
Bayesian inference for

Short term Traffic Forecasting

A thesis submitted to the University of Dublin, Trinity College

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Statistics, Trinity College Dublin

April 2013

Tiep K. Mai



ii



Declaration

I declare that this thesis has not been submitted as an exercise for a degree at this

or any other university and it is entirely my own work.

I agree to deposit this thesis in the University’s open access institutional repository

or allow the Library to do so on my behalf, subject to Irish Copyright Legislation and

Trinity College Library conditions of use and acknowledgement.

The copyright belongs jointly to the University of Dublin and Tiep K. Mai.

Tiep K. Mai

Dated: August 29, 2013



iv



Abstract

In intelligent transport systems, short term traffic forecasting is one of the most impor-

tant problems, reflecting the network state in the near future and feeding information

to other application modules. Even though there have been quite a lot of works in this

area, most of them are univariate models which may not be able to exploit the spatial

relationship of traffic variables. So, this thesis explores the domain of two renowned

modelling classes, the auto regressive moving average model and the dynamic model,

taking into account the spatial dependency.

The sparse-form vector autoregressive moving average model is applied to the short

term traffic forecasting problem with different preprocessing methods. Network infor-

mation is used to constrain the matrix parameters of the model, reducing the number

of parameters. For the estimation problem, an improved MCMC method is proposed

to tackle the variable correlation problem, using the marginalisation and the correla-

tion direction information. Multi-step-ahead prediction results of different models are

compared with two Dublin traffic datasets.

A second model, consisting of four sub-models, targets the multi-step-ahead flow

prediction for traffic data with incidents, where the data pattern may shift unexpect-

edly. The model is designed to satisfy the scalability property so that the inference

of each component can be done conditionally independently. Furthermore, each sub-

model supports sequential inference, which is essential for real-time applications. The

first two sub-models are analysed with a VISSIM dataset and the discussion of the last

two is given at the end.

A sequential approximation method is developed for both the state vector and

the parameters of the dynamic model that is part of the second model. To avoid the

degeneracy problem of the sampling-based particle filter, the method uses a continuous

functional approximation which is a modified implementation of the iterated Laplace
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approximation (Bornkamp, 2011a). Both the modified iterated Laplace approximation

and the sequential approximation method are illustrated and analysed with several

examples.
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Chapter 1

Introduction

The transportation infrastructure is becoming more and more complex and the number

of vehicles is increasing in cities across the world. To meet this challenge, transportation

management systems have been improved significantly over the past few decades, most

recently through intelligent transport systems (ITS). Supported by other advanced

technologies such as global positioning systems, wireless networks, parallel compu-

tational systems, etc., ITS are capable of collecting the data from traffic networks,

analysing the network state and giving out management decisions in real time.

One of the most important modules in ITS is the short term forecasting module

which continuously updates the multi-step-ahead prediction of the network state. This

network state prediction is then fed to other decision modules such as route optimi-

sation or traffic light sequencing. Using the prediction state, instead of the current

state, as a decision module input better reflects the network in the near future, result-

ing in more compatible decision results. In this thesis, our work thesis focuses on the

short term forecasting of traffic flow which is one of the most important variables in

transportation management.

1.1 Statistical motivation

With the abundant data from traffic networks, we want to construct a spatial temporal

model for multi-step-ahead flow prediction, taking into account the spatial relationship

between traffic variables. In short term traffic forecasting (STFF), only a few works

explore the spatial dependency, including Chandra and Al-Deek (2009); Min and Wyn-
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ter (2011); Queen and Albers (2009); Anacleto Junior et al. (2013b) and among these

works, only Min and Wynter (2011) analyses the multi-step-ahead prediction.

Among many STFF models, there are two important model classes, the autoregres-

sive moving average (ARMA) model and the dynamic model (DM), which have been

studied extensively in the statistics literature. So, we explore these two model classes

and propose suitable models for the multi-step-ahead flow forecasting problem, taking

into account the spatial dependency of traffic networks.

During our work, we realised that in order to meet the constraint of real time

applications and the expansion of traffic networks, the target model should be scalable,

e.g. its inference process can be broken down to multiple independent tasks, and

support sequential inference. Both properties may be achieved by careful modelling

and we are particular interested in sequential inference of the DM.

It is noted that for the DM, the sampling-based particle filter is the most popular

sequential inference method but very prone to the degeneracy issue and usually only

supports inference of the state vector. Sequential inference for parameters is notoriously

difficult and only addressed by some sampling-based works, which again suffer from the

degeneracy. Hence, this reason is our driving force towards a new sequential continuous

approximation for both state vector and parameters.

1.2 Outline of the thesis and contributions

This thesis is divided into following chapters:

Chapter 2: Bayesian statistics and time series modelling

This chapter firstly reviews the basis of statistical inference and the Bayesian approach.

Secondly, we move on with the underlying theory of Monte Carlo methods and its two

most important classes, importance sampling and Markov chain Monte Carlo (MCMC).

Next, popular function approximations such as Laplace approximation and variational

Bayes are given. Then, the chapter discusses classical time series models and dy-

namic models, together with related problems such as parameter estimation, filtering,

smoothing and prediction. Finally, we conclude the chapter with a discussion about

sequential inference of dynamic linear and non-linear models for both state vector and

parameters.
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Chapter 3: Transportation networks and some related problems

The summary of previous works in the STFF problem is given in this chapter, with var-

ious references of different models such as the ARMA model, the DM, neural networks

and non-parametric approaches. Then, we illustrate two related problems in trans-

portation, the road traffic control problem and the estimation of number of vehicles

within a road link, for the sake of spatial-temporal modelling.

Chapter 4: The vector autoregressive moving average model (VARMA) for

the short term traffic flow forecasting

This chapter contains two research contributions of the thesis. Firstly, after presenting

the sparse-form VARMA model with a user-defined parameter structure, we propose

an improved MCMC scheme targeting the variable correlation problem of the VARMA

model. The performance of this algorithm is then analysed with a simulated dataset.

Secondly, we apply the VARMA model and MCMC to two Dublin datasets, employing

three different preprocessing methods and imposing the network structure into the

parameters. Multi-step-ahead prediction results of different models are compared with

a concluding discussion on the STFF problem and the effect of traffic incidents.

Chapter 5: Sequential inference with the iterLap approximation

The first contribution of this chapter is applying modifications to the iterated Laplace

approximation (Bornkamp, 2011a) to improve the method performance. Both the orig-

inal and modified algorithms are extensively compared with several examples. Then,

based on the iterated Laplace approximation, we propose a new continuous sequential

approximation for both state vector and parameters and analyse the approximation

performance with some simulated examples.

Chapter 6: Spatial-temporal modelling of transportation networks

In this chapter, a spatial-temporal model is proposed for multi-step-ahead forecasting,

satisfying the scalability property. The model consists of four sub-models each of which

corresponds to a particular section of traffic networks and supports sequential infer-

ence. Analysis of the link-outflow and junction sub-models is given and the sequential

inference method of the previous chapter is applied to the junction sub-model. Finally,
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discussion of the root and link-vehicle sub-models is provided.

Chapter 7: Conclusion

The last chapter concludes the thesis with several remarks of future work.
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Chapter 2

Bayesian statistics and time series

modelling

In this chapter, firstly, a brief overview of statistical inference and the Bayesian ap-

proach is given. After that, Monte Carlo methods are introduced as asymptotic ap-

proximations for many cases where the inference is intractable. Next, the Laplace

approximation and its extended version, the iterated Laplace approximation, are dis-

cussed as fast approximation solutions, as well as supportive elements of other methods.

Then, as a background for subsequent chapters, this chapter outlines a summary of

time series modelling, including variations of the autoregressive moving average model

and the dynamic model. Finally, sequential inference is presented as a tool for real

time problems where statistical inference is updated iteratively by the arrival of new

data, under a time constraint for computation of the inference.

2.1 Statistical inference

Statistics is about discovering and exploiting patterns in data. A statistical solution

is found when such a discovered pattern can accommodate user’s needs. Imagine that

a business manager wants to learn about the pattern of sale items and customer’s

interests: How much can a customer of a specific class spend on average? Which items

are usually bought together? Which items are sold the most at the specific time?

By learning these, the manager can develop a new marketing strategy with the most

benefit.

5



The initial step in solving a statistical problem is hence statistical modelling, in

which an analyst projects his or her own subjective idea of the target relationship into

mathematical formulae. One simple, but perhaps useless in terms of beneficial use,

example is a relationship between a person’s walking stride length and other variables

such as leg length, weight, etc. So, one modeller may expect that the stride length is

proportional with the leg length and the inverse weight and assume that on average,

the stride length is the linear combination of two other variables. This element, the

mean, is constructed so that by the modeller’s expectation, it is as close to the true

observed value as possible within the constraint of data availability.

The observed value, however, will never be exactly the same as the formulated mean

and the modeller has to add an uncertainty term, a random noise, allowing the observed

value to stray from the mean. To answer the question where that uncertainty comes

from, one needs to examine the data availability. In the above example, the walking

stride could depend on the leg length, person’s weight, terrain type, the location and the

person’s mood which are in turn derived from other unknown variables. Theoretically,

there may exist a very sophisticated and perfect formula that links all the variables

together but because only a subset of data is collected and that perfect formula is

never found, the modeller can guess the true value to a certain degree of error by using

a simpler formula. Also, the uncertainty is caused by the measurement error of the

obtained dataset.

By now, notice that the obtained data is divided into an explanatory part (covari-

ates, input) and an observation part (output). The observation is a function of the

explanatory variables with a random error.

When using a random noise, the modeller should choose its shape, the noise distri-

bution, according to its properties in the target problem: The noise is skewed to the

positive side; the magnitude of the first noise is much larger than the other noise; the

two noise values seem correlated, e.g. when one noise is large, so is the other one. When

unsure about the noise distribution, the modeller should select a basic and convenient

form, simplifying subsequent steps of the statistical inference procedure.

Most of the time, the defined model has unknown parameters, linking the obser-

vation and the explanatory variables. For example, the modeller may know that the

stride length is proportional to the leg length but is clueless about the slope of such a
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linear pattern. Estimating such unknown parameters (parameter estimation) by using

the obtained dataset is carried out after the statistical modelling, realising the full

subjective idea of the modeller towards the target problem.

From this step, statistics is divided into two different schools of thought: the fre-

quentist (or the classical) and the Bayesian. In the frequentist approach, it is assumed

that there is an unknown fixed value for the parameter and the probability of one out-

come of an event is the proportion of times such an outcome re-occurs when repeating

the experiment infinitely. Hence, the probability only exists for the repeatable event.

Also, the inference result is completely defined by the data, without any regard to

subjective belief.

On the other hand, Bayesian statistics regards the probability as the degree of

individual belief. Hence, although the event is not repeatable and the frequency in-

terpretation does not exist, one can somehow guess or evaluate how likely an outcome

can occur based on the experience and apply a probability distribution for that event.

Additionally, a probability of initial subjective belief, the prior distribution, is applied

on unknown parameters, allowing the incorporation of an expert’s experience into the

statistical solution.

A discussion of the frequentist approach is outside the scope of this thesis. The

interested readers should refer to the excellent book of Casella and Berger (2002) or

the rigorous reference of Cox (2006). For Bayesian inference, there are very compre-

hensive references: Box and Tiao (1992) and Gelman et al. (2003). Valuable texts for

a good introduction of theory of probability, random processes, include: Grimmett and

Stirzaker (2001) and Leon-Garcia (2008).

2.1.1 The Bayesian approach

Bayes’ theorem is the most fundamental tool in Bayesian statistics, transforming from

initial belief to post-belief about the parameter θ after taking the information contained

in the data into account.

pθ|y(θ) =
pθ(θ)py|θ(y)

py(y)
(2.1)

∝ pθ(θ)py|θ(y). (2.2)
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The likelihood

In the frequentist interpretation, the likelihood term, py|θ(y), measures the proportion

of times that an outcome occurs if the random event y is repeated for an infinite number

of times under the fixed value of the unknown random parameter θ.

In the Bayesian setting, the likelihood is extended to non-repeatable event. For

example, the question ”What is the chance for that particular person to pass the final

exam?” seems reasonable but the frequency interpretation can never be obtained due

to the uniqueness of the event. However, if you know that person and the test well,

you may have an idea about the answer. In such a case, the likelihood expresses the

subjective preference value for every outcome of the event.

Notice that when conditioning on the observed value y, the likelihood function,

L(θ|y) = py|θ(y), a function with respect to θ, is not a probability and its integral over

the parameter space is not equal to 1.

The prior

As mentioned previously, in Bayesian statistics, the unknown parameter is not fixed

and can take any value in a predefined support. Hence, one can apply a probability on

the unknown parameter, the prior pθ(·), to illustrate one’s surmise about the value of

that parameter. Injecting expert opinion or background information into a statistical

inference may enhance the result, e.g. the result converges faster, if the subjective idea

is supported by the data.

Another strategy of prior selection is to make it as vague and non-informative as

possible. This can be done by using an improper uniform distribution or a distribution

with very large variance (Gelman et al., 2003). In contrast to the above purpose,

one usually utilises this strategy to make sure the result is only determined by the

observation, reducing the influence of prior subjective belief.

There is also a concern about inference consistency in a situation where statistical

procedures are implemented by different reparameterisations. Obviously, two different

statistical processes of the same model with different priors lead to different answers

and this feature may be unwanted scientifically. To remedy this issue, Jeffreys (1946)

proposed the Jeffreys’ prior :

pθ(θ) = |I(θ)|1/2, (2.3)
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with the Fisher information I(θ):

I(θ) = −Ey|θ

[
∂2 log(py|θ)(y))

∂θ2

]
, (2.4)

where −∂2 log(py|θ)(y))

∂θ2
is called the observed information. This rule ensures that the

priors of different classes of reparameterisations of the parameters are actually equal,

hence yielding the same results.

Finally, the prior can be chosen to simplify the implementation of the inference

process. This idea, conjugacy, is explained a later.

The term py(y) is the normalising constant with respect to θ and often ignored

when calculating the non-normalised left hand side (LHS) of Equation (2.1).

py(y) =

∫
pθ,y(θ, y)dθ =

∫
pθ(θ)py|θ(y)dθ. (2.5)

The posterior

The LHS term of Equation (2.1), pθ|y(θ), is the posterior, indicating how likely the

unknown parameter is, with the obtained knowledge from the data.

Most Bayesian inference tasks involve expectations of the posterior. For summary

purposes, a statistician may want to know the expectation Eθ|y(θ) or the variance

Varθ|y(θ):

Eθ|y(θ) = µθ|y =

∫
θ pθ|y(θ)dθ, (2.6)

Varθ|y(θ) =

∫
(θ − µθ|y)2 pθ|y(θ)dθ (2.7)

= Eθ|y[(θ − µθ|y)2],

or in the case where only a random part θa (parameter of interest) of vector θ = (θa, θb)

is needed. One may want to marginalise out the nuisance parameter θb:

pθa|y(θa) =

∫
pθa,θb|y(θa, θb)dθb (2.8)

=

∫
pθa|y,θb(θa) pθb|y(θb)dθb

= Eθb|y[pθa|y,θb(θa)].

The prediction formula:

py2|y(y2) =

∫
py2|θ(y2) pθ|y(θ)dθ (2.9)

= Eθ|y[py2|θ(y2)]
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gives the probability distribution of a future observation y2. Such integrations rarely

have closed form solutions and statisticians usually rely on the sampling methods of

Section 2.2, the functional approximations of Section 2.3 or the numerical quadrature

(Monahan, 2011,chap. 10). The last class suffers significantly from the curse of dimen-

sionality and is not discussed in this thesis.

The exponential family and conjugacy

The exponential family is a very broad class of distributions, including the normal,

multinomial, Dirichlet, Wishart, inverse Wishart distributions and many others. A

random variable y belongs to the exponential family with a parameter θ if its density

follows the form:

py|θ(y) = h(y)g(θ) exp[η(θ)Tu(y)], (2.10)

where the vector u(y) is the sufficient statistic and the vector η(θ) is the natural

parameter. The exponential family has some interesting properties like sufficiency,

reparameterisation and factorisation of parameters of interest and nuisance parameters,

which are essential in the frequentist approach (Cox, 2006,chap. 2). In Bayesian

statistics, the existence of a conjugate prior for the exponential family distribution is

one of the most important features (Bishop, 2006,chap. 2).

A prior pθ(θ) is conjugate, with respect to the likelihood L(θ|y) = py|θ(y), when

the resulting posterior pθ|y(θ) follows the same functional form as the prior. Consider

a prior with fixed hyperparameters a, b of the form:

pθ|a,b(θ) = r(a, b)g(θ)b exp[η(θ)Ta]. (2.11)

When combined with the likelihood of Equation (2.10), Equation (2.11) leads to the

posterior:

pθ|y,a,b(θ) ∝ r(a, b)g(θ)b+1 exp[η(θ)T (a+ u(y))] (2.12)

∝ r2(a2, b2)g(θ)b2 exp[η(θ)Ta2],

which yields the same form of Equation (2.11). Notice that with fixed parameter b,

Equation (2.11) also belongs to the exponential family.

Random processes and stationarity
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A random process X is a collection of random variables {xt : t ∈ T} with an index set

T . This thesis focuses on discrete time series in which the ordered time index set is

used. One of the most important concepts of random processes is the strictly stationary

property.

Definition 1 (Strict stationarity) A random process X is strictly stationary if and

only if the joint distribution of (xt1 , ..., xtk) is independent of the time origin:

pxt1 ,...,xtk (xt1 , ..., xtk) = pxt1+h,...,xtk+h(xt1 , ..., xtk), (2.13)

for all k, h, (t1, .., tk) and (xt1 , ..., xtk).

Some random processes do not satisfy the above requirement, but the weaker ver-

sion, stationarity (weakly stationarity or second-order stationarity).

Definition 2 (Stationarity) A random process X is stationary if and only if its

expectation and covariance matrix are independent of the time origin:

Ext1
(xt1) = Ext1+h

(xt1+h), (2.14)

Covxt1 ,xt2 (xt1 , xt2) = Covxt1+h,xt2+h(xt1+h, xt2+h), (2.15)

for all k, h and (t1, t2).

Model comparison

When there are finite different competing models, the problem of selecting the most

suitable arises. One popular method is by checking the Bayes factor :

K1 =
py|M=M2(y)

py|M=M1(y)
=

∫
θ2
py|θ2,M=M2(y) pθ2|M=M2(θ2)dθ2∫

θ1
py|θ1,M=M1(y) pθ1|M=M1(θ1)dθ1

, (2.16)

where the likelihood has been marginalised with respect to the parameter θ1 (θ2) in

each model M1 (M2). In a full Bayesian setting with a prior on each model pM(·), the

Bayes factor can be replaced by the posterior odd :

K2 =
pM |y(M2)

pM |y(M1)
=
py|M=M2(y)pM(M2)

py|M=M1(y)pM(M1)
. (2.17)

Ratios K1 (K2) are then usually checked against some predefined values to justify the

selection of a model with a high value of likelihood or posterior. MacKay (2002,chap.
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28) discusses the model evidence in the Bayes factor and how the marginal likelihood

py|M=Mi
(y) penalises the model complexity. The problem of calculating the Bayes factor

is non-trivial and is referred to Kass and Raftery (1995) and Weinberg (2012). Alter-

natively, methods such as Akaike information criterion (AIC) or Bayesian information

criterion (BIC), which are based on penalised likelihood, can be used:

AIC(Mi) = 2[− log(py|θ=θ̂,Mi
(y)) + p], (2.18)

BIC(Mi) = 2[− log(py|θ=θ̂,Mi
(y)) + p log(n)], (2.19)

where θ̂ is the maximum likelihood estimation (MLE), p is the dimension of vector θ

and n is the number of observations in vector y. The model with a low AIC (BIC)

value is preferred. Derivations and interpretations of AIC and BIC are referred to

Wood (2006,chap. 2) and Davison (2003,chap. 4,11).

Still, all above methods may not be intuitive enough in terms of performance in-

terpretation. Hence, one practical way for model selection is comparing both the

prediction capabilities and the running time or inference cost of corresponding models.

For example, the model with the best prediction value within the running time limit

interval may be chosen.

2.2 Monte Carlo methods

As mentioned, most Bayesian statistical problems are related with the expectations

which have no closed-form solution. Hence, this section is devoted to the Monte Carlo

method, one of the most dominant inference methods in Bayesian statistics. The foun-

dation of the Monte Carlo method is explained first then there comes two techniques:

importance sampling and Markov chain Monte Carlo (MCMC).

