
A Model for Mobile Spatial Services

Éamonn Linehan

A thesis submitted to the University of Dublin, Trinity College

in ful�llment of the requirements for the degree of

Doctor of Philosophy (Computer Science)

October 2008

Declaration

I, the undersigned, declare that this work has not previously been submitted to this

or any other University, and that unless otherwise stated, it is entirely my own work.

I agree that Trinity College Library may lend or copy this thesis upon request.

Éamonn Linehan

Dated: 25th March 2009

Acknowledgements

Éamonn Linehan

University of Dublin, Trinity College

October 2008

iii

Summary

Mobile context-aware computing is a paradigm in which mobile devices have access

to information, known as context, about the situation in which they are being used,

and dynamically adapt application behaviour to support user tasks and mobility. A

primary concern of mobile context-aware computing is awareness of the physical en-

vironment surrounding a user. This concern is addressed through spatial-awareness,

where mobile applications employ knowledge about the physical location of real world

objects to compute, for example, estimated journey times, routes between activities,

perform proximity-based information retrieval, and render map-based interfaces. Geo-

graphic Information Systems (GIS) have traditionally performed these operations on

static spatial data, vector-based geometry and attributes describing real world objects.

However, spatial data and supporting services are con�ned to central servers, accessible

to mobile devices in the form of a static graphic representation via wireless networks.

The range of services that spatially-aware applications on hand-held mobile devices

can provide are limited by technical factors such as the inherent unreliability of wi-

reless networks and the limited nature of mobile devices in terms of battery power,

memory constraints and screen size. Because these limitations are common to all mo-

bile applications, a generic model for spatial services is needed that is designed not to

overburden the limited resources of mobile devices and is not dependent on continuous

network connectivity.

This thesis proposes a model for spatial middleware featuring algorithms designed

to minimise the processing time and power consumed on hand-held mobile devices,

while providing uninterrupted access to common spatially-aware application services,

such as rendering of geospatial information, real time generalisation of dynamic scenes,

route generation, and visibility determination. The algorithms included in the model

are designed to reduce the complexity of spatial data, thereby reducing the processing

iv

time and power consumed while manipulating it on mobile devices. These algorithms

include a multiple representation database designed to approximate continuous scale

adaptation with stepped levels of detail. Access to this data structure is facilitated by

a hierarchical spatial index that uses minimum bounding boxes to approximate more

complex spatial objects. The levels of detail are computed using algorithms that eli-

minate objects based on rendered size at particular scales and simplify geometry using

shape and location preserving algorithms. Limited processing resources are further pre-

served by clipping geometry that extends beyond the viewport of the device to avoid

computing projections and rendering coordinates that will not be seen. A graph-based

topological representation of spatial data is searched using pluggable graph traversal

algorithms with con�gurable cost functions to provide navigation capabilities.

The increased accessibility of spatial information o�ered by the model allows for the

development of innovative services such as visibility determination, which expands mo-

bile context-aware computing's environmental awareness beyond the physical location

of real world objects to include the visibility of those objects. Spatial objects within

the applications' viewport are �ltered based on a �eld of view determined by compass

direction and the human visual system. The resulting objects are then stored in a

depth bu�er on which a variation of occlusion culling is performed on their bounding

volumes to reduce the set of geometry in the bu�er to a possibly visible set (PVS).

Spatial services are incorporated into a generic framework, supporting the devel-

opment of spatially-aware applications. Performance evaluations demonstrate that

spatial services such as map rendering, generalisation, route generation and visibil-

ity determination can be provided locally on mobile devices. In addition, empirical

experiments demonstrate that the model for spatial middleware presented in this the-

sis is is more energy e�cient than existing server-based approaches. The reusability

and extensibility of the framework to support the development of a range of mobile,

spatially-aware applications is evaluated through the development of a case study ap-

plication.

v

Publications Related to this Ph.D.

Éamonn Linehan, Shiu Lun Tsang, and Siobhán Clarke. Supporting Context-

Awareness: A Taxonomic Review. Technical Report, Department of Computer Science,

Trinity College Dublin, TCD-CS-2008-37, http://www.cs.tcd.ie/publications/tech-

reports/reports.08/TCD-CS-2008-37.pdf.

Cormac Driver, Éamonn Linehan, Mike Spence, Shiu Lun Tsang, Laura Chan and

Siobhán Clarke. Facilitating Dynamic Schedules for Healthcare Professionals. In Pro-

ceedings of the 1st International Conference on Pervasive Computing Technologies for

Healthcare, Innsbruck, Austria, 2006. IEEE.

Cormac Driver, Éamonn Linehan and Siobhán Clarke. A Framework for Mobile,

Context-Aware Trails-based Applications: Experiences with an Application-led Ap-

proach. In Workshop 1 - �What Makes for Good Application-led Research in Ubiqui-

tous Computing?�, 3rd International Conference on Pervasive Computing (PERVA-

SIVE 2005), Munich, Germany, 2005.

Éamonn Linehan, Cormac Driver and Siobhán Clarke. Route Generation for Adapt-

able Trails-based Applications. In 3rd UK-UbiNet Workshop, University of Bath, UK,

2005.

vi

Contents

Acknowledgements iii

Abstract iii

Publications Related to this Ph.D. vi

List of Tables xii

List of Figures xiii

List of Listings xvi

Chapter 1 Introduction 1

1.1 Background . 1

1.1.1 Mobile Devices . 2

1.1.2 Wireless Networks . 5

1.1.3 Spatial Information . 5

1.2 Motivation . 9

1.3 A Model for Mobile Spatial Services . 14

1.3.1 Constant Availability of Spatial Services 15

1.3.2 Spatial Complexity Reduction 16

1.3.3 Spatial Services . 17

1.3.4 Visibility . 19

1.3.5 Genericity . 20

1.4 Contribution . 20

1.5 Thesis Outline . 22

vii

Chapter 2 Related Work 23

2.1 Spatial Services for Mobile Computing 24

2.1.1 Cyberguide . 25

2.1.2 Deep Map . 28

2.1.3 CRUMPET . 30

2.1.4 Nexus . 33

2.1.5 Lol@ . 35

2.1.6 GiMoDig . 37

2.1.7 M-Spaces . 40

2.1.8 GinisMobile . 42

2.1.9 Point to Discover . 44

2.1.10 Summary . 48

2.2 Commercial GIS & Web Mapping . 50

2.2.1 ArcGIS Mobile SDK . 51

2.2.2 Web Mapping . 53

2.3 Chapter Summary . 55

Chapter 3 Design 59

3.1 Model for Mobile Spatial Middleware 61

3.1.1 System Model Assumptions . 62

3.1.2 Spatial Data Dissemination . 63

3.2 Local Environment Model . 66

3.2.1 Multiple Representation Database 66

3.2.2 Spatial Index . 71

3.2.3 Model-Oriented Generalisation 73

3.3 Spatial Middleware Services . 80

3.3.1 Analysis & Requirements . 80

3.3.2 Adaptable Map Rendering . 81

3.3.3 Spatial Reasoning . 83

3.3.4 Coordinate Transformation . 86

3.3.5 Route Generation . 89

3.3.6 Visibility Determination . 91

viii

3.4 Generic Framework . 100

3.4.1 Pluggable Component Model 100

3.4.2 Framework Summary . 103

3.5 Chapter Summary . 104

Chapter 4 Implementation 105

4.0.1 Platform . 107

4.0.2 Packages . 107

4.0.3 Hermes Integration . 109

4.1 Spatial Data Model . 113

4.1.1 ESRI Shape�les . 114

4.1.2 Multi-Scale Shape�le . 115

4.1.3 MRDB Spatial Data Retrieval 116

4.1.4 Spatial Query Interface . 118

4.1.5 Generalisation . 121

4.2 Spatial Services . 125

4.2.1 Visibility Determination . 125

4.3 Framework . 132

4.3.1 Pluggable Component Model 133

4.3.2 Con�guration File . 134

4.4 Chapter Summary . 137

Chapter 5 Evaluation 139

5.1 Spatial Service Performance . 141

5.1.1 Methodology . 142

5.1.2 Data Set . 144

5.1.3 Results . 144

5.1.4 Analysis . 153

5.2 Energy Consumption . 154

5.2.1 Methodology . 156

5.2.2 Results . 163

5.2.3 Analysis . 169

5.3 Framework Reusability & Extensibility 172

ix

5.3.1 Case Study Application . 172

5.3.2 Analysis . 174

5.4 Evaluation Summary . 175

Chapter 6 Conclusions and Future Work 178

6.1 Achievements . 178

6.2 Future Work . 181

6.2.1 Energy Consumption of P2P Overlays 182

6.2.2 Partitioning of Application Logic 182

6.2.3 Data Structures for Flash Memory 183

6.2.4 Spatial Data Integration . 184

6.3 Chapter Summary . 184

Appendix A Further Implementation Detail 186

A.1 Framework Con�guration File . 186

A.2 Benchmark Harness . 189

A.3 Energy Evaluation User Simulator . 191

A.4 Screenshots . 193

Appendix B Source Code Measurements 198

Appendix C Glossary 200

C.1 Terminology . 200

C.2 Symbols . 201

Appendix D API 203

D.1 Package ie.tcd.cs.dsg.hermes.gis.generalisation.simpli�cation . 203

D.2 Package ie.tcd.cs.dsg.hermes.gis.io 209

D.3 Package ie.tcd.cs.dsg.hermes.gis.io.multiscale 243

D.4 Package ie.tcd.cs.dsg.hermes.gis.event 250

D.5 Package ie.tcd.cs.dsg.hermes.gis 263

D.6 Package ie.tcd.cs.dsg.hermes.gis.geometry 269

D.7 Package ie.tcd.cs.dsg.hermes.gis.ui 290

D.8 Package ie.tcd.cs.dsg.hermes.gis.generalisation.elimination . . . 294

x

D.9 Package ie.tcd.cs.dsg.hermes.gis.index.spatial 297

D.10 Package ie.tcd.cs.dsg.hermes.gis.layer 302

D.11 Package ie.tcd.cs.dsg.hermes.gis.projection.model 314

D.12 Package ie.tcd.cs.dsg.hermes.gis.graph 317

D.13 Package ie.tcd.cs.dsg.hermes.gis.graph.traverse 327

D.14 Package ie.tcd.cs.dsg.hermes.gis.projection 331

D.15 Package ie.tcd.cs.dsg.hermes.gis.query 344

D.16 Package ie.tcd.cs.dsg.hermes.gis.index 358

D.17 Package ie.tcd.cs.dsg.hermes.gis.ui.event 363

D.18 Package ie.tcd.cs.dsg.hermes.gis.generalisation.clipping 364

D.19 Package ie.tcd.cs.dsg.hermes.gis.ui.style 371

Bibliography 374

xi

List of Tables

2.1 Spatial services for mobile applications 48

3.1 Spatially-aware mobile applications . 80

4.1 ESRI Shape�le �les . 115

4.2 Extended ESRI Shape�le �le components 115

4.3 Extended Shape�le main �le header . 116

4.4 Pluggable components . 135

5.1 Test spatial data set . 145

5.2 Local versus remote execution of tasks 154

5.3 HP iPAQ hx2490 Pocket PC speci�cations (Source: [104]) 157

B.1 Implementation NCSS per package . 199

xii

List of Figures

1.1 Background technologies . 2

1.2 Types of spatial data model . 7

1.3 Categorisation of GIS spatial operations 8

1.4 Comparison of architectural models 15

1.5 Middleware model for spatial services 18

1.6 Illustration of visibility culling techniques 19

2.1 Technologies related to this thesis. 23

2.2 The Cyberguide MessagePad interface (Source: Abowd et al. [2]) . . . 25

2.3 Deep Map interface (Source: Kray [120]) 28

2.4 The CRUMPET welcome page (Source: [206] Figure 4.) 30

2.5 The Nexus architecture (Redrawn from [82], Figure 1) 34

2.6 Lol@ map interface (Source: Umlauft et al. [223]) 35

2.7 Simpli�ed GiMoDig architecture (Source: Sarjakoski et al. [222]) . . . 38

2.8 GinisMobile architecture (Source: Predic et al. [183]) 43

2.9 Point to Discover application framework architecture 45

2.10 P2D LVis billboard principle . 45

2.11 ArcGIS Mobile SDK architecture (Source: ArcGIS Mobile 9.3 [70]) . . 52

2.12 Google Maps for the iPhone 3G (Source: Apple.com [12]) 54

3.1 Mapping research questions to design elements 60

3.2 The Hermes mobile application framework architecture 63

3.3 Architectural model for mobile spatial middleware 65

3.4 Multiple representation database hierarchy 67

3.5 MRDB model illustrating Shape�le components 69

xiii

3.6 MRDB spatial object selection algorithm 70

3.7 Illustration of R-Tree spatial index hierarchy for 2D geometry 72

3.8 Generalisation algorithm �ow chart . 75

3.9 Elimination generalisation step . 76

3.10 Simpli�cation generalisation step . 77

3.11 Clipping generalisation step . 78

3.12 Adaptable map rendering layers . 82

3.13 Geometry model showing spatial relationship functions 84

3.14 Supported geometry types . 86

3.15 Two-step coordinate transformation algorithm 87

3.16 Coordinate transformation design detail 88

3.17 Topological model building . 90

3.18 Graph-based route generation . 90

3.19 View frustum culling perception model design 94

3.20 Depth bu�er distance comparisons . 95

3.21 Back face occlusion culling . 97

3.22 Ray casting from a single object . 97

3.23 Ray casting visibility algorithm �ow chart 98

3.24 Pluggable component model . 101

3.25 Pluggable component model extension points 102

4.1 Implementation platform . 108

4.2 Architecture overview package diagram with dependencies 108

4.3 Non-commenting source statements per package 110

4.4 Multi-scale retrieval . 117

4.5 Spatial query class diagram . 119

4.6 Elimination ShapeList �lter class diagram 122

4.7 2D geometry simpli�cation class diagram 123

4.8 Geometry clipping class diagram . 124

4.9 Class diagram for DepthBuffer . 128

4.10 Backface occlusion culling algorithm activity diagram 130

4.11 Ray casting visibility determination activity diagram 131

4.12 Con�guration loading . 136

xiv

5.1 Benchmark harness for performance evaluations 143

5.2 E�ect on standard deviation as number of samples increases 144

5.3 Map interface responsiveness . 146

5.4 Spatial data format performance . 147

5.5 MRDB memory usage . 148

5.6 Relative performance of generalisation steps 149

5.7 Map projection algorithm performance 150

5.8 Visibility determination example . 151

5.9 Visibility algorithm performance . 152

5.10 Energy evaluation user bot . 158

5.11 Spatially-aware application map interface 158

5.12 Framework extensions for server-based spatial services 159

5.13 Energy consumption experimental setup 161

5.14 acbTaskMan PDA power meter (Source: [3]) 161

5.15 CPU usage over time (middleware) . 163

5.16 Memory usage over time (middleware) 164

5.17 Network activity over time (middleware) 165

5.18 Power drain over time (middleware) . 165

5.19 CPU activity over time (server-based) 167

5.20 Memory usage over time (server-based) 168

5.21 Network activity over time (server-based) 168

5.22 Power consumption over time (server-based) 169

5.23 Comparison of power consumption . 170

5.24 Case study application implementation 173

5.25 Where Are We ? case study application interface 175

A.1 Zoom map interface screenshot . 194

A.2 Rotating map interface screenshot (rotating clockwise from top left) . . 195

A.3 Pan map interface screenshot . 196

A.4 Visibility determination accuracy . 197

xv

List of Listings

3.1 Pseudocode for a general occlusion culling algorithm. 96

4.1 Hermes basic con�guration parameters 110

4.2 Instructing Hermes to use a local context source (GPS sensor) 111

4.3 Acquiring and sharing context in Hermes 112

4.4 Retrieving location context from Hermes 113

4.5 Building a spatial query . 120

4.6 Text representation of a spatial query 120

4.7 The accept() method of the ViewFrustumCulling �lter 126

4.8 The system class loader being invoked to instantiate a component . . . 133

A.1 The gis.properties con�guration �le. 186

A.2 The Harness implementation . 189

A.3 The sequence of simulated user events 191

xvi

Chapter 1

Introduction

This thesis investigates architectural models for spatially-aware middleware, including

the design of a set of algorithms that provide reusable lightweight variants of spatial

services on hand-held mobile devices. The provision of such services on mobile devices

is limited by technical factors, such as periodic disconnection from wireless networks,

the inherent unreliability of wireless networks and the limited nature of mobile devices

in terms of battery power, memory constraints and screen size. The thesis describes

algorithms designed to minimise the processing time and power consumed on mobile

devices while providing uninterrupted access to spatially-aware application services.

This chapter provides the background and motivation to this work, introduces an ar-

chitectural model for spatial middleware services and concludes with the contributions

and the layout of the thesis.

1.1 Background

This section describes the technologies involved in mobile spatially-aware computing

(Figure 1.1). In particular, the characteristics and limitations of mobile devices and

wireless networks are presented. A description of the nature of spatial information is

provided, including a presentation of its importance to mobile computing, its structure

and the common operations performed on it.

1

Chapter 1. Introduction

Wireless

Networks

Mobile

Devices

Mobile Spatially-aware Applications

Spatial Information

(1.1.2)(1.1.1)

(1.1.3)

Figure 1.1: Background technologies

1.1.1 Mobile Devices

Hand-held mobile computers are small, portable devices that allow the user to move

away from the traditional desktop environment, while retaining the ability to under-

take computing tasks. Hand-held mobile computing devices include smart phones,

pocket PCs and personal digital assistants (PDAs). Laptops and ultra mobile PCs

can be considered a di�erent class of mobile device and are explicitly excluded from

consideration as they exhibit di�erent characteristics to hand-held devices, demanding

their own set of requirements and approaches.

Hand-held mobile computing devices di�er from their desktop counterparts in terms

of form factor, architecture, failure semantics and usage patterns [198]. The form factor

of hand-held mobile devices is de�ned by the need to �t comfortably into one's pocket.

Devices are intended either to be operated by one hand or to be held in one hand

and operated with another (most PDAs fall into this category). The most signi�cant

architectural di�erences between mobile devices and desktop computers is their use of

memory and integrated sensors. On a desktop computer, RAM and long-term storage

space are separated, whereas, on mobile devices, RAM is often used both as working

memory and long-term storage, limiting its availability to applications.

Mobile devices are increasingly being equipped with sensors that can be used to

acquire information from the environment. For example, tilt sensors have been used

to enable one-handed operations and to automatically adapt display orientation (land-

scape/portrait) to device orientation [193, 205]. Positioning sensors, the most common

2

Chapter 1. Introduction

type of which is GPS, [66] are being used to determine location. Examples of other po-

sitioning systems include infrared, Bluetooth, ultrasonic beaconing [232, 233], wireless

network �ngerprinting [31] and network positioning based on cellular base station time

of �ight measurements. Other sensors commonly available on mobile devices include

microphones, cameras, touch, and light sensors.

Mobile devices also have di�erent failure semantics than their desktop counterparts.

Unexpected failures are common. For example, communications failures occur often,

users can remove the battery midstream, or the operating system may shut down

applications when it is running low on resources.

Finally, the usage patterns of mobile devices are very di�erent to desktop comput-

ers. Hand-held mobile devices and their applications are often left running ready to

provide instant services to their users. They are used in crowded, noisy spaces, often

in daylight conditions to perform activities that are focused and of short duration. For

example, making a phone call, checking an appointment schedule, or reading instant

messages are all done using frequent but short-duration sessions.

The mobile nature of these devices has led to form factor, architecture, failure

semantics and usage patterns that place signi�cant stress on the limited available

resources in terms of battery, computation, memory, screen, input mechanisms and

communication capabilities, as follows:

• Battery - Mobile devices rely on a �nite energy source that is a major constraint

in mobile environments. Although battery technology has improved over the

years, it has not kept up with the computational demands of mobile systems

[202]. To maximise the amount of work the user can do before the battery

becomes discharged, hardware and software designers have to optimise energy

consumption to avoid either heavier battery packs or short durations between

battery recharges [41]. To be e�ective, mobile devices need to be able to operate

untethered for long periods of time (typically devices are not connected to wired

power or communication sources more than once a day).

• Computation - The design of CPUs for mobile devices is heavily energy con-

strained, resulting in CPU speeds of mobile devices being typically an order

of magnitude less than desktop platforms (100-600MHz). Today's mobile de-

3

Chapter 1. Introduction

vices do not feature graphics hardware1, which means that the main processor is

responsible for rendering 1.3user interfaces as well as performing all other com-

putation. In addition, mobile devices often serve other critical purposes while

running foreground applications that must remain available for users at all times.

If a mobile phone ceases to work as a phone due to an application consuming all

CPU resources or blocking the user interface, the user experience will be severely

degraded.

• Memory - Many current devices have 64-128MB of program memory available

[11]. However, applications using large chunks of memory (more than 4 MB)

load slowly because of their volume, slowing down the entire device [225]. Mobile

devices do not use page �les to swap out memory not being used, due to their lack

of disk drives. Instead, mobile devices often feature �ash storage devices in the

form of removable memory cards. However, accessing �ash storage is slower than

traditional RAM (particularly write operation latency) making it most suitable

for storing static read-only data (for example, MP3 players).

• Screen - A social requirement for mobile devices to remain pocket-sized im-

poses a constraint on the maximum physical size of the screen. In addition,

mobile displays also commonly have lower resolution, fewer colors, and a di�er-

ent width/height aspect ratio than desktop computers.

• Input - The small form factor of mobile devices has resulted in di�erent input

devices than desktop computers. Devices are often designed for one-handed use

and commonly feature buttons, joysticks or touch screens displays.

• Communication - Current devices are typically equipped with several wireless

network interfaces, such as 802.11, cellular (including 3G), and Bluetooth. A

discussion of the speci�c limitations of these wireless network interfaces follows

(Section 1.1.2).

These limitations pose signi�cant design challenges to the developers of mobile, spatially-

aware applications [202]. This thesis describes an architectural model for spatial midd-

1There is a small but rapidly growing number of UMPCs, PDAs and smart phones that have
hardware 2D or 3D acceleration supported by Java ME, OpenGL ES or Direct 3D. A list of such
devices is maintained by the Mobile Data Visualization Lab, University of California (http://mobile.
sdsc.edu/devices.html).

4

Chapter 1. Introduction

leware services that does not overburden the limited resources of mobile devices and

is not dependent on continuous network connectivity. These services are provided as

a set of algorithms, designed with the form factor, architecture, failure semantics and

usage patterns of mobile devices in mind.

1.1.2 Wireless Networks

The primary resource requirement of a mobile device, when it is working as part of a

distributed system, is its network connection, which is usually some form of wireless

connection [80]. Wireless networks are highly variable in performance, reliability and

coverage. When used by devices that are moving, unanticipated and possibly prolonged

disconnections can be caused by physical obstructions or lack of su�cient network

infrastructure. For example, some buildings o�er reliable, high-bandwidth wireless

connectivity but thick concrete walls can block signals resulting in areas of the building

where there is no signal. In addition, today's wireless networks typically operate on

frequencies of 1GHz or more and signal power levels that result in a range limitation

of approximately 100 meters. Outdoors, a mobile client may have to rely on cell-based

low-bandwidth wireless networks, limiting throughput.

Mobile devices are sometimes organised in an ad-hoc and peer-to-peer manner.

These networks of mobile devices are known as Mobile Ad Hoc Networks (MANETs).

MANETs have no �xed infrastructure or centralised administration but are, instead,

self-con�guring. Nodes will usually send out their own requests, forward other nodes'

requests, and respond to other nodes' requests during their participation in the net-

work. MANETs cannot always provide access to centralised servers limiting mobile

applications ability to access infrastructure-based services.

1.1.3 Spatial Information

Mobile devices are portable enough to be with us all the time, have wireless communica-

tion capabilities and are increasingly making use of integrated sensors and positioning

technologies to gather information on the environment in which they are being used.

Egenhofer termed this class of mobile device a, �spatial information appliance,� as it is

envisioned that such devices will open spatial analysis to day-to-day use by providing

5

Chapter 1. Introduction

specialised spatially-aware applications tailored to particular tasks [65].

The usage patterns of spatial information appliances are such that the user's atten-

tion is often focused on other tasks, requiring unobtrusive interfaces that autonomously

determine the information that is currently relevant to the user [183]. To provide such

interfaces, it is necessary for mobile applications to be able to discover and take ad-

vantage of contextual information (such as user location, time of day, nearby people

and computing devices, and user activity) [203]. Spatial information is an important

component of such context-aware mobile applications for a number of reasons:

• Spatial information provides knowledge about the user's environment beyond

what can be gathered from sensors directly. Sensors detect useful information

such as position, orientation, and light levels but do not capture the kind of

knowledge that is encapsulated in digital maps [36, 169]. For example, sensors

cannot automatically gather information on the layout of buildings or cities in

order to provide users with directions.

• Spatial information models facilitate the construction of a view of the world

that drives application behaviour [152]. This model of the world is exploited by

mobile applications [129, 51, 68, 223] to judge distance [184, 134, 178], determine

visibility [84, 87, 132], produce routes [13, 165, 121], and provide other useful

services to mobile users.

• Spatial information can serve as a shared metaphor between the system and the

user in the same way as traditional paper maps do. This can lead to a more

natural interaction [36].

Examples of mobile spatially-aware applications include: �eld work applications [197,

46]; tour guides, that help people navigate an unfamiliar space [43, 2, 138, 134]; nav-

igation assistants [13]; time management applications [56, 64]; messaging applications

[34, 216, 38]; o�ce applications, such as nearest printer services [118, 204]; conference

aids, that track presentation attendance and facilitate note taking and discussion [59];

and home applications that can help with household management and home entertain-

ment, as well as aid the aged and disabled in performing everyday tasks [108, 114, 140].

In the current thesis we consider spatial information to have two components: 1)

the spatial data, that is, the geometry and location of objects in the real world; and

6

Chapter 1. Introduction

2) the set of spatial operations used to analyse, manipulate and manage the data.

Background on each of these topics follows.

Spatial Data

Spatial data describes the physical structure of the user's environment and relation-

ships between real world objects [157]. Since ancient times, maps have been serving as

a �favourite communication tool� to help people construct personal mental images of

their living environment [142]. Indeed, maps are the most e�cient and e�ective means

to communicate spatial information [119]. They simplify the localisation of geographic

objects, revealing spatial relations and patterns, and provide useful orientation infor-

mation in the �eld [142, 37]. A common example of spatial data is a road map. A road

map is a two dimensional visualisation of graphic information that contains points,

lines, and polygons that can represent cities, roads, and political boundaries such as

states or provinces. This information is used to judge distance and navigate2.

Spatial Information

Geometry Attributes

Structured Vector

Pixel Grid

Raster

Figure 1.2: Types of spatial data model

Spatial data models can be grouped into a number of categories based on their

underlying data structures. Figure 1.2 is a taxonomic classi�cation of the di�erent

types of spatial data model. The primary classi�cation is as raster or vector. Raster

spatial data is essentially a paper map converted to electronic format. Information is

structured as a grid of cells where each cell is analogous to a pixel in an image [89, 243].

In contrast, structured vector data is represented by a set of vector coordinates. The

vector coordinates are organised into shapes such as point, line, and area features

(that is, geometry). Attribute or database records may be associated with individual

shapes [89]. Vector data facilitates geometric operations such as overlap, intersection,

2For a more detailed analysis of the a�ordances of maps see Meng & Reichenbacher [143].

7

Chapter 1. Introduction

containment and distance, which can be used as part of a spatial reasoning process to

determine higher level contexts or trigger behaviour.

Spatial Operations

In addition to spatial data, mobile spatially-aware applications require algorithms to

manipulate and manage the data in support of spatial services. Geographic informa-

tion systems (GIS) have for many years provided this support on non-mobile devices.

The characteristics and complexity of these spatial operations form an important back-

ground to the current thesis, as any manipulation of spatial data on a mobile device

requires models and algorithms capable of providing lightweight versions of these ser-

vices.

A GIS is de�ned as a system �capable of capturing, storing, analysing, and display-

ing graphically referenced information; that is, data identi�ed according to location�

[231]. More simply, a GIS can be thought of as a software system that links geographic

information (where things are) with descriptive information (what things are like).

Access Methods

Analytical Operations

Visualisation

I/O Indexing

Search

Locational Analysis Terrain Analysis

Distribution Operations Spatial Analysis

Measurements

Cartographic Rendering

Map Manipulation Coordinate Conversion

Generalisation

Figure 1.3: Categorisation of GIS spatial operations

Figure 1.3 presents a categorisation of the core GIS operations gathered from the

literature [6, 210, 172, 190, 130]. Access Methods include all functions for interacting

with spatial data formats. The collection of Analytical Operations includes: Search

functions that deal with the retrieval of geometric data based on graphic or thematic

8

Chapter 1. Introduction

constraints; Location Analysis refers to operations that overlay or extrapolate spatial

information; Terrain Analysis covers operations dealing with 3D elevation data; Dis-

tribution / Neighborhood Operations determine connectivity, proximity and shortest

path between features; Spatial Analysis describes the relationships and dependencies

among spatial objects; and Measurements contains calculations (distance, direction,

perimeter, area, height, etc.), statistics, and topological measures (adjacent, connected,

inside, etc). The Visualisation class of GIS operations includes: Generalisation, the

reduction of the number of points necessary to represent a feature; Coordinate Conver-

sion, the transformation and projection of coordinates from various graphic coordinate

reference systems; Cartographic Rendering, the drawing of map-based interfaces; and

Map Manipulation, the interaction with and customisation of the interface with oper-

ations such as pan and zoom.

The development of an architectural model featuring algorithms capable of ma-

nipulating spatial data on a hand-held mobile device requires lightweight versions of

GIS algorithms for each category of spatial operation to counteract the limitations

described in Sections 1.1.1 and 1.1.2. This set of spatial operations are important as

they provide the means to generate, manipulate and manage the spatial data required

by spatial middleware services.

1.2 Motivation

The International Telecommunication Union has predicted that by the end of 2008,

more than half the world's population will have access to a mobile phone [1]. Smart-

phones (mobile phones that run a complete operating system providing a platform for

application developers) will be the most common programmable computers on earth

in two or three years [170].

Widespread use of hand-held mobile devices, coupled with their increasing capa-

bilities has substantially contributed to the increasing mobility of our working and

everyday life. Mobile devices allow users to take care of business and social obligations

throughout the day by being more 'connected' than ever before. They improve coordi-

nation and e�ciency by eliminating wasted time between activities and while waiting

for input from individuals who may be traveling [199]. Examples of the types of appli-

9

Chapter 1. Introduction

cations that are typical of today's mobile devices include communication (voice, email,

SMS), personal information management (calendars, to-do lists, address books, book-

marks), navigation [88], gaming [83] and mobile versions of established web services

such as Yahoo! oneSearchTM3 and Google Maps for Mobile4.

Mobile devices are increasingly making use of sensing technologies to gather infor-

mation on the environment in which they are being used. The situational information

gathered from sensors and positioning technologies is referred to as context and has

been de�ned by Dey as �any information that can be used to characterise the situa-

tion of an entity. An entity is a person, place or object that is considered relevant

to the interaction between a user and an application, including the user and the ap-

plications themselves� [57]. Context-aware applications are applications that exploit

knowledge of this situational information to guide their behavior, typically with the

goal of improving the usability or e�ciency of the application [55]. This is achieved

by the application adapting its behaviour, to make computation useful in the myriad

of situations that can be encountered in the real world [155].

A common feature of context-aware mobile applications is that they require some

form of spatial information. For example: tour guide applications require knowledge

about the connectedness of places on the tour and the ability to guide users with

meaningful directions; �eld work applications need to be able to reference the location

where samples were recorded; and time management applications need to be able to

estimate the traveling time between activities.

Spatial information is central to much of the visualisation and reasoning about

the user's environment in mobile computing. It is exploited by mobile applications to

judge distance, determine visibility, produce routes and provide other useful services

to mobile users. Spatial information can contribute to the usefulness of context-aware

applications by providing a �deeper understanding of the physical space from both a

sensory (input) and control (output) perspective� [35]. For example, �xing a position

in some coordinate system to a certain degree of accuracy is not as useful as being

able to determine if two entities are in view of each other [36]. Spatial information also

has a role to play in supporting richer interactions with the user by acting as a shared

3http://mobile.yahoo.com/onesearch
4http://www.google.com/mobile/gmm

10

Chapter 1. Introduction

metaphor [36, 65] and in integrating context from di�erent sources. For example,

spatial information can be used to integrate sensor data in a way that enables analysis

and inference [35, 43, 158, 185]. Numerous innovative applications such as location-

aware resource management [202], real-world point & click [65, 85], landmark based

navigation [139, 148], context-aware collaboration [164], de-cluttering map data [24],

and information tailoring (intelligent proximity) [132] are only possible when spatial

information is readily accessible by mobile applications.

However, the relative resource poverty of mobile devices as well as their lower trust

and robustness points to reliance on static servers [200]. Additionally, the services

required of mobile computing applications are traditionally provided by geographic in-

formation systems (GIS). GIS store spatial information, both geometry and attributes,

provide access to this information, perform analytical functions and present the results

visually as maps, tables or graphs. There are no fully featured mobile equivalents of

these highly specialised GIS applications. The lack of a mobile GIS has con�ned spa-

tial data to central servers, accessible to mobile devices in the form of a static graphic

representation via wireless networks. This raster-based graphic representation can-

not provide meaningful map entities, such as streets, buildings and dynamic objects,

that can be interpreted by a mobile device. In addition, raster data has the further

limitations of requiring more storage space and consequently transmission bandwidth

than the same data in vector form. Raster data also makes the integration of map

data sets from di�erent sources practically impossible [222]. When access to spatial

data is restricted to raster data, mobile applications require a round trip to the server

each time dynamically changing context requires an interface update. In the case of

mobile applications, such interface updates are frequent because of the small screen of

a mobile devices forcing the user into a great deal of panning and zooming to visually

link map features to objects in the environment [52].

In contrast, vector data is more compact and facilitates information browsing and

analysis [100]. Vector-based spatial data facilitates metric operations such as over-

lap, intersection, containment and distance, which can be used as part of a spatial

reasoning process to determine higher level contexts (for example, speed, indoors or

outdoors, proximity to other users) or trigger behaviour (for example, proximity based

information display, connect to a wireless network, toggle screen backlight). Vector-

11

Chapter 1. Introduction

based spatial data enables the generation of new views and processing of some types

of queries locally without having to request additional data from servers [33]. For

example, zooming or panning actions are cumbersome, with performance depending

on how much data the server must transfer every time the user requests a new view.

Vector-based spatial data allows zooming or panning actions to be performed without

communicating with a server.

Vector data also has the advantage of enabling the rendering of high quality car-

tographic interfaces that are scaled to suit the resolution and small size of mobile

displays and clear enough to be readable under daylight conditions. Both these spatial

data representations have been used by mobile applications, although raster spatial

data is favored as it allows the computationally expensive analysis and rendering of

cartographic interfaces to be done on the server [227, 230].

It is a signi�cant challenge to implement lightweight versions of computationally

intensive GIS operations on a mobile device because of the volume of spatial data to

be managed, the computational complexity of GIS operations and the limitations of

mobile devices [246]. Where current mobile spatially-aware applications feature vector-

based spatial information, they are limited to visualising this information and do not

support GIS operations [243, 161, 246].

The computational complexity and volume of spatial data also has an impact on

energy consumption. The computation required to manipulate and analyse spatial

information requires extended use of the device's processor, a major source of energy

consumption on mobile devices. Alternatively, this computation could be performed

on the server and the results delivered as a service to the application. However, this

approach requires use of the wireless network which is another major source of energy

consumption on a mobile device. One of the open questions in the area of low-power

research concerns the proper balance between communication and computation, that

is, whether to perform an operation locally or to have the operation processed remotely

at the cost of communication [137].

To date, spatially-aware mobile applications have been developed by providing mo-

bile applications with access to network spatial services via wireless networks [190].

When spatial services are based on the device's position, they are termed location-

based services [177]. These services enable spatially-aware applications by provid-

12

Chapter 1. Introduction

ing, manipulating, analysing, communicating and visualising spatial information [144].

However, this approach can not provide constantly available spatial services to mobile

applications due to frequent disconnections and unreliable nature of wireless networks.

Where spatially-aware mobile applications have provided spatial services such as

routing, map-based interfaces and spatial reasoning, they have been tailored for speci�c

devices or relied on infrastructure-based services [42]. The development of spatially-

aware applications is further hampered by the lack of a generic model for spatial services

that addresses the common challenges posed by hand-held mobile devices. These

challenges (See Sections 1.1.1 and 1.1.2) are currently addressed by each individual

application, resulting in the repeated näive reimplementation of these services [188].

A solution to this problem is to provide middleware containing implementations of

basic GIS services for mobile spatially-aware applications, which is independent of

application-speci�c services and particular sensors [200]. Providing these services in

the form of middleware supports generality, making spatial functionality easy to reuse

in other applications as there is a separation between application semantics and the

low-level details of spatial data interpretation and cartographic interface production.

Indeed, there have been many e�orts to develop middlewares, frameworks, toolkits,

and infrastructures5 to address the application independent challenge of managing

context on mobile devices [103, 58, 64, 93, 129]. These infrastructures provide �uniform

abstractions of common functionality and reliable services for common operations� to

make it easier to develop robust applications, even on a diverse and constantly changing

set of devices and sensors [105]. As the challenge of storage, analysis, management and

visualisation of spatial information is also independent of application speci�c concerns,

there has been some work in developing middleware to support these tasks [81, 246,

134, 222]. However, these middlewares for mobile applications assume reliable wireless

connections and require signi�cant infrastructure.

The main motivation for the current thesis is the need to provide constantly avail-

able spatial services on mobile devices to support the development and interoperability

of spatially-aware applications using an approach that places energy conservation at

the core of all design decisions. This thesis proposes an architectural model for a

spatially-aware mobile application middleware. This model features algorithms desi-

5See Hong et al. for a discussion on the di�erences between these terms [105].

13

Chapter 1. Introduction

gned to minimise the processing time and power consumed on hand-held mobile devices

while providing uninterrupted access to common spatially-aware application services,

such as rendering of geospatial information, real time generalisation of dynamic scenes,

route generation, and visibility determination.

In summary, the research questions are:

RQ-1 How can spatially-aware mobile applications maintain a dynamic model of the

users' environment including meaningful map entities, such as, streets, buildings

and dynamic objects in an interpretable format despite the inherent unreliability

of wireless networks and limitations of hand-held mobile devices?

RQ-2 How can we design algorithms to access a spatial model at multiple levels of

detail on hand-held mobile devices that are limited in terms of battery power,

processing resources and memory?

RQ-3 How can common application-level spatial services be designed for mobile spatially-

aware applications using the set of algorithms for spatial operations included in

the model for spatial middleware?

RQ-4 What are the energy trade-o�s in balancing computation with communication

for this class of spatially-aware mobile application?

RQ-5 Is there a generic model for spatial services that can address the common chal-

lenges posed by hand-held mobile devices in a reusable and extensible manner?

1.3 A Model for Mobile Spatial Services

This thesis presents an architectural model for spatially-aware middleware, including

the design of a set of algorithms that provide reusable lightweight variants of spatial

services on hand-held mobile devices. The set of algorithms includes algorithms de-

signed to minimise the processing time and power consumed on mobile devices, while

providing uninterrupted access to common spatially-aware application services. The

following sub-sections introduce the main algorithms in the areas of: 1) availability of

spatial services (RQ-1); 2) reduction in complexity of spatial data (RQ-2); 3) support

for mobile spatial services (RQ-3); 4) visibility determination (RQ-3); and 5) genericity

14

Chapter 1. Introduction

(RQ-5). Research question �ve (RQ-5) is addresses through a comparative evaluation,

the design of which can be found in the evaluation chapter (Section 5.2.1 on page 156).

1.3.1 Constant Availability of Spatial Services

Spatially-aware mobile applications operate in an environment where mobility and the

limitations of wireless networks restrict access to GIS-based network services. Despite

the lack of a reliable network, mobile applications must be capable of performing ac-

cess, analysis and visualisation operations on spatial data (Section 1.1.3). However,

spatial data is dynamic, re�ecting the changing user's environment, and spatially-

aware applications are interactive in nature, placing further demands on the analysis

and visualisation of spatial data. In order to meet the demands of a dynamic in-

teractive environment, without compromising the user experience of spatially-aware

applications, spatial middleware services must remain constantly available, despite the

unreliable nature of wireless networks and resource limitations of hand-held mobile

devices. The current thesis proposes an architectural model that takes the approach

of distributing vector-based spatial data to hand-held mobile devices.

Update

Mobile Client

Render

Spatial

Data

Update

Mobile Client

Render

GIS

Server

(a) (b)

Spatial

Middleware

Figure 1.4: Comparison of architectural models

Figure 1.4 (a) summarises the state of the art in spatially-aware mobile applications

where spatial services are provided by servers, with spatial data accessible in the form

15

Chapter 1. Introduction

of raster maps. Figure 1.4 (b) illustrates the novel middleware approach proposed by

this thesis. In this case the spatial data is stored locally on the hand-held mobile

device. When a mobile application invokes a spatial service such as map rendering,

the set of algorithms providing spatial middleware services on the mobile device per-

form the necessary spatial operations. This novel approach eliminates the dependency

on network connectivity, enabling constant availability of spatial services to mobile

spatially-aware applications. This increased availability of spatial information enables

the development of applications featuring dynamic maps, as well as user authoring and

annotation of maps, and spatial decision support [194]. This also has the advantage

of reducing the energy consumed by the mobile devices, allowing for longer operation

between charges.

1.3.2 Spatial Complexity Reduction

The architectural model for spatial middleware services takes the novel approach of

locating spatial data on hand-held mobile devices and performing all spatial operations

locally. However, spatial operations are computationally complex due to the volume of

coordinate-based spatial data that they operate on. This challenge is addressed by a set

of algorithms designed to reduce the complexity of spatial data, thereby reducing the

processing time, memory and power consumed while manipulating it on mobile devices.

These algorithms include a multi-scale, spatial data structure designed to approximate

continuous scale adaptation with stepped levels of detail [98]. Access to this data

structure is facilitated by a hierarchical spatial index, that uses minimum bounding

boxes to approximate more complex spatial objects [188]. The levels of detail are

derived using algorithms that eliminate objects based on rendered size at particular

scales and simplify geometry using shape and location preserving 2D generalisation

algorithms that remove vertices's by analysing directional trends against a tolerance

factor [208, 181, 77]. These generalisation algorithms are model-oriented (that is,

generalisation happens the spatial data model level, as opposed to at the graphic

representation level [53, 131]).

The architectural model uniquely combines these algorithms with bu�ering strate-

gies that minimise the impact of the rasterisation process by taking into account the

static nature of the majority of spatial information. Map projection algorithms, used

16

Chapter 1. Introduction

to convert from longitude and latitude coordinates to a mobile devices screen coor-

dinate system, are chosen to optimise the performance of coordinate transformation

at the cost of acceptable area and shape distortion [48]. Limited processing resources

are preserved by clipping geometry that extends beyond the viewport of the device,

to avoid computing projections and rendering coordinates that will not be seen. The

novel architectural model proposed in this thesis combines and integrates these algo-

rithms into a spatial middleware service capable of selecting, retrieving and rendering

spatial data on hand-held mobile devices.

1.3.3 Spatial Services

Mobile, spatially-aware applications require a number of spatial services. These ser-

vices include: 1) Routing; 2) Cartographic Rendering; and 3) Spatial Reasoning. The

architectural model for spatial middleware services proposed by this thesis contains

algorithms that provide support for each of these services.

Routing assists spatially-aware applications in generating routes between locations.

To achieve this, applications require an understanding of the topological6 structure

of the user's environment. Topological representations of regions are a graph-based

alternative to metric maps (also called Euclidean maps) where nodes are features and

edges are paths between them. Spatial information uses an absolute coordinate system

and numerical measures of positions and dimensions of objects to describe features of

the environment. Representing and generating routes based on metric maps is memory

and processor intensive. However, they are fast to build, easy to update, and translate

well to graphical representations making them suitable for use on mobile devices. This

thesis proposes an architectural model where topological relationships between objects

are determined from spatial data describing the user's environment as needed.

Cartographic rendering supports mobile applications in communicating spatial in-

formation to the user through their interface. In the case of location-aware applica-

tions, locations must be communicated to the user along with any context that may

impact the user. A cartographic (map-based) interface is a method of communicating

context to mobile users that is commonly found in mobile location-aware applications

6The topological structure refers to the logical structure of areas based on spatial relationships
(connectedness).

17

Chapter 1. Introduction

[129, 93, 50]. Location-aware applications lend themselves to a cartographic style of

explanation, in which relationships between locations are depicted diagrammatically in

terms of relative proximity. The architectural model proposed by this thesis contains

an algorithm that produces cartographic interfaces at varying scales and resolutions,

on top of which contextual information can be rendered (drawn to the screen).

Spatial reasoning is the determination of metric, topological and logical relation-

ships between locations. Mobile applications rely on spatial decision support to locate

nearby services, deliver directions or estimate journey times. Spatial data can be used

by spatially-aware applications as a common frame of reference to facilitate better

collaboration between peer devices. As an example, imagine mobile users who are

equipped with a camera that is used to determine location (�I can see that I am in

front of the gate�). With the ability to access and reason over spatial data it may be

possible in the future for users who are in sight of each other to collaborate to help

determine each other's positions (�I can see that the door is behind you�). From this

example it is seen that being able to �x a position in some coordinate system is not

as useful as being able to determine if two entities are in view of each other [23]. An

understanding of physical relationships between physical entities, for example walls

block users' visibility, will be necessary in future location-aware applications [36].

Mobile Spatially-aware Applications

Middleware

ContextSpatial Information

• Measurement

• Analysis

• Proximity Search

• Cartographic Rendering

• Map Manipulation

• Coordinate Conversion

• Routing

• Visibility Determination

Figure 1.5: Middleware model for spatial services

Figure 1.5 summarises the spatial middleware services provided to spatially-aware

mobile applications. In order to support these services the architectural model provides

18

Chapter 1. Introduction

algorithms for each of the GIS operations for manipulating spatial data presented in

Section 1.1.3.

1.3.4 Visibility

The ability to determine if two entities are in view of each other is an example of an

innovative spatial service that is supported by the architectural model described in this

thesis. This service requires knowledge about features in the real world to compute

whether an object is something that the user can see. This knowledge can be used in

navigation applications to present instructions based on features that are visible in the

real world. This is only possible with access to the vector-based spatial information

that is constantly available and of reduced complexity [23].

View Frustum

View Frustum

Culling

Occlusion

Culling

Visible

Not Visible

Figure 1.6: Illustration of visibility culling techniques

Object precision visibility is determined by �ltering objects within the application's

viewport based on �eld of view and occlusion. The objects are stored in a depth bu�er

[78] (linear data structure ordered by distance from point of view) on which visibility

culling techniques including view frustum culling and occlusion culling are applied

(Figure 1.6) [240, 244]. In order to reduce the demand on computational resources

and energy, the algorithms use bounding boxes of individual objects to approximate

their shape. This algorithm reduces the computational requirements of determining

visibility of spatial objects by �nding a conservative estimate as opposed to an exact

19

Chapter 1. Introduction

answer to the problem.

1.3.5 Genericity

The model for spatial middleware, including the set of algorithms and spatial services,

provides a design whose implementation supports developers by providing generic

structure and behaviour that addresses the common challenges in mobile spatially-

aware applications. The model is generic, as it provides spatial services that are not

con�ned to a single application domain but may be reused by developers of a range

of mobile applications. For example: �eld work applications, tour guides, navigation

assistants, time management applications, messaging applications and conference aids

(Section 1.1.3). Resuse of the model is also directly supported by a reusable implemen-

tation that provides reusable and extensible mechanisms for spatial data management

and spatial operations that execute on a mobile device. Extensibility in the model

is supported by the pluggable component model that de�nes speci�c extension points

where alternative algorithms may be substituted. The substitution of component im-

plementations is facilitated using a con�guration �le that speci�es the component in

use and its parameters.

1.4 Contribution

The main contributions of the thesis can be summarised as follows:

C-1 (Addressing RQ-1)

A model for mobile spatial middleware that combines a vector-based spatial

model with the ad-hoc collaboration features of the Hermes framework for mobile

computing to autonomously disseminate spatial data to mobile devices.

C-2 (Addressing RQ-2)

A multiple representation database that dynamically generates levels of detail via

model generalisation. Continuous scale adaptation is approximated with stepped

levels of detail and retrieval and insertions are facilitated by a hierarchical spatial

index that uses minimum bounding boxes to approximate more complex spatial

objects.

20

Chapter 1. Introduction

C-3 (Addressing RQ-3)

A set of algorithms for manipulating spatial data to support services such as:

route generation; rendering of personalised, adaptable map-based interfaces; and

spatial reasoning. This set of algorithms preserve limited processing resources,

satisfying users' expectations, by selecting data at an appropriate scale, clipping

geometry to viewport extents, bu�ering static objects and caching coordinate

transformations.

C-4 (Addressing RQ-3)

The design of an innovative visibility determination service for spatially-aware

applications based on the use of a depth bu�er on which a variation of occlusion

culling is performed to reduce the set of geometry to a possibly visible set (PVS).

C-5 (Addressing RQ-4)

A comparison between the model for mobile spatial services presented in this

thesis and existing approaches investigates the energy trade-o� when rendering

and interacting with map-based interfaces to spatially-aware mobile applications.

C-6 (Addressing RQ-5)

A generic framework for spatial services designed not to overburden the limited

resources of hand-held mobile devices and does not depend on continuous network

connectivity.

Two approaches have been taken to evaluating the thesis contribution. Performance

evaluations demonstrate that spatial services (map rendering, generalisation, route

generation and visibility determination) can be provided locally on hand-held mobile

devices. In addition, empirical experiments compare the trade o� in power consump-

tion between performing these spatial operations locally versus o�-loading the tasks to

a server. The contribution as regards the reusability of the model for spatial middleware

services to support the development of a range of mobile, location-aware applications

is evaluated through the development of a case study application.

21

Chapter 1. Introduction

1.5 Thesis Outline

The reminder of this thesis is organised as follows. Chapter 2 presents an overview of

the state of the art in the areas of spatial services for mobile computing, commercial

GIS and web mapping. Chapter 3 describes the design of a model for spatial mid-

dleware, a local environment model, and spatial middleware services built using the

model. Chapter 4 presents the implementation of the environment model and spatial

services, describing how these components are integrated to form a generic framework

for spatially-aware applications. In Chapter 5 the performance of the spatial services

are evaluated, the results of experiments investigating the energy trade-o�s in perform-

ing spatial operations locally versus o�-loading the tasks to a server are presented, and

a case study spatially-aware application demonstrates the reusability of the framework.

Chapter 6 concludes with a summary of the most signi�cant contributions of this the-

sis, commenting on the overall bene�t of the approach and discusses research issues

that remain open for future work.

22

Chapter 2

Related Work

This chapter assesses research related to mobile spatial services. The extent to which

each of the related projects addresses the research questions, identi�ed in Section 1.2,

is discussed. A review of related work in the following areas is provided (Figure 2.1):

1. Spatial services for mobile computing.

2. Map-based mobile services.

3. Commercial GIS & web mapping.

The systems presented in this chapter are representative of a wider range of systems,

chosen based on their unique features or their in�uence in the development of the �eld.

1. Spatial Services for

Mobile Computing

Mobile

Spatially-

Aware

Applications

2. Map-Based Mobile

Services

3 (a)
Commercial GIS

3 (b) Web

Mapping

Figure 2.1: Technologies related to this thesis.

23

Chapter 2. Related Work

2.1 Spatial Services for Mobile Computing

The projects included in this section on spatial services for mobile computing are

those that provide application frameworks, middleware or infrastructural support to

the development of spatially-aware mobile applications.

Mobile spatially-aware applications incorporate features or services that require

knowledge about the logical and topological structure of the user's environment. These

applications run on hand-held mobile devices and typically make use of a positioning

system to identify their location in the real world [157, 31]. Several research projects

have produced mobile spatially-aware applications: comMotion [136], GeoNotes [68],

Riot! 1831 [192], for example, are based on the common idea of attaching digital

information to real-world places like a virtual post-it note or gra�ti. Other projects

have focused on mobile tourist guides as an application domain (for example, Guide

[43], REAL [19], TellMaris [120]). Mobile games (for example, Can You See Me Now?

[26]) have also enabled the exploration of the mobile use of spatial information. These

applications are classed as spatially-aware as they provide some spatial services to their

users. The range of services includes: navigation [43, 19, 120], map-based interfaces

[43, 19, 68, 26] and location speci�c information services [120, 26, 192, 136]. These

application services are supported by computation incorporating spatial operations

such as containment, proximity, coordinate conversion, map rendering, spatial selection

and route generation.

This section reviews systems that provide one or more spatial services to spatially-

aware mobile applications including map-based interfaces, spatial information deliv-

ery (Deep Map [134], GiMoDig [222], M-Spaces [200], GinisMobile [183]), navigation

(CRUMPET [178], Nexus [165], Lol@ [179]), adapting spatial information for use on

mobile devices (GiMoDig [222]) and visibility determination (Point to Discover [84]).

Location speci�c information services are excluded from this list as they require a net-

work connection, making it impossible to provide uninterrupted access to this service

in an unreliable wireless networking environment. The services for adapting spatial in-

formation for use on mobile devices and visibility determination are reviewed, because

these services are included in the model for spatial middleware proposed by this thesis.

Systems providing spatial services for mobile computing are compared below ac-

24

Chapter 2. Related Work

Figure 2.2: The Cyberguide MessagePad interface (Source: Abowd et al. [2])

cording to several criteria based on the research questions de�ned in Section 1.2:

1. Availability; The availability of spatial services, despite the unreliability of wire-

less networks (RQ-1).

2. Limitations of Mobile Devices; Design features, algorithms or architectural com-

ponents that speci�cally deal with managing or adapting to the limitations of

mobile devices (RQ-2).

3. Spatial Operations; The set of spatial operations and services provided and the

signi�cance of their location within the architecture (RQ-3) .

4. Genericity; The generality, reusability and extensibility of the system (RQ-4).

2.1.1 Cyberguide

Cyberguide is a project of the Future Computing Environments Group at Georgia

Institute of Technology, Atlanta, USA [129, 2]. Cyberguide's goal was to build proto-

types of mobile tour guides using commercially available hardware (Figure 2.2). These

prototypes enabled the investigation of issues common to location-aware application

development in mobile environments. Cyberguide (the most cited of a range of similar

location-aware tour guides) addresses how spatial data is stored, queried and repre-

sented to the user on a mobile device.

25

Chapter 2. Related Work

The Cyberguide system has a number of components, namely: Cartographer, a

map component that handles map representation on the mobile devices; Librarian,

responsible for delivering information on places of interest to the tourist; Navigator,

responsible for locating the tourist's physical position indoors or outdoors; and Mes-

senger, allows the user's position to be transmitted to a central service that could then

help tourists �nd each other or facilitate the broadcasting of messages to all users at a

certain place.

The above components were designed to run on hand-held mobile devices, although

the communications component required network access to a messaging server. The

information component stores all information on the mobile devices (including maps),

making it di�cult to propagate changes in information as each device must be indi-

vidually updated.

Availability

As Cyberguide's librarian component stores all information on the device, a wireless

network connection is not required. Storing all the information on the device allows

constant availability of applications at the cost of making information di�cult to up-

date. Although Cyberguide stores all information on the device, a requirement for

future mobile applications to access storage resources through �substantial communi-

cation and networking resources� was identi�ed [129]. To investigate this possibility,

a serial IR network, similar to that used by REAL [19], was built. This inexpensive

network was used to communicate events and support messaging but not to access

application speci�c information or spatial information. The inability to access spatial

information means that changes (for example, the change of label in a map) still need

to be manually copied to each device.

Limitations of Mobile Devices

Cyberguide is designed to work with the Apple MessagePad 100 and pen-based PCs

running Windows for Pen Computing 1.0. Prototype applications for the Cyberguide

system were designed as mobile applications from the beginning, with their functional-

ity limited only to what was achievable in this hardware and software environment. For

example, services such as an adaptable map-based interfaces or route generation were

26

Chapter 2. Related Work

not possible because of their computational complexity and the limited computation

resources of the Cyberguide hardware.

Spatial Operations

Cyberguide has a raster map-based interface that automatically scrolls based on the

user's position (Figure 2.2). Information is overlaid on this interface in the form of map

markers. Despite the project name, Cyberguide involves little guidance, navigation

support, or route generation. This is largely due to Cyberguide not maintaining a

model of the real world, limiting its ability to generate paths or highlight objects.

Cyberguide is also limited to a small geographic area and requires recompilation to

operate in a new location.

The Cyberguide project also experimented with a vector-based map representation.

This feature was found to support manipulation and additional services such as way-

�nding, but was not used because the computation required to generate a display

was greater than that available in the hardware deployed (Apple MessagePad 100).

Vector data was also di�cult to obtain and the size of the vector-based map database

prohibited local storage on hand-held devices [2].

In contrast, the bitmap representation was found to be easy to obtain (scanning)

and relatively inexpensive to store and display. However, scaling and rotation are

computationally expensive using a bitmap representation. In addition, the bitmap

representation lacked accuracy with respect to the real-world and was not suited to

providing higher level map services, such as, generating a path to direct the tourist to

a location of interest [2].

Genericity

Cyberguide is designed as a system whose conceptual design rather than implementa-

tion would be reused by developers. The utility of Cyberguide's architectural decompo-

sition stems from the extensible and modular approach taken to system development.

It is extensible as further services can be added and modular because it allows one

component to be changed without impacting the rest of the system.

Cyberguide introduced the concept of allowing a user to navigate through a collec-

tion of activities using a mobile device, location tracking and map-based user interface.

27

Chapter 2. Related Work

Figure 2.3: Deep Map interface (Source: Kray [120])

Subsequent mobile, spatially-aware applications (notably GUIDE [43]), including those

that are developed using the model and algorithms for spatial middleware services de-

scribed in this thesis, are built on the concepts introduced in the Cyberguide system.

2.1.2 Deep Map

In the Deep Map project, an interdisciplinary research group at the European Media

Lab developed a prototype of a digital personal mobile tourist guide for the city of

Heidelberg, Germany [134, 120]. The goal of the project was to develop information

technologies that can handle heterogeneous data collections and complex functionality

but are still accessible to untrained users. Unlike Cyberguide, where all information is

stored locally on the device, Deep Map takes a two tier, client/server approach with a

commercial GIS acting as the server platform. An ArcView GIS server platform hosts

a number of Java GIS-agents. Mobile clients communicate with these agents using an

XML-based messaging system. Two clients exist for the Deep Map system, one is a

web-based planning and exploring tool for virtual visits or pre-trip planning and the

other is a mobile guide designed for a wearable computer (Figure 2.3).

Availability

The platform presented by Deep Map relies on a reliable network connection be-

tween infrastructural components and the mobile client. However, the Deep Map

28

Chapter 2. Related Work

project raises a number of interesting research questions. In particular, Zipf (�Adap-

tive context-aware mobility support for tourists�, an essay included in [218]) recognises

the need to reduce dependency on network availability and concludes that �we must

develop lightweight versions of these [GIS] components� in order to maintain a dynamic

model of the users environment on mobile devices.

Limitations of Mobile Devices

The mobile Deep Map prototype is developed for a wearable computer (Xybernaut

MA IV) with a hand-held color LCD display and a headset1. Deep Map deals with

the processing limitations of mobile devices by o�-loading complex spatial operations

to a server. The server responds with raster map data. This approach trades the cost

of energy usage and application responsiveness on the mobile device with communica-

tion costs, and assumes a reliable, always available wireless network connection. The

performance or energy usage of this approach was not quanti�ed.

Spatial Operations

Spatial operations in Deep Map are handled by GIS-agents implemented using Java

wrappers that communicate with the ArcView GIS via remote procedure call. One

of these agents, the geo-spatial agent, retrieves spatial information from the GIS and

performs a range of spatial operations [134]. Other agents are responsible for map

rendering navigation and route �nding. However, these spatial operations are all per-

formed on server-side components of the Deep Map framework requiring continuous

network connectivity with mobile clients.

Genericity

The Deep Map applications are limited to an area around Heidelberg castle where

tourist information, mapping and wireless network coverage is available. Although the

applications cannot be directly reused, Deep Map itself is considered a framework.

The goals of the framework are to demonstrate that standard GIS functionality can

implement personalisation and context awareness through adaptive map generation

1The Xybernaut MA IV is a lightweight computer with all the functionality and connectivity of a
desktop computer. The CPU was a 200 or 233 MHz Intel Pentium MMX. The device had between
32 and 128 MB RAM and contained several GBs hard disk storage.

29

Chapter 2. Related Work

Figure 2.4: The CRUMPET welcome page (Source: [206] Figure 4.)

and personalised tour proposals. Although Deep Map demonstrated that GIS func-

tionality has a place in personal mobile tourist guides, the research framework they

propose is not generic or reusable, in that it is only designed as a testbed for pro-

totyping applications in a controlled environment. Deep Map does not support the

building of spatially-aware applications for deployment in the real world [134]. Several

follow-on projects continued the investigation into mobile information delivery systems

for tourists. One of these is CRUMPET.

2.1.3 CRUMPET

CRUMPET is an EU funded research project that followed on from Deep Map [178].

The goals of the CRUMPET project were to provide new information delivery services

for a far more heterogeneous, mobile, tourist population. The CRUMPET project

took a multi agent infrastructure approach to providing spatial services to mobile

applications. Mobile devices host terminal agents that are responsible for providing

the user interface (Figure 2.4). Network agents manage the communications layer

and service agents wrap existing e-tourism services. Like Deep Map, spatial data is

provided by a spatial agent that wraps an OpenGIS-Server. A service broker agent

allows terminal agents publish interest in particular services and receive information

about services that meet criteria such as proximity constraints. Using this model,

services are combined on demand and adapted by agents to the user's environment to

provide mobile applications with spatial information.

30

Chapter 2. Related Work

Availability

CRUMPET is an infrastructure platform and requires reliable wireless connection to

deliver spatial services to mobile devices. The periodic disconnections that arise are

accounted for through the provision of a location-aware service broker agent. This

agent can deliver appropriate services to the mobile device based on its location. In

the case of a disconnection due to mobility, this agent may be used by the mobile

device to discover services at its new location. Mobile devices do not maintain a model

of the users' environment and rely entirely on a reliable wireless network infrastructure

to access the CRUMPET infrastructure.

