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Summary

This thesis aims to explore part of the wonderful world of dilation equations. Dilation
equations have a convoluted history, having reared their heads in various mathematical
fields. One of the early appearances was in the construction of continuous but nowhere
differentiable functions. More recently dilation equations have played a significant role in
the study of subdivision schemes and in the construction of wavelets. The intention here
is to study dilation equations as entities of interest in their own right, just as the similar
subjects of differential and difference equations are often studied.

It will often be Lp(R) properties we are interested in and we will often use Fourier
Analysis as a tool. This is probably due to the author’s original introduction to dilation
equations through wavelets.

A short introduction to the subject of dilation equations is given in Chapter 1. The
introduction is fleeting, but references to further material are given in the conclusion.

Chapter 2 considers the problem of finding all solutions of the equation which arises
when the Fourier transform is applied to a dilation equation. Applying this result to the
Haar dilation equation allows us first to catalogue the L2(R) solutions of this equation and
then to produce some nice operator results regarding shift and dilation operators. We then
consider the same problem in Rn where, unfortunately, techniques using dilation equations
are not as easy to apply. However, the operator results are retrieved using traditional
multiplier techniques.

In Chapter 3 we attempt to do some hands-on calculations using the results of Chap-
ter 2. We discover a simple ‘factorisation’ of the solutions of the Haar dilation equation.
Using this factorisation we produce many solutions of the Haar dilation equation. We then
examine how all these results might be applied to the solutions of other dilation equations.

A technique which I have not seen exploited elsewhere is developed in Chapter 4. This
technique examines a left-hand or right-hand ‘end’ of a dilation equation. It is initially
developed to search for refinable characteristic functions and leads to a characterisation of
refinable functions which are constant on intervals of the form [n, n + 1). This left-hand
end method is then applied successfully to the problem of 2- and 3-refinable functions and
used to obtain bounds on smoothness and boundedness.

Chapter 5 is a collection of smaller results regarding dilation equations. The rela-
tively simple problem of polynomial solutions of dilation equations is covered, as are some
methods for producing new solutions and equations from known solutions and equations.
Results regarding when self-similar tiles can be of a simple form are also presented.
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Chapter 1

What are these things called Dilation
Equations?

1.1 Introduction

In this chapter we will try to get a basic feel for dilation equations. We will see how they
arise in the construction of wavelets, investigate some examples and briefly outline some
of the techniques used to analyse them.

1.2 Where do they come from?

A wavelet basis for L2(R) is an orthonormal basis of the form:{
2−

n
2w (2nx− k) : k, n ∈ Z

}
.

The function w is usually referred to as the mother wavelet. In an effort to produce
a theory which facilitated the construction and analyses of these bases, the notion of a
Multiresolution Analysis (MRA) was conceived.

Definition 1.1. A multiresolution analysis of L2(R) is a collection of subsets {Vj}j∈Z of

L2(R) such that:

1. ∃ g ∈ L2(R) so that V0 consists of all (finite) linear combinations of {g(·−k) : k ∈ Z},

2. the g(· − k) are an orthonormal series in V0,

3. for any Vj we have f(·) ∈ Vj ⇐⇒ f(2·) ∈ Vj+1,

4.
+∞⋃
j=−∞

Vj is dense in L2(R),

1
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5.
+∞⋂
j=−∞

Vj = {0},

6. Vj ⊂ Vj+1.

This structure can be viewed in an intuitive way. Consider trying to approximate some
function f by choosing a function in V0. This amounts to choosing coefficients so that:

f(x) ≈
∑
k

akg(x− k),

which is a common mathematical problem.
Now consider what happens when we move from V0 to V1. This corresponds to allowing

the choice of twice as many functions which are half as wide as before. This should result
in a better approximation, and part 6 ensures that our choice of function in V1 can be at
least as good as the choice in V0.

As we move along the chain Vn, we expect improving approximations of f , correspond-
ing to improving resolution. Parts 4 and 5 ensure that these improving approximations
converge in L2(R) and are not in some sense degenerate.

Once you have one of these MRA structures, there exist∗ recipes for constructing
wavelets (eg. [33]). It is reasonably clear that the construction of the MRA rests heavily
on locating a suitable g.

What can we say about g using Definition 1.1? Well, first V0 = span{g(· − k) : k ∈ Z}
so, using part 3 of the definition we know that V1 = span{g(2 · −k) : k ∈ Z}. Noting that
g ∈ V0 ⊂ V1 we conclude that:

g(x) =
∑
k

ckg(2x− k).

This equation, where g(x) is expressed in terms of translates of g(2x), is a dilation equation
or two scale difference equation. A function satisfying such an equation is said to be
refinable, or to emphasise the scale: 2-refinable.

1.3 The Haar dilation equation

The Haar dilation equation is the most simple example which illuminates the structure
of what is going on here. Consider χ[0,1), the characteristic function of the interval [0, 1).
Clearly χ[0,1) = χ[0, 1

2
) +χ[ 1

2
,1), however as χ[0, 1

2
)(x) = χ[0,1)(2x) and χ[ 1

2
,1)(x) = χ[0,1)(2x−1)

we see χ[0,1) is a solution of:

g(x) = g(2x) + g(2x− 1).

∗Not all wavelets arise from MRAs, see Chapter 4 of [5] for some more exotic wavelets.

2
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Figure 1.1: Daubechies’s D4 generating function.

This choice of g actually leads to a well-behaved MRA and in turn to the Haar wavelet
basis of L2(R) given by the mother wavelet:

w(x) =


+1 if x ∈ [0, 1

2
)

−1 if x ∈ [1
2
, 1)

0 otherwise

.

This basis has been known since at least 1910. More recently, people have begun to pro-
duce wavelet bases by solving carefully-chosen dilation equations with the aim of producing
wavelets with particular properties. In particular in [9], Daubechies produces a whole fam-
ily of orthonormal compactly-supported wavelets using this method. This family, usually
labeled D2N , uses 2N non-zero coefficients in the dilation equation to achieve smoothness
of roughly C

N
5 . For small N , the functions are actually significantly smoother; Figure 1.1

shows D4 which is roughly 0.55 times differentiable.

1.4 Relating properties and coefficients

Some properties of g place simple conditions on the coefficients of the dilation equation.
For example, if g is in L1(R) and has non-zero mean, then integrating both sides of the
dilation equation gives:

2 =
∑
k

ck.

Orthonormality of g(· − k) in L2(R) can also be applied to give:

2δ0m =
∑
k

ckck−2m,

for any m ∈ Z.

3



Solutions to Dilation Equations <dwmalone@maths.tcd.ie>

The Strang-Fix condition, which tests for the ability to approximate xm, can also be
used to give the condition:

0 =
∑
k

ck(−1)kkm.

These are the most common conditions imposed on coefficients in order to produce
wavelets. So, given that we have chosen some set of coefficients, how do we go about
finding a solution to the dilation equation with these coefficients? If it exists, will it be
unique? Will it have the properties which we wanted?

1.5 Fourier techniques

Many of those working on wavelets had a signal processing background and for them the
application of the Fourier transform to dilation equations seems to have been a natural
step. The Fourier transform takes a function and provides frequency information. On
L1(R) the Fourier transform can† be defined by:

F : L1(R) → L∞(R)

f(x) 7→ f̂(ω) = (Ff) (ω) :=

∫
f(x)e−iωx dx.

The Fourier transform has many nice properties: it is bijective on L2(R); it scales
the usual inner product (f, g) = 2π(f̂ , ĝ); and it turns convolution‡ into pointwise mul-
tiplication. Most interesting, for the study of dilation equations, is how it interacts with
translation and dilation:

f(x) 7→ f̂(ω),

f(λx) 7→ |λ|−1f̂(λ−1ω),

f(x− k) 7→ e−iωkf̂(ω).

Applying this to:

g(x) =
∑
k

ckg(2x− k),

we get:

ĝ(ω) = ĝ
(ω

2

)(1

2

∑
k

cke
−iω

2
k

)
.

Letting p(ω) = 1
2

∑
cke
−iωk we can rewrite this as:

ĝ(ω) = ĝ
(ω

2

)
p
(ω

2

)
.

†The normalisation of the Fourier transform is irksomely nonstandard. For example [40] define it with
an extra factor of 2π inside the exponential and [11] doesn’t bother with the minus sign.
‡The convolution of two functions f and g is given by (f ∗ g)(x) =

∫
f(t)g(x− t) dt.

4
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The trigonometric polynomial p is referred to as the symbol of the equation.
The transformed equation has been used by many authors and will be used frequently

in Chapters 2 and 3. Most authors are concerned with the case where g is integrable,
which ensures the continuity of ĝ, allowing the iteration of the transformed equation until
it becomes an infinite product. By estimating the decay of this product, [11] shows that if
the function is compactly-supported and the equation has N coefficients, then the support
of the function will be of length N − 1.

1.6 Matrix methods

Another technique commonly applied to dilation equations involves rewriting the dilation
equation in matrix form. The most obvious way of introducing linear operators into the
picture is to define an operator V by:

(Vf) (x) =
∑
k

ckf(2x− k).

Then a solution to the dilation equation corresponds to a fixed point of this operator.
Solutions to dilation equations can be produced by choosing some initial function f0 and
examining the sequence Vnf0. This process need not converge, but for suitably chosen f0

can converge quite rapidly. The iteration of this operator is sometimes referred to as the
cascade algorithm.

If we are searching for g, a compactly-supported solution (say on [0, N ]), then we may
write out the dilation equation for x = 0, 1, . . . , N . We get:

g(0) = c0g(0),

g(1) = c2g(0) + c1g(1) + c0g(2),

g(2) = c4g(0) + c3g(1) + c2g(2) + c1g(3) + c0g(4),

g(3) = c6g(0) + c5g(1) + c4g(2) + c3g(3) + c2g(1) + . . . ,
...

g(N − 1) = cNg(N − 2) + cN−1g(N − 1) + cN−2g(N),

g(N) = cNg(N).

This is an eigenvalue problem of the form:

~g = M~g.

Solving this problem tells us the values of g at the integers and can be used to produce
good guesses for f0. If we further assumed that g was Cm, then by differentiating both
sides of the dilation equation, we can show that 1, 1

2
, 1

4
, . . . , 2−m must be eigenvalues of M .

5
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This idea, of splitting a solution into a vector, can be taken further and has proved to
be a powerful tool. Consider Φg : [0, 1]→ CN given by:

Φg(x) =


g(x)

g(x+ 1)
...

g(x+N − 1)

 .

We can then rewrite the dilation equation as:

Φg(x) =

{
T0Φg(2x) x ∈ [0, 1

2
)

T1Φg(2x− 1) x ∈ [1
2
, 1)

where T0 and T1 are matrices given by:

T0 = (c2j−k)j,k and T1 = (c2j−k+1)j,k .

We can neaten the form of this equation by considering the binary expansion of x ∈ [0, 1]:

x = 0.ε1ε2ε3 . . .

and using the map τ : x 7→ 2x mod 1. We can now represent the dilation equation as:

Φg(x) = Tε1Φg(τx).

By iterating this relation we get:

Φg(x) = Tε1Tε2 . . . TεnΦg(τnx).

Suppose g is smooth, then by varying x in digits past εn we can make a small change in
Φg(x). However, this can correspond to a large change in Φg(τnx). This means that the
product of matrices must have a dampening effect on this change. To get a hold on this
idea people have defined quantities such as the Joint Spectral Radius of a collection of
matrices:

ρ (M0,M1, . . . ,Mq−1) = lim
n→∞

sup
(ε1,...,εn)∈{0,...,q−1}n

‖Mε1 . . .Mεn‖
1
n .

For example, for a continuous solution we expect that ρ(T0, T1) < 1 when T0, T1 are con-
sidered as operators on some appropriate space.

These matrix techniques are not used that frequently later in this work, but the results
of Chapter 4 could be viewed as a variation on the idea of producing the vector Φg from
g.

6
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1.7 Conclusion

We have just completed a whirlwind introduction to dilation equations. We have seen how
they arise naturally in the study of multiresolution analyses and got a flavour of the most
basic techniques used in their study. There are many explorations of these and similar
ideas — see [4, 11, 12, 20, 47, 31] for a taster. Generalisations of dilation equations exist
where the function is vector valued, the coefficients are matrices and dilation becomes a
matrix [39, 51]. Chapters 1 and 2 of [3] also provide an introduction to these ideas and the
later chapters go on to generalise this work to higher dimensional situations.

More about Multiresolution Analysis and Wavelets can be found in any one of the mul-
titude of books about Wavelets; [10] is considered one of the classic works and appendices
1 and 2 of [41] are reprints of papers which provide ‘popular’ introductions to the subject
area.

The Fourier transform is a fundamental piece of mathematics with many practical and
elegant applications. Practical details can be found in most engineering mathematics texts,
for example see [27]. More theoretical details can be found in such books as [40]. Despite
being a practical tool and a nice piece of theory the Fourier transform naturally shows up
in the physics of waves; it is actually possible to build an optical system which effects the
Fourier transform (see Chapter 11 of [19]).

7



Chapter 2

Maximal solutions to transformed
dilation equations

2.1 Introduction

We saw in Chapter 1 that if g satisfies the dilation equation:

g(x) =
∑
k

ckg(2x− k),

then the Fourier transform of g satisfies:

ĝ(ω) = p
(ω

2

)
ĝ
(ω

2

)
for almost all ω ∈ R (providing it has a Fourier transform), where p(ω) = 1

2

∑
cke
−ikω.

Note that p(ω) depends only on the dilation equation. It is easy to show that we can
redefine ĝ on a set of measure zero so that it satisfies this equation everywhere (see [32]
Lemma 4.6).

We also note that if π is some function satisfying π(ω) = π(2ω), then πĝ also satisfies
the above equation, and if there were some g1 such that F(g1) = πĝ, then g1 would also
be a solution of the dilation equation.

Let us try to formulate a converse of this result. Imagine we can find a function m so
that if g is any solution of the dilation equation (with a Fourier transform), then we can
find a function π so that πm = F(g) and π(ω) = π(2ω). This would give us some sort
of characterisation of all solutions with Fourier transforms. We can hope that m would
be the Fourier transform of some function, and so would be a universal solution in some
sense.

8
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2.2 What does maximal look like?

Definition 2.1. Given p : R → F with F a field, define Φ2(p) be the set of all functions
which satisfy:

Φ2(p) =
{
φ : R→ F : φ(ω) = p

(ω
2

)
φ
(ω

2

)
, ∀ω ∈ R

}
.

For suitable choices of p this will be a transformed dilation equation, but for the moment
we place no restrictions on p. Note that Φ2(p) is never empty as it always contains φ = 0.

Definition 2.2. For φ1, φ2 : R → F we write φ1 4 φ2 if we can find ρ so that φ1(ω) =
ρ(ω)φ2(ω), for all ω.

Again, for the moment, we will not place any restrictions on ρ. In the long run, we will
not be looking for ρ but for a π such that π(ω) = π(2ω).

Lemma 2.1. As defined above 4 is a pre-order.

Proof. We need to show φ 4 φ for any φ and φ1 4 φ2, φ2 4 φ3 implies φ1 4 φ3. The former
follows by taking ρ(ω) = 1, the latter by using the product of the two ρ functions. �

The following lemma gives us some sort of idea about what the relation 4 means.

Lemma 2.2. φ1 4 φ2 is equivalent to:

{ω : φ1(ω) 6= 0} ⊂ {ω : φ2(ω) 6= 0} .

Proof. First we show φ1 4 φ2 ⇒ {ω : φ1(ω) 6= 0} ⊂ {ω : φ2(ω) 6= 0}. As φ1 4 φ2 we can
find ρ so that φ1(ω) = ρ(ω)φ2(ω). So,

φ2(ω) = 0 ⇒ φ1(ω) = 0,

{ω : φ2(ω) = 0} ⊂ {ω : φ1(ω) = 0},
{ω : φ1(ω) 6= 0} ⊂ {ω : φ2(ω) 6= 0},

as required.
Now we show {ω : φ1(ω) 6= 0} ⊂ {ω : φ2(ω) 6= 0} ⇒ φ1 4 φ2. We begin by setting:

ρ(ω) =

{
φ1(ω)
φ2(ω)

if φ2(ω) 6= 0

0 if φ2(ω) = 0
.

If we take ω so that φ2(ω) 6= 0, then clearly φ1(ω) = ρ(ω)φ2(ω). If we take ω so that
φ2(ω) = 0, then φ1(ω) must be zero, because the contrapositive of our hypothesis is {ω :
φ2(ω) = 0} ⊂ {ω : φ1(ω) = 0}. So in this case φ1(ω) = ρ(ω)φ2(ω). �

9
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We want to use this relation to partially order a set of functions. Unfortunately there
are functions for which φ1 4 φ2 and φ2 4 φ1 but φ1 6= φ2. For instance take φ1(ω) = ω
and φ2(ω) = ω2.

We get around this in the usual way: by taking equivalence classes. We say φ1 ∼ φ2

iff φ1 4 φ2 and φ2 4 φ1. It is straightforward to show that this is an equivalence relation
and, if we take equivalence classes, that the inherited relation 4 is a partial order. We
note that Lemma 2.2 shows that two functions are equivalent iff they are zero on the same
set. We will use [φ] to denote the equivalence class containing φ.

We will take equivalence classes of functions in Φ2(p), but up to this stage could have
used any collection of functions taking values in some arbitrary field.

Now that we have a partially-ordered set, an obvious thing to do is to use Zorn’s Lemma
to show that it has a maximal element. We could use Theorem 2.3 and Corollary 2.4, which
follow.

Theorem 2.3. Let E be a chain of equivalence classes of Φ2(p) with the equivalence relation
and order described above. Then there exists a function m ∈ Φ2(p) whose equivalence class
is an upper bound for E.

Corollary 2.4. Φ2(p) has a maximal element with respect to the pre-order on it, and in
fact [Φ2(p)] is a complete lattice.

However, we can actually construct a maximal element directly, without using the
axiom of choice (Lemma 2.5).

Lemma 2.5. We can construct a maximal element in Φ2(p) with respect to the pre-order
defined above.

Proof. Our plan is as follows: for all y ∈ ±[1, 2) we define m at some 2ly (with l ∈ Z), and
then use the two relations:

m(ω) =
m(2ω)

p(ω)
and

m(ω) = m
(ω

2

)
p
(ω

2

)
to extend m to R \ {0}. Finally we give m a value at zero and check that it is maximal
using Lemma 2.2.

The only problem that could arise in this scheme is that p(ω) might be zero when we
want to divide by it. To avoid this we carefully choose l as follows. For our y ∈ ±[1, 2) we
examine the set:

{n ∈ Z : p(2ny) = 0} .

If this set has no lower bound, we set m(2ny) = 0 for all n ∈ Z. If it has a lower bound,
then we take l to be its least element, set m(2ly) = 1, and use our relations to find m(2ny).
If the set is empty, we set m(y) = 1.

10
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Now we do not have problems dividing by zero, since if we are using the rule:

m(2ny) =
m(2n+1y)

p(2ny)
,

then |2n+1y| ≤ |2ly| (since this relation chains towards the origin). Dividing by 2 we get
|2ny| ≤ |2l−1y|, and so by the definition of l, p(2ny) 6= 0 when n < l.

It only remains to define m at 0, where we want m(0) = p(0)m(0), so we set m(0) = 1
if p(0) = 1, and m(0) = 0 otherwise.

By its construction, m satisfies:

m(ω) = m
(ω

2

)
p
(ω

2

)
,

and hence m ∈ Φ2(p). It remains to be shown that m is maximal, which by Lemma 2.2 is
equivalent to showing that m(ω) = 0⇒ φ(ω) = 0 for all φ ∈ Φ2(p).

Suppose m(ω) = 0.
First we dispose of the case ω = 0. If m(ω) = 0, we know p(0) 6= 1 which means that

φ(0) = 0 because of the constraint φ(0) = p(0)φ(0). If ω 6= 0 we may write ω = 2ny with
y ∈ ±[1, 2). We re-examine the set:{

k ∈ Z : p(2ky) = 0
}
.

and consider three cases:

• This set has no lower bound. In this case we can choose a k < n such that p(2ky) = 0,
and using the fact that φ ∈ Φ2(p):

φ(ω) = φ(2ny) = p(2n−1y)p(2n−2y) . . . p(2ky)φ(2ky) = 0.

• This set has a lower bound. Let l be its least element; we know that m(2ly) = 1 and
p(2ly) = 0. We also know for k < l:

m(2ky) =
m(2ly)

p(2ky)p(2k−1y) . . . p(2l−1y)
=

1

p(2ky)p(2k+1y) . . . p(2l−1y)
6= 0.

But, since m(ω) = 0 and ω = 2ny, we conclude that n > l. This means:

φ(ω) = φ(2ny) = p(2n−1y)p(2n−2y) . . . p(2ly)φ(2ly) = 0

as p(2ly) = 0.

• This set is empty. Now m(ω) cannot be zero, as its value will be the product or
quotient of non-zero values of p(ω).

So we have constructed a maximal m ∈ Φ2(p). �

11
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Lemma 2.6. Given φ,m ∈ Φ2(p) with φ 4 m we may find π so that φ = πm and
π(ω) = π(2ω).

Proof. By the definition of φ 4 m, we can find ρ so that:

φ(ω) = ρ(ω)m(ω).

However this ρ does not have to fulfil ρ(ω) = ρ(2ω). We define π by:

π(ω) =
φ(ω)

m(ω)
or

φ(ω/2)

m(ω/2)
or

φ(ω/4)

m(ω/4)
or

φ(ω/8)

m(ω/8)
or . . . or 0

depending on which one is the first to have m(ω/2n) 6= 0. If m(ω/2n) = 0 for all n =
0, 1, 2, 3, . . ., then we set π(ω) = 0.

First we check if π is a valid substitute for ρ. If m(ω) 6= 0, then φ(ω) = π(ω)m(ω) by
π’s definition, and if m(ω) = 0, then φ(ω) = ρ(ω)m(ω) = 0, so the value of π(ω) doesn’t
matter.

Now we have to check if π(ω) = π(2ω).
First consider the case m(2ω) 6= 0 then, as m(2ω) = p(ω)m(ω), neither p(ω) or m(ω)

can be zero so:

π(2ω) =
φ(2ω)

m(2ω)
=

φ(ω)p(ω)

m(ω)p(ω)
=

φ(ω)

m(ω)
= π(ω),

as required.
On the other hand, if m(2ω) = 0, then:

• either m(2ω/2n) = 0 for all n = 1, 2, 3, . . ., which means π(2ω) = 0 and π(ω) = 0, as
required,

• or for some n > 0 we can write π(2ω) = φ(ω/2n)
m(ω/2n)

, and π(ω) will be the same, also as
required.

�

Theorem 2.7. Given a dilation equation:

f(x) =
∑

ckf(2x− k),

we may find a function m(ω) such that for any solution g(x) of the dilation equation whose
Fourier transform converges almost everywhere, we can write:

ĝ(ω) = π(ω)m(ω) a.e. ω ∈ R,

for some function π with the property π(ω) = π(2ω).

12
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Proof. Under the Fourier transform the dilation equation becomes:

f̂(ω) = p
(ω

2

)
f̂
(ω

2

)
,

where p(ω) = 1
2

∑
cke
−ikω depends only on the dilation equation. By Lemma 2.5 we can

find m ∈ Φ2(p) so that φ 4 m for all φ ∈ Φ2(p).
However ĝ may not be in Φ2(p) as it may diverge at some points and fail to satisfy the

transformed dilation equation on a set of measure zero. We work around this by changing
ĝ on a set of measure zero.