2.2.1 Asymptotic theorems

The justification of Monte Carlo methods is based on two theorems: the strong law of

large numbers (SLLN) and the central limit theorem (CLT) (Grimmett and Stirzaker,

2001,chap. 5, 7).

Theorem 1 (Strong law of large numbers) Let xi (i = 1 : n) be independent and

identically distributed (iid) random variables generated from the density px(·): xi
iid∼
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px(·) with Ex(x) = µ <∞ and Ex(x
2) <∞. Then:

xn =
1

n

n∑
i=1

xi
as−−→ µ. (2.20)

Theorem 2 (Central limit theorem) Let xi
iid∼ px(·) (i = 1 : n) with Ex(x) = µ <

∞ and Varx(x) = σ2 <∞, then:

xn =
1

n

n∑
i=1

xi
d−−→ N(µ,

σ2

n
), (2.21)

where ”
as−−→” denotes almost sure convergence and ”

d−−→” denotes convergence in dis-

tribution (Grimmett and Stirzaker, 2001,chap. 7).

These two theorems complement each other and have different interpretations. The

SLLN theorem states that almost every realisation of the sequence x1:n = (x1, ..., xn)

converges to the same mean µ, justifying the convergence of repeated generation of the

whole sequence x1:n. On the other hand, according to the CLT theorem, the random

error at index n, by a random realisation of the sequence, follows an approximate

normal distribution. Furthermore, the variance of this random error is shrinking with

respect to the number of generated variables n. The Monte Carlo convergence rate is

hence n−1/2 (The largest order of the noise standard deviation σn−1/2, against n).

Sampling methods

By using the SLLN and the CLT, an expectation function can be approximated by the

sample mean of the independent sequence:

Ex(f(x)) =

∫
f(x) px(x)dx (2.22)

≈ 1

n

n∑
i=1

f(xi),

with xi
iid∼ px(·). So, the focus turns to the sampling of the density px(·) (px(·) and qx(·)

denote normalised and non-normalised densities accordingly) . For standard probability

densities like uniform, normal, multinomial, Dirichlet, and Wishart, there are efficient

classical sampling methods already.

For an arbitrary density px(·), inverse transform sampling generates a uniform

random variable u from U(0, 1) and calculates x = F−1
x (u) where Fx(·) is the cumulative

distribution function of the density px(·).
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In the ratio-of-uniforms method, a predefined region of random variables {(u, v) :

D = (u, v) : u2 ≤ qx(v/u)} is enveloped by a simple region E from which (u, v) is

uniformly generated. If (u, v) is in D, the sample x = v/u is accepted; otherwise, the

process repeats with a new uniform sample of (u, v).

The rejection sampling method is also based on a non-normalised envelope function

qr;x(·) : qr;x(·) ≥ qx(·). The variable x is repeatedly sampled from qr;x(·) and accepted

with rate qx(·)/qr;x(·). Adaptive rejection sampling (Gilks and Wild, 1992) is a very

useful extension for a log concave density qx(·), enveloped by an exponential piecewise

linear function qr;x(·). When a sample is rejected, it is added as a new knot of the

piecewise linear function, making the envelope function closer to the target function;

hence, the rejection rate decreases significantly. Adaptive rejection Metropolis sampling

(Gilks et al., 1995) can relax the log-concave condition by correcting the sample with

a Metropolis-Hastings step.

All the above methods are mostly used for a univariate density (or a low dimensional

density) as it is hard to find an easy-to-sample envelope function in a high dimensional

space. More details of these methods can be found in Gilks et al. (1996,chap. 5) and

Grimmett and Stirzaker (2001,chap. 4).

2.2.2 Importance sampling

One popular sampling method which can be applicable to multivariate density func-

tions is the importance sampling (IS) method (Geweke, 1989). For the expectation

of Equation (2.22), rather than sampling directly from density px(·), which for some

reason is impossible, the IS algorithm samples from a proposal density function pr;x(·)

and corrects the samples with a weight function. The procedure is in Algorithm 1.

The IS approximation is actually a consequence of the Monte Carlo approximation,
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Algorithm 1 Importance sampling

1. Generate n iid samples xi from a non-normalised density qr;x(·).

2. Define the weight function w(x) = qx(x)/qr;x(x) and evaluate: wi = w(xi). Nor-

malise the weight by: wn;i = wi/(
∑

(wi)).

3. Approximate the target expectation by:

Ex(f(x)) ≈
n∑
i=1

wn;if(xi). (2.23)

by the derivation:

Ex(f(x)) =

∫
f(x) qx(x)dx∫
qx(x)dx

=

∫
f(x) qx(x)

pr;x(x)
pr;x(x)dx∫ qx(x)

pr;x(x)
pr;x(x)dx

=

∫
f(x) qx(x)

qr;x(x)
pr;x(x)dx∫ qx(x)

qr;x(x)
pr;x(x)dx

≈
∑n

i=1wif(xi)∑n
i=1wi

≈
n∑
i=1

wn;if(xi).

By this algorithm, the normalised density px(·) can be approximated by a discrete

density:

px(x) ≈
n∑
i=1

wn;i1(x = xi), (2.24)

where 1(·) is the indicator function.

The efficiency of the IS method

When using the IS method, one may want the proposal density pr;x(·) to be as ”close”

(”similar”) as possible to the target density px(·) so that the samples xi look as if they

are generated from the target density. If pr;x(·) = px(·) (impossible in practise as it

would remove the need for IS), all the weights are equal and the variance of the weights

is zero: Varr;x(w(x)) = 0.
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(a) px(·) = N(0, 1); pr;x(·) = N(3, 1)
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(b) px(·) = N(0, 5); pr;x(·) = N(0, 1)

Fig. 2.1: Examples of bad proposal functions in the IS method: The red curves are

the target densities. The blue curves are the proposal densities. The pink dots are 1000

samples with the corresponding weights wi. The black curves are the kernel density

approximations of the samples xi.

The IS samples may degenerate into only a few important samples, i.e. few sam-

ples have significant weights, resulting in a poor approximation when the target and

proposal densities are so different. Examples of bad proposal functions are shown in

Figure 2.1. The mean of pr;x(·) in the left figure is misplaced while the variance of

pr;x(·) in the right figure is smaller than it should be. Hence, the samples of the cho-

sen proposal should span the 95% probability interval of the target density and using

an over-dispersed proposal is safer than using a focused proposal. To improve the IS

method, usually a functional approximation of the target density (in Section 2.3) is

chosen as the proposal, whenever it is possible. This degeneracy becomes worse in high

dimensional space and in a sequential setting.

2.2.3 Markov chain Monte Carlo

This section briefly discusses the theory of MCMC and the two most popular meth-

ods: Metropolis-Hastings algorithm (Metropolis et al., 1953; Hastings, 1970) and Gibbs

sampling (Geman and Geman, 1984). Further discussion of MCMC can be found in

Gilks et al. (1996), Roberts and Rosenthal (2004) and Geyer (2011).

The basis of MCMC method
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As mentioned before, this thesis focuses on a random process with an ordered discrete

time index (x1, ..., xn, ...), and a common state space S, i.e. all possible values of any

random variable xt (1 ≤ t ≤ n) are in the set S. Such a random process can be specified

by the probability of the initial random variable x1, px1(·), and the transition density

(or transition kernel), pxt|x1:(t−1)
(·). The definition of Markov chain and its important

properties are listed as follows:

Definition 3 (Markov chain and Markov property) A random process (with an

ordered time index and a common state space) is called a Markov chain if and only if

its transition density satisfies the Markov property, i.e. the transition from xt−1 to xt

is independent of x1:(t−2):

pxt|x1:(t−1)
(xt) = pxt|xt−1(xt). (2.25)

Definition 4 (Homogeneous Markov chain) A Markov chain is homogeneous if

and only if the transition density is time-independent:

pxt|xt−1(xt) = pxt+k|xt+k−1
(xt) ∀k ∈ N. (2.26)

For this section, py|x(·) is denoted as the transition density of a homogeneous Markov

chain from the current state x = a to the next state y = b: py|x=a(b) = pxt|xt−1=a(b) ∀t.

Definition 5 (Stationary density (stationary distribution) of a Markov chain)

A homogeneous Markov chain with a transition density py|x(·) on a common state space

S is said to have a stationary density πx(·) if and only if:∫
S

πx(a)py|x=a(b)dx = πx(b). (2.27)

Assume that the density of the initial state x1 of a Markov chain is its stationary

density : px1(·) = πx(·), then that Markov chain is a strictly stationary random process.

The MCMC method generates samples from a target density px(·) by first designing

a Markov chain (imposing the condition on the transition density) so that its stationary

distribution is the target density: πx(·) = px(·). Then, starting at a single value of the

random variable x1, the method iteratively applies the Markov transition to obtain the

whole realisation x1:t. After many iterations, it is hoped that the marginal density of

pxt|x1(·) is ”similar” to the stationary density πx(·), and the target density px(·) (the
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conditions for this convergence will be mentioned later). Hence, the realised sample xt

of the Markov chain can be considered as a sample of the target density.

So, a rule to design a Markov chain to admit the target density p(·) as its stationary

density is needed. However, using the definition of stationary density directly to impose

the condition on the transition density is non-trivial; a simpler method is preferred.

That is the reason the detailed balance comes into play.

Definition 6 (Detailed balance) A transition density py|x(·) and a density px(·) are

said to satisfy the detailed balance if and only if:

px(a)py|x=a(b) = px(b)py|x=b(a) ∀a, b ∈ S. (2.28)

It can be seen that if py|x(·) and a density px(·) satisfy the detailed balance, then the

Markov chain with transition density py|x(·) admits the density px(·) as its stationary

density.

As the MCMC method starts with a single specified value (rather than a sample

from the target density), it is needed that pxt|x1(·) ”converges” to the target density

px(·) by some conditions. Furthermore, for computational efficiency, not only the last

variable xn of the Markov chain is picked up as a sample but the whole sequence xr:n

are used (after a burn-in x1:(r−1)). Hence, a version of the SLLN theorem for Markov

chain (dependent sample) is needed.

The following definitions are written in an informal way for simplicity. A formal

and rigorous description can be found in Roberts and Rosenthal (2004) and Meyn and

Tweedie (2009).

• A Markov chain is φ-irreducible if and only if for all subsets A of the state space S

(with positive measure φ(A) > 0) and all x ∈ S, the probability that the Markov

chain can reach the subset A, starting at x, is positive.

• A Markov chain is Harris recurrent if and only if X is φ-irreducible and for all

subsets A ⊂ S with positive measure φ(A) > 0 and all x ∈ S, the probability

that the Markov chain visits the subset A infinitely, starting at x, is equal to 1.

• A Markov chain is periodic with period d ≥ 2 if and only if the state space S

can be divided into d disjoint subspaces S1:d such that for all a ∈ Si (i = 1 :
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(d− 1)), the probability
∫
Si+1

py|x=a(b) db = 1, and for all a ∈ Sd, the probability∫
S1
py|x=a(b) db = 1.

• A Markov chain is aperiodic if and only if it is not periodic with any period.

From these definitions, there are important results:

• If a Markov chain is φ-irreducible, aperiodic and has a stationary density then

pxt|x1(·) ”converges” to the target density px(·) ∀x1(in the sense of total variation

distance) (Roberts and Rosenthal, 2004)).

• If a Markov chain is Harris recurrent, aperiodic and has a stationary density π(·)

then

fn =
1

n

n∑
i=1

f(xi)
as−−→ Ex(f(x)) ∀f ∈ L1(π), (2.29)

where the expectation is taken with respect to the stationary density πx(·); xi
are the samples produced by the Markov chain.

The Monte Carlo standard error

By the Markov chain CLT theorem, given in Meyn and Tweedie (2009,chap. 17), we

have:

fn − Ex(f(x))
d−−→ N(0,

σ
f
2

n
). (2.30)

Notice that with MCMC dependent samples, σ2
f
6= V arx(f(x)) in general. The eval-

uation of σ2
f

is however non-trivial and is hence usually approximated by σ̂2
f ;n

under

certain conditions (Geyer, 2011; Flegal and Jones, 2011; Flegal et al., 2012).

The quantity σ̂f ;n/
√
n is called the Monte Carlo standard error (MCSE) and the

(1−α)100% interval of the estimation Ex(f(x)) is [ fn−ςα/2σ̂f ;n/
√
n, fn+ςα/2σ̂f ;n/

√
n ]

where ςα/2 is an appropriate quantile of the student-t distribution or the normal distri-

bution, e.g (1− α/2)100% quantile of the normal distribution. The term ςα/2σ̂f ;n/
√
n

is the half-width of the interval.

The MCSE is obtained by batch means methods and can be extended for quantiles

and functions of expectations. If the half-width is small, it can be concluded that the

MCMC algorithm has run long enough. In this sense, the MCSE can be used as a

stopping criteria of MCMC. A large half-width may imply:

19



• There are not enough MCMC samples to achieve a reasonable precision.

• The batch means are quite different, caused by a mixing issue or a convergence

issue.

This procedure is implemented in the R package mcmcse (Flegal, 2012).

The Metropolis-Hastings algorithm

Assuming that the target non-normalised density is qx(·), the Metropolis-Hastings al-

gorithm is in Algorithm 2.

Algorithm 2 Metropolis-Hastings

1. Define a non-normalised proposal density qr;y|x(·). At iteration 1, choose a start-

ing point x1 = s.

2. For iterations t = 2 : n, assume a is the value of the previous state (xt−1 = a)

draw a sample b from the density qr;y|x=a(·). Evaluate the acceptance rate:

α(a, b) = min

(
qx(b)qr;y|x=b(a)

qx(a)qr;y|x=a(b)
, 1

)
. (2.31)

3. Accept the movement with probability α(a, b): xt = b. Otherwise, xt = a. Repeat

step 2, until t ≥ n

It can be proved that the Metropolis-Hastings algorithm satisfies the detailed bal-

ance. There are some common ways to choose the proposal density qr;y|x(·):

• Random walk proposal : qr;y|x=a(b) = h(b−a). For example, qr;y|x=a(b) = N(b|µ =

a, σ2)

• Symmetric proposal : qr;y|x=a(b) = qr;y|x=b(a)

• Independent proposal : qr;y|x=a(b) = h(b)

Gibbs sampling

Assume that the random vector xt (at time t) can be divided into multiple blocks

xt = (x1,t, ..., xd,t). The Gibbs sampling schemes update each random block xi,· one by

20



one, conditioning on the other blocks x−i,· = (x1,·, ..., xi−1,·, xi+1,·, ..., xd,·). There are

two popular schemes: the systematic scan and the random scan.

A systematic-scan Gibbs sampling in Algorithm 3 updates each block in a predefined

sequence.

Algorithm 3 Gibbs sampling: systematic scan

1. Choose a starting point xt = (x1,t, ..., xd,t) = s.

2. For iterations t = 2 : n, iteratively update the random blocks

2-1. Sample x1,t from qx1|x2=x2,t−1,x3=x3,t−1,...,xd=xd,t−1
(·)

2-2. Sample x2,t from qx2|x1=x2,t,x3=x3,t−1,...,xd=xd,t−1
(·)

2-3. ...

2-d. Sample xd,t from qx2|x1=x2,t,x2=x2,t,...,xd−1=xd−1,t
(·)

3. Repeat step 2, until t ≥ n

A random-scan in Algorithm 4 updates a random block in each iteration.

Algorithm 4 Gibbs sampling: random scan

1. Choose a starting point xt = (x1,t, ..., xd,t) = s.

2. For iterations t = 2 : n, choose a block i ∈ (1 : d) with probability wi.

Then, update the corresponding xi,t from qxi|x−i=x−i,t−1
(·). The rest is unchanged:

x−i,t = x−i,t−1

3. Repeat step 2, until t ≥ n

In the above two algorithms, it is assumed that xi,t can be sampled directly by a

standard form of the conditional density qxi|x−i(·). Otherwise, sampling methods in

Section 2.2.1, IS or MCMC can be used for a single block update xi.

Combining MCMC chains

Aside from using the Gibbs sampling on the conditional density, combining different

MCMC chains is another strategy. For example, iteratively chaining two MCMC with

21



transition densities p1;y|x(·) and p2;y|x(·) is equivalent to a MCMC with a transition:

py|x=a(c) =

∫
p1;y|x=a(b)p2;y|x=b(c) db. (2.32)

And a random MCMC with two sub-MCMC transitions:

py|x=a(b) = w1p1;y|x=a(b) + (1− w1)p2;y|x=a(b). (2.33)

It is clear that if two MCMC with transitions p1;y|x(·) and p2;y|x(·) admit the same

stationary density πx(·), then πx(·) is also the stationary density of py|x(·).

Variable correlation and MCMC

One of the most serious issues in implementing a good MCMC is the correlation between

random variables. Let x1 and x2 be two random scalars which are highly correlated,

i.e. x = (x1, x2) follows normal distribution with correlation coefficient of 0.95. Doing

Gibbs sampling results in a very small movement in each iteration as the conditional

mean of variable x1 is strongly coupled with the other variable x2 = x2,t and is very

close to its current position x1,t.

In this situation, updating both variables jointly, i.e. using a MCMC with random

walk proposal of variance matrix Σ , is problematic too. A focused proposal (small

variance) allows a tiny movement from the current point, causing inefficiency. On the

other hand, a flat proposal with large variance risks a low acceptance rate and rejects

the movement. For the following target density of random variable x = (x1, x2):

qx(x) = N(x|µ = 0,Σ ), (2.34)

with:

Σ =

100 99

99 100

 . (2.35)

Figure 2.2 shows the MCMC paths of Gibbs sampling and two Metropolis-Hastings for

15 iterations, starting at a same location s = (−20,−20). The normal random walk

proposals (from x to y) in Figures 2.2(b) and 2.2(c) have the corresponding covariance
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Fig. 2.2: Traced paths of different MCMC algorithms for a highly correlated target

density in 15 iterations: The target density is drawn by blue contours and the traced

paths are in black. The red crosses and squares denote starting and ending points

correspondingly. The MCMC implementation with Σ1 has made 13 accepted small

movements while the MCMC implementation with Σ2 has 6 accepted big movements.

matrices:

Σ1 =

2 0

0 2

 (2.36)

Σ2 =

10 0

0 10

 . (2.37)

All three algorithms can only move locally after 15 iterations, illustrating the correla-

tion problem in MCMC, which becomes worse with a high dimensional density.

The neatest way to deal with the correlation issue is to reparameterise the density.

By transforming x to y = f(x), the correlation may be completely removed. However,
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in practise, such a parameterisation may not exist or be unknown (especially in high

dimensional space) and hence, general numerical methods are preferred. This includes

using the geometrical information in the local derivatives of the target density or com-

plementing the MCMC algorithm with functional approximations, as described in the

next section.

2.3 Functional approximation methods

This section summarises functional approximation methods which are usually compu-

tationally fast and cheap. Compared to Monte Carlo methods, functional approxima-

tion does not have the asymptotic convergence property, e.g. even when a method

is applied repeatedly, the approximation may not converge to the target density at

all. Still, these methods are extremely useful in a practical application where time is

the most invaluable resource. Furthermore, functional approximations can be used to

complement Monte Carlo methods (used as IS or MCMC proposal functions). For an

IS algorithm, this may produce samples appropriately in the target support and result

in evenly weighted samples. A MCMC trajectory may move adaptively to the local

correlation or escape a modal trap by using these approximations.

2.3.1 Standard approximations

The Laplace approximation

Among all methods, the Laplace approximation (Laplace, 1774) is the simplest but

still very useful. In general, this method approximates a target non-normalised density

qx(·) by a normal distribution. The procedure is in Algorithm 5.

The Laplace approximation has all the useful properties of a normal distribution,

e.g. the normal form of the conditional and marginal distributions. Also, it is used to

evaluate the integral of qx(·), which is not necessarily a probability density (one of the

first use of Laplace approximation).

