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Abstract

In recent years the importance of dynamic scripting languages — such as PHP, Python,
Ruby and Javascript — has grown as they are used for an increasing amount of software
development. Scripting languages provide high-level language features, a fast compile-
modify-test environment for rapid prototyping, strong integration with database and
web development systems, and extensive standard libraries. PHP powers many of the
most popular web applications such as Facebook, Wikipedia and Yahoo. In general,
there is a trend towards writing an increasing amount of an application in a scripting
language rather than in a traditional programming language, not least to avoid the
complexity of crossing between languages.

Despite their increasing popularity, most scripting language implementations remain
interpreted. Typically, these implementations are slow, between one and two orders
of magnitude slower than C. Improving the performance of scripting language imple-
mentations would be of significant benefit, however many of the features of scripting
languages make them difficult to compile ahead of time. In this dissertation we argue
that ahead-of-time compilation of scripting languages is both possible and valuable.
We present phc, an ahead-of-time compiler for the PHP language. We describe the
design and implementation of the compiler, and identify specific challenges in the
design of a compiler for a dynamic scripting language.

We determine that there are three important features of scripting languages that are
difficult to compile or reimplement. Since scripting languages are defined primarily
through the semantics of their original implementations, they often change semantics
between releases. They provide C APIs, used both for foreign-function interfaces and
to write third-party extensions. These APIs typically have tight integration with the
original implementation, and are used to provide large standard libraries, which are
difficult to re-use, and costly to reimplement. Finally, they support run-time code
generation. These features make the important goal of correctness difficult to achieve
for compilers and reimplementations.

We present a technique to support these features in our ahead-of-time compiler for
PHP. Our technique uses the original PHP implementation through the provided
PHP C API, both in our compiler, and in our generated code. We support all of
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these important scripting language features, particularly focusing on the correctness
of compiled programs. Additionally, our approach allows us to automatically support
limited future language changes. We present a discussion and performance evaluation
of this technique, which we show increases the execution speed of PHP programs by
1.55x in our benchmarks. In order to improve this performance, static analysis and
optimization are required.

However, static analysis of scripting languages such as PHP is difficult due to the
features found in these languages. These features include dynamic typing with implicit
type conversions, dynamic aliasing, implicit object and array creation, and overloading
of simple operators. We find that as a result, simple analysis techniques such as SSA
and def-use chains are not straightforward to use, and that a single unconstrained
variable can ruin our analysis. We describe the challenging semantics of PHP, and a
static analyser to model them. Our analysis combines alias analysis, type-inference
and constant-propagation for PHP, computing results that are essential for other
analyses and optimizations. Our empirical results show that our analysis is capable of
determining that almost all program variables are unaliased, and that dynamic types
for over 60% of variables can be statically determined by our analysis.



Acknowledgements

More than anyone, I’d like to thank David Gregg for his supervision, help and advice
throughout the last six and a half years. He guided me through my undergraduate
research, through my PhD applications, and throughout my PhD. I think it is fair to
say that nearly everything I know about research comes from David.

Many supervisors are hands-off, David is certainly not. He has read everything I
produced, he met me frequently to guide my research and his door is always open. His
expertise on all manner of topics related to compilers and research has been invaluable.

It is the rare problem that David could not help me on. David made it his business to
understand everything I did. I’m not sure he knew anything about scripting languages
when I met him, but he spent a considerable amount of time and effort to understand
my research thoroughly.

From the moment I started this PhD, David has been there for me. Any time there
was a problem, he had time to help with it. In particular, at the start of 2007 I went
through a particularly bad time. My then-current research wasn’t going anywhere,
and a change was needed. At the time, neither of us was really sure I’d make it to
finish my PhD. During that time in particular, his help and guidance was very much
appreciated.

Many of my colleagues merit thanks, in particular our research group: Kevin Williams,
Nicholas Nash, Robert (Bobb) Crosbie, Jason McCandless and (Raymond) Scott
Manley. They listened to my ideas and critiqued my work. Kevin also worked on
scripting languages, and I learned a lot from chatting to him. Nick did an amazing job
in our first paper, and I’m very proud of the result.

John Gilbert and Edsko de Vries were collaborators on phc. I sat in their office for the
first year of my research, and I think I learned more about compilers from them than
from any other source. Of course, they also started phc, and invited me to work on it,
to which I owe them a great debt. I don’t think the compiler I would have otherwise
worked on would have been anything as successful.

I want to thank Edsko in particular. Working with Edsko is a lesson in how to code

vii



viii

well, and I learned a great deal from working on phc with him. He read a lot of my
code, my commit logs, and all my papers. Arguing with Edsko helped me flesh out a
great many ideas; no unclear idea gets past him. He also took on the herculean effort
of reading my whole PhD in one night.

I also want to thank Kevin, Nick, Bobb, Jason, Scott, John and Edsko for their
friendship. It would have been a long four years without it.

Jimmy Cleary interned with me during the summer of 2009. He worked on many
aspects of phc, writing features, fixing bugs, and running a massive amount of exper-
iments. His output far outstripped the time it took to train him in, and I honestly
believe I would not have this PhD finished without his help.

Many people took the time to read my papers and dissertation, and offer comments,
including David, Kevin, Nick, Bobb, Jason, Scott, Edsko, John and Jimmy. Thanks
also to Nuno Lopes, Graham Kelly, Christopher Jones, Alex Gaynor, James Stanier,
Cornelius Riemenschneider, and Etienne Kneuss, who all provided valuable feedback.
Peter Hayes taught me the trick of reading my papers out loud. I believe this made a
considerable difference to the quality of my writing.

I travelled considerably throughout my PhD. I learned a great deal from travelling to
PLDI, ASPLOS and HOPL, from speaking to too many people to list here. Seminars
and summer schools also taught me a great deal. Thanks to Markus Schordan, Sebas-
tian Hack and Fabrice Rastello, and Koen de Bosschere for accepting me to Dagstuhl,
the SSA seminar and the ACACES summer school, respectively. I learned a great deal,
and met a lot of interesting people. Lectures from Mike Hind, Kathryn McKinley
and Barbara Ryder were particularly interesting and inspiring.

I had many opportunities thanks to the kind help of others. I want to thank Dan
Quinlan for his invitation to Livermore, to Ian Taylor for arranging the Google Tech
Talk, to Brian Shire for having me to Facebook, and to Daniel Berlin for mentoring
me on gcc during the Google Summer of Code. These seemingly small opportunities
have benefited me much more than you might know.

My work was funded by the Irish Research Council for Science, Engineering and
Technology funded by the National Development Plan. I would have been completely
unable to work on a PhD without this funding. The Dun Laoghaire/Rathdown
County Council paid my fees, and gave me a small stipend. I want to thank them for
their help.



ix

My family and friends have been very supportive throughout this PhD. No amount
of thanks can express how much I value their friendship and love.

I could never have gotten to where I am without my fiancée, Orla McHenry. The last
two years have been a lot of work and stress, and without her to welcome me home, I
would have struggled to make it through. She brought me cookies when I worked
late, cheered me up when I was down, and told me it would be fine when I worried.
She was always there when I needed her. Knowing how proud she is of me always
makes me smile. Of all of the things I’ve gained in the last four years, nothing makes
me happier than Orla. I’ve never felt luckier than I am to have her.

Thank you all.





Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi

List of Listings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiii

1 Introduction 1

1.1 My thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 A Compiler for a Scripting Language . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Attribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5 Published Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.6 Structure of this Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Scripting Languages 7

2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Uses of Scripting Languages . . . . . . . . . . . . . . . . . . . . . . 8

2.1.2 Scripting Language Feature Overview . . . . . . . . . . . . . . . 9

2.1.3 Scripting Language Type Systems . . . . . . . . . . . . . . . . . . 10

xi



xii

2.1.4 PHP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Run-time Type Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Research on the Self Programming Language . . . . . . . . . . . . 14

2.2.2 Comparison with Type Analysis . . . . . . . . . . . . . . . . . . . 15

2.2.3 Application to Scripting Languages . . . . . . . . . . . . . . . . . 16

2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Program Analysis 19

3.1 Dataflow Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Alias Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 Pre-history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.2 Ascendency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.3 Divergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.4 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.5 Shape Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Static Single Assignment Form . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.1 SSA Form and Alias Analysis . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Type Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4.1 Devirtualization Support . . . . . . . . . . . . . . . . . . . . . . . 35

3.4.2 Type-inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5 Combined Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5.1 Combined Constant-propagation and Alias Analysis . . . . . 39

3.6 Static Analyses of Dynamic Scripting Languages . . . . . . . . . . . . . 40



xiii

3.6.1 Type Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.6.2 Alias Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.6.3 Other Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 Design of the phc Compiler 45

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Intermediate Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2.1 Abstract Syntax Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2.2 High-level Intermediate Representation . . . . . . . . . . . . . . 48

4.2.3 Medium-level Intermediate Representation . . . . . . . . . . . . 48

4.2.4 Challenges in Intermediate Representation Design . . . . . . . 48

4.3 Compiled and Interpreted Models . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4 Passes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.5 Embed System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.5.1 Language Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.5.2 Evaluating Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.5.3 Querying PHP Implementation Information . . . . . . . . . . . 57

4.6 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.6.1 Early Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.6.2 Cleanup Optimizations . . . . . . . . . . . . . . . . . . . . . . . . 58

4.6.3 Whole-program Analysis . . . . . . . . . . . . . . . . . . . . . . . . 60

4.6.4 SSA Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63



xiv

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5 A Practical Solution for Scripting Language Compilers 67

5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2 Challenges to Compilation . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2.1 Motivating Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2.2 Undefined Language Semantics . . . . . . . . . . . . . . . . . . . . 70

5.2.3 C API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2.4 Run-time Code Generation . . . . . . . . . . . . . . . . . . . . . . . 74

5.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3.1 Undefined Language Semantics . . . . . . . . . . . . . . . . . . . . 75

5.3.2 C API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.3.3 Run-time Code Generation . . . . . . . . . . . . . . . . . . . . . . . 77

5.3.4 Other Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.4 Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.4.1 Undefined Language Semantics . . . . . . . . . . . . . . . . . . . . 79

5.4.2 C API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.4.3 Run-time Code Generation . . . . . . . . . . . . . . . . . . . . . . . 81

5.4.4 Compiling with phc . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.4.5 Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.4.6 Caveats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.5 Interactions with the PHP Memory Model . . . . . . . . . . . . . . . . . 85

5.5.1 PHP Memory Model . . . . . . . . . . . . . . . . . . . . . . . . . . 85



xv

5.5.2 Pitfalls with the Memory System . . . . . . . . . . . . . . . . . . 86

5.6 Just-in-time Compilers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.7.1 PHP Performance Profile . . . . . . . . . . . . . . . . . . . . . . . 89

5.7.2 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.7.3 Performance Examination . . . . . . . . . . . . . . . . . . . . . . . . 93

5.7.4 Feedback-directed Optimization . . . . . . . . . . . . . . . . . . . . 97

5.7.5 Run-time Code Generation in PHP Programs . . . . . . . . . . 98

5.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6 Static Analysis of Dynamic Scripting Languages 103

6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.2 PHP Language Behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.2.1 PHP Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.2.2 Dynamic Typing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.2.3 Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.2.4 Symbol-tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.2.5 Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.2.6 Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.2.7 Scalar Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.2.8 Implicit Type Conversions . . . . . . . . . . . . . . . . . . . . . . . 112

6.2.9 Type-coercion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.2.10 Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113



xvi

6.2.11 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.2.12 Implicit Value Creation . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.2.13 Dynamic Code Generation . . . . . . . . . . . . . . . . . . . . . . 116

6.3 Existing PHP Static Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.3.1 WebSSARI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.3.2 Web Vulnerabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.3.3 Pixy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.3.4 SQL Injection Attacks . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.4 Unsuitability of Alias Analysis Models for Static Languages . . . . . . 119

6.5 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.5.1 Analysis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.5.2 Alias Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.5.3 Literal and Type Analysis . . . . . . . . . . . . . . . . . . . . . . . . 133

6.5.4 Constant Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.5.5 Definitions, Uses and SSA Form . . . . . . . . . . . . . . . . . . . . 134

6.5.6 Modelling Library Functions and Operators . . . . . . . . . . . 136

6.5.7 Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.5.8 Deployment-time Analysis . . . . . . . . . . . . . . . . . . . . . . . 137

6.5.9 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.6 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148



xvii

7 Closing Thoughts 149

7.1 The Future of PHP Research . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.1.1 High-level Optimizations . . . . . . . . . . . . . . . . . . . . . . . 149

7.1.2 Foundations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.1.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.1.4 Experience of Working with PHP . . . . . . . . . . . . . . . . . . . 151

7.2 Perhaps We’re Going the Wrong Way . . . . . . . . . . . . . . . . . . . . . . 154

7.2.1 Are JIT Compilers the Future? . . . . . . . . . . . . . . . . . . . . 156

7.3 A Better Place . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

7.4 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

7.4.1 Scripting Language Compilation . . . . . . . . . . . . . . . . . . . 159

7.4.2 Static Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

7.4.3 Scripting Language Behaviour . . . . . . . . . . . . . . . . . . . . . 161

7.4.4 The phc Compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

A Intermediate Representation Definitions 163

A.1 Abstract Syntax Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

A.2 High-level Intermediate Representation . . . . . . . . . . . . . . . . . . . . 167

A.3 Medium-level Intermediate Representation . . . . . . . . . . . . . . . . . 170

B Whole Program Optimization Interface 175

C Optimization Transformations 177



xviii

Bibliography 179



List of Figures

4.1 Overview of the structure of phc . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2 Removal of conditional statements in the remove loop booleans pass . 60

5.1 Interaction of phc and the PHP C API . . . . . . . . . . . . . . . . . . . . 80
5.2 Profiling results of the PHP interpreter . . . . . . . . . . . . . . . . . . . 89
5.3 Speedups of phc compiled code vs the PHP interpreter . . . . . . . . . . 92
5.4 Relative memory usage of phc compiled code vs the PHP interpreter . 92
5.5 Branch misprediction results . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.6 Executed instructions and memory accesses results . . . . . . . . . . . . 96
5.7 Speedups of phc compiled code using FDO . . . . . . . . . . . . . . . . . . 97

6.1 Selection of magic methods and object handlers . . . . . . . . . . . . . . 110
6.2 PHP assignment memory representation . . . . . . . . . . . . . . . . . . . 114
6.3 Points-to graphs for Figure 6.2 . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.4 Points-to graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.5 PHP assignment memory representation . . . . . . . . . . . . . . . . . . 130
6.6 Points-to graphs for Figure 6.5 . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.7 Memory layouts for Listing 6.10 . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.8 Literal propagation semi-lattice . . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.9 Peak references per variable in the analysed benchmarks . . . . . . . . . 142
6.10 Peak types per variable in the analysed benchmarks . . . . . . . . . . . . 143
6.11 Branches removed in the analysed benchmarks . . . . . . . . . . . . . . . . 144
6.12 Dead code eliminated in the analysed benchmarks . . . . . . . . . . . . 145

xix





List of Tables

2.1 Popular scripting languages and their uses . . . . . . . . . . . . . . . . . . 8
2.2 Popular scripting language features . . . . . . . . . . . . . . . . . . . . . . 9

4.1 AST passes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2 Passes to lower the AST into HIR . . . . . . . . . . . . . . . . . . . . . . . 55
4.3 Passes to lower the HIR into MIR . . . . . . . . . . . . . . . . . . . . . . . 56
4.4 MIR passes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.5 Optimization passes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.6 Code generation passes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.1 Package statistics for 581 PHP code packages . . . . . . . . . . . . . . . . 99
5.2 Dynamic features in PHP code . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.1 Characteristics of analysed benchmarks . . . . . . . . . . . . . . . . . . . . 141

xxi





List of Listings

3.1 Example of HSSA form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 Program which can be better optimized using a combined analysis

than iterating over separate analyses . . . . . . . . . . . . . . . . . . . . . . 38
4.1 Dynamic class declaration at run-time . . . . . . . . . . . . . . . . . . . . 49
4.2 Array assignment by reference . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3 Method invocation by reference . . . . . . . . . . . . . . . . . . . . . . . . 50
4.4 A foreach-loop in the AST and MIR . . . . . . . . . . . . . . . . . . . . . . . 51
4.5 for-loop in the AST and HIR . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.6 A demonstration of the if-simplification pass . . . . . . . . . . . . . . . . . 59
5.1 PHP code demonstrating dynamic, changing or unspecified language

features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2 phc generated code is called via the PHP system . . . . . . . . . . . . . . . 81
5.3 phc generated code for $i = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.4 phc generated code for file_get_contents($f) . . . . . . . . . . . . . . . . . 82
5.5 phc generated code for include ($TLE0) . . . . . . . . . . . . . . . . . . . . . 83
5.6 String concatenation benchmark . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.1 Example of the use of variable-variables . . . . . . . . . . . . . . . . . . . 108
6.2 Example of field use without declaration . . . . . . . . . . . . . . . . . . . 109
6.3 Example of intransitive equality operations . . . . . . . . . . . . . . . . . . 111
6.4 Example of implicit type conversions . . . . . . . . . . . . . . . . . . . . . . 112
6.5 Assignment by copy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.6 Assignment by reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.7 Example of dynamic aliasing in PHP . . . . . . . . . . . . . . . . . . . . . . 114
6.8 Examples of implicitly created values . . . . . . . . . . . . . . . . . . . . . 116
6.9 Example of C++ references . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.10 A short program with reference assignments and an array . . . . . . . . 131

xxiii





CHAPTER 1

Introduction

1.1 My thesis

My thesis: Compiling scripting languages using an ahead-of-time compiler is possible
and valuable.

The world of programming is currently undergoing a language renaissance. In partic-
ular, dynamic scripting languages are becoming incredibly popular, providing many
features above those provided by large incumbents such as Java, C and C++. Perl is
the language of system administration; PHP the server-side language of the internet;
Javascript the client-side language the internet. Lua is currently the titleholder of
embedded languages for scripting C and C++ applications, enjoying a particular
niche in the gaming industry. Python and (to a lesser extent) Ruby are perhaps the
future of scripting languages — powerful, elegant, generalist languages with staunch
and devout followers, which are slowly replacing Perl and encroaching on PHP.

Despite this massive surge in interest, the research community has been somewhat
silent on the issue. In personal conversations, I find many researchers do not see the
point of scripting languages. As experts in many programming languages, nearly all
of them statically typed, the dynamic typing which seems so freeing to the average
programmer instead seems unappealing to the programming language researcher.

At the same time, the scripting language community cares little for 60 years of compiler
research. Modern scripting languages are closer to two decades old than one, yet they
are mostly implemented using interpreters (and often not-very-good interpreters).
Although most enthusiasts yearn for speed in their applications, most of the scripting
language communities solve speed issues by rewriting their performance sensitive
code in C. Two steps forward, one step back.

My aim is to bridge the gap between these two worlds. This dissertation describes
the design and implementation of phc, an ahead-of-time compiler for PHP. It aims to
provide the basis for scripting language research, and show to the scripting language
community that compilers are useful.

1



2 Chapter 1. Introduction

1.2 A Compiler for a Scripting Language

Most dynamic scripting languages are interpreted. This offers great flexibility and
speed of development by removing the compile step. However, compilers are valuable
tools for programmers.

The most important benefit which can be provided by a compiler is execution speed.
Dynamic scripting languages have dynamic type systems, which require a lot of
run-time type checks. PHP also has run-time reference behaviour, which must be
checked on the majority of run-time value accesses. By providing static analyses at
compile-time, a compiler can avoid many of these slowdowns.

Many important compiler optimizations make it easier for programmers to write pro-
grams. Optimizations such as constant propagation and loop-invariant code motion
allow programmers to think about their programs at a slightly higher level, to avoid
manual program optimization, and can reduce the cost of meta-programming facilities.
Interpreted scripting language implementations force the user to be responsible for
their own optimizations, which can decrease programmer productivity.

PHP is a language used mostly on the internet. One of the most important aspects of
a web site’s usability is its response time [Schurman and Brutlag, 2009]. However, a
site’s response time is affected by many systems: the server must be contacted over
the internet, the web application run, the database consulted, the answer returned
over the internet, and the web page must be rendered in the user’s browser. This does
not leave a large amount of time for the web application code to run.

Even in cases where PHP is not the bottleneck [Lerdorf, 2008], PHP programs are
still limited in their ability to process data by the constraints of operating in a web
environment. By providing a faster implementation, web applications are freed to do
more in the same amount of time.

For other components of a web application, it is possible to improve performance.
Databases access time may be decreased through faster hard drives, more memory
and through caches such as memcached.1 Network latency can be reduced by adding
redundant servers and more bandwidth. Currently, the PHP execution time can
only be decreased by increasing the speed of the processor, itself a challenge of late.
Compilation provides another compelling means to do this.

1 See www.danga.com/memcached/.

http://www.danga.com/memcached/
http://www.danga.com/memcached/
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Large web companies use arrays of thousands of computers to host their websites.
An increase in the speed of PHP of just 20-30% could free thousands of machines to
be used for other purposes, to expand services to more users, or which could just be
turned off. Compiler optimization can even help save the environment.

Finally, compilers can be used in a vast range of tools to support programmers.
Type-analysis, call-graphs and pointer information can aid code viewers, program
understanding, integrated development environments (IDEs), program verification,
and bug-finding tools. These have long been available for popular languages such as
Java, but have been lacking for scripting languages because the frameworks for analysis
have been unavailable.

1.3 Terminology

Terminology related to scripting languages can be confusing, as the canonical imple-
mentation of a language often has the same name as the language. The problems of
canonical languages are discussed in great detail in Section 5. The Python commu-
nity often refers to the canonical Python implementation as CPython to avoid this
ambiguity.

In PHP, there are no existing conventions along these lines. In this dissertation I have
used ‘PHP’ to refer to the PHP language. The PHP language is defined by a canonical
implementation which can be downloaded from php.net. This implementation I
refer to as the ‘PHP system’. The phc compiler is another implementation of the PHP
language.

1.4 Attribution

Most research is built upon the foundation laid by others, and this dissertation is no
exception.

The phc front-end, which includes the scanner, parser, and the design of the AST, was
written by de Vries and Gilbert [2007]. They are also the authors of maketea [de Vries
and Gilbert, 2008], which generates code to support phc’s intermediate representations
and provides the tools for their visitation and analysis. This is discussed at a high-level
in Section 4.

http://www.php.net
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De Vries was also a co-author of Biggar et al. [2009], a journal version of which is
in preparation. This version is an earlier version of Chapter 5 in this dissertation.
De Vries also wrote the original code generation in phc. The HIR and MIRs (see
Section 4.2) were designed based partially on lowering passes which De Vries wrote.

Jimmy Cleary, a computer science undergraduate student at Trinity, worked as an
intern in our research group during the summer of 2009. During this time, he:

• reengineered the HSSA form (see Section 6.5.5), fixing a large number of bugs,
especially related to the dead-code elimination pass,

• fixed bugs in the if-simplification and remove-loop-booleans optimization passes,
discussed in Section 4.6.2,

• wrote a pass to gather statistics from the optimizer, and scripts to convert those
statistics into the graphs shown in Section 6.6.

The remaining work in this dissertation is mine. I:

• greatly expanded the lowering passes to handle a much larger portion of the
PHP language,

• designed and implemented the HIR and MIR, described in Section 4.2,

• meticulously detailed the eccentricities of the PHP language, described in Sec-
tions 4, 5.2 and 6.2,

• came up with the idea to link the interpreter into phc and the generated code,
described in Section 5,

• integrated the PHP system into the compiler, as detailed in Sections 4.5 and 5.4,

• rewrote the generated code to support more of the PHP language, and in a
manner which could be optimized,

• wrote all of the optimizations described in Section 5.4.5,

• performed the experiments and evaluation in Sections 5.7 and 6.6,

• wrote the static analysis and optimization framework described in Chapter 6,

• performed all remaining research described in this dissertation, including sur-
veying related work, and studying and describing the PHP language and PHP
system. This forms a large portion of this dissertation.
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1.5 Published Research

Parts of the research which appears in this dissertation have been published, are in
submission, or in preparation in the following venues:

Published in peer reviewed publications:

• P. BIGGAR and D. GREGG, One Representation to Rule Them All, PLDI ’09
FIT Session

• P. BIGGAR, E. DE VRIES and D. GREGG, A Practical Solution for Scripting
Language Compilers, SAC ’09: ACM Symposium on Applied Computing (2009)

In submission or preparation:

• P. BIGGAR, E. DE VRIES and D. GREGG, A Practical Solution for Script-
ing Language Compilers (Journal Version), Submitted to Science of Computer
Programming, July 2009

• P. BIGGAR and D. GREGG, Static Analysis for Dynamic Scripting Languages,
In preparation for submission to ACM SIGPLAN 2010 conference on Programming
language design and implementation

• P. BIGGAR and D. GREGG, PHP Experience Report (working title), In
preparation as a chapter in Static Single Assignment Book (working title)

Research talks:

• P. BIGGAR and D. GREGG, On the use of SSA with scripting languages,
Static Single-Assignment Form Seminar, Autrans, France (April 2009).

• P. BIGGAR and D. GREGG, Compiling and Optimizing Scripting Languages,2

Google, Mountain View, CA and Lawrence Livermore National Labs, Livermore,
CA (March 2009).

2 Available as a Google Tech Talk from youtube.com/watch?v=kKySEUrP7LA.

http://www.youtube.com/watch?v=kKySEUrP7LA
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1.6 Structure of this Dissertation

This dissertation has the following structure:

• Chapter 2 introduces scripting languages, their characteristics, and existing
research on their implementation.

• Chapter 3 introduces program analysis, and discusses existing research on alias
analysis, type analysis, SSA, combined analyses, analysis of scripting languages.

• Chapter 4 describes the structure of phc, design decisions made during its
development, and provides an experience report of creating a scripting language
compiler. This chapter includes work presented in “Compiling and Optimizing
Scripting Languages”, “One Representation to Rule Them All”, and “On the
use of SSA with scripting languages”, and to be published in “PHP Experience
Report”.

• Chapter 5 deals with compiling canonical languages—languages defined by a
single implementation. Scripting languages generally fall into this category.
This chapter describes the first compelling means to combine ahead-of-time
compilation with interpreted scripting languages. This chapter is based on “A
Practical Solution for Scripting Language Compilers”.

• Chapter 6 deals with static analysis of PHP, particularly for optimization, and
its implementation in phc. This builds on and corrects previous research on
PHP static analysis, and is the most complete static analysis to date for the
PHP language. This chapter is based on “Static Analysis for Dynamic Scripting
Languages”.

• Chapter 7 discusses my conclusions, potential future work, and remaining
challenges in scripting language compilation.



CHAPTER 2

Scripting Languages

This dissertation discusses creating a compiler for PHP, a popular scripting language.
A great deal of the information presented in this dissertation is applicable to other
scripting languages, such as Perl, Python, Ruby, Javascript and Lua. This chapter
provides background information on scripting languages, in particular discussing their
features, type systems and programming styles. It also discusses the research into
scripting language implementation, particularly run-time type-based optimizations
for dynamic languages.

2.1 Background

This dissertation discusses analysis and implementation techniques for a set of scripting
languages. In this section, I discuss the important features of languages in this subset.

The exact definition of a scripting language is somewhat unclear, as is the full set of
languages which fall into this category. An early use of the term scripting [Ousterhout,
1997] names some scripting languages, and explains their use and advantages, but
omits an attempt at a definition.

The simplest definition of a scripting language is a language designed or used princi-
pally to script, or drive the actions of a larger application. However, this definition is
flawed, because popular scripting languages are used for application development, and
many other languages have support for scripting.

The term ‘scripting language’ is commonly used to describe languages with a common
features set, discussed in this section. This is how the term is commonly used, and so
we too use this ‘definition’. In this dissertation, the term scripting language refers to
Javascript, Lua, Perl, PHP, Python, and Ruby, which are probably the most important
languages for large-scale scripting today. Other common scripting languages which
we do not discuss in this dissertation include Bash, Visual Basic, Tcl and ASP.

The term scripting implies a program which directs the actions of a larger program;
a common term for a scripting language is a glue language. There are many ways

7
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to script applications. For example, Javascript is most commonly used as a way to
manipulate HTML pages in a browser. The HTML pages are exposed to a Javascript
program via the Document Object Model [Keith, 2005]. A simple Javascript program
might check that all the fields of a web form are filled in before submission to the
server. More complex Javascript programs include email clients such as Gmail, or
word processors and spreadsheet packages provided by Google Docs.

2.1.1 Uses of Scripting Languages

The scripting languages discussed in this dissertation have much in common. In
particular, they are all designed and used for similar purposes, for scripting larger
C/C++ applications, for shell scripting in the Unix environment, and for writing web
applications. Table 2.1 shows the major uses of scripting languages, which languages
support the uses, and which ones were designed for it.

Language Embedding Shell scripts Web applications
PHP S S DP Facebook, Yahoo, Wikipedia
Perl SP DP SP BBC, New York Times
Ruby SP S SP Twitter
Lua DP S S
Python SP SP SP Google, YouTube
Javascript DP All of the above

Table 2.1: Popular scripting languages and how they are used; ‘Web applications’ indicates
a language is used for scripting web application, ‘Embedding’ indicates the language can be
embedded into C/C++ applications, ‘Shell scripts’ indicates it is used for shell scripting. D means
the language is designed for the indicated purpose, S means the indicated purpose is supported, P
means the language is popularly used for the indicated purpose.

Scripting language implementations can often be embedded into C or C++ programs,
to provide a scripting interface to an end-user. Lua is designed expressly for this
purpose, and it is estimated that over 50% of video games shipped with a scripting
environment use Lua.1 Muhammad and Ierusalimschy [2007] provide a comparative
analysis of these interfaces. Visual Basic is also used for scripting components of the
Windows operating system.

Scripting languages are often used for shell scripting: to manipulate the output of Unix
programs. Unix shells, such as bash, ksh and zsh are simple languages designed for
this purpose. Perl was also designed for this purpose, in particular to replace the

1 Mark de Loura surveyed approximately 100 ‘game executives’, published online at gamasu-
tra.com/blogs/MarkDeLoura/20090302/581/The_Engine_Survey_General_results.php.

http://gmail.com
http://docs.google.com
http://facebook.com
http://yahoo.com
http://wikipedia.com
http://www.bbc.co.uk
http://nytimes.com
http://twitter.com
http://google.com
http://youtube.com
http://www.gamasutra.com/blogs/MarkDeLoura/20090302/581/The_Engine_Survey_General_results.php
http://www.gamasutra.com/blogs/MarkDeLoura/20090302/581/The_Engine_Survey_General_results.php
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lower-level tools awk and sed. It offers very powerful facilities for manipulating the
output of external programs. Tcl also once filled this niche.

The largest and fastest growing area in which scripting languages dominate is in the
design of web sites and web applications. PHP is currently available on more than
20 million web servers. It scripts the output of databases based on user input from
HTTP forms. Ruby is also important in the area, using the Ruby on Rails framework.
Python and Perl are also often used for programming web sites. Table 2.1 shows
popular web applications built using each scripting language.

Finally, scripting languages are being used more and more for writing whole appli-
cations. Python in particular is being used for large applications, such as Mercurial,
SCons, BitTorrent and Bazaar.

2.1.2 Scripting Language Feature Overview

Most scripting languages have a single canonical implementation, which is interpreted.
The design of the languages and programs written in them often reflect this inter-
preted history; important language features include run-time code generation, a C API,
variable-variables, dynamic class hierarchies, and other features which are straight-
forward to implement in an interpreter. Table 2.2 shows exactly which features are
available in which scripting language.

Language Different
versions eval

Variable-
variables C API Duck

typing
First-class
functions

Dynamic
class

hierarchy
PHP X X X X X X
Perl X X X X X X X
Ruby X X X X X X X
Lua X X X X X X
Python X X X X X X X
Javascript X X X X X X

Table 2.2: Popular scripting language features; X indicates the feature is present in a language.

Scripting languages are often available in different versions. There are large differences
between Perl 4 and Perl 5, and between PHP 4 and PHP 5. Scripting languages
typically gain features over time, and often change semantics between major releases.
Most scripting languages are around 15 years old, and there are many features that
have changed between versions.

http://rubyonrails.org
http://mercurial.selenic.com
http://www.scons.org
http://www.bittorrent.com
http://bazaar-vcs.org
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The scripting languages we discuss in this dissertation are all imperative, dynamically
typed languages. No language we discuss requires or supports type declarations.2 Only
Perl even supports variable declarations.

Scripting languages all have facilities for manipulating the symbol-table, and for using
strings as program code, at run-time. This provides support for accessing variables by
name at run-time (variable-variables), as well as supporting the eval statement.

Scripting languages commonly include C APIs, which are part of the language. These
C APIs are used as foreign function interfaces, and to write the languages’ standard li-
braries. C APIs are discussed in more detail in Section 5, and compared by Muhammad
and Ierusalimschy [2007].

An idiomatic scripting language feature is table support: all scripting languages have
syntactic support for hashtables and use them as the principal data structuring unit.
In fact, Python is the only scripting language to differentiate between lists and tables.
The object models of Javascript, Lua, PHP, Python, Ruby are based on implementing
objects using tables. As a result, most scripting languages are duck-typed (duck-typing),
as discussed in Section 2.1.3.

From a language point of view, scripting languages store functions, method, modules,
and classes in tables (dynamic class hierarchy). The tables allow these features to be
replaced on the fly at run-time. Scripting languages also support first-class functions,
but their use is not nearly as common as in higher-order or functional languages such
as Scheme, Lisp, Haskell or OCaml. As such, scripting languages strongly resemble
older dynamic languages: Ruby, Python and Javascript are very similar to Smalltalk
and Self. However, PHP does not support dynamic class hierarchies, so we do not
discuss them further.

Finally, most scripting languages have strong support for string operations, important
for web application and shell scripting. Perl and Ruby both include syntactic support
for regular expressions.

2.1.3 Scripting Language Type Systems

Many of the features which make scripting languages different from other program-
ming languages relate to how they are typed. Informally, a language’s type system is a

2 Although PHP allows optional type annotations on function parameters, which are used for run-time
checking.
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means of specifying the values which are allowed in a language, and the operations
allowed on those values. The facets of a scripting language’s type system can be used to
classify the language, and a scripting language’s feature set is often affected by it’s type
system. Table 2.2 shows that the scripting languages we discuss are all dynamically
typed, duck-typed languages.

Dynamic Typing

Informally, dynamic typing means that types are associated with run-time values. This
is in contrast to static typing where types are associated with compile-time names such
as variables or class fields. Commonly this means that a variable in a statically typed
language may only hold values of a specified type, while a variable in a dynamically
typed language may hold a value of any type. Dynamic typing is also known as latent
typing.

The important difference between statically and dynamically typed languages is in
type checking. Statically typed languages perform type checking statically, attempting
to prevent errors before the program is run. Dynamically typed languages instead
perform type checks at run-time. Arguably, as dynamic typing is used to mean
dynamic checking, ‘dynamic typing’ is a misnomer, but the term is in common
use [Pierce, 2002].

Duck Typing

Dynamic typing in scripting language is also used to support duck typing. Duck typing
is better described as a programming style than a type system, but it relies on dynamic
language features commonly found in scripting languages’ type systems.

Duck typing, as a term, comes from the Python community, although the concept is
older. It is attributed to Alex Martelli, in a post to comp.lang.python:

“In other words, don’t check whether it IS-a duck: check whether it
QUACKS-like-a duck, WALKS-like-a duck, etc, etc, depending on exactly
what subset of duck-like behaviour you need to play your language-games
with.”

The argument is that although it is possible to dynamically check an object’s class—in

http://groups.google.com/group/comp.lang.python/msg/e230ca916be58835
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the same manner as a nominal type system [Pierce, 2002, Section 19.3]—a better
programming style is to instead rely on the object’s run-time behaviour. The type of
the object therefore depends on its current fields and methods, at the time that the
object is used. As a result, the type system may support changing an object’s fields
and/or methods at run-time, including adding and removing them on a per-object
basis.

Weak Typing

Weak typing is ostensibly the opposite of strong typing, though it has no formal
definition. Both these terms are heavily overloaded, and it is not clear what they
mean [Cardelli, 2004].

Weak typing is often considered to mean that values may be implicitly converted
between scalar types, a definition commonly used in the scripting language commu-
nity. However, other people use it to mean the same as dynamic typing, that unsafe
conversions are allowed [Cardelli, 2004], that type conversions with an undefined
meaning are possible, or that type checks are omitted. It is also used to mean that it is
possible to evade the type system, for example, using C casts. Occasionally, it is used
to imply that one language is inferior to another.