Limitations of Mobile Devices

CRUMPET targets lightweight terminals such as next-generation mobile phones and

PDAs, but to date, all �eld trials have been conducted using iPAQ hand-held com-

puters. One of the goals of CRUMPET is to provide a service delivery platform that

can adapt to the limitations of various wireless networks such as High Speed Circuit

Switched Data (HSCSD), General Packet Radio Service (GPRS) or Universal Mobile

Telecommunications System (UMTS). The CRUMPET platform includes functional-

ity to monitor the quality of service of data transmission, control data transmission

formats and select appropriate protocols. CRUMPET takes the computational limi-

tations of mobile devices into account through its choice of a client/server approach,

which requires a reliable network connection to maintain the user experience. Net-

work communication consumes energy, a limited resource on mobile device. However,

CRUMPET does not factor energy consumption on the mobile device into decisions

regarding network interface, data transmission formats or protocols.

Spatial Operations

CRUMPET adopted OpenGIS Consortium standards for providing access to hetero-

geneous geographical data and geo-processing resources in a networked environment.

These standards are the Web Mapping Interface Speci�cation and the Geographic

Markup Language (GML). GML is an XML version of the OpenGIS-Simple feature

speci�cation, which is a speci�cation for vector based map-content for GIS systems.

31

Chapter 2. Related Work

The design approach is to make use of distributed geodata servers and corresponding

web map servers for spatial information within the CRUMPET platform. However,

applications developed for CRUMPET could not be considered spatially-aware as they

do not consume vector-based spatial data but rely on the spatial agent to perform

spatial functions such as spatial queries and selections, distance measures, exports of

geometry data and visibility analysis. This means the CRUMPET applications do not

include the spatial operations and algorithms necessary to maintain a model of the

user's environment and can not provide access to common spatial services without the

assistance of CRUMPET's web map servers.

The CRUMPET project recognised geographical information as being a crucial

feature of tourism applications. CRUMPET concluded from its user trials that �Maps

rank very high, and even higher when they indicate the current position of the user.

The rendering of maps, enhanced by context-sensitive information, is probably a core

feature for mobile tourism support� [206]. The same �eld trials also uncovered a

requirement that maps on mobile devices should adapt to the user's orientation and

include information such as building outlines, accessibility and bus stops. Although

these �ndings were to in�uence the design of other mobile spatially-aware applications

including the spatial services presented in this thesis, CRUMPET's implementation

is server-centric and does not take into account the combined challenges of mobility,

resource limitations and unreliable wireless networks.

Genericity

CRUMPET supports the development of spatially-aware mobile applications by basing

its architecture on a standards-compliant open source agent framework. In addition,

a standards-based approach to spatial services is taken and an implementation of the

platform is available as open source code.

Strategies proposed by the CRUMPET project to reduce network dependence in-

clude intelligent pre-fetching and caching in combination with location awareness and

resource (network, CPU) adaptivity. First steps to evaluating these proposals resulted

in a prototype providing spatial operations such as topological queries on a PDA using

R-Tree spatial data indexing [207]. However, further details of this prototype have not

been published.

32

Chapter 2. Related Work

One of the outcomes of the CRUMPET project that has been highly in�uential on

this thesis is the argument by Zipf [246] that spatial services need to run on mobile de-

vices to reduce dependency on network availability. The model for spatial middleware

presented in this thesis locates all spatial information locally on the mobile device. This

design decision requires that the algorithms for manipulating the spatial information,

the spatial operations for inferring relationships between objects in the environment

and the spatial services such as route generation and map rendering, must also run on

mobile devices. These challenges form the core areas of investigation in this thesis.

2.1.4 Nexus

Nexus is an infrastructure-based GIS platform for mobile spatial services developed

by the University of Stuttgart [161, 163, 81, 165, 82]. The main focus is on modeling

heterogeneous spatial information for a wide range of applications and o�ering an open

platform on which other service providers can build their location services.

The Nexus platform speci�es basic services, open protocols and open data exchange

formats needed for location-based services. The central feature of the platform is its

model of the real world called the Augmented World Model (AWM). Nexus is a three

tiered architecture (Figure 2.5). Applications run on a mobile (but not necessarily

hand-held) client and communicate wirelessly with the Nexus infrastructure [164].

Availability

Mobile, spatially-aware applications built for the Nexus platform (for example, NexusS-

cout [162], CityNav [82], Virtual Information Towers [229]) rely on reliable wireless

network connectivity between mobile devices and the infrastructure. Should this con-

nection be interrupted, the application will no longer have access to any spatial data,

spatial services or location-based events.

Limitations of Mobile Devices

Nexus makes no attempt to provide spatial data tailored for mobile devices. The

responsibility of controlling the restriction of spatial information is left to the devel-

opers of Nexus applications. Nexus clients are Java Applets, developed for a note-

book computer based on a web browser [125]. The Nexus platform is not suitable for

33

Chapter 2. Related Work

G
e
o
 C
a
st

E
v
e
n
t

S
e
rv
ic
e

A
re
a

S
e
rv
ic
e

R
e
g
is
te
r

DB GIS

Spatial Model Server Location Server External Data
(www)

S
e
rv
ic
e

L
a
y
e
r

NEXUS Nodes

F
e
d
e
ra
ti
o
n

L
a
y
e
r

A
p
p
li
c
a
ti
o
n

L
a
y
e
r

Client A Client B

Applications

Standardised Interface

• Data Integration

• Map Service

• Navigation Service

Wireless Communication

Figure 2.5: The Nexus architecture (Redrawn from [82], Figure 1)

spatially-aware applications on hand-held mobile devices due to the overhead of parsing

the AWM modeling language into an object-oriented data structure. Like Deep Map,

Nexus provides server-side implementations of common spatial services (for example,

map creation, navigation) allowing these tasks to be o�oaded from resource limited

mobile devices.

Spatial Operations

The Nexus application layer provides tools for constructing queries for spatial data in

AWQL (Augmented World Query Language) and tools for parsing the resulting spatial

data back into instances of AWM objects. However, there is no client-side support for

inference or deriving spatial services from this object-oriented data structure. The Fed-

eration Layer (Figure 2.5) provides support for spatial operations, including position,

range, and nearest neighbour queries. In addition, a data integration service (from

multiple Spatial Model Servers), a navigation service and a map service are provided.

Genericity

Nexus supports the development of spatially-aware applications by providing infras-

tructure that can deliver spatial information to mobile devices. Spatial information is

accessed via a query language (AWQL) that supports object retrieval within the AWM

34

Chapter 2. Related Work

Overview Map

Detail Map

Region of Interest

POI Information Menu

Figure 2.6: Lol@ map interface (Source: Umlauft et al. [223])

and a data exchange format called AWML (Augmented World Modeling Language) to

serialise the objects of the AWM. In addition the Nexus project has published papers

detailing a step-wise process of building spatially-aware applications using the Nexus

Augmented World Model [165]. However, to date there has been no deployment of

Nexus infrastructure.

2.1.5 Lol@

The Lol@2 system is a mobile tourist guide for the city of Vienna, developed at the

Forschungszentrum Telekommunikation Wien [89, 179, 223]. The tourist guide is a

location-based mobile application designed for mobile phones that o�ers maps, locali-

sation, routing functionality, and speech input.

LoL@ takes a similar architectural approach to CRUMPET. The main interaction

metaphor is that of a browser, where a user clicks links or buttons to access information.

LoL@ uses an Internet application architecture based on the client/server paradigm.

A `terminal' with permanent network connection accesses a remote server where most

processing takes place. The client is responsible for the display and direct interaction

handling on the mobile device through a web browser (Figure 2.6).

2Local location assistant

35

Chapter 2. Related Work

Availability

Although LoL@ takes a predominantly client/server architectural approach, it is de-

signed taking technical constraints such as limited bandwidth and possible loss of

network connection into consideration. LoL@ stores all content in a database on the

server. However, unlike most client/server architectures, LoL@ moves some of the ap-

plication's logic to the mobile client. Simple interactions like a button press, which

do not cause an information update from the server, can therefore be handled directly

within the device. This concept improves response time and reduces network load. Al-

though LoL@ is capable of providing a better user experience than other client/server

systems in a unreliable wireless network, LoL@ does not move enough functionality to

the mobile devices to allow it support highly interactive mobile applications. Due to

the dynamic nature of the user's environment, spatially-aware applications require re-

liable access to common spatial services and LoL@ does not achieve this goal as spatial

information and services remain on the server-side.

Limitations of Mobile Devices

LoL@ is designed to account for resource limitations in a static way [179]. To accom-

modate the small screen size of mobile devices, the presentation of information uses

the browser metaphor and the maps are carefully designed to remain usable at low

resolutions and small sizes. Uncertainty in user position is accounted for by identify-

ing location in the interface as a circular region rather than a point, where the radius

of the region is an indication of the estimated error. Limited bandwidth is managed

through a push-based content delivery and by controlling the frequency of refreshing

the displayed maps based on the user's average moving speed and the chosen scale on

the display. LoL@ does not feature algorithms to minimise the impact of other limited

resources such battery power, processing resources or memory. Although LoL@ divides

its logic between client and server, the division of responsibility does not take into ac-

count the energy trade-o� in performing computation locally versus communicating

tasks to servers. This limits the usefulness of the application as mobile devices will not

operate for long between charges.

36

Chapter 2. Related Work

Spatial Operations

LoL@ supports a limited set of spatial operations. A map viewer applet in the terminal

is able to display maps of the inner city of Vienna in two zoom levels (overview and

detail). All detailed maps are designed for an on-the-�y production, including user-

dependent display of information layers (route, point of interests) and a simpli�cation

of map elements. Coordinate transformations are done by a location server, while map

preparation and route calculations are performed by a routing server. Although all the

spatial operations in LoL@ are provided by servers, LoL@ successfully demonstrates

the feasibility of using a map representation on smart phones with small displays.

However, LoL@ does not provide mobile devices with access to a local spatial model,

the model that is available on the server-side is limited to two levels of detail which is

insu�cient for most spatially-aware applications as it places restrictions on the ability

to scale the interface; a key requirement on devices that are characterised by small

displays.

Genericity

The server side platform of the LoL@ system contains several modules that could be

reused by other applications. However, developer support for reuse of this technology

was not a research goal of LoL@. The LoL@ systems targets the tourist guide appli-

cation domain and does not provide generic spatial services for spatially-aware mobile

applications.

2.1.6 GiMoDig

GiMoDig3 is a project from several European national mapping agencies, funded from

the European Union [208, 222]. GiMoDig investigated methods for delivering spa-

tial data to mobile users from national primary geo-databases by means of real-time

data-integration and generalisation. Although the main concern of this project was

data integration and the delivery of spatial data to mobile devices, work was also

done on production of personalised maps in a real-time environment and methods for

progressively transmitting vector data and information presentation on small-display

3Geospatial info-mobility service by real-time data-integration and generalisation http://

gimodig.fgi.fi/

37

Chapter 2. Related Work

Data Layer

Data Processing Layer

Portal Service

Client

GML - Original data

GML - Generalised data

JPEG, SVG, etc.

WFS Request

Extended WFS Request

WMS Request

Figure 2.7: Simpli�ed GiMoDig architecture (Source: Sarjakoski et al. [222])

mobile devices. The GiMoDig project takes a service-oriented approach to distribut-

ing cartographic data from core databases at national mapping agencies to mobile

devices. Figure 2.7 illustrates a simpli�ed overview of the GiMoDig system architec-

ture. The architecture makes extensive use of Open Geospatial Consortium (OGC)

Web-standards.

Availability

The GiMoDig platform requires a reliable network connection to operate. Although

the spatial data delivered to the mobile device can be in SVG vector graphic format, it

is designed for display and is stripped of all original GIS feature attributes. Because of

this, the data can not support spatial operations (route generation, selection, restric-

tion, information overlay, etc.) on the mobile device. However, simple vector graphic

manipulation such as rotating and zooming is possible although any transformation

of geometry can not be mapped back to the real-world coordinates of corresponding

objects.

Limitations of Mobile Devices

The GiMoDig platform is designed to support mobile phones or PDAs. It is assumed

that these devices are constantly connected to a network and have access to a posi-

tioning system and navigation service [168]. The limitations of these mobile devices

are accounted for by: 1) placing all the spatial operations on the server-side and 2)

performing real-time generalisation of spatial data in order to reduce the complexity

38

Chapter 2. Related Work

of the map-based interface. The reduction in complexity of spatial data results in

more e�cient data transmission and a map that can be adapted and personalised to a

speci�c device and individual user.

Spatial Operations

The GiMoDig project's goal was to generalise complex spatial data in order to pro-

vide a �exible presentation mode for spatial information on small-display devices. In

GiMoDig, the spatial data is con�ned to the server-side platform with mobile clients

having access to SVG or JPEG map images for display. GiMoDig considered the gen-

eralisation process �too complex to be executed in real-time� and �incapable of meeting

the response time requirements for �exible zooming and adaptation� on mobile devices

[222]. Hence, the GiMoDig service performs generalisation on behalf of the mobile

device. In fact, all spatial operations in GiMoDig are performed within the server-side

infrastructure.

The spatial operations supported by GiMoDig include map rendering, coordinate

transformation, spatial data selection and generalisation. Real-time generalisation is

the most signi�cant contribution of the GiMoDig project. The real-time generalisation

functionality implemented in GiMoDig includes the following generalisation operators:

feature selection by object class, area selection by min/max value, line selection by

min/max length, contour line selection by interval, line simpli�cation by Douglas-

Peucker, line simpli�cation by Lang, line smoothing by Gauss-�ltering and building

outline simpli�cation. In addition to these methods of generalisation, the GiMoDig

project makes use of preprocessed generalisation operations (that is, the results of

generalisation are stored in a multiple representation database (MRDB) structure).

The idea of an MRDB is to represent di�erent views on the same physical objects

in one data set. These views can stem from di�erent views of the world, di�erent

applications, or more commonly di�erent resolutions [208].

Genericity

The GiMoDig project does not aim to support the development of spatially-aware

applications. However, the platform was re-used internally by the project to develop a

number of mobile applications with map-based interfaces. This reuse was made easier

39

Chapter 2. Related Work

due to the project's adherence to OGC Web-standards.

A major outcome of the project was the results of a user study. During the study it

was noticed that users need meaningful map entities that are adapted according to their

context of use. The authors suggest that maps need to be available at di�erent scales,

and should provide comprehensive information in various formats to various types of

devices. These results have contributed to the design of a model for spatial middleware

presented in this thesis. Speci�cally, the requirements for a generic framework to

support a range of spatially-aware applications are based on the assumption that map-

based interfaces will be highly dynamic, available at multiple scales and need to adapt

to user's context (Section 3.2).

2.1.7 M-Spaces

M-Spaces is a spatial model for location-aware services in ubiquitous computing en-

vironments developed at the National Institute of Informatics, Tokyo, Japan [200].

Designed to maintain the positions of people, objects, and spaces in the real world,

M-Spaces is a general solution that is independent of application-speci�c services and

particular sensors. M-Spaces does not rely on databases and can operate in mobile

ubiquitous computing environments. The design of M-Spaces is in�uenced by three

main criticisms of existing spatial models:

• Existing models are constructed in an ad-hoc manner, in that they have been

designed for particular sensing systems.

• Existing models have inherently focused on particular application-speci�c ser-

vices, for example, user navigation, visualising locations on maps and providing

information relevant to the user's current location.

• Existing models cannot be used in ubiquitous computing environments (char-

acterised by resource constrained mobile devices dynamically connected to and

occasionally disconnected from wireless networks, often organised in an ad-hoc

and peer-to-peer manner) because they rely on access to a centralised infrastruc-

ture.

M-Spaces uses a containment relationship model to manage physical spaces identi�ed

by their symbolic name. Physical spaces are often organised in a containment rela-

40

Chapter 2. Related Work

tionship, in that each space is composed of more than one sub-space. For example,

each �oor is contained within at most one building and each room is contained within

at most one �oor. This model is mapped onto an object-oriented hierarchy of mobile

agents.

Availability

The agent-based approach of M-Spaces, as in CRUMPET, allows the location model

to remain available to applications despite periodic disconnections from infrastructure-

based wireless networks and the limitations of P2P networking. This is achieved by

allowing agents migrate between hosts in the environment. However, peer-to-peer

collaboration alone does not solve the problem of unreliable wireless network infras-

tructure. To provide a dynamic model of the users' environment requires a spatial

model including meaningful map entities, such as streets, buildings and dynamic ob-

jects, in an interpretable format and at multiple levels of detail on hand-held mobile

devices. Without this environment model, common application-level spatial services

can not be provided to spatially-aware applications. The model for spatial middleware

proposed by the current thesis shares M-Space's P2P networking features but uses this

capability to disseminate non-topological geometry-based spatial data.

Limitations of Mobile Devices

The proxy components in M-Spaces maintain portions of the tree on behalf of other

hosts. This allows a less capable mobile device to access services based on their location

in the environment without having to maintain a portion of the environment model

themselves. However this approach introduces the possibility that an unreliable or low

bandwidth wireless link between a proxy and mobile client could severely degrade the

user experience. In addition the use of proxy services is not with the goal of minimising

energy consumption on hand-held mobile devices and could potentially consume more

energy than performing spatial operations locally.

Spatial Operations

Unlike other systems analysed in this section (Deep Map, GiMoDig, Lol@), M-Spaces

does not base its spatial information model on geographical coordinates. Instead, it is

41

Chapter 2. Related Work

based on geographical containment between objects. As coordinates are not involved,

there is little GIS technology used. Spatial containment and geocoding symbolic names

are the only spatial operations built into the framework.

At the core of M-Spaces is the notion of connecting virtual services and the real

world. These virtual services can be any application speci�c service including, in the

case of spatially-aware applications, spatial services. For example, M-Spaces has been

used to develop `Follow Me' applications that allow the user interface to a persons

applications to follow them from computer to computer, PDAs have been used to

control nearby electric lights and applications have been developed that display maps

of the user's surroundings [201].

Genericity

In contrast to projects such as Nexus, M-Spaces is designed primarily to address spatial

models of indoor environments, supporting mobile users from stationary computers

distributed in a smart environment.

The lack of coordinate-based spatial data limits the available spatial operations

and makes M-Spaces unsuitable for providing geometric or topological representations

of the user's environment. This limits interoperability with GIS data formats making

the reuse of the containment relationship model in di�erent environments di�cult.

2.1.8 GinisMobile

GinisMobile is a mobile GIS application framework that includes support for manage-

ment and presentation of raster and vector spatial data, as well as dynamic data about

mobile objects [183, 182]. Developed at the Computer Graphics and GIS Laboratory,

University of Nis, Serbia and Montenegro, GinisMobile is designed to act as a platform

on top of which developers may experiment with context-aware applications. Ginis-

Mobile provides mobile applications with spatial data in the form of raster maps and

vector map objects in addition to supporting spatial operations via a server running a

GIS.

Figure 2.8 illustrates the architecture of GinisMobile. A client/server architectural

approach is taken with the client responsible for displaying static spatial layers (ras-

terised to a single map layer) and dynamic map components (for example, moving

42

Chapter 2. Related Work

Spatial DB

GUI

Client

Sensors

ServerRaster Map

Segments

Vector Map

Objects

GUI Commands

HTTP Post

HTTP Response

GIS

Raster Maps

Coordinates

Profiles

Context

Rule base

Figure 2.8: GinisMobile architecture (Source: Predic et al. [183])

objects). Static objects are presented on the background map, while moving objects

are superimposed over the background. Since raster segments are static in nature and

change rarely, a local cache of frequently used segments is maintained. The server

contains all the spatial information in the system and is responsible for spatial data

management, querying, analysis and presentation over the wired and wireless Web.

Availability

GinisMobile relies on a network connection to deliver services. Changes in the user's

environment (detected by sensors) and user input are both communicated to the server,

which responds with an updated interface. This design decision was taken to minimise

the processing requirements on the mobile device but has the result of making any

applications built using the GinisMobile framework unusable in the presence of limited

bandwidth or unreliable connectivity.

Limitations of Mobile Devices

GinisMobile takes into account the limitation of mobile devices both by minimising

processing on the client side and through context-awareness, allowing the server to

adjust the set of o�ered services according to technical characteristics of the user's

environment (processing power, memory, display characteristics and network connec-

tion).

GinisMobile makes use of two novel techniques for supporting spatially-aware mo-

bile applications. Firstly, the map tiling algorithm, which caches raster map tiles on

43

Chapter 2. Related Work

the client and discards them using an LRU algorithm, is a novel feature that success-

fully reduces the dependence on reliable network connectivity and minimises memory

requirements. Secondly, like GiMoDig, vector map layers on the client, implemented

using SVG, enables increased interactivity and usability by supporting the rendering of

dynamic map objects without overly burdening the mobile device with computation.

Spatial Operations

All spatial information in GinisMobile exists in geospatial databases on the server-side.

The spatial data is accessed and manipulated using services implementing standard

OpenGIS web services (WMS, WFS, etc.), as well as with core LBS services de�ned in

OpenLS service framework, namely: Geocoder, Reverse Geocoder, Directory, Route,

Navigation, Gateway and Mobile Presentation services [106]. This rich set of spatial

services for mobile applications demonstrates the potential of GIS technology to sup-

port spatially-aware mobile applications. The model for spatial middleware presented

in this thesis provides many of these services.

Genericity

The goal of GinisMobile is to create a framework that is �capable of supporting de-

velopment of GIS applications in the mobile environment that include integration,

management, querying, analysis and visualisation of geospatial data� [182]. Similar to

Crumpet and GiMoDig, GinisMobile heavily exploits web standards to provide this

support. The framework itself is shown to be extensible through the development of a

number of applications [182].

2.1.9 Point to Discover

Point-to-Discover (P2D)4 is a research project from the Telecommunications Research

Centre, Vienna, Austria [84, 85, 213]. The P2D project built an infrastructure platform

to support spatially-aware mobile applications. The P2D platform is server based and

has a 2.5D environment model (each object is represented by a two-dimensional foot-

print polygon extruded by a single height value). It is designed to provide mobile device

4http://p2d.ftw.at/

44

Chapter 2. Related Work

C
o
n
te
n
t
In
te
rf
a
c
e

Positioning

Presentation

Query

Engine

Environment

Model

Content DB

Mobile Domain Server Domain

Web API

Figure 2.9: Point to Discover application framework architecture

Interface

Billboard

Building - Top down view Building – As billboard

X

Building

Figure 2.10: P2D LVis billboard principle

developers with the building blocks to prototype innovative interaction metaphors such

as `Smart Compasses' pointing in the direction of interesting places, `Smart Horizons'

allowing users to look beyond their real-world �eld of view or `Geo-Wands', virtual

geographic pointers for the selection of surrounding objects and attached services.

The P2D project takes a web-based architectural approach to supporting spatially-

aware mobile applications. P2D is designed to run on PDAs and mobile phones that

have positioning, orientation and tilt sensors. The information from these sensors is

delivered to a server-side geospatial query engine. The query engine selects content

based on its visibility from the user's location and returns it to the client (Figure 2.9).

The Local Visibility Model (LVis) consists of spatial modeling metaphors to de-

scribe the geometrical arrangement of the search result space: Points of Interest (POI)

and Billboards. POIs are point-shaped references to geocoded content, the result of a

traditional geospatial query. Billboards are a method of including the actual geometry

45

Chapter 2. Related Work

(a simpli�ed three-dimensional geometrical representation of a 3D space) of the envi-

ronment in the query result. Figure 2.10 illustrates how LVis can be thought of as a

�cardboard cutout� version of the search space. The facades of buildings visible from

the user's location are determined and included in the search result.

The P2D project sees two advantages to the LVis approach:

1. Local knowledge of the environment's geometry on the mobile device makes ad-

vanced sensor driven interfaces possible. (For example, the user interface illus-

trated in Figure 2.10 presents the spatial query result in a schematised panorama

view of the environment.)

2. It is argued that locally stored geometry could enable real-time user interfaces.

For example, if a mobile client had spatial data describing the three-dimensional

structure of its environment, it could react to changes from sensors without the

need to re-query the server.

Availability

P2D applications store fragments of the environment geometry locally to limit the ap-

plication's reliance on always-on connectivity. However, the environmental information

that is cached is speci�c to the user's location and once this changes the server must be

contacted to update the mobile device's environment model. The P2D project asserts

that mobile applications should not depend on always-on connectivity, particularly in

emergency situations. P2D suggests that synchronisation should occur as soon as con-

nectivity with the network is re-established, or it can be performed in a decentralised

manner, by exchanging spatial knowledge stored on one device with other devices.

Although a distributed approach is suggested, the applications developed using P2D

have all been client/server.

Limitations of Mobile Devices

The limitations of mobile devices are taken into account in the design of the Local Visi-

bility Model (LVis). LVis is an XML data format that encodes geographical knowledge

about the environment based on their visibility. Mobile applications periodically re-

trieve a new LVis from the server and update the user interface accordingly. Device

46

Chapter 2. Related Work

limitations are further taken into account by the architectural design decision to place

all the spatial data and spatial operations on the server-side.

The lack of geometric spatial information in the LVis model coupled with the design

decision to perform all spatial operations on the server-side prevents spatially-aware

mobile applications from maintaining a model of the users environment suitable for

supporting highly interactive mobile applications. This results in mobile applications

that are dependent on reliable wireless networks coverage, which is often not the case

in the real world.

Spatial Operations

The P2D framework incorporates spatial query operations based on visibility and �eld

of view, a 2.5D environment model, and a presentation independent data exchange

format for geospatial query results. P2D does not support map-based interfaces for

mobile devices. Instead, the concepts of �eld of view and visibility are exploited to

support information discovery in mobile applications. This design decision has the

consequence of limiting the amount of work that the mobile device needs to do and

limits the volume of data that must be exchanged between client and server. However,

the lack of any real world geometry on the mobile client limits the device's ability to

produce a map and makes it impossible to support navigation.

Genericity

To keep the barrier of entry low for developers previously not involved in geospatial

application development, the LVis uses simple spatial modeling metaphors to describe

the geometrical arrangement of the search result space. The P2D project also makes a

number of contributions to knowledge in the area of spatially-aware mobile applications

through user studies:

• P2D demonstrated that map-based interfaces, while still ranked among the most

popular forms of user interfaces, are not the only options for usable and intuitive

interfaces to spatial information.

• P2D was the �rst project to evaluate the potential value to users of an explicit

indication of the visibility of nearby geographic features and points of interest.

47

Chapter 2. Related Work

C
yb
er
gu
id
e

D
ee
p
M
ap

C
R
U
M
P
E
T

N
ex
us

L
ol
@

G
iM

oD
ig

M
-S
pa
ce
s

G
in
is
M
ob
ile

P
oi
nt
-t
o-
D
is
co
ve
r

Architecture
Client/Server • • • • •
Locally Centralised •
Distributed • • •
Spatial Operations
Selection • • • • • •
Proximity • • • • •
Map Production • • • • • •
Levels of Detail • •
Visibility • •
Generalisation • •
Navigation • • • • •
Availability • • • • •
Mobile Device Limitations • • • •
Genericity
Interoperability • • • • •
Reuse • • •

Table 2.1: Spatial services for mobile applications

• P2D users found orientation awareness a useful feature of mobile spatially-aware

applications.

These contributions have informed the design and contributed to the requirements for

a reusable generic framework for spatial services presented in this thesis.

2.1.10 Summary

This section has presented the state of the art in spatial services for mobile computing

applications. Table 2.1 summarises the features of the surveyed systems.

The architecture of a system, while not being directly apparent to the user, has

a serious impact on the system in terms of extensibility, adaptability and reuse. The

majority of these systems take an infrastructure-based approach, either client/server

or distributed. Only the Cyberguide project localised all spatial functionality on to

the mobile device and that was largely due to the lack of a suitable wireless network

48

Chapter 2. Related Work

deployment at the time. A common feature of a number of the systems is that they

are multi-tiered and are increasingly incorporating GIS servers as a component of the

infrastructure (Deep Map, Lol@, GiMoDig). The predominantly client/server archi-

tectures prevent these systems from maintaining a model of the user's environment

that could support spatial services without relying on a reliable network connection.

The most common spatial operations supported by these systems are selection,

proximity and map production. Selection is the querying or retrieval of spatial data

for a speci�ed region. Proximity is the distance-based retrieval of information or trig-

gering of events and map production is the creating of a cartographic map in either

vector (GiMoDig) or raster format (Cyberguide, CRUMPET, Nexus, Lol@). Naviga-

tion support including route generation and way�nding is a common feature of this

class of system, possibly due to the majority of these projects targeting the tourism

domain (Deep Map, CRUMPET, Lol@, GinisMobile). Increasingly, these systems are

producing maps at various levels of resolution and detail. The P2D project and M-

Spaces are the only surveyed systems that do not assume that a map-based interface

is all that is required on the mobile device. P2D enables developers of spatially-aware

applications to experiment with new interaction metaphors and to prototype user in-

terfaces that o�er experiences beyond what is o�ered by today's applications. However,

even P2D did not communicate spatial data to mobile devices, making it impossible

for devices themselves to maintain an environment model that could be used to adapt

behaviour. The M-Spaces project targeted smart environments where the lack of client

side spatial services is less of a limitation as ubiquitous wireless network coverage can

be provided more easily.

Only three of the reviewed systems (Cyberguide, Lol@, P2D) provide spatially-

aware applications with services that are not dependent on uninterrupted wireless

network coverage. Cyberguide achieves this as a side e�ect of the locally centralised

architectural approach. In contrast, the Lol@ project explicitly acknowledges the fact

the mobile applications must degrade gracefully in the face of limited bandwidth or

loss of network connection. To account for this, Lol@ performs some functions on the

mobile device, reducing latency, improving robustness and conserving energy usage.

Similarly, P2D cache's data on the mobile device allowing for continued operation de-

spite periodic network disconnections. The Deep Map project advocated the approach

49

Chapter 2. Related Work

of caching spatial data on the mobile device but noted that lightweight variants of spa-

tial operations would be required on mobile devices to exploit spatial data to provide

useful spatial services.

These projects take the limitations of mobile devices in terms of computation,

memory and energy into account in one of three ways: 1) Computationally complex

operations are o�oaded to more capable servers (CRUMPET, Nexus, GiMoDig); 2)

Generalisation [127] is used to reduce the complexity of spatial data to a point where it

may be managed by a mobile device (GiMoDig); 3) The limitations of the target plat-

form are accounted for statically at design time by implementing minimal functionality

or tailoring spatial data to meet the capabilities of a particular platform (Cyberguide,

Lol@, M-Spaces, P2D). None of the surveyed systems cited energy usage as a device

limitation they were concerned with. This is despite the client/server architecture,

which requires signi�cant use of energy consuming wireless networking, being the most

common architectural approach to supporting mobile spatially-aware applications.

The systems presented in this section provide spatial services to mobile, spatially-

aware applications. However, they provide varying support to the developers of these

applications. Two main approaches to enabling the development of spatially-aware

applications can be identi�ed; Reuse and Interoperability. Systems that support devel-

opment through reuse, do so through the provision of a framework, service or platform

(Cyberguide, Deep Map, Nexus, M-Spaces and GinisMobile). Alternatively, interoper-

ability through the adoption of web standards or de�nition of open XML data formats

facilitate the development for applications that can directly interact with these systems

(GiMoDig, P2D).

2.2 Commercial GIS & Web Mapping

The source of spatial data in many of the systems reviewed in this chapter is a GIS.

There are a small set of general purpose GIS available, the majority of which are

commercial applications. The Intergraph Corporation's MGE/MGA system, Pitney

Bowes Software MapInfo platform and ESRI's5 ArcGIS are general purpose systems

that meet the needs of various application domains. Particularly relevant to this thesis

5Environmental Systems Research Institute

50

Chapter 2. Related Work

is the ArcGIS Mobile SDK [70] product from ESRI, as it deals with the use of spatial

information in mobile environments. This section will review the capabilities of this

commercial development platform and application framework using the same criteria

with which we analysed spatial services for mobile computing (that is, Availability,

Limitations of Mobile Devices, Spatial Operations, and Genericity).

In addition to commercial GIS, there is related work in the area of web mapping.

In recent years there has been an explosion of mapping applications on the web, such

as Google Maps [91], Multimap [156], Microsoft Live Search Maps [145], and Yahoo!

Maps [241]. The addition of API interfaces to these web services and distribution of

free mobile clients make these systems a possible means of accessing spatial information

on hand-held mobile devices.

2.2.1 ArcGIS Mobile SDK

We have previously de�ned GIS as a system capable of capturing, storing, analysing,

and displaying graphically referenced information. However, modern GIS go beyond

this by providing a platform on which enterprise scale domain speci�c applications can

be developed and deployed. ArcGIS Mobile is an example of a mobile GIS platform

that provides access to GIS services over wireless networks to a range of mobile devices

[70]. ArcGIS Mobile provides mobile-based GIS functionality that includes mapping,

spatial query, sketching, GPS integration, editing, and wireless data access to ArcGIS

Server services.

ArcGIS Mobile is designed to support �eld data collection, essentially providing

an extension to the desktop-based GIS in a mobile environment. The goal of ArcGIS

mobile is to allow spatial data to be annotated and for these annotations to be made

available to a fully featured desktop-based GIS on return to the o�ce.

Figure 2.11 illustrates the architectural approach taken by ArcGIS Mobile. In

this model, mobile applications are designed on the desktop and packaged along with

a database of spatial data before being deployed to the mobile device. The design

and implemention of mobile applications is supported by the ArcGIS Mobile SDK,

a suite of .NET components for developing custom server-centric lightweight applica-

tions. Mobile devices communicate with a GIS server for the purpose of transferring

spatial data. Once spatial data is on the device, the application allows users to view,

51

Chapter 2. Related Work

Mobile

Devices

ArcGIS

Desktop

ArcGIS

Server

Deploy

Device
DB

Device

Application

Mobile SDK Components

Map

Cache

Map Map Action

Feature Layer

Raster Layer

Annotation Layer

Synchronization

via Web

Services

Figure 2.11: ArcGIS Mobile SDK architecture (Source: ArcGIS Mobile 9.3 [70])

navigate, collect and update maps and GIS features.

2.2.1.1 Availability

ArcGIS Mobile applications work in both connected and disconnected environments.

This is achieved by caching data on the mobile device (Guide [44], GinisMobile [183])

to allow the user to perform their task when there is no connection to the server. The

detail of the spatial data and the real world extent that it represents is limited by the

memory of the mobile device. A connection to the server is required to synchronise

updates [221]. The caching approach goes some of the way to mitigating the challenges

of maintaining an environment model without relying on a wireless network (RQ-1)

but is not a solution. Synchronisation is still required, spatial models are static and

spatial information is available at a single scale.

2.2.1.2 Limitations of Mobile Devices

The ArcGIS Mobile SDK is designed with mobile devices in mind. The spatial data

on the mobile device is authored speci�cally for mobile use and does not contain the

same level of detail as its desktop equivalent. This loss of information is acceptable as

the mobile application is designed to operate in tandem with a more capable desktop

GIS that supports more detailed spatial data editing on return to the o�ce.

The developers of the ArcGIS Mobile SDK made map rendering performance a

key requirement. This is supported by the small 540kb footprint of the SDK libraries.

However, ArcGIS Mobile is not a generic tool for spatially-aware applications. It is de-

52

Chapter 2. Related Work

signed to support a single class of mobile application and does not provide many of the

spatial services typical of spatially-aware applications (for example, route generation).

2.2.1.3 Spatial Operations

ArcGIS Mobile is not a middleware product and so provides limited ability to manip-

ulate spatial data on the mobile device. The spatial operations supported relate to

viewing and editing spatial data attributes. These include:

• View and navigate mobile maps.

• Collect, edit, and update new and existing GIS data.

• Search for and manage a list of GIS features.

This limited set of spatial operations prevents the use of ArcGIS mobile as a generic

framework for developing spatially-aware mobile applications.

2.2.1.4 Genericity

ArcGIS Mobile includes an SDK that supports the development of one type of spatially-

aware mobile application (that is, �eld data collection). The SDK does not feature a set

of spatial operations suitable for supporting the interpretation of a model of the users

environment for the purpose of adapting application behaviour or interface. The SDK

is also tied to particular proprietary server platform and requires at least intermittent

connectivity with an instance of this GIS server. However, ArcGIS Mobile does make

use of standardised geographic data formats and communication protocols.

2.2.2 Web Mapping

Web mapping is the process of generating and delivering maps on the World Wide

Web [149]. Web mapping is primarily a dissemination medium of spatial data from

traditional GIS. Examples of web mapping applications include Google Maps [91],

Multimap [156], Microsoft Live Search Maps [145], and Yahoo Maps [241]. These

applications typically o�er street maps, searches and aerial/satellite imagery. These

services are based on raster tiles organized in a quad tree scheme, that are loaded

asynchronously with XMLHttpRequests.

53

Chapter 2. Related Work

Figure 2.12: Google Maps for the iPhone 3G (Source: Apple.com [12])

In recent years, web mapping services have begun to adopt features more com-

mon in GIS. For example, web maps are increasingly providing spatial services such as

geocoding and route generation. Services such as Google Maps, Multimap and Open-

Layers, expose an API that enable users to create custom applications while Google

Maps and Live Maps allow users to annotate maps and share them with others.

2.2.2.1 Google Maps

As an example of the use of web mapping on mobile devices, we look at the Google

Maps for Mobile (GMM) application that is distributed for free with the iPhone 3G

(iPhone OS 2.0.2, August 18th 2008). GMM, like its desktop counterpart, provides

draggable maps, driving directions, local business listings and satellite imagery. GMM

also provides mobile phone speci�c features including:

• Your current location (Figure 2.12). Your current location is shown on the map

using built-in GPS, or a Bluetooth GPS sensor or using WiFi or mobile phone

towers within range.

• Business listings. Search for businesses by name (for example, "John's Pizzeria"),

or by type (for example, "pizza").

• Turn-by-turn driving directions.

54

Chapter 2. Related Work

• Real-time tra�c data. Roads are colored green, yellow or red, based on real-time

tra�c data.

• Favourites. Bookmark your favourite places so that you can easily return to them

on the map

2.2.2.2 Multimap Open API

The Multimap Open API [156] from a London based company (acquired by Microsoft

in December 2007) is another example of web mapping. Unlike Google Maps, Multimap

does not o�er a mobile speci�c application but does include two programmatic inter-

faces. The �rst of these interfaces is a JavaScript API designed for building browser-

based AJAX applications with features such as draggable maps, overlays, polylines,

map markers and information boxes. The other interface is an XML-based web services

interface that is accessed over the Internet, and supports geocoding, routing, coordi-

nate transformation and static maps. Either of these interfaces could be exploited to

provide map-based services to hand-held mobile devices.

However, neither of these examples (Google Maps and Multimap) address the chal-

lenges of providing an architectural model that is robust enough to support constant

application availability in a mobile wireless networking environment. In addition, these

examples are not designed with the limitations of hand-held mobile devices in mind.

Speci�cally, web mapping services such as these have been criticised for being merely

down-sized versions of their large-screen counterparts that shrink the same user in-

terface onto the tiny mobile device [212]. Empirical research has shown that it is

inappropriate to apply desktop idioms to mobile user interfaces [122]: mobile users are

typically occupied with real world tasks, and interactions are driven by the external

environment [175].

2.3 Chapter Summary

This chapter has reviewed and analysed spatial services for mobile computing, which

have been presented and compared based on: their architectural design choices; the

spatial operations they perform; their provisions for maintaining availability in the face

of unreliable wireless networks; their approach to managing the limited resources of

55

Chapter 2. Related Work

mobile devices; and the contribution they make to the development of further spatially-

aware applications.

Of the spatially-aware applications presented, very few were capable of executing

on a hand-held mobile device. The range of services provided by spatially-aware appli-

cations includes navigation, communication, maps and location speci�c information.

The most common architectural approach to providing these services is client/server.

The systems that adopted a di�erent architectural approach, did so by storing spatial

data locally. However, these systems are con�ned to limited areas and are di�cult to

update.

Experiences in evaluating these applications highlighted the need to solve challenges

posed by the nature of wireless networking [178, 222, 213]. Currently, the e�ect of

unreliable communications is addressed by caching spatial data on the mobile device.

This strategy is limited by the memory available on the mobile device and limits

the applications ability to remain up to date. The caching approach also raised the

problem of how to produce a dynamic map-based interface from spatial data in a

mobile environment, which is a task that consumes signi�cant resources.

The spatial services for mobile computing that have been presented typically took

the form of application frameworks and web services. These systems were based on

client/server architectures with the server-side often incorporating a traditional GIS

server. An increasing trend towards supporting open standards to allow the interoper-

ation of GIS components is evident. In addition, generalisation operations have begun

to be used as a means of adapting spatial data for use on mobile devices. However,

these operations remain con�ned to servers.

In addition, none of the projects reviewed here have considered minimising the

consumption of energy on mobile devices a design goal. There is an energy trade-o� in

performing computationally intensive tasks (for example, spatial data manipulation)

locally versus communicating these tasks to more capable servers. Although some

projects made use of servers to perform these complex tasks [120, 200, 168], none

analysed the energy consumption trade-o�.

Commercial GIS systems are also incorporating the ability to collect and edit spatial

mobile using mobile devices in this �eld. These systems can operate in a disconnected

environment, but feature spatial operations that are limited to viewing and editing

56

Chapter 2. Related Work

spatial data attributes and features. Similarly, web mapping approaches provide a

means of accessing spatial data in mobile environments. However, web mapping relies

on a reliable network connection, provides no environmental model and access to a

very limited set of spatial services. The interface to web mapping applications is in

raster format, precluding any ability to adapt the interface beyond what is available

on a desktop-based web browser.

The major criticisms and shortcomings of the systems presented in this chapter can

be summarised as:

• Existing systems do not provide spatially-aware mobile applications with the

ability to maintain a dynamic model of the user's environment suitable for sup-

porting highly interactive mobile applications. Where models are maintained,

they are provided as infrastructural services to mobile applications and require

a reliable network connection to maintain the user experience.

• Due to the predominantly client/server architectures, these systems do not in-

clude algorithms that can manage the complexity and volume of spatial data in

real-time on a hand-held mobile device.

• Without access to spatial data or spatial operations on mobile devices, existing

models can not provide reliable access to common spatial services such as map

rendering and route generation.

• To date, minimising energy consumption on hand-held mobile devices has not

been a design goal of spatially-aware applications. Existing systems do not take

into account the energy trade-o� in performing computation locally versus com-

municating tasks to more capable servers.

• There is a lack of reusable software for developing spatially-aware mobile appli-

cations. Existing frameworks are server-centric or support the development of

software in only one application domain. This requires developers of spatially-

aware applications to repeatedly tackle the challenges of mobility, device resource

limitations and unreliable wireless networks. Generic reusable implementations

of spatial services are needed that do not overburden the limited resources of

mobile devices and are not dependent on continuous network connectivity.

57

Chapter 2. Related Work

The next chapter presents the design of a middleware for spatially-aware mobile appli-

cations including an architectural model and a set of algorithms designed to minimise

the processing time and power consumed on hand-held mobile devices while providing

uninterrupted access to common spatially-aware application services.

58

Chapter 3

Design

Existing spatially-aware applications do not maintain a dynamic model of the user's en-

vironment that is suitable for supporting highly interactive mobile applications. Where

static models are maintained, they are provided as infrastructural services, requiring

a reliable network connection. Generic reusable implementations of spatial services

are needed that do not overburden the limited resources of mobile devices and are not

dependent on network connectivity.

This chapter describes the design of a model, algorithms and framework for mobile

spatially-aware applications. The model for mobile spatial middleware described in

the current chapter provides spatially-aware applications with the ability to maintain

a dynamic model of the user's environment by exploiting the ad-hoc collaboration

features of the Hermes framework (RQ-1). The algorithms designed to provide spa-

tial operations on hand-held mobile devices (RQ-2) include a multiple representation

database, a hierarchical spatial index and an on-demand model-oriented generalisation

process. The spatial middleware services, (RQ-3) including adaptable map rendering,

spatial reasoning, coordinate transformation, route generation and visibility determi-

nation are also presented. These services minimise the processing required by using

clipping, bu�ering and caching. Finally, the design of a generic framework for spatial

services that incorporates the algorithms and services of this thesis into a reusable

library of spatial tools is presented (RQ-5). This framework supports the development

of spatially-aware applications that do not depend on continuous, reliable wireless net-

working, do not overburden the limited resources of mobile devices, and maximise the

battery-life of hand-held mobile devices. Figure 3.1 maps the research questions from

59

Chapter 3. Design

M
od
el
fo
r
Sp
at
ia
l
M
id
dl
ew

ar
e
(S
ec
ti
on

3.
1)

M
ul
ti
pl
e
R
ep
re
se
nt
at
io
n
D
at
ab
as
e
(S
ec
ti
on

3.
2.
1)

Sp
at
ia
l
In
de
x
(S
ec
ti
on

3.
2.
2)

G
en
er
al
is
at
io
n
(S
ec
ti
on

3.
2.
3)

A
da
pt
ab
le
M
ap

R
en
de
ri
ng

(S
ec
ti
on

3.
3.
2)

Sp
at
ia
l
R
ea
so
ni
ng

(S
ec
ti
on

3.
3.
3)

C
oo
rd
in
at
e
T
ra
ns
fo
rm

at
io
n
(S
ec
ti
on

3.
3.
4)

R
ou
te

G
en
er
at
io
n
(S
ec
ti
on

3.
3.
5)

V
is
ib
ili
ty

D
et
er
m
in
at
io
n
(S
ec
ti
on

3.
3.
6)

G
en
er
ic
Fr
am

ew
or
k
(S
ec
ti
on

3.
4)

Algorithms Spatial Services
RQ-1 • •
RQ-2 • • •
RQ-3 • • • • • •
RQ-4 See Energy Evaluation Design (Section 5.2)
RQ-5 •

Figure 3.1: Mapping research questions to design elements

60

Chapter 3. Design

Section 1.2 to the design elements from this chapter.

Throughout the design process there were two overriding concerns. Firstly, the

design had to be implementable on hand-held devices and be e�cient enough not

to overburden their limited memory and processing resources. The design is heavily

optimised towards achieving a lightweight implementation. The design minimises the

computational complexity of algorithms so that they will consume less energy when

executed on mobile devices. Secondly, the design has to support ease of reuse by

using logically decomposed components that separate di�erent application concerns

and reuse design metaphors familiar to developers of mobile and GIS applications.

These techniques contribute to the extensibility of the resulting framework, ultimately

reducing the cost of development of spatially-aware applications.

3.1 Model for Mobile Spatial Middleware

Spatially-aware mobile applications require a dynamic model of the user's environment

that must contain meaningful map entities such as, streets, buildings and dynamic

objects. This data must be in an interpretable format and be accessible despite the

inherent unreliability of wireless networks, mobility of users and limited nature of

hand-held mobile devices.

Existing spatially-aware applications take a client/server approach, where a server

maintains a model of the environment and distributes spatial data from this model to

mobile clients (cf., Guide [43], comMotion [136], GeoNotes [68] and REAL [19]). Of

the systems reviewed in Chapter 2, only the Cyberguide project [129] was designed

to localise spatial data on mobile devices. That system is, however, limited by its

raster-based spatial data model (Section 1.1.3).

To meet the demands of a dynamic, interactive environment without compromising

the user experience of spatially-aware applications, spatial middleware services must

have constant access to an environment model. Environment models are populated

with spatial data but it is not feasible to store all the spatial data an application will

need ahead of time due to the quantity of data, device storage limitations and because

the spatial data changes over time. Section 3.1 presents the system model assumptions

in terms of the hardware environment and existing middleware support for mobility.

61

Chapter 3. Design

Based on these assumptions, a middleware approach to maintaining a model of the

user's environment is described.

3.1.1 System Model Assumptions

The model for spatial middleware presented in the current thesis makes a number of

architectural design decisions based on technical assumptions in the areas of: 1) the

computing environment; and 2) the existence of middleware for mobile computing.

3.1.1.1 Computing Environment

We assume an asynchronous distributed system where heterogeneous, distributed mo-

bile devices communicate using various wireless networking technologies with limited

range. Mobile devices can experience unanticipated and possibly prolonged disconnec-

tions; routinely change their point of network connection, potentially resulting in a

transition from one network infrastructure to another; and are sometimes organised in

an ad-hoc and peer-to-peer manner. The computing environment is viewed as collabo-

rative, with mobile devices capable of discovering and serendipitously communicating

with peers and also exchanging data with �xed infrastructure. Application logic is

pushed to the edge of the network (that is, the logic resides entirely on the mobile

devices).

3.1.1.2 Middleware for Mobile Computing

The Hermes1 project at Trinity College Dublin is the umbrella project under which the

work in the current thesis was completed. The initial requirement for a spatial mid-

dleware for mobile applications was drawn from the experience of this project and for

that reason the model presented in this thesis is designed with the assumption that the

Hermes mobile application framework provides services for on-demand collaboration

between heterogeneous mobile devices.

Figure 3.2 illustrates the Hermes framework architecture. The current thesis is

concerned speci�cally with three of the services for collaborative mobile applications

that this application framework provides: Communication, which includes Service Dis-

covery ; Collaboration; and Context Modeling. The Collaboration and Communication

1http://www.hermes.dsg.cs.tcd.ie/

62

Chapter 3. Design

Mobile Applications

Acquisition Sharing

Trust

Modeling

Privacy

Context Container

Context History

Service

Discovery

Context Management

Collaboration
inbound outbound

Trails Spatial Toolkit

Communication

Figure 3.2: The Hermes mobile application framework architecture

layers acquire and disseminate spatial data in a ubiquitous computing environment.

Speci�cally, the Communication layer is responsible for managing communication with

infrastructure and peer devices over a variety of networks and discovery of other devices

supporting the Hermes framework.

The Collaboration component divides its responsibilities between inbound and out-

bound considerations. On the inbound side (left) are the Acquisition and Trust com-

ponents. The Acquisition component is responsible for proactively acquiring data on

behalf of an application. On the outbound side (right) are the Sharing and Privacy

components, responsible for exchanging data with peers.

The Context Modeling layer provides position and orientation information that can

be used to adapt spatial data visualisation. The following section describes how the

dissemination of spatial data is achieved using the collaboration services of the Hermes

mobile application framework.

3.1.2 Spatial Data Dissemination

We have assumed a computing environment characterised by mobile devices serendipi-

tously communicating with peers and the existence of middleware services for collabo-

63

Chapter 3. Design

rative mobile applications. In spatially-aware applications, both the physical structure

of the user's environment and the relationships between real world objects are modeled

as spatial data [157]. Based on the assumptions we have made, it is possible to par-

tition spatial data into fragments representing real world regions and collaboratively

distribute these fragments throughout the user's environment. Mobile devices may

acquire these fragments as they move through the world and use them to augment and

extend their own environment model.

Transferring raw spatial data (geometry and attributes) to mobile devices rather

than making derived services available via a wireless network was �rst proposed by

the Cyberguide project [129]. Cyberguide found that locating spatial data (raster

maps in Cyberguide's case) on the mobile device allowed for constant availability of

applications but limited the ability to update the spatial data. Other projects overcame

this limitation at the cost of wireless network dependence [25, 14].

Some projects took an entirely di�erent approach to providing spatial services in

ubiquitous computing environments. M-spaces developed a spatial model that was not

based on traditional spatial data. This approach limited the ability to inter-operate

with other mobile applications, thus causing di�culties in re-using existing spatial data

produced by GIS applications.

Other projects seeded the environment with infrastructure serving spatial data for a

region [161]. However these projects used proprietary spatial data models and formats

to transfer limited types of spatial data. The overhead in interpreting these formats

on mobile devices limits their ability to be reused by a generic range of spatially-aware

mobile applications.

Figure 3.3 illustrates how the Hermes framework supports collaborative spatial data

dissemination. The environment is made up of mobile devices and �xed infrastructure.

All of these elements execute the lower layers of the Hermes framework (that is, they

can all participate in serendipitous collaboration).

The process of acquiring spatial data for a region begins with an ad hoc device

discovery process. Each collaborating node broadcasts a beacon advertising its network

address and listens for replies (Figure 3.3, 1). Any device within range that hears an

advertisement from a device it hasn't seen before will reply with a message containing

a list of the available spatial data (Figure 3.3, 2). The device then makes a decision as

64

Chapter 3. Design

GIS

Applications

Spatial Middleware Services

Spatial Data

Fragments

Peer Devices

Servers

1) Advertisements

2) Descriptions

Local Environment Model

Context Management

Collaboration

Communication

Figure 3.3: Architectural model for mobile spatial middleware

to whether it needs spatial data describing a particular region and acquires it. Once

acquired, the new fragment of spatial data is added to the devices' advertised list of

available data to be shared with neighboring devices.

The advantages of this approach are that through serendipitous communication, a

spatial middleware can acquire only the spatial data it needs, and store it locally on

the device. No interaction is required with the user, and applications do not need to

be aware of this process. The distributed approach avoids server connectivity issues,

potential network bottlenecks and satis�es the need for timely access to spatial data.

However there are some limitations to this approach. The model assumes a level of

trust between parties taking part in the system so that inaccurate spatial data is not

maliciously exchanged. Partitioning spatial data into suitable fragments, distributing

the fragments and ultimately re-integrate possibly overlapping and erroneous spatial

data on a mobile device is also a challenge [81, 219]. This challenge is addressed

at the Context Management layer of the Hermes framework, where all data fusion is

performed and is outside the scope of the current thesis.

The possibility that spatial data would not be available in an environment that is

only sparsely populated with other devices is also a concern. One approach to this

challenge, and one which our model supports, is to provide high-level spatial data

covering a large area and make �ner grained detail (that is, the interior of buildings)

discoverable as the user navigates the real world. Another approach to supporting

information dissemination in sparsely populated ad-hoc networks was taken by Trinity

College Dublin in the WAND project [234]. The WAND project seeded a ubiquitous

65

Chapter 3. Design

computing environments with infrastructure to increase the availability of nodes.

The model for spatial middleware proposed and reported in the current thesis is

based on data dissemination and acquisition functionality common in mobile context-

aware middleware. The design allows spatial data to be unobtrusively transferred

to a hand-held mobile device. When a mobile application invokes a spatial service

such as map rendering, the set of algorithms providing spatial middleware services on

the mobile device can perform the necessary spatial operations. This novel approach

eliminates the dependency on network connectivity, enabling constant availability of

spatial services to mobile spatially-aware applications (RQ-1).

3.2 Local Environment Model

Having acquired spatial data, a model of the user's environment can be maintained

with the design of suitable algorithms to support spatial operations on hand-held

mobile devices (RQ-2). These algorithms include a multiple representation database

that dynamically generates smaller scale representations via model generalisation. This

database approximates continuous scale adaptation with stepped levels of detail and

supports retrieval and insertions with a hierarchical spatial index.

3.2.1 Multiple Representation Database

The spatial middleware acquires then stores spatial data locally on resource con-

strained, hand-held mobile devices. To provide a usable dynamic model of the users'

environment, it is necessary to make spatial data available in di�erent resolutions and

levels of detail to allow for �exible zooming on small displays [79]. Spatial data can

automatically be simpli�ed to produce zoomed out overview information from detailed

spatial data, but this process is computationally expensive. However, caching the re-

sults of this process can minimise the e�ects of incurring this cost. The current thesis

proposes a novel multiple representation database2 that dynamically generates smaller

scale representations on-demand via model-oriented generalisation [208, 181, 77]. The

design of the multiple representation database (MRDB) is innovatively based on a stan-

dard spatial data model [69], approximates continuous scale adaptation with stepped

2Also referred to as multiple resolution database in literature [99].

66

Chapter 3. Design

LOD
n

LOD
i+1

LOD
i

Figure 3.4: Multiple representation database hierarchy

levels of detail [98] and uses a hierarchical spatial index to facilitate insertion and

retrieval of spatial objects [188].

An MRDB3 is a spatial database used to store data at di�erent levels of precision,

accuracy and resolution [99, 54]. Figure 3.4 illustrates the representation of spatial

objects at di�erent levels of detail. There are a number of design goals for the MRDB.

First, the database is designed to provide spatial operations on hand-held mobile de-

vices that are limited in terms of battery power, processing resources and memory

(RQ-2). This requires that the data be in an interpretable geometric format (that is,

vector representation), on which standard coordinate geometry transformations may be

performed. It also requires that the algorithms for retrieving spatial objects from the

data store are designed to minimise the computational complexity of locating objects

within a de�ned spatial region. Second, the data store is required to be application-

agnostic (that is, it should not assume a particular interaction metaphor but should

support a variety of possible solutions) [213]. The data store must also support the

storage and retrieval of spatial objects at di�erent resolutions with respect to scale

[53, 230]. Each of these scales is referred to as a level-of-detail (LoD) with maps of

varying scales re�ecting the presentation of spatial objects at di�erent LoDs. A da-

tabase with multiple LoDs can support the small screens of hand-held mobile devices

by reducing the information density in a map interface, providing the ability to zoom

in and out on the interface and by providing an internal representation of spatial data

with a reduced complexity. Third, LoDs must be produced from dynamic spatial data

requiring online model-oriented generalisation (that is, generalisation at the spatial

data model level as opposed to at the graphic representation level [53]). Finally, it is

3Kilpelainen [116] presents a comprehensive description of MRDBs and develops an MRDB model
for generalization of geodatabases of topographic maps.

67

Chapter 3. Design

also a goal to maximise the reusability of existing vector spatial data.

A number of related projects have investigated the use of MRDBs to support mobile

applications. The GiMoDig project (Section 2.1.6) used an MRDB structure on the

server-side to store the results of preprocessed generalisation operations [208]. Hierar-

chical topological data structures have been designed to enable progressive transmission

of spatial data across networks [28]. This data structure is based on a non-standard

data format and includes sequences of generalisation steps that are applied to the

coarse data in order to derive LoDs. The generalisation steps themselves are not de-

�ned in su�cient detail but are speci�c to the project, so the data can not be reused by

other applications. Han et. al. [100] proposes the use of a hierarchical data structure

for multiple representations of vector data sets. Under this suggestion a topological

network model is represented at di�erent LoDs. The model facilitates computing ad-

jacency, spatial analysis and e�cient storage but can not be used to render map-based

interfaces.

There were three possible alternatives considered while designing the MRDB re-

ported in the current thesis: 1) use conventional data structures to represent series of

vector maps; 2) use a single data structure with �ne grained spatial detail on which

cartographic generalisation could be performed; 3) pre-compute LoDs at di�erent pre-

de�ned scale levels.

The �rst option, using conventional data structures, would require that a copy

of the spatial data be stored redundantly for each LoD. This is the simplest option

and provides a workable brute-force solution. However, this approach su�ers from

issues of storage overhead, and the di�culty of maintaining consistency within the

multiple versions of the maps [100, 181]. Alternatively, the second option, storing only a

single copy of the spatial data would require that all spatial operations handle complex

geometry and all map-based interfaces are rendered using cartographic generalisation,

increasing the processing burden and consuming energy. The third option, adopted by

the GiMoDig project [230], requires that all spatial data be pre-processed limiting the

reusability of existing vector-based data sets and making it di�cult to represent the

dynamic elements of the user's environment in a spatial model.

This thesis proposes a MRDB spatial model based on the open ESRI Shape�le

format [69] that overcomes the limitations of the alternatives considered. The Shape-

68

Chapter 3. Design

Attributes Index Geometry

S
c
a
le

LODi

LODi+1

Figure 3.5: MRDB model illustrating Shape�le components

�le format supports the storage of attributes, spatial indexes and geometry and is

compatible with most commercial GIS tools. The standard technical speci�cation of

these �les is extended by making use of reserved bytes in the �le headers to store scale

information. Figure 3.5 illustrates the introduction of additional index and geometry

components to the Shape�le format in order to represent spatial data at di�erent LoDs.

By choosing an open data format to base an MRDB on, we make it possible to re-use

existing spatial data.

Each representation of spatial objects in the MRDB corresponds to a di�erent

resolution (or scale). Since each new resolution increases the storage requirements

of the data structure, it is desirable to limit the granularity of LoDs. The MRDB

partitions scale values into scale ranges, where each range has a single level in the data

structure's hierarchy. This achieves more e�cient storage and reduces computation at

the cost of a loss of continuous adaption while zooming. Although continuous adaption

has the potential to improve the usability of map-based interfaces by providing smooth

transitions between map scales, this e�ect can be reproduced using a simple animated

transition between static scales [91].

When data is requested at a particular scale, s, the scale range, SRi, is selected so

that min(SRi) < s < max(SRi) where each scale range, {SRi, SRi+1, . . . SRn}, has a

one-to-one mapping to a LoD (for example, SRi = LoDi). Once a LoD is determined,

spatial data can be read from the data structure at that scale. The algorithm for doing

69

Chapter 3. Design

Select LOD with

the closest scale

Return geometry

Read geometry

For each object

Select objects at

coarsest scale

Generalise

Figure 3.6: MRDB spatial object selection algorithm

this is illustrated in Figure 3.6.

Retrieving spatial data at a particular scale begins by querying a spatial index

to determine which spatial objects are within the query's extents and matching any

speci�ed attributes. Once this is done and the appropriate LoD is identi�ed, (for

example, LoDi) the retrieval of the geometry begins by attempting to read objects

from the LoD cache for the speci�ed scale. If the geometry for all the objects has be

found at this LoD cache then the algorithm exits. Otherwise the algorithm moves to

the next lowest LoD cache (LoDi−1) and attempts to retrieve remaining objects there.

Objects retrieved at this LoD need to be further generalised4, cached in LoDi and then

returned. The algorithm will continue to recurse until all the objects are located and

generalised to the appropriate scale.

The above approach has the advantage of simplifying the map rendering process,

while having no overhead for spatial applications that only require spatial data at a

single resolution. A limitation of this approach is that copies of spatial objects stored

at multiple LoDs result in redundant storage, thus consuming memory. However, this

redundancy is a trade-o� with computation, replacing computationally complex gen-

eralisation steps with storage. The MRDB uses a metric spatial model to support map

rendering. However, graph-based spatial operations such as route generation require a

4See Section 3.2.3 for a detailed presentation of the model-oriented generalisation mechanisms
employed.

