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     INTRODUCTION 

 The apicomplexan protozoan parasite  Cryptosporidium  is 
the causative agent of the diarrheal disease cryptosporidio-
sis and infection can lead to severe dehydration and death in 
immunocompromised patients. 1  Children are a high risk group 
for infection, those less than five years of age are most sus-
ceptible, 2  and cryptosporidiosis may have long-term negative 
effects on their growth and cognitive development. 3,  4  Studies 
indicate that prevalence varies geographically, with increased 
prevalence in developing countries, and temporally, with 
higher rates reported during the rainy season in many tropi-
cal countries. 4–  7  

 A range of  Cryptosporidium  species, genotypes, and sub-
types infect humans, and each may have different sources of 
infection, transmission routes, and pathogenicity. 8–  10  Thus, iden-
tifying the species present in a population is crucial for iden-
tifying risk factors for transmission and implementing control 
programs to limit exposure to infectious oocysts. 

 Currently, there are 20 described species of  Cryptosporidium  
of which 8 species ( C. hominis ,  C. parvum ,  C. meleagridis ,  C. felis , 
 C. canis ,  C. suis ,  C. muris , and  C. andersoni ) and 6 unnamed 
species ( Cryptosporidium  cervine, monkey, skunk, rabbit, 
horse, and chipmunk genotypes) infect immunocompetent and 
immunocompromised humans. 11–  13   Cryptosporidium hominis  
and  C. parvum  are the most frequently detected, and  C. homi-
nis  infections are more common in developing countries. 5,  7,  14–  18  
Both species have different host ranges. Although  C. hominis  
is confined mostly to humans,  C. parvum  infects humans and 
ruminants. However, subgenotyping  C. hominis  and  C. parvum  
into subtype families by sequencing a locus on the 60-kD gly-
coprotein (GP60) gene 19  has provided a clearer understanding 
of the transmission dynamics and host specificity of these spe-
cies. It appears that not all human  C. parvum  infections are a 
result of zoonotic transmission as some  C. parvum  subtypes 
seem to circulate only in humans. 20,  21  Although cryptosporid-
iosis is prevalent in developing countries, genetic character-

ization of species is lacking, especially in Africa, where only 
four subgenotyping studies have been conducted in Uganda, 
Malawi, Kenya, and South Africa. 7,  15,  22,  23  

  Cryptosporidium meleagridis , although not found as com-
monly as  C. hominis  and  C. parvum , is the third most common 
infection in humans. 4,  5,  14,  18,  24,  25  Two subtypes of  C. meleagridis  
have been identified at the small subunit (SSU) ribosomal 
RNA (rRNA) gene locus, and six 6 subtypes have been identi-
fied at the GP60 gene locus, 26  which indicate possible hetero-
geneity in host range, and therefore routes of transmission, for 
 C. meleagridis . 

 The present study determines the prevalence, temporal 
variability, and molecular epidemiology of  Cryptosporidium  
in a pediatric population in Osun State, Nigeria. 

   MATERIALS AND METHODS 

  Study population and sample collection.   This study was 
carried out in four semi-urban villages in Ile-Ife, Osun State, 
Nigeria. These villages (Ipetumodu, Akinlalu, Edunabon, and 
Moro) are located within 15 km of Ile-Ife town. 27  The study was 
part of a parallel project set up in May 2006 that investigated 
the interactions between  Ascaris  and malaria infections. 27  
A total of 2,332 children (age range = 6 months–6 years) were 
enrolled into the study during May and September 2006 after 
informed consent was obtained. Temporary clinics were set up 
in the center of each village, and mothers from the surrounding 
area were asked to bring their children for screening of malaria 
and intestinal worms. Once enrolled, each child was assigned 
an identification number. To assess the temporal variability of 
infection, clinics were open at four time points over a one-year 
period: September 2006, February 2007, May 2007, and August 
2007. These time points included the rainy (May–October) and 
dry (November–April) seasons. Mothers were supplied with 
50-mL plastic containers in which to collect their children’s 
feces, and samples were returned and refrigerated at 4°C. 