The popular meaning in the dynamic language community (implicit conversions) is
perhaps a poor definition. Casts in most dynamic languages create new values from
existing values, and are therefore safe. It is not possible to view the bits of a value
of one type as another, as it is in C, where there are loopholes in the type system.
Similarly, implicit conversions are well defined at run-time (though they are rarely
specified in prose, a separate problem).3

Chris Smith’s definitions4 ring true with how I’ve most often seen the terms used:

“Strong typing: A type system that I like and feel comfortable with.”

“Weak typing: A type system that worries me, or makes me feel uncom-
fortable.”

Overall, because the term is not defined unambiguously, it is best not to use it. In this

3 Thanks to Darren New for an enlightening discussion on this topic.
4 http://www.pphsg.org/cdsmith/types.html
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dissertation, I omit the term ‘weak typing’, and instead refer to ‘dynamic typing’ or
‘implicit type conversions’ as necessary.

2.1.4 PHP

PHP was originally created as a domain specific language for templating HTML pages.
PHP is a short form of its original name ‘Personal Home Page/Forms Interpreter’. It
was since renamed to ‘PHP Hypertext Preprocessor’.

PHP has gone through several versions since its release in 1995. In this dissertation,
we discuss PHP 5, the most recent version. The PHP language is described in detail in
Section 6.2. Its canonical implementation is described in Sections 5.2 and 5.5.

The first versions of PHP were implemented in Perl. PHP’s major influence is Perl,
and it has similar syntax and semantics, including a dynamic type system with implicit
type conversions, powerful support for hashtables, and garbage collection. PHP
programs are typically web applications, and PHP is tightly integrated with the web
environment, including extensive support for databases, web-servers, and HTTP and
string operations.

PHP has a dynamic type system, with symbol-tables based on hashtables. PHP is not
a fully duck-typed language. In particular, its classes are closed, and an object may not
change its class once it is instantiated. While its fields are malleable, its class hierarchy
is static, and an object’s methods may not be changed at any time.

PHP is a hybrid object-orientation/procedural language, due to its history. Early
versions of PHP did not support object-orientation, which was grafted into PHP 3.
PHP 5 changed the object model so that objects were not copied by default. This
legacy is still visible in the current language; in particular PHP references, discussed
in detail in Section 6.2.11.

2.2 Run-time Type Feedback

A small amount of research has been performed on scripting language implementa-
tion. Most research on scripting language implementation has the aim of providing
experience reports, instead of creating new implementation techniques. Section 5.3
describes a large number of scripting language implementations. This section focusses
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instead on virtual machine research for dynamic languages, particularly in the area of
feedback-based type analysis.

Run-time type feedback is used by just-in-time (JIT) compilers [Aycock, 2003] to
optimize generated code based on type information collected at run-time. JIT compil-
ers compile source or bytecode to native executable code at run-time. That is, their
run-time and compile-time phases are intermingled. As a result, they can collect type
information during execution, which can be used for optimization at compile-time.
There are a number of run-time type feedback (hereafter type feedback) techniques
available.

2.2.1 Research on the Self Programming Language

The Self research project [Ungar and Smith, 1987] produced three generations of run-
time compilers, all of which used type-based optimizations. Many of Self’s features are
dynamic, and the Self JIT compilers were designed to execute these features quickly.

The first generation compiler [Chambers and Ungar, 1989] JIT compiled a method at
a time. It optimized a significant amount of Self’s dynamic features using compile-time
type-inference. The type inference algorithm used was iterative type analysis [Palsberg
and Schwartzbach, 1991], discussed in Section 3.4.2.

As a method’s dynamic dispatch is expensive, it used inline caching to speed up
the invocation. In this scheme, a call-site was backpatched with the address of the
compiled method after compilation. The compiled method first performed type
checks to ensure that it had the correct receiver—if not, the call was redirected towards
the general dispatch mechanism. Agesen and Hölzle [1995] report this optimization
to be successful 95% of the time. The first compiler could also inline small methods,
and replace field accesses (which would typically involve a method invocation) with
simple dereferences.

A number of other techniques were developed to support compilation based on types.
If a variable could have multiple types after a control-flow join, message splitting is
used to duplicate statements after the join. This allows variables to have single types
in each statement, instead of merging the type information.

Type prediction compiles based on the idea that some methods are nearly always called
with the same types. Arithmetic statements, for example, are called on integers 90%
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of the time, according to benchmarks [Chambers and Ungar, 1989].

Finally, maps [Chambers et al., 1989] allow efficient implementation of duck-typing.
As object fields are not declared, but added and removed at run-time, it is impossible
to have a static object layout. To rectify this, objects are implemented using maps.
Maps have a known number of fields, and the fields can be accessed with a single
dereference. If a field is added to an object, its map (and therefore its type) changes.
As a result, maps allow duck-typed languages to be compiled efficiently, in a similar
fashion to class-based languages such as Smalltalk.

The second generation Self compiler [Chambers and Ungar, 1990] added a number of
extra optimizations, including extended splitting. This was an extension of message
splitting which allowed whole paths to be split. In particular, this had large advantages
for the quality of type information available to the compiler in loops.

The third generation Self compiler [Hölzle and Ungar, 1994] used significantly more
type feedback than before. Run-time types are recorded using a Polymorphic Inline
Cache (PIC) [Hölzle et al., 1991]. This is an extension of an inline cache which can
store more than one type.

Based on these run-time types, the compiler can optimistically inline a called method.
Techniques from previous Self compilers are also improved with better type infor-
mation. The compiler also recompiles code over time, based on improved type
information, a technique also used in mixed-mode interpreters [Suganuma et al.,
2002].

2.2.2 Comparison with Type Analysis

Type analysis, discussed in Section 3.4, is a complementary technique to run-time
type feedback. Type analysis is typically performed ahead-of-time, and can lead to the
removal of type checks and dynamic dispatch. In a perfect world, compile-time type
analysis would lead to perfectly efficient code. In practice, because type analysis is a
static technique, it must be conservative, and often cannot compete with the accuracy
of run-time type feedback. However, run-time type feedback has a run-time overhead,
when compared to type analysis.

Agesen and Hölzle [1995] implemented both type analysis and run-time type feedback.
Their experiments report that both techniques lead to the inlining of over 95% of
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method dispatches. However, type-feedback was determined to be significantly more
powerful for integer programs. In Self, arithmetic operations between two integers
can lead to overflow, in which case the type of the result of the operation would be a
BigInteger. As such, pure type analysis cannot infer that the result of the operation is
an integer. However, run-time type feedback can discern this. As a result, in Agesen
and Hölzle’s experiments, programs compiled with type-inference ran 70% slower
than those compiled using type feedback.

2.2.3 Application to Scripting Languages

Compilation techniques designed for Self were mostly aimed at eliminating dynamic
dispatch and efficiently compiling objects in a language where all types are objects.
These optimizations are also important for dynamic scripting languages. Recent
dynamic language implementations have reused the optimizations. V85 uses hid-
den classes, a run-time analysis equivalent to Self’s maps, to efficiently JIT compile
Javascript programs. Polymorphic Inline Caches are used by SquirrelFish Extreme6

for the same purpose.

Scripting languages also use type analysis to generate efficient code for numeric
computation. Specialization is a technique for efficient compilation of numeric values,
and traces extend the granularity over which specialization can be performed.

Specialization

Psyco [Rigo, 2004] is a JIT compiler for Python which uses specialization. Special-
ization means compiling methods specially based on the types or values of their
arguments. For example, a function called with two integer arguments would be
compiled differently to the same function called with two floating point arguments.

The Psyco specializer differs from previous work, in that it does not use profiling or
statistics. Instead, it runs completely lazily, compiling a function any time it is called
with a new set of types. In addition, it also compiles a function lazily, stopping half-
way, waiting until more run-time information information about a value is available
by executing the function, and then continuing compilation. It then specializes based
on this progressively more specific information about run-time types.

5 V8’s hidden class implementation is described at code.google.com/apis/v8/design.html.
6 See http://webkit.org/blog/214/introducing-squirrelfish-extreme/.

http://code.google.com/apis/v8/design.html
http://webkit.org/blog/214/introducing-squirrelfish-extreme/
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Traces

A trace-based JIT compiler profiles a program, gathering type information at run-time.
It uses this type information to optimize the generated code according to the actual
types of the program. As such, it is very similar to the type-based feedback found
in Self compilers, as well as Psyco’s specialization. The important distinction of a
trace-based JIT compiler is that it does not necessarily use functions or methods as its
compilation unit.

TraceMonkey [Gal et al., 2009] is a trace-based compiler for Javascript, which is part
of Mozilla Firefox. It records frequently executed (hot) sequences of instructions and
compiles them to native code. This sequence of instructions—the trace—forms a loop,
which may cross method boundaries. A trace has a single type associated with each
variable in the program. The compiler speculates that this set of types will be static
for future iterations, but it cannot be certain. As such, it must add guards at various
points to exit the trace. These side-exits may themselves become hot, and be combined
into an existing trace to form a trace-tree. A single tree may have many branches,
depending on how mutable variables types are in the program. TraceMonkey reports
speedups of 2–20x over the existing bytecode interpreter.

Type-based Interpreters

Although these techniques are typically applied to JIT compilers, type specialization
can also be performed in interpreters. Dynamic interpretation [Williams, 2009] is a
technique to record type information in a Dynamic Intermediate Form (DIR). It was
implemented for the Lua scripting language.

The DIR is a combined control-flow and type-flow graph. Its nodes are bytecode
instructions, and its edges are either control-flow or type-flow edges. Type-flow edges
allow the interpreter to build complete program paths on which all the types of all
variables are known. Each of these paths is built at run-time based on the concrete
types in the program.

A DIR node is built based on the complete set of types before the statement. For each
statement, it is known if they may cause type-transitions for any variable. For each
type transition which occurs in practice, a node has a successor. Some nodes, such as
arithmetic instructions, have only one successor. Hashtable accesses may return any
type, so they have a separate successor for each of the nine basic Lua types.
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After a statement is executed, the type of its result is used to determine its successor.
If its successor node is not known, then a node with the correct instruction and set of
types is sought. If such as node is not found, a new node is created. Each node stores
the full set of types at that program point, so that it may be searched for, and so that it
will know the types to search for in its successor. As long as there are no type changes
in the program, no new nodes will be built.

Based on this type feedback, the dynamic interpreter uses type-specialized bytecode.
The types of an operand are known when the node is built. The next time the node is
executed, the operands are guaranteed to have the same types, and so type-checks are
avoided. This technique is particularly effective on arithmetic statements, which have
traditionally been slow to interpret. In his experiments, Williams reports a speedup
of 2.6x in the best case. In the average case, their speedup is 1.45x. They achieve
particular speedups on benchmarks implementing numeric algorithms and loops, but
not on those that use method dispatch.

2.3 Summary

This chapter provides background information on scripting languages. It describes
their feature set, how they are used, and their type systems. It discusses important
literature on the implementation of dynamic languages, particularly related to run-
time, type-based feedback. It compares it to type-analysis, and discusses how it is used
in modern scripting languages.

The major focus of this dissertation is combining existing scripting language imple-
mentations with ahead-of-time static analyses. The next chapter discusses the latter in
more detail.



CHAPTER 3

Program Analysis

Program analysis is a technique for determining properties of a program. In this
chapter, we discuss static program analyses. A static program analysis attempts
to determine program properties ahead-of-time. In Chapter 2 we discussed some
techniques which use run-time, or dynamic, analysis.

This chapter begins by introducing dataflow analysis. Alias analysis is discussed in
great detail, and type analysis, combined analysis, and the SSA form are all discussed,
These analyses form the basis for the static analyses we develop in Chapter 6.

3.1 Dataflow Analysis

The static analyses in this chapter can typically be considered to be dataflow analyses.
A dataflow analysis is one which statically models the flow of values in a program at
run-time.

A dataflow analysis is formulated over a control-flow graph. A control flow graph (CFG)
is built for each function in a program, and is a graph in which the nodes are basic
blocks, and the edges represent the function’s control-flow. A basic block is a maximal
list of consecutive statements with one entry point and one exit point. The CFG has
entry and exit blocks for the entry and return points of the function.

Analyses are often set-based, that is, they propagate sets of information. A dataflow
analysis is classified by how the sets are propagated. An analysis is either forwards or
backwards. A forwards analysis propagates program information from a block to its
successor. A backwards analysis propagates program information from a block to its
predecessor. From here on, we shall discuss forwards analyses.

At each block, an analysis combines its predecessors’ sets, adds and removes elements
from the set, and passes the sets to its successors. The predecessors sets are merged by
either set union or set intersection. For each block, gen and kill sets are created, which
add and remove information from the set. This process is typically organized using
transfer functions, which specify which additional items should be killed and which
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additional items should be added to the sets.

The gen and kill sets are used to statically approximate the run-time behaviour of a
statement. The components of a statement which are mapped into those sets are called
lvalues and rvalues. An lvalue is value which may be written to during a statement,
and an rvalue is a value which may be read from during a statement.

As a concrete example, consider a reaching definition analysis [Aho et al., 2007, Section
9.2.4]. Reaching definitions at a point in the program are definitions whose values
reach that program point. It is a forwards analysis, propagating sets of definitions
from blocks to their successors.

To begin the analysis, all blocks are initialized to the empty set. Blocks have both input
(IN) and output (OUT) sets. A block’s IN set is the set union of all of its predecessors’
OUT sets. A block’s OUT set is determined with the following transfer function:

OU T =GEN ∪ (I N \KI LL)

GEN are the solutions generated in a block. In this example, they are the set of
definitions created in the block. The KILL set contains the definitions invalidated by
this block.

The transfer functions are iteratively applied to all blocks. When no solutions have
changed, the algorithm is said to have reached a fix-point, that is, no solutions changed.
This is often implemented using a worklist algorithm, in which the successors of
changed blocks are added to a list to be processed again. Most static analyses can be
expressed using variations on this framework, even if they do not use sets.

In the next section, we look at alias analysis, an application of dataflow analysis which
is central to this dissertation.

3.2 Alias Analysis

Alias analysis is a program analysis aimed at discovering program properties related to
aliasing, defined by Landi and Ryder [1991]:

“Aliasing occurs at some program point during program execution when
two or more names exist for the same location.”
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A great deal of research over the last 20 years has been dedicated to the research of pro-
gram analyses to detect aliasing. Alias analysis is related to points-to analysis [Emami
et al., 1994], pointer analysis [Hind and Pioli, 2000], mod-ref 1 or side effect analy-
sis [Landi et al., 1993] and may-alias information [Cytron and Gershbein, 1993]. In
this dissertation, we shall refer to all of these as alias analysis, as the overlap between
them is so great that it is not worth distinguishing between them for our purpose.
Alias analysis also has close ties to escape analysis (see Section 3.2.3) and shape analysis
(see Section 3.2.5).

Powerful alias analysis techniques became important due to the interest in analysing
C and C++ programs. As a result, the study of alias analysis can be roughly split into
four eras:

1. Prehistory

2. Ascendency: The formulation of important techniques, during the 1990s.

3. Diversion: A short time with a lot of research into escape analysis

4. Scalability: Recent research has focussed on scaling alias analysis to millions of
lines of code

3.2.1 Pre-history

Pre-history refers to early research which shaped the development of alias analysis. A
number of the important techniques described in Section 3.2.2 were developed during
this time.

Work on alias analysis evolved from earlier work on Fortran. Fortran’s memory
model is significantly less powerful than that of C and C++, and it restricts the ability
of the programmer to create aliases. As a result, Fortran did not require powerful alias
analysis techniques. As research into C programs became more important, existing
techniques of analysis were used as building blocks.

A significant aim of this work was to analyse heap memory allocated in a program,
in order to apply scalar optimizations and allow reuse of allocated memory [Chase
et al., 1990, Jones and Muchnick, 1982, Larus and Hilfinger, 1988]. Typically, these

1 Modification/Reference analysis.
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analyses operated on a graph of dynamically allocated objects, building the graph as
the program was analysed.

The major contribution of this era was creating the building blocks that were used
later on. The major focus of the research from this era was developing techniques for
naming different objects created at the same allocation site, which is similar to the
goals of modern alias analyses. Among a number of important developments was the
ability to identify recursive structures such as linked-lists [Jones and Muchnick, 1982].
Larus and Hilfinger [1988] showed how to model strong updates when an analysis
could prove that a variable is killed, which is the basis for modern flow-sensitive
algorithms. Interprocedural analysis [Chase et al., 1990, Cooper and Kennedy, 1988,
1989] and k-limited [Horwitz et al., 1989, Jones and Muchnick, 1979, Larus, 1989,
Ruggieri and Murtagh, 1988] naming schemes, were both investigated, which are
closely related to context-sensitivity and object-sensitivity, discussed in the next section.

This early work also provides a foundation for shape analysis, which attempts to
identify recursive data structures such as trees and linked-lists [Jones and Muchnick,
1982]. Escape analysis—statically identifying the scope of heap-allocated memory—
descends from work to detect the lifetime of objects in a program [Ruggieri and
Murtagh, 1988].

3.2.2 Ascendency

The second era of alias analysis research began with attempts to model the aliasing
behaviour of C. It can be considered to start approximately with Landi and Ry-
der’s [1991] classification research, in particular noting the complexity of analysing C
as compared to Fortran. The era characterized largely by the systematic exploration
of the parameters of powerful alias analyses.

A number of important alias analysis algorithms were developed in this time, with
similar approaches. For example, we describe Andersen’s [1994] analysis:

• Considering all statements in the program, identify their effect on the aliases be-
tween memory locations in the program. Each memory location is represented
with a name, perhaps its variable name concatenated with function in which it
is declared. Typically, a statement will add an alias between two names, or do
nothing.
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• Given all the aliases, solve the solution, creating a single set of aliases for the
whole program. The result is a graph with edges between names which are
aliases.

Burke et al.’s [1994] and Choi et al.’s [1993] algorithms are superficially different,
using dataflow-style algorithms to iterate through the statements of the program,
updating a solution set of aliases as they proceed. However, their net result is very
similar: one or more graphs with names for nodes, and edges indicating possible aliases
between the names, at particular points in the program.

The major analyses of the era differ in a number of important parameters, which affect
their performance (this is, the speed of the analysis) and precision:2

naming-schemes: Many alias analysis algorithms differ in how they name memory
locations. Different naming techniques strongly affect the speed and precision
of an analysis. If a single name can refer to more than one piece of memory,
that memory is abstract; otherwise it is concrete.

Two important components which affect how naming schemes are used are
context-sensitivity and object-sensitivity.

context-sensitivity: Interprocedural analysis algorithms typically use either a
call-string or a functional approach [Sharir and Pnueli, 1981]. A functional
approach attempts to create a model of a function which takes inputs and
generates outputs. A call-string approach names objects based in some way
upon the callgraph at the point of allocation.

For example, if memory is allocated in function foo, on line 12, a context-
insensitive approach might name the memory ‘foo:12’. If foo was called
from two different functions, two pieces of memory would have the same
name. In a context-sensitive approach, the two callers bar1 and bar2 would
lend their names to the memory. The result would be two pieces of
memory which do not alias, namely ‘bar1:foo:12’ and ‘bar2:foo:12’.

Context-sensitive algorithms use calling context in their analyses, typically
using the call-string approach. This allows it considers two pieces of mem-
ory from the same allocation site to be different for two different callers.
Fully context-sensitive algorithms can take exponential time [Landi and

2 Different analyses use different names for the same ideas; we try to use accepted terminology from
existing survey papers [Hind and Pioli, 2000, Ryder, 2003].
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Ryder, 1992], but context-insensitive algorithms can be much less precise,
especially in the presence of factory methods (including C ‘constructors’).
In general, the solution is to use a compromise, using only a small part of
the call-stack in the name.

object-sensitivity: One important algorithm [Emami et al., 1994] chooses
a single name to represent the entire heap, analysing only a function’s
local variables. Others use the object’s static class—or concrete class if
known—combining every object of the same type. Compared to the
common technique of choosing a separate name for each allocation site,
these techniques offers some performance benefits. With only one name
per class, the total number of names may be significantly lower than using
one name per allocation site.

flow-sensitivity: A flow-sensitive algorithm considers program flow, with new def-
initions overriding old—these new definitions are strong-updates or killing-
definitions. Flow-sensitive algorithms must iterate until reaching a fix-point,
reducing performance, especially when combined with context-sensitivity. A
flow-insensitive algorithm removes any ordering between statements in a func-
tion, and can only use weak-updates, sacrificing precision for performance.

field-sensitivity: Objects with fields can be analysed by representing each field indi-
vidually for precision, or by limiting the number of fields represented (possibly
to just one) for speed.

directionality: Given an assignment statement, an analysis using unification [Steens-
gaard, 1996] will consider the lvalue to alias the rvalue, thereby sharing alias
sets. An analysis which uses inclusion [Andersen, 1994] will only consider that
the rvalue’s alias set must be a subset of the lvalue’s set. Therefore inclusion is
more precise, but unification has greater performance, due to its symmetry.

representation: The size of the result set of an alias analysis can depend on its repre-
sentation. Alias pairs [Landi and Ryder, 1991] consist of tuples with a list of
names which can alias. They represent the tuple 〈p,q〉 separately from 〈*p,*q〉.
The compact representation [Choi et al., 1993] instead represents edges between
names, in a similar fashion to a points-to [Emami et al., 1994] representation.

solution size: As a result of the other parameters, the number of solution sets varies.
Analyses may have one solution for the whole program, one for each function,
or one per program point.
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The major analyses of the era vary in these parameters.

Both Andersen’s [1994] and Steensgaard’s [1996] algorithms are context- and flow-
insensitive, modelling only stack variables. They both use only one solution for the
whole program, but differ in their directionality: Andersen’s algorithm is inclusion-
based; Steensgaard’s is unification-based. The result is that Steensgaard’s algorithm
runs in linear time compared to O(n3) complexity for Andersen’s. Both algorithms’
run-times are very short for programs less than 3000 lines, but Andersen’s can be
10-100 times slower for large programs (6000-25000 lines) [Shapiro and Horwitz, 1997,
Section 3.2]. The precision of the algorithms is also very different, with Andersen’s
being significantly more precise [Hind and Pioli, 2000, Section 5].

Burke et al.’s [1994] algorithm is flow- and context-insensitive, and requires one
analysis set per function. Its major difference from Andersen’s algorithm is that it is
interprocedural. This makes the analysis more accurate because it does not consider
unreachable functions, and uses a variable’s scope in its analysis. However, this appears
to make little difference to the precision in practice, nor does it greatly affect the
algorithm’s run-time [Hind and Pioli, 2000, Sections 5.1 and 5.6].

Choi et al.’s [1993] algorithm is flow- and context-sensitive and requires two solution
sets per program point (control-flow graph node). However, it is only slightly more
precise than Burke et al.’s algorithm, but an average of 2.5 times slower [Hind and
Pioli, 2000, Section 5]. Its representation is compact pairs, which are more compact
than alias pairs. Compact pairs only represent basic aliases, deriving further alias
relationships through transitivity and commutitivity. For example, the pairs 〈*a, b〉
(*a aliases b) indicates that a points-to b. Combined with the pair 〈*b, c〉, we could
derive the set 〈**a, c〉. This is represented explicitly using alias pairs, but compact
pairs omits this set, instead representing it implicitly.

Points-to analysis [Emami et al., 1994] differs from these algorithms in that it is fully
context-sensitive, and that it only attempts to model stack locations. It models all heap
allocations with a single heap node. Its representation is a points-to graph which is
similar to compact pairs [Choi et al., 2003]. It also adds the idea of certainty—whether
an alias is definite or possible. Unfortunately, it does not seem that points-to analysis
has been compared directly to other major analyses. However, the techniques of the
analysis have certainly been exported.
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Simpler Forms of Alias Analysis

Address-taken alias analysis keeps all stack-locations which have their address taken (in
the sense of the C code: p = &x;) in a single set. The set also contains all heap names
and global variables. This form of analysis is simple, easy to implement, and very fast,
being linear to the size of the program. However, it is significantly less precise than
Steensgaard’s [1996] analysis.

Type-based alias analysis [Diwan et al., 1998] uses a language’s strong typing rules to
restrict analyses. It relies on the fact that two memory locations cannot alias if their
types are not compatible. Furthermore, two fields of the same object are not the
same, even if they have the same type. These rules can be combined with a simple
analysis such as Steensgaard’s, but the improvement is not significant [Diwan et al.,
1998, Section 3.3].

3.2.3 Divergence

In the late 1990s, the interest in pointer analysis coincided with the explosion of
interest in Java. The success of Java from its launch in 1995 led to a huge interest in in-
dustry, undergraduate teaching and research material. In the field of program analysis,
it kick-started a resurgence of JIT compiler technology, and led to the development of
advanced garbage collectors. It also led to the development of escape analysis.

Escape Analysis

Escape analysis algorithms attempt to statically detect the lifetime of objects. The
simplest use of escape analysis is to allow objects to be allocated on the stack instead
of the heap, but common optimizations include synchronization removal and scalar
replacement of aggregates [Muchnick, 1997].

Escape analysis was first designed to analyse LISP [Park and Goldberg, 1991, 1992,
Ruggieri and Murtagh, 1988]. The research was extended to allow optimizations on
Java [Blanchet, 1999, Bogda and Hölzle, 1999, Choi et al., 1999, Gay and Steensgaard,
2000, Whaley and Rinard, 1999]. The techniques used for these optimizations were
very similar to existing algorithms for alias analysis.

Choi et al. [1999] create a connection-graph, which is very similar to the points-to
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graph [Emami et al., 1994]. Each object in the graph is marked according to how far
it escapes from the function in which it is defined:

NoEscape: The object does not escape the function in which it was allocated. This
means it is not reachable from an object returned from the function, any pa-
rameter to the function, any object in global scope, or any object in a separate
thread. However, it may be reachable from callees of its allocation function.

A NoEscape object may be allocated on the stack. This is designed to avoid
memory allocation and deallocation, by allocating it on the stack using alloca,
which is automatically freed upon popping the function’s stack frame. Objects
allocated on the stack in this manner will also see improvements in their cache
locality. Stack allocation is a prerequisite for exploding an object’s fields into
scalar registers, known as scalar replacement of aggregates or object explosion.

ArgEscape: An object which ArgEscapes may escape its allocating function, but it
never escapes the thread in which it was allocated. This allows synchronization
optimizations to be performed on the object. The simplest optimization is
to remove the synchronization header from the allocated object, reducing the
run-time memory usage. However, in Java it is also possible to remove calls to
synchronization primitives, and to replace standard strings and collections with
lock-free versions.

In research which performed both stack allocation and synchronization op-
timizations, the synchronization optimizations were typically much more
successful [Whaley and Rinard, 1999, Sections 8.3 and 8.4] and useful [Choi
et al., 1999, Section 8.3].

GlobalEscape: Objects which escape globally are the most conservative case, and are
not suitable for optimization.

Although the main optimizations allowed by escape analysis are stack allocation and
synchronization removal, it can also be used for pre-tenuring in a generational garbage
collector [Jump and Hardekopf, 2003]. This allocates objects with long-lifetimes in
the older generations of the garbage collector, as it is expected that the objects will
otherwise need to be moved there from a younger generation.

Despite the early promise of escape analysis, interest died away relatively quickly, for a
combination of reasons. As the major application of escape analysis was optimization—
as opposed to program understanding for example—the practicality of the optimiza-
tions was paramount. However, escape analysis requires whole-program optimization,
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which is made extremely difficult by Java’s dynamic class loading3 [Liang and Bracha,
1998]. In addition, the analyses are typically expensive—Choi et al.’s intraprocedural
analysis is O(N 6), though they are expected to be reduced to O(N 3) [Choi et al., 2003,
Appendix A] in practice.

Although escape analysis was expensive, the speedups due to it were not large. Choi
et al. [1999] provided both stack allocation and synchronization removal, for a median
speed improvement of 7%. More importantly, however, the stack allocation benefits
which were measured in early analyses were predicated on relatively poor memory
management systems. Objects were allocated on the stack using alloca, a cheap
operation, and were deallocated for free. However, copying garbage collectors achieve
this speed for many more objects: all allocations use a bump, with the same cost
as an alloca, and objects which die quickly and are not copied are deallocated for
free. Guyer et al. [2006] note that “it is unlikely that any technique can beat the
performance of copying generational collection on short-lived objects”. Moreover,
stack allocated objects risk increasing the lifetime of an object, actually increasing the
memory usage of a program.

3.2.4 Scalability

Modern alias analysis techniques have been focussed on the speed and scalability
of alias analysis. The aim of analysing millions of lines in a reasonable amount of
time and space has long been an important goal. Recent research has achieved many
important goals in this area.

One of the most important designs in alias analysis is that of Andersen [1994], who
used a constraint-based approach for his analysis. A constraint-based approach splits
the analysis into two parts: the first generates constraints on pointers in the program,
the second applies a constraint solver to generate a solution. Dividing the analysis
into two parts has enabled significant improvement to both the speed and the scope
of the analysis.

Andersen’s analysis uses inclusion constraints, which have natural graph representa-
tions, but typically did not scale past small- to medium-sized programs. Inclusion
constraints are important for other program analyses, notably type inference [Palsberg
and Schwartzbach, 1991]. Fähndrich et al. [1998] were the first to realize that graph

3 Choi et al.’s research [Choi et al., 1999, 2003] was implemented in a static compiler for Java [IBM
1997].



3.2. Alias Analysis 29

optimization techniques could increase the speed of solving inclusion constraints
by orders of magnitude. Later work further increased the performance of the tech-
niques [Hardekopf and Lin, 2007, Heintze and Tardieu, 2001, Pearce et al., 2007,
Rountev and Chandra, 2000, Su et al., 2000], as well as extending their range to be
field-sensitive [Pearce et al., 2007]. These techniques are useful in practice, and are
currently implemented in gcc [Berlin, 2005].

While speeding up Andersen’s analysis is important, so too is extending it to be both
flow- and context-sensitive, while remaining useful in practice. Both speed and size
considerations are important, and both were largely solved. In considering size, the
most important development was the use of Binary Decision Diagrams (BDDs) [Bryant,
1992]. BDDs are efficient DAG-based representations of boolean functions. They
allow for duplicated solution sets to be represented in significantly less space than a
naive implementation. There have been a number of investigations into the use of
BDDs for alias analysis, which have pointed to significantly reduced memory usage in
practice, for context-sensitive analysis [Berndl et al., 2003, Whaley and Lam, 2004].
Hardekopf and Lin [2009] have extended the use of BDDs to flow-sensitive analysis.

Following the success of inclusion constraints, the Saturn project [Aiken et al., 2007]
investigated the use of other constraint solving systems. Hackett and Aiken [2006]
use a boolean constraint solver to represent a fully flow- and context-sensitive analysis,
which is partially path-sensitive. While they do not directly compare precision or
analysis run-time with other scalable approaches, their results indicate that hundreds
of thousands of lines of code can be analysed in reasonable time.

3.2.5 Shape Analysis

Shape analysis is a means of detecting the shape of recursive data structures. Much
of the pre-history of alias analysis comes from attempting to derive information
about the shape of structures [Chase et al., 1990, Jones and Muchnick, 1982, Larus
and Hilfinger, 1988]. Shape analysis can be considered a more precise form of alias
analysis. Shape analyses are able to detect structures such as lists, trees, DAGs or cyclic
graphs [Ghiya and Hendren, 1996], and can detect destructive techniques such as
reversing a list [Sagiv et al., 1996].
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3.3 Static Single Assignment Form

Static single assignment (SSA) form provides an efficient intermediate representation
for program analysis [Cytron et al., 1989, 1991]. It was introduced as a way of
efficiently representing dataflow analyses.

SSA uses a single key idea: that all variables in the program are renamed so that each
variable is assigned a value at a single unique statement in the program. From this key
idea, SSA is able to provide a number of advantages over other techniques of dataflow
analyses:

Factored use-def chain: With a def-use chain, dataflow results may be propagated
directly from the assignment of a variable to all of its uses. However, a def-use
chain requires an edge from each definition to each use, which may be expensive
when a program has many definitions and uses of the same variable. In practice,
this occurs in the presence of switch-statements. SSA factors the def-use chain
over a φ-node,4 avoiding this pathological case.

Flow-sensitivity: A flow-insensitive algorithm performed on an SSA form is much
more precise than if SSA form were not used. The flow-insensitive problem
of multiple definitions to the same variable is solved by the single assignment
property. The allows a flow-insensitive algorithm to approach the precision of a
flow-sensitive algorithm.

Memory usage: Without SSA form, an analysis must store information for every
variable at every program point. SSA form allows a sparse analysis, where an
analysis must store information only for every assignment in the program. With
a unique version per assignment, the memory usage of storing the results of an
analysis can be considerably lower than using bit-vector or set-based approaches.

Research on SSA form progressed quickly initially, with many important algorithms
being adapted to the SSA form, including constant propagation and dead-code elimi-
nation [Wegman and Zadeck, 1991], variable equality [Alpern et al., 1988] and value
numbering [Rosen et al., 1988]. Many other important optimizations have also been
adapted, including partial-redundancy elimination [Chow et al., 1997, Kennedy et al.,
1999], type inference [Lenart et al., 2000] and value-range propagation [Patterson,
1995]. Important research was also performed to provide more precise or efficient

4 ‘phi’
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SSA construction algorithms [Aycock and Horspool, 2000, Brandis and Mössenböck,
1994, Briggs et al., 1998, Das and Ramakrishna, 2005, Sreedhar and Gao, 1995], and a
means to iteratively reconstruct the SSA form after program transformation [Choi
et al., 1996].

3.3.1 SSA Form and Alias Analysis

SSA form is principally designed to optimize scalar variables. As a result, there have
been many approaches to adapting SSA form for the aliasing which can be found in
many C and C++ programs.

In the original SSA research [Cytron et al., 1991, Section 3.1], aliasing was already
considered, and arrays, structures, and implicit references are all discussed. The
techniques they provide are simple extensions to a scalar SSA form. Pointers to arrays
or structures are treated as scalar values – this allows Java programs to be converted to
SSA form without extension. Arrays are treated as a single scalar value. This safely
represents an array in SSA form, but the representation is opaque, and it is not possible
to analyse through arrays with this scheme. Their scheme provides Update and Access
operators to ensure that arrays remain live through multiple assignments. Structures
are treated the same as arrays, with the exception that it may be possible to treat each
field of a structure as a separate scalar value.

In order to handle aliasing, they suggest modelling the entire heap as an single node,
because it should still be possible to optimize scalar code efficiently with this simplifi-
cation. To actually model pointers, they add new operators: MustMod, MayMod and
MayUse. They add these operators to their IR as assignment statements before and
after indirect assignments. Naturally, this mirrors work on alias analysis (e.g [Emami
et al., 1994]).

This technique can represent alias information precisely and accurately, but can lead
to memory explosion if aliases are represented more finely than their approach of
using a single node to represent the entire heap. For example, Landi and Ryder [1992]
report an average of 675 may-alias relations per node. Representing this information
in the manner suggested by Cytron et al. [1991] would be impractical.

SSA arrived during the ascendency period of the development of alias analysis. By the
time that powerful alias analysis techniques were created, SSA had already established
itself as an important framework for program analysis. With more powerful analyses



32 Chapter 3. Program Analysis

µ(a1);
x = z; ∗x5 = z2;

y2 = χ (y1);

Listing 3.1: Example of HSSA form. This assumes that z may alias a, and that x may alias y.

and precise results, a natural extension to SSA was to allow it to model aliases more
precisely, and to control the memory explosion when this occurred. While early
work [Cytron et al., 1991] was aware of means of modelling references more finely
[Chase et al., 1990], they do not discuss the potential explosion in memory use. As
a result, other techniques techniques were developed to integrate this precise alias
information into the SSA form.

HSSA

The most powerful and general of the techniques for combining SSA with aliasing
information is Hashed SSA (HSSA) [Chow et al., 1996]. HSSA not only models alias-
ing information in SSA form, it also provided techniques for managing the memory
usage.

HSSA models may-uses and may-definitions by annotating statements with µ and
χ operations respectively. Figure 3.1 shows a C indirect assignment in HSSA form.
The example assumes that z may alias a, and x may alias y. The indirect assignment
to x may-defines y, leading to the assignment to y2 from an unknown value. The
assignment uses z2, which may use a1. Uses viaµ operations semantically occur before
a statement, and definitions via χ operations semantically occur after a statement.

