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Abstract—We envision small cells mounted on unmanned
aerial vehicles, to complement existing macrocell infrastructure.
We demonstrate through numerical analysis that clustering algo-
rithms can be used to position the airborne access points and
select users to offload from the macrocells. We compare the
performance of these deployments against equivalent simulated
picocell deployments. We demonstrate that due to their ability to
position themselves around exact user locations while maintaining
a direct line-of-sight link the airborne access points provide a
significantly improved received signal strength than the static
picocell alternatives. We also find that the airborne access points
provide superior service quality even in the presence of user and
access point positioning errors.

Keywords—UAVs, picocells, two-tier networks, small cell place-
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I. INTRODUCTION

The continuing growth of data demand and the resulting in-
crease in wireless traffic rates in modern cellular networks calls
for new technologies and designs for commercial telecom-
munication services. Among other innovations it is predicted
that the 5th generation cellular standard will rely much more
heavily on a dense network of low-power, short-range access
points to deliver adequate data rates to the consumer [1]. This
cell densification will ultimately result in higher data rates due
to higher spectrum efficiency.

Picocell access points are typically deployed as part of a two-
tier heterogeneous network and positioned in hotspots of user
activity inside the coverage areas of existing macrocells [2].
The deployment process requires both time and manpower on
the part of the mobile network operator as deploying picocells
in a hotspot area typically involves trained personnel mounting
and configuring the access points one by one.

As an alternative to fixed picocells we envision small cells
mounted on unmanned aerial vehicles (UAVs), such as
commercially available quadcopters, to complement existing
macrocell infrastructure. Once a decision is made by a mobile
network operator to deploy these small cells in an area of high
user equipment (UE) traffic a group of UAVs is instructed to
occupy positions above high concentrations of UEs and service
the UEs below. We foresee three benefits of these UAV small
cells over the fixed picocell alternative:

1) Performance Improvement. Because the UAVs are rapidly
deployed and fully mobile they may be positioned around
actual UE locations in real-time, unlike fixed picocells
which are deployed around expected concentrations of

UEs. Additionally, because of their aerial vantage point
the UAVs are more likely to establish line-of-sight (LOS)
on the UEs than picocells. As we show in this paper, these
factors ensure that UAVs can provide a higher service
quality to UEs when compared to otherwise identical
fixed picocells.

2) Reduction of Service Overheads. The streamlined deploy-
ment process suggests that the UAVs are suitable for
deployment in flash demand scenarios where temporary
UE hotspots form. In contrast, a fixed picocell deployed
to service a temporary hotspot would remain under-
utilised once the hotspot moved to a different location
or disappeared. A mobile UAV, on the other hand, can
be reassigned to another hotspot, thus servicing multiple
hotspots at different times rather than remaining under-
utilised.

3) Reduction of Cost. Unlike fixed picocells the UAVs do
not require manpower to be mounted: these devices will
instead hover over an area specified by a control unit.
As this control can be largely automated we predict a
reduction in cost for deployment compared to the fixed
alternative.

In this paper we consider a two-tier network with macrocells
that provide coverage and UAVs that provide additional ca-
pacity for spatially distributed demand hotspots. For such a
network we propose an algorithm based on cluster analysis
which calculates suitable UAV locations given a snapshot of
UE coordinates. Using simulations we demonstrate that a two-
tier network with UAVs positioned according to our proposed
solution outperforms a two-tier network with both planned
and random picocell deployments in terms of service quality
for UEs. In addition, we show that our positioning method is
robust to location measurement errors.

II. RELATED WORK

Our work draws on advances in the areas of optimal
network deployment for small cell access points, as well
as UAVs as a way to augment existing telecommunications
infrastructure. Smart deployment of small cells has been a
topic of extensive research; examples of such work include
[3], where the authors use mixed integer linear programing to
selectively place small access points within a heterogeneous
network. The solution seeks the minimisation of a cost function
representing data delivery cost.