70

Chapter 3. Design

topological model. A metric model is the more generic option as topological models can

be derived from the metric models but not the other way around. This approach also

features weak relationships between copies of spatial objects at di�erent LoDs, which

makes it complicated to remove or edit geometry, as caches of e�ected objects at dif-

ferent LoDs will need to be invalidated. Methods for propagating updates in MRDBs

have been proposed by Kilpelainen [117] and Harrie [101]. The MRBD presented in

this thesis propagates updates by invalidating LoD caches containing geometry that

has been modi�ed. An investigation of the applicability of more advanced methods

remains future work.

The MRDB addresses research question RQ-2, the design of algorithms to access

spatial models at multiple levels of detail on hand-held devices, by providing a data

store that dynamically generates and caches smaller scale representations via model

generalisation. Stepped LoDs approximate continuous scale adaptation, and a spatial

index e�ectively prunes spatial objects based on containment and attributes. The

design of the spatial index is presented in the next section.

3.2.2 Spatial Index

Spatial indexes speed up access to spatial data by using minimum bounding rectangles

to approximate more complex spatial objects. This results in a minimal representation

on which operations, such as containment, can be easily computed.

There are two levels of spatial index used by the MRDB (Figure 3.5). The �rst is

a �at index that performs a one-to-one re-mapping of spatial object locations for each

LoD. For example, this spatial index may indicate that the object stored at position

1 in the source geometry (LoD0) is located at position 4 in LoD1. The second spatial

index is a hierarchical, tree-based spatial index of the geometry at LoD0. This index

provides a single structure that is queried for spatial data and responds with a list

of geometry records. This index supports insertions and removals as the environment

model is dynamic (for example, objects move and spatial data is acquired).

A number of tree-based spatial index algorithms exist. For example B-Tree [20],

R-Tree [97] or Quad-tree [74]. We include an R-Tree spatial index with the MRDB.

Figure 3.7 illustrates how the data structure splits space with hierarchically nested,

and possibly overlapping, minimum bounding rectangles (otherwise known as bounding

71

Chapter 3. Design

R1 R2 R3

R3 R4 R5 R6 R7

R1 R4

R3

R7

R6

R2

R5

Figure 3.7: Illustration of R-Tree spatial index hierarchy for 2D geometry

boxes). The main advantage R-Tree has over other algorithms is that paged implemen-

tations are possible that minimise I/O overhead. The R-Tree is also height balanced,

minimising the depth of the tree and thereby the time to query the data structure.

This is important on a mobile device as data structures will be stored in �ash memory

that is slower to access than RAM on a desktop computer. The R-Tree algorithm was

also chosen by the CRUMPET project (Section 2.1.3) to support topological queries

on a PDA [207].

Alternatives to a hierarchical spatial index include a �at index �le, such as the

index structure incorporated into the open ESRI Shape�le standard [69]. Such an index

structure is not scalable, as the entire index may need to be read and a containment test

performed on every record to locate a single object. Other storage alternatives either

do not take disk paging into account or perform poorly for updates and insertions.

However, the two level spatial index design adopted here has a number of limita-

tions. As the hierarchical spatial index is not a standard part of the ESRI Shape�le

format, an index must be built for each Shape�le the �rst time it is opened. This

consumes processing resources for each unseen fragment of spatial data. On the other

hand, queries are likely to be much more frequent than updates, and once created, the

index persists in non-volatile memory and so survives device's reboots.

The hierarchical spatial index contributes to providing access to a local environment

72

Chapter 3. Design

model on mobile devices, satisfying research question RQ-2 by facilitating retrieval

and insertions using minimum bounding boxes to approximate more complex spatial

objects. The two levels of spatial indexing used by the MRDB combine the strengths

of each type of index.

3.2.3 Model-Oriented Generalisation

A core component of the MRDB is the ability to automatically generate new LoDs.

This is achieved by model-oriented generalisation5, which is the modi�cation of the

representation of spatial data, to derive a lighter model [53, 94, 127].

Generalisation algorithms contribute to providing spatial operations on mobile de-

vices in two ways. Firstly, generalisation can reduce the complexity of spatial data

which results in better performing spatial operations. Spatial data can be highly de-

tailed, containing many coordinates. Manipulating this data requires complex math-

ematical operations to be performed on each individual coordinate. Reducing the

resolution (number of individual coordinate points) of the spatial data results in re-

duced processing time and power consumed by spatial data manipulation operations

[4]. Model-oriented generalsiation, unlike cartographic generalisation [94], can be fully

automated [230].

Secondly, generalisation can derive representations of spatial objects that are suit-

able for viewing at di�erent scales. For example, if highly detailed spatial data was

rendered directly, without any generalisation, on a small screen, the data would need to

be uniformly scaled (or shrunk) to �t on the display. This would result in a cluttered,

illegible interface. The generalisation process reduces complexity by scaling the data

while at the same time maintaining the representative integrity of the mapped area;

exploiting a user's inability to distinguish simpli�cations in less important parts of the

map [209].

Generalisation consists of a number of discrete operations or transformations that

may be applied to spatial data [150]. The AGENT project de�ned a comprehensive

set of generalisation operators [15]. For example: classi�cation, selecting a subset

of feature classes; simpli�cation, a simpli�ed representation of a spatial object using

5The International Cartographic Association has de�ned the process of generalisation as �the se-
lection and simpli�ed representation of detail appropriate to scale and/or the purpose of a map�
[107].

73

Chapter 3. Design

less points; collapse, the reduction in number of dimension used to represent features;

enhancement, modi�cation of a feature to improve cartographic readability; selection

/ elimination, removing unimportant objects; displacement, moving objects to solve

con�icts between objects that are too close; and aggregation, combining a set of objects

to one object.

Generalisation is used by a number of related projects in the preparation of spa-

tial data for use on mobile devices. Chalmers et al. [40] used generalisation to adapt

maps for di�erent bandwidths by reducing the �le size. Zipf et al. stressed the need

for simpli�cation of geographic data to represent reality on a map at di�erent scales

and presented a range of algorithmic techniques for performing generalisation [245]6.

Urquhart et al. [224] takes a similar approach to developing user-centered cartographic

representations for mobile devices. The work by Vacallo [230] on generalisation of spa-

tial data (See GiMoDig, Section 2.1.6) is also related. Michela Bertolotto and Max

Egenhofer [28] use similar techniques by employing geographic data generalisation to

generate simpli�ed representations of vector data. Research in the area of generalisa-

tion has not yet resulted in the ability to automatically generalise dynamically changing

representations of the user's environment on hand-held mobile devices [176]. Existing

scale transitions for speci�c classes of objects remain too complex to be executed in

real-time on dynamically changing representations. Consequently, they do not meet the

requirements of response time for �exible zooming and adaptation [168]. The current

thesis proposes an innovative generalisation approach featuring just four lightweight

generalisation operations, designed to be executed on mobile devices. Together these

operations support on-demand generalisation of dynamic scenes through progressive

simpli�cation of geometry for each LoD in the MRDB.

Figure 3.8 is a �ow diagram illustrating the sequence of generalisation operations

employed. The following four generalisation operations were chosen to maximise the

data reduction while incurring the least computational cost.

These operations are applied on-demand in a hierarchical manner to the MRDB

in a process described as �Continuous Generalisation� by Sester & Brenner [208]. To

illustrate this chaining of generalisation operations, we de�ne for a spatial extent,

E containing geometry for n shapes consisting of m coordinates, the maximal rep-

6See Kray's thesis [120] for an alternative set of generic adaption strategies for spatial information.

74

Chapter 3. Design

Simplification

Return geometry

Clipping

For each object

Restriction

(Spatial Index)

Read MRDB

Elimination
Yes

No

(3.2.3.1)

(3.2.3.2)

(3.2.3.3)

(3.2.3.4)

Figure 3.8: Generalisation algorithm �ow chart

resentation En,m. We de�ne the minimal representation, E1,k where k denotes the

minimal number of vertices that is still cartographically sensible for a shape, with

k ≤ m. When E is generalised, we start with it En,m and successively generalise the

geometry until E1,k. This results in a sequence of generalised shapes for this extent,

En,m → En−1,m−1 → . . . → E1,k. At each level of generalisation, the set of geometry

represents a distinct LoD. This processing chain allows the quick derivation of a shape

at any desired generalisation by selecting an appropriate level in the multi-scale data

structure and further generalising to the necessary scale.

The following sections explain the four generalisation operations:

1. Restriction

2. Elimination

3. Simpli�cation

4. Clipping

3.2.3.1 Restriction

Restriction has been proposed by Chalmers et al. as a method of adapting map-based

interfaces on mobile devices by selecting a number of primitives that can be removed

75

Chapter 3. Design

(a) (b)

Figure 3.9: Elimination generalisation step

from the interface based on the user's context [40]. This generalisation step takes

advantage of the semantics of the spatial data format to perform a selection of data

based on its attributes. For example, consider a map view showing the whole world. It

would not be appropriate to include streets on such a map as the volume of information

would overwhelm the user's ability to read the map. However, if the scale is changed

and we zoom in to a small area, the street data would now be useful. The process of

omitting or restricting the data that is returned based on visibility at particular scales

is the simplest generalisation step that the generalisation algorithm takes.

3.2.3.2 Elimination

Elimination is a similar generalisation step to restriction as it eliminates features that

are too small, too short, or too insigni�cant to be presented in the �nal map [71]. The

de�nition of how small a spatial object needs to be to be considered insigni�cant is

application speci�c. In contrast with restriction, elimination does not quickly reject

spatial data based on an attribute, but performs a �ltering of the geometry based on

the screen area it will occupy when rendered. This results in small interface artifacts,

such as, small buildings and short roads being removed from the interface (that is,

objects too small to be seen). Figure 3.9 illustrates this process. On the left, (a),

a detailed map is shown. On the right, (b), the results of elimination are shown.

The maximum size of eliminated objects is adjusted through the modi�cation of a

con�guration parameter. This parameter is used by a generic elimination �lter as

an area threshold. Objects with a rendered, on-screen area below this threshold are

removed. For example, a threshold value of 1px2 would eliminate all spatial objects

that, when rendered at the current scale, would occupy less than 1px on the devices

screen.

76

Chapter 3. Design

(a) (b) (c)

Figure 3.10: Simpli�cation generalisation step

3.2.3.3 Simpli�cation

Simpli�cation is a generalisation step where the complexity of individual shapes is

reduced. Simpli�cation not only produces information suitable for display at di�erent

levels of detail but reduces the complexity of the information. This is of signi�cant

advantage on mobile devices, where replacing a large model with a smaller model might

have little visual impact but be signi�cantly faster to render.

Figure 3.10 illustrates the e�ect of simpli�cation on a shape (Generated with Map-

Shaper [30, 102] using Douglas-Peucker line simpli�cation [62]). The �gure on the

left, (a), is the original shape. The �gure in the middle, (b), shows the shape after

simpli�cation and (c) shows the same shape after further simpli�cation. As the shape

is simpli�ed the number of points is reduced resulting in the loss of �ne detail. Despite

this, the shape remains recognisable, an important feature of simpli�cation algorithms.

The simpli�cation algorithm uses computational geometry methods to reduce detail

in a 2D space. These methods are designed to eliminate points from lines and polygons

while minimising the visible change in shape [181]. A commonly used method is the

Douglas�Peucker algorithm [62], in which a baseline is constructed from an object's two

endpoints. Points having a perpendicular distance from the baseline that exceeds some

threshold are added, forming a new baseline. The process is repeated until all points

fall within the threshold distance to the baseline. Other simpli�cation algorithms use

di�erent selection criteria, such as, angular change [141] or area displacement [228]

between various intermediate lines in an object's geometry.

This thesis proposes the use of two complementary simpli�cation algorithms. The

�rst is the nth point algorithm which simply removes every nth point from the shape.

This lightweight algorithm causes distortion and so is only suitable for background

77

Chapter 3. Design

Clipping Rectangle

Figure 3.11: Clipping generalisation step

objects, objects with a large number of points or objects to be displayed at a scale

where inaccuracies will not be seen. For geometry where the number of points or scale

requires minimal distortion, the Douglas-Peucker algorithm is chosen because of its

use of a tolerance factor which can be varied according to the amount of simpli�cation

required [62].

3.2.3.4 Clipping

When individual spatial objects extend beyond the viewport of the device, resources

are wasted in computing projections and rendering coordinates that will not be seen.

Clipping modi�es the geometry so that the parts of the shape that lie outside the view

are removed. Figure 3.11 illustrates a shape that extends beyond the device's viewport

being clipped. The clipping of polygons and polylines is carried out using one of the

many algorithms proposed to solve these problems. For example: Liang-Barsky [17],

a parametric 2D line clipping algorithm optimised for an upright rectangular clip win-

dow; Cohen-Sutherland [217], coordinate based line clipping with trivial accept / reject

testing to improve performance in the case where lines are totally inside or outside a

clip area; Nicholl-Lee-Nicholl [160], a variation on Cohen-Sutherland that reduces the

number of clip rectangle sides that need to be tested; Weiler-Atherton [236], an algo-

rithm that can clip a polygon against a non-rectangular window; Sutherland-Hodgman

[29], an algorithm for clipping polygons against a convex clipping window that is e�-

cient when the polygon falls completely inside or outside the clipping boundaries; and

Malliot [133], an extension to Sutherland-Cohen 2D line clipping.

To enable the substitution of implementations of these algorithms, a generic clipping

78

Chapter 3. Design

component interface is created. All of these algorithms may then be implemented by

classes realising the component interface. Although all of these algorithms can be

implemented, the Cohen-Sutherland algorithm is chosen for line clipping because of

its trivial acceptance and rejection of lines that are outside of the clipping area. The

Sutherland-Hodgman algorithm is used to clip polygons because of its suitability for

clipping geometry that does not have holes or self-intersect (two of the restrictions

of our geometry model in Section 3.3.3). These two algorithms are chosen because

their implementations demonstrated the best performance on a test spatial data set

(Table 5.1 on page 145). However, they are limited to the simple closed polygons

supported by the geometry model. The extensibility of the interface supports the

substitution of other clipping algorithms that may be required for one of a number

of reasons. For example, the use of an extended geometry model, a spatial data set

whose characteristics favors a di�erent algorithm or to provide an implementation that

is more e�cient on a speci�c mobile platform.

3.2.3.5 Summary

In summary, model-oriented generalisation contributes to providing access to a spatial

model at multiple levels of detail (RQ-2), by making it possible to derive less complex

models of spatial data on demand. These models form the LoDs in the MRDB. The

main limitation of this approach is that the generalisation algorithms take into ac-

count only the geometric vector properties of spatial objects and do not guarantee the

topological correctness of generalised data. This leads to the possibility of topological

inconsistency between LoDs resulting in spatial data that is less suitable for rendering

maps [113]. Cartographic generalisation, as opposed to model-oriented generalisation,

does not su�er from these limitations, but is signi�cantly more complex and cannot be

fully automated [235, 230]. This thesis trades the accuracy of the LoDs for a reduction

in computation complexity by using the simpler model-oriented generalisation process

within the MRDB.

79

Chapter 3. Design

G
ui
de

[4
3]

co
m
M
ot
io
n
[1
36
]

G
eo
N
ot
es

[6
8]

T
el
lM

ar
is
[1
20
]

R
io
t!
18
31

[1
92
]

C
Y
SM

N
[2
6]

Containment • •
Proximity • • • •

Map Rendering • • • •
Route Generation • •
Spatial Selection •

Geocoding •
Table 3.1: Spatially-aware mobile applications

3.3 Spatial Middleware Services

The previous section has described algorithms for manipulating dynamic spatial data

at multiple resolutions on mobile devices. This section describes the application-level

spatial services designed for mobile spatially-aware applications derived from these

algorithms (RQ-3). We begin by analysing the requirements for middleware-based

spatial services in spatially-aware mobile applications.

3.3.1 Analysis & Requirements

This section draws on the review of related work to establish a set of requirements that

are used to create a middleware of spatial services for supporting spatially-aware mobile

applications. The primary objective of this analysis is to identify the core architectural

features required of a middleware to support the next generation of spatially-aware

mobile applications.

The spatial services commonly used by spatially-aware applications are summarised

in Table 3.1. These services include: navigation [43, 19, 120], communication [43, 26],

mapping [43, 19, 68, 26], geocoding [136] and location speci�c information services

[120, 26, 192, 136]. The model for mobile spatial middleware presented in this thesis

incorporates support for the spatial services: adaptable map rendering, spatial rea-

soning, coordinate transformation, route generation and visibility determination. This

set of services is chosen because: a) these are the most common services required by

spatial applications, as illustrated by the review of related work (Chapter 2); and b)

80

Chapter 3. Design

they provide a core set of features that are used as a foundation for the development of

additional spatial services. An exception is the visibility determination service, which

is not a core service, but a novel spatial service designed to demonstrate the ability

of the spatial middleware to support novel interfaces and interaction metaphors. The

design of these spatial services is presented in the following sections.

3.3.2 Adaptable Map Rendering

Map rendering is the process of turning vector-based spatial data into a raster map for

display on screen. Map-based interfaces are common to a range of spatially-aware mo-

bile applications. Unlike their paper map counterparts, map-based mobile interfaces

have the advantage of being able to adapt themselves to the user's preferences and

environment. For example, map-based mobile applications commonly centre the view-

port on the user's location. In addition, it may be desirable to automatically zoom,

scale or rotate a map interface for moving users. To achieve this, spatially-aware mo-

bile applications require maps ranging from simple black and white sketches [129] to

2D-maps [89] to animated 3D-maps [120].

Reichenbacher published a number of seminal articles on the topics of cartographic

theory, geographic information communication in mobile environments and adaptive

methods for cartographic visualisation [189, 191]. As part of this work the di�erent

ways in which map-based interfaces can be adapted were de�ned:

• Selecting map features.

• Adjusting the level of detail.

• Classifying and grouping information.

• Highlighting or prioritising map features.

• Modifying map extent.

• Adjusting map scale.

Providing for these user services on a mobile device is challenging, as user mobility

requires that adaptions be performed �on-the-�y�. A layered architecture, inspired by

the GeoTools [18] open source library of methods for manipulating geospatial data, is

81

Chapter 3. Design

DynamicLayer

MapMovementListener

+ zoom(ZoomEvent)

+ rotate(RotateEvent)

+ center(CenterEvent)

+ pan(PanEvent)

MapCanvas

+ paint(g: Graphics)

MapContext

Layer

Style

QueryEngine

+ render()

+ isVisible(): bool

+ setZOrder(int)

0…*
MapContext

MapProjection

MapLayers

+ render()

+ getLayers(): Layer[]

1

RenderStyle

+ getColour(): Colour

+ …

BufferedLayer

Cache

SpatialDataSelection

+ getData(Query): SpatialData[]

MRDB

Figure 3.12: Adaptable map rendering layers

adopted. The layered architecture deviates from the GeoTools architecture by incorpo-

rating the concept of rotatable map layers to support track-up interfaces on hand-held

devices.

Figure 3.12 illustrates the main entities involved in the layered architecture for

adaptable map rendering. The key metaphor at the centre of this architecture design

is that of a layer. A layer represents a transparent overlay of information that has a

unique set of geometry, a de�nition of how that geometry should be rendered and a

MapContext. The adaptable nature of map rendering is facilitated by the introduction

of two types of layer supporting di�erent rendering policies: dynamic and bu�ered.

Dynamic layers render information that changes quickly (for example, user's location)

and are always re-drawn in response to changes in the map projection or user inter-

action with the MapCanvas. Dynamic layers can also request that they be redrawn

independently of other layers. Bu�ered layers are intended to display background,

slowly changing information. The bu�ered layer rendering policy is to store a cache

rendered output and to reuse this cache whenever possible. For example, changes in

dynamic information do not trigger a redraw of bu�ered layers. The cached image

of the bu�ered layer is used as a background to redraw the dynamic information and

82

Chapter 3. Design

refresh the interface. This layered design for adaptable map rendering presented in the

current thesis enforces two di�erent rendering policies, minimising the computation

resources consumed by drawing static spatial objects (RQ-3). Reducing the volume

of geometry to be redrawn contributes to a more e�cient use of limited processing

resources and a more responsive application interface.

3.3.3 Spatial Reasoning

Spatial reasoning goes beyond the traditional use of spatial data for map viewing in

order to include its use as an analytical tool for characterising spatial relationships

[27, 194, 24]. It has been suggested by Greaves & Stopher [92] (as quoted by Wang &

Cheng [231]) that GIS can be used as a �spatial decision support tool� for activity-based

applications7.

Spatial reasoning is a common feature in spatially-aware applications. Support for

operations such as, overlap, intersection, containment and distance has been a feature

of projects including Deep Map [134], CRUMPET [178], GeoNotes[68], Nexus [161],

GiMoDig [208] and M-Spaces [200]. The approach that these projects take is to have a

geometric model of the environment on which these operations are applied. Guide [43]

makes use of a geometric model to support route guidance and provides information

about speci�c physical locations. EasyLiving [35] from Microsoft Research models its

environment using a geometric model, in which all entities are modeled as extents.

MiddleWhere [185] also uses a geometric model to support spatial reasoning. The

ability to determine geometric, topological and logical relationships between physical

objects is invaluable to spatially-aware applications and yet poses a challenge to design

in a lightweight manner without severely restricting the range operations.

This research reported in the current thesis addresses this challenge using a geomet-

ric environment model that supports operations for determining spatial relationships

between objects. The geometric model is based on the types of geometry supported by

the MRDB (for example, lines, polygons and points). Once retrieved from the MRDB,

these spatial objects facilitate the use of geometric operations to reason over the user's

environment, determine higher level contexts and triggering behaviour.

7Activity-based applications are based on a user's activities and are generally `tied' to his or
her personal computer [16]. Activity-based applications subsume and include mobile, context-aware
applications of which spatially-aware applications are a class.

83

Chapter 3. Design

GeometryCollection

+ numGeometries() : Integer

+ geometryN(n :Integer) : Geometry

Geometry

+ center() : Point

+ bounds() : Rectangle

+ area() : Integer

+ contains(g : Geometry) : Boolean

+ equals(g : Geometry) : Boolean

+ intersects(g : Geometry) : Boolean

+ touches(g : Geometry) : Boolean

+ within(g : Geometry) : Boolean

Point

Lat : Double

Lng : Double

0…* 1

Poly

LatLng: Double[]

+ length() : Integer

LinePolyline

Polygon Rectangle

Annotation

Text : String

Figure 3.13: Geometry model showing spatial relationship functions

Figure 3.13 illustrates the geometric model. The types of geometry supported

include Line, Polyline, Rectangle, Polygon, Point and Annotation. Each of these

objects inherit support for the functions listed as members of the Geometry object.

This particular set of objects was chosen as there is a one-to-one mapping between these

objects and the geometry types supported by the MRDB, which in turn are inherited

from the underlying Shape�le speci�cation (Section 4.1.1). These object types are

also closely related to the OpenGIS Simple Features speci�cation [171]. The Simple

Features speci�cation de�nes a common feature model containing vector data elements,

such as points, lines and polygons, as well as a set of methods for testing spatial

relations between geometric objects. These methods allow the spatial relationship

between pairs of features to be characterised. This set of methods, de�ned by the

Simple Features standard and incorporated into our geometric model are:

• equals (g: Geometry)

• disjoint (g: Geometry)

• intersects (g: Geometry)

84

Chapter 3. Design

• touches (g: Geometry)

• within (g: Geometry)

• contains (g: Geometry)

In addition to these geometric operations, a helper proximity component calculates

the distance between points. The environment model uses polar coordinates (that is,

latitude and longitude). Calculating the distance between pairs of coordinates requires

calculating the shortest route between two points on the surface of the sphere (the

Earth).

A spherical distance algorithm is used to calculate this distance based on the spheri-

cal law of cosines8. The algorithm assumes a spherical earth, ignoring ellipsoidal e�ects.

This method of calculating spherical distance is not commonly used as it su�ers round-

ing errors where the distance is small. An equation, known as the haversine formula, is

preferred but is more computationally complex in the case where it is implemented in

software without access to tables for the haversine function [214]. The simpler spher-

ical law of cosines formula gives accurate enough results (down to distances as small

as 1 meter when computed using �oating-point numbers) and so is more appropriate

for use on hand-held devices [226].

There a number of trade-o�s and limitations associated with the geometric model

chosen. These limitations are largely associated with the restricted types of geometry

supported. Figure 3.14 illustrates some of the geometry types supported and not

supported. Curves and complex polygons are excluded from the model but non-simple

polylines and polygons with multiple interior boundaries are allowed. The restriction

of geometry types in the model reduces the size of the data structure and allows for a

simpler implementation of geometric operations.

Spatial reasoning provides the basic operations that enable the design of common

application-level spatial services using the geometric model of the user's environment

(RQ-3).

8The great circle distance, D is calculated as D = arccos(sin(lata) sin(latb) +
cos(lata) cos(latb) cos(lonb − lona)). The real world distance estimate can then be calculated
using, D(2Πr/360) where r is an estimate of the earth's radius.

85

Chapter 3. Design

Supported Not Supported

Curves : Can be
represented as lines

Complex (self intersecting)
polygons

Polygons : Closed, simple
line-strings with 0 or more

interior boundaries

Lines : non-simple line-
strings

Figure 3.14: Supported geometry types

3.3.4 Coordinate Transformation

Coordinate transformation refers to the conversion of points on the earth's surface

between di�erent geodetic coordinate reference systems and a mobile device small

screen coordinate system. To minimise the need for these operations, the model for

spatial middleware presented in this thesis standardises all coordinates in WGS84

(World Geodetic System 1984), the geographic coordinate system used by GPS. This

eliminates the need to translate between spatial data in multiple coordinate systems

and supports easier integration with GPS (the most common positioning system used

by mobile applications [129, 68, 26, 19, 120]).

The remaining need for coordinate translation is in the mapping from longitude and

latitude coordinates to the hand-held device screen coordinate system. The method of

�attening coordinates on the surface of a round body (that is, the Earth) on to a 2D

plane is known as map projection. Several hundred map projection algorithms have

been published, many of which may be in�nitely varied by choosing di�erent points on

the Earth as the centre or as a starting point. All projections lead to varying degrees

of distortion of one form or another [215].

However, spatially-aware mobile applications have unique requirements that tradi-

tional map projections do not take into account. In particular, applications are highly

interactive and do not always feature north-up interfaces. It must be possible to ro-

86

Chapter 3. Design

Matrix

Transformation

Map Projection

Rendering

Interface

rotate

pan / zoom

Figure 3.15: Two-step coordinate transformation algorithm

tate screen coordinates about an arbitrary point and to easily compute the inverse of

any transformation. The inverse of a coordinate transformation relates screen coor-

dinates back to real world locations and is required to handle user interaction with

the interface, which will be in screen coordinates, to the spatial objects that are being

manipulated, represented in real-world coordinates.

A two-step coordinate transformation algorithm has been designed to satisfy the

requirements of a generic middleware for spatially-aware mobile applications. Figure

3.15 illustrates this algorithm.

The �rst step involves applying a traditional map projection algorithm to �atten

spherical coordinates (latitude and longitude) onto a 2D plane. Two map projection

algorithms are proposed: equi-rectangular, and mercator [186]. The equi-rectangular9

projection is a very simple map projection that converts the globe into a cartesian

grid of perfect squares (that is, meridians become equally spaced vertical straight lines,

and parallels become equally spaced horizontal straight lines). This projection features

simple calculations that preserve energy and computational resources of mobile devices.

Although area and shape are distorted (increasing towards the poles) it is su�cient

for display of small areas. This trade-o� between accuracy and speed is based on

the intuition that pedestrian-scale map extents are more common than global-scale

maps in spatially-aware applications on hand-held devices. The mercator projection

9Also referred to as the equidistant cylindrical projection [186].

87

Chapter 3. Design

Projection

Earth : WorldModel

ScreenSize : Integer[]

WorldExtent : Float[]

+ worldToPixel() : Pixel

+ pixelToWorld() : Point

Rotation

M : TransformMatrix

+ getDegrees() : Integer

+ getDirection() : Integer

WorldModel

PlanetRadius : Float

Dateline : Float

NorthPole : Integer

SouthPole : Integer

1

TransformMatrix

+ rotate() : Integer[]

+ scale() : Integer[]

+ skew() : Integer[]

+ translate() : Integer[]

+ inverse() : TransformMatrix

Figure 3.16: Coordinate transformation design detail

is a conformal projection that preserves angles but distorts the size of geographical

objects (particularly in areas closer to the poles). The mercator projection is used

by Google [91], Yahoo [241], and MapQuest [135] web applications. Both these map

projection algorithms are implemented as pluggable components and an evaluation of

their comparative performance is presented in Section 5.1.3.4.

The second step of the coordinate transformation algorithm is matrix transforma-

tion where a transformation matrix is used to shift, magnify, or rotate the coordinates,

or perform several of these changes at once. These transformations are cumulative and

can easily be reversed. As the map projected coordinates from step one are cached,

it is possible to support highly dynamic interfaces that rotate, pan and zoom without

having to recompute the map projection.

This two step approach supports the dynamic nature of spatially-aware mobile

applications by allowing coordinates to be quickly transformed in support of map ren-

dering. In particular, changes in map orientation are accommodated by re-computing

only the second step of the coordinate translation without re-computing the map pro-

jection step. Coordinate translation accuracy is traded for simple calculations that

are performed more quickly. Coordinate translation is a core service included in the

model for spatial middleware that is reused by application-level services to support

map-based interfaces (RQ-3). As such, its design focuses on performance, choosing the

least computationally expensive map projections and supporting rotation through a

lightweight matrix translation as a second step.

88

Chapter 3. Design

3.3.5 Route Generation

Mobile spatially-aware applications increasingly incorporate navigation support (GUIDE

[43], REAL [19], TellMaris [120]). As our model for spatial middleware aims to sup-

port this class of application, it must incorporate a route generation service that can

produce sets of connected, navigable way-points between locations. As a service of

the middleware, route generation can only use the multi-scale geometric environment

model of the MRDB (Section 3.2.1) and the spatial reasoning functions (Section 3.3.3).

The most common strategies for performing route generation use graph traversal

algorithms. These algorithms require a graph-based representation of the environment

where roads or paths are represented by edges and the junctions by nodes. Graph-based

route generation is a special case of the shortest path problem in which a shortest path

is required between two nodes in a directed graph. Problems in this area have been

extensively studied by computer scientists resulting in a set of algorithms that can be

applied to solve this problem including: Floyd's algorithm, Dijkstra's algorithm and

A∗ search. Where a route other than the shortest path is required the cost function

applied to each edge in the graph can be modi�ed.

This thesis uses Dijkstra's algorithm [60] with a con�gurable cost function to search

for routes in a topological (that is, graph based) spatial model. However, the MRDB

environmental model is geometric, and so does not contain any concept of connected-

ness. Route generation using our environment model is achieved by initially discover-

ing topological relationships from line intersections in the underlying spatial data. A

topological model building algorithm retrieves a list of polylines representing paths and

builds a graph of navigable routes. This allows an innovative route generation service

to be developed that would normally require a much more sophisticated topological

model to use the simple geometric model of the MRDB.

Figure 3.17 illustrates the clustering algorithm used to build the topological model

from the MRDB environment model. The algorithm �rst selects all the paths stored

in the model and then attempts to connect them up by identifying locations where

paths touch, intersect or overlap. Coordinates where these artifacts are found become

the nodes of the graph. Once created the graph is pruned by removing nodes that do

not indicate a junction (that is, nodes of degree two).

This graph can then be searched using the DijkstraPathFinder (Figure 3.18),

89

Chapter 3. Design

Select paths

from MRDB

Convert each path

to an edge

For each edge

For each node

Find nodes within

threshold

Connect nodes

Return graph
For each node of

Degree two

Merge edges

Clustering

tolerance

Edge

Node

Figure 3.17: Topological model building

PathFinder

G : Graph

E : EdgeWeighter

+ getPath(source : Node, target : Node) : List

DijkstraPathFinder

PQ : PriorityQueue

Graph

Nodes : Node[]

Edges : Edge[]

+ getNodes(degree:Integer) : Node[]

+ contains(n:Node) : Boolean

Node

Visited : Boolean

Edges : Edge[]

+ connectsWithEdge(E : Edge) : Boolean

+ getDegree() : Integer

Edge

NodeA: Node

NodeB: Node

Visited : Boolean

EdgeWeighter

+ weight(e : Edge)

Figure 3.18: Graph-based route generation

90

Chapter 3. Design

which �nds a path between two nodes in a graph that minimises a single parameter.

An EdgeWeighter interface allows the route generation process to take into account

parameters other than just distance.

The limitation of this approach is in the computation overhead in constructing a

topological model before route generation can be performed. However, this process

only needs to happen once, as the topological model can be persisted in memory, and

can be carried out while the device is idle, in advance of a route generation query. Once

complete, the topological model is integrated with the model for spatial middleware to

provide navigation services to mobile spatially-aware applications. The dynamic infer-

ence of topological relationships in the geometric MRDB environment model enables

navigation services to be provided to mobile spatially-aware applications using the

set of algorithms for spatial operations included in the model for spatial middleware

(RQ-3).

3.3.6 Visibility Determination

The current section describes the design of an algorithm to support an innovative spa-

tial visibility service that determines the visibility of real world objects from the users

point of view (PoV) using 2D environment model presented in Section 3.1. Although

visibility has been used in a small number of mobile applications [85, 23], our mid-

dleware approach is innovative in that it provides a generic service to spatially-aware

applications without relying on a server-based environment model. In addition, these

prototypes focused on usability and user interface research issues as opposed to the

e�ciency and accuracy of the service's design and implementation. Knowledge of the

visibility of geographic features from a certain point of view has been shown to be cru-

cial for enabling spatially aware applications [84]. A naïve algorithm for determining

the visibility of an object in a 2D environment model may draw a line from every point

in an object and test to see if that line intersects any geometry (other than the ob-

ject being tested). However, this solution is not suited to being performed in software

on hand-held mobile devices. More e�cient methods for determining the visibility of

objects can be built using techniques developed in the computer graphics �eld, where

visibility is used to bring the cost of rendering a large scene down to the complexity

of the visible portion of the scene. Before exploring considered approaches and related

91

Chapter 3. Design

work, some of the relevant terminology is introduced10.

Visibility is the existence of a line of sight from a point (i.e., the user) to an object.

The visible set is de�ned as the set that includes all of the visible objects within a

speci�ed �eld of view, from a speci�c point of view. Conservative visibility is the set

that includes at least all of the visible set plus some additional invisible objects (often

referred to as the potentially visible set (PVS) [5]). An occluded (visually obstructed)

object may be classi�ed as visible, but a visible object may never be classi�ed as oc-

cluded. The PVS of a scene is determined by culling invisible geometry. Visibility

culling is the term given to the process of quickly rejecting invisible geometry and is

used in computer graphics as a pre-processing step when performing hidden-surface re-

moval (HSR) as part of the scene rendering process [78]. HSR algorithms identify the

exact portions of visible polygons and are computationally complex, whereas, visibility

culling merely identi�es polygons that are de�nitely not visible. There are two classical

strategies to performing visibility culling: view-frustum and back-face culling [78]. Fig-

ure 1.6, in Section 1.3.4 (Chapter 1), illustrates the di�erence between these strategies.

View-frustum culling eliminates objects outside of a de�ned �eld of view. Back-face

culling eliminates objects that are not visible because they are behind another object.

A spatially-aware application's environment model stores knowledge about the

user's world � its structure and its geometry. Visibility information augments this

model with knowledge about the environment's visual appearance and the user's rela-

tive position [84]. Incorporating visibility information bene�ts spatially-aware mobile

applications in a number of ways. Firstly, information can be tailored considerably bet-

ter to the user's context, since points of interest that are visible (for example, places in

the same street as the user) are most likely more relevant than those that are hidden.

Secondly, visibility information enables new types of user interfaces. For example,

the local visibility model used in the P2D project supported spatial query operations

based on visibility and �eld of view [212, 84]. This model enabled the development of

real world point and click information retrieval applications but relied on server-based

environment model. Visibility information can be exploited when adapting existing

map-based interfaces by changing the interface's scale to �t the currently visible set on

the display of the device, or by rendering objects at di�erent resolutions depending on

10Also see Appendix C, Glossary.

92

Chapter 3. Design

their current visibility [191]. Maierhofer et al. supports the use of visibility information

to add value to interactive egocentric maps [132].

Thirdly, visibility information contributes to the usefulness of navigation instruc-

tions by making it possible to determine which local landmarks are currently visible

[22]. The intuition is that visible landmarks will help users orientate themselves. In

addition, it may be more intuitive and less frustrating to reference visible objects in

navigation instructions. It has also been argued that visibility information can lead to

less cluttered maps and an enhanced user experience, through the removal of irrelevant

information [23]. Finally, visibility information has the potential to be used as a �lter

to tailor information based on relevance (where information relating to visible objects

is more relevant) [87].

Visibility determination is a di�cult problem to solve on resource limited hand-

held devices, as small changes in the user's location, movement of dynamic objects in

the model and the orientation of the device can cause large changes in the visible set.

The current thesis contributes a visibility determination algorithm for spatially-aware

applications, based on the use of a depth bu�er, on which both forms of visibility

culling are performed in order to reduce the set of geometry to a conservative possibly

visible set (PVS). The algorithm is con�ned to 2D spatial data and uses axis-aligned,

regularly shaped bounding volumes, instead of complex spatial objects to improve

performance.

The visibility service includes a combination of algorithms and data structures

to determine the visibility of spatial objects on-demand in a dynamic scene. These

algorithms and data structures are:

1. View Frustum Culling : The removing of objects that are not within the user's

�eld of view.

2. Depth Bu�er : The ordering of objects based on their distance from the PoV.

3. Occlusion Culling : The use of back-face culling or ray casting to further remove

objects that are occluded by closer objects.

The result of applying this combination of algorithms is a lightweight visibility deter-

mination middleware service for spatially-aware applications designed using only the

93

Chapter 3. Design

Far Point

FoV

VisualPerceptionModel

FIELD_OF_VISION : Integer

ANGULAR_RESOLUTION : Integer

FOCAL_LENGTH_METERS: Integer

FAR_POINT_METERS: Integer

URBAN_FAR_POINT_METERS : Integer

Figure 3.19: View frustum culling perception model design

algorithms, spatial operations and environment model included in the model for spatial

middleware.

3.3.6.1 View Frustum Culling

The process of visibility determination begins with view frustum culling. Figure 3.19

illustrates the e�ect of eliminating objects outside a �eld-of-view (FoV), or beyond

a de�ned distance from the user. A model of human visual perception (Figure 3.19,

right) is used to determine the FoV and a reasonable cut o� point beyond which objects

should not be considered visible. The visual perception model contains a number of

attributes that are used to compute the FoV that is used to �lter invisible objects:

FIELD OF VIEW The �eld of view is de�ned as the angular extent of the observable

world that is seen at any given moment. The model uses a value of 140

degrees11, which corresponds to the angle of view of the human eye [196].

ANGULAR RESOLUTION The minimum distance between distinguishable objects (Often

referred to as visual acuity). In humans, the maximum acuity is 30�60 cm

at a 1 km distance [238].

FAR POINT This is the furthest distance at which an object is seen (should be in�nity).

In this case we assume it is the horizon, estimated as the distance at which

a two story building (12 meters high) will disappear over the horizon [112].

11140 degrees is considered perfect vision. 40 degrees of the 140 would be considered peripheral
vision.

94

Chapter 3. Design

1.

2.

Mean Distance Depth

Minimum

Distance

Depth

Minimum

Bounding

Rectangle

Figure 3.20: Depth bu�er distance comparisons

URBAN FAR POINT In urban environments the maximum distance a person can see is

not related to the distance to the horizon, but is de�ned by the surround-

ing buildings. A reasonable estimate of a usable �gure can be made by

analysing the spatial data for building density and straight lines.

3.3.6.2 Depth Bu�er

A depth bu�er, inspired by the zBu�er data structure used in computer graphics [39],

is a sorted list of geometry objects ordered by their distance from a point of view. In

computer graphics, z-bu�ering is often per-pixel, whereas our depth bu�er operates on

a per-object basis (that is, each object has a single depth value associated with it).

Figure 3.20 illustrates two possible methods that the depth bu�er can use to calculate

the distance to each object, the minimum distance or mean distance. In the case of

using the minimum distance, four distance calculations are required. When using the

mean distance, the centre of the bounding volume is used, thus reducing the number of

distance calculations per object to one. Minimising the number of distance calculations

reduces the computational overhead of the depth bu�er as each distance calculation

requires the calculation of a spherical distance between two polar coordinate angles

indicating a point on the surface of the earth (See Section 3.3.3). However, the centre

of an objects' bounding volume may be a poor estimate of the centre of the object

itself, reducing the accuracy of the depth bu�er. This inaccuracy could potentially

95

Chapter 3. Design

result in objects being ordered incorrectly in the depth bu�er, which in turn impacts

on the accuracy of visibility culling algorithms that use the data structure. The depth

bu�er uses the mean distance to order objects because of its lower computational

overhead. The minimal e�ect on overall accuracy is demonstrated in the visibility

service's evaluation (Section 5.1.3.5).

3.3.6.3 Occlusion Culling

Occlusion culling is the process of �ltering the set of possible visible objects ordered

according to depth to remove objects that are occluded by other objects. Listing 3.1

illustrates the general approach to occlusion culling as pseudocode. In this listing, G,

contains all the objects in the scene and OR is the occluded representation.

Listing 3.1: Pseudocode for a general occlusion culling algorithm.
1 Occlus ionCul l ingAlgor i thm (G)

2 OR=empty

3 for each ob j e c t g in G

4 i f (i sOcc luded (g , OR))

5 Skip (g)

6 else

7 Render (g)

8 Update (OR, g)

9 end

10 end

The interesting part of this algorithm is the implementation of the isOccluded()

function. We design two possible algorithms for this function; back-face culling and

ray casting, with a view to selecting the best performing implementation.

The back-face culling algorithm is illustrated in Figure 3.21. This process uses

the depth bu�er as an occluder hierarchy. Starting with the closest object (that is,

largest occluder) the occlusion shadow cast by each object is computed. The process

of computing the occlusion shadow for an object is illustrated on the right. The angle

created between the PoV and extreme edges of the object is found by projecting sight

lines to each point in the object. This angle de�nes the size of the occlusion shadow.

96

Chapter 3. Design

Get shadow

projection angles

Return visible

geometry
For each object

in depth buffer

For deeper objects

in depth buffer

If shadow cont-

ains object

Yes

No

Create culling

shadow

Merge with

existing shadow

Remove from

depth buffer

Calculate angle between two

extreme visible edges

Figure 3.21: Back face occlusion culling

Objects falling completely within this shadow are then removed. Each time a new

occlusion shadow is created it is merged with the previous shadow using a convex hull

algorithm, preventing objects on the border of more than one occluder being marked as

visible. As this process continues, the depth bu�er becomes smaller until only visible

objects are left. This method quickly discards many objects, so is e�cient in the case

where there are a few large occluders. For small numbers of objects it may be quicker

to just cast rays to each object and look for intersections with other geometry.

The ray casting approach is the second algorithm for computing occlusion. Ray

Ray

Not

Visible

Intersections

Figure 3.22: Ray casting from a single object

97

Chapter 3. Design

Cast ray to each

point in the object

Return visible

geometry
For each object

in depth buffer

If ray intersects

object

Yes

No

Add to set of

occluders

Remove from

depth buffer

Figure 3.23: Ray casting visibility algorithm �ow chart

casting, illustrated in Figure 3.22, is based on creating sight lines between the point of

view and an object to be tested for visibility. If all of these sight lines (or rays) intersect

with closer geometry, then the object is not visible. This algorithm is illustrated by

a �ow chart in Figure 3.23. Each object is taken in closest-�rst order from the depth

bu�er. Rays are cast to the corners of the object's bounding volume to test if they

intersect any of the occluders. Occluders in this case are de�ned as any geometry closer

to the point of view, as determined by the depth bu�er. If all of these rays intersect

some geometry between the object and the user's PoV, then the object is taken to be

invisible and is removed from the depth bu�er. Otherwise the object remains in the

depth bu�er as a possible occluder and the algorithm continues until the whole depth

bu�er has been traversed. The ray casting algorithm may identify visible objects as

invisible due to the use of only four rays. Increasing the number of rays increases the

accuracy of the algorithm at the cost of lower performance. It is expected that this

approach will perform well in terms of accuracy and performance in environments that

are not densely occluded as every object needs to be tested.

The protocol for choosing ray casting over backface culling, or vice versa, is de-

pendent on the relative performance of the implementation of these algorithms, as the

computational complexity of the visibility service impacts middleware responsiveness

and energy consumption. An evaluation of the relative performance of these algorithms

can be found in Chapter 5, Section 5.1.3.5.

98

Chapter 3. Design

There are a number of trade-o�s made in determining object visibility between the

accuracy of the solution and its computation complexity. The �rst design decision that

impacts accuracy is the decision to have a binary, visible or not visible, object precision

result. This indicates whether objects (that is, buildings, billboards, people, etc.) are

visible and does not discern between the case where, for example, a corner of a building

is visible versus the case where the entire front elevation of a building can be seen.

The use of conservative culling via bounding volumes in order to reduce the number of

geometric operations (intersection, containment, and distance) that need to be carried

out also increases imprecision. There is no guarantee that an object will be visible if the

bounding volume is partially visible, since the bounding volume encloses more space

than the object itself [61]. The visibility service is designed for 2D geometry, further

reducing accuracy as tall objects behind shorter occluding objects are not detected.

2.5D or 3D environment models have been used by others to address this issue using

servers [132, 84]. All visibility determination is point-based as opposed to the region-

based visibility proposed by Cohen-Or et al. [47]. Point-based visibility assumes that

the user's position is known and does not take the imprecision of positioning systems

into account. These trade-o�s signi�cantly reduce the computational complexity at the

cost of reduced accuracy. The visibility determination, although not nearly accurate

enough to render 3D scenes in computer graphics, is su�cient to provide a positive

user experience of the types of visibility enabled services possible.

Despite these limitations, the visibility determination service has a number of ad-

vantages over other approaches. The use of a depth bu�er in the occlusion culling

algorithms results in the most important visible objects being found �rst. This en-

ables the time taken to search for visible objects to be bounded, trading completeness

of the visible set for predictable performance. This allows the performance of visibility

determination to be adapted to suit hardware capabilities and still results in usable

visible sets, particularly in urban environments that tend to be densely occluded (i.e.,

only a small portion of the environment is visible at any time) [47]. The visibility

determination algorithms (view frustum, depth bu�er and occlusion culling) are also

designed to operate on-demand in dynamic environments. There is no requirement to

perform any pre-computation or storing of visibility information, thereby reducing the

memory requirements of the solution.

99

Chapter 3. Design

Object precision visibility determination is an example of a spatial service designed

for mobile spatially-aware applications, using the environment model and limited set of

spatial operations as building blocks (RQ-3). Visibility determination generates con-

servative estimates of the visible set of objects using specially adapted view frustum

culling, depth bu�ers and occlusion culling. The algorithm is designed to minimise

demand on the computational resources of hand-held mobile devices, maintaining ap-

plication responsiveness and preserving energy.

3.4 Generic Framework

This section describes the design of a generic framework for spatially-aware mobile

applications that incorporates the algorithms and services of thie current thesis into

a reusable library of spatial tools. The framework is designed to address the common

challenges posed by hand-held mobile devices in a reusable and extensible manner

[110]. This reduces the cost and time required to build spatially-aware applications,

by allowing developers to reuse and extend generic framework components.

The model reported here is generic in that it provides spatial services that are not

con�ned to a single application domain, but may be reused by developers of a range

of mobile applications. Reuse of the model is directly supported by a set of spatial

services that are available to developers of spatially-aware applications (See Section

2.1). In addition, the MRDB is compatible with a common GIS data format, enabling

the reuse of existing spatial data. Extensibility in the model is supported by the

pluggable component model that de�nes speci�c extension points where alternative

algorithms may be substituted at deployment time.

3.4.1 Pluggable Component Model

Figure 3.24 illustrates the pluggable component model that facilitates the run-time

substitution of component implementations. This is achieved using a con�guration �le

that speci�es the component in use and its parameters. For example, the framework

contains a visibility determination service (Section 3.3.6) that can use a number of

visibility culling algorithms. The con�guration �le (Appendix A.1) speci�es which of

these algorithms are in use and what the parameters (if any) should be set. Having

100

Chapter 3. Design

Configuration File

PluggableComponent

Plugins

Component

Class

Component

Class

gis center
projection
visibility
index
generalisation

Instantiate

& Return

Get plugin and

parameters from

configuration file

System Class

loader

Figure 3.24: Pluggable component model

consulted the con�guration �le, the system class loader is used to create an instance of

the component. In this way, changeability is built into the framework through parame-

terisation and extension points, where component implementations can be substituted.

This also supports reuse of the framework as developers can can change components

and parameters without recompiling code.

Figure 3.25 shows a component level architecture of the framework. The compo-

nents providing the spatial services presented in Section 2.1 are shown. Cylindrical

shapes indicate �les, rectangles indicate components and dashed rectangles represent

pluggable component interfaces. Dashed arrows indicate an �is a sub-component of�

relationship.

The bottom layer of the library contains components supporting the reading and

writing of spatial geometry, feature attributes and con�guration data to and from �les.

Above the bottom layer there are two components: a Spatial Index (Section 3.2.2),

and the MRDB (Section 3.2.1). The spatial index supports the retrieval of geometry

from multiple underlying spatial data fragments. The MRDB allows geometry to be

retrieved at any resolution without incurring the cost of computing a scale speci�c

representation on each request.

101

Chapter 3. Design

Rendering

Visibility

Topological Model

Builder

Graph Traversal

Spatial Index

Generalisation
Restriction

Environment Model

Map Projection

Hermes Framework

Spatial Services

Multi-Representation DB

Elimination

Simplification

Clipping

Map Layers

API

Figure 3.25: Pluggable component model extension points

102

Chapter 3. Design

The next layer in the architecture is responsible for adapting geometry to make

it suitable for display at di�erent resolutions (Section 3.2.3) and projecting from the

underlying coordinate reference system of the spatial geometry to the mobile device's

screen coordinate system (Section 3.3.4). The environment model provides access to

spatially referenced data based on its real world extents, attributes and scale.

The top layer of the architecture contains a number of components that are de-

signed to provide a simple and extensible interface to the framework. The Rendering

component provides a means for developers to control the way cartographic representa-

tions are rendered (Section 3.3.2). The MapLayers and Bu�ering components provide

the methods that allow dynamic information to be drawn on top of more static car-

tographic data. A Route Generation component exists that constructs a graph-based

topological representation of the spatial data that is searched using one of a number of

pluggable graph traversal algorithms (Section 3.3.5). A Visibility component provides

a visibility determination service (Section 1.3.4).

The component-level extension points in the framework are illustrated in Figure

3.25 as components with a dashed outline. These pluggable components are all re-

placeable. Further extension of the framework is possible at the sub-component level,

where options exist to implement alternative algorithms. These sub-component exten-

sion points are: the occlusion culling algorithm of the visibility service, graph traversal

and edge weighting algorithms of the route generation service and the map projec-

tion algorithms of the coordinate transformation service. The layer design of the map

rendering service further supports extension of the framework through inheritance.

3.4.2 Framework Summary

The framework for spatial services is a generic model for spatial services that addresses

the common challenges posed by hand-held mobile devices in a reusable and extensible

manner. The framework is decomposed into components, each responsible for providing

a reusable spatial service. A pluggable component model provides a means to con�gure

the framework through parameterisation.

103

Chapter 3. Design

3.5 Chapter Summary

The current chapter describes a model for spatial middleware that allows spatially-

aware mobile applications to maintain a dynamic model of the users' environment

locally. The environment model is represented in a multiple representation database

that uses spatial data from a standard GIS data format and makes it available at dif-

ferent levels of detail, generalising the data on-demand. The multiple representation

database is populated with spatial data by means of the collaboration facilities of the

Hermes framework, which manage the acquisition and dissemination of spatial data in

an ad-hoc wireless networking environment. The design of application-level spatial ser-

vices including adaptable map rendering, spatial reasoning, coordinate transformation,

route generation and visibility determination were also described. These services make

use of the algorithms for accessing multi-scale spatial information to provide these

middleware services on hand-held mobile devices without overburdening their limited

resources or having to rely on wireless network connectivity. The chapter described

the design of a generic framework for spatially-aware mobile applications, incorporat-

ing the algorithms and services already presented into a reusable library of spatial tools

that can be reused and extended to reduce the cost of building spatially-aware appli-

cations. The design presented is optimised for e�cient implementation on hand-held

devices and features logically decomposed components that reuse design metaphors

familiar to developers of spatially-aware applications. The following chapter presents

the implementation detail of the spatial services and generic framework described in

the current chapter.

104

Chapter 4

Implementation

The last chapter described the design of a spatial data model and a set of spatial

operations for mobile spatially-aware applications. As described in this chapter, these

components are combined to form a generic framework that maintains a model of the

user's environment.

The framework, implemented in Java1, is composed of generic implementations of

environment modeling and spatial operations that can be reused by spatially-aware

applications. This chapter describes in detail how the framework is implemented. The

chapter begins with a high-level overview of the packages and components that com-

prise the application framework, including their dependencies and relationships. This

is followed by a a presentation of the mobile platform and Hermes framework, de-

scribing the reuse of Hermes functionality and integration of Hermes services. The

implementation of the multiple representation spatial data model that dynamically

generates smaller scale representations via model-oriented generalisation is presented

along with a number of the framework's spatial services. Finally, the implementa-

tion of the framework as a reusable library of spatial tools is presented, highlighting

implementation features that facilitate reuse and extensibility.

It is a goal of the implementation, presented in this chapter, to produce a frame-

work that is as lightweight as possible. All implementation choices support this goal by

minimising memory usage and computational complexity to reduce energy consump-

tion and improve responsiveness. These implementation choices range from language

speci�c, method level code optimisations (reuse of instantiated objects, breaking loops

1Java 2 Micro Edition (J2ME) Personal Basis Pro�le [146]

105

Chapter 4. Implementation

early, avoiding expensive constructs, etc.) to system wide policies such as the use of

caching to reduce repeated computation, the parameterisation of method �delity and

the trading of accuracy or e�ciency. This chapter chooses not present code optimi-

sations as it would require a line by line analysis and contributes little to the readers

understanding of how the research questions are addressed. In contrast, where imple-

mentation policies have played a part, their e�ect is discussed.Architecture Overview

The model for spatial middleware is implemented as an application framework in

Java, speci�cally, Java 2 Micro Edition (J2ME). J2ME was chosen for the following

reasons:

1. Executes on device. Java software is stored on mobile devices, allowing it to be

executed even if no network connection is present. This is a signi�cant advantage

over WAP or XHTML-MP based mobile applications, which are hosted on a

HTTP server. The use of a software platform that executes on device contributes

to the provision of spatial services on hand-held devices despite the inherent

unreliability of wireless networks (RQ-1).

2. Platform independent. Software written in Java can be run on any device sup-

porting this technology, eliminating the need to develop a di�erent version for

each mobile platform. This supports software reuse and reduces the cost of de-

velopment of spatially-aware applications based on the framework (RQ-5).

3. Availability. Java is available on the majority of today's mobile devices. In ad-

dition, tools exist to support development, deployment and device con�guration.

Also, APIs and libraries are available that provide access to specialised hardware

(for example, GPS sensors) [67].

4. Performance. The platform independence of Java is achieved by way of a plat-

form independent byte-code representation that is interpreted by a virtual ma-

chine at run time. This process introduces overhead that traditional, non in-

terpreted languages do not incur. However, the performance of modern Java

virtual machines (JVM) is increasingly comparable to C, or C++ code [126, 8].

In addition, J2ME is designed speci�cally for resource-limited devices, supports

minimal con�gurations of the JVM and includes limited Java APIs that contain

only the essential capabilities for a mobile device.

106

Chapter 4. Implementation

5. Ubiquity. Java is used by many of today's spatially-aware applications. For

example, Java is used by: the MultiMeetMobile Location-based Service [227];

Point-to-Discover [213]; GeoNotes [68]; ComMotion [136]; and Guide [43]. As

spatially-aware applications are largely being developed using Java, a middle-

ware framework for spatially aware applications can make the most signi�cant

contribution and be most easily integrated if developed in the same language.

4.0.1 Platform

Figure 4.1 illustrates the software and hardware platform on which the framework was

implemented. Both the framework for spatial middleware and Hermes [10] were de-

veloped using the IBM WebSphere Everyplace Micro Environment (J9) JVM2. The

IBM JVM supports the Personal Basis Pro�le of J2ME, which is designed for resource

constrained devices like mobile phones and PDAs. It uses the Connected Device Con-

�guration (CLDC) as its basis. The Pocket PC hardware used during development

and evaluation was a HP IPAQ (h6300) device running Windows Mobile 2003 but the

framework is designed to be platform independent and can be run on any comparably

capable hardware.

4.0.2 Packages

Figure 4.2 shows an overview of the spatial middleware. The diagram is a UML

package diagram with added dependency relationships and components. Shading is

used to denote package hierarchy and is not intended to illustrate any grouping of

packages.

The framework is implemented as a highly modular collection of components. Pack-

ages are used to decompose implementation classes into component-level groupings.

At the top of the diagram an Interface package is shown to contain the MapCanvas

component. This user interface component supports the inclusion of map-based in-

terfaces into spatially-aware applications. The MapCanvas component is dependent on

the MapContext component. The design of this component is illustrated as a class in

2The J9 VM is an implementation of the Java Virtual Machine Speci�cation, Version 1.3. J9 VM
can be downloaded as part of IBM Workplace Client Technology, Micro Edition 5.7 from the IBM
website (requires registration).

107

Chapter 4. Implementation

Personal Basis Profile

Connected Device Configuration (CDC)

J2ME

IBM Websphere Everyplace Micro Environment (WEME)

JXE Native Compilation & Optimisation

Spatial Framework

Pocket PC

ARM / XScale based processor

Hermes Mobile Application Framework

Middleware

Applications

Runtime
Environment

Hardware

Figure 4.1: Implementation platform

Interface

Spatial Query

Engine
Map LayerMap Projection

Generalisation

Elimination Simplification Clipping

Multi-Scale Spatial Index

Spatial Data Source

Geometry

Map Context

Visibility

ESRI Shapefile

Map Canvas

«use»

«use»
«call»

«instantiate»

«access»

«create»

Figure 4.2: Architecture overview package diagram with dependencies

108

Chapter 4. Implementation

Section 3.3.2, Figure 3.12. The MapContext has access to Map Layer and Map Pro-

jection packages. The Map Layer package contains the abstract Map Layer design

(Section 3.3.2, Figure 3.12) and a collection of implementations of speci�c map layers.

For example: a ShapeMapLayer, that displays a single type of geometry speci�ed by

its attributes; GraticuleMapLayer, that draws a grid to help read coordinates; Com-

passMapLayer, that overlays a compass rose to indicate north on a rotatable map;

and OSMMapLayer, a raster map layer that displays map tiles retrieved from the Open

Street Map project3. ShapeMapLayers in the Map Layer package depend on a Spa-

tial Query Engine package to do the work of retrieving Geometry objects from Spa-

tial Data Source objects (Section 3.3.3, Figure 3.13). The Spatial Data Source

package contains sub-packages for Multi-Scale data sources (Section 3.2.1), Spatial

Indexes (Section 3.2.2) and an ESRI ShapeFile component. The Multi-Scale pack-

age contains the code necessary to implement the MRDB and depends on access to

the Generalisation (Section 3.2.3) package to perform model-oriented generalisa-

tion. The Generalisation package makes use of the Geometry package and contains

sub-packages for performing Elimination (Section 3.2.3.2), Simplification (Section

3.2.3.3) and Clipping (Section 3.2.3.4).

A complete class diagram is not included due to the scale of the code base. Where

interesting implementation detail exists that can not be directly deduced from the

design it is presented in the following sections.

The total size of the code base is illustrated in Figure 4.3, a pie-chart showing non-

commenting source statements (NCSS) per package gathered using JavaNCSS [124].

Some of the minor sub-packages have been collapsed into their higher level packages

to improve readability and packages containing benchmarking and testing code have

been omitted. In total, the code base is decomposed into 32 packages, 203 classes,

1354 functions and has a total of 10,882 NCSS. The full output from the JavaNCSS

program showing all packages can be found in the Appendix (Section B).

4.0.3 Hermes Integration

The model for mobile spatial middleware relies on the Hermes mobile application

framework to support collaborative spatial data dissemination and context manage-

3OpenStreetMap - The Free Wiki World Map, http://www.openstreetmap.org/

109

Chapter 4. Implementation

320
525 58

282

363

69

199

834

490

681

2343

263

571

306

375

487

44

289

353

hermes.context.location

hermes.gis

hermes.gis.asynch

hermes.gis.event

hermes.gis.generalisation.clipping

hermes.gis.generalisation.elimination

hermes.gis.generalisation.simplification

hermes.gis.geometry

hermes.gis.graph

hermes.gis.index.spatial

hermes.gis.io

hermes.gis.io.multiscale

hermes.gis.layer

hermes.gis.math

hermes.gis.projection

hermes.gis.query

hermes.gis.render

hermes.gis.ui

hermes.gis.visibility

Figure 4.3: Non-commenting source statements per package

ment (Section 3.1.2). This functionality is used to acquire spatial data, eliminating any

dependency on continuous network connectivity. In addition to collaboration, Hermes

supports context management. These services are used by the spatial middleware to

access information about the user's environment such as location and orientation.

This section describes the implementation detail of how the model for mobile spatial

middleware integrates with Hermes and accesses the application frameworks services.

We limit the discussion to the usage of Hermes in relation to con�guration and inte-

gration with the spatial middleware4.

To acquire spatial data using Hermes there are a number of con�guration steps that

must be taken. First, the Hermes con�guration �le has to be con�gured to support

collaboration (Listing 4.1).