 Of the 2,332 children enrolled, 1,636 children submitted 
fecal samples on at least one of the four time points. A num-
ber of children were lost to follow-up; 349 children submitted 
samples at all four time points. Ethical clearance was provided 
by the Ethics and Research Committee, Obafemi Awolowo 
University Teaching Hospital Complex, Ile-Ife, Nigeria. 
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   Stool analysis.   Stool consistency was evaluated by visual 
examination and classified as formed, unformed, or liquid. 
A pea-sized amount (200 μL if liquid) of feces from each child 
was concentrated by using a modified formol-ether technique. 28  
Concentrates were air-dried onto glass microscope slides (one 
slide per child), stained with auramine-phenol, 29  and examined 
for the presence of oocysts by using a fluorescent microscope 
(blue filter block; excitation 490 nm, emission 510 nm). Each 
slide was scanned at 200× magnification and oocysts were 
confirmed under 400× magnification. Positive and negative 
samples were recorded along with the intensity of infection. 
Intensity was determined as follows: 0 = no oocysts detected 
in the sample; 1+ = 1–10 oocysts per field of view; 2+ = 10–50 
oocysts per field of view, and 3+ = > 50 oocysts per field of 
view. 

   DNA extraction.   Three criteria were used for selecting 
samples for molecular analysis: 1) samples with a high 
oocyst intensity, 2) positive samples in the month of August 
because a risk factor analysis was carried out at this time, 
and 3) a random selection of positive samples from the three 
remaining time points, resulting in a total of 302 samples. 
Samples were first purified by using a modified water-ether 
concentration method. 30  For solid and semi-solid stools, a pea-
sized stool sample was diluted in 100 μL of reverse osmosis 
(grade 1) water and emulsified in a 1.5-mL microcentrifuge 
tube. For liquid samples, 200 μL were transferred to a 1.5-mL 
microcentrifuge tube by using clean plastic pipettes. 

 The supernatant was aspirated to a voiume of 100 μL and 
stored at -20°C prior to DNA extraction. DNA was extracted 
using 15 cycles of freeze-thawing followed by digestion with 
proteinase K. 29  After digestion (3 hours at 55°C) with pro-
teinase K, samples were centrifuged at 14,000 ×  g  for 10 
seconds, and the supernatant was treated with a mixture of 
polyvinylpolypyrrolidone (PVPP) (catalog no. P6755; Sigma, 
St. Louis, MO) and Chelex 100 (catalog no. 142-1253; Bio-Rad 
Laboratories, Hercules, CA) slurry to minimize polymerase 
chain reaction (PCR) inhibitors. Pre-prepared aliquots of the 
mixture, each containing 50 μL 10% PVPP and 50 μL of 10% 
Chelex suspensions in DNase/RNase free water were pipetted 
into 0.5-mL screw top microcentrifuge tubes, and the slurry 
was sedimented overnight at 4°C by gravity. When required, 
the supernatant of an aliquot of PVPP/Chelex 100 slurry was 
carefully aspirated with a pipette without disturbing the sedi-
mented slurry and replaced with 50 μL of DNA lysate. The 
tube was vortexed, boiled for 10 minutes, and centrifuged 
(14,000 ×  g  for 1 minute), and the supernatant was transferred 
to a clean flip-top tube and frozen at –20°C until used as a 
template for PCR. 

   PCR–restriction fragment length polymorphism DNA 
sequencing analysis.    Cryptosporidium  species were determined 
by nested PCR–restriction fragment length polymorphism 
(RFLP) analysis and/or PCR sequencing at two SSU rRNA 
gene loci. 31,  32  For RFLP analysis, positive secondary DIAG 
PCR products were digested simultaneously with  Ase  I and 
 Dra  I, 31  and the secondary XIAO PCR products were digested 
separately with  Ase  I and  Ssp  I. 32  Fragments were separated 
by electrophoresis on a 2% agarose gel, stained with ethidium 
bromide and viewed under ultraviolet transillumination. 

   GP60 sequence analysis.    Cryptosporidium parvum  and 
 C. hominis  isolates were subgenotyped by GP60 sequence 
analysis, 33  and a previously described subtype nomenclature 
system was used to differentiate subtypes within each sub-

type family of  C. hominis  and  C. parvum . 19  When the assay 
of Glaberman and others 33  failed to produce sufficient ampli-
cons for sequencing, the assay of Sulaiman and others 19  (which 
produces a 400-basepair product compared with the 800-
basepair product of the assay of Glaberman and others 33 ) was 
used. 