As distributions tend to converge to normal form asymptotically, the Laplace ap-

proximation is very efficient in these cases. However, for non-normal distribution,

this approximation suffers from two shortcomings. Firstly, it only works well with a
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Algorithm 5 The Laplace approximation

1. Denote g(·) = − log(qx(·)). Starting at an initial point s, minimise g(·) (usually by

numerical optimisation method like gradient-based method, Newton’s method):

x̂ = arg min
x
{g(x)}. (2.38)

2. Evaluate the Hessian matrix of g(·) at the mode x̂ (by analytical formula, finite

difference or automatic difference methods):

Q̂ =
∂2g(x)

∂x2

∣∣∣∣
x=x̂

. (2.39)

3. Use the Taylor expansion on g(x) at x̂:

g(x) ≈ g(x̂) +
∂g(x)

∂x

∣∣∣∣
x=x̂

(x− x̂) +
1

2
(x− x̂)T

∂2g(x)

∂x

∣∣∣∣
x=x̂

(x− x̂) (2.40)

≈ g(x̂) +
1

2
(x− x̂)T Q̂(x− x̂),

and obtain the approximation:

qx(x) ∝ N(x|µ = x̂, Q = Q̂). (2.41)

uni-modal function and ignores the other modes if the target density is multi-modal.

Secondly, the normal distribution implies a linear correlation between random variables

and hence cannot accommodate non-linear dependency.

Variational Bayes method

In the variational Bayes method (VB) (Jordan et al., 1999), the approximation density

p̃x(·) of the target px(·) is found by minimising the Kullback-Leibler divergence (KL):

KL(p̃|p) =

∫
log

(
p̃x(x)

px(x)

)
p̃x(x)dx. (2.42)

By Jensen’s inequality, the KL term, KL(p̃|p), is always positive and KL(p̃|p) = 0

if p̃x(·) = px(·). So, it is a reasonable criteria to measure the ”distance” between two

densities.

In order to evaluate and minimise the KL in Equation (2.42), the approximation

p̃x(·) must be assumed to follow a form. Any parameterised density p̃x|θ(·) can be used;
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but the VB method is only computationally efficient if the KL term can be obtained

directly and analytically, according to p̃x|θ(·).

One of the most popular forms for the multivariate density p̃x(·) (with x = x1:d) is

the factorisation:

p̃x(x) =
d∏
i=1

p̃xi(xi). (2.43)

Notice that there is no need to parameterise this approximation form. The VB

procedure for this factorisation iteratively minimises KL(p̃|p) with respect to the com-

ponent p̃xi(·) when fixing the other components p̃xj(·) (j 6= i):

KL(p̃|p) =

∫
log

(
p̃xi(xi)

px(x)

)
p̃x(x)dx+ const (2.44)

=

∫ [
log(p̃xi(xi))−

∫
log(px(x))

d∏
j 6=i

p̃xj(xj)dxj 6=i

]
p̃xi(xi)dxi + const

=

∫ [
log(p̃xi(xi))− Exj 6=i log(px(x))

]
p̃xi(xi)dxi + const.

Define a normalised density pa;xi(xi) ∝ exp[Exj 6=i log(px(x))] (a function with respect

to xi only), then:

KL(p̃|p) =

∫
log

(
p̃xi(xi)

pa;xi(xi)

)
p̃xi(xi)dxi + const (2.45)

= KL(p̃xi |pa;xi) + const.

Hence, conditioning on p̃xj(·) with j 6= i, the KL term is minimised when p̃xi(xi) =

pa;xi(xi) ∝ exp[Exj 6=i log(px(x))] ∝ exp[Exj 6=i log(qx(x))].

Again, this procedure is efficient if the closed form of Exj 6=i log(px(x)) is available,

which is true for some models (Bishop, 2006,chap. 10). However, one may not have

such a closed form for a complex density px(x) and have to resort to a sampling method

to evaluate the expectation, resulting in big computation cost. Another disadvantage

of this procedure is the independence assumption of the factorisation, which could be

unsatisfying in terms of accuracy.

One method related to VB is the expectation propagation method (EP), which uses

KL(p|p̃) instead of KL(p̃|p). Interestingly, it is observed that VB approximation tends

to be under-dispersed (the variance of the approximation is underestimated) while EP

approximation is over-dispersed (Bishop, 2006,chap. 10).
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2.3.2 The iterated Laplace approximation

As an extension of the normal form in Laplace approximation, the mixture of normal

distributions is a very flexible family of distributions, capable of accommodating multi-

modal and non-linear functions:

q̃x(x) =
n∑
i=1

wiN(x|µi, Qi). (2.46)

Let g(·) = − log(qx(·)). The procedure of Gelman et al. (2003,chap. 12) for esti-

mating w1:n, µ1:n and Q1:n is described in Algorithm 6.

Algorithm 6 Approximation by a mixture of normal distributions

1. Find n local modes by minimising the target non-normalised density g(x), start-

ing at different initial points. Use these local modes as the component means

µ1:n.

2. The component precision matrix can be estimated by:

Qi =
∂2g(x)

∂x2

∣∣∣∣
x=µi

. (2.47)

3. Estimate the weights by solving:

qx(µi) = q̃x(µi), (i = 1 : n). (2.48)

There is an issue with this algorithm. For example, with a skewed uni-modal target

density, all the modes and precisions, found by this algorithm, will be almost same

(the difference is caused by numerical computation) and the resulting approximation

is symmetric (by normal distribution), not able to reflect the skewness of the target.

Furthermore, it may be wasteful to do the mode optimisation in step 1 by random

starting points. Hence, it is better to do the approximation iteratively, correcting

the discrepancy by adding a new component at an appropriate location. Using this

approach, Bornkamp (2011a) proposed the iterated Laplace approximation (iterLap) as

in Algorithm 7.
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Algorithm 7 iterLap

1. Find n1 local minima µi and their corresponding Hessian matrices Qi of g(·) =

− log(qx(·)) (like the above algorithm). Let nc be the current number of com-

ponents (initially, nc = n1). The current approximation q̃nc;x(·) with unknown

non-normalised weights is:

q̃nc;x(x) =
nc∑
i=1

wiN(x|µi, Qi). (2.49)

2. Assume that for each component i, there are nx location vectors xg;i,j (j = 1 : nx)

generated from the distribution N(µi, Qi); dx is the length of vector x. Let X

be a m × dx matrix comprising all the location vectors xg;i,j and the mean µi

(each row Xk,1:dx (k = 1 : m) is either xg;i,j or µi). Let y be a vector of length

m comprising the values of the target density, evaluated for all locations in X:

yk = qx(Xk,1:dx). Let Z be a m × nc matrix, satisfying: Zk,i = N(Xk,1:dx|µi, Qi).

The weights w = w1:nc can be obtained by using quadratic programming :

w = arg min
b

[(y − Zb)T (y − Zb)], b ≥ 0. (2.50)

3. Define a residual function gnc(·) with:

z = qx(x)− q̃nc;x(x), (2.51)

gnc(x) =

− log(z) if z ≥ zl

− log(exp(z − zl)zl) if z < zl

. (2.52)

A lower bound zl = 1e−4 is used in the R package iterLap (Bornkamp, 2011b).

Find a new component by minimising the residual function:

µnc+1 = arg min
x
{gnc(x)}, (2.53)

Qnc+1 =
∂2gnc(x)

∂x2

∣∣∣∣
x=µnc+1

. (2.54)

The starting points of this optimisation step are chosen by checking the ratio

qx(x)/q̃nc;x(x). Points with large ratios are preferred (the locations where q̃nc;x(x)

underestimates qx(x)).
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Algorithm 7 iterLap (Cont)

4. Update the number of components: nc = nc + 1. If one of the following criteria

is satisfied:

• nc ≥ nc;max where nc;max is a predefined maximum number of components.

• |qx(x)− q̃nc;x(x)| ≤ δ with a predefined error bound δ.

•
∑nc

i=1 wi does not improve (by comparing with previous sums of weights).

• Cannot find a new component.

then re-estimate the weights by step 2 and stop the algorithm. Otherwise, repeat

steps 2→ 4.

Figure 2.3 shows both the Laplace and iterLap approximations for the following

target density of a random variable x = (x1, x2):

qx(x) ∝ N(x1|0, σ2
1 = 102)N(x2|µ2 = 0.03x2

1, σ
2
2 = 12). (2.55)

In Figure 2.3, the iterLap approximation is much better in terms of adapting to the

non-linear dependency between two variables. Still, the iterLap method can be further

improved by some modifications, which will be discussed later in Section 5.1.
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(b) The iterLap approximation

Fig. 2.3: The Laplace and iterLap approximations. The target density and approx-

imations are drawn by blue and black contours accordingly. The red crosses are the

means of normal components. The iterLap approximation has 15 components.
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2.4 Time series modelling

In this section, we briefly discuss time series modelling, used in time-dependent data

such as stock values, chemical processes or traffic flows, and two general classes: the

classical time series models and the dynamic models. Very detailed references of the

former include Brockwell and Davis (2002); Shumway and Stoffer (2006); Box et al.

(2008). Brockwell and Davis (2002,chap. 8) and Shumway and Stoffer (2006,chap. 6)

are introductory texts for dynamic models. An extensive study of dynamic models can

be found in West and Harrison (1997) and Prado and West (2010).

2.4.1 Classical time series models

In classical time series models, the target time-dependent process is usually decomposed

into two parts: a mean mt and an error yt:

zt = mt + yt. (2.56)

Eliminating the trend and seasonality

The mean mt may be a combination of a trend and multiple seasonal effects. So,

classical methods usually remove the mean first and then model the remainder as the

error. A very common way of extracting the error is using the difference operator 5

or the s-lagged difference operator 5s :

5zt = zt − B zt = zt − zt−1, (2.57)

5szt = zt − Bs zt = zt − zt−s, (2.58)

where B is the backward shift operator: B zt = zt−1.

Such differencing is applied repeatedly to the observation zt to eliminate the trend

and seasonality. If mt =
∑m

i=0(ait
i), then 5mzt = m!am +5myt (The common mean

m!am may be removed by a further step or a non-zero constant mean model should

be used for the remainder). Differencing is also used for non-stationary models such

as random walk zt = zt−1 + yt: 5zt = yt. A limitation of differencing lies in the fact

that zt is only allowed to be non-stationary in a very special way, i.e. 5mzt must be

stationary. Such a method will not work for the model zt = −zt−2 +yt (cannot be used
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to extract the stationary error yt), for example, see Brockwell and Davis (2002,chap.

6) for more details.

Other methods of cancelling the trend and the seasonality include moving average

smoother (mt =
∑k

i=−k at,izt+i with at,i ≥ 0 and
∑k

i=−k at,i = 1) and smoothing splines

(modelling mt as a piecewise polynomial of time, with or without a linear combination

of other covariates); see Brockwell and Davis (2002,chap. 1) and Shumway and Stoffer

(2006,chap. 2).

The autoregressive (AR) model

In the classical approach, a suitable model for the error yt is found by inspecting

and discovering a pattern of some statistics, derived from the error yt. Such diag-

nostics often rely on the autocorrelation function (ACF) and partial autocorrelation

function (PACF) (The derivation and interpretation of PACF is in Brockwell and

Davis (2002,chap. 2-3)) and Box et al. (2008,chap. 3).

One of the most accepted models for the time-dependent error yt is the autoregres-

sive model, AR(p), with a common mean µ:

µ(B)(yt − µ) = et (2.59)

⇔ (yt − µ)−
p∑
i=1

φi(yt−i − µ) = et,

where et
iid∼ N(0, σ2); µ(B) = 1−

∑p
i=1 φi B

i is the p-order polynomial of the backward

shift operator B.

There are some properties about the roots z of the equality µ(z) = 0:

• If all the roots z lie outside of the unit circle, |z| > 1, then there exists a stationary

solution for Equation (2.59) and (yt − µ) can be written as a linear combination

of future-independent et: yt − µ =
∑∞

i=0 ψiet−i. In that case, the AR model is

causal.

• If there is a root z on the unit circle, then there is no stationary solution.

• If all the roots z lie inside of the unit circle, |z| < 1, then there exists a stationary

solution and (yt− µ) can be written as a linear combination of future-dependent

et: yt − µ =
∑−∞

i=0 et−i. The realisation of such an AR model usually explodes

over time.
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Notice that if the distribution of the starting random variable, py0:(−p+1)
(·) is prede-

fined, then the resulting random process is not a stationary solution of an AR model.

The autocorrelation function of the AR model is a mixture of damped exponentials

or damped sine waves and the partial autocorrelation is cut off after a certain time

point. These two features are used to identify the AR pattern of a particular dataset.

The moving average (MA) model

Another common model is the moving average model, MA(q), with mean µ:

yt − µ = ¨(B)et (2.60)

⇔ yt − µ = et +

q∑
j=1

θiet−i,

where et
iid∼ N(0, σ2); ¨(B) = 1 +

∑q
i=1 θi B

i is the q-order polynomial.

A MA model is invertible if and only if all the roots z of the equality ¨(z) = 0 lie

outside of the unit circle, |z| > 1. In that case, et can be written as a linear combination

of future-independent yt: et =
∑∞

i=0 πi(yt−i−µ). This invertibility constraint is imposed

to avoid the identifiability problem of the MA model, e.g. the model Ma: yt = et +

θa,1et−1 with noise variance σ2
a and the model Mb: yt = et + θb,1et−1 with noise variance

σ2
b will have the same autocovariance function if θb,1 = 1/θa,1 and σ2

b = θ2
a,1σ

2
a (Shumway

and Stoffer, 2006,chap. 3).

In contrast to the AR model, the autocorrelation of the MA model is zero after a

certain time point and its partial autocorrelation is a mixture of damped exponentials

or damped sine waves.

The autoregressive moving average (ARMA) model

An ARMA(p,q) model, with a mean µ is a combination of AR and MA models:

µ(B)(yt − µ) = ¨(B)et (2.61)

⇔ (yt − µ)−
p∑
i=1

φi(yt−i − µ) = et +

q∑
j=1

θjet−j,

There are also properties of causality and invertibility for the ARMA model (with the

same condition on the equalities µ(z) = 0 and ¨(z) = 0). The autocorrelation function

and the partial autocorrelation function of the ARMA model are mixtures of damped
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exponentials or damped sine waves. Formulae for the ARMA autocorrelation can be

found in Box et al. (2008). It is also assumed that the two polynomials µ(B) and ¨(B)

have no common roots for the sake of identifiability.

Solving the equality µ(z) = 0 to impose the causality constraint is tedious and

non-trivial. Fortunately, there is a simpler test through the one-to-one transformation

of the vector φ1:p (Monahan, 1984). The test can be applied to both causality and

invertibility constraints.

Parameter estimation for the ARMA model

There are quite a few methods to estimate the parameters of the ARMA model (Brock-

well and Davis, 2002,chap. 5). The Yule-Walker method, its recursive version (the

Durbin-Levinson algorithm), and Burg’s algorithm only work with AR models (an

ARMA model needs to be converted to an AR model with an infinite number of pa-

rameters before applying these methods). The innovation algorithm is for the MA

model and the Hannan-Rissanen algorithm is applicable to the ARMA model.

Various schemes of MLE, based on different transformations, include Ansley (1979),

Brockwell and Davis (2002,chap. 5) and Box et al. (2008,chap. 7). All these meth-

ods use an unconditional likelihood, i.e. without conditioning on the starting latent

variables y0:(−p+1) and e0:(−q+1) and are quite computationally costly.

For the Bayesian approach, Monahan (1983) focuses on the ARMA order selection

problem. The parameter space of φ1:p and θ1:q, constrained by the stationarity and

invertibility requirements, is explored by the numerical quadrature method. Chib and

Greenberg (1994) adopt a sampling-based approach with MCMC and suggests a trans-

formation to facilitate the conjugacy form of φ1:p. For θ1:q, the Metropolis-Hastings

algorithm is applied with a proposal function based on a quadratic approximation of

the log density. In the work of Marriott et al. (1996), the parameters φ1:p and θ1:q are

transformed to an unconstrained version, r1:p and s1:q, of the partial autocorrelation

coefficients, then jointly updated with a Metropolis-Hastings proposal, centred at the

MLE estimates of (r̂1:p,ŝ1:q) and its asymptotic covariance matrix. Barnett et al. (1997)

instead put a prior directly on the partial autocorrelation coefficients, which are up-

dated one by one in the Gibbs sampling. This work extends the flexibility of the ARMA

model by the use of indicator variables on the partial autocorrelation, additive outliers
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(the observation is the sum of an ARMA variable and an additive outlier) and innova-

tion outliers (the ARMA error et follows a mixture of normal distributions). Another

way to parameterise the ARMA model is discussed in Prado and West (2010,chap.

2), where the real and complex roots of the polynomial are considered. All the above

works, except Monahan (1983), use conditional likelihood (conditioning on the starting

latent variables).

Variants of the ARMA model

There are many extensions of the ARMA model. The periodic autoregressive moving

average model (PARMA) uses multiple AR, MA parameter sets corresponding to each

periodic phase:

µ(B, t)(yt − µ) = ¨(B, t)et, (2.62)

where µ(B, d+ ν) = µ(B, ν) and ¨(B, d+ ν) = ¨(B, ν) for ν = 0 : (d− 1). The result-

ing autocovariance is hence periodic (or cyclic time-independent): Cov( yd+t, yd+s) =

Cov( yt, ys).

The generalised autoregressive conditional heteroskedasticity model, GARCH(p,q),

permits a time-dependent conditional variance but leaves the unconditional variance

unchanged:

(yt − µ) = σtet, (2.63)

σ2
t = φ0 +

p∑
i=1

φiy
2
t−i +

q∑
j=1

θjσ
2
t−j.

This model is useful when the variation of the observed time series fluctuates accord-

ingly at a specific time.

It has been shown that the autocorrelation ρ(h) of the ARMA model decays quickly

due to the damped exponential (or sine wave) form: there exists r > 1 so that rhρ(h)→

0 when h → ∞. To handle ”long memory” time series, the autoregressive fractionally

integrated moving average model, ARFIMA(p,d,q), where the autocorrelation has a

very long tail, can be used:

µ(B)(yt − µ) = ¨(B)(1− B)−det, − 0.5 < d < 0.5, (2.64)
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with

(1− B)−d =
∞∑
i=0

Γ(i+ d)

Γ(i+ 1)Γ(d)
Bi, (2.65)

where Γ(·) is the gamma function.

There are also the bilinear extension (allow the interactive effects of yt and et), the

general threshold autoregressive model (this model has multiple AR, MA parameter

sets like the PARMA model but there is also a threshold variable specifying the ac-

tive parameter set at each time point) and the smooth transition autoregressive model

(STAR) (a mixture of ARMA models in which the weight series are either determin-

istic or stochastic). Further discussion about these ARMA variants can be found in

Brockwell and Davis (2002,chap. 10), Shumway and Stoffer (2006,chap. 5) and Holan

et al. (2010).

The vector autoregressive moving average (VARMA) model

One useful extension of the ARMA model is its multivariate version, the vector autore-

gressive moving average model (VARMA). The dy-variate VARMA(p,q) model has the

following representation:

�(B)(yt − µ) = �(B)et (2.66)

⇔ (yt − µ)−
p∑
i=1

Φi(yt−i − µ) = et +

q∑
j=1

Θjet−i

where yt and µ are vectors of length dy; et
iid∼ N(0,Σe = Q−1

e ); each AR (or MA)

parameter, Φi (or Θj) is a dy × dy matrix; �(B) (or �(B)) is a dy × dy matrix of

polynomials of the backward shift operator B: �(B) = Ik −
∑p

i=1 Φi B
i (�(B) =

Ik −
∑q

j=1 Θj Bj).

All properties of the causality, stationarity and invertibility are still valid for the

VARMA but the condition is more complicated. A VARMA model is causal (or invert-

ible) if and only if all the roots of the equality |�(B)| = 0 (or |�(B)| = 0) lie outside

the unit circle. We do not know any convenient test for this requirement. Furthermore,

the causality and invertibility conditions are not enough to ensure the uniqueness of

the VARMA model, i.e. two causal and invertible VARMA models may yield the same

covariance structure. Holan et al. (2010) discuss this issue and a sufficient condition

for the identifiability (echelon form).
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Fig. 2.4: A DAG of a DLM

Ravishanker and Ray (1997) presented a Bayesian approach for parameter estima-

tion of the VARMA model. A Bayesian variable selection is employed with indicator

variables for all elements of matrices Φi and Θj. All parameters, except the covariance

matrix Σe, are sampled with the Metropolis-Hastings of a normal random walk pro-

posal (the covariance of that proposal is computed by the observed information at the

MLE estimator). All matrices (Φ,Θ) = (Φ1 :p ,Θ1 :q) are updated jointly.

