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Abstract—Herein, we study efficient coverage provisioning in
mobile networks under an inter-operator infrastructure sharing
regime which we call Networks without Borders. For the purpose
of the study, we derive general formulations of the full and partial
coverage provisioning problem. Based on these formulations, we
assess the efficiency of coverage provisioning over shared multi-
operator infrastructure for two datasets: randomly generated
deployment and a real network deployment from Poland. In the
paper we report over 90% cost efficiency between shared and
non-shared networks for dense deployments with both homo-
geneous and heterogeneous power allocations, and a divergence
in the efficiency between real and random deployments for low
deployment density case. We consider this work as a first tractable
attempt to describe large-scale inter-operator infrastructure shar-
ing which may be the key to enabling appropriate coverage in
currently under-served areas, with effects on the digital divide.

Keywords—inter-operator sharing, infrastructure sharing, net-
work sharing, network coverage.

I. INTRODUCTION

In this paper we build the groundwork for resource man-
agement under an extreme wireless network sharing regime,
which we term Networks without Borders (NwoB) [1]. NwoB
defines new resource ownership and management models for
wireless and mobile networks, where various heterogeneous
resources are pooled and commoditized to enable flexible inter-
operator sharing and reconfiguration. We believe that NwoB
follows naturally from recent trends in wireless networks,
including inter-operator infrastructure sharing, the mobile vir-
tual network operator (MVNO) model, increased network
automation, cell miniaturization (i.e. small cells), high WiFi
penetration and high base station density.

Currently, the predominant model for wide-area wireless
access provisioning is that of operators individually owning
and controlling their network access infrastructure. In the case
of cellular networks, mobile network operators (MNOs) hold a
license to the radio spectrum, own the hardware and software
for the radio access network (RAN), own or lease backhaul and
core connectivity, and operate their own network management,
subscriber authorization, and billing services. This model re-
quires high capital investments during the roll-out phase of a
mobile network [2] and, increasingly, the capital (CAPEX) and
operational expenditures (OPEX) turn out to be large enough
to drive the MNOs into inter-operator network sharing [3].
The most widespread form of inter-operator network sharing is
site sharing, where the physical site and its basic installations,
such as mast, cooling equipment and power supply, are shared

between MNOs following a one-for-one exchange strategy [4].
Site sharing reduces fixed site-related OPEX but does not
address the expected surge in demand for wireless services,
which will require capacity enhancements obtained through
new site deployments, or adding on new carriers.

The bad news is that any new and expensive infrastructure
investments may turn out to be unprofitable, as the modern
day growth in user traffic is decoupled from adequate return
on investments (ROI) [5]. One way around this is to meet the
traffic demand through the increased sharing of the existing
RANs or the undertaking of joint greenfield deployments,
such as the joint venture of two Danish MNOs [6], or the
merger between two Polish units of T-Mobile and Orange [7].
However, this approach requires common technical policies
and strong (typically pairwise) cooperation between MNOs,
including also complex network management [4].

Another well established form of inter-operator sharing
is geographical roaming, where operators of geographically
separated networks allow subscribers to access the services of
their networks via access networks of another operator [4],
the situation that typically applies in international roaming.
The geographical roaming model has similarities to a more
sophisticated network ownership and control model, a mobile
virtual network operator (MVNO) model. MVNOs were intro-
duced by many national regulators to increase the competition
in a market stiffened by auctioning of a limited number of
exclusive radio spectrum licenses [8]. In short, a full MVNO
is an operator that does not hold a license to radio spectrum
nor owns radio access infrastructure; yet, it is allowed to offer
wide-area wireless access over another MNO’s infrastructure,
handling such general functions as billing, customer care,
branding and marketing.

In [1] we proposed the concept of Networks without
Borders, which is also an evolution to the Cellular Clouds
concept proposed in [8]. NwoB goes a step further than the
current inter-operator network sharing or MVNO models. It
offers a way to commoditize the existing wireless network
resources through virtualization and pooling, to enable "on
the fly" network reconfigurations that will meet the needs of a
service provider. These resources will include assets in the
current mobile networks, household access points, mobility
services, and frequency spectrum, among others. One of the
fundamental processes underlying NwoB is to dynamically
select a wireless network that meets the requirements of the
end-user or the service, while having the lowest possible
cost for an operator. These requirements may have a variety



of forms, from the basic quality of service aspects such as
coverage or capacity, to more complex ones such as indoor
coverage or low latency, or a combination thereof. Herein, we
focus solely on studying a first tractable formulation of the
process, which we term coverage shaping. In the following
sections, we will formally introduce the coverage shaping
problem as well as analyze the benefits of the coverage shaping
based on a real mobile network deployment.