Listing 4.1: Hermes basic con�guration parameters
1 # The S e r i a l Comms API to use (J2ME)

2 hermes . comms . s e r i a l . p rov ide r=J2MESerialConnection

3 # Communication p r o p e r t i e s

4 hermes . comms . threads . incoming=2

4For Hermes framework implementation detail see Linehan & Spence [10] and Driver [63]

110

Chapter 4. Implementation

5 hermes . comms . heartbeatt imeout=30000

6 hermes . comms . broadcast . port=4446

7 hermes . comms . broadcast . t i c k =10000

8 hermes . comms . l i s t e n i n g . t imeout=10000

9 hermes . comms . l i s t e n i n g . t i c k =5000

10 hermes . comms . r e c e i v e . t imeout=5000

11 hermes . comms . r e c e i v e . t i c k =5000

12 # GPS (IPAQ)

13 hermes . comms . gps .comm=7

14 hermes . comms . gps . baud=9600

15 # The Context Container to use

16 hermes . context . con ta ine r . p rov ide r=DB4OContextContainer

17 hermes . context . con ta ine r . f i l e=data/db4o

18 # Debugging

19 hermes . debug . l og=f a l s e

20 hermes . debug . l og . f i l e=data/hermes . l og

Listing 4.1 shows an example of a basic Hermes con�guration [10]. The important

parameters to support collaboration are the hermes.comms properties. These param-

eters control the behaviour of the service discovery and communication components

of the Hermes framework. Once the con�guration is created the Hermes framework

needs to be initialised and informed of any local sources of context (sensors) to which

it should connect.

Listing 4.2: Instructing Hermes to use a local context source (GPS sensor)
1 Se r i a lAddre s s s e r i a l P o r t = new Se r i a lAddre s s (commPort , baudRate) ;

2 // Class model ing sensor dev i c e

3 GPSReceiver gps = new GPSReceiver (s e r i a l P o r t) ;

4 // Get d e s c r i p t i o n o f type o f con t e x t prov ided by source

5 ContextSe rv i c eDesc r ip t i on [] sd = (ContextSe rv i c eDesc r ip t i on [])

gps . g e tContex tSe rv i c eDes c r i p t i on s () ;

6 // Discover the new l o c a l con t e x t Source

7 Hermes . getCommunication () . g e tSe rv i c eD i s cove ry () .

updateContextSourceList (gps) ;

111

Chapter 4. Implementation

Listing 4.2 shows the addition of a local context source to the Hermes framework.

Hermes now knows about the context source, the type of context information it supplies

and how to communicate with it. After executing these lines of code, Hermes still does

not begin acquiring location information from the GPS receiver because it has not been

told what types of context applications and higher level services require. In the case

of the spatial middleware, spatial data, location and orientation context is required.

The next step is to instruct the Hermes framework to acquire these types of context.

Listing 4.3: Acquiring and sharing context in Hermes
1 // acqu i r e p o s i t i o n f o r c en t e r ing map

2 Hermes . s e t Inte re s t InContextTypes (_mapContext , ContextType .

LOCATION, 200) ;

3 // acqu i r e o r i e n t a t i o n f o r r o t a t i n g map

4 Hermes . s e t Inte re s t InContextTypes (_mapContext , ContextType .

ORIENTATION, 50) ;

5 // acqu i r e s p a t i a l data

6 Hermes . s e t Inte re s t InContextTypes (_gisDataSource , ContextType .

GEOMETRY, 800) ;

7 // On the outbound s i d e

8 Hermes . getPr ivacy () . addContextTypeToDisclose (ContextType .GEOMETRY

, 5000) ;

Listing 4.3 shows the calls to the Hermes framework instructing it on which types

of context information to acquire and share. Hermes.setInterestInContextTypes()

takes three parameters: a reference to an object that is listening for events notifying it

of a change in a particular context value, the type of context to acquire and the maxi-

mum frequency of context change noti�cations. Line 8 in the code listing is instructing

the outbound side of the collaboration process, the Hermes privacy component, that

it can disclose the context type GEOMETRY (that is, spatial data).

The Hermes framework can now begin to manage the collaboration with sensors,

peer devices and infrastructure to acquire and share spatial data and positional infor-

mation. This process happens without any additional input from the spatial middle-

ware and is completely transparent to spatially-aware mobile application developers.

112

Chapter 4. Implementation

Listing 4.4: Retrieving location context from Hermes
1 // Ask Hermes f o r i t s l o c a t i o n manager s e r v i c e (par t o f the

con t e x t model)

2 LocationManager locMgr = (LocationManager) Hermes .

getSystemServ ice (Context .LOCATION) ;

3 // Get the curren t l o c a t i o n

4 Locat ion l o c = null ;

5 try {

6 l o c = locMgr . getLocat ion () ;

7 } catch (Locat ionExcept ion e) {

8 MobileGIS . l og . e r r o r (e . getMessage () , e) ;

9 }

10 // Get the l o c a t i o n s coord ina t e s

11 i f (l o c != null)

12 Point p = l o c . getCoord inates () ;

After Hermes has been con�gured, informed about local context sources and in-

structed to acquire speci�c types of context, the context information must then be

retrieved. Listing 4.4 is an example of how the spatial middleware retrieves location

information from Hermes. The code snippet gets a handle on the system service that

supplies location context and then calls the getLocation() method. The latitude and

longitude coordinates are then extracted from the Location object using the getCoor-

dinates() method. The implementation of the system services for delivering speci�c

context types is in�uenced by the The Open Handset Alliance5 Android 1.06 applica-

tion framework for mobile devices [90]. The Android architecture shares the notion of

system services that provide access to types of context (including location).

4.1 Spatial Data Model

The model for spatial middleware acquires then stores spatial data locally. To provide

a usable dynamic model of the user's environment, it is necessary to be able to make

5The Open Handset Alliance http://www.openhandsetalliance.com/
6Android http://www.android.com/

113

Chapter 4. Implementation

spatial data available in di�erent resolutions and levels of detail to allow for �exible

zooming on small displays. This is achieved with the MRDB, the design of which is

described in Section 3.4.

This section presents the implementation of the MRDB in detail. We begin by

describing the ESRI Shape�le open GIS data format and how it is extended to support

spatial data at multiple resolutions. This is followed by a detailed implementation level

view of the algorithm for retrieving spatial data at a speci�c resolution from the �le

components that constitute the extended Shape�le format. Next, the QueryEngine

interface to the MRDB is presented. The QueryEngine provides an interface for ac-

cessing spatial data at multiple levels of detail independent of underlying data store.

Finally, the implementation of the Generalisation package is presented.

The algorithms for accessing spatial data stored in the extended Shape�le format in

conjunction with the QueryEngine interface and internal model-oriented generalisation

algorithms contribute to the ability to manipulate spatial data on hand-held mobile

devices, addressing RQ-2, the design of algorithms to access a spatial model at multiple

levels of detail.

4.1.1 ESRI Shape�les

ESRI Shape�les store non-topological geometry and attribute information for spatial

objects. The geometry for a feature is stored as a shape comprising a set of vector

coordinates [69]. Shape�les consists of a main �le, an index �le, and a dBase7 table.

The main �le stores shapes with a list of its vertices. The index �le contains the o�set

of the main �le record from the beginning of the main �le for each record. The dBase

table contains feature attributes with one row per shape record in the main �le.

Table 4.1 summarises the three �le components of a Shape�le. Each Shape�le can

contain only one type of geometry (that is, lines, areas or points) and Shape�les do not

have any notion of scale or resolution. To support the retrieval of spatial geometry at

multiple levels of detail it is necessary to be able to store multiple copies of the same

spatial objects at di�erent resolutions. The Shape�le format can not do this and so

has been extended.
7dBase was one of the �rst database management systems published in the early 1980s [49]. The

underlying �le format, the .dbf �le, is used by many applications as a simple format to store structured
data.

114

Chapter 4. Implementation

Extension Description
SHP The main �le containing the geometry.
DBF A dBase attribute database containing a row for each geometry

object in the SHP �le.
SHX An index to SHP �les. Contains byte o�sets and content lengths for

individual geometry objects in the SHP �le.
Table 4.1: ESRI Shape�le �les

Extension Description
X.SHP A SHP �le, acting as a multi-resolution cache of the main �le.
X.SHX An index to the copy SHP �le containing a re-mapping of record

o�sets for shape records.
QIX An R-Tree spatial index.

Table 4.2: Extended ESRI Shape�le �le components

4.1.2 Multi-Scale Shape�le

The ESRI Shape�le data format has been extended in two ways. Additional �le com-

ponents are added to store the multiple copies of spatial objects at di�erent scales and

a hierarchical spatial index is added to improve the performance of identifying shape

records within a particular extent.

Table 4.2 lists the components that are added to the Shape�le standard. The

�rst is a copy of the main (SHP) geometry �le. This �le is added to as objects are

generalised on-demand from the main �le. Theses generalised objects are written to

the �le sequentially in an order that may be di�erent to their original order in the

main �le. To account for this reordering of the variable length shape records, a copy

of the index to the geometry �le is needed at each level of detail (LoD). Multiple pairs

of SHP and SHX may be created depending on the number of LoDs. These �les are

associates with the original �les through a simple �le naming scheme. For each LoD,

x, an SHP and SHX exists with the names example.x.shp and example.x.shx where

the main �le in the standard Shape�le is named example.shp. The QIX �le is an R-

Tree spatial index that provides access to the main �le based on each spatial objects

bounding volume. Querying this data structure results in a list of shape records that

may then be read from the main SHP �le.

In addition to adding �les to the standard, the �le headers are modi�ed. The SHP

and SHX �les contain a 100 byte header. This header contains information such as,

115

Chapter 4. Implementation

Position Field Type
Byte 0 File Code Integer
Byte 4 Min. Scale Double
Byte 12 Max. Scale Double
Byte 24 File Length Integer
Byte 28 Version Integer
Byte 32 Shape Type Integer
Byte 36 Bounds Bounding Box

Table 4.3: Extended Shape�le main �le header

the version of the format, length of the �le, type of spatial data contained (point, line

or area) and bounding volume of the data.

Of the 100 bytes in the �le header there is a group of 20 unused bytes reserved for

future features. These 20 bytes are used to store two double (8 byte) values representing

the scale range of the data stored within the �le. Table 4.3 shows the �elds in the

modi�ed �le header with their byte position, value and type.

4.1.3 MRDB Spatial Data Retrieval

The extended Shape�le format contains three base �les containing geometry, attributes

and an index (See MRDB Shape�le components: Figure 3.5 on page 69). For each LoD,

there are two additional �les replicating the structure of the main geometry and index

�les but containing a portion of the records at a lower resolution and in a di�erent

order. The algorithm for locating, reading and returning a spatial object at a speci�c

scale from this collection of �les is illustrated in the sequence diagram, Figure 4.4.

The QueryEngine begins by retrieving the type of geometry from the main �les

header and matching it with the type of spatial data requested in the SpatialQuery.

The index is then queried with the getRecords() call which takes a spatial extent

as a parameter and returns list of shape records. The DBF �le is then searched for

the attributes that belong to those records and these values are matched against any

speci�ed attributes in the SpatialQuery. The list of shape records is then passed to

an elimination �lter which removes records that will not be visible when rendered on

the device screen.

At this stage, the QueryEngine begins the process of reading the actual geometry

records from the SHP �le. This process begins by identifying the LoD containing

116

Chapter 4. Implementation

getShapeType()

addGeometry(simplified : ShapeList, scale : float)

getRecords(extents : Rectangle) : ShapeList

getAttributesForRecords(s : ShapeList)

getGeometryForRecords(records : ShapeList, scale : float)

buildings.dbf buildings.qix buildings.shp

LOD
i

buildings.1.shx buildings.1.shp

Elimination.filter(records : ShapeList)

getGeometryForRecords(records : ShapeList)

getRecordOffsets(ShapeList list)

QueryEngine.executeQuery(q : SpatialQuery)

Generalisation.Simplify(records : ShapeList)

Clipping.clipGeometry()

addGeometry(simplified : ShapeList)

Figure 4.4: Multi-scale retrieval

117

Chapter 4. Implementation

geometry records at the correct scale. getRecordOffsets() is called to re-map the

record o�sets. This step is necessary as the order of the entries in each of the standard

�les in the Shape�le is synchronized but the copies of these �les at each LoD contain

the same records in a di�erent order and size. If geometry has been found for all the

records then the algorithm continues from Clipping.clipGeometry(). Otherwise, the

remaining geometry is read from a higher resolution LoD (or the main �le if no multi-

scale copies exist). The getGeometryForRecords(records : ShapeList) method is

called for each of the LoDs until the main �le is reached. The geometry is generalised

to the correct scale and added to the appropriate LoD to prevent the same objects from

being generalised again. Once complete the QueryEngine.executeQuery() returns a

list of spatial objects including their geometry and attributes at the requested scale.

A number of features of the multi-scale retrieval algorithm contribute to making it

as computationally lightweight as possible. The matching of attributes, geometry type

and elimination are performed on an objects minimum bounding volume, retrieved

from the spatial index. This reduces the number of objects for which geometry has to

be retrieved, minimising the amount of I/O and the need for generalisation. Generali-

sation is only performed when data for a spatial object is not available in the correct

LoD cache. In this case, data for the object is retrieved from the closest LoD and fur-

ther generalised to minimise the impact of the generalisation process. Once geometry

is generalised it is written back to a persistent LoD cache. All reading and writing to

memory is bu�ered to minimise the number of system calls. Finally, clipping is used to

eliminate points from spatial objects only where the majority of the object is outside

the queries spatial extents. This prevents the clipping of small numbers of points from

shapes, where the processing time saved by the reduction in points is less than the

processing required to perform the clipping.

4.1.4 Spatial Query Interface

The implementation features a spatial query interface that provides a convenient in-

terface to the complex MRDB format. Figure 4.5 is a class diagram detailing the

implementation of the spatial query interface.

A QueryEngine is responsible for executing queries. A query is speci�ed program-

matically and is modeled by the Query interface. This interface is realised by the

118

Chapter 4. Implementation

«interface»

Query

+ addConstraint(c : Constraint)

+ getConstraint(con : Constraint) : Constraint[]

+ constainsConstraint(con : Constraint) : boolean

+ validate() : boolean

MAX_ATTRIBUTES : Integer

Constraint

op : Operator

Operator

EQ : int

NOT : int

LIKE : int

GREATER : int

LESS : int

CONTAINS : int

INTERSECTS : int

QueryEngineFactory

+ getQueryEngine() : QueryEngine

QueryEngine

addShapeDataSource(type : String, source : String) : void

getShapeDataSource(name : String) : SpatialDataSource

removeShapeDataSource(source : SpatialDataSource) : void

removeAllShapeDataSources() : void

executeQuery(q : SpatialQuery) : ShapeList

getWorldExtent() : Rectangle

SpatialQuery

+ getArea() : Rectangle

+ getScale() : Scale

+ getShapeType() : int

- resultsConstraint : ResultsConstraint

- spatialConstraint : SpatialConstraint

- attrConstraints : AttributeConstraint[]

ResultsConstraint

- shapeType : int

- retrieveGeometry : boolean

- maxResults : int

SpatialConstraint

+ getArea() : Rectangle

area : Rectangle

AttributeConstraint

- field : String

- value : Object

Figure 4.5: Spatial query class diagram

119

Chapter 4. Implementation

SpatialQuery class, which supports three types of query Constraint: SpatialCon-

straint, ResultsConstraint and AttributeConstraint. The SpatialConstraint

is required by the SpatialQuery class. It speci�es the the bounding area for which

spatial information is required. The SpatialConstraint, like all other classes realising

the abstract Constraint class, contains an Operator object. The ResultsConstraint

class adds extra constraints to the spatial query such as, the type of geometry (point,

line or area) and the maximum number of results to return. This constraint also

contains a boolean, retrieveGeometry that is used to indicate to the QueryEngine

whether geometry should be returned or just a list of shape records. The Attribute-

Constraint class constrains the possible values of a particular �eld in a spatial objects

attributes. Multiple AttributeConstraint instances can be added to a Spatial-

Query.

Listing 4.5: Building a spatial query
1 Spat ia lQuery sq = new Spat ia lQuery (new Spa t i a lCons t r a in t (

MapContext . g e tP ro j e c t i on () . getWorldExtent ())) ;

2 sq . addConstraint (new Resu l t sCons t ra in t (ShapeConstants .

SHAPE_TYPE_POLYGON, 1600)) ;

3 sq . addConstraint (new Attr ibuteCons t ra in t ("Layer" , "COUNTRY" ,

Operator .EQ)) ;

Building an instance of the SpatialQuery class is illustrated in Listing 4.5. This

query speci�es an area (MapContext.getProjection().getWorldExtent()) in which

polygons should be retrieved at scale 1600 where their �Layer� attribute is equal (EQ) to

�COUNTRY�. A text-based representation of this same query is shown in Listing 4.6.

This SQL-like representation of spatial queries is implemented for debugging purposes

only and is not directly executed, rather the programmatic version is passed to the

QueryEngine (Figure 4.5).

Listing 4.6: Text representation of a spatial query
1 SELECT polygons WHERE BOUNDS CONTAIN Rectangle : [4] { (53 .340572 ,

−6.2515793) (53 .342297 , −6.2515793) (53 .342297 , −6.2486973)

(53 .342297 , −6.2486973) } AND Layer = `COUNTRY' ;

120

Chapter 4. Implementation

4.1.5 Generalisation

Model-oriented generalisation provides the MRDB with the ability to automatically

derive new LoDs on demand. The design chapter has presented the four generalisation

operations that the spatial middleware implements: restriction, elimination, simpli�-

cation and clipping (Section 3.2.3). Restriction is the elimination of spatial objects

from spatial query results based on their attributes. Restriction is implemented by the

spatial query interface, which allows attribute constraints to be speci�ed; the query

engine which retrieves objects from the MRDB and interprets the spatial queries; and

the Layer-based map rendering components, which support the overlay of multiple

collections of geometry that are restricted by their types and attributes.

The implementation of elimination, simpli�cation and clipping has not yet been

presented and so will be detailed in the following sections. These generalisation steps

are implemented in a modular, extendable manner, making use of interfaces to allow

for the extension of the framework through the addition of alternative implementations

of these components.

4.1.5.1 Elimination

The elimination generalisation step (Section 3.2.3.2) is implemented as a �lter to the

ShapeList class (Figure 4.6). The method accept(r : ShapeRecord) : boolean

is called on each ShapeRecord in the ShapeList. If the method returns false, then it

is removed from the list.

The EliminationFilter is an abstract class that implements the ShapeListFil-

ter interface and uses the Singleton design pattern [123]. The Singleton pattern is

used to ensure that there is only ever one instance of an object realising the Elimina-

tionFilter abstract class de�nition. This is part of the pluggable component model,

the implementation of which is presented in Section 4.3.1.

The MinimumAreaFilter is the realisation of the EliminationFilter component.

This object maintains a minimum real world area that is visible on the screen. This is

used as a threshold. Spatial objects whose total area is below this value are removed

from the list. The threshold value is con�gurable through a properties �le and can

be used to remove objects too small to be visible or just to declutter the interface by

removing less important objects.

121

Chapter 4. Implementation

«interface»

ShapeListFilter

+ accept(r : ShapeRecord) : boolean

EliminationFilter

+ getInstance() : EliminationFilter

+ LOD_TOLERANCE_PROPERTY : String

+ ELIMINATION_PROPERTY : String

+ tolerance : int

+ scale : float

- instance : EliminationFilter

MinimumAreaFilter

getMinimumArea() : float

- toleranceSq : float

- pixTolerance : int

Figure 4.6: Elimination ShapeList �lter class diagram

4.1.5.2 Simpli�cation

The simpli�cation generalisation step reduces the complexity of individual shapes pro-

ducing information suitable for display at di�erent levels of detail (Section 3.2.3.3).

Simpli�cation is implemented as a component, de�ned by the Simplify2D interface

(Figure 4.7). The interface has methods that take a 2D shape and a scale as parame-

ters and return a simpli�ed version of the shape. The concrete ShapeSimplify class

realises the Simplify2D interface. Internally, the ShapeSimplify class has private

instances of two algorithms for reducing the complexity of 2D geometry, KraakOrmel-

ing and DouglasPeuker. The algorithm instances also implement the Simplify2D

interface and are loaded as pluggable components at run time. Two algorithms are

implemented because of their di�erent characteristics. The KraakOrmeling class uses

the nth point algorithm that simply removes every nth point from the shape. This is

computationally fast but can cause distortion to shapes that contain few points. The

DouglasPeucker class uses a more sophisticated algorithm that minimises the distor-

tion of the shape but is more computationally expensive [62]. The ShapeSimplify

class uses DouglasPeuker only in situations where shapes have few points and for

122

Chapter 4. Implementation

«interface»

Simplify2D

+ simplify(line : Polyline, scale : float) : Polyline

+ simplify(poly : Polygon, scale : float) : Polygon

DEFAULT_SIMPLIFICATION_TOLERANCE : int

SIMPLIFICATION_THRESHOLD_PROPERTY : String

SIMPLIFICATION_TOLERANCE_PROPERTY : String

ShapeSimplify

complex : ShapeSimplify

simple : ShapeSimplify

KraakOrmeling

+ DEFAULT_MIN_POINTS : int

+ nthPoint : int

DouglasPeucker

- toleranceSq : float

- pixTolerance : int

Figure 4.7: 2D geometry simpli�cation class diagram

scale values that would expose any distortion in the shape.

4.1.5.3 Clipping

Clipping is the modi�cation of individual shapes to remove portions that extend be-

yond the viewport of the device, to preserve computational resources that are wasted

computing projections and rendering coordinates that will not be seen (Section 3.2.3.4).

Figure 4.8 is a class diagram illustrating the implementation of clipping. Clipping al-

gorithms are designed either for line clipping or polygon clipping. Because of this, the

implementation features three interfaces: Line2DClip (line clipping), Polyline2DClip

(polyline clipping), and Polygon2DCLip (polygon clipping). Implementations of clip-

ping algorithms realise these interfaces making them interchangeable and the imple-

mentation extensible. These implementations are:

• CohenSutherland - Code taken from �Computer Graphics for Java Programmers�

by Ammeraal [9] and altered to support the geometry model (Chapter 3, Figure

3.13) and Polyline2DClip interface.

123

Chapter 4. Implementation

«interface»

Line2DClip

+ clipLine(line : Polyline,

clip : Rectangle) : Polyline

+ clipLine(start : Point,

end : Point,

clip : Rectangle) : Polyline

Sutherland-

Hodgman

ShapeClip

+ clip(shpType : int,

rec : ShapeRecord,

clip : Rectangle) : Shape

+ line : Line2DClip

+ polygon : Polygon2DClip

+ polyline : Polyline2DClip
«interface»

Polyline2DClip

+ clipPoly(line : Polyline,

clip : Rectangle) : Polyline

«interface»

Polygon2DClip

+ clipPoly(poly : Polygon,

clip : Rectangle) : Polygon

WeilerAtherton

CohenSutherland

LiangBarsky

Maillot

Figure 4.8: Geometry clipping class diagram

• LiangBarsky - Ported from a C# implementation by Grishul Eugeny8.

• SutherlandHodgman - Implementation based on pseudocode for polygon clipping

posted online by Huiling Yang [242].

• WeilerAtherton - An optimised version of the Weiler-Atherton algorithm for

rectangular clipping [115]. Implemented using an algorithm described by William

Shoa�9.

• Maillot A port of a C implementation published by Maillot [133].

A ShapeClip class provides an interface to the clipping functionality to the rest of the

framework, while making the details of the actual implementing algorithm transparent

to other components. The only method of this class is clip(shpType : int, rec

: ShapeRecord, clip : Rectangle), which takes as parameters the type of shape

8Wikipedia, Liang-Barsky, Revision: January 2008 http://en.wikipedia.org/wiki/

Liang-Barsky.
9Clipping, Last Updated: March 2002, http://www.cs.fit.edu/~wds/classes/graphics/Clip/

clip/clip.html

124

Chapter 4. Implementation

that is to be clipped (which is used to identify a suitable clipping algorithm), the shape

itself and the clipping rectangle.

4.2 Spatial Services

The model for mobile spatial middleware presented in this thesis incorporates support

for a number of common application-level spatial services. The previous chapter has de-

tailed the design of spatial services including adaptable map rendering (Section 3.3.2),

spatial reasoning (Section 3.3.3), coordinate transformation (Section 3.3.4), route gen-

eration (Section 3.3.5) and visibility determination (Section 3.3.6).

This section presents the implementation of these spatial services for mobile spatially-

aware applications using the 2D environment model described in Section 3.1. The

design chapter has already detailed an object-oriented design for these spatial services

(Section 3.3). As the implementation platform is Java, an object-oriented language,

the implementation of these services follows directly on from the design. As the imple-

mentation of many of the services is a direct mapping of the object-oriented design to

code it is not necessary to describe the implementation in detail as its structure and

algorithms can be found in the design.

One service that warrants further discussion is the visibility determination service

as its implementation can not easily be derived from the description in Section 3.3.6.

4.2.1 Visibility Determination

The spatial visibility service determines the visibility of real world objects from the

user's point of view using the 2D environment model presented in Section 3.1. Hand-

held mobile devices require a combination of collaborating components to determine

the visibility of spatial objects on-demand in a dynamic scene. These components are:

1. ViewFrustumCulling: A component implemented as a �lter for a list of spatial

objects that eliminates objects that are either: 1) not in the direction the user is

looking (as estimated by orientation sensors, that indicate the direction the user

is facing or moving); or 2) too far away from the user to be visible.

125

Chapter 4. Implementation

2. DepthBuffer: A component that extends a shape list with an ordering based on

distance from a speci�ed PoV.

3. OcclusionCulling: A component that takes objects remaining after view-frustum

culling ordered by a depth bu�er and uses either a back-face culling or ray casting

algorithm to remove objects that are occluded.

4.2.1.1 View Frustum Culling

View-frustum culling eliminates objects outside a FoV or beyond a de�ned distance

from the user from a list of spatial objects (Section 3.3.6.1). A model of human visual

perception (Figure 3.19, right) is used to determine the FoV and a cut o� point beyond

which objects should not be considered visible. View-frustum culling is implemented

as a list �lter, speci�cally the class ViewFrustumCulling realises the ShapeList-

Filter interface and is passed as a parameter to the ShapeList.filter(filter :

ShapeListFilter) method. The algorithm implemented for view-frustum culling is

best illustrated by analysing the implementation of the accept(Shape) method that

determines whether an element of a list should be removed or not (Listing 4.7).

Listing 4.7: The accept() method of the ViewFrustumCulling �lter
1 public boolean accept (ShapeRecord record) {

2 // I f we don ' t know where user i s l o o k i n g assume they can

see f o r 360 degrees around t h e i r l o c a t i o n

3 i f (this . _fieldOfView == 360) {

4 // Check w i th in v iewing d i s t ance

5 i f (this . _viewingPoint . d i s t anc e (record . index .

bounds . getCenter ()) > VisualPercept ionModel .

URBAN_FAR_POINT_METERS) {

6 return fa l se ;

7 } else

8 return true ;

9 } else {

10 // Check i s in d i r e c t i o n the user i s l o o k i n g

11 f loat d i r = this . _viewingPoint . azimuth (record .

index . bounds . getCenter ()) ;

126

Chapter 4. Implementation

12 i f (d i r > ((this . _d i r ec t i on − (this . _fieldOfView

/ 2 . 0)) % 360) && d i r < ((this . _d i rec t ion + (

this . _fieldOfView / 2 . 0)) % 360)) {

13 // Check w i th in d i s t ance user can see

14 i f (this . _viewingPoint . d i s t anc e (record .

index . bounds . getCenter ()) >

VisualPercept ionModel .

URBAN_FAR_POINT_METERS) {

15 return fa l se ;

16 } else

17 return true ;

18 }

19 }

20 return fa l se ;

21 }

The accept(Shape) method begins by checking the FoV. The FoV is measured in

degrees, so a value of 360 indicates that the user's orientation is not known. In this

case the algorithm has to assume that objects within a visible distance, irrespective

of direction could potentially be visible. If the user's orientation is known, a FoV

is determined based on the VisualPerceptionModel. The azimuth (or direction in

degrees) from the user to the centre of the object being tested for visibility is calculated.

The algorithm then tests to see if this value falls within the bounds of the user's FoV.

If the object is within the user's FoV then the distance from the user is measured and

if it is beyond a threshold de�ned by the VisualPerceptionModel (Chapter 3, Section

3.3.6.1) the object is marked as not visible.

4.2.1.2 Depth Bu�er

The second important component is the depth bu�er, implemented in the DepthBuffer

class that extends and overrides a ShapeList. Figure 4.9 is a class diagram illustrating

the implementation of the DepthBuffer. The depth bu�er is essentially just a list of

shapes that have been sorted by depth (that is, their distance from the user's location).

Its implementation extends ShapeList and has a DepthComparator that is passed to

127

Chapter 4. Implementation

DepthComparator

- _pov : Point

DepthBuffer

+ sorter : DepthComparator

MeanDistanceDepthComparator

ShapeList

+ insertElement(rec ShapeRecord) : void

+ insertElementAt(rec : ShapeRecord, i : int) : void

+ containsRecord(rec : ShapeRecord) : boolean

+ getRecord(index : int) : ShapeRecord

+ indexOf(rec : ShapeRecord, i : int): int

+ removeElementAt(i : int) : void

+ filter(filter : ShapeListFilter) : ShapeList

+ sort(c : ShapeRecordComparator) : void

+ size() : int

+ clear() : void

- size : int

- data : ShapeRecord[]

java.util

Comparator

+ compare(a : Object, b : Object) : int

MinDistanceDepthComparator

Figure 4.9: Class diagram for DepthBuffer

the ShapeList's sort() method. The DepthComparator is an abstract class to allow

for multiple approaches to determining the depth of objects in a scene. Two approaches

are implemented: MeanDistanceDepthComparator and MinDistanceDepthCompara-

tor. The distinction between the two algorithms is illustrated in the design chapter

(Figure 3.20). The MeanDistanceDepthComprator uses the distance from the centre

of an object's bounding volume to the PoV to determine depth (for example, depth =

pov.distance(shape.bounds.getCenter());). The MinDistanceDepthComparator

uses the distance between the PoV and the closest point in the shape as its depth.

The DepthBuffer overrides all of the ShapeList's methods that modify the contents

or order of the list to call sort(dc : DepthComparator) after each modi�cation10.

The sort method uses Java's built-in array sorting functionality (Arrays.sort()) to

re-order the elements of the list based on the DepthComparator.

10Overridden methods call the super classes implementation and then re-sort the list.

128

Chapter 4. Implementation

4.2.1.3 Occlusion Culling

Occlusion culling is the process of �ltering a set of objects to remove objects that are

occluded by other objects (Section 3.3.6.3). An abstract VisibilityCulling class pro-

vides a factory method for instantiating an object that realises the VisibilityCulling

interface. The actual class that gets created is de�ned by the con�guration �le. Two

possible approaches have been implemented that realise this class, BackfaceCulling

and OcclusionCulling.

Figure 4.10 is a UML activity diagram illustrating the implementation of the Back-

faceCulling algorithm. The method that performs the visibility culling is named

occulsionCull(db : DepthBuffer) and is de�ned in the VisibilityCulling in-

terface. This method takes a DepthBuffer as a parameter and removes objects from

the depth bu�er that are not visible. The activity diagram is the implementation of

the algorithm whose design is illustrated as a �ow diagram in Figure 3.21.

The activity diagram shows that the algorithm iterates over all the objects in the

depth bu�er, starting at the closest object. For each object the angles to the two

extreme visible edges are calculated. A triangular occlusion shadow is then created

and added to any existing shadows. Starting with the next furthest away object, the

remaining elements of the depth bu�er are scanned to see if they are contained within

the boundary of the occluding shadow. These objects are removed from the depth

bu�er because they can not be visible. The algorithm then returns to the next deepest

object and continues until only visible objects remain.

The other class that implements VisibilityCulling is the RayCasting class. The

ray casting algorithm is illustrated by a �ow chart in Figure 3.23. Its implementation

uses the intersection methods that are part of the geometry model to locate objects in

the depth bu�er to which no line of sight exists. Figure 4.11 is a UML activity diagram

illustrating the implementation of ray casting occlusion culling. The implementation

iterates over the objects in the depth bu�er and calls the isVisible(s : Shape)

method for each one. Objects that are not visible are removed from the depth bu�er.

The implementation of the isVisible method is illustrated separately. This method

iterates through every point in the shape being tested. For each point a line is drawn

from the PoV to the point. If the line intersects any geometry closer to the PoV (easily

determined by looping over objects before this one in the depth bu�er) then there is

129

Chapter 4. Implementation

BackfaceCulling.occlusionCull(db : DepthBuffer)

db.getRecord(0)

[db.indexOf(rec) >= db.size()]

getMaximumAngle(rec);

createShadow();

ConvexHull.naiveHull();

db.getNextRecord(rec); db.removeRecord()

db.getNextRecord(rec);

Calculates the angles to the

two extreme visible edges of

the occluding polygon.

Returns null if the object has

no appreciable width (zero

degrees or less)[db.indexOf(rec)

< db.size()]

[DepthBuffer has

more records]

[Record Occulded]

[!Shadow.contains(rec)]

Creates a culling shadow in

the shape of a triangle with its

point at the user’s location, its

sides creating the max angle

and extending as far as the

user can see.

[End]

Figure 4.10: Backface occlusion culling algorithm activity diagram

130

Chapter 4. Implementation

RayCasting.occlusionCull(db : DepthBuffer)

shape =

db.getRecord(0)

[db.indexOf(shape) >=

db.size()]

isVisible(shape)

shape =

db.getNextRecord();

[db.indexOf(shape)

< db.size()]

s.getVertex(0)

l = new Line(pov,

vertex);

s.getNextVertex()

[shape.lastVertex()]

isVisible(s : Shape)

l.intersects(occluder);

Checks for an intersection

between the line from the

shapes vertex and the user’s

PoV with all occluding (already

determined visible) objects.

Figure 4.11: Ray casting visibility determination activity diagram

131

Chapter 4. Implementation

no line of sight to that particular point. If none of the points in the shape can be seen

then the shape itself is not visible and will be removed from the list.

4.3 Framework

This section describes the integration of the data structures, algorithms and spatial

services into a generic framework for spatially-aware mobile applications (Section 3.4).

The framework addresses the common challenges posed by hand-held mobile devices

in a reusable and extensible manner. Many of the implementation choices presented

so far contribute to the extensibility & reusability of the framework. For example:

• The choice of a platform independent development language that is supported

by the majority of today's mobile devices, is already used by developers to build

spatially-aware mobile applications and supports easy integration with the Her-

mes mobile application framework contributes to the reusability of the framework

(Section 4.0.1).

• The decomposition of the framework into modular components, each responsible

for providing a reusable spatial service and each reusing familiar mobile design

patterns, metaphors and concepts (for example, the Android [90] in�uenced lo-

cation context service (Section 4.0.3), the Open Geospatial Consortium [171]

in�uenced geometry model (Section 3.3.3) and BBN Open Map [21] inspired the

map layer model (Section 3.3.2).

• A pluggable component model that provides a means to con�gure the run time

framework through parameterisation (Section 3.4.1).

• The multi-resolution spatial data model that has been implemented by extending

an open standard GIS data format (Section 4.1).

• The simple spatial query model incorporating a human readable representation

and object-oriented programming model (Section 4.1.4).

The most signi�cant implementation features of the framework that contribute to

its extensibility and reusability are the pluggable component model and persistent

132

Chapter 4. Implementation

con�guration �les. The implementation of these features is presented in the following

sections.

4.3.1 Pluggable Component Model

The pluggable component model de�nes speci�c extension points where alternative

component implementations may be substituted at run time. The pluggable component

model supports extensibility by enabling the addition of new algorithms and component

implementations by simply modifying a con�guration parameter.

Listing 4.8: The system class loader being invoked to instantiate a component
1 St r ing codeBase = " i e . tcd . cs . dsg . hermes . g i s . p r o j e c t i o n . " ;

2 St r ing component = MobileGIS . getProperty (Pro j e c t i on .

PROJECTION_PROPERTY) ;

3 // The cons t ruc t o r arguments f o r p r o j e c t i o n s

4 Class [] projConstructorArguments = new Class [] {Point . class ,

f loat . class , int . class , int . class } ;

5 Object [] parameters = new Object [] { center , s ca l e , width , he ight

} ;

6 try {

7 this . _pro ject ion = (Pro j e c t i on) Class . forName (codeBase +

component) . getConstructor (projConstructorArguments) .

newInstance (parameters) ;

8 } catch (In s t an t i a t i onExcep t i on e) {

9 MobileGIS . l og . e r r o r (e . getMessage () , this) ;

10 // Add i t i ona l e x cep t i on hand l ing omit ted

11 }

Listing 4.8 illustrates how component interfaces are used to allow a component

realising the interface to be speci�ed in a properties �le and dynamically loaded at

run time11. The variable, codeBase, on line 1 speci�es the package location of the

component implementations. Line 2 retrieves the name of the class implementing the

component from the frameworks con�guration. The Class.forName(implementation

11The full extent of the error handling code is not shown.

133

Chapter 4. Implementation

: String) method instructs the JVM system class loader to load the speci�ed code.

Parameters (also speci�ed in the con�guration) are passed to the instance of the com-

ponent.

Table 4.4 lists the seven locations in the framework implementation where plug-

gable components are used. The Component Interface de�nes the methods that the

component must implement. The Factory Class is responsible for instantiating com-

ponent implementations. Where the factory and component interface are listed as the

same class, it is because the component interface is implemented using an abstract class

that both de�nes the method that must be implemented in subclasses and contains a

factory method capable of loading a component instance as speci�ed by the con�gura-

tion �le (See Listing 4.8). The Code Base is the name of the package where component

implementations are located and the Con�guration Property is a key that is used to

look up the component implementation class name in the con�guration �le (Section

4.3.2). The Implementing Classes are lists of the concrete component implementations

included in the framework.

4.3.2 Con�guration File

The con�guration �le allows pluggable component implementations to be speci�ed

and static parameters to be loaded at run time, customising the behaviour of the

application framework without requiring source code modi�cation. It is implemented

using the java.util.Properties class. This class loads and stores key/value pairs

from a �le and manages them in memory, thereby facilitating the use of persistent

con�guration variables.

The framework has a single properties �le that contains all its con�guration (Ap-

pendix A.1). The properties are grouped by service and a naming scheme based on

component package names is used. The con�guration property groups are:

• Debugging; Parameters to control logging of activity during development and

testing.

• Networking; Parameters used to specify a server address for a network raster

map tile layer.

• Screen; The default mobile device screen dimensions.

134

Chapter 4. Implementation

C
om

po
ne
nt

In
te
rf
ac
e

Fa
ct
or
y
C
la
ss

C
od
e
B
as
e

C
on
�g
ur
at
io
n
P
ro
pe
rt
y

Im
pl
em

en
ti
ng

C
la
ss
es

V
is
ib
ili
ty
C
ul
lin
g

V
is
ib
ili
ty
C
ul
lin
g

he
rm

es
.g
is
.v
is
ib
ili
ty

gi
s.
pr
oj
ec
ti
on
.v
is
ib
ili
ty
.

oc
cl
us
io
n

B
ac
kf
ac
eC

ul
lin
g,

O
cc
lu
si
on
C
ul
lin
g,

M
ul
ti
V
is
ib
ili
ty
C
ul
lin
g

D
ep
th
C
om

pa
ra
to
r

D
ep
th
B
u�

er
he
rm

es
.g
is
.v
is
ib
ili
ty

gi
s.
pr
oj
ec
ti
on
.d
ep
th

M
ea
nD

is
ta
nc
eD

ep
th
C
om

pa
ra
to
r,

M
in
D
is
ta
nc
eD

ep
th
C
om

pa
ra
to
r

P
ro
je
ct
io
n

M
ap
C
on
te
xt

he
rm

es
.g
is
.p
ro
je
ct
io
n

gi
s.
pr
oj
ec
ti
on

M
er
ca
to
r,
E
qu
iR
ec
ta
ng
ul
ar

E
lim

in
at
io
nF

ilt
er

E
lim

in
at
io
nF

ilt
er

he
rm

es
.g
is
.g
en
er
al
is
at
io
n.

el
im
in
at
io
n

gi
s.
ge
ne
ra
lis
at
io
n.

el
im
in
at
io
n

M
in
im
um

A
re
aF

ilt
er
,
N
ul
lF
ilt
er

L
in
e2
D
C
lip

Sh
ap
eC

lip
he
rm

es
.g
is
.g
en
er
al
is
at
io
n.

cl
ip
pi
ng

gi
s.
pr
oj
ec
ti
on
.c
lip
.li
ne

L
ia
ng
B
ar
sk
y,
C
oh
en
Su
th
er
la
nd

P
ol
yg
on
2D

C
lip

Sh
ap
eC

lip
he
rm

es
.g
is
.g
en
er
al
is
at
io
n.

cl
ip
pi
ng

gi
s.
pr
oj
ec
ti
on
.c
lip
.p
ol
y

W
ei
le
rA
th
er
to
n,

Su
th
er
la
nd
H
od
gm

an
,
M
ai
llo
t

Si
m
pl
ify
2D

Sh
ap
eS
im
pl
ify

he
rm

es
.g
is
.g
en
er
al
is
at
io
n.

si
m
pl
i�
ca
ti
on

gi
s.
ge
ne
ra
lis
at
io
n.

el
im
in
at
io
n.
si
m
pl
e,

gi
s.
ge
ne
ra
lis
at
io
n.

el
im
in
at
io
n.
co
m
pl
ex

D
ou
gl
as
P
eu
ck
er
,

K
ra
ak
O
rm

el
in
g,
L
an
g

T
ab
le
4.
4
:
P
lu
gg
ab
le
co
m
po
ne
nt
s

135

Chapter 4. Implementation

PropertyLoader

+ load(fileName : String) : Properties

MobileGIS.properties =
PropertyLoader.load(workingDire
ctory + File.separator +
"config\\gis.properties");

MobileGIS

+ init() : void

+ getProperties() : Properties

…

- Properties : Properties

+

java.util.Properties.load(
new FileInputStream(
new File(fileName)

)
);

Figure 4.12: Con�guration loading

• Scale; The initial scale at which spatial data should be displayed on a map-based

interface.

• Centre of Map; The default centre of the map. Used when a location context

is not available.

• Spatial Data Sources; Speci�es initial locally cached spatial data �les.

• Projection; Speci�es a pluggable component implementation to use.

• Generalisation; Speci�es component implementation and parameters for gen-

eralisation algorithms.

• Spatial Indexing; Speci�es con�guration parameters for R-Tree spatial index-

ing and index persistence.

• Visibility Algorithms; Speci�es component implementations for visibility de-

termination algorithms.

The con�guration key/value pairs are accessed at run time through a static call to

the MobileGIS getProperties() method (Figure 4.12). This method uses a static

inner class, PropertyLoader, to read the properties from a text �le when the framework

is �rst loaded. Once loaded the con�guration is held in memory and written back each

time a property is changed.

136

Chapter 4. Implementation

The properties in the con�guration �le are extensible by augmenting the existing

�les with new property speci�cations (no notion of extension via inheritance exists in

relation to con�guration �les). For example, de�ning a new property involves adding

the new property to the con�guration �le using the same notation as the existing

properties. This can be done by modifying the �le by hand or pragmatically using the

java.util.Properties.setProperty(key : String, value : String)method.

4.4 Chapter Summary

This chapter described the implementation of a generic framework as a reusable library

of spatial tools for maintaining a model of the user's environment and providing spa-

tial services based on this model to mobile spatially-aware applications. This generic

framework, the design of which is described in Chapter 3, provides reusable imple-

mentations of spatial services that do not overburden the limited resources of mobile

devices and are not dependent on network connectivity.

The chapter presented the J2ME platform on which the framework is built. The

implementation of integration mechanisms to allow the ad-hoc collaboration features

of the Hermes framework to be used to maintain a dynamic model of the user's envi-

ronment has been described. The implementation of the spatial data model including

a detailed explanation of extensions to the Shape�le standard, the algorithm for re-

trieving spatial data from the �le components of the proposed multi representation

Shape�le, the spatial query interface and the generalisation steps have been described.

The implementation of the visibility determination spatial service has been described

along with a presentation of the implementation decisions that contribute to the ex-

tensibility & reusability of the framework.

Throughout the chapter, steps taken to ensure the implementation is as lightweight

as possible are highlighted. These implementation policies, such as the use of caching to

reduce repeated computation, the parameterisation of method �delity and the trading

of accuracy or e�ciency, minimise memory usage and computational complexity.

The next chapter evaluates the performance of the frameworks spatial services and

presents the results of experiments investigating the energy trade-o�s in performing

spatial operations locally versus o�-loading the tasks to a server. A case study spatially-

137

Chapter 4. Implementation

aware application demonstrates the reusability of the framework.

138

Chapter 5

Evaluation

The previous chapter described the implementation of a generic framework for main-

taining a model of the user's environment and providing spatial services to mobile

spatially-aware applications. This chapter describes performance evaluations, energy

consumption evaluations and a case study. These evaluations assess the extent to which

the framework satis�es the research questions (Section 1.2) in the following ways:

1. Spatially-aware mobile applications can maintain a dynamic model of the user's

environment despite the inherent unreliability of wireless networks and limita-

tions of hand-held mobile devices using the model for spatial middleware pre-

sented in this thesis (RQ-1). This model consists of an approach to collabo-

ratively distributing spatial data containing meaningful map entities, such as

streets, buildings and dynamic objects, in an interpretable format to mobile

devices (Section 3.1.2 and Section 4.0.3). Once located on a mobile device, a

multiple representation database (MRDB) based on an extended GIS data for-

mat uses the spatial data to maintain an environment model (Section 3.2.1 and

Section 4.1). This approach addresses the challenges of research question one

and is further reinforced in this chapter through the performance evaluation of

the spatial services built on the locally maintained, dynamic model of the user's

environment.

2. Chapter 3 shows how algorithms can be designed to access a spatial model at

multiple levels of detail on hand-held devices that are limited in terms of battery

power, processing resources and memory (RQ-2). The current chapter presents

139

Chapter 5. Evaluation

evidence of the e�ciency of these algorithms through performance and energy

evaluations. Performance evaluations demonstrate that the algorithms execute

fast enough on commercially available hand-held mobile devices to support in-

teractive applications. Energy evaluations show the total energy consumption,

CPU usage and memory usage of a simple spatially-aware application using these

algorithms to access a spatial model at multiple levels of detail.

3. The design of application-level spatial services for mobile spatially-aware ap-

plications (RQ-3) are detailed in Section 2.1. This chapter demonstrates that

these spatial services function as described through screenshots of an interactive

spatially-aware application taken from a mobile device and through benchmark-

ing their performance, demonstrating that they perform fast enough to meet user

performance expectations.

4. The energy trade-o�s in balancing computation with communication for this

class of spatially-aware mobile application (RQ-4) are illustrated through com-

parative empirical experiments. These experiments show that the approach to

maintaining a dynamic model of the user's environment locally, thereby elimina-

ting the dependency on network connectivity, is more energy e�cient than the

more common approach of o�-loading spatial operations to a server.

5. A generic model for middleware-based spatial services that address the common

challenges posed by hand-held mobile devices (RQ-5) is provided by the frame-

work described in Section 3.4 and Section 4.3. The current chapter presents

an evaluation of the reusability and extensibility of the framework through the

development of a case study application.

The remainder of this chapter is organised as follows. Section 5.1 evaluates the per-

formance of individual spatial services of the framework, demonstrating that mobile

devices can provide these services without relying on a wireless network connection.

Section 5.2 presents an empirical experiment to determine the energy trade-o�s in per-

forming spatial operations locally versus o�-loading the tasks to a server. Section 5.3

evaluates the genericity of the framework to support the development of a range of mo-

bile, spatially-aware applications through the development of a case study application.

The chapter concludes in Section 5.4 with a summary of the �ndings.

140

Chapter 5. Evaluation

5.1 Spatial Service Performance

Evaluating the framework in relation to the research questions (Section 1.2) requires a

demonstration that spatially-aware mobile applications can maintain a dynamic model

of the user's environment (RQ-1), algorithms can be designed to access the environment

model at multiple levels of detail (RQ-2) and application-level spatial services can

be designed using the model (RQ-3). All these features must be possible without

overburdening the limited resources of mobile devices, without relying on a constant

network connection, and while maintaining the user experience of interactive mobile

applications. To provide evidence that these features have been developed as described

in the previous chapters, screenshots have been taken of a spatially-aware application

with an interactive map-based interface1 and their performance has been benchmarked.

By benchmarking the performance of these services it is possible to verify that the

algorithms execute fast enough on commercially available, hand-held mobile devices to

support interactive spatially-aware applications.

This section quanti�es the performance of the spatial middleware services through

benchmarking. Acceptable bounds on performance are de�ned based on a user's tol-

erance for delay in an application [166]. Application response time literature suggests

that there is a timescale within which it is optimal to deliver a result to the user.

Returning an answer beyond this threshold has the potential to frustrate the user

[195, 159]. Miller was the �rst to propose a set of guidelines for system response time

[147]. He suggested a maximum delay of 2 seconds following a request. More recently,

Nielsen concluded that a response time up to 10 seconds is now perceived as acceptable

[167]. This thesis adopts a threshold of between 0-12 seconds as being a reasonable

response time. This �gure is based on the responsiveness requirements de�ned for

other non-spatial services of the Hermes application framework [63].

This section begins with a presentation of the method used to benchmark spatial

services. This is followed by the results themselves and concludes with an analysis of

the results.
1Screenshots are included in Appendix A.4, Figures A.1, A.2, A.3 and A.4.

141

Chapter 5. Evaluation

5.1.1 Methodology

There a number of challenges to measuring the performance of spatial services. Firstly,

interpreted code is dynamically optimised at run-time. At start-up, the Java virtual

machine (JVM) typically spends some time "warming up". During this period, meth-

ods may be compiled and optimised into native code [220]. This results in di�ering

performance �gures between the �rst time a block of code is executed and subsequent

executions of the same block of code.

The timing system in Java also introduces �jitter� into measurements as the gran-

ularity of the timing mechanism can be coarser than the variability in benchmark

timing. For example, on certain platforms the System.currentTimeMillis()2 call

has an e�ective 15ms granularity [111]. In addition to these Java speci�c challenges,

various operating system activities may interfere with measurements by introducing

CPU, memory, disk or network resource contention.

Finally, it is necessary to guage the trade-o� between the use of sampling or an

instrumented approach to gathering data. Sampling is supported by the JVM but can

only identify speci�c bottlenecks and the sampling rate can introduce bias. Instru-

mented approaches can provide more data but can also impact the data gathered as

instrumentation is compiled into the code being evaluated.

This thesis takes an instrumentation approach to performance evaluation. To en-

sure instrumentation code has a minimal e�ect on the spatial services, a benchmarking

tool was developed (Figure 5.1). It is the responsibility of this tool to automate eval-

uations so that they may be repeated many times to avoid observations being biased

by the �warming up� e�ect. The benchmarking tool also produces statistical reports

based on instrumented code blocks during execution.

Figure 5.1 is a UML class diagram showing the Java benchmark harness. This tool

is written as a set of non-extendable static classes to facilitate their compilation to

native code at run-time. The main class is the Harness which is responsible for creating

instances of Benchmark implementations and executing them3. The implementation

of the abstract Benchmark will instrument some service of the framework with calls

to the Reporter. The Reporter keeps track of timers on behalf of the Benchmark.

2Newer JVMs have a System.nanoTime() method that is more precise.
3The execution of Benchmark implementations by the Harness is listed in Appendix A.2.

142

Chapter 5. Evaluation

+ reporter : Reporter

Benchmark

+ start()

+ stop()

+ getName() : String

+ benchmarks Benchmark[]

+ stats : StatisticSummary

Harness

+ main()

+ reporter : Reporter

StatisticsSummary

+ addSample(sample : SystemTimer[])

+ getSummary() : String

+ values : ArrayList

Calculator

+ min() : double

+ max() : double

+ mean() : double

+ standardDeviation() : double

+ start : long

+ stop : long

SystemTimer

+ start()

+ stop()

+ getElapsedTime() : long

+ reset()

+ timers : SystemTimer[]

Reporter

+ report(method:String, action: int)

+ reset()

+ getReport() : SystemTimer[]

*

Runnable

*

*

Figure 5.1: Benchmark harness for performance evaluations

After each execution of the benchmark the values of the timers are added as a sample

to the StatisticsSummary by the Harness. On completion of the Harness, the

StatisticsSummary class calculates a statistical summary of the samples and prints

this data to a log.

The ability of the benchmark harness tool to minimise the impact of warm-up and

jitter on performance measurements is illustrated by plotting the mean and standard

deviation of a set of samples collected by the tool (Figure 5.2). To generate this

graph, the same benchmark test was executed repeatedly. On each execution, its

performance was recorded as a single sample. The mean and standard deviations of

this set of samples were then calculated. The graph shows that the mean performance

improves quickly as the number of iterations of the test increases. This demonstrates

143

Chapter 5. Evaluation

0

50

100

150

200

10 50 100 1000

Samples

T
im

e
 (
m
s)

Mean Std Dev

Figure 5.2: E�ect on standard deviation as number of samples increases

that there is indeed some warming-up happening in the JVM. The standard deviation

is shown by the solid line and decreases with the number of iterations. This means that

as the number of times the code is executed increases, its performance becomes more

steady and predictable. Unless otherwise stated, the performance results presented in

this chapter are based on the recording of 1,000 samples using the benchmark harness.

This results in mean values with a very low standard deviation, giving con�dence that

the results are accurate representations of the true performance.

5.1.2 Data Set

The spatial data set used throughout this chapter is 3Km2 of 1:10,000 vector mapping

data of Dublin city from Ordnance Survey Ireland (OSI). This data includes building

outlines, green areas, street names, rivers and roads. This data is augmented with base

map data of the worlds coastlines and the Irish road network. This data set was copied

to the mobile device, stored locally and added as a data source to load on initialisation

in the middleware's con�guration �le (Appendix A.1). The details of the test data set

are listed in Table 5.1.

5.1.3 Results

Performance evaluations are conducted on the HP iPAQ mobile platform (Table 5.3

on page 157) using the instrumentation tool presented above. Where more than one

144

Chapter 5. Evaluation

Shape�le Geometry Description Size

area_-
outlines.shp

Polygon Area and building outlines for 3Km2

OSI data set augmented with data
extracted from Trinity College CAD
drawings.

14 KB

annotation.shp Point String-based descriptive map labels
(96).

2.75 KB

roads.shp Line Road and path centers from 3Km2

OSI data set and for wider Dublin
city from Open Street Map4.

768 KB

world.shp Polygon Free base map data for all countries in
the world showing coastlines and
political boundaries from ESRI.

4.05MB

Table 5.1: Test spatial data set

implementation exists for a pluggable component, both are evaluated and compared.

The following framework components are evaluated:

1. The responsiveness of map-based interfaces developed using the frameworks map

rendering service.

2. The MRDB in terms of its spatial data retrieval performance and memory usage.

3. The generalisation process, including the generalisation steps: elimination, sim-

pli�cation and clipping.

4. Coordinate transformation.

5. Visibility determination.

5.1.3.1 Map-based Interface Responsiveness

Figure 5.3 shows the time taken to update the interface as a result of a pan (Appendix

A.4, Figure A.3), zoom (Appendix A.4, Figure A.1), or rotate (Appendix A.4, Figure

A.2) event. The values for each of the events were randomised for each execution of the

benchmark, that is, a di�erent pan amount, zoom factor and rotation angle was used for

each iteration. Updating the interface requires the execution of the querying algorithm

(Section 4.1.4), coordinate transformation (Section 3.3.4) and rendering (Section 3.3.2)

for each layer. As such, this benchmark is representative of the overall performance of

the core middleware services of the framework.

145

Chapter 5. Evaluation

0

1000

2000

3000

4000

5000

6000

Interface Operation

T
im

e
 (
m
s)

Zoom Pan Rotate

Figure 5.3: Map interface responsiveness

The chart (Figure 5.3) shows that the response time is between three and �ve

seconds, which is well within the tolerance for an acceptable delay (0-12 seconds)5.

The MRDB, model-oriented generalisation and coordinate transformation algorithms

contribute to maintaining a dynamic model of the user's environment and providing

spatial services based on this model. To analyse how each of these operations contribute

to the overall responsiveness, they are each benchmarked individually.

5.1.3.2 Multiple Representation Database

The MRDB makes spatial data available in di�erent resolutions and levels of detail

to allow for �exible zooming on small displays. Two benchmarks have been created

to illustrate the performance of the MRDB. The �rst benchmark compares the speed

in retrieving geometry from the extended multi-scale data format with the speed of

retrieving geometry from a standard Shape�le. The second illustrates the memory

usage of MRDB.

146

Chapter 5. Evaluation

0

1000

2000

3000

4000

5000

6000

Spatial data source

T
im

e
 (
m
s)

Shapefile Multi-scale (cold) Multi-scale

Figure 5.4: Spatial data format performance

Spatial Data Retrieval

Figure 5.4 shows the performance of the retrieval of geometry for a particular area

from a standard Shape�le, versus the performance of the retrieval of geometry for the

same area from the MRDB. In all cases, the spatial query resulted in the retrieval of

3,683 points requiring the reading of 133.24 KB (the cold multi-scale benchmark also

wrote 75.6 KB to memory). The query extents were 200m2, representative of a typical

area that would be visible on the map-based interface of a spatially-aware application.

The MRDB is evaluated in two states: 1) a cold state with no pre-computed LoDs

cached; 2) a warm state where geometry at an appropriate resolution has already been

computed and cached. The cold multi-scale data structure performs slightly better

than a standard Shape�le despite this step requiring the generalisation of geometry,

creation of a new LoD and the writing of geometry to the corresponding �les. This

process happens the �rst time geometry is retrieved from the Shape�le at a particular

resolution, after which a warm data structure is available. The warm data structure is

capable of signi�cantly out performing the standard Shape�le because the geometry is

less complex, requiring less I/O.

147

Chapter 5. Evaluation

17089

6835

2734

1093

437

0 50 100 150 200

Size (KB)

Attributes Index Geometry

LODi

LODi+1

LODi+2

LODi+3

LODi+4

Attributes

Geometry

Figure 5.5: MRDB memory usage

Persistent Memory Usage

The MRDB uses caching to store redundant copies of spatial objects at multiple LoDs.

This approach trades computation for memory usage, improving performance. To

understand the extent to which additional memory is consumed over and above a

standard Shape�le, the size of the LoD �les belonging to a warm data structure are

measured.

Figure 5.5 illustrates the memory usage of various parts of the multi-scale data

structure. On the Y axis the multi-scale �les for each scale level are listed. At the

top of the chart the original geometry and attribute �les of the main �les are shown

to occupy 150 KB and 142 KB respectively. The remainder of the bars on the chart

represent the memory consumed by each level in a fully warmed-up multi-scale data

structure. The overall increase in memory usage is less than 25%, where memory

usage is calculated by summing the size of each of the multi-scale �les. This additional

memory overhead consumes limited memory resources of the mobile device, limiting

the volume of spatial data that can be cached. However, this cost is a trade-o� with

the components performance bene�ts (Figure 5.4).

5Sub-second updating of the interface is possible when a smaller area or less detail is visible.

148

Chapter 5. Evaluation

0

100

200

300

400

500

600

700

Generalisation Step

T
im

e
 (
m
s)

Elimination Simplification - DouglasPeuker

Simplification - KraakOrmeling Clipping

Figure 5.6: Relative performance of generalisation steps

5.1.3.3 Generalisation

The generalisation process is a combination of elimination, simpli�cation and clipping

(Figure 5.6). The elimination generalisation step is a simple �ltering process and is the

quickest of the generalisation processing steps. On each iteration of the elimination

benchmark, a scale between 1:400 and 1:25000 is used. In experiments, the elimination

processing step resulted in an average reduction in complexity6 of 3.8%. The simpli�-

cation processing step is illustrated by two bars in the chart. These bars represent the

performance of Douglas-Peucker and Kraak-Ormelling implementations of the plug-

gable simpli�cation interface. These simpli�cation algorithms succeeded in reducing

the complexity of the geometry by a further 58% or 18% respectively. Clipping is the

�nal component of the generalisation process. The clipping algorithms evaluated were

Cohen-Sutherland (line clipping) and Sutherland-Hodgman (polygon clipping). The

clipping process was applied to both building outlines and coast outlines resulting in

a reduction in complexity of 75%7. This reduction in complexity results in reduced

processing time and power consumed by accessing the spatial data at multiple levels

of detail on hand-held devices (RQ-2).

6Complexity is quanti�ed as the number of points (or coordinate pairs) required to represent a
spatial object or set of spatial objects within a spatial extent.

7In this case the entire coast of a country was a single polygon with a small area visible on the
device.

149

Chapter 5. Evaluation

0

500

1000

1500

2000

2500

Algorithm

T
im

e
 (
m
s)

Equi-Rectangular Mercator

Figure 5.7: Map projection algorithm performance

5.1.3.4 Coordinate Transformation

The �nal component that contributes to enabling local spatial services on mobile de-

vices is coordinate transformation. A coordinate transformation service renders map-

based interfaces from vector spatial data and can be processor intensive. Figure 5.7

compares the performance of two map projections: Mercator and Equi-rectangular.

The map projections are extended to incorporate a rotation transformation to sup-

port track-up map-based interfaces that orientate themselves in the user's direction of

travel. In the benchmark experiments a total of 8,856 points were projected at a ran-

dom scale and angle of rotation. This number of points is representative of the number

of points a location-aware application would typically require to render an accurate

map-based interface on a mobile device. The graph shows that the map projection

alone consumes roughly two seconds, a signi�cant proportion of the 12 second budget

for a responsive application.

5.1.3.5 Visibility Determination

Visibility determination is an innovative spatial service that determines the visibility

of real world objects from the user's point of view (PoV) using the multi-scale 2D

environment model. Figure 5.8 illustrates the capabilities of this service through an

example. The bottom left contains the output from visibility determination. Above is a

panoramic photograph of the corresponding real-world area, highlighting the buildings

150

Chapter 5. Evaluation

1

2

3

4

5

1 2 3 4
5

+
+

Figure 5.8: Visibility determination example

that the visibility determination service has identi�ed as visible. On the lower right,

a top down ariel photograph of the same area is shown. This example is taken from

an actual execution of the visibility determination service, illustrating its accuracy.