2.4.2 The dynamic model

The dynamic linear model (DLM) is another popular model for time series. In a DLM,

there are a state equation describing the evolution of an unobserved state vector (state

variable) xt of length dx and an observation equation modelling an observation vector

yt of length dy, conditioning on the state vector xt at a specific time:

yt = Ftxt + vt, (2.67)

xt = Gtxt−1 + ut, (2.68)

where vt
iid∼ N(0,Σv); ut

iid∼ N(0,Σu); Ft are dy × dx matrices; Gt are dx × dx matrices;

there may be also an unknown parameter vector ϕ, e.g. ϕ = (Σv,Σu) . The separation

of the state and observation equations provides a natural way to model dynamics in

practise. To include other available covariates Ht with coefficient α, the observation

equation can be changed to:

yt = Htα + Ftxt + vt. (2.69)

A DLM with fixed parameters in Equation (2.67) can be represented by a directed

acyclic graph (DAG) in Figure 2.4, showing the sequential generation of the random

variables. Let a DAG represent a collection of variables y1:n = (y1, ..., yn), then the

joint density py1:n(y1:n) is
∏

i pyi|parents(yi)(yi).

Another useful graphical representation of the DLM is the undirected graph, showing

the conditional independence of random variables. In a undirected graph, if variables
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yi and yj are separated by a vector variable yk, i.e. there is no path connecting yi and

yj without crossing variable yk, then yi is conditional independent of yj, given yk. The

undirected graph of the DLM with fixed parameters is the same as its DAG (replace

directed links by undirected ones).

Extensions of the DLM

The dynamic model (DM) is one significant DLM extension where either one or both

of the state equation and the observation equation are non-linear (both equations may

be non-Gaussian too), and are represented by:

yt ∼ pyt|xt,ϕ(·), (2.70)

xt ∼ pxt|xt−1,ϕ(·), (2.71)

accordingly (ϕ is an unknown parameter vector).

Another variant is the conditional dynamic linear model (CDLM). In this model,

there are multiple DLMs and the active DLM at time t is decided by another auxiliary

state variable λt.

Filtering, prediction, smoothing with known parameters

There are some common problems in the DLM and the DM. Assuming that all the

parameters are known, the first problem is the filtering where we are interested in the

density of state vector xt, given all the data until now y1:t: pxt|y1:t(xt).

The next problem is the h-step prediction, formulated by the density: pyt+h|y1:t(yt+h)

(h ≥ 0). In the prediction problem, the h-step forecasting function is defined by:

Eyt+h|y1:t(yt+h) =

∫
yt+h pyt+h|y1:t(yt+h)dyt+h. (2.72)

For the DLM with time-invariant matrices Ft = F and Gt = G, the h-step forecasting

function is given by:

Eyt+h|y1:t(yt+h) = FGh Ext|y1:t(xt) (2.73)

=
∑
i

ai,hλ
h
i . (2.74)

where λ1:dx are the eigenvalues of matrix G. These eigenvalues will decide whether the

forecasting function explodes, decays or follows a random walk.
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Finally, in the smoothing problem, one wants to trace back the past with the all

data until now. Hence, the smoothing density pxt−h|y1:t(xt−h) (h ≥ 0) is needed. This

thesis does not discuss the smoothing problem. More details of the problem can be

found in West and Harrison (1997,chap. 4) or Prado and West (2010,chap. 4). The

sequential (online) solutions of these three problems are usually more interesting to

practitioners than the offline solutions. Sequential inference for the filtering problem

is discussed in details in Section 2.5.

Parameter estimation

With the existence of unknown parameters, these parameters must be estimated to

complete the model. The following are some offline strategies for parameter estimation

of the DM. In some cases, the unconditional likelihood py1:n|ϕ(y1:n) can be obtained

directly by marginalising out the state vector x1:n:

py1:n|ϕ(y1:n) =

∫
px1:n,y1:n|ϕ(x1:n, y1:n)dx1:n (2.75)

This can be done in the DLM thanks to the linear and Gaussian form (Brockwell and

Davis, 2002,chap. 8). Then, MCMC or MLE can be applied to estimate ϕ.

Another solution is using MCMC iteratively on pϕ|x1:n,y1:n(·) and px1:n|ϕ,y1:n(·) (the

MLE can also obtained in this manner by an iterative optimisation). The forward

filtering backward sampling (FFBS) scheme for px1:n|ϕ,y1:n(·) can be done exactly in

the DLM (Carter and Kohn, 1994), or approximately in the (non-linear) DM (Niemi,

2010). Shephard and Pitt (1997) divide the vector x1:n into small blocks and updates

each block one by one by MCMC.

In a different light, Andrieu et al. (2010) employ the particle filter as a natural

proposal to complement the MCMC method (particle Markov chain Monte Carlo -

PMCMC ); there are some strategies to deal with the strong correlation of x1:n and ϕ,

e.g. update both variables jointly. The iterated filtering method, proposed by Ionides

et al. (2011), resorts to the gradient-based optimisation for the MLE where the gradient

is approximated by the use of the particle filter in each iteration.

There is also the non-sampling method, integrated nested Laplace approximations

(INLA) (Rue et al., 2009), in which a grid of the approximate density p̃ϕ|y1:n(·) is given
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by:

p̃ϕ|y1:n(ϕ) ∝ px1:n,y1:n,ϕ(x1:n, y1:n, ϕ)

p̃x1:n|y1:n,ϕ(x1:n)
(2.76)

where p̃x1:n|y1:n,ϕ(·) is an approximation of px1:n|y1:n,ϕ(·), e.g. by normal approximation.

The density of marginal interests x1:n, p̃x1:n|y1:n(x1:n), is the weighted sum with respect

to the grid:

p̃x1:n|y1:n(x1:n) =
∑
i

p̃x1:n|y1:n,ϕi(x1:n)p̃ϕ|y1:n(ϕi) (2.77)

Sequential inference of the DM is notoriously difficult and is discussed in the next

section.

2.5 Sequential inference

This section focuses on sequential inference of the filtering problem (usually, the pre-

diction problem can be solved easily after the filtering is done). In the case of fixed

parameters, the classical Kalman filter for the DLM and the particle filter for the DM

are summarised in Section 2.5.1. Several existing methods for the combined sequential

inference of the state vector and parameters are discussed in Section 2.5.2.

2.5.1 The Kalman filter and particle filter

The Kalman filter for the DLM

For the DLM defined in Equation (2.67), the Kalman filter is a classic exact method.

Assume that at time t, the filtering density pxt|y1:t(·) is N(·|µ = at,Σ = Pt) (for t = 0,

an initial density px0(·) = N(·|µ = a0,Σ = P0) can be used). The Kalman filter

(Kalman, 1960) updates the filtering density by Algorithm 8.

The formulae of the means and variances, at, bt, ct, Pt, Rt and St, can be derived

by using the linearity and normal assumptions (West and Harrison, 1997,chap. 4).

The Kalman filter can also be generalised for the DLM with white noises ut and vt

(uncorrelated random variables with zero-mean and constant variance - which are not

necessarily iid or normal). All the formulae of the means and variances remain the

same but the densities do not follow the normal distribution any more. The proof
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Algorithm 8 The Kalman filter

1. Obtain the 1-step state prediction density pxt+1|y1:t(·), which has the form N(·|µ =

bt,Σ = Rt).

2. The 1-step observation prediction density pyt+1|y1:t(·) also follows N(·|µ = ct,Σ =

St).

3. Combine the prior pxt+1|y1:t(·) and the likelihood pyt+1|xt+1(·) to update

pxt+1|y1:(t+1)
(·) = N(·|µ = at+1,Σ = Pt+1).

for the white noise Kalman filter is based on best linear predictor and is referred to

Brockwell and Davis (2002,chap. 8).

The Kalman filter can be used as an approximate solution for the (non-linear) DM

too. Assume that the state equation is xt = g(xt−1) +ut. The non-linear function g(x)

can be linearised by a Taylor expansion at s:

g(x) ≈ g(s) +
∂g(x)

∂x

∣∣∣∣
x=s

(x− s), (2.78)

and so is the function f(x) of the observation equation: yt = f(xt) + vt. Then,

the Kalman filter can be applied to the linearised model. This scheme is called the

extended Kalman filter (EKF) (Arulampalam et al., 2002). Details about EKF and

another well-known extension, the unscented Kalman filter (UKF), can be found in

Julier and Uhlmann (1997); Wan and Merwe (2000); Haykin (2001).

The particle filter for the DM

A very common method for the general DM, defined in Equation (2.70), is the particle

filter method (Doucet, Godsill and Andrieu, 2000; Prado and West, 2010; Doucet and

Johansen, 2011). Based on importance sampling, the filtering density of the whole

sequence, px1:t|y1:t(·), can be approximated by n samples x1:t,j with normalised weights

wn;t,j from a non-normalised proposal density qr;x1:t|y1:t(·):

px1:t|y1:t(x1:t) ≈ p̃x1:t|y1:t(x1:t) =
n∑
j=1

wn;t,j1(x1:t = x1:t,j), (2.79)
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where the proposal density has a special form:

qr;x1:t|y1:t(x1:t) = qr;x1|y1(x1)
t∏
i=2

qr;xi|xi−1,yi(xi). (2.80)

Notice that px1:t|y1:t(x1:t) ∝ qx1:t(x1:t)qy1:t|x1:t(y1:t). So, the weight function wt(x1:t)

can be defined as:

wt(x1:t) =
qx1:t(x1:t)qy1:t|x1:t(y1:t)

qr;x1:t|y1:t(x1:t)
(2.81)

=
qx1(x1)qy1|x1(y1)

qr;x1|y1(x1)

t∏
i=2

qxi|xi−1
(xi)qyi|xi(yi)

qr;xi|xi−1;yi(x1)

= w1(x1)
t∏
i=2

αi(xi)

= wt−1(x1:(t−1))αt(xt),

where αi(xi) is called the increment weight. The particle weights are then:

wt,j = wt(x1:t,j) (2.82)

= wt−1(x1:(t−1),j)αt(xt,j)

= wt−1,jαt,j,

wn;t,j =
wt,j∑
k wt,k

. (2.83)

Thanks to the recursive form of Equations (2.80) and (2.82), the sequential proce-

dure for the approximation of Equation (2.79) is in Algorithm 9.

Algorithm 9 The particle filter

1. At time t = 1, generate n samples x1,j from qr;x1|y1(·). Calculate the weights

wn;1,j and w1,j.

2. At time t ≥ 2, conditioning on the sample x1:(t−1),j, sample xt,j from

qr;xt|xt−1=xt−1,j ,yt(·). Calculate the weights wn;t,j and wt,j by the recursive form.

Theoretically, the particle filter is a Monte Carlo method and hence provides a

asymptotically converged approximation. Practically, as the space of the sequence

x1:t increases with t, it would be impossible to explore such a high dimensional space

with a reasonable number of particles. So, the approximation of the whole sequence

41



in Equation (2.79) is never accurate (this point will be revisited in the discussion of

degeneracy). Still, the filtering approximation at time t, p̃xt|y1:t(·), may be reasonable.

Degeneracy, optimal importance function and resampling

The degeneracy problem becomes much more severe in the sequential setting and is

recognised in two ways. Firstly, like importance sampling, the weights become un-

balanced (the variance of wt(x1:t) increases) and eventually only some particles have

significant weights. Practically, there is no solution for this issue; still, there is a sub-

optimal approach by balancing the increment weight αi(·). If the proposal function is

chosen that qr;xt|xt−1,yt(·) = qxt|xt−1,yt(·) then conditioning on xt−1, the variance of the

increment weight αt(·) is zero (again, the variance of wt(·) is not zero) (Doucet, Godsill

and Andrieu, 2000):

Varxt|xt−1,yt(αt(xt)) = 0. (2.84)

In that case, the proposal is called the optimal importance function.

If direct sampling and evaluation of pxt|xt−1,yt(·) is available, e.g. in the situation

where the observation equation is linear and both two equations follow normal distri-

bution, then the optimal importance sampling is computationally efficient. Otherwise,

an extra cost of approximating the optimal importance function, e.g. by the Laplace

approximation, must be paid; which is highly priced as it is done conditioning on each

previous particle xt−1,j.

Secondly, it is observed that for a large enough t, almost all the particles x1:t,j share

the same root path x1:k,j, i.e. the density px1:k|y1:t(·) (k < t) is approximated by a

few, if not a single, distinct particles x1:k,j (Andrieu et al., 2005). So, the approximate

filtering density of pxk|y1:k(·) almost does not have any effect on sequential inference of

pxt|y1:t(·).

Resampling is another approach to balance the weights. In the particle filter pro-

cedure, x1:t,j can be resampled with weights wn;t,j (multinomial sampling) and the

weights are reset to 1/n. This trivially fakes equal weights; but not by any means,

does it imply that the particles become ”better” (all the particles may admit the same

path). Resampling simply removes the particles of small weights and gives preference

to the rest. However, it is possible that a particle of small weight at time t can lead to

a significant particle at time t+ 1.
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The auxiliary particle filter

The key point in the particle filter is to propose some samples xt ”suitable” for the

new data yt at time t. If these samples are far from truth (e.g. they cannot cover the

95% probability interval of the density pxt|y1:t(·)), the particles degenerate.

Intuitively, the optimal importance sampling tries to generate the most suitable

samples xt, conditioning on xt−1 and the new observation yt. On the other hand, the

auxiliary particle filter (Pitt and Shephard, 1999) improves the original method in a

different direction: selecting the particles xt−1,j most ”compatible” to yt. Assuming

the filtering density at time t− 1 is:

pxt−1|y1:(t−1)
(xt−1) ≈ p̃xt−1|y1:(t−1)

(xt−1) =
n∑
j=1

wn;t−1,j1(xt−1 = xt−1,j), (2.85)

this method adds a new auxiliary random variable k for selecting a particle xt−1,k among

xt−1,j (j = 1 : n) with weights wn;t−1,j. The approximate full density for (k, xt, yt) is:

q̃k,xt,yt|y1:(t−1)
(k, xt, yt) = wn;t−1,kqxt|xt−1=xt−1,k

(xt)qyt|xt(yt), (2.86)

and the posterior is q̃k,xt|y1:t(k, xt) ∝ q̃k,xt,yt|y1:(t−1)
(k, xt, yt). An auxiliary particle filter

uses importance sampling on (k, xt) with a proposal:

qr;k,xt|y1:t(k, xt) = qr;k|y1:t(k)qr;xt|xt−1=xt−1,k,yt(xt) (2.87)

= wn;t−1,kfr;yt|xt−1=xt−1,k
(yt)qr;xt|xt−1=xt−1,k,yt(xt), (2.88)

The weight function is then:

wt(k, xt) =
qxt|xt−1=xt−1,k

(xt)qyt|xt(yt)

fr;yt|xt−1=xt−1,k
(yt)qr;xt|xt−1=xt−1,k;yt(xt)

. (2.89)

For this method, the best proposal is fr;yt|xt−1(·) = qyt|xt−1(·) and qr;xt|xt−1,yt(·) =

qxt|xt−1,yt(·) (functional approximation may be used if the closed form formulae are

not available), in which the variance of wt(k, xt) is zero. Another popular choice is

fr;yt|xt−1(·) = qyt|xt=m(xt−1)(·) and qr;xt|xt−1,yt(·) = qxt|xt−1(·), where m(xt−1) is a mean,

mode or median of qxt|xt−1(·) (a function of xt−1).

An improved version of this method, utilising the look-ahead strategy, is discussed

in Carpenter et al. (1999) and Doucet and Johansen (2011). In another popular par-

ticle filter, the Rao-Blackwell particle filter (Doucet, de Freitas, Murphy and Russell,

2000; Murphy and Russell, 2001; Doucet and Johansen, 2011), the state vector xt is
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partitioned as (ut, vt) where the particle filter is used for pu1:t|y1:t(·) and the Kalman

filter is used for the conditional density pvt|u1:t,y1:t(·). Hence, the estimated filtering

density is:

p̃ut,vt|y1:t(ut, vt) =
n∑
j=1

wn;t,j1(ut = ut,j)pvt|ut=ut,j ,y1:t(vt). (2.90)

This method is feasible under certain conditions, yielding a better estimator (with

smaller variance) by the Rao-Blackwell theorem (Casella and Berger, 2002,chap. 7).

2.5.2 Sequential parameter estimation

The focus of this section is turned to the DM with unknown parameters, characterised

by Equation (2.70). The prior for ϕ is pϕ(·). Ultimately, statisticians are interested in

the sequential update of the density pxt,ϕ|y1:t(·)

One might want to apply the particle filter directly to px1:t,ϕ|y1:t(·), i.e. sample

(x1,j, ϕj) to approximate px1,ϕ|y1(·) and then use importance sampling iteratively for

the sequence of densities px1:t|y1:t,ϕ(·). However, by this approach, the samples ϕj are

never regenerated at each time point (only xt,j are generated at time t). As the density

pϕ|y1:t(·) is usually much different from the proposal density pϕ|y1(·), degeneracy will

surely occur to ϕ, i.e. pϕ|y1:t(·) may be only approximated by a single particle ϕj.

A simple treatment to this problem is to serialise the parameter vector, i.e. creating

an artificial evolution for ϕ:

yt ∼ pyt|xt,ϕt(·), (2.91)

xt ∼ pxt|xt−1,ϕt(·), (2.92)

ϕt = ϕt−1 + wt. (2.93)

However, there are some issues for this artificial dynamic (Kantas et al., 2009). Firstly,

the model is changed, allowing the parameter to adjust at each time. Consequently the

density pϕt|y1:t(·) may be completely different from the density pϕ|y1:t(·) of the original

model. Next, even if this modification is accepted, one still have the question of

choosing an appropriate random noise wt for the parameter evolution. Finally, by

using a random walk with independent noise wt, the density pϕt|y1:(t−1)
(·) becomes over-

dispersed, compared to the density pϕt−1|y1:(t−1)
(·). Notice that this artificial evolution
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is equivalent to using a kernel density estimator for pϕ|y1:t(·) at each time point by some

works.

Liu and West’s method

Based on the work of West (1993), Liu and West (2001) proposed a filtering method

for both the parameters and the state vector, solving the last two issues of the artificial

evolution. Let the sample mean and the sample variance-covariance matrix of the

density pϕt−1|y1:(t−1)
(·) be µϕ;t−1 and Σϕ;t−1 (obtained by the particles at time t − 1).

Instead of using the random walk in Equation (2.93), Liu and West shrink the current

parameter value towards the mean:

ϕt = aϕt−1 + (1− a)µϕ;t−1 + wt, (2.94)

where a is a predefined value (0 < a < 1) and the variance of the noise wt is Σw;t =

(1 − a2)Σϕ;t−1. Consequently, it can be proved that the variances of pϕt|y1:(t−1)
(·) and

pϕt−1|y1:(t−1)
(·) are equal.

There are some notable points about this method. Shrinking modifies the shape

of the filtering density and the particles are still allowed to adjust at each time with

a bias towards the sample mean. Critically, when the degeneracy actually occurs (few

particles with significant weights at time t− 1), the sample variance Σϕ;t−1 underesti-

mates the true variance and is very small; so is the noise variance of wt, limiting the

original purpose of the artificial evolution: the parameter regeneration. In the worst

case where there is only one significant sample ϕt−1,j, the parameter will never ever

regenerate.

The particle filter and sufficient statistics

Fearnhead (2002), or similarly Storvik (2002), proposed a sequential inference method

for both the state and the parameter vectors, exploiting the sufficiency property. As-

sume that a sufficient statistic st = st(x1:t, y1:t) is available for the parameter vector

ϕ:

pϕ|x1:t,y1:t(·) = pϕ|st(·), (2.95)

and for the computational efficiency, there should exist an update function for the

sufficient statistic: st = f(xt, yt, st−1).
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At time t−1, the density px1:(t−1),st−1|y1:(t−1)
(·) is approximated by particles (x1:(t−1),j,

st−1,j) with weights wn;t−1,j:

px1:(t−1),st−1|y1:(t−1)
(x1:(t−1), st−1) ≈ p̃x1:(t−1),st−1|y1:(t−1)

(x1:(t−1), st−1) (2.96)

=
n∑
j=1

wn;t−1,j1((x1:(t−1), st−1) = (x1:(t−1),j, st−1,j))

Importance sampling is then applied to the density:

p̃x1:t,ϕ|y1:t(x1:t, ϕ) ∝ p̃x1:(t−1)|y1:(t−1)
(x1:(t−1))pϕ|st−1(ϕ)pxt|xt−1,ϕ(xt)pyt|xt,ϕ(yt) (2.97)

to obtain samples (x1:t,j, ϕj) with weights wn;t,j. Next, the sufficient statistic is updated

by st,j = f(xt,j, yt, st−1,j) and the new particles are (x1:t,j, st,j). Notice that in this

method, ϕj are generated directly and exactly from the density pϕ|st−1(ϕ).