First we alter ĝ so that it is zero where it diverges. We may need to further redefine ĝ
on a second set of measure zero so that it satisfies:

ĝ(ω) = p
(ω

2

)
ĝ
(ω

2

)
everywhere. This can be achieved by setting ĝ(2nω) = 0,∀n ∈ Z, for any ω which fails to
satisfy the transformed dilation equation. This procedure changes ĝ on at most a countable
union of sets of measure zero, and so ĝ is essentially unchanged.

Now ĝ is a member of Φ2(p). Thus ĝ 4 m, so by Lemma 2.6 we can find π so that:

ĝ = mπ

and π(ω) = π(2ω). �

It would be nice to have a way to check if a given function in Φ2(p) is maximal. The
following result provides a simple sufficient condition, which should be applicable if p is
not too complicated.

Theorem 2.8. Suppose we have φ ∈ Φ2(p) with the following properties:

• if p(0) = 1, then φ(0) is non-zero,

• there exists some ε > 0 so that φ is non-zero on ±(0, ε).

Then φ is maximal in Φ2(p).

Proof. First note that the second condition imposes a condition on p, so it is not always
possible to find a φ with these properties∗.

Suppose ψ ∈ Φ2(p). The first condition tells us exactly that φ(0) = 0 ⇒ ψ(0) = 0. If
φ(ω) = 0 for some ω 6= 0, then we can choose l so that φ(ω) is of the form:

φ(ω) = p
(ω

2

)
p
(ω

4

)
p
(ω

8

)
. . . p

(ω
2l

)
φ
(ω

2l

)
and ω

2l
∈ ±(0, ε). As, φ

(
ω
2l

)
6= 0 we know p

(
ω
2n

)
= 0 for some n between 1 and l. But any

ψ(ω) is also of the form:

ψ(ω) = p
(ω

2

)
p
(ω

4

)
p
(ω

8

)
. . . p

(ω
2l

)
ψ
(ω

2l

)
,

and so will have the same 0 factor in it, and accordingly will be zero. �

∗For example, consider p(ω) = sin logω, which takes the value 0 at infinitely many points in (−ε, ε).
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This result and variations of it are easily applied to any analytic φ we find, as we know
a lot about the zeros of φ. For instance, if p is continuous and φ is analytic, then either φ
is maximal or identically zero. Daubechies and Lagarias show in [11] that if p arises from
the dilation equation:

f(ω) =
N∑
k=0

ckf(2ω − βk)

and if p(0) = 1 we can define an analytic function f̂0 by:

f̂0(ω) =
∞∏
j=1

p(2−jω).

This function will then have f̂(0) = 1, will be non-zero around 0 as it is continuous, will be
in Φ2(p), and so by the previous theorem will be maximal. If |p(0)| > 1, then the authors
use a maximal solution of the form:

f̂0(ω) = |ω|log2 p(0)

∞∏
j=1

p(2−jω)

p(0)
.

Both factors in this expression must be non-zero around the origin, so it is also maximal.

2.3 Solutions to f (x) = f (2x)+f (2x−1) and Fourier-like

transforms

We can apply the results of the previous section in a quite straightforward manner to
classify all L2(R) solutions of the dilation equation:

f(x) = f(2x) + f(2x− 1).

In this case it is well known that χ[0,1) is the only L1(R) solution (up to scale). Its Fourier
transform:

χ̂[0,1) =
1− e−iω

iω
,

satisfies the conditions of Theorem 2.8 and so this solution is maximal, in the sense of
Theorem 2.7.

Theorem 2.9. The L2(R) solutions of:

f(x) = f(2x) + f(2x− 1)

are in a natural one-to-one correspondence with the functions in L2(±[1, 2)).
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Proof. We simply classify the solutions of the Fourier transform of the dilation equation,
and use the fact that the Fourier transform is bijective. As χ̂[0,1) is maximal we know that
any solution of the transformed equation is of the form:

ĝ = πχ̂[0,1)

with π(ω) = π(2ω). We show that π ∈ L2(±[1, 2)) iff ĝ is in L2(R).
If ĝ ∈ L2(R), noting that |χ̂[0,1)| > 0.1 on [1, 2] allows us to write:

π(ω) =
ĝ(ω)

χ̂[0,1)(ω)
ω ∈ [1, 2].

This means that π|[1,2) is measurable as the ratio of well-behaved functions. So:

∞ >

∫ 2

1

|ĝ(ω)|2 dω =

∫ 2

1

|π(ω)χ̂[0,1)(ω)|2 dω > (0.1)2

∫ 2

1

|π(ω)|2 dω,

So π ∈ L2([1, 2)). The same argument works to show π ∈ L2(−[1, 2)).
Conversely, if π is in L2(±[1, 2)), then we may use the fact that χ̂[0,1) is bounded near

zero and χ̂[0,1) decays like 2/ω away from zero. Again we do R+ first.∫ ∞
0

|ĝ(ω)|2 dω =

∫ ∞
0

|π(ω)χ̂[0,1)(ω)|2 dω

=
∑
n∈Z

∫ 2n+1

2n
|π(ω)χ̂[0,1)(ω)|2 dω

≤
∑
n∈Z

sup
[2n,2n+1]

|χ̂[0,1)(ω)|2
∫ 2n+1

2n
|π(ω)|2 dω

≤
∑
n≤0

∫ 2n+1

2n
|π(ω)|2 dω +

∑
n>0

4

22n

∫ 2n+1

2n
|π(ω)|2 dω

=
∑
n≤0

2n
∫ 2

1

|π(ω)|2 dω +
∑
n>0

4

22n
2n
∫ 2

1

|π(ω)|2 dω

= 6
∥∥∥π|[1,2)

∥∥∥2

2
.

Applying the same argument to R− we see that ‖ĝ‖2 ≤
√

12
∥∥∥π|±[1,2)

∥∥∥
2
. �

We can now examine what happens if our function π is in L2(R) but not in L∞(R).
In fact this gives us some information about what happens if either the solution of the
dilation equation ĝ, or our multiplier π, does not belong to L∞(R).

Lemma 2.10. If f ∈ L2(R) and f 6∈ L∞(R), then we can find h ∈ L2(R) so that fh 6∈
L2(R).
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Proof. We may define Bn for n ∈ N by:

Bn = {x ∈ R : n ≤ |f(x)| < n+ 1} .

As f 6∈ L∞(R) an infinite number of these sets have non-zero measure. As f ∈ L2(R) none
have infinite measure. Let† εn = |Bn|. Now define h by:

h(x) =

{
1

n
√
εn

x ∈ Bn and εn > 0

0 otherwise
.

Then

‖h‖2
2 =

∑
n,εn>0

(
1

n
√
εn

)2

εn <
∑
n

1

n2
<∞;

however,

‖fh‖2
2 ≥

∑
n,εn>0

(
n

n
√
εn

)2

εn =
∑
n,εn>0

1 =∞.

�

Consider next what happens if we have a solution of a dilation equation which is not
essentially bounded.

Lemma 2.11. Suppose g ∈ L2(R) is the solution of a dilation equation where ĝ is essen-
tially unbounded. We may find π ∈ L2(±[1, 2)) which when extended by π(ω) = π(2ω)
leads to a function πĝ 6∈ L2(R).

Proof. Taking f = ĝ we define the Bn as in Lemma 2.10. Passing to a subsequence if
necessary, we can assume that |Bn| > 0 for all n. Examine B′n = [Bn] ⊂ ±[1, 2), the set of
representatives of points in Bn. Next form the sequence an using the rules:

a1 = |B′n|, an+1 = min
(
an/3, B

′
n+1

)
,

and then choose E ′n ⊂ B′n so that |E ′n| = an. Now:∣∣∣∣∣
∞⋃

r=n+1

E ′r

∣∣∣∣∣ ≤
∞∑

r=n+1

ar ≤
∞∑
r=1

an
3r

< an,

so D′n = E ′n \
∞⋃
r=1

E ′n+1 has non-zero measure for all n. Note that the D′n are all disjoint.

If we take Dn to be the set of points in Bn whose representatives are in D′n, then the Dn

have non-zero measure and are a disjoint collection of sets with disjoint representatives.
We use the construction of h on ĝχ⋃

Dn in Lemma 2.10 to give the values of π on Dn.
Extending π in the usual way we see:

‖πĝ‖2 ≥
∥∥πĝχ⋃

Dn

∥∥
2

=∞.

�
†We use |X| for the measure of the set X.
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By considering unbounded multipliers we can produce a slightly different result.

Theorem 2.12. Suppose A : L2(R)→ L2(R) is a bounded linear operator which commutes
with integer translations and dilations by 2n. Then A is of the form:

A = F−1πF

where π(ω) = π(2ω) and π ∈ L∞(R). Conversely any such π gives rise to a bounded linear
A which commutes with all translations and dilations by 2n.

Proof. Consider the image of g = χ[0,1). We know that g is a solution of:

f(x) = f(2x) + f(2x− 1),

and as A commutes with dilation by 2 and translation by 1 we know Ag must also be an
L2(R) solution of this dilation equation. Theorem 2.9 tells us that FAg = πFg, where
π(ω) = π(2ω) and π ∈ L2(±[1, 2)).

We note that χ[ n
2m

,n+1
2m

) can be obtained via integer translations and dilations of scale

2n applied to g. This allows us to make the following calculation:

Aχ[ n
2m

,n+1
2m

) = AD2mT−ng
= D2mT−nAg
= D2mT−nF−1πFg
= F−12−mD2−me

in·πFg,

and remembering that π(ω) = π(2ω) and so will commute with dilation by a power of 2:

Aχ[ n
2m

,n+1
2m

) = F−1π2−mD2−me
in·Fg

= F−1πFD2mT−ng
= F−1πFχ[ n

2m
,n+1
2m

).

Thus, as both A and F−1πF are linear, we can see that Af = F−1πFf for any f in the
Haar Multiresolution Analysis on L2(R). But this is a dense subset and A is continuous,
so if F−1πF is continuous they will agree everywhere. It is clear that if π ∈ L∞(R), then
F−1πF will be continuous.

It remains to show that π ∈ L∞(R). If it were not we could consider πχ±[1,2) as an
essentially unbounded member of L2(R) and use Lemma 2.10 to produce h ∈ L2(R) so
that hπχ±[1,2) 6∈ L2(R). Then ȟ ∈ L2(R), but Aȟ would not be, which is a contradiction.

The converse is a simple matter of algebra and using π(ω) = π(2ω). �

We can prove a corollary of this which has been proved in different ways in several
different contexts (references follow proof).
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Corollary 2.13. Suppose A : L2(R)→ L2(R) is a bounded linear operator which commutes
with integer translations and dilations by 2n. Suppose also that A preserves inner products.
Then A is of the form:

A = F−1πF

where π(ω) = π(2ω) and |π(ω)| = 1 almost everywhere.

Proof. Suppose |π(ω)| 6= 1 on some set of positive measure, then at least one of the sets:

M+ = {ω ∈ ±[1, 2) : |π(ω)| > 1} ,M− = {ω ∈ ±[1, 2) : |π(ω)| < 1}

must have non-zero measure. Suppose that M+ has positive measure, then we may choose
ε > 0 so that:

M = {ω ∈ ±[1, 2) : |π(ω)| > 1 + ε}

has positive measure. Consider the function F−1χM . Recall that F−1 just scales the inner
product by a constant, so that:

(F−1χM ,F−1χM) = c (χM , χM) = c|M |.

However, applying A and taking the inner product:

(AF−1χM ,AF−1χM) = (F−1πFF−1χM ,F−1πFF−1χM)

= c (πχM , πχM)

= c

∫
M

|π(ω)|2 dω

≥ c(1 + ε)2|M |,

which contradicts the hypothesis that A preserves inner products. We may arrive at a
similar contradiction if only M− has positive measure. �

This has been proved in different ways by others [5, 36]. A nice way to summarise these
operator results and the results in [32] follows. We use S× to denote the multiplicative
group generated by S.

Theorem 2.14. Suppose A : L2(R)→ L2(R) is a bounded linear operator which commutes
with translation by integers, then:

1. AD2 = D2A and A(χ[0,1)) = χ[0,1) implies A = I,

2. AD2 = D2A and A(χ[0,1)) ∈ L1(R) implies A = cI,

3. ADn = DnA for n ∈ S ⊂ Z \ {0} and S× is dense in R implies A = cI,

4. AD2 = D2A implies A = F−1πF where π ∈ L∞(R) and π = D2π,

5. AD2 = D2A and A is unitary implies A = F−1πF where |π(ω)| = 1 and π = D2π.
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2.4 Working on Rn

Will any of this work on Rn? The first thing to do is to look at how the Fourier transform
works in Rn. It is defined by:

(Ff)(~ω) =

∫
Rn
e−i(~ω,~x)f(~x) d~x,

where (·, ·) is the usual inner product on Rn. We want to look at how translation and
dilation affect this Fourier transform. First we define (T~rf)(~x) = f(~x + ~r) and DAf(~x) =
f(A~x) for ~r ∈ Rn and A an n by n invertible matrix. Then for translation:

(FT~rf)(~ω) =

∫
Rn
e−i(~ω,~x)(T~rf)(~x) d~x

=

∫
Rn
e−i(~ω,~x)f(~x+ ~r) d~x

=

∫
Rn
e−i(~ω,~y−~r)f(~y) d~y

= ei(~ω,~r)
∫
Rn
e−i(~ω,~y)f(~y) d~y

= ei(~ω,~r)(Ff)(~ω),

using the change of variable ~y = ~x+ ~r. Similarly for dilation:

(FDAf)(~ω) =

∫
Rn
e−i(~ω,~x)(DAf)(~x) d~x

=

∫
Rn
e−i(~ω,~x)f(A~x) d~x

=

∫
Rn
e−i(~ω,A

−1~z)f(~z)
d~z

| detA|

=

∫
Rn
e−i(A

−∗~ω,~z)f(~z)
d~z

| detA|

=
(Ff)(A−∗~ω)

| detA|
by using the change of variable ~z = A~x. (Here A∗ is used to denote the adjoint of A, and
A−∗ is used to denote the adjoint inverse).

Now we can look at what happens to the analogue of dilation equations. We can look
at equations like:

f(~x) =
∑
~k

c~kf(A~x− ~k).

Applying the Fourier transform to both sides and using what we have just derived:

f̂(~ω) =
∑
~k

c~ke
−i(A−∗~ω,~k) f̂(A−∗~ω)

| detA|
,
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or gathering the messy bits into a single trigonometric polynomial p:

f̂(~ω) = p(A−∗~ω)f̂(A−∗~ω).

So far this closely parallels the one-dimensional case.

2.4.1 What is dilation now?

Now we must decide what sort of matrices to allow for A. In the one-dimensional case we
would have considered D3.4 to be a dilation but D0.5 to be an expansion. So we consider a
number λ a suitable scale if |λ| > 1. In Rn the usual condition which is used for DA to be
a dilation is that all the eigenvalues of A have norm bigger than 1.

A slightly more intuitive way of phrasing this might be to consider B = A−∗. The
eigenvalues of B will then satisfy 0 < |λ| < 1, so we can consider B in the following way.

Lemma 2.15. Let B be a matrix. Then the following are equivalent:

1. B is a matrix so that all its eigenvalues λ ∈ C satisfy 0 < |λ| < 1,

2. B is invertible and we can find α < 1 and C so that ‖Bm‖ < Cαm,

3. B is invertible and ‖Bm~x‖ → 0 as m→∞ for any ~x ∈ Rn.

Proof. To show that 1 implies 2 we write B in Jordan form:

B =


J1 0 . . . 0
0 J2

0
. . .

0 JK

 .

Then we have:

Bm =


Jm1 0 . . . 0
0 Jm2

0
. . .

0 JmK

 ,

so we show that ‖Jm‖ ≤ C1α
m for any of the blocks J . We can write J = λI + N where

λ is an eigenvalue and N r = 0 for some r < n. For m > n > r:

Jm = (λI +N)m

Jm = λmI +mλm−1N + m(m−1)
2

λm−2N2 + . . .+ m(m−1)...(m−r+1)
r!

λm−r+1N r−1

‖Jm‖ ≤ |λ|m−r+1
(
‖I‖+m‖N‖+m2‖N2‖+ . . .+mr−1‖N r−1‖

)
‖Jm‖ ≤ |λ|m−r+1mn

(
‖I‖+ ‖N‖+ ‖N2‖+ . . .+ ‖Nn−1‖

)
‖Jm‖ ≤ |λ|mmnC0

‖Jm‖ ≤ αmC1,
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where we choose α < 1 and α > |λ| for any of B’s eigenvalues. So we see:

‖B‖ =
∥∥∥∑ Jk

∥∥∥ ≤∑ ‖Jk‖ ≤
∑

αmC1 = KαmC1 ≤ KC1α
m,

as required. We also note that as 0 is not an eigenvalue of B this means B must be
invertible.

It is obvious that 2 implies 3, so we just have to show that 3 implies 1. To see this
suppose B has an eigenvalue λ with norm bigger or equal to 1. Let ~z = ~x+ i~y be a complex
eigenvector for this eigenvalue. Then:

‖Bm~z‖ = ‖λm~z‖ = ‖λ|m‖~z‖ 6→ 0.

However B is complex-linear so Bm~z = Bm~x + iBm~y, thus Bm~x 6→ 0 or Bm~y 6→ 0. So all
B’s eigenvalues must have norm less than 1. We also know that 0 is not an eigenvalue of
B as it is invertible. �

It follows that a possibly more natural definition of matrices which we consider as
dilations are matrices A for which ‖Bm‖ → 0. We focus on these matrices for the moment.
Note that ‖B−m~x‖ → ∞.

Corollary 2.16. If ~x ∈ Rn \ {0}, then ‖B−m~x‖ → ∞ as m→∞.

Proof. We know ‖Bm~y‖ ≤ Cαm‖~y‖ where 0 < α < 1. Thus, setting ~y = B−m~x we get
‖BmB−m~x‖ ≤ Cαm‖B−m~x‖. Rearranging we get:

‖B−m~x‖ ≥ α−m

C
‖~x‖,

as required. �

We are going to be interested in the relation:

~ω1 ∼ ~ω2 iff ~ω1 = Bm~ω2 for any m ∈ Z.

It is easy to check that this is an equivalence relation. In the one-dimensional case we
could easily understand this relation as it amounts to ω1 ∼ ω2 if ω1 = 2mω2 and we select a
set of representatives ±[1, 2) — that is, for each point in R \ {0} there is exactly one point
in ±[1, 2) which is equivalent to that point. We are going to have to choose a similar set of
representatives in this more general setting. We could do this with the Axiom of Choice,
but it would be nice to see what shape these sets are.

The structure here is quite similar to that in R. In R the set of points equivalent to ω
was 2Zω, and here the set of points equivalent to ~ω is BZ~ω, the orbit of ~ω as B acts on Rn.
As in R all the Bm~ω are distinct.

Lemma 2.17. If B has all its eigenvalues satisfying 0 < |λ| < 1, then Bm~ω = Bl~ω for
some non-zero ~ω only when m = l.
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Proof. If we have Bm~ω = Bl~ω, then Bm−l~ω = ~ω, so 1 is an eigenvalue of Bm−l. But the
eigenvalues of Bm−l are λm−l where λ is an eigenvalue of B. But this means that λm−l = 1
and if m 6= l then we have |λ| = 1, which is a contradiction. �

We are going to choose our representatives in the following way. Note that for ~ω ∈
Rn \ {0} we have ‖Bm~ω‖ → 0 as m→∞ and ‖Bm~ω‖ → ∞ as m→ −∞. This means we
can choose M ∈ Z so that ‖BM~ω‖ ≥ 1, but for any m > M we have ‖Bm~ω‖ < 1. It is the
point BM~ω that we take as our representative for the family BZ~ω.

Theorem 2.18. Let D = {~x ∈ Rn : ‖~x‖ < 1}. Then the set:

R =

(⋂
m>0

B−mD

)
\D,

contains exactly one representative of each coset of (Rn \ {0})/ ∼.

Proof. For each ~ω ∈ Rn\{0} we can find a unique M(~ω) so that BM(~ω)~ω 6∈ D but Bm~ω ∈ D
whenever m > M(~ω). M(~ω) is given by:

M(~ω) = inf
{
m ∈ Z : Bk~ω ∈ D, ∀k > m

}
.

Note that M(Bk~ω) = M(~ω) − k as BM(~ω)−k(Bk~ω) = BM(~ω)~ω 6∈ D and if m > M(~ω) − k,
then m+ k > M(~ω) so Bm(Bk~ω) = Bm+k~ω ∈ D.

We consider the set:
R = {~ω ∈ Rn \ {0} : M(~ω) = 0} .

For any point ~ω ∈ Rn \ {0} the equivalent point BM(~ω)~ω is in R as M(BM(~ω)~ω) = M(~ω)−
M(~ω) = 0. This means that R must contain at least one representative of each point in
Rn \ {0}.

Now suppose that ~ω1 ∼ ~ω2 and M(~ω1) = M(~ω2) = 0. Then ~ω1 = Bk~ω2 for some k ∈ Z.
Thus:

0 = M(~ω1) = M(Bk~ω2) = M(~ω2)− k = 0− k,

so k = 0 and ~ω1 = ~ω2. We conclude that R contains exactly one representative of each
point.
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Finally we simplify the form of R:

R = {~ω ∈ Rn \ {0} : M(~ω) = 0} ,
= {~ω ∈ Rn \ {0} : ~ω 6∈ D,Bm~ω ∈ D, ∀m > 0} ,
= {~ω ∈ Rn \ {0} : Bm~ω ∈ D, ∀m > 0} \D,
= {~ω : Bm~ω ∈ D, ∀m > 0} \D,

=

(⋂
m>0

{~ω : Bm~ω ∈ D}

)
\D,

=

(⋂
m>0

{
B−m~ω : ~ω ∈ D

})
\D,

=

(⋂
m>0

B−mD

)
\D.

�

We can now make some observations about the form of R. Firstly, it was not important
that we started with the unit disk D. Any bounded set which contained a neighbourhood
of the origin would have been suitable.

Secondly, the intersection in the expression for R is actually a finite intersection for
any given B. This is because B−1D is bounded, and so B−1D ⊂ rD for some 0 < r <∞.
Then choose N so that ‖Bn‖ < 1

r
when n > N . Thus BnrD ⊂ D, so rD ⊂ B−nD. We

conclude that B−1D ⊂ rD ⊂ B−nD, and so intersecting with the terms with m > N has
no effect.

Third, as the intersection is finite, this means that the set R is a bounded open set
intersected with a closed set, and so not just measurable but very well behaved. This fits
in well with the case in R where we used ±[1, 2) as our set of representatives.

2.4.2 Solutions to the transformed equation

Now we try to use similar definitions and proofs to those we used on R. Again we look at
the set of pointwise solutions of the transformed dilation equation with scale A:

ΦA(p) = {φ : Rn → C : φ(~ω) = p (B~ω)φ (B~ω)} ,

where B = A−∗ for ‖Bk‖ → 0 as k →∞. We would like to find m ∈ ΦA(p) so that for any
φ ∈ ΦA(p) we can find π : Rn → C so that φ = mπ and π(~ω) = π(B~ω).

Fortunately the generalisations of Lemma 2.5, Lemma 2.6 and Theorem 2.7 are straight-
forward. Here is the “cut and paste” generalisation of Theorem 2.8.