Naturally, with very large alias sets, the number of µ and χ nodes explodes. HSSA
provides a number of techniques to handle this explosion. Zero versioning uses a
special variable version for variable occurrence which are not real. A real occurrence
is any which does not arise from χ , µ or φ nodes. Zero versioning condenses chained
χ nodes to use a single version (0), at a slight cost to precision. Zero versions are
included as soon as HSSA form is built, and reduces the number of χ nodes which
are chained.

HSSA also introduces virtual variables. A virtual variable can represent any set of
variables, and is intended to reduce the large sets of χ nodes into a single node. The
choice of what to represent with a virtual variable remains in the hands of the analysis
author, but a simple choice is to have a single virtual variable represent the contents
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of an alias set.

Using these techniques, HSSA is intended to make SSA form with aliasing manage-
able. As a result, it has been adopted in a number of compilers, such as the Scale
compiler [Chowdhury et al., 2004], gcc [Novillo, 2007], the WOPT from the SGI
Open64 compiler [Kennedy et al., 1999].

Unfortunately, HSSA comes with a cost. Since χ operations are not real, they must be
dropped when SSA form is removed. This requires that variables in SSA form are not
propagated across a variable’s live range, restricting analyses such as copy-propagation.
In gcc, this is somewhat mitigated by keeping scalar types in SSA, and only using
HSSA for indirect memory operations [Novillo, 2007].

Other SSA Extensions with Alias Information

HSSA is not the only kind of SSA form supporting alias information.

Extended SSA Numbering [Lapkowski and Hendren, 1998] attempts to bring the
benefits of SSA to languages with multi-level pointers. The cost of their approach is
that not all variables have a unique definition, meaning that important SSA properties
are not supported.

Another approach to managing alias information in SSA form is to incrementally
improve the precision of may-alias information as it is needed [Cytron and Gershbein,
1993]. As the amount of alias information available is often larger than the amount
required to perform an optimization, it is possible to increase the precision of the
results lazily when more information is required. This means that alias information
which is never used is not calculated. Unfortunately, this requires rebuilding the
SSA form each time extra precision is required, although they claim that this is not a
problem in general.

It seems that these techniques have not been used in practice, however.

Other Related SSA Extensions

Array-SSA [Knobe and Sarkar, 1998] provides a means of modelling assignments to
arrays and structures in SSA form. It providesφ nodes to model definitions and uses of
array values, and uses them to avoid data dependences during automatic parallelization.
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Although it models dependences between arrays and structures, it is not a general
means to support aliasing information.

Heap-SSA [Fink et al., 2000] is an extension of Array-SSA for strongly typed languages,
allowing elimination of dead stores. It relies on global value numbering and strong
type information, instead of alias analysis, to differentiate between different values.
As it relies on strong type information and does not support alias analysis, I do not
discuss it further.

Although HSSA mitigates the memory explosion somewhat, it is not sufficient
for very large programs. To counteract this, gcc uses a technique called Memory-
SSA [Novillo, 2007]. This technique allows the size of the HSSA alias sets to gracefully
fall back to a less-precise form in the presence of a memory explosion.

Despite the promise of Memory SSA, however, its benefits did not materialize [Guen-
ther, 2009]. For large programs (greater than one million lines of code), even Memory
SSA does not scale in its memory usage. As a result, representing alias information
directly in SSA still appears to be an open problem. Modern versions of gcc keep
only scalar variables in SSA, and use an alias oracle to disambiguate between memory
locations [Guenther, 2009].

3.4 Type Analysis

Scripting languages are dynamically typed, meaning that the types of variables, fields
and array offsets are not provided in the program text. As a result, it is important to
perform type analyses on the program in order to regain the information that is lost
by virtue of latent typing.

Type analysis is a broad area, encompassing many techniques and algorithms designed
to extract type information from a program text. It is closely related to type feedback
techniques described in Section 2.2. Static type analyses can be broadly divided into
three categories:

1. analyses to support devirtualization in statically typed object-oriented lan-
guages,

2. type-inference of dynamic languages,

3. type-inference of statically typed functional languages.
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3.4.1 Devirtualization Support

Method dispatch in statically typed object-oriented languages such as Java and C++
is typically implemented using virtual dispatch tables (vtable). A vtable is a table of
method pointers. At compile-time, each named method is associated with a table
offset. At run-time, the method at that offset is dispatched to.

As the static type of the object must be known, it is possible to know the correct
offset to which to dispatch. However, the run-time type of the object may be any
subclass of the static type, and the method dispatched to may be overridden in the
subclass. As this dynamic dispatch is costly, devirtualization techniques have been
developed to optimize it to static dispatch. Turning a virtual method call into a static
method call also enables inlining and more accurate callgraphs, which also enable
other optimizations.

Each devirtualization algorithm associates a set of class names with objects in the
program. By using more sets with smaller granularity, the algorithms can achieve
greater precision at the cost of analysis time. Class Hierarchy Analysis (CHA) [Dean
et al., 1995] analyses all callable methods using a single set. Starting at the main method,
it searches a method for the static classes of the receiver of a method invocations, and
adds all subtypes of the receiver to its set. It then recurses into reachable methods to
continue the analysis.

Rapid Type Analysis (RTA) [Bacon and Sweeney, 1996] prunes the set using informa-
tion about instantiated classes. During analysis, it stores the set of instantiated classes.
At method invocation time, it reasons that only already instantiated classes may the
run-time type of the receiver. Using this extra information, RTA can be significantly
more precise than CHA.

Tip and Palsberg [2000] develop a series of analyses named CTA, MTA, FTA and
XTA. XTA uses a set of classes for each method and field of a class, instead of a single
set for the whole analysis. The sets contain classes which have been instantiated and
are subtypes of their static types. The sets are propagated to callees via parameters—
that is, the parameters’ subtypes which have been instantiated initialize the set in
the callee—and back to callers via return types. Tip and Palsberg [2000] report this
analysis allows an average of 12.5% of virtual methods to be devirtualized, although
the analysis runs over 8x slower than CHA. The other algorithms, CTA, MTA and
FTA, investigate the design space between RTA and XTA. Tip and Palsberg [2000]
report that XTA offers the greatest trade-off between precision and run-time.
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Lenart et al. [2000] use an SSA-based propagation algorithm, based on constant
propagation [Wegman and Zadeck, 1991]. It uses a more traditional dataflow style,
propagating instantiated types to call-sites. It also allows constant-propagation infor-
mation to make the results more precise, as discussed in Section 3.5. Unfortunately,
they do not evaluate its precision or the speed of the algorithm.

3.4.2 Type-inference

The last section described a way of discovering more precise type information in
statically typed object-oriented languages. For languages which do not require type
annotations, type-inference algorithms analyse programs to compute this type informa-
tion. This section discusses existing work on type inference. Section 2.2 discusses the
related area of optimizations based on type-feedback at run-time.

Dynamic Languages

In order to optimize the code generated by a compiler or JIT compiler, it is useful
to infer a run-time value’s type. Similarly, tools such as IDEs, code browsers and
bug finders benefit from knowing the type associated with memory locations in a
program.

A type in a dynamically typed language may refer either to the run-time class or
type-tag of a value, or to its structure or interface, as is the case in a duck-typed
language (see Section 2.1.3). Type inference algorithms may detect either or both of
these meanings of type.

A powerful type-inference system known as the Cartesian Product Algorithm (CPA)
was developed for the analysis of SELF [Agesen, 1995]. It is based on a previous
algorithm by Palsberg and Schwartzbach [1991].

Palsberg and Schwartzbach’s [1991] algorithm is a constraint-based algorithm, in the
same way as Andersen’s [1994]. It begins by allocating type variables for expressions
and lvalues in the program. It seeds these type variables with literals from the pro-
gram. For example, for the statement $x = 5, the type variable for $x is seeded 〈int〉.
Constraints are then established based on the assignments and methods calls in the
program. The constraint graph is then solved, establishing a solution set of types for
each type variable in the program.
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The main problem solved by CPA which is not solved by Palsberg and Schwartzbach
[1991] is that the algorithm is imprecise for methods called with multiple parameter
types. If an identity function is called with a parameter typed with the set 〈int, real〉,
the return set is 〈int, real〉. The CPA algorithm will instead split the solution set into
two, with the types 〈int〉 and 〈real〉. This will give a more precise context-sensitive
result of 〈int〉 and 〈real〉, respectively.

CPA is very similar to Andersen’s [1994] analysis, in that both use inclusion con-
straints and solvers to achieve their solution. In fact, many of the insights regarding
the speed and scalability of constraint-based alias analysis came via the study of type-
inference.

We discuss the application of CPA to dynamic scripting languages in Section 3.6.1.
Research on the Self compiler [Agesen and Hölzle, 1995] indicates that using type-
feedback for optimization is equally effective as performing static type-inference.

Statically Typed Functional Languages

In order to detect a class of errors in programs, statically typed functional languages
such as Haskell, Clean or OCaml have complex type systems, typically based on
the Hindley-Milner type system [Milner, 1978]. The Damas-Milner type-inference
algorithm [Damas and Milner, 1982] is used to perform type inference on the Hindley-
Milner type system. Dynamic languages do not use type systems based on Hindley-
Milner. While it would be possible to retrofit Hindley-Milner to a dynamic language
such as PHP, it would be non-trivial due to features such as those described in Sec-
tion 6.2.5. As such, we do not consider these type inference algorithms, and do not
discuss them further.

3.5 Combined Analysis

Compilers often suffer from a phase ordering problem. Given two optimizations A
and B , A may create opportunities for B , which causes more opportunities for A. This
is often solved by iteration: A and B are executed alternately until the program reaches
a fixpoint, and there are no more optimizations to be performed.

A common example is the combination of constant-propagation and unreachable-code
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1 int x = 1;

2

3 do

4 {

5 if (x != 1)

6 x = 2;

7 }

8 while (...);

9

10 return x;

Listing 3.2: Program which can be better optimized using a combined analysis than iterating
over separate analyses. This example is taken from Figure 8 in Click and Cooper [1995].

elimination.5 Constant-propagation may resolve known branches, creating opportuni-
ties for unreachable-code elimination. The eliminated code may lead to a more precise
constant-propagation, creating further unreachable code.

However, there are benefits in combining these analyses. Click and Cooper [1995,
Section 6.2] showed that an algorithm which combines unreachable-code elimination
and constant-propagation is strictly more powerful than iterating over the two. Con-
sider the example in Listing 3.2. On line 5, unreachable-code elimination will remove
the statement on line 6. Constant-propagation does not then consider it, and the value
of i is known to be 1 at line 10.

Conditional constant propagation (CCP) was discovered by Wegbreit [1975], but
made popular through Sparse CCP (SCCP) [Wegman and Zadeck, 1991], which com-
bines CCP with SSA. By using SSA’s factored def-use chains, SCCP avoids pessimistic
cases. The CCP algorithm is expensive, requiring one lattice per variable per program
point. SCCP is less expensive, taking advantage of the sparse representation from
SSA.

SCCP uses a simple algorithm. Beginning with the entry node, it analyses statements
in a function using a symbolic execution. At each assignment of a constant to a variable,
it stores the value of the variable. Operations between variables, such as addition, are
folded when all operands are known by the analysis. At each branch statement, the
branch condition is evaluated. If it is known, only the known direction is deemed to
be executable. Only executable branches are followed. If the branch condition has an
unknown value, both branch targets are executable.

During the analysis, any variables which are defined have all of their uses added to a
5 Unreachable code is sometimes known as dead-code elimination (DCE). However, DCE sometimes

refers to removing useless or redundant code, so we do not use the term here.



3.5. Combined Analysis 39

worklist.6 The algorithm continues until the worklist is emptied. The algorithm is
optimistic, in that it is not sound to end the optimization before it has completed.

A number of other analyses have been created using the SCCP algorithm, including
value-range propagation [Patterson, 1995] and type-inference algorithms [Lenart et al.,
2000]. Click and Cooper [1995] provide a framework for combining algorithms,
combining SCCP with value numbering, and reasoning about the combined analyses.

Lerner et al. [2002] created a technique which allows the automatic combination
of separately described algorithms. This technique is at least five times faster than
iterating over the separately described algorithm, and has an overhead of less than 20%
compared to hand-optimized combined analyses.

The gcc compiler uses the SCCP algorithm as a general propagation algorithm [Novillo,
2005], while the Glasgow Haskell Compiler (ghc) uses Lerner et al.’s [2002] algo-
rithm [Ramsey et al., 2009]. In Section 4.6.4, I show a novel SSA construction
algorithm for use simultaneously with an SCCP algorithm.

3.5.1 Combined Constant-propagation and Alias Analysis

Pioli et al. [1999] describe how to combine alias analysis with constant-propagation.
This allows a more precise alias analysis, because unreachable paths will not be con-
sidered. Our algorithm follows a similar structure to Pioli et al., as described in
Section 6.5, so we look at it in more detail here.

Pioli et al.’s algorithm is a combination of the algorithms of Burke et al. [1994] and
Wegbreit [1975]. We give an overview of the algorithm:

• The analysis performs a symbolic execution of a program. Beginning at the first
statement in the main method, the analysis is performed one statement at a time.
At every statement, both the alias analysis and constant propagation solutions
are updated.

• Pioli et al.’s analysis is flow-sensitive and context-insensitive. It uses a worklist
algorithm to track the basic blocks in a function, processing them in topological
order. It is a conditional analysis, meaning it attempts to resolve branch state-

6 This is a slightly simplified explanation. The algorithm actually uses two worklists, one for SSA
def-use edges, and one for CFG edges.
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ments immediately using the constant propagation. This results in an optimistic
analysis, which must complete in order for its results to be correct.

• At a flow-control join point, the results in the predecessor blocks are merged.
When the analysis changes a basic block’s solution, that block’s successors are
added to the worklist. Both of a branch block’s successors are added, unless
the branch has been conditionally resolved. When the analysis results reach a
fixpoint, the worklist will empty.

• Upon reaching a method invocation, the analysis on the current method pauses.
Current analysis results are copied to the callee, termed a forward-bind. The
analysis then continues processing using a new worklist, beginning at the entry
block of the invoked function. The callgraph is built lazily, but multiple func-
tions may be invoked from the same location, due to function pointers. In this
case, all possible callees are analysed.

• When a method has been fully analysed, the analysis results are copied back to
the caller, termed a backward-bind. If there are multiple possible receivers, their
results are merged. The caller’s worklist then continues.

3.6 Static Analyses of Dynamic Scripting Languages

This section discusses existing research into static analysis of scripting languages.
There exists only a small amount of research into the area, so this is discussed is some
detail. Section 2.2 discusses research into scripting language implementations, which
is orthogonal to this section.

3.6.1 Type Analysis

The most important and well-studied static analysis for scripting languages is type
inference. Analysis algorithms used for scripting languages vary in their complexity
and precision.

Aggressive Type Inference [Aycock, 2000] is a very simple technique for analysing types
of variables in Python. It uses only nominal types, and is not flow- or context-sensitive.
Its effectiveness is not reported.
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Adaptations of Earlier Analyses

Two important techniques in the analysis of dynamic languages were CPA [Agesen,
1995] and iterative type analysis [Palsberg and Schwartzbach, 1991]. These are dis-
cussed in Sections 3.4.2 and 3.4.2, respectively. Naturally, dynamic scripting language
analyses have been developed by adapting these techniques.

Iterative type analysis was used as the basis of Cannon’s [2005] analysis. He explored
whether a type inference algorithm could be performed on Python which led to
a performance improvement of 5% or more in the CPython interpreter,7 without
making changes to the language or bytecode compiler. As such, it only attempted to
infer types locally. After analysis it added type specific bytecodes to take advantage
of the inferred information. This is similar to the run-time component in Dynamic
Interpretation [Williams, 2009]. However, Cannon reported a speedup of 1% on
average, which he felt did not justify the complexity of the approach.

A modified CPA algorithm was used in Starkiller [Salib, 2004], a type-inference tool
for Python. The algorithm was modified to handle data polymorphism which is not
well handled by CPA. However, it does not handle a number of advanced Python
features such as exceptions, iterators or generators. Unfortunately, Salib does not
report on the power or precision of the type inference, instead benchmarking a short
simple benchmark involving a factorial calculation.

Shed-skin [Dufour, 2006], a Python-to-C++ compiler, uses both iterative type anal-
ysis and CPA. It analyses Python programs, and generates C++ classes from the
Python classes in the program. As C++ is a static language, it is not straightforward
to map Python classes to C++ classes. Shed-skin introduces the idea of class splitting
in which variables with more than one static types are split into multiple variables,
one for each static type. With these extensions, their compiled code runs on average 45
times faster than equivalent CPython code in some cases. However, they are not able
to deal with many features of Python. In particular, many Python programs cannot
be statically typed using their algorithm, and so cannot be compiled by Shed-skin.

Advanced Type Analyses

Recent type analysis algorithms for scripting languages have modelled significantly
larger portions of the languages they analyse, using sophisticated techniques.

7 The CPython interpreter is the canonical implementation of Python.



42 Chapter 3. Program Analysis

Diamondback Ruby (DRuby) [Furr et al., 2009] is a static type inferencer for Ruby,
aimed at statically detecting run-time method invocation errors. It provides a constraint-
based inference algorithm, along with user type annotations. Unlike analyses for
Python, they model the Ruby language in significant detail. As well as nominal types,
they also model structural typing, representing Ruby’s duck-typing system. They ef-
fectively handle Ruby’s inheritance with intersection types, and dynamic typing with
union types. They model arrays and other generic data structures using parametric
polymorphism.

One of the most important problems in Ruby in the use of run-time code generation.
Many libraries use calls to the eval function, which have side-effects including defining
new methods, and adding them to user objects passed into the libraries. PRuby [Furr
et al., 2009], an extension to DRuby, handles this through the use of feedback-directed
analysis. They profile the program to store the strings run using eval at run-time,
then perform the static analysis using the results. This enables them to analyse nearly
the full program. They report that most Ruby programs they have tested only use a
small number of strings in their eval statements. In addition, the profiling support
allows them to eliminate a number of false positives in their underlying static analyser.

Jensen et al. [2009] developed a type-inference algorithm for JavaScript. Their major
contribution is modelling the entire Javascript language in a single lattice-based abstract
interpretation. Their lattice models strings, integers, types, Javascript’s protocol-
based inheritance, object fields, undefined variables and fields, and Javascript-specific
attributes of fields. Notably it also includes points-to information to model the fluid
structure of Javascript objects. It is also very precise, being both flow- and context-
sensitive, and it is capable of verifying the absence of a number of errors. We discuss
this work in further detail in Section 6.7.

3.6.2 Alias Analysis

Pixy [Jovanovic, 2007, Jovanovic et al., 2006,] is the state-of-the-art in alias analysis
for PHP. It is designed as a static taint analysis for PHP 4, aimed at detecting cross-
site-scripting (XSS) vulnerabilities. Its major contribution is that it models references
between variables. However, it does not model a great deal of the PHP language.
Although it is interprocedural, it does not model object methods8 or types. It also does
not model fields or object members. We discuss Pixy in more detail in Section 6.3.3.

8 Pixy was designed for PHP 4 which is not object-oriented.
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Points-to analyses have also been built for Javascript. Jang and Choe [2009] present
an alias analysis for a subset of Javascript, based on Andersen’s analysis. It unifies the
modelling of objects and tables, and models the unknown field of an object. In their
type analysis for Javascript, Jensen et al. [2009] also analyse the points-to relationships
of objects, for the full Javascript language. Javascript has a relatively simple points-to
model, and their analysis reflects this. It models object fields and what other named
objects they may point to.

3.6.3 Other Analysis

String manipulation is one of the most important facilities provided by a scripting
language. A number of analyses are designed to model the string values in a program.
Minamide [2005] created a static string analyser for PHP. It was aimed creating
a link between the inputs and outputs of a PHP program, in order to detect XSS
vulnerabilities. It could also be used to statically validate the HTML output of a PHP
program. The analysis was based on string analysers for Java [Christensen et al., 2003].
It modelled strings as they flowed through the program, including complex string
transformations using regular expressions. Wassermann and Su [2007] extended this
technique to model SQL injection vulnerabilities. They used to same technique to
model PHP’s dynamic include statements.

Ben Asher and Rotem [2009] investigate the effect of loop unrolling and method
inlining in a bytecode optimizer for Python. They use traditional dataflow analyses
such as copy propagation, common sub-expression elimination and loop-invariant
code motion to optimize Python programs. Their key insight is that these optimiza-
tions are significantly more effective as a result of inlining or loop unrolling. Unlike
many scripting language analyses, they deliberately do not use type inference in their
analysis, and do not evaluate optimizations based on types.

We discuss other static analyses of PHP [Huang et al., 2004, Xie and Aiken, 2006]
in Section 6.3. Scripting language implementations, including run-time analyses, are
discussed in Chapter 2.
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3.7 Summary

This chapter discusses important program analyses, including alias-analysis, SSA
form, and type-inference. This provides important background information for
Chapters 4 and 6. It also describes how static analyses have been applied in scripting
languages, including how the design of scripting language compilers has affected the
analysis.

In the next chapter, we turn our attention to the design of our compiler, phc. We see
how program analyses and ahead-of-time compilation interact for scripting languages,
and how a compiler must be specially designed for the task of compiling scripting
languages.



CHAPTER 4

Design of the phc Compiler

In producing the research presented in this dissertation, I built most of the middle-
and back-ends of the phc compiler. The phc compiler is an open-source, ahead-of-
time compiler for PHP, written in C++. Although phc is structured as a traditional
multi-pass compiler, many of its design decisions are based around features of the PHP
language.

This chapter describes how phc was designed around the PHP language. It provides an
experience report of the challenges of building a compiler for a dynamic language. It
does not provide comprehensive overview of the structure of phc, but rather highlights
design decisions caused by PHP’s unusual and dynamic nature.

Section 4.1 presents a short overview of phc. Section 4.2 discusses the design of phc’s
intermediate representations. Section 4.3 discussed the challenges in compiling a
language that has grown up in an interpreted environment. Section 4.4 presents a
description of phc’s passes. An overview of the phc’s interactions with the PHP system
is presented in Section 4.5. Section 4.6 outlines the phc optimization framework.

4.1 Overview

The phc compiler follows the traditional design of ahead-of-time compilers, parsing a
PHP program, translating it through a number of Intermediate Representations (IRs),
and generating an executable. Its structure is shown in Figure 4.1. The phc compiler:

• parses PHP source code into an Abstract Syntax Tree (AST),

• simplifies the AST into a High-level Intermediate Representation (HIR), a subset
of the PHP language based on three-address code (TAC),

• simplifies the HIR into a Medium-level Intermediate Representation (MIR), intro-
ducing constructs which are not part of PHP,

• performs dataflow optimizations on the MIR,

45
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Figure 4.1: Overview of the structure of phc
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• generates C code from the MIR (see Section 5.4.4),

• compiles the C code using gcc, producing an executable.

In discussing phc, we wish to focus on the portions that were built to carry out the
research in this dissertation. We build on the existing phc front-end [de Vries and
Gilbert, 2007]. In addition to the content of this chapter, phc’s code generation
and link to the PHP system are discussed in Chapter 5, and the design of the phc

optimization framework is described in Chapter 6.

4.2 Intermediate Representations

There are three Intermediate Representations (IRs) [Muchnick, 1997] used in phc, as
described in the previous section: the AST, the HIR and the MIR. Each IR is defined
using maketea [de Vries and Gilbert, 2008], a tool for building C++ class hierarchies
from IR definitions, along with visitor and transformation APIs. These APIs are used
by most of the passes described in Section 4.4. Each IR is defined in maketea format
in Appendix A.

4.2.1 Abstract Syntax Tree

The Abstract Syntax Tree (AST) closely represents the syntax of PHP programs. It is
generated directly by the parser, and abstracts only syntactic elements of the source
program, such as commas and semi-colons. As the AST is such a close representation
of a PHP program, we are able to convert (or ‘unparse’) the AST back into source
code. This allows phc to be used as a source-to-source compiler, where both the initial
and target languages are PHP.

This is extremely useful in testing the compiler. The behaviour of a PHP program is
defined by running it with the PHP system’s interpreter. We can tell that phc’s passes
operate correctly if the new program behaves identically to the original. This allows
the compiler to be tested easily.

Additionally, we can automatically create new test files by writing plugins to phc which
transform existing test files into new test files. As phc functions as a source-to-source
compiler, it is easy to create plugins which perform small or large transformations on
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a PHP file. For example, we test our implementation of the PHP eval statement by
converting every second statement of a PHP program to use an eval statement instead
of being executed directly.

A PHP program is kept in the AST during conversion to three-address-code, at which
time it is equivalent to the High-level Intermediate Representation.

4.2.2 High-level Intermediate Representation

The High-level Intermediate Representation (HIR) is intended to represent the smallest
subset of the PHP language possible, without introducing features to the IR which are
not valid PHP. It removes redundant constructs from the AST, and where possible
replaces complex nested expressions with simple three-address-code (TAC) [Muchnick,
1997] statements.

The HIR exists primarily as an intermediate step between the AST and the Medium-
level Intermediate Representation. Using a separate IR allows us to take advantage
of C++’s type-safety, and provides a more convenient representation than the AST
on which to perform some transformations. It is the final step at which the entire
program is valid PHP and can be converted to PHP source code, again useful for
testing purposes.

4.2.3 Medium-level Intermediate Representation

The HIR is the most simplified for of the PHP language which is still valid PHP.
However, there are a number of further simplifications which can be made, which
are not valid PHP. These simplifications are made in the Medium-level Intermediate
Representation (MIR). The simplest example of such a construct is the presence of
goto, which is not a part of PHP.1

4.2.4 Challenges in Intermediate Representation Design

This section describes a number of the challenges in creating useful IRs in which to
work on PHP.

1 Actually, goto was introduced in PHP 5.3, but most versions of PHP do not have goto.
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if (...)

class X { ... }

else

class X { ... }

(a)

class X0 { ... }

class X1 { ... }

if (...)

class_alias ("X", "X0");

else

class_alias ("X", "X1");

(b)

Listing 4.1: Dynamic class declaration at run-time. The definition of X will depend on run-time
control-flow.

$x =& $a[0][1][2];

(a)

$T1 =& $a[0];

$T2 =& $T1[1];

$x =& $T2[2];

(b)

Listing 4.2: An array assignment, by reference, before and after conversion to three-address code

Dynamic Declarations

In static object-oriented languages, declarations such as methods, classes and interfaces
are provided by the programmer at compile-time. However, PHP allows these declara-
tions at run-time, and the particular class2 declared may depend on the control-flow of
the program. Typically, this occurs because of conditional source inclusion. However,
it also also possible for the programmer to write different versions of the same class
depending on some run-time control-flow, shown in Listing 4.1a.

As such, these declarations are all statements in the AST and the HIR. However,
it greatly simplifies code generation if all declarations are moved to the top-level in
the MIR. As a result, we move dynamic declarations to the top-level, and name
them uniquely. They are then replaced with class_alias statements, as shown in
Listing 4.1b. At their original position, an alias is created at run-time between the
new and original names. This significantly simplifies the code generation of dynamic
declarations.
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foo ($a[0][1]);

(a)

if (param_is_ref (foo, 0)) {

$T1 =& $a[0];

$T2 =& $T1[1];

} else {

$T1 = $a[0];

$T2 = $T1[1];

}

foo ($T2);

(b)

Listing 4.3: A method invocation, by reference, before and after conversion to three-address code

Three-address Code and Assignment-by-reference

It is straightforward to convert an assignment into three-address-code (TAC), as shown
in the example in Listing 4.2. The conversion of assignments to TAC is syntactic,
based on the presence or absence of reference assignment (&=). Reference assignment,
indicated by &=, makes two run-time names refer to the same run-time memory
location.

However, consider the example in Listing 4.3a. As PHP functions are not required
to be statically declared, we do not always know the signature of the function being
called. In addition, PHP allows polymorphic method calls, and different versions of a
method may have differing signatures. As such,we cannot convert the array expression
in Listing 4.3a to TAC, as we do not know if the parameter to foo should be passed by
value or reference. As such we must add a param_is_ref construct to the MIR, which
evaluates at run-time to a boolean indicating whether the n t h formal parameter of
the function to be called, requires passing by reference. This allows parameters to be
converted to TAC.

As the param_is_ref statement is not valid PHP, we are not able to include it in the
HIR. As a result, method invocations are not converted to TAC before the MIR.

unset Statements

An unset statement clears a particular variable, array entry or object field. After a
name is unset, it is exactly as if it had never been initialized. For example, accessing a
variable after it is unset evaluates to NULL, in the same manner as an undefined variable.

2 We’ll continue using class declarations in our example, but the same is true of methods and interfaces.
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foreach($arr as $key => $val)

{

...

}

(a)

foreach_reset($arr, $iterator);

lCheck:

$THK = foreach_has_key($arr, $iterator);

if (!$THK) goto lFinalize;

// Perform body

$key = foreach_get_key($arr, $iterator);

$val = foreach_get_val($arr, $iterator);

...

// Increment iterator

foreach_next($arr, $iterator);

goto lCheck;

lFinalize:

foreach_end($arr, $iterator);

(b)

Listing 4.4: A foreach-loop in the AST and MIR

Similarly, unsetting the field of an object or array removes that field.

However, it is not possible to convert unset statements to TAC in an IR. If this
was converted to TAC using assignments-by-copy, it would not unset the originally
intended memory location. In the assignments were by reference, we might actually
create new values by conversion to TAC. For example, the statement unset ($a[0][1]);

would be converted to

$T =& $a[0];

unset ($T[1]);

which might create a value in $T. As such, unset statements are never converted into
TAC, and are instead kept in their existing form. The isset expression, which checks
whether a variable has been set, is also treated in this manner.

foreach Statements

A foreach statement is a loop which iterates through all keys and values of an array
or object. All foreach statements are kept in the HIR, as they cannot be simplified
without introducing non-PHP constructs. To support them in the MIR, we introduce
six constructs, which resemble how foreach statements are implemented in C. A
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typical foreach statement is shown in Figure 4.4, in its AST/HIR and MIR forms. In
PHP, arrays are iterated through using iterators, which are manipulated by the foreach

statements.

A foreach statement is converted into three statements in the MIR:

• Foreach_reset: initializes a foreach statement, and point the iterator to the first
array element,

• Foreach_next: increments the iterator to point to the next array element,

• Foreach_end: finalizes a foreach statement. This does not do anything in the
MIR, but it frees resources in the generated C code.

To access values from foreach statements, three expressions are used:

• Foreach_has_key: a boolean expression; indicates whether an iterator still points
to a valid value,

• Foreach_get_key: fetches the key pointed to by the iterator,

• Foreach_get_value: fetches the value pointed to by the iterator.

At later stages in compilation, we perform analyses on these statements. For example,
during dead-code-elimination, Foreach_get_value or foreach_get_key statements can be
eliminated if they are unused, or the entire loop can be removed if it has no effect.
The phc code generator also works directly on these constructs.

Loop Design

In the HIR, we attempt to remove do-while-, while- and for-loops, replacing them with
a single canonical loop type. This loop is simply called Loop, and it loops infinitely,
representing while (true).

The CIL compiler and intermediate language [Necula et al., 2002] performs the same
simplification. However, CIL uses goto statements in their IR, which PHP does
not. This allows CIL to cleanly represent all loops with a single construct, while
supporting continue and break statements. Without a goto statement in the HIR, we
must instead use conditional statements to check the iteration number.
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for ($i = 0; $i < $N; $i++)

{

...

}

(a)

$i = 0;

$T = True;

while (True)

{

// Only increment on first iteration.

if ($T)

$T = False;

else

$i++;

// Check loop condition

if (!($i < $N))

break;

...

}

(b)

Listing 4.5: A for-loop in the AST and HIR. $T checks the which loop iteration is being executed,
avoid a loop increment on the first iteration.

Listing 4.5 shows a for-loop in the AST and the HIR. This is unfortunately both
awkward and slow. A better means of handling this might be to check for the presence
of break or continue statements, but that would make the lowering pass more compli-
cated, and so was not attempted. Instead, we clean this up with an optimization pass,
described in Section 4.6.2.

4.3 Compiled and Interpreted Models

The PHP language is defined by the php implementation, which is interpreted. Several
of PHP’s features make more sense in an interpreted model than in a compiled one.
As a result, it is useful to either not support, or in some way adapt, these features for a
compiled model. We describe these minor variations below:

• A declare statement allows the programmer to write a snippet of code which
is regularly called by the PHP system’s interpreter. This code is executed after
a defined number of interpreter ticks. When using a compiler instead of an
interpreter, it is no longer clear what an interpreter tick means. While this could
be redefined to mean a certain number of statements, is this really desirable? For
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example, ticks are generally not called in library code, but only in interpreted
code. The phc compiler allows users to write create libraries by compiling
PHP code, instead of writing them in C. In this circumstance, should declare

statements be called?

We decided not to support ticks in phc. In choosing not to support this, we
also took into account that ticks are very seldom used in real PHP programs,
and that the implementation is slightly broken in the PHP system, making
this feature unreliable. When a declare statement appears as input to phc, it is
removed during compilation.

• The PHP function debug_zval_count prints the reference count of a value in the
PHP system. As the number of references to a value is somewhat arbitrary,
different versions of the PHP system may give different results for this function.
Similarly, trying to keep the number of references to a value identical to the
php implementation would severely constrain the transformations and code
generated by phc. As a result, the results of the debug_zval_count function, in
programs compiled by phc, may be a different integer value than the result when
the function is interpreted by the PHP system.

• In converting the HIR to the MIR, control-flow structures are simplified to
using goto statements. This means that we do not support an unusual edge case
when a loop contains an eval statement which calls break or continue. This will
cause a run-time error.

• Due to the existence of variable-variables (see Section 5.2.4), every PHP variable
name may potentially be used by the program. However, we wish to create
temporary variables to support TAC. As such, it is reasonable to claim a prefix
for our temporary variables, such as __PHC__. We use the same solution for
variable-functions, -methods, -interfaces and -classes. In the unlikely event that
a PHP program uses variable-variables prefixed by __PHC__, the program will
have run-time errors when compiled by phc.

4.4 Passes

Compilers are traditionally structured as a series of passes, each of which performs a
small task. This section provides a description of all of phc’s passes, along with the
small task which they perform. They are shown to provide a more detailed overview
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check Check for invalid PHP statements which do not create syntax errors,
such as nested class definitions, or taking a reference to literal values.

incl1 Optionally recursively replace include statements with the included
files.

pretty-print Optionally print the program source, formatted to a common style.
const-fold Fold constant expressions.

Table 4.1: AST passes

decomment Remove comments from the AST.
sua Remove the attributes used to format source code.
ntld Make a note of top-level declarations, such as methods and classes,

in order to support class_aliases, etc.
rcn Remove concatenations with "".
desug Desugar: Canonicalize simple constructs.
sma Split multiple arguments for globals, attributes and static declara-

tions, into multiple declarations with single arguments.
sui Split unset() and isset() into multiple calls with one argument each.
ecs Split echo() into multiple calls with one argument each.
elcf Early Lower Control-Flow: simplify for, while, do-while and switch

statements.
lef Lower Expression Flow: lower ||, && and ?: expressions.
lish List Shredder: convert list assignments into a set of array assign-

ments.
shred Shredder: turn the AST into three-address-code, extracting complex

expressions, and inserting temporary variables.
pps Convert postfix unary operations into prefix operations.
swbin Replace >= and > binary operations with < and <=, switching their

operands.
rse Remove expressions whose result is not stored, and which are side-

effect free.

Table 4.2: Passes to lower the AST into HIR

of the compilation process. Figures 4.1–4.6 show the full set of passes which phc

performs on a PHP program.

4.5 Embed System

The most important design decision in phc is to add a facility to call into the PHP
system. Section 5 describes the reasons for which phc uses the PHP system. In
particular, the link between the PHP system and phc is described in Section 5.4.2. In
this section, we explore the uses of the PHP system throughout phc.
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prc Propagate Copies: Perform simple copy propagation to remove some
copies of temporary variables introduced as a result of lowering.

dtc Dead Temp Cleanup: remove assignments to temporary variables
which are not used.

ldd Lower Dynamic Definitions: Lower dynamic class, interface and
method definitions using aliases, moving and renaming the defini-
tion.

lmi Lower Method Invocations: Lower parameters after a run-time refer-
ence check, using param_is_ref.

lcf Lower Control Flow: Replace all control-flow statements with gotos.

Table 4.3: Passes to lower the HIR into MIR

obfuscate Optionally print program with obfuscated control-flow.
lfc Move statements from global scope into __MAIN__ method.
clar Clarify: Make implicit statements explicit.
pst Prune Symbol Table: Note whether a symbol table is required in

generated code.