Carvalho et al. (2010) combine the sufficient statistic with the auxiliary particle

filter . In certain conditions (the observation equation is linear and iid random noises

follows the normal distribution), the best proposal for the auxiliary particle filter can

be used as mentioned in Section 2.5.1.

However, these sufficient statistics approaches are not robust due to the path de-

generacy of the particle filter. Implicitly, the sample sufficient statistics st,j depend

on the whole sample paths x1:t,j, many of which share a long but similar sub-path.

These paths usually only diverge near the current time point t, contributing to the

variation of st,j (Andrieu et al., 2005; Kantas et al., 2009). This may in turn lead to

a poor approximation of p̃ϕ|y1:t(·). Another problem is the dimension of the sufficient

statistic vector st, which may be very large in some cases, e.g. a matrix parameter

with a quadratic form. The longer the statistic vector, the more particles are needed,

reducing the computational efficiency of the online method.

2.6 Conclusion

In this chapter, Bayesian statistics and some basic concepts have been reviewed. We

have gone through two popular classes of statistical methods, Monte Carlo methods

and functional approximations, for the evaluation of expectations and integrals, usually

representing as mathematical forms of interested problems. For the spatial-temporal

modelling in general and the transportation modelling specifically, some well-known
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time series models have been explored. Also, we have summarised several sequential

inference techniques as essential tools of real-time statistical applications. It is noted

that the degeneracy is the cause of the instability of the particle filter, especially in the

case of unknown parameters. In the next chapter, we will survey the transportation

networks and some related issues, including the short term traffic flow forecasting.
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Chapter 3

Transportation networks and some

related problems

This chapter will introduce intelligent transportation systems (ITS) as very powerful

tools of transportation management. Then, we will summarise some popular models

for the short term traffic flow forecasting problem. Finally, the signal control and the

vehicle counting problems are discussed for the sake of subsequent chapters.

3.1 Intelligent transport system

Over the past few decades, the blooming increase of transportation means and the in-

frastructure development has made the problem of planning and managing the trans-

port networks much more complex. This requires powerful transportation manage-

ment systems which are capable of accommodating various needs of million users.

Fortunately, thanks to technology advances, intelligent transportation systems have

emerged as potential tools to this challenging problem. The success of ITS is enabled

by the following technologies:

• The most important module in ITS is the data collection which is available from

traffic detectors in the transport networks. They can provide varied information

such as flow, speed, density and so on to other ITS modules for data analysis.

Furthermore, global positioning systems (GPS) have become cheaper and more

popular, making it feasible to obtain seamless tracking information of vehicles

in traffic networks. Also, with the support of computer vision techniques, smart
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cameras have been used to capture and process complete visual information with

better coverage, e.g. counting the number of vehicles in a link and evaluating

congestion levels.

• After being recorded, data must be relayed to a system centre for analysis. Wire-

less networks have improved so that transmitting such data only takes millisec-

onds (or seconds for visual data), making real-time information available to ITS.

With recent advances of wireless sensor networks, it is expected that sensor detec-

tors can be deployed without any prior network set-up; randomly located sensors

can automatically form a network backbone to relay data back to a system centre.

• Finally, ITS are supported by computation power and data storage which con-

tinue to grow significantly. Still, with such an enormous amount of data, the

computation power seems to be lagging behind. Hopefully, with growing re-

search in parallel systems and algorithms, real-time transportation services can

be accommodated.

In terms of functionality, example applications of ITS include:

• Search for the best transportation mode, route or parking location at a specific

time. These functionalities may be embedded into in-vehicle devices.

• On the system scale, optimise the transport performance for safety, pollution,

throughput, cost and congestion by different means such as traffic light signal,

message sign, radio service, etc.

• Detect and manage traffic incidents. For example, in the case of traffic accident,

ITS have to reroute traffic in the network, matching the traffic supplies and

demands.

• Enable the use of unique smart card for different transportation modes.

• For a smart car, provide the capabilities of warning and avoiding collision, mon-

itoring the driver behaviour for drowsiness, etc.

In the initial stage of ITS, some works directly used the current network state to

derive outputs (route choice, optimised traffic sequence, etc). However, in early reports,
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it was realised that the full potential of ITS is only realised if the short term forecasting

of the network state is continuously updated, i.e. route optimisation in the next two

hours should use the network state information in two hours as inputs, instead of the

current state information. By taking into account traffic dynamics from the current

moment to the near future, this approach may yield better performance. Hence, aside

from end services, ITS also include intermediate modules which provide derived data

to other modules as inputs.

The following is a short list of special terms in transportation, which are necessary

for later discussion:

• A (traffic) flow is defined as the number of vehicles passing a detector in a link

during a unit time period. For a link with multiple lanes, flows can be counted

for each lane or aggregated for the whole link.

• Speed (time mean speed) is defined as the average velocity of vehicles passing a

detector during a unit time period.

• Time occupancy : When vehicles pass a specific detector in a time period T, the

percentage of time that detector is occupied is called time occupancy. If the

length and the speed of vehicle i passing a detector in time period T are vi, li

and the detector length is ld, then the time occupancy is ot =
∑

i(li + ld)/(viT )).

• Space occupancy : In a link with multiple lanes, the percentage of the road length

occupied by vehicles with respect to the total length is called space occupancy.

• Density is the ratio of the number of vehicles occupying a link to the total length

of that link.

The theory of transportation and ITS is described further in Roess et al. (2004)

and Slinn et al. (2005). For interested readers, more discussion of ITS can be found

in Ghosh and Lee (2000). This thesis only focuses on the short term flow forecasting

(STFF) of transportation networks.

3.2 STFF modelling

In this section, we will summarise some of the work on STFF. For an overview of STFF

models and other transportation aspects of STFF, such as data resolution, variable
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types and implementation characteristics, please refer to Vlahogianni et al. (2004)

and Chang et al. (2011). The meanings of notations for each following model are

independent as they can overlap.

ARMA models

Classical time series modelling is one of the dominant approaches in STFF. Different

variants of the ARMA have been proposed, including the simple ARMA model with

differenced series (Ahmed and Cook, 1979; Hamed et al., 1995), the seasonal ARMA

model (using the multiplicative form and seasonal difference operator) (Williams and

Hoel, 2003; Ghosh et al., 2007) and the VAR model (Chandra and Al-Deek, 2009).

Let zt be a univariate traffic flow at time t. In Ahmed and Cook (1979) and Hamed

et al. (1995), the ARMA model is applied to the univariate differenced series yt = 5dzt:

µ(B)5d zt = ¨(B)et (3.1)

⇔ yt −
p∑
i=1

φiyt−i = et +

q∑
j=1

θjet−j.

In that case, it is said that zt follows the autoregressive integrated moving average

model, ARIMA(p, d, q). Williams and Hoel (2003) and Ghosh et al. (2007) use the

seasonal autoregressive integrated moving average model, SARIMA(p, d, q)(ps, ds, qs)s

by taking into account a seasonal pattern with a period s. The multiplicative SARIMA

is as follows:

µ(B)µs(B
s)5d5ds

s zt = ¨(B)¨s(B
s)et, (3.2)

with the seasonal polynomials µs(B
s) and ¨s(B

s) of the sth backward operator Bs:

µs(B
s) = 1−

ps∑
i=1

φs;i B
si, (3.3)

¨s(B
s) = 1−

qs∑
i=1

θs;i B
si . (3.4)

The orders d and ds of the difference operators are usually found by a preliminary

analysis of autocorrelation. Basically, the original flow zt is differenced so that the

autocorrelation of the transformed series yt is similar to that of the ARMA model.

Instead of using difference operator, Hu et al. (2011) use the historical daily mean
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and model residuals with the ARMA. The usage of daily mean is similar to the MP

preprocessing method in this thesis and Mai et al. (2012).

Despite much research on univariate ARMA variants for STFF, there are very few

works on the multivariate VARMA. According to our knowledge, Chandra and Al-Deek

(2009) are the first to apply the vector autoregressive model (VAR), which is a special

case of the VARMA model, to STFF, exploiting the spatial correlation of traffic flows

in various locations of a transportation network (zt is then a vector variable of traffic

flows). In this work, the trend and seasonality of the flow series are also eliminated by

the difference operator. Recently, Min and Wynter (2011) proposed using geographical

information of transportation networks in the AR and MA matrices of the VARMA

model to reduce the number of unknown parameters. Still, only the result of the VAR

model fit was reported in the evaluation part.

Most ARMA models in STFF are inferred by the MLE method. The only work

with Bayesian inference that we are aware of is Ghosh et al. (2007) in which the

authors implement MCMC for the SARIMA(1, 0, 0)(0, 1, 1)s by using an approximated

likelihood. In terms of forecasting error, generally, it has been reported that the VAR

model gives better prediction than the univariate ARMA model and exploiting the

seasonal pattern by the s-lagged difference operator yields better performance. Detailed

discussion of the ARMA model for STFF is deferred until Chapter 4.

DLMs

Ghosh et al. (2009) use a DLM model for a univariate flow zt as follows:

zt = µt +

bs/2c∑
j=1

γt,j + βTxt + vt, (3.5)

µt = µt−1 + wt, (3.6)γt,j
γ?t,j

 =

 cosλj sinλj

− sinλj cosλj

γt−1,j

γ?t−1,j

+ et,j, (3.7)

with the seasonal period s; λj = 2πj/s (i = 1 : bs/2c); vt
iid∼ N(0, σ2

v); wt
iid∼ N(0, σ2

w);

et,j
iid∼ N(0,Σe); xt is a vector of known explanatory variables (previous upstream flows

at time t− k used as covariates at time t) with its corresponding coefficient vector β.

In this model, µt can be interpreted as a dynamic bias corresponding to network state.

Without the random noise et, the variables γt,j and γ?t,j are exactly cyclical with respect
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Fig. 3.1: A DAG of traffic flows in transportation networks.

to a time period s/j (the linear transformation is a rotation with angle λj). By using

et,j, the magnitude of the cyclic function can be adapted to transportation networks.

The parameters σ2
v , σ

2
w, Σe and β are estimated offline by the MLE; then with fixed

parameters, the state vector (µt, γt,1:bs/2c, γ
?
t,1:bs/2c) can be inferred by the Kalman filter.

Different from the above model, Tebaldi et al. (2002) use a cubic spline for the daily

pattern and allow the linear coefficients of explanatory variables to be time-dependent.

Let d and t be the day and time-within-day indices. Tebaldi et al. (2002) model a

traffic flow zd,t as:

zd,t = αTd yd,t + βTd,txd,t + vd,t, (3.8)

βd,t = βd,t−1 + wd,t, (3.9)

with vd,t
iid∼ N(0, σ2

v); wd,t
iid∼ N(0,Σw). The daily pattern is modelled by the cubic

spline part αTd yd,t in which a bias term is dependent on the day d. For example, if

there are two terminal knots at t0 = 0 and t3 = 288 and two inner knots at t1 = 60

and t2 = 150, then the covariate vector is yd,t = (1, t, t2, t3, (t − t1)3
+, (t − t2)3

+) and

its corresponding coefficient is αd = (φd, θ1:5). If information about previous upstream

flows xd,t (previous upstream flows at time t−k used as covariates at time t) is available,

its contribution is modelled by the dynamic linear combination βTd,txd,t.

Bayesian sequential inference is used for this DLM model. The discount method

(West and Harrison, 1997; Prado and West, 2010) is applied to Σw and a conjugate

prior (inverse gamma distribution) is used on σ2
v . Notice that for the Kalman filter, the

state vector of this model is (αd, βd,t) in which the variable αd does not evolve (fixed).

Another notable work of the DLM in STFF is the linear multiregression dynamic

model (LMDM) (Queen and Albers, 2009; Anacleto Junior et al., 2013b). In this work,

a transportation network is represented by a DAG where each node corresponds to an

observed traffic flow. For example, Figure 3.1 shows a traffic flow zt,1 forking into two

branches zt,2 and zt,3 (For this model, zt,i is a flow at location i and time t) . The
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nodes are divided into three categories: root nodes, children nodes and derived nodes:

a root node is a node without upstream information (zt,1 in Figure 3.1) and is modelled

completely based on its previous flow values; a child node with upstream information

(zt,2 in Figure 3.1) is modelled as a dynamic linear combination of instantaneous parent

flows and a derived node is calculated directly and deterministically, conditioning on

its parent and sibling nodes (zt,3 = zt,1 − zt,2, in Figure 3.1).

Assume that the seasonal period is s. The model of a root node zt,i is:

zt,i = αt,i,1 + vt,i, (3.10)

αt,i,1:s =



a (1− a) 0 . . . 0 0

0 0 1 . . . 0 0

. . . . . . . . . . . . . . . . .

0 0 0 . . . 0 1

1 0 0 . . . 0 0


αt−1,i,1:s +



wt,i

0

. .

0

0


, (3.11)

where vt,i
iid∼ N(0, σ2

vi
); wt,i

iid∼ N(0, σ2
wi

); a is a predefined value; αt,i,1:s = (αt,i,1, ..., αt,i,s).

Intuitively, the vector αt,i,1:s is a revolving flow vector for a full day. A child node is

modelled as:

zt,i = ΦT
t,i,1:dx,1xt,i + vt,i, (3.12)

ΦT
t,i,j,1:s =



0 1 0 . . . 0 0

0 0 1 . . . 0 0

. . . . . . . . . . . . .

0 0 0 . . . 0 1

1 0 0 . . . 0 0


ΦT
t−1,i,j,1:s +



wt,i,j

0

. . .

0

0


, (3.13)

where Φt,i,1:dx,k, Φt,i,j,1:s are a column and a row of a dx×s matrix Φt,i,1:dx,1:s (dim(xt,i) =

dx); vt,i
iid∼ N(0, σ2

vi
); wt,i,j

iid∼ N(0, σ2
wi,j

). The instantaneous parent flow vector xt,i

(flows at time t) is linearly combined with the coefficient vector Φt,i,1:dx,1. Each element

of the coefficient vector is revolving by a daily pattern of Equation (3.13).

Each sub-model is a DLM. Hence, conditioning on all the flows z1:t,i (1 ≤ i ≤ nl),

the filtering of the state, αt,i,1:s and Φt,i,1:dx,1:s, can be carried out sequentially. The

discount method is used for the evolution variance and a conjugate prior (gamma dis-

tribution) can be used for the observation variance. For the forecasting, the prediction
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densities of root-nodes follow normal distributions but the marginal prediction densi-

ties of children nodes are non-trivial. So, for this purpose, the prediction means and

variances of children nodes are evaluated recursively from root nodes by using the

conditional expectation and variance formulae:

Ex(x) = Ey(Ex|y(x)), (3.14)

Varx(x) = Vary(Ex|y(x)) + Ey(Varx|y(x)), (3.15)

of two random variables x, y.

Queen et al. (2007) discuss in details the modelling of traffic networks using DAG

by the same LMDM. However, modelling equations for root nodes and child nodes are

different from Equations (3.10) and (3.12).

Even though these works belong to the DLM, the interpretation of each model is

quite different. Compared to ARMA models, these models focus on the mean of the

traffic flow, taking into account the seasonal traffic pattern. Further discussion of the

DLM (and the DM) is in Chapter 6.

Neural networks

The Neural network model (NN ) is another popular modelling class in STFF. The

probability representation of a two-layer NN for an output flow zt with an input vector

xt of length dx and du2 hidden units u2,i is:

zt = f(xt, β) + vt = u3,1 + vt, (3.16)

u3,1 = g3,1(β3,1,0 + βT3,1,1:du2
u2,1:du2

)

= g3,1(βT3,1,0:du2
u2,0:du2

), (3.17)

u2,i = g2,i(β2,i,0 + βT2,i,1:dxxt)

= g2,i(β
T
2,1,0:dxu1,0:dx), (3.18)

where β = (β2,1,0:dx , ..., β2,du2 ,0:dx , β3,1,0:du2
); vt

iid∼ N(0, σ2
v). The activation function for

the output unit in STFF is usually the identity function: g3,1(y) = y; for hidden units,

the activation g2,i is either the Gaussian function or the tanh function. Notice that by

this definition, the NN is not a time-dependent model (every data point is treated as

an iid sample).
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Details about the NN model can be found in Bishop (2006,chap. 5). The parameter

vector β is estimated by minimising the sum of squared error (equivalent to the MLE

method). An advantageous point of the NN model is that derivatives of f(xt, β) with

respect to β can be obtained computationally efficiently by the chain rule (and hence

the derivatives of the sum of squared error). Then, an optimisation procedure such as

gradient or Newton methods can be used for parameter estimation.

In STFF context, the input vector xt may include previous traffic flows at the

same location as the output (Chen and Grant-Muller, 2001), traffic flows at various

sites (Vlahogianni et al., 2005) and other traffic variables such as speed and occupancy

(Dougherty and Cobbett, 1997; Zhang, 2000). Chen and Grant-Muller (2001) apply a

rule to increase the number of hidden units when the error prediction by the current

model exceeds a predefined threshold. Chen et al. (2001) use the NN to classify the

network state first and then fit either a ARMA or another NN for the traffic flow in

that state.

The most important problem of the NN is the ambiguity in model interpretation.

Aside from understanding that each hidden unit acts as a basis function in linear

regression, it is almost impossible to interpret the meaning of each hidden unit. This

issue becomes more notable when multiple NN layers are used. Without understanding

the relation between variables, it is very difficult to analyse a model and propose a

better one. Also, the sequential variant of the NN estimation is questionable in terms

of convergence. Instead of minimising the sum of squared error for all data points,

the sequential procedure only minimises the error of the newest data point by using a

previous optimisation value as a starting point.

Finite mixture of distributions

In Sun et al. (2006), previous flows zt−1 and previous upstream flows zu;t−1 are used in

one-step prediction of zt by finite mixture of Gaussian distributions. Let yt = zt and

xt = (zt−1, zu;t−1). The modelling of Sun et al. (2006) is as follows:

pxt,yt|w,µ,Σ(xt, yt) =
m∑
i=1

wiN(xt, yt|µi,Σi), (3.19)

with normalized weights w, normal means µ1:m and variances Σ1:m, which are esti-

mated by a modified Expectation-Maximisation (EM) algorithm. All the observations
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(xt, yt) are iid samples from the above distribution, which may not portray the tem-

poral dynamics of traffic flows. Also, in this modelling, there is a potential statistical

inconsistency as pzt and pzt−1 may have different marginal mixture distributions which

should be identical according the iid assumption.

Nonparametric approaches

Aside from the above approaches in STFF, Smith et al. (2002) and Clark (2003) use

the k-nearest neighbour method (kNN) (Härdle, 2004) for a regression problem of an

output flow zt and a covariate vector xt. The covariate vector xt may include previous

flows, speed and occupancy. Then, given a new covariate xt′ , the estimated flow ẑt′ is:

ẑt′ =
∑
t∈K

ztαt,t′ , (3.20)

with K is an index list of k-nearest neighbours of xt′ ;
∑

t∈K αt,t′ = 1. Despite being

robust, these nonparametric approaches may need a lot of data and may be quite slow.

It is seen that the kNN does not consider the time dynamic of the traffic networks.

Multi-step-ahead forecasting

Among all the above works, only a few works analyse and report the multi-step-ahead

forecasting, e.g. Tebaldi et al. (2002); Ghosh et al. (2009) and Min and Wynter (2011).

Personally, we think that multi-step-ahead forecasting module must be implemented

to fully support functionalities of ITS (e.g. find a best route in the next two hours).

Hence, this issue will be discussed later in Chapters 4 and 6.

3.3 Related transportation problems

This section illustrates two related problems in ITS which may motivate STFF mod-

elling.

Road traffic control

The first problem we look at is the traffic signal control optimisation (Papageorgiou

et al., 2003). However, we will only focus on the modelling of urban transportation

networks, not the optimisation method. In Aboudolas et al. (2009) and Aboudolas
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Fig. 3.2: An illustrated traffic network for the model in Aboudolas et al. (2010) with

inflow z1;t,i, outflow z2;t,i, demand-flow z3;t,i, exit-flow z4;t,i, turning rate βi′,i and the

number of vehicles within a link νt,i. Green circles denote the detector locations for

inflows and outflows.

et al. (2010), a deterministic model is used for a urban transportation network of links

i (1 ≤ i ≤ nl). A link in this work is a whole road link connecting two junctions, not

a segment of a road.