Although the most obviously visible objects have been found, there are objects in the

background visible in the photograph that have not been found. This is due to the

objects being partially occluded. To improve the e�ciency of the visibility algorithm,

it does not determine degrees of visibility and classi�es partially occluded objects as

not visible. Although this approach would not be suitable for rendering a scene in

computer graphics, it is adequate for use by mobile devices to infer additional useful

context about the user's environment. In addition, the fact that there is no spatial

data for the trees in the map means that their e�ect on visibility was not taken into

account. Had they existed in the map, they would have been treated as additional

occluding objects, increasing the amount of time taken for the algorithm to complete.

Figure 5.9 shows the performance results for execution of the visibility determina-

tion service on the mobile device. There are three di�erent algorithms compared. The

�rst is backface occlusion culling, the second ray casting and �nally the execution of

both algorithms consecutively on the same depth bu�er. The �gures for this experi-

ment include the time taken to perform view frustum culling (Section 3.3.6.1), depth

bu�er sorting (Section 3.3.6.2) and the occlusion culling algorithm (Section 3.3.6.3).

151

Chapter 5. Evaluation

77637

328.2

104152.4

0

20000

40000

60000

80000

100000

120000

PDA

T
im

e
 (
m
s)

Backface Ray casting Both

Figure 5.9: Visibility algorithm performance

Each of the benchmarks were executed on 275 unsorted spatial objects retrieved from

the test data set (Table 5.1 on page 145), of which 65 were visible. The benchmarks

were repeated ten times for each algorithm because of the length of time each sample

took.

The backface occlusion culling took just under 80 seconds, ray casting occlusion

culling took a little more than 0.3 of a second and executing both algorithms together

to improve accuracy took 104 seconds8. The performance of these algorithms is due

to the lack of hardware support for certain mathematical functions on the mobile

platform. To illustrate this, the same benchmark was run on a fully featured JVM on

a desktop computer. In that environment, 400 visible objects could be identi�ed from

15,000 in less than 0.2 of a second using backface occlusion culling and 0.01 of a second

using ray casting.

8The algorithms were executed serially, with backface culling performed �rst and its output being
input to the ray casting algorithm. Their total execution time is greater than the sum of the two algo-
rithms individually because the design of the VisibilityCulling interface requires the constructor
of realising algorithms to take a DepthBuffer as a parameter. This requires the benchmark harness
to instantiate a new instance of both algorithms within the timed loop.

152

Chapter 5. Evaluation

5.1.4 Analysis

Overall, the performance of the framework, illustrated by the map-based interface re-

sponsiveness (Figure 5.3), is well within the 12 second response time threshold. This

allows us to conclude that the framework is capable of providing common application-

level spatial services to spatially-aware applications without overburdening the limited

resources of hand-held devices and without relying on wireless network connectivity.

This success can largely be attributed to the design of the MRDB which provides e�-

cient access to multi-scale spatial data by balancing the need to minimise computation

with the use of memory.

The comparison of two pluggable implementations of the simpli�cation generali-

sation step illustrate a trade-o� exists between performance (in this case quanti�ed

by reduction in data volume) and �delity [75]. The Kraak-Ormelling implementation

was found to be almost twice as fast as Douglas-Peucker but at the cost of increased

distortion and less overall reduction in data volume (Figure 5.6).

The coordinate transformation performance evaluation found the adapted merca-

tor projection to be more e�cient than the naïve equi-rectangular projection. This

demonstrates the value of applying algorithms and techniques from the �eld of GIS

to mobile application development and argues for an increasingly inter-disciplinary

approach to the development of spatially-aware applications.

The implementation of the visibility determination service has been shown to be

accurate, but hardware and JVM limitations precluded us from achieving the full

bene�ts of the service. However, the service is the �rst middleware-based example of

such a service that is capable of executing on a mobile device. The service illustrates the

potential of the middleware approach for developing novel spatially-aware application

services. Its failure to meet performance requirements does not negate the utility of

the rest of the framework.

Having demonstrated that it is now possible to locate spatial data on mobile devices

and provide spatial operations and application-level services without relying on unreli-

able wireless networks to access centralised servers, the question is, which approach is

better? To help answer that question, the next section presents an evaluation of both

these approaches from an energy consumption point of view.

153

Chapter 5. Evaluation

Advantage Disadvantage

Local No communication cost
Lower latency

Application less responsive
Energy consumed by processor

Remote Less energy consumed by
processor
Application more responsive

Energy consumed by
communication
Security and privacy issues
Network reliance
Variable responsiveness due to
network latency

Table 5.2: Local versus remote execution of tasks

5.2 Energy Consumption

Mobile devices rely on a �nite energy source that is a major constraint in mobile en-

vironments [72]. To maximise the amount of work the user can do before the battery

becomes discharged, hardware and software designers have to optimise energy con-

sumption to avoid either heavier battery packs or short durations between battery

charges [41].

Hardware designers have tackled this challenge by turning o� idle components [128]

and reducing the voltage level of the processor [237]. Software designers, however, have

focused on computation o�oading (remote execution) [7]. Computation o�oading is a

trade-o� between two of the major components of power consumption in mobile devices:

communication and computation (Table 5.2). To o�oad a task, the mobile client sends

the parameters of the task to a server; the server executes the task and sends back the

results. Energy is saved if the energy consumed sending the parameters and receiving

the results is less than the energy that would be consumed by executing the task locally

[41]. A likely candidate task for o�oading will have a small transmission size and a

long computation time [137].

However, there are a number of challenges associated with o�oading tasks to

servers. Firstly, if the goal is to conserve energy it must be possible to estimate the

amount of energy required to: a) perform the task locally; and b) communicate the

task to a server, wait for the task to complete and then receive the results. Making

these estimates is challenging as they are e�ected by factors such as the transmission

bandwidth, power consumption, and the network congestion [137]. It is also necessary

to take the device responsiveness into account. Servers are more powerful than mobile

154

Chapter 5. Evaluation

devices and can typically perform any task in a fraction of the time that the mobile de-

vice would take. However, communication of the task and results between mobile client

and server is a source of latency. There are also many tasks that can not be o�oaded

because they require access to data on the device, are tightly integrated with other

local components or would require the transmission of privacy sensitive information.

There has been a lot of work in investigating the interaction between mobile de-

vices and servers. Othman and Hailes [173] performed simulations to show that battery

life can be extended by up to 21 percent by o�oading tasks. Anand et al. analysed

the power consumption of location-aware applications in the SmartCampus service-

oriented middleware, concluding that energy can be conserved by minimising the com-

munication between server and client [11]. Flinn et al., through their experiments with

PowerScope, discovered that changing application �delity9 can lead to signi�cant en-

ergy savings by reducing the volume of data to be transmitted over the network [75].

This �nding is supported by Siewiorek et al. who estimates that nearly 80% of the

power consumed by mobile devices can be due to communications [211]. The work by

Siewiorek et al., on wearable computers further concludes that trading o� energy ex-

pensive communication for local computation can result in signi�cant energy savings.

Li et al. [128] developed a partitioning scheme that minimised the energy consumed

by programs running on hand-held computing devices which are connected to a server.

It was found that of 18 di�erent programs, 13 consume less energy when they are

o�oaded. The remaining applications consumed less energy when they ran locally,

illustrating that for di�erent classes of application, di�erent o�oading strategies are

appropriate10 and for some applications it is more e�cient to perform all computation

locally. However, none of these energy evaluations considered the unreliability and fre-

quent disconnections that are experienced by hand-held devices due to mobility. These

factors further motivate the migration of computation to the mobile device whenever

possible.

The model for spatial middleware presented in this thesis locates all spatial data and

9Fidelity is an application-speci�c metric of quality. For example, the amount of geographic
features included on a map would be an appropriate measure of �delity for an application with a
map-based interface.

10Applications where no energy bene�t to o�oading was found included speech and image com-
pression / decompression and decryption. This was largely due to the high communication volume
required to o�oad the computation.

155

Chapter 5. Evaluation

spatial middleware services locally on the device, thereby eliminating the energy that

would otherwise be consumed by interaction between servers and clients. This maps to

an assumption of a computing environment, where users will not always be connected.

The research question is whether placing all the computation on the mobile device, in

order to minimise dependence on communication, reduces or increases energy usage

for the spatially-aware class of mobile applications (RQ-4). This section presents a

comparative energy evaluation of two possible approaches to providing spatial services.

In one approach, the framework is used to provide all spatial services locally and in

the second approach, a server provides the same service. By analysing the relative

execution time and energy cost of computation and communication for each approach

we show that it is more energy e�cient for spatially-aware mobile applications to trade

expensive wireless communication for local processing.

5.2.1 Methodology

An experiment is conducted to measure the system-level power consumption of the

same spatially-aware application developed using two design approaches:

1. The framework is used to provide all spatial services locally.

2. The mobile devices accesses server-based spatial services over a wireless network.

The hand-held device used for the evaluation was the HP iPAQ hx2490 Pocket PC

[104]. The characteristics of this devices are listed in Table 5.3. The server was a Dell

Latitude D400 laptop with Intel Pentium M 1.3 GHz, 1GB RAM and built in 802.11b

wireless networking. The mobile devices and server communicated over a 802.11b

network interface in ad-hoc mode. These were the only two devices on the network,

minimising network latency as contention is not an issue and congestion is not possible

on a single-hop network. The laptop, taking the role of the server, was dedicated to

serving the single client.

Figure 5.10 illustrates the basic approach behind the EnergyEvaluationUserBot

class that replays simulated user interactions with a spatially-aware application. A

spatially-aware application has been implemented that displays a map with buildings,

green areas, roads and labels on the devices screen (Figure 5.11). The EnergyEvalu-

ationUserBot class is implemented as a thread, that once started will call waitFor-

156

Chapter 5. Evaluation

CPU 520 MHz Intel PXA270 Processor
Memory 256 MB total memory (192 MB ROM and 64 MB SDRAM)

Up to 128 MB user available persistent storage memory
Battery Rechargeable 1440 mAh Lithium-lon
Wireless Network WiFi (802.11b)

Bluetooth wireless technology
Serial IR

Table 5.3: HP iPAQ hx2490 Pocket PC speci�cations (Source: [104])

ClientIdle(), which causes the thread to wait until all threads in the framework have

�nished (threads are used to retrieve spatial data from the MRDB and render it to

map layers). The user simulator will then trigger a user interface event that causes

the application to behave exactly as if a user has just zoomed or panned the map.

This event causes map projection to be updated, additional geometry to be read at

the speci�ed scale for individual layers and a redrawing of the interface11. When this

process is complete the user simulation will continue by �ring the next event. The

sequence of events and their parameters are hard-coded to allow the same sequence to

be played back on di�erent versions of the application.

The second design approach requires that the application access spatial services (in

this case map rendering) over a wireless network. To achieve this, the framework was

extended with a new map layer, RasterTileMapLayer, and a minimal map tile server

was written (Figure 5.12).

The RasterTileMapLayer class extends the abstract DynamicMapLayer class. In-

stead of retrieving geometry for producing a map-based interface using the frameworks

QueryEngine, the RasterTileMapLayer has a socket connection to the server. Map

tiles of 100px square are passed from server to client over this connection (in the same

way as web map interfaces [91, 241, 156, 145, 239]). On the server-side, a simple appli-

cation opens a ServerSocket and executes an instance of the middleware framework.

The server's job is to accept incoming socket connections, read requests for map tiles,

use the map rendering service of the framework (Section 3.12) to render the required

tile, compress then serialise the image [41] and transmit it to the client. In order

to make the comparison as fair as possible, common performance optimisations were

implemented on the server including: thread pooling and reuse to decrease latency,

11The sequence of events raised by the EnergyEvaluationUserBot is shown in Appendix A, Listing
A.3.

157

Chapter 5. Evaluation

waitForClientIdle()

[simulation

finished]

EnergyEvaluationUserBot

Raise MapContext event

{pan, zoom}

Figure 5.10: Energy evaluation user bot

Figure 5.11: Spatially-aware application map interface

158

Chapter 5. Evaluation

MapTileCache

+ getMapTile(x : int, y : int,

scale : int) : int[]

RasterTileMapLayer

- checkTile() : void

+ getVisibleTiles() : int[]

+ getMapTile(x : int, y : int,

scale : int) : int[]

- getMapTileAsync(tile : BufferedImage,

x : int, y : int) : void

- _socket: Socket

DynamicMapLayer

Layer

MobileGISServer

+ main(args : String[]) : void MobileGISClient

java.awt

Frame

+ main(args : String[]) : void

NetworkProtocol

+ NOOP : int

+ GET_TILE : int

+ ERROR : int

Server Client

EnergyEvaluationUserBot

Figure 5.12: Framework extensions for server-based spatial services

159

Chapter 5. Evaluation

caching of pre-rendered map tiles as images on the servers �le system and the com-

pression of map tiles to minimise network latency. A NetworkProtocol class de�nes

three types of static message types that can be passed between the server and client:

• NOOP Short for no-operation. This indicates an empty message and is sent from

the client to the server to hold a socket connection open or to check the server is

still responding.

• GET_TILE This indicates that the message is a `get map tile' request. This mes-

sage is sent from client to server and contains parameters specifying the top left

coordinate of the map tile required and its scale.

• ERROR This message indicates that the server could not complete the request.

Common causes of this would be is the server did not have any spatial data for

an area that a tile was requested for or if a map tile was requested at a scale that

was not available.

The experimental setup is illustrated as a sequence diagram in Figure 5.13. Above

the dashed line, the energy evaluation of the version of the application using the

framework with all computation performed locally is shown. In this case, the �ring

of an event starts the timer, t1. The event causes the map layer to retrieve spatial

data from the query engine and render it. Once complete, control returns to the user

simulator, at which point t1 stops and the simulator moves on to the next event in

the set.Below the dashed line a version of the application is executed that accesses

server-based spatial services over a wireless network. The EnergyEvaluationUserBot

�res the same events, recording the time using timer t2 but the RasterTileMapLayer

retrieves the interface from the server instead of rendering it from spatial data.

Energy consumption data was gathered using, acbTaskMan 1.4cf, a software tool

that provides a power meter and can log battery power levels in the background while

other applications run (Figure 5.14). This same method of gathering data was used by

Anand et al. [11]. An alternative, and arguably more accurate, approach to measuring

energy usage would be exchange the devices battery itself for hardware that both

supplies power and measures current usage [96, 75]. The software approach was chosen

as it makes use of built in instrumentation in the hand-held device and allows for the

160

Chapter 5. Evaluation

Query
Engine

RasterTile
Layer

Shape
Layer

Client

Server
MapTile
Cache

Energy
Evaluation
UserBot

zoomEvent() / panEvent()

Event
executeQuery()

Spatial Data

render()

zoomEvent() / panEvent()

Event

getMapTile()
getMapTile()

render

tile

cached tile

tile

client idle

client idle

Local middleware-based

Remote infrastructure-based

t
1

t
2

Figure 5.13: Energy consumption experimental setup

Figure 5.14: acbTaskMan PDA power meter (Source: [3])

161

Chapter 5. Evaluation

collection of a number of additional parameters such as network activity that help us

place the energy readings in context.

Throughout the experiment, the screen saver and screen back-light remained o�.

The MRDB extended Shape�le format had its geometry caches for each level of detail

emptied before each run of the application, requiring execution of the generalisation

operations to produce geometry at multiple scales. This was done for fairness, ensur-

ing the middleware-based approach does not already have all the necessary geometry

generalised and cached at the necessary levels of detail. The total elapsed time for the

sequence of user interactions for each version of the program (
60∑
1

t1 and
60∑
1

t2, where

60 is the number of events that the EnergyEvaluationUserBot �res) and the electri-

cal current drawn on the hand-held device were measured. Where CPU usage �gures

are shown, these are isolated to the spatial application process and do not take into

account any background processes running on the device.

162

Chapter 5. Evaluation

0

10

20

30

40

50

60

70

80

90

100

00:00 01:04 02:08 03:11 04:14 05:20

Time (mm:ss)

C
P
U
 (
%
)

Figure 5.15: CPU usage over time (middleware)

5.2.2 Results

This section presents the results of measuring energy consumption for each of these

approaches to providing spatial services to hand-held devices. Energy consumption is

quanti�ed by the simple equation:

energy = current ∗ time (5.1)

The current is measured as the average current drawn per second during execution

of the application and its unit is the amp (A). The current drawn is measured using

the milliampere-hour (abbreviated as mAh) unit. Energy is measured in coulombs

(symbol, C). One milliampere-hour is equal to 3.6 coulombs, where 1Ah is the electric

charge transferred by a current of one ampere for one hour. Time is measured in

seconds.

5.2.2.1 Local Computation

To put the energy consumption in context, the processor usage, memory usage and

network activity were also measured. Figure 5.15 shows the CPU usage by the spatially-

aware application for the duration of the experiment. It can be seen that it took �ve

minutes, thirty seconds for the application to complete the set of 12 actions �ve times

163

Chapter 5. Evaluation

2500

2700

2900

3100

3300

3500

3700

3900

00:00 01:04 02:08 03:11 04:14 05:20

Time (mm:ss)

M
e
m
o
ry
 (
k
B
)

Figure 5.16: Memory usage over time (middleware)

on the mobile device (Listing A.3). The spike in processor usage at the end of each

of the �ve repetitions of the set of events corresponds to zoom events which require

accessing spatial information at a di�erent level of detail. The variability in CPU usage

(illustrated in the graph by the CPU usage regularly dropping to zero) is a feature of

the EnergyEvaluationUserBot which waits for the application to idle, takes a pause

and then triggers the next event.

The memory usage of the program is illustrated in Figure 5.16 and the network

activity is shown in Figure 5.17. The memory usage grows quickly as the application is

launched and then remains relatively steady for the duration of the execution. Slight

changes in memory usage are a feature of the JVM garbage collector rather than any

explicit freeing of memory resources within the application. The network activity shows

only eight UDP packets. This is because the wireless card was powered on (in power

save mode) but the application did not need to use the network. The NIC was left on

during the experiments for fairness. It allows the results of the two approaches to be

compared based on their software architectures rather than on hardware con�guration.

Having the NIC on is also more representative of the application's behaviour in the real

world as the NIC would have to be powered to enable the peer-to-peer collaboration

facilities of the Hermes framework to acquire spatial information.

The energy consumption for the execution is illustrated in Figure 5.18. The energy

164

Chapter 5. Evaluation

0

0.5

1

1.5

2

2.5

00:00 01:04 02:08 03:11 04:14 05:20

Time (mm:ss)

P
a
c
k
e
t
C
o
u
n
t

Figure 5.17: Network activity over time (middleware)

0

50

100

150

200

250

300

350

400

450

00:00:00 00:01:05 00:02:07 00:03:11 00:04:14 00:05:18

Time (mm:ss)

P
o
w
e
r
(m

A
)

NIC (Powersave) NIC (Off)

Figure 5.18: Power drain over time (middleware)

165

Chapter 5. Evaluation

consumption for the case where the NIC was turned on (but in power save) versus

the case where the NIC is turned o� is shown to highlight the signi�cant e�ect the

wireless network hardware has on energy consumption, even when the network is not

in use. We analyse the power consumption based on the data collected when the NIC

was powered on.

The total set of events took 5 minutes 30 seconds to execute (
60∑
1

t1 = 330 seconds).

The average energy consumption for that period was 364.65 mA. Since we know that

a charge of 1mA transferred for one hour (3,600 seconds) is 3.6C we can calculate the

total energy consumed using Equation 5.1 as:

330s ∗ 0.36465A = 120.3345C

166

Chapter 5. Evaluation

0

20

40

60

80

100

120

00:00 05:06 08:40 14:09 17:58 22:41 27:35 32:35 36:57 41:36 46:07

Time (mm:ss)

C
P
U
 (
%
)

Figure 5.19: CPU activity over time (server-based)

5.2.2.2 Server-based Computation

The second approach to providing spatial services to mobile spatially-aware applica-

tions is via server-based services. This section presents the results of performing the

same set of user actions but this time the application produces a map-based interface by

requesting raster map tiles from a server rather than rendering the interface from spa-

tial data. As in the evaluation of the network independent version of the application,

the processor activity, memory usage and network activity are �rst presented to put

the total energy consumption in context. Figure 5.19 illustrates the CPU usage during

the execution of the application. The �rst contrast to note with the corresponding

graph (Figure 5.15) is the length of time that the execution took. In this case it took

46 minutes, 21 seconds to perform the same set of operations (
60∑
1

t2 = 2781seconds) and

the average CPU usage for that period was 94.41%. The periods where the application

idled between events remain visible.

Memory usage in this case was higher, more variable and grew as the application

executed (Figure 5.20). This is due to memory consumed by caching raster map tiles.

The network in this case remained active for the entire execution of the application

with TCP packets passing in both directions (Figure 5.21).

Due to the higher processor usage and constant network activity, this version of a

167

Chapter 5. Evaluation

3880

3900

3920

3940

3960

3980

4000

4020

00:00 05:06 08:40 14:09 17:58 22:41 27:35 32:35 36:57 41:36 46:07

Time (mm:ss)

M
e
m
o
ry
 (
k
B
)

Figure 5.20: Memory usage over time (server-based)

0

10

20

30

40

50

60

70

00:00 05:06 08:40 14:09 17:58 22:41 27:35 32:35 36:57 41:36 46:07

Time (mm:ss)

P
a
c
k
e
t
C
o
u
n
t

Inbound Outbound

Figure 5.21: Network activity over time (server-based)

168

Chapter 5. Evaluation

560

570

580

590

600

610

620

630

00:00 05:06 08:40 14:09 17:58 22:41 27:35 32:35 36:57 41:36 46:07

Time (mm:ss)

P
o
w
e
r
(m

A
)

Figure 5.22: Power consumption over time (server-based)

spatially-aware application consumed much more power (Figure 5.22). In this case the

average energy consumption was 592.43 mA and the set of events took 2781 seconds

to execute. We calculate the total energy consumed using Equation 5.1 as:

2781s ∗ 0.59243A = 1647.56C

5.2.3 Analysis

The use of server-based spatial services consumed 1, 527.23C more energy than pro-

viding the same spatial service from middleware on the mobile device. Figure 5.23

illustrates the energy usage of both approaches on one graph, highlighting the dif-

ference in the length of time each application took. This di�erence can be largely

attributed to network latency. For every event, the server-based version of the appli-

cation had to retrieve an average of six 100px square map tiles varying between 20kB

and 70kB (depending on results of compression). In addition, the server-side version

required the processor on the mobile device to perform the de-compression and conver-

sion from a collection of bytes to an image for display on the device screen. This turned

out to be very processor intensive, largely because it was done without any hardware

assistance and su�ered from poorly performing image manipulation mechanisms in the

169

Chapter 5. Evaluation

0

100

200

300

400

500

600

700

00:00 05:06 08:40 14:09 17:58 22:41 27:35 32:35 36:57 41:36 46:07

Time (mm:ss)

P
o
w
e
r
(m

A
)

Local Spatial Service Server-based Spatial Service

Figure 5.23: Comparison of power consumption

JVM. Figure 5.23 also shows that even if using the server-base spatial service resulted

in the same application performance and experiment execution time, it would still have

consumed more energy.

To help illustrate the di�erence in energy consumption between these two ap-

proaches, the energy consumption can be expressed based on battery life. The battery

in the mobile device used for these experiments has a charge capacity of 1440mAh

(5184C) (Table 5.3). In the case of providing the spatial services as middleware on the

device, the battery would be depleted in 3 hours, 56 minutes, 56 second. Using the

server-based spatial service this battery would be depleted in only 2 hours 25 minutes,

50 seconds12 (38% less battery life).

Based on these results, the model for mobile spatial services presented in this thesis

consumes less energy and less computational resources than existing approaches for

spatially-aware applications that support rendering and interacting with map-based

interfaces.

It should be noted that the �gures for the power consumption of the middleware

based approach (Figure 5.23) assume that the spatial data exists locally on the device.

This thesis assumes a collaborative computing environment, where mobile devices dis-

12Assuming no other applications or services are running on the device and an ideal battery model
with a constant capacity for all discharge pro�les [187].

170

Chapter 5. Evaluation

cover and serendipitously communicate with peers to acquire and disseminate spatial

data. In such an environment, if a device enters an area for which it has not spatial

data cached, it will attempt to acquire the data from other devices or infrastructure in

the environment. This process will consume energy at the same rate as the server-based

approach, but only for a short period of time, after which, the energy consumption will

return to the lower level. Quantifying the energy consumption due to collaboration in

peer-to-peer overlays in mobile ad-hoc networks is beyond the scope of this work but

is discussed as possible future work in Section 6.2.1.

171

Chapter 5. Evaluation

5.3 Framework Reusability & Extensibility

The generic framework for spatially-aware mobile applications (Section 3.4) addresses

the common challenges posed by hand-held mobile devices in a reusable and extensible

manner. The framework consists of a collection of classes, both concrete and abstract,

that can be reused, extended, and composed to reduce the cost and improve the qual-

ity of applications [73]. To be considered useful, the application framework must be

capable of serving as the basis to a range of applications and support the addition of

application-speci�c behaviour. Therefore, framework components are required to be

both reusable and extensible.

To illustrate and evaluate the framework's ability to be extended and reused, a case

study application has been developed that uses the framework as its basis. The use

of a case study application is a form of qualitative rather than quantitative evaluation

that is an accepted form of framework evaluation [32]. Case studies can be used to

illustrate the capabilities of a framework by evaluating the degree of reuse and the

ease of extensibility a�orded by the framework in the development of a case study

application.

This section presents the design and implementation of a single case study appli-

cation, Where Are We ? 13. This spatially-aware application locates mobile users and

displays their locations on an adaptable map-based interface. Users' positions are con-

tinually updated and the display scaled and panned to keep the user in the centre and

the other mobile users visible in the map extents.

5.3.1 Case Study Application

Figure 5.24 illustrates the extensions and reuse of the framework to support the Where

Are We ? application. The application consists of two application speci�c classes,

WhereAreWe and a ContextMapLayer (highlighted in the diagram with a yellow back-

ground). The WhereAreWe class is the main class of the application and is responsible

for initialising the Hermes framework components that it will require. It does this by

�rst creating a new ContextSource corresponding to a GPS sensor. The framework's

acquisition component is then instructed to acquire positioning context from this sen-

13Flyvbjerg has illustrated that it is possible to generalise on the basis of a single case [76].

172

Chapter 5. Evaluation

hermes.context.event

ContextChangedListener

+ contextChanged(

event : ContextChangedEvent) : void

Hermes

+ init()

+ getContext(q : ContextQuery) :

Context

+ setInterestedInContext(

l : ContextChangedListener)

hermes.gis

MobileGIS

+ getMapCanvas() : MapCanvas

+ getMapContext() : MapContext

+ getProperty(key : String) : String

DynamicMapLayer

+ getLayerCenter() : Point

ContextMapLayer

+ getLayerCenter() : Point

+ render(g: Graphics)

+ getLayerName(): String

WhereAreWe

+ createGPSContextSource() : ContextSource

+ main(args : String[]) : void

Case study application code

Figure 5.24: Case study application implementation

173

Chapter 5. Evaluation

sor. An instance of the ContextMapLayer is created and Hermes is informed that this

new class is to be informed of any changes to position context. The ContextMapLayer

is an extension of the abstract DynamicMapLayer class, implementing the render()

method. The render() method is responsible for drawing mobile users' locations on

the map using the frameworks coordinate transformation service to convert from lati-

tude and longitude to screen coordinates. The MapContext class is then instructed to

produce an interface using a speci�ed style and showing speci�c map features. The

ContextMapLayer is added to the interface. The Hermes framework now begins ac-

quiring positioning information from both the speci�ed GPS context source and peer

devices. This context is delivered to the Where Are We ? application, producing the

interface illustrated in Figure 5.25.

The steps to develop a spatially-aware application using framework can be gener-

alised from this case study as:

1. Specify pluggable component implementations, initially available data sources,

default scales and location in the con�guration �le (Section 4.3.2 on page 134).

2. Write a main class that constructs a user interface and calls Hermes.init() and

MobileGIS.init().

3. Set up the context sources in Hermes (Section 4.0.3 on page 109).

4. If the application interface incorporates a map, use the MapCanvas component.

5. Use the spatial query model to de�ne the spatial data that should be included

in each map layer and add the layers to the map (Section 4.1.4 on page 118).

6. Extend MapLayer to de�ne a custom style to render layers or to add functionality

(Section 3.3.2 on page 81).

7. Call methods included in the geometry model and query engine to add additional

spatial reasoning to the application (Sections 3.3.3 and 4.1.4).

5.3.2 Analysis

Where Are We ? contains code that both extends and directly reuses functionality

provided by the framework. The level of reuse is measured to assess whether the

174

Chapter 5. Evaluation

Figure 5.25: Where Are We ? case study application interface

framework achieves its goal of reducing the cost of development of spatially-aware ap-

plications by providing a generic model for spatial middleware services (RQ-5). Reuse

level is the standard metric for measuring the amount of software reuse in an ap-

plication [180] and is generally expressed as a percentage of the total source lines of

the application. The case study application consists of two classes, WhereAreWe and

ContextMapLayer. In total, the application consists of 149 lines of Non-Commented

Source Statements (NCSS). The framework consists of 10,882 NCSS (8,960 excluding

benchmarking and debugging tools) giving a code reuse of 99.07%. It should be noted

that although the application is developed on top of the framework, it does not make

use of all its functionality. The framework loads components at run-time making it

di�cult to get an accurate measure of the quantity of framework functionality used

by the application. For this reason the 99.07% code reuse is in relation to the total

number of NCSS in the framework and not the total number of NCSS executed by the

case study application.

5.4 Evaluation Summary

This chapter has described the evaluation of various aspects of the framework for spa-

tial middleware services. The evaluation has shown that the algorithms for accessing

175

Chapter 5. Evaluation

spatial information at multiple levels of detail are capable of supporting responsive

spatially-aware applications on hand-held mobile devices. The overall performance of

the frameworks key algorithms and middleware services are summarised in the map-

based interface responsiveness evaluation, which found the delay in updating the in-

terface to be well within the user acceptable 0-12 second range. This achievement is

contributed to by many of the individual components of the framework. The MRDB

provides e�cient access to multi-scale geometry, performing signi�cantly faster than

a standard Shape�le but consuming 25% more memory. The model-oriented general-

isation operations successfully reduce the complexity of spatial data, highlighting the

contribution of minimising geometry complexity through on-demand generalisation as

a key means of improving performance of spatially-aware applications. Coordinate

transformation supporting rotation was shown to consume roughly two seconds, which

is a signi�cant proportion of the 12 second budget. The implementation of the visibil-

ity determination service demonstrated, for the �rst time, that is it possible to perform

accurate visibility determination in middleware on a mobile device. However, hardware

and JVM limitations limited performance of the service.

The approach to maintaining a dynamic model of the user's environment locally

has been shown to be signi�cantly more energy e�cient than the more common ap-

proach of o�-loading complex spatial operations to a server. The use of the framework

to store and manipulate spatial information and generate a vector-based map interface

dynamically, consumed signi�cantly less energy that accessing a server-based service

even when the network hardware is powered on. This illustrates the disproportion-

ate amount of energy consumed by the wireless network interface in relation to other

sources of energy consumption such as the screen and processor. The battery life of

spatially-aware mobile applications can be maximised by minimising the use of the net-

work interface, further motivating the need for algorithms such as the ones presented

in this thesis to provide spatial services without depending on network connectivity.

Although the model for spatial middleware does not rely on constant network connec-

tivity it does assume that it is possible to periodically connect to peer devices and

infrastructural components for the purpose of acquiring spatial data.

A case study spatially-aware application illustrated the reusability and extensibility

of the generic framework. These two properties ensure the framework can support the

176

Chapter 5. Evaluation

development of a range of mobile spatially-aware applications.

The following chapter concludes with a summary of the most signi�cant contribu-

tions of this thesis, commenting on the overall bene�t of the approach and discusses

research issues that remain open for future work.

177

Chapter 6

Conclusions and Future Work

This thesis describes the design and implementation of a model for spatial middle-

ware featuring a locally maintained environment model and common spatially-aware

application services. The model for spatial middleware features algorithms designed

to minimise the processing time and power consumed on hand-held mobile devices

while providing uninterrupted access to spatial data at multiple levels of detail. The

environment model and spatial middleware services are incorporated into a generic

framework that supports the development of spatially-aware applications by contribut-

ing implementations of spatial services that addresses the common challenges posed

by hand-held mobile devices in a reusable and extensible manner. This chapter sum-

marises the achievements of the work, outlines its contributions to the state of the art

and concludes with a discussion of research issues that remain open for future work.

6.1 Achievements

This thesis presentes a middleware approach to maintaining a model of the user's en-

vironment where spatial data is disseminated using the collaboration services of the

Hermes framework. Having acquired spatial data, a multiple representation database

makes spatial data available in di�erent resolutions and levels of detail. The implemen-

tation of the middleware approach manages complex spatial data in real-time on com-

mercially available hand-held devices. The design demonstrates that infrastructure-

based spatial services are not always necessary and that the increasing capabilities of

mobile devices are making it possible for application developers to design increasingly

178

Chapter 6. Conclusions and Future Work

complex applications for mobile devices.

While the approach of maintaining a local environment model on mobile devices

mitigated many of the challenges of providing reliable access to spatial information

in a mobile environment, it also posed the challenge of implementing lightweight ver-

sions of computationally intensive spatial services. This thesis described the design

and implementation of �ve application-level spatial services. Adaptable map render-

ing, spatial reasoning, coordinate transformation and route generation represent the

most common services required by spatial applications, as illustrated by the review of

related work (Chapter 2). These spatial services were evaluated from a performance

perspective with the objective to demonstrate that they perform fast enough to meet

user performance expectations (identi�ed as a 0-12 second response time). It was

found that the implementations were well within this response time, demonstrating

that e�cient, lightweight versions of GIS services can now be provided in middleware

on mobile devices.

A visibility determination service was designed and implemented but hardware and

JVM limitations precluded us from achieving the full bene�ts of the service. However

the service is the �rst middleware-based example of such a service that is capable of ex-

ecuting on a mobile device. As such, the visibility determination service demonstrates

the potential of the spatial middleware to support the development of novel interfaces

and interaction metaphors.

Chapter 5 explored the energy e�ciency of storing spatial data locally versus the

more common approach of o�-loading complex spatial operations to a server. It found

that the use of server-based spatial services consumed 38% less energy than providing

the same spatial service from middleware on the mobile device. This highlights the role

middleware and application design has in extending the battery life of mobile devices

and contributes to the argument that as a general rule of thumb, it is more energy

e�cient to perform a task on a mobile device if the task can be performed without

adversely impacting the responsiveness of the device.

The implementations of the environment model and spatial services were pack-

aged as a generic framework addressing the lack of reusable software for developing

spatially-aware mobile applications. Existing frameworks are server-centric or support

the development of software in only one application domain requiring developers to

179

Chapter 6. Conclusions and Future Work

repeatedly tackle the challenges of mobility, device resource limitations and unreliable

wireless networks. A case study application (Section 5.3.1) illustrated the reusability

and extensibility of the generic framework ensuring that the framework can support

the development of a range of mobile, spatially-aware applications.

The main contributions of this thesis are summarised as:

• An overview of spatial services for mobile computing, with respect to the architec-

tural models, spatial services, provisions for maintaining availability in the face of

unreliable wireless networks, approach to managing the limited resources of mo-

bile devices and the generic support for developing spatially-aware applications.

It was found that the majority of existing systems maintain their environment

models on servers to which mobile clients rely on wireless networks to maintain

access.

• A model for spatial middleware that combines a vector-based model with the ad

hoc collaboration features of the Hermes framework to autonomously disseminate

spatial data to mobile devices. This model eliminates the dependence on server-

based infrastructure for spatial data distribution, simplifying the deployment of

spatially-aware applications.

• A local environment model, maintained by a multiple representation database

that dynamically generates levels of detail, approximates continuous scale adap-

tion with stepped levels of detail. The local environment model provides both

application and mobile middleware developers with e�cient access to spatial data

at multiple resolutions that can be exploited to provide interactive, engaging in-

terfaces and services to users of mobile devices.

• A set of algorithms for manipulating spatial data to support application-level

spatial services. These are: route generation; rendering adaptable map-based in-

terfaces; and spatial reasoning. This set of algorithms preserves limited process-

ing resources, while supporting responsive interactive applications, by selecting

data at an appropriate scale, clipping geometry to viewport extents, bu�ering

static objects and caching coordinate transformations.

• An innovative visibility determination service for spatially-aware applications

180

Chapter 6. Conclusions and Future Work

based on the use of a depth bu�er, on which a variation of occlusion culling is

performed to reduce the set of geometry to a possibly visible set. It was found

that the implementation of this service did not meet performance goals on the

mobile platform. However, the service illustrates the potential of the middleware

approach to developing novel spatially-aware application services and is the �rst

example of such a service that does not take a infrastructure approach.

• A comparison between the model for mobile spatial services presented in this

thesis and existing approaches investigates the energy trade-o� when rendering

and interacting with map-based interfaces to spatially-aware mobile applications.

It was found that the model for spatial middleware presented in this thesis con-

sumed signi�cantly less energy than accessing an equivalent server-based service.

This discovery will inform the design and development of future spatially-aware

mobile applications allowing them to conserve energy and maximise the amount

of work the user can do before the battery becomes discharged.

• A generic framework for spatial services, that provides reusable and extensi-

ble implementations of spatial services, designed not to overburden the limited

resources of hand-held mobile devices and that do not depend on continuous

network connectivity. A case study application demonstrated the reusability of

the framework and illustrated its extensibility through inheritance and param-

eterisation of a pluggable component model at speci�c extension points. This

framework lowers the cost of spatially-aware mobile application development by

providing implementations of common components and services.

6.2 Future Work

Throughout the process of designing, implementing and evaluating the application

framework presented in this thesis, a number of issues worthy of further investigation

were identi�ed. This work relates to the measurement of energy consumption of peer-

to-peer (P2P) overlays, dynamic factors impacting the decision to o�oad computation,

data structure for �ash memory, spatial data integration and the legal and technical

restrictions of commercial spatial data.

181

Chapter 6. Conclusions and Future Work

6.2.1 Energy Consumption of P2P Overlays

This thesis presentes a model for spatial middleware that takes the approach of per-

forming all computation necessary to provide spatial services locally. This model as-

sumes a collaborative computing environment, with mobile devices capable of dis-

covering and serendipitously communicating with peers and �xed infrastructure (Sec-

tion 3.1.1.1 on page 62). The Hermes framework provides the means to manage the

acquisition and dissemination of spatial data (Section 3.1.2 on page 63). As poten-

tial users are likely to spend most of their time in familiar environments, the need

to acquire new spatial data would not occur often. The performance evaluations of

spatial services assumed the most common case where the user is in a location they

have been before and have already acquired spatial data describing its geometry (Sec-

tion 5.1.2 on page 144). As a result of this assumption, the energy consumption

incurred during the discovery and acquisition of spatial data was not measured. There

has been some work in quantifying the energy consumption due to collaboration and

�le distribution in MANETs [96, 95]. However, a comprehensive study on the energy

consumption in P2P overlays on mobile devices has not been conducted using real

devices, running computationally intensive (for example, spatially-aware) applications

with realistic workloads. The incorporation of results from such a study is future work

for this thesis.

6.2.2 Partitioning of Application Logic

The framework contributed by this thesis gives developers the option of performing

tasks previously only possible on a server on a mobile device. This thesis has shown

that there are energy savings in providing spatial services from middleware as opposed

to as a network service (Section 5.2.3 on page 169). However, these evaluations did not

take into account such factors as network congestion and client and server utilisation

(Section 5.2.1 on page 156). These dynamic constraints may mean that while perform-

ing computation locally may be more energy e�cient, there may be situations where,

due to other applications on the device, the user would be best served by o�oading a

task [151]. Conversely, the network conditions and server utilisation at any moment

may make a task that is normally more e�ciently performed on a server, more energy

182

Chapter 6. Conclusions and Future Work

e�cient on the client.

Current energy evaluations and power-aware middlewares do not take into account

the dynamic factors that impact the decision to o�oad computation and are not per-

formed in the presence of multiple concurrent applications [137, 75, 174, 154]. The

work in quantifying the energy consumed by the middleware approach taken by this

thesis could be further re�ned by considering these dynamic factors. This knowledge

may lead to middleware for mobile devices that can make power-aware decisions on

how spatial services are accessed.

6.2.3 Data Structures for Flash Memory

The framework presented in this thesis includes algorithms that allow spatial services

to be provided via local computation and local spatial data storage on mobile devices.

Mobile devices often feature �ash storage devices, which behaves di�erently to volatile

semiconductor memory such as DRAM or non-volatile hard disks which store data on

rotating platters with magnetic surfaces [109]. Accessing �ash storage is slower than

volatile memory (particularly write operations) but can be read and written to faster

then non-volatile hard disks (especially when reads and writes are non-contiguous). A

bit can only be erased by erasing a whole block of memory, and can only be erased a

�nite number of times (the memory physically degrades with each write).

The mobile platform, on which the spatial middleware in this thesis was developed,

uses �ash memory for both program memory and persistent storage (Section 4.0.1 on

page 107). The implementation of data structures for multi-scale spatial data and

spatial indexes as part of the MRDB revealed that many of the best practices, com-

mon optimisations and design patterns for implementing �le I/O performed poorly

(Section 4.1.3 on page 116). In particular, bu�ering strategies that read from memory

in blocks, reducing the number of read operations, decreased rather then increased

performance. Similarly, aligning writes and reading ahead in a stream decreased per-

formance.

The ine�ectiveness of these optimisations is because of inherent assumptions about

the nature of the underlying memory architecture. A study by Gal and Toledo [86]

discovered that data structures optimised for page-based disk access and are not ef-

�cient on mobile devices and concluded that �ash-aware data structures are needed.

183

Chapter 6. Conclusions and Future Work

Initial work has been published proposing data structures for speci�c types of data.

For example, Chowdhury et al. present a �ash-aware data structure for storing strings

[45]. There is a need to further research the requirements for �ash-aware data struc-

tures. In particular, an e�cient data structure for storing spatial data in �ash memory

is required.

6.2.4 Spatial Data Integration

The model for spatial middleware presented in this thesis assumes that spatial data can

be acquired from peer devices through collaborative data dissemination in an ad-hoc

networking environment (Section 3.1.1 on page 62). In implementing and evaluating

the spatial middleware services, a single data set (Table 5.1 on page 145) was used (par-

titioned into fragments where necessary). Because these fragments originated from the

same data-set, the re-integration of partitioned spatial data was trivial. However, when

individual fragments of spatial data are from di�erent data sources (as would likely

be the case in a real world deployment), imprecision in the data could cause incon-

sistencies that would have to be automatically reconciled [153]. The re-integration of

possibly overlapping and erroneous spatial data remains a challenge [81, 219]. Further

work is necessary to determine how inconsistencies in di�erent spatial data sets can be

reconciled without user interaction on a resource limited mobile device.

6.3 Chapter Summary

This chapter summarised the most signi�cant achievements of the work presented in

this thesis. In particular, it outlined how this work contributed to the state of the art

in mobile computing by providing a generic framework containing lightweight spatial

services for developing robust spatially-aware applications that don't rely on a service-

oriented infrastructure and maximising the amount of work the user can do between

battery charges. The framework has the potential to reduce the cost of spatially-

aware application development, while at the same time provides insight into potential

approaches and design decisions that can lead to extended battery life on mobile de-

vices. By providing the means to build interactive spatially-aware applications that

do not require reliable access to network services, the reliability, availability and use-

184

Chapter 6. Conclusions and Future Work

fulness of mobile applications is increased. In turn theses contributions may lead to

wider adoption of mobile technology as spatial-awareness leads to more intuitive and

context-appropriate application behaviour. The chapter concluded with suggestions

for future work arising from the research undertaken in relation to this thesis.

185

Appendix A

Further Implementation Detail

A.1 Framework Con�guration File

Listing A.1: The gis.properties con�guration �le.
1 # Debugging

2 g i s . debug=true

4 # Networking

5 g i s . net . port=4444

6 g i s . net . host=ancosanto i r . dsg . c s . tcd . i e

7 g i s . net . t i l e . width=100

8 g i s . net . t i l e . he ight=100

9 g i s . net . k e epa l i v e=30

10 g i s . net . t imeout=5

12 # Screen

13 g i s . s c r e en . width=240

14 g i s . s c r e en . he ight=300

16 # Sca le

17 g i s . s c a l e =2760.3848

18 g i s . s c a l e . cache . f a c t o r =2.5

186

Appendix A. Further Implementation Detail

20 # Center o f Map

21 g i s . c en t e r . l a t =53.341442

22 g i s . c en t e r . lon=−6.2501383

24 # Spa t i a l Data Sources

25 g i s . source . count=3

26 g i s . source . bu f f e r =1024

27 g i s . source . mu l t i s c a l e=true

28 g i s . source . index=SSX

29 g i s . source . 1 . f i l e=data \\area_outlines_WGS84 . shp

30 g i s . source . 2 . f i l e=data \\ country . shp

31 g i s . source . 3 . f i l e=data \\text_WGS84 . shp

33 # Pro jec t i on

34 g i s . p r o j e c t i o n . model=EARTH

35 g i s . p r o j e c t i o n=Mercator

37 # Genera l i s a t i on

38 g i s . g e n e r a l i s a t i o n . e l im ina t i on=f a l s e

39 g i s . g e n e r a l i s a t i o n . e l im ina t i on . f i l t e r=MinimumAreaFilter

40 g i s . g e n e r a l i s a t i o n . e l im ina t i on . t o l e r an c e =0.1

41 g i s . g e n e r a l i s a t i o n . s imp l i f y . t o l e r an c e=2

42 g i s . g e n e r a l i s a t i o n . s imp l i f y . th r e sho ld=2000

43 g i s . g e n e r a l i s a t i o n . c l i p=true

44 g i s . g e n e r a l i s a t i o n . c l i p . l i n e=CohenSutherland

45 g i s . g e n e r a l i s a t i o n . c l i p . poly=SutherlandHodgman

46 g i s . g e n e r a l i s a t i o n . c l i p . po in t s . th r e sho ld=150

47 g i s . g e n e r a l i s a t i o n . c l i p . area . mu l t ip l e=3

49 # Spa t i a l Index ing

50 index . s p a t i a l . s t o rage . page s i z e=512

51 index . s p a t i a l . r t r e e . maxnodecapacity=12

52 index . s p a t i a l . r t r e e . minnodecapacity=5

53 index . s p a t i a l . r t r e e . n od e sp l i t=Quadratic

187

Appendix A. Further Implementation Detail

54 index . s p a t i a l . cache . s i z e=8

56 # V i s i b i l i t y Algori thms

57 g i s . p r o j e c t i o n . depth=MinDistanceDepthComparator

58 g i s . p r o j e c t i o n . v i s i b i l i t y . viewfrustum=ViewFrustumCul l ingFi l ter

59 g i s . p r o j e c t i o n . v i s i b i l i t y . o c c l u s i on=BackfaceCul l ing

188

Appendix A. Further Implementation Detail

A.2 Benchmark Harness

Listing A.2: The Harness implementation
1 Benchmark [] benchmarks = new Benchmark [1 2] ;

2 benchmarks [0] = new StartupBenchmark () ;

3 benchmarks [1] = new IOSpeedBenchmark () ;

4 benchmarks [2] = new MultiscaleBenchmark () ;

5 benchmarks [3] = new IndexingBenchmark () ;

6 benchmarks [4] = new ClippingBenchmark () ;

7 benchmarks [5] = new Simpl i f i cat ionBenchmark () ;

8 benchmarks [6] = new LODBenchmark () ;

9 benchmarks [7] = new ProjectionBenchmark () ;

10 benchmarks [8] = new DepthComparatorBenchmark () ;

11 benchmarks [9] = new Vis ib i l i tyBenchmark () ;

12 benchmarks [1 0] = new ViewFrustumCullingBenchmark () ;

13 benchmarks [1 1] = new UIResponsivenessBenchmark () ;

15 Reporter . i n i t () ;

17 for (int i = 0 ; i < benchmarks . l ength ; i++) {

19 Statist icSummary . r e s e t () ;

20 // Get number o f r e p e t i t i o n s from con f i g f i l e

21 int repeat = MobileGIS . . getProperty (Harness .

REPEAT_BENCHAMRKS_PROPERTY) ;

23 for (int j = 0 ; j < repeat ; j++) {

24 Reporter . r e s e t () ;

25 benchmarks [i] . s t a r t () ;

26 while (benchmarks [i] . i sA l i v e ()) Thread . s l e e p (500)

;

27 Statist icSummary . addSample (Reporter . getReport ()) ;

28 }

29 MobileGIS . l og . debug (Statist icSummary . getSummary () , this) ;

189

Appendix A. Further Implementation Detail

30 }

190

Appendix A. Further Implementation Detail

A.3 Energy Evaluation User Simulator

Listing A.3: The sequence of simulated user events
1 // Repeat s e t o f e ven t s f i v e t imes

2 for (int i = 0 ; i < 5 ; i++) {

3 map . handleEvent (new PanEvent (this , PanEvent .EAST, 3)) ;

4 wa i tFo rC l i en t Id l e () ;

5 map . handleEvent (new PanEvent (this , PanEvent .EAST, 3)) ;

6 wa i tFo rC l i en t Id l e () ;

7 map . handleEvent (new PanEvent (this , PanEvent .WEST, 3)) ;

8 wa i tFo rC l i en t Id l e () ;

9 map . handleEvent (new PanEvent (this , PanEvent .WEST, 3)) ;

10 wa i tFo rC l i en t Id l e () ;

11 map . handleEvent (new PanEvent (this , PanEvent .NORTH, 3)) ;

12 wa i tFo rC l i en t Id l e () ;

13 map . handleEvent (new PanEvent (this , PanEvent .SOUTH, 3)) ;

14 wa i tFo rC l i en t Id l e () ;

15 map . handleEvent (new PanEvent (this , PanEvent .SOUTH, 3)) ;

16 wa i tFo rC l i en t Id l e () ;

17 map . handleEvent (new PanEvent (this , PanEvent .NORTH, 3)) ;

18 wa i tFo rC l i en t Id l e () ;

19 map . handleEvent (new ZoomEvent (this , ZoomEvent .ABSOLUTE,

map . g e tSca l e () . getRangeAbove ()) ;

20 wa i tFo rC l i en t Id l e () ;

21 map . handleEvent (new ZoomEvent (this , ZoomEvent .ABSOLUTE,

map . g e tSca l e () . getRangeAbove ()) ;

22 wa i tFo rC l i en t Id l e () ;

23 map . handleEvent (new ZoomEvent (this , ZoomEvent .ABSOLUTE,

map . g e tSca l e () . getRangeBelow ()) ;

24 wa i tFo rC l i en t Id l e () ;

25 map . handleEvent (new ZoomEvent (this , ZoomEvent .ABSOLUTE,

map . g e tSca l e () . getRangeBelow ()) ;

26 wa i tFo rC l i en t Id l e () ;

27 }

191

Appendix A. Further Implementation Detail

192

Appendix A. Further Implementation Detail

A.4 Screenshots

193

Appendix A. Further Implementation Detail

Figure A.1: Zoom map interface screenshot

194

Appendix A. Further Implementation Detail

Figure A.2: Rotating map interface screenshot (rotating clockwise from top left)

195

Appendix A. Further Implementation Detail

Figure A.3: Pan map interface screenshot

196

Appendix A. Further Implementation Detail

(a) fgfg

Figure A.4: Visibility determination accuracy

197

Appendix B

Source Code Measurements

Package Classes Functions NCSS Javadocs

hermes.context 1 1 9 2

hermes.context.location 8 53 281 52

hermes.context.location.gps 1 2 30 3

hermes.gis 4 40 525 33

hermes.gis.asynch 3 8 58 13

hermes.gis.event 14 45 282 48

hermes.gis.generalisation.clipping 10 35 363 21

hermes.gis.generalisation.elimination 3 14 69 9

hermes.gis.generalisation.simpli�cation 5 35 199 18

hermes.gis.geometry 14 126 834 100

hermes.gis.graph 8 52 298 36

hermes.gis.graph.traverse 7 24 192 25

hermes.gis.index 3 15 57 16

hermes.gis.index.spatial 7 81 624 68

hermes.gis.io 18 290 2270 232

hermes.gis.io.�le�lter 1 3 73 4

hermes.gis.io.multiscale 3 41 263 22

hermes.gis.layer 12 57 561 51

hermes.gis.layer.openstreet 1 2 10 2

hermes.gis.math 3 62 306 64

198

Appendix B. Source Code Measurements

Package Classes Functions NCSS Javadocs

hermes.gis.net 5 17 562 20

hermes.gis.projection 6 77 321 44

hermes.gis.projection.model 1 10 54 11

hermes.gis.query 11 62 487 59

hermes.gis.render 1 1 44 1

hermes.gis.tools 7 31 247 32

hermes.gis.tools.benchmark 22 66 1068 57

hermes.gis.tools.test 6 15 153 13

hermes.gis.ui 4 19 190 14

hermes.gis.ui.event 1 2 24 2

hermes.gis.ui.style 2 26 76 16

hermes.gis.visibility 11 42 353 35

Total 203 1354 10882 1123

Table B.1: Implementation NCSS per package

199

Appendix C

Glossary

To avoid misunderstandings a list of often used terms, abbreviations and symbols in

this thesis are de�ned.

C.1 Terminology

FoV Field of view (also �eld of vision), the angular extent of the observable world.

Graticule A network of crossing lines on a map, representing parallels and meridians

as de�ned by the projection.

I/O Input / Output. Used to refer to reading and writing to memory, storage or

network.

Generalisation A process whereby spatial objects can be depicted on smaller scales

through simpli�cation, omission and combination.

LRU Least Recently Used.

Model-oriented Generalisation The process of reducing geometry detail as a conse-

quence of reducing scale at the spatial data model level.

MANET Mobile ad-hoc network, a mobile network, where stations can move around

and change the network topology.

MBR Minimum bounding rectangle (or volume), also known as bounding box or

envelope, is an expression of the maximum extents of a 2-dimensional object.

200

Appendix C. Glossary

MRDB Multiple Representation Database.

NIC Network Interface Card.

NCSS Non-commented Source Statements.

Occlude To visually obstruct.

OGC The Open GeoSpatial Consortium: an organization that is developing standards

for geospatial and location based services.

OSI Ordnance Survey Ireland.

P2P Peer-to-peer: A communications model in which each party has the same capa-

bilities.

PoV Point of view, a combination of position, orientation and �eld of view.

Raster A method of storing image data which consists of cells (pixels) which make

up rows and columns.

Shape�le ESRI vector �le format for non-topological spatial and attribute data.

Spatially-aware An application is spatially-aware if it contains a model of the user's

environment and uses this model to infer relationships between real world objects.

Spatially-aware applications will generally incorporate other sources of context

gathered from sensors into their environment models.

Vector Vector graphics consist of a collection of geometric shapes.

View Frustum The area between two vertical planes where each plane corresponds

to the limit of �eld of view.

C.2 Symbols

E A spatial extent.

En,m containing geometry for n shapes consisting of m coordinates, the maximal rep-

resentation En,m.

201

Appendix C. Glossary

LoD Level of detail.

LoD0 The most detailed level of detail.

mA milliampere: one thousandth of an ampere (a measure of �ow of electric current).

mC millicoulomb: The coulomb (symbol: C) is the International System of Units unit

of electric charge.

mAh milliampere hour: A measure of a battery's total capacity.

px Pixel

s Scale.

SRi Scale range where i is the midpoint of the range

t1 Timer 1

202

Appendix D

API

TODO: Introduce section and explain what has been included / omitted. Also explain

how this documentation was generated.

Visibility skipped + testing, benchmarking, case study applications

listed by package (ref package structure diagram Figure 4.2)

only public, not showing inheritance

D.1 Package

ie.tcd.cs.dsg.hermes.gis.generalisation.simpli�cation

Package Contents Page

Interfaces

Simplify2D .204

Classes

DouglasPeucker . 205

KraakOrmeling . 206

ShapeSimplify . 207

203

ie.tcd.cs.dsg.hermes.gis.generalisation.simpli�cation� Simplify2D

Interfaces

Interface Simplify2D

Classes implementing this interface are line simpli�cation (generalisation) algorithms.

http://www.sli.unimelb.edu.au/gisweb/LGmodule/LGSimpli�cation.htm

Views on a geometry table with simpli�ed geometries work well with scale dependent

layering for viewing data. The function is very quick, and means the viewing software can

have several orders of magnitude less vertices to render...

Fields

• public static �nal int DEFAULT_SIMPLIFICATION_TOLERANCE

� The minimum number of pixels lines should be after simpli�cation

• public static �nal String SIMPLIFICATION_THRESHOLD_PROPERTY

� The key for the property de�ning the threshold that complex

simpli�cation can be used at

• public static �nal String SIMPLIFICATION_TOLERANCE_PROPERTY

� The key for the property that speci�es the tolerance in pixels

• public static �nal int SIMPLE

� Refers to the simple vertex reduction algorithm for coastlines

• public static �nal int COMPLEX

� Refers to the complex vertex reduction algorithm for buildings

Methods

public Polygon simplify(Polygon poly, float scale)

• Usage

204

ie.tcd.cs.dsg.hermes.gis.generalisation.simpli�cation� DouglasPeucker

� Simpli�es the speci�ed polygon using the current algorithm

implementation and the parameters passed to its constructor.

• Parameters

� poly - the polygon to simplify (No guarantees about topological

correctness are made)

� scale - the scale parameter determines how much the shape is simpli�ed

• Returns - a modi�cation of the speci�ed line or new object

public Polyline simplify(Polyline line, float scale)

• Usage

� Simpli�es the speci�ed polyline using the current algorithm

implementation and the parameters passed to its constructor.

• Parameters

� line - the line to simplify (No guarantees about topological correctness

are made)

� scale - the scale parameter determines how much the shape is simpli�ed

• Returns - a modi�cation of the speci�ed line or new object

Classes

Class DouglasPeucker

An implementation of the Douglas Peuker Polyline Simpli�cation (Vertex Reduction)

Algorithm. The Douglas-Peucker algorithm has a sophisticated way of skipping points. It

basically visualizes long lines, and discards points that are close to the virtual lines. This is

more calculation intensive than the nth point algorithm, but provides much better results.

David Douglas & Thomas Peucker, "Algorithms for the reduction of the number of points

required to represent a digitized line or its caricature", The Canadian Cartographer 10(2),

112-122 (1973)

John Hershberger & Jack Snoeyink, "Speeding Up the Douglas-Peucker Line-Simpli�cation

Algorithm", Proc 5th Symp on Data Handling, 134-143 (1992). UBC Tech Report available

online from NEC ResearchIndex.

205

ie.tcd.cs.dsg.hermes.gis.generalisation.simpli�cation� KraakOrmeling

extends java.lang.Object

implements Simplify2D, ie.tcd.cs.dsg.hermes.gis.tools.Algorithm

Fields

• public static int DEFAULT_MIN_POINTS

� Default minimum number of points required to represent polygon

Constructors

public DouglasPeucker(int pixTolerance)

• Parameters

� pixTolerance - the tolerance in pixels

Methods

public String getName()

public Polygon simplify(Polygon poly, float scale)

public Polyline simplify(Polyline line, float scale)

Class KraakOrmeling

Implementation of nth Point algorithm as proposed by Kraak and Ormeling. The nth point

algorithm consists of skipping every n points. This is quick and easy, but may miss corners

and other important details.

extends java.lang.Object

implements Simplify2D, ie.tcd.cs.dsg.hermes.gis.tools.Algorithm

Fields

• public static int DEFAULT_MIN_POINTS

206

ie.tcd.cs.dsg.hermes.gis.generalisation.simpli�cation� ShapeSimplify

Constructors

public KraakOrmeling(int nthPoint)

• Parameters

� nthPoint - This parameter is not pixel tolerance as with other

simpli�cation algorithms

Methods

public String getName()

public void setMinPoints(int i)

public Polygon simplify(Polygon poly, float scale)

public Polyline simplify(Polyline line, float scale)

Class ShapeSimplify

Simplifys geometry in a con�gurable CPU aware manner.

extends java.lang.Object

implements Simplify2D, ie.tcd.cs.dsg.hermes.gis.tools.Algorithm

Constructors

public ShapeSimplify()

• Usage

� Constructor. Loads parameters from properties �le

public ShapeSimplify(int threshold, int tolerance)

• Usage

� Constructor. Creates a simpli�cation object with the supplied parameters.

• Parameters

207

ie.tcd.cs.dsg.hermes.gis.generalisation.simpli�cation� ShapeSimplify

� threshold - the number of points at which we switch from simple to

complex generalisation

� tolerance - the pixTolerance or Nth point algorithm parameter

Methods

public String getName()

public Polygon simplify(Polygon poly, float scale)

public Polyline simplify(Polyline line, float scale)

208

ie.tcd.cs.dsg.hermes.gis.io� GISDataSource

D.2 Package ie.tcd.cs.dsg.hermes.gis.io

Package Contents Page

Interfaces

GISDataSource . 209

SpatialDataSource . 210

Classes

AbstractShapeDataSource . 214

DBFFile .214

ESRIFile . 218

ESRIShapeFile . 220

LittleIndianFile .223

ShapeRecord . 233

SHPFile . 235

SHPFileReport . 238

SHXFile .238

SSXFile . 239

TestDataSource . 241

Interfaces

Interface GISDataSource

Basic DataSource operations.

implements ie.tcd.cs.dsg.hermes.gis.tools.benchmark.IOAccounting

Fields

• public static �nal String COUNT_PROPERTY

209

ie.tcd.cs.dsg.hermes.gis.io� SpatialDataSource

� Property key for number of data sources

Methods

public boolean canRead()

• Usage

� Tests to see if you have permission to read from this DataSource. Could

be based on underlying �le permissions of just set in the constructor of a

DataSource implementation.

• Returns - true if the read permission is stored in _premissions list

public boolean canWrite()

• Usage

� Tests to see if you have permission to write to this DataSource. Could be

based on underlying �le permissions of just set in the constructor of a

DataSource implementation.

• Returns - true if the write permission is stored in _premissions list

public String getName()

• Usage

� Returns a readable name to identify a data source. Should be unique

across the di�erent data sources in use. I would suggest using the �le name

for any �le based data sources and the host / database name for databases.