Table 4.4: MIR passes

4.5.1 Language Flags

The PHP language can be configured using a number of language flags. These flags can
be provided on the command-line, in system configuration files, or at run-time. The
PHP system automatically reads from system configuration files when phc starts up,
and adapts according to changes at run-time. As the behaviour of the PHP system—
and the results of its functions—often depend on these ‘.ini’ settings, phc also allows
these to be set on the command-line. These flags are fed into the PHP system, and
subsequent calls into the PHP system reflect their presence.

Possibly the most important flag is the include_path flag. This provides a list of
directories to search when including files. Not all of these flags can be used, however.

cfg Build Control-Flow Graph.
build-ssa Build SSA form.
ifsimple If-simplification: Remove negation by switching branch targets.
dce Aggressive Dead-code Elimination.
drop-ssa Drop SSA form.
rlb Remove Loop Booleans: Clone and specialize loop entries to remove

redundant boolean variables.
inlining Method inlining: Inline simple methods at monomorphic call-sites.

Table 4.5: Optimization passes



4.6. Optimization 57

cgann Make annotations for code generation.
generate-c Generate C code from the MIR.
compile-c Compile C code into an executable.

Table 4.6: Code generation passes

Some settings—such as zend.ze1_compatibility_mode, which changes PHP’s memory
behaviour to be compatible with that of PHP 4—affect language semantics, and are
unsupported.

4.5.2 Evaluating Expressions

The most important use of the PHP system at compile-time is to determine the values
of PHP expressions. During parsing, the values of all literals are parsed using the PHP
system, as described in Section 5.2.2. During optimization, the PHP system is used to
fold arithmetic, logical and string operations, to evaluate casts between known scalar
values. In particular, it simplifies the task determining whether a scalar has a true
value, or whether two scalars are equal using PHP’s weak equality rules.

4.5.3 Querying PHP Implementation Information

Finally, the PHP system allows phc to query values which would be resolved at run-
time, a form of partial evaluation. During optimization, we can access the values of
constants that are built into PHP. To resolve whether a function’s parameters are
passed by reference or by copy, we query the PHP system. During code generation,
we can use a string’s hash value to optimize the generated code, as described in
Section 5.4.5.

4.6 Optimization

This section provides an overview of all the optimization in phc, focussing on the
various parts of phc which benefit from simple or advanced optimization.
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4.6.1 Early Optimization

Two passes provide early optimizations. The remove-concat-null pass (named ‘rcn’ in
Figure 4.2) removes concatenations with empty strings. Superfluous concatenations
are introduced by the phc parser in parsing string interpolation.3 In theory, these
concatenations might be considered identity operations, as

"" . $x

should be equivalent to $x. However, concatenation is also used to get the string value
of $x, which is not correct to remove. As a result, the remove-concat-null pass aims
only to remove those assignments which are truly identity operations. It is performed
early in the compilation pipeline so that the parsing annotations are still present, and
the annotations must be consulted to ensure that only correct operations are removed.

The const-fold pass performs constant folding, by consulting the PHP system for the
result of simple operations between literals, and replacing the operation with a new
literal, in the AST.

Not all constants can be folded in this manner. A division-by-zero leads to a run-time
warning, for example, so we detect warnings and leave the original operation alone if
they occur. The const-fold pass does not attempt to fold identity operations, such as
$x * 1, for the same reason as the remove-concat-null pass.

4.6.2 Cleanup Optimizations

A number of phc’s optimization passes are intended to tidy the results of other passes,
which may not be tuned for optimal code. This is relatively standard in optimizing
compilers.

• During lowering from the AST to the HIR, a number of conditions can lead to
extra copies between temporary variables being added. These extra copies can
lead to severe slowdown because the PHP system uses ‘copy-on-write’ during
assignments. This is described in more detail in Section 5.5.2, with an example.

To deal with this problem, we add simple copy-propagation and dead-code elim-
ination passes to the HIR. As we cannot detect aliasing in the HIR, this analysis

3 String interpolation is a string formatting technique where variables (and sometime more complex
expressions) can be embedded within a literal string, for example "DEBUG: $level: $msg".
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$T = !$T2;

if ($T)

echo "path A";

else

echo "path B";

(a)

if ($T)

echo "path B";

else

echo "path A";

(b)

Listing 4.6: A demonstration of the if-simplification pass

is very simple. Only temporary variables which are defined and used exactly
once are considered for copy propagation. Similarly, dead code elimination
is only performed on temporary variables that are only defined once by copy
statements, and which are never used.

• The ifsimple pass performs if-statement simplification, by removing the combi-
nation of negation and branches. In cases where a branch condition is only set
once to a negation of another variable, such as in Listing 4.6, we replace the
original variable with the negated one, and swap the branch targets. This allows
lowering passes to use statements such as if (!$T2) without worrying about the
consequences.

• During the conversion to a single loop type in the HIR, phc introduces a
number of conditional statements into the program, as shown in ‘Loop design’ in
Section 4.2.4. However, these conditional statements could have been omitted,
if phc proceeded straight to an MIR in place of using the HIR; the MIR would
have used gotos instead, and the conditional statements would not have been
necessary.

The remove-loop-booleans pass (called ‘rlb’ in Figure 4.5) helps solve the problem,
as shown in Figure 4.2. This figure depicts the control-flow graph for the snippet
in Listing 4.5.

The pass identifies the branch which uses the boolean value (marked (1) in
Figure 4.2a). This branch has two predecessors, one from each of the head
and tail of the loop. The optimization clones the block, so that there is a
separate block for each predecessor. These cloned blocks are marked (2) and (3)
in Figure 4.2b. It is known how each of the cloned branches will be resolved: (2)
must always be true, and (3) must always be false. Therefore both the branches
and the definitions of the boolean variables may be removed by unreachable-
and dead-code elimination, resulting the Figure 4.2c. The end result is the same
as if the loops were converted directly into goto statements in the MIR.
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Figure 4.2: Removal of conditional statements in the remove loop booleans pass

This is similar to unrolling a loop’s first iteration, in order to optimize values
and types which are invariant after the first iteration, as discussed in Section 6.6.

• The optimizer performs a powerful dead-code elimination, discussed in Sec-
tion 6.5.5. It also performs simple control-flow optimizations [Torczon and
Cooper, 2007, Section 10.3.1] which remove empty or unreachable basic blocks,
and redundant edges.

4.6.3 Whole-program Analysis

The phc compiler features an advanced optimization framework. At its core is a
combined alias-, type- and constant-analysis, described in detail in Section 6.5. This
section describes the design and structure of the optimization framework.
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Overview

After the program is lowered into MIR, each function and class in the program are
stored. They are processed lazily, beginning with the __MAIN__ function. A method is
converted into a CFG, then processed using a worklist algorithm, beginning with the
entry block. The worklist algorithm is based on that of Pioli et al. [1999], which is
described in Section 6.5.1.

Upon reaching a function or method call, the potential callees are fetched, and the
analysis continues in the callee. Upon exhausting the statements in a CFG’s worklist,
the analysis continues in the caller, or ends in the case of the __MAIN__ method.

The main unit of analysis is the name, meaning some memory location in the program,
such as a variable, an object’s field or an array offset. A more thorough definition of a
name can be found in Section 6.5.

Client Analyses

The framework is structured as a driver with a set of client analyses. Each statement
is analysed by the driver, and is decomposed into a number of different operations.
Each of these operations is passed to the client analyses. The client analyses are:

• alias analysis: builds a points-to graph of the program state,

• value propagation: stores a lattice (see Section 6.5.3) of literals and a set of
possible types for each name in the program,

• use-def analysis: stores a set of names that are used and defined in each state-
ment. This is used to build an SSA form later. This cannot be built syntactically,
as described in Section 6.5.5.

• constant propagation: similar to value propagation—and uses the same lattice—
but for PHP constants (which are defined at most once per program) instead of
names.

It is possible to use other client analyses using the same interface. Suitable analyses
for future work include value-range propagation [Patterson, 1995] and string-range
propagation [Wassermann and Su, 2007]. The API used by the client sub-analyses is
provided in Appendix B.
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Assignments

For each statement in the MIR analysed, the effects of the statement on the program
are modelled. Consider for example a simple assignment statement $x = $y;. The
semantics of this simple assignment are to copy the value of $y into $x. $x may reference
other variables; if so, $y is also copied into those referenced names. The algorithm to
model a simple assignment is as follows:

// Get aliases of $x

lhss = get_aliases ("x")

// If there can be no aliases, remove the old value.

if size (lhss) == 1

&& parent(lhss[0]) is not abstract:

kill_value (lhss[0])

foreach lhs in lhss:

copy_value (lhs, "y");

All other assignments can be modelled with slight variations, such as reading from an
array index or expression instead of from a simple variable.

Reference assignments ($x =&$y;) are slightly different, however. If $x references other
variables, those references are broken, and a new reference is created with $y.

Optimization Uses

Many small optimizations are performed using the results of the whole-program
analysis. Most of these optimizations use the results of literal analysis4 in order to
make statements redundant. Appendix C lists the transformations that phc performs
as a result of its optimization. It also lists optimizations which could be implemented,
and optimizations which could be performed with small extensions to the analysis.

4 In PHP, constants have a particular meaning, defined in Section 6.2.7. As a result, we use the
term ‘literal’ where the term constant might often be used. This term is used in previous work on
PHP [Jovanovic et al., 2006].
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4.6.4 SSA Form

The results of the def-use analysis are used to build a Static Single-Assignment (SSA)
form. The phc compiler uses an SSA form based on Hashed SSA (HSSA) [Chow et al.,
1996]. We discuss the challenge of building an SSA form, and using it for dead-code
elimination in Section 6.5.5.

HSSA has quite a number of features which we do not use. Although our SSA form
more closely resembles HSSA form than any other kind of SSA form, in practice we
use only a small number of its features. The main idea which we take from HSSA is
that all memory locations are given names. We also use the µ and χ 5 operations. We
do not use virtual variables, zero versioning, or global value numbering (the ‘hash’ in
‘Hashed SSA’). However, in order to scale our SSA form in the future, it may become
useful to add these features.

Principally, the difference between our SSA form and traditional SSA is that all names
in the program are included in the SSA representation. In addition, for each statement
in the program, we maintain a set of names which must be defined, which might
be defined, and which are used (either possibly or definitely). Names which may be
defined are the same concept as χ variables in HSSA, but there may also be more than
one name which must be defined.

We also addφ-functions for names which are only used in χ operations, or which must
be defined but are not syntactically present in the statement. As these φ-functions
are not for real variables, we cannot add copies to represent them when moving out
of SSA form, and must instead drop all SSA indices. While this is a valid means of
moving out of SSA form, it slightly limits the optimizations that can be performed.
For example, copy-propagation cannot move copies past the boundary of a variable’s
live range.

Constructing SSA Form on Demand

In phc, we perform propagation analyses, such as conditional constant propagation
and type inference, before creation of SSA form. This makes the results of those
analyses available at the same time as alias analysis, and provides important feedback
for the optimization framework. However, this ordering of analyses means that we
cannot benefit from some of the advantages of SSA, such as its sparse framework for

5 ‘mu’ and ‘chi’, respectively.
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propagation analyses.

It is desirable to avoid this phase ordering problem. In order to do so, it is necessary
to be able to build SSA form as a client analysis which can be run alongside other
analyses. In order to achieve this the following SSA construction algorithm, which
uses symbolic execution, has been developed as a first step. It has only been tested on
a single 25-line program, and should be considered a prototype. It is presented in this
section.6

The symbolic execution algorithm, of which the new SSA construction algorithm is a
client, is part of the SCCP algorithm [Wegman and Zadeck, 1991]. As a first step, I
generalize the SCCP algorithm:

1. Use two worklists, one for CFG edges (from one basic block to another), and
one for SSA edges (from a definition to a use).

2. Starting at the entry node of the CFG worklist, analyse each statement s of a
basic block bb, then:

• For each variable definition d in s, add all uses of d to the SSA worklist,

• Add each successor succ of bb to the CFG worklist, only if succ is executable
according to the analysis so far.

3. Once the CFG worklist is exhausted, analyse each statement s which is the
target of an edge in the SSA worklist, then:

• As above, for each variable definition d in s, add all uses of d to the SSA
worklist.

This generalized form of the SCCP algorithm can be used for many client analyses.
Our novel SSA construction algorithm extends it to allow SSA construction via
symbolic analysis, in the following way:

Assumptions

• Dominance information (the immediate dominator and dominance frontiers of
each basic block) is available.

6 Note that phc does not actually use this algorithm yet, as it has not been integrated with other analyses.



4.6. Optimization 65

• All variables in our program begin out of SSA form, andφ nodes are not initially
present anywhere in the program.

• When φ nodes are added, they are placed as the first statements in the basic
block.

Algorithm

Following the SCCP algorithm, for each statement s in a basic block bb:

1. For each use u in s:

• Fetch an SSA version for u by searching upwards through the dominance
tree of bb for definitions of u:

– If no definitions are found, the zero version if chosen,

– If s is a φ node, we begin the search in the predecessor of bb associated
with u, rather than bb itself,

• If u already has a version, we must still recalculate it, because a definition7

may have been inserted in between s and the previous definition of u.

2. For each def d in s:

• Add an unversioned φ node p, named after d, to each dominance frontier
of b, and add p to the SSA worklist,

• Give a new version to d.

• Add the following uses of d to the SSA worklist:

– The unversioned d, from before SSA construction, as they might not
all have been reached,

– The version of d which holds just before the new definition, as this s
may be a new statement inserted on an existing path between some
definition of d and its use.

In order to be used for phc, this prototype algorithm needs to run simultaneously
with alias analysis, constant-propagation, and other client analyses of the analysis
framework. While this algorithm was developed for this purpose, it has not yet been
tested in phc.
7 Due to the addition of a φ node, or a χ node in HSSA form.
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4.7 Conclusion

This chapter describes the design of the phc compiler, including the careful design of
the phc intermediate representations. The design of the whole-program optimization
framework and SSA analysis is presented, as well as how to extend it to build an SSA
form on demand, using a symbolic execution framework. We provide a description
of important optimizations which mitigate the weaknesses imposed on use during
the design of the phc intermediate representations, It also discusses how to compile a
language designed for interpretation, and the mechanism with which to call into the
PHP system. The next chapter goes in to more detail on this topic, focussing on the
PHP system, and how it is combined into both phc, and the code generated by phc.



CHAPTER 5

A Practical Solution for Scripting
Language Compilers

Although scripting languages are becoming increasingly popular, even mature script-
ing language implementations remain interpreted. Several compilers and reimplemen-
tations have been attempted, generally focusing on performance.

Based on our survey of these reimplementations, we determine that there are three
important features of scripting languages that are difficult to compile or reimplement.
As scripting languages are defined primarily through the semantics of their original
implementations, they often change semantics between releases. They provide C
APIs, used both for foreign-function interfaces and to write third-party extensions.
These APIs typically have tight integration with the original implementation, and
are used to provide large standard libraries, which are difficult to re-use, and costly to
reimplement. Finally, they support run-time code generation. These features make the
important goal of correctness difficult to achieve for compilers and reimplementations.

We present a technique to support these features in an ahead-of-time compiler for
PHP. Our technique uses the original PHP implementation through the provided
C API, both in our compiler, and in our generated code. We support all of these
important scripting language features, particularly focusing on the correctness of
compiled programs. Additionally, our approach allows us to automatically support
limited future language changes. We present a discussion and performance evaluation
of this technique.

5.1 Motivation

Although scripting languages1 are becoming increasingly popular, most scripting
language implementations remain interpreted. Typically, these implementations are
slow, between one and two orders of magnitude slower than C. There are a number

1 The techniques in this chapter apply to PHP, Perl, Python, Ruby and Lua. However, they do not
apply to Javascript because it does not share many of the attributes we discuss in this chapter. Notably,
it is standardized, and many distinct implementations exist, none of which are canonical.
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of reasons for this. Scripting languages have grown up around interpreters, and were
generally used to glue together performance sensitive tasks. Hence, the performance
of the language itself was traditionally not important. As they have increased in
prominence, larger applications are being developed entirely in scripting languages,
and performance is increasingly important.

The major strategy for retrofitting performance into an application written in a
scripting language is to identify performance hot-spots, and rewrite them in C using
a provided C API. Modern scripting languages are equipped with C APIs which
can interface with the interpreter, in fact, in many cases the interpreters themselves
are written using these APIs. Though this is not a bad strategy—it is a very strong
alternative to rewriting the entire application in a lower level language—a stronger
strategy may be to compile the entire application. Having a compiler automatically
increase the speed of an application is an important performance tool, one that
contributes to the current dominance of C, C++ and Java.

However, it is not straightforward to write a scripting language compiler. The most
important attribute of a compiler—more important than speed—is correctness, and
this is difficult to achieve for a scripting language. Scripting languages do not have
any standards or specifications.2 Rather, they are defined by the behaviour of their
initial implementation, which we refer to as their ‘canonical implementation’.3 The
correctness of a later implementation is determined by its semantic equivalence with
this canonical implementation. It is also important to be compatible with large
standard libraries, written in C. Both the language and the libraries often change
between releases, leading to not one, but multiple implementations with which
compatibility must be achieved.

In addition, there exist many third-party extensions and libraries in wide use, written
using the language’s built-in C API. These require a compiler to support this API in
its generated code, because reimplementing the library may not be practical, especially
if it involves proprietary code.

A final challenge is that of run-time code generation. Scripting languages typically
support an eval construct, which executes source code at run-time. Even when eval is
not used, the semantics of some language features require some computation to be
deferred until run-time. A compiler must therefore provide a run-time component,

2 This is becoming less true for Python and Lua, which now provide reference manuals.
3 A canonical implementation differs subtly from a reference implementation, in that a reference

implementation provides an implementation of a specification, while a canonical implementation
provides the specification.
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with which to execute the code generated at run-time.

In phc we are able to deal with the undefined and changing semantics of PHP by
integrating the PHP code. At compile-time, we use the PHP system as a language
oracle, giving us the ability to automatically adapt to changes in the language, and
allowing us avoid the long process of documenting and copying the behaviour of
myriad different versions of the language. We also generate C code which interfaces
with the PHP system via its C API. This allows our compiled code to interact with
built-in functions and libraries, saving not only the effort of reimplementation of large
standard libraries, but also allowing us to interface with both future and proprietary
libraries and extensions. Finally, we reuse the existing PHP system to handle run-time
code generation, which means we are not required to provide a run-time version of
our compiler, which can be a difficult and error-prone process.

As many of the problems we discuss in this chapter occur with any reimplementa-
tion, whether it is a compiler, interpreter or JIT compiler, we shall generally just
use the term ‘compiler’ to refer to any scripting language reimplementation. We
believe it is obvious when our discussion only applies to a compiler, as opposed to a
reimplementation which is not a compiler.

In Section 5.2.1, we provide a short motivating example, illustrating these three im-
portant difficulties: the lack of a defined semantics, emulating C APIs, and supporting
run-time code generation. In Section 5.3, we examine a number of previous script-
ing language compilers, focusing on important compromises made by the compiler
authors which prevent them from correctly replicating the scripting languages they
compile. Our approach is discussed in Section 5.4, explaining how each important
scripting language feature is correctly handled by re-using the canonical implemen-
tation. Section 5.5 discusses PHP’s memory model. Section 5.6 discusses the com-
plementary approach of using a JIT compiler. An experimental evaluation of our
technique is provided in Section 5.7, including performance results, and supporting
evidence that a large number of programs suffer from the problems we solve.

5.2 Challenges to Compilation

There are three major challenges to scripting languages compilers: the lack of a
defined semantics, emulating C APIs, and supporting run-time code generation. Each
presents a significant challenge, and great care is required both in the design and



70 Chapter 5. A Practical Solution for Scripting Language Compilers

implementation of scripting language compilers as a result. We begin by presenting a
motivating example, before describing the three challenges in depth.

5.2.1 Motivating Example

Listing 5.1 contains a short program segment demonstrating a number of features
which are difficult to compile. The program segment itself is straightforward, loading
an encryption library and iterating through files, performing some computation and
some encryption on each. The style uses a number of features idiomatic to scripting
languages. Though we wrote this program segment as an example, each important
feature was derived from actual code we saw in the wild.

Lines 3-6 dynamically load an encryption library; the exact library is decided by
the $engine variable, which may be provided at run-time. Line 9 creates an array of
hexadecimal values, to be used later in the encryption process. Lines 12-16 read files
from disk. The files contain data serialized by the var_export function, which converts
a data structure into PHP code which when executed will create a copy of the data
structure. The serialized data is read on line 16, and is deserialized when line 17 is
executed. Lines 20-28 represent some data manipulation, with line 20 performing
a hashtable lookup. The data is encrypted on line 31, before being re-serialized
and written to disk in lines 34 and 35 respectively. Line 37 selects the next file by
incrementing the string in $filename.

5.2.2 Undefined Language Semantics

A major problem for reimplementations of scripting languages is the languages’ unde-
fined semantics. Jones [2008] describes a number of forms of language specification.
Scripting languages typically follow the method of a ‘production use implementation’
in his taxonomy. In the case of PHP, Jones says:

“The PHP group claim that they have the final say in the specification
of PHP. This group’s specification is an implementation, and there is
no prose specification or agreed validation suite. There are alternate
implementations [. . . ] that claim to be compatible (they don’t say what
this means) with some version of PHP.”
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1 define(DEBUG, "0");

2

3 # Create instance of cipher engine

4 include 'Cipher/' . $engine . '.php';
5 $class = 'Cipher_' . $engine;

6 $cipher = new $class();

7

8 # Load s_box

9 $s_box = array(0x30fb40d4, ..., 0x9fa0ff0b);

10

11 # Load files

12 $filename = "data_1000";

13 for($i = 0; $i < 20; $i++)

14 {

15 if(DEBUG) echo "read serialized data";

16 $serial = file_get_contents($filename);

17 $deserial = eval("return $serial;");

18

19 # Add size suffix

20 $size =& $deserial["SIZE"];

21 if ($size > 1024 * 1024 * 1024)

22 $size .= "GB";

23 elseif ($size > 1024 * 1024)

24 $size .= "MB";

25 elseif ($size > 1024)

26 $size .= "KB";

27 else

28 $size .= "B";

29

30 # Encrypt

31 $out = $cipher->encrypt($deserial, $s_box);

32

33 if(DEBUG) echo "reserialize data";

34 $serial = var_export($out, 1);

35 file_put_contents($filename, $serialized);

36

37 $filename++;

38 }

Listing 5.1: PHP code demonstrating dynamic, changing or unspecified language features

As a result of this lack of abstract semantics, compilers must instead adhere to the con-
crete semantics of the canonical implementation for correctness. However, different
releases of the canonical implementation may have different concrete semantics. In
fact, for PHP, changes to the language definition occur as frequently as a new release
of the PHP system. In theory, the language would only change due to new features.
However, new features frequently build upon older features, occasionally changing
the original semantics. Older features are also modified with bug fixes. Naturally,
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changes to a feature may also introduce new bugs, and there exists no validation suite
to prevent these bugs from being considered features. In a number of cases we have
observed, a ‘bug’ has been documented in the language manual, and referred to as a
feature, until a later release when the bug was fixed. As a result of these changes, even
the same feature in different versions of the language may have different semantics.

While in a standardized language, such as C or C++, the semantics of each feature
is clearly defined,4 in a scripting language, the task of determining the semantics
can be arduous and time consuming. Even with the source code of the canonical
implementation available, it is generally impossible to guarantee that the semantics
are copied exactly.

Literal Parsing

A simple example of a change to the language is a bug fix in PHP version 5.2.3, which
changed the value of some integer literals. In previous versions of PHP, integers
above LONG_MAX5 were converted to floating-point values—unless they were written in
hexadecimal notation (e.g. 0x30fb40d4). In this case, as in our example on line 9 of
Listing 5.1, they were to be truncated to the value of LONG_MAX. Since version 5.2.3,
however, these hexadecimal integers are converted normally to floating-point values.

Libraries

One of the major attractions of scripting languages is that they come ‘batteries in-
cluded’, meaning they support a large standard library. However, unlike the C++
or Java standard libraries, a scripting language’s standard library is typically written
in C, using the C API. Compilers which do not emulate the C API must instead
reimplement the libraries. As the libraries are not specified, they are liable to change,
and new libraries are constantly being added.

4 Standardized languages also consider some semantics ‘undefined’, meaning an implementation can do
anything in this case. No scripting language features are undefined, as they all do something in the
canonical implementation.

5 Constant from the C standard library representing the maximum signed integer representable in a
machine word.
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Built-in Operators

The lack of abstract semantics also means that it is difficult to know the exact behaviour
of some language constructs, especially due to PHP’s implicit type conversions (see
Section 6.2.8). Addition, for example, is more general in PHP than in C. Its behaviour
depends on the run-time type of the operands, and overflows integers into floats.6

There is a significant amount of work in determining the full set of semantics for
each permutation of operator and built-in type. What, for example, is the sum
of the string "hello" and the boolean value true?7 As another example, the two
statements $a = $a + 1; and $a++; are not equivalent. The latter will ‘increment’
strings, increasing the ASCII value of the final character, another unlikely language
feature, as shown in Listing 5.1 on line 37.

Truth is also complicated in PHP, due to its implicit type conversions. Conditional
statements implicitly convert values to booleans, and the conversions are not always
intuitive. Example of false values are "0", "", 0, false and 0.0. Examples of true values
are "1", 1, true, "0x0" and "0.0".

Language Flags

In PHP, the semantics of the language can be tailored through use of the php.ini file.
Certain flags can be set or unset, which affect the behaviour of the language.

The include_path flag affects separate compilation, and alters where files can be
searched for to include them at compile time. The call_time_pass_by_ref flag decides
whether a caller is permitted to pass its actual parameter to a function by reference,
potentially overriding the function’s default of passing by-copy.

5.2.3 C API

A scripting language’s C API provides its foreign-function interface. Typically, it is
used for embedding the language into an application, creating extensions for the lan-
guage, and writing libraries. A discussion of the merits of various scripting languages’
C APIs is available [Muhammad and Ierusalimschy, 2007].

6 Feeley [2007] discusses a similar problem in Scheme, in that several Scheme compilers incorrectly
prevent integers from overflowing into Bignums for performance reasons.

7 An integer 1, it seems.
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Typically, the C API is the only part of the language with stable behaviour. Though
features are added over time, the C API is in such heavy use that regressions and bugs
are noticed quickly. We have seen that even when changes to the language and its
libraries are frequent, changes to the behaviour of the C API are not.

5.2.4 Run-time Code Generation

A number of PHP’s dynamic features allow source code, constructed at run-time, to
be executed at run-time. Frequently these features are used as quick hacks, and they
are also a common vector for security flaws. However, there are a sufficient number
of legitimate uses of these features that a compiler must support them.

Eval Statements

As demonstrated in Listing 5.1, the eval statement executes arbitrary fragments of
PHP code at run-time. It is passed a string of code, which it parses and executes in
the current scope, potentially defining functions or classes, calling functions whose
names are passed by the user, or writing to user-named variables.

Include Statements

The PHP include statement is used to import code into a given script from another
source file. Although similar in theory to the eval statement, this feature is generally
used by programmers to logically separate code into different source files, in a similar
fashion to C’s #include directive, or Java’s import declaration. However, unlike those
static approaches, an include statement is executed at run-time, and the included code
is only then parsed and executed.

Dynamic include statements are commonly used in PHP to provide a plugin facility,
or to implement localization. In several cases we have observed, a program’s runtime-
configuration file (e.g. Unix .rc files) is simply a Python file which is run at
program startup. In Section 5.7.5, we provide statistics about usage of dynamic and
static includes (as well as eval statements) from a large number of publicly available
PHP programs.
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Variable-variables

PHP variables are simply a map of strings to values. Variable-variables provide a
means to access a variable whose name is known at run-time—for example, one can
assign to the variable $x using a variable containing the string value "x". Access to
these variables may be required by eval or include statements, and so this feature may
take advantage of the infrastructure used by these functions. Variable functions are
also accessible in this way, and Listing 5.1 shows a class initialized dynamically in the
same manner.

5.3 Related Work

Having discussed scripting language features which can be challenging to compile, we
examine previous scripting language compilers, discussing how they handled these
features in their implementations. We believe that many of their solutions are sub-
optimal, either requiring great engineering or sacrifices which limit the potential speed
improvement of their approach.

5.3.1 Undefined Language Semantics

The most difficult and rarely addressed issue is ensuring that a program is executed
correctly by a reimplementation of a scripting language. In particular, it is rarely
mentioned that different versions of a scripting language can have different semantics,
especially in standard libraries.

Very few scripting language compilers provide any compatibility guarantees for their
language. Instead, we very often see laundry lists of features which do not work, and
libraries which are not supported. A number of implementations we surveyed chose
to rewrite the standard libraries. UCPy [Aycock et al., 2003], a reverse-engineered
Python compiler, reports many of the same difficulties that motivated us: a large
set of standard libraries, a language in constant flux, and a manual whose contents
surprise its own authors. They chose to rewrite the standard library, even though it
was 71,000 lines of code long, risking potential semantic differences with the official
distribution.

Both Roadsend [Roadsend] and Quercus [Quercus]—PHP compilers, referred to by
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Jones’ quote in Section 5.2.2—reimplement a very small portion of the PHP standard
libraries. In Shed Skin [Dufour, 2006, Section 4.3.3], a Python-to-C++ compiler,
the authors were unable to analyse or reuse Python’s comprehensive standard library.
Instead, library functions they wanted to support were both reimplemented in C++
and separately modelled in Python.

Jython [Jython] and JRuby [JRuby] are reimplementations of Python and Ruby,
respectively, on the JVM. They reimplement their respective standard libraries in
their respective host languages, and do not reuse the canonical implementation. A
much better approach is employed by Phalanger [Benda et al., 2006, Section 3], a PHP
compiler targeting the .NET run-time. It uses a special manager to emulate the PHP
system, through which they access the standard libraries via the C API. They report
that they are compatible with the entire set of PHP extensions and standard libraries.
However, Phalanger does not use the PHP system’s functions for its built-in operators,
instead rewriting them in its host language, C#. Many of PHP’s most difficult features
to compile involve its built-in operators, and we believe that reimplementing them is
costly and error-prone.

In terms of language features, none of the compilers discussed have a strategy for
automatically adapting to new language semantics. Instead, each provides a list of
features with which they are compatible, and the degree to which they are compatible.
None mentioned the fact that language features change, or that standard libraries
change, and we cannot find any discussion of policies to deal with these changes.

A few, however, mention specific examples where they were unable to be compatible
with the canonical implementation of their language. Johnson and Slattery [2006]
attempted to reimplement PHP from public specifications, using an existing virtual-
machine. They reported problems caused by PHP’s call-by-reference semantics. In
their implementation, callee functions are responsible for copying passed arguments,
but no means was available to inform the callee that an argument to the called function
was passed-by-reference.8 Shed Skin [Dufour, 2006] deliberately chose to use restricted
language semantics, in that it only compiles a statically typed subset of Python.

However, two approaches stand out as having taken approaches which can guarantee a
strong degree of compatibility. 211 [Aycock, 1998] converts Python virtual machine
code to C. It works by pasting together code from the Python interpreter, which
corresponds to the bytecodes for a program’s hot-spots. 211 is a compiler which is
very resilient to changes in the language, as its approach is not invalidated by the

8 In PHP, call-by-reference parameters can be declared at function-definition time or at call-time.
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addition of new opcodes. It’s approach is more likely to be correct than any other
approach we mention, including our own, though it comes at a cost, which we discuss
is Section 5.7.2.

Python2C [Salib, 2004, Section 1.3.1] has a similar approach to phc, and, like both
phc and 211, provides great compatibility. Unfortunately, it comes with a similar cost
to 211, as detailed in Section 5.7.2.

Pyrex [Ewing] is a domain-specific language for creating Python extensions. It extends
a subset of Python with C types and operations, allowing mixed semantics within a
function. It is then compiled, in a similar fashion to our approach. Though they omit
much of the language, it is easy to see that by following this approach, they have to
ability to have a very high degree of compatibility with Python, even as the language
changes.

5.3.2 C API

Very few compilers attempt to emulate the C API. However, Johnson and Slattery
[2006] provide a case study, in which they determine that it is not possible in their
implementation, claiming that the integration between the PHP system and the
extensions was too tight. We have also observed this, as the C API is very closely
modelled on the PHP system’s implementation. Phalanger [Benda et al., 2006] does
not emulate the C API, but it does provide a bridge allowing programs to call into
extensions and libraries. Instead of a C API, it provides a foreign-function interface
through the .Net run-time. Jython and JRuby provide a foreign-function interface
through the JVM, in a similar fashion.

5.3.3 Run-time Code Generation

A number of compilers [Benda et al., 2006, Johnson and Slattery, 2006, JRuby,
Jython, Roadsend] support run-time code generation using a run-time version of their
compiler. Some [Dufour, 2006, Quercus] choose not to support it at all. Quercus in
particular claims not to support it for security reasons, as run-time code generation
can lead to code-injection security vulnerabilities. We show in Section 5.7.5 that this
results in a large number of PHP programs which could not be run using the Quercus
compiler.
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While providing a run-time portion of the compiler is sensible for a JIT compiler,
which has already been designed as a run-time system, most of these implementations
are not JIT compilers. However, providing this run-time portion requires that the
implementation is suitable for run-time use; it must have a small footprint, it cannot
leak memory, it must be checked for security issues, and it must generate code which
interfaces with the code which has already been generated. These requirements are
not trivial, and we believe the approach we outline in Section 5.4 affords the same
benefits, at much lower engineering cost. We discuss using a JIT compiler in more
detail in Section 5.6.

5.3.4 Other Approaches

Walker and Griswold’s [1992] optimizing compiler for Icon uses the same system
for its compiled code as its interpreter used. In addition, as they were in control of
both the compiler and the run-time system, they modified the system to generate data
to help the compiler make decisions at compile-time. Typically, scripting language
implementations do not provide a compiler, and compilers are instead created by
separate groups. As a result, it is generally not possible to get this tight integration,
though it would be the ideal approach.

5.4 Our Approach

Nearly all of these approaches have been deficient in some manner. Most were not
resilient to changes in their target language, and instead reimplemented the standard
libraries [Aycock et al., 2003, Dufour, 2006, Johnson and Slattery, 2006, JRuby,
Jython, Quercus, Roadsend]. Those which handled this elegantly still failed to
provide the C API [Benda et al., 2006], and those which achieved a high degree
of compatibility [Aycock, 1998, Ewing, Salib, 2004] failed to provide a means to
achieving good performance.

In phc, our ahead-of-time compiler for PHP, we are able to correct all of these problems
by integrating the PHP system into both our compiler and compiled code. At compile-
time, we use the PHP system as a language oracle, allowing us to automatically adapt to
changes in the language, and saving us the long process of documenting and copying
the behaviour of many different versions of the language. Our generated C code
interfaces with the PHP system at run-time, via its C API. This allows our compiled
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code to interact with built-in functions and libraries and to re-use the existing PHP
system to handle run-time code generation.

5.4.1 Undefined Language Semantics

Language Semantics

One option for handling PHP’s volatile semantics is to keep track of changes in the
PHP system, with separate functionality for each feature and version. However, our
link to the PHP system allows us to resiliently handle both past and future changes.

For built-in operators, we add calls in our generated code to the built-in PHP function
for handling the relevant operator. As well as automatically supporting changes to the
semantics of the operators, this also helps us avoid the difficulty of documenting the
many permutations of types, values and operators, including unusual edge cases.

We solve the problem of changing literal definitions by parsing the literals with the
PHP system’s interpreter, and extracting the value using the C API. If the behaviour
of this parsing changes in newer versions, the new PHP system’s interpreter will still
parse it correctly, and so we can automatically adapt to some language changes which
have not yet been made.

We handle language flags by simply querying them via the C API. With this, we can
handle the case where the flag is set at configure-time, build-time, or via the php.ini

file. No surveyed compiler handles these scenarios.

Libraries and Extensions

One of the largest and most persistent problems in creating a scripting language
reimplementation is that of providing access to standard libraries and extensions. We
do not reimplement any libraries or extensions, instead re-using the PHP system’s
libraries via the C API. This allows us to support proprietary extensions, for which
no source code is available, which is not possible without supporting the C API. It
also allows support for libraries which have yet to be written, and changing definitions
of libraries between versions.
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(a) Compilation pipeline with phc and the PHP C API (b) Interface between the phc compiled code
and the PHP C API

Figure 5.1: Interaction of phc and the PHP C API

5.4.2 C API

Naturally, we support the entire C API, as our generated code is a client of it. This
goes two ways, as extensions can call into our compiled code in the same manner as
the code calls into extensions.