Airborne access points in cellular networks have been proposed
in literature since 2G networks. The authors of [4] envision



a high-altitude platform which can provide service to users
over an area spanning several square kilometers from low earth
orbit. Improvements in UAV technology have made it possible
to apply a similar concept on a smaller scale. The adoption
of UAV-mounted access points has been widely examined
for use in wireless sensor networks [5], [6], [7], with the
telecom community beginning to consider similar technology
in commercial cellular networks [8], [9], [10], [11]. In [9]
the authors demonstrate in real-life trials that an access point
mounted on a UAV is capable of acting as a relay for UEs in an
urban environment. In [8], [11] the authors consider UAVs as
backups in macrocell networks in the event of BS outage, with
the UAVs being used to plug coverage holes that arise from a
BS going offline. In [10] the authors analyse the impact of UAV
mobility on UE in-service time in heterogeneous networks.

To date, the wireless community considers UAV access points
primarily as backup devices in emergency scenarios where
fixed infrastructure experiences outage and must be compen-
sated for. The mobility and rapid deployment capabilities of
UAVs make these devices good candidates for emergency
applications; however, these features are also appealing for
use in everyday commercial cellular networks. Our contribu-
tion in this paper is to demonstrate how mobility and rapid
deployment make UAV access points an attractive option for
two-tier heterogeneous networks, not merely because they
can be deployed in a shorter timeframe than fixed picocells,
but because their mobility permits them to configure them-
selves around rapidly-changing features of user demand. We
demonstrate, using simulations, performance gains in a two-
tier network including UAVs, when compared to equivalent
picocell deployments which rely on a priori predictions of
UE concentrations.

III. UAV POSITIONING SOLUTION

System Model Let N be the number of UEs to be
offloaded from the macrocell base stations, D be the num-
ber of available UAVs and B the number of macrocells.
Let W be a bounded window that is a subset of the two-
dimensional Euclidean plane R2. The coordinates of the UEs
and macrocell base stations inside the window W are defined
as U = {u1, u2, ..., uN} ⊂ W and B = {b1, b2, ..., bB} ⊂ W ,
respectively.

In this paper we study the network performance improvement
related to network densification through UAV deployments.
Therefore our goal is to intelligently deploy UAVs in such
a way that they maximise the overall service quality for the
UEs. We assume that the main factor which affects the service
quality offered by a UAV is pathloss, as the UAVs operate in
the LOS. For this reason, to maximise the service quality that a
UAV can deliver to UEs it is necessary to assign UEs to UAVs
and position those UAVs in such a way as to minimise UAV-
UE distance. We also introduce a capacity constraint M which
represents the number of UEs that a single UAV can service
simultaneously; any additional UEs will remain connected to
the macrocell. Because of their unobstructed vantage position
in the air, the UAVs are assumed to not be constrained by
coverage area but only by their capacity M .

The UAVs are assumed to maintain a height that ensures cover-
age to the assigned UEs; therefore when placing the UAVs we

consider only the 2D plane where the UEs are. The challenge
of positioning the UAVs is to select the coordinates which
allow them to service the most UEs, with the best possible
service quality. This problem is made more complicated when
the number of available UAVs D is insufficient to offload all of
the UEs in the scenario, i.e. DM < N . We focus our attention
on this case.

Proposed Solution The selection of D UAV coordinates which
maximise the number of offloaded UEs is an optimisation
problem which is non-smooth, non-convex and NP-hard. Fortu-
nately a variety of heuristic algorithms exist in literature which
are capable of finding an approximate solution. Our proposed
solution is to use a K-Means clustering algorithm [12] to par-
tition the window W and the enclosed UEs U into K subsets
which represent candidate coverage areas for the UAVs. If a
UAV is assigned to service a subset it will position itself in
the subset centroid and offload up to M UEs inside of that
subset from the macrocells. The value of K is selected to be
equal to �N/M�. This takes advantage of the fact that the K-
Means algorithm generates subsets with expected N/K UEs
each: if K = �N/M� then each subset has an expected number
of UEs close to M which should take full advantage of the
UAV capacity. Because there will be more subsets than UAVs
an additional step is required which selects which of the K
subsets will be serviced by D UAVs, with the rest remaining
serviced by the macrocells.

The solution to the UAV positioning problem therefore consists
of two parts which are formulated as follows:

1) Partition the UEs U into K subsets such that the sum of
distances between UEs and subset centroids is minimised.

2) Select the K subsets to be offloaded from the macrocell
onto the D UAVs.