Theorem 2.19. Suppose we have φ ∈ ΦA(p) with the following properties:

• if p(0) = 1, then φ(0) is non-zero,
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Dilation Matrix R B−nD

A =

(
2 0
0 2

)
B = 1

2

(
1 0
0 1

)
λ = 2

A =

(
1 −1
1 1

)
B = 1

2

(
1 −1
1 1

)
λ = 1± i

A =

(
0 2
−1 0

)
B = 1

2

(
0 1
−2 0

)
λ = ±

√
2i

A =

(
0 .75
2 0

)
B = −2

3

(
0 −2
−.75 0

)
λ = ±

√
3/2

A =

(
3 0
1 4

)
B = 1

12

(
4 −1
0 3

)
λ = 3, 4

A =

(
1 1
−3 −1

)
B = 1

2

(
−1 3
−1 1

)
λ = ±

√
2i

Figure 2.1: For various A the boundary of R and B−nD (n = 0, 1, . . .).
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• there exists some ε > 0 so that φ is non-zero on the punctured ball {~ω ∈ Rn : 0 <
‖~ω‖ < ε}.

Then φ is maximal in ΦA(p).

Proof. Suppose ψ ∈ ΦA(p). The first condition tells us exactly that φ(0) = 0⇒ ψ(0) = 0.
If φ(~ω) = 0 for some ~ω 6= 0, then we can choose l so φ(~ω) is of the form:

φ(~ω) = p
(
B1~ω

)
p
(
B2~ω

)
p
(
B3~ω

)
. . . p

(
Bl~ω

)
φ
(
Bl~ω

)
,

and Bl~ω ∈ {~ω ∈ Rn : 0 < ‖~ω‖ < ε}. Now as φ
(
Bl~ω

)
6= 0 we know p

(
Bk~ω

)
= 0 for some

k between 1 and l. But any ψ(~ω) is also of the form:

ψ(~ω) = p
(
B1~ω

)
p
(
B2~ω

)
p
(
B3~ω

)
. . . p

(
Bl~ω

)
ψ
(
Bl~ω

)
,

and so will have the same 0 factor in it, and accordingly will be zero. �

2.5 Applications in Rn

It would be nice to be able to generalise the operator result of Theorem 2.12 from operators
on L2(R) which commute with D2, to operators on L2(Rn) which commute with DA for a
dilation matrix A. We proved this result for dilation by 2 in R by focussing on the solutions
of the lattice dilation equation:

f(x) = f(2x) + f(2x− 1).

In R, a lattice dilation equation is one in which the scale a is an integer. This means that
it maps any lattice in R into itself, or aZ ⊂ Z. In Rn a lattice dilation equation is one in
which the scale A is a dilation and also AΓ ⊂ Γ for some lattice Γ which isn’t flat in Rn.
Using a change of basis we can arrange that this lattice is Zn, and so A must have integer
entries [15].

Generalising to other lattice dilations in R is easy, as for scale a we can just use the
lattice dilation equation:

f(x) = f(ax) + f(ax− 1) + . . .+ f(ax− a+ 1),

when a ≥ 2. If a ≤ −2 we use:

f(x) = f(ax+ 1) + f(ax+ 2) + . . .+ f(ax− a).

All these equations‡ have χ[0,1) as a well-behaved L2(R) solution. Armed with these equa-
tions and the set of representatives ±[1, |a|), we can proceed through the proof of Theo-
rem 2.9 with few changes.

‡The second equation is derived from the first using the fact that χ[0,1) satisfies f(x) = f(−x+ 1).
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Theorem 2.20. The L2(R) solutions of the above dilation equations are in a natural one-
to-one correspondence with the functions in L2(±[1, |a|)).

Unfortunately the situation is not so easy to deal with in Rn. Let us consider for a
moment the important properties which χ[0,1) has. First, it is a maximal solution of a
dilation equation. For Theorem 2.9 we use the fact that its Fourier transform stays away
from zero on some nice set of representatives, is bounded, and decays reasonably quickly.
We then use the fact that it is a generating function for a multiresolution analysis to prove
Theorem 2.12. So, given a lattice dilation A on Rn, we want to find a function g which
has all these properties.

2.5.1 Lattice tilings of Rn

In R our well-behaved generating function was the characteristic function for some set. A
possible way to generalise this is to look for is for other suitable characteristic functions.
One well studied way (see [15]) of doing this is to look for a compact set G with the
following properties (up to measure zero):

1. G has distinct translations, ie. G ∩ (G+ ~r) = ∅ for ~r ∈ Zn \ {0}.

2. AG the dilated version of G can be written as a union of its translations, ie. we can
find points ~k1, . . . , ~kq so that:

AG =

q⋃
i=1

(G+ ~ki).

3. G covers Rn by translation.

Rn =
⋃
~r∈Zn

(G+ ~r).

The first of these conditions tells us that the translates of χG are orthogonal. The second
tells us that χG satisfies a dilation equation and the last tells us that we can get to any
part of Rn. In fact the ~k1, . . . , ~kq turn out to be representatives of the equivalence classes
of AZn/Zn, of which there are q = | detA|. Remarkably, a set with these properties will
even generate a multiresolution analysis.

The existence of such sets is even a concrete affair. Any candidate for such a set can
be shown to be of the form:

G =

{
~x ∈ Rn : ~x =

∞∑
j=1

A−jεj, εj ∈
{
~k1, . . . , ~kq

}}
.

These summations can be thought of as the base A expansion of points in Rn using the
digits ~k1, . . . , ~kq and for this reason the set {~k1, . . . , ~kq} is referred to as the digit set. For
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example, if we take A = 2 and k1 = 0, k2 = 1, then we get:

G =

{
x ∈ R : x =

∞∑
j=1

εj
2j
, εj = 0 or 1

}
,

which is the binary expansion of numbers between 0 and 1, so we get [0, 1) back again.
These candidate sets have the desired properties iff their measure is 1. Figure 2.2 shows
various sets G with their dilations A and digit sets. Note that the same A can produce
radically different G if different digit sets are chosen.

The next question is: Given A, when can we select a digit set which will produce a G of
measure 1 using the above recipe? In the literature the answer to this question looks rather
complicated. To summarise a paragraph of [49], the answer is ‘Always’ in Rn for n = 1, 2, 3
and ‘Always’ if | detA| > n; however, the answer is probably ‘Sometimes’ in general. By
the time [28] was published a counterexample in R4 had been found by Potiopa:

A =


0 1 0 0
0 0 1 0
0 0 −1 2
−1 0 −1 1

 .

The reason no suitable digit set can be found for this A relates to the algebra of rings and
to fields generated by roots of its characteristic polynomial x4 + x2 + 2.

2.5.2 Wavelet sets and MSF wavelets

The idea of wavelet sets is dual to that of self-similar-affine tilings. This time, instead of
producing characteristic functions which generate MRAs, the aim is to produce wavelets
whose Fourier transforms are characteristic functions of sets. These wavelets are referred
to as minimally supported frequency wavelets, or MSF wavelets. Shannon wavelets, with
ψ̂ = χ±[π,2π), are a well-known example of an MSF wavelet in R.

Here existence is not a problem. Dia, Larson and Speegle prove that for any dilation
matrix A there always exists a wavelet set in [6]. They do this by producing a set W which
is 2π-translation equivalent to [−π, π)n and B-dilation equivalent to R. This means that
W =

⋃
E~r where:

[−π, π)n =
⋃
~r∈Zn

E~r + 2π~r,

and W =
⋃
Fm where:

R =
⋃
m∈Z

BmFm,

(R as given in Theorem 2.18).
The first of these relations tells us that W is much the same shape as [−π, π)n and thus

we can produce L2(W ) by using linear combinations of the form:∑
~r∈Zn

c~re
(~r,~ω)χW .
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A =

(
1 −1
1 1

)
ki =

(
0
0

)
,

(
1
0

)
.

A =

(
2 0
0 2

)
ki =

(
0
0

)
,

(
1
0

)
,(

0
1

)
,

(
1
1

)
.

A =

(
2 0
0 2

)
ki =

(
0
0

)
,

(
1
0

)
,(

0
1

)
,

(
−1
−1

)
.

A =

(
3 0
0 3

)
ki =

(
0
0

)
,

(
0
1

)
,(

0
2

)
,

(
1
0

)
,(

1
2

)
,

(
2
0

)
,(

2
1

)
,

(
2
2

)
,

(
4
4

)
.

A =

(
2 −1
1 −2

)
ki =

(
0
0

)
,

(
1
0

)
,(

0
−1

)
.

A =

(
1 1
−3 −1

)
ki =

(
0
0

)
,

(
0
1

)
.

Figure 2.2: Various self-similar-affine tiles.

28



Solutions to Dilation Equations <dwmalone@maths.tcd.ie>

The second relation tells us that W has the same property as R from Theorem 2.18, that
is Rn =

⋃
BmW . This means we can produce L2(Rn) as a direct sum of L2(BmW ):∑

~r∈Zn,m∈Z

c~r,me
(~r,~ω)χBmW .

Taking the inverse transform of this equation we find L2(R) is the span of:∑
~r∈Zn,m∈Z

c~r,mw(Am~x− ~r),

where w is a constant multiple of the inverse Fourier transform of χW . This makes f a
wavelet for scale A.

The construction of W is presented in a quite abstract form in [6], but [7] contains
many nice examples and more of a discussion.

This time, the complication is that we are looking for functions which generate MRAs,
not wavelets. Examples of wavelets often arise from an MRA, but these MSF wavelets
are primary candidates for counterexamples. Note that there is only a need for one MSF
wavelet regardless of the value of det(A), whereas for wavelets arising from an MRA of
scale A would require | det(A)| − 1 wavelets.

2.5.3 A traditional proof

Having found no suitable maximal solutions to a dilation equation of scale A, we cannot di-
rectly follow the tack we took in R. However, we can prove a generalisation of Theorem 2.12
using more traditional methods.

Lemma 2.21. Suppose A is a dilation matrix and A is a bounded linear transform on
L2(R) which commutes with DA and T~r (for all ~r ∈ Zn); then A commutes with all trans-
lations.

Proof. We note that:
TAm~r = DA−mT~rDAm ,

so that A commutes with TAm~r. Now we show that Am~r is dense in Rn. Let ~x ∈ Rn and
ε > 0 be given. Note that any point of Rn is within

√
n

2
of a point in Zn. Choose m so that

‖Am‖ < 2ε√
n
, then A−m~x must be within

√
n

2
of some ~r in Zn. Then:

‖~x− Am~r‖ ≤ ‖Am‖‖A−m~x− ~r‖

<
2ε√
n

√
n

2
= ε.

Thus this set is dense in Rn, and so A commutes with a dense set of translations. By
the continuity of · 7→ T· and the continuity of A we see that A must commute with all
translations. �
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Theorem 2.22. Suppose A is a dilation matrix and A is a bounded linear transform on
L2(R) which commutes with DA and T~r (for all ~r ∈ Zn); then A is of the form:

A = F−1πF ,

where π ∈ L∞(Rn) and π(B~ω) = π(~ω) for all ~ω ∈ Rn.

Proof. By Lemma 2.21 A commutes with all translations, and so by Theorem 4.1.1 of [29]
(page 92) we can find ρ ∈ L∞(Rn) so that:

A = F−1ρF .

That is for any f ∈ L2(Rn):

F−1ρFf = Af,
ρFf = FAf,

ρ(~ω)f̂(~ω) = (FAf) (~ω),

for almost every ~ω ∈ Rn. Replacing f with DAf we get:

ρ(~ω)
1

| detA|
f̂(B~ω) =

1

| detA|
(FAf) (B~ω),

ρ(~ω)f̂(B~ω) = (FAf) (B~ω),

= ρ(B~ω)f̂(B~ω),

using the last line of the former derivation to replace the RHS. Thus we choose f so that
f̂ is never zero§ and see that ρ(~ω) = ρ(B~ω) for almost every ~ω. We may then adjust ρ on
a set of measure zero to get π. �

2.6 Conclusion

We have concocted the idea of a maximal solution m to a transformed dilation equation
and shown that such a solution exists for arbitrary p. While this idea of maximality isn’t
explicitly stated elsewhere, the idea has certainly been touched upon in the literature (for
example Section 8 of [22] or case (c) of Theorem 2.1 in [11]).

There are many possible maximal solutions and we have not invested much time in
trying to find m with desirable properties. It is highly likely that by using the properties¶

of p, better behaved m could be found. We have examined the most likely choice for m,
the infinite product, and shown that in the usual cases it will be maximal.

We applied this idea of maximality to the Haar dilation equation. Using an idea from
[32], that knowing how an operator affects the Haar MRA tells you lots about the operator,

§Say, take f(x) = e−x
2

¶In the usual case p is analytic and 2π periodic.
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we proved some nice results classifying operators which commute with shifts and dilations.
It would be interesting to know if our results for an operator A can be extended from ‘A
commutes with D2, T1’ to ‘A sends solutions of scale 2 dilation equations to solutions of
the same equation’.

We then generalised these notions to dilation equations on Rn. In our search for a
suitable MRA to use within the proofs of our operator results we looked at MSF wavelets
and self-affine tiles. Both of these families raise many interesting questions. For a given
dilation A an MSF wavelet always exists but a self-affine tile may not. It would be inter-
esting to investigate a hybrid of these ideas, looking for an MRA generated by a function
g which has ĝ = cχX .

It would also be interesting to know if it is possible to generalise the concept of maximal
to other situations such as refinable function vectors and distributional solutions to dilation
equations.

31



Chapter 3

Solutions of dilation equations in
L2(R)

3.1 Introduction

In Chapter 2 we managed to find the form of all the solutions to a transformed dilation
equation, and in particular we nailed down the L2(R) solutions to f(x) = f(2x)+f(2x−1)
exactly. In this chapter we aim to see if these results are suitable for doing calculations.

3.2 Calculating solutions of f (x) = f (2x) + f (2x− 1)

Using Theorem 2.9 we will actually calculate some solutions to f(x) = f(2x) + f(2x− 1).
We now know that if g is a solution then:

ĝ = πχ̂[0,1),

where π ∈ L2(±[1, 2)) and π(ω) = π(2ω). Also, for functions ψ̌ ∈ L1(R) we know that:

F−1(ψχ̂[0,1)) = cψ̌ ∗ χ[0,1),

where ∗ denotes convolution of two functions and c is a constant depending on the nor-
malisation of the Fourier transform. As f(x) = f(2x) + f(2x− 1) is linear, we ignore this
constant.

As π satisfies π(ω) = π(2ω) it will never∗ be in L2(R), so we cannot take its inverse
Fourier transform in L2(R). Likewise it will never satisfy limω→∞ |π(ω)| = 0 and so (by
the Riemann-Lebesgue lemma†) cannot be the Fourier transform of an L1(R) function. If
we are to use the convolution result it will have to be in terms of better-behaved functions.

∗Unless trivially π = 0 almost everywhere.
†See Theorem 1.2 of [40] for details of the Riemann-Lebesgue lemma.

32



Solutions to Dilation Equations <dwmalone@maths.tcd.ie>

Examining the properties we would expect of π̌, we blindly take the inverse Fourier
transform of π(ω) = π(2ω) to get:

π̌(x) = 2π̌(2x).

It is easy to construct a candidate function for π̌. As in the case with π, it looks like we
are free to choose the function on ±[1, 2) and then use to the above relation to determine
it (almost) everywhere else.

For this example we will take π̌(x) to be sin(2πx) on [1, 2) and zero on −(2, 1]. There
are several reasons for this:

• We will be taking the convolution of π̌ with χ[0,1). Arranging for each “cycle” of π̌
to have mean zero will simplify this process.

• We will be writing π in terms of sums of:

F
(
sin(2πx)χ[1,2)

)
.

Using the heuristic “the smoother the function the faster its Fourier transform de-
cays” we arrange that sin(2πx)χ[1,2) is continuous to make the convergence of the
sums easier to determine‡.

• We leave π̌ identically zero on R− as a demonstration of the fact that the two halves
are independent.

So we are working with the function:

π̌(x) =

{
2−n sin(2−n2πx) x ∈ 2n[1, 2)

0 otherwise
,

a sketch of which is shown in Figure 3.1. We could write this as a sum of sin(2πx)χ[1,2)(x) =
α(x) as follows:

π̌(x) =
∑
n∈Z

2n sin(2n2πx)χ[1,2)(2
nx) =

∑
n∈Z

2nα(2nx).

If we cut off this sum above and below we get a sequence of bounded compactly-supported
functions. These functions will be in L1(R) and so we will be able to use the convolution
result on these. For m ∈ N we define:

π̌m(x) =

|n|<m∑
n∈Z

2nα(2nx)

‡Doing the same calculation with cos in place of sin is very slightly harder because cos(2πx)χ[1,2) is not
continuous.
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Figure 3.1: π̌ for the example.

We may safely examine the Fourier transform of each of these. We write it in terms of:

α̂(x) =
2π(e−i2ω − e−iω)

ω2 − 4π2
,

using the dilation property of the Fourier transform to get:

πm(ω) =

|n|<m∑
n∈Z

2n
(

1

2n
α̂
( ω

2n

))
=

|n|<m∑
n∈Z

α̂(2nω) =

|n|<m∑
n∈Z

2π(e−i22nω − e−i2nω)

22nω2 − 4π2
.

For fixed ω there are three ways this sum could be troublesome. First as n→∞. This
is not going to be a problem as the numerator is bounded by 4π and the denominator has
a factor of 22n. The second possible issue is what happens when 2nω is near ±2π, as the
denominator will be small here. This is not a problem as the top also has a zero here, and
so α̂ is bounded by C, say. Our final possible concern is what happens as n→ −∞. Near
zero, however, we know that: ∣∣e−i2ω − e−iω∣∣ < k|ω|,

so the contribution to the sum will be less than a geometric sum. In fact, by classifying
the terms of the sum into three groups: |ω2n| < 1, 1 ≤ |ω2n| ≤ 8 and |ω2n| > 8, we see
that the sum is always less than: k

4π2 − 1

|ω2n|<1∑
n∈Z

|ω2n|

+ (4C) +

|ω2n|>8∑
n∈Z

4π

22nω2 − 4π2

 <
2k

4π2 − 1
+ 4C + 4π,

and so the sum is absolutely convergent for any ω. This means that if we define π(ω) =
limm→∞ πm(ω), then πm → π uniformly on compact subsets.

The other implication of this is that π is bounded, and so is certainly in L2(±[1, 2)).
Also any function of the form

∑
n∈Z α̂(2nω) will satisfy π(ω) = π(2ω), so we know that

πχ̂[0,1) is the Fourier transform of an L2(R) solution of f(x) = f(2x) + f(2x− 1).
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Combining the facts that πm → π uniformly on compact subsets and that π, πm are all
uniformly bounded, it is straightforward to show that πmf → πf for any f ∈ L2(R). We
apply this to χ̂[0,1) to get:

F−1(πχ̂[0,1)) = F−1( lim
m→∞

πmχ̂[0,1))

= lim
m→∞

F−1(πmχ̂[0,1))

= lim
m→∞

F−1(F(π̌m ∗ χ[0,1)))

= lim
m→∞

π̌m ∗ χ[0,1).

The final task we are left with is to calculate the convolution.∫
R
π̌m(y)χ[0,1)(x− y) dy =

∫ x

x−1

π̌m(y) dy.

Now we can use the fact that the average of π̌m(y) over any interval [2k, 2k+1) is zero, which
means only the first and last cycles in [x− 1, x) will make a contribution.

π̌m∗χ[0,1)(x) =



0 x ≤ 2−m.∫ x
2k

2−k sin(2−k2πy) dy 2−m < x ≤ 1 + 2−m,

where x ∈ [2k, 2k+1).∫ x
2k

2−k sin(2−k2πy) dy +
∫ 2l+1

x−1
2−l sin(2−l2πy) dy 1 + 2−m < x ≤ 2m+1,

where x− 1 ∈ [2l, 2l+1).∫ 2l+1

x−1
2−l sin(2−l2πy) dy x− 1 < 2m+1 < x.

0 2m+1 ≤ x− 1.

This simplifies in the limit m→∞.

π̌ ∗χ[0,1)(x) =



0 x ≤ 0.∫ x
2k

2−k sin(2−k2πy) dy 0 < x ≤ 1,

where x ∈ [2k, 2k+1).∫ x
2k

2−k sin(2−k2πy) dy +
∫ 2l+1

x−1
2−l sin(2−l2πy) dy 1 < x,

where x− 1 ∈ [2l, 2l+1).

This integration is straightforward, and gives (up to a constant) an explicit form for
the solution:

π̌ ∗ χ[0,1)(x) =



0 x ≤ 0.

cos(2−k2πx)− 1 0 < x ≤ 1,

where x ∈ [2k, 2k+1).

cos(2−k2πx)− cos(2−l2π(x− 1)) 1 < x,

where x− 1 ∈ [2l, 2l+1).

This curiously-shaped solution is shown in Figure 3.2.
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Figure 3.2: π̌ ∗ χ[0,1) for the example.

3.3 Factoring solutions of f (x) = f (2x) + f (2x− 1)

By experimenting further it can be seen that our choice of π̌ failed to make it clear exactly
what was afoot. Note that π̌ ∗ χ[0,1)(x) is actually of the form F (x)− F (x− 1) where:

F (x) =


1 x ≤ 0

cos(2−k2πx) x > 0

where x ∈ [2k, 2k+1)

.

Note that F (x) = F (2x). In fact if F is any function such that F (x) = F (2x) + c, then by
defining f(x) = F (x)− F (x − 1) we get a solution of f(x) = f(2x) + f(2x − 1). This, of
course, gives us a vast selection of solutions as producing a function like F is easy.

By trial and error we can see that we can produce χ[0,1) and log |1 − 1/x| by setting
F to be sign(x) and log |x| respectively. Is it possible to produce any L2(R) solution this
way?

This “factorisation” must be related to the fact that the Fourier transforms of the L2(R)
solutions are of the form:

1− e−iω

iω
π(ω) =

(
1− e−iω

) π(ω)

iω
.

Letting Λ(ω) = π(ω)
iω

we observe that the term 1 − e−iω corresponds to evaluating some
function at x and x − 1. The Λ term has the property that Λ(ω) = 2Λ(2ω), so (brashly
ignoring convergence) we expect its inverse Fourier transform to have a property like Λ̌(x) =
Λ̌(2x). This Λ̌ roughly corresponds to our F .

We will now show that all f in L2(R) may be written in this form.

Theorem 3.1. If f is an L2(R) solution of f(x) = f(2x)+f(2x−1), then f can be written
in the form f(x) = F (x)− F (x− 1), where F (x) = F (2x) + c, for almost every x ∈ R.
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Proof. Using Theorem 2.9 we take π ∈ L2(±[1, 2)) corresponding to f and extend it as
usual. Let:

λ(ω) =
π(ω)

iω
χ±[1,2)(ω),

then λ ∈ L2(±[1, 2)). Considered as a function on R, it is a member of L1(R) ∩ L2(R)
which has compact support, and so we see its inverse Fourier transform is analytic and
decays to zero.

Now we define Fn and fn as follows:

Fn(x) =

|m|≤n∑
m∈Z

λ̌(2mx)

− nλ̌(0)

fn(x) = Fn(x)− Fn(x− 1).

The reason for the nλ̌(0) term is to encourage Fn(x) to converge: As |2mx| gets large λ̌
goes to zero; however, as |2mx| goes to zero we almost pick up the value λ̌(0) for each term,
so we must subtract that amount.

Note that {fn} ⊂ L2(R), as each fn is a finite sum of λ̌(2mx), and these are all in
L2(R). So we may check what happens to f̂n:

f̂n(ω) =
(
1− e−iω

) |m|≤n∑
m∈Z

2m
π(2mω)

i2mω
χ±[1,2)(2

mω)

=
(
1− e−iω

) |m|≤n∑
m∈Z

π(ω)

iω
χ±[1,2)(2

mω)

=
1− e−iω

iω
π(ω)χ±[2−n,2n+1).

