three centred seasonal dummies Dq~, Dq2 and Dq3, where Dq~ = 0.75 in

quarter 1 and -0.25 in quarters i+l, i+2 and i+3 ~o. 9

= unrestricted parameters;

= a vector of unrestricted constants;

= a vector of error terms.

The sample (adjusted for a lag length of two) begins in the third quarter of 1980 and ends in

the last quarter of 2000~1

Note that the above model can be re-parameterised in vector error correction (VECM) format

as follows:

where:

F

AXt = 1--llXt-i + F1AXt.1 + ~trlDumlbct + ~plDumllst + ~I~p2Dum21st + ~p3Dum3lst

+ ¢:Dp4Dum4lst + ~tr2Dum2bct + ~tr3Dummrt + ~psDum3bct

+ ~gqDqt + P + gt

a matrix of short term dynamics.

(6.2)

~0 Johansen (1995) suggests using centred rather than standard seasonal dummies. Centred dummy

variables shift the mean but do not affect the trend.
~ Rather than ending the analysis in the third quarter of 2000, a dummy is included for the last
observation. While this is somewhat trivial, it allows for consistency between this and later chapters,
vis-b,-vis the end point of the sample period.
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6.5. Model Selection and Misspecification Testing

Estimation of the VAR outlined in equation (6.1) relies on a number of assumptions, namely

that the linear conditional mean is explained by past observations and the deterministic trends,

that the conditional variance is constant and that errors are normal and independent with mean

zero and variance ~. While not all of these assumptions are crucial, it is important to test for

model misspecification. As such, the following tables report the information criteria that

motivated the choice of lag length and the outcome of tests for residual normality,

autocorrelation and homoscedasticity. In addition, the constancy of the model’s parameters is

checked using recursive analysis and the findings of the study in this respect are discussed.

6.5.1. Information Criteria and Diagnostic Checking

Tables 6.2 to 6.6 illustrate the multivariate properties of the VAR specification for various lag

lengths. Initial modelling excludes the permanent and transitory shock dummies and chooses

an appropriate lag length on the basis of the standard tests of the Schwartz (SC) and Hannan-

Quinn (HQ) information criteria, along with the Likelihood Ratio test for model reduction. As

Tables 6.2 and 6.3 indicate, these three tests unanimously select a lag length of one.

Table 6.2: Information Criteria for Choice of VAR Lag Length - No Dummies

Lag Length SC HQ
1 -46.025 -47.398
2 -44.189 -46.436
3 -42.644 -45.765
4 -40.986 -44.982

Notes.
1. To ensure validity, the models are nested
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Table 6.3: Likelihood Ratio Test for Model Reduction - No Dummies

Lag Length

Lag 4 to Lag 3
Lag 4 to Lag 2
Lag 4 to Lag 1
Lag 4 to Lag 0

Lag 3 to Lag 2
Lag 3 to Lag i
Lag 3 to Lag 0

Lag 2 to Lag 1
Lag 2 to Lag 0

Lag 1 to Lag 0

Test Statistic

F(49,217) = 0.995
F(98,274) = 1.144
F(147,291) = 1.131
F(196,298) -- 31.633

F(49,253)- 1.300
F(98,3 i 8) : 1.201
F(147,337) : 43.484

F(49,288) =1.071
F(98,363) = 68.999

F(49,324) : 221.76

Probability

0.49
0.20
0.19
0.00"**

0.10
0.12
0.00"**

0.00"**

Notes.
!. To ensure validity, the models are nested
2. Ho: Model reduction is acceptable
3. The F version of this test is used as it corrects lbr small sample size
4. *** denotes reiection of Ho at the 1% si~;nificance level

With respect to diagnostic checking and serial correlation, the LM test for first and fourth

order autocorrelation implies that the null hypothesis of no serial correlation is largely

acceptable. The vector heteroscedasticity test supports the notion of homoscedastic residuals

where applicable but the normality assumption is clearly violated given considerable residual

non-normality as evident from Table 6.5.

Table 6.4: Testing for Serial Correlation in the VAR Residuals - No Dummies

Lag Length                    Test Statistic Probability

1 LM (1) = 60.962 0.12
LM (4) = 48.719 0.48

2 LM (1) = 78.005
LM (4) = 43.391

3 LM (1) = 63.734
LM (4) = 49.372

4 LM (1)-- 57.165
LM (4)= 51.338

0.01
0.70

0.08
0.46

0.20
0.38

Notes:
1. Ho: No serial correlation at lag order h
2. Probabilities are distributed around a chi-squared distribution with 49 degrees of freedom
3. A small sample correction is included
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Table 6.5: Testing for Normality in the VAR Residuals - No Dummies

Lag Length Test Statistic Probability

1 111.218 0.00"**
2 81.071 0.00’**
3 62.713 0.00’**
4 52.499 0.00"**

Notes:

I. Ho: Residuals are multivariate normal
2. Probabilities are distributed around a chi-squared distribution with 14 degrees of freedom
3. A small sample correction is included
4. *** denotes rejection of rio at the 1% significance level

Table 6.6: Testing for Heteroscedasticity in the VAR Residuals - No Dummies

Lag Length Test Statistic

l F(392,388) = 1.060
2 F(784,253) = 0.569
3 ChiA2(1176) -- 1254
4 N/A

Probabili~

0.28
1.00
0.06
N/A

Notes:
1. Ho: Residuals are homoscedastic

However, it should be noted that the presence of non-normal residuals does not render the

Johansen technique invalid. For example, studies by Cheung and Lai (1993) and Gonzolo

(1994) have been successful in demonstrating the robustness of the procedure given non-

normal error terms. Nevertheless, Juselius (forthcoming) argues that it is a mistake to treat

significant interventions and reforms as mere statistical nuisances. As such, an attempt is

made in the following analysis to improve the above baseline VAR(1) specification by the

inclusion of a number of dummy variables as defined in equation (6.1).

In terms of identifying the location and type of dummies needed to account for shocks to the

variables in the system, the standardised residuals from the estimated VAR(I) model with no

dummies were examined to pinpoint outliers. Values in excess of the rule of thumb critical
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figure of 3.73 (in absolute terms) were isolated out one at a time and were modelled as

permanent or transitory dummies as appropriate.

As a further check, attention was paid to the graphs of the individual data series presented in

Chapter 4. Figure 4.9’s illustration of the land stock variable indicates that the series appears

to be stationary when differenced once and to contain a number of shift effects. These shifts

are reflected in the levels graph by the movement to a higher path about 1981, 1982, 1993 and

1998 and also in the corresponding blips in the graph of the first differences. As the shocks

represent permanent interventions, they are modelled in difference terms by dummies that

take a value of one for the relevant observation and zero otherwise. These dummies then

cumulate to form a shift in the data in levels and thus the desired effect is obtained. Similarly,

Figure 4.6 suggests a level shift in the building cost series at the beginning of 1985 and

consequently, a permanent shock dummy is also included to account for this occurrence.

Overall, it is expected that the various shifts evident in the data will cancel and as such, it is

not necessary for them to separately enter the cointegrating space.

In addition to the above non-reversible shocks, there appears to be some instances of

temporary overshooting with respect to the interest rate and building cost variables. Figure 4.5

depicts a blip in the mortgage interest rate data expressed in levels at the end of 1992 (related

to the exchange rate mechanism crisis) and a corresponding drop in the difference graph

followed quickly by a return to the previous level. Likewise, a temporary shock to the

building cost series is depicted in Figure 4.6 for 1981 and an outlier is clearly evident for the

final observation of this variable. Given the transitory nature of these shocks, it is appropriate

to model them using dummies that assign values of one and minus one to the observations

concerned so that the effect is eliminated almost immediately.
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Following the inclusion of these dummy variables, the model was then re-tested to choose a

correct lag length and the various diagnostic checks reported previously were carried out a

second time. Tables 6.7 to 6.11 report the findings.

Table 6.7: Information Criteria for Choice of VAR Lag Length - Dummies

Lag Length SC HQ
l -47.442 -49.814
2 -46.201 -49.448
3 -44.817 -48.937
4 -43.677 -48.671

Notes:
1. To ensure validity, the models are nested

Table 6.8: Likelihood Ratio Test for Model Reduction - Dummies

Lag Length Test Statistic Probabili~

Lag 4 to Lag 3 F(49,177) = 1.285 0.12
Lag 4 to Lag 2 F(98,223) = 1.297 0.06
Lag 4 to Lag 1 F(147,237) = 1.458 0.005***

Lag 3 to Lag 2 F(49,212) = 1.265 0.13
Lag 3 to Lag l F(98,268) = 1.486 0.007***

F(49,248) : 1.665Lag 2 to Lag 1 0.007***

Notes.
!. To ensure validity, the models are nested
2. Ho: Model reduction is acceptable
3. The F version of this test is used as it corrects for small sample size
4. *** denotes rejection of rio at the 1% significance level

There is now greater inconclusiveness amongst the information criteria regarding the choice

of lag length. While the SC and HQ methods select a lag of one, the Likelihood Ratio test for

model reduction suggests a lag length of two. In both cases, the residuals are reasonably well

behaved in that they are neither serially correlated or heteroscedastic.
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Table 6.9: Testing for Serial Correlation in the VAR Residuals - Dummies

Lag Length

1

Test Statistic

LM (1)-- 66.671

LM (4) : 62.910

2 LM (I) : 56.707
LM (4)-- 52.802

3 LM (1)-- 53.598
LM (4)-- 50.134

4 LM (1) -- 50.269
LM (4) = 46.787

Probability

0.05
0.09

0.21

0.33

0.30
0.43

0.42
0.56

Notes:

1. Ho: No serial correlation at lag order h
2. Probabilities are distributed around a chi-squared distribution with 49 degrees of freedom

3. A small sample correction is included

Table 6.10: Testing for Normality in the VAR Residuals - Dummies

Lag Length Test Statistic Probability

1 30.339 0.007***
2 32.212 0.004***

3 37.633 0.001"**
4 27.821 0.015"*

Notes.
1..Ho: Residuals are multivariate normal
2. Probabilities are distributed around a chi-squared distribution with 14 degrees of freedom
3. A small sample correction is included
4. **(***) denotes rejection of rio at the 5% (1%) significance level

Table 6.1 I: Testing for Heteroscedasticity in the VAR Residuals- Dummies

Lag Length Test Statistic

1 F(392,288) = 0.665

2 F(784,94) = 0.147

3 ChiA2(l 176) = 1131

4 N/A

Probability

0.99

1.00
0.82

N/A

Nows.

1. Ho: Residuals are homoscedastic
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However, as is clear from Table 6.10, non-normality is still present though the associated test

statistics are vastly improved when compared with the VAR(l) and VAR(2) specifications

containing no dummy variables.

After some consideration a decision was made to proceed on the basis of two lags. This

choice was motivated in part by the findings of the information selection methods and also by

the outcome of the residual tests, which indicate that a lag of two renders serial correlation in

the new housing market insignificant with a much higher probability than a lag of one.

Moreover, a lag length of two fits better with expectations and is likely to be less restrictive

than a model estimated using only one lag.

6.5.2. Analysis of the Residuals of the Estimated VAR Model

Bearing in mind that the chosen specification must satisfy a number of assumptions in order

for the Johansen cointegration technique to be valid, the following tables report the

multivariate and univariate statistics associated with the estimated VAR(2) model.

Findings are generally favourable though the model and the data do contain some negative

features. Firstly, the correlation matrix indicates slightly high, but not unexpected,

correlations between particular variables - most notably between house prices and income. On

the other hand, the multivariate statistics indicate that the residuals are serially uncorrelated

and homoscedastic.

Secondly, the univariate analysis implies a lack of normality for the household formation and

land stock variables. This appears to arise from the kurtosis problem that these series exhibit

and while serving to undermine normality in the multivariate framework, the problem is of an

insufficient magnitude to be of any real concern. Moreover, as pointed out in Section 6.5.1 the
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presence of non-normal residuals does not render the methodology invalid.

empirical model is statistically sound and does not suffer from misspecification.

As such, the

Table 6.12: Estimated VAR(2) Model - Correlation Matrix

Variable dlognph dloginc dMR dlogbc dlogphs

dlognph 1.000
dloginc 0.437 ! .000
dMR -0.309 -0.168 1.000
dlogbc 0.274 0.056 -0.277
dlogphs -0.073 -0.014 0.069
dloghf -0.038 0.014 -0.306
dlogls 0.068 0.180 0.179

1.000
-0.062 1.000
0.336 -0.096
0.050 0.227

dloghf

1.000
0.181

d/og/s

1.000

Table 6.13: Estimated VAR(2) Model- Multivariate Statistics

Test Type Test Statistic

Information Criteria:

SC -46.139
HQ -49.336

ProbabiliO~

Serial Correlation:

Lagrange Multiplier

Vector AR(1-4) Test

LM(I) = 46.143
LM(4) = 54.909
F(196,161) = 0.856

0.59
0.26
0.85

Normality

Heteroscedasticity

34.430 0.00"**

F(784,134)=0.198 1.00

Notes:
1. Ho: Residuals are respectively serially uncorrelated, multivariate normal and homoscedastic

2. Probabilities are distributed around a chi-squared distribution with 49 degrees of freedom for the LM test and 14
degrees of freedom when testing for normality

3. Where applicable, F versions of the above tests are used to correct for small sample size. The LM test for serial
correlation and the normality test also include small sample corrections

4. *** denotes rejection of Ho at the 1% significance level

101



Table 6.14: Estimated VAR(2) Model- Univariate Statistics

Variable Mean Std Dev Skewness Kurtosis

Iognph -0.000 0.033 -0.063 2.852
loginc -0.000 0.016 0.025 2.610
MR 0.000 0.511 0.143 3.126
logbc -0.000 0.008 -0. ! 93 3.424
Iogphs -0.000 0.001 0.356 3.214
dloghf 0.000 0.098 -0.082 4.649
Iogis 0.000 0.006 0.127 5.481

Variable Test Type Test Statistic Probability

lognph AR(1-4) F(4,52) -- 0.775 0.55
Ioginc F(4,52) -- 1.239 0.31
MR F(4,52) = 1.228 0.31
logbc F(4,52) -- 2.148 0.09
Iogphs F(4,52) -- 0.322 0.86
Ioghf F(4,52) = 0.350 0.84
logls F(4,52) = 2.764 0.04’*

Variable Test Type Test Statistic Probability

lognph Normality 0.122 0.94
loginc 0.111 0.95
MR 0.904 0.64
logbc 2.231 0.33
Iogphs 2.085 0.35
loghf 12.175 0.00"**
logls 21.184 0.00"**

lognph ARCH (1-4) F(4,48) = 1.264 0.30
loginc F(4,48) -- 0.683 0.61
MR F(4,48) = 2.023 0.11
logbc F(4,48) = 0.324 0.86
logphs F(4,48) = 0.476 0.75
loghf F(4,48) = 1.697 0.17
logls F(4,48) = 2.975 0.03 **

Notes.
i. Ho: Residuals are respectively serially uncorrelated, normal and contain no ARCH effects
2. Probabilities for the normality test are distributed around a chi-squared distribution with 2 degrees of freedom
3. ** (***) denotes rejection of rio at the 5% (1%) significance level

6.5.3. Recursive Analysis’

Parameter constancy is an important assumption underlying the VAR methodology, and while

a model may pass the various misspecification tests discussed above, it may be the case that it

102



suffers from non-constant parameters. To test for this possibility, a recursive analysis was

undertaken on a base sample covering the period 1980:3 to 1993:4~2

Beginning with Figure 6.1, the recu,’sively calculated Trace test suggests five unit roots and

two stationary relationships amongst the variables. Intuitively, the presence of a unit root can

be rejected / accepted for components of the Trace statistic which lie above / below the

critical value of one. Note that a critical value in excess of one is deemed more appropriate for

VAR models which contain dummy variables, as in this case.

13Figure 6.1: Recursive Analysis- Trace Test (Base Sample 1980:3 to 1993:4)
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Next looking at Figure 6.2, which tests the constancy of the known beta (assuming a rank of

two), it can be seen that the model concentrating out all dynamic influences (Rt) is

approximately one or below over the entire period, while there is some instability in the

unconcentrated model (Zt) especially around 1998.

~2 In order to test the sensitivity of the recursive analysis, a variety of time periods were modelled as the

base sample. As the results are similar to those presented in Figures 6.1 to 6.3, the associated graphs are
not reproduced here.
~3 The critical values presented in this figure are inappropriate as the model contains dummy variables.

The presence of such dummies implies that the line at one should be higher.

103



Figure 6.2: Recursive Analysis - Test of Known Beta, rank = 2 (Base Sample 1980:3 to 1993:4)
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Figure 6.3: Recursive Analysis - The Log Likelihood Value (Base Sample 1980:3 to 1993:4)
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Finally, with respect to the recursively calculated log likelihood value, it appears to just lie

within the 95% confidence bands for the full model (Z0, but as is typically the case, the

calculated value is more stable for the concentrated (Rt) version. Combined, these tests allow

for a tentative acceptance of the null hypothesis of constancyTM

~4 It is also unlikely that the tests for autocorrelation would have been passed if the parameters of the

model are not constant.
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6.6. Determination of the Cointegrating Rank

Conditional on the chosen lag length of two, this section tests the estimated model of the

Dublin new housing market for the presence of one or more cointegrating relations. In

determining the cointegration rank (r), the standard Trace test - which tests the restricted null

hypothesis that r = q (where q = 0, 1, 2, 3, 4, 5, 6) against the unrestricted alternative that r = 7

- is applied. However, as Juselius (forthcoming) notes, ’many simulation studies have

demonstrated that the asymptotic distribution [of the Trace statistic] can be a poor

approximation to the true distribution when the sample size is small resulting in substantial

size and power distortions’~s. The latter refers to the fact that the data itself may not be

particularly informative about a hypothetical long run relation.

Given the reasonably small sample of 84 observations employed in this study, it is appropriate

that some consideration is given to the above and to how best to resolve these issues~6. With

regard to the former, one potential solution would be to apply a small sample correction to the

Trace test statistic as proposed by Johansen (2002). While this may result in a more correct

size, the power problem nonetheless remains unsolved (Juselius, forthcoming). Juselius

therefore argues that ’when assessing the appropriateness of the asymptotic tables to

determine the cointegration rank .... it is advisable to use as much additional information as

possible’.

Accordingly, a range of informal criteria, namely the roots of the companion matrix, the t

values of the alpha coefficients of the rt~+l cointegrating vector, the graphs of the potential

relations and economic theory, are used in tandem with the formal Trace test to motivate the

choice of rank in the following. Tables 6.15 to 6.17 present the empirical findings.

15 [ ] parenthesis inserted.
16 Note that Juselius (forthcoming) views a sample of 50-70 observations as moderately sized.

Applying this classification to the current sample of 84 observations implies that the latter is far from
small.
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Beginning with the Trace test, the results presented in Table 6.15 indicate the presence of two

cointegrating vectors amongst the data at the 5% significance level. Next, Table 6.16 details

the largest modulus roots of the companion matrix for ranks seven, four, three and two.

Setting r = 7, four unit roots are evident implying three cointegrating relations. However,

imposing a rank of three is clearly incorrect as the fifth root is equal to one indicating the need

to move to a lower rank. As a sensitivity analysis, consider setting r = 4 and r = 2. The latter

leaves a reasonably small root of 0.87 in the model whereas the former gives rise to an

unacceptably large fourth root of one. Two therefore appears to represent an appropriate

choice of rank.

Table 6.15: Testing for the Cointegrating Rank- The Trace Test

Eigenvalues Ho.’r p-r Trace Statistic 95% Critical Value

0.5996 0 7 176.74 123.04
0.4208 1 6 101.68 93.92
0.2559 2 5 56.91 68.68
0.2110 3 4 32.67 47.21
0.1258 4 3 13.23 29.38
0.0204 5 2 2.21 15.34
0.0064 6 1 0.52 3.84

Noles."