Integrating the PHP system into the compiler is not complicated, as most scripting
languages are designed for embedding into other applications [Muhammad and Ierusal-
imschy, 2007]. Lua in particular is designed expressly for this purpose [Ierusalimschy
et al., 2005]. In the case of PHP, it is a simple process [Golemon, 2006] of including
two lines of C code to initialize and shut down the PHP system. We then compile
our compiler using the PHP embed headers, and link our compiler against the embed
version of libphp5.so, the shared library containing the PHP system. This is shown
in Figure 5.1a.

Users can choose to upgrade their version of the PHP system, in which case phc will
automatically assume the new behaviour for the generated code. However, compiled
binaries may need to be re-compiled, because the language has effectively changed.
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int main (int argc, char *argv[]) {

php_embed_init (argc, argv);

php_startup_module (&main_module);

call_user_function ("__MAIN__");

php_embed_shutdown ();

}

Listing 5.2: phc generated code is called via the PHP system

5.4.3 Run-time Code Generation

In addition to being important for correctness and reuse, the link between our gener-
ated code and the PHP system can be used to deal with PHP’s dynamic features, in
particular, the problem of run-time code generation.

Though the include statement is semantically a run-time operation, phc supports a
mode in which we attempt to include files at compile-time, for performance. As the
default directories to search for these files can change, we use the C API to access the
include_path language flag. If we determine that we are unable to include a file, due
to its unavailability at compile-time, or if the correctness of its inclusion is in doubt,
we generate code to invoke the interpreter at run-time, which executes the included
file. We must therefore accurately maintain the program’s state in a format which the
interpreter may alter at run-time. Our generated code registers functions and classes
with the PHP system, and keeps variables accessible via the PHP system’s local and
global run-time symbol tables. This also allows us support variable-variables and the
eval statement with little difficulty.

5.4.4 Compiling with phc

phc compiles PHP source code, generating C, as described in Section 4.1. The gener-
ated code interfaces with the PHP C API, as shown in Figure 5.1b. The generated C
is compiled into an executable—or a shared library in the case of web applications—by
a C compiler. Listings 5.2–5.5 show extracts of code compiled from the example in
Listing 5.1. In each case, the example has been edited for brevity and readability, and
we omit many low-level details from our discussion.

Listing 5.2 shows the main() method for the generated code. phc compiles all top-level
code into a function called __MAIN__. All functions compiled by phc are added to the
PHP system when the program starts, after which they are treated no differently
from PHP library functions. To run the compiled program, we simply start the PHP
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zval* p_i;

php_hash_find (LOCAL_ST, "i", 5863374, p_i);

php_destruct (p_i);

php_allocate (p_i);

ZVAL_LONG (*p_i, 0);

Listing 5.3: phc generated code for $i = 0

static php_fcall_info fgc_info;

php_fcall_info_init ("file_get_contents", &fgc_info);

php_hash_find (LOCAL_ST, "f", 5863275, &fgc_info.params);

php_call_function (&fgc_info);

Listing 5.4: phc generated code for file_get_contents($f)

system, load our compiled functions, and invoke __MAIN__.

Listing 5.3 shows a simple assignment. Each value in the PHP system is stored in a
zval instance, which combines type, value and garbage-collection information. We
access the zvals by fetching them by name from the local symbol table. We then
carefully remove the old value, replacing it with the new value and type. We use the
same symbol tables used within the PHP system, with the result that the source of
the zval—whether interpreted code, libraries or compiled code—is immaterial.

Listing 5.4 shows a function call. Compiled functions are accessed identically to
library or interpreted functions. The function information is fetched from the PHP
system, and the parameters are fetched from the local symbol table. They are passed
to the PHP system, which executes the function indirectly.

Listing 5.5 shows an include statement. The PHP system is used to open, parse,
execute and close the file to be included. The PHP system’s interpreter uses the same
symbol tables, functions and values as our compiled code, so the interface is seamless.9

5.4.5 Optimizations

The link to the C API also allows phc to preform a number of optimizations, typically
performing computation at compile-time, which would otherwise be computed at
run-time.

9 We note that the seamless interface requires being very careful with a zval’s reference count.
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php_file_handle fh;

php_stream_open (Z_STRVAL_P (p_TLE0), &fh);

php_execute_scripts (PHP_INCLUDE, &fh);

php_stream_close (&fh);

Listing 5.5: phc generated code for include ($TLE0)

Constant-folding

The simplest optimization we perform is constant folding. In Listing 5.1, line 23, we
would attempt to fold the constant expression 1024 * 1024 into 1048576. PHP has five
scalar types: booleans, integers, strings, reals and nulls, and 18 operators, leading to a
large number of interactions which need to be accounted for and implemented. By
using the PHP system at compile-time, we are able to avoid this duplicated effort, and
stay compatible with changes in future versions of PHP. We note that the process
of extracting the result of a constant folding does not change if the computation
overflows.

Pre-hashing

We can also use the embedded PHP system to help us generate optimized code. Script-
ing languages generally contain powerful syntax for hashtable operations. Listing 5.1
demonstrates their use on line 20.

When optimizing our generated code, we determined that 15% of our compiled appli-
cation’s running time was spent looking up the symbol table and other hashtables, in
particular calculating the hashed values of variable names used to index the local sym-
bol table. However, for nearly all variable lookups, this hash value can be calculated at
compile-time via the C API, removing the need to calculate the hash value at run-time.
This can be seen in Listing 5.3, when the number 5863374 is the hashed value of "i",
used to lookup the variable $i. This optimization removes nearly all run-time spent
calculating hash values in our benchmark.

Symbol-table Removal

In Section 5.4.3, we discussed keeping variables in PHP’s run-time symbol tables.
This is only necessary in the presence of run-time code generation. If we statically
guarantee that a particular function never uses run-time code generation—that is to
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say, in the majority of cases—we remove the local symbol table, and access variables
directly in our generated code.

Pass-by-reference Optimization

PHP programs tend to make considerable use of functions written in the C API. As
functions may be called which are not defined at compile-time, we must add run-time
checks to determine whether parameters should be passed by reference or by copy.
However, we are able to query the signatures of any function written in the C API,
which allows us to calculate these at compile-time, rather than run-time.

Caching Function Calls

As PHP is a dynamic language, with functions only defined at run-time, we must
lookup functions by name before we can call them. Initially, we began by looking up a
function each time we called it. However, as functions cannot change their definition
after they are first defined, we cache the function lookup after the first time we call
it. This speedup from this optimization is significant (around 23% compared with a
similar version of phc without this optimization).

5.4.6 Caveats

Our approach allows us to gracefully handle changes in the PHP language, standard
libraries and extensions. Clearly though, it is not possible to automatically deal with
large changes to the language syntax or semantics. When the parser changes—and
it already has for the next major version of PHP—we are still required to adapt our
compiler for the new version manually. Though we find it difficult to anticipate minor
changes to the language, framing these problems to use the PHP system is generally
straightforward after the fact. Finally, we are not resilient to changes to the behaviour
of the C API; empirically we have noticed that this API is very stable, far more so
than any of the features implemented in it. This is not assured, as bugs could creep in,
but these tend to be found quickly because the API is in very heavy use, and we have
experienced no problems in this regard.



5.5. Interactions with the PHP Memory Model 85

5.5 Interactions with the PHP Memory Model

When assessing the performance of a programming language implementation, it is
natural to think that most of the execution time is likely to be spent performing
computations. In fact, as we discuss in Section 5.7.1, the run-time system often has
a major impact on performance. This is particularly true for scripting languages for
three main reasons. First, scripting languages generally provide automatic memory
management to reclaim objects that are no longer in use. The memory manager adds
to execution time, whether it uses a tracing garbage collector, or as in the case of PHP,
reference counting. Secondly, even scalar values in scripting languages are typically
implemented with data structures rather than simple C scalars, because additional
information such as type and memory-management information must be stored along
with the value. Thirdly, the main data-structuring feature provided by scripting lan-
guage is the table, which is typically implemented using hashtables. Thus, even simple
record or array data structures need a more complicated memory representation,
which often consists of more than one single piece of memory. For these reasons, to
optimize the performance of a compiler which uses the canonical implementation, it
is essential to understand the memory model used by the implementation.

In this section, we discuss the PHP memory model and pitfalls which occur when
linking to such a model.

5.5.1 PHP Memory Model

The primitive unit of data in PHP is the zval, a small structure encompassing a union
of values—objects, arrays and scalars—and memory-management counters and flags.
A PHP variable is a symbol-table entry pointing to a zval, and multiple variables can
point to the same zval, using reference counting for memory management.

PHP assignment is by copy, meaning that semantically the lvalue becomes a copy
of the rvalue. This is not only true of scalars: PHP arrays are deeply copied during
an assignment, and object references are copied to a new run-time zval. As an opti-
mization, the PHP system causes the lvalue to share the rvalue’s zval, increasing its
reference count. The variables are said to become part of the same copy-on-write set.
Thus, even though an assignment is semantically a copy, the assigned value is shared
until it is required to be altered.
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Assignment can also be by reference, which puts the two variables in the same change-
on-write set, in a similar fashion. This sets the is_ref flag of the shared zval, indicating
that the variables in this set all reference each other. Setting a variable’s value, where
that variable is part of a change-on-write set, changes the value of all the other variables
in that set.

Variables in a copy-on-write set share the same zval, but are not semantically related.
Although this is an optimization applied by the PHP system, it is a feature which phc

must deal with to interact with the PHP system, and so it reuses it for performance. In
order to update the value of a variable in a copy-on-write set, it must first be separated.
A copy of its zval is created—a deep copy in the case of arrays and strings—and the
original zval has its reference count decremented. Variables in a change-on-write set
must similarly be separated if they are assigned by copy.

Assignment to a variable in a change-on-write set overwrites the zval’s value field,
changing the value of all the variables in that set. Variables with a reference count of
one, which are in neither a copy-on-write or change-on-write set—are treated similarly.

The PHP interpreter keeps pointers to a variable’s zval in global and function-local
symbol-tables—hashtables indexed by the variable’s name. When a function finishes
execution, the local symbol-table is destroyed, decreasing the reference count of
all zvals contained within. The global symbol-table is destroyed at the end of the
execution of a script.

5.5.2 Pitfalls with the Memory System

In creating phc, we came across a number of pitfalls which we believe can affect any
scripting language compiler. We describe the most important which we have come
across.10 At first, our naively generated code was around ten times slower than the
PHP interpreter. This was primarily due to the fact that our code used significantly
more memory than the PHP interpreter. The most important factor in this was our
use of three-address-code (TAC). In order to simplify our compiler transformations
and code generation, we lowered complex expressions into TAC by adding assignment
to temporary variables. However, these extra assignments increase the reference count
of a zval, meaning not only that a program’s memory remains live for a longer period,
but also that there are more separations, leading to extra memory allocations, copying,
and subsequent deallocations.
10Another interesting pitfall is described by Tozawa et al. [2009].
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for ($i = 0; $i < $N; $i++)

{

$str .= "hello"; // concat

}

(a)

for ($i = 0; $i < $N; $i++)

{

$T1 = "hello";

$T2 = $str; // T2.refcount++;

$T2 = $T2 . $T1; // concat

$str = $T2;

}

(b)

Listing 5.6: String concatenation benchmark

In a simpler language such as C, copying a value has no ramifications for the copied
value, so introducing TAC does not have great performance side-effects. However,
in PHP, copying a value will increase its reference count, meaning it must be sepa-
rated before it can be written to or altered. We prevented generation of poor code
simply by being careful not to introduce redundant assignment statements, during
our conversion to TAC.

To highlight the magnitude of this problem, consider Listing 5.6a. In this example,
we accidentally turn an O(N ) algorithm into an O(N 2) one, shown in Listing 5.6b.
This is a subtle, but interesting problem stemming from the interaction of TAC and
copy-on-write semantics. Other scripting languages which use copy-on-write, such as
Perl and Tcl, may also experience this problem.

Listing 5.6a is a string concatenation benchmark, referred to later as strcat. The .=

operator performs in-place concatenation, in this case appending "hello" onto the end
of the string in $str. Though this code did not strictly need to be lowered to TAC,
our over-zealous lowering algorithm added extra temporaries into this code, resulting
in Listing 5.6b. Semantically, these perform the same operations. However, the zval

pointed to by $T2 has a reference count of two after line 4, meaning the string cannot
be concatenated in place. Instead, $T2 must be separated, even though it will be freed
on line 4 of the next loop iteration.

It is interesting to observe the difference in performance between the two similar
pieces of code. Listing 5.6a takes O(N ) time.11 By contrast, in Listing 5.6b, when $str

must be copied in every iteration due to an increased reference count, the same work
takes O(N 2) time in total. We note that this problem does not only occur due to TAC.
It is not always trivial to determine the reference count of a variable, and problems

11We ignore the complexity of memory allocation due to increasing the size of the string, which will be
the same in both cases.
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such as these may appear in user-code by accident.

5.6 Just-in-time Compilers

Just-in-time compilers (JITs) [Aycock, 2003] are an alternative to interpreting or ahead-
of-time compiling. In recent years, the growing popularity of managed languages
running on virtual machines, such as Java’s JVM and the Microsoft .Net framework,
has contributed to the growth of JIT compilers.

JIT compilers’ optimizations are not inhibited by dynamic features, such as reflection
and run-time code generation. Method specialization [Rigo, 2004] compiles methods
specifically for the actual run-time types and values. Other techniques can be used to
gradually compile hot code paths [Gal et al., 2006, Zaleski et al., 2007].

JIT compilers, however, suffer from great implementation difficulty. They are typ-
ically not portable between different architectures, one of the great advantages of
interpreters. Every modern scripting language’s canonical implementation is an inter-
preter, and many implementations sacrifice performance for ease of implementation.
The Lua Project [Ierusalimschy et al., 2005, Section 2], for example, strongly values
portability, and will only use ANSI C, despite potential performance improvement
from using less portable C dialects, such as using computed gotos in GNU C.

In addition to being difficult to retarget, JIT compilers are difficult to debug. While it
can be difficult to debug generated code in an ahead-of-time compiler, it is much more
difficult to debug code generated into memory, especially when the JIT compiler
compiles a function multiple times, and replaces the previously generated code in
memory. By contrast, our approach of generating C code using the PHP C API is
generally very easy to debug, using traditional debugging techniques.

Much of the performance benefit of JIT compilers comes from inlining functions
[Suganuma et al., 2002]. However, scripting language standard libraries are typically
written using the language’s C API, not in the language itself, and so cannot be
optimized using the JIT compiler’s inlining heuristics. We also expect a similar
problem when current methods of trace JIT compilers [Gal et al., 2009] are attempted
to be ported from Javascript—in which entire applications are written mostly in
Javascript—to other scripting languages. Achieving the kind of speeds achieved by
Java JIT compilers would require rewriting the libraries in the scripting language. As
a result, it often takes great effort to achieve good performance in a JIT compiler. A
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Figure 5.2: Profiling results of the PHP interpreter, using callgrind

prototype JIT compiler for PHP [Lopes, 2008] was recently developed using LLVM
[Lattner and Adve, 2004], but ran 21 times slower than the existing PHP interpreter.12

5.7 Evaluation

5.7.1 PHP Performance Profile

Conventional wisdom states that a compiled program should run at least an order-of-
magnitude faster than an interpreted program. In our experience, however, dynamic
scripting languages do not follow this rule of thumb. Instead, a program written in
a scripting language spends most of its run-time handling dynamic features, such as
dynamic types and zvals. This limits the potential improvement of simply removing
the interpreter loop. This is particularly important for a compiler like phc which
re-uses the PHP system, as many of the code paths executed will be the same, whether
the program is interpreted or compiled.

To understand where time is spent in the PHP system, and to determine the potential
speedup from optimization, we profiled the PHP system. Figure 5.2 shows the profile
of a number of PHP benchmark applications,13 interpreted using PHP version 5.2.3,

12Note that this JIT was written in two days, and is a true proof-of-concept.
13This benchmark colllection is available online at http://phc.googlecode.com/files/

http://phc.googlecode.com/files/thesis-benchmarks-5.7.1.tar.gz
http://phc.googlecode.com/files/thesis-benchmarks-5.7.1.tar.gz
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using the callgrind tool from valgrind 3.4.1 [Nethercote and Seward, 2007]. We
compiled PHP using gcc version 4.4.0, using the options -O3 -g -NDEBUG, targeting
the x86-64 instruction set. We analysed the flat profile provided by callgrind, looking
at the ‘self ’ results (that is, time spent in a function, not including time spent in the
function’s callees). We categorized each function in the profile into broad categories,
based on our knowledge of the design of the PHP system.

Interpreter overhead includes time spent parsing programs, generating bytecode, run-
ning the interpreter loop and dispatching to bytecodes. Bytecode handlers are the code
blocks dispatched to by the interpreter, which actually execute the desired operation.
Operators includes time spent executing arithmetic and logical operators. Memory
management is self explanatory. Hashtable access involves access to hashtables (which
includes arrays, objects and symbol-tables), including calculating hash values from
string keys. Object-oriented field accesses excludes the actual hashtable access, but
includes other object-oriented overhead such as checking for special object-oriented
handlers. libc denotes time spent in the C standard library.

While there is a significant amount of time spent in interpreter overhead (26%), it is not
nearly enough to allow for a order-of-magnitude speedup from compilation. This lends
support to our approach, as compared to that of 211 and Python2C. Both of these
Python compilers take a narrow approach, attempting only to remove interpreter
overhead, but they do not allow for higher-level optimizations. This means that their
techniques cannot achieve a great speedup if they were applied to the PHP system.

Nearly 18% of run-time time is spent performing calculations in the Operators category.
This is principally due to PHP’s dynamic typing. PHP uses opcodes which perform
significantly more computation than, say, a Java bytecode. For example, an add uses a
single opcode, like in Java. However, where a Java add opcode is little more than a
machine add and an overflow check, PHP’s add opcode calls an add function. This
function, depending on the types of the operands, might merge two arrays, convert
strings to integers, or a number of other operations.

We also see a 10% overhead due to hashtable accesses. Hashtables are used extensively
in PHP, not only as the principal data structure (as both arrays and associative arrays),
but also to provide symbol-tables and objects. In theory, the PHP system’s interpreter
accesses every local variable through the local symbol-table. However, it uses an
optimization similar to our symbol-table removal in Section 5.4.5, which prevents
this overhead [Wharmby, 2006]. As a result, all of the hashtable overhead comes from
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array manipulation, accesses to the global symbol-table, and accessing fields of objects.

PHP’s dynamic typing cross-cuts all of these categories. Hashtables must be used
in PHP’s object-orientation, as a result of objects’ dynamic types. A great deal of
memory management is due to allocating zvals for every value in the program, a
result of dynamic typing. A lot of the overhead of operators is due to checking types
before performing the computation, which is otherwise a cheap operation. Thus
dynamic types not only take up time in the PHP system, but also prevent compiling
PHP programs to more efficient representations. Chapter 6 demonstrates that static
analyses can be developed which can remove many of these type checks and allow
more efficient compilation.

5.7.2 Performance

The major motivation of this research is to demonstrate a means of achieving correct-
ness in a scripting language reimplementation. However, we are also able to increase
the performance of our compiled code, compared to the PHP system’s interpreter.

The PHP designers use a small benchmark [The PHP Group, 2007], consisting of
eighteen simple functions, iterated a large number of times, to test the speed of the
PHP interpreter.

We compared the generated code from phc with the PHP system’s interpreter, version
5.2.3. We used Linux kernel version 2.6.29.2 on an Intel Xeon 5138 with four cores,14

rated at 2.13 Ghz (clocked at 1.6 Ghz),15 with 12GB of RAM and a 1MB cache per
CPU. Both our compiled code and the PHP system were compiled with gcc version
4.4.0, using -03 -NDEBUG compiler flags.

Figure 5.3 shows the execution time of our generated code relative to the PHP inter-
preter. phc compiled code performs faster on 16 out of 18 tests. The final column is
the arithmetic mean of the speedups, showing that we have achieved a total speedup
of 1.55. In Figure 5.4, our metric is memory usage, measured using the space-time
measure of Valgrind 3.2’s massif tool [Nethercote and Seward, 2007]. Our graph
shows the per-test relative memory usage of one implementation over the other. The
final column is the arithmetic mean of the reductions in memory usage, showing a

14Note that all of our benchmarks are single-threaded, and that PHP does not support threads at a
language level.

15The “rating” is the marketing speed given by Intel when selling Xeons. The actual clock speed in 1.6
Ghz.
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Figure 5.3: Speedups of phc compiled code vs the PHP interpreter. Results greater than one
indicate phc’s generated code is faster than the PHP interpreter. The mean bar shows phc’s speedup
of 1.55 over the PHP interpreter.
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Figure 5.4: Relative memory usage of phc compiled code vs the PHP interpreter. Results greater
than one indicate phc’s generated code uses less memory than the PHP interpreter. The mean bar
shows phc’s memory reduction of 1.30 over the PHP interpreter.
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reduction of 1.30.

It can be expected that we are able to optimize away the interpreter overhead, as
discussed in Section 5.7.1, to achieve a speedup of 1.35. This is in the same league
as previous implementations. Python2C [Salib, 2004, Section 1.3.1] is reputed to
have a speedup of approximately 1.2, using a similar approach to ours, including some
minor optimizations. 211 [Aycock, 1998] only achieves a speedup of 1.06, the result
of removing the interpreter dispatch from the program execution, and performing
some local optimizations. It removes Python’s interpreter dispatch overhead, and
removes stores to the operand stack which are immediately followed by loads. We
do not benefit from 211’s optimization as peephole stack optimization will also not
work for PHP, which does not use an operand stack.

However, our speedup is in some cases much greater than that which can be achieved
by simply removing the interpreter overhead. In most cases, these are due to the
optimizations which we discussed in Section 5.4.5. However, these are mitigated in
some cases by poor code generation, especially related to hashtables, for example in
ary, ary2, ary3 and hash2. By contrast, we achieve much better speedups in functions
which primarily manipulate loops and integers, in particular nestedloop and mandel.

We expect that traditional data-flow optimizations will also greatly increase our per-
formance improvement, and our approach allows this in the future, which neither
211 nor Python2C allow. We believe that without this ability, 211 and Python2C are
likely dead-ends, with their performance limited by their approaches.

We also believe that the PHP system could achieve higher performance with a better
implementation. However, the run-time work which slows PHP down also slows
down our generated code, and so as PHP is improved, our speedup over PHP will
likely remain constant.

5.7.3 Performance Examination

In order to understand why we achieved our performance improvement, we analysed
both interpreted and compiled PHP benchmarks using the cachegrind tool from
Valgrind 3.4.1, a hardware simulator. We measured a wide range of metrics including
instruction counts, level-1 and level-2 data and instruction cache access, and branch
behaviour. We use the same benchmarks, tools and program versions as discussed in
Section 5.7.2.
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(a) Hardware simulation results comparing the number of branches in phc compiled code vs that of the PHP
interpreter. Results are presented as a percentage of the instruction count. Results greater than zero indicate
phc’s generated code executes fewer branches.

Conditional Branch Mispredictions
Indirect Branch Mispredictions
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(b) Hardware simulation results comparing the number of branch mispredictions in phc compiled code vs
that of the PHP interpreter. The number of mispredictions are multiplied by 12 (representing a 12-stage
pipeline), and presented as a percentage of the instruction count. Results greater than zero indicate phc’s
generated code generates fewer branch mispredictions.

Figure 5.5: Branch misprediction results
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Figure 5.5 presents branch prediction results, with Figure 5.5a showing the change in
the number of branches, and Figure 5.5b showing the change in branch mispredictions.
Results above zero indicate the decrease in branches as a percentage of instructions
executed in the compiled program; results below zero indicate an increase. Figure 5.5b
shows the difference in branch mispredictions scaled by the approximate cost of a
branch misprediction. We choose 12 as this cost factor, roughly the length of a modern
pipeline.

A major difference between interpreters and compilers is that an interpreter loop
typically leads to a great number of indirect branch mispredictions. Our results do
not show this expected decrease in branch mispredictions however. Instead, we have
a slight increase in indirect branches, of approximately 2%, and a larger decrease
in conditional branches. In Figure 5.5b, we can see that the number of branch
mispredictions does not decrease in our compiled code. It shows that even when
scaled by a factor of 12, the cost of branch mispredictions costs no more than an
equivalent of 1% of instructions executed. We also see that the slight increase in
indirect branch mispredictions is mitigated by the slight decrease in conditional
branch mispredictions.

We believe that the cost of the interpreter loop is not great in the PHP interpreter,
when compared to the cost of dynamic features. Our generated code heavily uses
switch statements in order to handle dynamic typing, and it appears that the reduction
in the number of indirect mispredictions due to interpreter overhead is small compared
mispredictions due to type checks. We speculate that the PHP interpreter more often
uses conditional statements for the same purpose. Indeed, it appears that the overall
number of branch mispredictions is largely the same in both compiled and interpreted
programs.

We also measured changes in level-1 and level-2 cache misses, for both instruction and
data caches. The difference in these misses is insignificant (that is, approaching 0%)
when compared to instruction count, so we do not present them visually. We would
expect to have an increase in instruction cache misses due to essentially inlining
the bytecode handlers, but this did not materialize. We believe that with larger
benchmarks, this may become more apparent.

It is clear that the speed of the running programs is not greatly affected by cache
accesses or branch predictors. Figure 5.6 shows the decrease in instruction count and
memory accesses due to compilation. As the number of cache misses is not different,
we surmise that the memory accesses removed due to compilation were level-1 cache
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Figure 5.6: Hardware simulation results comparing the number of executed instructions and
memory accesses in phc compiled code vs that of the PHP interpreter. Results greater than one
indicate phc’s generated code performs better.

hits, which have a low cost. Nevertheless, the ebb and flow of Figure 5.6 matches that
of our speedup in Figure 5.3. It seems clear that the decrease in instruction count is
due somewhat to the decrease in conditional branches. Indeed, in Figure 5.5a only two
benchmarks (hash2 and strcat) have an increase in conditional branches, and those
same benchmarks are the only ones to result in a slowdown instead of a speedup in
Figure 5.3.

As a result, we believe that our speedups come not from removing the cost of mis-
predictions in the interpreter loop, but instead through a combination of removing
the rest of the interpreter overhead, and small optimizations. One of the costs of the
interpreter is an extra layer of indirection when accessing zvals. While we store point-
ers to zvals in registers, the PHP interpreter fetches pointers to zvals from memory,
leading to increased memory accesses. While most of our simple optimizations are
local, and aimed at reducing the instruction count, removing symbol-tables is aimed
at reducing memory accesses, at which we appear to have been largely successful.
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5.7.4 Feedback-directed Optimization

Our technique is roughly similar to inlining the PHP system’s bytecode handlers.
In theory, this could allow the code to be rearranged based on feedback-directed
optimization (FDO). This might allow the C compiler to do aggressive optimization,
in a similar technique to speculative inlining [Feeley, 2007] or trace trees [Gal et al.,
2009]. Ideally, this would mitigate the slowdown of some of PHP’s dynamic features,
in particular its dynamic type checks, by moving the most likely code into a straight
path, eliding pipeline stalls and branch mispredictions.

In order to determine whether such profiling has a beneficial effect, we reran our
benchmarks using the gcc 4.4’s FDO feature. Figure 5.7 shows the speed improve-
ments over PHP 5.2.3, when using feedback directed optimization. PHP was con-
figured as discussed above. We compiled phc generated code in the same manner as
above, with the exception that we used the FDO options from gcc 4.4.0. We com-
piled the benchmarks initially using the -fprofile-generate flag. After running the
generated executable, we compiled the benchmarks again using its feedback, with
the -fprofile-use -fprofile-generate flags. Finally, we reused that feedback when
compiling the benchmarks again using the -fprofile-use flag only.

Without FDO
With FDO
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Figure 5.7: Speedups of phc compiled code vs the PHP interpreter, with and without FDO.
Results greater than one indicate phc’s generated code is faster than the PHP interpreter. The
‘Without FDO’ bar repeats the results from Figure 5.3. The mean ‘With FDO’ bar shows phc’s
speedup of 1.63 over the PHP interpreter, when using feedback-directed optimization.
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In Figure 5.7, the ‘Without FDO’ bar repeats the data from Figure 5.3. The ‘With FDO’
bar shows the speedup over the PHP interpreter, when the code is compiled using
FDO. Note that neither the PHP interpreter, nor the PHP system, are compiled
using FDO.

It seems that while we achieve a small speedup from FDO, we are not able to auto-
matically achieve large speedups. FDO causes our speedup to increase from 1.55 to
1.63. Most of the results indicate a small speedup, with the occasional small slowdown.
While this average speedup is not insignificant, it is clear than most of the changes we
seek can not be done at such a low-level, but will instead have to be handled within phc.
In the future, we will attempt to incorporate FDO within phc, applying a technique
similar to that of Feeley [2007].

Currently FDO provides a small speedup which is not possible in an interpreted
environment. Our generated code separates the bytecode handlers’ code paths in a
context-sensitive manner. As the C code is essentially inlined, it can be optimized
using the profile for a single application. Naturally, we link the compiled code to
the PHP system, which is not optimized in this way. However, we are still able to
automatically achieve a small improvement by exposing phc generated code to the C
compiler.

This optimization is not reasonable for an interpreted program. Other programs
may need to be executed by the same interpreter, and may not benefit from the same
optimizations, due to having a different profile.

5.7.5 Run-time Code Generation in PHP Programs

The techniques we describe in this chapter are particularly useful in the presence of
run-time code generation. To evaluate its utility, we attempted to determine how
often run-time code generation was used, by analysing a large number of publicly
available PHP programs.

We automatically downloaded source code packages from the open-source code host-
ing site sourceforge.net. We selected packages which were labelled with the tag php
and contained PHP source files. Of 645 packages chosen automatically, 581 of them
contained an include statement. We consider these our test corpus, excluding pack-
ages without a single include statement. We believe files without include statements
are likely to be simple programs or small classes, and are unlikely to be complete

sourceforge.net
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PHP programs. Figure 5.1 show overall statistics for the analysed code, showing we
analysed over 42,000 files, incorporating over 8 million lines of code.16

PHP files SLOC includes
Total 42,523 8,130,837 66,999
Average 73 13,995 115

Table 5.1: Package statistics for 581 PHP code packages, including number of files, number of
source lines of code (SLOC), and number of include statements. include statements also includes
require, include_once and require_once statements. ‘Average’ means per package.

We created a plugin for the phc front-end to determine the presence of run-time code
generation. We searched for either eval statements, or include statements which used
dynamic features. We considered include statements which used only PHP constants,
literal strings and concatenations to be static—all other features were deemed to
be indicative of run-time code generation. We show the results of this analysis in
Figure 5.2.

Dynamic includes evals Either Neither
Instances 11,731 1,586
Packages 331 (57%) 156 (26.9%) 358 (61.6%) 223 (38.4%)
Average 35.4 10.2

Table 5.2: Dynamic features in PHP code. The rows are: the number of instances of each feature,
the number of packages using the feature at least once (with percentage of total packages), and the
average number of times the feature is used by packages which use it.

From these figures, it is clear that support for run-time code generation is important
for our problem. It is used in 61% of PHP applications, and when it is used, it is used
extensively, with evals appearing over 10 times in each package in which they appear,
and dynamic includes appearing 35 times in each package in which they appear. This
strongly indicates that our approach of supporting these features in our ahead-of-time
compiler was wise, and that more static approaches would be unable to compile a large
amount of PHP code. In fact, less than 39% of PHP applications do not use these
dynamic features (though other dynamic features exist, which we did not attempt to
detect).

Dynamic include statements are typically either plugin mechanisms or provide locali-
sation. We suspect that in many cases, localization could be handled statically. This
would mean searching for files in the source directories and replacing the dynamic
include with a switch statement and a set of static includes. This approach is used in

16We measured lines of code using the Unix utility wc, so this figure includes blank lines and comments.
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other tools [Wassermann and Su, 2007]. However, it is not safe, as the directory in
which to search can be altered at run-time.

While dynamic include statements are prevalent, and require special support, we note
that the large majority of include statements use a static string. Of the 66,999 includes,
fewer than 18% of them are dynamic. This implies that static analysis of PHP can be
useful in a lot of cases, if code generation is not required.

5.8 Conclusion

Scripting languages are becoming increasingly popular, however, existing approaches
to compiling and reimplementing scripting languages are insufficient. We present
techniques used by phc, which effectively support three important scripting language
features which have been poorly supported in existing approaches. In particular, we
effectively handle run-time code generation, the undefined and changing semantics of
scripting languages, and the built-in C API.

A principal problem of compiling scripting languages is the lack of language defini-
tion or semantics. We believe we are the first to systematically evaluate linking an
interpreter—our source language’s de facto specification—into our compiler, making it
resilient to changes in the PHP language. We describe how linking to the PHP system
helps to keep our compiler semantically equivalent to PHP, which has previously
changed between minor versions.

We also generate code which interfaces with the PHP system. This allows us to reuse
not only the entire PHP standard library, but also to invoke the system’s interpreter
to handle source code generated at run-time. We discuss how this allows us to reuse
built-in functions for PHP’s operators, replicating their frequently unusual semantics,
and allowing us to automatically support those semantics as they change between
releases. Changes to the standard libraries and to extensions are also supported with
this mechanism.

Through discussing existing approaches, we show that our technique handles the
difficulties of compiler scripting languages better than the existing alternatives. We
show too that the percentage of PHP packages which benefit from our approach
exceeds 60% of our sample. We show that we achieve a speedup of 1.55 over the
existing canonical implementation, and present a detailed discussion of this result.
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Overall, we have shown that our approach is novel, worthwhile, and gracefully
deals with a number of significant problems in compiling scripting languages, while
maintaining semantic equivalence with the language’s canonical implementation. We
believe in the importance of correctness when compiling scripting languages, and that
our research will provide the stepping stone on which future optimizations can be
based.

The next chapter describes the static analysis framework which can be used as the first
step in these optimizations.





CHAPTER 6

Static Analysis of Dynamic Scripting
Languages

Static analysis is an important tool for detecting security flaws, finding bugs, and im-
proving compilation of programs. However, static analysis of scripting languages such
as PHP is difficult due to the features found in these languages. These features include
run-time code generation, dynamic typing with implicit type conversions, dynamic
aliasing, implicit object and array creation, and overloading of simple operators. We
find that as a result, simple analysis techniques such as SSA and def-use chains are not
straightforward to use, and that a single unconstrained variable can ruin our analysis.
In this chapter we describe the challenging semantics of PHP, and a static analyser to
model them. In particular our analysis combines alias analysis, type-inference and
constant-propagation for PHP, computing results that are essential for other analyses
and optimizations. Our analysis is specifically designed for PHP, and differs signifi-
cantly from previous analyses, whose flaws we highlight. Our empirical results show
that almost all program variables are unaliased, and that over 60% of dynamic types
are statically known. Ours is the first conservative static analysis which allows the
generation of useful results for PHP.

6.1 Motivation

As scripting languages are increasingly used for more ambitious projects, software tools
to support these languages become more important. Static analysis is an important
technique that is widely used in software tools for program understanding, detecting
errors and security flaws, code refactoring, and compilation. However, PHP presents
unique challenges to this analysis. In addition to highly dynamic features, simple
statements can have hidden semantics which must be modelled in order to allow
conservative program analysis. It is dynamically typed, and programs provide no type-
or alias-information to the analysis writer. Its alias behaviour in particular cannot be
conservatively analysed with known techniques.

103
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PHP’s challenging features include:

1. run-time source inclusion,

2. run-time code evaluation,

3. dynamic, latent typing, with implicit type conversions,

4. duck-typed objects,

5. implicit object and array creation,

6. run-time aliasing,

7. run-time access to symbol-tables,

8. overloading of simple operations.

Some of these features have been handled by earlier work. (1) and (2) have been
addressed by string analysis [Wassermann and Su, 2007] and profiling [Furr et al.,
2009], early work has been performed on alias analysis (6) [Jovanovic et al., 2006],
and a number of other problems (3, 8) have also been touched upon [Xie and Aiken,
2006]. Static analyses of other scripting languages have been performed, notably
for Javascript [Jang and Choe, 2009, Jensen et al., 2009], which have solved some
of the same problems (3, 4). However, large sections of the PHP language are left
unmodelled by this previous work, including important cases relating to arrays, and
essential features such as object-orientation.

In particular, it is notable that all previous analyses for PHP have been non-conservative.
They have been aimed at bug-finding, but their solutions have not been suitable for
purposes such as compilation or optimization. This may be due to the difficulty of
providing a conservative analysis for PHP, which we believe we are the first to do.