Clearly f̂n → χ̂[0,1)π in L2(R) as n→∞, and so fn tends to the solution that corresponds
to multiplication by π.

What can we say about the Fn? In the limit they have the F (x) = F (2x) + c property:

Fn(x)− Fn(2x) = λ̌(2−nx)− λ̌(2n+1x)

lim
n→∞

(Fn(x)− Fn(2x)) = lim
n→∞

(
λ̌(2−nx)− λ̌(2n+1x)

)
= λ̌(0)− 0.

However, we do not know yet if Fn(x) converges. Rewrite Fn as:

Fn(x) =

(
n∑

m=1

λ̌(2−mx)− λ̌(0)

)
+

n∑
m=0

λ̌(2mx).

Examining the first sum and remembering that λ̌ is analytic we write:

λ̌(x) = λ̌(0) + ax+ b(x)x2,
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where b(x) is also analytic. Thus the first sum becomes:

n∑
m=1

2−mxa+ 2−2mx2b(2−mx) = a(1− 2n)x+ x2

n∑
m=1

2−2mb(2−mx)

It is easy to see that this sum converges uniformly on compact subsets, as b is bounded
on compact subsets. Thus the limit of this first sum is analytic. We can show that the
other half of F converges in L2(R) by showing that it is a Cauchy sequence. Remember
λ̌ ∈ L2(R), and so: ∥∥∥∥∥

n2∑
m=n1

λ̌(2mx)

∥∥∥∥∥
2

≤
n2∑

m=n1

∥∥λ̌(2mx)
∥∥

2

≤
n2∑

m=n1

1√
2m

∥∥λ̌(x)
∥∥

2

≤
√

2√
2− 1

1√
2n1

∥∥λ̌(x)
∥∥

2
.

This rate of convergence in L2(R) is then sufficient to ensure pointwise convergence
almost everywhere. Write:

F+
n (x) =

n∑
m=0

λ̌(2mx)

and let F+ be the L2(R) limit of this sequence. For any L2(R) function h we have:

|{x : |h(x)| > δ}| ≤ ‖h‖
2
2

δ2
.

Writing this for F+
n − F+ we get:

∣∣{x : |F+
n (x)− F+(x)| > δ

}∣∣ ≤ ‖F+
n − F+‖2

2

δ2

=

∥∥∑
m>n λ̌(2mx)

∥∥2

2

δ2

≤ c

2nδ2
.
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Accordingly:∣∣{x : F+
n (x) 6→ F+(x)

}∣∣
=

∣∣∣∣{x : ∃m ∈ N+ s.t. ∀N > 0 ∃n > N s.t. |F+
n (x)− F+(x)| ≥ 1

m

}∣∣∣∣
=

∣∣∣∣∣
∞⋃
m=1

{
x : ∀N > 0 ∃n > N s.t. |F+

n (x)− F+(x)| ≥ 1

m

}∣∣∣∣∣
=

∣∣∣∣∣
∞⋃
m=1

∞⋂
N=1

{
x : ∃n > N s.t. |F+

n (x)− F+(x)| ≥ 1

m

}∣∣∣∣∣
=

∣∣∣∣∣
∞⋃
m=1

∞⋂
N=1

∞⋃
n=N+1

{
x : |F+

n (x)− F+(x)| ≥ 1

m

}∣∣∣∣∣
≤

∞∑
m=1

inf
N>0

∞∑
n=N+1

cm2

2n

=
∞∑
m=1

inf
N>0

cm2

2N

=
∞∑
m=1

0 = 0.

So we have Fn → F as the sum of two functions with at least pointwise convergence
almost everywhere, as required. �

3.3.1 A basis for the solutions of f(x) = f(2x) + f(2x− 1)

We are now in a position to calculate a basis for the solutions of f(x) = f(2x) + f(2x− 1)

in L2(R). Firstly, note that as π ranges over L2(±[1, 2)), λ(ω) = π(ω)
iω

covers the same
space. So we will begin with a basis for the possible λ. Observing that (eπirω)r∈R forms an
orthogonal basis for L2(±[1, 2)), we use these as a basis for the λ.

λr(ω) = eπirωχ±[1,2)(ω)

λ̌r(x) =
1

2π

∫
±[1,2)

eπirωeiωx dω

=
− sin(2x) + (−1)r sin(x)

π(πr − x)
.

This function is analytic, decays like 1/x, and at x = πr has value 1/π. The fact that
it decays like 1/x means that F will converge everywhere, except possibly at x = 0. We
can then produce a sum for F (x) and sketch f(x) (see Figure 3.3). This basis will not be
orthogonal as the relationships between f̂ , π and λ are not unitary.
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r λ̌r Fr fr

-2

-1

0

1

2

Figure 3.3: Constructing a basis for solutions of the Haar equation.
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3.4 Factoring and other dilation equations

A simple extension of this trick allows us to produce solutions to equations of the form:

f(x) = ∆ (f(2x) + f(2x− 1)) ,

for ∆ ∈ R. If we choose F so that F (x) = ∆F (2x) + c and, as before, set f(x) =
F (x)− F (x− 1) then we automatically get a solution to the above equation.

Taking F (x) = |x|β gives ∆ = |2−β|. We would like to know when the resulting
f(x) = |x|β−|x−1|β is in Lp(R). Firstly, for the tails of f (say when |x| > 2) we consider:

|f(x)| = |x|β
∣∣∣∣∣1−

(
1− 1

x

)β∣∣∣∣∣ ≤ |x|βCβ|x| .
Thus the tails are in Lp(R) when p(β − 1) < −1. The other obstacle to being in Lp(R) is
that if β < 0, then f blows up at 0 and 1 like xβ. To keep these peaks in Lp(R) we require
βp + 1 > 0. So in the case§ where −1

p
< β < −1

p
+ 1 these functions are in Lp(R). The

corresponding range for ∆ is (2
1
p
−1, 2

1
p ) for a given p, or considering any p ≥ 1 we find

∆ ∈ (1
2
, 2).

It is interesting to note that except for ∆ = 1, none of these equations could have a
compactly-supported Lp(R) solution. If any equation did, then the solution would also be
in L1(R). However, as shown in [11], compactly-supported L1(R) solutions only exist when
∆ = 2m for some nonnegative integer m.

The following gives an indication of how this idea applies to other dilation equations
with more complicated forms.

Theorem 3.2. Suppose that:

1. F : R→ C satisfies F (2x) = F (x) + c,

2. f0 is differentiable,

3. f0 is a solution of a finite dilation equation f0(x) =
∑
ckf0(2x− k),

4. f0(x)→ 0 as |x| → ∞.

Then if

f(x) = (F ∗ f ′0)(x) =

∫
F (t)f ′0(x− t) dt

is well-defined, it is also a solution of the same dilation equation.

§We haven’t excluded this working out for some other values β, but this range will suffice for this
example.
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Proof. First note that f ′0 satisfies:

f ′0(x)

2
=
∑

ckf
′
0(2x− k).

We plug this into the definition of f .∑
ckf(2x− k) =

∑
ck

∫
F (t)f ′0(2x− k − t) dt

=

∫
F (t)

∑
ckf

′
0(2x− k − t) dt

=

∫
F (t)

∑
ckf

′
0

(
2

(
x− t

2

)
− k
)
dt

=

∫
F (t)

f ′0
(
x− t

2

)
2

dt

=

∫
F (2t′)

f ′0(x− t′)
2

2dt′

=

∫
(F (t′) + c)f ′0(x− t′) dt′

= f(x) +

∫
cf ′0(x− t′) dt′

= f(x) + c lim
t→∞

(f0(t)− f0(−t))

= f(x)

�

3.5 L2(R) solutions of other dilation equations

It would be nice to be able to prove a similar result to Theorem 2.9 for all dilation equations.
It is easy to see that if we multiply the Fourier transform of any L2(R) solution of a dilation
equation by π ∈ L∞(R) with π(ω) = π(2ω), then we will get another L2(R) solution of
that dilation equation. To apply exactly the same proof to another equation we would
need the following:

1. A maximal solution g of the equation in L2(R).

2. The solution should be bounded away from zero on some [2n, 2n+1] and −[2m, 2m+1].

3. The solution must be essentially bounded near the origin.

4. The solution must decay like ωα where α < −1
2
.
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The obvious candidate to consider for g is the infinite product,
∏∞

r=1 p(ω/2
r), discussed

by Daubechies and Lagarias (see page 14 and [11]). Their main concern is with L1(R)
functions; however, there are dilation equations with only trivial solutions in L1(R), but
interesting solutions in L2(R). For example, in the case:

f(x) = ∆ (f(2x) + f(2x− 1)) ,

they prove that f = 0 is the only L1(R) solution when |∆| < 1. However, from the
discussion in Section 3.4 above we have examples of L2(R) solutions for 1/

√
2 < ∆ <

√
2.

The means of dismissing these equations in L1(R) is to note that the Fourier transform of
a solution of such an equation must be unbounded. As we are not interested in restricting
the infinite product in this way it may still prove a useful maximal solution.

Let us examine these solutions in the nicest case of the infinite product where ∆ = 1.
We know we will have a maximal solution bounded at the origin for which we know lots
about the zeros¶. Unfortunately the rate of decay of this infinite product seems difficult
to get a handle on. The following results indicate why the infinite product may decay or
at least why no counterexamples are forthcoming. The first is a variant on a result of Heil
and Colella (see Theorem 2 of [21]).

Theorem 3.3. Let:

φ(ω) =
∞∏
r=1

p
( ω

2r

)
where p(ω) is a trigonometric polynomial with p(0) = 1. Suppose that φ ∈ L2(R); then we
can find α ≤ −1

2
such that for all δ > 0 we can find E ⊂ [π, 2π] with |E| > π − δ and

constants 0 < c,C <∞ so that for all ε > 0 there exists N > 0 so when n ≥ N :

c|2nω|α−ε ≤ |φ(2nω)| ≤ C|2nω|α+ε

for any ω ∈ E.

Proof. Define L(ω) = log2 |p(ω)|, noting that this is a 2π periodic integrable function, as p
is a trigonometric polynomial and so has zeros of finite degree. Thus we can define α by:

α =
1

2π

∫ 2π

0

log2 |p(ω)| dω =
1

2π

∫ 2π

0

L(ω) dω,

and α will be a finite number. Now examine:

lim
n→∞

log2

∣∣∣∣∣
n−1∏
r=0

p(2rω)

∣∣∣∣∣
1
n

= lim
n→∞

1

n

n−1∑
r=0

L(2rω).

Note that the map τ : ω 7→ 2ω mod 2π is ergodic, so we can apply the Birkhoff Ergodic
Theorem‖ to conclude this limit is α for almost all ω ∈ [0, 2π]. Now by Egoroff’s Theorem

¶We know lots about the zeros as the infinite product is analytic.
‖See [48] Theorem 1.14 for details of the Birkhoff Ergodic Theorem.
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(page 88 [16]) we may choose a set E ′ ⊂ [π, 2π] on which this is a uniform limit in ω and
so that |E ′| > π − δ/2. Thus for ε′ > 0 we may choose N ′ so that when n ≥ N ′ we have:∣∣∣∣∣∣log2

∣∣∣∣∣
n−1∏
r=0

p(2rω)

∣∣∣∣∣
1
n

− α

∣∣∣∣∣∣ < ε′

for all ω ∈ E ′. Rewriting this:

2n(α−ε′) <

∣∣∣∣∣
n−1∏
r=0

p(2rω)

∣∣∣∣∣ < 2n(α+ε′).

Now, by [11], φ is entire and so we can choose a subset E of E ′ with |E| > π− δ on which
|φ(ω)| ≥ m > 0. Now:

∞ >

∫
|φ(ω)|2 dω

≥
∞∑
n=N

∫ 2π2n

π2n
|φ(ω)|2 dω

=
∞∑
n=N

2n
∫ 2π

π

|φ(2nω)|2 dω

=
∞∑
n=N

2n
∫ 2π

π

|φ(ω)|2
∣∣∣∣∣
n−1∏
r=0

p(2rω)

∣∣∣∣∣
2

dω

>
∞∑
n=N

2n
∫
E

|φ(ω)|222n(α−ε′) dω

>
∞∑
n=N

2n(1+2(α−ε′))
∫
E

|φ(ω)|2 dω

≥
∞∑
n=N

2n(1+2(α−ε′))m2|E|

So for this sum to be finite we must have 1 + 2(α− ε′) < 0, but this is true for any ε′ > 0,
thus α ≤ −1

2
. Now we fix ε′ = ε and find N so that for ω ∈ E, n ≥ N :

|φ(2nω)| =

∣∣∣∣∣
n−1∏
r=0

p(2rω)

∣∣∣∣∣ |φ(ω)|

≤ 2n(α+ε)M

=
|2nω|α+ε

|ω|α+ε
M

≤ |2nω|α+ε M

(2π)α
.
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where M = supω∈[π,2π] |φ(ω)|, and:

|φ(2nω)| =

∣∣∣∣∣
n−1∏
r=0

p(2rω)

∣∣∣∣∣ |φ(ω)|

≥ 2n(α−ε)m

≥ |2nω|α−ε m
πα

as required. �

This means we have the required decay except at some proportionally small set of
exceptional points. The following deals with the most obvious candidate for an exceptional
point: 2π. It shows that if the infinite product is non-zero near 2π, then it will be non-zero
around all 2n2π.

Theorem 3.4. Let:

φ(ω) =
∞∏
r=1

p
( ω

2r

)
where p(ω) is a trigonometric polynomial with p(0) = 1. Suppose that we can find δ > 0
so that |φ(ω)| > m > 0 on [2π, 2π + δ); then we can find c > 0 so that |φ(ω)| > c on
[2n2π, 2n2π + δ) for all n > 0.

Proof. First note that as φ is continuous and φ(0) = 1 we can find b so that |φ(ω)− 1| <
b < 1 when |ω| < δ. Now take ε < δ and look at:

φ(2n2π + ε) =
n−1∏
r=1

p
(

2r2π +
ε

2n−r

)
φ
(

2π +
ε

2n

)
=

n−1∏
r=1

p
( ε

2n−r

)
φ
(

2π +
ε

2n

)
=

∏∞
r=1 p

(
ε

2n−r

)∏∞
r=n p

(
ε

2n−r

)φ(2π +
ε

2n

)
=

φ(ε)

φ
(

ε
2n−1

)φ(2π +
ε

2n

)
.

Thus:

|φ(2n2π + ε)| =
|φ(ε)|∣∣φ ( ε

2n−1

)∣∣ ∣∣∣φ(2π +
ε

2n

)∣∣∣
>

1− b
1 + b

m,

as required. �
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Such a φ will never be in Lp(R) for p <∞ (nor will it be in F(L1(R)) by the Riemann-
Lebesgue lemma). So, between these two results we know that an infinite product in L2(R)
has the close to the required decay at many points, and that if it doesn’t decay near 2n2π,
then it couldn’t be in L2(R) anyway.

3.6 Conclusion

In this chapter we actually got our hands dirty and performed calculations using some of
our earlier results. In the case of the Haar equation this revealed a factorisation of the L2(R)
solutions which allowed us to form a basis for the space of solutions. It may be possible
to improve this basis to an orthonormal basis by looking at the λ we chose as members
of a suitably weighted L2(±[1, 2)) space. Using some sort of Legendre polynomials might
produce a neater basis.

In the folklore of dilation equations the non-uniqueness of L2(R) solutions could actually
be considered surprising. The well-known uniqueness result for L1(R) in [11] is often quoted
for compactly-supported L2(R), but ‘compactly-supported’ is frequently implicitly stated.
Consequently, people’s first reaction is that L2(R) solutions are unique.

In the Haar case it is also surprising that it is so easy to write down solutions. The
equation has been well studied and it seems unlikely that this factorisation has not been
noted before.

We then looked to see if these ideas could easily be applied to other dilation equations.
We found that a variation of this factorisation trick provided us with some non-compactly-
supported solutions to dilation equations of a reasonably neat form. When we moved to the
case of arbitrary dilation equations it appeared that the factorisation would work in most
cases (particularly in well-studied case where the refinable function is reasonably smooth).
The general version of this factorisation involves convolution and so may not be suitable
for producing examples suitable for manipulation by hand.

When we tried to generalise Theorem 2.9 to dilation equations which have a compactly-
supported L2(R) solutions, we found evidence to suggest that this also would be successful.
However, the final details continue to remain elusive. Perhaps by applying better ergodic
techniques and the smoothness of p we may be able to produce the required result.

Considering the general L2(R) case would be interesting. This would involve examining
the possibility that for some dilation equations the infinite product lies, or maybe even all
maximal solutions lie, outside L2(R).

One aspect of this factorisation we did not consider is how to determine F from f . We
could follow the argument in Theorem 3.1: take the Fourier transform, divide out to get
λ, take the inverse Fourier transform and evaluate the sum; however, is seems that there
may be a more natural construction.
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Chapter 4

The right end of a dilation equation

4.1 Introduction

Here we will look at one end of a dilation equation in the case where it is compactly-
supported. As this is written in English, which is read left to right, it seems most natural
to look at the left end — but it could just as easily be the right end.

4.2 Refinable characteristic functions on R
Suppose we wish to find characteristic functions on R which satisfy dilation equations.
What can we say about such a function and the equations which it might satisfy? First
we should look at some examples.

1. We know that χ[0,1) satisfies lots of dilation equations of the form f(x) =
∑n−1

k=0 f(nx−
k).

2. The characteristic function of Cantor’s middle third set satisfies the dilation equation
f(x) = f(3x) + f(3x− 2). However, it has measure zero, and so is somewhat special.

3. A little experimentation produces examples like χR(x) =
∑
ckχR(2x − k) for any

choice of ck summing to one. This suggests that if we want interesting results we
probably need to consider only bounded sets.

4. Experimentation also shows that χ[0,1)∪[2,3) will satisfy a dilation equation of scale 2
with coefficients c0, c1, . . . = 1, 1,−1,−1, 2, 2,−2,−2, 2, 2,−2,−2, . . .. This suggests
that we need to restrict the coefficients in some way. For the moment we will consider
the case with a finite number of non-zero coefficients.

5. Self-affine tiles which generate MRAs provide examples of sets whose characteristic
functions satisfy dilation equations whose coefficients are either zero or one. This is
because of the orthogonality requirement. This suggests that characteristic functions
may only satisfy dilation equations like this.
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Accordingly we consider sets of positive measure which are bounded, which satisfy dilation
equations with finitely many non-zero coefficients. We will try to find out what sorts of
sets satisfy these equations, and what the possible coefficients are.

The obvious scheme to follow is: look for a translated dilated bit of the set which
doesn’t overlap with any others — say a leftmost bit. Then, since the dilation equation’s
only contribution here is the coefficient attached to this translation, it must be 0 or 1 to
agree with the original characteristic function. We then aim to somehow remove this bit
of the set and repeat until we show all the coefficients are 0 or 1.

The following lemma gives us a starting point for this argument.

Lemma 4.1. Suppose χS(x) =
∑
dkχS(2x− k), and only finitely many of the dk are non-

zero. Then we can find l so that χS+l(x) =
∑
ckχS+l(2x− k), c0 6= 0, ck = 0 when k < 0

and ck = dk−l.

Proof. Take l to be the least k such that dk 6= 0. This obviously gives ck the properties
c0 6= 0, ck = 0 for k < 0. To show that χS+l satisfies the dilation equation, consider:

χS+l(x) = χS(x− l)
=

∑
dkχS(2(x− l)− k)

=
∑

dkχS(2x− k − l − l)

=
∑

dk′−lχS(2x− k′ − l)

=
∑

dk′−lχS+l(2x− k′) =
∑

ck′χS+l(2x− k′).

�

This means that we can always make a translation and have our coefficients start at
the origin. Fortunately, this forces our set to lie in the positive real axis.

Lemma 4.2. If S is bounded and satisfies a dilation equation χS(x) =
∑
ckχS(2x − k),

where c0 6= 0 and ck = 0 when k < 0, then S ∩ (−∞, 0) has zero measure.

Proof. If S has zero measure there is nothing to prove. Let [a, b] be the smallest interval
containing all of S’s measure. Then χS(x) is supported on [a, b], and χS(2x−k) is supported
on [(a + k)/2, (b + k)/2]. However, as χS(x) =

∑
ckχS(2x − k) and [a, b] is minimal we

have:
[a, b] ⊂

⋃
k>=0

[(a+ k)/2, (b+ k)/2] = [a/2,∞].

So a/2 ≤ a which implies a ≥ 0 as required. �

Now we can draw a picture. Figure 4.1 shows the situation we are in. The bottom line
shows R where χS lives — E,F,G, . . . are the parts of S contained in [0, 1), [1, 2), [2, 3), . . ..
The lines above show where χS(2x), χS(2x−1), χS(2x−2), . . . live. By summing the values
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0 1 2E F G

c0

c1

c2

E
2

F
2

G
2

E
2

+ 1
2

F
2

+ 1
2

. . .

E
2

+ 1 . . .

Figure 4.1: The left-hand end of a dilation equation.

of the functions on the upper lines (scaled by the ck) we must get something that agrees
with the bottom line. This visualisation was suggested to me by Christopher Heil.

The next proof essentially works through the easily extracted information from Fig-
ure 4.1.

Theorem 4.3. If S is bounded and satisifies a dilation equation χS(x) =
∑
ckχS(2x− k)

a.e., where c0 6= 0 and ck = 0 when k < 0, then either:

• S is of measure zero or,

• c0 = 1, the rest of the ck are integers with |ck| ≤ 2k and E has non-zero measure in
both [0, 1

2
) and [1

2
, 1).

Proof. First consider the case where E has zero measure. Looking at the interval [1
2
, 1) we

have: ∫ 1

1
2

χE(x) dx =

∫ 1

1
2

c0χF
2
(x) + c1χE

2
+ 1

2
(x) dx

0 = c0
|F |
2

+ 0,

but we know c0 6= 0 so |F | = 0. Likewise on [1, 3
2
):∫ 3

2

1

χF (x) dx =

∫ 3
2

1

c0χG
2
(x) + c1χF

2
+ 1

2
(x) + c2χE

2
+1(x) dx

0 = c0
|G|
2

+ 0 + 0,

so this time |G| = 0. Continuing we see that S = E ∪ F ∪G ∪ . . . is a countable union of
sets of measure 0, and so has measure zero.
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On the other hand, if E does not have measure zero, we know that χE and c0χE
2

agree

almost everywhere on [0, 1
2
), and as c0 6= 0 we know that c0χE

2
is non-zero on a set of

positive measure. Thus, χE is non-zero on a set of positive measure in [0, 1
2
). This means

that c0χE
2

= 1 on some set of positive measure, and so c0 = 1.

Accordingly, χE(x) = χE
2
(x) for almost every x ∈ [0, 1

2
]. This means that x ∈ E ⇔ x ∈

E
2

for almost every x ∈ [0, 1
2
].

Now that we have seen that E ∩ [0, 1
2
) has positive measure, what about E ∩ [1

2
, 1)?

|E ∩ [
1

2
, 1)| = 0⇒ |E

2
∩ [

1

4
,
1

2
)| = 0⇒ |E ∩ [

1

4
,
1

2
)| = 0⇒ |E ∩ [

1

4
, 1)| = 0.

Repeating and taking the limit gives |E ∩ (0, 1)| = |E| = 0, which is a contradiction. Thus
E ∩ [1

2
, 1) has positive measure.

Next, we show by induction that ck ∈ Z and |ck| ≤ 2k. Assume that cl ∈ Z and |cl| ≤ 2l

for l < k. Looking at the interval [k
2
, k+1

2
), we see:

χX(x) = c0χY (x) + . . .+ ckχE
2

+ k
2
(x),

for almost every x in the interval. As E has positive measure it must be true for some x
in E

2
+ k

2
, giving:

χX(x) = c0χX(x) + . . .+ ck.