1. Ho: r = q (~’here q = 0, !, 2, 3, 4, 5, 6)
2. The 95% critical values are taken from Table 15.3 in Johansen (1995)

Table 6.16: Testing for the Cointegrating Rank- Roots of the Companion Matrix

p-r r=7 r--4 r=3 r=2

7 ! .00 1.00 1.00 1.00

6 0.99 1.00 1.00 1.00

5 0.93 1.00 1.00 1.00

4 0.93 1.00 1.00 1.00

3 0.84 0.83 1.00 1.00

2 0.84 0.83 0.74 0.87

1 0.41 0.40 0.42 0.67

Notes.
1. p refers to the number of variables in the analysis, p-r = 7 unit roots corresponds to zero cointegration while

p-r = 6 unit roots implies the presence of one cointegrating relation amongst the data series
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Figure 6.4: The Cointegrating Vectors - Beta I and 2
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Table 6.17: Testing for the Cointegrating Rank- Unrestricted Estimates of the VAR(2) Model

Beta lognph loginc MR logbc logphs loghf logls

1 -7.752 8.670 0.461 - 19.608 22.903 10.672 1.460

2 2.655 8.593 0.437 7.908 -50.939 -5.972 11.656

3 -6.045 14.245 -0.033 -28.774 56.707 6.467 -22.752

4 4.840 -24.353 0.501 -10.878 113.173 -4.064 -24.209

5 1.174 -5.444 0.485 11.626 9.429 7.250 10.875

6 2.495 -8.635 -0.110 -43.470 62.060 1.237 -7.151

7 -9.581 15.743 0.096 -8.174 -9.946 1.951 4.967

Alpha

dlognph -0.017 -0.008 0.005 0.001 0.000 0.001 0.002

dloginc -0.004 -0.001 -0.002 0.004 0.004 -0.000 0.001

dMR -0.055 -0.299 0.011 0.047 -0.023 -0.013 -0.027

dlogbc 0.002 -0.001 -0.001 -0.000 -0.000 0.001 0.000

dlogphs -0.000 0.000 0.000 -0.000 0.000 0.000 -0.000

dlogh f -0.029 0.038 -0.027 0.019 -0.019 0.005 0.001

diogls 0.001 -0.000 0.002 0.003 -0.000 0.000 -0.000

Alpha T Values

dlognph -4.487 -2.278 1.415 0.185 0.091 0.165 0.589

dloginc -2.400 -0.846 - 1.177 2.545 2.223 -0.039 0.304

dMR -0.979 -5.312 0.192 0.833 -0.411 -0.222 -0.482

dlogbc 2.501 -1.497 -1.677 -0.339 -0.401 1.062 0.264

dlogphs -4.634 1.610 2.256 -0.216 1.283 0.662 -0.327

dlogh f -2.665 3.526 -2.505 1.750 - i .747 0.418 0.075

dlogls 1.716 -0.143 2.496 3.778 -0.430 0.374 -0.057

Notes."
1. Beta corresponds to the cointegrating vectors while alpha reflects the adjustment coefficients
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A rank of two is also supported by an examination of the corresponding graphs as presented

in Figure 6.4. Moreover, if the alpha t values of the unrestricted estimates are considered (see

Table 6.17), it is evident that the first and second cointegrating vectors are significant and

suggestive of a rank of two17

As such, the assumption that there exist two equilibrium relations amongst the data, and the

continued modelling of the housing market on this basis, appears to be valid. Furthermore,

this approach fits well with a priori expectations which postulated the presence of two such

relations - one for the demand-side of the market and one representing supply.

6.7. Model Specific Data Properties

The following section examines a range of model specific data properties. The variables

included in the estimated VAR(2) model are firstly tested for long run exclusion, and then for

stationarity. Conditional on a rank of two, the former provides information as to whether the

particular variable under consideration can or cannot be omitted from the cointegration space,

while the latter determines if any of the series are individually stationary. A test for long run

weak exogeneity is also undertaken. This imposes restrictions on alpha and allows for the fact

that a variable may influence the long run stochastic path of other variables in the system

without being influenced by them, that is, a ’no levels feedback’ effect. The results of these

three tests are reported below in Table 6.18.

Firstly, with respect to the hypothesis of long run exclusion, the null is rejected at the 5%

significance level for most of the variables. The test fails to reject exclusion of the housing

and land stock series but it is only the probability of 0.26 associated with the latter that is a

17 With respect to the significance levels of the alpha coefficients, as their distribution is unknown a t

value of roughly 3.5 (in absolute terms) is regarded as more appropriate than the standard rule of thumb
figure of 2. In addition, note that the significance of a given beta vector requires a high t value for only
one of the related alpha coefficients.
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cause of concern. Moreover, caution is advised when implementing this test, as it may be the

case that a relevant variable obtains an insignificant test value as a result of multicollinearity

with other variables in the system (Juselius, forthcoming). Regressing the land series on the

housing stock variable indicates a strong degree of collinearity. As such, a decision was made

not to exclude the stock of land from the empirical analysis.

Table 6.18: Estimated VAR(2) Model - Model Specific Data Properties

Exclusion Test (Chi squared (2) = 5.99)

lognph loginc MR logbc logphs loghf logls

22.78 6.56 23.66 10.63 5.18 31.61 2.72
(0.00) (0.04) (0.00) (0.00) (0.07) (0.00) (0.26)

Stationarity Test (Chi squared (5) -- 11.07)

lognph loginc MR logbc logphs loghf logls

27.04 29.47 21.73 33.49 36.90 38.42 39.38
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Weak Exogeneity Test (Chi squared (2) = 5.99)

lognph loginc MR logbc logphs loghf logls

19.87 4.64 20.56 7.07 16.91 10.77 1.90

(0.00) (0.10) (0.00) (0.03) (0.00) (0.00) (0.39)

Notes:
1. The above tests are conditional on a cointegrating rank of two

2. Respectively, the null hypothesis states that the variable under consideration should be excluded, is
individually stationary and is weakly exogeneous

3. p values are given in brackets

Secondly, testing for stationarity reveals that none of the variables are individually stationary.

The rejection of the null at the 5% significance level across all series confirms the findings of

the earlier unit root tests, and is important as it rules out the possibility that one of the

uncovered cointegrating relations can be accounted for by the presence of a stationary

variable.
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The final section of Table 6.18 reports the findings of a test for long run weak exogeneity,

with income and land stock falling into this category. While the evidence is poor with respect

to the former, the p value of 0.39 corresponding to the land variable points towards the

acceptance of this variable as weakly exogenous. Given this, it proved possible (and indeed

advantageous) to re-estimate the VAR(2) model as a partial system as discussed below.

6.8. The Partial Model

The weak exogeneity of the land variable implies that the series is influential in determining

the long run path of the other variables in the housing model, but that they in turn do not

influence it. Thus, the variable fails to adjust to the cointegrating relations and may be viewed

as a common driving trend~s. The overall implication of this finding is that valid inference on

beta can be obtained from a six dimensional system comprised of new house prices, income,

mortgage interest rates, the housing stock and household formation conditioned on the land

variable (Juselius, forthcoming).

With respect to rank determination and partial systems, the asymptotic distribution of the rank

test statistics for the latter differs from that of a full system and can consequently prove

problematic (Johansen, 1995). However, as the rank has already been determined within the

full system and the model tested for weak exogeneity, there is no further need to test for rank

in the partial system (Hansen and Juselius, 1995). The standard approach is to proceed on the

basis of the previously chosen rank, that ofr = 2 in the case of the housing model.

Often the move to a partial system results in an improved statistical specification and can be

particularly useful in eliminating insignificant dummies relating to the weakly exogenous

variable (Hendry and Juselius, 2000). With respect to the estimated VAR(2) model, four of

~8 The refers to the fact that the unexplained variation of ~og~s,t cumulates in the system so that ZI ~ ~og~s.t

is one of the common trends. In this sense, the stock of land ’drives’ the system.
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the included dummy variables relate to the land series. By re-running the model conditioning

on this series, it is possible to check if these dummy variables are excludable. Table 6.19

presents the associated short run matrices. While it appears that Dum2ls is still extremely

important, the remaining three land dummies are insignificant~9. On balance it is felt that

Dum21s should be retained as part of the analysis, but that Dumlls, Dumds and Dumds can be

dropped. Thus, the partial system modelled from now on is as defined in equation (6.1), with

the exclusion of the above dummies and conditioning on land. As in the full model, two lags

are included.

Table 6.19: The Partial Model - Short Run Matrices

Variable Dum lbc Dum fls Dum2ls Dum fls Dum4ls Dum:bc Dummr Dumsbc

dlognph -0.001 -0.065 -0.002 -0.043 -0.042 0.005 0.024 0.045
dloginc -0.028 -0.069 -0.026 -0.036 -0.013 0.055 0.011 0.027
dMR 0.327 -0.871 -5.301 -0.508 2.397 -0.873 2.364 -0.151
dlogbc 0.102 -0.034 0.028 0.006 -0.028 0.060 0.002 0.042
dlogphs -0.002 -0.003 -0.004 -0.004 -0.001 -0.001 0.002 0.003
dloghf 0.060 -0.348 -0.214 -0.088 -0.119 0.057 0.093 0.087

T Values

dlognph -0.023 -0.915 -0.035 -0.750 -0.737 0.185 0.831 1.247
dloginc -1.604 -2.142 -0.859 -1.393 -0.502 4.182 0.885 1.610

dMR 0.568 -0.817 -5.339 -0.592 2.781 -2.033 5.534 -0.276
diogbc 11.860 -2.105 1.908 0.444 -2.191 9.351 0.302 5.166

dlogphs -1.940 -1.592 -2.219 -2.411 -0.515 -1.281 2.139 2.693

dloghf 0.545 -1.701 -1.121 -0.534 -0.715 0.692 1.136 0.831

6.8.1. Analysis of the Residuals of the Partial Model

The residuals of the partial system pass the battery of diagnostic checks discussed previously,

and in some respects, with greater ease than those of the full model. Tables 6.20 to 6.22 below

illustrate this point.

~9 The rule of thumb that dummy variables should have an absolute t value of at least 3.73 in order to

be considered significant is applied here. This is consistent with the approach adopted earlier when
identifying outliers (see Section 6.5.1).
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Despite the correlation matrix remaining largely unchanged, the multivariate statistics

indicate an overall absence of serial correlation and again, find no evidence of

heteroscedasticity in the model. However, the most noteworthy feature with respect to Table

6.20 is that the residuals now approximate a normal distribution. As such, the end result of the

move to a partial system is an improvement in the statistical specification of the housing

model and given this, it can be concluded that re-specifying the VAR(2) model to allow for

the weak exogeneity of the land stock variable is both appropriate and desirable.

Table 6.20: The Partial Model - Multivariate Statistics

Test Type

Information Criteria:

SC

HQ

Serial Correlation:

Lagrange Multiplier

Vector AR(1-4) Test

Normality

Heteroscedasticity

Test Statistic

-37.526
-40.055

LM(1) : 33.511
LM(4) : 42.237

F(144,177)- 1.135

Probabili~

0.59
0.22
0.21

14.138 0.29

F(546,268) : 0.469 1.00

Notes-

1. Ho: Residuals are respectively serially uncorrelated, multivariate normal and homoscedastic
2. Probabilities are distributed around a chi-squared distribution with 36 degrees of freedom for the LM test and 12

degrees of freedom when testing for normality
3. Where applicable, F versions of the above tests are used to correct for small sample size. The LM test for serial

correlation and the normality test also include small sample corrections

Table 6.21: The Partial Model - Correlation Matrix

Variable dlognph Dloginc dMR dlogbc dlogphs     dloghf

diognph 1.000

dloginc 0.437 1.000

dMR -0.297 -0.121 1.000

dlogbc 0.273 0.073 -0.293 1.000

dlogphs -0.067 -0.004 0.075 -0.086 1.000

dloghf -0.035 0.025 -0.284 0.355 -0.115 1.000
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Table 6.22: The Partial Model - Univariate Statistics

Variable Mean Std Dev Skewness Kurtosis

lognph 0.000 0.034 -0.026 2.88 l
Ioginc 0.000 0.016 0.029 2.618
MR 0.000 0.552 0.257 3.297
Iogbc 0.000 0.008 0.017 2.876
Ioghs 0.000 0.001 0.273 3.180
loghf -0.000 0.098 -0.116 4.501

Variable Test Type Test Statistic        Probability

lognph AR(1-4) F(4,54) -- 0.667 0.62
loginc F(4,54) -- 1.02 ! 0.40
MR F(4,54) = i .003 0.41
logbc F(4,54) -- 1.527 0.21
logphs F(4,54) = 0.441 0.78
loghf F(4,54) -- 0.359 0.84

lognph Normality 0.118 0.94
Ioginc 0.104 0.95
MR 1.810 0.40
logbc 0.107 0.95
logphs 1.511 0.47
loghf 10.626 0.00"**

lognph ARCH (1-4) F(4,50) = 1.243 0.30
loginc F(4,50) -- 0.718 0.58
MR F(4,50) = 1.528 0.21
logbc F(4,50) -- 0.189 0.94
logphs F(4,50) = 0.260 0.90
loghf F(4,50) = 1.601 0.19

Notes:
1. Ho: Residuals are respectively serially uncorrelated, normal and contain no ARCH effects
2. Probabilities for the normality test are distributed around a chi-squared distribution with 2 degrees of freedom
3. *** denotes rejection of rio at the 1% significance level

6.9. Long Run Identification2°

Following rank determination and the re-specification of the model as a partial system, the

next step is to ensure that the uncovered cointegrating relationships are unique and to impose

some structure on the given vectors (a priori expectations suggest that one of these vectors

should represent the demand-side of the housing market and the other supply). To this end, a

20 For a more technical discussion of this issue, see Section 5.2.2.
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just / exactly identified model is derived and compared with a series of restricted models

using the likelihood ratio test as described in Johansen and Juselius (1994).

As a general rule, exact identification is achieved by imposing one normalisation and r-I

restrictions on each vector (Hendry and Juselius, 2000). In this case, r = 2 which implies one

restriction on both vectors and an appropriate normalisation or re-scaling of each. As the first

relation (beta 1) is intended as the demand relationship, it is normalised on the housing stock

variable and excludes the measure of residential land availability - theoretically this variable

should appear only on the supply-side of the model. The second cointegrating vector (beta 2)

represents supply and as such, normalisation is on house prices with the stock of housing

eliminated from this relation. Table 6.23 presents the just identified model.

Table 6.23: The Exactly Identified Model

Beta lognph loginc MR logbc logphs loghf logls

1 -0.225 0.095 0.005 -0.537 1.000 0.365 0.000

2 1.000 -1.135 -0.146 2.377 0.000 -1.641 -2.538

Standard Errors of Beta

1 0.047 0.095 0.003 0.155 0.000 0.049 0.000

2 0.000 0.369 0.025 1.062 0.000 0.305 0.435

Alpha

i 0.125 -0.043 11.180 0.065 -0.011 -2.430

2 0.091 0.011 1.763 -0.002 0.001 -0.153

Standard Errors of Alpha

1 0.192 0.098 3.153 0.047 0.005 0.593

2 0.025 0.013 0.411 0.006 0.001 0.077

Alpha T Values

1 0.647 -0.440 3.546 1.370 -2.058 -4.098

2 3.608 0.828 4.286 -0.248 1.096 -1.972

Notes."

1. Log likelihood = 1137.68127

2. Beta corresponds to the cointegrating vectors while alpha reflects the adjustment coefficients
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However, to lend to the interpretability of these vectors as demand and supply relationships, it

is necessary to impose further over-identifying restrictions. Economic arguments would

suggest that a valid starting point in this respect is the exclusion of the index of building costs

from the demand relation, and the demographic and income variables from the supply-side of

the model. As a consequence of dropping these variables, the coefficients of the remaining

series are altered somewhat - particularly noteworthy are the larger coefficients of-1.145,

0.610 and 0.833 respectively on the house price, income and supply-side interest rate

variables. Building on these findings, additional restrictions which impose unit coefficients on

the house price and income series in the demand relation, and on the mortgage interest rate

and building cost variables in the supply vector, are also tested. The final over-identified

model is set out in Table 6.242~

Table 6.24: The Over-Identified Model

Beta lognph loginc MR logbc logphs loghf logls

1 1.000 - 1.000 0.092 0.000 1.000 - 1.722 0.000
2 1.000 0.000 - 1.000 - 1.000 0.000 0.000 - 10.628

Standard Errors of Beta

1 0.000 0.000 0.013 0.000 0.000 0.192 0.000
2 0.000 0.000 0.000 0.000 0.000 0.000 1.087

Alpha

1 0.052 0.019 -0.833 -0.010 0.003 0.364
2 0.018 0.003 0.132 -0.002 0.000 0.020

Standard Errors of Alpha

1 0.029 0.014 0.472 0.007 0.001 0.087
2 0.004 0.002 0.072 0.001 0.000 0.013

Alpha T Values

1 1.822 1.340 -1.765 -1.480 3.263 4.200
2 4.065 1.178 1.844 - 1.608 3.847 1.521

Notes."
1. Log likelihood = 1130.77036
2. Likelihood ratio test: ChiA2 (7)= 13.822 with a probability of 0.05
3. Beta corresponds to the cointe8rating vectors while alpha reflects the adjustment coefficients

2~ While a wide range of additional hypotheses were considered and tested, only the chosen model is

presented here.
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More formally, the two long run relations uncovered for the Dublin new housing market (beta

1 and 2 in Table 6.24) may be written as follows:

Demand relation." logphs + lognph - loginc + 0.092 MR - 1.722 loghf

logphs-- - Iognph + Ioginc - 0.092 MR + 1.722 Ioghf+ et (6.3)

Supply relation. Iognph - MR - logbc - 10.628 Iogls

lognph = MR + Iogbc + 10.628 Iogls + et (6.4)

where et- I(0).

In analysing the results for the demand-side of the market, the equi-proportional relationship

between income and the housing stock is noteworthy, as is the unit price elasticity of housing

demand. As housing is a necessary good for most, a small coefficient (as in the unrestricted

case) m ight be anticipated22.

With respect to the interest rate variable, the negatively signed coefficient accurately captures

the depressing effect of higher interest rates on house prices due to their depressing effect on

demand. However, attention is drawn to the fact that the study uses the nominal mortgage

interest rate as the interest rate variable. As such, it is possible to decompose this variable into

a real interest rate component and a component that reflects inflationary expectations. If the

real interest rate is assumed to be constant, then the negative sign on the interest rate

coefficient may also reflect the depressing effect of inflation on housing demand due to

repayment tilt23. Finally, as expected a priori, the sign of the coefficient on the demographic

22 Kenny (1998) comments on a similar finding of a higher than expected long run price elasticity of

demand (also equal to one) for the national housing market.
23 This relates to the ability of inflation to ’tilt’ forward the real burden of repaying mortgage debt. For

a detailed discussion see Thorn (1983).
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variable implies a positive relationship between the demand for housing and household

formation.

In terms of the supply relation, the unit coefficient on the building costs and interest rate

series respectively indicate that increased material and labour costs are fully passed onto

consumers, and that the opportunity cost of borrowing is an important factor in affecting the

willingness of suppliers to provide housing. The magnitude of the latter effect is particularly

striking, if somewhat unexpected24.

Again, the nominal nature of the interest rate variable is worth mentioning as the positive sign

on the associated coefficient can also be explained by the use of housing as a hedging

instrument. In times of high uncertainty and inflation, housing acts as a hedge against future

inflation and thus, as the nominal mortgage interest rate increases, the demand for housing

increases. In this case, the effect of the nominal interest rate on housing demand is captured

on the supply-side of the model as opposed to the more traditional demand-side.

The last variable to play a role in the long run supply relationship is land. Interestingly, this

series enters with a positive as opposed to a negatively signed coefficient and as such, the

initial expectation that an increase in the stock of zoned housing land would translate into an

expansion in supply and a subsequent fall in the price of housing does not materialise. A

possible explanation, and one that would seem to fit well with on the ground opinion, is that

of hoarding on the part of landowners. The failure to release residentially zoned land onto the

market, as a strategy for artificially inflating the price, translates into lower housing supply

and higher house prices. However, it should be remembered that while the land concerned

may have been zoned for housing purposes, it might not be in receipt of services or planning

permission, which would also result in a delay in its coming on stream.

24 Note however that Kenny (1999) also finds a strong negative relationship between the long run

supply of housing and interest rates (coefficient of 1.16).
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Figure 6.5 depicts the identified long run demand and supply relationships. These seem to

paint an accurate picture of the Dublin new housing market over the sample period.

Figure 6.5: Long Run Demand and Supply
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Looking first at the demand vector, it appears that the stock of housing was below its desired

level - the level consistent with the prevailing level of house prices, income, mortgage interest

rates and household formation - from 1986-1989, most of 1993-1997 and during 1999. In

periods such as these, increases in the housing stock, house prices or both would be needed to

eliminate excess demand and restore the market to equilibrium (the horizontal line in Figure

6.5).