    Cryptosporidium meleagridis  SSU rRNA sequence analysis.  
  Cryptosporidium meleagridis  was subgenotyped by sequence 
analysis of the SSU rRNA gene as described by Glaberman 
and others. 26  

   DNA sequencing and analysis.   Amplicons for sequencing 
were treated enzymatically with ExoSAP-IT (GE Healthcare, 
Piscataway, NJ) to remove excess dNTPs and primers according 
to the supplier’s instructions. Bi-directional sequencing was 
performed in an ABI model 3730 sequencer (Applied Biosystems, 
Foster City, CA) by using Big-Dye version 3.1 chemistry and 
automated capillary DNA sequencer at the Sequencing Service, 
Dundee University, Dundee, Scotland ( http://www.dnaseq.co
.uk/services.html ). Bi-directional sequences were aligned using 
European Molecular Biology Laboratory (EMBL) website 
tools to obtain a consensus that was manually edited according 
to the sequence chromatogram. The consensus sequence was 
used to search the GenBank database for similarities using the 
CBI Blastn tool. ClustalW alignments using EMBL site was used 
to compare sequences and Phylogenetic trees were constructed 
using MEGA4 software ( http://www.megasoftware.net/ ). 

   Statistical analysis.   Of the 1,636 children assessed in the 
study, 349 submitted samples at all 4 time points. A generalized 
linear latent and mixed model analysis was performed in 
STATA Version10 (Stata Corp., College Station, TX) 34  on 
these 349 children. The model was used to test for associations 
between month, age, sex, and village of residence, and infection 
status of the children. This model incorporated random and 
fixed variables accounting for repeated measures in the 
longitudinal data. 

 Chi-squared analysis was performed to test for associations 
between infection with  C. parvum  and  C. hominis , and demo-
graphic features of the children, and associations between 
oocyst presence and stool consistency. 

    RESULTS 

  Prevalence and temporal variability.   A total of 3,840 samples 
from 1,636 children were examined over the one-year period. 
For those children where sex data were available, 825 (50.4%) 
were male and 790 (48.3%) female. Children ranged in age 
from 6 to 80 months, with a median of 39 months. A total of 
266 children (16.3%) were from the village of Akinlalu, 714 
(43.6%) from Ipetumodu, 253 (15.5%) from Moro, and 403 
(24.6%) from Edunabon. 

  Cryptosporidium  oocysts were detected in 684 samples 
(17.8%, 95% confidence interval [CI] = 16.61–19.06%). There 
was no statistical association between the presence of oocysts 
and stool consistency. The prevalence of infection ranged from 
15.6% (95% CI = 13.17–18.16%) in September 2006 to 19.6% 
(95% CI = 17.31–22.18%) in May 2007 ( Figure 1A ). Most 
samples (652 of 684) had an oocyst intensity of 1+. A total of 
21 children had an oocyst intensity level of 3+. Of these chil-
dren, 11 occurred in August, 1 in September, 0 in February, 
and 9 in May. 

  Of the 1,636 children that submitted fecal sample for analysis, 
349 children submitted samples at each of the four time points. 
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Of these children, 180 (51.6%) were male and 165 (47.3%) 
female. Children ranged in age from 11 to 77 months, with 
a median of 39 months. Ninety-five children (27.22%) were 
from the village of Akinlalu, 119 (34.1%) from Ipetumodu, 
56 (16.1%) from Moro, and 79 (22.6%) from Edunabon. 
Prevalence of  Cryptosporidium  infection ranged from 13.2% 
(95% CI = 9.81–17.19%) in September to 23.5% (95% CI = 
19.15–28.30%) in May 2007 ( Figure 1B ). Most samples (238 of 
252) had intensity levels of 1+. A total of 10 children had an 
oocyst intensity level of 3+. Of the samples with a 3+ intensity, 
a higher number occurred in August (8) than in September (0), 
February (0), and May (2). 

 Using generalized linear latent and mixed model analysis, 34  
we determined that month was significantly associated with 
infection, with increased risk in May (odds ratio [OR] = 1.11, 
95% CI = 1.049–1.178,  P  < 0.0001) and February (OR = 1.06, 
95% CI = 1.003–1.127,  P  = 0.034) in a model adjusted for age, 
sex, and village of residence. There was no statistically signifi-
cant association between infection status and age, sex, or vil-
lage of residence of the children ( Table 1 ). 