As all the other terms are 0 or 1 times an integer, ck must also be an integer. In fact,
rearranging for |ck| we see:

|ck| ≤ 1 + |c0|+ |c1|+ . . .+ |ck−1| ≤ 1 + 1 + 2 + . . .+ 2k−1 = 2k.

This relation trivilally holds for ck with k < 0 as the ck are all zero. �

We can also flip the set over and perform the same analysis from the other end. This
tells us that we can find N so that cN = 1, |ck| ≤ 2N−k and ck = 0 for k > N . The severe
limitation of this method is that it is local in nature, and while it makes the coefficients
line up at the current point, it doesn’t account for the fact that they will have to become
zero at some stage in the future.

For example, if we examine c1 and enumerate the possibilities we find that c1 must
be −1, 0 or 1. However, this method cannot tell us which of these actually arise with a
bounded S. This is because aside from χ[0,1) providing an example for c1 = 1, we can form
equations with c1 = 0 by taking S = R+ and the equation χS(x) = χS(2x). Taking S = R
allows∗ χS(x) = χS(2x) − χS(2x − 1) + χS(2x − 2). To pursue this further we need to
produce some examples.

∗Taking S = R is not really a very good example, as it has no ‘left-hand end’ and as such our method
does not apply to it.
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4.2.1 Division and very simple functions

Figure 4.1 suggests a possible scheme for producing examples. We make the simplifying
assumption that each of E,F,G, . . . is either the whole unit length interval, or are empty.
Suppose we want to find out what dilation equation χ[0,2) satisfies. Writing out the values
of our function on half-intervals we get:

1 1 1 1 0 0 0 0 . . .

We already know that c1 = 1, so we can fill in the contributions of the row above, leaving
blanks for zeros.

1 1
1 1 1 1 0 0 0 0 . . .

Now we know that the next row up is shifted along one, and multiplied by some integer.
The upper columns must sum to the bottom one, so by adding up column 2 we see the
integer must be zero.

0 0
1 1
1 1 1 1 0 0 0 0 . . .

Now we can repeat this process to fill in the next lines; first we need a 1 and then a 0:

0 0
1 1

0 0
1 1
1 1 1 1 0 0 0 0 . . .

After this we can see that zeros will make all the columns add up. We can read the
coefficients of the dilation off as 1, 0, 1. Thus χ[0,2) satisfies f(x) = 1f(2x) + 0f(2x− 1) +
1f(2x− 2) = f(2x) + f(2x− 2).

This process should seem quite familiar — most of us have been doing it since we were
children. Before explaining what is going on, we will take a slightly different approach.
Suppose we want to find out whether there is a function (constant on intervals [n, n+ 1))
which satisfies a dilation equation with coefficients 1, 1, -1, -1, 1, 1. A similar process can
also answer this question.

We know E has non-zero measure, so our simplifying assumption means that it must
be the whole interval. Then we may begin with the following setup:

1 ? ? ? ? ? ?
1 ? ? ? ? ? ?

−1 ? ? ? ? ? ?
−1 ? ? ? ? ? ?

1 ? ? ? ? ? ?
1 ? ? ? ? ? ?
1 1 ? ? ? ? ? ? ? ? ? ? ? ?
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By summing column 2, we see that the value of the first question mark must be 0, which
fills in two gaps in the bottom row and 1 gap in each of the rows above.

1 0 ? ? ? ? ?
1 0 ? ? ? ? ?

−1 0 ? ? ? ? ?
−1 0 ? ? ? ? ?

1 0 ? ? ? ? ?
1 0 ? ? ? ? ?
1 1 0 0 ? ? ? ? ? ? ? ? ? ?

Now, by summing column 3, the next value can be seen to be one.

1 0 1 ? ? ? ?
1 0 1 ? ? ? ?

−1 0 −1 ? ? ? ?
−1 0 −1 ? ? ? ?

1 0 1 ? ? ? ?
1 0 1 ? ? ? ?
1 1 0 0 1 1 ? ? ? ? ? ? ? ?

Following this through we end up with the following table, which amazingly all tallies.

1 0 1 0 1 0 0
1 0 1 0 1 0 0

−1 0 −1 0 −1 0 0
−1 0 −1 0 −1 0 0

1 0 1 0 1 0 0
1 0 1 0 1 0 0
1 1 0 0 1 1 0 0 1 1 0 0 0 0

This means that the function χ[0,1)∪[2,3)∪[4,5) satisfies the dilation equation f(x) = f(2x) +
f(2x − 1) − f(2x − 2) − f(2x − 3) + f(2x − 4) + f(2x − 5). This equation has −1 as a
coefficient, showing that the coefficients don’t all have to be 1. Also we see that the set
doesn’t have to be a single interval.

This process may remind the reader of long division or polynomial division, turned
upside down. It turns out that this simplified problem, where the set is just a union of
[n, n + 1), can be expressed nicely in terms of polynomials. Another nice aspect of this
process is that it is easy to implement on a computer (Figure 4.2), making the search for
all characteristic functions of less than a certain length a matter of just testing each using
this method.

4.3 Polynomials and simple refinable functions

For the duration of this section we will widen our attention slightly, to include all functions
which are constant on the intervals [n, n+ 1).
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int check it(unsigned long p,int degree)

{

int i,j;

int P[DEG],Pd[2∗DEG+1],Q[DEG+1];

int d;

/∗ Set up P and Pd(x) = (x+1)P(xˆ2). ∗/

for( i = 0 ; i ≤ degree ; i++ ) {

if( p & (1�i) ) {

P[i] = 1;

Pd[2∗i] = 1;

Pd[2∗i+1] = 1;

} else {

P[i] = 0;

Pd[2∗i] = 0;

Pd[2∗i+1] = 0;

}

}

/∗ Now see if P(x)|Pd(x). ∗/

for( i = degree+1 ; i ≥ 0 ; i−− ) {

Q[i] = d = Pd[degree+i];

if( d 6= 0 )

for( j = degree; j ≥ 0 ; j−− )

if( P[j] 6= 0 )

Pd[j+i] −= d;

}

/∗ Check the remainder. ∗/

for( i = degree; i ≥ 0 ; i−− )

if( Pd[i] 6= 0 )

return FALSE;

return TRUE;

}

Figure 4.2: Checking a bit pattern to see if is it 2-refinable.

Theorem 4.4. Consider the map from functions which are constant on [n, n + 1) to the
polynomials given by:

f(x) =
∑
r

arχ[r,r+1)(x) 7→
∑
r

arx
r = Pf (x).

Then this map is a linear bijection, transforming the following operations in the following
way:

(αf + βg)(x) 7→ αPf (x) + βPg(x),

f
(x
n

)
7→ xn − 1

x− 1
Pf (x

n),

f(x− k) 7→ xkPf (x),∑
k

ckf(x− k) 7→ Pf (x)Q(x),

where Q(x) =
∑
ckx

k.

Proof. This map is well defined as it is equivalent to:

f(x) 7→
∑
r

f(r)xr.
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It is easy to show that it is linear. Examining the dilation property:

f
(x
n

)
=

∑
r

arχ[r,r+1)

(x
n

)
=

∑
r

arχ[nr,nr+n)(x)

=
∑
r

ar
[
χ[nr,nr+1)(x) + χ[nr+1,nr+2)(x) + . . .+ χ[nr+n−1,nr+n)(x)

]
7→

∑
r

ar
[
xnr + xnr+1 + . . .+ xnr+n−1

]
=

[
1 + x+ . . .+ xn−1

]∑
r

ar (xn)r

=
xn − 1

x− 1
Pf (x

n).

The translation property is similar:

f(x− k) =
∑
r

arχ[r,r+1)(x− k)

=
∑
r

arχ[r+k,r+k+1)(x)

7→
∑
r

arx
r+k

= xkPf (x).

Finally, applying the linearity and the translation property:∑
k

ckf(x− k) 7→
∑
k

ckx
kPf (x) = Q(x)Pf (x).

�

Using the above bijection we can look at what happens to dilation equations under this
sort of transformation:

f(x) =
∑
k

ckf(nx− k)

⇔ f
(x
n

)
=
∑
k

ckf(x− k)

⇔ xn − 1

x− 1
P (xn) = Q(x)P (x).

This is something with which we can actually do calculations. By looking at the points
where xn = x we get some information. At x = 0, we find that either P (0) = 0 or Q(0) = 1.
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Q(x) P (x) Q(x) P (x)
degree 0 x3 + 0x2 + 1x+ 0 x2 + 1x+ 0
x+ 1 1 x3 + 2x2 + 1x+ 0 x2 − 1x+ 0
degree 1 x3 + 0x2 + 0x+ 1 x2 + 1x+ 1
x2 + 1x+ 0 x+ 0 x3 + ix2 − ix+ 1 x2 + (1− i)x− i
x2 + 0x+ 1 x+ 1 x3 − ix2 + ix+ 1 x2 + (1 + i)x+ i
x2 + 2x+ 1 x− 1 x3 + 1x2 + 1x+ 1 x2 + 0x− 1
degree 2 x3 + 1x2 + 1x+ 1 x2 + 0x− 1
x3 + 1x2 + 0x+ 0 x2 + 0x+ 0 x3 + 3x2 + 3x+ 1 x2 − 2x+ 1
x3 + 1x2 + 0x+ 0 x2 + 0x+ 0

Figure 4.3: Possible values for Q(x) and P (x) from Mathematica.

This means that either f(0) = 0, which can be avoided by translation, or c0 = 1. Likewise,
looking at x = 1 tells us that P (1) = 0 or Q(1) = n, meaning that f had mean zero, or
the sum of the coefficients of the dilation equation was the scale.

By examining possible solutions to the relation P (x)Q(x) = P (x2)(x+ 1) using Math-
ematica (see Figure 4.3) it became clear that looking at the roots can provide more infor-
mation. For simplicity we stay with scale 2.

Lemma 4.5. Let R be a polynomial; then R(x)Q(x) = R(x2) for some polynomial Q(x)
iff whenever r is an order-p root of R(x) then r2 is a root of R(x) of order at least p.

Proof. If r = 0 the result is trivial as r2 = r.
First we show that R(x)Q(x) = R(x2) implies that if r is an order-p root of R(x), then

r2 is a root of R(x) of order at least p. We differentiate both sides of the equation n times.
Using Leibniz’s theorem on the left side we get:

(RQ)(n)(x) =
n∑

m=0

(
n

m

)
R(m)(x)Q(n−m)(x).

Thus a zero of order p of R(x) gives a zero of order p of R(x)Q(x). Differentiating the
other side n times is more complicated, we use Faa di Bruno’s generalisation† of the chain
rule:

dn

dxn
(
R(x2)

)
=

n∑
m=0

R(m)(x2)Hn,m(x),

where:

Hn,m(x) =
∑

k1+k2...kn=m
k1+2k2...nkn=n
k1,kn...kn≥0

n!

k1!(1!)k1k2!(2!)k2 . . . kn!(n!)kn

[
d

dx
(x2)

]k1 [ d2

dx2
(x2)

]k2
. . .

[
dn

dxn
(x2)

]kn
.

†See [26], Question 1.2.5.21.
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Fortunately we are only interested in Hn,n(x), which we find is (2x)n. If R(x) has a zero
of order p at r, then for n = 0, 1, . . . , p− 1:

0 = (RQ)(n)(r) =
n∑

m=0

R(m)(x2)Hn,m(x).

Rearranging for R(n)(r2) we find:

R(n)(r2) =
−
∑n−1

m=0 R
(m)(r2)Hn,m(r)

(2r)n
,

as we know r 6= 0. We see that if R(m)(r2) = 0 for m = 0, 1, . . . , n − 1 then R(n)(r2) = 0.
This is true for m = 0 as R(r2) = R(r)Q(r) = 0, so by induction we see R(n)(r2) = 0 for
n = 0, 1, . . . , p− 1.

Now we prove the converse: if R has the property that whenever r is an order-p root of
R(x), r2 is a root of R(x) of order at least p, then we can find Q so that R(x)Q(x) = R(x2).
We note that it is sufficient to show that R(x) | R(x2).

Let R(x) =
∏

(x − rm)pm . We want to show that each factor of R(x) divides R(x2).
Looking at the factor (x−rm)pm we see R(x) has a zero of order pm at rm. By hypothesis it
has a zero of order at least pm at r2

m. Thus (x−r2
m)pm is a factor of R(x), and consequently

(x2−r2
m)pm is a factor of R(x2). But this factor is just (x+rm)pm(x−rm)pm. Thus (x−rm)pm

divides R(x2). Repeating this for each factor of R(x) we see that R(x) | R(x2). �

Lemma 4.6.{
P (x) : P (x)Q(x) = P (x2)(x+ 1)

}
=

{
R(x)

x− 1
: R(x)Q(x) = R(x2), R(1) = 0

}
Proof. Suppose P (x)Q(x) = P (x2)(x+ 1), then let R(x) = (x− 1)P (x). Clearly R(1) = 0,
and:

R(x2)

R(x)
=

(x2 − 1)P (x2)

(x− 1)P (x)
=

(x+ 1)P (x2)

P (x)
= Q(x).

Conversely, if R(1) = 0, then (x − 1) | R(x), so R(x) = P (x)(x − 1) for some P (x), but
then if:

R(x)Q(x) = R(x2)

P (x)(x− 1)Q(x) = P (x2)(x2 − 1)

P (x)Q(x) = P (x2)(x+ 1).

�

Lemma 4.7. If R is as in the statement of Lemma 4.5, then the roots of R(x) have norm
0 or 1. Moreover, if a root has norm 1, then it is a root of unity.
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The polynomial R(x) to this graph will be:

R(x)

=
[(
x− e 1

10 2πi
)]2

[(
x− e 1

5 2πi
)(

x− e 2
5 2πi

)
(
x− e 4

5 2πi
)(

x− e 3
5 2πi

)]3
[(
x− e 3

8 2πi
)]

[(x+ i) (x+ 1)]
2

[(x− 1)]
4

We have already visited 1, so P (x) =
R(x)/(x− 1).

Figure 4.4: How to generate P (x).

Proof. By Lemma 4.5, if r is a root of R(x), then so is r2, r4, r8, . . .. If 0 < |r| < 1 or
|r| > 1, then these will all have distinct norms → 0 or → ∞ respectively. This would
mean that R(x) had an infinite number of distinct roots, which is impossible as it is a
polynomial.

If |r| = 1, then the sequence of roots r, r2, r4, . . . must begin to repeat itself, to avoid
having an infinite number of roots. Thus r2k = r2l for some k > l. Thus r(2k−2l) = 1, so r
is a root of unity. �

Corollary 4.8. If P and R are as in the statement of Lemma 4.6, then Lemma 4.7 applies
to P (x) as its roots are a subset of those of R(x).

We now have a method of producing examples of P (x). First “draw” a directed graph
where the vertices are the roots of unity. A directed edge goes from one vertex to another
if the second is the first squared. Next, choose a vertex on the graph and walk through
the graph writing an increasing sequence of integers, one at each vertex. Eventually this
process ends up in a loop. At this stage we make all the integers written in the loop the
same. Now, we can stop or pick another root of unity and begin the walk again. This
provides the roots of R(x), and the largest integer written by each vertex is the order of
the root. The roots of P (x) are produced by beginning at 1, if 1 has not already been
visited, and finally decrementing the number written at 1. Figure 4.4 shows an example
of this procedure.

Lemma 4.9. If the coefficients of P are real, and P ’s roots have norm 1, then P is
palindromic or anti-palindromic.

Proof. The polynomial P
(

1
x

)
xn has coefficients which are those of P but in the opposite
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order (here n = deg(P )). We write P (x) =
∏

(x− rm)pm where we know that |rm| = 1. So:

P

(
1

x

)
xn =

∏
xpm

(
1

x
− rm

)pm
=

∏
(1− rmx)pm

=
∏

(−rm)pm
(
x− 1

rm

)pm
=

(∏
(−rm)pm

)(∏(
x− 1

rm

)pm)
= P (0)

∏(
x− 1

rm

)pm
Then taking each factor of P

(
1
x

)
xn:(

x− 1

rm

)pm
| P
(

1

x

)
xn ⇔ (x− rm)pm | P (x)

⇔ (x− rm)pm | P (x) as coefficients of P are real,

⇔
(
x− 1

rm

)pm
| P (x) as |r| = 1.

Thus P (x) and P
(

1
x

)
xn are constant multiples of one another, say P (x) = kP

(
1
x

)
xn.

a0 + a1x+ . . . anx
n = k

(
a0x

n + a1x
n−1 + . . . an

)
Matching the coefficients of x0 and xn we see that a0 = kan and an = ka0, giving a0 = k2a0.
We may cancel the a0 as all of P ’s roots are of norm 1, so k = ±1 as required. �

This means that any Pf (x) representing a real-valued solution to a dilation equation
will be either palindromic or anti-palindromic. Correspondingly this means that f will
be either symmetric or anti-symmetric. This result was spotted by examining all the f
which were characteristic functions supported on [0, 32). These were catalogued using a C
program (see Figure 4.2) in about a day. Once it was known that they were all palindromic
the size of the search space was reduced from O(2n) to O(

√
2
n
), which significantly speeds

any further search.
We note that the examples of Q(x) with complex coefficients in Figure 4.3 provide us

with examples of non-palindromic P (x).

4.4 Non-integer refinable characteristic functions

At the beginning of Section 4.3 we assumed that the functions in which we were interested
were constant on the intervals [n, n + 1). Consequently, the characterisations arrived at
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in that section cover refinable characteristic functions where the sets are just unions of
[n, n + 1). Now we consider the question: do refinable characteristic functions have to be
of this form?

If we look at scales other than 2, a counterexample can be found in Section V.B of
[15]. They show that there is a well-behaved tile whose characteristic function satisfies the
dilation equation:

f(x) = f(3x) + f(3x− 2) + f(3x− 4),

and is definitely not an interval. Similar counterexamples are available for all scales n ∈
Z, n ≥ 3. The simplest way is to take the translations 0, 1, . . . , n − 1 and shift one of the
middle ones by n. This doesn’t work when the scale is 2, as moving one of the end points
just stretches the tile and continues to produce a union of intervals.

So, does there exist an example of a 2-refinable characteristic function which is not just
a union of integer intervals? We are going to examine a recursive procedure which finds
candidate dilation equations which might produce such an example.

4.4.1 A recursive search

Again we go back to Figure 4.1, and examine each half interval. At the bottom of the
picture we have the intervals E,F,G, . . .. Above this we have E

2
+ n

2
, F

2
+ n−1

2
, G

2
+ n−2

2
, . . .

and from half-interval to half-interval the alignment of these sets does not change. Now
consider the maps:

Vn :

[
n

2
,
n+ 1

2

)
→ {0, 1}n+1

Vn = χE
2

+n
2
× χF

2
+n−1

2
× χG

2
+n−2

2
× . . . .

Note that the first n+ 1 components of Vn+1 agree with the components of Vn(x− 1
2
). We

are going to consider the values which these Vn functions take on.
In general we are interested in being a little lenient and allow almost everywhere solu-

tions, so we consider the list of values which Vn achieves on sets of non-zero measure. This
list Ln will be a subset of P({0, 1}n). We will show how given Ln and c0, . . . , cn we can
determine all possible combinations of cn+1 and Ln+1.

We examine the n+ 1th half-interval, where the dilation equation has the form:

χXbn+1
2 c

= c0χXn+1 + c1χXn + . . . cnχF + cn+1χE.

The possible values of the LHS are given by examining the projection of Ln onto its
⌊
n+1

2

⌋th

component. Similarly we can determine all the combinations of values taken by χXn , . . . , χE
and we know the values of c0, . . . , cn. This means that we can evaluate all the terms on
the RHS, bar the first and last term. Also, by Theorem 4.3, we know that χE takes the
value 1 for at least one combination in Ln.
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Thus, remembering that c0 = 1 we can determine possible values for cn+1 by:

cn+1 =

(
χXbn+1

2 c
− χXn+1

)
− (c1χXn + . . . cnχF ) ,

where we may have to consider −1, 0 or 1 for the value of the first bracket and the values
in the second bracket are simply taken from Ln.

We have now produced a list of candidate values for cn. For each of these we see what
values χXn+1 takes for every combination of Ln. The new lists of candidate values for each
of these cn are generated by taking each old possibility l ∈ Ln and adding new possibilities
(l0), (l1) or (l0, l1) according to the constraints imposed by the dilation equation.

Thus we have produced a list of values cn with corresponding possibilities for Ln+1 and
so we can proceed with our recursive search. Unfortunately this process branches rapidly.
We may have as many as 3 choices for cn+1 and 3#Ln choices for Ln+1. This makes the
search somewhat impractical by hand, but still possible by computer.

4.4.2 Initial conditions

In the case we are interested in L0 = {(0), (1)}: L0 = {(0)} would mean E ∩ [0, 1
2
) = 0,

contradicting Theorem 4.3. L0 = {(1)} would mean E∩ [0, 1
2
) = 1

2
, and then E would have

to be almost all of [0, 1) meaning that E ∪F ∪G∪ . . . would have to be a union of integer
intervals.

4.4.3 Further checks to reduce branching

It would obviously be nice to cut down on the branching of this procedure as much as
possible. One extra check we can perform after calculating cn+1 for odd n + 1 is to make
sure that all of the values we expect to be taken by χXbn+1

2 c
are actually achieved by the

RHS of the dilation equation. By rejecting (cn+1, Ln+1) where not all required values are
taken we can cut down on branching a little.

We can also impose some conditions based on the close relation between E and F . By
integrating over [1

2
, 1) we can get the relation |F | = (1− c1)|E|, where we know c1 must be

1, 0 or −1. Examining these options:

c1 = 1: In this case |F | = 0 and so the only 0 is allowed as a value of χF in our list.

c1 = 0: In this case |F | = |E|, but we already know 0 < |E| < 1, so we know that both 0
and 1 must appear in the list of values for χF .

c1 = −1: Here we have |F | = 2|E|, and so |F | > 0 and |E| ≤ 1
2
. Suppose |F | = 1, then on

the next half-interval we have:

χF = c2χE
2

+1 + c1χF
2

+ 1
2

+ c0χG
2
.
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Plugging in c0 = 1, c1 = −1, |F | = 1 we get:

1 = c2χE
2

+1 − 1 + χG
2
,

almost everywhere. But, as E has measure less than 1 we must be able to choose a
set of positive measure where χE

2
+1 = 0 which would mean:

2 = χG
2
,

which is a contradiction. We conclude that 0 < |F | < 1 and so χF must take both
values.

This lets us cut out a few more possibilities. Attempting to extend this method further
leads to a matrix condition like that on page 5.

4.4.4 Examining the results

While following this procedure, whenever we find a cn+1 = 1 we check to see if it leads
to a possibly compactly-supported solution. We do this by appending 0s to the end of
our possibilities in Ln+1 and evaluating the dilation equation on the remainder of the
half-intervals. If this check works out we make a note of the set of coefficients, as they
possibly lead to a dilation equation with a compactly-supported characteristic function as
a solution.

After running‡ a search for sequences of up to 6 coefficients, the list in Figure 4.5 was
obtained. When the suggestions were examined, two easy ways to reject many of them
were found.

First, any compactly-supported characteristic function will have a non-zero non-infinite
integral. Consequently, we can integrate both sides of the dilation equation to see the
coefficients must sum to 2.