The remainder of the paper is organized as follows. First,
in Section II we describe the process of coverage shaping. In
Section III we introduce a network model, which we use to
analytically describe the coverage shaping. Finally, in Section
IV we perform a feasibility study based on real and synthetic
mobile network data, and in Section V we conclude the study
and suggest the next steps.

II. COVERAGE SHAPING

Wireless systems provide radio access by means of a set of
wireless access points (in cellular networks these correspond to
base stations), which transmit and receive radio signals to/from
end-user mobile terminals within a specified service area. We
define a service area as a set of geographical points in which
the received signal strength from the wireless access point
in consideration is higher than the reception threshold, and
the received interference is kept below a pre-specified level
[9]. The size of the service area depends on wireless access
point configurations, such as transmit power, carrier frequency
or antenna tilt, as well as on radio channel effects, such as
pathloss, multipath fading and shadowing.

In the context of NwoB, wireless access points and their
corresponding service areas are virtualized to enable "on the
fly" (the time-scale of this process should reflect the daily
changes in radio resource usage) reconfiguration of wireless
networks. These wireless networks can be reconfigured in line
with a range of objective functions. One such objective is to
meet the desired coverage at a minimum base station cost,
which we term coverage shaping. In general, coverage shaping
can be stated as follows: given a set of geographical points
in an area, called a universe, and a set of wireless access
points (with their corresponding configurations), each of which
covering a subset of elements of the universe (service areas),
find a set of wireless access points with a minimum associated
cost such that the union of their service areas will contain
all the elements of the universe. Figure 1a depicts a multi-
operator wireless network prior to coverage shaping, while
Figure 1b shows a minimum cost instance of the same network.
An alternative definition of coverage shaping may be stated as
follows: find a minimum number of wireless access points such
that the union of their service areas will contain a specified
fraction of the elements of the universe to meet a pre-specified
service reliability. We will refer to the former as full coverage
shaping, while to the latter as partial coverage shaping.

At this level of generality the process of coverage shaping
resembles the well-studied process of network planning, and
more specifically coverage planning. Network planning is of
major interest to the MNOs at every new roll-out of a cellular
system, as in the short-term it affects CAPEX, and in the long-
run also network reliability and scalability. Network planning
involves selecting locations to install the base stations, setting

(a) Prior

(b) After

Fig. 1: Coverage shaping on a wireless network

configuration parameters, and assigning carrier frequencies
to meet the coverage and capacity demand of a given geo-
graphical area. Nowadays coverage and capacity demands are
satisfied jointly; however, in the days of second generation
mobile systems the network planning was split into two phases:
coverage planning and capacity planning [10]. The objective
of the former process is to select base station placements
so as to provide sufficient signal quality (under pre-specified
interference levels) over a target area with minimum network
cost [9]. In practice, the coverage planning is a cumbersome
process, which leads to sub-optimal results, as it is required to
reflect large-area propagation conditions.

Nevertheless, there are some major differences between the
process that we call coverage shaping, the central topic of
this paper, and coverage planning (or, more generally, network
planning). First of all, during the coverage shaping process the
location of wireless access points (base stations) is known a
priori, which simplifies the problem, allowing for the usage of
accurate solvers. Secondly, these wireless access points may
be of heterogeneous nature and ownership. Finally, subsets of
these access points, each of which potentially belonging to a
different operator, will have already been optimized (as part of
the network planning process) towards meeting certain target
coverage, capacity and interference levels.

Having the above differences in mind, in the following
section we formulate the full and partial coverage shaping
problems as extensions to a classical combinatorial optimiza-
tion formulation, the set cover problem (SCP) [11].