        Cryptosporidium  species, genotypes, and subtypes.   A total 
of 302 stool samples were analyzed by using two nested PCR-
RFLP procedures and/or direct sequencing of PCR products. 
Of these samples, 77 produced sufficient product for RFLP 
determination of species. Where required, DNA sequencing 
was used to confirm  Cryptosporidium  species/genotypes. 
 Cryptosporidium hominis  was detected in 34 samples (44.2%), 
 C. parvum  in 25 (32.5%), a mixture of  C. parvum  and  C. hominis  
in 4 (5.2%),  C. meleagridis  in 5 (6.5%),  Cryptosporidium  rabbit 

genotype in 5 (6.5%),  Cryptosporidium  cervine genotype in 
3 (3.9%), and  C. canis  in 1 (1.3%) ( Table 2 ). 

      Cryptosporidium hominis  was the most common species 
isolated, followed by  C. parvum . There was no statistically 
significant association between sex, age (< 3 years versus ≥ 3 
years), and village of residence and infection with  C. hominis  
or  C. parvum . 

 F igure  1.    Prevalence (±95% confidence interval) of  Cryptospo-
ridium  infection in children in Nigeria at four time points over a one-
year period.  A , All samples collected.  B , Samples from 349 children 
that were tested at each of the four time points.    

 T able  1 
  Results of generalized linear latent and mixed model analysis testing 

for association between infection status and month, age, sex, and 
village of residence of 349 children in Nigeria that submitted samples 
at four time points  

Characteristic Coefficient SE z  P  > |z|
95% confidence 

interval

Month
Sept Reference
Feb 0.0621 0.029 2.12 0.034 0.005–0.120
May 0.106 0.030 3.59 0.000 0.048–0.164
Aug 0.040 0.030 1.34 0.179 −0.018 to 0.010
Age −0.0002 0.001 −0.36 0.719 −0.002 to 0.001

Sex
Male Reference
Female −0.004 0.21 −0.21 0.834 −0.045 to 0.036

Village
Moro Reference
Akinlalu −0.031 0.033 −0.96 0.337 −0.096 to 0.033
Ipetumodu −0.043 0.032 −1.37 0.172 −0.106 to 0.019
Edunabon 0.015 0.035 0.43 0.668 −0.053 to 0.083

 T able  2 
  Species and subtypes of  Cryptosporidium  identified in 77 samples 

from children in rural Nigeria  
Species/genotype, subtype family, subtype No. of children infected

 C. hominis 34 (28 subtyped)
Ia 10

IaA18R2 3
IaA22R2 1
IaA24R2 2
IaA25R2 2
IaA28R2 1
IaA21R1 1

Ib 10
IbA10G2 3
IbA13G3 7

Id 4
IdA11 2
IdA17 2

Ie 3
IeA11G3T3 3

Ih (Novel subtype) 1
IhA14G1 1

 C. parvum 25 (23 subtyped)
IIa 2

IIaA15G2R1 1
IIaA16G1R1 1

IIc 17
IIcA5G3a 9
IIcA5G3b 8

IIi 2
IIiA11 2

IIm 2
IImA14G1 2

 C. hominis / C. parvum 4
 C. meleagridis 5 (3 subtyped)

Type 1 3
 Cryptosporidium  rabbit genotype 5
 Cryptosporidium  cervine genotype 3
 C. canis 1
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 Further GP60 subgenotyping was conducted successfully 
on 28 of 33  C. hominis  and 23 of 25  C. parvum  isolates. Five 
subtypes of  C. hominis  (Ia, Ib, Id, Ie, and one novel subtype) 
and four subtypes of  C. parvum  (IIa, IIc, Iii, and one unnamed 
subtype) were identified ( Table 2  and  Figure 2 ). Equal num-
bers of  C. hominis  subtype families Ia and Ib were detected 
(10 isolates), and Ia was the most genetically diverse type, 
consisting of six subtypes. Subtype family Ib and Id (four iso-
lates) each consisted of two genetically distinct subtypes. All 
three isolates of the subtype family Ie consisted of the subtype 
IeA11G3T3. One isolate was identified, which has not been 
previously described ( Table 2 ). This sequence was deposited in 
the GenBank database (accession no. FJ971716), and accord-
ing to existing nomenclature is ascribed IhA14G1. 

  Four subtype families of  C. parvum  were identified. IIc was 
the most common (17 isolates), and IIc and IIa each had 2 sub-
types. Both isolates of the subtype family IIi consisted of the 
subtype IIiA11, and two isolates were identified that had 99% 
similarity to sequences deposited in GenBank (accession no. 
AY700401 ( Table 2 ). The sequence, deposited by Hira KG and 

others in 2004, has not been published elsewhere. It has been 
proposed that the subtype family will be named IIm (Ward H, 
unpublished data). 