Secondly, the supply relation shows that from the end of 1987 to 1989, and from 1994

onwards, house prices were relatively high given the prevailing level of mortgage interest

rates, building costs and land. Of particular interest is the consistency of this occurrence

towards the latter end of the decade. In this situation, an upward adjustment in the supply of

housing would be required to eliminate disequilibria. Alternatively, house prices could

decline.
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In addition, note that the supply vector presented in Figure 6.5 is close to an inverse, trend

adjusted version of the mortgage interest rate series graphed in Figure 4.5. This reflects the

magnitude of the interest rate coefficient in the identified supply relation.

Finally, before accepting the above relations as equilibrium relationships, it is essential to

consider their adjustment properties, that is, the alpha value of the normalised variable in each

vector25. Intuitively, these should bear a minus sign reflecting the elimination of steady state

deviations and a return to the long run path. However, as evident from Table 6.24, the

coefficients on both the housing stock and price variables are positively signed which

indicates a move away from equilibrium.

In terms of Figure 6.5, these findings suggest that in periods of excess demand, neither the

stock nor price of housing adjusted towards the long run demand path. Similarly, prices

appear to have moved away from the long run supply path when above their equilibrium

level, rather than adjusting towards it.

One explanation for this lack of error correction is that the demand and supply relationships

identified above do not define equilibrium for the Dublin housing market26. Alternatively, it

could be the case that adjustment behaviour in this marketplace is non-linear in nature, as

opposed to linear. Hence, prior to accepting a hypothesis of no cointegration, this latter

possibility should be considered.

25 Again, the sequential manner in which the long run relations and their adjustment properties are

discussed in this section is only for convenience.
26 For example, the household formation variable could be viewed as the equilibrating force in the

demand relation.
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6.10. Conclusion

This chapter sought to undertake a long run analysis of the market for new, private sector

housing in Dublin over the period 1980-2000. In order to achieve this objective econometric

modelling adopted the Johansen cointegration technique, applying it to a dataset comprised of

new house prices, income, mortgage interest rates, building costs, housing stock, household

formation and the stock of land. A priori, the existence of two long run relations amongst

these variables was postulated - one for the demand-side of the market and one representing

supply.

In line with expectations, the results identify the presence of two cointegrating vectors. The

demand relation, which is normalised on the housing stock variable, shows that the stock of

housing was below its desired level - that is the level consistent with the prevailing level of

house prices, income, mortgage interest rates and demographics - over the time periods 1986-

1989, 1993-1997 and 1999. The supply vector is normalised on house prices and suggests that

from the end of 1987 to 1989, and from 1994 onwards, the price of housing exceeded its

equilibrium relationship with mortgage interest rates, building costs and land.

However, an analysis of the adjustment properties of the above relations reveals a failure on

the part of both the stock and price of housing to adjust to steady state deviations and restore

the market to equilibrium. This lack of error correction is of concern as it implies that the

identified demand and supply relationships may not in fact define equilibrium for the Dublin

housing market.

Given these findings, a natural next step is to consider in greater detail the manner in which

the Dublin housing market adjusts. In doing so, the possibility of non-linear as well as linear

adjustment behaviour should be examined. Chapter 7 takes up this gauntlet.
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Chapter 7:

An Analysis of Adjustment in the Dublin Housing Market

7.1. Introduction

Building on the preceding analysis, this chapter seeks to examine adjustment behaviour in the

Dublin market for new private sector housing. Knowledge of the adjustment mechanisms

inherent in the marketplace acts as a guide for policy-making and given this, it seems

appropriate to examine the manner in which, and indeed if, deviations from the identified

steady state paths are eliminated so as to facilitate a return to the equilibrium level. In the

context of this study, the response of the price variable to such deviations is of particular

interest. Thus, the key aim of the present chapter is to model short run house price

determination in Dublin within an adjustment type framework. In order to achieve this

objective, error correction models of both a linear and non-linear nature are developed and

applied to the time series dataset described in Chapter 4. Furthermore, to enable a direct

comparison between the two models, the linear analysis moves from the VAR framework to a

conditional single equation. This approach has the added advantage of allowing for additional

regressors, namely government interventionist policies, to be included as part of the dynamic

specification.

The remainder of the chapter is organised as follows: Section 7.2 begins by presenting the

baseline statistical model. A priori expectations with respect to the signs and characteristics of

the coefficients of the model are outlined in Section 7.3, while Sections 7.4 and 7.5

respectively, estimate a linear and non-linear version of the proposed specification and
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discuss subsequent empirical findings~.Sec tion 7.6 concludes.

7.2. The Statistical Model

In terms of dynamic behaviour, housing market theory postulates the existence of an inelastic

supply curve. This notion of fixed short run supply arises from the manner in which the stock

of housing is assumed to evolve, that is, the current stock of private housing is related to the

stock in the last period (adjusted for depreciation) and to net additions (new private sector

completions and Local Authority sales)2. However, as such additions are typically very small

relative to the existing level of the stock and are to a considerable extent ’predetermined by

the level of construction in progress’ (Hendry, 1984), it follows that the stock at time t-1 may

be viewed as the fixed supply of housing in the very short run. In this case, changing demand

conditions drive house price determination3.

From a modelling perspective, such a supply curve implies that the dynamic housing market

is best represented by an inverted demand equation whereby house prices are regressed on a

range of demand-side variables taking the stock of housing as given. Nesting this approach

within a framework that allows for the adjustment of prices to deviations from the long run

demand and supply relationships gives rise to the following error correction model:

4 4 ~-,44    A lognpht.i + Z,=ofl2i A loginct_i + Z,=ofl3i A MRt_i + ,=0fl4i A logphst_i
A lognpht = ,13’0 + E,:0flli

4 4+ Y~,:0flsi A loghft_, + 2,:0fl6, A CGTt_, +/3’7 Dumrptt +/38 Dumib,

+/3’9 Dums2327t + /31o ecmDt_l + fill ecmSt_l+ ,/3 ’qDqt + ct

(7.1)

1 Econometric modelling undertaken in the course of this chapter was carried out in GiveWin 2.20 /

PcGive 10.0, EViews 3.1 and JMulTi 3.11.
2 Equation (4.1) provides a formal definition of the inter-temporal evolution of the housing stock.
3 Please refer back to Section 2.3 for a more detailed discussion.
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where4:

nph

inc

MR

phs

hf

CGT

Dumrpt

Dumib

Dums2327 --

D
ecm

ecms

Dq

A

= real new house prices;

= real personal disposable income per capita;

= nominal mortgage interest rates;

= the stock of private housing;

= household formation;

= capital gains tax rates;

= a dummy = 1 for the years in which property taxes applied and 0 otherwise;

= a dummy = 1 for the years in which interest on borrowings was tax deductible

and 0 otherwise;

a dummy = 1 for the years in which ’Section 23/27’ relief covered all rental

income and 0 for the years in which it either did not apply or related solely to

rental income from the residential property in question;

= an error correction term capturing deviations from the long run demand

relation;

= an error correction term capturing deviations from the long run supply

relationS;

= a vector of seasonal dummies;

= the error term;

= the first difference operator.

The above baseline specification underlies the empirical estimations in Sections 7.4 and 7.5.

In each case, the sample (which has been adjusted to allow for four lags of the variables)

begins in the second quarter of 1981 and ends in the last quarter of 2000.

4 Empirical studies typically include contemporaneous variables in error correction models of this type.

See, for example, McQuinn (2004).
5 These error correction terms are derived from the demand and supply relations presented in Table

6.24.
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7.3. A Priori Expectations

As highlighted in Chapters 3 and 6, economic theory and precedents set by relevant studies

are useful when seeking to identify potential explanatory variables. With

modelling of dynamic price determination in the Dublin market for new

housing, it should be noted that many of the variables included in equation (7.1) follow

directly from the long run analysis, with additional regressors attempting to measure the

effectiveness of government interventionist policies in the housing market and to capture the

impact of deviations from the long run demand and supply relations on short run price

determination.

respect to the

private sector

Ceteris paribus, a priori expectations regarding the signs and characteristics of the coefficients

of the model propose that current and lagged changes in income and household formation,

along with the dummy variables accounting for ’Section 23/27’ relief and the tax deductibility

of interest on borrowings, should put upward pressure on Dublin house prices. Similarly, a

positive coefficient on the lagged house price series is anticipated as past increases often lead

to self-fulfilling expectations of further price rises. On the other hand, changes in current and

lagged mortgage interest rates and capital gains taxation, as well as an outward shift of the

stock of housing and the property tax dummy, are expected to exhibit a negative relationship

with price inflation in the Dublin market.

Lastly, the coefficients on the two error correction terms should bear a minus sign reflecting

the elimination of steady state deviations and the return to the long run path. The

corresponding size of these coefficients quantifies the speed at which equilibrium in the

housing market is restored. Intuitively, a negative demand error correction term implies that if

the stock of housing is in excess of its equilibrium level given prevailing house prices,

income, mortgage interest rates and demographics, downward price adjustment will occur so

as to ensure that the existing dwelling stock is willingly held. Such negative error correction
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should also be evident in response to deviations on the supply-side of the market. For

example, a rise in the price of housing above its equilibrium given the prevailing levels of

mortgage interest rates, building costs and land (as occurred in the Dublin market between

1987 and 1989, and from 1994 onwards), necessitates downward price adjustment in order to

restore the stationary relationship between house prices and suppliers’ costs.

7.4. The Linear Error Correction Model

Equation (7.1) can be readily estimated using the standard ordinary least squares technique6.

Initial estimation takes into account the quarterly nature of the data by imposing four lags on

the model. The resulting empirical estimates are presented in Table 7.1.

The presence of a number of insignificant explanatory variables suggests moving away from

this general model and adopting a more specific approach to the determination of the dynamic

lag structure. As such, a simple specification search is employed, beginning with the removal

of the regressor for which the t statistic of the corresponding parameter estimate is lowest in

absolute value (excepting the error correction terms). Subsequent model reduction is achieved

through successive re-estimation and the elimination of the most insignificant variable per

iteration. At each stage, the removal of the potentially redundant regressor is formally tested.

If the null hypothesis of a zero coefficient cannot be rejected, and the diagnostics of the

resultant model are sound, the variable is dropped from the analysis. Table 7A in the appendix

to this chapter details the step-by-step empirical outcomes associated with the specification

search. For convenience, the end model is reproduced below in Table 7.2 and in equation

format in equation (7.2).

With regard to overall model selection, attention is paid to the adjusted R squared statistic, to

the information provided by the Akaike (AIC), Schwartz (SC) and Hannan-Quinn (HQ)

6 Note that standard OLS assumes weak exogeneity of the explanatory variables.
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criteria, and to the results of a range of misspecification tests7. The former indicates that

equation (7.2) represents a good fit while the values of the Schwartz and Hannan-Quinn

information criteria are also smallest for this specification. Additional support in favour of the

model is given by the outcome of the exclusion / redundant variable test, in that, the low

elimination probability associated with the regressor Dums2327t suggests that the general

model has been sufficiently reduced in size and complexity.

7 Section 7.4. l presents the findings of these tests for the chosen model.
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Table 7.1: The Linear Error Correction Model- Initial Estimation

Dependent Variable: Alognpht

Independent
Variable Coefficient Standard Error T Value

A lognpht_l -0.319 0.153 -2.09
A lognpht.2 0.100 0.158 0.63
A Iognpht.3 0.010 0.151 0.06
A lognpht.4 -0.029 0.143 -0.20

A loginct 0.622 0.215 2.90
A Ioginct_l 0.279 0.230 1.21
A Ioginct_2 -0.233 0.254 -0.92
A loginct.3 -0.038 0.231 -0.17
A loginct.4 -0.091 0.259 -0.35

A MRt -0.005 0.006 -0.92
A MRt_l -0.007 0.006 - I. 19
A MRt.2 0.015 0.006 2.33
A MRt.3 -0.011 0.006 - 1.81
A MRt_4 0.008 0.006 1.22

A logphst 4.536 4.320 1.05
A Iogphst_l -7.699 4.216 - 1.83
A iogphs~.e -2.214 4.355 -0.51
A logphst.3 -2.972 4.264 0.70
A logphs~_4 2.215 4.349 0.51

A loghft 0.023 0.037 0.62
A loghft.~ 0.053 0.081 0.66
A logh ft_2 0.046 0.071 0.66
A loghft.3 -0.050 0.059 -0.85
A logh ft.4 -0.032 0.041 -0.79

A CGTt -0.002 0.002 - 1.29
A CGTt_j -0.002 0.001 - 1.64
A CGTt_2 -0.001 0.002 -0.48
A CGTt_3 -0.001 0.001 -0.80
A CGTt_4 -0.001 0.001 - 1.03

Dumrptt -0.024 0.014 - 1.77
Dumibt 0.032 0.019 1.67
Dums2327t 0.015 0.013 I. 16
ecm°t.j 0.002 0.058 0.03
ecmSt.l 0.015 0.008 2.04

Dqjt 0.008 0.013 0.61
Dq2t 0.021 0.014 1.54
Dq3t 0.017 0.012 1.40

Constant 1.333 0.472 2.82

Equation standard error
R squared
Adjusted R squared
Akaike information criteria
Schwartz criteria
Hannan-Quinn criteria

0.030
0.744
0.513

-6.725
-5.585
-6.268

Probability

0.04**
0.53
0.95
0.84

0.01"**
0.23
0.36
0.87
0.73

0.36
0.24
0.03**
0.08*
0.23

0.30
0.08
0.61
0.49
0.61

0.54
0.52
0.52
0.40
0.44

0.21
0.11"
0.64
0.43
0.31

0.08*
0.10"
0.25
0.98
0.05

0.55
0.13
0.17
0.01’**

Notes."

!. * (**) (***) denotes significant at the 10% (5%) (1%) level
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Table 7.2: The Linear Error Correction Model - Final Model

Dependent Variable: A Iognpht

Independent
Variable Coe[ficient Standard Error T Value Probability

A iognpht_l -0.480 0.102 -4.73 0.00"**

A Ioginct 0.769 0.151 5.09 0.00’**
A loginct.i 0.476 0.171 2.78 0.01 ***

A MRt.2 0.0 ! 0 0.004 2.57 0.01 ***
A M Rt-3 -0.008 0.004 -2.08 0.04" *

A Iogph%l -9.535 3.109 -3.07 0.00’**
A logphs~_z -7.335 3.121 -2.35 0.02"*

A ioghft_l 0.133 0.039 3.45 0.00"**
A ioghft_z 0.110 0.028 3.94 0.00’**

A CGTt_~ -0.002 0.001 - 1.93 0.06**

Dumrptt -0.027 0.010 -2.75 0.01 ***
Dumibt 0.035 0.013 2.64 0.01 ***
Dums2327t 0.017 0.010 1.78 0.08*

oecm t-i 0.075 0.027 2.84 0.01 ***
ecmSt-1 0.022 0.004 6.10 0.00"**

Dq2t 0.014 0.008 1.83 0.07*
Dq3t 0.014 0.008 1.84 0.07*
Constant 1.600 0.239 6.68 0.00"**

Equation standard error
R squared
Adjusted R squared
Akaike information criteria
Schwartz criteria
Hannan-Quinn criteria

0.027
0.690
0.603

-7.038
-6.498
-6.823

Notes.
I. * (**) (***) denotes significant at the 10% (5%) (1%) level

More formally, the selected linear error correction model is written as:

A lognpht = 1.600 - 0.480 A lognpht_l + 0.769 A logincl + 0.476 A loginct_l + 0.010 A MRt_2

- 0.008 A MRt_3 - 9.535 A logphst.1 - 7.335 A logphst_2 + 0.133 A Ioghft_l

+ 0.110 A loghft_2 - 0.002 A CGTt_I -0.027 Dumrptt + 0.035 Dumibt

+ 0.017 Dums2327t + 0.075 ecmOt_l + 0.022 ecmSt_l

+ 0.014 Dq2+ 0.014 Dq3 + ~,

(7.2)
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Figure 7.1 below provides an overview of the fitted and actual values of the dependent

variable. As can be seen from the graphical representation, the estimated linear error

correction model captures the general trend of the series reasonably well, though its tendency

to imprecisely fit turning points is reflected in the model’s relatively poor explanatory power

of 0.60.

Figure 7.1: The Estimated Linear Error Correction Model- Actual and Fitted Values
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7.4.1. Analysis of the Residuals qf the Estimated Linear Error Correction Model

Table 7.3: Estimated Linear Error Correction Model - Residual Statistics

Test Type

Serial Correlation:

AR(I-4) Test

AR(1) Test

Non’nality

Autoregressive Conditional Heteroscedasticity:

ARCH (1-4) Test

Test Statistic Probability

F(4,57) -- 0.685 0.6 l
F(1,60) = 0.048 0.83

1.66 0.44

F(4,53) = 0.870 0.49

Notes."
!. Ho: Residuals are respectively serially uncorrelated, normal and contain no ARCH effects
2. Probabilities are distributed around a chi-squared distribution with 2 degrees of freedom for the normality test
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Table 7.3 reports the outcome of a range of diagnostic tests imposed on the residuals of

equation (7.2). The results imply a statistically well-behaved specification in that no evidence

of serial correlation, non-normality or autoregressive conditional heteroscedasticity is

provided.

7.4.2. Analysis of the Coefficients of the Estimated Linear Error Correction Model

This section is concerned with the economic interpretation of the signs and magnitude of the

parameter coefficients. A priori expectations in this respect were discussed in Section 7.3 and

as is evident from the empirical estimates, these expectations are upheld in most, though not

in all, cases.

As the starting point, consider the variables entering equation (7.2) / Table 7.2 significantly

and bearing the anticipated sign, namely those of income, household formation, the housing

stock and government taxation and incentive policies. Of these, the role of income as a

dynamic determinant of house price inflation is of interest. The empirical estimates presented

in equation (7.2) / Table 7.2 show that rising incomes put upward pressure on Dublin house

prices. For example, a percentage increase in the growth rate of income at time t gives rise to

a significant increase of 0.769% in the rate of house price growth, while a one period lagged

income change also impacts positively on the house price variable, though the latter effect is

smaller. Similarly, a positive relationship holds between price inflation in the Dublin market

and household formation. On the contrary, the signs of the housing stock parameter estimates

indicate a negative impact on house price growth of an outward shift in the short run supply

curve. The magnitude of the estimated coefficients serves to highlight the strength of the

negative relationship between the two series.

The estimated linear model also includes a range of variables designed to capture the

effectiveness of government taxation and incentive policies vis-~,-vis investors in the housing
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market. As far as changes in the rate of capital gains tax are concerned, the minus sign on the

associated coefficient implies that a one unit increase at time t-1 induces a fall of 0.002% in

the growth rate of Dublin prices. In addition, the ’Section 23/27’ relief, the tax deductibility of

interest on borrowings and the property tax dummy variables all enter equation (7.2) / Table

7.2 significantly. The positive coefficient of the ’Section 23/27’ relief dummy (where such

relief was granted for expenditure incurred in the course of providing rented residential

accommodation) suggests that the introduction and extension of this offsetting relief, from

rental income arising solely from the property in question to all rental income, has as

expected, been effective in stimulating both investor demand and house price inflation in the

Dublin market. Equally, the fact that interest payable on loans used to purchase residential

accommodation for rental purposes can be written off in full when calculating tax liabilities,

is found to positively impact on house price inflation. On the other hand, residential property

tax appears to have a dampening effect on the growth rate of house prices. There would

therefore appear to be some scope for manipulating these policy tools so as to moderate

instances of price inflation in the Dublin housing market.

Of further importance are the contradictory coefficient signs exhibited by lagged changes in

the mortgage interest rate variable. At period t-3, the parameter estimate for this variable

behaves as postulated - a unit rise in interest rates gives rise to a significant fall of 0.008% in

the growth rate of Dublin house prices. However, the significant and positively signed

coefficient of the variable at period t-2 is suggestive of the opposite response. In offering an

explanation for this occurrence, the nominal nature of the interest rate series comes into play,

as does the use of housing as a hedging instrument. In times of high uncertainty and inflation,

housing acts as a hedge against future inflation and thus, as the nominal mortgage interest rate

rises, the demand for housing increases putting upward pressure on prices. The scale of the

parameter estimates for the lagged interest rate changes in the Dublin housing market imply

that, in the short run, the latter positive effect slightly outweighs the more traditional negative

price response.
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In contrast to the above, the parameter estimates for the demand and supply-side error

correction terms in equation (7.2) / Table 7.2 do not adhere to a priori expectations of

negative signs. Instead, both terms are significant and positive which indicates upward price

adjustment and the movement of the market away from the long run path, as opposed to the

anticipated elimination of steady state deviations and a return to equilibrium. This lack of

error correction has serious implications, it implies that the long run demand and supply

relations are not informative on prices or alternatively, that prices move in the wrong

direction.