PHP’s feature set allows simple expressions to have hidden effects based on a value’s
run-time type. These hidden effects are exacerbated by PHP’s run-time aliasing,
and their detection is hampered by PHP’s dynamic typing. Their presence makes it
very difficult to determine a simple list of definitions and uses of variables within a
function.

Let us consider an assumption made by earlier work [Jovanovic, 2007, Section VI.B],
which does not perform type-inference or model PHP’s implicit type conversions and
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array instantiations1

“if the expression $a[2] appears somewhere in the program, then $a cer-
tainly is an array.”

Unfortunately, this was untrue for their analysis on PHP 4, and is less true in PHP 5.
In a reading context, $a[2] may read from a string, an array, an uninitialized variable
or any scalar value (in which case it would evaluate to NULL). In the writing context, it
might write into a string, assign an array value or convert a NULL value or uninitialized
variable into an array. If $a was an int, real, resource or bool, then writing to it would
generate a run-time warning, and the value would be unaffected. In PHP 5, if $a was
an object, then reading from it would call the get object handler, if present, or else
there would be a run-time error.

It should be clear from this example that many of PHP’s features make analysis
difficult, and that traditional analyses are not adequate to analyse these features.
Existing work on Javascript [Jang and Choe, 2009, Jensen et al., 2009] naturally do
not model PHP references correctly, and use a different class/object model. Even
existing work on PHP omits many important features which we model correctly.

In this paper we present novel and elegant abstractions to enable these analyses. Our
analysis is whole-program, optionally flow- and context-sensitive, and combines alias
analysis, type-inference and constant-propagation. It is an ambitious analysis which
models almost the entire PHP language. In particular, we handle each of (3)–(8), most
of which have never even been discussed in a program analysis context. We believe
we are the first to handle such a large portion of the PHP language, as we are able to
analyse a large number of features which were not handled by previous analyses.

In Section 6.2, we present the semantics of PHP from the perspective of program
analysis, particularly discussing features which make analysis difficult. In Section 6.3
we discuss previous analyses for PHP, and how their limitations prevent analyses of
the whole PHP language. We focus in particular on areas where the unconventional
semantics of PHP have led to edge cases not modelled by previous work. Section 6.4
describes how traditional analyses for C or Java are insufficient to model PHP. In
Section 6.5 we describe our novel analysis, how it solves the problems highlighted
in Section 6.2, and the deficiencies in all previous work to date. Our experimental
evaluation and discussion is presented in Section 6.6.

1 In PHP syntax, $a[2] indexes the value in the variable $a.
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6.2 PHP Language Behaviour

PHP has no formal semantics, no rigorous test suite, and an incomplete manual. As
such, there is no definition of its semantics, except for its canonical implementation. In
Chapters 4 and 5 we described a technique for creating a compiler for such a language.

Although PHP is very different from languages such as C, C++ and Java, there are a
great deal of similarities to other scripting languages such as such as Javascript, Lua,
Perl, Python and Ruby.

PHP offers many language features which makes program analysis difficult. In order
to prime the description of our analysis in Section 6.5, we present first an informal
description of the behaviour of PHP 5. We have omitted behaviour which has no
effect on program analysis.

6.2.1 PHP Overview

PHP has evolved since its creation in 1995. It was originally created as a domain
specific language for templating HTML pages, which was implemented in Perl.

It is influenced by its Perl roots, and has similar syntax and semantics, including a
latent, dynamic type system with implicit type conversions, powerful support for
hashtables, and garbage collection. PHP programs are typically web applications, and
PHP is tightly integrated with the web environment, including extensive support for
database, HTTP and string operations.

PHP 3 introduced simple class-based object-orientation, which used hashtables in its
implementation. As tables are copied during assignment, syntax was introduced to
allow variables to reference other variables, so as to pass arrays and objects to functions
and methods.

PHP 5 introduced a new object model, with new assignment semantics for objects.
This allowed object pointers to be copied into new values, creating a means of passing
objects by pointer value. However, the old reference semantics remain, and are still
required for passing arrays or scalars by reference.
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6.2.2 Dynamic Typing

Typically, in statically typed imperative languages such as C, C++ and Java, names
are given to memory locations. Variables, fields and parameters all have names,
which typically correspond to space on the stack or the heap. Each of these names is
annotated with type information, and this is statically checked.

PHP is instead dynamically typed, meaning type information is part of a run-time
value. The same variable or field may refer to multiple run-time values over the course
of a program’s execution, and the types of these values may differ.

6.2.3 Arrays

Arrays in PHP are maps from integers or strings to values. The same array can
be indexed by both string and integer indices. Arrays are not objects, and cannot
have methods called on them. They are implemented as hashtables in the reference
implementation, and we refer to them as tables from here-on-in. Tables form the basis
of a number of structures in PHP, including objects and symbol-tables. Arrays are
copied using a deep copy.2

6.2.4 Symbol-tables

PHP variables have subtle differences to languages such as C, where they represent
stack slots. Instead PHP variables are fields in global or local symbol-tables, which
form a map of strings to values.

This important feature bears repeating. All PHP values exist on the heap. Variables
are merely names that refer to these values. The same values may be referred to by
array indices or object fields as well as by variables. As we discuss in Section 6.2.11, a
value may be referred to by a number of different names in the program at the same
time.

PHP provides run-time access to symbol-tables. The $GLOBALS variable provides access
to any global variable by name. The local symbol-table can be accessed dynamically

2 The PHP reference implementation uses copy-on-write to prevent the cost of these operations, but
the semantics are still to copy. Tozawa et al. [2009] present a problem with this implementation, and
a solution. Copy-on-write does not affect our analysis, and so we do not discuss it further.
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$x = "old value";

$name = "x";

$$name = "new value";

print $x; // "new value"

Listing 6.1: Example of the use of variable-variables

using variable-variables. A variable-variable provides a means of reading or writing
a variable whose name might only be known at run-time. Listing 6.1 demonstrates
reading to and writing from the variable $x. Variable-variables make it clear that
variables are just symbol-table entries: it is possible to read and write to variables
which would violate PHP’s syntax check using variable-variables, such as variables
named ‘+’ or ‘#@$!’.

PHP’s built-in functions occasionally have access to the symbol-table of their callers.
The built-in functions compact and extract respectively read and write from the caller’s
symbol-table, bundling and unbundling values from variables into arrays. The vari-
ables that are read and written-to can be chosen based on dynamic values. A number
of other functions also write the $php_errormsg variable in case of error.

The $GLOBALS variable, which points to the global symbol-table,3 can be passed to
array functions, iterated over, or cleared. In fact, the user can even unset the $GLOBALS

variable, possibly preventing direct access thereafter.

Many of the behaviours of arrays are shared by other features which are implemented
using arrays. For example, reading from an uninitialized field in a PHP array will
return NULL, and so will reading an uninitialized value from a symbol-table as a result.
These behaviours are also shared by PHP’s objects.

6.2.5 Objects

PHP’s class system is a mishmash of other type systems. It was in principle copied
from Java, and then integrated into the existing type system.

Unlike a number of other scripting languages, there is a static class hierarchy. Once a
class is declared its parent class cannot be changed, a fact which simplifies analysis. In
addition, classes may not change their methods after they are declared. Similarly, once
an object is instantiated it cannot change its class, and as a result its methods may not
be changed either.

3 which holds the $GLOBALS variable. . .
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1 class MyInt {

2 function value () {

3 $this->num = rand ();

4 return $this->num;

5 }

6 }

7

8 $int = new MyInt(5);

9 $newint = $int->value ();

Listing 6.2: Example of field use without declaration

Otherwise, PHP uses duck-typing, discussed in Section 2.1.3. Fields have no declared
type, and may be added and deleted from an object at any time. As such a class
does not denote a particular memory layout. Like symbol-tables, the canonical
implementation implements objects using tables, and the semantics reflect that. For
example, an uninitialized field (that is, accessing a field of an object which does not yet
have that field) evaluates to NULL, as do fields of arrays and symbol-tables. However,
unlike arrays, PHP objects are not deep-copied—a pointer to the object is copied as in
Java.

A simple class declaration and example is shown in Listing 6.2. The field num is not
declared anywhere. The object instantiated on line 8 does not have any fields. The
num field is only added to the object in the value method on line 3, after the method is
called from line 9.

Unlike arrays and symbol-tables, objects can have magic methods. Magic methods are
methods which are implicitly triggered by invoking specific operations on objects
whose class defines the magic method. Figure 6.1a contains a selection of allowed
magic methods. __get, __set and __isset are called if inaccessible fields (missing or
having private inheritance) are accessed, __call is called if inaccessible methods are
accessed and __invoke is called upon an attempt to invoke the object.4

The __toString method is of particular interest. Strings are fundamental to PHP, and
there are a large number of places in which the __toString method may be called,
should an object be passed instead of a string. Examples are the concatenation opera-
tor (‘.’), interpolated variables in strings (e.g. "My name is $name"), printing, or using
any of PHP’s built-in functions which expect strings. If you pass an object with a

4 Variable-methods allow arbitrary values to be invoked (e.g. $myfunc() or $obj->$mymethod()).
Typically, the invoked value is a string, and the name of the string is used to lookup a global function
or class method. Objects with the __call method can be used to simulate first-class functions or
closures.
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__call
__get
__invoke
__toString
__set
__isset

(a) Magic meth-
ods

call_method
cast_object
get
get_constructor
get_method
has_dimension
has_property
read_dimension
read_property
set
write_dimension
write_property
(b) C object handlers

Figure 6.1: Selection of magic methods and object handlers. These methods are called implicitly
when certain operations are performed on an object.

__toString method to a library expecting a string, the __toString may be called when
the string is evaluated. This may happen deep within the library.

As described in Chapter 5, many PHP libraries are implemented using PHP’s C
API. Objects passed to or from C libraries may be given special C object handlers.
These are implicitly triggered by simple operations such as reading an object’s value or
accessing it using array syntax. Figure 6.1b contains most of these handlers. If defined,
they typically replace the standard behaviour of some PHP construct, for example
accessing an object using the array syntax (*_dimension) or accessing fields (*_property).

As the libraries written using the C API may have access to a large portion of the
internals of the reference implementation, C object handlers may seriously change
the semantics of the program. For example, they may add new variables to the local
or global symbol-tables, change the class of an object (which is otherwise forbidden),
or rename global functions at run-time. We have seen examples of each of these
behaviours in PHP libraries.

6.2.6 Operators

There are two equality operators, == and ===. The former may apply implicit type
conversions, considering for example the integer 5 to be equal to the string "5". The
=== operator is stricter, requiring the type of the values to also be equal.
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print "zest" == 0; // true

print 0 == "eggs"; // true

print "zest" == "eggs"; // false

Listing 6.3: Example of intransitive equality operations. All PHP strings are considered equal to
the integer 0.

PHP has detailed rules on the equality of values in the presence of implicit type
conversions, described in the PHP manual. Many of these rules were collected by
experimentation on the existing behaviour in some version of PHP, but they appear
to be unchanged since their behaviour was first added to the manual. An interesting
property of the == operator is that it is not transitive, as can be seen in Listing 6.3.
Other comparison operators, including arithmetic and bitwise operators, have similar
quirks.

6.2.7 Scalar Values

PHP has the following scalar types: int, real, string, bool, resource and null. It is not
possible to add user-defined scalar types.

The int and real types are wrappers for the C types long and double. The bool type
represents simple boolean values which may be true or false. A string is a scalar in
PHP, as there is no character type for it to aggregate. However, array syntax may be
used to modify portions of a string, complicating analysis of arrays.

Much of PHP’s standard library is written in C. The resource type provides a way to
wrap C pointers in user-code, after they are returned from standard libraries. PHP
user code cannot create resources, and user-space operations on them are largely not
meaningful. They are only stored in values so that they may be passed back to C
library functions. Resources are trivial to model in our analysis, and so shall not be
addressed further.

PHP’s NULL value closely resembles the unit value [Pierce, 2002] in Scheme. Scheme’s
unit type has exactly one value, also called unit. Similarly, PHP’s NULL type has
exactly one value, also called NULL. However, comparisons between PHP’s NULL and
those of other languages are muddied by PHP’s implicit type conversions. For example,
NULL is equal (using ==) to 0, "", 0.0, and false.

PHP allows definitions of constant values, similar to C’s #define construct. However,
constants are dynamically defined in PHP, by calls to the define function. As such,
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if (25 <= $_GET["age"])

echo "...";

Listing 6.4: Example of implicit type conversions. $_GET is a table containing values from the
user, provided via a HTTP form. The user value will be implicitly converted to an integer, and
compared to 25.

they are defined at run-time, not compile-time. Although a “constant” may not change
its value once it is defined, a constant may be conditionally defined, may be defined
late in the program, or may be defined from a user value. Values of constants may
depend on program control-flow. Constants may only be defined to scalar values.

6.2.8 Implicit Type Conversions

A major feature of PHP’s type system is that as well as being dynamically typed, it
allows implicit type conversions.5 That is, conversions between types often happen
automatically and behind the scenes. For example, strings which represent integers,
such as "25", may be implicitly converted to integers if used in an integer context
like arithmetic. Most values can be converted to some form of string if printed or
concatenated.

This is due to PHP’s heritage, because it was originally designed as a language for
creating web applications. At the time, it was useful to take strings directly from the
user, as shown in Listing 6.4 and use them directly as values of another type. PHP
best practices dictate sanitizing all user values because of potential string injection
vulnerabilities, and so this practice is no longer common. However, they are still an
integral part of the language.

6.2.9 Type-coercion

PHP values can also be cast from one type to another explicitly by the programmer.
The PHP manual [The PHP Documentation Group, 1997-2009] goes into great detail
about the behaviour of casts. As such, we will only focus on those that pertain to
program analysis.

Casting a scalar to an array creates a new array containing that scalar (using the key

5 This is sometimes referred to as weak-typing, but that term is heavily overloaded. The PHP commu-
nity refers to this as type juggling.
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$x = 5;

$y = $x;

$y = 7;

(a)

int *y = malloc(sizeof(int));

int *x = malloc(sizeof(int));

*x = 5;

*y = *x;

*y = 7;

(b)

Listing 6.5: Assignment by copy, with comparable C code

1

2 $x = 5;

3 $y =& $x;

4 $y = 7;

(a)

int *x = malloc(sizeof(int));

*x = 5;

int *y = x;

*y = 7;

(b)

Listing 6.6: Assignment by reference, with comparable C code

"scalar"). A cast to an object is similar, except that the result is an object which is an
instance of ‘stdClass’. The exception to these rules is the NULL value, which is cast to an
empty structure. It is not possible to cast between object types (or otherwise change
the concrete type of an object), or from a scalar to a particular object type.

Casting an object to a string will invoke the object’s __toString method, as discussed
in Section 6.2.5.

6.2.10 Assignment

There are two forms of assignment in PHP. The most straightforward, denoted
$a = $b, is an assignment by copy. After the assignment, $a holds a new copy of $b’s
contents. In Listing 6.5, $x is assigned the value 5, after which $x’s value is copied
into $y. Consider the run-time memory representation after the copy, shown in
Figure 6.2a. As explained in Section 6.2.4, $x and $y are separate symbol-table entries,
pointing to separate values.

6.2.11 References

As we explained in Section 6.2.4, PHP symbol-tables are maps from strings to values.
Variables are simple keys which index symbol-tables at run-time. The same value
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(a) Assignment by copy (see Listing 6.5) (b) Assignment by reference (see Listing 6.6)

Figure 6.2: PHP assignment memory representation

1 function a() {

2 $a2 =& $GLOBALS['x1'];
3 if (...)

4 $a1 =& $a2;

5

6 b(&$a1, $a2);

7 }

8

9 function b($fp1, &$fp2) { ... }

10

11 a();

Listing 6.7: Example of dynamic aliasing in PHP. References creation can be at run-time, and in
some cases occurs conditionally. This is a combination of Figures 7 and 8 from Jovanovic et al.
[2006].

may be referred to from two different names at once. It is said that these two names
reference each other. A simple example is that a variable and an object’s field may refer
to the same integer value.

Assignment by reference creates a reference between the two variables, causing them
to share a single value. In Listing 6.6, $x’s value is shared by $y on line 3, and both
$x and $y are defined on line 4. Figure 6.2b shows the memory representation after
line 4. In contrast to an assignment by copy, there is only a single value shared by
both symbol-table entries.

Superficially, PHP references resembles references in C++, but there are important
differences. PHP’s references are mutable—they can be created, used, and destroyed
again at run-time. Variables involved in a reference relationship do not need to be of a
specific type, and there may not be syntactic clues that references are being used.
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Listing 6.7 demonstrates PHP’s dynamic aliasing. On line 2, $a2 becomes a reference
of $GLOBALS['x1'], that is, the global variable $x1. Line 4 shows the creation of a
possible reference.

To complicate matters further, a caller may optionally pass its arguments by reference,
even if the parameter is not declared as a reference parameter. Thus, either the callee
or the caller can specify that a parameter is passed by reference. Line 6 of Listing 6.7
shows a call to the function b, where the first parameter is passed by reference in the
caller, and the second parameter is passed by reference due to the signature on line 9.

When a variable is in a reference relationship, a reference assignment to it removes its
old relationship. All variables in a reference relationship refer to a single value; assign-
ing to one variable (using assignment-by-copy) updates them all. A PHP reference is
bidirectional, as there is only one value being referred to by multiple names. These
multiple names may be passed widely throughout the program, and the same values
may be referenced by many names, including function parameters, or field of objects
or arrays, or symbol-tables entries.

The difference between simple assignments in PHP and those in C or C++ are
apparent in Listing 6.5. A simple assignment in PHP ($x = 5) more closely resembles
a C assignment through a pointer (*x = 5) than a C scalar assignment (x = 5). As
such, it is clear that simple PHP assignments have an extra layer of indirection,
adding complexity to even simple program constructs, when compared to more static
languages such as C or C++.

References and pointers6 are not similar, except that they are both forms of aliasing.
Pointers are PHP values which point to a heap object; they behave exactly like pointers
in Java. They may be copied, but their representation is opaque: pointer-arithmetic is
not allowed.

Two PHP values may alias by pointing to the same object. By contrast, two variables
which reference are the same PHP value. References simply provide facilities for having
a single value with multiple names (variables, fields or array-offsets).

PHP references are an important concept for program analysis. Without references,
the only means of indirection in PHP would be pointers, which we must also model.
One of the unique features of our alias analysis is that it handles reference relationships
correctly, unlike previous analysis, as described in Section 6.3.

6 Confusingly, PHP documentation refers to pointers as object references, as does Java. We avoid this
term in this dissertation.
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1 for ($i = 0; $i < 10; $i++)

2 {

3 $arr[$i] = $i;

4 }

5 $b = NULL;

6 $a =& $b[0];

Listing 6.8: Examples of implicitly created values

6.2.12 Implicit Value Creation

Certain assignment statements may have implicit effects, due to PHP’s implicit type
conversions. In Listing 6.8, $arr is uninitialized until line 3, when the assignment to
$arr[0] converts $arr into an array. Assignments using object field syntax convert
uninitialized values to objects of the class ‘stdClass’.

Arrays and objects are also implicitly created using references. An uninitialized
variable is initialized to NULL if it is on the RHS of a reference assignment. Referencing
fields of arrays or objects likewise initialize the field. If the array or object itself is not
initialized, it too will be created. For example, $b[0] is initialized to NULL on line 6 of
Listing 6.8. Due to the initialization of $b[0], $b is automatically converted into an
array. If $b had not already been initialized, it would have been initialized there.

Though this may seem like a minor detail, it is a motivating factor for integrating
type analysis with alias analysis. Section 6.5.1 discusses how this affects our analysis
in more detail.

6.2.13 Dynamic Code Generation

PHP has an eval statement which evaluates strings at run-time. The strings may not
be known at compile-time, and may even be read from the user. Our analysis expects
all code to be statically known, and so we do not deal with this in our analysis. A
number of techniques [Furr et al., 2009, Wassermann and Su, 2007] exist to mitigate
the pessimistic effects of evals in static analyses.
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6.3 Existing PHP Static Analyses

There has been a significant amount of research into security analysis for PHP. How-
ever, none of these analyses are conservative. That is, they make optimistic assump-
tions about the program in order to report possible security weaknesses to the pro-
grammer. These analyses do not need to be conservative because they only report
suspicious code, and false positives are acceptable. Our analysis is conservative because
we wish to safely optimize PHP programs.

More importantly, each of these analyses have incorrectly modelled portions of PHP.
In this section, we discuss previous analyses for PHP, particularly highlighting their
shortcomings in modelling PHP’s features. We compare these analyses to our novel
analysis in Section 6.7, and discuss other analyses for scripting languages in Section 3.6.

6.3.1 WebSSARI

Huang et al. [2004] performed the earliest work of which we are aware on the anal-
ysis of PHP, using WebSSARI. However, we believe it was a very early prototype
which does not attempt to model PHP very well. Xie and Aiken [2006, Section 5.1]
discuss the limitations of Huang’s work in some detail, noting especially that it is
intraprocedural and models only static types. As a result, we do not discuss it further.

6.3.2 Web Vulnerabilities

Xie and Aiken [2006]model a great deal of the simple semantics of PHP 5, with the
intention of detecting SQL injection vulnerabilities. They model the extract function,
automatic conversion of some scalar types, uninitialized variables, simple tables, and
include statements. However, they do not discuss PHP’s complex object model or
references.

We note a simple misunderstanding of PHP’s semantics in Xie and Aiken’s [2006]
work. In Section 3.1.4, they present the statement:

$hash = $_POST;

which they claim creates a symbol-table alias of $POST in $hash. In fact this is a copy of
the array in $_POST. It is notable that earlier work has misunderstood the semantics
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of PHP, which demonstrates the difficulty of analysing such a complex and under-
specified language.

6.3.3 Pixy

Pixy [Jovanovic et al., 2006] provides an alias analysis for PHP 4. They correctly
identify that PHP’s reference semantics are difficult to model, and that ignoring this
feature can lead to errors in program analysis. Their analysis is strongly focused on
fixing this flaw.

A contribution of their work is the realization that previous alias analyses [Burke
et al., 1994, Emami et al., 1994, Landi and Ryder, 1992] for Java, C or C++ are
unsuitable for PHP. In particular, PHP’s references are mutable, and are not part of
the static type of a variable.

Pixy’s major contribution is that they model PHP’s run-time references between
variables in different symbol-tables. At each point in the program, they keep track
of which variables may- or must-alias each other using alias-pairs. This includes
aliases between variables in the global symbol-table, other symbol-tables, and formal
parameters.

There are some limitations with their approach. To begin with, it is rather complicated,
with different rules for aliases between two globals, between two formal parameters,
between a global variable and a parameter, and between global variables and function-
local variables.

More importantly, the alias analysis in Pixy does not go far enough. They do not
model that aliases may also exist between variables and members of an array.7 Unfor-
tunately, this breaks their shadow model [Jovanovic et al., 2006, Section 4.4.4] which
they use to handle interprocedural analysis.

In Section 6.1, we highlighted shortcomings in Pixy’s lack of type-inference. Pixy
inferred that array syntax implied the presence of an array, which was not correct. In
addition, they did not propagate the information they did gain, which they refer to as
the problem of ‘hidden arrays’.

Finally, Pixy does not model a number of PHP 4 features:

7 or an object’s fields, but Pixy does not model objects.
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• though they are aware of variable-variables, they do not mention a way to model
them,

• they cannot model assignments in which the $GLOBALS variable is redefined. The
$GLOBALS variable contains all variables in global scope, and redefining it changes
the value of all global variables.

• they do not model functions which affect the local symbol-table (extract and
compact),

• they do not model PHP 4’s object-oriented features.

As their work is based on PHP 4, they also do not model PHP 5’s new object model.

6.3.4 SQL Injection Attacks

Wassermann and Su [2007] performed a security analysis on PHP programs, aimed at
detecting SQL injection vulnerabilities. Section 5.2 in particular details a number of
limitations that led to false positives. This included incomplete support for references,
and not tracking type conversions among scalar variables. This is similar to the
limitations the modelling of arrays in Pixy.

Furthermore, Wassermann and Su [2007, Section 3.1.1] mention that SSA form is
used. However, as there are a number of features in PHP which can touch the local
or global symbol-table, it is difficult to obtain a conservative set of definitions and
uses for a function. In fact, as we show in Section 6.5.5, an advanced alias-analysis
is required to build an SSA form. However, as Wassermann and Su’s analysis is not
conservative, they do not require a conservatively correct version SSA form.

6.4 Unsuitability of Alias Analysis Models for Static

Languages

PHP is a very different language to Java, C or C++, especially in terms of how it
must be analysed. Although many alias analyses for C and C++, and pointer analyses
for Java, have been developed, they are not suitable for analysing PHP programs.
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A traditional alias analysis for Java, C or C++ typically deals with memory locations.
For example the points-to abstraction [Emami et al., 1994] computes the points-to
relation between different stack locations. This is used to model variables which are
modified or used by a statement (so-called mod-ref analysis [Landi and Ryder, 1992] in
C) to allow accurate intraprocedural scalar optimizations.

Modelling stack locations is not correct for PHP, because the values used by local
variables may be shared between them, or may also be held in arrays. Obviously,
there is already an implicit layer of indirection for even simple program properties.
Intuitively, it seems :q like this could be overcome if each PHP variable was treated as
an heap variable in the alias analysis. However, this would be imprecise, as it would
not model that the target of a reference assignment may be killed in PHP.

Java has simpler object semantics than PHP. All variables and fields are scalars, and
some values may be pointers, however pointers to scalar values or to values on the
stack are not permitted. Java does not have references, and is therefore significantly
simpler to model than PHP.

Listing 6.9 demonstrates references in C++. In it, we see a function which takes a
parameter by reference. Its formal parameter fp is of type int-reference.

void x (int& fp);

Listing 6.9: Example of C++ references

Throughout the lifetime of fp, it is known that:

1. fp is a reference,

2. fp references a variable which is accessible via a different name.

More importantly, if the reference symbol was omitted, the absence of these features
is known. This is not the case in PHP, where the caller may declare a parameter to
be passed by reference. Furthermore, references are dynamic, so a variable may be
optionally aliased to another value, depending on the program’s run-time behaviour.

Most existing alias analyses are designed for the semantics of Java, C and C++. They
work well because they closely model those semantics. However, as PHP’s semantics
are only superficially similar to those of Java, C and C++, alias analyses for these
static languages are largely not suitable. In particular, existing analyses:
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• do not allow for modelling of variable-variables

• are not required to model dynamic effects, such as those relying on type,

• are able to fall back on a static type system [Diwan et al., 1998] in the conserva-
tive case,

• may rely on knowing the run-time structures of objects [Choi et al., 1999].

6.5 Analysis

Based on the problems with previous analyses, and our experience in compiling PHP
in our previous work, our analysis has the following major features.

• We model variables as symbol-table fields, making their representation the same
as for object fields and array indices. We refer to these collectively as names8

from here-on-in. A name is a variable, object field, or array index. A value is a
memory location. In the canonical PHP implementation, a value corresponds
to a zval, which is discussed in Section 5.5.

This allows us to model:

– all tables using the same elegant abstraction,

– variable-variables (in the symbol-table) and variable-fields in the same way
as array indices,

– references between each kind of name, modelling many programs that
Pixy cannot,

– the structure of arrays and objects,

– implicit conversions of NULLs to arrays or objects.

• We perform type-inference simultaneously with alias-analysis, constraining each
name to a conservative set of types. This allows us to:

– analyse the program’s interprocedural data-flow through polymorphic
function calls,

8 Xie and Aiken [2006] use the term location in a similar way. However, a location is traditionally a
single run-time piece of memory. Our usage differs slightly in that multiple names may refer to the
same run-time value, so we use a different term.
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– model scalar operations, casts, and implicit type conversions,

– track calls to magic methods,

– prove the absence of object handlers.

• We propagate literals and constants at the same time, in order to resolve variable-
variables and conditional branches where possible.

• Finally, we use the analysis to conservatively model the definitions and uses of
names, which is otherwise not straightforward.

The combination of these features is powerful. Only by combining alias analysis, type
inference and literal analysis are we able to model types and references of a whole
program. As types and aliases are so dynamic in PHP, we must combine the analyses
in order to be able to track any information at all. In other words, any of these analyses
on their own would be useless.

Combining them also allows us to

• model assignments to known array indices,

• determine if a parameter is passed to a method by copy or by reference,

• resolve many conditional statements,

• enable a powerful SSA form on which to base optimizations and further analy-
ses.

Our analysis handles a large majority of PHP’s features, with the exception of those
listed in Section 6.5.9. As such, it is the first analysis capable of being used for a
conservative analysis of real PHP programs.

6.5.1 Analysis Overview

With these features in mind, we present an overview of our analysis. Our analy-
sis is structured as a driver analysis with five sub-analyses working as clients. The
driver analysis performs a symbolic execution over the program, feeding and fetching
information from the sub-analyses. The sub-analyses are
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• An alias analysis which keeps track of references between names, and pointers
from names to tables. It is told about reference operations in the program,
which may create or destroy references. It tells the driver analysis all possible
references of a name being operated on, and it is used to convert access paths to
names.

• A type analysis which keeps track of the types of all values in the program. The
driver analysis needs type information to perform implicit conversions, to know
what magic methods may be implicitly called by an operation (see Section 6.2.5),
and to resolve virtual-method calls. The type analysis also models operations
between scalar types; for example, the sum of two integers can be an integer or
a float, but the sum of two floats may only be a float.

• A literal analysis which propagates literal values for each name. The driver
analysis can resolve conditional branches with this information. It also needs
to know if values may be NULL in case implicit conversions to objects or arrays
need to be performed. The literal analysis is told which values are assigned to
which names.

• A constant analysis which keeps track of the values and types of user-defined
symbolic constants. Although these constants are not mutable, their values may
depend on the run-time control-flow of the program.

• A def-use analysis, which keeps track of what names are assigned to and used at
each point in the program. This is not explicit in the program text, so we are
required to analyse it.

The novelty of our algorithm is in the modelling of PHP features, and how the
driver analysis uses this information to guide it. Bearing that in mind, we present the
algorithm for the driver analysis, which is based on Pioli et al.’s [1999] algorithm:

• Our analysis performs a symbolic execution of a PHP program. We begin at
the first statement in the global scope, and perform our analysis one statement
at a time. At every statement, the analysis has two way communication with its
sub-analyses.

• Our analysis is flow-sensitive, using a worklist algorithm to keep track of the
statements in a function. It is a conditional analysis, meaning we attempt to
resolve branch statements immediately using our literal analysis. This results in
an optimistic analysis, which must complete in order for its results to be correct.
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• The analysis is interprocedural, and optionally context-sensitive. Upon reaching
a method invocation, we pause the current method’s worklist, copy necessary
information to the callee, and begin a new worklist with the entry block of
the invoked method. We build our call-graph lazily, and use type information
to resolve method calls. In the case of polymorphic call-sites, we analyse all
possible callees.

• When a method has been fully analysed, we copy analysis results back to the
caller and continue the analysis there. If there are multiple possible receivers,
we analyse each receiver in turn, merge their results, and continue the analysis
in the caller. We continue the analysis using the existing worklist, which was
paused before method invocation.

• After the global scope is fully analysed, the analysis is complete. We merge the
results from each analysed context into a single result for each statement in the
program. We then apply our optimization passes, and repeat the analysis until
it converges.

Names

At each PHP statement in the program, the driver determines the lvalues and the
rvalues, and converts them into an access path (see Section 6.5.2). The driver hands
the access path to the alias analysis, which determines the set of names accessible by
the lvalue or rvalue. All fields, array indices and variables are referred to by names,
which are strings used at analysis-time to look-up results.

For example, the rvalue $x refers to a local variable in the scope of the function ‘foo’.
The variable $x is therefore a field named ‘x’ of a symbol-table named ‘foo’. The alias
analysis will return the name ‘ST::foo::x’ (‘ST ’ for symbol-table). ‘ST::foo::x’ is used to
store the possible types, values and aliases of $x in our solution sets.

More complex lvalues and rvalues are possible. In order to access the array index
$a[$i], both $a and $i must be resolved as just described. The name $a will likely
resolve to a piece of anonymous memory, let us call it ‘anon0’. Let us suppose that the
value of $i is 0. Then $a[$i] will resolve to ‘anon0::0’. Naturally, $i may be unknown,
or $a may refer to a number of different pieces of memory. These are all discussed in
the following sections.
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Why a Combined Analysis?

We can see how the sub-analyses are used by the driver. The alias-analysis is used to
resolve lvalues and rvalues to their names. During resolution, the values of names may
be useful, for example to resolve $i to 0. The names are used to look up the values of
the literal analysis. Type-analysis is also used to deal with implicit conversions. If $a is
not an array in the example above, it may be converted into an array, except in special
circumstances, as discussed in Section 6.2.12. In order to deal with all of PHP’s edge
cases, the results of the type analysis must be used throughout the rest of the analysis.

6.5.2 Alias Analysis

Our alias analysis is novel, particularly in how it models references between names.
To date, no alias analysis has been capable of modelling PHP’s references correctly.
It is based on a points-to-graph [Emami et al., 1994] but it is significantly different
than existing work. Primarily, we model values (either scalars or tables), and table
fields. Using this abstraction we are able to model all of PHP’s complex semantics
with the same simple framework. We model references similarly to Pixy [Jovanovic
et al., 2006], but allow references between any names in the program (fields, variables
and array values). We model pointers as in traditional C or Java analyses [Emami
et al., 1994]. Our points-to analysis is designed specifically to allow this, and we went
through many unsuccessful iterations of this idea before settling on this powerful
model.

Our alias analysis uses a points-to graph to represent the program state. Example
points-to graphs are shown in Figure 6.3. It contains three types of nodes:

• A storage node represents a table. All arrays, objects and symbol-tables are repre-
sented using storage nodes. Figure 6.3 shows storage nodes marked ‘Symtable’.

• An index node represents a name, that is, a field of a table. It is used to represent
variables, object fields and array indices. Each index node is a child of a single
storage node. Figure 6.3 shows index nodes marked ‘X’ and ‘Y ’.

• A value node represents a scalar value. A value node belongs to a single index
node, and is not shared between references. Figure 6.3 shows value nodes
marked ‘5’ and ‘7’.
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(a) Points-to graph for an assignment by-copy from
Listing 6.5

(b) Points-to graph for a reference assignment from
Listing 6.6. The reference edge marked D is a defi-
nite reference edge between $x and $y.

Figure 6.3: Points-to graphs, corresponding to the PHP run-time memory models in Figure 6.2

There are three kinds of edges between nodes.

• A field edge is a directed edge from a storage node to an index node. The index
node is therefore a field of the storage node. Figure 6.3 shows field edges coming
out of the storage nodes marked ‘Symtable’.

• A value edge is a directed edge from an index node to a storage or value node. If
an index node has only one such edge, then the edge’s target is its only possible
value. Each index node must have at least one outgoing value edge.

A value edge whose target is a value node connects a name to a scalar value. A
value edge whose target is a storage node represents a pointer. Figure 6.3 shows
values edges going into out of the values nodes marked ‘5’ and ‘7’.

• A reference edge is a bidirectional edge between two reference nodes, indicating
that two index nodes reference each other. A reference edge has a certainty and
represents either a possible reference or a definite reference;9 that is, two names
may-alias, or must-alias. Figure 6.3 shows a definite reference edge marked ‘D’.

Each array or object allocated in the program is represented by some storage node
in the points-to graph. These storage nodes represent dynamic memory allocation,
which may be the result of a memory allocation statement using new, an explicit array
instantiation. They may also be the result of implicit value creation, which are very
common (see Section 6.2.12).

9 These are the terms used by Emami et al. [1994].
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Regardless of their source, storage nodes are named based on the their allocation site
and a portion of the call-string [Sharir and Pnueli, 1981]. Each storage node may
be concrete (it represents a single run-time structure) or abstract (it may represent
multiple run-time structures). The algorithm to determine concrete nodes is shown
in Section 4.6.3.

A number of other program constructs require storage nodes:

• a storage node is added for the global symbol-table,

• each class requires a storage node for its static fields,

• a storage node is added for each called function’s local symbol-table.

Our analysis is both field-sensitive and array-index-sensitive. In fact, fields and array
indices are modelled identically to variables. The representation of variable-variables is
the same as unknown array indices. When array-indices are known, they are modelled
as precisely as variables.