Second, we know that there is a unique solution to a dilation equation whose coefficients
sum to its scale. This means that we can eliminate any set of coefficients which have
solutions which are not of the form in which we are interested. In particular, the division
technique in Section 4.2.1 eliminates several sets of coefficients.

To reject the remainder of the solutions we can use the results of [21]. We can calculate
α as stated in Theorem 3.3 and then use Theorem 2 of [21] to reject two solutions with
α > −1

2
. The remaining solutions can be rejected using Theorem 1 by observing that

|p
(

1
3
2π
)
p
(

2
3
2π
)
| > 1 and that p

(
1

3.2n
2π
)
6= 0.

This method is quite crude, in that it completely ignores the geometry of our problem
and considers only the arithmetic of the situation. The fact that it produces suggestions
which we already know are unions of integer intervals means it definitely lacks important
information about the problem at hand. Nonetheless, even with its overeager suggestions
we have still failed to find any counterexamples.

‡The search was performed with a C program shown in Appendix C. The search for sequences of up to
5 coefficients only takes a few seconds, but due to the high branching factor the search for 6 coefficients
takes several days.
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c0, c1, c2, . . . Rejected because:
1 -1 0 1 -1 1 Doesn’t sum to 2.
1 -1 1 -1 1 Doesn’t sum to 2.
1 -1 1 0 -1 1 Doesn’t sum to 2.
1 -1 1 0 0 1 |p

(
1
3
2π
)
p
(

2
3
2π
)
| = 1.75 6< 1.

1 -1 1 0 1 α ≈ −0.36213 6≤ −1
2
.

1 -1 1 1 -1 1 Has solution 1 2 3 2 1.
1 -1 2 -1 1 Has solution 1 2 2 1.
1 0 -1 0 1 1 |p

(
1
3
2π
)
p
(

2
3
2π
)
| = 2.5 6< 1.

1 0 -1 1 1 |p
(

1
3
2π
)
p
(

2
3
2π
)
| = 1.75 6< 1.

1 0 0 0 0 1 Has solution 1 1 1 1 1.
1 0 0 0 1 Has solution 1 1 1 1.
1 0 0 0 1 1 Doesn’t sum to 2.
1 0 0 1 Has solution 1 1 1.
1 0 0 1 -1 1 |p

(
1
3
2π
)
p
(

2
3
2π
)
| = 1.75 6< 1.

1 0 0 1 0 1 Doesn’t sum to 2.
1 0 0 1 1 Doesn’t sum to 2.
1 0 0 1 1 1 Doesn’t sum to 2.
1 0 1 Has solution 1 1.
1 0 1 -1 1 α ≈ −0.36213 6≤ −1

2
.

1 0 1 0 0 1 Doesn’t sum to 2.
1 0 1 0 1 Doesn’t sum to 2.
1 0 1 0 1 1 Doesn’t sum to 2.
1 0 1 1 Doesn’t sum to 2.
1 0 1 1 0 1 Doesn’t sum to 2.
1 0 1 1 1 Doesn’t sum to 2.
1 0 1 1 1 1 Doesn’t sum to 2.
1 1 Has solution 1.
1 1 -1 -1 1 1 Has solution 1 0 1 0 1.

Figure 4.5: Possible coefficients
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0 1 2f(x)

c0

c1

c2

f(2x)

f(2x− 1)

f(2x− 2)

Figure 4.6: The left-hand end of a dilation equation.

4.5 Functions which are 2- and 3-refinable

When we search for functions which simultaneously satisfy two dilation equations of two
unrelated scales, examples seem a bit thin on the ground. The obvious examples all seem
to arise from χ[0,1) and friends via differentiation, integration and convolution.

If we examine this via the Fourier transform we are looking at two dilation equations:

f(x) =
∑
k

ckf(2x− k) =
∑
k

dkf(3x− k),

and we end up considering the intersection of the sets Φ2(p) and Φ3(q), where p(ω) =∑
cke

iωk and q(ω) =
∑
dke

iωk. It seems to be difficult to get a grip on p or q from the
hypothesis that this intersection is non-empty.

We redraw Figure 4.1, this time for more complicated functions. We see we can gener-
alise Lemma 4.1 and Lemma 4.2 for arbitrary functions quite easily, allowing us to draw
Figure 4.6.

Lemma 4.10. Suppose g(x) =
∑
dkg(2x − k), and only finitely many of the dk are non-

zero. Then we can find l so that when we translate g by l to get f we find: f(x) =∑
ckf(2x− k), c0 6= 0, ck = 0 when k < 0 and ck = dk−l.

Lemma 4.11. If f is compactly-supported and satisfies a dilation equation f(x) =
∑
ckf(2x−

k), where c0 6= 0 and ck = 0 when k < 0, then f is zero almost everywhere in (−∞, 0).

Suppose we have f lined up as in the above lemmas, and we have been given the values
of f on [0, 1

2
). We may actually determine the values of f on the rest of R+ using Figure 4.6.

Looking at [0, 1
2
) we see that f(x) = c0f(2x). Replacing x with x

2
:

f(x) =
f
(
x
2

)
c0

x ∈ [0, 1).
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Thus knowing f on [0, 1
2
) determines f on [0, 1). Now looking at [1

2
, 1):

f(x) = c1f(2x− 1) + c0f(2x) x ∈
[

1

2
, 1

)
f(x) =

f
(
x
2

)
− c1f(x− 1)

c0

x ∈ [1, 2),

we note that x
2

and x− 1 are in the interval [0, 1) on which we have already determined f .
Repeating, on interval [n

2
, n+1

2
) we find:

f(x) =
n∑
k=0

ckf(2x− k) x ∈
[
n

2
,
n+ 1

2

)
f(x) =

f
(
x
2

)
−
∑n

k=1 ckf(x− k)

c0

x ∈ [n, n+ 1).

We will call this relation the forward substitution formula.
The next issue is, if f satisfies two dilation equations, and it is translated so that c0 6= 0,

ck = 0, k < 0, then do the corresponding conditions also hold for the dk from the other
equation?

Lemma 4.12. Suppose f 6= 0 is 2- and 3-refinable, say:

f(x) =
∑
k

ckf(2x− k) =
∑
k

dkf(3x− k),

and c0 6= 0 and ck = 0 when k < 0, then d0 6= 0 and dk = 0 for k < 0.

Proof. If f were 0 almost everywhere in [0, 1
2
), then f would be zero almost everywhere,

by the formula which determines f on R+ from f on [0, 1
2
).

As f is non-zero on a set of positive measure in [0, 1
2
) we see that f(x) = c0f(2x) is

non-zero on a set of positive measure in [0, 1
4
). Repeating, we see that f is non-zero on a

set of positive measure in [0, ε) for any ε > 0. In particular, f is non-zero in [0, 1
3
).

Choose the least l for which dl 6= 0. We aim to show that l = 0. Looking at the dilation
equation:

f(x) =
∑
k

dkf(3x− k),

we focus on the leftmost interval, [ l
3
, l+1

3
). Because f(x) = 0 when x < 0 (Lemma 4.11)

we may draw a picture like Figure 4.6 for scale 3 around this interval to see that the only
contribution when x ∈ [ l

3
, l+1

3
) is:

f(x) = dlf(3x− l).

The image of [ l
3
, l+1

3
) under x 7→ 3x − l is [0, 1), but f is non-zero on [0, ε), so f is also

non-zero on [ l
3
, l+ε

3
). Again we use, f(x) = 0 when x < 0, to see l ≥ 0.

However, if d0 = 0, then f(x) = d0f(3x) = 0 on [0, 1
3
) which would be a contradiction,

so d0 6= 0 as required. �
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Theorem 4.13. Suppose f is 2- and 3-refinable, say:

f(x) =
∑
k

ckf(2x− k) =
∑
k

dkf(3x− k),

and c0 6= 0 and ck = 0 when k < 0. Suppose further that f is integrable on some interval
[0, ε], then f(x) = γxβ on [0, 1) where β = − log2 c0.

Proof. If f = 0, then this is obviously true with γ = 0. Otherwise, Lemma 4.12 tells us
that we are looking at a situation where:

f(x) =
∑
k=0

ckf(2x− k),

f(x) =
∑
k=0

dkf(3x− k),

and c0, d0 6= 0. Now, on [0, 1
2
) ∩ [0, 1

3
) we have:

f(x) = c0f(2x), f(x) = d0f(3x),

f(x) = c−1
0 f(2−1x), f(x) = d−1

0 f(3−1x),

as long as both sides are evaluated in [0, 1
3
). Iterating:

f(x) = cn0d
m
0 f(2n3mx),

for n,m ∈ Z. Now we integrate on [0, ε) and define:

F (x) =

∫ x

0

f(t) dt.

By Theorem 8.17 in [38] this function F is continuous and d
dx
F (x) = f(x) for almost every

x ∈ [0, ε). We know f is non-zero in [0, ε), so we can choose α ∈ [0, ε) so that F (α) 6= 0.
Now consider n,m so that 0 < 2n3mα < ε.

F (2n3mα) =

∫ 2n3mα

0

f(t) dt

=

∫ α

0

f(2n3mt′)2n3m dt′

=

∫ α

0

c−n0 d−m0 f(t′)2n3m dt′

=

(
2

c0

)n(
3

d0

)m
F (α)
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Using Theorem 185 of [18], we can choose an infinite sequence of pairs of integers nr,mr

where: ∣∣∣∣mr

nr
− log3

1

2

∣∣∣∣ < 1

n2
r

,

and nr →∞ as r →∞. Note that mr is close to nr log3
1
2
, in fact:∣∣∣∣mr − nr log3

1

2

∣∣∣∣ ≤ 1

nr
.

Now examining 2nr3mr :

2nr3mr = 2nr3nr log3
1
2

(
3mr−nr log3

1
2

)
= 3mr−nr log3

1
2 ≤ 3

1
nr .

Thus, by choosing r large enough, we may make |2nr3mrα − α| < δ for any δ > 0. So,
2nr3mrα→ α as r →∞, and since F is continuous:

F (2nr3mrα) =

(
2

c0

)nr ( 3

d0

)mr
F (α)→ F (α).

However, we know F (α) 6= 0 so:

lim
r→∞

(
2

c0

)nr ( 3

d0

)mr
= 1.

Filling in what we know about nr,mr:

1 = lim
r→∞

(
2

c0

)nr ( 3

d0

)mr
= lim

r→∞

(
2

c0

)nr ( 3

d0

)nr log3
1
2
(

3

d0

)mr−nr log3
1
2

= lim
r→∞

(
2.3log3

1
2

c0d
log3

1
2

0

)nr (
3

d0

)mr−nr log3
1
2

= lim
r→∞

(
1

c0d
log3

1
2

0

)nr

lim
r→∞

(
3

d0

)mr−nr log3
1
2

= lim
r→∞

(
1

c0d
log3

1
2

0

)nr

.1

So c0d
log3

1
2

0 = 1, or equivalently log2 c0 = log3 d0 = −β.
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Returning to a general pair n,m we can now fill in this β.

F (2n3mα) =

(
2

c0

)n(
3

d0

)m
F (α)

=

(
2

2−β

)n(
3

3−β

)m
F (α)

=
(
2n(β+1)3m(β+1)

)
F (α)

= (2n3m)β+1 F (α).

Note that this F agrees with xβ+1 F (α)
αβ+1 on the dense subset {2n3mα} ∩ [0, ε). As both are

continuous they must be the same, and so:

f(x) =
d

dx
F (x) = (β + 1)xβ

F (α)

αβ+1
.

This is easy to extend to [0, 1) using f(x) = d0f(3x). �

It is relatively easy to extend Theorem 4.13 to include the case where an s ∈ R+ can
be found such that xsf(x) is integrable on [0, ε).

Corollary 4.14. If f is as in the statement of Theorem 4.13, then f has form:

f(x) =
n∑
l=0

al(x− l)β,

on [n, n+ 1), where a0 = γ and for l > 0:

al =

{
a l

2
−
∑l

k=1
ckal−k
c0

if l = 0 mod 2

−
∑l

k=1
ckal−k
c0

otherwise
.

Proof. From Theorem 4.13, we know that f(x) = γxβ on [0, 1). Note that the expression
given for al holds for a0 as the sum is empty. Now suppose our result is true for 0, 1, 2, . . . n−
1, then applying the forward substitution formula from page 64:

f(x) =
f
(
x
2

)
−
∑n

k=1 ckf(x− k)

c0

=

bn2 c∑
l=0

al
c0

(x
2
− l
)β
−

n∑
k=1

n−k∑
l=0

ckal
c0

(x− k − l)β

=

bn2 c∑
l=0

al
c02β

(x− 2l)β −
n∑
k=1

n∑
l′=k

ckal′−k
c0

(x− l′)β using l′ = k + l

=

bn2 c∑
l=0

al(x− 2l)β −
n∑
l′=1

l′∑
k=1

ckal′−k
c0

(x− l′)β,
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using β = − log2 c0 and reordering the sums.
The largest shift in the first term is 2

⌊
n
2

⌋
≤ n, and the largest shift in the second term

is clearly n. For any 0 ≤ l ≤ n we look for the coefficient of (x− l)β in the above expression
and get:

a l
2
−

l∑
k=1

ckal−k
c0

= al,

if l is a multiple of 2, or:

−
l∑

k=1

ckal−k
c0

= al,

otherwise. �

Corollary 4.14 tells us that solutions to two such dilation equations must be of the form:

f(x) =
∑
l

al(x− l)β+,

where x+ is x if x > 0 and zero otherwise. Following much the same argument as Corol-
lary 4.14 we can show that given any reasonable choices of β and an we can work backwards
and produce a dilation equation which f will satisfy.

Lemma 4.15. Given an and β we define:

f(x) =
∑
l=0

al(x− l)β+.

If a0 6= 0, then f satisfies the dilation equation f(x) =
∑

k=0 ckf(2x− k), where:

cl =


−c0a l

2
−
∑l−1
k=0 ckal−k

a0
l = 0 mod 2∑l−1

k=0 ckal−k
a0

l 6= 0 mod 2
.

Similarly we could produce a set of coefficients for a scale three dilation equation. This
means that when f is of this form then f is 2- and 3-refinable and satisfies the conditions of
Theorem 4.13. Thus, the form of f given in Corollary 4.14 is both necessary and sufficient
for f to be 2- and 3-refinable (with ck = 0 for k < 0).

However, in many cases this solution need not be compactly-supported nor need it
have only a finite number of non-zero ck. For example, take f to be a non-palindromic
characteristic function. We see from Lemma 4.9 that there must be an infinite number of
non-zero ck. Let us examine what further conditions compact support imposes.

Corollary 4.16. If f 6= 0 is as in the statement of Theorem 4.13 and f is compactly-
supported, then β ∈ N.
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Proof. As f is compactly-supported we can find n > 0 so that f is zero on [n, n + 1). By
Corollary 4.14 we know that:

f(x) =
n∑
l=0

al(x− l)β,

f ′(x) =
n∑
l=0

βal(x− l)β−1,

f (m)(x) =
n∑
l=0

β(β − 1) . . . (β −m+ 1)al(x− l)β−m.

Each of these must be zero on (n, n+ 1), so:
xβ (x− 1)β . . . (x− n)β

βxβ−1 β(x− 1)β−1 . . . β(x− n)β−1

...
...

β . . . (β − n+ 1)xβ−n β . . . (β − n+ 1)(x− 1)β−n . . . β . . . (β − n+ 1)(x− n)β−n




a0
a1
...
an

 = 0.

As f is non-zero we know a0 6= 0, so the determinant of this matrix must be zero.

0 = [β][β(β − 1)] . . . [β . . . (β − n+ 1)]

∣∣∣∣∣∣∣∣∣
xβ (x− 1)β . . . (x− n)β

xβ−1 (x− 1)β−1 . . . (x− n)β−1

...
...

xβ−n (x− 1)β−n . . . (x− n)β−n

∣∣∣∣∣∣∣∣∣
= βn(β − 1)n−1 . . . (β − n+ 1)1xβ−n(x− 1)β−n . . . (x− n)β−n

∣∣∣∣∣∣∣∣∣
xn (x− 1)n . . . (x− n)n

xn−1 (x− 1)n−1 . . . (x− n)n−1

...
...

x0 (x− 1)0 . . . (x− n)0

∣∣∣∣∣∣∣∣∣
= βn(β − 1)n−1 . . . (β − n+ 1)1xβ−n(x− 1)β−n . . . (x− n)β−n

∏
i<j

((x− j)− (x− i)) .

We conclude that either β − j = 0 or x− j = 0. We can choose x ∈ (n, n+ 1) so that
the second is not possible. thus β ∈ {0, . . . , n}. �

So, in the compactly-supported case we now know that f must be of the form:

f(x) =
∑
l

al(x− l)β+,

where β ∈ N. This means that f is a linear combination of B-splines, which form a basis
for piecewise polynomial functions with knots at given positions (see [13] for more details).
A very similar result was proved independently in [8], where the authors show that if m
and n are independent scales and if f is m- and n-refinable, linearly independent from its
translates, and compactly-supported, then it must actually be a B-spline.
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Apart from the requirement that β be an integer and the linear constraints which require
f to be zero in the long run, the coefficients an are fairly arbitrary. Indeed, if we choose
a0, . . . , aL−1 arbitrarily, then we may find aL, . . . , aL+β to make f compactly-supported.

Lemma 4.17. Suppose we have chosen a0, . . . , aL−1 then we may choose aL, . . . , aL+β such
that

L+β∑
l=0

al(x− l)β = 0.

Proof. Note that what we are showing is:

L+β∑
l=L

al(x− l)β = −
L−1∑
l=0

al(x− l)β.

We will actually show that if the RHS is any g(x), an arbitrary polynomial of degree β,
then we may find suitable al. Both sides are analytic and vanish when differentiated more
than β times, so we only have to show that the first β derivatives agree. We proceed as
before.

(x− L)β (x− L− 1)β . . . (x− L− β)β

β(x− L)β−1 β(x− L− 1)β−1 . . . β(x− L− β)β−1

...
...

β . . . 1(x− L)0 β . . . 1(x− L− 1)0 . . . β . . . 1(x− L− β)0




aL
aL+1

...
aL+β

 =


g(x)
g′(x)

...
g(β)(x)


This can be solved as long as the determinant is non-zero. We evaluate it at x = L+ β.

ββ(β − 1)β−1 . . . 11

∣∣∣∣∣∣∣∣∣
ββ (β − 1)β . . . 0β

ββ−1 (β − 1)β−1 . . . 0β−1

...
...

1 1 . . . 1

∣∣∣∣∣∣∣∣∣ = ββ(β − 1)β−1 . . . 11
∏
j<i

(j − i) 6= 0.

�

We can extend this result into L1(R)∪L2(R) to some degree. In the following H is the
Hilbert transform§.

Theorem 4.18. Suppose f ∈ L1(R) ∪ L2(R) is a non-zero compactly-supported 2- and
3-refinable function. Then the L1(R) ∪ L2(R) solutions space of the corresponding scale 2
and 3 equations is the space spanned by f and Hf .

§The Hilbert transform H of a function f can be defined as

(Hf)(x) =
1

π

∫
f(t)

x− t
dt.

This corresponds to multiplying the Fourier transform by −i sign(ω). For more details see a book on
Fourier analysis such as [40].
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Proof. Note that as a spline supported on a compact set f must be bounded, so actually
f ∈ L1(R) ∩ L2(R). As the Fourier transform of a compactly-supported L2(R) function f̂
will be analytic. Consequently f̂ will be a maximal solution of both the scale 2 and scale
3 equations. Thus any solution to both equations can be written:

ĝ(ω) = f̂(ω)π2(ω),

ĝ(ω) = f̂(ω)π3(ω),

where π2(ω) = π2(2ω) and π3(ω) = π3(3ω). So whenever f̂(ω) 6= 0:

ĝ(ω)

f̂(ω)
= π2(ω) = π3(ω).

Next consider the case where f̂(0) 6= 0. Then, as f̂ is continuous, there is some interval
[−ε, ε] around zero for which f̂(ω) 6= 0. In this region π2 = π3 must be in L1([−ε, ε]), so
we may integrate. Choosing 0 < α < ε:

F (α) =

∫ α

0

π2(ω) dω

=

∫ α

0

π2(2−m3−nω) dω

=

∫ 2−m3−nα

0

π2(ω)
dω

2−m3−n

= 2m3nF (2−m3−nα).

As F is continuous and 2m3n is dense, this determines F (x) = γ+x on [0, α] (see The-
orem 4.13 for complete details of the same argument). Thus we see that π2 is constant
almost everywhere on [0, α] and so on R+. Likewise we may show that π2 is a possibly
different constant on R−. Thus π2 can be written as a sum of χR(ω) and sign(ω) and so g
can be written as a sum of f and Hf .

If f̂(0) = 0, then we know it is non-zero on some neighbourhood of the origin, since
otherwise its analyticity would force it to be zero. We just perform the same argument as
above using:

ĝ(ω)

ω−rf̂(ω)
,

where r is the order of f̂ ’s zero at the origin. �

4.6 Smoothness and boundedness

Many interesting properties of functions are linear, or perhaps they are interesting because
they are linear. Looking back at page 64 we see that our forward substitution formula for a
compactly-supported function satisfying a dilation equation produces the function on the

71



Solutions to Dilation Equations <dwmalone@maths.tcd.ie>

next interval by adding the leftmost part of the function to a sum. Thus properties present
on the leftmost interval which are preserved by summing will be present on all intervals.

For instance, consider continuity. If f is continuous on (0, 1), then it will be continuous
on (1, 2) as f on (1, 2) is given by:

f(x) =
f
(
x
2

)
− c1f(x− 1)

c0

.

If f is continuous at 0, then f(0) = 0, because we have translated f so that f(x) = 0 when
x < 0. Now f continuous on [0, 1) gives f continuous on [1, 2) for a combination of two
reasons:

• the term f(x− 1) grows continuously from 0 at 1 as f(x) grows continuously from 0
at 0, so the sum on [0, 1) makes a smooth transition to the sum on [1, 2),

• the remaining terms (in this case just f(x/2)) are continuous where they are being
evaluated (that is to the left of 1 where we know f is continuous).

So the continuity of f on [0, 1) is necessary and sufficient for the continuity of f as a whole.
Similar arguments can be applied to differentiability and other sorts of smoothness.
Given that the dilation equation on [0, 1) has the simple form f(x) = c0f(2x) it would

seem profitable to determine the implications of this combined with smoothness.

Lemma 4.19. Suppose we are given compactly-supported f which satisfies a dilation equa-
tion with ck = 0 when k < 0. Then, if f ∈ C1 we have |c0| < 1

2
or f is zero.

Proof. We look at f ′(0), which must be zero as f ′ is continuous:

f ′(0) = lim
h→0

f(h)− f(0)

h− 0
= lim

h→0

f(h)

h
= lim

m→∞

f
(
x

2m

)
x

2m

=
1

x
lim
m→∞

2mf
( x

2m

)
.

Now using f(x) = c0f(2x):

f ′(0) =
1

x
lim
m→∞

2mcm0 f(x) =
f(x)

x
lim
m→∞

2mcm0 .

Choosing x so that f(x) is not zero we see that the limit must be 0. Thus, |2c0| < 1 as
required. �

Corollary 4.20. Suppose we are given compactly-supported f which satisfies a dilation
equation with ck = 0 when k < 0. Then if f ∈ Cn we have |c0| < 2−n or f is zero.