Denote Bi as the set of immediate upstream links i′ of link i (a traffic flow comes

from link i to link i′ through a connecting junction); z1;t,i, z2;t,i, z3;t,i and z4;t,i are the

inflow, the outflow, the demand-flow and the exit-flow of link i at time t (a demand-

flow of a link accounts for the vehicles coming from car parking, houses to that link;

an exit-flow is for vehicles stopping at that link); νt,i is the number of vehicles within

link i at the end of time t.

In a signal cycle of length c, a traffic signal sequence is divided into many stages k

of green time and the green time of stage k of junction j is gj,k. For a link i and its

immediate downstream junction j2;i, Di is the set of signal stages of junction j2;i that

link i has its right of way.

The dynamic of link i is modelled by the following conservation equation:

νt,i = νt−1,i + z1;t,i − z2;t,i + z3;t,i − z4;t,i. (3.21)

The demand-flow z3;t,i is assumed to be known and the exit-flow is proportional to the

inflow:

z4;t,i = αiz1;t,i, (3.22)

59



with a known exit rate αi. The inflow of link i is in turn the sum of all flows coming

from the upstream links i′ ∈ Bi:

z1;t,i =
∑
i′∈Bi

βi′,iz2;t,i′ , (3.23)

where βi′,i is the turning rate from link i′ to link i. Finally, the outflow z2;t,i is modelled

as

z2;t,i =
γi(
∑

k∈Di
gj2;i,k)

c
, (3.24)

with a known saturation flow γi. The multivariate version of Equation (3.21) for all

the links is:

νt,1:nl = νt−1,1:nl + Ag + z3;t,1:nl , (3.25)

where the matrix A can be obtained from Equations (3.21) to (3.24); g is the vector

of all green time gj,k. Equation (3.25) is then used to optimise some criteria to obtain

the best green time g.

Two notable remarks of this deterministic model are the introduction of the variable

νt,i (the number of vehicles within a link) and the conservation equation. It turns

out later that the current number of vehicles νt−1,i is strongly related to the next

outflow z2;t,i and can be used as a very good regressor. Furthermore, for multi-step

ahead forecasting, we usually predict network state (t + 1) from state t and continue

the prediction of time (t + 2), conditionally based on the prediction at time (t + 1).

Whenever the prediction step increases, more network information is lost and the

uncertainty increases. Even though this fact always occurs with any model, we think

that the loss can be reduced by applying logical constraints of traffic theory. In this

model, the conservation equation is used and the network state is preserved to an

extent; vehicles in a network cannot disappear all of a sudden. A forecasting model

will be proposed in Chapter 6 based on these two remarks.

Estimating the number of vehicles within a link

The number of vehicles in a road signal control study may be observed directly by a

video detector. Though this approach is feasible thanks to computer vision techniques,

the implementation cost may not be affordable for large scale transportation networks

at the moment. Hence, there has been significant research on estimating this variable.
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Gazis and Liu (2003) use a different version of Equation (3.21), omitting the

demand-flow, exit-flow and adding uncertainty to the inflow and outflow observations:

νt,i = νt−1,i + z1;t,i − z2;t,i + w1;t,i − w2;t,i, (3.26)

where wj;t,i is a corresponding noise for zj;t,i. The density of link i is kt,i = νt,i/li with

the link length li; a constant known density of link i in free-flow condition is denoted by

kf ;i. The observed speed vt,i is then linked to the density by a well known relationship

in traffic theory:

vt,i = vf ;i exp

[
−1

2

(
kt,i
kf ;i

)2
]

+ et,i (3.27)

= f(νt,i) + et,i,

where vf ;i is a known free-flow speed of link i. Then, the EKF can be used for the

sequential inference of the DM defined by Equations (3.26) and (3.27).

Singh and Li (2012) use transformed log-speed for the linear observation equation

(instead of the non-linear Equation (3.27)) and investigates the estimation method for

the scenario of multilane link (with lane-changing property).

Papageorgiou and Vigos (2008) and Vigos and Papageorgiou (2010) use a different

relationship between νt,i and the observed time occupancy o1;t,i:

o1;t,i ≈ o2;t,i (3.28)

=
νt,ilv
limi

, (3.29)

where o2;t,i is the space occupancy of link i; lv is the average vehicle length; li and mi

are the link length and the number of lanes in the link. For interested readers, the

logical meaning of the approximation is discussed in Papageorgiou and Vigos (2008)

and Vigos and Papageorgiou (2010). It has also been reported that the error becomes

smaller if the approximation is used for smaller divided segments of a link and the

aggregated estimate is obtained by the sum of all element estimates.

So, with a transform function, the ”observed” (imaginary) number of vehicles νo;t,i

is related with the unknown state νt,i (true number of vehicles):

o1;t,ilimi

lv
= νo;t,i (3.30)

= νt,i + et,i, (3.31)
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where et,i is the observation error. The Kalman filter is then can be applied to Equa-

tions (3.26) and (3.30).

3.4 Conclusion

ITS has been briefly summarised in this chapter, with the dependency between ITS

applications and the short term forecasting models. For the specific STFF problem,

most of modelling classes are presented. Further discussion of the ARMA model and

the DM will be found in subsequent chapters. We have also mentioned two other

transportation problems: the traffic signal control optimisation and the estimation of

number of vehicles. These are related to the spatial temporal model in Chapter 6.
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Chapter 4

The VARMA model for the short

term traffic flow forecasting

In this chapter, we will apply the VARMA model to the STFF problem. Firstly,

the VARMA model is presented again with some modifications, regarding a sparse

form of the VARMA, a user-defined constraint on the AR and MA matrices and the

DLM-VARMA representation. For the statistical inference, the likelihood of the DLM-

VARMA representation and some useful transformations are derived; the Bayesian

inference is implemented by MCMC. Specifically, a MCMC scheme is proposed to han-

dle the serial correlation issue of the VARMA model. Then, two real datasets of traffic

flow zt,i in Dublin City centre will be described with a preliminary analysis of auto-

correlation. The residual yt,i is extracted from the flow zt,i by different preprocessing

procedures, e.g. using the difference operator or the daily mean, and modelled by the

VARMA model. Finally, we discuss and analyse the result of the multi-step-ahead

forecasting. The work in this chapter is being published in Mai et al. (2012) and Mai

et al. (2013).
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4.1 Bayesian inference for the VARMA model

As in Section 2.4.1, the VARMA model of a random vector yt = yt,1:dy at time t

(1 ≤ t ≤ n) is:

�(B)(yt − β) = �(B)et (4.1)

⇔ (yt − β)−
p∑
j=1

Φj(yt−j − β) = et +

q∑
j′=1

Θj′et−j′

where β is a mean vector of length dy; et
iid∼ N(0,Σe = Q−1

e ); each AR (or MA)

parameter, Φj (or Θj′) is a dy × dy matrix; �(B) (or �(B)) is a dy × dy matrix of

polynomials of the backward shift operator B: �(B) = Idy −
∑p

j=1 Φj Bj (�(B) =

Idy −
∑q

j′=1 Θj′ B
j′).

For a possible seasonal effect, e.g. an effect at periodic lag s, instead of using the

multiplicative form like Equation (3.2), we directly use a AR matrix Φs (or Θs). The

reason for this is that the MCMC can be implemented more efficiently, which will be

explained later. However, not all the matrices Φj (j = 1 : s) are needed as we only

want to include AR or MA matrices of lag j at which there is a possible influence of

yt−j or et−j to the current yt. Hence, for a sparse form of the VARMA model, define

sets P and Q where:

j ∈P ⇔ Φj 6= 0, (4.2)

j ∈ Q ⇔ Θj 6= 0. (4.3)

Note that p = max(P) and q = max(Q).

At lag j, the matrix element Φj,i,i′ (at row i and column i′) is the linear coefficient

of yt−j,i′ to yt,i, according to Equation (4.1). On a specific application, we may know

or assume whether such a linear effect of yt−j,i′ on yt,i exists. So, rather than using a

full matrix Φj, we can specify the locations of non-zero elements for the AR matrix Φj

by using an indicator matrix MΦ;j where:

MΦ;j,i,i′ = 1⇔ Φj,i,i′ 6= 0, (4.4)

MΦ;j,i,i′ = 0⇔ Φj,i,i′ = 0. (4.5)

Similarly, a matrix MΘ ;j is defined for each MA matrix Θj. These constraints on the AR

and MA matrices reduce the number of unknown parameters based on the information
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of the target problem. Also, for notation purposes, denote the vector representations of

non-zero elements of Φ = Φ1:p and Θ = Θ1:q by ϕ (dim(ϕ) = dϕ) and ϑ (dim(ϑ) = dϑ)

correspondingly (the vector and matrix representations are used interchangeably in

this chapter).

4.1.1 The DLM representation of the VARMA model

The dy-variate VARMA model of Equation (4.1) can be represented by a DLM:

yt = β + αt,1, (4.6)

αt,1:m = Gαt−1,1:m + ut, (4.7)

and:

G =



Φ1 Idy 0 . . . 0

Φ2 0 Idy . . . 0

. . . . . . . . . . . . . .

Φm−1 0 0 . . . Idy

Φm 0 0 . . . 0


, (4.8)

ut = Het, (4.9)

H = (Idy ,Θ1, ...,Θm−1)T , (4.10)

with m = max(p, q + 1); Φj = 0 for j > p; Θj = 0 for j > q; the symbol Id de-

notes the d × d identity matrix; each segment αt,k is a vector of length dy; αt,1:m =

(αt−1,1, ..., αt−1,m) is a vector of length dα = dym. Notice that there is no observation

error in this DLM. This representation reduces the dimension of latent variables from

(p + q)dy (y0:(−p+1) and e0:(−q+1)) to m = max(p, q + 1)dy (α0 = α0,1:m), which can be

useful in high dimension problems. We denote this representation by DLM-VARMA.

The unknown parameters and latent variables of the DLM-VARMA include ϕ (or

Φ), ϑ (or Θ), β, Σe and α0 (other elements such as P, Q, MΦ;j and MΘ ;j must be

predefined).

The likelihood of the DLM-VARMA and some transformations

From Equation (4.8), we have:

αt,k = Φkαt−1,1 + αt−1,k+1 + Θk−1et, (4.11)
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which is true for all integer k ≥ 1 (the notation is extended by: αt,k = 0 for k > m,

Φj = 0 for j > p, Θj = 0 for j > q and Θ0 = I). Then with Equations (4.6) and (4.11):

yt = β + αt,1

= β + Φ1αt−1,1 + αt−1,2 + Θ0et,

= β +
t∑

j=1

Φjαt−j,1 + α0,t+1 +
t∑

j2=1

Θj2−1et−j2+1,

= β +
t−1∑
j=1

Φj(yt−j − β) + Φtα0,1 + α0,t+1 + et +
t−1∑
j′=1

Θj′et−j′ , (4.12)

Hence, conditioning on (Φ,Θ , β,Σe , α0), y1:n is an one-to-one linear transform of

e1:n with Jacobian |Je1:n(y1:n)| = 1 and:

py1:n|Φ,Θ ,β,Σe ,α0(y1:n) = pe1:n|Φ,Θ ,β,Σe ,α0(e1:n) (4.13)

The subsequent transforms are re-formulated for the multivariate version, following

the outline proof of the univariate version in Chib and Greenberg (1994).

Theorem 3 (Chib and Greenberg, 1994) For t = 1 : n, define:

a1;t = yt − Φtα0,1 − α0,t+1 −
t−1∑
j=1

Φjyt−j −
t−1∑
j′=1

Θj′a1;t−j′ , (4.14)

B1;t = Idy −
t−1∑
j=1

Φj −
t−1∑
j′=1

Θj′B1;t−j′ , (4.15)

then:

a1;t −B1;tβ = et, (4.16)

for t = 1 : n.

Proof Prove Theorem 3 for the special case t = 1 by using Equation (4.12). Then,

assume that Equation (4.16) is true for t = 1 : (m−1), substitute et (t = 1 : (m−1)) in

Equation (4.12) to obtain the proof for t = m. Consequently, by induction, Theorem 3

is true for t = 1 : n.

Theorem 4 (Chib and Greenberg, 1994) Let xt = yt − β. Define:

a2;t = xt −
t−1∑
j=1

Φjxt−j −
t−1∑
j′=1

Θj′a2;t−j′ , (4.17)

B2;t = Ct −
t−1∑
j′=1

Θj′B2;t−j′ , (4.18)
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where the matrix Ct = (Ct,1, ..., Ct,m) (dim(Ct) = (dy, dym) with Ct,k=1 = Φt, Ct,k=t+1 =

Idy and Ct,k = 0 for k 6= 1, (t+ 1). Then,

a2;t −B2;tα0 = et, (4.19)

for t = 1 : n.

Theorem 5 (Chib and Greenberg, 1994) Let xt = yt − β. Define:

a3;t = xt − α0,t+1 −
t−1∑
j′=1

Θj′a3;t−j′ , (4.20)

B3;tϕ = Φtα0,1 +
t−1∑
j=1

Φjxt−j −
t−1∑
j′=1

Θj′B3;t−j′ϕ (4.21)

then:

a3;t −B3;tϕ = et, (4.22)

for t = 1 : n.

Theorems 4 and 5 are proved similarly by induction. Notice that Equation (4.21)

involves the transformation of AR parameters from the matrix format Φ to the vector

format ϕ.

The priors and posteriors

We use the following priors for the DLM-VARMA:

pϕ,ϑ,β,Σe ,α0(ϕ, ϑ, β,Σe , α0) = pϕ(ϕ)pϑ(ϑ)pβ(β)pΣe (Σe)pα0(α0) (4.23)

= N(ϕ|µϕ,Σϕ = Q−1
ϕ )N(ϑ|µϑ,Σϑ = Q−1

ϑ )

N(β|µβ,Σβ = Q−1
β )IW (Σe|ΨΣe , νΣe )

N(α0|µα0 ,Σα0 = Q−1
α0

) (4.24)

The full conditional posterior of β is derived from Equations (4.13), (4.16) and (4.24):

pβ|ϕ,ϑ,Σe ,α0,y1:n(β) ∝ pβ(β)pe1:n|ϕ,ϑ,β,Σe ,α0(e1:n) (4.25)

∝ exp

(
−1

2
(β − µβ)TQβ(β − µβ)− 1

2

n∑
t=1

(a1;t −B1;tβ)TQe(a1;t −B1;tβ)

)

∝ exp

(
−1

2

[
βT (Qβ +

n∑
t=1

BT
1;tQeB1;t)β − 2βT (Qβµβ +

n∑
t=1

BT
1;tQea1;t)

])
∝ N(β|µ′β,Σ ′β = Q′−1

β ), (4.26)
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with:

Q′β = Qβ +
n∑
t=1

BT
1;tQeB1;t, (4.27)

µ′β = Q′−1
β (Qβµβ +

n∑
t=1

BT
1;tQea1;t). (4.28)

Similarly, we have the full conditional posteriors of α0 and ϕ:

pα0|ϕ,ϑ,β,Σe ,y1:n(α0) = N(α0|µ′α0
,Σ ′α0

= Q′−1
α0

), (4.29)

pϕ|ϑ,β,Σe ,α0,y1:n(ϕ) = N(ϕ|µ′ϕ,Σ ′ϕ = Q′−1
ϕ ), (4.30)

where µ′α0
, Q′α0

, µ′ϕ and Q′ϕ are:

Q′α0
= Qα0 +

n∑
t=1

BT
2;tQeB2;t, (4.31)

µ′α0
= Q′−1

α0
(Qα0µα0 +

n∑
t=1

BT
2;tQea2;t), (4.32)

Q′ϕ = Qϕ +
n∑
t=1

BT
3;tQeB3;t, (4.33)

µ′ϕ = Q′−1
ϕ (Qϕµϕ +

n∑
t=1

BT
3;tQea3;t). (4.34)

By conjugacy, the full conditional posterior of Σe follows the inverse Wishart dis-

tribution:

pΣe |ϕ,ϑ,β,Σe ,α0,y1:n(Σe) ∝ pΣe (Σe)pe1:n|ϕ,ϑ,β,Σe ,α0(e1:n) (4.35)

∝ |Σe |
−
(
νΣe

+dy+1

2

)
exp

(
−1

2
tr(ΨΣe Σ−1

e )

)
|Σe |−

n
2 exp

(
−1

2

n∑
t=1

eTt Σ−1
e et

)

∝ |Σe |
−
(
n+νΣe

+dy+1

2

)
exp

(
−1

2

[∑
i,i′

Σ−1
e;i ,i ′

(
ΨΣe ;i′,i +

n∑
t=1

et,iet,i′

)])

∝ IW (Σe|Ψ ′Σe
, ν ′Σe

) (4.36)

with:

Ψ ′Σe
= ΨΣe +

n∑
t=1

ete
T
t , (4.37)

ν ′Σe
= νΣe + n. (4.38)

Unfortunately, the full conditional posterior of ϑ does not follow any standard

distribution form. Hence, Metropolis-Hastings must be used to sample ϑ in the next

section.
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4.1.2 The first MCMC algorithm

Bayesian inference on the joint posterior pϕ,ϑ,β,Σe ,α0|y1:n(·) can be implemented by a

standard MCMC in Algorithm 10, using Gibbs sampling and Metropolis-Hastings.

Algorithm 10 The first MCMC implementation on the DLM-VARMA

1. Sample β from pβ|ϕ,ϑ,Σe ,α0,y1:n(·) = N(·|µ′β,Σ ′β = Q′−1
β ).

2. Sample α0 from pα0|ϕ,ϑ,β,Σe ,y1:n(·) = N(·|µ′α0
,Σ ′α0

= Q′−1
α0

).

3. Sample Σe from pΣe |ϕ,ϑ,β,α0,y1:n(·) = IW (·|Ψ ′Σe
, ν ′Σe

).

4. Sample ϕ from pϕ|ϑ,β,Σe ,α0,y1:n(·) = N(·|µ′ϕ,Σ ′ϕ = Q′−1
ϕ ).

5. Use Metropolis-Hastings on pϑ|ϕ,β,Σe ,α0,y1:n(·)

5-1 Propose a new value ϑb by a random walk centred on the current value ϑa:

ϑb ∼ N(·|ϑa, σ2
rIdϑ).

5-2 Accept ϑb with the Metropolis-Hastings rate γ(ϑa, ϑb).

We only sample α0 for a number of iterations mα0 (usually 1000 iterations) and then

fix this variable to reduce the running time and the storage requirement as the length

of vector α0 is usually large, requiring a lot of computation. In a long time series, the

starting latent variable has little effect on the inference (Box et al., 2008,chap. 7). For

this purpose, we try the MLE with different fixed values of α0 and find that the MLE

results are indeed very similar to each other. So, the above step of sampling and fixing

α0 in the MCMC procedure can be regarded as choosing a reasonable starting value

for α0.

The MCMC algorithm will be tested with the following examples.

Example 1 1000 data points yt are generated from the DLM-VARMA with parame-
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ters:

P? = (1, 10), Q? = (1, 10), (4.39)

Φ?
1 =

0.70 −0.15

0.18 −0.60

 , Θ?
1 =

−0.60 0

0 0.50

 ,

Φ?
10 =

−0.30 0

0 0.20

 , Θ?
10 =

0.20 0

0 −0.10

 ,

β? = (5, 100), Σ ?
e =

67.02 −4.87

−4.87 44.92

 ,

and α?0 is randomly chosen (dim(α?0) = 22). Notice that the corresponding AR and

MA parameters in vector format are ϕ? = (0.70, 0.18,−0.15,−0.60,−0.30, 0.20), ϑ? =

(−0.60, 0.50, 0.20,−0.10). The indicator matrices for the true model are:

M?
Φ;1 =

1 1

1 1

 , M?
Θ ;1 =

1 0

0 1

 , (4.40)

M?
Φ;10 =

1 0

0 1

 , M?
Θ ;10 =

1 0

0 1

 .