 In addition, three isolates of  C. meleagridis  were subgeno-
typed by sequence analysis of the SSU rRNA gene fragment. 
All three isolates belonged to the subtype, type 1, as previ-
ously described 26,  35  ( Table 2 ). 

    DISCUSSION 

 Our findings show that the overall prevalence of 
 Cryptosporidium  from a sample of children in Nigeria ranged 
from 15.6% to 19.6% over a one-year period. Of the few stud-
ies conducted in Nigeria, prevalence has ranged from 0% in 
patients positive and negative for human immunodeficiency 
virus with diarrhea in Enugu State to 39% in primary school 
children with diarrhea in the same state. 36,  37  In the present 
study, prevalence varied significantly throughout the year. 
However, rainfall did not appear to be associated with infec-
tion rates. It is likely that variation in prevalence is associated 
with practices or behaviors in the community that exhibit tem-
poral variation. In contrast, other studies in the tropics have 
indicated that prevalence of infection is highest in months with 
the greatest rainfall. 4–  7  However, prevalence was highest dur-
ing the dry season in Kenya. 16  In Venezuela no seasonal varia-
tion was detected. 38  The overall intensity of infection in this 
pediatric population was low and few oocysts were observed 
in the samples. However, in August, higher intensity levels 
were noted. Data on intensity of infection from previous stud-
ies are lacking, particularly at a population level. 

 This is the first study to genetically characterize  Cryptospo-
ridium  species in Nigeria, the most populous country in Africa. 
Isolation of six  Cryptosporidium  species/genotypes highlights 
the heterogeneity of  Cryptosporidium  infections in the chil-
dren in Nigeria. 

 In Africa, molecular identification of  Cryptosporidium  spe-
cies is generally lacking. Species data have been collected 
in only five countries; Kenya, Malawi, Uganda, Equatorial 
Guinea, and South Africa and include  C. hominis ,  C. par-
vum ,  C. canis ,  C. felis ,  C. meleagridis , and  C. muris . 5,  16,  17,  22,  23,  39  
However, only in Kenya have all six species been reported. 16  

  Cryptosporidium hominis  was the dominant species iden-
tified in our study. High levels of  C. hominis  are consistent 
with studies from other developing countries such as Peru, 18  
Kenya, 16  India, 14  Malawi, 5,  7  and Uganda, 4,  15  which indicate that 
anthroponotic transmission may play a major role in the epi-
demiology of  Cryptosporidium  in these areas. A relatively 
high level of  C. parvum  was also found in the current study 
and this finding is in contrast to those of studies from other 
developing regions where  C. parvum  infections are generally 
much lower than that of  C. hominis . 4,  7–  9,  14,  15,  18,  24,  40,  41  Higher lev-
els of  C. parvum  are consistent with results of studies from 
Kuwait, Equatorial Guinea, and developed countries such as 
France, Portugal, and the United Kingdom. 19,  20,  25,  42  Variations 
in the distribution of  Cryptosporidium  species in humans are 
considered an indication of differences in infection sources. 19  

 We identified  C. hominis  and  C. parvum  in similar num-
bers in males and females and in children < 3 years of age and 
≥ 3 years of age. This finding is analogous to findings in south-
ern India, in which no significant differences in age and sex 
between  C. hominis -infected children and those infected with 
other species. 14  

 F igure  2.    Phylogenetic analysis of  A ,  Cryptosporidium hominis  
and  B ,  C. parvum  subtypes from children in Nigeria and sequences 
(with accession numbers) previously deposited in GenBank by using 
neighbor-joining analysis of the glycoprotein (GP60) gene. Values 
on branches are percentage bootstraps values using 1,000 replicates. 
Bootstrap values greater than 50% are shown.    
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 Prior to the development of subgenotyping techniques, the 
presence of high levels of  C. parvum  would have suggested 
that zoonotic transmission was as important as anthroponotic 
transmission in this region in Nigeria. However, results from 
the current subgenotyping analysis indicate that subtype IIc 
is dominant in this population. Because IIc is primarily lim-
ited to human infections 20,  21  this finding would indicate that 
the source of infection in these children in Nigeria is anthro-
ponotic, although this was not determined epidemiologically. 