UE Partitioning We wish to assign all UEs in U to K subsets.
Given a set of points X = {x1, x2, ..., xK} ⊂ W a Voronoi
region is defined as:

ri = {w ∈ W : ||w, xi|| < ||w, xj || ∀j �= i}, (1)

where ||.|| denotes Euclidean distance. We define the UE subset
si ⊂ U as the set of UEs which are located inside of the
associated Voronoi cell

si = U ∩ ri, (2)

and the centroid of si is defined as the mean of the coordinates
of the UEs belonging to the subset

µi =

�
u∈si

u

|si|
. (3)

We wish to select the points X which generate Voronoi cells
and UE subsets such that

min
K�

i=1

�

u∈si

||u, µi||. (4)

In other words, we wish to partition U into K UE subsets
such that the sum of Euclidean distances between each UE in



the subset and the subset centroid is minimised. The Hartigan-
Wong K-Means clustering algorithm [13] is selected to carry
out this optimisation through a heuristic iterative process.
Taking K initial points X the algorithm assigns all of the UEs
to the nearest point and generates subsets, then it calculates
the centroids for each generated subset. In the second step the
algorithm considers for every UE the change to the sum of
Euclidean distances that would be observed if the UE was
moved from its current subset to the subset with the next
closest centroid. Whenever moving a UE from one subset
to another decreases the total sum of Euclidean distances
the subset assignments are updated and the centroids are re-
calculated. Once all of the UEs have been checked the points
X are set to the values of the centroids and another iteration
is carried out. This process repeats itself until none of the
subsets is updated over several iterations. The result found by
K-Means clustering is a local optimum and its proximity to
the unknown global optimum depends heavily on the initial
points X used in the first iteration. We use the K-Means++
pre-processing algorithm to select the initial points X which
are spaced as far away from one another in the window W as
possible: this selection step is shown to decrease convergence
time and increase accuracy when compared to selecting intial
points at random [14].

UAV Subset Selection Having obtained K subsets of the
N UEs we wish to determine which of the subsets should
be offloaded from the macrocell infrastructure onto an UAV.
Intuitively, the UAVs should prioritise servicing subsets with
more UEs as well as those subsets that are further away from
their servicing macrocell. Therefore we determine two values
for each subset j: the cardinality of subset j and the distance of
j’s centroid to the nearest macrocell. We use the two values
to create two ordered sets of the UE subsets. Subsequently,
we denote nj as the position of subset j in the set ordered
according to the cardinality of j and dj as the position of subset
j in the set ordered according to the distance of j’s centroid
from the macrocell. Now, by vj we denote the weighted sum
of the two scores αnj + (1 − α)dj , where 0 ≤ α ≤ 1 is the
weighing factor. The subset selection can be formulated as an
optimisation problem:

max

K�

j=1

vjaj , (5)

where

aj =

�
1, if subset j serviced by UAV

0, if serviced by macrocell
(6)

subject to:
K�

j=1

aj = D. (7)

Given our system model, we can apply a greedy algorithm
to find the combination of D subsets that will satisfy (5),
therefore improving the overall service quality. Once a decision
has been made on which subsets are to be serviced by UAVs
the centroids of those subsets are made the UAV coordinates.

While the expected number of UEs per subset is M there will
be variations in the number of UEs from subset to subset.
Certain subsets will have more than M UEs; if they are
selected to be served by a UAV then the M UEs closest to the
UAV will be serviced by the UAV while the remaining UEs
will stay connected to the macrocells.

IV. NUMERICAL EVALUATION

A. Simulation Model and Parameters

We compare the performance of the UAV deployments using
our two-stage solution discussed above to the performance of
fixed picocell deployments. For this, we conduct a numerical
evaluation in the statistical environment R. N UEs are simu-
lated inside window W; the UAVs and picocell deployments
are then simulated for the given UE coordinates and the
resulting network performance, in terms of average signal
strength experienced by a UE, is calculated. This simulation
is repeated over 10,000 Monte Carlo trials.

UE Locations The UE locations are selected following the
proposed 3GPP model in [15]. H hotspot coordinates are
randomly and uniformly placed inside W . These coordinates
correspond to demand hotspot centres around which UEs will
be generated. A random Poisson-distributed number of UEs
with mean Nh are generated within a radius Rh of each
hotspot. The remaining N − HNh UEs are randomly and
uniformly distributed inside W independently of the hotspots.
This simulation results in N randomly distributed UEs inside
of window W , a fraction of which are concentrated around
randomly placed hotspots. The UE locations are assumed to
be known to the central controller, which determines UAV
locations, through UE localisation techniques such as observed
time difference of arrival (OTDoA) [18], self-reported GPS
coordinates or proposed cooperative localisation algorithms
where UEs assist each other in determining location [19].