In addition, the negative coefficient on the lagged house price series is somewhat unexpected.

As past increases in house prices typically lead to expectations of further price rises, a

positive sign had been anticipated a priori. A possible explanation for the opposite occurrence

is non-linear behaviour on the part of Dublin house prices. In particular, a situation could be

envisaged whereby a rise in the price of housing leads to self-fulfilling expectations of further

price increases up to a certain threshold. After that point is reached, the relationship between

current and lagged house price changes might be expected to turn negative. Giussani and

Hadjimatheou (1990) report such a finding in respect of UK house prices.

Lastly, note that the significance of the constant term in equation (7.2) / Table 7.2 suggests

drift. Setting the various explanatory variables to zero, a positive drift parameter implies that

the expected value of current house prices is growing over time, while a negative figure

indicates that the expected value is falling.

Overall, the linear error correction model estimated and discussed in this section is well

specified from a statistical perspective and for the most part, is comprised of correctly signed

and significant explanatory variables. However, the reasonably poor fit of equation (7.2),

combined with the apparent lack of error correction suggests that there is some room for

improvement.
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7.5. The Non-Linear Error Correction Model

The failure of house prices to adjust to deviations from the long run demand and supply

relations in equation (7.2) suggests that these relationships may not in fact define equilibrium

for the Dublin housing market. However, before accepting a hypothesis of no cointegration, it

would seem both valid and interesting to test for non-linear adjustment, as an alternative to

the linear behaviour assumed to date. Accordingly, this section seeks to model short run price

determination in the Dublin market for new private sector housing within a non-linear

framework.

With regard to the selection of an appropriate non-linear specification, the smooth transition

regression (STR) model is considered appropriate in a housing context. Given the range of

individuals and firms active in this market, a prompt and uniform response on the part of all

economic agents to news requiring action is unlikely. From an aggregate viewpoint, this

implies that a model which allows for a smooth transition between regimes is more suitable

than a discrete switching alternative. As such, the following section is concerned with

modelling non-linear error correction in the Dublin housing market using the STR model as a

tool.

Chapter 5 provides a detailed overview of the STR methodology and its properties; therefore,

the basic concept is only briefly outlined below8. Intuitively, the STR model allows for two

extreme regimes in which the transition from one to the other is a function of a continuous

transition variable sl. At time t, the type of switching behaviour that arises is determined by

the definition of the associated transition function G(s,," 7, c), where G is continuous and

typically bounded between zero and one, 7 is the slope parameter indicating the smoothness of

the regime change and c is the location parameter identifying the point at which transition

8 A thorough treatment of the family of smooth transition regression models is also given in Granger

and Teriisvirta (1993) and Teriisvirta (1998).
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occurs. A transition function that takes the logistic form and monotonically increases as a

function of s, is labelled an LSTRl model while a simple non-monotonic alternative is the

LSTR2 model, in addition, an exponential ESTR model may be defined.

In terms of modelling house price inflation, the LSTR1 model is of particular interest given

that it is capable of characterising asymmetric behaviour in the housing market. In this model,

the two regimes are associated with small and large values of the transition variable s, relative

to c and thus, the model can describe ’processes whose dynamic properties are different in

expansions from what they are in recessions, and the transition from one extreme regime to

the other is smooth’ (Ter~isvirta, 2004).

Table 7.4: Testing Linearity against STR- P Values

Linearity Test

Transition
Variable F 1=4 Fs F:

A iognpht.i 0.729 0.648 0.646 0.413

A loginct 0.789 0.943 0.716 0.268

A loginct.i 0.125 0.547 0.350 0.310

A MRt_2 0.552 0.285 0.887 0.338

A MRt.s 0.380 0.443 0.904 0.860

A logphst_~ N/A N/A 0.229 0.616

A iogphst_2 N/A N/A 0.581 0.049

A logh ft_l 0.564 0.168 0.913 0.584

A Ioghft_2 0.446 0.178 0.493 0.708

A CGTt.~ N/A N/A N/A 0.488

ecmDt, j 0.079 0.130 0.566 0.048

ecmSt_1 0.000 0.000 0.902 0.050

Notes.
I. All variables in equation (7.2) enter the linear part of the STR model but only the error correction terms (ecmD,_l

and ecmS,4) and A lognpht.jare assumed to enter non-linearly

2. Ho: the model is linear

3. N/A indicates that it was not possible to compute p values due to matrix inversion problems

4. F4, F3 and F2 refer to the corresponding F versions of the null hypotheses H04, H03 and H02 discussed in Section

5.3

From an applied econometric perspective, the first step in smooth transition regression

modelling is to test if the estimated linear error correction model - equation (7.2) - contains
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non-linearity of the STR type9. A priori, it is assumed that all variables enter the STR model

linearly but that only lagged house price changes and the demand and supply error correction

terms enter the non-linear part of the specification~°. Furthermore, as theory does not offer

any guidance concerning the choice of transition variable, the linearity test is repeated

allowing each of the variables in turn to act as the transition variable. Table 7.4 presents the

outcomes.

In interpreting these results, consider the column labelled F in the above table. The

corresponding p values indicate that the strongest case for rejecting the null of linearity arises

when the supply-side error correction term, ecmS1_j, is taken to be the transition variable.

Figure 7.2 presents a graphical illustration of this series.

Figure 7.2: The Transition Variable
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9 Note that in common with many other non-linear models, the STR model is only identified under the

alternative and not under the null hypothesis of linearity. Fortunately in the STR case, this
identification problem can be circumvented as discussed in Section 5.3, Ter~isvirta(1998) and
Granger and Ter~isvirta (1993).
10 These restrictions are justified on the grounds that past changes in house prices and the error

correction terms are the only variables in equation (7.2) to exhibit any evidence of counterintuitive
behaviour. As explicit modelling of non-linearity could potentially explain such behaviour, these
variables are included in the non-linear part of the STR model.
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Building on this finding of STR type non-linearity and the selection of ecm~’,_; as the transition

variable, it is necessary to choose an appropriate model type. In doing so, the remaining

columns in Table 7.4 come into play, as does the test sequence detailed in Section 5.3. The

latter states that if the F~ test yields the strongest rejection, then either the ESTR or LSTR2

model should be selected. Otherwise, the LSTRI model is chosen. Referring back to Table

7.4, the strength of the rejection p value associated with the F4 test suggests that an LSTR1

model best describes the nature of the non-linearity present in the Dublin housing market.

Estimation of the parameters of the LSTRI model is carried out using conditional maximum

likelihood. The algorithm used for the purpose of numerically maximising the log likelihood

is dependent on good starting values which can be obtained by the construction of a two

dimensional grid for y and c, as discussed in Section 5.3. The resulting empirical STR

estimates are set out overleaf in Table 7.5.
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Table 7.5: The Smooth Transition Regression Model - Initial Estimation

Dependent Variable: A Iognpht

Independent
Variable Coefficient Standard Error T Value

Linear Part of Model

Probability

A Iognpht_l 3.047 61.374 0.05 0.96

A loginct 0.823 0.146 5.63 0.00"**
A Ioginct_l 0.531 0.166 3.19 0.00"**

A MRt.2 0.010 0.004 2.43 0.02**
A MRt.3 -0.009 0.004 -2.47 0.02**

A logph s~. l - 10.327 3.072 -3.36 0.00" * *
A logphst.2 -7.233 2.992 -2.42 0.02"*

A loghft.i 0.151 0.038 4.02 0.00"**
A logh ft.2 0.128 0.028 4.59 0.00’**

A CGTt_I -0.002 0.001 - 1.67 0.10*

Dumrptt -0.023 0.011 -2.19 0.03**
Dumibt 0.029 0.013 2.18 0.03"*
Dum s2327t 0.022 0.010 2.26 0.03 * *
ecmDt.l 3.102 18.336 0.17 0.87
ecmSt.i 0.192 1.028 0.19 0.85

Dq2t 0.014 0.008 1.74 0.09*
Dq3t 0.012 0.008 1.53 0.13
Constant 1.342 0.259 5.19 0.00"**

Non-Linear Part of Model

A lognpht.l -3.563 61.377 -0.06 0.95
Decm t-J -3.022 18.335 -0.16 0.87

ecmSt_~ -0.173 1.027 -0.17 0.87

10.669
-92.028

0.026
0.740
0.743

-7.088

Residual standard deviation
R squared
Adjusted R squared
Akaike information criteria

Notes:
i. * (**) (***) denotes significant at the 10% (5%) (1%) level

As with the linear error correction model, the presence of a number of insignificant

explanatory variables in Table 7.5 suggests the need to better specify the parameter structure

of the STR model. In particular, restricting the combined coefficient of the lagged change in

house prices to zero for G(s,; 7, c) -- 0, so that past house prices do not contribute in this
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regime, gives rise to an improved specification. Table 7.6 presents the reduced version of the

STR model.

Table 7.6: The Smooth Transition Regression Model - Final Model

Dependent Variable: A Iognpht

Independent
Variable          Coefficient

Linear Part of Model

Standard Error T Value Probability

A Ioginct 0.823 0.145
A loginct.i 0.531 0.165

A MRt.2 0.010 0.004
A MRt.3 -0.009 0.004

A logphst.~ - 10.336 3.043
A logphst.2 -7.239 2.966

A loghft_l 0.151 0.037
A Ioghft.2 0.128 0.028

A CGTt.I -0.002 0.001

Dumrpt~ -0.023 0.010
Dumibt 0.029 0.013
Dums2327t 0.022 0.009
ecmDt_l 2.301 1.028
ecmSt_l 0.148 0.060

Dq2t 0.013 0.008
Dq3t 0.012 0.008
Constant 1.340 0.255

Non-Linear Part of Model

5.67 0.00’**
3.23 0.00"**

2.45 0.02**
-2.49 0.02**

-3.40 0.00"**
-2.44 0.02**

4.05 0.00"**
4.63 0.00"**

-1.72 0.09*

-2.25 0.03**
2.21 0.03**
2.28 0.03**
2.24 0.03**
2.48 0.02**

1.75 0.09*
1.55 0.13
5.25 0.00"**

A lognpht_! -0.516 0.100 -5.16 0.00"**
ecm°t_n -2.221 1.023 -2.17 0.03**
ecmSt-n -0.128 0.059 -2.18 0.03 **

(,
18.657

-91.757

0.025
0.740
0.743

-7.113

Residual standard deviation
R squared
Adjusted R squared
Akaike information criteria

Notes:
1. * (**) (***) denotes significant at the 10% (5%) (1%) level
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More formally, the estimated smooth transition regression model is written as:

A iognpht = i.340 + 0.823 A loginct + 0.531 A ioginct_l + 0.010 A MRt-2- 0.009 A MRt-3

- 10.336 A logphst_l - 7.239 A Iogphst_2 + 0.151 A loghft_l + 0.128 A loghft_2

- 0.002 A CGTt_I- 0.023 Dumrptt + 0.029 Dumibt + 0.022 Dums2327t

+ 2.301 ecmDt_~ + 0.148 ecmSt.~ + 0.013 Dq2 + 0.012 Dq3

- {0.516 A lognpht_l + 2.221 ecmDt_l + 0.128 ecmSt_l}

x [1 + exp{- 18.657 (ecmSt_l- (- 91.757)) / ~- (ecmS,_l)}]-I

+ ~, (7.3)

where:

d" (ecmSt_l) = the sample standard deviation ofecmSt_l

Figure 7.3 provides a graphical view of the fitted and actual values of the dependent variable.

With respect to overall goodness of fit, the adjusted R squared statistic of 0.74 associated with

the reduced STR model / equation (7.3) represents a considerable improvement on the linear

specification’s corresponding figure of 0.60. As is evident from the graph, much of this

additional explanatory power relates to the fact that the STR model is more successful than its

linear counterpart in fitting the 1993 turning point.

Figure 7.3: The Estimated Smooth Transition Regression Model - Actual and Fitted Values
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7.5.1. Analysis of the Residuals

Regression Model

and Evaluation of the Estimated Smooth Transition

As in the linear case, it is important to

evidence of misspecification. Eitrheim

check the residuals of the non-linear model for

and Ter~isvirta (1996) derive a range of

misspecification tests within a univariate setting that can be readily generalised to the STR

framework, including those of an LM test of no error autocorrelation and an LM-type

test of parameter constancy~. In addition to reporting the outcome of the above tests, Table

7.7 also imposes an LM test of autoregressive conditional heteroscedasticity and the

Lomnicki-Jarque-Bera normality test on the residuals of the estimated STR model.

Table 7.7: Estimated Smooth Transition Regression Model - Residual Statistics

Test Type

Serial Correlationa:

Test Stat&tic Probability

AR(I) F(1,55) -- 0.169 0.68
AR(2) F(2,53) : 0.414 0.66
AR(3) F(3,51) = 0.517 0.67
AR(4) F(4,49) = 0.574 0.68

Normalitya 0.555 0.76

Autoregressive Conditional
Heteroscedasticitya:

ARCH (1-4) Test F-- 1.266 0.29

Parameter Constancy b:

F~ F(l 7,38) -- 0.895 0.58
F: F(34,21) = 0.500 0.97
1=3 F(51,4) = 0.101 1.00

Notes:
1. a HO: Residuals are respectively serially uncorrelated, normal and contain no ARCH effects

b Ho: All parameters except the government intervention dummies are constant

2. Probabilities are distributed around a chi-squared distribution with 2 degrees of freedom for the normality test
3. Fj is a test against a STR model with transition function Hi, j -- 1, 2, 3 where H~ yields a single structural break,

He implies two structural breaks and H3 allows for non-symmetric and non-monotonic parameter non-constancy

~ Note that in order for the asymptotic statistical theory underlying these tests to be valid, the
maximum likelihood estimators must be consistent and asymptotically normal. Further details are
provided in Wooldridge (1994) and Escribano and Mira (1995).
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Diagnostically, the STR model appears to be well behaved. Findings of the serial correlation,

nonnality and ARCH tests indicate that the null cannot be rejected, while the tests of

parameter constancy suggest selection of a STR model with constant parameters over one

with either a single (FI) or two structural breaks (F:), or with non-symmetric and non-

monotonic parameter non-constancy (F.0.

Of further importance in evaluating the estimated STR model is ensuring that it successfully

captures all the non-linear features present in the data. In doing so, the null hypothesis of no

remaining non-linearity is tested against the alternative of an additive STR model, that is, a

model with two additive non-linear components and a second transition function~2. The

practical testing procedure is similar to that of linearity testing - firstly, a set of potential

transition variables is defined and secondly, the test is repeated taking each variable in turn as

the additional transition variable. Table 7.8 details the findings in the case of equation (7.3).

Table 7.8: Testing for No Remaining Non-Linearity - P Values

Linearity Test
Transition
Variable F 1=4 1=3 F2

A lognpht_l 0.975 0.677 0.967 0.702
A Ioginct 0.117 0.565 0.228 0.025
A loginct_l 0.248 0.295 0.397 0.116
A MRt_2 0.443 0.207 0.996 0.152

A MRt.3 0.387 0.286 0.756 0.129
A logphst.1 0.308 0.630 0.113 0.262
A logphs~.2 0.757 0.927 0.707 0.172
A logh ft_~ 0.710 0.407 0.843 0.335
A loghft.2 0.444 0.225 0.332 0.582

A CGT,.~ N/A N/A N/A N/A
D 0.267 0.330 0.481 0.093ecm t-i

ecmSt_j 0.321 0.137 0.492 0.349

Notes."
I. Ho: No remaining non-linearity in the estimated STR model

2. N/A indicates that it was not possible to compute p values due to non-positive definite matrices

12 See Section 5.3 and Ter~isvirta (1998) for a detailed discussion of this test.

141



The p values presented in column F of tile above table indicate that regardless of which

variable is chosen as the transition variable, the null hypothesis of no additive non-linearity

cannot be rejected at the !% significance level~3. Indeed, the test results for all variables are in

excess of 0.1 Furthermore, when    ’~’¯ ecru i-~ is taken to be the transition variable, a p value of

0.321 is obtained indicating that the non-linearity initially associated with this variable (see

Table 7.4) has been satisfactorily modelled. As such, it may be concluded that the estimated

STR model captures much of the non-linearity present in the Dublin housing data.

7.5.2. Analysis of the Coefficients of the Estimated Smooth Transition Regression Model

This section is concerned with the economic interpretation of the parameters of the linear and

non-linear parts of the estimated STR model. With respect to the former, equation (7.3) /

Table 7.6 indicates that there is little change in the magnitude of most coefficients from those

of the linear error correction model presented in equation (7.2). However, it seems that

explicitly modelling non-linearity provides additional insights into price behaviour in the

Dublin market.

As the starting point, consider the empirical estimates of the transition function:

G (7",(" ; ecmS,_j) = [1 + exp{- 18.657 (ecmSt_r (- 91.757)) / d- ( ecmS,_l)}]-1 (7.4)

and recall that as the estimated STR model is of the LSTR1 type, it is capable of

characterising asymmetric behaviour in the Dublin housing market. As such, it is possible to

divide the market into two regimes, those of expansion (upturn) and recession (downturn),

where the transition from one to the other is associated with large and small values of the

transition variable ecmSl_/relative to the location parameter c. On this basis, a downturn is said

to occur if the level of house price disequilibrium (given the prevailing levels of mortgage

13 To protect against the risk of over-fitting, Ter~isvirta (2004) suggests that low significance levels

should be applied when evaluating the outcomes of the no additive non-linearity test.
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interest rates, building costs and land) is lower than the estimated location parameter of

-91.757. Conversely, house price disequilibrium in excess of this figure represents an

expansionary phase. In terms of the smoothness of regime change, the 18.657 estimate of the

parameter y is fairly small, indicating a gradual switching between up and downturns.

Figure 7.4 presents a graphical overview of equation (7.4). Values of the transition function

close to one imply that the entire model is necessary when describing house price inflation

while zero values indicate that the linear part is adequate. Given that the function obtains a

value of one for most of the sample period, it may be concluded that both the linear and non-

linear components of the STR specification are required when modelling house price growth

in the Dublin new housing market.

Figure 7.4:
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Figure 7.5 plots the transition function as a function of the transition variable. The

interpretation of this graph is similar to that of Figure 7.4 in that values of the function close

to zero again imply that the linear component of the STR model sufficiently describes the rate

of house price growth, whereas at the opposite scale of one, both the linear and non-linear

parts of the specification are needed to capture dynamic price determination. Note that each

dot corresponds to at least one observation.
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Figure 7.5: The Transition Function of the Estimated STR Model as a Function of the Transition

Variable
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As is evident from this graphical representation, only a small number of observations are

equal to zero implying a limited ability on the part of the linear component to solely model

price inflation in the Dublin market. Furthermore, as these zero observations lie below the

value associated with the location parameter, they may be classed as belonging to the

recessionary phase of the house price cycle. It then follows that the explanatory power of the

coefficients of the error correction terms in the linear part of the STR model mainly relate to

periods in which the market enters a downturn. In line with the findings of the linear error

correction model, these coefficients are positively signed indicating upward price adjustment

and the movement of the market away from the long run path.

However, it appears that for most of the sample period, the Dublin housing market was in an

expansionary phase given that the majority of observations in Figure 7.5 exceed the value of

the location parameter. Moreover, nearly all are equal to the upper bound of one and in this

context; the complete STR model best explains dynamic price determination.

Acceptance of the complete STR model brings into play the non-linear estimates presented in

Table 7.6 / equation (7.3). Of particular interest in this respect are the negative signs on the
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coefficients of the error correction terms. These suggest adjustment to steady state deviations

and a return to equilibrium. However, as the magnitudes of the coefficients on these terms in

the linear part of the model marginally outweigh the non-linear estimates multiplied by the

transition function, the aggregate effect is positive.

Thus, house prices do not error correct in either of the extreme regimes of the STR model. As

such, it may be concluded that the long run demand and supply relations identified in Chapter

6 do not define equilibrium for the Dublin housing market.

Turning next to the interpretation of the lagged change in house prices, a significant negative

relationship is evident between current and past house price changes in the non-linear part of

the STR model. This reflects a tendency for expectations of further price increases in the

Dublin market to fall after a certain point, namely once the value of the location parameter

has been exceeded.

Finally, the residuals of the estimated linear error correction and smooth transition regression

models are plotted against time in Figure 7.6.

Figure 7.6: Residuals of the Linear Error Correction and STR Models
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Overall, the smooth transition regression model is well specified from a statistical perspective

and in terms of explanatory power, represents a considerable improvement on the fit of the

estimated linear error correction model. This primarily reflects its success in modelling

outlying episodes. However, as in the linear case, a lack of error correction is apparent.