• Returns - a String that can be used to identify this data source

Interface SpatialDataSource

SpatialDataSource is the interface to a readable and writable source of geometry and its

associated attributed. Implementers of this class may provide access to geometry from

database's or ESRI shape�les.

implements GISDataSource

210

ie.tcd.cs.dsg.hermes.gis.io� SpatialDataSource

Fields

• public static �nal String MULTISCALE_DATASOURCE_PROPERTY

� The property specifying whether to use a multiscale datasource

• public static �nal String SPATIAL_INDEX_PROPERTY

� The property specifying the type of spatial index to use

Methods

public void addGeometry(ShapeList shapeRecords, Rectangle extent

)

• Usage

� Adds new geometry to the data source and updates index's. It is assumed

that the Shapes share the same coordinate system as the existing Shapes

stored in the datasource and are the same type of Shape.

Note. Single shapes or multipart shapes only. i.e. adding multiple points

at once will cause an exception.

• Parameters

� shapeRecords - the Shapes to add and their record numbers

� extent - The MBR of the data contained in the records

public ShapeList getAttributesForRecords(ShapeList records)

• Usage

� Adds the attributes for the Shapes to the ShapeRecords

• Parameters

� records - the records to get attributes for

• Returns - the same records with attributes added

public ShapeList getGeometryForRecords(ShapeList records)

211

ie.tcd.cs.dsg.hermes.gis.io� SpatialDataSource

• Usage

� Reads geometry for speci�ed records

• Parameters

� records - The index data retrieved by getRecords()

• Returns - ShapeList A list of geometry

public SpatialIndex getIndex()

• Usage

� Returns the spatial index in use by this data source. Each source

maintains it's own index and this methos is used by benchamrking code to

get the indexing algorithm in use by each data source for purposes of

comparison.

• Returns - the spatial index in use

public ShapeList getRecords(Rectangle area)

• Usage

� Reads geometry record index's to retrieve records that intersect the

minimum bounding rectangle speci�ed. These records are later used to

retrieve the actual geometry.

• Parameters

� area - The minimum bounding rectangle

• Returns - ShapeList A list of geometry record numbers

public ScaleRange getScale()

• Usage

� Each data source is assumed to supply shape data for a �xed resolution.

This method returns the minimum scale at which data from this source

should be displayed.

• Returns - the recommended minimum scale at which this data should be

rendered. Below this scale the level of detail becomes too low.

212

ie.tcd.cs.dsg.hermes.gis.io� AbstractShapeDataSource

public int getShapeType()

• Usage

� Returns the type of shape this data source supplies. Assumes that each

data source can contain only one type of shape which is the case with

ESRI Shape�les.

• Returns - the shape type (See ShapeConstants)

public boolean hasGeometry()

• Usage

� Tests to see if the data source has geometry or is empty. Used to check for

new or empty data stores in order to avoid querying �les that don't

contain data.

• Returns - true is the data source contains shape geometry

public void removeGeometry(ShapeRecord record)

• Usage

� Deletes the geometry for the data source and removes all references to the

speci�ed shape from the index's.

• Parameters

� record - the record to remove

public void setScale(ScaleRange scale)

• Usage

� Each data source is assumed to supply shape data for a �xed resolution.

This method sets the scale at which data from this source can be displayed.

• Parameters

� scale - a scale range specifying the min & max scales

213

ie.tcd.cs.dsg.hermes.gis.io� DBFFile

Classes

Class AbstractShapeDataSource

Abstracts the geometry caching and data source permissions so they don't need to be

implemented in every DataSource implementation.

extends java.lang.Object

implements SpatialDataSource

Constructors

public AbstractShapeDataSource()

Methods

public void addGeometry(ShapeList shapeRecords, Rectangle extent

)

public boolean canRead()

public boolean canWrite()

public void clearRecordCache()

public abstract ShapeList getAttributesForRecords(ShapeList records

)

public ShapeList getRecordCache()

public void removeGeometry(ShapeRecord record)

public void setRecordCache(ShapeList list)

public void setScale(ScaleRange scale)

Class DBFFile

Enables the user to stored data store herein to be saved to a �le conforming to the DBF III

�le format speci�cation.

214

ie.tcd.cs.dsg.hermes.gis.io� DBFFile

DBF Speci�cation Available at:

http://www.cs.cornell.edu/Courses/cs212/2001fa/Project/Part1/dbf.htm

extends ie.tcd.cs.dsg.hermes.gis.io.LittleIndianFile

Fields

• public static �nal int TYPE_CHARACTER

• public static �nal int TYPE_DATE

• public static �nal int TYPE_NUMERIC

• public static �nal int TYPE_LOGICAL

• public static �nal int TYPE_MEMO

Constructors

public DBFFile(File f)

• Usage

� Reads the database �le into memory or opens an empty �le for writing

DBD data to.

• Parameters

� f - a DBase �le or empty �le

public DBFFile(File f, int columnCount)

• Usage

� Creates a blank DbfFile

• Parameters

� columnCount - The number of columns this model will manage

� f - a DBase �le or empty �le

215

ie.tcd.cs.dsg.hermes.gis.io� DBFFile

Methods

public void addRow(Object [] columns)

• Usage

� Adds a row of data to the the model

• Parameters

� columns - A collection of columns that comprise the row of data

public void deleteRow(int rowNumber)

• Usage

� Deletes the speci�ed row from the database table. Actuallt the record

number (indexed from 1) is expected. The row at position record - 1 will

be deleted from memory and disk.

• Parameters

� rowNumber -

public int getColumnCount()

• Usage

� Retrieves the number of columns that exist in the model

• Returns - The number of columns that exist in the model

public int getColumnIndex(String name)

• Usage

� Returns the column number matching the speci�ed name

• Parameters

� name - the column name

• Returns - the column number or -1 if the column does not exist

public String getColumnName(int column)

• Usage

216

ie.tcd.cs.dsg.hermes.gis.io� DBFFile

� Retrieves the column name for the passed in column index

• Parameters

� column - The column index

• Returns - The column name for the given column index

public String getColumnNames()

• Returns - an array of the columnnames

public Object getRow(int rowNumber)

• Usage

� Gets an entire row of the table

• Parameters

� rowNumber -

• Returns - the contents of the row

public int getRowCount()

• Usage

� Retrieves the number of rows that exist in the model

• Returns - The number rows that exist in the model

public Object getValueAt(int row, int column)

• Usage

� Retrieves a value for a speci�c column and row index

• Returns - Object A value for a speci�c column and row index

public void readData()

• Usage

� Reads the data and places data in a class scope ArrayList of records

public void readHeader()

public void setColumnName(int column, String name)

217

ie.tcd.cs.dsg.hermes.gis.io� ESRIFile

• Usage

� Sets the column name for the passed-in �eld index

• Parameters

� column - The column index

� name - The name to assign for the passed-in column index

public void setType(int column, byte type)

• Usage

� Sets the column type for the passed-in �eld index

• Parameters

� column - The column index

� type - The type of column to assign for the passed-in column index

public void setValueAt(Object object, int row, int column)

• Usage

� Sets the value at the speci�ed row and column in the table

• Parameters

� object - the value

� row - indexed from 0

� column -

Class ESRIFile

Includes some of the functionality that is common to all �les that make up a Shape�le. e.g.

SSX, SHP and SHX �les all share the same format �le header. This class reads and parses

that header.

extends ie.tcd.cs.dsg.hermes.gis.io.LittleIndianFile

218

ie.tcd.cs.dsg.hermes.gis.io� ESRIFile

Fields

• public static �nal �oat DEFAULT_MIN_SCALE

� The default value for �les not specifying a minimum scale

Constructors

public ESRIFile(File f)

• Parameters

� f -

Methods

public Rectangle getBounds()

• Returns - the bounds of the geometry in the �le

public int getFileLength()

• Returns - the length of the �le

public final ScaleRange getScale()

• Returns - the scale of the data in the �le (from header bytes)

public int getShapeType()

• Returns - the type of geometry in the �le

public byte readHeader()

• Usage

� Reads the �le header and returns it as a byte array

• Returns - the �le header

219

ie.tcd.cs.dsg.hermes.gis.io� ESRIShapeFile

public IndexEntry readIndexRecord(byte [] b, int o�, int

recordNumber, int shapeType)

public IndexEntry readSpatialIndexRecord(int recordNumber, int

shapeType)

public void setScale(ScaleRange range)

public void setShapeType(int i)

public void writeHeader()

• Usage

� Writes the speci�ed header bytes to the beginning of the �le

Class ESRIShapeFile

An ESRI shape�le consists of a main �le, an index �le, and a dBASE table. The main �le is

a direct access, variable-record-length �le in which each record describes a shape with a list

of its vertices. In the index �le, each record contains the o�set of the corresponding main

�le record from the beginning of the main �le. The dBASE table contains feature attributes

with one record per feature. The one-to-one relationship between geometry and attributes is

based on record number. Attribute records in the dBASE �le must be in the same order as

records in the main �le.

extends ie.tcd.cs.dsg.hermes.gis.io.AbstractShapeDataSource

Constructors

public ESRIShapeFile(File shpFile, DBFFile database, int

shapeType)

• Usage

� Creates a shape�le with the speci�ed �le components. This constructor is

used to create shape�les that share the same database �le.

• Parameters

� database - ESRI Shape �le DB2 database �le

220

ie.tcd.cs.dsg.hermes.gis.io� ESRIShapeFile

public ESRIShapeFile(SHPFile shpFile, DBFFile database,

SpatialIndex index)

• Usage

� Creates a shape�le with the speci�ed �le components. This constructor is

used to create the master shape�le in MultiScale Shape�les in order to

allow the creation of possibly missing SSX �les.

• Parameters

� shpFile - ESRI Shape �le main geometry �le

� database - ESRI Shape �le DB2 database �le

� index - ESRI Spatial Index �le

public ESRIShapeFile(String shpFileName)

• Usage

� Opens all the �les associated with a Shape�le. If the main �le does not

exist then new �les are created. If index's are missing they are created

from the main shape �le.

• Parameters

� shpFileName - the path and �lename of the main shape �le

Methods

public final void addGeometry(ShapeList shapeRecords, Rectangle

extent)

• Usage

� See the general contract of the addGeometry method of

SpatialDataSource.

public final ShapeList getAttributesForRecords(ShapeList records)

public DBFFile getDatabase()

• Returns - the database �le

221

ie.tcd.cs.dsg.hermes.gis.io� ESRIShapeFile

public final Rectangle getExtents()

• Usage

� See the general contract of the getExtents method of

SpatialDataSource.

• See Also

� ie.tcd.cs.dsg.hermes.gis.io.SpatialDataSource.getExtents()

public final ShapeList getGeometryForRecords(ShapeList records)

public SpatialIndex getIndex()

• Returns - the index �le

public final String getName()

public File getParent()

• Usage

� This method returns a String the represents this �le's parent. null is

returned if the �le has no parent. The parent is determined via a simple

operation which removes the

• Returns - The parent directory of this �le

public final ShapeList getRecords(Rectangle area)

• Usage

� See the general contract of the getRecords method of

SpatialDataSource.

• See Also

�

ie.tcd.cs.dsg.hermes.gis.io.SpatialDataSource.getRecords(Rectangle)

public ScaleRange getScale()

public final int getShapeType()

• Usage

222

ie.tcd.cs.dsg.hermes.gis.io� LittleIndianFile

� See the general contract of the getShapeType method of

SpatialDataSource.

• See Also

� ie.tcd.cs.dsg.hermes.gis.io.SpatialDataSource.getShapeType()

public final boolean hasGeometry()

public final void removeGeometry(ShapeRecord record)

• Usage

� See the general contract of the removeGeometry method of

SpatialDataSource.

• See Also

�

ie.tcd.cs.dsg.hermes.gis.io.SpatialDataSource.removeGeometry(ShapeRecord)

public final void setScale(ScaleRange scale)

Class LittleIndianFile

Provides Number format independent read/write access to a the speci�ed binary �le.

extends java.lang.Object

implements ie.tcd.cs.dsg.hermes.gis.geometry.ShapeConstants

Constructors

public LittleIndianFile(File f)

• Parameters

� f - the �le to read / write from.

Methods

public final long length()

223

ie.tcd.cs.dsg.hermes.gis.io� LittleIndianFile

• Usage

� Returns the length of this �le.

• Returns - the length of this �le, measured in bytes.

public final int readBEInt()

• Usage

� Reads a big endian integer from a little endian input stream.

• Returns - the int read from the inputstream

public final int readBEInt(byte [] b, int o�)

• Usage

� Reads a big endian integer.

• Parameters

� b - the raw data bu�er

� off - the o�set into the bu�er where the int resides

• Returns - the int read from the bu�er at the o�set location

public final Rectangle readBox()

• Usage

� Reads a bounding box record. A bounding box is four double representing,

in order, xmin, ymin, xmax, ymax.

• Returns - the box read from the bu�er at the o�set location

public final Rectangle readBox(byte [] b, int o�)

• Usage

� Reads a bounding box record. A bounding box is four double representing,

in order, xmin, ymin, xmax, ymax.

• Parameters

� b - the raw data bu�er

� off - the o�set into the bu�er where the int resides

224

ie.tcd.cs.dsg.hermes.gis.io� LittleIndianFile

• Returns - the point read from the bu�er at the o�set location

public final byte readByte()

• Usage

� Reads and returns one input byte. The byte is treated as a signed value in

the range -128 through 127, inclusive.

• Returns - the 8-bit value read.

public final IndexEntry readIndexEntryData()

• Usage

� Read an Index Entry from disk.

Used by R-Tree Spatial Index's which store the bounding box as part of

the surrounding tree data structure.

• Returns - the IndexEntry that was read

public IndexEntry readIndexRecord(byte [] b, int o�, int

recordNumber, int shapeType)

• Usage

� Reads an Index record from the speci�ed byte array;

• Parameters

� b - the raw data bu�er

� off - the o�set into the bu�er where the double resides

• Returns - the content length and o�set as an IndexRecord

public final IndexEntry readIndexRecord(int recordNumber, int

shapeType)

• Usage

� Reads an IndexRecord record.

• Returns - the IndexRecord read from the �le

public final double readLEDouble()

225

ie.tcd.cs.dsg.hermes.gis.io� LittleIndianFile

• Usage

� Reads a little endian double into a big endian double

• Returns - double A big endian double

public final double readLEDouble(byte [] b, int o�)

• Usage

� Reads a little endian double.

• Parameters

� b - the raw data bu�er

� off - the o�set into the bu�er where the double resides

• Returns - the double read from the bu�er at the o�set location

public final float readLEFloats(float [] f, int numberToRead)

• Usage

� Reads the speci�ed number of little endian doubles into a big endian

double, casts them to �oats and assigns the �oats to the speci�ed array.

• Parameters

� f - an array to �ll with the read �oat values

� numberToRead - the number of �oat values to read

• Returns - the array speci�ed

public final int readLEInt()

• Usage

� Translates a little endian int into a big endian int

• Returns - int A big endian int

public final int readLEInt(byte [] b, int o�)

• Usage

� Translates a little endian int into a big endian int

226

ie.tcd.cs.dsg.hermes.gis.io� LittleIndianFile

• Returns - int A big endian int

public final long readLELong()

• Usage

� Reads a little endian double into a big endian double

• Returns - double A big endian double

public final long readLELong(byte [] b, int o�)

• Usage

� Reads a little endian 8 byte integer.

• Parameters

� b - the raw data bu�er

� off - the o�set into the bu�er where the long resides

• Returns - the long read from the bu�er at the o�set location

public final short readLEShort()

• Usage

� Translates little endian short to big endian short

• Returns - short A big endian short

public final short readLEShort(byte [] b, int o�)

• Usage

� Translates little endian short to big endian short

• Parameters

� b - the raw data bu�er

� off - the o�set into the bu�er where the int resides

• Returns - short A big endian short

public final Point readPoint()

• Usage

227

ie.tcd.cs.dsg.hermes.gis.io� LittleIndianFile

� Reads a point record. A point record is a double representing the x value

and a double representing a y value.

• Returns - the point read from the bu�er at the o�set location

public final Point readPoint(byte [] b, int o�)

• Usage

� Reads a point record. A point record is a double representing the x value

and a double representing a y value.

• Parameters

� b - the raw data bu�er

� off - the o�set into the bu�er where the int resides

• Returns - the point read from the bu�er at the o�set location

public IndexEntry readSpatialIndexRecord(int recordNumber, int

shapeType)

• Usage

� Reads a SpatialIndexRecord from the �le

• Parameters

� recordNumber - the record number of the index record being read. Used

to keep track of where the index record was locaten in the �le

• Returns - the SpatialIndexRecord read

public final String readString(int length)

• Usage

� Constructs a string from the underlying input stream

• Parameters

� length - The length of bytes to read

public final int readUnsignedByte()

• Usage

228

ie.tcd.cs.dsg.hermes.gis.io� LittleIndianFile

� Reads one input byte, zero-extends it to type int, and returns the result,

which is therefore in the range 0 through 255.

• Returns - the unsigned 8-bit value read.

public final void writeBEInt(byte [] bu�er, int o�, int v)

• Usage

� Writes a number of type int in little endian

• Parameters

� buffer - the raw data bu�er

� off - the o�set into the bu�er where the int resides

� v - A number of type int

public final void writeBEInt(int v)

• Usage

� Writes a number of type int in little endian

• Parameters

� v - A number of type int

public final void writeBox(byte [] b, int o�, Rectangle box)

• Usage

� Writes the given bounding box to the given bu�er at the given location.

The bounding box is written as four doubles representing, in order, xmin,

ymin, xmax, ymax.

• Parameters

� b - the data bu�er

� off - the o�set into the bu�er where writing should occur

� box - the bounding box to write

public final void writeBox(Rectangle box)

• Usage

229

ie.tcd.cs.dsg.hermes.gis.io� LittleIndianFile

� Writes the given bounding box to the �le as four doubles representing, in

order, xmin, ymin, xmax, ymax.

• Parameters

� box - the bounding box to write

public final void writeByte(int v)

• Usage

� Writes out a byte to the underlying output stream as a 1-byte value. If no

exception is thrown, the counter written is incremented by 1.

• Parameters

� v - a byte value to be written.

public final void writeIndexEntryData(IndexEntry entry)

• Usage

� Writes the speci�ed IndexEntry to the underlying �le at the current �le

pointer

Used to write spatial index data to R-Tee based index.

• Parameters

� entry -

public final void writeIndexRecord(byte [] b, int o�, IndexEntry

record)

• Usage

� Writes an Index record from the speci�ed byte array;

• Parameters

� b - the raw data bu�er

� off - the o�set into the bu�er where the double resides

� record - an IndexRecord

public final void writeIndexRecord(IndexEntry record)

230

ie.tcd.cs.dsg.hermes.gis.io� LittleIndianFile

• Usage

� Writes an IndexRecord record. Ensure index record is written to the

correct byte o�set in the index �le in order to re�ect the original record

number

• Parameters

� record - an IndexRecord

public final void writeLEDouble(byte [] bu�er, int o�, double d)

• Usage

� Writes a number a number of type double in little endian

• Parameters

� buffer - the raw data bu�er

� off - the o�set into the bu�er where the double resides

� d - A number of type double

public final void writeLEDouble(double d)

• Usage

� Writes a number a number of type double in little endian

• Parameters

� d - A number of type double

public final void writeLEInt(byte [] bu�er, int o�, int i)

• Usage

� Writes a number of type int in little endian

• Parameters

� buffer - the raw data bu�er

� off - the o�set into the bu�er where the int resides

� i - A number of type int

public final void writeLEInt(int i)

231

ie.tcd.cs.dsg.hermes.gis.io� LittleIndianFile

• Usage

� Writes a number of type int in little endian

• Parameters

� i - A number of type int

public final void writeLELong(byte [] bu�er, int o�, long l)

• Usage

� Writes a number of type long in little endian

• Parameters

� buffer - the raw data bu�er

� off - the o�set into the bu�er where the long resides

� l - A number of type long

public final void writeLELong(long l)

• Usage

� Writes a number of type long in little endian

• Parameters

� l - A number of type long

public final void writeLEShort(short s)

• Usage

� Writes a number of type short in little endian

• Parameters

� s - A number of type short

public final void writePoint(byte [] b, int o�, Point point)

• Usage

� Writes the given point to the given bu�er at the given location. The point

is written as a double representing x followed by a double representing y.

232

ie.tcd.cs.dsg.hermes.gis.io� ShapeRecord

• Parameters

� b - the data bu�er

� off - the o�set into the bu�er where writing should occur

� point - the point to write

public final void writePoint(Point point)

• Usage

� Writes the given point to the �le as a double representing x followed by a

double representing y.

• Parameters

� point - the point to write

public final void writeSpatialIndexRecord(IndexEntry record)

• Usage

� Writes the speci�ed spatial index record to the �le.

Used to write records to �at �le (.shx) spatial index's

• Parameters

� record - the record to write out

public final void writeString(String string, int length)

• Usage

� Writes a string of speci�ed length to the �le. If the speci�ed string is

shorter it is zero �lled. If it is longer it is trimmed to �t.

• Parameters

� string - the string to write to the �le

� length - the length of the string

Class ShapeRecord

233

ie.tcd.cs.dsg.hermes.gis.io� ShapeRecord

A wrapper for Shape objects that holds all the associated information needed by the IO

system.

extends java.lang.Object

Fields

• public IndexEntry index

� Record number, o�set, content length and type

• public Shape shape

� The Geometry this record refers to

• public int partO�sets

� O�sets to sub parts of the shape

• public int numPoints

� Total number of points in shape

• public boolean clipped

� indicates whether this shape has been clipped

Constructors

public ShapeRecord(IndexEntry indexRecord)

• Usage

� Constructor. Adds the information already retrieved from the index �le

for this shape to its record. We assume that the information in the index

matches exactly whats in the actual record so that information is not

retieved again. No check of consistency is done.

• Parameters

� indexRecord - the corresponding records index data

234

ie.tcd.cs.dsg.hermes.gis.io� SHPFile

Methods

public Object getAttribute(String key)

• Usage

� Gets the attribute value as speci�ed by its name

• Parameters

� key - the attribute name

• Returns - the attribute value (String or Double)

public void setAttributes(String [] keys, Object [] values)

• Usage

� Add attributes to this shapes record. Attributes are held in the shape

record instead of the shape itself because they are used by the query

engine to decide which shapes need to be read from the �le.

Note: Multiple calls to this method cause a replacing of the attributes not

an addition of attributes.

• Parameters

� keys - the attribute names

� values - the attribute values

Class SHPFile

The Main Shape �le containing the shape records.

The main �le (.shp) contains a �xed-length �le header followed by variable-length records.

Each variable-length record is made up of a �xed-length record header followed by

variable-length record contents.

extends ie.tcd.cs.dsg.hermes.gis.io.ESRIFile

Constructors

public SHPFile(File f)

235

ie.tcd.cs.dsg.hermes.gis.io� SHPFile

• Usage

� Opens the �le and reads the shape�le header

• Parameters

� f - the �le to access

Methods

public final void appendGeometry(ShapeList shapeRecords)

• Usage

� Adds new geometry to the end of the �le. The new o�sets and

contentlengths are written back to the shape records and the �le header is

updated with the new �le length and bounds.

• Parameters

� shapeRecords - shape records containing geometry to write to �le

public final ShapeList readGeometry(ShapeList records)

• Usage

� Reads geometry from a .shp �le

• Parameters

� records - The index data retreived from the .shx �le

• Returns - ShapeList A list of geometry

public final ShapeList readPointGeometry(ShapeList records)

• Usage

� Iterates through the given input stream to contruct geometry objects

• Parameters

� records - A list of o�sets obtained by iterating through the associated

SHX �le

• Returns - list A ShapeList that contains the collection of objects created by

iterating through this input stream

236

ie.tcd.cs.dsg.hermes.gis.io� SHPFileReport

public final ShapeList readPolyGeometry(ShapeList records, int

shapeType)

• Usage

� Iterates through the given input stream to construct geometry objects

• Parameters

� shapeType - the type of shape to read

� records - A list of o�sets obtained by iterating through the associated

SHX �le

• Returns - list A ShapeList that contains the collection of objects created by

iterating through this input stream

public final void writeGeometry(ShapeList indexData)

• Usage

� Writes geometry to a .shp �le, overwriting any data currently in the �le.

• Parameters

� indexData - The index data retreived from the .shx �le

public final void writePointGeometry(ShapeList shapeRecords)

• Usage

� Writes point geometry to the class scope LittleEndianOutputStream.

• Parameters

� shapeRecords - the ShapeRecords to write to the �le

public final void writePolyGeometry(ShapeList shapeRecords)

• Usage

� Writes polygon geometry to the class scope LittleEndianInputStream.

• Parameters

� shapeRecords - The list of geometry objects to save

237

ie.tcd.cs.dsg.hermes.gis.io� SHXFile

Class SHPFileReport

Reports on the contents of the SHP �le speci�ed.

extends java.lang.Object

Constructors

public SHPFileReport(File f)

Methods

public static void main(String [] args)

• Usage

� Main method

• Parameters

� args -

Class SHXFile

A class representing a shape index �le. Reads index data from a .shx �le.

The index �le (.shx) contains a 100-byte header followed by 8-byte, �xed-length records.

extends ie.tcd.cs.dsg.hermes.gis.io.ESRIFile

implements ie.tcd.cs.dsg.hermes.gis.index.ShapeIndex

Constructors

public SHXFile(File f)

• Usage

� Chains an input stream with a Little EndianInputStream

public SHXFile(File f, SHPFile shp)

238

ie.tcd.cs.dsg.hermes.gis.io� SSXFile

Methods

public boolean containsRecord(int recordNumber)

public IndexEntry getIndex()

• Usage

� Gets the index data from the �le.

• Returns - the index from disk or cache.

public IndexEntry getRecord(int recordNumber)

• Usage

� Gets the index record for a speci�ed record number. Assumes that records

appear in the index in sequential order and no records are skipped.

• Parameters

� recordNumber -

• Returns - the record number or null if the record number does not exist int he

index

public void getRecordO�sets(ShapeList list)

public void insert(IndexEntry entry)

public void insert(ShapeList records)

public boolean isEmpty()

Class SSXFile

A Spatial Index is a variation on a Shape Index, adding the bounding box of the shape to

the index.

When reading the Shape �le, the content length is the length of the record's contents,

exclusive of the record header (8 bytes). So the size that we need to read in from the Shape

�le is actually denoted as ((contentLength * 2) + 8). This converts from 16bit units to 8 bit

bytes and adds the 8 bytes for the record header.

239

ie.tcd.cs.dsg.hermes.gis.io� SSXFile

extends ie.tcd.cs.dsg.hermes.gis.io.ESRIFile

implements ie.tcd.cs.dsg.hermes.gis.index.spatial.SpatialIndex

Fields

• public static �nal String PROPERTY_VALUE

� The value of the SPATIAL_INDEX_PROPERTY if this class is to be

used

Constructors

public SSXFile(File f)

• Usage

� Opens a pre-generated spatial index for reading. If the spatial index is

reasonably small it is read entirely into memory otherwise it is accessed

from disk on each query.

• Parameters

� f - a ssx �el to open

public SSXFile(File f, SHPFile shp)

• Usage

� Constructs a new Spatial index based on the data in the shp �le speci�ed.

• Parameters

� f - the �le to write the spatial index to

Methods

public void delete(IndexEntry entry)

public void delete(Rectangle mbr)

public IndexEntry getIndex()

240

ie.tcd.cs.dsg.hermes.gis.io� TestDataSource

• Usage

� Gets the index data from the �le.

• Returns - the index from disk or cache.

public String getName()

public void getRecordO�sets(ShapeList list)

public void insert(IndexEntry entry)

public void insert(ShapeList records)

public boolean isEmpty()

public ShapeList search(Rectangle query)

• Usage

� Locates records in the shape �le that intersect with the given rectangle.

The spatial index is searched for intersections and the appropriate records

are read from the shape �le.

• Returns - an array of o�sets

Class TestDataSource

extends ie.tcd.cs.dsg.hermes.gis.io.AbstractShapeDataSource

Constructors

public TestDataSource()

Methods

public void close()

public ShapeList getAttributesForRecords(ShapeList records)

public int getBytesRead()

public int getBytesWritten()

public Rectangle getExtents()

241

ie.tcd.cs.dsg.hermes.gis.io� TestDataSource

public ShapeList getGeometryForRecords(ShapeList records)

public SpatialIndex getIndex()

public String getName()

public ShapeList getRecords(Rectangle area)

public ScaleRange getScale()

public int getShapeType()

public boolean hasGeometry()

242

ie.tcd.cs.dsg.hermes.gis.io.multiscale� MultiScaleShapeDataSource

D.3 Package ie.tcd.cs.dsg.hermes.gis.io.multiscale

Package Contents Page

Classes

MultiScaleShapeDataSource . 243

MultiScaleShapeFile . 245

ScaleRange . 247

Classes

Class MultiScaleShapeDataSource

Interface to data sources supporting multiple resolutions (scales)

extends ie.tcd.cs.dsg.hermes.gis.io.AbstractShapeDataSource

Constructors

public MultiScaleShapeDataSource()

Methods

public abstract void addGeometry(ShapeList records, Rectangle

extent, ScaleRange scale)

• Usage

� Adds new geometry to the data source and updates index's. It is assumed

that the Shapes share the same coordinate system as the existing Shapes

stored in the datasource and are the same type of Shape.

Note. Single shapes or multipart shapes only. i.e. adding multiple points

at once will cause an exception.

• Parameters

243

ie.tcd.cs.dsg.hermes.gis.io.multiscale� MultiScaleShapeFile

� records - the Shapes to add

� extent - The MBR of the data to be added

� scale - the scale at which the speci�ed geometry is viewable

public abstract ShapeList getGeometryForRecords(ShapeList records,

float scale)

• Usage

� Gets the most appropriate versions of the speci�ed geometry for the

speci�ed scale. This will result in some shapes being removed from the list

and others being generalised before being returned.

• Parameters

� records - the records that need geometry retrieved

� scale - the scale at which the resulting geometry will be rendered

• Returns - the same shapelist with the geometry added

public abstract ShapeList getRecordCache(float scale)

• Usage

� Returns the cache of records belonging to this data source

• Parameters

� scale - the scale at which the speci�ed geometry is viewable

• Returns - the cache of shape records

public abstract void setRecordCache(ShapeList list, float scale)

• Usage

� Overwrites the current shape cache with this one.

• Parameters

� scale - the scale at which the speci�ed geometry is viewable

� list - cached Shape objects

244

ie.tcd.cs.dsg.hermes.gis.io.multiscale� MultiScaleShapeFile

Class MultiScaleShapeFile

Multi-resolution, data store for scale independent spatial data. It is possible to read data in

any resolution from this data source. As the scale increases the level of detail and

generalisation reduces the dimensionality and information density of the returned geometry.

Extensive use is made of caching to reduce the need to reproduce map simpli�cation

calculations. The version of a feature at the lowest scale (i.e. most detailed) is considered

the authoritive de�nition of that feature and is the one that will be exchanged with peers.

extends ie.tcd.cs.dsg.hermes.gis.io.multiscale.MultiScaleShapeDataSource

Fields

• public static Comparator ascendingScaleComparator

� Sorts �les alphabetically. Public for unit testing

Constructors

public MultiScaleShapeFile(ESRIShapeFile master)

• Usage

� Opens multiple shape�les representing the same features at di�erent

resolutions and levels of detail. The �les share �le name components with

the original main shape �le.

This constructor opens a multiscale datasource from a plain single scale

shape �le by opening any additional �les necessary. The speci�ed shape�le

must be the master �le.

• Parameters

� master - The master shape �le (lowest scale)

Methods

245

ie.tcd.cs.dsg.hermes.gis.io.multiscale� MultiScaleShapeFile

public void addGeometry(ShapeList shapeRecords, Rectangle extent

)

• Usage

� Method should not be called. If it is it will place the geometry in the

master shape�le.

• See Also

� SpatialDataSource.addGeometry(ShapeList, Rectangle)

public void addGeometry(ShapeList records, Rectangle extent,

ScaleRange scale)

public void clearRecordCache()

public ShapeList getAttributesForRecords(ShapeList records)

public Rectangle getExtents()

• Usage

� Gets the extents for the data source. If there is no data in the datasource

then empty extents with no area will be returned. Otherwise the extents

of the master �le are returned which should have been read from the �les

header and maintained during updates.

• See Also

� SpatialDataSource.getExtents()

public ShapeList getGeometryForRecords(ShapeList records)

public ShapeList getGeometryForRecords(ShapeList records, float

scale)

public SpatialIndex getIndex()

public String getName()

• Usage

� Returns the name for the master shape�le. Any multi-resolution caches

will not a�ect the name. The toString() method can be used to see what

caches have been created and their status.

246

ie.tcd.cs.dsg.hermes.gis.io.multiscale� ScaleRange

• See Also

� SpatialDataSource.getName()

public ShapeList getRecordCache()

public ShapeList getRecordCache(float scale)

public ShapeList getRecords(Rectangle area)

public ScaleRange getScale()

• Usage

� There is no scale for a multi-resolution data source. Anywhere between 0

and in�nity is OK. This method will always return 0.

• See Also

� SpatialDataSource.getScale()

public int getShapeType()

public boolean hasGeometry()

public void removeGeometry(ShapeRecord record)

public void setRecordCache(ShapeList list)

public void setRecordCache(ShapeList list, float scale)

public void setScale(ScaleRange scale)

• Usage

� This method should never really be called because it dosen't make sense

for a multi-resolution data source. There is not maximum scale!

• See Also

�

SpatialDataSource.setScale(ie.tcd.cs.dsg.hermes.gis.io.multiscale.ScaleRange)

Class ScaleRange

247

ie.tcd.cs.dsg.hermes.gis.io.multiscale� ScaleRange

The ScaleRange class manages the dividing of scales into suitable ranges for caching. This is

used so that a cache can be created that caters for a range of scales. This means that a

cache is not needed for every scale point.

The size of the scale ranges is determined by a factor from the properties �le that de�nes

the logarithmically increasing scales.

extends java.lang.Object

Fields

• public static �nal String SCALE_RANGE_PROPERTY

� The properties �le key for locating the scale multiplier

• public static �nal �oat MIN_SCALE

� The smallest scale multiplier

Methods

public int compareTo(ScaleRange sr)

• Usage

� Compare the size of scale ranges.

• Parameters

� sr -

• Returns - the value 0 if the ScaleRange string is equal to this string; a value

less than 0 if this ScaleRange is less than the ScaleRange argument; and a value

greater than 0 if this ScaleRange is greater than the ScaleRange argument.

public static ScaleRange getRange(float scale)

• Usage

� Gets the range that this scale falls between.

• Parameters

248

ie.tcd.cs.dsg.hermes.gis.io.multiscale� ScaleRange

� scale - the scale

• Returns - the range that this scale is in

public ScaleRange getRangeAbove()

• Usage

� Returns the next highest scale range. A new range is constructed if

necessary.

• Returns - the next highest scale range

public ScaleRange getRangeBelow()

• Usage

� Gets the next lowest scale range or null if this is the minimum scale

• Returns - the next lowest scale range or null if this is the minimum scale

public boolean isWithinRange(float s)

• Usage

� Tests to see if the speci�ed scale is within the bounds of this range

• Parameters

� s - the scale

• Returns - true if is between the min and max values

249

ie.tcd.cs.dsg.hermes.gis.event� InputModeListener

D.4 Package ie.tcd.cs.dsg.hermes.gis.event

Package Contents Page

Interfaces

InputModeListener . 250

LayerListener . 251

MapMovementListener . 251

ProjectionListener . 252

Classes

CenterEvent . 253

InputModeEvent . 254

LayerEvent . 254

PanEvent . 256

PDAKeyHandler . 257

ProjectionEvent . 259

RotateEvent . 260

ZoomEvent . 261

Interfaces

Interface InputModeListener

Class's implementing this interface respond to changes in keypad input mode.

implements java.util.EventListener

Methods

public void inputModeChanged(InputModeEvent e)

• Usage

250

ie.tcd.cs.dsg.hermes.gis.event� MapMovementListener

� The keypad input mode has changed in the KeyHandler class. The event

contains the mode that is currently in use.

• Parameters

� e - an input mode event

Interface LayerListener

Interface for listening to LayerEvents. LayerEvent is �red when something fundamental

about the Map layers changes (e.g. layer added, removed or made visible).

implements java.util.EventListener

Methods

public void layerChanged(LayerEvent e)

• Usage

� Invoked when there has been a change to the Map layers.

• Parameters

� e - LayerEvent

Interface MapMovementListener

Listens for requests to recenter the map.

implements java.util.EventListener

Methods

public void center(CenterEvent evt)

• Usage

� Center the map

• Parameters

251

ie.tcd.cs.dsg.hermes.gis.event� ProjectionListener

� evt - an event specifying the coordinates to center the map on

public void pan(PanEvent evt)

• Usage

� Pan the map in a speci�ed direction

• Parameters

� evt - a pan event specifying the direction and amount to pan the map

public void rotate(RotateEvent re)

• Usage

� Rotate the map about its center

• Parameters

� re - the distance in degrees to rotate the map

public void zoom(ZoomEvent evt)

• Usage

� Zoom the map

• Parameters

� evt - an event indicating the amount to zoom

Interface ProjectionListener

Interface for listening to ProjectionEvents. ProjectionEvent is �red when something

fundamental about the Map changes (e.g. when width, height, scale, type, center, etc

changes).

implements java.util.EventListener

252

ie.tcd.cs.dsg.hermes.gis.event� CenterEvent

Methods

public void projectionChanged(ProjectionEvent e)

• Usage

� Invoked when there has been a fundamental change to the Map. Layers

are expected to recompute their graphics (if this makes sense), and then

repaint() themselves.

• Parameters

� e - ProjectionEvent

Classes

Class CenterEvent

An event to request the map should recenter to a new latitude and longitude.

extends java.util.EventObject

Constructors

public CenterEvent(Object source, int x, int y)

• Usage

� Construct a CenterEvent.

• Parameters

� source - the source bean

� x - screen point to center on

� y - screen point to center on

Methods

public int getX()

• Returns - Returns the _x.

253

ie.tcd.cs.dsg.hermes.gis.event� LayerEvent

public int getY()

• Returns - Returns the _y.

Class InputModeEvent

An event indicating a change in the input mode (i.e. function of the keypad). These events

are used to indicate to the user which mode of operation the keypad is in by displaying an

icon.

extends java.util.EventObject

Constructors

public InputModeEvent(Object source, int inputMode)

• Parameters

� source - event source (an AWT container)

� inputMode - See KeyHandler for possible values

Methods

public int getInputMode()

• Usage

� Gets the input mode

• Returns - the input mode

Class LayerEvent

An event indicating that a layer has changed and should be repainted.

extends java.util.EventObject

254

ie.tcd.cs.dsg.hermes.gis.event� PanEvent

Constructors

public LayerEvent(MapLayer layer)

• Usage

� Construct a LayerEvent.

• Parameters

� layer - MapLayer that is source of event

public LayerEvent(MapLayer layer, boolean zOrderChanged)

• Usage

� Construct a LayerEvent using this value for the layers Z-order

• Parameters

� layer - MapLayer that is source of event

� zOrderChanged - true if a layers z-order has changed

Methods

public MapLayer getLayer()

• Usage

� Gets the reference to the layer that changed

• Returns - the map layer that caused the event

public boolean zOrderChanged()

• Usage

� Tests to see if the Z-order of the layers has changed.

• Returns - true if the layers Z-order has changed.

255

ie.tcd.cs.dsg.hermes.gis.event� PanEvent

Class PanEvent

An event to request the map to pan. Event designates the direction and magnitude (relative

to map dimensions) to pan the map.

extends java.util.EventObject

Fields

• public static �nal int NORTH

• public static �nal int NORTH_EAST

• public static �nal int EAST

• public static �nal int SOUTH_EAST

• public static �nal int SOUTH

• public static �nal int SOUTH_WEST

• public static �nal int WEST

• public static �nal int NORTH_WEST

Constructors

public PanEvent(Object source, int direction, int arcDistance)

• Usage

� Create a PanEvent with source Object and direction.

• Parameters

� source - Object

� direction - N, NE, E, SE, S, SW, W, NW

� arcDistance - 0.0 <= x <= 1.0

256

ie.tcd.cs.dsg.hermes.gis.event� PDAKeyHandler

Methods

public float getAzimuth()

• Usage

� Get azimuth. Azimuth is the horizontal component of a direction (compass

direction), measured around the horizon, from the north toward the east.

• Returns - �oat decimal degrees

public int getDirection()

• Usage

� Get the direction of pan.

• Returns - int direction

public float getPanPercent()

• Usage

� Used to calculate the distance to move the map center based on the

percentage of screen width to move.

• Returns - distance in percentage of visible area

Class PDAKeyHandler

Used to handle KeyEvents coming from a PDA keypad. Speci�cally the HP IPAQ hx2400

four button keypad

extends java.awt.event.KeyAdapter

Fields

• public static �nal int MODE_ZOOM_ROTATE

� In this mode arrow keys zoom or rotate the map

257

ie.tcd.cs.dsg.hermes.gis.event� PDAKeyHandler

• public static �nal int MODE_PAN

� In this mode arrow keys pan the map

Methods

public void addInputModeListener(InputModeListener listener)

• Usage

� Adds an input mode listener to this class. Only a single listener may be

added. Further calls to this method will overwrite the listener.

• Parameters

� listener - an InputModeListener instance.

public static PDAKeyHandler getInstance(MapContext map)

• Usage

� Singleton pattern alternative to constructor

• Parameters

� map - the map that will be moved

• Returns - an instance of this class

public static int getMode()

• Usage

� Gets the current input mode.

• Returns - the current input mode

public void keyPressed(KeyEvent e)

• Usage

� Called when a key is pressed. Press events that arrive within 50ms of each

other are treated as a single press (second key ignored).

• Parameters

258

ie.tcd.cs.dsg.hermes.gis.event� ProjectionEvent

� e - a KeyEvent instance

public void setRotate(boolean rotate)

• Usage

� Modi�es the keypad behaviour

• Parameters

� rotate - allow the buttons to rotate the map

public void setZoomRelative(boolean relative)

• Usage

� Modi�es the keypad behaviour

• Parameters

� relative - allow buttons to make relative changes to the zoom level

Class ProjectionEvent

An event indicating an updated projection.

extends java.util.EventObject

Constructors

public ProjectionEvent(Object source, Projection aProj)

• Usage

� Construct a ProjectionEvent.

• Parameters

� source - the object that raised the event

� aProj - the Projection that changed

259

ie.tcd.cs.dsg.hermes.gis.event� RotateEvent

Methods

public RotatableProjection getProjection()

• Usage

� Get the Projection.

• Returns - Projection

Class RotateEvent

Rotate map event. Causes the map to rotate by a speci�ed amount in a particular direction

or to a speci�ed point.

extends java.util.EventObject

Fields

• public static �nal transient int CLOCKWISE

• public static �nal transient int COUNTER_CLOCKWISE

Constructors

public RotateEvent(Object source, int degrees)

• Parameters

� source - the event source

� degrees - the distance to rotate

public RotateEvent(Object source, int degrees, int direction)

• Parameters

� source - the event source

� degrees - the distance to rotate

� direction - the direction to rotate

260

ie.tcd.cs.dsg.hermes.gis.event� ZoomEvent

Methods

public int getDegrees()

• Usage

� The degrees to rotate

• Returns - The degrees to rotate

public int getDirection()

• Usage

� Gets the direction the event is requesting a rotation

• Returns - the direction to rotate

Class ZoomEvent

An event to request that the map zoom in or out. Event speci�es the type and amount of

zoom of the map.

extends java.util.EventObject

Fields

• public static �nal transient int RELATIVE

� Type that speci�es that the amount should be used as a multiplier to the

current scale.

• public static �nal transient int ABSOLUTE

� Type that speci�es that the amount should be used as the new scale.

261

ie.tcd.cs.dsg.hermes.gis.event� ZoomEvent

Constructors

public ZoomEvent(Object source, int type, float amount)

• Usage

� Construct a ZoomEvent.

• Parameters

� source - the creator of the ZoomEvent.

� type - the type of the event, refering to how to use the amount.

� amount - the value of the ZoomEvent.

Methods

public float getAmount()

• Usage

� Get the amount of zoom.

• Returns - �oat

public boolean isAbsolute()

• Usage

� Check if the type is ABSOLUTE.

• Returns - boolean

public boolean isRelative()

• Usage

� Check if the type is RELATIVE.

• Returns - boolean

262

ie.tcd.cs.dsg.hermes.gis� MapContext

D.5 Package ie.tcd.cs.dsg.hermes.gis

Package Contents Page

Classes

MapContext . 263

MobileGIS . 266

Classes

Class MapContext

MapContext is the main component of MobileGIS. It manages and displays a map. A map

is comprised of a projection and a list of layers, and this class has methods that allow you to

control the projection parameters and to add and remove layers. Layers that are part of the

map receive dynamic noti�cations of changes to the underlying view and projection.

extends java.lang.Object
implements ie.tcd.cs.dsg.hermes.gis.event.MapMovementListener,

ie.tcd.cs.dsg.hermes.gis.event.LayerListener

Fields

• public static �nal Class projectionConstructorArgs

� The constructor arguments for projections

Constructors

public MapContext(Point center, float s, int w, int h, String

projClass)

• Usage

� Private Constructor. Use static getInstance()

263

ie.tcd.cs.dsg.hermes.gis� MapContext

• Parameters

� center - The center of the map

� s - the scale of the map

� w - the width of the screen

� h - the height of the screen

� projClass - the projection to use

Methods

public void addLayer(MapLayer layer)

• Usage

� Adds the speci�ed layer to the map

• Parameters

� layer - the MapLayer to add

public void center(CenterEvent evt)

public BufferedMapLayer getBu�eredMapLayers()

• Usage

� Gets just the Bu�ered map layers

• Returns - an array of the bu�ered may layers

public DynamicMapLayer getDynamicMapLayers()

• Usage

� Gets just the dynamic map layers

• Returns - an array of DynamicMapLayers

public MapLayer getLayer(String layerName)

• Usage

� Gets a layer speci�ed by name.

• Parameters

264

ie.tcd.cs.dsg.hermes.gis� MapContext

� layerName - the String identi�er for a particular layer.

• Returns - a maplayer or null if one is not found

public LinkedList getLayers()

• Usage

� Gets all the layers as an array.

• Returns - all the map layers as an array.

public int getNumberLayers()

• Usage

� returns the number of layers currently loaded (visible or not)

• Returns - the number of layers currently loaded

public RotatableProjection getProjection()

• Usage

� Returns the current projection. Used for initialisation purposes only as all

further references to projections are delivered via events.

• Returns - the current projection

public Dimension getScreenSize()

• Returns - Returns the screenSize.

public void pan(PanEvent evt)

public void removeLayer(MapLayer layer)

• Usage

� Removes the speci�ed layer

• Parameters

� layer - the Map Layer to remove

public void removeLayer(String layerName)

265

ie.tcd.cs.dsg.hermes.gis� MobileGIS

• Usage

� Remove a layer speci�ed by its name

public void resize(int width, int height)

• Usage

� ComponentListener interface method. Should not be called directly.

Invoked when component has been resized, and kicks o� a projection

change.

public void rotate(RotateEvent evt)

public void zoom(ZoomEvent evt)

Class MobileGIS

Creates map based interfaces for mobile devices from ESRI Shape�le GIS datasets.

extends java.awt.Frame

implements ie.tcd.cs.dsg.hermes.gis.tools.benchmark.ClientStateMonitor

Fields

• public static �nal String WORKING_DIRECTORY_PROPERTY

� Property for working directory

• public static �nal String DEFAULT_LAYERSET_PROPERTY

� Tells the component to load the default set of layers

• public static boolean DEBUG

� Print debugging information to stdout?

• public static Dimension screenSize

� The screen area in pixels

266

ie.tcd.cs.dsg.hermes.gis� MobileGIS

• public static String workingDirectory

� Current working directory [Passed as parameter on execution]

• public static Logger log

� Instance of component for logging

Constructors

public MobileGIS()

Methods

public static MapCanvas getMapCanvas()

• Usage

� Provides class extending GIS access to the map

• Returns - the map canvas

public static MapContext getMapContext()

• Usage

� Gets the MapContext created from the properties �le durining

initialisation.

• Returns - the current map context

public static Properties getProperties()

• Usage

� Gets the properties �el for this application. If the working directory has

not been passed as a paremeter and set then use the systems current

working directory.

• Returns - The packages properties

public static void init()

• Usage

267

ie.tcd.cs.dsg.hermes.gis� MobileGIS

� Framework initialisation method. To use the map canvas as a GUI

component of other applications call the init() method and then retrieve

the MapCanvas and MapContext statically from this class.

268

ie.tcd.cs.dsg.hermes.gis.geometry� Geometry

D.6 Package ie.tcd.cs.dsg.hermes.gis.geometry

Package Contents Page

Interfaces

Geometry . 269

ShapeListFilter . 271

Classes

Annotation . 271

Line . 272

Point . 274

Poly . 277

Polygon . 279

Polyline . 280

Rectangle . 280

Shape. .282

ShapeList . 284

Interfaces

Interface Geometry

Root interface that is implemented by all Geometry classes

Methods

public boolean contains(float lat, float lon)

• Usage

� Tests whether or not the speci�ed point is inside this polygon.

• Parameters

269

ie.tcd.cs.dsg.hermes.gis.geometry� Geometry

� lat - the X coordinate of the point to test

� lon - the Y coordinate of the point to test

• Returns - true if the point is inside this polygon

public float getArea()

• Usage

� Calculates and returns the area of the speci�ed geometry. For Polygons,

this is the total area inside the external ring less the total of any contained

by interior rings. GeometryCollections (including MultiPolygons) are

iterated through so the result is the sum of all polygons anywhere within

the collection. Any geometry other than Polgyon or a collection returns 0;

• Returns - The total area of the Geometry.

public Rectangle getBounds()

• Usage

� Returns the bounding box of this polygon. This is the smallest rectangle

with sides parallel to the X axis that will contain this polygon.

• Returns - the bounding box for this polygon

public Point getCenter()

• Usage

� Finds the centroid of the input geometry if input = point, line, polygon

return a point that represents the centroid of that geom if input =

geometry collection, return a multipoint that represents the centoid of

each sub-geom

• Returns - a double array x, y

public int getNumberPoints()

• Usage

� Returns the number of points the shape is made up of

• Returns - the number of points in the shape

270

ie.tcd.cs.dsg.hermes.gis.geometry� Annotation

public float getPoints()

• Usage

� Gets the source points of the geometry.

• Returns - the source points of the geometry.

Interface ShapeListFilter

Classes implementing this interface are used to remove records from a shape list.

Methods

public boolean accept(ShapeRecord record)

• Usage

� Tests the speci�ed record to see if it should remain or be �ltered out.

• Parameters

� record - a ShapeRecord to test

• Returns - true if the record remain, false if it should be removed from the list

Classes

Class Annotation

Adds the ability to use any shape as a marker for drawing annotation or labels on the map

extends ie.tcd.cs.dsg.hermes.gis.geometry.Point

Fields

• public static �nal int DEFAULT_TEXT_ANGLE

• public static �nal int DEFAULT_TEXT_SIZE

271

ie.tcd.cs.dsg.hermes.gis.geometry� Line

Constructors

public Annotation(Point p, String text)

• Parameters

� p - the point at which the annotation is anchored

� text - a string that should be displayed

public Annotation(Point p, String text, int textSize, int

textAngle)

• Parameters

� p - the shape indicating where the annotation should be located

Methods

public void render(Graphics g, RotatableProjection projection, Style

style)

Class Line

A line is a polyline with just a start and end point i.e. a segment or edge.

extends ie.tcd.cs.dsg.hermes.gis.geometry.Polyline

Constructors

public Line(float [] points)

• Usage

� Constructor with two points.

• Parameters

� points -

public Line(Point p1, Point p2)

272

ie.tcd.cs.dsg.hermes.gis.geometry� Point

• Usage

� Constructs a line between the two speci�ed points

• Parameters

� p1 - the �rst point

� p2 - the second point

Methods

public boolean intersects(Line l2)

• Usage

� Tests if the line segment from (X1, Y1) to (X2, Y2) intersects this line

segment.

• Parameters

� l2 - the coordinates of the beginning of the speci�ed line segment

• Returns - if this line segment and the speci�ed line segment intersect each

other; false otherwise.

public boolean intersects(Polygon p)

• Usage

� Tests is this line intersects the speci�ed polygon

• Parameters

� p - a polygon to check for intersection

• Returns - true if this line intersects the soeci�ed polygon

public boolean intersects(Shape s)

• Usage

� Tests if this lien intersects the speci�ed shape. TODO: Add this method

to unit testing for line intersection

• Parameters

273

ie.tcd.cs.dsg.hermes.gis.geometry� Point

� s - a shape to test

• Returns - true if there is an intersection

public void render(Graphics g, RotatableProjection projection, Style

style)

Class Point

Encapsulates latitude and longitude coordinates in decimal degrees.

extends ie.tcd.cs.dsg.hermes.gis.geometry.Shape

implements java.lang.Cloneable

Fields

• public static �nal int DEFAULT_RADIUS

� Default radius in Pixels

• public static �nal �oat EQUIVALENT_TOLERANCE

• public �oat lat

� Latitude of point, decimal degrees.

• public �oat lon

� Longitude of point, decimal degrees.

Constructors

public Point(double lon, double lat)

• Usage

� Construct a LatLonPoint from raw ESRI double lat/lon.

• Parameters

� lat - latitude in decimal degrees

274

ie.tcd.cs.dsg.hermes.gis.geometry� Point

� lon - longitude in decimal degrees

public Point(float lat, float lon)

• Usage

� Construct a LatLonPoint from raw �oat lat/lon in decimal degrees.

• Parameters

� lat - latitude in decimal degrees

� lon - longitude in decimal degrees

public Point(Point pt)

• Usage

� Copy construct a LatLonPoint.

• Parameters

� pt - LatLonPoint

Methods

public float azimuth(Point toPoint)

• Usage

� Find the azimuth to another point, based on the sphercal earth model.

• Parameters

� toPoint - LatLonPoint

• Returns - the azimuth `Az' east of north from this point bearing toward the

one provided as an argument.(-PI <= Az <= PI).

public float distance(Point toPoint)

• Usage

� Find the distance to another LatLonPoint, based on a earth spherical

model.

• Parameters

275

ie.tcd.cs.dsg.hermes.gis.geometry� Point

� toPoint - LatLonPoint

• Returns - distance, in meters.

public float getLatitude()

• Usage

� Get normalised latitude.

• Returns - �oat latitude in decimal degrees

public float getLongitude()

• Usage

� Get wrapped longitude.

• Returns - �oat longitude in decimal degrees

public boolean intersects(double x, double y, double w, double h)

public final Point pointAtAzDist(float c, float Az)

• Usage

� Calculate point at azimuth and distance from another point. Returns a

LatLonPoint at arc distance `c' in direction `Az' from start point.

• Parameters

� c - distance in meters

� Az - direction in degrees north

• Returns - Point

public void render(Graphics g, RotatableProjection projection, Style

style)

public void setLatitude(float lat)

public void setLatLon(float lat, float lon)

• Usage

� Set latitude and longitude.

276

ie.tcd.cs.dsg.hermes.gis.geometry� Poly

• Parameters

� lat - latitude in decimal degrees

� lon - longitude in decimal degrees

public void setLongitude(float lon)

Class Poly

A Shape with multiple straight edges

extends ie.tcd.cs.dsg.hermes.gis.geometry.Shape

Constructors

public Poly()

• Usage

� Default constructor. Used for incrementally building new polygons during

simpli�cation.

public Poly(int initialSize)

• Parameters

� initialSize - the initial number of points. Used to dimension an array.

Methods

public void addVertex(float lat, float lon, boolean updateBounds

)

• Usage

� Adds a single point as a new vertex in the poly

• Parameters

� lat - the longitude component of a Point to add as a new vertex

� lon - the latitude component of a Point to add as a new vertex

277

ie.tcd.cs.dsg.hermes.gis.geometry� Poly

public void addVertex(Point p)

• Usage

� Overloads other addVertex method. Bounds will be updated to re�ect

change in points. Other method should be called instead. TODO

deprecate this method. Force decision on whether bounds would be

updated.

• Parameters

� p - a Point to add as a new vertex

public boolean contains(float lat, float lon)

public boolean contains(Shape s)

• Usage

� Check to see if the speci�ed shape is contained by this polygon. This is

achieved by checking each of the polygons vertices in turn. The bounding

boxes are checked �rst as a simple quick reject.

• Parameters

� s - the polygon to test

• Returns - true if the speci�ed polygon is completely contained by this object

public boolean equals(Object o)

• Usage

� Polys are equals when they have the same coordiantes.

• See Also

� java.lang.Object.equals(java.lang.Object)

public float getArea()

public Point getCenter()

public float getLatLonPoints()

• Usage

278

ie.tcd.cs.dsg.hermes.gis.geometry� Polyline

� Used by simpli�cation (Nth Point) to modify points

• Returns - the underlying coordinates

public int getNumberPoints()

public float getPoints()

• Usage

� Used to access the underlying array of points. Used in graph building and

IO code.

• Returns - the underlying �oat array

public void setPoints(float [] points)

• Usage

� Sets the points this Polygon represents

• Parameters

� points - the latlonpoints array lat,lon,lat . .

Class Polygon

Represents a simple Polygon

extends ie.tcd.cs.dsg.hermes.gis.geometry.Poly

Constructors

public Polygon()

public Polygon(float [] points)

• Parameters

� points - an array of long / lat points

Methods

public void render(Graphics g, RotatableProjection projection, Style

style)

279

ie.tcd.cs.dsg.hermes.gis.geometry� Rectangle

Class Polyline

Represents a polyline

extends ie.tcd.cs.dsg.hermes.gis.geometry.Poly

Constructors

public Polyline()

• Usage

� Constructs empty Polyline. AddVertex should be called next.

public Polyline(float [] points)

Methods

public void render(Graphics g, RotatableProjection projection, Style

style)

Class Rectangle

MBR rectangle (Bounding Box)

extends ie.tcd.cs.dsg.hermes.gis.geometry.Polygon

Fields

• public static �nal Rectangle EMPTY

� An empty bounding box (i.e. no area)

• public static �nal Rectangle PLANET

� A bounding box covering the whole world

280

ie.tcd.cs.dsg.hermes.gis.geometry� Rectangle

Constructors

public Rectangle()

public Rectangle(float [] points)

• Usage

� Constructor with two points.

• Parameters

� points -

public Rectangle(Point p)

• Parameters

� p -

public Rectangle(Point min, Point max)

• Usage

� Constructs a rectangle enclosing the two speci�ed points

• Parameters

� min - the �rst point

� max - the second point

Methods

public void addVertex(float lat, float lon)

public void addVertex(Point p)

public final boolean contains(float lat, float lon)

public boolean contains(Shape s)

public boolean equals(Object obj)

public float getArea()

• Usage

� Returns the area of the bounding box in meters squared

281

ie.tcd.cs.dsg.hermes.gis.geometry� Shape

• See Also

� ie.tcd.cs.dsg.hermes.gis.geometry.Poly.getArea()

public Rectangle getBounds()

public final Point getCenter()

• Usage

� Used to �nd origin in rotating

• Returns - the center point

public int getNumberPoints()

public final boolean intersects(Rectangle r)

• Usage

� Tests to see if the speci�ed box intersects (overlaps) this box This means

the two Box's share at least one internal point.

• Parameters

� r - the rectangle to test against

• Returns - true if the speci�ed rectangle intersects this one

public final void union(Rectangle r)

• Usage

� Union's the speci�ed bounding box with this one

• Parameters

� r - the rectangle to merge with this one

Class Shape

Represents a shape that can be rendered on the screen

extends java.lang.Object

implements Geometry, java.lang.Cloneable

282

ie.tcd.cs.dsg.hermes.gis.geometry� ShapeList

Constructors

public Shape()

Methods

public Rectangle getBounds()

public static final double getMinimumDistance(Shape fromShape,

Shape toShape)

• Usage

� Minimum distance concept and equation illustrated here:

http://www.cs.mcgill.ca/ fzamal/Project/concepts.htm Used for nearest

neighbour operations

• Parameters

� toShape -

• Returns - minimum distance to shape

public boolean isVisible()

• Returns - Returns the visible.

public abstract void render(Graphics g, RotatableProjection

projection, Style style)

• Usage

� Render the shape to the speci�ed graphics context

• Parameters

� g - the graphics context

� projection - the projection to use

� style - the style containing drawing attributes

public void setVisible(boolean visible)

• Parameters

� visible - The visible to set.

283

ie.tcd.cs.dsg.hermes.gis.geometry� ShapeList

Class ShapeList

A lightweight vector of Shape records. Performs better than Javas in built lists.

extends java.lang.Object

implements java.lang.Cloneable

Fields

• public int count

� The number of items in the vector

• public ShapeRecord data

� The items in the vector

Constructors

public ShapeList(int initialSize)

• Parameters

� initialSize - the approximate initial number of list items

public ShapeList(int initialSize, boolean unique)

• Parameters

� initialSize - the approximate initial number of list items

� unique - Each record number may only appear once in list

public ShapeList(ShapeList sRecords)

• Usage

� Constructor. Creates a deep clone of the supplied object

• Parameters

� sRecords - a ShapeList of Geometry that should be cloned

284

ie.tcd.cs.dsg.hermes.gis.geometry� ShapeList

Methods

public void addAll(ShapeList sr)

• Usage

� Appends the speci�ed collection of shape records to the end of this list.

• Parameters

� sr - An existing ShapeList from which Shapes will be copied

public void addElement(ShapeRecord rec)

• Usage

� Adds the speci�ed component to the end of this vector, increasing its size

by one.

• Parameters

� rec - a shape record object

public final void clear()

• Usage

� Clears the list of all data. The data is still referenced but count shows it

as being empty.

public Object clone()

public ShapeList clone(boolean deep)

• Usage

� Partial Deep clone (IndexEntrys but not the ShapeRecord objects)

• Parameters

� deep -

• Returns - a clone of this list

public final boolean containsRecord(int recNo)

• Usage

285

ie.tcd.cs.dsg.hermes.gis.geometry� ShapeList

� Tests if the speci�ed record is in this list. Used when retrieving new

geometry to avoid reading shapes from disk a second time.

Note: Record numbers must be unique

• Parameters

� recNo - the shape record number from the �le

• Returns - true if the shape is loaded already

public ShapeList �lter(ShapeListFilter �lter)

• Usage

� Filters this list returning a new list with the elements of this list that pass

the �lters test.