Picocell Deployment We simulate fixed picocell deployments
as a baseline for comparing the service quality improvements
that are introduced by mobile UAV deployments. We consider
two strategies for deploying picocells: planned and random.
The planned strategy follows the UE simulation model in [15]
where H picocells are placed at hotspot centre coordinates,
one picocell per hotspot. This represents the case where UE
concentrations are known to the operators during picocell
deployment and so the picocells are placed at the observed
points of higher traffic demand. In the random strategy H
picocells are randomly and uniformly distributed within the
window W . This represents the case where operators do not
take UE predicted locations into consideration during picocell
deployment. Once the picocells are deployed following either
strategy the UEs are partitioned into H subsets following (1)
using the picocell coordinates as points X . Fig. 1 shows a
single simulation of the UE and picocell deployment.

Model Parameters We make the assumption that because the
UAVs have an aerial vantage position they are able to maintain
a constant LOS on the UEs in their subset. For the macro-
cell channel we assume NLOS due to the greater distance
between the typical UE and its servicing macrocell. In the
case of fixed picocells we assume that either channel condition
may exist. The pathloss models which capture the LOS and
NLOS channel behaviours are based on field measurements



Fig. 1: Simulated window with 3 hotspots and 3 picocells.
Overlaid park map denotes a typical outdoor urban environ-
ment.

recommended by the 3GPP in [15]. These models represent
urban environments with macrocell antennas mounted above
rooftops, and they account for free space path loss in addition
to multiple types of diffraction caused by buildings of varying
height and density under NLOS conditions [16]. The model
parameters are given in Table I.

B. Simulation Results

Received Signal Strength The kmeanspp function belonging
to the LICORS package of R is used to perform the K-Means
clustering of the dataset and generate UE subsets with their
centroids [17]. A visual representation of the subsets generated
by partitioning the UEs according to the procedure described
in Section III is shown in Fig. 2. Our metric of choice for

TABLE I: Model parameters, where r denotes distance in km

Window Size 300x300m
Number of UEs N 150
Number of Macrocells B 3
Number of UAVs D 1-10
UAV capacity M 10
Macrocell Deployment Hexagonal
Macrocell Inter-site Distance 500m
Number of UE Hotspots H 1-10
Hotspot Radius Rh 40m
Average UEs per Hotspot 10
Subset Value Weighing Factor α 0.5
Macrocell Transmit Power 43dBm
UAV & Picocell Transmit Power 23dBm
Macrocell Frequency Band 1800MHz
Macrocell Pathloss (NLOS) 131.1 + 42.8log10(r) dB
UAV & Picocell Pathloss (LOS) 103.8 + 20.9log10(r) dB
Picocell Pathloss (NLOS) 145.4 + 37.5log10(r) dB
Lognormal Shadowing σ 3dB

Fig. 2: Voronoi regions with UE centroids denoting possible
UAV coordinates.

the network service quality is the downlink received signal
strength as experienced by UEs. We calculate the average
received signal strength in the downlink for the UAV, planned
and random picocell deployment scenarios under both LOS
and NLOS channel conditions. The results are shown in Fig
3.

The picocell LOS and NLOS results can be thought of as upper
and lower bounds on the channel performance of the picocell-
UE link. In real life we expect the UEs to experience a mix
of LOS and NLOS signalling, resulting in the received signal
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strength to lie somewhere in between these two extremes.

It is apparent that the UAVs are able to outperform the picocells
in providing a higher-quality downlink signal to serviced
UEs. Even the planned picocell deployment under pure LOS
conditions, representing the absolute best-case scenario for
the picocells, is improved upon by approximately 3dB, with
an additional 3dB improvement over the random picocell
deployments. Employing UAVs results in an improvement of
as much as 25dB over cases where the picocell maintains
an NLOS channel. This superior performance is attributed to
the efficient positioning algorithm of the UAVs, which allows
them to orient around actual UE locations rather than expected
concentrations. Because of this the UAVs can ensure a shorter
range to their serviced UEs than the picocells.