7.6. Conclusion

This chapter sought to model dynamic price determination in the Dublin new, private sector

housing market within an adjustment type framework. In doing so, error correction models of

both a linear and non-linear nature were developed and applied to a dataset of explanatory

variables comprised of income, mortgage interest rates, the housing stock, household

formation - all of which follow directly from the previous long run analysis - and a range of

measures that attempt to capture the effectiveness of government interventionist policies in

the housing market and the impact of deviations from the static demand and supply relations

on short run price inflation.

With respect to the empirical findings, the estimated linear error correction model contains,

for the most part, correctly signed and significant explanatory variables. As expected a priori,

current and lagged changes in income and household formation are statistically significant

and positively related to the dependent variable whereas, capital gains taxation and the

housing stock exhibit a significant negative relationship with the current rate of house price

growth. In addition, the ’Section 23/27’ relief, the tax deductibility of interest on borrowings

and the property tax dummy variables all enter the model significantly and bearing the

anticipated sign.

In contrast to the above, the parameter estimates of the remaining regressors in the linear error

correction model, those of mortgage interest rates, past house prices and the demand and

supply-side error correction terms, are significant but unexpectedly signed. In the case of the
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former, the dominant positive response of current price changes to an increase in interest rates

is explainable by the fact that in times of high uncertainty and inflation, housing acts as a

hedge against future inflation and thus, as the nominal mortgage interest rate rises, the

demand for housing increases exerting upward pressure on prices. With regard to the latter,

the positive signs on both error correction terms indicate upward price adjustment and the

movement of the market away from equilibrium. Likewise, the coefficient on the lagged

house price series exhibits a somewhat counterintuitive sign.

The empirical outcomes associated with tile smooth transition regression model indicate little

change in the magnitude of most coefficients from those of the linear specification. However,

a significant negative relationship between current and past house price changes is evident in

the non-linear part of the STR model. This reflects a tendency for expectations of further price

increases in the Dublin market to fall after a certain point, namely once the value of the

location parameter has been exceeded. Moreover, as house prices fail to adjust in either of the

extreme regimes of the STR model, it may be concluded that the long run demand and supply

relations identified in Chapter 6 do not define equilibrium for the Dublin housing market.

Overall, the empirical findings presented in this chapter indicate that the estimated smooth

transition regression model is reasonably successful in modelling dynamic price

determination in the Dublin new, private sector housing market over the period 1981-2000.

Nonetheless, there clearly remains some variation in the data that has not been fully explained

to date. A possible explanation in this context, and one that fits with tile finding of no

cointegration, is the presence of a speculative component in the marketplace. Accordingly,

Chapter 8 tests for the possibility of a bubble in the Dublin housing market.
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7A. Appendix

Table 7A: The Linear Error Correction Model - Specification Testing

Dependent Variable: Alognpht Model

Independent ( 1 ) (2) (3)
Variable

Coefficient Std Error CoeJficient Std Error Coefficient Std Error
A lognpht_l -0.319 0.153 -0.319 0.151 -0.322 0.148
A Iognpht_2 0.100 0.158 0.096 0.143 0.096 0.142
A lognpht_3 0.010 0.151
A lognpht_4 -0.029 0.143 -0.031 0.135 -0.030 0.133
A loginct 0.622 0.215 0.626 0.206 0.627 0.203
A Ioginc,_~ 0.279 0.230 0.280 0.227 0.281 0.224
A loginct_2 -0.233 0.254 -0.231 0.250 -0.225 0.244
A loginct_3 -0.038 0.231 -0.032 0.207
A Ioginct.4 -0.091 0.259 -0.089 0.253 -0.088 0.250
A MRt -0.005 0.006 -0.005 0.006 -0.005 0.006
A MRt.i -0.007 0.006 -0.007 0.006 -0.007 0.006
A MRt.2 0,015 0.006 0.015 0.006 0.015 0.006
A MRt_3 -0.011 0.006 -0.011 0.006 -0.011 0.006
A MRt_4 0.008 0.006 0.008 0.006 0.007 0.006
A logphst 4.536 4.320 4.529 4.267 4.488 4.211
A logphst_~ -7.699 4.216 -7.656 4.114 -7.621 4.061
A logphst.2 -2.214 4.355 -2.232 4.294 -2.368 4.156
A logphst.3 2.972 4.264 2.934 4.173 2.876 4.109
A logphst_4 2.215 4.349 2.134 4.111 2.036 4.016
A Ioghft 0.023 0.037 0.023 0.037 0.024 0.036
A loghft.~ 0.053 0.081 0.054 0.077 0.056 0.076
A Iogh ft_2 0.046 0.071 0.048 0.067 0.048 0.067
A loghft.3 -0.050 0.059 -0.049 0.057 -0.049 0.057
A loghft_4 -0.032 0.041 -0.032 0.040 -0.031 0.039
A CGTt -0.002 0.002 -0.002 0.002 -0.002 0.002
A CGTt_I -0.002 0.001 -0.002 0.001 -0.002 0.001
A CGTt_2 -0.001 0.002 -0.001 0.002 -0.001 0.001
A CGTt_3 -0.001 0.001 -0.001 0.001 -0.001 0.001
A CGTt.4 -0.001 0.001 -0.001 0.001 -0.001 0.001
Dumrptt -0.024 0.014 -0.025 0.013 -0.025 0.013
Dumibt 0.032 0.019 0.032 1.019 0.033 0.018
Dums2327t 0.015 0.013 0.016 0.013 0.015 0.013
ecmDt.l 0.002 0.058 0.002 0.056 0.004 0.055
ecmSt.j 0.015 0.008 0.016 0.007 0.016 0.007
Dqlt 0.008 0.013 0.008 0.012 0.008 0.012
Dq2t 0.021 0.014 0.022 0.014 0.022 0.013
Dq3t 0.017 0.012 0.017 0.012 0.017 0.012
Constant 1.333 0.472 1.345 0.432 1.345 0.427

Adjusted R squared
SC information criteria
AR(I-4) test p value
Normality test p value
ARCH (1-4) test p value
Exclusion test p value

0.51 0.52 0.54
-5.58 -5.64 -5.69
0.21 0.23 0.21
0.90 0.89 0.88
1.00 1.00 1.00
0.93 0.83 0.76

Notes: I. Figures in bold refer to the most insignificant regressor in each model
2. Ho: Residuals are respectively serially uncorrelated, normal and contain no ARCH effects
3. Probabilities are distributed around a chi-squared distribution with 2 degrees of freedom for the normality test
4. Exclusion test Ho: the coefficient of the bolded variable is zero. The associated test statistic is the log likelihood ratio. If the

null cannot be rejected, the variable is dropped from the analysis and the model is re-estimated
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Table 7A(contd): The Linear Error Correction Model - Specification Testing

Dependent Variable: A Iognpht Model

Independent (4) (5)
Variable

Coefficient Std Error Coefficient Std Error

A Iognpht.l -0.323 0.146 -0.325 0.145
A lognpht.2 0.091 0.139 0.101 0.136
A Iognpht.3

A Iognpht.4
A loginct 0.623 0.200 0.632 0.198
A loginct.l 0.276 0.221 0.282 0.219
A loginct.2 -0.2 ! 8 0.239 -0.205 0.236
,5 Ioginct.3

A loginct.4 -0.114 0.218 -0.065 0.194
A MRt -0.005 0.005 -0.005 0.005
A MRt_I -0.007 0.006 -0.007 0.006
A MRt_2 0.015 0.006 0.015 0.006
A MRt.3 -0.011 0.006 -0.01 i 0.006
A MRt-4 0.007 0.006 0.007 0.006
A Iogphst 4.554 4. i 56 4.111 4.029
A logphst.~ -7.474 3.965 -7.722 3.902
A Iogphst.2 -2.552 4.032 -2.726 3.984
A logphst.3 2.946 4.053 2.657 3.979
A logphst_4 2.085 3.967 1.897 3.917
A ioghft 0.025 0.036 0.020 0.034
A loghft.~ 0.054 0.074 0.067 0.069
A loghft.2 0.047 0.066 0.057 0.062
A loghft.3 -0.050 0.056 -0.046 0.055
A loghft_4 -0.030 0.038 -0.028 0.038
A CGTt -0.002 0.002 -0.002 0.002
A CGTt.I -0.002 0.001 -0.002 0.001
A CGTt_2 -0.001 0.001
A CGTt.3 -0.001 0.001 -0.001 0.001
A CGTt.4 -0.001 0.001 -0.001 0.001
Dumrptt -0.025 0.013 -0.024 0.012

Dumibt 0.033 0.018 0.035 0.018

Dums2327t 0.015 0.012 0.013 0.012
O 0.003 0.054 0.014 0.049ecm t-i

ecmSt.l 0.015 0.007 0.017 0.006

Dqlt 0.008 0.011 0.008 0.011

Dq2t 0.020 0.012 0.022 0.012

Dq3t 0.016 0.011 0.016 0.011

Constant 1.329 0.416 1.381 0.400

Adjusted R squared

SC information criteria
AR(I-4) test p value

Normality test p value
ARCH (1-4) test p value
Exclusion test p value

Coefficient

-0.331
0.093

(6)

Std Error

0.142
0.133

0.658 0.180
0.282 0.216

-0.214 0.232

-0.005 0.005

-0.007 0.005
0.014 0.006

-0.011 0.005

0.007 0.006
4.067 3.987

-7.783 3.860
-2.902 3.911
2.505 3.915

1.932 3.877
0.019 0.034
0.069 0.068
0.057 0.062

-0.048 0.054
-0.031 0.037

-0.002 0.002
-0.002 0.001

-0.001 0.001
-0.001 0.001
-0.025 0.012
0.035 0.017
0.013 0.012
0.014 0.048
0.017 0.006
0.007 0.011
0.022 0.012

0.016 0.011
1.388 0.396

0.55 0.55 0.56
-5.75 -5.80 -5.85
0.26 0.24 0.23
0.86 0.89 0.89
1.00 0.99 0.99
0.50 0.66 0.51

Notes: I. Figures in bold refer to the most insignificant regressor in each model
2. Ho: Residuals are respectively serially uncorrelated, normal and contain no ARCH effects
3. Probabilities are distributed around a chi-squared distribution with 2 degrees of freedom for the normality test
4. Exclusion test Ho: the coefficient of the bolded variable is zero. The associated test statistic is the log likelihood ratio. If the

null cannot be rejected, the variable is dropped from the analysis and the model is re-estimated
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Table 7A(contd): The Linear Error Correction Model - Specification Testing

Dependent Variable: A Iognph,

Independent
Variable

A Iognpht. l
A lognpht.2
A Iognpht.~
A Iognpht_4
A Ioginct
A loginct.l
A loginct._,
A loginct_3
A loginct_4
A MRt
A MRt.i
A M Rt_:
A MRt.3
A M Rt-4

A logphst
A logphs~.l
A logphst.2
A logphst.3
A logphst_4
A ioghft
A loghft.l
A logh ft__~
A loghft_3
A loghft.4
A CGTt
A CGTt.1

A CGTt_2
A CGTt_3

A CGTt_4

Dumrptt
Dumibt
Dums2327t
ecmDt.i

ecmSt.i

Dqlt

Dq2t
Dq3t
Constant

Coefficient

-0.335
0.084

0.667
0.262

-0.219

-0.005
-0.007
0.014

-0.011
0.007
4.387

-7.420
-2.659
2.448

0.017
0.070
0.057

-0.049
-0.034
-0.002
-0.002

-0.001
-0.001
-0.025
0.033
0.014
0.016
0.017
0.008
0.023
0.017
1.377

Adjusted R squared
SC information criteria
AR(I-4) test p value
Normality test p value
ARCH (1-4) test p value
Exclusion test p value

Model

(7) (8) (9)

Std Error Coefficient Std Error Coefficient Std Error

0.141 -0.338 0.140 -0.357 0.134
0.131 0.075 0.129 0.057 0.123

0.178 0.674 0.176 0.666 0.174
0.211 0.277 0.208 0.307 0.198
0.230 -0.193 0.223 -0.157 0.210

0.005 -0.006 0.005 -0.006 0.005
0.005 -0.007 0.005 -0.007 0.005
0.005 0.0 ! 4 0.005 0.014 0.005
0.005 -0.011 0.005 -0.010 0.005
0.005 0.007 0.005 0.006 0.005
3.904 4.399 3.874 4.569 3.831
3.761 -7.726 3.686 -7.638 3.654
3.850 -2.929 3.786 -3.268 3.700
3.882 1.904 3.710

0.033
0.068 0.068 0.067 0.080 0.063
0.061 0.055 0.060 0.063 0.058
0.054 -0.048 0.053 -0.041 0.051
0.036 -0.033 0.036 -0.029 0.034
0.001 -0.002 0.001 -0.002 0.001
0.001 -0.002 0.001 -0.002 0.001

0.001 -0.001 0.001 -0.001 0.001
0.001 -0.001 0.001 -0.001 0.001
0.012 -0.025 0.012 -0.026 0.011
0.017 0.033 0.017 0.033 0.017
0.012 0.012 0.011 0.013 0.011
0.048 0.025 0.044 0.033 0.041
0.006 0.017 0.006 0.018 0.006
0.011 0.008 0.011 0.007 0.010
0.011 0.023 0.01 i 0.022 0.011
0.010 0.016 0.010 0.015 0.010
0.392 1.394 0.387 1.427 0.379

0.57 0.58 0.58
-5.90 -5.95 -6.00
0.19 0.21 0.25
0.76 0.68 0.56
0.97 0.99 0.98
0.50 0.51 0.56

Notes: I. Figures in bold refer to the most insignificant regressor in each model
2. Ho: Residuals are respectively serially uncorrelated, normal and contain no ARCH effects
3. Probabilities are distributed around a chi-squared distribution with 2 degrees of freedom for the normality test
4. Exclusion test Ho: the coefficient of the bolded variable is zero. The associated test statistic is the log likelihood ratio. If the

null cannot be rejected, the variable is dropped from the analysis and the model is re-estimated
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Table 7A(contd): The Linear Error Correction Model - Specification Testing

Dependent Variable: Aiognph,

Independent (10)
Variable

Coefficient Std Error

A Iognpht.I -0.383 0.121
A lognpht.2

A Iognpht.3
A lognpht.4

A Ioginc, 0.666 0.173
A loginct.i 0.322 0.194
A loginct_2 -0.122 0.195
A Ioginct_3

A Ioginct.4

A MRt -0.006 0.005
A MRt.1 -0.006 0.005
A MRt.2 0.014 0.005
A MRt.3 -0.010 0.005
A MRt.4 0.007 0.005
A Iogphst 4.589 3.800
A logph%~ -8.029 3.526
A Iogphst.2 -3.527 3.628
A logphst_3
A logphst.4

A loghft
A loghft_j 0.092 0.056
A loghft.2 0.074 0.053
A loghft.3 -0.032 0.047
A Iogh ft_4 -0.024 0.032
A CGTt -0.002 0.001
A CGTt_I -0.002 0.001
A CGTt_2
A CGTt.3 -0.001 0.001

A CGTt_4 -0.001 0.001
Dumrptt -0.026 0.011

Dumibt 0.035 0.016

Dums2327t 0.013 0.011

ecm°t.x 0.040 0.038
ecmSt_j 0.019 0.005

Dqj, 0.006 0.010

Dq2t 0.020 0.010
Dqst 0.015 0.010

Constant 1.523 0.315

Adjusted R squared

SC information criteria
AR(I-4) test p value

Normality test p value
ARCH (1-4) test p value

Exclusion test p value

Model

(11)

Coefficient Std Error Coefficient

-0.391 O. 120 -0.401

(12)

Std Error

0.117

0.668 0.172 0.687 0.166
0.346 0.189 0.351 0.187

-0.006 0.005 -0.005 0.005
-0.006 0.005 -0.006 0.005
0.014 0.005 0.014 0.005

-0.011 0.005 -0.011 0.005
0.006 0.005 0.006 0.005
4.582 3.778 4.489 3.745

-8.106 3.503 -8.397 3.427
-3.824 3.576 -4.007 3.530

0.092 0.056 0.095 0.055
0.073 0.053 0.076 0.052

-0.029 0.046 -0.026 0.046
-0.021 0.032 -0.018 0.031
-0.002 0.001 -0.001 0.001
-0.002 0.001 -0.002 0.001

-0.001 0.001 -0.001 0.001
-0.001 0.001 -0.001 0.001
-0.027 0.011 -0.027 0.011
0.037 0.016 0.038 0.015
0.012 0.011 0.013 0.011
0.042 0.037 0.044 0.037
0.019 0.005 0.020 0.005
0.005 0.010
0.018 0.010 0.016 0.008
0.013 0.010 0.011 0.008
1.507 0.312 1.518 0.309

0.59 0.59 0.60
-6.05 -6.10 -6.15
0.36 0.36 0.38
0.46 0.36 0.47
0.98 0.98 0.95
0.43 0.54 0.48

Notes: I. Figures in bold refer to the most insignificant regressor in each model
2. Ho: Residuals are respectively serially uncorrelated, normal and contain no ARCH effects
3. Probabilities are distributed around a chi-squared distribution with 2 degrees of freedom for the normality test
4. Exclusion test Ho: the coefficient of the bolded variable is zero. The associated test statistic is the log likelihood ralio. If the

null cannot be rejected, the variable is dropped from the analysis and the model is re-estimated
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Table 7A(contd): The Linear Error Correction Model - Specification Testing

Dependent Variable: Alognpht

Independent
Variable

A iognpht_ i
A Iognpht_2
A lognpht.3
A Iognpht.4
A loginq
A loginct_
A loginct.2
A loginct.3
A loginct.4
A MRt
A MRt-1

A M Rt-2

A M Rt-3
A MRt_a
A logphst
A logphst.~
A logphst_2
A logphst.3
A logphst_4
A loghft
A loghft_l
A logh ft.-,
A loghft_3
A loghft_4
A CGTt
A CGTt.I
A CGTt.2
A CGTt.3
A CGTt_4
Dumrptt
Dumibt
Dums2327t
ecmDt.i

ecmSt-i
Dqu

Dq2t
Dq3t

Constant

Coefficient

-0.425

(13)

Std Error

0.109

0.674 0.164
0.362 0.185

-0.004 0.005
-0.006 0.005
0.014 0.005

-0.011 0.005
0.006 0.005
3.772 3.512

-8.645 3.379
-4.525 3.393

0.116 0.041
0.101 0.028

-0.006 0.022
-0.001 0.001
-0.002 0.001

-0.001 0.001
-0.001 0.001
-0.026 0.011
0.039 0.015
0.013 0.011
O.057 0.030
0.021 0.004

0.017 0.008
0.012 0.008
1.562 0.297

Adjusted R squared
SC information criteria
AR(1-4) test p value
Normality test p value
ARCH (1-4) test p value
Exclusion test p value

Model

(14)

Coefficient Std Error Coefficient

-0.419 0.105 -0.419

(15)

Std Error

0.105

0.671 0.162 0.688 0.158
0.359 0.183 0.359 0.182

-0.004 0.005 -0.005 0.005
-0.006 0.005 -0.006 0.005
0.014 0.005 0.014 0.005

-0.011 0.005 -0.011 0.005
0.006 0.005 0.006 0.005
3.719 3.476 3.521 3.437

-8.630 3.349 -8.644 3.328
-4.512 3.363 -4.778 3.310

0.115 0.040 0.120 0.039
0.100 0.028 0.101 0.028

-0.001 0.001 -0.001 0.001
-0.002 0.001 -0.002 0.001

-0.001 0.001 -0.001 0.001
-0.001 0.001
-0.026 0.011 -0.026 0.011
0.040 0.015 0.039 0.015
0.013 0.011 0.012 0.010
0.057 0.029 0.060 0.029
0.021 0.004 0.021 0.004

0.017 0.008 0.016 0.008
0.012 0.008 0.011 0.008
1.559 0.294 1.592 0.287

0.60 0.61 0.62
-6.20 -6.25 -6.30
0.34 0.31 0.31
0.53 0.54 0.48
0.89 0.89 0.89
0.75 0.49 0.42

Notes: I. Figures in bold refer to the most insignificant regressor in each model
2. Ho: Residuals are respectively serially uncorrelated, normal and contain no ARCH effects
3. Probabilities are distributed around a chi-squared distribution with 2 degrees of freedom for the normality test
4. Exclusion test Ho: the coefficient of the bolded variable is zero. The associated test statistic is the log likelihood ralio. If the

null cannot be rejected, the variable is dropped from the analysis and the model is re-estimated
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Table 7A(contd): The Linear Error Correction Model - Specification Testing