Some index nodes (names) are eligible for strong updates, in which they kill their
previous value or reference relationship. A strong update may be performed on an
index node i if all of the following conditions are true:

• i ’s storage node is concrete (only represents one run-time value),

• i is not an UNKNOWN node (see below),

• i is the only index node referred to by an access path of an assignment (see
Section 6.5.2). For example, $x can only refer to one index node, the node
named ‘x’ which is an index node of the local symbol table. However, $x[5]
might refer to several: if $x points to several storage nodes, $x[5] refers to the
set of those storage nodes’ index nodes named ‘5’.

At CFG join points, we merge points-to graphs from predecessor basic blocks. We
place an edge in the new points-to graph if it exists in either graph. If a reference edge
exists in both graphs, then it is definite if it is definite in both graphs. In all other cases,
it is possible.

At the end of the analysis, contexts are merged into a single solution. For example,
the variable $x may have a different set of possible types based on the calling context.
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Figure 6.4: Points-to graph. ‘UNKNOWN’ nodes are marked ‘*’.

All names in the program include a portion of the call-string. To merge them, all
calling-context is removed from the name, and they are merged in the same manner as
at a control-flow join point.

UNKNOWN node/name

An UNKNOWN node is an index node which represents all the fields of a storage
node which are not explicitly named. For example, if the analysis can show that an
array has two occupied indices, 0 and 1, it will model it with three index nodes: ‘0’,
‘1’ and ‘UNKNOWN ’. The first two represent an exact field, the last represents all
other possible fields the table may have. Note that it is always necessary for a table
to have an unknown node, as any field of a table may be accessed even if it has not
been defined. The UNKNOWN node is a special index node, of which there is one
per storage node. UNKNOWN nodes are shown in Figure 6.4, indicated by ‘*’.

Some analyses collapse all array indices into a single value [Xie and Aiken, 2006].
Other analyses are field sensitive [Choi et al., 1999]. In our model, array indices are
represented identically to fields, in order to handle variable-variables and variable-fields.
As such, the field-sensitivity we use for variables and objects extends automatically
to arrays. Both Jensen et al. [2009] and Jang and Choe [2009] include UNKNOWN
nodes in their Javascript models.
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Upon creating a storage node, a new UNKNOWN node is added to that storage node.
It is connected to a value node, whose value is NULL. An access to an empty table in
PHP evaluates to NULL, which this models.

An UNKNOWN node represents the values of index nodes which are not present
in the storage node. When a field whose name is not statically known is set, the
UNKNOWN value for the storage node is set, as is the value of every other index
node in the storage node. This models that every single field in the storage node
might have been set.10 Reading from a statically unknown name likewise reads from
all possible fields of a storage node, not just from UNKNOWN . If a name is read
which is not present in the points-to graph, the value from the UNKNOWN node of
the appropriate storage node is used instead.

UNKNOWN nodes are also used to merge two points-to graphs p and p ′. If a field
edge s → i exists in p which is missing from p ′, then the value of s →UNKNOWN
from p ′ is used for merging. The i node has been assigned in p, but may or may
not have been assigned in p ′, so the value in p ′ must come from the UNKNOWN
node of s . The only exception to these rules is that if s does not exist in p ′, s ’s index
nodes are copied directly from p, as there is no UNKNOWN node of s in p ′ to merge
them with. These merges are common, even for variables and fields, as names are
often initialized in loops, and different storage nodes are built in different paths due
to context-sensitivity.

Comparison to PHP Memory Model

The difference between the PHP run-time memory model and our points-to graphs is
demonstrated in Figure 6.6, corresponding to Listings 6.5 and 6.6. The PHP run-time
memory model for these listings is shown in Figure 6.5. For a simple assignment-by-
copy, the compile-time and run-time models are largely the same.

However, the difference is more visible in an assignment-by-reference. We designed
our analysis to model both may-aliases and must-aliases, so we are not able to simply
use multiple value edges to the same value to model references, as in the PHP run-time
memory model. Instead, we are able to model this by using reference edges between
aliased index nodes. If we modelled the run-time behaviour by simply sharing value

10As an extension to this scheme, if we could constrain the field name using string-range analysis [Wasser-
mann and Su, 2007], the analysis would be more precise. String-range analysis allows modelling
possible values of strings. If we knew the range of strings being used to access a field, we could
discount some possible values, leading to a more precise result.
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(a) Assignment by copy (see Listing 6.5) (b) Assignment by reference (see Listing 6.6)

Figure 6.5: PHP assignment memory representation

(a) Points-to graph for an assignment by-copy from
Listing 6.5

(b) Points-to graph for a reference assignment from
Listing 6.6. The reference edge marked D is a defi-
nite reference edge between $x and $y.

Figure 6.6: Points-to graphs, corresponding to the PHP run-time memory models in Figure 6.5

and storage nodes, we would be unable to model must-reference behaviour, resulting
in a significant loss of precision. We also use one value node per index node, rather
than sharing value nodes between references. If we shared value nodes, then each
may-definition (an assignment via a may-reference) would need to be a weak update.
Instead, this allows a strong update to be performed on the index node being defined,
and only its may-references are weak-updated.

For a larger example, Figure 6.7b shows the points-to graph for Listing 6.10. The
corresponding run-time memory layout is shown in Figure 6.7a. At run-time, the
symtable has three local variables, $w, $x and $y. The variable $w points to an array.
The variables $x and $y alias each other and also alias the 0’th element of $w’s array.
The array’s 1’th value is also shown. We can see again that references between index
nodes are shown not by sharing the same value nodes, but rather by the edges between
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1 $x = 5;

2 $y =& $x;

3 $w = array ();

4 $w[0] =& $x;

5 $w[1] = "str";

Listing 6.10: A short program with reference assignments and an array

(a) Run-time memory representation (b) Points-to graph. For simplicity, index nodes are
shown within their storage node, instead of using
field edges. Edges marked D are definite reference
edges.

Figure 6.7: Memory layouts for Listing 6.10

the aliased index nodes.

Access Paths

As the abstraction used for all tables in the program is the same, we are able to map all
lvalues11 and rvalues11 to a traversal of the points-to graph. This mapping is referred
to as an access path [Larus and Hilfinger, 1988].

An access path consists of a storage part and an index part, representing the table
being indexed, and its key. Consider a simple assignment $l = $a[$i]. The lvalue is
modelled as:

$l Z=⇒ ST → l ;

11As described in Section 3.1, we use lvalues to refer to names which may be written to, and rvalues to
refer to names which may only be read. However, because of PHP’s ability to alter values that are
being read, this isn’t a strict definition.
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that is, $l maps to the local symbol-table indexed by the string ‘l’. Both the storage
and index parts can themselves be access paths, required for array dereferences:

$a[$i] Z=⇒ (ST → a)→ (ST → i)

In this case, both the array and its index must first be fetched from the symbol-table.
We would expect in general that $a will find a storage node corresponding to an array,
and the $i will find a value node representing an integer or a string. Variable fields are
modelled the same way.

Variable-variables are modelled as

$$x Z=⇒ ST → (ST → x)

while simpler array assignments are represented as

$a[0] Z=⇒ (ST → a)→ 0

An access path evaluates to a list of index nodes. If the access path represents an lvalue,
the value(s) of the index nodes are being set. If the path represents an rvalue, the
value(s) of the index nodes will be copied or referenced. The algorithm for converting
an access path to set of index nodes is straightforward:

• Each access path where both the storage part s and the index part i are named
is evaluated. The access path will resolve to a storage node named s with a field
named i .

• If the resolved access path p ′ is part of another path p, then the values of the
index nodes represented by p ′ are used to resolve p.

• An access path with an unknown index will evaluate to every possible index
node of a storage node, including the UNKNOWN index node.



6.5. Analysis 133

int

TTTTTTTT bool

III
I real string

rrr
r

null

hhhhhhhhhh

⊥

Figure 6.8: Literal propagation semi-lattice

6.5.3 Literal and Type Analysis

We track information about the literals12 and types of each name in the analysis. This
means that names, such as variables or fields, may have more than one possible type,
as is to be expected in a dynamically typed language.

We model literal values using a semi-lattice, as shown in Figure 6.8. At a CFG join
point, two unequal values merge to ⊥.13

The reason we do not use a lattice is that uninitialized values in PHP evaluate to NULL.
At a CFG join point, a name with a value (v1) may meet an uninitialized value (v2). If
we used a lattice, the meet of these two would be v1 instead of ⊥ (assuming that v1 is
not NULL. As such, a lattice topped with > would not be a correct model. We note that
Pixy [Jovanovic et al., 2006] used a lattice, which may lead to incorrectly propagated
constants.

The value of an uninitialized name is not guaranteed to be NULL, but instead takes its
value from the UNKNOWN value of the appropriate storage node. If the table does
not exist, then the uninitialized value is known to be NULL. This is important when
performing joins at control-flow merges.

We use a set to model the types of each name. Names with known values have the type
of their value. Otherwise, value nodes are permitted to have any scalar type. Storage
nodes are either ‘array’s for arrays and symbol-table, or the single concrete type of an
object. Index nodes use the set of the types of all values to which they point. At CFG
join points, the sets are merged using set union.

6.5.4 Constant Analysis

For each constant defined in the program, we model its literal value and type, if
known. If a constant has not been defined, it will evaluate to its symbolic string
(e.g. MYCONST would have the value "MYCONST"). Constants may only have scalar

12We remind the reader that constants have a different meaning in PHP, which are modelled separately.
13We use > for uninitialized, and ⊥ for unknown.
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values, so unknown constants have bounded types. Our analysis can call into the PHP
run-time, as discussed in Chapter 5, so we have automatic access to constants defined
in PHP’s standard library, which augments the results of our analysis.

6.5.5 Definitions, Uses and SSA Form

PHP’s syntax provides few clues as to the variables which are defined or used in a
simple statement. Although aliases exist in more traditional languages, PHP’s feature
set means we cannot make a conservative estimate of the def-use chains [Muchnick,
1997] in a PHP program. Principally, it is not statically known whether values are
passed as arguments to methods by-copy or by-value. In addition, features such as
variable-variables, functions which affect the symbol-table of their callers, and object
handlers mean that it is impossible to use a purely syntax-based approach.

While performing our analysis, we record in each statement all variables which are
defined and used in that statement. That is, in order to correctly model simple
definitions and uses, we must run a def-use analysis in parallel with our type- and
alias-analysis. By contrast, a conservative def-use chain can be built for C++ using
type-based alias analysis [Diwan et al., 1998]. C++ does not allow a program to
modify symbol-tables, and even C++’s most hidden effects are statically known. This
means that after an alias analysis is performed, it is trivial to build a def-use chain.

We use our def-use analysis to create an SSA form, which would otherwise be impos-
sible to correctly build. The SSA form, based on Hashed SSA (HSSA) [Chow et al.,
1996], creates a platform for further analysis and optimization, which can be built
without having to be integrated into the alias analysis. This is discussed in more detail
in Section 4.6.4. Using this, we build a powerful aggressive dead-code elimination
pass [Torczon and Cooper, 2007].14 We present results for this analysis in Section 6.6.

For simplicity, we have up until this point said that the def-use chains and SSA form
were built using variables. In fact, we again use the name abstraction, allowing us to
model fields and array-offsets in exactly the same manner as variables. As such, we
can remove not only assignments to dead variables, but dead stores as well.

Our dead-code elimination is also able to remove reference assignments in addition
to standard scalar variables. The ability to delete reference assignments comes from

14By dead-code elimination, we mean useless code, not unreachable code (although our analysis never
analyses statically unreachable code).
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our def-use model. Each name may, in each statement, be defined, may-defined15 or
used, both by reference or by value (that is, there are six possible combinations. Value
uses and definitions relate to scalar values, while reference uses and definitions model
def-use chains over a program’s reference assignments.

For an assignment by copy, $x = $y:

1. $x’s value is defined.

2. $x’s reference is used (by the assignment to $x).

3. for each alias $x' of $x, $x'’s value is defined. If the alias is possible, $x'’s value is
may-defined instead of defined. In addition, $x'’s reference is used.

4. $y’s value is used.

5. $y’s reference is used.

For an assignment by reference, $x =&$y:

1. $x’s value is defined.

2. $x’s reference is defined (it is not used—$x does not maintain its previous refer-
ence relationships).

3. $y’s value is used.

4. $y’s reference is used.

We note that the other names referenced by $y do not need to be used in an assignment
by-reference. Rather, their use can be determined by traversing the reference def-use
chain starting at $y.

Finally, we note that we model def-use chains over foreach-loop iterators, discussed
in Section 4.2.4. This allows our dead-code elimination pass to remove foreach-loops
which are unused.

15The same could be said of uses, but it isn’t useful to do so.
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6.5.6 Modelling Library Functions and Operators

PHP has a very large number of built-in and library functions, which are written in
C, and therefore not analysable by phc. The manual documents over 5000 of these
function. As we are required to know the possible set of types a name (variable, field
or array-offset) may have at all times, we are required to model these functions. We
model three aspects:

parameters: Knowing whether a parameter must be passed by reference simplifies
analysis and generated code. We retrieve this information automatically using
our link to the PHP run-time, as described in Section 4.5.3.

Some functions (typically string or array functions) alter the values of their
reference parameters. Modelling these functions precisely can take a some time
for the author of the analysis, so we typically model them as simply as possible,
which may lead to slightly more conservative results than are possible.

A parameter which expects a string may be passed an object with a __toString

magic method (see Section 6.2.5) instead, which will be called when evaluating
the string value. As such, we model parameters to indicate if they expect a string
value, in which case we model calling the __toString method. There might also
be other magic methods which could be handled in this way, but we have only
modelled __toString.

return values: For most functions it is sufficient to model the type of the return
value, usually a small set of scalars. A large number of functions return the
value false in addition to their intended type, to denote an error.

A small minority of functions return some array structure, such as an array
of strings. In those cases our model returns an array with the appropriate
structure.

purity: There are a large number of functions which are pure (side-effect free). If
we know the literal value of all parameters, we may execute this function at
compile-time, and return the correct value. Again, this uses our link to the PHP
run-time. As we actually call pure functions at compile-time, we may cause the
compiler to spend arbitrarily long amounts of time on analysis. We use a short
timeout to avoid these problems, but in practice the time taken to execute pure
functions is negligible.
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We also model operators in the same manner: executing them if their operands are
known, or modelling their result if it is not. In most cases, the results of simple
operands are not simple: the sum of two integers may be a real, the product may be
an integer, real or the value false. The semantics of these operations were gleaned
from reading the source of the canonical implementation—they are not otherwise
documented—but their documentation is outside the scope of this dissertation.

6.5.7 Termination

We argue informally that our algorithm will terminate. The semi-lattice is clearly
bounded in depth, so literals and constants will converge quickly. The set of types
is bounded to the number of types in the program. As we require all classes to be
available at analysis time, this provides a bound on the size of the sets.

Our alias analysis may add at most one storage node per context in the analysis.
The number of index nodes a storage node may have is bounded by the number
field/variable/array assignments in the program. An assignment to an unknown
index node will use UNKNOWN . An assignment to an index node whose name is
derived by the literal analysis will converge as the literal analysis does.

In the presence of recursion, we alter our call-string to indicate recursion. The call-
string omits any of the function calls after the function which is the head of the
recursive loop in the call graph. For example, the call-string ‘foo:bar:foo:bar:foo:bar’,
which is analysing the mutually recursive functions foo and bar, would be shortened
to ‘foo:bar:RECURSION ’. As all of the recursive functions use the same analyses, the
recursive analysis will converge if the other analyses do.16

6.5.8 Deployment-time Analysis

Programming languages may be implemented using interpreters, compilers or just-in-
time compilers. In some cases, the design of the language affects how practical it is
to implement in a compiler or interpreter. Many scripting languages are designed in
such a way that a lot of program source code is not available at ‘compile-time’.

In languages designed for ahead-of-time compilation, such as C and C++, all of a
program’s code is typically available during compile-time. However, a portion of

16We note that phc’s support for recursion is buggy, due to implementation issues.
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code may not be available at compile-time, such as when a program allows plug-
ins, implemented with dynamic loading. Even in the presence of dynamic loading,
large portions of the program are inaccessible to dynamically-loaded code, and these
portions are well-defined using statically-typed interfaces.

PHP is designed for interpretation in a web server rather than ahead-of-time compila-
tion, and this affects the design of PHP programs. PHP programs normally require
configuration during deployment on a web server. Typical settings include the user-
name and password of the database and the domain name on which the application is
running. As PHP is normally interpreted, many programs simply include a source
file which contains application settings, rather than parsing a separate configuration
file when the program starts. Another common pattern is to implement localisation
and plugins by conditionally including source files at run-time. It is not possible to
tell whether these files contain only simple strings, or whether they dramatically alter
the state of the program.

As a result, it is not practical to analyse PHP programs at distribution-time or install-
time, as is commonly the case for more static languages. Instead, we introduce
the notion of deployment-time as the appropriate time to perform program analysis.
Deployment-time is the first time when all of a program’s code will be available.

As PHP programs are run on the server, a program’s end user does not have access
to them. Program’s are deployed by administrators, and plugins, language packs
and configuration files are all changed infrequently. As our analysis requires whole-
program analysis, phc relies on a model where it is run after all of these source files
are installed. In the case of a program update or reconfiguration, or the installation of
extra plugins or language files by the server administrator, it is not a large burden to
recompile the program.

Program analysis is not always used for compilation. In these cases, it may be possible
to make non-conservative approximations of files unavailable at analysis-time. In these
cases, deployment time analysis is not necessary.

6.5.9 Future Work

While we have modelled nearly the entire PHP language, our model is incapable of
expressing some parts of PHP. The eval statement evaluates source code at run-time
in the current scope. If we do not know the value of the string beings evaluated, we
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are unable to know anything about its effects, and our analysis is forced to return
unknown for all names in the program. In practice, we stop the analysis upon
discovering an eval statement. Other analyses for scripting languages have reported
the same problem [Jensen et al., 2009, Wassermann and Su, 2007]. Furr et al. [2009]
have an interesting partial solution to this problem, discussed in Section 3.6.1.

We have not modelled magic methods other than __toString, but we have instead
chosen to prove their absence. The analysis stops upon seeing a class which defines a
magic method. We have also chosen to prove the absence of object handlers, instead of
modelling them. An object handler is a property of an object, not a class, and so our
class based type-inference is slightly too weak to model them. It would not require a
large addition, however.

Values which are reachable from the _SESSION variable are used for persistence between
PHP program invocations. This means that the values fetched from the _SESSION

variable may have values or types which are not analysable. We optimistically model
it as an array of scalars. It would be straightforward to handle the _SESSION variable
correctly by iterating over the other PHP scripts in the application which use the
$_SESSION variable, or with user annotations. The former is similar to class analyses
for C++ [Dean et al., 1995].

We also do not model incorrectly-called functions and methods. The correct behaviour
is to issue a warning and return NULL, but we assume that the function is called correctly.

We do not model error handling or exceptions. Both of these are highly dynamic in
PHP, and this is the most severe limitation of our analysis.

We do not support dynamic class and method declarations, but these were not in-
tentionally used by programs we have seen (they appeared from include statements
within functions).

Finally, we can often say that a variable must be initialized (if it has a non-NULL
value), but we cannot say that it is not initialized. Doing so would provide better
opportunities for optimization.
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6.6 Experimental Evaluation

In this section, we provide an experimental evaluation of our research, analysing
a number of benchmarks, and comparing different versions of our algorithm. We
implemented our analysis in phc, our ahead-of-time compiler for PHP. The phc

compiler is open-source, and the analysis algorithm is publicly available.17

We analyse five publicly available PHP programs, including the RUBBoS and RUBiS
benchmark suites [Amza et al., 2002], the Zend benchmark18 used to benchmark
PHP’s canonical implementation [The PHP Group, 2007], and several programs
which were analysed in previous research (Eve Activity Tracker 1.0 and phpSQLiteAd-
min 0.2). We note that our analysis is performed at deployment-time, as described in
Section 6.5.8.

In Figure 6.1 we list statistics from the programs analysed. Each program comprises
a number of user-facing PHP scripts. Each user-facing script requires the source of
many backing scripts. As we analyse each script separately, we perform a pre-pass to
include all of the backing scripts code automatically.

The Scripts column lists the number of user-facing scripts, the number of those scripts
we analysed19 (A), and the total number of scripts in the package. The Lines of
code column lists the number of source lines of code (SLOC) in analysed user-facing
scripts,20 the sum of the SLOC of those scripts after the inclusion pre-pass, and the sum
of the SLOC of each file in the package. The Statements column shows the number of
static statements in the program, and the number of statements in the program which
were traversed during analysis. Unreachable code, such as functions which are never
called, are not traversed during analysis, meaning the number of statements analysed is
generally lower than the static number, even taking flow- and context- sensitivity into
account. Many unreachable functions are present in the program due to the inclusion
pre-pass, and the structure of PHP programs. All further figures are aggregated over
each analysed script in a test package.

We analyse each program four times, varying the context- and flow-sensitivity. Our
results show the difference between a context-sensitive and context-insensitive analysis,
and the difference between flow-sensitive and flow-insensitive analysis. Our context-

17from http://www.phpcompiler.org
18We exclude recursive benchmarks from the Zend benchmarks.
19We skipped some scripts due to minor bugs.
20This includes comments and whitespace.

http://www.phpcompiler.org
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Scripts Lines of code Statements
Name Analysed User-

facing
Package User-

facing
After

inclusion
Package Static Analysed

RUBBoS 16 18 19 1597 2900 1597 3423 1001

RUBiS 19 20 21 1747 3868 2095 4435 1837

Eve 3 4 8 215 440 907 1473 306

Zend 12 14 14 421 421 421 1398 890

SQLiteAdmin 9 10 16 2791 12005 2915 2583 1212

Table 6.1: Characteristics of analysed benchmarks

sensitive version uses an unbounded call-string, our context-insensitive version uses
a call-string length of one (that is, only a single statement ID is used in the name
of the storage node created). Our flow-sensitive version is described in the previous
section; our flow-insensitive version is simply the flow-sensitive version, except we
always perform weak updates instead of strong updates. The # statements column in
Figure 6.1 lists the static number of three-address-code statements in the program, and
the number of statements analysed in the context- and flow-sensitive version of our
analysis. We do not present the number of statements analysed in the flow-insensitive
version, because it is only an simulation of a true flow-insensitive version.

We ran our analysis, followed by a number of optimizations including constant
propagation and folding, dead-code elimination, and removal of calls to pure or
empty functions. We modelled 220 simple built-in PHP functions as described in
Section 6.5.6. We also manually modelled 56 more complex functions, for example
pushing and popping from arrays, array merges, callbacks, and functions which return
arrays.

Figure 6.9 presents the variables in a program, along with the number of times they are
aliased. All scalar optimizations rely on variables being unaliased. Unaliased variables
may be put into registers, or optimized using the scalar replacement of aggregates
optimization [Muchnick, 1997]. The number of variables is lower in the more precise
versions of the program, principally due to dead-code elimination. For each variable
in a function, we count the peak number of aliases it has over its lifetime.

Our analysis is able to prove that the vast majority of variables in the program are
unaliased. This shows that PHP programs have the capacity to be compiled to a much
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Figure 6.9: Static approximation of the peak number of references per variable in the analysed
benchmarks, parametrised by flow- and context-sensitivity. The key shows the number of references
each variable in the program has. A value of 0 indicates a variable is not referenced by any other
variable.

more efficient representation than their current form. No existing analysis for PHP
has been able to prove anything of this magnitude.

We show too that the number of unaliased variables is largely invariant in the flow-
and context-sensitivity. However, we show that flow- and context-sensitivity generally
decrease the number of variables in a program with context-sensitivity being the more
significant factor. More precise analyses lead to fewer program variables because dead
code elimination can be much more effective. Context-sensitivity is more significant
because more accurate context-sensitive analysis leads to fewer abstract storage nodes,
allowing for better constant propagation.

Figure 6.10 shows a distribution of the number of types of variables in a program.
Statically knowing that a variable has only a single type allows bug-finding tools to
eliminate false positives. A low number of static types also has significant benefits for
IDEs and code browsers, which often auto-complete called methods and functions
based on a variable’s static type. More importantly, knowing the single static type of a
variable allows compilers to generate better code, in particular eliminating type checks
ahead-of-time. Complicated run-time type feedback algorithms have been built [Gal
et al., 2009], which may not be necessary in the presence of effective type inference.
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Figure 6.10: Static approximation of the peak number of types per variable in the analysed
benchmarks, parametrised by flow- and context-sensitivity. The key shows the number of types
each variable in the program has. A value of 1 indicates the variable has only one run-time type.

For each variable in a function, we count the number of types it has over its lifetime.
This is performed after constant propagation, and so does not include statements
which can be optimized to take a constant. Our results show that we can prove
that 60% of variables in PHP programs have exactly one possible type, and 90% of
variables have two possible types or fewer, using flow- and context-sensitive analysis.
This is an important result, as it shows that a very significant number of type checks
can be omitted from generated code.

In our experience, many variables which have greater than one type have a possible
NULL value.21 Remaining Branches shows the number of branches which remain after the
analysis has converged and all optimizations have been performed. This is particularly
prevalent in loops, where variables are often uninitialized on the first loop execution,
and have static types for the rest of the loop’s execution. We speculate that peeling the
first loop iteration would be beneficial in an optimizing compiler, which we intend
to investigate in future work. In addition, arithmetic operations and calls to built-in
functions rarely return a single type, with the former usually resulting in the set (real,
int), and the latter possibly returning false as well as its intended value in many cases.

21NULL counts as a run-time type.
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Figure 6.11: Static branches removed in the analysed benchmarks, parametrised by flow- and
context-sensitivity. Branches may be removed by dead-code elimination, or by discovering their
literal (constant) value.

Figure 6.11 shows the number of branch statements in our program, and the number
that we are able to resolve to a known direction. The peak in each column shows the
sum of the number of branches at the start of the program and those created by small
optimizations which we have not discussed.22 Remaining Branches shows the number
of branches which remain after the analysis has converged and all optimizations have
been performed. The removed branches are split into those removed by dead-code
elimination (Branches removed by DCE), and those where the branch direction is
known (Branches replaced with literals). We can see that flow-sensitive analysis gives
better results, significantly better in some cases.

We note that during generation of three-address-code (i.e. before analysis) phc creates
many redundant branches, and many of these can be resolved with analysis. In particu-
lar, redundant branches comes from the param_is_ref construct (see Section 4.2.4), the
conversion of loops into a canonical loop type (see Section 4.2.4) and the addition of
type checks to handle edge cases which rarely come up in practice. The param_is_ref

construct provides a conditional branch for each parameter of every method call,
many of which are resolvable statically. However, virtual methods may have differ-
ent signatures in different classes, so the construct is not resolvable in all cases, and

22These optimizations are the reason that the Zend results are not flat.
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Figure 6.12: Static dead code eliminated in the analysed benchmarks, parametrised by flow- and
context-sensitivity.

requires type inference to be resolved.

Finally, we present the number of three-address-code statements eliminated by dead-
code elimination in Figure 6.12. Our intermediate representation creates a very large
number of opportunities for dead code. Constants and literals are moved into variables
during the creation of three-address-code, and param_is_ref statements are added. We
see that a great number of these statements are removed through analysis, in one case
over 70%. We note that branches are not included in the number of statements, and
that methods which are never called are never counted.

A clear result of our analysis is the effectiveness of static analysis for scripting lan-
guages. Though we have seen that the analysis is typically much more difficult to
perform than for more static languages, the results are excellent. Our analysis is
capable of identifying a very large number of statically typed variables, and a very low
number of aliased variables. Our results show that many program analysis tools are
practical for scripting languages, including tools for automatic bug finding, program
verification, refactoring and code browsing and editing. In addition, the optimization
opportunities are clearly excellent, with large quantities of code removed, a majority
of variables which are unaliased, and a large number of variables which may only be a
single type over their life time.
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We have seen many claims that just-in-time (JIT) compilers are the only way forward
for compilers for dynamic scripting languages. While open problems remain, such as
the best way to deal with eval statements, we believe that these preliminary results
indicate that static analysis may be viable for dynamic languages.

6.7 Related Work

Our analysis is superficially similar to that of Jensen et al. [2009]. They model
points-to information, type information and constant values using a lattice model.
Their analysis is for the Javascript language, which is similar to PHP in that it is a
dynamically typed language which uses tables as its major data structure.

Although Javascript and PHP are similar languages, their properties significantly affect
what needs to be modelled in a program analysis. While Jensen et al.’s analysis uses
points-to, type and constant information, as does ours, the analyses are very different.

The principal component of our analysis is an alias analysis, designed specifically for
PHP’s references. PHP references make the alias analysis significantly different to
an analysis for another language. In particular, we need to model to model reference
edges in our points-to graph, while they only need model points-to edges. By contrast,
Jensen et al.’s work models a simple points-to relationship, which is so straightforward
that Jensen et al. do not discuss it in any detail. Likewise, Jensen et al. focus on their
own areas of import: a dynamic class hierarchy based on Javascript’s protocol-based
inheritance.

They also differ in their approach. Our analysis is based on that of Pioli et al. [1999],
while theirs is based on Andersen’s approach. The two approaches are quite different,
as described in Section 3.2.2. Deriving simple types using a complex alias analysis
(our research) is quite different from deriving simple pointer relations using a complex
type analysis (their work) Their analysis is both context-sensitive and flow-sensitive,
like ours. One important difference is that our analysis is conditional. In practical
terms, this allows our analysis be more precise, while their analysis is more scalable.
Our analysis is based on a set of client analyses, while theirs combines all the analyses
into a complex lattice. One of their major contributions is a description of such a
lattice. By contrast, our analyses seem easier to compose, which will easily allow us
add string-range analysis [Wassermann and Su, 2007], as we discuss in Section 7.1.3.

Overall, the two analyses are similar in that they are both very advanced analyses
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for their respective scripting language. They recognise, as do we, that dynamically
typed languages need to combine their alias-, type- and constant analyses. However,
although similar, they are ultimately solving a different problem, with a different
solution, and their novel contribution is significantly different to ours.

The same can be said about Self’s type inferences [Agesen, 1995, Palsberg and
Schwartzbach, 1991], as well as the scripting language analysis based on them [Cannon,
2005, Dufour, 2006, Furr et al., 2009, Salib, 2004]. In addition, the CPA algorithm
describes an efficient approach towards context-sensitivity based on cartesian products
of sets of types. Our context-sensitivity is more precise, but likely less scalable than
CPA. CPA does not extend to handling range analysis well [Agesen, 1995]; this
composes well with our analysis, and is the next logical step to more precise types for
numeric programs.

Jang and Choe [2009] present a points-to analysis for Javascript. Its primary contribu-
tion is that it uses the same mechanism for array and property accesses. They do not
perform type inference, and their pointer analysis is not as advanced as Jensen et al.’s
work, in particular being both flow- and context-insensitive.

Other static analyses for PHP are discussed in Section 6.3. In general, a major con-
tribution of our analysis over them is that we properly handle much more of PHP’s
semantics than they. In particular, Pixy [Jovanovic, 2007, Jovanovic et al., 2006,]
models PHP references in a way which does not handle fields or array indices.

Control Flow Analysis (CFA) [Shivers, 1991] is a technique aimed at modelling the
control-flow of higher-order languages (HOLs) such as Scheme. CFA is important
because it shows how to precisely model first-class functions. Without the ability to
model control-flow, HOL cannot take advantage of the wealth of dataflow optimiza-
tions which exist for imperative languages such as C and C++.

Scheme is a dynamic language, and it seems that such techniques developed for Scheme
should translate to analysis of dynamic scripting languages such as PHP. However,
Shivers [1991, Section 1.3.3] demonstrates why there is no natural translation. Al-
though C allows first-class functions like Scheme, “there are differences in frequency
of use” of higher-order features in these languages. In that regard, many scripting
languages more closely resemble imperative languages than higher-order ones. In
particular, first-class functions exist in PHP, but are seldom used in practice.

The closest algorithm to ours in that of Pioli et al. [1999], on which ours is based. We
use their technique for combining alias analysis with conditional constant propagation.
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We further extend this to model types, which makes the conditional analysis more
powerful, by enabling type queries to be resolved conditionally. However, PHP bears
little resemblance to C++, and our alias algorithm is designed specifically for PHP’s
run-time behaviour. As such, only the driver analysis resembles Pioli et al.’s, and the
rest of the algorithm is considerably different.

6.8 Conclusion

The dynamic features of scripting languages make static analysis very challenging,
particularly for PHP which has no documented semantics outside the source code of
its reference implementation. However, we have extensively documented PHP’s run-
time behaviour, how it affect program analysis, and in particular its difficult-to-analyse
features, for the first time.

We have developed a static analysis model for PHP that can deal with dynamic language
features such duck-typing, dynamic typing with implicit type conversions, overloading
of simple operations, implicit object and array creation and run-time aliasing. The
main focus of our work is alias analysis, but we show how type inference and constant
propagation must be used to perform the analysis effectively. We also show how SSA
form cannot be used without the presence of a powerful alias analysis.

Our analysis has been implemented in the phc ahead-of-time compiler for PHP, and
used to analyse a number of real PHP programs totalling 19684 lines of source code.
Our analysis is able to determine that almost all variables in our benchmarked pro-
grams are unaliased. We are also able to statically determine the dynamic type of 60%
of variables in our test programs. Finally, we have provided comparisons of context-
and flow-sensitive and -insensitive variants of our algorithm and find that both context-
and flow-sensitivity are valuable in increasing the accuracy of the analysis.



CHAPTER 7

Closing Thoughts

This dissertation combines the fields of program analysis and dynamic scripting
languages. This chapter describes the contributions of this dissertation.

During the development of phc and the writing of this dissertation, it became clear
that current approaches to scripting language design and implementation could and
should be improved. In this chapter, we look for better ways to design and implement
scripting languages. In particular, there is a large mismatch between the design of
scripting languages and the information required to effectively analyse programs and
generate efficient code from compilers. This chapter describes the search for a better
way.

7.1 The Future of PHP Research

7.1.1 High-level Optimizations

I began my PhD with a view to performing very high-level optimizations. Users of
low-level languages such as C and C++ waste significant amounts of time manually
optimizing their program. It would generally be preferable if the compiler could
optimize all facets of a program automatically. However, the compiler is generally
unable to put together complicated low-level patterns to establish the higher-level
operation being performed, hindering optimization. By exposing low-level details
such as pointers, the compiler is actually crippled by C/C++’s language features.
It seems obvious that the extra information encoded in high-level constructs would
allow greater levels of optimization in high-level languages.

An interesting high-level optimization for scripting languages is the optimization of
tables in dynamic scripting languages. Tables are used extensively in PHP and other
scripting languages, where they are used for all simple data structuring needs. As such,
tables are used as vectors, as stacks, as structs with a known set of fields, as sparse
arrays of integers, or as sets. Even when used as intended, a table’s keys could record
regular string data, such as lists of internet addresses, or as less regular data such as
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usernames. In the case that all the keys of a table are constant values, the table could
be more efficiently implemented as a C struct. If a table is filled using only known
strings, but can be accessed using strings read from the user, the table could profitably
be implemented using perfect minimal hashing.

7.1.2 Foundations

Although higher level analyses for scripting languages, such as the table-based opti-
mization in the last section, have not yet been developed, this dissertation provides
the foundations on which they may be built. Knowing the types of each name in the
program is significantly more difficult than previously anticipated, and pre-existing
techniques—particularly those for more static languages—are severely lacking. Chap-
ter 6 describes the significant work which provides the foundations for advanced
analysis of PHP.

Even before creating an analysis framework, a compiler for PHP needed to be built.
People have been writing ahead-of-time compilers for over 50 years, but the right
set of techniques had not been developed to handle modern scripting languages.
Chapter 5 describes the set of techniques used to build an ahead-of-time compiler
for PHP. However, this led to significant difficulties along the way. Simple issues
such as correctly managing memory and emulating ad-hoc calling conventions are
difficult. Section 7.3 describes a better solution for scripting language implementation
and analysis.

7.1.3 Future Work

Now that the foundations are laid, it is natural that others will build upon them.
Promising ideas, such as table-based optimization, can now be built. A number of
other optimizations have also appeared to be both necessary and straightforward to
implement in the current optimization framework.

The number of dynamic types per PHP variable is low, but it could be significantly
lower. Variables are often initialized implicitly in loops. By creating explicit ini-
tializations before loop entry, it should be possible to remove the null type from
loop variables. This could possibly be performed automatically by peeling the first
iteration off each loop. This is similar to extended message splitting [Chambers and
Ungar, 1990], described in Section 2.2.1.
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Numeric type results are often more conservative than may be required. Arithmetic
operations between integers may result in floating point values, except in certain cases.
These results can be constrained by using value-range propagation [Patterson, 1995].
This fits nicely into the symbolic execution framework described in Section 6.5.