Example 2 Another dataset with 1000 data points are generated from a model similar

to Example 1 but with different Θ , Σ ?
e and α?0 (the last two are randomly chosen):

Θ?
1 =

−0.60 0.12

−0.15 0.50

 ,Θ?
10 =

0.20 0

0 −0.10

 ,Σ ?
e =

 31.69 −25.19

−25.19 61.02

 . (4.41)

Compared to Example 1, there are non-zero non-diagonal elements in Θ?
1 in this ex-

ample. Correspondingly, we have ϕ? = (0.70, 0.18,−0.15,−0.60,−0.30, 0.20), ϑ? =

(−0.60,−0.150.12, 0.50, 0.20,−0.10).

The prior parameters for both examples are chosen similarly (only different in the

dimension of ϑ):

pϕ(ϕ) = N(ϕ|µϕ = 0,Σϕ = 1000 Idϕ), (4.42)

pϑ(ϑ) = N(ϑ|µϑ = 0,Σϑ = 1000 Idϑ), (4.43)

pβ(β) = N(β|µβ,Σβ = 1000 Idy), (4.44)

pΣe (Σe) = IW (Σe|ΨΣe = 500 Idy , νΣe = 4), (4.45)

pα0(α0) = N(α0|µα0 = 0,Σα0 = 4 Idα). (4.46)
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These selected priors are very flat and hence, the inference result is mainly driven by

the likelihood.

A note on multi-modal likelihood

As mentioned in Section 2.4.1, the full VARMA model generally has an identifiability

problem, leading to a multi-modal likelihood. Notice that the modified VARMA model

applies some constraints to the AR and MA parameters (the sparse form and the

indicator matrices) and hence may or may not suffer from the multi-modality issue in

the reduced parameter space. So, we will investigate this issue by numerical approach.

For each dataset of Examples 1 and 2, 50 different starting points are randomly

selected for ϕ and ϑ. The remaining parameters are assumed to have true values (β?,

Σ ?
e and α?0). Then, the MLEs are obtained by maximising the likelihood, conditioning

on each starting point.

It turns out that 50 MLEs of Example 1 converge to the same location, showing no

sign of multi-modality. Of course, by this test, we cannot disprove the multi-modality

likelihood of this dataset but at least the chance of being stuck in local modes (if the

likelihood is truly multi-modal) seems to be very small. There should be no issue with

using MCMC on this dataset.

However, in the dataset of Example 2, the MLEs converge to different points. Ta-

ble 4.1 lists some MLEs along with the corresponding log likelihood values l. The

Hessian matrices of the log likelihood function, evaluated at these MLEs, are in-

deed negative-definite matrices, indicating that these MLEs are truly (local) maximum

points and not wrong results caused by any numerical issue of the optimisation method.

These MLEs may seem quite different from (ϕ?, ϑ?). However, the inverse of the

observed information matrix E (the inverse of the Hessian of the negative log likelihood,

which is analogous to a covariance matrix) indicates that the true parameter is still

within the 95% confidence interval of an MLE. For example, with the MLE (ϕ?c , ϑ
?
c),

the square root of diagonal entries of Ec (analogous to the standard deviation) is

(σ̂ϕ;c, σ̂ϑ;c) = (0.045126, 0.171133, 0.226765, 0.125015, 0.033920, 0.131615, 0.056261,

0.164078, 0.216838, 0.138399, 0.048490, 0.143037). Hence, (ϕ?, ϑ?) is still within the

interval [(ϕ?c , ϑ
?
c)− 2(σ̂ϕ;c, σ̂ϑ;c), (ϕ

?
c , ϑ

?
c) + 2(σ̂ϕ;c, σ̂ϑ;c)].

Another way to check for multi-modality is plotting the log likelihood along the
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Table 4.1: MLEs (ϕ̂, ϑ̂) and the log likelihood values of l Example 2. The true value

is ϕ? = (0.70, 0.18,−0.15, −0.60,−0.30, 0.20) and ϑ? = (−0.60, −0.15, 0.12, 0.50, 0.20,

−0.10).

Running index

a b c

ϕ̂

0.470630 0.483867 0.703966

0.101301 0.101038 0.071664

1.612006 1.528161 −0.323767

0.006220 −0.004746 −0.547983

−0.162506 −0.176315 −0.322214

−0.597383 −0.597475 0.300066

ϑ̂

−0.394762 −0.407280 −0.607141

−0.083197 −0.082749 −0.035852

−1.680363 −1.595364 0.303210

0.015432 0.027063 0.471322

0.022600 0.039087 0.219272

0.600675 0.600419 −0.237067

l −6461.312 −6461.327 −6435.911

line connecting between two MLEs: (ϕ̂a, ϑ̂a) and (ϕ̂c, ϑ̂c) as in Figure 4.1. In this

case, the likelihood is a bimodal function along the specified line. However, the log

difference of the likelihood is quite significant, suggesting that the function peak of

smaller likelihood value may be ignorable.

Unfortunately, for a problem with multi-modal likelihood, we are not aware of any

efficient MCMC method. The difficult lies in two issues: finding the function modes

by exploration and jumping between explored modes, which become more complex

in high dimensional space. Hence, in such a case, we use MCMC to explore only

the local neighbourhood of the global maximum point (global MLE). The procedure

starts by multiple optimisations at different initial points. If all MLEs are similar (like

Example 1), MCMC can be used with any starting point. Otherwise, if the MLEs are

different (like Example 2), a random point near the global MLE can be chosen as the

MCMC starting point.

72



●

●

(ϕ̂a, ϑ̂a)

(ϕ̂c, ϑ̂c)

−6480

−6470

−6460

−6450

−6440

−6430

0 25 50 75 100 125
index

lo
g 

lik
el

ih
oo

d

Fig. 4.1: The log likelihood along the line connecting (ϕ̂a, ϑ̂a) and (ϕ̂c, ϑ̂c) of Exam-

ple 2.

Variable correlation of the DLM-VARMA

As mentioned in Section 2.2.3, one of the most important problems in MCMC is vari-

able correlation. Simple methods such as Gibbs sampling and Metropolis-Hastings

with random walk proposals may move in small steps, resulting in a highly dependent

MCMC sample series.

In the DLM-VARMA, ϕ and ϑ are related by Equation (4.12). The ”correlation

matrix” K of (ϕ, ϑ) in the likelihood part can be obtained by standardising matrix

E above to a correlation matrix. The more the number of non-diagonal entries with

absolute values near 1, the stronger the correlation. The correlation matrices K of

Examples 1 and 2 are reported in Figure 4.2. As the parameter dimension increases,

the correlation seems to be stronger too.
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(b) Example 2: matrix K is evaluated at (ϕ̂c, ϑ̂c)

Fig. 4.2: The correlation matrices K of (ϕ, ϑ).

Applying a linear transform y = V T
x x to a random vector x with covariance matrix
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Σx = VxΛxV
T
x (eigen decomposition with orthonormal matrix Vx) gives a variable y

with diagonal covariance matrix Σy = Λx. So, it can be said that the direction of

the linear relationship in vector x is encoded in the eigenvectors Vx (or equivalently

the covariance matrix Σx). Correspondingly, in the DLM-VARMA context, matrix E

stores the direction information of the local correlation of (ϕ, ϑ) at a specific point and

a similar linear transformation results in a locally orthogonal random vector.

Interestingly, the evaluation of matrix E at different locations gives different values.

In the model of Example 2, matrices Ec, Ed are evaluated at the MLE (ϕ̂c, ϑ̂c) and a

random location near that MLE (ϕd, ϑd) = (ϕ̂c, ϑ̂c)+N(0,Σ = 0.022I) correspondingly.

These matrices and the differenced matrix are shown in Figure 4.3. This difference

indicates that the correlation of (ϕ, ϑ) is not globally similar in the whole parameter

space, i.e. a linear transform can only makes the random vector orthogonal locally,

but not globally, in the parameter space. This point is important in designing a good

MCMC method for the DLM-VARMA.

MCMC simulations of the first algorithm

So, we run the MCMC of Algorithm 10 for Examples 1 and 2 with 200000 samples

each. As there are many parameters, only the whole trace plots of ϑ1 are shown in

Figure 4.4. As there is no sign of unwanted trends, the MCMC convergence should

be safe (trace plots of other parameters have no trend either). To check the MCMC

mixing, we enlarge the trace plots of ϑ1 with 1000 samples in Figure 4.5. Unfortunately,

the sample movements are local and small, especially in Figure 4.5(b), indicating the

variable correlation problem.

Another way of checking the performance of a MCMC algorithm is based on the

autocorrelation of its samples. After thinning with interval 10, the autocorrelation

plots of ϑ are shown in Figures 4.6 and 4.7. While the autocorrelation of the first

model seems normal, the autocorrelation of Example 2 only decays to zero completely

after about a lag of 80. Taking into account the thinning interval, this means that only

one independent sample is obtained after 800 iterations, implying that the MCMC

of Algorithm 10 suffers a great deal from the variable correlation issue. This problem

becomes worse as the number of AR, MA parameters increases. Hence, a better MCMC

algorithm is proposed in the next section for the DLM-VARMA.
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Fig. 4.3: Matrices E evaluated at (ϕ̂c, ϑ̂c) and a random location (ϕd, ϑd) = (ϕ̂c, ϑ̂c) +

N(0,Σ = 0.022I) for Example 2.
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Fig. 4.4: Algorithm 10: the trace plots of all samples of ϑ1.
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Fig. 4.5: Algorithm 10: the trace plots of 1000 samples of ϑ1.
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Fig. 4.6: Algorithm 10: the autocorrelation of ϑ for Example 1 after thinning by a

factor of 10.
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Fig. 4.7: Algorithm 10: the autocorrelation of ϑ for Example 2 after thinning by a

factor of 10.
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4.1.3 An improved MCMC algorithm

The marginal posterior of ϑ

First, the correlation between ϕ and ϑ needs removing in the sampling procedure.

Instead of doing Gibbs sampling on (ϕ, ϑ) with pϕ|ϑ,β,Σe ,α0,y1:n(·) and pϑ|ϕ,β,Σe ,α0,y1:n(·),

we sample ϑ from the marginal posterior pϑ|β,Σe ,α0,y1:n(·) and then ϕ from the usual full

conditional posterior pϕ|ϑ,β,Σe ,α0,y1:n(·). By doing so, the sample of ϑ is not constrained

by the current value of ϕ and the correlation between ϕ and ϑ is completely removed.

Hence, the marginal density pϑ|β,Σe ,α0,y1:n(·) is derived as follows.

From Equations (4.13), (4.22) and (4.23), the joint posterior density pϕ,ϑ|β,Σe ,α0,y1:n(·)

is:

pϕ,ϑ|β,Σe ,α0,y1:n(ϕ, ϑ) ∝ pϑ(ϑ)pϕ(ϕ)pe1:n|ϕ,ϑ,β,Σe ,α0(e1:n) (4.47)

∝ exp

(
−1

2

[
(ϑ− µϑ)TQϑ(ϑ− µϑ) + (ϕ− µϕ)TQϕ(ϕ− µϕ)

+
n∑
t=1

(a3;t −B3;tϕ)TQe(a3;t −B3;tϕ)

])

∝ exp

(
−1

2

[
(ϑ− µϑ)TQϑ(ϑ− µϑ) + ϕTQ′ϕϕ− 2ϕTQ′ϕµ

′
ϕ +

n∑
t=1

aT3;tQea3;t

])
, (4.48)

and pϑ|β,Σe ,α0,y1:n(·) is obtained by marginalising Equation (4.48) with respect to ϕ:

pϑ|β,Σe ,α0,y1:n(ϑ) =

∫
ϕ

pϕ,ϑ|β,Σe ,α0,y1:n(ϕ, ϑ)dϕ (4.49)

∝ |Q′ϕ|−1/2 exp

(
−1

2

[
(ϑ− µϑ)TQϑ(ϑ− µϑ)− µ′ Tϕ Q′ϕµ

′
ϕ +

n∑
t=1

aT3;tQea3;t

])
. (4.50)

Compared to the sparse additive form of VARMA in Equation (4.1) which has

only two AR, MA parameter blocks, the multiplicative form, e.g. SARIMA in Equa-

tion (3.2), has four parameter blocks: ϕ, ϕs, ϑ and ϑs. Conditioning on the rest, the

posterior of pϕ|ϕs,ϑ,ϑs,y1:n,... can be marginalised analytically but the resulting marginal

posterior pϕs,ϑ,ϑs|y1:n,... is intractable with three correlated parameter blocks. As we

would like to reduce the number of correlated parameters, the sparse additive form of

VARMA is preferred.

The second MCMC algorithm
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Like the first algorithm, Metropolis-Hastings is used on the intractable marginal pos-

terior pϑ|β,Σe ,α0,y1:n(·). Such a sampling is free from the constraint of ϕ but still suf-

fers the variable correlation issue between the entries of the random vector ϕ. So,

based on the analysis of matrix E in the previous section, the correlation direction the

marginal posterior of ϑ should be taken into account in choosing the proposed sam-

ple of Metropolis-Hastings. Also, the correlation directions at different locations are

dissimilar, suggesting the usage of local direction at a point instead of global direction.

For a specific value ϑa, denote a matrix function:

L(ϑa) =
−∂2 log pϑ|β,Σe ,α0,y1:n(ϑ)

∂ϑ2

∣∣∣∣
ϑ=ϑa

. (4.51)

A proposal N(·|µ = ϑa,Σ = κL(ϑa)
−1) with scale parameter κ will generate a sample

ϑb along the correlation direction of pϑ|β,Σe ,α0,y1:n(ϑa). Both the magnitude and the

direction of the MCMC sample is adapted to the curvature of the current location.

In summary, the improved MCMC implementation is shown in Algorithm 11. The

sub-step 4-2 is done repeatedly to save the computation cost of matrix L(·). Usually,

we choose κ = 0.5 and mϑ = 10.

Algorithm 11 The second MCMC implementation on the DLM-VARMA

1. Sample β from pβ|ϕ,ϑ,Σe ,α0,y1:n(·) = N(·|µ′β,Σ ′β = Q′−1
β ).

2. Sample α0 from pα0|ϕ,ϑ,β,Σe ,y1:n(·) = N(·|µ′α0
,Σ ′α0

= Q′−1
α0

).

3. Sample Σe from pΣe |ϕ,ϑ,β,α0,y1:n(·) = IW (·|Ψ ′Σe
, ν ′Σe

).

4. Sample ϑ by the marginal posterior pϑ|β,Σe ,α0,y1:n(·)

4-1 Calculate matrix L(ϑa) at the current location ϑa.

4-2 Metropolis Hastings: Propose a new value ϑc by a random walk centred on

the current value ϑb: ϑc ∼ N(·|ϑb, κL(ϑa)
−1). Accept the new value ϑc with

the Metropolis-Hastings rate. This step is done mϑ times with the same

matrix L(ϑa) (in the first turn ϑb = ϑa).

5. Sample ϕ from pϕ|ϑ,β,Σe ,α0,y1:n(·) = N(·|µ′ϕ,Σ ′ϕ = Q′−1
ϕ ).

Again, like the first MCMC algorithm, α0 is sampled for a number of iterations mα0
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(1000 iterations) and then fixed this to reduce the computation cost.

A note on missing data

In this thesis, we only work on a complete data y1:n but MCMC of Bayesian approach

suggests a natural solution to such problem. In the case of missing data, divide the

whole data y1:n into two parts: the observed part yo;1:n and the missing part ym;1:n.

Then, Bayesian inference can be applied on the posterior pϕ,ϑ,β,Σe ,α0,ym;1:n|yo;1:n(·) with

Gibbs sampling on pϕ,ϑ,β,Σe ,α0|yo;1:n,ym;1:n(·) = pϕ,ϑ,β,Σe ,α0|y1:n(·) and pym;1:n|ϕ,ϑ,β,Σe ,α0,yo;1:n(·).

As the sampling of pϕ,ϑ,β,Σe ,α0|yo;1:n,ym;1:n(·) has been already implemented by the pro-

posed second MCMC algorithm, we only need to deal with the conditional sampling of

the missing part by another Metropolis Hastings algorithm. This interesting extension

may be considered in future work.

Discussion on this multiple imputation problem can be found in Gelman et al.

(2003,chap. 21) and Gelman and Hill (2007,chap. 25). A detailed study on missing

data is referred to Little and Rubin (2002).
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Fig. 4.8: Algorithm 11: the trace plots of all samples of ϑ1.

MCMC simulations of the second algorithm

For Examples 1 and 2, we run MCMC of Algorithm 11 with 50000 samples for each

example. The whole trace plots and the enlarged ones of ϑ1 are in Figures 4.8 and 4.9.

There are no trends in the traces and the mixing seems fine with samples fluctuating

strongly.
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Fig. 4.9: Algorithm 11: the trace plots of 1000 samples of ϑ1.

The autocorrelation without thinning are plotted in Figures 4.10 and 4.11 which

can be compared to Figures 4.6 and 4.7 (the first MCMC algorithm uses thinning

with interval 10 while the second algorithm runs the sub-step 4-2 mϑ = 10 times for

each main MCMC iteration). The autocorrelation of the new algorithm decays more

quickly, compared to the first algorithm, especially for Example 2. So, in a DLM-

VARMA model with many correlated parameters, the performance of Algorithm 11 is

better.

After removing the first 100 samples, the box plots of MCMC for two examples are

shown in Figures 4.12 and 4.13. As the parameter priors are non-informative (flat),

the inference is mainly affected by the likelihood part of the data. Some true values lie

outside of the 25%− 75% credible intervals but are still in whisker-intervals.
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Fig. 4.10: Algorithm 11: the autocorrelation of ϑ for Example 1.

82



0.00

0.25

0.50

0.75

1.00

0 2 4 6 8 10
lag

ac
f ϑ

1

(a) ϑ1

0.00

0.25

0.50

0.75

1.00

0 2 4 6 8 10
lag

ac
f ϑ

2

(b) ϑ2

0.00

0.25

0.50

0.75

1.00

0 2 4 6 8 10
lag

ac
f ϑ

3

(c) ϑ3

0.00

0.25

0.50

0.75

1.00

0 2 4 6 8 10
lag

ac
f ϑ

4

(d) ϑ4

0.00

0.25

0.50

0.75

1.00

0 2 4 6 8 10
lag

ac
f ϑ

5

(e) ϑ5

0.00

0.25

0.50

0.75

1.00

0 2 4 6 8 10
lag

ac
f ϑ

6

(f) ϑ6

Fig. 4.11: Algorithm 11: the autocorrelation of ϑ for Example 2.
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Fig. 4.12: Algorithm 11: the MCMC sample box plots for Example 1. The red

segments indicate the true parameter values.
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Fig. 4.13: Algorithm 11: the MCMC sample box plots for Example 2. The red

segments indicate the true parameter values.
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Table 4.2: Algorithm 11: the quantile estimators and their corresponding half-widths

of 95% intervals for Example 1.

Quantiles

10% 50% 90%

ϕ

0.630103 (0.000534) 0.677792 (0.000324) 0.717531 (0.000421)

0.124915 (0.000282) 0.154725 (0.000213) 0.185344 (0.000321)

−0.171120 (0.000360) −0.133211 (0.000272) −0.094925 (0.000350)

−0.631257 (0.000672) −0.563578 (0.000579) −0.485021 (0.000856)

−0.354932 (0.000388) −0.315185 (0.000318) −0.272173 (0.000455)

0.220383 (0.000834) 0.291072 (0.000538) 0.357303 (0.000775)

ϑ

−0.681789 (0.000568) −0.625665 (0.000472) −0.559207 (0.000738)

0.337510 (0.001016) 0.430663 (0.000693) 0.514219 (0.000861)

0.119725 (0.000597) 0.177736 (0.000403) 0.230906 (0.000523)

−0.272776 (0.000838) −0.191452 (0.000673) −0.105400 (0.000988)

β
4.357437 (0.002721) 4.632227 (0.002028) 4.906308 (0.002707)

99.838955 (0.002345) 100.088218 (0.001812) 100.339123 (0.002501)

Σe

57.698347 (0.030977) 61.067509 (0.025839) 64.695709 (0.036757)

−5.485462 (0.021580) −3.397460 (0.014548) −1.346688 (0.020372)

39.950243 (0.023548) 42.289396 (0.018735) 44.798508 (0.024962)

To justify that the MCMC has run long enough and achieved a reasonable precision,

Tables 4.2 and 4.3 show the quantile estimators of all parameters, along with their half-

width calculated from MCSE as in Section 2.2.3. Also, from these tables, there seems

to be no convergence issue.

So, we have discussed Bayesian inference on the VARMA model and proposed an

improved MCMC algorithm to tackle the variable correlation issue of the VARMA.