Dependent Variable: Alognpht

Independent

Variable

A Iognph,.i
A Iognpht.2

A iognpht.3

A Iognpht_4

A ioginct
A Ioginct_

A ioginq_2
A loginct_3

A loginct_4

A MRt

A MRt.i
A M Rt-2

A MRt_3

A M Rt-4
A logphst

A logph%l
A iogphst_2

A logphs~.3

A logphst_4
A Ioghft

A loghf,_l
A loghft.2

A loghft.3
A ioghft.4

A CGTt
A CGTt_I

A CGTt.2
A CGTt_3

A CGTt-4

Dumrptt

Dumibt
Dums2327t

Decm t-i

ecmSt.i
Dqlt

Dq2t

Dq3t
Constant

Adjusted R squared
SC information criteria
AR(1-4) test p value

Normality test p value

ARCH (1-4) test p value
Exclusion test p value

Model

(16) (17)

Coefficient Std Error Coefficient Std Error Coefficient

-0.4 ! 6 0.104 -0.410 0.104 -0.421

(18)

Std Error

0.103

0.677 0.157 0.686 0.156 0.681 0.156

0.347 0.180 0.347 0.179 0.348 0.179

-0.004 0.005
-0.005 0.005 -0.007 0.004 -0.007 0.004

0.014 0.005 0.016 0.005 0.015 0.005

-0.011 0.005 -0.012 0.005 -0.011 0.004

0.007 0.004 0.007 0.004 0.006 0.004

3.524 3.420 3.132 3.390

-8.970 3.277 -9.596 3.204 -9.218 3.174

-4.920 3.287 -5.315 3.256 -4.872 3.216

0.123 0.038 0.124 0.038 0.129 0.038

0.102 0.028 0.104 0.028 0.106 0.027

-0.001 0.001 -0.001 0.001 -0.001 0.001

-0.002 0.001 -0.002 0.001 -0.002 0.001

-0.024 0.010 -0.024 0.010 -0.023 0.010

0.036 0.014 0.032 0.013 0.031 0.013

0.012 0.010 0.013 0.010 0.016 0.010

0.065 0.028 0.065 0.027 0.069 0.027

0.022 0.004 0.021 0.004 0.021 0.004

0.016 0.008 0.017 0.008 0.018 0.008

0.012 0.008 0.013 0.008 0.014 0.008

1.621 0.282 1.518 0.259 1.577 0.251

0.62 0.62 0.62

-6.35 -6.39 -6.43

0.31 0.31 0.27

0.49 0.58 0.60

0.88 0.85 0.78

0.27 0.28 0.12

Notes. I. Figures in bold refer to the most insignificant regressor in each model
2. Ho: Residuals are respeclively serially uncorrelated, normal and contain no ARCH effects

3. Probabilities are distributed around a chi-squared distribution with 2 degrees of freedom for the normality test

4. Exclusion test Ho: the coefficient of the bolded variable is zero. The associated test statistic is the log likelihood ratio. If the

null cannot be rejected, the variable is dropped from the analysis and the model is re-estimated
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Table 7A(contd): The Linear Error Correction Model - Specification Testing

Dependent Variable: A Iognph, Model

Independent (19) (20)
Variable

A Iognpht_ l

A lognpht.2
A iognpht.3

A lognpht.4
A loginct

A loginq.
A ioginct.2
A Ioginct.3

A loginct.4

A MRt

AMRt.I
A MRt-2

A MRt.3
A M Rt_4
A logphst

A iogphs~.l
A logphsv2
A logphst_3
A logphst.4

A loghft
A loghft.i
A loghft.2

A loghft_3
A loghft_4

A CGTt
A CGTt.1
A CGTt_2
A CGTt_3

A CGTt.4
Dumrptt

Dumibt
Dums2327t
ecmDt_l

ecmSt_~
Dqlt

Dq2t

Dq3t

Constant

Coefficient Std Error CoeJficient

-0.435 O. 103 -0.471

0.717 0.155
0.408 0.175

-0.007 0.004
0.015 0.005

-0.012 0.004
0.006 0.004

-9.516 3.189
-5.782 3.168

0.134 0.038
0.110 0.027

-0.002 0.001

-0.024 0.010
0.035 0.013
0.014 0.010
0.079 0.026
0.023 0.004

0.016 0.008
0.014 0.008

1.645 0.248

Adjusted R squared

SC information criteria
AR(I-4) test p value

Normality test p value

ARCH (1-4) test p value
Exclusion test p value

Std Error Coefficient

O. 101 -0.480

(21)

Std Error

0.102

0.778 0.150 0.769 0.151
0.477 0.170 0.476 0.171

-0.005 0.004
0.011 0.004 0.010 0.004

-0.010 0.004 -0.008 0.004

-8.627 3.158 -9.535 3.109
-6.530 3.154 -7.335 3.121

0.134 0.038 0.133 0.039
O. 110 0.028 O. 110 0.028

-0.002 0.001 -0.002 0.001

-0.027 0.010 -0.027 0.010
0.036 0.013 0.035 0.013
0.014 0.010 0.017 0.010
0.079 0.027 0.075 0.027
0.022 0.004 0.022 0.004

0.015 0.008 0.014 0.008
0.014 0.008 0.014 0.008
1.547 0.241 1.600 0.239

0.62 0.61 0.60
-6.45 -6.47 -6.50
0.44 0.81 0.61
0.68 0.63 0.44
0.78 0.60 0.49
0.10 0.12 0.05

,Votes: I. Figures in bold refer to the most insignificant regressor in each model
2. Ho: Residuals are respectively serially uncorrelated, normal and contain no ARCH effects
3. Probabilities are distributed around a chi-squared distribution with 2 degrees of freedom for the normality test
4. Exclusion test Ho: the coefficient of the bolded variable is zero. The associated test statistic is the log likelihood ratio. If the

null cannot be rejected, the variable is dropped from the analysis and the model is re-estimated
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Chapter 8:

Testing for the Presence of a Bubble in the Dublin Housing Market

8.1. Introduction

As the existence of a bubble could potentially account for the part of house price

determination that is left unexplained by the smooth transition regression model presented in

Chapter 7, this chapter proposes to examine the Dublin marketplace for evidence of

speculative behaviour. In doing so, a regime-switching approach, which enables testing of the

hypothesis that house prices are being driven solely by fundamental market factors against the

alternative of a bubble, is adopted.

The chapter is organised as follows~: Section

switching framework and outlines the nature

8.2 briefly describes the general regime-

of the coefficient restrictions required for

acceptance of the bubbles model. Fundamental house prices are modelled in Section 8.3 while

Section 8.4 presents a measure of the non-fundamental price or bubble component. Estimation

of the switching regression model, along with a discussion of the empirical results, is

undertaken in Section 8.5. Section 8.6 concludes.

8.2. The Statistical Model

The empirical analysis begins with the decomposition of the price of the housing asset into

two components, namely, a ’fundamental’ and a ~non-fundamental’ part as in equation (8.1):

Econometric modelling undertaken in the course of this chapter was carried out in GiveWin 2.20 /
PcGive 10.0, EViews 3.1 and Gauss 5.0.
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nph, = nphtl + nph"Jl (8.1)

where nph refers to real

implies that house price

new house prices. The fundamental component of the equation

determination in the Dublin market relates solely to underlying

economic factors, whereas the non-fundamental aspect captures any deviation of house prices

away from these conditions. If it behaves in a random manner, it follows that the current non-

fundamental price will be unhelpful in forecasting the return from investing in housing in the

next period. Thus, house prices will on average reflect fundamental values. Conversely, it

may hold that expectations of rising prices and associated short-term capital gains attract

speculative investors into the housing market. As price movements increasingly reflect such

expectations, they become self-fulfilling and house price determination is said to exhibit

evidence of non-fundamental behaviour.

With respect to specifying the precise nature of such behaviour, Blanchard (1979) and

Blanchard and Watson (1982) propose a stochastic bubbles model in which two states are

considered - state S in which the bubble survives and continues to grow, and state C in which

it crashes. The probability of state S occurring is assumed to be constant while the expected

value of the bubble following a collapse is set equal to zero. However, as discussed in Chapter

5, van Norden (1996) and Schaller and van Norden (1997) argue that these assumptions are

overly restrictive. Instead, they suggest a process that allows for a partial collapse in state C

and for the probability of the bubble’s continued growth to fall as the bubble expands2.

From a modelling perspective, this idea of a partially collapsing bubble can

encompassed within the following regime-switching frameworkS:

be readily

2 The underlying argument against an instantaneous and complete collapse of the bubble relates to the

fact that financial institutions or the government would be expected to intervene to prevent such an
occurrence. For a detailed description of the typical life cycle of bubbles, see Kindleberger (1989).
3 For a more technical treatment, please refer to Section 5.5 or van Norden (1996).
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(R,+I[C) = [3co+ 13cbb, + e¢.,~ l (8.2)

where:

R

b

C

S

q

~b and [3~b

]3co and ]3~o

ec and ~;s

(Rt~IIS) = 13so+ 13~bb, + es.l~l

Prob(State,+l=S) = q(b0 = @ ([3q0 + 13qbbt2)

(8.3)

(8.4)

= the return from investing in the housing asset (constructed as the change in the

log of real new house prices);

= the non-fundamental / bubble component of real new house prices4;

= the collapsing regime;

= the survival regime;

= the probability of the bubble surviving. This probability is bounded between 0

and 1 using the logit function;

= the logistic cumulative distribution function;

= coefficients;

= intercept terms;

= the error terms which are assumed independently and identically distributed

with mean zero and standard deviations cy¢ and Ors

If house prices contain a bubble, equations (8.2) to (8.4) should support coefficient

restrictions of the form 13c0 ~: P~0 and either Pcb < 0, Psb > 0, Pqb ~> 0, or Pcb > 0, Psb ~ 0, Pqb < 0.

In addition, the general switching regression should be able to reject a range of simpler nested

models, including those of a mixture of normal distributions and an error correction

specification. The former imposes the restrictions P~b = Psb = Pqb = 0, which if upheld, have

the interpretation that fundamentals are driving house prices. On the other hand, the error

correction model specifies a fad whereby prices deviate temporarily from underlying

fundamentals but will eventually mean revert5. Such a situation requires 13co = Pso = [30,

4 Section 8.4 provides further details.
5 This type of non-fundamental price behaviour is discussed in detail in Summers (1986).
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[3cb : [3sb = [3b, [~qb = 0 and [~b < 0. All of these restrictions can be tested using standard

likelihood ratio tests.

Equations (8.2) to (8.4) therefore represent the baseline statistical model estimated in Section

8.5. The associated sample period begins in the third quarter of 1980 and ends in the first

quarter of 200 l.

8.3. Modelling Fundamental House Prices

Prior to estimating the regime-switching model outlined above, certain preparatory steps must

be undertaken. The first of these relates to the modelling of fundamental house prices.

Unfortunately, a unique model of underlying market fundamentals does not exist in a housing

context, and it is therefore necessary to proxy the fundamental component of price. As

fundamental values depend on the long run equilibrium situation, one means of doing so is to

take the fitted value from an estimated long run price relation. Theoretical and empirical

considerations suggest that this relation should be between house prices and demand and

supply fundamentals 6. On the demand side, such fundamentals include income, mortgage

interest rates and household formation. From a supply perspective, the relevant variables are

mortgage interest rates, building costs and the stock of zoned housing land7.

The house price relation postulated above is essentially a combination of the long run demand

and supply relationships considered in Chapter 6. While these do not define equilibrium for

the Dublin housing market, it may hold that a reduced form relation normalised on price does.

To test for this possibility and to obtain a measure of the fundamental price, the cointegration

analysis undertaken earlier is repeated below.

6 See expression (2.4) presented in Chapter 2 and Roche (2003).
7 The stock of housing is not included here as the variables which influence its long run evolution are

modelled directly.
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As discussed previously, the objective of the Johansen cointegration technique is to uncover

stationary relationships amongst a set of non-stationary data8. The results of Dickey-Fuller

and Augmented-Dickey Fuller tests for unit roots in the Dublin housing dataset are reported in

Table 6.1. These tests reject the null hypothesis of a unit root for each of the variables once

the data is differenced. Consequently, any finding of cointegration implies that these non-

stationary variables are linearly related in a stationary manner, and as such, can be interpreted

as an equilibrium relationship.

Finally, a priori expectations regarding the coefficient signs of the potentially cointegrating

variables suggest a positive relationship between house prices and demand-side push factors

such as income and demographics. Similarly, a positive sign is expected on the building costs

variable, whereas the stock of zoned housing land should theoretically exhibit a negative

relationship with the price of housing. However, recalling Chapter 6’s empirical finding of a

positively signed land coefficient, this theoretical relation is not expected to hold. Likewise,

the probable nature of the relationship between house prices and interest rates is unclear given

contradictory responses on the part of the demand (negative) and supply (positive) sides of the

market to interest rate changes. In this case, the end result depends on which effect wins out.

8.3.1. The Fundamentals Model

The estimated vector autoregressive (VAR) model of Dublin house price fundamentals is

defined as:

Xt = 1-[iXt-I + 1-[2Xt-2 + (I~trlDumlbct + ~piDumllst + ~p2Dum2lst + (I)p3Dum31st

+ (Dp4Dum4lst + (Dtr2Dum2bct + ~tr3Dummrt + ~psDum3bct

+ (I)’qDqt + p + Ct (8.5)

8 Section 5.2.1 and Johansen (1995) discuss this technique in detail.
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where°:

X

Dum i bc

Dum~ls

Dum21s

Dum31s

Dum41s

Dum2bc

Dummr

Dum3bc

Dq

H and

E

= a vector comprising the log of real new house prices, the log of real personal

disposable income per capita, nominal mortgage interest rates, the log of real

building costs, the log of household formation and the log of the stock of

zoned housing land;

= a transitory shock dummy = 1 for 2000:4 and 0 otherwise;

= a permanent shock dummy = 1 for 1982:2 and 0 otherwise;

= a permanent shock dummy = 1 for 1993:2 and 0 otherwise;

-- a permanent shock dummy = 1 for 1998:3 and 0 otherwise;

= a permanent shock dummy = 1 for 1981:3 and 0 otherwise;

= a transitory shock dummy = 1 for 1981:2, 0 for 1981:3, - 1 for 1981:4 and

0 otherwise;

= a transitory shock dummy = 1 for 1992:4, -1 for 1993:1 and 0 otherwise;

= a permanent shock dummy = 1 for 1985:2 and 0 otherwise;

= three centred seasonal dummies Dq~, Dq2 and Dq3, where Dqi = 0.75 in

quarter 1 and -0.25 in quarters i+l, i+2 and i+3~°;

= unrestricted parameters;

= a vector of unrestricted constants;

= a vector of error terms.

The sample period (adjusted for a lag length of two) extends from the third quarter of 1980 to

the last quarter of 2000.

9 A linear trend was included as part of the initial VAR specification. However, subsequent testing

indicated that this could be excluded from the analysis.
~0 As noted in Chapter 6, Johansen (1995) suggests using centred rather than standard seasonal

dummies. Centred dummy variables shift the mean but do not affect the trend.
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Re-writing the above

following expression:

model in vector error correction (VECM) format gives rise to the

where:

F

= 1-llXt.i + I-’lAXt_l + ~t, iDumlbct + CI~piDtlmllst + Cl~p2Dum2lst + ~I~p3Dum31st

+ CI~p4Dum41st + cI~tr2Dum2bct + ~tr3Dummrl + ~psDum3bct

= a matrix of short term dynamics.

(8.6)

8.3.2. Misspecification Testing

The validity of the vector autoregressive specification presented in equation (8.5) relies on the

satisfaction of a number of underlying assumptions as outlined in Section 6.5. Although this

entire set of assumptions is not essential, testing for model misspecification is nevertheless

important~. Reflecting this assertion, the following tables report the information criteria that

motivated the choice of VAR lag length and the outcome of tests for residual normality,

autocorrelation, homoscedasticity and parameter constancy.

8.3.2.1. Information Criteria and Diagnostic Checking

The multivariate properties of the VAR specification are illustrated below in Tables 8.1 to

8.5. Initial modelling excludes the dummy variables and begins with the selection of an

appropriate lag length. In this respect, overall findings are conclusive with the Schwartz (SC)

and Hannan-Quinn (HQ) information criteria, along with the Likelihood Ratio test for model

reduction, all choosing a lag of one.

~ For example, parameter constancy and a lack of autocorrelation are considered crucial whereas less

weight is typically attached to distributional form and the absence of ARCH.
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Table 8.1: Information Criteria for Choice of VAR Lag Length - No Dummies

Lag Length SC 14Q

1 -32.668 -33.739
2 -31.280 -32.992
3 -30.377 -32.732
4 -29.056 -32.052

Notes:
I. To ensure validity, the models are nested

Table 8.2: Likelihood Ratio Test for Model Reduction - No Dummies

Lag Length Test Statistic Probability

Lag 4 to Lag 3
Lag 4 to Lag 2
Lag 4 to Lag 1
Lag 4 to Lag 0

Lag 3 to Lag 2
Lag 3 to Lag 1
Lag 3 to Lag 0

Lag 2 to Lag 1
Lag 2 to Lag 0

Lag 1 to Lag 0

F(36,209) : 0.928
F(72,261) : 1.350
F(108,276) = 1.266
F(144,282) = 25.533

F(36,235) = 1.803
F(72,294)= 1.450
F(108,310) : 35.057

F(36,261) = 1.033
F(72,326) = 51.854

F(36,288) = 151.01

0.59
0.05
0.06
0.00"**

0.01"*
0.02**
0.00"**

0.00"**

Notes;

1. To ensure validity, the models are nested
2. Ho: Model reduction is acceptable
3. The F version of this test is used as it corrects for small sample size
4. **(* * *) denotes rejection of Ho at the 5% (1%) significance level

Referring next to the results of the standard diagnostic checks, the residuals appear

homoscedastic and the null hypothesis of non-autocorrelation can be accepted for each lag

length with the exception of the second - the LM(l) test indicates that serial correlation is

present at this lag. Unsurprisingly, residual non-normality is also a strong feature of the

model.
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Table 8.3: Testing for Serial Correlation in the VAR Residuals - No Dummies

Lag Length

1

Test Statistic

LM (1)= 37.851

LM (4)= 37.559

Probability

0.38

0.40

2 LM (1) -- 70.443 0.00"**

LM (4) = 35.107 0.51

3 LM (1) = 40.430 0.28
LM (4)= 33.352 0.60

4 LM (1) = 47.324 0.10

LM (4)= 37.335 0.41

Notes:
I. Ho: No serial correlation at lag order h
2. Probabilities are distributed around a chi-squared distribution with 36 degrees of freedom
3. A small sample correction is included
4. *** denotes rejection of Ho at the i% significance level

Table 8.4: Testing for Normality in the VAR Residuals - No Dummies

Lag Length Test Statistic Probability

1 126.096 0.00"**
2 111.260 0.00"**
3 80.728 0.00"**
4 69.195 0.00"**

Notes:
1. Ho: Residuals are multivariate normal
2. Probabilities are distributed around a chi-squared distribution with 12 degrees of freedom
3. A small sample correction is included
4. *** denotes rejection of Ho at the 1% significance level

Table 8.5: Testing for Heteroscedasticity in the VAR Residuals - No Dummies

Lag Length

1
2

3
4

Test Statistic

F(252,419) = 1.212
F(504,382) = 0.799

F(756,131) = 0.327
ChiA2(1008) -- 1051

Probability

0.04**
0.99

1.00
0.17

Notes.

l. Ho: Residuals are homoscedastic
2. ** denotes rejection of Ho at the 5% significance level
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While a lack of normality is not necessarily desirable, studies by Cheung and Lai (1993) and

Gonzolo (1994) have served to demonstrate the robustness of the Johansen procedure to such

a situation. However, as pointed out in Section 6.5, accounting for outliers is not only likely to

improve the baseline specification, but in addition, may be justified on the grounds that it is a

mistake to treat significant interventions and reforms as mere statistical nuisances (Juselius,

forthcoming). Given this, it seems appropriate to augment the above VAR(1) specification by

the inclusion of the permanent and transitory shock dummies defined in equation (8.5). Note

that these dummies are identical to those modelled as part of the VAR analysis presented in

Chapter 6. Moreover, as the location and dummy type were chosen using the approach

applied in the earlier analysis, the reader is referred back to Section 6.5 for a detailed

discussion.

Tables 8.6 to 8.10 report the information criteria for lag selection and the results of the re-

applied misspecification tests for the model inclusive of dummy variables.