III. NETWORK MODEL AND PROBLEM FORMULATION

Let us define an extreme radio access network infrastruc-
ture sharing scenario in which a number of wireless access
points, deployed independently by a set of infrastructure
providers M 6= ∅, are added to resource pool S =

⋃
m∈M Sm,

where Sm 6= ∅ is a set of wireless access points deployed and
owned by infrastructure provider m ∈M . Each wireless access
point j ∈ S provides wireless radio coverage corresponding to
configured center frequency f ∈ Fm and transmit power t ∈ T ,
where Fm 6= ∅ is a set of non-interfering center frequencies
used by infrastructure provider m, and T 6= ∅ is a set of
available transmit power classes. Let us also denote cj as the
cost of including wireless access point j in the instantiation of
a wireless network.

Let us define an arbitrary geographical area which the
operator wishes to cover. Acknowledging the advantages of
systematic sampling [9], we split the area into a rectangular
grid, which consists of a set of pixels P 6= ∅, such that each
pixel is of size r×r where r ∈ R+ is the resolution of the grid.
For simplification, we assume that the considered area lies in
2-dimensional Euclidean space, and each pixel is represented
by its centroid.

Full coverage shaping

In a cellular system, a communication link between a base
station and a mobile terminal needs to satisfy some mini-
mum quality of service level (QoS). Starting from analogue
systems, this QoS level was strictly related to the signal-to-
interference ratio (SIR) threshold, which accounted for inter-
cell interference [4]. In 4G systems this threshold relies on
the signal-to-interference and noise ratio (SINR) measured by
a mobile terminal, which is used to optimize system capacity
and coverage for a given transmission power. If the measured
SINR for a particular location is lower than the threshold, no
reliable transmission link to the base station may be established
[12]. Following this, we assume a mobile terminal located in
pixel i ∈ P may establish a communication link with wireless
access point j ∈ S only if the long-term average SINR for the
access point’s received signal satisfies the following condition:

γi = hijtj(ηi +
∑

k∈Sf ,k 6=j

hiktk)
−1 ≥ γ∗ (1)

where tj denotes the downlink transmit power of wireless
access point j, and hij denotes the channel gain between pixel
i and wireless access point j, which consists of fading term
wij and pathloss term lij . ηi denotes the additive noise power
received by a mobile terminal located at pixel i. We assume
this additive noise term to be normalized, i.e. ηi = 1,∀i ∈ P .
Moreover, we denote Sf as the set of wireless access points
using the same frequency f ∈ Fm.

The QoS constraint (1) is a non-linear constraint, and,
hence, might be difficult to handle. However, assuming that
the pooled resources come strictly from the existing cellular
networks we can note two key facts: 1) networks of different
MNOs use exclusively licensed and, hence, non-interfering
frequencies, 2) each of the operators has already optimized its
network, and if the current frequency and power configurations
are not altered the interference thresholds shall not be violated.

Based on these assumptions we can re-state constraint (1) as
the receiver sensitivity constraint:

ri = hijtj ≥ r∗ (2)

Receiver sensitivity level r∗ and transmit power tj are pre-
defined network parameters, while channel state information
hij can be inferred from the existing network measurements.
By pre-computing the available values, and using indicator
function 1(ri/r∗ ≥ 1) we obtain the binary incidence matrix
A, where a single entry aij specifies whether or not wireless
access point j covers pixel i. Having obtained the incidence
matrix A we can formulate the full coverage shaping problem
as follows:

min
{xj}

∑
j∈S

cjxj (3)

st: ∑
j∈S

aijxj ≥ 1 ∀i ∈ P (4)

xj ∈ {0, 1} ∀j ∈ S (5)

which is the classical SCP formulation [11], where constraint
(4) ensures that every point of a geographical area belongs to
at least one service area, while constraint (5) ensures that the
minimum cost choice is a binary decision for every distinct
wireless access point.

Partial coverage shaping

Full coverage provisioning may be perceived as a special
case of the partial coverage provisioning problem. In the partial
coverage provisioning problem, constraint (4) is relaxed to
allow fractional coverage service requirements. This can be
achieved by replacing the right-hand side vector of ones in (4)
with binary random vector ξ, where component ξi denotes a
service request stemming from point i at a given point in time:

ξi =

{
1, 1 or more service requests originate from point i

0, otherwise
(6)

In partial coverage provisioning, the goal is to meet the new
coverage constraint with probability at least α ∈ (0, 1], which
represents some pre-specified service reliability level. Hence,
(3)-(5) can be re-formulated as follows:

min
{xj}

∑
j∈S

cjxj (7)

st:

Pr{
∑
j∈S

aijxj ≥ ξi} ≥ α ∀i ∈ P (8)

xj ∈ {0, 1} ∀j ∈ S (9)

where Pr{·} denotes probability, and (8) is a joint probabilistic
constraint, as used in [13]. The resulting formulation is a
stochastic SCP, which in general might be hard to solve.
However, following the remark from [13], if we assume
independence of the components of ξ, then the deterministic
equivalent integer program can be found as follows. Note that
(8) is equivalent to the existence of a vector z ∈ {0, 1}|P | such
that Ax ≥ z and:

Pr{z ≥ ξ} ≥ α (10)



where Pr{·} is a joint probability of |P | independent events.
Taking the logarithm of both sides of (10) we arrive at the
following inequality:∑

i∈P
ln(Pr{zi ≥ ξi}) ≥ ln(α) (11)

Observing that Pr{1 ≥ ξi} = 1 and Pr{0 ≥ ξi} =
Pr{ξi = 0}, and assuming that Pr{ξi = 0} (probability that
no service request will originate from pixel i) is known, we
arrive at the following combinatorial reformulation of (7)-(9):

min
{xj ,zi}

∑
j∈S

cjxj (12)

st: ∑
j∈S

aijxj ≥ zi ∀i ∈ P (13)∑
i∈P

(1− zi) ln(Pr{ξi = 0}) ≥ ln(α) (14)

xj ∈ {0, 1} ∀j ∈ S (15)
zi ∈ {0, 1} ∀i ∈ P (16)

Similarly to (3)-(5), the resulting formulation is a combina-
torial optimization problem for which we can apply the same
set of solvers.

IV. NUMERICAL RESULTS

In this section we present exact coverage shaping results
obtained with the CPLEX ILOG tool for two datasets consist-
ing of real and random network deployments.

Optimization tools

There are several exact and heuristic approaches to solving
set covering problems [11]. Since both of our problems fall
under the category of mixed integer programming (MIP)
models, we decided to rely on commercial software (IBM
ILOG CPLEX 12.5 solver) that offers customizable solvers for
general MIP problems and is available for use under academic
licensing. In order to find an exact solution to a MIP, the
CPLEX solver applies an optimized version of a branch-and-
cut algorithm. This approach works well for both full and
partial coverage problems, and exact solutions to reasonably
large problem instances (approximately 1000 variables and
3000 linear constraints) can be found in acceptable time-scales
(in the range of an hour). We run the solver on a computer
with 8 Gbytes of RAM, and an Intel Core i7-3740QM 2.70
GHz CPU with 64-bit instruction set, 8 logical cores and a
cache of 6 Mbytes. The version of Linux used was 3.5.0-
31-generic x86_64 GNU/Linux. The solver was set to run
deterministically the maximum number of available threads
with the relative MIP gap tolerance of 3% for the full coverage
problem and 5% for the partial coverage problem, and the
absolute upper limit on the size of the branch-and-cut tree of
100 * 1024 Mbytes. The other parameters were used according
to their default algorithmic settings. In the full coverage case,
before a problem instance is fed to the solver we preprocess
it by removing redundancies and dominations inside incidence
matrix A [11].

Results

To evaluate the efficiency of the inter-operator infrastruc-
ture sharing we test the proposed coverage shaping models
against real network deployment data from Poland, as well
as against a randomly generated dataset. The real data we
have contains base station (BS) deployment information from
the four major MNOs operating in the Polish mobile market,
namely Orange, Play, Plus and T-Mobile. For each of the
MNOs we have extracted snapshots of BS geo-location data
(from GSM/UMTS radio licenses listed online at [14]) for
four different cities that differ in deployment density (the
average number of BSs deployed per unit area) and in the
mix of commercial and residential areas: Warszawa, Wrocław,
Olsztyn, and Świdnica. Each snapshot is a 10.9x4.2 km grid
(which corresponds to zoom 14 in Google Maps) with a
resolution of 100 meters, centered at the city center, that
contains BS placements for three radio technologies: GSM900,
GSM1800 and UMTS2100.

In addition, we also present results for a random deploy-
ment of base stations, following a Poisson point process (for
this random geographical distribution model, we used the
same intensity of BSs per technology and operator as we
observed from the real deployment data). The real and random
deployment for Wrocław are depicted in Figures 2 and 3,
respectively; qualitatively, the deployment density in the two
cases exhibits different properties, i.e. real deployment tends
to have a much larger peak density centered around the central
area, while (not surprisingly!) random deployment is more
uniform.