• Parameters

� filter - a ShapeListFilter that tests the records in the list

• Returns - a new ShapeList with the elements that passed the test

public final Object getAttribute(ShapeRecord record, String

attribute)

• Usage

� See the general contract of the getAttribute method of

SpatialDataSource.

Note: Here for compatability but dosen't do anything. ShapeRecords

should already have geometry

• Parameters

� record -

� attribute - the anem of the attribute

• Returns - the attribute object, Double or String

public final Rectangle getExtents()

• Usage

286

ie.tcd.cs.dsg.hermes.gis.geometry� ShapeList

� See the general contract of the getExtents method of

SpatialDataSource.

• See Also

� SpatialDataSource.getExtents()

public final ShapeRecord getRecord(int recNo)

• Usage

� Gets a record speci�ed by its data source identi�er and record number

• Parameters

� recNo - the shape record number from the �le

• Returns - the ShapeRecord if it exists or null

public final ShapeList getRecords(Rectangle area)

• Usage

� See the general contract of the getRecords method of

SpatialDataSource.

public final int indexOf(ShapeRecord obj, int i)

• Usage

� Searches for the �rst occurrence of the given argument, beginning the

search at index, and testing for equality using the equals method.

• Parameters

� obj - an object

� i - the non-negative index to start searching from.

• Returns - he index of the �rst occurrence of the object argument in this vector

at position index or later in the vector

public int insertElementAt(ShapeRecord obj, int i)

• Usage

287

ie.tcd.cs.dsg.hermes.gis.geometry� ShapeList

� Inserts the speci�ed object as a component in this vector at the speci�ed

index.

• Parameters

� obj - an object

� i - the index to insert at

• Returns - -1 if the element was not inserted, otherwise 0

public final int lastIndexOf(ShapeRecord obj, int i)

• Usage

� Searches backwards for the speci�ed object, starting from the speci�ed

index, and returns an index to it.

• Parameters

� obj - an object

� i - the index to start searching from.

• Returns - the index of the last occurrence of the speci�ed object in this vector

at position less than or equal to index in the vector,

public final int removeElementAt(int i)

• Usage

� Deletes the component at the speci�ed index. Each component in this

vector with an index greater or equal to the speci�ed index is shifted

downward to have an index one smaller than the value it had previously.

The size of this vector is decreased by 1.

• Parameters

� i - the index of the object to remove.

• Returns - -1 if the element was not removed, otherwise 0

public final void removeRecord(ShapeRecord record)

• Usage

288

ie.tcd.cs.dsg.hermes.gis.geometry� ShapeList

� See the general contract of the removeGeometry method of

SpatialDataSource.

• See Also

�

SpatialDataSource.removeGeometry(ie.tcd.cs.dsg.hermes.gis.io.ShapeRecord)

public final void replaceRecord(ShapeRecord record)

• Usage

� Replaces the record with the one speci�ed it is is contained in the list.

• Parameters

� record - the record to replace

public final void setScale(float scale)

• Usage

� Sets the scale of all the records in the list to the speci�ed scale range.

• Parameters

� scale -

public void sort(ShapeRecordComparator c)

• Usage

� Sorts the elements of the list based on the speci�ed comparator.

• Parameters

� c -

289

ie.tcd.cs.dsg.hermes.gis.ui� ScreenOverlay

D.7 Package ie.tcd.cs.dsg.hermes.gis.ui

Package Contents Page

Interfaces

ScreenOverlay . 290

Classes

Bu�eredMapCanvas . 291

MapCanvas . 292

Interfaces

Interface ScreenOverlay

An interface for interface artifacts that the GIS rendering engine may need to overlay on a

map layer.

All coordinates are in device screen coordinate space.

Methods

public int getGeometry()

• Usage

� Gets the outline of the arrow as arrays of x and y coordinate pairs for

�lling by the Graphics class.

• Returns - x and y coordinate arrays

public void render(Graphics g, RotatableProjection projection, Style

style)

• Usage

� Renders the screen overlay on the device screen

290

ie.tcd.cs.dsg.hermes.gis.ui� Bu�eredMapCanvas

• Parameters

� g - the graphics context

� projection - the current map projection

� style - the rendering style

Classes

Class Bu�eredMapCanvas

A Double bu�ered version of the map canvas. The original map canvas should never be used.

extends ie.tcd.cs.dsg.hermes.gis.ui.MapCanvas

implements ie.tcd.cs.dsg.hermes.gis.event.ProjectionListener

Constructors

public Bu�eredMapCanvas(MapContext mapContext)

• Parameters

� mapContext - the map

Methods

public void componentResized(ComponentEvent e)

• Usage

� Invoked when component has been resized. Layer bu�er is nulli�ed. and

super.componentResized(e) is called.

• Parameters

� e - ComponentEvent

public void inputModeChanged(InputModeEvent e)

public void paint(Graphics g)

public void projectionChanged(ProjectionEvent e)

public void setBu�erDirty(boolean value)

291

ie.tcd.cs.dsg.hermes.gis.ui� MapCanvas

• Usage

� Marks the image bu�er as dirty if value is false. On the next

paintChildren(), we will call paint() on all Layer components.

• Parameters

� value - boolean value indicating bu�er state

Class MapCanvas

A graphical representation of a vector map .

extends java.awt.Canvas
implements java.awt.event.ComponentListener,

ie.tcd.cs.dsg.hermes.gis.event.LayerListener,

ie.tcd.cs.dsg.hermes.gis.event.InputModeListener

Constructors

public MapCanvas(MapContext mapContext)

• Usage

� Constructor. Creates a new MapCanvas to show Map data from the

Speci�ed Index for an area surrounding the speci�ed point.

Methods

public void componentHidden(ComponentEvent e)

• Usage

� ComponentListener interface method. Should not be called directly.

Invoked when component has been hidden.

• Parameters

� e - ComponentEvent

public void componentMoved(ComponentEvent e)

292

ie.tcd.cs.dsg.hermes.gis.ui� MapCanvas

• Usage

� ComponentListener interface method. Should not be called directly.

Invoked when component has been moved.

• Parameters

� e - ComponentEvent

public void componentShown(ComponentEvent e)

• Usage

� ComponentListener interface method. Should not be called directly.

Invoked when component has been shown.

• Parameters

� e - ComponentEvent

public MapContext getContext()

• Returns - the mapcontext

public void layerChanged(LayerEvent e)

public abstract void paint(Graphics g)

293

ie.tcd.cs.dsg.hermes.gis.generalisation.elimination� EliminationFilter

D.8 Package

ie.tcd.cs.dsg.hermes.gis.generalisation.elimination

Package Contents Page

Classes

EliminationFilter . 294

MinimumAreaFilter . 296

Classes

Class EliminationFilter

Instances of classes that implement this interface are used to �lter Shapes. These instances

are used to �lter shapes based on the currently mimimum size shapes that are visible. i.e. if

the pixel tolerance is set to 3 pixels then no shape that (when rendered) will occupy less

than 3 x 3 pixels is accepted by the �lter.

This is a very simple �ltering of geometry based on its area and the current map scale. The

�lter keeps track of the current scale by listening to projection changes.

extends java.lang.Object

implements ie.tcd.cs.dsg.hermes.gis.geometry.ShapeListFilter

Fields

• public static �nal String LOD_ALGORITHM_PROPERTY

� The properties �le key used to determine which level of detail �lter to load

at runtime.

• public static �nal String LOD_TOLERANCE_PROPERTY

� The key for the property that speci�es the tolerance in pixels

294

ie.tcd.cs.dsg.hermes.gis.generalisation.elimination� MinimumAreaFilter

• public static �nal String ELIMINATION_PROPERTY

� Whether elimination should be used

Constructors

public EliminationFilter()

Methods

public static EliminationFilter getInstance()

• Usage

� Gets an instance of a level of detail �lter.

• Returns - an instance of a level of detail �lter or NULL if an exception occurs

public abstract void setScale(float f)

• Usage

� Sets the scale for �ltering at. Must be called before a ShapeList is �ltered.

• Parameters

� f - the new scale

public abstract void setTolerance(float minPixTolerance)

• Usage

� Sets the minimum number of pixels wide and high a shape in the map

must be (at the current map scale) to be rendered.

• Parameters

� minPixTolerance - the minimum number of pixels wide and high a shape

in the map must be

295

ie.tcd.cs.dsg.hermes.gis.generalisation.elimination� MinimumAreaFilter

Class MinimumAreaFilter

Filters Shape data based on its rendered area.

extends ie.tcd.cs.dsg.hermes.gis.generalisation.elimination.EliminationFilter

implements ie.tcd.cs.dsg.hermes.gis.tools.Algorithm

Constructors

public MinimumAreaFilter(float pixTolerance)

• Usage

� Constructor. Filters Shape data based on its area.

• Parameters

� pixTolerance - the minimum size of viewable shapes

Methods

public boolean accept(ShapeRecord record)

• Usage

� This method should never be called (Although it will work to some extent).

Instead calls to accept() should specify the current scale as a parameter.

• See Also

� ShapeListFilter.accept(ShapeRecord) (in D.6, page 271)

public float getMinimumArea()

public String getName()

public void setScale(float f)

public void setTolerance(float minPixTolerance)

296

ie.tcd.cs.dsg.hermes.gis.index.spatial� SpatialIndex

D.9 Package ie.tcd.cs.dsg.hermes.gis.index.spatial

Package Contents Page

Interfaces

SpatialIndex . 297

Classes

RTree .298

RTreeSpatialIndex . 300

Interfaces

Interface SpatialIndex

A generic interface to Spatial index's

implements ie.tcd.cs.dsg.hermes.gis.index.Index,

ie.tcd.cs.dsg.hermes.gis.tools.Algorithm

Methods

public void delete(IndexEntry entry)

• Usage

� Deletes the speci�ed Entry from the index

• Parameters

� entry - the index entry to delete

public void delete(Rectangle mbr)

• Usage

� Deletes all entrys within the speci�ed bounding box from the index.

• Parameters

297

ie.tcd.cs.dsg.hermes.gis.index.spatial� RTree

� mbr - The rectangle within which all entrys should be deleted

public void insert(IndexEntry entry)

• Usage

� Inserts a single IndexEntry into the index.

• Parameters

� entry - the entry to insert

public void insert(ShapeList records)

• Usage

� Adds an index entry to this index for each of the shape records speci�ed.

Note. Assumes there are no duplicates in the list

• Parameters

� records - a list of shape records

public ShapeList search(Rectangle area)

• Usage

� Locates records in the shape �le that intersect with the given rectangle.

The spatial index is searched for intersections and the appropriate records

are read from the shape �le.

• Returns - a list of ShapeRecords with correct o�sets and numbers

Classes

Class RTree

A disk based R-Tree Implementation. Uses only quadratic cost node splitting algorithm.

extends java.lang.Object

implements ie.tcd.cs.dsg.hermes.gis.tools.benchmark.IOAccounting

298

ie.tcd.cs.dsg.hermes.gis.index.spatial� RTree

Fields

• public static �nal String NODE_SPLIT_PROPERTY

• public static �nal String SPLIT_QUADRATIC

� Quadratic cost in number of entries per node

• public static �nal String SPLIT_LINEAR

� Linear cost in number of entries per node

Constructors

public RTree(PageStore store)

• Usage

� Constructor. R-Tree retrieved from store.

• Parameters

� store - a disk-based data structure for storing the tree

Methods

public void delete(Rectangle env)

• Usage

� Deletes the entry with the speci�ed Envelope as its bounds. If more than

one entry exists with the same bounds, then subsequent calls to delete

are needed to remove all this elements.

• Parameters

� env - The Envelope

public Rectangle getBounds()

• Usage

� Gets this index bounding box

299

ie.tcd.cs.dsg.hermes.gis.index.spatial� RTreeSpatialIndex

• Returns - A Rectangle the bounding box of the root node

public void insert(IndexEntry entry)

• Usage

� R-Tree insertion algorithm

• Parameters

� entry - the IndexEntry to insert

public ShapeList search(Rectangle query)

• Usage

� Performs a search on this RTree

• Parameters

� query - the query Envelope

• Returns - a Collection of Data

Class RTreeSpatialIndex

A Spatial Index using a paged on disk R-Tree with Quadratic time Node splitting.

extends java.lang.Object

implements SpatialIndex

Fields

• public static �nal String PROPERTY_VALUE

� The value of the SPATIAL_INDEX_PROPERTY if this class is to be

used

300

ie.tcd.cs.dsg.hermes.gis.index.spatial� RTreeSpatialIndex

Constructors

public RTreeSpatialIndex(File pageStoreFile)

• Usage

� Constructor to create an index for reading from an already existing R-Tree.

• Parameters

� pageStoreFile - a �le in which an R-Tree is stored.

public RTreeSpatialIndex(SHPFile shp, File pageStoreFile)

• Usage

� Constructor to create a new index for the speci�ed shape �le.

• Parameters

� shp - the Shape�le containing geometry to be indexed

Methods

public void delete(IndexEntry entry)

public void delete(Rectangle env)

public void insert(IndexEntry entry)

public void insert(ShapeList records)

public boolean isEmpty()

public ShapeList search(Rectangle area)

301

ie.tcd.cs.dsg.hermes.gis.layer� MapLayer

D.10 Package ie.tcd.cs.dsg.hermes.gis.layer

Package Contents Page

Interfaces

MapLayer . 302

Classes

AbstractMapLayer . 305

AnnotationShapeMapLayer . 306

Bu�eredMapLayer . 307

CompassMapLayer . 307

DynamicMapLayer . 308

GraphMapLayer .308

GraticuleMapLayer . 309

MapLayer.ZOrder . 310

ScaleMapLayer . 311

ShapeMapLayer . 311

VisibilityShapeMapLayer .312

Interfaces

Interface MapLayer

Layer objects are components which can be added to the MapContext to make a map.

Layers implement the ProjectionListener interface to listen for ProjectionEvents. When the

projection changes, they may need to re-fetch, regenerate their graphics, and then repaint

themselves into the MapCanvas.

implements ie.tcd.cs.dsg.hermes.gis.event.ProjectionListener, java.lang.Comparable

302

ie.tcd.cs.dsg.hermes.gis.layer� MapLayer

Methods

public void addLayerListener(LayerListener listener)

• Usage

� Adds a layer listener to the map layer. The map context should listen for

changes in the layers it manages and pass events up to the canvas to

trigger repaints.

• Parameters

� listener - the listener

public String getLayerName()

• Usage

� Gets the layers descriptive name

• Returns - the layers name

public Style getStyle()

• Usage

� Gets the style currently being used by the layer to render vector graphics.

• Returns - the current rendering style

public int getZOrder()

• Usage

� Gets the layer rendering order

• Returns - the layer rendering order

public boolean isDynamic()

• Usage

� Tests to see if the current map layer is dynamic (i.e. contains rapidly

changing data and is responsible for its own repainting) or static in which

case double bu�ering will be used to speed up the rendering.

303

ie.tcd.cs.dsg.hermes.gis.layer� MapLayer

• Returns - true if the curren layer is an instance of DynamicMapLayer

public boolean isVisible()

• Usage

� Gets the layers visibility

• Returns - true is the layer is currently being drawn on the map canvas

public void render(Graphics g)

• Usage

� Render the current layer to the speci�ed graphics context.

• Parameters

� g - a graphics context to render the layer to

public void setMaxScale(float f)

• Usage

� Sets the maximum scale at which the currnet layer is visible

• Parameters

� f - the scale in pixels per meter

public void setMinScale(float f)

• Usage

� Sets the minimum scale at which the currnet layer is visible

• Parameters

� f - the scale in pixels per meter

public void setVisible(boolean visible)

• Usage

� Sets the layers visibility on the canvas

• Parameters

304

ie.tcd.cs.dsg.hermes.gis.layer� AbstractMapLayer

� visible - boolean

public void setZOrder(int zorder)

• Usage

� Sets the layer rendering order

• Parameters

� zorder - the layer rendering order

Classes

Class AbstractMapLayer

All map layers must extend this class. This class implements the generic methods such as

getLayerName() that are common to all map layers.

extends java.lang.Object

implements MapLayer

Constructors

public AbstractMapLayer(String layerName, RotatableProjection

projection, Style style, boolean dynamic)

• Parameters

� layerName -

Methods

public void addLayerListener(LayerListener listener)

• Usage

� Adds a listener to this layer for changes in the contents of the layer.

• Parameters

� listener - the listener to add

305

ie.tcd.cs.dsg.hermes.gis.layer� Bu�eredMapLayer

public String getLayerName()

public Style getStyle()

public int getZOrder()

public boolean isDynamic()

public boolean isVisible()

public void projectionChanged(ProjectionEvent e)

public void setMaxScale(float f)

public void setMinScale(float f)

public void setVisible(boolean visible)

public void setZOrder(int zorder)

Class AnnotationShapeMapLayer

This layer draws text annotations on the map.

extends ie.tcd.cs.dsg.hermes.gis.layer.ShapeMapLayer

Constructors

public AnnotationShapeMapLayer(String layerName,

RotatableProjection projection, Style style, SpatialQuery

spatialQuery)

• Usage

� Constructs a shape layer

• Parameters

� layerName - the name of the layer

� spatialIndex - the spatial index from which shapes can be retrieved

� spatialQuery - the initial query to use to retrieve shapes from the index

Methods

306

ie.tcd.cs.dsg.hermes.gis.layer� CompassMapLayer

public void projectionChanged(ProjectionEvent evt)

public void render(Graphics g)

Class Bu�eredMapLayer

Bu�ered map layers are drawn as a background and double bu�ered to prevent �ickering.

extends ie.tcd.cs.dsg.hermes.gis.layer.AbstractMapLayer

Constructors

public Bu�eredMapLayer(String layerName, RotatableProjection

projection, Style style)

• Parameters

� layerName - the name of the layer

� projection - the projection in use

� style - the style de�nitions to use when rendering the layer

Class CompassMapLayer

Draws a north arrow (compass rose) on the screen. As the map is rotated the arrow will

continue to point north by remaining in sync with the projection and updating in response

to all projection changes.

extends ie.tcd.cs.dsg.hermes.gis.layer.DynamicMapLayer

Constructors

public CompassMapLayer(String layerName, RotatableProjection

projection, Style style)

• Parameters

� layerName -

307

ie.tcd.cs.dsg.hermes.gis.layer� GraphMapLayer

Methods

public void projectionChanged(ProjectionEvent evt)

public void render(Graphics g)

Class DynamicMapLayer

Abstract class representing MapLayers that display dynamic data and must always be

redrawn in every rendering cycle. Bu�ering the contents of Dynamic Layers is not allowed

as it would result in stale data being represented.

extends ie.tcd.cs.dsg.hermes.gis.layer.AbstractMapLayer

Constructors

public DynamicMapLayer(String layerName, RotatableProjection

projection, Style style)

• Parameters

� layerName - the name of the layer

� projection - the projection in use

� style - the style de�nitions to use when rendering the layer

Class GraphMapLayer

Renders a graph (road network) as a map layer. This layer was used to debug the route

generation facilities in Mobile GIS. You would not generally want to overlay road centers on

the map.

extends ie.tcd.cs.dsg.hermes.gis.layer.Bu�eredMapLayer

Constructors

public GraphMapLayer(String layerName, RotatableProjection

projection, Style style, Graph graph)

308

ie.tcd.cs.dsg.hermes.gis.layer� GraticuleMapLayer

• Usage

� Constructs a shape layer

• Parameters

� layerName - the name of the layer

� projection - the projection for transforming between coordinate spaces

� style - the drawing style for rendering

� graph - the graph of nodes

Methods

public Graph getGraph()

• Returns - Returns the graph.

public void render(Graphics g)

Class GraticuleMapLayer

Draws a square grid over the map similar to topological maps

extends ie.tcd.cs.dsg.hermes.gis.layer.Bu�eredMapLayer

Fields

• public static �nal int VERTICAL

• public static �nal int HORIZONTAL

• public static �nal int VERTICAL_AND_HORIZONTAL

Constructors

public GraticuleMapLayer(String layerName, RotatableProjection

projection, Style style, int threshold)

309

ie.tcd.cs.dsg.hermes.gis.layer� ScaleMapLayer

• Usage

� Constructs a Graticule shape layer

• Parameters

� layerName - the name of the layer

� projection - the projection for transforming between coodrinate spaces

� style - the drawing style for rendering

� threshold - the distance between graticule lines

Methods

public void projectionChanged(ProjectionEvent evt)

public void render(Graphics g)

Class MapLayer.ZOrder

Z-Order Constants. MIDDLE speci�es arbitrary ordering and should be the default. When

more than one MapLayer is told to be on TOP the result is not guaranteed.

extends java.lang.Object

Fields

• public static �nal int TOP

• public static �nal int BOTTOM

• public static �nal int MIDDLE

Constructors

public MapLayer.ZOrder()

310

ie.tcd.cs.dsg.hermes.gis.layer� ShapeMapLayer

Class ScaleMapLayer

Shows the map scale in the bottom left of the map panel

extends ie.tcd.cs.dsg.hermes.gis.layer.Bu�eredMapLayer

Constructors

public ScaleMapLayer(String layerName, RotatableProjection

projection, Style style)

• Usage

� Constructs a new Scale map layer using the speci�ed projection to retrieve

scale information from and position the text on screen. The text is

rendered according to the rules in the speci�ed Style.

• Parameters

� layerName - the name of the layer

� projection - the projection

� style - the rendering style

Methods

public void projectionChanged(ProjectionEvent evt)

public void render(Graphics g)

Class ShapeMapLayer

A layer containing ESRI Shape�le data retrieved using a spatial query on a speci�ed query

engine.

extends ie.tcd.cs.dsg.hermes.gis.layer.Bu�eredMapLayer

Constructors

311

ie.tcd.cs.dsg.hermes.gis.layer� VisibilityShapeMapLayer

public ShapeMapLayer(String layerName, RotatableProjection

projection, Style style, SpatialQuery spatialQuery)

• Usage

� Constructs a shape layer

• Parameters

� layerName - the name of the layer

� spatialIndex - the spatial index from which shapes can be retrieved

� spatialQuery - the initial query to use to retrieve shapes from the index

Methods

public SpatialQuery getSpatialQuery()

• Usage

� The query specifying the data that is represented on this layer

• Returns - The query used to select which records from the spatial index are

chosen to be displayed in this layer

public void projectionChanged(ProjectionEvent evt)

public void render(Graphics g)

Class VisibilityShapeMapLayer

This layer illustrates which objects are visible by colouring them red. This layer was

developed to illustrate the operation of the Visibility algorithms.

extends ie.tcd.cs.dsg.hermes.gis.layer.DynamicMapLayer

implements ie.tcd.cs.dsg.hermes.context.location.LocationListener

Constructors

public VisibilityShapeMapLayer(String layerName,

RotatableProjection projection, Style style, SpatialQuery

spatialQuery)

312

ie.tcd.cs.dsg.hermes.gis.layer� VisibilityShapeMapLayer

• Usage

� Constructs a shape layer

• Parameters

� layerName - the name of the layer

� spatialIndex - the spatial index from which shapes can be retrieved

� spatialQuery - the initial query to use to retrieve shapes from the index

Methods

public void locationUpdated(Location location)

public void projectionChanged(ProjectionEvent evt)

public void render(Graphics g)

313

ie.tcd.cs.dsg.hermes.gis.projection.model� WorldModel

D.11 Package

ie.tcd.cs.dsg.hermes.gis.projection.model

Package Contents Page

Classes

WorldModel . 314

Classes

Class WorldModel

Contains the constants the de�ne how the world is modelled.

extends java.lang.Object

Fields

• public static WorldModel EARTH

� The planet Earth

• public static WorldModel MARS

� The planet Mars

• public static WorldModel TESTMODEL

� A test model for checking geometry. Operates as if �at

• public �nal String key

Methods

public static float getDateline()

314

ie.tcd.cs.dsg.hermes.gis.projection.model� WorldModel

• Returns - the dateline position

public static final double getDistanceToHorizon(int

heightAboveSurface)

• Usage

� The straight, line-of-sight distance (from your eyes to the horizon). For

small heights above sea level and certainly for heights within the Earth's

atmosphere the di�erence between this and the actual distance along the

planet's surface to the horizon is small.

See:

http://newton.ex.ac.uk/research/qsystems/people/sque/physics/horizon/

The straight-line distance to the horizon equation: ds = sqrt(h(2r + h))

where r = planet radius

• Parameters

� heightAboveSurface - height above surface of planet in meters

• Returns - the distance in km

public static float getLonRange()

• Returns - the max longitude

public static float getNorthPole()

• Returns - the north pole latitude

public static final float getPlanetEquatorialCircumference()

• Returns - the planets equatorial circumference in meters

public static final float getPlanetRadius()

• Returns - the planet radius (in meters?)

public static float getSouthPole()

• Returns - the south pole latitude

315

ie.tcd.cs.dsg.hermes.gis.projection.model� WorldModel

public static final float radiansToMeters(float distRad)

• Usage

� Used to convert between a spherical distance in radians to meters.

• Parameters

� distRad - distance in radians (see GreatCircle.spherical_distance)

• Returns - the arc radians converted to meters

316

ie.tcd.cs.dsg.hermes.gis.graph� Edge

D.12 Package ie.tcd.cs.dsg.hermes.gis.graph

Package Contents Page

Interfaces

Edge . 317

Graph . 318

Node . 320

Classes

BasicEdge . 322

BasicGraph . 323

BasicNode . 324

TopologicalModelBuilder . 325

Interfaces

Interface Edge

Represents an edge in Graph. An edge is an arc in a graph which connects exactly two

nodes. These two nodes are referred to as the A node and the B node of the edge. The

order of the A node and the B node is referred to as the node orientation of the edge.

implements Graphable

Methods

public Node getNodeA()

• Usage

� Returns the A node of the edge.

• Returns - The A node.

public Node getNodeB()

317

ie.tcd.cs.dsg.hermes.gis.graph� Graph

• Usage

� Returns the B node of the edge.

• Returns - The B node.

public Node getOtherNode(Node node)

• Usage

� Returns one of the two nodes of an edge. If the speci�ed node is node A,

then node B is returned, and vice versa.

• Parameters

� node - The node opposite of the node to return.

• Returns - Node A if node B is speci�ed, node B if node A is speci�ed.

Interface Graph

Represents a graph, which is a collection of nodes (verticies) connected by links called edges

(arcs).

The Graph object is intended to serve as a container for a collection of nodes and edges. It

does don't de�ne or manage the relationship among the components it contains.

Methods

public boolean contains(Node n)

• Usage

� Tests to see if the graph contains the speci�ed node.

• Parameters

� n - the node to test

• Returns - true if the speci�ed node is in this graph

public Edge getEdges()

318

ie.tcd.cs.dsg.hermes.gis.graph� Graph

• Usage

� Returns the edges of the graph.

• Returns - A collection of Edge objects.

• See Also

� ie.tcd.cs.dsg.hermes.gis.graph.Edge (in D.12, page 317)

public Node getNodes()

• Usage

� Returns the nodes of the graph.

• Returns - A collection of Node objects.

• See Also

� ie.tcd.cs.dsg.hermes.gis.graph.Node (in D.12, page 320)

public List getNodesOfDegree(int n)

• Usage

� Returns all the nodes in the graph of a speci�ed degree. The degree of a

node is the number of edges that are adjacent to the node.

• Parameters

� n - The desired degree of nodes to be returned.

• Returns - A collection of nodes of degree n.

• See Also

� ie.tcd.cs.dsg.hermes.gis.graph.Node.getDegree()

public List getVisitedEdges(boolean visited)

• Usage

� Returns all the edges in the graph that have been marked as visited or

non-visited.

• Parameters

� visited - True if edge is visited, false if edge is unvisited.

319

ie.tcd.cs.dsg.hermes.gis.graph� Node

• Returns - List of edges marked as visited / non-visited.

• See Also

� ie.tcd.cs.dsg.hermes.gis.graph.Graphable.isVisited()

public List getVisitedNodes(boolean visited)

• Usage

� Returns all the nodes in the graph that have been marked as visited or

non-visited.

• Parameters

� visited - True if node is visited, false if node is unvisited.

• Returns - List of nodes marked as visited / non-visited.

• See Also

� ie.tcd.cs.dsg.hermes.gis.graph.Graphable.isVisited()

Interface Node

Represents a node in a graph. A node is a point in a graph which is adjacent to 0 or more

edges. The collection of edges that are incident/ adjacent to the node, is referred to as the

"adjacency list" of the node.

implements Graphable

Methods

public void add(Edge e)

• Usage

� Adds an edge to the adjacency list of the node.

• Parameters

� e - Adjacent edge to add.

public boolean connectsWithEdge(Edge e)

320

ie.tcd.cs.dsg.hermes.gis.graph� Node

• Usage

� Tests to see if the speci�ed edge is already connected with this node.

• Parameters

� e - the edge to test

• Returns - true if this edge is connected to this node

public int getDegree()

• Usage

� Returns the degree of the node. The degree of a node is de�ned as the

number of edges that are adjacent to the node.

• Returns - int Degree of node.

public Edge getEdge(Node other)

• Usage

� Returns an edge in the adjacency list of the node that is adjacent to

another speci�ed node. Note: It is possible for two nodes to share multiple

edges between them. In this case, getEdges(Node other) can be used to

obtain a complete list.

• Parameters

� other - The other node that the desired edge to return is adjacent to.

• Returns - The �rst edge that is found to be adjacent to the speci�ed node.

public Edge getEdges()

• Usage

� Returns the edge adjacency list of the node.

• Returns - A list containing all edges that are adjacent to the node.

public List getEdges(Node other)

• Usage

321

ie.tcd.cs.dsg.hermes.gis.graph� BasicEdge

� Returns a collection of edges in the adjacency list of the node that are

adjacent to another speci�ed node.

• Parameters

� other - The other node that the desired edges to return are adjacent to.

• Returns - List of all edges that are found to be adjacent to the speci�ed node.

public void remove(Edge e)

• Usage

� Removes an edge from the adjacency list of the node.

• Parameters

� e - Adjacent edge to remove.

Classes

Class BasicEdge

Represents a graph edge consisting of two nodes.

extends ie.tcd.cs.dsg.hermes.gis.geometry.Polyline

implements Edge

Constructors

public BasicEdge(Polyline poly)

• Parameters

� poly - a line from which the start and end points will be used

Methods

public boolean equals(Object o)

• Usage

322

ie.tcd.cs.dsg.hermes.gis.graph� BasicGraph

� Points are equals when they have the same coordinates.

Note: Z coordinates are not compared!

• See Also

� java.lang.Object.equals(java.lang.Object)

public Node getNodeA()

public Node getNodeB()

public Node getOtherNode(Node node)

public boolean isVisited()

public void render(Graphics g, RotatableProjection projection, Style

style)

public void setNodeA(Node a)

• Usage

� Overwrites the reference to the start node of this edge with the speci�ed

node. Required to perform clustering of nodes and merging of edges.

• Parameters

� a - A node to replace the current node with

public void setNodeB(Node b)

• Usage

� Overwrites the reference to the end node of this edge with the speci�ed

node. Required to perform clustering of nodes and merging of edges.

• Parameters

� b - A node to replace the current node with

public void setVisited(boolean visited)

Class BasicGraph

An implementation of the Graph interface.

323

ie.tcd.cs.dsg.hermes.gis.graph� BasicNode

extends java.lang.Object

implements Graph

Constructors

public BasicGraph(Node [] nodes, Edge [] edges)

• Parameters

� nodes - The nodes of the graph (clustered)

� edges - The edges of the graph (redundant edges removed)

Methods

public boolean contains(Node n)

public Edge getEdges()

public Node getNodes()

public List getNodesOfDegree(int n)

public List getVisitedEdges(boolean visited)

public List getVisitedNodes(boolean visited)

Class BasicNode

Represents a node in a graph

extends ie.tcd.cs.dsg.hermes.gis.geometry.Point

implements Node

Constructors

public BasicNode(float x, float y)

• Usage

� Constructs a node with the speci�ed coordinates

• Parameters

324

ie.tcd.cs.dsg.hermes.gis.graph� TopologicalModelBuilder

� x - the coordinate at which the node is located

� y - the coordinate at which the node is located

Methods

public void add(Edge e)

public boolean connectsWithEdge(Edge e)

public int getDegree()

public Edge getEdge(Node other)

public Edge getEdges()

public List getEdges(Node other)

public boolean isVisited()

public void remove(Edge e)

public void render(Graphics g, RotatableProjection projection, Style

style)

public void setVisited(boolean visited)

Class TopologicalModelBuilder

This class discovers topoligical relationships from line intersections in the underlying

geometry of the map. Providing a list of polylines (representing roads) this class will cluster

nodes and build a topological graph of the road network.

extends java.lang.Object

Constructors

public TopologicalModelBuilder()

Methods

public double getClusteringTolerance()

• Returns - Returns the clusteringTolerance.

325

ie.tcd.cs.dsg.hermes.gis.graph� TopologicalModelBuilder

public Graph getTopologyGraph(ShapeList shapeList)

public void setClusteringTolerance(double clusteringTolerance)

• Parameters

� clusteringTolerance - The clusteringTolerance to set.

326

ie.tcd.cs.dsg.hermes.gis.graph.traverse� DijkstraNode

D.13 Package ie.tcd.cs.dsg.hermes.gis.graph.traverse

Package Contents Page

Interfaces

EdgeWeighter . 327

Classes

DijkstraNode . 328

DijkstraShortestPathFinder .329

Path . 329

ShortestPathEdgeWeighter . 330

Interfaces

Interface EdgeWeighter

Supplies a weight for each edge in the graph to be used by the iteration when calculating

node costs.

Methods

public double getWeight(Edge e)

• Usage

� Returns the weight for the associated edge.

• Parameters

� e - The edge whose weight to return.

• Returns - The weight of the edge.

327

ie.tcd.cs.dsg.hermes.gis.graph.traverse� DijkstraShortestPathFinder

Classes

Class DijkstraNode

Extends a graph node to allow the labelling of a node with it's shortest distance from the

source node.

extends ie.tcd.cs.dsg.hermes.gis.graph.BasicNode

Constructors

public DijkstraNode(float lat, float lon)

Methods

public double getLabel()

• Returns - Returns the label.

public String getNodeName()

• Returns - Returns the nodeName.

public void render(Graphics g, RotatableProjection projection, Style

style)

public void setLabel(double label)

• Parameters

� label - The label to set.

public void setNodeName(String nodeName)

• Parameters

� nodeName - The nodeName to set.

328

ie.tcd.cs.dsg.hermes.gis.graph.traverse� Path

Class DijkstraShortestPathFinder

Calculates node paths in a graph using Dijkstra's Shortest Path Algorithm.

extends java.lang.Object

Constructors

public DijkstraShortestPathFinder(Graph graph, EdgeWeighter

edgeWeighter)

• Parameters

� graph - the graph to search

� edgeWeighter - an edge weighing algorithm

Methods

public Path getPath(Node source, Node target)

Class Path

Represents a walk in a graph. A walk W is de�ned as an ordered set of nodes that two

adjacent nodes in the set share an edge.

extends java.util.LinkedList

Constructors

public Path()

Methods

public boolean add(Node n)

• Usage

� Adding a new node clears the current list of edges.

329

ie.tcd.cs.dsg.hermes.gis.graph.traverse� ShortestPathEdgeWeighter

• Parameters

� n -

public List getEdges()

• Returns - a list of the edges on the path

public boolean isValid()

• Usage

� Tests if the path is valid. A valid path satis�es two conditions: 1.) Each

pair of adjacent nodes share an edge; 2.) There are no node repetitions.

Class ShortestPathEdgeWeighter

Gets the weight for an edge in a graph by calculating the distance between the nodes at

either end of the edge.

extends java.lang.Object

implements EdgeWeighter

Constructors

public ShortestPathEdgeWeighter()

Methods

public double getWeight(Edge e)

• Usage

� This implementation does not calculate the real length of the edge but

instead makes an approximation by getting the distance between the two

end points of the edge.

Note: Edge weights must be positive for Dijkstra's Algorithm

330

ie.tcd.cs.dsg.hermes.gis.projection� Projection

D.14 Package ie.tcd.cs.dsg.hermes.gis.projection

Package Contents Page

Interfaces

Projection . 331

RotatableProjection . 335

Classes

AbstractProjection . 338

EquiRectangular . 340

Mercator . 340

Screen . 341

Interfaces

Interface Projection

A projection is an object that is maintained by the map, and represents a abstract "view"

of the data. The projection has the properties of x-width, * y-height, scale (in

pixels/meters), and latitude/longitude center point. At the center point of the projection,

North is to the top of the screen.

implements java.lang.Cloneable, ie.tcd.cs.dsg.hermes.gis.tools.Algorithm

Fields

• public static �nal String PROJECTION_MODEL_PROPERTY

• public static �nal String PROJECTION_PROPERTY

Methods

331

ie.tcd.cs.dsg.hermes.gis.projection� Projection

public Point getCenter()

• Usage

� Get the center LatLonPoint.

• Returns - center point

public int getHeight()

• Usage

� Get the height of the map.

• Returns - int height.

public Point getLowerRight()

• Usage

� Get the lower right (southeast) point of the projection.

Returns the lower right point (or closest equivalent) of the projection

based on the center point and height and width of screen.

This is trivial for most cylindrical projections, but much more complicated

for azimuthal projections.

• Returns - LatLonPoint

public float getPixelsPerDegree()

• Usage

� Used to calculate line simpli�cation and generalisation tolerances as well

as internally within the projection for scaling.

• Returns - the number of pixels in a degree

public float getScale()

• Usage

� Get the scale.

332

ie.tcd.cs.dsg.hermes.gis.projection� Projection

• Returns - �oat scale

public float getScale(Point ll1, Point ll2, Screen.Pixel point1,

Screen.Pixel point2)

• Usage

� Given a couple of points representing a bounding box, �nd out what the

scale should be in order to make those points appear at the corners of the

projection.

• Parameters

� ll1 - the upper left coordinates of the bounding box.

� ll2 - the lower right coordinates of the bounding box.

� point1 - a java.awt.Point re�ecting a pixel spot on the projection that

matches the ll1 coordinate, the upper left corner of the area of interest.

� point2 - a java.awt.Point re�ecting a pixel spot on the projection that

matches the ll2 coordinate, usually the lower right corner of the area of

interest.

public Point getUpperLeft()

• Usage

� Get the upper left (northwest) point of the projection.

Returns the upper left point (or closest equivalent) of the projection based

on the center point and height and width of screen.

This is trivial for most cylindrical projections, but much more complicated

for azimuthal projections.

• Returns - LatLonPoint

public int getWidth()

• Usage

� Get the width of the map.

333

ie.tcd.cs.dsg.hermes.gis.projection� Projection

• Returns - int width.

public Rectangle getWorldExtent()

• Usage

� Get the bounding box of the projection.

• Returns - BBox bounds in lat / lon degrees for map

public WorldModel getWorldModel()

• Returns - the world model in use

public Point pixelToWorld(int x, int y)

public void setCenter(Point center)

• Usage

� Set center point of projection.

public void setScale(float s)

• Usage

� Sets the projection to the scale 1:s if minscale <s <maxscale.

• Parameters

� s - �oat scale

public void setScale(Rectangle box)

• Usage

� Given a bounding box, set the scale of the projection to what it should be

in order to make those points appear at the corners of the projection.

• Parameters

� box - the new world extents

public void setScreenSize(int width, int height)

• Usage

334

ie.tcd.cs.dsg.hermes.gis.projection� RotatableProjection

� Sets the screen width

• Parameters

� width -

public Screen.Pixel worldToPixel(float lat, float lon)

• Usage

� Forward project lat,lon coordinates (in degrees) into xy space.

• Parameters

� lat - �oat latitude in decimal degrees

� lon - �oat longitude in decimal degrees decimal degrees

• Returns - Point (new)

Interface RotatableProjection

Rendering engines must implement this interface. A coordinate space transformation that

supports rotating of the screen transformation space after projecting.

implements Projection

Methods

public boolean equalsIgnoreRotation(RotatableProjection proj)

• Usage

� Tests to see if the speci�ed rotation is equivalent to this projection is the

rotation degrees are ignored. Used to test if a cached projection value is

still valid.

• Parameters

� proj - the current projection

• Returns - true if the projection are the same except for rotation

public float getRotationDegrees()

335

ie.tcd.cs.dsg.hermes.gis.projection� RotatableProjection

• Usage

� Returns the degrees the map is rotated by from north

• Returns - the degrees the map is rotated by from north

public Point pixelToWorld(int x, int y, boolean rotate)

• Usage

� Inverse project x,y coordinates. The boolean parameter control whether

the rotation should also be applied. This is used when projecting

bounding box coordinates which should never be rotated and must always

remain rectangular.

• Parameters

� x - pixel x component

� y - pixel y component

� rotate - rotate the coordinates before projecting

• Returns - LatLonPoint (new)

public void rotateByDegrees(double rotationDegrees)

• Usage

� Appends the speci�ed number of degrees rotation to the maps current

rotation angle.

• Parameters

� rotationDegrees - The rotationDegrees to add.

public void rotateToDegrees(double rotationDegrees)

• Usage

� Sets the angle in degrees that the map should be rotated (Clockwise) by.

• Parameters

� rotationDegrees - The rotationDegrees to set.

public Screen.Pixel rotateToPixel(Screen.Pixel pixel)

336

ie.tcd.cs.dsg.hermes.gis.projection� AbstractProjection

• Usage

� Rotates the speci�ed pixel about he screen center and returns the new

point. No projection transformation is performed.

• Parameters

� pixel - the pixel to rotate to the screens coordinate space

• Returns - the rotated pixcel

public Screen.Pixel rotateToWorld(Screen.Pixel pixel)

• Usage

� Rotates the speci�ed pixel in reverse about he screen center and returns

the new point. No projection transformation is performed. This results in

the North orientated point on the map before rotation was performed.

• Parameters

� pixel - the pixel to rotate to the world coordinate space

• Returns - the rotated pixcel

public Screen.Pixel worldToPixel(float lat, float lon, boolean

rotate)

• Usage

� Forward project lat,lon coordinates (in degrees) into xy space. The

boolean parameter controls whether the rotation should also be applied.

This allows rotation to be separated form projection allowing projections

to be cached, thus speeding up the rotating of the map.

• Parameters

� lat - �oat latitude in decimal degrees

� lon - �oat longitude in decimal degrees decimal degrees

� rotate - rotate the coordinates after projecting

• Returns - Point (new)

337

ie.tcd.cs.dsg.hermes.gis.projection� AbstractProjection

Classes

Class AbstractProjection

AbstractProjection is the base class of all Projections. You probably don't want to use this

class unless you are hacking your own projections, or need extended functionality.

The worldToPixel() and pixelToWorld() methods are currently implemented using the

algorithms given in John Synder's Map Projections �A Working Manual for the sphere.

This is su�cient for display purposes.

extends java.lang.Object

implements RotatableProjection

Constructors

public AbstractProjection(Point center, float s, int w, int h)

• Usage

� Construct a projection.

• Parameters

� center - LatLonPoint center of projection

� s - �oat scale of projection

� w - width of screen

� h - height of screen

Methods

public final boolean equalsIgnoreRotation(RotatableProjection proj)

public final Point getCenter()

public final int getHeight()

public final Point getLowerRight()

public final float getPixelsPerDegree()

public final float getRotationDegrees()

338

ie.tcd.cs.dsg.hermes.gis.projection� EquiRectangular

public final float getScale()

public float getScale(Point ll1, Point ll2, Screen.Pixel point1,

Screen.Pixel point2)

public final Point getUpperLeft()

public final int getWidth()

public final Rectangle getWorldExtent()

• Usage

� Gets the world extents that is visible. Note that a slightly larger world

extent is returned to make sure enough geometry is retrieved to draw a

rotated map without clipped shapes becoming visible.

• See Also

�

ie.tcd.cs.dsg.hermes..gis..projection.Projection.getWorldExtent()

public WorldModel getWorldModel()

• Returns - the world model in use

public abstract Point pixelToWorld(int x, int y)

public Point pixelToWorld(Screen.Pixel pc)

public void rotateByDegrees(double rotationDegrees)

public void rotateToDegrees(double rotationDegrees)

public final Screen.Pixel rotateToPixel(Screen.Pixel pixel)

public final Screen.Pixel rotateToWorld(Screen.Pixel pixel)

public final void setCenter(Point center)

public final void setScale(float s)

public final void setScale(Rectangle box)

public final void setScreenSize(int width, int height)

public abstract Screen.Pixel worldToPixel(float lat, float lon)

339

ie.tcd.cs.dsg.hermes.gis.projection� Mercator

Class EquiRectangular

Implements the EquiRectangularProjection projection, which is basically something where

the lat/lon and pixel ratios are the same.

EquiRectangular projections arealso known as Equidistant Cyllindrical.

extends ie.tcd.cs.dsg.hermes.gis.projection.AbstractProjection

Constructors

public EquiRectangular(Point center, float s, int w, int h)

• Usage

� Construct a projection.

• Parameters

� center - LatLonPoint center of projection

� s - �oat scale of projection

� w - width of screen

� h - height of screen

Methods

public final Point pixelToWorld(int x, int y)

public final Point pixelToWorld(int x, int y, boolean rotate)

public final Screen.Pixel worldToPixel(float lat, float lon)

public final Screen.Pixel worldToPixel(float lat, float lon, boolean

rotate)

Class Mercator

Implements the Mercator projection. A conformal projection, angles are preserved around

all locations, however scale varies from place to place, distorting the size of geographical

objects. In particular, areas closer to the poles are more a�ected, transmitting an image of

the geometry of the planet which is more distorted the closer to the poles.

340

ie.tcd.cs.dsg.hermes.gis.projection� Screen

extends ie.tcd.cs.dsg.hermes.gis.projection.AbstractProjection

Constructors

public Mercator(Point center, float scale, int width, int height

)

• Usage

� Construct a Mercator projection.

• Parameters

� center - LatLonPoint center of projection

� scale - �oat scale of projection

� width - width of screen

� height - height of screen

Methods

public Point pixelToWorld(int x, int y)

public Point pixelToWorld(int xx, int yy, boolean rotate)

public Screen.Pixel worldToPixel(float lat, float lon)

public Screen.Pixel worldToPixel(float lat, float lon, boolean

rotate)

Class Screen

Models Screen dimensions

extends java.lang.Object

Fields

• public int _xmax

� Maximum X value - Bottom right x coordinate

341

ie.tcd.cs.dsg.hermes.gis.projection� Screen

• public int _xmin

� Minimum X value - Top left x coordinate

• public int _ymax

� Maximum Y value - Bottom right y coordinate

• public int _ymin

� Minimum Y value - Top left y coordinate

Constructors

public Screen(int xmin, int ymin, int xmax, int ymax)

• Usage

� constructor

Methods

public Screen.Pixel getLowerRight()

• Usage

� The lower right point

• Returns - the lower right point

public static final Screen getSafeToRotate(Screen s)

• Usage

� Calculates a screen size where the width and height are at least as long as

the diagonal of this screen. Used to generate a clipping area that is large

enough to survive rotating without displaying the clipped edges on screen.

• Returns - a new Screen dimension

public Screen.Pixel getUpperLeft()

• Usage

342

ie.tcd.cs.dsg.hermes.gis.projection� Screen

� The upper left point

• Returns - The upper left point

public void grow(int per)

• Usage

� Increase the size of the bounding box by adding a the speci�ed amounts to

the existing box on all sides.

• Parameters

� per - the percentage to shrink the box by

public void shrink(int per)

• Usage

� Decrease the size of the bounding box by adding a the speci�ed amounts

to the existing box on all sides.

• Parameters

� per - the percentage to shrink the box by

343

ie.tcd.cs.dsg.hermes.gis.query� Constraint

D.15 Package ie.tcd.cs.dsg.hermes.gis.query

Package Contents Page

Interfaces

Constraint . 344

Operator . 345

Query . 346

QueryEngine. .347

Classes

AttributeConstraint . 349

MobileGISQueryEngine . 351

QueryException . 353

ResultsConstraint . 353

SpatialConstraint . 355

SpatialQuery . 356

Interfaces

Interface Constraint

A Query Constraint must implement this interface

Methods

public int getOperator()

• Usage

� Gets the operator

• Returns - one of the Operator constants

public void setOperator(int operator)

344

ie.tcd.cs.dsg.hermes.gis.query� Query

• Usage

� Sets the operator

• Parameters

� operator - one of the Operator constants

Interface Operator

Query Constraint Operators

Fields

• public static �nal int EQ

� Equal to

• public static �nal int NOT

� Not Equal

• public static �nal int LIKE

� Equal (ignore case and white space)

• public static �nal int GREATER

� Greater than

• public static �nal int LESS

� Less than

• public static �nal int CONTAINS

� Contained by area

• public static �nal int INTERSECTS

� Intersects area

345

ie.tcd.cs.dsg.hermes.gis.query� Query

Interface Query

All queries implement this interface.

Fields

• public static �nal int MAX_ATTRIBUTES

� The maximum number of values in a constraint and maximum number of

constraints in a query

Methods

public void addConstraint(Constraint c)

• Usage

� Adds the speci�ed constraint to the query

• Parameters

� c - the constraint to add

public boolean constainsConstraint(Class constraintType)

• Usage

� Tests to see if a constraint of the speci�ed type has been added to the

query.

• Parameters

� constraintType -

• Returns - true if a constraint of the type speci�ed is part of the query

public Constraint getConstraint(Class constraintType)

• Usage

� Gets all the constraints of type speci�ed by class name.

346

ie.tcd.cs.dsg.hermes.gis.query� QueryEngine

• Parameters

� constraintType - a constraint class name

• Returns - an array of constrains of type speci�ed in query

public boolean validate()

• Usage

� Validates that a complete query syntactically correct query has been

constructed. This will usually involve ensuring that required constraints

have been added.

• Returns - true if the query is syntactically correct

Interface QueryEngine

An interface de�ning the public access to query engine implementations. QueryEngines are

responsible for managing the currently available data sources and executing queries on those

data sources.

Methods

public void addShapeDataSource(String type, String source)

• Usage

� Adds the speci�ed data source to the list of sources that all spatial queries

will be executed on.

• Parameters

� type - the type of data source to read. Options currently are 'SHP' or

'TEST' (lowercase!)

� source - a Shape data source

public void clearCache()

• Usage

347

ie.tcd.cs.dsg.hermes.gis.query� QueryEngine

� Clears all cached records from data sources record cache. Used by

benchmarking code to ensure fresh geometry is returned from queries.

Note: Will raise an error is called on multiscale data as caches are

maintained for each scale and must be cleared individually.

public ShapeList executeQuery(SpatialQuery query)

• Usage

� Executes the speci�ed query on all the data sources that have been added.

Calls executeQuery(SpatialQuery, SpatialDataSource) in a loop

• Parameters

� query - the spatial query to execute

• Returns - a list of all the shapes matching the query

public ShapeList executeQuery(SpatialQuery query, SpatialDataSource

source)

• Usage

� Executes the speci�ed spatial query on the speci�ed data source

• Parameters

� query - the spatial query to execute

� source - the data source to query

• Returns - a list of all the shape records (with geometry) that match the query

public SpatialDataSource getShapeDataSource(String name)

• Usage

� Retrieves a data source based on it's name (As determined by

SpatialDataSource.getName())

• Parameters

� name - the data sources name

• Returns - the data source or null if it was not found

348

ie.tcd.cs.dsg.hermes.gis.query� AttributeConstraint

public Rectangle getWorldExtent()

• Usage

� Gets the extent of all the data sources combined.

• Returns - the extents of all the current data sources combined

public void removeAllShapeDataSources()

• Usage

� Empties all data sources from the QueryEngine.

public void removeShapeDataSource(SpatialDataSource source)

• Usage

� Removes the speci�ed data source and updates the extents querable to

re�ect this change in data sources. Removing the data source from the list

causes the close() method to be calls on the data source.

• Parameters

� source - the data source to remove (must be same instance)

Classes

Class AttributeConstraint

Query attribute constraints constrain a particular �elds allowable values.

extends java.lang.Object

implements Constraint, Operator

Constructors

public AttributeConstraint(String �eld, Object value, int operator

)

• Parameters

349

ie.tcd.cs.dsg.hermes.gis.query� AttributeConstraint

� field - the �eld that is being constrained

� value - the value

� operator - the operator de�ned an allowed relationship between the �eld

and speci�ed value

Methods

public void addValue(Object value)

• Usage

� Adds a new possible value for the constrained �eld.

• Parameters

� value -

public String getField()

• Usage

� Gets the �eld (the name of the attribute we are constraining)

• Returns - the name of the attribute

public int getOperator()

• Usage

� Gets the operator. Should be one of the static constants in the Operator

class.

• Returns - the operator

public Object getValues()

• Usage

� Trims and returns the values array as an array of objects. Objects will be

either Strings or Doubles

• Returns - all the values that are constraints of the �eld

public void setOperator(int operator)

350

ie.tcd.cs.dsg.hermes.gis.query� MobileGISQueryEngine

• Usage

� Sets the Constraint operator

• Parameters

� operator -

Class MobileGISQueryEngine

This class manages the open data sources and processes spatial queries.

extends java.lang.Object

implements QueryEngine

Fields

• public EliminationFilter lod

� Level of Detail scale �lter

Methods

public void addShapeDataSource(String type, String source)

• Usage

� Adds the speci�ed data source to the list of sources that all spatial queries

will be executed on.

• Parameters

� source - a Shape data source

public void clearCache()

public ShapeList executeQuery(SpatialQuery query)

• Usage

� Executes the speci�ed query on all the data sources that have been added.

Calls executeQuery(SpatialQuery, SpatialDataSource) in a loop

351

ie.tcd.cs.dsg.hermes.gis.query� MobileGISQueryEngine

• Parameters

� query - the spatial query to execute

• Returns - a list of all the shapes matching the query

public ShapeList executeQuery(SpatialQuery query, SpatialDataSource

source)

• Usage

� Executes the speci�ed spatial query on the speci�ed data source

• Parameters

� query - the spatial query to execute

� source - the data source to query

• Returns - a list of all the shape records (with geometry) that match the query

public SpatialDataSource getShapeDataSource(String name)

• Usage

� Retrieves a data source based on it's name (As determined by

SpatialDataSource.getName())

• Parameters

� name - the data sources name

• Returns - the data source or null if it was not found

public Rectangle getWorldExtent()

public void removeAllShapeDataSources()

• Usage

� Emptys all data sources from the QueryEngine. (And closes data sources)

public void removeShapeDataSource(SpatialDataSource source)

• Usage

� Removes the speci�ed data source and updates the extents querable to

re�ect this change in data sources. Removing the data source from the list

causes the close() method to be calles on the data source.

352

ie.tcd.cs.dsg.hermes.gis.query� ResultsConstraint

• Parameters

� source - the data source to remove (must be same instance)

Class QueryException

An exception arising from the improper construction of a query. This exception indicates

that a query is not complete or not syntactically correct or is missing required constraints.

extends java.lang.Exception

Constructors

public QueryException(String detailMessage)

• Usage

� Creates a new Query Exception

• Parameters

� detailMessage - a description of the problem with the query

Class ResultsConstraint

Constrains the query results. For example, speci�es the maximum number of results to be

returned.

extends java.lang.Object

implements Constraint, Operator

Constructors

public ResultsConstraint(int shapeType)

• Usage

� Constraints on the results such as type of geometry and number of results.

• Parameters

353

ie.tcd.cs.dsg.hermes.gis.query� ResultsConstraint

� shapeType -

public ResultsConstraint(int shapeType, float scale)

public ResultsConstraint(int shapeType, float scale, int

maxResults, boolean retrieveGeometry)

Methods

public int getMaxResults()

• Usage

� The maximum number of results to be returned by query

• Returns - The maximum number of results to be returned by query

public int getOperator()

public float getScale()

• Usage

� The scale at which spatial data should be retrieved

• Returns - the scale to retrieve geometry at

public int getShapeType()

• Usage

� The type of geometry to retrieve

• Returns - The type of geometry to retrieve

public boolean retrieveGeometry()

• Usage

� Test to see if geometry is to be retrieved. Querys may return just

IndexEntrys

• Returns - true if geometry is to be retrieved

public void setMaxResults(int i)

354

ie.tcd.cs.dsg.hermes.gis.query� SpatialConstraint

• Usage

� Sets the maximum number of results to be returned

• Parameters

� i - the maximum number of results to be returned

public void setOperator(int operator)

public void setScale(float f)

• Usage

� Sets the scale at which to retrieve geometry

• Parameters

� f - the scale at which to retrieve geometry

public void setShapeType(int i)

• Usage

� Sets the type of geometry to retrieve. See ShapeConstants

• Parameters

� i - the type of geometry to retrieve

Class SpatialConstraint

A spatial area constraint limits the results to speci�ed physical bounds.

extends java.lang.Object

implements Constraint, Operator

Constructors

public SpatialConstraint(Rectangle area)

• Usage

� Default constructor

355

ie.tcd.cs.dsg.hermes.gis.query� SpatialQuery

Methods

public Rectangle getArea()

• Usage

� The area of this spatial constraint

• Returns - the area geometry si being queried for

public int getOperator()

public void setArea(Rectangle box)

• Usage

� The area of this spatial constraint

• Parameters

� box -

public void setOperator(int operator)

Class SpatialQuery

The spatial query interface for constructing queries that can be executed by the framework

to retrieve geometry from data sources for display on map layers.

extends java.lang.Object

implements Query, java.lang.Cloneable

Constructors

public SpatialQuery(SpatialConstraint constraint)

• Parameters

� constraint -

356

ie.tcd.cs.dsg.hermes.gis.query� SpatialQuery

Methods

public void addConstraint(Constraint c)

public boolean constainsConstraint(Class constraintType)

public Rectangle getArea()

• Usage

� The area of this spatial constraint

• Returns - the area being queried for

public Constraint getConstraint(Class constraintType)

public float getScale()

• Usage

� The scale this results constraint

• Returns - the scale geometry is being queried for

public int getShapeType()

• Usage

� The type of geometry data that is to be returned

• Returns - the type of geometry being queried for

public boolean retrieveGeometry()

• Usage

� Indicates whether geometry should be retrieved or just the shape record

and its attributes. Used for annotation. Default is true.

• Returns - true if geometry is to be returned

357

ie.tcd.cs.dsg.hermes.gis.index� ShapeIndex

D.16 Package ie.tcd.cs.dsg.hermes.gis.index

Package Contents Page

Interfaces

Index . 358

ShapeIndex . 358

Classes

IndexEntry . 360

Interfaces

Interface Index

Interface to Index data. Is extended by speci�c index types

implements ie.tcd.cs.dsg.hermes.gis.tools.benchmark.IOAccounting

Methods

public boolean isEmpty()

• Usage

� Tests to see if the index has records in it. Used to �nd empty index's

• Returns - true if there are no entries in the index

Interface ShapeIndex

An interface to code indexing ESRI Shape�le shape data

implements Index

358

ie.tcd.cs.dsg.hermes.gis.index� ShapeIndex

Methods

public boolean containsRecord(int recordNumber)

• Usage

� Tests to see if the record is in the index

• Parameters

� recordNumber - the record identi�er

• Returns - true if the record is in the index

public IndexEntry getIndex()

• Usage

� Gets the index data from the �le.

• Returns - the index from disk or cache.

public void getRecordO�sets(ShapeList list)

• Usage

� Uses the index to refresh the o�sets and content lengths for each of the

record numbers speci�ed in the IndexRecord's of each ShapeRecord in the

list. This method is used to correct the o�sets to geometry in caches

(which may not include all the records in the original �le).

If records do not appear at all in the index �le then they are removed from

the list in order to prevent geometry being read for shapes not in the �le.

• Parameters

� list - a list of shape records, each with a index record

public void insert(IndexEntry entry)

• Usage

� Inserts a single IndexEntry into the index.

• Parameters

359

ie.tcd.cs.dsg.hermes.gis.index� IndexEntry

� entry - the entry to insert

public void insert(ShapeList records)

• Usage

� Adds an index entry to this index for each of the shape records speci�ed.

Note. Assumes there are no duplicates in the list

• Parameters

� records - a list of shape records

public void setScale(ScaleRange scale)

• Usage

� Slave Shape�les have scales and ShapeIndex's are used by these �les to

re-map shape record index o�sets. The scale here should match the scale

of the .SHP �le.

• Parameters

� scale - the scale range for this index

public void writeIndex(IndexEntry [] index)

• Usage

� Writes the speci�ed set of index records to this �le.

• Parameters

� index - the index records to write to the �le

Classes

Class IndexEntry

Models the Shape�le index �le record (SHX).

extends java.lang.Object

implements java.lang.Cloneable

360

ie.tcd.cs.dsg.hermes.gis.index� IndexEntry

Fields

• public static �nal int RECORD_LENGTH

� Number of bytes index entry data takes up on disk (less bounds and id)

• public int o�set

� The o�set of a record in the main �le is the number of 16-bit words from

the start of the main �le to the �rst byte of the record header for the

record.

• public int contentLength

� The content length stored in the index record is the same as the value

stored in the main �le record header.

• public int id

� The Shape record number

• public int shapeType

� The shape type

• public Rectangle bounds

� The minimum bounding rectangle for shape

• public �oat scale

� The scale for this record (Supports multi-scale data sources)

• public long pointO�set

� Point o�set used by R-Tree index's

Constructors

public IndexEntry(int recNo, int shpType, int o�set, int

contentLength, Rectangle mbr)

public IndexEntry(Rectangle mbr, long pointO�set)

361

ie.tcd.cs.dsg.hermes.gis.index� IndexEntry

• Usage

� Constructor. Used by R-Trees for index entries that don't have any data.

Methods

public void setBounds(Rectangle box)

• Parameters

� box -

public void setListener(EntryBoundsChangeListener listener)

• Parameters

� listener -

362

ie.tcd.cs.dsg.hermes.gis.ui.event� MapCentering

D.17 Package ie.tcd.cs.dsg.hermes.gis.ui.event

Package Contents Page

Classes

MapCentering . 363

Classes

Class MapCentering

Causes the map to center itself if the dot on the contextlayer moves o� the screen.

extends java.lang.Object

implements ie.tcd.cs.dsg.hermes.gis.event.LayerListener

Constructors

public MapCentering(MapContext map, DynamicMapLayer layer)

• Parameters

� map - the map context

� layer - the layer to center the map on

Methods

public void layerChanged(LayerEvent e)

363

ie.tcd.cs.dsg.hermes.gis.generalisation.clipping� Line2DClip

D.18 Package

ie.tcd.cs.dsg.hermes.gis.generalisation.clipping

Package Contents Page

Interfaces

Line2DClip . 364

Polygon2DClip . 365

Polyline2DClip . 366

Classes

CohenSutherland .366

LiangBarsky . 366

PolylineClipper .367

ShapeClip . 368

SutherlandHodgman . 369

Interfaces

Interface Line2DClip

Traditionally, polygon clipping has been used to clip out the portions of a polygon that lie

outside the window of the output device to prevent undesirable e�ects.