Proof. Take f and differentiate it n−1 times to get g. Then g is in C1 and satisfies a dilation
equation whose coefficients are 2n−1 times the ck. Thus |2n−1c0| < 1

2
, so |c0| < 2−n. �

Corollary 4.21. There are no non-zero compactly-supported C∞ solutions to finite dilation
equations.
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Proof. If there were, then they would satisfy a dilation equation with |c0| < 2−n for all n.
But this would mean that c0 = 0 which means f must be zero. �

Note that this result does not extend to the non-compactly-supported case. For exam-
ple f(x) = sin(πx)/πx is a non-compactly-supported analytic function satisfying f(x) =∑
ckf(2x− k) where:

cn =
sin π n

2

π n
2

=


1 n = 0

0 n 6= 0 is even
2
πn

n = 1 mod 4

− 2
πn

n = 3 mod 4

.

Corollary 4.20 actually extends nicely to Cn+s where n ∈ N and 0 < s < 1 is the Hölder
exponent of continuity of the nth derivative.

Corollary 4.22. Suppose we are given compactly-supported f which satisfies a dilation
equation with ck = 0 when k < 0. Then if f ∈ Cn+s we have |c0| ≤ 2−(n+s) or f is zero.

Proof. We simply examine the Hölder exponent of continuity of the nth derivative at 0.
This means that for any h:

|f (n)(h)− f(0)| < k|h− 0|s

for some fixed k. Again we examine this at x2−m and get:

k >
|f (n)(x2−m)|

(x2−m)s
=
|2nc0|m|f (n)(x)|

(x2−m)s
=
|f (n)(x)|

xs
|2n+sc0|m.

For this to be bounded as m→∞ we must have |2n+sc0| ≤ 1. �

This upper bound on the smoothness, based on − log2 |c0|, can be the correct bound.
Taking m copies of χ[0,1) and forming their convolution you get the B-spline of order
m − 1. This function is in Cn+s for n + s < m − 1 and satisfies a dilation equation with
c0 = 2−(m−1). In practice, examining tables of Hölder exponents and coefficients in [10]
and [37] shows that this bound on smoothness can be sharp even in more complicated
situations (Figure 4.7).

A similar argument can be used to show that if f is bounded on [0, 1), then it will
be bounded on any [0, n). Note that for f to be bounded and non-zero on [0, 1) we need
|c0| ≤ 1. This is because f will behave a bit like xβ, where β = − log2 |c0|, and we need
β ≥ 0.

The following gives a bound on how fast f can grow in terms of its coefficients.

Theorem 4.23. Suppose a compactly-supported f satisfies a dilation equation with ck = 0
when k < 0, then if f is bounded on [0, 1) we will find f is bounded by C(M + 1)n on
[n, n+ 1) where M = maxk>1 |ck/c0|.
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Coefficents TLoW SRCfSS
N |c0| − log2 |c0| |c2N−1| − log2 |c2N−1| p226 p232 p239 r20 r∞ UB
2 0.683 0.550 0.183 2.449 0.339 0.500 0.550 0.550 0.550 0.550
3 0.470 1.0878 0.04981 4.3272 0.636 0.915 1.0878 1.0831 1.0878 1.0878
4 0.325 1.6179 0.01498 6.0602 0.913 1.275 1.6179 1.6066 1.6179 1.6179
5 0.2264 2.1429 0.00472 7.7278 1.177 1.596 1.9424 1.9689
6 0.1577 2.6644 0.00152 9.3584 1.432 1.888 2.1637 2.1891
7 0.1109 3.1831 0.00050 10.9651 1.682 2.158 2.4348 2.4604

Various estimates of n + s for the Daubechies’s family of extremal phase wavelets

(see [10] page 195). The crude upper bounds derived in Corollary 4.22 are shown

as − log2 |c0| and − log2 |c2N−1|. The values in the TLoW column are lower bounds

taken from various tables in [10]. The column labeled SRCfSS is taken from [37]

(page 1570) and shows lower bounds (r20 and r∞) and an upper bound.

Figure 4.7: Estimates of smoothness for Daubechies’s extremal phase wavelets

Proof. First we show that f is bounded by Cn(M+1)n where Cn is an increasing sequence.
Then we show that the Cn are bounded.

Choose C0 = supx∈[0,1) |f(x)|. Now we use induction on n, assuming that f is bounded

by Ck(M+1)k for k < n and the Ck are increasing. From our forward substitution formula
on page 64 we see:

|f(x)| ≤
∣∣f (x

2

)∣∣+
∑n

k=1 |ck||f(x− k)|
|c0|

≤
∣∣f (x

2

)∣∣
|c0|

+M
n∑
k=1

|f(x− k)|

≤
Cbn2 c(M + 1)b

n
2 c

|c0|
+M

n∑
k=1

Cn−k(M + 1)n−k

≤ Cn−1

(
(M + 1)b

n
2 c

|c0|
+M

n∑
k=1

(M + 1)n−k

)

≤ Cn−1

(
(M + 1)

n
2

|c0|
+M

(M + 1)n − 1

M

)
≤ Cn−1

(
(M + 1)

n
2

|c0|
+ (M + 1)n

)
.

Now we define Cn to be:

Cn = Cn−1

(
(M + 1)−

n
2

|c0|
+ 1

)
.

and substituting this into the above we get |f(x)| ≤ Cn(M+1)n. Clearly Cn is bigger than
Cn−1 as M ≥ 0.
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We must show that these Cn are bounded by some number C. We see that:

Cn = C0

n∏
r=1

1 +
(M + 1)−

r
2

|c0|

≤ C0

n∏
r=1

e
(M+1)

− r2
|c0|

≤ C0e

∑n
r=1(M+1)

− r2
|c0|

≤ C0e

∑∞
r=1(M+1)

− r2
|c0| ,

as required. �

Examples which get close to this bound are easy to produce. By taking 0 < c0 ≤ 1
and then taking ck = −Mc0 for as many k > 0 as desired, many of the ≤ become = and
f achieves exponential behavior.

4.7 Conclusion

This chapter took a look at the ends of a solution to a dilation equation. This has provided
us with rather a lot of information about a few different types of dilation equation.

Our first concern was refinable characteristic functions. After extracting some basic
results we found that we could represent refinable functions which were constant on the
intervals [n, n + 1) as polynomials with certain properties. These results generalise in the
obvious way to scales other than 2. Moving them to Rn is more tricky, as polynomial
factorisation is not straightforward in more than one variable, though some generalised
form of polynomial division such as Groebner bases might make this possible.

For scales other than 2 we saw that refinable characteristic functions which were not a
union of intervals like [n, n + 1) existed. It seems likely that for scale 2 the only refinable
characteristic functions are of this simple form — it would be interesting to show this and
understand why scale 2 seems different. It seems plausible that number of ‘families’ of
refinable characteristic function increases with scale and that each family is a union of
translates of some basic tile, however we have no evidence to back this up. We have tried
analysing refinable characteristic functions in other ways, such as using:

f characteristic function ⇔ f = f.f ⇔ f̂ = cf̂ ∗ f̂ ,

but useful results are not forthcoming.
Analysis of these refinable characteristic functions may prove useful in the study of

smooth higher dimensional wavelets. In [3] a tile is chosen and used in the analysis —
knowing what families of tiles are available might allow more refined analysis.
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The next area this chapter tackled was that of 2- and 3-refinable functions. In the case
of a compactly-supported solution we know exactly what form it must have. These results
extend to any two independent¶ scales n and m. It would be nice to extend these results to
non-compactly-supported functions, where perhaps the only n- and m-refinable functions
have Fourier transform of the form q(ω)ω−β where q is a trigonometric polynomial or 2π
periodic. The case of dependent scales is considered in [46].

Finally, the chapter had a go at getting bounds on smoothness and growth rates by
examining the ends of the solutions. These bounds are moderately accurate, but probably
not that useful, as coefficients are usually chosen with such care as to avoid the cases where
these results are sharp. It would be interesting to see the asymptotic behavior of − log2 |c0|
for the family of extremal phase wavelets and how far from the estimate of known limit of
C0.2N it is.

Overall, this ‘look at an end’ method seems to be successful. One major problem is
that it is unclear how to generalise this to Rn. First, there is not an obvious order on Rn in
the way there is on R and so the definition of ‘an end’ is unclear. The likely orders which
one might try, lexicographic ordering on some basis, are not preserved by dilation matrices
A in the same way multiplying by a positive scalar preserves the order on R.

Often in the statement of results in this chapter we have said ‘compactly-supported’
where we could have used ‘supported on a half-line’. In the case where a function is
supported on a half-line we know it is safe to use a transform such as the Laplace transform.
It is unclear if there is a link here, but it might warrant some investigation.

¶Here independent means the multiplicative group generated by n and m is dense in R+.
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Chapter 5

Miscellany

5.1 Introduction

This chapter contains a selection of smaller results relating to dilation equations. Sec-
tion 5.2 arose as a problem which should have a simple solution. It shows how to solve for
polynomial solutions of dilation equations.

Section 5.3 discusses ways of combining dilation equations and their solutions. These
observations were made while producing a greater catalogue of examples to consider while
investigating results.

Figure 2.2 inspired Section 5.4. Here we ask, “When can an expanding matrix A have
a simple tile?”.

5.2 Polynomial solutions to dilation equations

Suppose we have a dilation equation:

f(x) =
∑
k

ckf(αx+ βk),

and that we are looking for polynomial solutions. Let the degree of some solution be n.
Differentiating n times we get:

f (n)(x) = αn
∑
k

ckf
(n)(αx+ βk).

However, f (n) must be a constant, non-zero function, so we can divide through by it to
get:

1 = αn
∑
k

ck.

This means that providing |α| 6= 1 the degree of the polynomial solution is determined by
the dilation equation. Indeed it is only worth looking for polynomial solutions when:

n =
− log |σ|
log |α|
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exists and is a positive integer (here σ is
∑

k ck). We can then easily check if αnσ = 1.
Now that we have found the degree of this polynomial solution we can proceed to try

to find the coefficients. As the solutions to any dilation equation form a vector space we
can clearly scale any solution. For this reason we may as well search for monic polynomials
as solutions. We write our solution f as:

f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0,

with an = 1 and substitute it into the dilation equation, match up the coefficients of xm

for each m and solve the resulting linear equations. However, it is not clear that these
equations will have a solution, as they will be quite complicated.

A more sensible approach is to differentiate m times and look at the constant term each
time. If we start with f (n−1) the differentiated dilation equation will only have an and an−1

in it, and as we know an we can easily find an−1. Then we look at f (n−2) for an−2, and so
on.

It is still not clear that this back substitution will be successful, so let us carry out the
calculation to see if it is possible.

First we expand f (m) as a polynomial to get:

n−m∑
l=0

(m+ l)!

l!
am+lx

l.

We can fill this into our dilation equation, and then expand using the binomial theorem.

f (m)(x) = αm
∑
k

ckf
(m)(αx+ βk)

n−m∑
l=0

(m+ l)!

l!
am+lx

l = αm
∑
k

ck

n−m∑
l=0

(m+ l)!

l!
am+l(αx+ βk)

l

= αm
∑
k

ck

n−m∑
l=0

(m+ l)!

l!
am+l

l∑
j=0

αjxj
l!

j!(l − j)!
βl−jk

= αm
∑
k

ck

n−m∑
l=0

l∑
j=0

(m+ l)!

j!(l − j)!
am+lα

jxjβl−jk .

Now we match the coefficients of x0 to get:

m!am = αm
∑
k

ck

n−m∑
l=0

(m+ l)!

l!
am+lβ

l
k.

For m = n we know that we just get the condition αnσ = 1. Otherwise we can take the
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term containing am from the right-hand side, and then solve for am.

m!am − αm
∑
k

ckβ
0
km!am = αm

∑
k

ck

n−m∑
l=1

(m+ l)!

l!
am+lβ

l
k,

am =
αm
∑

k ck
∑n−m

l=1
(m+l)!
l!

am+lβ
l
k

m! (1− αm
∑

k ck)

If |α| 6= 1, then, as α is a solution of 1 − αn
∑

k ck = 0, we cannot have 1 − αm
∑

k ck
being zero for m 6= n. This means that the denominator of this fraction is not zero for any
0 ≤ m < n, which in turn means that this back substitution scheme will work whenever
|α| 6= 1.

The great weakness of this method is that it ‘starts’ at the highest power of x, and so
provides no hint as how to solve for power series solutions of dilation equations.

This method is easily implemented on computer, and testing it highlighted a minor
mistake on page 1395 of [11] where:

f(x) =
1

12
f(2x) +

1

6
[f(2x+ 1) + f(2x− 1)]− 1

12
[f(2x+ 2) + f(2x− 2)]

is said to admit f(x) = x2 as a solution. In fact, the solution is f(x) = x2 − 4/9.

5.3 New solutions from old

When you have some dilation equations and some solutions to those equations, there are
various ways in which you can produce more solutions to more dilation equations. A
simple way to do this is: if you have a collection of solutions which all satisfy a collection
of dilation equations, then linear combinations of the solutions will still satisfy the same
collection of equations.

Another method which is well known is to differentiate. If f satisfies:

f(x) =
∑
k

ckf(2x+ k),

then f ′ satisfies:

f ′(x) =
∑
k

2ckf
′(2x+ k).

This time the equation has changed as well as the solution. This is actually more interesting
in Rn, as the new equation produced is a vector dilation equation:

f(~x) =
∑
~k

c~kf(A~x+ ~k),
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and on differentiation with respect to all variables becomes:

~∇f(~x) = ~∇~xf(~x)

= ~∇~x
∑
~k

c~kf(A~x+ ~k),

=
∑
~k

c~k
~∇~xf(A~x+ ~k),

=
∑
~k

c~kA
T (~∇f)(A~x+ ~k),

which is a vector refinement equation with coefficients c~kA
T .

A way to produce a new equation without altering the solution is to iterate the dilation
equation. For example, if we know f is a solution of:

f(x) = f(2x) + f(2x− 1),

then we may simply iterate this relation to get:

f(x) = f(2(2x)) + f(2(2x)− 1) + f(2(2x− 1)) + f(2(2x− 1)− 1)

= f(4x) + f(4x− 1) + f(4x− 2) + f(4x− 3).

Same function, different dilation equation. More generally, what’s going on here is:

f = D2P (T1)f

f = D2P (T1)D2P (T1)f

f = D2D2P (T1
2)P (T1)f

where P is some polynomial.
There is a somewhat more interesting way to combine different equations. Suppose we

have two dilation equations of the same scale, each with a solution.

f = D2P (T1)f

g = D2Q(T1)g.

Then by taking the Fourier transform we get:

f̂(ω) =
P (e

−iω
2 )

2
f̂(
ω

2
)

ĝ(ω) =
Q(e

−iω
2 )

2
ĝ(
ω

2
).
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First we multiply these equations and take the inverse Fourier transform:

f̂ ĝ(ω) =
1

2

(PQ)(e
−iω
2 )

2
(f̂ ĝ)(

ω

2
)

(f ∗ g) =
1

2
D2(PQ)(T1)(f ∗ g)

(f ∗ g) =
1

2
D2P (T1)Q(T1)(f ∗ g).

So the function f ∗ g satisfies a dilation equation of the same scale whose coefficients are a
polynomial-style product of the original dilation equation. This is a nice result which has
been known for some time (see for example Lemma 2.2 of [34]).

The fact that differentiation and convolution preserve the scale of the equation moti-
vated a suggestion that all 2- and 3-refinable functions might arise from χ[0,1) via com-
binations of convolution and differentiation. This is shown to be close to the truth in
Section 4.5, as B-splines are produced by taking convolutions of χ[0,1) with itself.

This method could be used to try to factorise solutions to dilation equations, as the
Fundamental Theorem of Algebra will always allow us to factorise the polynomial P from
the dilation equation. However, this procedure will usually lead to solutions outside L1(R)∪
L2(R) quite quickly.

A less well known (maybe new?) trick is to produce solutions to an equation of scale
m
√
α from a solution of an equation of scale α. For example, suppose we want to produce

a
√

2-refinable function. We could begin with χ[0,1) which satisfies:

f(x) = f(2x) + f(2x− 1),

or in the frequency domain:

f̂(ω) =
1 + ei

ω
2

2
f̂(
ω

2
)

= p(
ω

2
)f̂(

ω

2
)

=
∞∏
j=1

p(2−jω).

Now consider trying to solve:

g(x) =
1√
2

(
g(
√

2x) + g(
√

2x− 1)
)
.

This equation is produced from the equation for f above by replacing the scale 2 with
√

2
and then normalising so that the coefficients of the equation sum to the new scale. Again
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we take the Fourier transform:

ĝ(ω) =
1√
2

1 + e
iω√
2

√
2

ĝ(
ω√
2

)

= p(
ω√
2

)ĝ(
ω√
2

)

= p(
ω√
2

)p(
ω

2
)p(

ω
√

2
3 )p(

ω

22
) . . .

=

(
p(

ω√
2

)p(
ω

2
√

2
)p(

ω

4
√

2
) . . .

)(
p(
ω

2
)p(

ω

4
) . . .

)
= f̂(ω)f̂(

√
2ω)

Thus g = f ∗ D 1√
2
f = χ[0,1) ∗ χ[0,

√
2). We can formalise this and avoid reordering infinite

products.

Theorem 5.1. Suppose f ∈ L1(R) satisfies a dilation equation:

f(x) =
∑
k

ckf(αx− βk),

then for any m ∈ N the function g:

g(x) = f ∗ D
α−

1
m
f ∗ D

α−
2
m
f ∗ · · · ∗ D

α−
m−1
m
f

satisfies the dilation equation:

g(x) = α−
m−1
m

∑
k

ckg(α
1
mx− βk).

Proof. Taking p(ω) = 1
α

∑
k cke

ωβk to be the symbol of the first dilation equation we then
have:

f̂(ω) = p(
ω

α
)f̂(

ω

α
).

Note that the symbol for the dilation equation given for g is the same. Looking at the
Fourier transform of g:

ĝ(ω) = f̂(ω)α
1
m f̂(α

1
mω)α

2
m f̂(α

2
mω) . . . α

m−2
m f̂(α

m−2
m ω)α

m−1
m f̂(α

m−1
m ω)

= f̂(ω)α
1
m f̂(α

1
mω)α

2
m f̂(α

2
mω) . . . α

m−2
m f̂(α

m−2
m ω)α

m−1
m p(α

−1
m ω)f̂(α

−1
m ω)

= p(α
−1
m ω)f̂(α

−1
m ω)α

1
m f̂(ω)α

2
m f̂(α

1
mω) . . . α

m−2
m f̂(α

m−3
m ω)α

m−1
m f̂(α

m−2
m ω)

= p(α
−1
m ω)ĝ(α

−1
m ω),

as required. �

Given that χ[0,1) is n-refinable for n = 2, 3, 4, . . . this means we have an easy way to

produce n
1
m -refinable functions for any m = 1, 2, 3, . . .. This collection of scales will be

dense in {x > 1 : x ∈ R}. Thus we have a refinable function for each of a dense set of
dilations.
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5.4 Scales with parallelepipeds as self-affine tiles

Given an expanding matrix A sometimes it is possible to choose a digit set which produces
a simple tile which is a parallelepiped. This isn’t always possible, however. Numerical
experiments, looking at the case where A is a 2 × 2 matrix and | det(A)| = 2, seemed to
indicate that this occurred when trace(A) = 0. Looking at the characteristic polynomial
of A this would mean that A2 = kI. (The case | det(A)| = 2 was examined because there
is little choice over the digit set; we can always ensure 0 is a digit by translation, and the
choice of the other digit would seem to have some kind of affine effect on the set. Numerical
experiments on higher determinant matrices are less conclusive as there are more digits to
choose, and so less certainty about what a particular digit set tells us.)

In the following, the parallelepipeds are never flat, and so the edges at any corner can
be used as a basis of Rn.

Lemma 5.2. Suppose we have a matrix A and a parallelepiped P such that:

AP = (P + ~k0) ∪ (P + ~k1) ∪ . . . ∪ (P + ~kq−1)

is a disjoint union (up to sets of measure zero), then each corner of AP is in exactly one

of P + ~k0, P + ~k1, . . . , P + ~kq−1.

Proof. We may transform the problem so that AP is the unit cube and so that the corner
~c we are about to examine is the bottom-most-left-most corner, in the sense that it is the
least corner using the order defined by:

(x1, x2, . . . , xn) ≤ (y1, y2, . . . , yn)

⇔
x1 = y1, . . . , xr−1 = yr−1, xr ≤ yr for some 1 ≤ r ≤ n.

Similarly, we may now choose the least corner ~d of P and the least translation ~ki. Note,
that the least point of any parallelepiped will be a corner and thus the least point in AP
is ~c and the least point in the union will be ~d + ~ki. So ~c = ~d + ~ki, and ~c is also a member
of P + ~ki.

Suppose ~c is also a member of ~kj with i 6= j. Then ~c = ~kj +~x for some ~x ∈ P . However,

the translates are distinct so ~ki < ~kj and ~d ≤ ~x, which yields:

~c = ~d+ ~ki < ~kj + ~x = ~c,

which is a contradiction. �

Theorem 5.3. Suppose we have a matrix A and a parallelepiped P such that:

AP = (P + ~k0) ∪ (P + ~k1) ∪ . . . ∪ (P + ~kq−1)

is a disjoint union (up to sets of measure zero), then A is similar to a weighted permutation
matrix.
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Proof. Pick any corner ~c of AP , then ~c must be the image under A of some corner ~b of P .
Let the edges of P from ~b be ~b+ ~e1, . . . ,~b+ ~en. Then, by applying A we find the edges at
~c are A(~b+ ~e1), . . . , A(~b+ ~en) which is just ~c+ A~e1, . . . ,~c+ A~en.

Using Lemma 5.2 we can also write this corner as ~c = ~d+~kr. The edges of P at ~d must
be the same as those at ~b, though possibly pointing in the opposite direction, so they are:

~d+ s1~e1, . . . , ~d+ sn~en

where sn = ±1. Thus the edges of P + ~kr ⊂ AP are ~c + s1~e1, . . . ,~c+ sn~en. Remembering
that P + ~kr is the only part of the union forming AP at ~c, these edges must be parallel,
but may be shorter than the edges ~c + A~e1, . . . ,~c + A~en. Thus ~c + A~ei = ~c + αi~ej where
|αj| ≥ 1. We conclude that A~ei = αi~ej, and so A permutes the edges with some weights.
As the edges form a basis for Rn we see that A is a weighted permutation matrix. �

Corollary 5.4. With A as in Theorem 5.3 we have Am is similar to a diagonal matrix for
some m dividing lcm(1, 2, . . . , n). Consequently A is diagonalisable.

Proof. Take the permutation of the edges and ignore the weights; we get a permutation
σ ∈ Sn. We may write this as a product of disjoint cycles, all of order between 1 and n.
Taking the least common multiple m of the lengths of these cycles gives us the order of σ.
Now Am~ei = β

m/l
i ~ei, where βi is the product of the weights for the cycle containing i and

l is the length of that cycle. Thus Am is similar to a diagonal matrix with βj along the
diagonal.

Let SAmS−1 be the diagonal matrix. Let λj for j = 1..r be its distinct diagonal entries,
so that: (

SAmS−1 − λ1I
)
· · ·
(
SAmS−1 − λrI

)
= 0.

We can factorise each term to get:(
SAS−1 − ω1λ

1
m
1 I
)
· · ·
(
SAS−1 − ωmλ

1
m
1 I
)
· · ·
(
SAS−1 − ω1λ

1
m
r I
)
· · ·
(
SAS−1 − ωmλ

1
m
r I
)

= 0,

where the ωi are the mth roots of unity. Each of these factors is distinct from the others,
since if two were the same then the λj could not be distinct. Thus the minimal polynomial
of SAS−1 can be factored into distinct linear factors and so SAS−1 is diagonalisable. �

Note, that by relabelling the ~ei we can ensure that each cycle corresponds to a block
of the diagonal matrix. Also, if there is a single cycle with length m = n, then we have
Am~ei = β~ei for a basis of vectors in Rn and so Am = βI.