 In addition to  C. parvum  and  C. hominis , we also identified 
 C. meleagridis ,  C. canis ,  Cryptosporidium  cervine genotype, and 
 Cryptosporidium  rabbit genotype.  Cryptosporidium meleagridis  
is the third most common  Cryptosporidium  infection in humans 
and accounts for 10–20% of cryptosporidiosis cases in Peru and 
Thailand. 10  Few studies have subgenotyped  C.  meleagridis. 26,  35  
Thus, further analysis of avian and human isolates from various 
populations and geographic locations is required to address the 
epidemiologic significance of  C. meleagridis  subgenotyping. 

 Our study is the first one to isolate the cervine genotype from 
humans in Africa.  Cryptosporidium canis  was isolated on only 
one occasion previously in an African population. 16  Furthermore, 
our study is the first occasion in which the rabbit genotype was 
isolated from humans outside the United Lingdom. 11,  43,  44  This 
genotype was first isolated in an immunocompetent woman in 
England in 2008 44  and has since been responsible for a water-
borne outbreak in the United Kingdom. 43  The rabbit genotype 
is similar but not identical to  C. hominis , with RFLP patterns at 
the  Cryptpsporidium  oocyst wall (COWP) locus sharing 99.2% 
similarity at the SSU rRNA locus and 99.7% at the heat-shock 
protein (HSP) locus. 45  Thus, it is not surprising that human infec-
tions have been identified. Two of the four children infected 
with the rabbit genotype in the current study were twins, indi-
cating that oocysts may have been transmitted anthroponoti-
cally between the siblings. Alternatively, it is possible that the 
children contracted the infection from the same source. 

 A range of GP60 subtypes of  C. hominis  and  C. parvum  
were isolated in the current study, including a novel subtype 
(IhA14G1). Of the six  C. hominis  subtype families described 
to date, four (Ia, Ib, Id and Ie) were isolated from these chil-
dren in Nigeria. These common subtype families are found in 
humans worldwide 10  and were identified in three countries in 
Africa (Uganda, Malawi, and South Africa). 7,  15,  23  However, 
subtypes IaA18R2, IaA21R2, IaA24R2, IaA25R2, IaA28R2, 
and IdA11 have not previously been deposited in GenBank 
and may indicate the occurrence of new subtypes in the 
 C. hominis  families Ia and Id. 

 Of the 11  C. parvum  subtype families described to date, 
we report the presence of IIa, IIc, IIe, and IIi in addition to 
an unnamed subtype. The unnamed subtype was previously 
isolated from children in Bangladesh and the sequence was 
deposited in GenBank, but the work is unpublished; thus, the 
GP60 subtype is not yet named. It has been proposed that 
the subtype will be named IIm (Ward H, unpublished data). 
The subtype family IIa has been isolated from ruminants and 
humans, Coupled with IIc, IIa is the most common  C. parvum  
subtype family found to infect humans. Subtype family IIi is 
less common, being found on only one occasion previously in 
children in Uganda. 15  Of previous studies carried out in Africa, 
in Malawi,  C. parvum  subtype families IIc and IIe were present 
in Malawi, 7  and IIc, IIg, IIh, and IIi were identified in Uganda. 15  
Thus, our study is the first one to report isolation of the  C. par-
vum  IIa and IIm subtype families from humans in Africa. 

 In the present study we identified a high diversity of  Cry-
ptosporidium  species, genotypes, and subtypes in this pediatric 
population in Nigeria, but further epidemiologic investigations 
are required before we can identify anthroponotic, zoonotic, 
and/or environmental transmission routes of public health sig-
nificance. Our data indicate that children can be the source 
of numerous  Cryptosporidium  species, genotypes, and sub-
types, and that their behavior supports both direct and indi-
rect transmission routes. Inadequate treatment of drinking 
water and indiscriminate outdoor defecation are well recog-
nized risk factors for cryptosporidiosis. Over half (53.9%) of 
the population in this area do not treat their drinking water, 
and most children studied defecate indiscriminately outdoors 
(Molloy S, unpublished data). Both questionnaire- and molec-
ular-based tools will be required to determine the importance 
of anthroponotic versus other routes of transmission, and 
we are currently undertaking risk factor analysis that should 
add to our understanding of the risk factors associated with 
 Cryptosporidium  transmission in these tropical environments. 
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