As UAVs and picocells provide a superior received signal
strength when compared to macrocells we expect the overall
average received signal strength of all UEs in the window to
increase as we increase the number of UAVs and picocells,
and therefore the proportion of UEs that are offloaded from the
macrocells. Fig. 4 shows the overall average received signal
strength for the different deployment models.

The results agree with those shown in Fig. 3: the average
received signal strength values are higher for the UAV deploy-
ments than for the picocell deployments. This occurs not just
because of shorter ranges between UAVs and their UEs but also
because the UAV deployment is able to offload more UEs from
the macrocell network. Recall that a picocell will offload up
to M UEs inside its assigned UE subset, with the remaining
UEs staying connected to the macrocell network. Inefficient
picocell placement will result in certain subsets having more
than M UEs and others fewer than M ; as a result certain
picocells will be overloaded while others will not be used to
their full capacity. The effect of this is a smaller number of
UEs offloaded from the macrocell network than if every subset
utilised its picocell to full capacity without overloading it. Fig.
5 shows the average percentage of UEs in the window W that
are served by a UAV/picocell for a given number of deployed
UAVs/picocells.
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It is apparent that the K-Means clustering algorithm in com-
bination with optimal subset selection allows the UAVs to
offload more UEs from the macrocell network than the picocell
deployments. The UAVs offload almost the maximum possible
number of UEs given the capacity constraint across the tested
numbers of UAVs D. Because the UAVs are mobile and can
arrange themselves around UE locations in real-time they can
shape their coverage areas to ensure that each UAV covers
the exact number of UEs needed to take full advantage of its
capacity without overloading it, leading to more efficient use
of resources, including better offload performance.

Positioning Errors Up to now we have assumed perfect
knowledge of UE positioning and precise placement of UAVs.
Let us now consider a case where the UE locations are reported
with an error of several meters and a similar error occurs in
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placing the UAVs. The authors of [18] report that 67% of
OTDoA localisation errors are below 5 m and 95% are below
10 m; this can be closely approximated via a zero-mean normal
distribution with standard deviation σ of 5 m. The authors of
[19] cite 95% of cooperative localisation errors below 20 m
which we approximate with a normal distribution with σ =
10 m. For every simulation of the window each UE location is
displaced in a random direction by a random error vector of
a given mean length. These perceived UE locations are then
partitioned using the K-Means algorithm and UAV subsets are
selected. The UAVs are also shifted with respect to the subset
centroids in a random direction by a random error vector of the
same mean and standard deviation; this represents imperfect
navigation of the UAVs in their environment. Fig. 6 shows the
received signal strength for UEs serviced by the UAVs given
an error standard deviation σ setting of 5, 10 and 20 m.

The results show that there is approximately a 2dB signal
strength difference between the best and worst-case error
scenarios. Under all tested error scenarios the UAVs perform
better than the best-case picocell deployment. Even with this
large error the UAVs still retain their aerial vantage and so
benefit from LOS channels.

V. CONCLUSION

In this paper we have explored the concept of UAV-
mounted picocells servicing UEs in a two-tier heterogeneous
network. We have demonstrated how cluster analysis algo-
rithms may be applied to UE positioning data to deploy a set of
UAV picocells in a manner that maximises the service quality
of the serviced UEs. Through simulations we have shown
that as the UAVs are able to position themselves in real-time
around actual UE locations rather than expected UE hotspots
they outperform equivalent picocell deployments, even under
ideal deployment conditions such as perfect LOS and full a
priori knowledge of hotspot centres. Even greater performance
gains arise from the fact that the UAVs are able to maintain
LOS to their serviced UEs with far greater reliability than
terrestrial picocells when used in an outdoor scenario. These
two performance benefits suggest that UAV platforms may
complement fixed picocells in providing users with cellular
service.

In future work we will expand the system model to consider
spectrum allocation and UE traffic demand with UEs being
served from a limited pool of resource blocks. This will enable
us to consider the benefits that UAV mobility may bring to
deliverable data rates and area spectral efficiency of two-
tier networks. We will consider UAV backhaul as another
resource requiring optimisation. Additionally, we may consider
a scenario where UAVs are deployed to provide a specific type
of service and so are positioned to prioritise certain UEs over
others, subject to traffic type or service plan.
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