For both datasets, we model the propagation according to
the modified Hata model [15], with BS height of 10 meters,
and mobile terminal height of 1.5 meter. In our tests, we
assume two types of BS transmit power allocation schemes:
a) homogeneous, where BSs are assigned omnidirectional
macrocell coverage with an equivalent isotropic radiated power
(EIRP) of 45 dBm, b) heterogeneous, where BSs are assigned
omnidirectional macro- or microcell coverage (decided based
on the inter-BS distance) with EIRP of 45 and 38 dBm
respectively. To ensure fair comparison for the homogeneous
case we assume that all BSs have a fixed unitary cost of usage,
while in the heterogeneous case we assume the cost is directly
proportional to transmit power.

To quantify the gains of coverage shaping, we look at
coverage shaping efficiency, which we define as unity minus
the cost of the shaped network divided by the cost of the
baseline network. For the formulation in question, the cost
of the baseline network is simply the cost of all network
elements belonging to the MNOs, while the cost of the shaped
network represents the total cost of the minimum cost subset
of the network elements that provides the desired coverage.
The following analysis is intended to describe limitations and
provide arguments for the feasibility of base station selections
made under the scope of inter-operator infrastructure sharing
and, more generally, NwoB.

Figures 4 and 5 show the full coverage shaping efficiency
for the two power allocation schemes and the two datasets. We
immediately observe that the highest efficiency improvements
can be achieved for the areas with higher deployment density.
In the densest real case (Warszawa) the gains of coverage
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Fig. 2: Network deployment for Wrocław with Voronoi
tessellation (dots denote single base stations while squares
colocated base stations).
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Fig. 3: Random network deployment with Voronoi tessellation
(using the same intensity of base stations as in Figure 2).

shaping were as high as 98%. This means that a single
operator, in order to provide full macrocell coverage, requires
only 2% of all the existing base stations in the area (i.e. 16
out of 934). This gain is also very high in comparison to
the cost of a single-operator network for both homogeneous
and heterogeneous power allocations, which shows how much
redundancy is introduced to the network in order to secure
the capacity and possibly ensure indoor macro-, microcell
coverage. For the lowest density case (Świdnica), the benefits
of sharing arise as a result of the collective resource usage,
which may justify potential benefits of infrastructure sharing
in less urbanized areas. In this case a single operator may not
need to roll-out all the base stations required to fully cover the
considered area; instead, infrastructure sharing among several
operators may make it economically feasible to provide service
to such typically under-served areas.

Analyzing the differences in results between homogeneous
and heterogeneous power allocations, we can observe that the
efficiency is reduced with the power allocated to the system.
This reduction is inversely proportional to the deployment den-
sity. In addition, if we compare the results for real and random
deployments, we can note that for low deployment densities
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Fig. 4: Full coverage shaping efficiency for the real and
random deployment with homogeneous power allocation.
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Fig. 5: Full coverage shaping efficiency for the real and
random deployment with heterogeneous power allocation.

(below approximately 5 bs/km2) the gains for random and real
deployments diverge. This may be due to the fact that real
multi-operator deployments were planned to provide coverage
for the given area following more or less the same coverage
pattern for every operator (hence, resulting in redundancies),
while the random deployments are more spread, resulting in
lower redundancy.

Figures 6 and 7 show the partial coverage shaping effi-
ciency. Our first observation is that relaxing the full coverage
assumption brings only moderate improvements to the effi-
ciency and, hence, the total cost of the system. This happens
due to the fact that the full covering provides very few overlaps
(especially for areas of high deployment density). Effectively
every base station covers large sets of pixels independently,
which highly increases the probability that at least one pixel
will require service. Hence, no "coverage dead-zones" can be
enforced even if we relax the service reliability level. One
way to enforce moderately higher savings is to increase the
pixel resolution maintaining the same probability of a service
request or by pre-specifying the "dead-zones".
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Fig. 6: Shaping efficiency of partial covering for the real
and random deployment with homogeneous power allocation,
with varying service reliability α and probability of no service
request Pr{ξi = 0}.
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Fig. 7: Shaping efficiency of partial covering for the real
and random deployment with heterogeneous power allocation,
with varying service reliability α and probability of no service
request Pr{ξi = 0}.