I became enamoured with string-range propagation [Wassermann and Su, 2007], but
never had time to implement it. Although it was designed for bug finding, I believe
it can be used to optimize effectively. In particular, modelling the string values of
a program can allow string operations to be simplified significantly. An interesting
idea is to statically analyse regular expressions in order to optimize or compile them
ahead-of-time.

Though the analyses in Section 6.5 are powerful, it is possible to make them more
powerful still with small changes. One particularly useful change would be to model
a certainty for field edges, in the same way as it is modelled for reference edges. This
will allow us to know if a variable or field is already initialized at a certain point in
the program, which can be used to optimize the generated code.

The analyses are also not complete, as they do not model error handling or exceptions.
More work is required to investigate their effect on the analysis.

This thesis describes static analysis for PHP as well as compilation. However, the
compiler does not currently use static analysis for optimization and better code
generation. This work is expected to be straightforward, and is the jumping off point
for future optimization analysis on PHP.

Finally, it is unfortunate that we can support run-time code generation during com-
pilation, as described in Chapter 5, but not in the analysis in Chapter 6. I believe
that future work may allow the analysis to work up until the point in the program
where run-time code generation is used. Alternatively, there may be a means of using
annotation to allow the analysis to co-exist with run-time code generation. I hope to
see future work in this area.

7.1.4 Experience of Working with PHP

Naturally, all of this assumes that more compiler researchers will become interested
in PHP. In theory, I should support this. After spending so much time building the
foundations, I should encourage other researchers to use my work as much as possible.
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However, I have serious misgivings in encouraging others to work on, with or near
PHP. In fact, I would encourage others to avoid it. I spent a significant amount of
time working with the PHP language, the existing implementation, and the PHP
community, and I could not recommend others to do the same.

The PHP language is inelegant and difficult to work with. This can clearly be seen
from the behaviour of PHP described in Section 6.2. There are many edge cases
which combine in awkward ways, which made implementing a program analysis a
harrowing experience.

PHP was not designed; rather it grew upwards from a simple framework written
nearly 15 years ago. It might be expected that this is a good thing, with many years to
remove failed ideas, iterate on the design, and hone the language into an elegant tool
for writing web applications. However, there is little evidence that this occurred, that
failed ideas were removed, or that the design was iterated. PHP’s language features are
those for which code was implemented and available, as opposed to those that were
designed. The net result is a mishmash of features which do not work well together.

A good example is the PHP reference semantics. References were an important
feature before objects existed, as the only other way to pass arrays was by copy.
However, upon the addition of PHP objects, it became possible to pass pointers to
objects, making references significantly less important. It would have been an elegant
contribution to PHP to turn arrays into objects and remove references from the
language. In particular, this would have allowed existing alias analyses to work on
PHP with only minor tweaks. Instead, arrays continue to be treated differently to
objects, and references were retained in the language, making analysis significantly
more difficult. It took a significant amount of study, experimentation and effort to
deal with PHP’s references in a program analysis.

Despite this effort, the actual semantics of PHP are still undefined. The existing PHP
implementation is the only thing to define them. During the study of the behaviour
of PHP, in particular for the program analysis in Chapter 6, many of the semantics
of PHP could only be derived from reading the C source code of the PHP system.
For example, the types which could result from arithmetic statements, the behaviour
of method invocations, and the behaviour of references in the presence of arrays, all
needed significantly more detail that that provided by the manual.

Unfortunately, my experience of reading the source of the PHP implementation tells
me that the PHP implementation is low-quality. It comprises hundreds of thousands
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of lines of poorly written and documented code. It appears as if it was built by adding
hacks to older hacks (it appears that PHP is currently being developed this way as well).
As the code is the definition of the PHP language, each hack makes the definition more
and more opaque. As such, working with the language is difficult and error-prone.

A large part of the difficulty of working with PHP stems from the PHP internals
development community (that is, the community which develops the PHP imple-
mentation). When working on PHP, I chose to partake in this community, in order
to understand how PHP works, how it is developed, and importantly the future
direction of the PHP language. Ultimately, trying to work within the community is a
harrowing experience. There is no clear leader in the community, senior members of
the community do not seem to agree on how PHP should be developed, and there is a
high level of attrition. The language features which a compiler researcher must under-
stand are often created with little design and less discussion. The intended semantics
are rarely documented in a thorough fashion, and—as with existing features—only
the source code describes the feature in sufficient detail to understand, analyse or
implement. Peer review of new code and features is rarely offered, and more rarely
accepted.

The PHP user community is not significantly better. It is my experience that the PHP
community does not care about its tools. Rather, it seems that many professional PHP
developers are not interested in expanding beyond the niche of web development,
resulting in little tool support. In other scripting language communities—Lua, Perl,
Python, Ruby—tools are typically built by the user communities. Interested hackers,
who love the elegance and beauty of their language of choice, build powerful tools
such as LuaJit, Rubinius, Jython [Jython] and JRuby [JRuby]. This rarely occurs in
PHP. A majority of interesting and useful tools for PHP have been instead been built
by commercial companies or academics.

Finally, it seems the PHP internals community seems not to care about academic
research. There have been few inroads of research into the PHP implementation. For
example, the PHP interpreter is based on function calls, rather than switch statements,
gotos, or more advanced techniques such as token threading. The PHP garbage
collector is based on reference counting, and only recently has a simple mark-sweep
collector been built (although reference counting still remains). By contrast, the PHP
web site is well maintained and easy to navigate, the manual is filled with examples
and notes from other users. The PHP community values good web design, and the
ease with which PHP can be learned by new developers, but unfortunately this comes
at a cost in the language design, implementation, and tool support.

http://luajit.org
http://rubini.us
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Overall, my experience of working with PHP has not been positive. It is clear that
there is a significant amount of research that remains to be done on the PHP language,
and scripting languages in general. However, I could not encourage researchers to
engage in this research on the PHP language or implementation.

7.2 Perhaps We’re Going the Wrong Way

Ultimately, the work in this dissertation is aimed at solving real, practical problems in
the compilation of PHP. All of these problems occur because the PHP language is not
designed for ahead-of-time compilation. In fact, its not designed for any programming
model. Rather, it has grown up around interpreters, and as a result its features take
advantage of the interpreted environment.

In fact, it could reasonably be said that most scripting language research to date has
been aimed at solving practical problems—practical problems which would not have
existed if the language had been designed in a slightly different manner:

• Furr et al. [2009] partially solve the challenging problem that Ruby programs
frequently call eval in their libraries, which impedes analysis. As eval statements
are simple and available, they are frequently used for meta-programming. A
more structured approach to meta-programming, such as Lisp’s macros, would
allow better expressiveness in meta-programming, and would no longer impede
program analysis.

• Wassermann and Su [2007] find that special techniques are required to even
find the list of source files in a program. There are very few programming
languages in which simply finding the program text is such a complicated
problem. A programming model which supported a different style of meta-
programming would remove the use of run-time code generation, reducing the
need for analysis.

• Gal et al. [2009] created new and powerful techniques for type feedback, to build
JIT compiler for Javascript. At the same time, Jensen et al. [2009] show that
Javascript variables almost never have more than one concrete type. If Javascript
programs were typically available ahead-of-time, as is required for Jensen et al.’s
technique, type-feedback would not be necessary for fast execution, making Gal
et al.’s [2009] research unnecessary.
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• Chapter 5 solves a problem by using C APIs. However, the real problem is the
presence of the C APIs. They are merely a legacy of early extensions, which
should have been quickly replaced by powerful foreign function interfaces,
but never were. By using a declarative foreign-function-interface, discussed in
Section 7.3, many of the techniques in Chapter 5 would be unnecessary.

• Chapter 5 also deals with the problem of languages which are only specified
by their implementation. This problem would be avoided if languages were
designed so that they could specified either in prose, or ideally with a formal
definition.

• In Chapter 6 we developed a powerful alias analysis. One of the major features
of the alias analysis is that it handles references correctly, which had been lacking
in previous work, and was unnecessary for other languages. However, PHP
references are a legacy feature; currently the only feature references provide
that cannot be provided in another way is to pass arrays by reference. If PHP
had had object-oriented features from the start, then tables might have been
objects (as they are in Python and Ruby), and PHP references would not be
necessary. In turn, the complex alias analysis developed in Chapter 6 would not
be necessary, and a much simpler analysis might have been devised.

• Our analysis from Chapter 6 also models the fact that symbol-tables can be
accessed as arrays. I do not know of any use of this feature that could not be
implemented in a cleaner manner.

These problems do not solely occur in scripting languages. Dynamic class-loading
makes efficiently compiling a Java program ahead-of-time a difficult problem (and one
which still requires an interpreter at run-time). As a result, researchers have spent 15
years trying to make fast JIT compilers so that Java can be nearly as fast as C++.

Most of the solutions to these problems are intractable for static analysis. However,
none of these problems are due to important language features. Rather, these features
are due to how these languages evolved, and how the provided features were used in
practice.

Now that the features are present, they are impossible to remove. Using eval state-
ments in libraries in Ruby has enabled a very powerful meta-programming technique
called monkey-patching. Dynamic class-loading is an essential mechanism for Java
plugins, such as those used in the Eclipse IDE. PHP’s eval statement allows tem-
plating systems such as Smarty to create templates in PHP, which are then executed
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dynamically by the interpreter. Python and Perl programs often use the interpreter to
execute Unix .rc files. Javascript’s eval statements are widely used in web applications,
to execute code fetched from an internet server, using a technique called Asynchronous
Javascript And XML (AJAX).

However, each of these features could have been implemented in a way that did not
damage static analysis. If monkey-patching had never existed, it is unlikely that there
would be a call for it. C programs can use plugins without significantly ruining
opportunities for optimization. Some of the techniques listed above simply leverage
the interpreter to execute an almost completely different program, which could easily
be sandboxed in such a way as to enable static analysis.

All of these techniques are a means of encoding program data as program code. This
is very popular in Lisp, but Lisp at least has a structured technique to perform this.
Here, the strings that are eval’ed are relatively arbitrary. In order to facilitate advanced
program analysis of scripting languages, it is necessary to remove these techniques,
replacing them with structured and analysable facilities.

7.2.1 Are JIT Compilers the Future?

After over 20 years of scripting languages, in which they have risen to be very impor-
tant and popular languages, there has not been a mainstream ahead-of-time compiler
for any scripting language. However, there are a number of JIT compilers which were
recently built or developed: Parrot, Unladen-swallow, Rubinius, LuaJit, TraceMonkey,
V8 and Tamarin. It seems that the scripting language community is moving in this
direction.

However, there are many features of ahead-of-time compilers which are not available
in JIT compilers. Currently, the major direction of JIT research for dynamic languages
are to remove the cost of dynamic typing. Means of providing expensive optimizations
such as partial redundancy elimination or loop-invariant code motion during JIT
compilation have yet to be explored. Advanced techniques such as those described in
Section 7.1.1 are also expensive, and less likely to be made available to JIT compilers.

I feel this is regrettable. In Section 7.1.1 I lamented the problems of optimizing low-
level languages. However, it is clear that high-level scripting languages in their current
form do not help solve this problem. If JIT compilers are to become the sole means of
optimizing dynamic scripting languages, then producing a fast program will remain a
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great deal of work for the programmer.

7.3 A Better Place

Clearly the designs of scripting languages create problems for program analysis. In this
section, I outline features that future scripting languages should consider, in order to
enable both the expressiveness and freedom currently provided by scripting languages,
as well as the benefits of program analysis.1

• In my opinion, the major feature of a scripting language is that it is dynamically
typed and duck-typed, with tables being the major unit of data structuring,
including objects. In existing scripting languages, these are powerful and ex-
pressive features. In my experience, when users of scripting languages discuss
the features which are important to them, and why they enjoy developing in
scripting languages, the features they cite exist because of these features. All
other features, especially eval statements and C APIs, appear to be incidental to
the programming experience and should be omitted, as explained below.

• The language should have a prose specification, and avoid having a canonical
implementation. If possible, there should be multiple implementations, in-
cluding a reference implementation whose design is as simple as possible, and
only intended for verifying a program’s semantics. Languages should also avoid
features which restrict how the language may be implemented. A C API is an
extreme example of such a restriction. Another example is a Python feature
which allows the call-stack to be introspected directly. These features restrict
reimplementations of the language, and should either be omitted from the
language, or their exact semantics should not be proscribed.

• The foreign-function interface should not be based on any implementation
of the language. Rather, it should be declarative, and the mechanism of the
interface should be automatically generated from the declarations. A simple
example is to declare C functions, which can be automatically made available as
functions in the scripting language.

Even languages designed for embedding, such as Lua [Ierusalimschy et al., 2007],
can expose their implementations. To call a Lua function from C, parameters

1 I note that many of these features are available in the Factor programming language.
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are pushed onto a program stack. If this became the bottleneck in Lua programs,
it would be impossible to remove it without breaking compatibility with old
programs. By contrast, a declarative interface would require at most a recompile
of the C program.

• The include statement should be separated according to whether it is static or
dynamic. Static includes are program source, and knowing the program source
at compile-time makes compilation and analysis significantly easier. In general,
it would be useful to split dynamic features into separate compile-time and
run-time features.

• The eval statement is unnecessary. Many features that it supports through
meta-programming can be done equally well or better at compile-time. It it
likely to be safer to execute .rc files in a sandboxed environment, rather than
directly. Plugins are likely to require more research—they could easily break
type inference—but a variant of SafeTSA [Amme et al., 2001]might solve this
problem.

• There seems to be no good reason for variable-variables.

• Every value should be an object. A separation between primitives, arrays and
objects leads to a need for PHP-style references, as does a default of copying
an array by value. Operators should be methods. If a language allows implicit
conversions, such as NULL + 5 or any indexing or operators of undefined values,
should be implemented as operators of the NULL type. This will help avoid
the sort of implicit semantics that authors of reimplementations and program
analyses struggle to replicate.

• The standard libraries should be written in the language itself. As low-level
libraries such as string manipulation and hashtable access will then be executed
by the language implementation itself, this provides a strong impetus to make
the implementation fast.

• In my experience, having a single person in charge of the language—a so called
Benevolent Dictator For Life2—seems to lead to elegant, expressive languages.

2 Benevolent Dictator For Life is a name given to Guido van Rossum, the head of the Python project.
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7.4 Contribution

The dissertation makes several contributions to the study of compilers for scripting
languages. The two primary contributions are a description of how to create an
ahead-of-time compiler for scripting languages, discussed in Section 7.4.1, and how
to statically analyse PHP, discussed in Section 7.4.2. A secondary contribution
is an extensive discussion of PHP and scripting language semantics, discussed in
Section 7.4.3. Finally, an artefact of the dissertation is the phc compiler, discussed in
Section 7.4.4. Overall, these contributions combine to demonstrate my thesis: that
‘compiling scripting languages using an ahead-of-time compiler is possible and valuable’.
In this section, I discuss the effectiveness of the contributions, identifying particular
advantages and weaknesses.

7.4.1 Scripting Language Compilation

Chapter 5 explains how to effectively compile scripting languages ahead-of-time.
A major contribution of this chapter was identifying the problems which make
compiling scripting languages difficult. There are three major challenges, C APIs, run-
time code generation and undefined language semantics. The solution is to integrate
the canonical implementation into both the compiler and the generated code.

The technique is most effective for dealing with limited run-time code generation.
Important uses are when a program uses an eval to read a configuration file, and
to execute plugins or localisation files. In my experience, these are the most preva-
lent forms of run-time code generation in PHP. However, if the programmer uses
dynamic features to create large portions of their application, then the benefits of
compilation are not available, as the application is effectively being interpreted. In
some circumstances, this may constrain the design of the application. In these rare
cases, the application could simply be interpreted.

We show how to compile a scripting language to support run-time code generation,
generating code using the C API. The downside is that this constrains the compiler.
Ideally, a compiler would be able to produce code which runs a program many times
faster than an interpreter. Unfortunately, our speedup is closer to 1.5x on average.
However, the compiled model allows the use of static analysis, and the optimizer
discussed in Section 6 should allow great speed improvements in the future.
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We handle the undefined language features by integrating the PHP system into phc.
This protects us from a large number of changes in the PHP language. However, it is
impossible to know how the language may change in the future, and this may require
changes to the compiler in the future. In addition, we are not protected from changes
in the PHP syntax. However, in general, this technique is very effective, especially in
the optimizer, and the integration is very simple and straightforward to implement.

7.4.2 Static Analysis

Chapter 6 describes an algorithm to provide effective static analysis for PHP. It
combines alias analysis, type-inference, and constant propagation, and effectively
handles a significant portion of PHP’s language features. It is able to prove that the
PHP programs we have analysed have very few types per variable—typically only
one—and are almost never aliased.

The alias analysis is a particular contribution. PHP has very unusual semantics,
and the run-time references are not a feature of any language I have seen statically
analysed.3 The alias analysis is therefore specifically crafted to support both may- and
must-aliases between run-time values. It supports arrays, tables, objects and variables
with the same precision, falling back gracefully to a less precise solution when less
information is present. The analysis is field-sensitive, object-sensitive, flow-sensitive
and context-sensitive, though the last two are configurable.

The downside of the context- and flow-sensitivity is that the analysis is not fast. It
was not designed for speed or scalability. While nothing in its design should impede
scalability, we do not have an evidence of how it scales to large programs. Certainly,
it seems that it should be possible it combine the analysis with existing techniques for
scalable analysis [Pearce et al., 2007, Whaley and Lam, 2004].

SSA is a powerful intermediate representation on which to build program analysis.
Section 6.5.5 describes how to build SSA form for a language such as PHP. One
concern is that SSA cannot be used while performing the alias analysis. This is an
open problem in general. However, I have taken the first step to making this work,
using the algorithm in Section 4.6.4. This allows SSA form to be built on-demand
using a symbolic execution framework—the same framework on which our alias
analysis is built. Hopefully, this will lead to a solution for the phase ordering problem

3 Perl also supports run-time references, but there appears to be no literature discussing alias analysis
for Perl.
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between SSA form and alias analysis.

7.4.3 Scripting Language Behaviour

A major contribution is identifying the behaviour of PHP, especially in relation to
compilation and program analysis. Chapters 5 and 2 identify common patterns and
components of the design of important scripting languages. Section 6.2 goes into
great detail on the behaviour of PHP. In addition, Section 6.3 identifies how previous
analyses for PHP did not correctly identify the behaviour of PHP features, and how
that affected their analysis.

7.4.4 The phc Compiler

A major artefact of this research is the phc compiler, an open source compiler for
PHP. Chapter 4 describes important aspects of its design. Its compilation technique is
described in Chapter 5, and its optimizer is described in Chapter 6. As phc is open
source, and available online, it may be used for future research into PHP, in particular
for static analysis. In fact, it has been used for some research already [Wassermann
et al., 2008].

7.5 Conclusion

Throughout this dissertation, it has been shown how ahead-of-time compilers for
scripting languages are possible to construct and valuable to have. That compilation is
possible is demonstrated in Chapter 5. That program analysis for dynamic scripting
languages is valuable is shown in Chapter 6. This chapter has summarised the con-
tributions of this dissertation. Overall, I believe that my thesis has been shown: that
compiling scripting languages using an ahead-of-time compiler is possible and valuable.
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Intermediate Representation
Definitions

Each of phc’s Intermediate Representations (IRs) is defined using an abstract grammar.
The abstract grammars are used to create C++ classes to represent the IRs and to
provide APIs for visitation and transformation. maketea [de Vries and Gilbert, 2007,
2008] was developed to automatically create these classes from grammar specifications.

This appendix shows three intermediate representations: the Abstract Syntax Tree, the
High-level Intermediate Representation and the Medium-level Intermediate Representa-
tion. They are described in more detail in Section 4.2.

A.1 Abstract Syntax Tree
{-

Top-level structure

-}

PHP_script ::= Statement* ;

Statement ::=

Class_def | Interface_def | Method

| Return | Static_declaration | Global

| Try | Throw | Eval_expr

| Break | Continue

| If | Foreach

| While | Do | For | Switch

| Declare

;

{-

Class and method definitions

-}

Class_def ::=

Class_mod CLASS_NAME extends:CLASS_NAME? implements:INTERFACE_NAME* Member* ;

Class_mod ::= " a b s t r a c t "? " f i n a l "? ;

Interface_def ::= INTERFACE_NAME extends:INTERFACE_NAME* Member* ;

Member ::= Method | Attribute ;

163
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Method ::= Signature Statement*? ;

Signature ::= Method_mod return_by_ref:" & "? METHOD_NAME Formal_parameter* ;

Method_mod ::= " p u b l i c "? " p r o t e c t e d "? " p r i v a t e "? " s t a t i c "? " a b s t r a c t "? " f i n a l "? ;

Formal_parameter ::= Type pass_by_ref:" & "? var:Name_with_default ;

Type ::= CLASS_NAME? ;

Attribute ::= Attr_mod vars:Name_with_default* ;

Attr_mod ::= " p u b l i c "? " p r o t e c t e d "? " p r i v a t e "? " s t a t i c "? " c o n s t "? ;

Name_with_default ::= VARIABLE_NAME Expr? ;

{-

Statements

-}

Return ::= Expr? ;

Static_declaration ::= vars:Name_with_default* ;

Global ::= Variable_name* ;

Try ::= Statement* catches:Catch* ;

Catch ::= CLASS_NAME VARIABLE_NAME Statement* ;

Throw ::= Expr ;

Eval_expr ::= Expr ;

{-

- Pre-MIR statements

-}

If ::= Expr iftrue:Statement* iffalse:Statement* ;

Foreach ::= Expr key:Variable? is_ref:" & "? val:Variable Statement* ;

Break ::= Expr? ;

Continue ::= Expr? ;

{-

- AST-only statements

-}

Declare ::= Directive+ Statement* ;

Directive ::= DIRECTIVE_NAME Expr ;

While ::= Expr Statement* ;

Do ::= Statement* Expr ;

For ::= init:Expr? cond:Expr? incr:Expr? Statement* ;

Switch ::= Expr Switch_case* ;

Switch_case ::= Expr? Statement* ;
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{-

Expressions

-}

Expr ::=

Literal

| Cast | Unary_op | Bin_op

| Constant | Instanceof

| Method_invocation | New

| Variable

| Assignment | Op_assignment | List_assignment

| Pre_op | Post_op

| Array | Conditional_expr | Ignore_errors

;

Literal ::= INT | REAL | STRING | BOOL | NIL ;

Cast ::= CAST Expr ;

Unary_op ::= OP Expr ;

Bin_op ::= left:Expr OP right:Expr ;

Constant ::= CLASS_NAME? CONSTANT_NAME ;

Instanceof ::= Expr Class_name ;

Method_invocation ::= Target? Method_name Actual_parameter* ;

New ::= Class_name Actual_parameter* ;

Actual_parameter ::= pass_by_ref:" & "? Expr ;

Target ::= Expr | CLASS_NAME ;

{-

- AST-only expressions

-}

Variable ::= Target? Variable_name array_indices:Expr?* ;

Assignment ::= Variable is_ref:" & "? Expr ;

Op_assignment ::= Variable OP Expr ;

List_assignment ::= List_element?* Expr ;

List_element ::= Variable | Nested_list_elements ;

Nested_list_elements ::= List_element?* ;

Array ::= Array_elem* ;

Array_elem ::= key:Expr? is_ref:" & "? val:Expr ;

Pre_op ::= OP Variable ;

Post_op ::= Variable OP ;

Conditional_expr ::= cond:Expr iftrue:Expr iffalse:Expr ;

Ignore_errors ::= Expr ;
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-- Identifiers

Method_name ::= METHOD_NAME | Reflection ;

Class_name ::= CLASS_NAME | Reflection ;

Variable_name ::= VARIABLE_NAME | Reflection ;

Reflection ::= Expr ;

Listing A.1: Language definition of the ‘Abstract Syntax Tree’, in maketea format. The definition
omits several declarations used for engineering purposes, that do not have a bearing on the language
itself.
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A.2 High-level Intermediate Representation

{-

Top-level structure

-}

PHP_script ::= Statement* ;

Statement ::=

Class_def | Interface_def | Method

| Return | Static_declaration | Global

| Try | Throw | Eval_expr

| Break | Continue

| If | Foreach

| Loop

| Assign_var | Assign_var_var | Assign_array | Assign_next | Assign_field

| Pre_op

;

{-

Class and method definitions

-}

Class_def ::=

Class_mod CLASS_NAME extends:CLASS_NAME? implements:INTERFACE_NAME* Member* ;

Class_mod ::= " a b s t r a c t "? " f i n a l "? ;

Interface_def ::= INTERFACE_NAME extends:INTERFACE_NAME* Member* ;

Member ::= Method | Attribute ;

Method ::= Signature Statement*? ;

Signature ::= Method_mod return_by_ref:" & "? METHOD_NAME Formal_parameter* ;

Method_mod ::= " p u b l i c "? " p r o t e c t e d "? " p r i v a t e "? " s t a t i c "? " a b s t r a c t "? " f i n a l "? ;

Formal_parameter ::= Type pass_by_ref:" & "? var:Name_with_default ;

Type ::= CLASS_NAME? ;

Attribute ::= Attr_mod var:Name_with_default ;

Attr_mod ::= " p u b l i c "? " p r o t e c t e d "? " p r i v a t e "? " s t a t i c "? " c o n s t "? ;

Name_with_default ::= VARIABLE_NAME default_value:Static_value? ;

{-

Statements

-}

Return ::= Rvalue ;

Static_declaration ::= var:Name_with_default ;

Global ::= Variable_name ;

Try ::= Statement* catches:Catch* ;

Catch ::= CLASS_NAME VARIABLE_NAME Statement* ;
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Throw ::= VARIABLE_NAME ;

Eval_expr ::= Expr ;

{-

- Pre-MIR statements

-}

If ::= VARIABLE_NAME iftrue:Statement* iffalse:Statement* ;

Foreach ::= arr:VARIABLE_NAME key:VARIABLE_NAME? is_ref:" & "? val:VARIABLE_NAME

Statement* ;

Break ::= Expr? ;

Continue ::= Expr? ;

{-

- Post-AST statements

-}

Assign_var ::= lhs:VARIABLE_NAME

is_ref:" & "? rhs:Expr ;

Assign_field ::= Target Field_name

is_ref:" & "? rhs:Rvalue ;

Assign_array ::= lhs:VARIABLE_NAME index:Rvalue is_ref:" & "?

rhs:Rvalue ;

Assign_var_var ::= lhs:VARIABLE_NAME

is_ref:" & "? rhs:Rvalue ;

Assign_next ::= lhs:VARIABLE_NAME

is_ref:" & "? rhs:Rvalue ;

Pre_op ::= OP VARIABLE_NAME ;

{-

- HIR-only statements

-}

Loop ::= Statement* ;

{-

Expressions

-}

Expr ::=

Literal

| Cast | Unary_op | Bin_op

| Constant | Instanceof

| Method_invocation | New

| Variable_name | Array_access | Field_access | Array_next

;

Literal ::= INT | REAL | STRING | BOOL | NIL ;

Cast ::= CAST VARIABLE_NAME ;
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Unary_op ::= OP VARIABLE_NAME ;

Bin_op ::= left:Rvalue OP right:Rvalue ;

Constant ::= CLASS_NAME? CONSTANT_NAME ;

Instanceof ::= VARIABLE_NAME Class_name ;

Method_invocation ::= Target? Method_name Actual_parameter* ;

New ::= Class_name Actual_parameter* ;

Actual_parameter ::= pass_by_ref:" & "? Rvalue ;

Target ::= VARIABLE_NAME | CLASS_NAME ;

{-

- Post-AST expressions

-}

Rvalue ::= Literal | VARIABLE_NAME ;

Field_access ::= Target Field_name ;

Array_access ::= VARIABLE_NAME index:Rvalue ;

Array_next ::= VARIABLE_NAME ;

Static_value ::= Literal | Static_array | Constant ;

Static_array ::= Static_array_elem* ;

Static_array_elem ::= key:Static_array_key? is_ref:" & "? val:Static_value ;

Static_array_key ::= Literal | Constant ;

{-

- Idenfifiers

-}

Method_name ::= METHOD_NAME | Variable_method ;

Variable_name ::= VARIABLE_NAME | Variable_variable ;

Class_name ::= CLASS_NAME | Variable_class ;

Field_name ::= FIELD_NAME | Variable_field ;

Variable_method ::= VARIABLE_NAME ;

Variable_variable ::= VARIABLE_NAME ;

Variable_class ::= VARIABLE_NAME ;

Variable_field ::= VARIABLE_NAME ;

Listing A.2: Language definition of the ‘High-level Intermediate Representation’, in maketea

format. The definition omits several declarations used for engineering purposes, that do not have a
bearing on the language itself.
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A.3 Medium-level Intermediate Representation

{-

Top-level structure

-}

PHP_script ::= Statement* ;

Statement ::=

Class_def | Interface_def | Method

| Return | Static_declaration | Global

| Try | Throw | Eval_expr

| Assign_var | Assign_var_var | Assign_array | Assign_next | Assign_field

| Label | Goto | Branch

| Foreach_next | Foreach_reset | Foreach_end

| Class_alias | Interface_alias | Method_alias

| Pre_op

| Unset

;

{-

Class and method definitions

-}

Class_def ::=

Class_mod CLASS_NAME extends:CLASS_NAME? implements:INTERFACE_NAME* Member* ;

Class_mod ::= " a b s t r a c t "? " f i n a l "? ;

Interface_def ::= INTERFACE_NAME extends:INTERFACE_NAME* Member* ;

Member ::= Method | Attribute ;

Method ::= Signature Statement*? ;

Signature ::= Method_mod return_by_ref:" & "? METHOD_NAME Formal_parameter* ;

Method_mod ::= " p u b l i c "? " p r o t e c t e d "? " p r i v a t e "? " s t a t i c "? " a b s t r a c t "? " f i n a l "? ;

Formal_parameter ::= Type pass_by_ref:" & "? var:Name_with_default ;

Type ::= CLASS_NAME? ;

Attribute ::= Attr_mod var:Name_with_default ;

Attr_mod ::= " p u b l i c "? " p r o t e c t e d "? " p r i v a t e "? " s t a t i c "? " c o n s t "? ;

Name_with_default ::= VARIABLE_NAME default_value:Static_value? ;

{-

- MIR-only dynamic definitions

-}

Class_alias ::= alias:CLASS_NAME CLASS_NAME ;

Interface_alias ::= alias:INTERFACE_NAME INTERFACE_NAME ;

Method_alias ::= alias:METHOD_NAME METHOD_NAME ;

{-

Statements

-}
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Return ::= Rvalue ;

Static_declaration ::= var:Name_with_default ;

Global ::= Variable_name ;

Try ::= Statement* catches:Catch* ;

Catch ::= CLASS_NAME VARIABLE_NAME Statement* ;

Throw ::= VARIABLE_NAME ;

Eval_expr ::= Expr ;

{-

- Post-AST statements

-}

Assign_var ::= lhs:VARIABLE_NAME

is_ref:" & "? rhs:Expr ;

Assign_field ::= Target Field_name

is_ref:" & "? rhs:Rvalue ;

Assign_array ::= lhs:VARIABLE_NAME index:Rvalue is_ref:" & "?

rhs:Rvalue ;

Assign_var_var ::= lhs:VARIABLE_NAME

is_ref:" & "? rhs:Rvalue ;

Assign_next ::= lhs:VARIABLE_NAME

is_ref:" & "? rhs:Rvalue ;

Pre_op ::= OP VARIABLE_NAME ;

{-

- MIR-only statements

-}

Unset ::= Target? Variable_name array_indices:Rvalue* ;

{-

Expressions

-}

Expr ::=

Literal

| Cast | Unary_op | Bin_op

| Constant | Instanceof

| Method_invocation | New

| Variable_name | Array_access | Field_access | Array_next

| Isset

| Foreach_has_key | Foreach_get_key | Foreach_get_val

| Param_is_ref

;

Literal ::= INT | REAL | STRING | BOOL | NIL ;

Cast ::= CAST VARIABLE_NAME ;

Unary_op ::= OP VARIABLE_NAME ;
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Bin_op ::= left:Rvalue OP right:Rvalue ;

Constant ::= CLASS_NAME? CONSTANT_NAME ;

Instanceof ::= VARIABLE_NAME Class_name ;

Method_invocation ::= Target? Method_name Actual_parameter* ;

New ::= Class_name Actual_parameter* ;

Actual_parameter ::= pass_by_ref:" & "? Rvalue ;

Target ::= VARIABLE_NAME | CLASS_NAME ;

{-

- Post-AST expressions

-}

Rvalue ::= Literal | VARIABLE_NAME ;

Field_access ::= Target Field_name ;

Array_access ::= VARIABLE_NAME index:Rvalue ;

Array_next ::= VARIABLE_NAME ;{haskell}

-- Post-AST arrays

Static_value ::= Literal | Static_array | Constant ;

Static_array ::= Static_array_elem* ;

Static_array_elem ::= key:Static_array_key? is_ref:" & "? val:Static_value ;

Static_array_key ::= Literal | Constant ;

{-

- MIR-only expressions

-}

Isset ::= Target? Variable_name array_indices:Rvalue* ;

Foreach_reset ::= array:VARIABLE_NAME iter:HT_ITERATOR ;

Foreach_next ::= array:VARIABLE_NAME iter:HT_ITERATOR ;

Foreach_end ::= array:VARIABLE_NAME iter:HT_ITERATOR ;

Foreach_has_key ::= array:VARIABLE_NAME iter:HT_ITERATOR ;

Foreach_get_key ::= array:VARIABLE_NAME iter:HT_ITERATOR ;

Foreach_get_val ::= array:VARIABLE_NAME iter:HT_ITERATOR ;

Branch ::= VARIABLE_NAME iftrue:LABEL_NAME iffalse:LABEL_NAME;

Goto ::= LABEL_NAME ;

Label ::= LABEL_NAME ;

Param_is_ref ::= Target? Method_name PARAM_INDEX<int> ;

{-

- Idenfifiers

-}

Method_name ::= METHOD_NAME | Variable_method ;

Variable_name ::= VARIABLE_NAME | Variable_variable ;
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Class_name ::= CLASS_NAME | Variable_class ;

Field_name ::= FIELD_NAME | Variable_field ;

Variable_method ::= VARIABLE_NAME ;

Variable_variable ::= VARIABLE_NAME ;

Variable_class ::= VARIABLE_NAME ;

Variable_field ::= VARIABLE_NAME ;

Listing A.3: Language definition of the ‘Medium-level Intermediate Representation’, in maketea

format. The definition omits several declarations used for engineering purposes, that do not have a
bearing on the language itself.





APPENDIX B

Whole Program Optimization
Interface

The phc whole program analysis framework is structured as a driver analysis with a
number of client sub-analyses. In order to pass optimization information to client
sub-analyses, the following API is used:

• create_reference: create references between two names,

• assign_value: set the value of a name to a storage node (see Section 6.5.2),

• set_storage: set the type of a storage node,

• set_scalar: set the value of a storage node used for scalars,

• kill_value: remove existing value for a name

• record_use: record that a variable or name is used (for use-def analysis)

In addition, the optimization framework needs to query the client analyses in order
to:

• get a list of possible or definite aliases for a variable, field or array index,

• get the type of an object,

• get the value of an array or string offset, or of a variable-variable, -field, -method
or -class,

• determine if the client analysis’ results have changed, requiring further analysis.
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APPENDIX C

Optimization Transformations

The phc compiler performs a small number of optimizations based on the results of
our static analysis:

• branches with a known direction are replaced with direct edges to the known
target,

• literals are propagated into any place in which they are used in a read-only
capacity, such as in an array index,

• calls to pure methods are removed, if their result is a literal,

• expressions with known literal results are replaced with that literal,

• simple functions can be inlined at monomorphic call-sites.

A small number of optimizations are not performed, but would be straightforward:

• unnecessary casts can be removed

• unset statements (see Section 4.2.4) can be removed, if the variable is not set

• variable-variables, -fields, -methods and -classes (see Section 2.1.2) can be used
directly.

In addition, it is straightforward to use the analysis results to generate better code,
though this is not yet implemented:

• generally, each read and write of a variable must check if the variable is initialized,
but we know this statically in many cases,

• type information can be used to remove type checks,

• variables with a single static type can be accessed through the C data type,
potentially using a single register instead of a boxed value (this is called scalar
replacement of aggregates [Muchnick, 1997], or unboxing).
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