Table 8.6: Likelihood Ratio Test for Model Reduction - Dummies

Lag Length Test Statistic Probability

Lag 4 to Lag 3 F(36,174) = 0.914 0.61
Lag 4 to Lag 2 F(72,217) = 1.151 0.22
Lag 4 to Lag 1 F(108,230) -- 1.404 0.02**

Lag 3 to Lag 2 F(36,200) -- 1.411 0.07

Lag 3 to Lag 1 F(72,250) = 1.673 0.002***

Lag 2 to Lag 1 F(36,226) -- 1.872 0.003***

Notes.
l. To ensure validity, the models are nested
2. Ho: Model reduction is acceptable
3. The F version of this test is used as it corrects for small sample size
4. **(***) denotes rejection of Ho at the 5% (1%) significance level

164



Table 8.7: Information Criteria for Choice of VAR Lag Length - Dummies

Lag Length SC HQ
i -34.306 -36.232
2 -33.477 -36.045
3 -32.497 -35.708
4 -31.286 -35.139

Notes.
!. To ensure validity, the models are nested

Subsequent findings indicate an element of indecisiveness amongst the different criteria with

regard to lag length selection. The SC and HQ methods continue to favour a lag of one

whereas the Likelihood Ratio test for model reduction suggests that a minimum of two lags is

needed. Irrespective of which of these lag lengths is actually chosen, the residuals of the

model are homoscedastic and non-normal as before, though the extent of the latter has now

been considerably reduced.

Table 8.8: Testing for Serial Correlation in the VAR Residuals - Dummies

Lag Length                   Test Statistic Probability

1 LM (1) -- 56.593 0.02**
LM (4) -- 55.333 0.02**

2 LM (1) -- 36.210 0.46
LM (4) = 45.127 0.14

3 LM (1) = 35.704 0.48
LM (4) = 46.356 O. 12

4 LM (1) = 34.031 0.56
LM (4) -- 46.827 O. 11

Notes.
1. Ho: No serial correlation at lag order h
2. Probabilities are distributed around a chi-squared distribution with 36 degrees of freedom
3. A small sample correction is included
4. ** denotes rejection of Ho at the 5% significance level
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Table 8.9: Testing for Normality in the VAR Residuals - Dummies

Lag Length Test Statistic Probability

! 40.076 0.00’**
2 40.285 0.00’**
3 49.366 0.00"**
4 37.521 0.00"**

Notes:
1. Ho: Residuals are multivariate normal
2. Probabilities are distributed around a chi-squared distribution with 12 degrees of freedom
3. A small sample correction is included
4. *** denotes rejection of Ho at the 1% significance level

Table 8.10: Testing for Heteroscedasticity in the VAR Residuals - Dummies

Lag Length Test Statistic Probability

1 F(252,335) -- 0.817 0.95
2 F(504,255) -- 0.409 1.00
3 ChiA2(756) -- 734.4 0.71
4 ChiA2(1008) -- 984.4 0.70

Notes.
1. Ho: Residuals are homoscedastic

On the whole, a lag length of two is marginally preferred given its ability to render serial

correlation insignificant with a much higher probability than that of a lag of one. Moreover,

two lags fit better with initial expectations and should prove less restrictive than a model

estimated using only one. As such, a lag length of two is assumed from this point forward.

8.3.2.2. Analysis of the Residuals of the Estimated VAR Model

The following tables present the outcome of a range of multivariate and univariate diagnostic

tests associated with the estimated VAR(2) model. Combined, these findings imply a

statistically well-behaved specification.
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Table 8.11 : Estimated VAR(2) Model - Multivariate Statistics

Test Type Test Statistic

Information Criteria:

SC -33.553
HQ -36.083

Serial Correlation:

Lagrange Multiplier

Vector ,4 R(I-4) Test

Normality

Heteroscedasticity

LM(1) : 28.779
LM(4) -- 43.482
F(144,177) : 0.877

Probability

0.80
0.18
0.79

43.480 0.00"**

F(504,287) = 0.415 1.00

Notes:
1. Ho: Residuals are respectively serially uncorrelated, multivariate normal and homoscedastic

2. Probabilities are distributed around a chi-squared distribution with 36 degrees of freedom lbr the LM test and 12
degrees of freedom when testing for normality

3. Where applicable, F versions of the above tests are used to correct for small sample size. The LM test for serial
correlation and the normality test also include small sample corrections

4. *** denotes rejection of rio at the 1% significance level

With respect to the multivariate framework, Table 8.11 indicates that the residuals of the

estimated model are neither serially correlated up to lag order four nor heteroscedastic. In

contrast, the null hypothesis of residual normality appears not to hold in this setting. As is

evident from Table 8.12, much of this non-normality is attributable to the kurtosis problems

exhibited by the univariate household formation and land stock series. However, as

highlighted in Section 6.5.1 the presence of non-normal residuals does not render the

methodology invalid.

Finally, the correlation matrix outlined in Table 8.13 depicts a reasonably high, though not

unexpected, degree of correlation between some of the variables, particularly those of house

prices and income.
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Table 8.12: Estimated VAR(2) Model - Univariate Statistics

Variable Mean Std Dev Skewness Kurtosis

iognph 0.000 0.034 -0.082 2.9 ! 7
loginc -0.000 0.016 -0.094 2.782
MR 0.000 0.552 -0.316 3.580
Iogbc -0.000 0.008 -0.177 3.785
dloghf -0.000 0. I 01 -0.148 4.426
logls 0.000 0.007 0.334 6.427

Variable Test Type Test Statistic Probability

iognph AR(1-4) F(4,54) -- 0.737 0.57
loginc F(4,54) = 1.349 0.26
MR F(4,54) -- 1.178 0.33
Iogbc F(4,54) -- 2.637 0.04**
loghf F(4,54) = 0.180 0.95
logls F(4,54) = 2.885 0.03**

Iognph Normality 0.249 0.88
loginc 0.143 0.93
MR 3.176 0.20
logbc 4.416 0.11
loghf 9.810 0.01"*
logls 30.569 0.00’**

Iognph ARCH (1-4) F(4,50) -- 1.347 0.27
loginc F(4,50) -- 0.496 0.74
MR F(4,50) = 2.202 0.08*
logbc F(4,50) = 0.606 0.66
Ioghf F(4,50) = 0.824 0.52
logls F(4,50) -- 1.773 0.15

Notes:
1. Ho: Residuals are respectively serially uncorrelated, normal and contain no ARCH effects
2. Probabilities for the normality test are distributed around a chi-squared distribution with 2 degrees of freedom
3. *(**) (***) denotes rejection of rio at the 10% (5%) (1%) significance level

Table 8.13: Estimated VAR(2) Model - Correlation Matrix

Variable dlognph dloginc dMR dlogbc dloghf dlogls

dlognph 1.000

dloginc 0.442 1.000

dMR -0.264 -0.090

dlogbc 0.271 0.079

dloghf -0.048 -0.024

dlogls 0.098 0.222

1.000
-0.177 1.000
-0.363 0.272 1.000
0.227 0.049 O. 120 1.000
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8.3.2.3. Recursive Analysis

Recalling that the chosen specification must also satisfy the assumption of parameter

constancy in order for the Johansen cointegration technique to be valid, recursive estimation

was undertaken on a base sample covering the period 1980:3 to 1993:4~2. The resultant

graphics are presented below in Figures 8.1 and 8.2.

13Figure 8.1: Recursive Analysis - Trace Test (Base Sample 1980:3 to 1993:4)

The Trace tests

Zlr~

~9~ 1~97 1998 ~9 2(.OO
1 ~s the 10% significance level

Referring first to the recursively calculated Trace test, Figure 8.1 suggests five unit roots and

one stationary relationship amongst the variables. As discussed in Section 6.5.3, the presence

of a unit root can be rejected / accepted for components of the Trace statistic which lie above /

below the critical value of one; though for models containing dummy variables, a critical

value in excess of one is considered to be more appropriate. Secondly, the recursively

calculated log likelihood value, graphed in Figure 8.2, lies within the 95% confidence bands

~2 To test the sensitivity of these results, a variety of time periods were modelled as the base sample. As

the associated graphs proved similar to those presented in Figures 8.1 and 8.2, they are not reproduced
here.
~3 As the estimated model contains a number of dummy variables, the critical values given in this figure

are inappropriate. The presence of such dummies implies that the line at one should be higher.
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for the full (Zt) and concentrated versions (Rt) of the model as desired14. Taken together, these

findings are indicative of a nnodel with relatively constant parameters~5.

Figure 8.2: Recursive Analysis - The Log Likelihood Value (Base Sample 1980:3 to 1993:4)
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8.3.3. Determination of the Cointegrating Rank

Conditional on the chosen lag length of two, this section tests for possible cointegration

amongst the variables in the above vector autoregressive model. Similar to the approach

adopted in Chapter 6, the standard test used to identify the cointegrating rank (r) - the Trace

test - is applied along with more informal methods such as an examination of the roots of the

companion matrix and the t values of the alpha coefficients of the rth+l cointegrating vector.

As discussed earlier, the fact that ’the asymptotic distribution [of the Trace statistic] can be a

poor approximation to the true distribution when the sample size is small resulting in

substantial size and power distortions’ implies that as much additional information as possible

be used when determining the cointegration rank (Juselius, forthcoming)16. Tables 8.14 to

8.16 detail the findings of the above methodologies.

~4 Note that the concentrated version of the model removes all dynamic influences.
~5 It is also unlikely that the tests for autocorrelation would have been passed if the parameters of the

model are not constant.
16 [ ] parenthesis inserted.
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Table 8.14: Testing for the Cointegrating Rank - The Trace Test

Eigenvalues Ho.’r p-r Trace Statistic 95% Critical Value

0.5212 0 6 117.78 93.92
0.3127 1 5 57.39 68.68
0.1627 2 4 26.64 47.21
0.1068 3 3 12.07 29.38
0.0293 4 2 2.81 15.34
0.0046 5 1 0.38 3.84

Notes.
1. Ho: r = q (where q = 0, I, 2, 3, 4, 5)
2. The 95% critical values are taken from Table 15.3 in Johansen (1995)

Formally, the Trace test indicates that one cointegrating relation exists amongst the data series

at the 5% significance level. In contrast, rank determination on the basis of the modulus roots

of the companion matrix is less clear cut as is evident from Table 8.15. If the full rank of six

is selected, at least two unit roots and therefore four cointegrating vectors appear to be

present. However, if the next largest roots of 0.92 and 0.88 are regarded as being sufficiently

close in size to one as to constitute unit roots, it follows that five such roots and a single

cointegrating relation are actually present.

Table 8.15: Testing for the Cointegrating Rank- Roots of the Companion Matrix

p-r r=6 r=4 r=l

6 1.00 1.00 1.00
5 1.00 1.00 1.00
4 0.92 0.98 1.00
3 0.88 0.86 1.00
2 0.88 0.86 1.00
1 0.43 0.43 0.82

Notes."
i. p refers to the number of variables in the analysis, p-r = 6 unit roots corresponds to zero cointegration while

p-r = 5 unit roots implies the presence of one cointegrating relation amongst the data series

Given the mixed nature of these findings, Table 8.15 also reports the results of a sensitivity

analysis that sets the rank equal to four and then one. This analysis reveals that the imposition

of a rank of four leaves an unacceptably high root of 0.98 in the model, whereas setting r = 1
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gives rise to a much smaller remaining root of 0.82. Thus, a rank choice of one is deemed

appropriate and is in line with the implications of the Trace test.

Table 8.16: Testing for the Cointegrating Rank- Unrestricted Estimates of the VAR(2) Model

Beta lognph loginc MR logbc loghf logls

1 -6.798 12.976 0.547 - 16.440 9.093 6.408
2 -8.534 15.406 -0.452 -12.821 ! i.677 -2.945
3 3.591 -16.587 0.197 13.951 3.287 16.178
4 -0.761 3.707 0.524 16.008 4.207 3.787
5 0.833 4.232 -0.120 -28.803 0.9 ! 7 5.727
6 9.598 -13.691 -0.108 8.940 -1.693 -2.150

Alpha

dlognph -0.019 0.005 -0.003 0.003 0.002 -0.002
dloginc -0.005 -0.002 0.003 0.003 -0.000 -0.000
dMR -0.170 0.171 0.048 -0.037 -0.070 0.011
dlogbc 0.001 0.001 0.00 ! -0.001 0.000 -0.000
dloghf -0.016 -0.056 -0.004 -0.017 0.001 -0.002
dlogls 0.001 -0.000 -0.001 0.000 -0.001 -0.000

Alpha T Values

dlognph -5.013 -1.426 -0.731 0.803 0.520 -0.415

dloginc -2.801 -1.413 1.930 1.987 -0.199 -0.279

dMR -2.786 2.810 0.785 -0.613 - 1.152 0.182

dlogbc 1.657 0.735 1.595 -1.604 0.328 -0.430

dlogh f -1.403 -4.990 -0.326 - 1.555 0.094 -0.142

dlogls 1.299 -0.610 -1.302 0.294 -1.189 -0.328

Notes:
I. Beta corresponds to the cointegrating vectors while alpha reflects the adjustment coefficients

Lastly, the alpha t values of the unrestricted estimates are considered in Table 8.16.

Interestingly, the first and second vectors are significant, which suggests a rank of two as

opposed to the previous findings of a rank of one17

17 With respect to the significance levels of the alpha coefficients, as their distribution is unknown a t

value of roughly 3.5 (in absolute terms) is regarded as more appropriate than the standard rule of thumb
figure of 2. In addition, note that the significance of a given beta vector requires a high t value for only

one of the related alpha coefficients.

172



Drawing together the information provided by the above formal and informal criteria, the

final choice of rank lies between one and two cointegrating vectors. Overall, the results are

slightly more skewed towards the former than the latter and consequently, a rank of one is

selected. Besides, the existence of a single equilibrium relation amongst the chosen variables

fits better with a priori theoretical and empirical expectations than that of two vectors. As

such, further modelling on this basis is assumed to be valid.

8.3.4. Model Specific Data Properties

This section is concerned with examining the statistical properties of the housing data

conditional on the chosen rank of one. In particular, the variables included as part of the

estimated VAR(2) model are tested for potential long run exclusion, stationarity and weak

exogeneity. The resultant findings are outlined in Table 8.17 overleaf.

The first of these tests considers whether the variable in question can or cannot be omitted

from the cointegration space. As is apparent from Table 8.17, the corresponding null

hypothesis of long run exclusion is rejected at the 5% significance level for all variables.

Secondly, Table 8.17 indicates that none of the variables are individually stationary, thereby

confirming the results of the earlier unit root tests. As such, the uncovered cointegration

relation cannot be accounted for by the presence of a stationary variable.

The third test differs from those discussed above in that it imposes restrictions on the alpha

rather than on the beta coefficients. In doing so, the possibility that a variable may influence

the long run stochastic path of other variables in the system without being influenced by them

- a ’no levels feedback’ effect - is allowed for. The results presented in Table 8.17 fail to

reject the null hypothesis of weak exogeneity for the building costs, household formation and

land stock variables; though the reasonably high probabilities pertaining to the last two series
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are of most concern. These probabilities point towards acceptance of both the household

formation and land stock series as weakly exogenous. It then follows that these two variables

constitute two of the model’s common driving trends~8.

Table 8.17: Estimated VAR(2) Model- Model Specific Data Properties

Exclusion Test (Chi squared (1) -- 3.84)

lognph loginc MR logbc loghf logls

9.97 9.19 15.62 9.56 11.82 6.76
(0.00) (0.00) (0.00) (0.00) (0.00) (O.Ol)

Stationarity Test (Chi squared (5) = 11.07)

lognph loginc MR logbc loghf logls

49.47 44.28 24.94 35.34 43.08 44.81
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Weak Exogeneity Test (Chi squared (I) -- 3.84)

lognph loginc MR logbc loghf logls

18.01 5.70 5.23 2.30 0.93 1.51

(0.00) (0.02) (0.02) (0.13) (0.33) (0.22)

Notes:

!. The above tests are conditional on a cointegrating rank of one

2. Respectively, the null hypothesis states that the variable under consideration should be excluded, is

individually stationary and is weakly exogeneous

3. p values are given in brackets

8.3.5. The Partial Model

Building on the above findings of weak exogeneity, this section of the study adopts a partial

systems approach to the modelling of housing market fundamentals. Such an approach

implies that valid inference on beta can be obtained from a four dimensional system

~8 This refers to the fact that the unexplained variation of ~loghf, t and e~og~s,t cumulate in the system so that

,=~ e~oghf, t and Zj=l e~og~s,t are two of the common trends. In this sense, household formation and the

stock of zoned housing land ’drive’ the system.
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comprising house prices, income, interest rates and building costs conditioned on the

household formation and land stock variables (Juselius, forthcoming). Moreover, moving to a

partial model generally has the added advantage of leading to an improved statistical

specification. In addition, it gives rise to the prospect of eliminating insignificant dummies

relating to the weakly exogenous variables.

Table 8.18: The Partial Model - Short Run Matrices

Variable Dum lbc Dum fls Dum:ls Dum fls Dum41s Dum:bc Dummr Dum3bc

dlognph 0.004 -0.080 -0.009 -0.049 -0.052 0.009 0.028 0.050
dloginc -0.027 -0.076 -0.031 -0.041 -0.020 0.059 0.015 0.029
dMR 0.369 -1.645 -6.003 -0.899 1.895 -0.453 2.705 0.054
dlogbc 0.100 -0.027 0.029 0.005 -0.029 0.063 0.002 0.041

T Values

dlognph 0.105 -1.163 -0.139 -0.907 -0.958 0.320 0.973 1.379

dloginc - 1.556 -2.405 - 1.03 t - 1.654 -0.806 4.644 1.128 1.734

dMR 0.665 -1.631 -6.153 -1.124 2.369 -1.108 6.469 0.102

dlogbc 11.908 - 1.748 1.984 0.374 -2.445 10.272 0.335 5.072

Table 8.18 presents the short run matrices associated with the partial model. With regard to

the results, it appears that three of the four land dummy variables are insignificant following

estimation of the conditional VAR(2) model, and can therefore be dropped from the

analysis~9. As such, the empirical model discussed from now on is as defined in equation

(8.5), but with the household formation and land stock series assumed to be weakly

exogenous and with Dumlls, Dumfls and Dum41s excluded.

Finally, as discussed in Section 6.8, the asymptotic distribution of the rank test statistics for

the partial model differs from that of the full system. Given this, rank selection may prove

problematic (Johansen, 1995). However, as the rank has already been determined within the

19 The rule of thumb that dummy variables should have an absolute t value of at least 3.73 in order to

be considered significant is applied here.
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full framework, and the model subsequently tested for weak exogeneity, Hansen and Juselius

(1995) suggest that there is no further need to test for rank in the partial system. Their

recommendation, and the method adopted below, is to proceed on the basis of the previously

chosen rank.

8.3.5.1. Analysis of the Residuals of the Partial Model

Tables 8.19 to 8.21 subject the residuals of the partial system to the various diagnostic checks

imposed previously on the full model.