V. CONCLUSION

Operators are sharing infrastructure, more and more. We
envision that the trend will continue, towards NwoB, which
will necessitate more sophisticated understanding of how to
combine wireless network resources to instantiate virtual net-
works. In our work we aimed to formulate coverage shaping
process, which is one of the fundamental process to underlie
NwoB, and quantify the efficiencies that result, under different
coverage models, in small and large cities, based on real and
synthetic data. Using the real data we showed that considering
the multi-operator network infrastructure as a collective may
lead to building up coverage provisioning networks which
require just a fraction of all the available base stations, even
over single-operator networks. In addition, we observed that
for low deployment densities the efficiency gains for random
and real deployments diverge, which may suggest that Poisson
point process might not be an accurate representation for a
wireless network deployment in some cases.

Although the primary goal of our study is to illustrate the
efficiency gains in inter-operator sharing, we note that this
work also has application to improving the energy efficiency
of cellular networks. In the latter case, the idea is to turn off a
subset of infrastructure assets during times of low demand (say,
in the middle of the night), so as to preserve basic coverage
but with limited capacity. In the follow up we plan to extend
our problem formulations to include power and frequency re-
allocations, and capacity provisioning, along with the energy
efficiency aspect of coverage shaping.

ACKNOWLEDGMENT

This material is based in part upon work supported by the
Science Foundation Ireland under grants no. 10/CE/I1853 and
10/IN.1/3007.

REFERENCES

[1] L. A. DaSilva, J. Kibiłda, P. Di Francesco, T. K. Forde, and L. E.
Doyle, “Customized Services over Virtual Wireless Networks: The Path
towards Networks without Borders,” in Future Network and Mobile
Summit (FNMS), July 2013.

[2] (2009, September) LTE Migration Could Cost Mobile Operators
Up to $1.78 Billion in CAPEX. [Online]. Available: http://www.
cellular-news.com/story/39849.php

[3] T. Frisanco, P. Tafertshofer, P. Lurin, and R. Ang, “Infrastructure
Sharing and Shared Operations for Mobile Network Operators: From a
Deployment and Operations View,” in IEEE International Conference
on Communications (ICC), May 2008, pp. 2193–2200.

[4] M. Nawrocki, H. Aghvami, and M. Dohler, Understanding UMTS Radio
Network Modelling, Planning and Automated Optimisation: Theory and
Practice. John Wiley & Sons, 2006.

[5] P.-A. Sur, G. Taylor, and T. Robbins-Jones. (2012,
April) We need to talk about Capex: Benchmarking best
practice in telecom capital allocation. PricewaterhouseCoopers.
[Online]. Available: http://www.pwc.com/en_GX/gx/communications/
publications/assets/pwc_capex_final_21may12.pdf

[6] (2012, February) Denmark: Network Sharing Agreement in Danish
Mobile Telecommunications Sector. [Online]. Available: http://ec.
europa.eu/competition/ecn/brief/02_2012/dk_mobile.pdf

[7] C. Gabriel. (2011, July) Orange and TMo merge networks in Poland.
Rethink Wireless. [Online]. Available: http://www.rethink-wireless.
com/2011/07/22/orange-tmo-merge-networks-poland.htm

[8] T. K. Forde, I. Macaluso, and L. E. Doyle, “Exclusive sharing &
virtualization of the cellular network,” in Proc. IEEE Symp. New
Frontiers in Dynamic Spectrum Access Networks (DySPAN), May 2011,
pp. 337–348.

[9] A. Ligeti and J. Zander, “Minimal Cost Coverage Planning for Single
Frequency Networks,” IEEE Transactions on Broadcasting, vol. 45,
no. 1, pp. 78–87, 1999.

[10] E. Amaldi, A. Capone, F. Malucelli, and C. Mannino, “Optimization
problems and models for planning cellular networks,” Handbook of
Optimization in Telecommunication, pp. 879–901, 2006.

[11] A. Caprara and P. Toth, “Algorithms for the Set Covering Problem,”
Annals of Operations Research, vol. 98, pp. 353–371, 2000.

[12] S. Sesia, I. Toufik, and M. Baker, LTE - The UMTS Long Term
Evolution: From Theory to Practice, 2nd ed. John Wiley & Sons,
Sep. 2011.
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