This interface allows di�erent algorithm for performing clipping against lines to be

implemented.

implements ie.tcd.cs.dsg.hermes.gis.tools.Algorithm

Methods

public Polyline clipLine(Point start, Point end, Rectangle clip)

• Usage

364

ie.tcd.cs.dsg.hermes.gis.generalisation.clipping� Polyline2DClip

� Clips the line de�ned by its start and end points

• Parameters

� start - the start point of the line

� end - the end point of th eline

� clip - the rectangle to use to clip the line

• Returns - a line clipped by the rectangle or null

public Polyline clipLine(Polyline line, Rectangle clip)

• Usage

� Cohen-Sutherland Line Clipping

• Parameters

� line - a line to clip

� clip - the rectangle to clip by

• Returns - null if no clip is supplied otherwise the cliped line

Interface Polygon2DClip

An interface to polygon clipping algorithms to allow more than one be implemented.

implements ie.tcd.cs.dsg.hermes.gis.tools.Algorithm

Methods

public Polygon clipPoly(Polygon poly, Rectangle clip)

• Usage

� Clips the speci�ed polygon to the speci�ed rectangular bounding box.

• Parameters

� poly - the polygon to clip

� clip - the rectangle to clip by

• Returns - a clipped polygon

365

ie.tcd.cs.dsg.hermes.gis.generalisation.clipping� LiangBarsky

Interface Polyline2DClip

An interface for polyline clipping algorithms.

implements Line2DClip

Methods

public Polyline clipPoly(Polyline lines, Rectangle clip)

Classes

Class CohenSutherland

Repeated clipping is expensive Best used when trivial acceptance and rejection is possible

for most lines.

Taken from Computer Graphics for Java Programmers by Leen Ammeraal (1998, ISBN

0-471-98142-7) and altered to support my geometry objects.

extends java.lang.Object

implements Line2DClip, ie.tcd.cs.dsg.hermes.gis.tools.Algorithm

Constructors

public CohenSutherland()

Methods

public Polyline clipLine(Point s, Point e, Rectangle clip)

public Polyline clipLine(Polyline line, Rectangle clip)

public String getName()

Class LiangBarsky

366

ie.tcd.cs.dsg.hermes.gis.generalisation.clipping� ShapeClip

Ported from implementation by Grishul Eugeny: http://en.wikipedia.org/wiki/Liang-Barsky

extends java.lang.Object

implements Line2DClip, ie.tcd.cs.dsg.hermes.gis.tools.Algorithm

Constructors

public LiangBarsky()

Methods

public Polyline clipLine(Point s, Point e, Rectangle clip)

public Polyline clipLine(Polyline line, Rectangle clip)

public String getName()

Class PolylineClipper

Clips polylines. Used to limit the amount of road network data drawn o� screen.

extends java.lang.Object

implements Polyline2DClip

Constructors

public PolylineClipper(Line2DClip lineClipper)

• Usage

� Constructs a Polyline clipper that will clip individual lines using the

supplied Line clipping algorithm.

Methods

public Polyline clipLine(Point start, Point end, Rectangle clip)

public Polyline clipLine(Polyline line, Rectangle clip)

public Polyline clipPoly(Polyline lines, Rectangle clip)

367

ie.tcd.cs.dsg.hermes.gis.generalisation.clipping� ShapeClip

public String getName()

Class ShapeClip

Class is responsible for clipping all types of shapes. Delegates clipping to instance of

appropriate algorithm implementation as speci�ed by the constructors parameters. These

parameters are read directly from the properties �le.

extends java.lang.Object

implements ie.tcd.cs.dsg.hermes.gis.tools.Algorithm

Fields

• public static �nal String LINE_CLIPPER_PROPERTY

� Polyline clipping algorithm

• public static �nal String POLY_CLIPPER_PROPERTY

� Polygon clipping algorithm

• public static �nal String CLIP_PROPERTY

� Whether clipping should be used

• public static �nal String CLIPPER_POINTS_PROPERTY

� Clipping is expensive so shapes with less than X points don't clip

• public static �nal String CLIPPER_AREA_PROPERTY

� If a shape has X times the area of the current view it should be clipped.

Constructors

public ShapeClip(String lineClipperClass, String polyClipperClass)

• Usage

368

ie.tcd.cs.dsg.hermes.gis.generalisation.clipping� SutherlandHodgman

� Constructor. Loads speci�ed instances of clipping algorithms.

Parameters can be passed as nulls if only lines or polys are to be clipped

with this instance.

• Parameters

� lineClipperClass - the name of a class implementing Line2DClip

interface

� polyClipperClass - the name of a class implementing Polygon2DClip

interface

Methods

public Shape clip(int shpType, ShapeRecord rec, int index,

Rectangle clip)

• Usage

� Clips the speci�ed shape to the speci�ed rectangle.

• Parameters

� shpType - the type of shape (as read from its record)

� rec - a Shape object

� index - the shape part index

� clip - the rectangle to clip the shape to

• Returns - a clipped shape

public String getDescription()

public String getName()

Class SutherlandHodgman

An implementation of the Sutherland-Hodgman polygon clipping algorithm. This algorithm

is restricted to: 1) polygons that are clockwise oriented; 2) polygons can not have holes; and

3)polygons can not be self-intersecting.

See Section 4.4 of Ammeraal, L. (1998) Computer Graphics for Java Programmers,

Chichester: John Wiley, ISBN 0-471-98142-7

369

ie.tcd.cs.dsg.hermes.gis.generalisation.clipping� SutherlandHodgman

extends java.lang.Object

implements Polygon2DClip, ie.tcd.cs.dsg.hermes.gis.tools.Algorithm

Constructors

public SutherlandHodgman()

Methods

public Polygon clipPoly(Polygon poly, Rectangle clip)

public String getName()

370

ie.tcd.cs.dsg.hermes.gis.ui.style� Style

D.19 Package ie.tcd.cs.dsg.hermes.gis.ui.style

Package Contents Page

Interfaces

Style . 371

Interfaces

Interface Style

An interface to access attributes that de�ne how graphics are rendered to the screen.

implements java.lang.Cloneable

Methods

public Color getBackgroundColor()

• Usage

� Returns the background colour of the drawing canvas

• Returns - the background colout of the drawing

public Color getFillColor()

• Usage

� Returns the colour to �ll graphics with when they are rendered to the

screen.

• Returns - the colour to render graphics

public Color getLineColor()

• Usage

� Returns the colour that should be used to render lines to the screen.

371

ie.tcd.cs.dsg.hermes.gis.ui.style� Style

• Returns - the colour to render lines

public int getLineWidth()

• Usage

� Returns the width of lines.

• Returns - the width of lines on the screen in pixels

public Color getTextColor()

• Usage

� Returns the color that text shoudl be painted

• Returns - the color that text shoudl be painted

public boolean isDashedLine()

• Usage

� Gets the attribute describing whether lines should be dashed. If they are

not dashed they are solid.

• Returns - true if the line is to be dashed

public boolean isFilled()

• Usage

� Indicates whether the graphic should be �lled when it is rendered.

• Returns - true if the drawing is to be �lled

public void setFillColor(Color c)

• Usage

� Sets the colour to use when rendering �lled graphics. If the graphic is not

to be �lled this attribute will be ignored.

• Parameters

� c - the colour to �ll the graphic with

public void setFilled(boolean b)

372

ie.tcd.cs.dsg.hermes.gis.ui.style� Style

• Usage

� Sets the graphic to appear �lled or outlined when it is rendered.

• Parameters

� b - whether the graphic is to be �lled

public void setLineColor(Color c)

• Usage

� Sets the colour to render the line on the screen

• Parameters

� c - the colour to render the line

public void setTextColor(Color c)

• Usage

� Sets the color text should be drawn

• Parameters

� c - the color text should be drawn

373

Bibliography

[1] Beyond the world summit on the information society. World Information

Society Report, United Nations Conference on Trade and Development 2,

International Telecommunication Union, Geneva, May 2007.

http://www.itu.int/osg/spu/publications/worldinformationsociety/

2007/WISR07-summary.pdf.

[2] Gregory Abowd, Christopher Atkeson, Jason Hon, Sue Long, Rob Kooper, and

Mike Pinkerton. Cyberguide: A Mobile Context-Aware Tour Guide. ACM

Wireless Networks, 3:421�433, 1997.

[3] acbPocketSoft . acbTaskMan. Online, October 2008. http://www.

acbpocketsoft.com/Products/acbTaskMan/acbTaskMan-Overview-7.html.

[4] Maneesh Agrawala and Chris Stolte. Rendering e�ective route maps:

improving usability through generalization. In SIGGRAPH '01: Proceedings of

the 28th annual conference on Computer graphics and interactive techniques,

pages 241�249, New York, NY, USA, 2001. ACM Press.

[5] John M. Airey, John H. Rohlf, and Jr. Frederick P. Brooks. Towards image

realism with interactive update rates in complex virtual building environments.

SIGGRAPH Comput. Graph., 24(2):41�50, 1990.

[6] Jochen H. Albrecht. Universal gis operations for environmental modeling. In

Third International Conference/Workshop on Integrating GIS and

Environmental Modeling, Santa Fe, New Mexico, USA, January 1996.

CD-ROM.

[7] W. Alsalih, S. Akl, and H. Hassancin. Energy-aware task scheduling: towards

374

Bibliography

enabling mobile computing over manets. Parallel and Distributed Processing

Symposium, 2005. Proceedings. 19th IEEE International, page 8, April 2005.

[8] Brian Amedro, Vladimir Bodnartchouk, Denis Caromel, Christian Delbé,

Fabrice Huet, and Guillermo L. Taboada. Current state of java for hpc.

Technical Report 0353, Institut National de Recherche en Informatique et en

Automatique (INRIA), August 2008.

http://hal.inria.fr/docs/00/31/20/39/PDF/RT-0353.pdf.

[9] Leen Ammeraal. Computer Graphics for Java Programmers. Wiley, April 1998.

[10] Éamonn Linehan and Mike Spence. The hermes framework user's manual.

Online, July 2007.

https://www.dsg.cs.tcd.ie/~linehane/hermes/HermesFramework.pdf.

[11] Arjun Anand, Constantine Manikopoulos, Quentin Jones, and Cristian Borcea.

A quantitative analysis of power consumption for location-aware applications

on smart phones. In Proceedings of the IEEE International Symposium on

Industrial Electronics, 2007.

[12] Apple Inc. Maps with gps. Online, October 2008.

http://www.apple.com/iphone/features/maps.html.

[13] Masatoshi Arikawa, Shin'ichi Konomi, and Keisuke Ohnishi. Navitime:

Supporting pedestrian navigation in the real world. IEEE Pervasive

Computing, 6(3):21�29, 2007.

[14] Marcel Arrufat, Gerard París, and Pedro García López. Agora: an integrated

approach for collaboration in manets. In MOBILWARE '08: Proceedings of the

1st international conference on MOBILe Wireless MiddleWARE, Operating

Systems, and Applications, pages 1�6, Innsbruck, Austria, February 2008. ICST

(Institute for Computer Sciences, Social-Informatics and Telecommunications

Engineering).

[15] Matthias Bader, Mathieu Barrault, Nicolas Regnauld, Sébastien Mustiére,

Cêcile Duchêne, Anne Ruas, Emmanuel Fritsch, Francois Lecordix, and

Emmanuel Barillot. Agent project, state of the art and selection of basic

375

Bibliography

algorithms. Technical Report D2, Department of Geography, University of

Zurich, February 1999. http://agent.ign.fr/deliverable/DD2.pdf.

[16] Jakob E. Bardram. From Desktop Task Management to Ubiquitous

Activity-Based Computing. In Victor Kaptelinin and Mary Czerwinski, editors,

Integrated Digital Work Environments: Beyond the Desktop Metaphor, pages

49�78. MIT Press, 2007.

[17] Brian A. Barsky. A new concept and method for line clipping. ACM Trans.

Graph., 3(1):1�22, 1984.

[18] Matthias Basler and Adrian Custer. Geotools - map, layer, data and rendering

architecture. Online, July 2006. http://docs.codehaus.org/display/

GEOTOOLS/MapLayerArchitecture+-+4_Progress.

[19] Jörg Baus, Antonio Krüger, and Wolfgang Wahlster. A resource-adaptive

mobile navigation system. In IUI '02: Proceedings of the 7th international

conference on Intelligent user interfaces, pages 15�22, New York, NY, USA,

2002. ACM.

[20] Rudolf Bayer. Binary b-trees for virtual memory. In ACM-SIGFIDET

Workshop, Session 5B, pages 219�235, San Diego, California, 1971.

[21] BBN Technologies. Openmap - open systems mapping technology. Online,

February 2008. http://openmap.bbn.com/.

[22] Ashweeni Beeharee and Anthony Steed. Filtering location-based information

using visibility. Location and Context-Awareness, pages 306�315, 2005.

[23] Ashweeni Beeharee and Anthony Steed. Exploiting real world knowledge in

ubiquitous applications. Personal and Ubiquitous Computing, 11(6):429�437,

2007.

[24] Ashweeni Beeharee and Anthony Steed. Map-based Mobile Services Design,

Interaction and Usability, chapter 14 Geographical Data in Mobile Applications

Uses beyond Map Making, pages 293�309. Lecture Notes in Geoinformation

and Cartography. Springer Berlin Heidelberg, 2008.

376

Bibliography

[25] Petros Belimpasakis, Juha-Pekka Luoma, and Mihaly Börzsei. Content sharing

middleware for mobile devices. In MOBILWARE '08: Proceedings of the 1st

international conference on MOBILe Wireless MiddleWARE, Operating

Systems, and Applications, pages 1�8, Innsbruck, Austria, February 2008. ICST

(Institute for Computer Sciences, Social-Informatics and Telecommunications

Engineering).

[26] Steve Benford, Andy Crabtree, Martin Flintham, Adam Drozd, Rob Anastasi,

Mark Paxton, Nick Tandavanitj, Matt Adams, and Ju Row-Farr. Can you see

me now? ACM Trans. Comput.-Hum. Interact., 13(1):100�133, 2006.

[27] Joseph K. Berry. Spatial Reasoning for E�ective GIS. John Wiley Publishers,

September 1996.

[28] Michela Bertolotto and Max J. Egenhofer. Progressive transmission of vector

map data over the world wide web. Geoinformatica, 5(4):345�373, 2001.

[29] Jim Blinn. A trip down the graphics pipeline: Line clipping. IEEE Computer

Graphics and Applications, 11(1):98�105, 1991.

[30] Matthew Bloch and Mark Harrower. Mapshaper. Online, September 2008.

http://www.mapshaper.org/.

[31] Gaetano Borriello, Matthew Chalmers, Anthony LaMarca, and Paddy Nixon.

Delivering real-world ubiquitous location systems. Communications of the

ACM, 48(3):36�41, 2005.

[32] Jan Bosch, Peter Molin, Michael Mattsson, and PerOlof Bengtsson.

Object-oriented framework-based software development: problems and

experiences. ACM Computing Surveys, 32(1es), March 2000. Article No. 3.

[33] Frantisek Brabec and Hanan Samet. Client-based spatial browsing on the world

wide web. IEEE Internet Computing, 11(1):52�59, 2007.

[34] Peter J. Brown. The stick-e document: A framework for creating context-aware

applications. In In Proceedings of Electronic Publishing, volume 8, pages

259�272, June � September 1996.

377

Bibliography

[35] Barry Brumitt, Brian Meyers, John Krumm, Amanda Kern, and Steven A.

Shafer. Easyliving: Technologies for intelligent environments. In HUC '00:

Proceedings of the 2nd international symposium on Handheld and Ubiquitous

Computing, pages 12�29, London, UK, 2000. Springer-Verlag.

[36] Barry Brumitt and Steven Shafer. Better living through geometry. Personal

Ubiquitous Computing, 5(1):42�45, 2001.

[37] Stefano Burigat and Luca Chittaro. Geographic Data Visualization on Mobile

Devices for User's Navigation and Decision Support Activities, pages 261�284.

Springer, 1 edition, September 2007.

[38] Jenna Burrell and Geri K. Gay. E-gra�ti: evaluating real-world use of a

context-aware system. Interacting with Computers, 14(4):301�312, July 2002.

[39] Edwin Earl Catmull. A subdivision algorithm for computer display of curved

surfaces. Ph.d thesis, The University of Utah, UT, USA, 1974.

[40] Dan Chalmers, Morris Sloman, and Naranker Dulay. Map adaptation for users

of mobile systems. In WWW '01: Proceedings of the 10th international

conference on World Wide Web, pages 735�744, New York, NY, USA, 2001.

ACM Press.

[41] Guangyu Chen, Byung-Tae Kang, Mahmut Kandemir, Narayanan

Vijaykrishnan, Mary Jane Irwin, and Rajarathnam Chandramouli. Studying

energy trade o�s in o�oading computation/compilation in java-enabled mobile

devices. Parallel and Distributed Systems, IEEE Transactions on,

15(9):795�809, September 2004.

[42] Guanling Chen and David Kotz. A survey of context-aware mobile computing

research. Technical Report TR2000-381, Dartmouth College, Hanover, NH,

USA, 2000.

[43] Keith Cheverst, Nigel Davies, Keith Mitchell, and Adrian Friday. Experiences

of developing and deploying a context-aware tourist guide: the guide project.

In MobiCom '00: Proceedings of the 6th annual international conference on

378

Bibliography

Mobile computing and networking, pages 20�31, New York, NY, USA, 2000.

ACM Press.

[44] Keith Cheverst, Keith Mitchell, and Nigel Davies. Design of an object model

for a context sensitive tourist guide. Computers & Graphics, 23(6):883�891,

December 1999.

[45] N. M. Mosharaf Kabir Chowdhury, Md. Mostofa Akbar, and Mohammad

Kaykobad. Disktrie: An e�cient data structure using �ash memory for mobile

devices. In M. Kaykobad and Md. Saidur Rahman, editors, WALCOM, pages

76�87. Bangladesh Academy of Sciences (BAS), 2007.

[46] Keith C. Clarke. Mobile mapping and geographic information systems.

Cartography and Geographic Information Science, 31:131�136, July 2004.

[47] Daniel Cohen-Or, Yiorgos L. Chrysanthou, Claudio T. Silva, and Durand

Durand. A survey of visibility for walkthrough applications. IEEE

Transactions on Visualization and Computer Graphics, 09(3):412�431, 2003.

[48] Peter H. Dana. Map projection overview. Online. Revised: October 2000,

August 2008.

/urlhttp://www.colorado.edu/geography/gcraft/notes/mapproj/mapproj.html.

[49] dataBased Intelligence Inc. dBase about us. Online, October 2008.

http://www.dbase.com/About_us.asp.

[50] Nigel Davies, Keith Cheverst, Keith Mitchell, and Alon Efrat. Using and

determining location in a context-sensitive tour guide. IEEE Computer,

34(8):35�41, 2001.

[51] Nigel Davies, Keith Cheverst, Keith Mitchell, and Adrian Friday. `caches in the

air': disseminating tourist information in the guide system. Mobile Computing

Systems and Applications, 1999. Proceedings. WMCSA '99. Second IEEE

Workshop on, pages 11�19, February 1999.

[52] Ioannis Delikostidis, Corné P.J.M. van Elzakker, and Peter J.M. van Oosterom.

Usability testing dynamic maps : overcoming limitations of mobile devices. The

global magazine for geomatics, 21(12):16�19, 2007.

379

Bibliography

[53] Giuliana Dettori and Enrico Puppo. Designing a library to support

model-oriented generalization. In GIS '98: Proceedings of the 6th ACM

international symposium on Advances in geographic information systems, pages

34�39, New York, NY, USA, 1998. ACM.

[54] Thomas Devogele, Jenny Trevisan, and Laurent Raynal. Building a multiscale

database with scale-transition relationships. In 7th Int. Symposium on Spatial

Data Handling, Advances in GIS Research, pages 6.19�6.33. Delft, 1996.

[55] Anind K. Dey. Understanding and using context. Personal Ubiquitous

Computing, 5(1):4�7, 2001.

[56] Anind K. Dey and Gregory D. Abowd. CyberMinder: A Context-Aware

System for Supporting Reminders. In Proceedings of the 2nd international

symposium on Handheld and Ubiquitous Computing (HUC '00), pages 172�186,

London, UK, 2000. Springer-Verlag.

[57] Anind K. Dey, Gregory D. Abowd, and Daniel Salber. A context-based

infrastructure for smart environments. In 1st International Workshop on

Managing Interactions in Smart Environments, pages 114�128, 1999.

[58] Anind K. Dey, Daniel Salber, and Gregory D. Abowd. A conceptual framework

and a toolkit for supporting the rapid prototyping of context-aware

applications. Human-Computer Interaction, 16 (2-4):97�16, 2001.

[59] Anind K. Dey, Daniel Salber, Gregory D. Abowd, and Masayasu Futakawa.

The conference assistant: Combining context-awareness with wearable

computing. In ISWC '99: Proceedings of the 3rd IEEE International

Symposium on Wearable Computers, page 21, Washington, DC, USA, 1999.

IEEE Computer Society.

[60] Edsger W. Dijkstra. A note on two problems in connexion with graphs.

Numerische Mathematik, 1:269�271, 1959.

[61] Susan E. Dorward. A survey of object-space hidden surface removal.

International Journal of Computational Geometry and Applications,

4(3):325�362, 1994.

380

Bibliography

[62] David H Douglas and Thomas K Peucker. Algorithms for the reduction of the

number of points required to represent a digitized line or its caricature.

Canadian Cartographer, 10:112�122, 1973.

[63] Cormac Driver. An Application Framework for Mobile, Context-Aware Trails.

PhD thesis, Dept. of Computer Science, Trinity College Dublin, April 2007.

[64] Cormac Driver, Eamonn Linehan, and Siobhán Clarke. A framework for

mobile, context-aware trails-based applications: Experiences with an

application-led approach. In Workshop 1 ("What Makes for Good

Application-led Research in Ubiquitous Computing?"), Pervasive 05, 2005.

[65] Max Egenhofer. Spatial information appliances: A next generation of

geographic information systems. October 1999.

[66] Per Enge and Pratap Misra. Special issue on global positioning system.

Proceedings of the IEEE, 87(1):3�15, January 1999.

[67] Ericsson. Mobile applications with j2me. White Paper, Available Online, July

2001.

http://www.j2meworld.com/magazine/2002-data01/j2mewhitepaper.pdf.

[68] Fredrik Espinoza, Per Persson, Anna Sandin, Hanna Nyström, Elenor

Cacciatore, and Markus Bylund. Geonotes: Social and navigational aspects of

location-based information systems. In UbiComp '01: Proceedings of the 3rd

international conference on Ubiquitous Computing, pages 2�17, London, UK,

2001. Springer-Verlag.

[69] ESRI. ESRI Shape�le Technical Description. Environmental Systems Research

Institute, Inc., July 1998.

[70] ESRI. Arcgis mobile. Online, August 2008.

http://www.esri.com/software/arcgis/arcgismobile/index.html.

[71] ESRI GIS and Mapping Software. Mobile gis. Online

http://www.esri.com/software/arcgis/about/mobile_gis.html,

September 2007.

381

Bibliography

[72] Keith I. Farkas, Jason Flinn, Godmar Back, Dirk Grunwald, and Jennifer M.

Anderson. Quantifying the energy consumption of a pocket computer and a

java virtual machine. SIGMETRICS Perform. Eval. Rev., 28(1):252�263, 2000.

[73] Mohamed E. Fayad and Douglas C. Schmidt. Object-oriented application

frameworks (special issue introduction). Communications of the ACM,

40(10):39�42, October 1997.

[74] Raphael A. Finkel and Jon Louis Bentley. Quad trees a data structure for

retrieval on composite keys. Acta Informatica, 4(1):1�9, March 1974.

[75] Jason Flinn and M. Satyanarayanan. Managing battery lifetime with

energy-aware adaptation. ACM Trans. Comput. Syst., 22(2):137�179, 2004.

[76] B. Flyvbjerg. Five misunderstandings about case study research. Qualitative

Inquiry, 12(2):219�245, April 2006.

[77] Theodor Foerster, Jantien Stoter, Barend Köbben, and Peter van Oosterom. A

generic approach to simpli�cation of geodata for mobile applications. In The

10th AGILE Conference on GIScience, Aalborg, Denmark, May 2007.

[78] James Foley, Andries van Dam, Steven Feiner, and John Hughes. Computer

Graphics: Principles and Practice, second edition. Addison-Wesley

Professional, 2nd edition, 1990.

[79] Jean-Michel Follin and Alain Bouju. An Incremental Strategy for Fast

Transmission of Multi-Resolution Data in a Mobile System, chapter 4, pages

57�79. Springer Berlin Heidelberg, 2008.

[80] George H. Forman and John Zahorjan. The challenges of mobile computing.

IEEE Computer, 27(4):38�47, April 1994.

[81] Dieter Fritsch and Ste�en Volz. Nexus - the mobile gis environment. Joint

First Workshop on Mobile Future and Symposium on Trends in

Communications, SympoTIC '03., pages 26�28, October 2003.

382

Bibliography

[82] Dieter Fritsch, Ste�en Volz, and Darko Klinec. NEXUS - integrating data and

services for mobile users of location based services. Geo-Informations-Systeme

(GIS), pages 21�25, March 2006.

[83] Tobias Fritsch, Hartmut Ritter, and Jochen Schiller. Mobile phone gaming (a

follow-up survey of the mobile phone gaming sector and its users).

Entertainment Computing - ICEC 2006, pages 292�297, 2006.

[84] Peter Fröhlich, Rainer Simon, Lynne Baillie, and Hermann Anegg. Comparing

conceptual designs for mobile access to geo-spatial information. In MobileHCI

'06: Proceedings of the 8th conference on Human-computer interaction with

mobile devices and services, pages 109�112, New York, NY, USA, 2006. ACM.

[85] Peter Fröhlich, Rainer Simon, Lynne Baillie, Joi Roberts, and Roderick

Murray-Smith. Mobile spatial interaction. In CHI '07: CHI '07 extended

abstracts on Human factors in computing systems, pages 2841�2844, New York,

NY, USA, 2007. ACM.

[86] Eran Gal and Sivan Toledo. Algorithms and data structures for �ash memories.

ACM Comput. Surv., 37(2):138�163, 2005.

[87] Keith Gardiner and James D. Carswell. Viewer-based directional querying for

mobile applications. International Conference on Web Information Systems

Engineering Workshops (WISEW'03), 00:83�91, 2003.

[88] Georg Gartner. Location-based mobile pedestrian navigation services - the role

of multimedia cartography. In International Joint Workshop on Ubiquitous,

Pervasive and Internet Mapping (UPIMap2004), Tokyo, Japan, September

2004.

[89] Georg Gartner and Susanne Uhlirz. Cartographic concepts for realizing a

location based umts service: Vienna city guide lol. In In Proceedings of the

Cartographic Conference, pages 3229�3239, 2001.

[90] Google Code. Android - an open handset alliance project. Online, October

2008. http://code.google.com/android/.

383

Bibliography

[91] Google Inc. Google maps. Online, August 2008. http://maps.google.com/.

[92] Stephen Greaves and Peter R. Stopher. A synthesis of gis and activity-based

travel-forecasting. Geographical Systems, 5:59�89, 1998.

[93] William G. Griswold, Robert Boyer, Steven W. Brown, and Tan Minh Truong.

A component architecture for an extensible, highly integrated context-aware

computing infrastructure. In ICSE '03: Proceedings of the 25th International

Conference on Software Engineering, pages 363�372, Washington, DC, USA,

2003. IEEE Computer Society.

[94] Dietmar Grünreich. Computer-assisted generalisation. In Papers CERCO

Cartography Course. Institut für Angewandte Geodäsie, Frankfurt a. M., 1985.

[95] Selim Gurun. Modeling, predicting and reducing energy consumption in

resource restricted computers. PhD thesis, Santa Barbara, CA, USA, 2007.

Adviser-Chandra Krintz.

[96] Selim Gurun, Priya Nagpurkar, and Ben Y. Zhao. Energy consumption and

conservation in mobile peer-to-peer systems. In MobiShare '06: Proceedings of

the 1st international workshop on Decentralized resource sharing in mobile

computing and networking, pages 18�23, New York, NY, USA, 2006. ACM.

[97] Antonin Guttman. R-trees: A dynamic index structure for spatial searching. In

Beatrice Yormark, editor, SIGMOD'84, Proceedings of Annual Meeting,

Boston, Massachusetts, June 18-21, 1984, pages 47�57. ACM Press, 1984.

[98] Mark Hampe, Monika Sester, and Lars Harrie. Generating and using a

multi-representation data-base (mrdb) for mobile applications. In Papers of the

ICA Workshop on Generalisation and Multiple Representation, Leicester,

August 2004.

[99] Mark Hampe, Monika Sester, and Lars Harrie. Multiple representation

databases to support visualization on mobile devices. In International Archives

of Photogrammetry, Remote Sensing and Spatial Information Sciences, pages

135�140, Istanbul, Turkey, July 2004.

384

Bibliography

[100] Qiang Han and Michela Bertolotto. A multi-level data structure for vector

maps. In GIS '04: Proceedings of the 12th annual ACM international workshop

on Geographic information systems, pages 214�221, New York, NY, USA, 2004.

ACM Press.

[101] Lars Harrie and Anna-Karin Hellström. A prototype system for propagating

updates between cartographic data sets. The Cartographic Journal,

36(2):133�140, 1999.

[102] M. Harrower and M. Bloch. Mapshaper.org: a map generalization web service.

Computer Graphics and Applications, IEEE, 26(4):22�27, July � August 2006.

[103] Karen Henricksen and Jadwiga Indulska. A software engineering framework for

context-aware pervasive computing. In PERCOM '04: Proceedings of the

Second IEEE International Conference on Pervasive Computing and

Communications (PerCom'04), page 77, Washington, DC, USA, 2004. IEEE

Computer Society.

[104] Hewlett-Packard. Hp ipaq hx2490 pocket pc overview, north america, version 7.

Online, September 2007. http:

//h18000.www1.hp.com/products/quickspecs/12293_na/12293_na.PDF.

[105] Jason I. Hong and James A. Landay. An infrastructure approach to

context-aware computing. Human-Computer Interaction, 16(2):287�303, 2001.

[106] Open Geospatial Consortium Inc. Opengis location service (openls)

implementation speci�cation: Core services. OpenGIS Implementation

Speci�cation 1.1, Open Geospatial Consortium Inc., May 2005.

[107] International Cartographic Association. Multilingual Dictionary of Technical

Terms in Cartography. Steiner, Wiesbaden, Germany, 1973.

[108] Stephen S. Intille, Kent Larson, J. S. Beaudin, J. Nawyn, E. Munguia Tapia,

and P. Kaushik. A living laboratory for the design and evaluation of ubiquitous

computing technologies. In CHI '05 extended abstracts on Human factors in

computing systems, pages 1941�1944, New York, NY, USA, 2005. ACM Press.

385

Bibliography

[109] Noritaka Ishizumi, Keizo Saisho, and Akira Fukuda. A design of �ash memory

�le system for embedded systems. Systems and Computers in Japan,

35(1):91�100, 2004.

[110] Ivar Jacobson, Martin Griss, and Patrik Jonsson. Software Reuse: Architecture,

Process and Organization for Business Success. ACM Press Books, 1997.

[111] Javid Jamae. Bring java's system.currenttimemillis() back into the fold for

transaction monitoring. Online, DevX, Jupitermedia Corporation, July 2005.

http://www.devx.com/Java/Article/28685.

[112] Tony Jones. Calculating the distance to the horizon. Online, 2005.

http://www.wolfram.demon.co.uk/rp_horizon_distance.html.

[113] Hae-Kyong Kang and Ki-Joune Li. A framework for dynamic updates of map

data in mobile devices. Web and Wireless Geographical Information Systems,

pages 66�77, 2005.

[114] Cory D. Kidd, Robert Orr, Gregory D. Abowd, Christopher G. Atkeson,

Irfan A. Essa, Blair MacIntyre, Elizabeth D. Mynatt, Thad Starner, and

Wendy Newstetter. The aware home: A living laboratory for ubiquitous

computing research. In CoBuild '99: Proceedings of the Second International

Workshop on Cooperative Buildings, Integrating Information, Organization, and

Architecture, pages 191�198, London, UK, 1999. Springer-Verlag.

[115] A. Kilgour. Unifying vector and polygon algorithms for scan conversion and

clipping. In Eurographics '87, pages 363�375, Amsterdam, August 1987.

[116] Tiina Kilpelainen. Updating multiple representation geo-databases by

incremental generalization. In H. Ebner, C. Heipke, and K. Eder, editors,

Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series,

volume 2357 of Society of Photo-Optical Instrumentation Engineers (SPIE)

Conference Series, pages 440�447, Munich, Germany, August 1994.

[117] Tiina Kilpelainen. Updating multiple representation geo-databases by

incremental generalization. ISPRS Commission III Symposium: Spatial

386

Bibliography

Information from Digital Photogrammetry and Computer Vision,

2357(1):440�447, 1994.

[118] Simon G. M. Koo, Catherine Rosenberg, Hoi ho Chan, and Yat Chung Lee.

Location discovery in enterprise-based wireless networks: Implementation and

applications. In In Proceedings of the 2nd IEEE Workshop on Applications and

Services in Wireless Networks (ASWN 2002, pages 3�5, July 2002.

[119] Menno-Jan Kraak. Current trends in visualisation of geospatial data with

special reference to cartography. In Proceedings of the XXIIth INCA Congress,

volume 22 of Convergence Of Imagery, Information & Maps, pages 319�324,

Ahmedabad, 2002. Indian National Cartographic Association. invited paper.

[120] Christian Kray. Situated Interaction on Spatial Topics. Doktor der

ingenieurwissenschaften (dr.-ing.), der Naturwissenschaftlich-Technischen

Fakult¨at I der Universit¨at des Saarlandes, Saarbr¨ucken, May 2003.

[121] Christian Kray, Christian Elting, Katri Laakso, and Volker Coors. Presenting

route instructions on mobile devices. In IUI '03: Proceedings of the 8th

international conference on Intelligent user interfaces, pages 117�124, New

York, NY, USA, 2003. ACM Press.

[122] Steinar Kristo�ersen and Fredrik Ljungberg. �making place� to make it work:

empirical explorations of hci for mobile cscw. In GROUP '99: Proceedings of

the international ACM SIGGROUP conference on Supporting group work,

pages 276�285, New York, NY, USA, 1999. ACM.

[123] Partha Kuchana. Software Architecture Design Patterns in Java. AUERBACH,

April 2004.

[124] Christoph Clemens Lee. Javancss - a source measurement suite for java.

Online, October 2008. http://www.kclee.de/clemens/java/javancss/.

[125] Alexander Leonhardi and Martin Bauer. The vit-system: Experiences with

developing a location-aware system for the internet. In HUC2k Workshop on

Infrastructure for Smart Devices, Bristol, UK, September 2000.

387

Bibliography

[126] J. P. Lewis and Ulrich Neumann. Performance of java versus c++. Online,

September 2004.

http://www.idiom.com/~zilla/Computer/javaCbenchmark.html.

[127] Zhilin Li. Digital map generalization at the age of enlightenment: a review of

the �rst forty years. Cartographic Journal, The, 44:80�93(14), February 2007.

[128] Zhiyuan Li, Cheng Wang, and Rong Xu. Computation o�oading to save

energy on handheld devices: a partition scheme. In CASES '01: Proceedings of

the 2001 international conference on Compilers, architecture, and synthesis for

embedded systems, pages 238�246, New York, NY, USA, 2001. ACM.

[129] Sue Long, Rob Kooper, Gregory D. Abowd, and Christopher G. Atkeson.

Rapid prototyping of mobile context-aware applications: The cyberguide case

study. In MobiCom '96: Proceedings of the 2nd annual international conference

on Mobile computing and networking, pages 97�107, New York, NY, USA,

1996. ACM Press.

[130] Paul A. Longley, Michael F. Goodchild, David J. Maguire, and David W.

Rhind. Geographic Information Systems and Science. John Wiley & Sons,

April 2005.

[131] William A. Mackaness, Anne Ruas, and L. Tiina Sarjakoski., editors.

Generalisation of geographic modelling and application : cartographic modelling

and applications. Elsevier B. V., Boston, MA, April 2007.

[132] Stefan Maierhofer, Rainer Simon, and Robert F. Tobler. Simpli�ed guided

visibility sampling for location based services. In 12th International Conference

on Urban Planning and Regional Development in the Information Society, Geo

Multimedia 007, 2nd Vienna Real Estate Conference (CORP 2007), Vienna,

Austria, May 2007.

[133] Patrick-Gilles Maillot. A new, fast method for 2d polygon clipping: analysis

and software implementation. ACM Trans. Graph., 11(3):276�290, 1992.

[134] Rainer Malaka and Alexander Zipf. Deep map - challenging it research in the

388

Bibliography

framework of a tourist information system. Information and communication

technologies in tourism 2000, pages 15�27, 2000.

[135] MapQuest, Inc. Mapquest. Online, September 2008.

http://www.mapquest.com/beta.

[136] Natalia Marmasse and Chris Schmandt. Location-aware information delivery

with commotion. In HUC '00: Proceedings of the 2nd international symposium

on Handheld and Ubiquitous Computing, pages 157�171, London, UK, 2000.

Springer-Verlag.

[137] Thomas L. Martin, Daniel P. Siewiorek, Asim Smailagic, Matthew Bosworth,

Matthew Ettus, and Jolin Warren. A case study of a system-level approach to

power-aware computing. Trans. on Embedded Computing Sys., 2(3):255�276,

2003.

[138] Atsushi Maruyama, Naoki Shibata, Yoshihiro Murata, Keiichi Yasumoto, and

Minoru Ito. P-Tour: A Personal Navigation System for Tourism. In

Proceedings of the 11th World Congress on Intelligent Transport Systems,

volume 2, pages 18�21, 2004.

[139] Andrew J. May, Tracy Ross, Steven H. Bayer, and Mikko J. Tarkiainen.

Pedestrian navigation aids: information requirements and design implications.

Personal Ubiquitous Computing, 7(6):331�338, 2003.

[140] Ted McFadden and Jadwiga Indulska. Context-aware environments for

independent living. In M. Underwood and K. Suridge, editors, Proceedings of

the Third National Conference for Emerging Researchers in Ageing, pages

147�151, Brisbane , Australia, December 2004. The University of Queensland.

[141] Robert B. McMaster. A mathematical evaluation of simpli�cation algorithms.

Auto Carto 6 Proceedings, 2:267�276, 1983.

[142] Liqiu Meng. Towards individualization of mapmaking and mobility of map use.

In Proceedings of the 20th International Cartographic Conference, volume 1,

pages 60�68, Beijing, 2001.

389

Bibliography

[143] Liqiu Meng and Tumasch Reichenbacher. Map-based Mobile Services -

Theories, Methods and Implementations, chapter 1. Map based Mobile Services,

pages 1�10. Springer, 2005.

[144] Liqiu Meng and Tumash Reichenbacher. Geodienste für location based services

und geovisualisierungsdienste. Tagungsband zum 8. Münchner

Fortbildungsseminar Geoinformationssysteme, 12:1�12, 2003.

[145] Microsoft Luxembourg S.Ã. Live search maps. Online, September 2008.

http://maps.live.com/.

[146] Sun Microsystems. Java Micro Edition: Personal Basis Pro�le. Online; accessed

26-September-2006. http://java.sun.com/products/personalprofile/.

[147] Robert B. Miller. Response Time in Man-Computer Conversational

Transactions. In Fall Joint Computer Conference 33 (part 1), pages 267�277.

AFIPS Press, 1968.

[148] Alexandra Millonig and Katja Schechtner. Developing landmark-based

pedestrian-navigation systems. Intelligent Transportation Systems, IEEE

Transactions on, 8(1):43�49, March 2007.

[149] Tyler Mitchell. Web Mapping Illustrated - Using Open Source GIS Toolkits.

O'Reilly, June 2005.

[150] Jean-Claude Müller, Robert Weibel, Jean-Philippe Lagrange, and Francois

Salgé. Generalization: state of the art and issues. In J.C. Müller, J.P. Lagrane,

and R. Weibel, editors, GIS and Generalization: Methodology and Practice,

pages 3�17. Taylor and Francis, 1995.

[151] Madan Kumar M.M, Amit Thawani, Sridhar V, and Y. N. Srikant. Analysis of

application partitioning for massively multiplayer mobile gaming. In

MOBILWARE '08: Proceedings of the 1st international conference on MOBILe

Wireless MiddleWARE, Operating Systems, and Applications, pages 1�6,

Innsbruck, Austria, February 2008. ICST.

390

Bibliography

[152] Martin Modahl, Bikash Agarwalla, Scott Saponas, Gregory Abowd, and

Umakishore Ramachandran. Ubiqstack: A taxonomy for a ubiquitous

computing software stack. volume 10, pages 21�27, London, UK, 2005.

Springer-Verlag.

[153] Hossein Mohammadi, Abbas Rajabifard, and Ian Williamson. Spatial data

integrability and interoperability in the context of sdi. The European

Information Society, pages 401�413, 2008.

[154] S. Mohapatra, N. Dutt, A. Nicolau, and N. Venkatasubramanian. Dynamo: A

cross-layer framework for end-to-end qos and energy optimization in mobile

handheld devices. Selected Areas in Communications, IEEE Journal on,

25(4):722�737, May 2007.

[155] Thomas P. Moran and Paul Dourish. Introduction to this special issue on

context-aware computing. Human-Computer Interaction, 16(2):87�95, 2001.

[156] Multi Media Mapping Ltd., trading as Multimap. Multimap open api v1.2

documentation. Online, September 2008.

http://www.multimap.com/openapidocs/1.2/.

[157] Richard R. Muntz, editor. IT Roadmap to a Geospatial Future. THE

NATIONAL ACADEMIES PRESS, Washington, D.C, 2003. Committee on

Intersections Between Geospatial Information and Information Technology,

National Research Council.

[158] Hani Naguib, George Coulouris, and Scott Mitchell. Middleware support for

context-aware multimedia applications. In DAIS'2001, The Third IFIP WG 6.1

International Working Conference on Distributed Applications and

Interoperable Systems, Krakov, Poland, pages 9�22, September 2001.

[159] Fui Hoon Nah and Kihyun Kim. Managing Web-enabled Technologies in

Organizations: a global perspective, chapter 7, pages 146�161. Idea Group

Publishing, Hershey, PA, USA, 2000.

[160] Tina M. Nicholl, D. T. Lee, and Robin A. Nicholl. An e�cient new algorithm

for 2-d line clipping: Its development and analysis. In SIGGRAPH '87:

391

Bibliography

Proceedings of the 14th annual conference on Computer graphics and interactive

techniques, pages 253�262, New York, NY, USA, 1987. ACM Press.

[161] Daniela Nicklas, Matthias Großmann, Thomas Schwarz, Ste�en Volz, and

Bernhard Mitschang. A model-based, open architecture for mobile, spatially

aware applications. In SSTD '01: Proceedings of the 7th International

Symposium on Advances in Spatial and Temporal Databases, pages 117�135,

London, UK, 2001. Springer-Verlag.

[162] Daniela Nicklas, Matthias Grossmann, and Thomas Schwarz. Nexusscout: an

advanced location-based application on a distributed, open mediation platform.

In vldb'2003: Proceedings of the 29th international conference on Very large

data bases, pages 1089�1092. VLDB Endowment, 2003.

[163] Daniela Nicklas, Matthias Groÿmann, Thomas Schwarz, and Ste�en Volz.

Architecture and data model of nexus. Article in journal, Universität Stuttgart

: Sonderforschungsbereich SFB 627 (Nexus: Umgebungsmodelle für mobile

kontextbezogene Systeme), September 2001.

[164] Daniela Nicklas and Bernhard Mitschang. The nexus augmented world model:

An extensible approach for mobile, spatially aware applications. In Yingxu

Wang, Shushma Patel, and Ronald Johnston, editors, OOIS, pages 392�.

Springer, 2001.

[165] Daniela Nicklas and Bernhard Mitschang. On building location-aware

applications using an open platform based on the nexus augmented world

model. Software and Systems Modeling, 3(4):303�313, December 2004.

[166] Jakob Nielsen. Usability Engineering. Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA, 1993.

[167] Jakob Nielsen. Response Times: The Three Important Limits. Online, October

2006. http://www.useit.com/papers/responsetime.html.

[168] Flemming Nissen, Anders Hvas, Jørgen Münster-Swendsen, and Lars

Brodersen. Small-display cartography. Deliverable D3.1.1, Public EC report

IST-2000-30090, GiMoDig-project, February 2003.

392

Bibliography

[169] Annu-Maaria Nivala and L. Tiina Sarjakoski. Need for context-aware

topographic maps in mobile devices. In Kirsi Virrantaus and Hsvard Tveite,

editors, ScanGIS'2003 - The 9th Scandinavian Research Conference on

Geographical Information Science, pages 15�29, Espoo, Finland, June 2003.

Department of Surveying, Helsinki University of Technology.

[170] Berkeley Institute of Design. Workshop on mobile device applications. UC

Berkley, May 2006.

[171] Open GIS Consortium, Inc. Opengis® implementation speci�cation for

geographic information - simple feature access - part 1: Common architecture.

OpenGIS® Implementation Speci�cation 1.2.0, October 2006.

http://www.opengeospatial.org/standards/go.

[172] Oracle. Leveraging location-based services for mobile applications. Technical

white paper, Oracle, 2001.

[173] Mazliza Othman and Stephen Hailes. Power conservation strategy for mobile

computers using load sharing. SIGMOBILE Mob. Comput. Commun. Rev.,

2(1):44�51, 1998.

[174] Guilhem Paroux, lsabelle Demeure, and Laurent Reynaud. A power-aware

middleware for mobile ad-hoc networks. In NOTERE '08: Proceedings of the

8th international conference on New technologies in distributed systems, pages

1�7, New York, NY, USA, 2008. ACM.

[175] Jason Pascoe, Nick Ryan, and David Morse. Using while moving: Hci issues in

�eldwork environments. ACM Trans. Comput.-Hum. Interact., 7(3):417�437,

2000.

[176] Cynthia A. Patterson, Richard R. Muntz, and Cherri M. Pancake. Challenges

in location-aware computing. IEEE Pervasive Computing, 02(2):80�89, 2003.

[177] Andrea Piras, Roberto Demontis, Emanuela De Vita, and Stefano Sanna.

Compact gml: merging mobile computing and mobile cartography. In GML

And Geo-Spatial Web Services Conference, Vancouver, British Columbia, July

2004.

393

Bibliography

[178] Stefan Poslad, Heimo Laamanen, Rainer Malaka, Achim Nick, Phil Buckle, and

Alexander Zipf. Crumpet: creation of user-friendly mobile services personalised

for tourism. Second International Conference on 3G Mobile Communication

Technologies, pages 28�32, 2001.

[179] Günther Pospischil, Martina Umlauft, and Elke Michlmayr. Designing lol@, a

mobile tourist guide for umts. In Mobile HCI '02: Proceedings of the 4th

International Symposium on Mobile Human-Computer Interaction, pages

140�154, London, UK, 2002. Springer-Verlag.

[180] Je�rey S. Poulin. Measuring software reuse: principles, practices, and economic

models. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,

1996.

[181] Sham Prasher, Xiaofang Zhou, and Masaru Kitsuregawa. Dynamic

multi-resolution spatial object derivation for mobile and www applications.

World Wide Web, 6(3):305�325, 2003.

[182] Bratislav Predic and Dragan Stojanovic. A framework for handling mobile

objects in location based services. In 8th Conference on Geographic Information

Science - AGILE 2005, pages pp. 419�427, Estoril, Lisbon, Portugal, May 2005.

[183] Bratislav Predic, Dragan Stojanovic, and Slobodanka Djordjevic-Kajan.

Developing context aware support in mobile gis framework. In 9th Association

Geographic Information Laboratories Europe (AGILE) Conference on

Geographic Information Science, pages 90�97, Visegrad, Hungary, May 2006.

[184] Nissanka B. Priyantha, Allen K.L. Miu, Hari Balakrishnan, and Seth Teller.

The cricket compass for context-aware mobile applications. In MobiCom '01:

Proceedings of the 7th annual international conference on Mobile computing

and networking, pages 1�14, New York, NY, USA, 2001. ACM.

[185] Anand Ranganathan, Jalal Al-Muhtadi, Shiva Chetan, Roy Campbell, and

M. Dennis Mickunas. Middlewhere: A middleware for location awareness in

ubiquitous computing applications. In Middleware '04: Proceedings of the 5th

394

Bibliography

ACM/IFIP/USENIX international conference on Middleware, pages 397�416,

New York, NY, USA, 2004. Springer-Verlag New York, Inc.

[186] Bill Rankin. Radical cartography / projections / reference. Online, 2006.

http://www.radicalcartography.net/?projectionref.

[187] Venkat Rao, Gaurav Singhal, Anshul Kumar, and Nicolas Navet. Battery

model for embedded systems. VLSI Design, 2005. 18th International

Conference on, pages 105�110, January 2005.

[188] Siva Ravada. Spatial database services for location-aware applications. Online,

Spatial Products Division, Oracle Corporation, 1998.

http://www.gisdevelopment.net/technology/lbs/techlbs004c.htm.

[189] Tumasch Reichenbacher. The world in your pocket - towards a mobile

cartography. In Proceedings of the 20th International Cartographic Conference,

Beijing, China, 2001.

[190] Tumasch Reichenbacher. Mobile Cartography - Adaptive Visualisation of

Geographic Information on Mobile Devices. PhD thesis, Department of

Cartography, Technical University of Munich, Germany, November 2004.

[191] Tumasch Reichenbacher. Adaptation in mobile and ubiquitous cartography.

Multimedia Cartography, pages 383�397, 2007.

[192] Josephine Reid, Erik Geelhoed, Richard Hull, Kirsten Cater, and Ben Clayton.

Parallel worlds: immersion in location-based experiences. In CHI '05: CHI '05

extended abstracts on Human factors in computing systems, pages 1733�1736,

New York, NY, USA, 2005. ACM.

[193] Jun Rekimoto. Tilting operations for small screen interfaces. In UIST '96:

Proceedings of the 9th annual ACM symposium on User interface software and

technology, pages 167�168, New York, NY, USA, 1996. ACM.

[194] Claus Rinner. Map-based Mobile Services Design, Interaction and Usability,

chapter 16 Mobile Maps and More - Extending Location-Based Services with

Multi-Criteria Decision Analysis, pages 335�352. Lecture Notes in

Geoinformation and Cartography. Springer Berlin Heidelberg, 2008.

395

Bibliography

[195] D. Rossi, M. Mellia, and C. Casetti. User patience and the web: a hands-on

investigation. Global Telecommunications Conference, 2003. GLOBECOM '03.

IEEE, 7:4163�4168 vol.7, December 2003.

[196] John C. Russ. The Image Processing Handbook. CRC Press, 5 edition, 2007.

[197] Nick S. Ryan, Jason Pascoe, and David R. Morse. Enhanced reality �eldwork:

the context-aware archaeological assistant. In V. Ga�ney, M. van Leusen, and

S. Exxon, editors, Computer Applications in Archaeology 1997, British

Archaeological Reports, Oxford, October 1998. Tempus Reparatum.

[198] Ivo Salmre. Writing Mobile Code: Essential Software Engineering for Building

Mobile Applications, chapter Chapter 2: Characteristics of Mobile Applications,

pages 19 � 36. Addison-Wesley Professional., 1st edition, February 2005.

[199] Suprateek Sarker and John D. Wells. Understanding mobile handheld device

use and adoption. Communications of the ACM, 46(12):35�40, 2003.

[200] Ichiro Satoh. A spatial model for ubiquitous computing services. IEICE

Transactions on Communications, E88-B(3):923�931, 2005.

[201] Ichiro Satoh. Location-based services in ubiquitous computing environments.

International Journal on Digital Libraries, 6:280�291, June 2006.

[202] Mahadev Satyanarayanan. Fundamental challenges in mobile computing. In

PODC '96: Proceedings of the �fteenth annual ACM symposium on Principles

of distributed computing, pages 1�7, New York, NY, USA, 1996. ACM.

[203] Bill Schilit, Norman Adams, and Roy Want. Context-aware computing

applications. In IEEE Workshop on Mobile Computing Systems and

Applications, Santa Cruz, CA, US, 1994.

[204] Bill N. Schilit, Norman Adams, Rich Gold, Michael Tso, and Roy Want. The

parctab mobile computing system. In Proceedings Fourth Workshop on

Workstation Operating Systems (WWOS-IV), pages 34�39. IEEE, October

1993.

396

Bibliography

[205] Albrecht Schmidt, Michael Beigl, and Hans-W. Gellersen. There is more to

context than location. Computers and Graphics, 23:893�901(9), December 1999.

[206] Barbara Schmidt-Belz, Mikko Laukkanen, Heimo Laamanen, Manuel Veríssimo,

Alex Zipf, Hidir Aras, and Stefan Poslad. Crumpet, user trials and validation

results. Report IST-1999-20147, Information Society Technologies (IST), March

2003.

[207] Stefan Schmitz, Alexander Zipf, and Hidir Aras. Open gml-based mobile

geo-data-handling for pdas. In Annual Conf. of the Int. Association for

Mathematical Geology (IAMG 2002), Berlin, Germany, September 2002.

[208] Monika Sester and Claus Brenner. Continuous generalization for visualization

on small mobile devices. In Peter Fisher, editor, Developments in Spatial Data

Handling - 11th International Symposium on Spatial Data Handling, pages

469�480. Springer Verlag, 2004.

[209] Vidya Setlur, Yingqing Xu, Xuejin Chen, and Bruce Gooch. Retargeting vector

animation for small displays. In MUM '05: Proceedings of the 4th international

conference on Mobile and ubiquitous multimedia, pages 69�77, New York, NY,

USA, 2005. ACM Press.

[210] Shashi Shekhar, Mark Coyle, Braiesh Goyal, Duen-Ren Liu, and Shvamsundar

Sarkar. Experiences with data models in geographic information systems.

Communications of the ACM, 40(4), April 1997.

[211] D. P. Siewiorek. Energy locality: Processing/communication/interface tradeo�s

to optimize energy in mobile systems. In WVLSI '01: Proceedings of the IEEE

Computer Society Workshop on VLSI 2001, page 1, Washington, DC, USA,

2001. IEEE Computer Society.

[212] Rainer Simon and Peter Fröhlich. A mobile application framework for the

geospatial web. In WWW '07: Proceedings of the 16th international conference

on World Wide Web, pages 381�390, New York, NY, USA, 2007. ACM.

[213] Rainer Simon, Peter Fröhlich, and Hermann Anegg. Enabling spatially aware

mobile applications. Transactions in GIS, 11(5):783�794, October 2007.

397

Bibliography

[214] Rodger W. Sinnott. Virtues of the haversine. Sky and Telescope, 68(2):159,

1984.

[215] John P. Snyder. Map projections: A working manual. Professional Paper 1395,

U.S. Geological Survey, Washington, 1987.

[216] Timothy Sohn, Kevin A. Li, Gunny Lee, Ian E. Smith, James Scott, and

William G. Griswold. Place-Its: A Study of Location-Based Reminders on

Mobile Phones. In Proceedings of the 7th International Conference on

Ubiquitous Computing (UbiComp 2005), Lecture Notes in Computer Science,

pages 232�250. Springer, September 2005.

[217] Robert F. Sproull. Principles of interactive computer graphics (2nd ed.).

McGraw-Hill, Inc., New York, NY, USA, 1979.

[218] Ste�en Staab, Hannes Werthner, Francesco Ricci, Alexander Zipf, Ulrike

Gretzel, Daniel R. Fesenmaier, Cecile Paris, and Craig Knoblock. Intelligent

systems for tourism. IEEE Intelligent Systems, 17(6):53�64, 2002.

[219] John Stell and Michael Worboys. Strati�ed map spaces: A formal basis for

multi-resolution spatial databases. In SDH'98 Proceedings 8th International

Symposium on Spatial Data Handling, pages 180�189. International

Geographical, 1998.

[220] Inc. Sun Microsystems. Java tuning white paper. White Paper

http://java.sun.com/performance/reference/whitepapers/tuning.html,

December 2005.

[221] Myles Sutherland and Allan Laframboise. Introduction to the arcgis mobile

sdk. Online, 2007. ESRI Virtual Campus.

[222] L. Tiina Sarjakoski Tapani Sarjakoski. The gimodig public �nal report. Online,

March 2005.

[223] Martina Umlauft, Günther Pospischil, Georg Niklfeld, and Elke Michlmayr.

Lol@, a mobile tourist guide for umts. Information Technology & Tourism,

5:151�164 (14), January 2003.

398

Bibliography

[224] Miller S. Cartwright W. Urquhart, K. LBS and TeleCartography, volume 66,

chapter An user-centered approach to designing useful geospatial

representations for LBS, pages 69�79. Springer Berlin Heidelberg, 2003.

[225] Jaap van Ekris. What is a good mobile application anyway? Modern Nomads

Online Magazine, April 2006.

http://www.modernnomads.info/articles/read.php?article_id=5.

[226] Chris Veness. Distance between pair of latitude/longitude points. Online,

September 2008. Movable Type Ltd

http://www.movable-type.co.uk/scripts/latlong.html.

[227] Kirsi Virrantaus, Jouni Markkula, Artem Garmash, Vagan Y. Terziyan, Jari

Veijalainen, Artem Katasonov, and Henry Tirri. Developing gis-supported

location-based services. Web Information Systems Engineering, 2001.

Proceedings of the Second International Conference on, 2:66�75, December

2001.

[228] Mahes Visvalingam and James D. Whyatt. Line generalisation by repeated

elimination of points. The Cartographic Journal, 30(1):46�51, 1993.

[229] Ste�en Volz, Monika Sester, Dieter Fritsch, and Alexander Leonhardi.

Multi-scale data sets in distributed environments. International Archives of

Photogrammetry and Remote Sensing, Part B4, Technical IV/I, XXXIII, 2000.

[230] Alessandro Cecconi von Vacallo TI. Integration of Cartographic Generalization

and Multi-Scale Databases for Enhanced Web Mapping. PhD thesis, University

of Zürich, Zürich, Switzerland, 2003.

[231] Donggen Wang and Tao Cheng. A spatio-temporal data model for

activity-based transport demand modelling. International Journal of

Geographical Information Science, 15:561�585(25), September 2001.

[232] Roy Want, Andy Hopper, Veronica Falcão, and Jonathan Gibbons. The active

badge location system. ACM Trans. Inf. Syst., 10(1):91�102, 1992.

399

Bibliography

[233] Andy Ward, Alan Jones, and Andy Hopper. A new location technique for the

active o�ce. Personal Communications, IEEE [see also IEEE Wireless

Communications], 4(5):42�47, October 1997.

[234] Stefan Weber, Vinny Cahill, Siobhan Clarke, and Mads Haahr. Wireless ad hoc

network for dublin: A large-scale ad hoc network test-bed. ERCIM News, 54,

2003.

[235] Robert Weibel and Geo�rey H. Dutton. Geographical Information Systems:

Principles and Technical Issues, chapter Generalising Spatial Data and Dealing

with Multiple Representations, pages 125�155. Wiley, New York, US, 2 edition,

1999.

[236] Kevin Weiler and Peter Atherton. Hidden surface removal using polygon area

sorting. In SIGGRAPH '77: Proceedings of the 4th annual conference on

Computer graphics and interactive techniques, pages 214�222, New York, NY,

USA, 1977. ACM Press.

[237] Mark Weiser, Brent Welch, Alan Demers, and Scott Shenker. Scheduling for

reduced cpu energy. In OSDI '94: Proceedings of the 1st USENIX conference

on Operating Systems Design and Implementation, page 2, Berkeley, CA, USA,

1994. USENIX Association.

[238] Wikipedia, the free encyclopedia. Naked eye. Online, September 2008.

http://en.wikipedia.org/wiki/Naked_eye.

[239] Stefan Winkler, Karthik Rangaswamy, and ZhiYing Zhou. Intuitive map

navigation on mobile devices. Universal Access in Human-Computer

Interaction. Ambient Interaction, pages 605�614, 2007.

[240] Peter Wonka, Michael Wimmer, Kaichi Zhou, Stefan Maierhofer, Gerd Hesina,

and Alexander Reshetov. Guided visibility sampling. In SIGGRAPH '06: ACM

SIGGRAPH 2006 Papers, pages 494�502, New York, NY, USA, 2006. ACM.

[241] Yahoo! Inc. Yahoo! maps, driving directions, and tra�c. Online, September

2008. http://maps.yahoo.com/.

400

Bibliography

[242] Huiling Yang. Polygon clipping background theory. Online, April 1998.

http://www.cs.rit.edu/~icss571/clipTrans/PolyClipBack.html.

[243] Wai yeung Yan. Mobile map service with scalable vector graphics. Geoscience

and Remote Sensing Symposium, 2004. IGARSS '04. Proceedings. 2004 IEEE

International, 5:2967�2970, September 2004.

[244] Hansong Zhang. E�ective occlusion culling for the interactive display of

arbitrary models. PhD thesis, Chapel Hill, NC, USA, 1998.

[245] Alexander Zipf. User-adaptive maps for location-based services for tourism. In

Karl W. Wöber, Andrex J. Frew, and Martin Hitz, editors, Proc. of the 9th Int.

Conf. for Information and Communication Technologies in Tourism, ENTER,

Innsbruck, Austria, 2002. Springer Computer Science, Heidelberg, Berlin.

[246] Alexander Zipf. User-adaptive maps for location-based services (lbs) for

tourism. In K. Woeber, A. Frew, and M. Hitz, editors, Proc. of the 9th Int.

Conf. for Information and Communication Technologies in Tourism, ENTER

2002, Innsbruck, Austria, 2002. Springer-Verlag, Heidelberg.

401