Now consider how the q translates of P pack into AP . We can count how many copies
of P are along each edge. There must be a whole number of copies, as they do not overlap
and they exactly fill AP . Also, the product of the number along each edge gives how many
times bigger AP is than P , so must be the same as q = | det(A)|. If q = p, a prime, then
the only way to pack them is p translates along one edge and 1 along the rest.

Lemma 5.5. With A as in Theorem 5.3 we have A is similar to a weighted permutation
matrix where the weights are integers.
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Proof. As we observed, the side of AP parallel to ~ej must be a whole multiple of ~ej, but
this side is just:

A~eσ−1(j) = ασ−1(j)~ej

so ασ−1(j) ∈ Z. �

Theorem 5.6. If A is an expanding matrix with det(A) = ±p a prime and P is a paral-
lelepiped such that:

AP = (P + ~k0) ∪ (P + ~k1) ∪ . . . ∪ (P + ~kq−1),

then An = βI.

Proof. As observed above, AP is formed by packing p translates of P along one edge of
AP . This means that A~ei = ±p~ej for some one value of i and A~ei = ±~ej for all other
edges.

Suppose the permutation produced by A does not consist of a single cycle of length n,
then there is some cycle for which all the corresponding αi are ±1 and so βi for this cycle
is ±1. Then, by Corollary 5.4, Am is similar to a matrix with an eigenvalue of ±1 and so
A has an eigenvalue of modulus 1 by the spectral mapping theorem. This contradicts A
being expanding, and so the permutation consists of a single cycle of length n. Thus, as
observed above, An = βI. �

The condition in Lemma 5.5 is actually sufficient for A to have a parallelepiped as a
tile.

Theorem 5.7. Suppose A is similar to a weighted permutation matrix, where the weights
are non-zero integers, then there exists a parallelepiped P and vectors ~ki such that:

AP = (P + ~k0) ∪ (P + ~k1) ∪ . . . ∪ (P + ~kq−1).

Proof. Let SAS−1 be the weighted permutation matrix with integer weights. Let ~ei be the
ith column of S−1. Then:

A~ei = AS−1


...
0
1
0
...

 = S−1SAS−1


...
0
1
0
...

 = S−1


...
0
αi
0
...

 = αi~ej.

Consider the parallelepiped P with one corner at the origin and ~ej as the edges from the
origin. Then AP is a parallelepiped with edges parallel to P .

Examining the corners of AP , there are corners with edges having all possible orienta-
tions given by ±~e1, . . .±~en, so it is possible to choose some corner whose orientation is all
pluses. We translate the corner of P at the origin to this corner and call it ~k0.
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If we compare the lengths of the sides of AP with the lengths of the sides of P , we
can clearly stack |αi| copies of P along edge the edge αi~ej and fill out all of AP exactly as
αi ∈ Z. Thus:

AP =
⋃(

P + ~k0 +
n∑
i=1

ri~ej

)
,

where ri is between 0 ≤ ri < |αi|. �

If we want ~0 to be a digit, then it is a simple matter of translating P by (I − A)~k0 at

the end of the calculation. Note that we have not shown we can choose these ~ki so that
their coordinates are integers in the correct basis.

5.5 Conclusion

The production of polynomial solutions of dilation equations was a straightforward exercise.
It is unfortunate that it does not shed much light on the production of analytic solutions.
The polynomial solutions show that refinable analytic functions are in abundance and
there is a more exotic example on page 73. It seems that the geometric nature of dilation
equations combined with geometric results like Cauchy’s integral formula should have some
interesting interaction.

Next we discussed various ways of producing new refinable functions. One possible
application of this is to use these results to produce MRAs and multiwavelets. The method
of differentiating a function on Rn to produce a refinable function vector probably carries
too much structure to produce independent wavelets.

The technique for producing functions satisfying dilation equations of irrational scales
might be useful; some people are interested in constructing wavelets with irrational scaling
factors. For example in [14] wavelets are produced by using three or more distinct scales
and a set of translations which are generated by digit expansions using the irrational scales
in question. In [1] there is some discussion of multiresolution analyses with non-integer
scales and wavelets with rational scaling factors.

Our parallelepiped tiles could also be used to produce wavelets. In Chapter 7 of [3]
non-separable wavelets are produces from a parallelogram shaped tile. In [44] a method for
producing smooth orthonormal wavelets from tiles is presented, however is seems difficult
to produce actual numbers from this method.

Theorem 5.7 got as far as showing that a dilation matrix A which was similar to a
weighted permutation matrix with integer weights would have a self-similar parallelepiped
associated with it. We didn’t show that the digit set we chose would necessarily have
integer coordinates or that the parallelepiped would have area 1, which are conditions for
the tile to generate an MRA. These issues seem to involve similarity of matrices through
integer entry matrices, which in turn uses the class number of various rings. Consequently
choosing these digits correctly may be quite complicated.
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Chapter 6

Further Work

A number of years ago I heard the following remark: ‘When a mathematics
student finishes their bachelor’s degree they think they know everything. When
a mathematics student finishes their master’s degree they think they know
nothing and when a mathematics student finishes their Ph.D. they realize that
nobody else knows anything either’. (Unattributed in [25])

Over the course of this work we have hopefully pushed out the edges of what is known
about dilation equations a little. Each chapter has answered and asked some questions. I
think that the most interesting questions which have arisen are:

• How can the properties of m in Φ2(p) be improved given properties of p?

• Do all infinite products in L2(R) decay? How fast?

• Can we show that E in Figure 4.1 actually has to be an interval for scale 2?

• Can we prove anything about non-compactly supported functions which are both 2-
and 3-refinable?

• We have some results for polynomial solutions of dilation equations. They don’t
obviously generalise to power series solutions, but can they can be made to?

There is other interesting work on dilation equations afoot. Strang and Zhou have
produced at least two interesting works examining aspects of refinable functions which
seem slightly off the beaten track. They consider the closure of the set of refinable functions
in [43] and inhomogeneous refinement equations in [42]. It might be interesting to see if
an analogy of Green’s functions could be developed for inhomogeneous dilation equations.

To analyse dilation equations Haung in [23] studied the operator which projects of f
onto span{f(2 · −k) : k ∈ Z} and considered when iterating this operator converges.

There are also interesting problems in relation to dilation equation equations and sub-
division schemes. For example, consider a dilation equation whose coefficients are either
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positive or zero. The positioning of the positive coefficients seems to have a curious effect
on the convergence of the subdivision scheme (eg. see [50]).

In the related area of wavelets, Larson et al. seem to be producing a body of work
placing various parts of the theory of wavelets into a more general setting [30, 5, 6, 7].
They have considered such issues as the path-connectedness of the set of wavelets, which
could also be considered for refinable functions.

Baggett has some results using the wavelet multiplicity function or wavelet dimension
function which describe when wavelets can arise from an MRA [2]. In [45] Strichartz looks
at the shape as opposed to the size of the error when wavelets are used for approximation.

Also in the neighbouring subject of self-similar tiles there is significant work going on,
often producing pretty pictures as a byproduct. This includes the geometry of tiles [24],
how tiles are linked with their lattice [17] and the rather cutely named reptiles∗ where
different rotations are allowed for each subtile [35].

There are also other directions in which dilation equations could be taken. One possi-
bility is to replace the sum with a integral and replace the coefficients with some sort of
convolution kernel. Another direction would be to look at dilation equations on Abelian
groups. Here doubling or tripling make sense, we can take a sub-lattice of the group as a
replacement for the integers, the Haar measure allows us to define Lp(G) and we have the
theory of group representations to replace the Fourier transform.

∗Presumably these are named after the Escher picture of interlocking reptiles.
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Appendix A

Glossary of Symbols

Symbol Usage
a Interval end points, coefficients.
b Interval end points, coefficients.
c Dilation equation coefficients.
d Second dilation equation coefficients.
e

∑
1/n!, edge vectors.

f Function satisfying a dilation equation.
g Function satisfying a dilation equation.
h Some function, small number.
i

√
−1.

j Dummy variable.
k Translation dummy variable.
l Dummy variable.
m Maximal solution to transformed dilation equation, limit on sum.
n Limit of sum.
o Too like 0?
p Symbol of dilation equation, power in Lp(X) space.
q Symbol of dilation equation.
r Dummy variable for sums, root of polynomial.
s Positive exponent.
t Integration dummy variable.
w Wavelet.
x Variable on time side.
y Second variable on time size.
z Another time side variable.
A Dilation matrix.
B Inverse adjoint of dilation matrix.
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Symbol Usage
C Arbitrary uninteresting constants.
D Disk/Ball or radius 1.
E First part of refinable set.
F Second part of refinable set.
G Third part of refinable set.
H Polynomial valued coefficents.
I Identity matrix.
J Jordan form of a matrix.
K Compact set.
L List of values in recursive search.
M Large integer for limits.
N Large integer for limits, upper limit for sum.
O Big O order of notation.
P Polynomial representation of step function.
Q Polynomial representation of dilation equation.
R Set of reps of R/B, extra polynomial.
S A set.
T Digit matricies.
V Set of functions in MRA, values taken in recursive search.
W Wavelet set.
X Uninteresting set.
Y Uninteresting set.
α Miscellaneous functions and constants.
β Miscellaneous functions and constants.
γ Miscellaneous constant.
δ Generic small number, Dirac delta function, Kronecker Delta.
ε Generic small number.
λ Eigenvalues, miscellaneous functions.
π 3.14159.., multiplicatively periodic function.
ρ Miscellaneous functions relating to π - usually almost π.
σ Sum of dilation equation coefficents (

∑
k ck).

τ Ergodic mapping x 7→ 2x mod L.
φ Functions satisfying transformed dilation equation.
χ Characteristic function.
ψ Functions satisfying transformed dilation equation.
ω Variable on frequence side.
Γ Lattice in Rn.
∆ p(0) where p is the symbol of a dilation equation.

90



Solutions to Dilation Equations <dwmalone@maths.tcd.ie>

Symbol Usage
Λ Miscellaneous function.
Φ Set of functions satisfying transformed dilation equation.
A Linear operator.
D Dilation operator.
F Fourier transform.
H Hilbert transform.
I Identity operator.
P Power set.
R Operator which multiplies by complex exponential.
T Translation operator.
V Cascade algorithm operator.
C Complex numbers.
F Any field.
N Natural numbers.
Q Rational numbers.
R Real numbers.
Z Integers.
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[25] Pádraig Kirwan, On an error by Angus E. Taylor, Bulletin of the Irish Mathematical
Society (2000), no. 44, 66–75.

[26] Donald E. Knuth, Fundamental algorithms, third ed., The Art of Computer Program-
ming, vol. 1, Addison Wesley, 1997.

[27] Erwin Kreysig, Advanced engineering mathematics, sixth ed., John Wiley & Sons,
New York, 1988.

[28] J. C. Lagarias and Yang Wang, Corrigendum and addendum to: Haar bases for L2(Rn)
and algebraic number theory, Journal of Number Theory preprint (1998).

[29] Ronald Larsen, An introduction to the theory of multipliers, Springer-Verlag, Berlin,
1971.

[30] D. R. Larson, Von Neumann algebras and wavelets, NATO ASI: Operator Algebras
and Applications preprint (1996).

[31] Ka-Sing Lau and Jianrong Wang, Characterization of LP -solutions for the two-scale
dilation equations, SIAM Journal of Mathematical Analysis 26 (1995), no. 4, 1018–
1046.

[32] David Malone, Fourier analysis, multiresolution analysis and dilation equations, Mas-
ter’s thesis, Trinity College, Dublin, 1997.

[33] Yves Meyer, Wavelets and operators, Cambridge University Press, Cambridge, 1992.

[34] C. A. Micchelli and H. Prautzsch, Refinement and subdivision for spaces of integer
translates of a compactly supported function, Numerical Analysis 1987 (D. F. Griffiths
and G. A. Watson, eds.), Pitman Research Notes in Mathematics, no. 170, Longman
Scientific & Technical, Essex England, 1988, pp. 192–222.

[35] Sze-Man Ngai, Vı́ctor F. Sirvent, J. J. P. Veerman, and Yang Wang, On 2-reptiles in
the plane, preprint (1999).

[36] Manos Papadakis, Theodoros Stavropoulos, and N. Kalouptsidis, An equivalence re-
lation between multiresolution analyses of L2(R), Wavelets and Multilevel Approxi-
mation (C. K. Chui and L. L. Schumaker, eds.), Approximation Theory VIII, vol. 2,
World Scientific Publishing, Singapore, 1995, pp. 309–316.

[37] Oliver Rioul, Sample regularity criteria for subdivision schemes, SIAM Journal of
Mathematical Analysis 23 (1992), no. 6, 1544–1576.

[38] Walter Rudin, Real and complex analysis, second ed., McGraw-Hill, New York, 1974.

[39] Zouwei Shen, Refineable function vectors, SIAM Journal of Mathematical Analysis 29
(1998), no. 1, 235–250.

94



Solutions to Dilation Equations <dwmalone@maths.tcd.ie>

[40] Elias M. Stein and Guido Weiss, Introduction to Fourier analysis on Euclidean spaces,
Princeton University Press, Princeton, 1971.

[41] Gilbert Strang and Truong Nguyen, Wavelets and filter banks, Wellesley-Cambridge
Press, Massachusetts, 1996.

[42] Gilbert Strang and Ding-Xuan Zhou, Inhomogeneous refinement equations, preprint
(1997).

[43] , The limits of refineable functions, Transactions of the American Mathematical
Society preprint (1999).

[44] Robert Strichartz, Wavelets and self-affine tilings, Constructive Approximation
(1993), no. 9, 327–346.

[45] Robert S. Strichartz, The shape of the error in wavelet approximation and piecewise
linear interpolation, Mathematical Research Letters (2000), no. 7, 317–327.

[46] Qiyu Sun and Zeyin Zhang, A characterization of compactly supported both m and n
refinable distributions, preprint (1998).

[47] Lars F. Villemoes, Energy moments in time and frequency for two-scale difference
equation solutions and wavelets, SIAM Journal of Mathematical Analysis 23 (1992),
no. 6, 1519–1543.

[48] Peter Walters, An introduction to ergodic theory, Graduate Texts in Mathematics,
no. 79, Springer-Verlag, New York, 1982.

[49] Yang Wang, Self-affine tiles, Advances in Mathematics 121 (1996), no. 1, 21–49.

[50] , Subdivision schemes and refinement equations with nonnegative masks,
preprint (2000).

[51] Yang Wang and Jeffery C. Lagarias, Orthogonality criteria for refineable functions
and function vectors, preprint (1998).

95



Appendix C

C program for coefficient searching

#include <limits.h>

#include <stdio.h>

#include <stdlib.h>

#define SCALE 2

#ifndef TRUE

#define TRUE (1==1)

#endif

#ifndef FALSE

#define FALSE (1==0)

#endif

#ifndef max

#define max(a,b) (((a)>(b))?(a):(b))

#endif

#ifndef min

#define min(a,b) (((a)>(b))?(b):(a))

#endif

#define MAX BITS (sizeof(pos t)∗CHAR BIT)

typedef unsigned long pos t;

static int c[MAX BITS], maxn;

static int val0[MAX BITS], val1[MAX BITS];

void try next(int npos,pos t ∗list,int n,int osv);

int main(int argc,char ∗∗argv)

{

pos t startpos[] = {0,1};

c[0] = 1;

val0[0] = 0;

val1[0] = 1;

if( argc ≥ 2 )

maxn = atoi(argv[1]);

if( maxn ≤ 0 || maxn ≥ MAX BITS )

maxn = 3;

/∗

∗ We start with chi E taking values 0 and 1.

∗ Since we know it takes both these values on

∗ [0,0.5) and [0.5,1) we cheat and pretend it

∗ took netiher value on the first interval so it

∗ is forced to take both values on the second.

∗/

try next(2,startpos,0,0);

exit(0);

}

/∗

∗ Given the list of combinations of values for

∗ chi F, chi G,... find possible values for c {n+1}

∗ which are consistant with c 0 .. c n, and recurse

∗ with all possible new sets of combinations.

∗
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∗ We are passed the number of combinations of values,

∗ those combinations (get value for E as list[i]&(1�n),

∗ get value for c 1 term as list[i]&(1�0) value for c 0

∗ term is one of the things we’re looking for). We are

∗ also passed a list indicating what values the sum came

∗ to on the previous parts of this interval.

∗/

void try next(int npos,pos t ∗list,int n,int osv)

{

int i,k,s;

int ∗sums,∗pos;

int bigcn,littlecn,gotcn,cn;

int v0,v1;

/∗

∗ Special conditions relating to F.

∗/

if( SCALE == 2 && n+1 == 2 ) {

if( c[1] == 1 && val1[1] == 1 )

return;

if( c[1] == 0 && (val0[1] 6= 0 || val1[1] 6= 1) )

return;

if( c[1] == −1 && (val0[1] 6= 0 || val1[1] 6= 1) )

return;

}

if( (sums = malloc(sizeof(int)∗npos)) == NULL ) {

fprintf(stderr,"Out of memory for sums!\n");

exit(1);

}

if( (pos = malloc(sizeof(int)∗npos)) == NULL ) {

fprintf(stderr,"Out of memory for pos!\n");

exit(1);

}

/∗

∗ Sum the terms, excluding the c[0] term with chi E=0.

∗ Note that if chi E were 1 at this possibility then the

∗ value for c[n+1] will be -s-1, -s or -s+1, depending on

∗ the value of the c[0] term; so

∗ we also find range of possible values for c[n+1].

∗/

v0 = val0[(n+1)/SCALE];

v1 = val1[(n+1)/SCALE];

gotcn = FALSE;

for( i = 0; i < npos; i++ ) {

for( s = 0, k = 1; k ≤ n; k++ )

if( list[i] & (1�(k−1)) )

s += c[k];

sums[i] = s;

if( list[i] & (1�n) ) {

if( !gotcn || littlecn < −s−1+v0 )

littlecn = −s−1+v0;

if( !gotcn || bigcn > −s+v1 )

bigcn = −s+v1;

gotcn = TRUE;

if( littlecn > bigcn )

break;

}

}

if( !gotcn ) {

fprintf(stderr,"No comb had 1 in the c[n] pos!\n");

abort();

}

/∗

∗ If we’re about to stop we’re only interested in

∗ c[n] = 1, ’cos we know the first and last coeff

∗ must be 1.

∗/

if( n+2 ≥ maxn ) {

if( littlecn > 1 || bigcn < 1 )

littlecn = 1, bigcn = 0;

else

littlecn = bigcn = 1;

}

/∗

∗ Cycle through possible values of c[n+1].

∗/

for( cn = littlecn; cn ≤ bigcn; cn++ ) {

int nnpos,comb,cc,ccc;
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int all zeros;

int sv; /∗ bitfield of seen values ∗/

pos t ∗nl=NULL,∗p;

c[n+1] = cn;

for( i = 0; i < npos; i++ )

if( list[i] & (1�n) )

sums[i] += (cn == littlecn) ? littlecn : 1;

/∗

∗ For each old possibility, there must be at least one

∗ consistant new one. If there are two consistant new

∗ ones then we have to try combinations with either

∗ and both possibilities present. We also note

∗ if all zeros is an option for the c[0] term.

∗/

nnpos = 0;

comb = 1;

all zeros = TRUE;

for( i = 0; i < npos; i++ ) {

s = sums[i];

pos[i] = 0;

if(s == v0 || s == v1)

pos[i] |= 1, nnpos++;

else

all zeros = FALSE;

if(s+1 == v0 || s+1 == v1)

pos[i] |= 2, nnpos++;

if( pos[i] == 0 )

break;

if( pos[i] == 3 )

comb ∗= 3;

}

if( nnpos == 0 || i < npos)

continue;

/∗

∗ See if this could lead to compactly supported

∗ solution by assuming that the undetermined

∗ sets all have measure 0 and checking to see

∗ if exactly the required values are taken.

∗/

if( all zeros && cn == 1 ) {

int j,bad;

int vnj0,vnj1;

bad = FALSE;

for( j = n+1; j ≥ −n; j−− ) {

if( (j+n) % SCALE == SCALE−1 ) {

sv = 0; /∗ seen no values yet∗/

vnj0 = val0[(j+n)/SCALE];

vnj1 = val1[(j+n)/SCALE];

}

for( i = 0; i < npos; i++ ) {

for( s = 0, k = max(j,0); k ≤ min(j+n,n+1);

k++ )

if( list[i] & (1�(k−j)) )

s += c[k];

if( s 6= vnj0 && s 6= vnj1 ) {

bad = TRUE;

break;

}

sv |= 1�s; /∗ mark value as seen ∗/

}

if(bad)

break;

if( (j+n) % SCALE == 0 && (

(vnj0 == 0 && !(sv & 1)) ||

(vnj1 == 1 && !(sv & 2)) ) ) {

bad = TRUE;

j++;

break;

}

}

if( bad && j ≤ 0 ) {

fprintf(stderr,"Passed bad combination.\n");

abort();

}

if( !bad ) { /∗ All OK? Output possilbe solution ∗/

for( i = 0; i ≤ n+1; i++ )

printf("%d ", c[i]);

printf("\n");

for( i = 0; i < npos ; i++ ) {

printf("\t");

for( k = n; k ≥ 0; k−− )

printf(list[i]&(1�k) ? "1":"0");
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printf(" (%lx)\n", list[i]);

}

fflush(stdout);

}

}

/∗

∗ Don’t do the recursion bit unless we have to.

∗/

if( n+2 ≥ maxn )

continue;

/∗

∗ Allocate enough for any of the combinations.

∗/

if( (nl = malloc(sizeof(pos t)∗nnpos)) == NULL) {

fprintf(stderr,"No mem for new possibilities!\n");

exit(1);

}

/∗

∗ Go through all combinations, noting the values

∗ which the new characteristic function and the

∗ sum takes.

∗/

for( cc = 0; cc < comb ; cc++ ) {

ccc = cc;

val0[n+1] = val1[n+1] = −1;

sv = ((n+1) % SCALE == 0) ? 0 : osv;

for( i = 0, p = nl; i < npos; i++ ) {

s = sums[i];

#define ADDVAL(v) \

do { \

∗(p++) = (list[i] � 1) + v; \

val##v[n+1] = v; \

switch(s+v) { \

case 0: sv |= 1; break; \

case 1: sv |= 2; break; \

default: fprintf(stderr,"Bad sum!\n"); abort(); \

} \

} while(0)

if( pos[i] == 3 ) {

if(ccc % 3 6= 2)

ADDVAL(0);

if(ccc % 3 6= 1)

ADDVAL(1);

ccc / 3;

} else {

if(pos[i] & 1)

ADDVAL(0);

if(pos[i] & 2)

ADDVAL(1);

}

#undef ADDVAL

}

if( val0[n+1] == −1 && val1[n+1] == −1 ) {

fprintf(stderr,"Function took no values!\n");

abort();

}

if( val0[n+1] == −1 ) val0[n+1] = val1[n+1];

if( val1[n+1] == −1 ) val1[n+1] = val0[n+1];

/∗

∗ If we’re at the end of an interval and

∗ we haven’t taken on all the necessary values

∗ then this combination isn’t valid.

∗/

if( (n+1) % SCALE == SCALE−1 && (

(val0[(n+1)/SCALE] == 0 && !(sv & 1)) ||

(val1[(n+1)/SCALE] == 1 && !(sv & 2)) ) )

continue;

/∗

∗ Recurse on them.

∗/

try next(p−nl,nl,n+1,sv);

}

free(nl);

}

free(pos);

free(sums);

}
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