Table 8.19: The Partial Model - Correlation Matrix

Variable dlognph dloginc dMR dlogbc

dlognph 1.000
dloginc 0.442 1.000
dMR -0.308 -0.092
dlogbc 0.303 0.106

1.000
-0.137 1.000

Table 8.20: The Partial Model - Multivariate Statistics

Test Type Test Statistic ProbabiliO~

Information Criteria:

SC -21.455
HQ -23.072

Serial Correlation:

Lagrange Multiplier LM( 1 ) = 6.729 0.98
LM(4) = 11.633 0.77

Vector AR(I-4) Test F(64,158) = 0.837 0.79

Normality 4.667 0.79

Heteroscedasticity F(200,283) = 0.656 1.00

Notes.
1. Ho: Residuals are respectively serially uncorrelated, multivariate normal and homoscedastic

2. Probabilities are distributed around a chi-squared distribution with 16 degrees of freedom for the LM test and 8
degrees of freedom when testing for normality

3. Where applicable, F versions of the above tests are used to correct for small sample size. The LM test for serial
correlation and the normality test also include small sample corrections
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Table 8.21: The Partial Model- Univariate Statistics

Variable Mean Std Dev Skewness Kurtosis

lognph 0.000 0.034 -0.061 2.943
loginc -0.000 0.016 -0.049 2.736
MR 0.000 0.543 0.103 3.285
logbc -0.000 0.008 0.056 3.058

Variable Test Type Test Statistic

Iognph AR(I-4) F(4,55) = 0.566
Ioginc F(4,55) = 1.161
MR F(4,55) = 0.824
logbc F(4,55) = 1.327

Probability

0.69
0.34
0.52
0.27

lognph Normality 0.264 0.88
loginc 0.038 0.98
MR 1.465 0.48
logbc 0.548 0.76

lognph ARCH (!-4) F(4,51) -- 1.380 0.25
loginc F(4,51) = 0.550 0.70
MR F(4,51) = 3.062 0.02**
logbc F(4,51) -- 0.656 0.63

Notes.
1. Ho: Residuals are respectively serially uncorrelated, normal and contain no ARCH effects
2. Probabilities for the normality test are distributed around a chi-squared distribution with 2 degrees of freedom
3. ** denotes rejection of Ho at the 5% significance level

With respect to the outcomes, the correlation matrix and homoscedasticity findings are for the

most part unchanged, while the multivariate statistics indicate higher values for the

probabilities of the

normal distribution.

concluded that the re-specification of the VAR(2) model as

appropriate but also, highly desirable.

serial correlation tests. Furthermore, the residuals now approximate a

Given these improvements in the statistical framework, it may be

a partial system is not only

8.3.6. Long Run Identification

By definition, the single cointegrating vector uncovered from the housing dataset is identified

and unique. However, the interpretability of this vector as a plausible house price relation may

benefit from the imposition of additional restrictions. As such, a series of over-identified
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models is derived and compared with the exactly identified model using the likelihood ratio

test described in Johansen and Juselius (1994). Tables 8.22 and 8.23 present the empirical

results2°.

Table 8.22: The Exactly Identified Model~

Beta lognph      loginc MR logbc loghf logls

1.000 -1.430 -0.178 3.071 -1.817 -2.969

Standard Errors of Beta

0.000 0.425 0.033 1.317 0.429 0.628

Alpha

0.071 0.013 0.891 -0.006

Standard Errors of Alpha

0.016

Alpha T Values

0.008 0.257 0.004

4.494 1.594 3.468 - 1.578

Notes.
1. Log likelihood = 601.856106
2. Beta corresponds to the cointegrating vector while alpha reflects the adjustment coefficients

Referring to Table 8.23, it appears that the placing of unit restrictions on the coefficients of

the income, interest rate and building cost variables is valid. The resultant long run price

relation takes the following form22:

Price relation. Iognph - loginc - MR - logbc - 4.941 loghf- 12.039 logls

Iognph = Ioginc + MR + logbc + 4.941 loghf + 12.039 Iogls (8.7)

where et- I(0).

2o While a wide range of hypotheses were considered and tested, only the chosen over-identified model

is discussed in the following.
2~ Notice that as the housing stock is not included in the above analysis, the model presented here is

similar to the just identified supply relation set out in Table 6.23.
2~ These restrictions are in line with those imposed on the demand and supply relations in Chapter 6.
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Table 8.23: The Over-Identified Model

Beta lognph       loginc MR logbc loghf

1.000 - 1.000 - 1.000 - 1.000 -4.94 I

Standard Errors of Beta

0.000 0.000 0.000 0.000 2.067

Alpha

0.015 0.002 0.201 -0.001

Standard Errors of Alpha

0.004

Alpha T Values

4.182

0.002 0.056 0.001

0.944 3.565 -0.751

logls

-12.039

1.638

Notes:

1. Log likelihood = 598.32937
2. Likelihood ratio test: ChiA2 (3) = 7.054 with a probability of 0.07
3. Beta corresponds to the cointegrating vector while alpha reflects the adjustment coefficients

In line with expectations, the above findings indicate a positive relationship between house

prices and income and household formation. Similarly, the mortgage interest rate variable is

positively signed which suggests that the reduction in supply and the upward price pressure

associated with the higher opportunity cost of borrowing, outweighs the downward pressure

placed on prices from dampened demand. The nominal nature of the interest rate variable also

plays a role in this context. In particular, the presence of high uncertainty and inflation often

leads to the use of housing as a hedge against future inflation and thus, as the nominal

mortgage interest rate increases, the demand for and the price of housing rise. Therefore, it is

possible that some of the observed positive interest rate elasticity can be attributed to hedging.

With respect to the supply-side factors, both building costs and the

expression (8.7) bearing positively signed coefficients. As discussed

stock of land enter

in Section 6.9, the

former finding indicates that increased expenditure on the part of suppliers is fully passed

onto consumers in the Dublin market, whereas the latter may point to an element of hoarding
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on the part of landowners, or alternatively, could reflect delays in zoned housing land coming

on stream due to a lack of services or planning permission.

Figure 8.3: Long Run House Price Relation
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Figure 8.3 illustrates the identified long run house price relation. The graphical depiction

shows that from the end of 1987 to 1989, and from approximately 1994 onwards, house prices

in Dublin were high relative to the prevailing levels of income, mortgage interest rates,

building costs, household formation and land. Accordingly, the elimination of disequilibria in

these periods would have required downward price adjustment. Of further interest is the close

relationship between this vector and the supply relation presented in Figure 6.5. These

similarities are largely explained by the coefficient on the mortgage interest rate which is one

in both models.

Before accepting the above relation as an equilibrium relationship, it is essential to consider

its adjustment properties, namely the alpha value of the house price variablez3. This should

bear a minus sign reflecting the elimination of steady state deviations and a return to the long

23 As noted in Chapter 5, the Johansen approach allows for long run effects and short term adjustment

patterns to be modelled simultaneously. The sequential manner in which the long run relation and its
adjustment properties are discussed here is only for convenience.
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run path. However, the associated coefficient (see Table 8.23) is positively signed, indicative

of a move away from equilibrium rather than adjustment towards it.

To the extent that house prices may adjust in a non-linear manner to deviations from the long

run path, the hypothesis of no cointegration is not necessarily acceptable at this point.

Moreover, given strong priors for the inclusion of both demand and supply factors in any

model of house price fundamentals, the analysis proceeds on the basis that the above relation

proxies the fundamental component of price.

8.3.7. Fundamental and Actual House Prices

Plotting the fitted values of the model presented in Section 8.3 against observed prices

enables a comparison of fundamental values and actual house prices. Figure 8.4 presents a

graph of the two series. As is evident from the plot, the fundamental component of price and

actual house prices were close in terms of fit for much of the sample period, though

interestingly; actual prices typically exceeded fundamental values around 1990 and from 1997

up to the beginning of 2000. This finding lends support to the notion that there may have been

an element of speculative behaviour at play in the Dublin marketplace during these years.

Figure 8.4: The Fundamentals Model - Actual and Fundamental House Prices
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The above measure of the fundamental price is somewhat noisy given that it is estimated from

a vector autoregressive model which comprises lagged values of the house price variable. If it

holds that house prices contain a bubble or a fad element, then the use of lagged prices in the

baseline model implies that such elements will consequently have been incorporated into the

fundamental proxy of price. As a result, test findings will tend to be biased against the

presence of speculative behaviour (Cutler, Poterba and Summers, 1991). However, Schaller

and van Norden (1997), referencing Cutler, Poterba and Summers (1991), state that ’if we use

a noisy measure of fundamental prices and still find evidence of either fads or bubbles .... the

noisiness of our measure of fundamentals strengthens the case that non-fundamentals matter’.

As such, the present analysis proceeds using the fundamental measure of Dublin house prices

derived hitherto.

8.4. The Non-Fundamental Component of House Prices

Prior to estimating the regime-switching model outlined in equations (8.2) to (8.4), certain

preparatory steps must be undertaken of which modelling fundamental house prices

represented the first. The second step is concerned with measuring the non-fundamental

component of price. Taking the difference between actual house prices and the fitted value of

the model presented in Section 8.3, a proxy for the non-fundamental price is readily obtained.

In this context, an important point to note is that the regime-switching test applied in the

following section, is robust to misspecification in either the level or the scale of the non-

fundamental house price24. Thus, all that is required is an estimate of the non-fundamental

price that is highly correlated with the true value.

24 See van Norden (1996) and Section 5.4 for further details.

182



8.5. The Regime-Switching Model

The switching regression model outlined earlier in Section 8.2 is estimated below. Overall,

the findings are not suggestive of a stochastic bubble in the Dublin housing market. Instead,

Tables 8.24 to 8.26 provide evidence of fad type behaviour whereby prices deviate

temporarily from underlying fundamentals but will eventually mean revert.

Bearing in mind that the bubbles model requires the satisfaction of various restrictions on the

coefficients of equations (8.2) to (8.4), namely those of 13c0 ~: 13s0 and either [3cb < 0, 13sb > 0,

[~qb > 0, or [3cb > 0, [~sb < 0, [~qb < 0; consider Table 8.24 and the results of the estimated regime-

switching model.

Table 8.24: Estimated Regime Switching Model - Coefficient Restrictions

Parameters Coefficient T Value

[3co - 183 0.92
[3so 0.017 1.67

13ch 3.47e°°s 12.98
13sb 0.003 1.28
13@ 0.055 0.90

Wald Test Test Statistic Probability

13co: 13so 2.006

Notes:
I. T and Wald tests are based on standard errors taken from the inverse of the Hessian

0.16

Looking to begin with at the first set of restrictions, it is evident that the coefficient of ~cb is

significant, although it is incorrectly signed. In contrast, the estimates of [3sb and [~qb are signed

as expected but prove insignificant at conventional levels. Given equivalence, these findings

are reversed when the second set of restrictions are considered; [~cb is nOW correctly signed

whereas the estimates of [3sb and 13@ are not. With respect to the Wald test, the data fails to

reject the hypothesis that 13~0 = 13s0 despite the large numerical difference between the two
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coefficients. This finding similarly conflicts with the predictions of the bubbles model. As

such, it may be concluded that the results presented in Table 8.24 provide little evidence in

support of bubble type behaviour in the Dublin housing market.

Table 8.25: Estimated Regime Switching Model - Nested Specifications

Model Type

Mixture of Normal Distributions

Error Correction Model

Test Statistic Probability

71.020 0.00"**

1.306 0.52

Notes.
1. Log likelihood of the regime switching model = 2.35950
2. Ho: Do not reject the model in question in favour of the variable regime switching model

3. An assumption of varying probability underlies both the mixture of normal distributions and the error
correction models

4. *** denotes rejection of rio at the 1% significance level

Furthermore, acceptance of the bubbles model requires the rejection of a range of simpler

models nested within the general regime-switching framework. Table 8.25 presents the

outcomes of the standard likelihood ratio tests applied for this purpose. The subsequent

empirics indicate rejection of the null hypothesis in the case of the mixture of normal

distributions model, but fail to do so for the error correction alternative. While the former

finding suggests that a bubble component may be favoured over fundamentals, the latter

points to the rejection of a stochastic bubble and in place, implies the existence of a fad in the

Dublin housing marketplace.

Lastly, the diagnostic tests reported in Table 8.26 reveal a lack of ARCH and Markov

switching effects, but find some evidence of serial correlation in the second regime.
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Table 8.26: Estimated Regime Switching Model - Misspecification Testing

Test Type

Serial Correlation:

AR(I) in regime 1
A R(I) in regime 2

Heteroscedasticity:

ARCH(l) in regime 1
ARCH(l) in regime 2

Markov Effects

Test Statistic ProbabiliO,

3.674 0.06*
15.286 0.00"**

0.385 0.53
2.444 0.12

1.002 0.32

Notes:
1. Ho: Residuals are respectively serially uncorrelated and contain no ARCH or Markov switching effects
2. The tests for AR and ARCH are Lagrange Multiplier tests
3. * (***) denotes rejection of Ho at the 10% (1%) significance level

8.6. Conclusion

Building on the analyses presented in Chapter 7, this chapter sought to examine the Dublin

new private sector housing market for evidence of speculative behaviour. In doing so, a two-

pronged approach was adopted. Firstly, the price of the housing asset was decomposed into

two components, namely a ’fundamental’ and a ’non-fundamental’ part. The former suggests

that house price determination relates solely to underlying economic factors, whereas the non-

fundamental aspect captures any deviation of house prices away from these conditions. As the

latter may prove useful in forecasting the return from investing in housing in the next period,

the second prong tested for this possibility using the regime-switching approach proposed by

van Norden (1996) and Schaller and van Norden (1997).

The estimated fundamental price includes both demand and supply variables and when

graphed against actual house prices, is found to be close in fit for much of the sample period.

However, actual prices typically exceeded fundamental values around 1990 and from 1997 up
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to the beginning of 2000. This suggests that there may have been an element of speculative

behaviour at play in the Dublin marketplace during these years.

The outcome of the regime-switching tests confirms that this was the case. Interestingly, the

empirical findings indicate the presence of a fad in the marketplace as opposed to a stochastic

bubble. Fads give rise to a situation whereby prices deviate temporarily from, but will

eventually revert to, underlying fundamentals. Thus, to the extent that a fad existed and house

prices exceeded fundamental values towards the end of the sample period, a ’soft landing’

may be anticipated for the future path of the Dublin housing market rather than the collapse

type scenario associated with a bubble.
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Chapter 9:

Conclusion

Applying a range of time series econometric techniques, this thesis has sought to

comprehensively model the Dublin market for new, private sector housing over the period

1980-2000. As discussed in Chapter 1, a clear understanding of the empirical conditions that

underlie the housing market is a necessary prerequisite for solving disequilibria. However, as

borne out by Chapter 3’s review of the literature, little research into the factors that lie behind

developments in the Dublin marketplace has been carried out to date. By modelling the

Dublin housing market within a long run and adjustment type framework, the present study

has attempted to overcome this dearth of research. A summary of the approach taken and the

resultant findings is provided below.

As any empirical analysis must be conducted within the framework of economic theory,

Chapter 2 began by considering the theoretical functioning of the housing market. In doing so,

attention was drawn to the special attributes of housing, and to the manner in which these

features are typically modified so as to enable time series modelling of the housing market.

The key theoretical relationships applicable in a housing context were also set out.

To facilitate the identification of appropriate factors for inclusion in the empirical models of

the Dublin marketplace, Chapter 3 then detailed the findings of selected Irish and

international studies that have adopted a time series, macroeconomic approach to modelling

housing. The limitations of these studies were also considered. Of particular importance in

this respect was the incomplete modelling of the supply-side of the market, and in many
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cases, the failure to examine the time series properties of the data and consequently, the use of

inappropriate modelling techniques.

Overall, there appears to be a broad consensus on the part of the literature as to the

significance in the housing market of price, income, interest rates, building costs, the existing

housing stock, demographics, land and government policies. Moreover, the empirical findings

in this respect also fit well with a priori theoretical expectations as to the determinants of

housing demand, supply and price inflation.

Building on the analysis in Chapter 3, Chapter 4 sought to provide a description of the data

series that

properties.

underlie the empirical sections of the study and to discuss their time series

The findings indicate considerable limitations with respect to the available

information. In particular, it proved necessary to refine much of the data and to generate a

measure of the stock of zoned housing land. Fortunately, these limitations were for the most

part circumvented, leading to the compilation of a comprehensive dataset of Dublin housing

market variables for the period 1980-2000.

Next, to aid understanding, Chapter 5 presented a theoretical overview of the modelling

techniques adopted in the course of the study, namely those of Johansen cointegration,

smooth transition regression modelling and regime-switching tests for stochastic bubbles.

These techniques draw on the time series properties of the Dublin housing market data.

With respect to summarising the study’s empirical findings, the starting point is the outcome

of the long run analysis undertaken in Chapter 6. In line with expectations, the results identify

the presence of two cointegrating vectors. The demand relation, which is normalised on the

housing stock variable, shows that the stock of housing was below its desired level - that is

the level consistent with the prevailing level of house prices, income, mortgage interest rates

and demographics - over the time periods 1986-1989, 1993-1997 and 1999. The supply
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vector is normalised on house prices and suggests that from the end of 1987 to 1989, and from

1994 onwards, the price of housing exceeded its equilibrium relationship with mortgage

interest rates, building costs and land.

With the exception of the land stock series, all of the above variables are signed as anticipated

a priori. Interestingly, the latter enters the supply-side relation with a positive as opposed to a

negatively signed coefficient. As such, the initial expectation that an increase in the stock of

zoned housing land would translate into an expansion in supply, and a subsequent fall in the

price of housing, does not materialise. A possible explanation, and one that would seem to fit

well with on the ground opinion in the Dublin market, is that of hoarding on the part of

landowners. However, it should be remembered that while the land concerned may have been

zoned for housing purposes, it might not be in receipt of services or planning permission,

which would also result in a delay in its coming on stream.

Moreover, an analysis of the adjustment properties of the above relations reveals a failure on

the part of both the stock and price of housing to adjust to steady state deviations and restore

the market to equilibrium. This lack of error correction is of concern as it implies that the

identified demand and supply relationships may not in fact define equilibrium for the Dublin

housing market. Alternatively, it could be the case that adjustment behaviour in this

marketplace is non-linear in nature, as opposed to linear. Hence, prior to accepting a

hypothesis of no cointegration, this latter possibility is tested.

In terms of adding to the literature, Chapter 6 represents the first attempt to include a land

availability variable in a long run model of the housing market. The potentially important role

of land is often referred to in international studies, but due to a lack of data on costs and

availability, is typically not modelled. While recent work on the national market has

incorporated somewhat crude measures of land prices, no effort has been made to consider

land in empirical studies of the Dublin marketplace. Besides, the shortage of zoned and
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serviced housing land in the Dublin area implies that availability, as modelled in this study, is

a more appropriate land measure than price.

Turning next to the adjustment analysis, the linear error correction model estimated in

Chapter 7 pinpoints a range of significant determinants of house price inflation - current and

lagged changes in income and household formation are positively related to prices in the

Dublin market, capital gains taxation and the housing stock are found to exhibit a negative

relationship with the current rate of house price growth while the ’Section 23/27’ relief, the

tax deductibility of interest on borrowings and the property tax dummy variables all enter the

model significantly and bearing the anticipated sign. In contrast, the parameter estimates of

lagged mortgage interest rates are significant but unexpectedly signed. The overall positive

response of current house price changes to an increase in interest rates is largely explainable

by the fact that in times of high uncertainty and inflation, housing acts as a hedge against

future inflation and thus, as the nominal mortgage interest rate rises, the demand for housing

increases exerting upward pressure on prices.

Furthermore, Chapter 7’s explicit modelling of non-linearity provides additional insights into

price behaviour in the Dublin housing market. Firstly, a significant negative relationship

between current and past house price changes is evident in the non-linear part of the smooth

transition regression model. This reflects a tendency for expectations of further price

increases to fall after a certain point, namely once the value of the location parameter has

been exceeded. Secondly, house prices are found not to correct in either of the extreme

regimes of the STR model. As such, it may be concluded that the long run demand and supply

relations identified in Chapter 6 do not define equilibrium for the Dublin housing market.

With respect to its contribution to the existing literature, it should be noted that Chapter 7’s

estimation of error correction models goes considerably beyond the scope of current empirical

work on the Dublin housing market, and in the case of the non-linear model, also beyond that
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at national level. Indeed, the study’s use of the smooth

approach is only the second time in which this technique

transition regression modelling

has been applied in a housing

context. Furthermore, by including a range of variables designed to capture the effectiveness

of government interventionist policies, this chapter allows for a more complete modelling of

house price determination than has been undertaken to date.

Building on the preceding analysis, the findings of the regime-switching test employed in

Chapter 8 suggest the presence of a fad in the Dublin housing market as opposed to a

stochastic bubble. Fads give rise to a situation whereby prices deviate temporarily from, but

will eventually revert to, underlying fundamentals. On this basis, a ’soft landing’ may be

anticipated for the future path of the Dublin housing market rather than the collapse type

scenario associated with a bubble.

The contribution of Chapter 8 to the wider literature centres on the attention paid to modelling

the fundamental component of house prices. Whereas existing empirical research has

modelled underlying fundamentals in the Dublin marketplace on a partial basis, this study

includes both demand and supply-side variables. Most notably, the fundamentals model

presented in this chapter is the first to incorporate a measure of land availability.

Overall, this thesis adds to the current body of literature by facilitating an improved

understanding of the empirical conditions that characterise the Dublin market for new, private

sector housing. A particularly striking result in this respect is the failure on the part of both

the price and stock of housing to eliminate deviations and restore the market to equilibrium. A

possible explanation for this lack of error correction is that adjustment may be taking place in

the de facto area of Dublin, rather than within Dublin per se. From a policy perspective, such

a possibility has important implications and indeed, merits further research.
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In addition to the above, there are a number of other ways in which the work presented here

could be extended. Foremost amongst these would be a more detailed examination of the land

market and the nature of its relationship with the housing market.
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