The application of the VARMA model in the STFF problem is discussed in the next

section.

86



Table 4.3: Algorithm 11: the quantile estimators and their corresponding half-widths

of 95% intervals for Example 2.

Quantiles

10% 50% 90%

ϕ

0.648956 (0.000532) 0.689529 (0.000411) 0.733160 (0.000656)

−0.099740 (0.002737) 0.052663 (0.001590) 0.247851 (0.003657)

−0.415159 (0.004435) −0.141608 (0.003696) 0.031363 (0.001773)

−0.624530 (0.002295) −0.487918 (0.001507) −0.367755 (0.001531)

−0.361362 (0.000485) −0.323131 (0.000397) −0.280684 (0.000604)

0.202173 (0.003151) 0.357235 (0.001804) 0.498704 (0.001808)

ϑ

−0.648997 (0.000811) −0.592445 (0.000572) −0.534600 (0.000827)

−0.200569 (0.003414) −0.007711 (0.001262) 0.131168 (0.002816)

−0.033622 (0.001722) 0.127923 (0.003498) 0.390458 (0.004334)

0.278285 (0.001610) 0.406751 (0.001622) 0.560909 (0.002703)

0.160441 (0.000833) 0.221540 (0.000575) 0.279688 (0.000796)

−0.454912 (0.002049) −0.296946 (0.002047) −0.128110 (0.003336)

β
4.899950 (0.002991) 5.134024 (0.002046) 5.365594 (0.002757)

99.397477 (0.003961) 99.707065 (0.002482) 100.012686 (0.003477)

Σe

30.698244 (0.020413) 32.490382 (0.016370) 34.434052 (0.025448)

−26.925412 (0.026959) −24.775442 (0.017094) −22.759542 (0.022971)

58.103896 (0.036598) 61.485124 (0.032431) 65.163310 (0.043969)

4.2 STFF with the VARMA model

This section first presents the two real traffic datasets used in the STFF problem.

Then, for each of the datasets, three different preprocessing procedures are used to

extract residuals which are then fitted to VARMA models. Next, the multi-step-ahead

predictions are compared for all models. Finally, the section is concluded with several

remarks about the VARMA model and STFF.
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(b) Example 4: South Quays of River Liffey

Fig. 4.14: Network maps for two traffic datasets in Dublin.
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4.2.1 Traffic datasets in Dublin

The inference of this section is evaluated by modelling traffic volume observations from

a busy thoroughfare in the city centre of Dublin in Ireland. Two datasets corresponding

to two chosen sections of Dublin traffic map were considered as in Figure 4.14. In each

dataset, three locations had been chosen for continuous traffic data collection over 24

hours daily. As seen in the figure, the selected sites are situated on/near Pearse Street

and the South Quays of the River Liffey, which are some of the busiest roads in Dublin

City.

The data, obtained collectively from all the inductive loop detectors on any ap-

proach, is used for the modelling. These loop detectors were embedded near the stop

line of each lane of the modelled intersections and vehicles were counted by analysing

the changes in electro-magnetic profiles of vehicles passing over the loops. Both datasets

are extracted by the software SCATS Traffic Reporter, then are filtered and converted

to a standard row-column format by a Perl script. As the weekend traffic dynamics

are very different from traffic dynamics of the weekdays, the modelling is carried out

on the data observed during weekdays only.

0
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300

0 24 48 72 96
time−within−day index

ve
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/1
5m

in

(a) zt,3 of Example 3
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200

300

0 72 144 216 288
time−within−day index

ve
hs

/1
0m

in

(b) zt,3 of Example 4

Fig. 4.15: Day-by-day traffic flow plots of zt for weekdays.

Example 3 Dataset 3 comprises of traffic volumes collected at three locations along

the roadway of Pearse Street: the westbound (station 1) approach of the intersection of

Pearse and Lower Erne Streets, the westbound (station 2) approach of the intersection

at Pearse and Lower Sandwith Streets and the westbound (station 3) approach of
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flow

Fig. 4.16: Example 4: the autocorrelation of the differenced 5-min traffic flow and

the differenced aggregated 10-min traffic flow.

the intersection at Pearse and Lombard Streets. All intersections are four-way cross-

sections, with two-way traffic on all road links. All the junctions have three-phase

signals with turning protection on Pearse Street. The number of lanes for the traffic

volume recording of three stations 1, 2 and 3 are 1, 3 and 2 respectively.

This dataset was recorded from 22nd July 2010 to 26th August 2010. 15-minute

aggregate traffic volume observations were used in modelling purposes (the daily period

for this dataset is s = 96). A total of 26 days of data from weekdays were used. The

traffic observations from first 20 days were used for fitting and the rest of data was used

for model evaluation (this original flow data is denoted by zt = zt,1:3 for this dataset).

The day-by-day traffic flow of station 3 for this dataset, zt,3, is in Figure 4.15(a).

Example 4 Dataset 4 consists of 25 weekdays recorded from 11st June 2008 to 7th

July 2008 in the South Quays of River Liffey. Again, three sites are chosen with

longer links: the southbound approach (station 1 - 3 lanes) of the Grattan Bridge, the

westbound approach (station 2 - 2 lanes) of the intersection of Wood Quay and Wine

Tavern Street and the westbound approach (station 3 - 3 lanes) of the intersection of

Merchants Quay and Church Street.

Originally, this dataset contains 5-minute aggregate traffic volume observations.

However, due to the effect of stop-and-go sequences of the traffic light, this original

flow series exhibit an on-off state dependency of the flow observations. For example,

this effect is shown in the autocorrelation plot of the differenced 5-min traffic flow of
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Figure 4.16(a).

So, to eliminate the traffic light effect, 2 consecutive data points are aggregated.

In each day, there are 288 data points (daily period s = 288) each of which is a

10-minute aggregate traffic flow (the autocorrelation of the differenced 10-min flow

is in Figure 4.16(b)). Denote the aggregate series by zt = zt,1:3 (zt,3 is plotted in

Figure 4.15(b)). Observations from the first 20 day were used for fitting and the rest

of data was used for model evaluation.

4.2.2 Data preprocessing

As the VARMA model is not for data with a time-dependent mean such as series in

Figure 4.15, we will present some preprocessing procedures to extract residuals yt from

the flows zt in this part.

One of the most popular preprocessing method in time series is the seasonal differ-

ence operator. In this case, we use the s-lagged difference operator on zt with s as the

daily period and denote this preprocessing by SD:

ySD;t = 5szt = zt − zt−s. (4.52)

Also, a further difference operator is tried on the flow (this preprocessing procedure is

named DSD):

yDSD;t = 55s zt = (zt − zt−s)− (zt−1 − zt−s−1). (4.53)

If ySD;t and yDSD;t follow VARMA models then the original flows zt belong to the

seasonal vector autoregressive integrated moving average (SVARIMA) class, which is

commonly used for non-stationary series.

For the third preprocessing MP, we first get the time-varying daily mean mt:

mt =


1
nt1

∑t1≤nz
t1:t1=t+sk zt1 if t ≤ s

mt−s if t > s

(4.54)

where nz is the number of data points zt. Then yMP ;t is obtained by subtraction:

yMP ;t = zt −mt. (4.55)

The autocorrelation plot of the residuals y·;t,3 (station 3) for both Examples 3 and 4

are plotted in Figures 4.17 and 4.18 (the autocorrelation of other stations are quite

similar). There are some remarks about these plots:
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• For ySD;t and yMP ;t, the autocorrelation seems to decay by the exponential rate,

suggesting the use of AR terms Φj in the VARMA models.

• For ySD;t and yDSD;t, the autocorrelation at lag s (daily period) is quite significant.

So, AR, MA terms at lag s should be included.

• The autocorrelation plots of yDSD;t contain several spikes. The two most signif-

icant spikes are located at lag 1 and lag s. This shape is usually achieved by

adding MA terms at the corresponding lags.
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lag
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f

(a) ySD;t,3
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(c) yMP ;t,3

Fig. 4.17: Example 3: the autocorrelation of the residuals y·;t,3.

4.2.3 Model specification

For both datasets, a VARMA model will be applied to each residual series y·;t. We will

try to use the same specification (as similar as possible) for these VARMA models for
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Fig. 4.18: Example 4: the autocorrelation of the residuals y·;t,3.

the comparison purpose. By the analysis of autocorrelation, we decide to use the AR,

MA terms at lags 1 and s for all VARMA models:

P = Q = (1, s). (4.56)

Some terms may not be needed but are still included in models to be safe (this is like

over-specifying a model for a specific dataset).

The information about the traffic networks in Figure 4.14 is used in specifying

the non-zero entries of AR matrices Φj. As seen in the figure, the traffic starts from

station 1 and reaches station 2 and then 3 respectively. Hence, logically, y·;t,2 should be

dependent on y·;t−j,1 (j-lagged residual at station 1) and y·;t,3 is dependent on y·;t−j,1:2.
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So, the following indicator matrices are used for AR terms:

MΦ;1 = MΦ;s =


1 0 0

1 1 0

1 1 1

 . (4.57)

For MA terms, simple diagonal indicator matrices are used:

MΘ ;1 = MΘ ;s =


1 0 0

0 1 0

0 0 1

 . (4.58)

In total, there are 12 scalar parameters for AR terms (dim(ϕ) = 12) and 6 scalar

parameters for MA terms (dim(ϑ) = 6).

We also try univariate ARMA models on the series at station 3 only (zt,3). For

these univariate models, P = Q = (1, s) and MΦ;1 = MΦ;s = 1.

For notation purposes, a VARMA (ARMA) model used on a specific dataset is

denoted by the code AAA-B(-CCC) by the following standard:

• AAA indicates the preprocessing procedure with values SD, DSD, MP.

• For the code B, value M is for a multivariate VARMA model used with traffic

flows of all stations zt,1:3. Value U is used for univariate ARMA on zt,3 only.

• The code CCC is optional, indicating the target dataset, e.g. EX03, EX04.

For all models, flat priors are chosen with parameters:

pϕ(ϕ) = N(ϕ|µϕ = 0,Σϕ = 1000 Idϕ), (4.59)

pϑ(ϑ) = N(ϑ|µϑ = 0,Σϑ = 1000 Idϑ), (4.60)

pβ(β) = N(β|µβ,Σβ = 1000 Idy), (4.61)

pΣe (Σe) = IW (Σe|ΨΣe = 500 Idy , νΣe ), (4.62)

pα0(α0) = N(α0|µα0 = 0,Σα0 = 4 Idα). (4.63)

where νΣe = 3 for univariate models and νΣe = 5 for multivariate models (this results

in: EΣe (Σe) = ΨΣe ).
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4.2.4 Inference results

For each VARMA (ARMA) model of Examples 3 and 4, we run 10 preliminary optimi-

sations for (ϕ, ϑ) with different starting points. With diagonal MA indicator matrices

defined in Equation (4.58), all optimisations converge to the same result. Hence, multi-

modality might not be a problem for these models.

MCMCs for Example 3 have 50000 samples each while MCMCs for Example 4 have

only 10000 samples. This is due to the costly computational time required for 5-min

dataset of Example 4. For a particular interested parameter, the MCSE half-width of

95% interval of its median is denoted by lhw;·, e.g. lhw;Φ.
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(a) Φ (ϕ) and Θ (ϑ): max(lhw;Φ) = 0.001252, max(lhw;Θ) = 0.000248
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) = 0.421835

Fig. 4.19: Example 3: the MCMC sample box plots for the model SD-M-EX03.
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We use the matrix representation Φ (Θ) instead of the vector representation ϕ (ϑ)

as it is easier to interpret the effect of one station to another, i.e. Φj ,i ,i ′ represents the

AR effect of lagged residual y·;t−j,i′ at station i′ to the current residual y·;t,i at station

i.

The box plots of MCMC samples for VARMA (ARMA) models of Example 3 are

shown in Figures 4.19 to 4.24. The plots for Example 4 are in Figures 4.25 to 4.30.
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(a) Φ (ϕ) and Θ (ϑ): max(lhw;Φ) = 0.001169, max(lhw;Θ) = 0.000271
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Fig. 4.20: Example 3: the MCMC sample box plots for the model DSD-M-EX03.
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Consistent with the previous autocorrelation analysis, seasonal MA parameters

(Θ96,·,·, Θ288,·,·) of SD and DSD models are evidently negative. On the other hand,

seasonal AR, MA parameters of MP models are quite insignificant. Also, even though

there are fewer MCMC samples (10000) for models of Example 3, the MCSE half-

widths of the corresponding MCMCs are still small enough, mainly because that the

posteriors of these models are quite focused already.
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(a) Φ (ϕ) and Θ (ϑ): max(lhw;Φ) = 0.000719, max(lhw;Θ) = 0.000565
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Fig. 4.21: Example 3: the MCMC sample box plots for the model MP-M-EX03.
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Fig. 4.22: Example 3: the MCMC sample box plots for the model SD-U-EX03.
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Fig. 4.23: Example 3: the MCMC sample box plots for the model DSD-U-EX03.

98



●●●●

●

●●●●●●●
●●●●●●

●

●●

●

●●●

●●

●●●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●●●●

●●

●●●●●●●●●●●
●●●●●●

●●

●●●

●

●●●●●●

●

●●●●●●●●●●●

●

●●●●●●●●●●
●●●●

●●

●●●●

●

●●●●●

●

●●●●●●●

●

●●●

●

●●●●●

●

●●●●●●●●●

●

●●

●●

●●●
●●

●

●

●●●

●●●●

●●

●●●●●

●

●●●●●●

●

●

●

●●●●●●●

●

●●●●●●●●●●●●

●

●●●●●●

●

●●●
●●●●●●●●●

●

●●●●●

●

●●●●●

●

●●●●●●●●●

●

●●●

●

●●●

●

●●

●

●●●●●●

●

●●●●

●

●
●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●

●

●

●

●●

●●

●●●●●●●

●

●●

●

●●●●●

●●●

●●

●

●●●●●

●

●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●
●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●

●

●

●●

●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●

●●●●●●●●●●●●

●

●●

●

●●●●●●●●

●

●●●●●

●

●●●●●●

●●

●
●●●●

●

●●●●●●

●

●●

●

●●●●●●●●

●

●●●

●

●

●

●●●●●●●●●●●●●●●

●

●●
●●●●

●

●●

●

●●●●●●

●

●●●●

●

●

●

●●●●●●

●

●●●●●

●●●●

●●●●●

●

●●●●●●●

●●

●

●

●●●
●
●

●

●●●●

●●

●●●●●

●●

●●●●●●●

●

●●●●●

●

●

●

●

●●

●●●
●●

●

●●●●●●●●●●●

●

●●●●

●

●

●

●●●●●●●●●

●

●●●

●

●●

●

●●

●●●●

●●

●●

●●●●●●

●

●

●

●●●●

●

●

●

●●●●●●●●●

●

●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●

●●

●

●

●●●

●

●●●●●●●●●●●

●

●●●●●●●
●●●

●

●●●●

●

●●●●●

●

●

●

●

●

●
●●
●
●●●
●

●●

●●●●

●

●

●●

●●
●

●●

●●●

●

●●

●

●●●

●●
●
●●●

●●●

●

●●●●
●●

●

●
●

●

●
●

●

●
●●●●

●

●●●●

●

●●●●●●●●●●

●

●●●●●●●●
●●

●

●●●

●

●●●

●●

●

●●●●

●

●

●
●●●●●●●
●●●

●

●
●

●

●●●●●

●

●●●●●

●●

●

●

●●●●

●

●●●●●●●●

●

●●●●

●

●

●

●●

●●●

●●●●●

●

●●●

●

●●●●●

●●

●●●●●

●
●●

●●
●

●

●●

●●

●

●●

●●●●●

●

●●●●●●●●

●

●●●●

●

●

●●

●●●●●●●
●

●●●

●●●●●

●

●●●

●

●

●

●●
●●
●

●

●●●●

●

●●

●

●
●●●●●

●

●

●

●●●

●

●●●

●

●●●

●

●

●

●●●●●●●●
●
●●

●

●

●

●●●●●
●●●●●●●●●●

●

●●●●●●●●●●

●●

●●●●●●
●●●●●●●●

●

●●●●●●●●●●●●●●●●
●●●●●●●●

●

●●

●●

●●●●●●●●●●●●

●●●

●●●●●

●

●

●●

●●

●

●●●●●●●●●●

●

●●●●●●●
●●

●

●●●●●●●●●●

●

●●●●●

●

●●●●●

●●

●●●●

●

●●●

●

●●●●

●

●●
●●●●●
●
●●●
●●●●●●●●●

●

●●●●●●

●

●●
●●●●

●

●●●

−0.5

0.0

0.5

1.0

Φ1,1,1 Φ96,1,1 Θ1,1,1 Θ96,1,1

(a) Φ (ϕ) and Θ (ϑ): max(lhw;Φ) =

0.000249, max(lhw;Θ) = 0.000513

●

●●

●

●
●
●
●●

●

●

●

●

●

●

●●●●

●

●

●

●●
●

●●

●

●

●

●
●●

●

●
●

●

●
●

●

●●●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●
●

●

●
●
●
●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●●

●

●

●●
●
●

●

●

●

●
●

●

●

●

●

●

●
●
●

●●

●●

●●

●

●●●

●

●

●

●

●

●
●
●
●●

●

●
●

●

●

●

●

●

●

●

●●

●●●●
●

●

●

●

●
●

●

●

●
●

●
●●●
●●●●
●
●●

●●

●
●

●●

●

●

●
●
●
●
●
●

●

●

●

●

●

●

●
●

●
●

●●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●●

●

●
●
●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●
●
●

●●

●

●

●●

●
●
●●

●●
●
●

●

●

●●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●
●●●●●●
●

●

●●●

●

●

●●

●
●●

●
●

●

●

●

●

●●●
●
●

●●●

●

●●

●

●
●●●
●●

●

●●

●
●
●
●
●
●

●

●

●●

●

●

●

●●●
●●
●

●

●

●

●

●

●●
●

●

●

●

●
●●

●

●
●
●●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●
●

●

●●●

●

●

●

●

●●

●

●●

●

●

●

●
●
●●

●●

●

●●
●
●
●
●●

●●

●
●●●●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●●
●●

●

●

●

●

●●
●
●
●●●●
●

●

●

●●●
●

●
●

●
●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●
●
●●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●●●●●●

●

●

●●

●

●
●

●

●

●

●
●●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●●

●

●
●●

●
●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●●●●

●

●

●●

●●●

●

●
●
●

●

●

●

●

●

●
●
●

●

●

●
●
●●●
●
●●●

●

●

●

●

●

●

●

●●

●
●
●

●

●

●
●●

●

●

●
●
●●

●

●

●
●●●

●

●●
●

●

●
●

●
●

●

●

●

●

●

●●
●●●●
●

●

●

●

●
●
●●

●

●●
●●

●

●

●

●

●

●

●●

●
●

●

●
●
●

●
●

−20

0

20

β

●

●

●

●

●

●●

●
●

●●●●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●
●

●●

●●
●

●

●●

●

●

●●●

●

●

●

●

●
●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●
●

●

●

●
●●
●
●●
●
●●

●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

●
●●

●

●
●

●●

●

●
●
●●

●

●●●●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●●
●●

●

●

●

●

●
●
●

●

●

●

●●

●
●●●

●

●●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●
●●

●

●

●

●

●

●

●

●●
●●

●●

●

●

●

●

●
●

●
●
●
●

●

●

●
●●
●

●●●
●
●

●

●

●

●
●

●

●
●
●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●●
●
●

●

●

●●●●

●
●

●

●

●
●●
●

●

●

●

●

●
●

●

●

●
●

●

●●

●●●
●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●●

●
●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●●●

●●●●●●

●

●

●

●

●●●●

●

●
●

●

●

●

●

●
●

●

800

900

Σe

(b) β and Σe: max(lhw;β) = 0.039358,

max(lhw;Σe) = 0.283190

Fig. 4.24: Example 3: the MCMC sample box plots for the model MP-U-EX03.
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(a) Φ (ϕ) and Θ (ϑ): max(lhw;Φ) = 0.000367, max(lhw;Θ) = 0.000355
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Fig. 4.25: Example 4: the MCMC sample box plots for the model SD-M-EX04.
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(b) β and Σe: max(lhw;β) = 0.001561, max(lhw;Σe
) = 0.117709

Fig. 4.26: Example 4: the MCMC sample box plots for the model DSD-M-EX04.
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(a) Φ (ϕ) and Θ (ϑ): max(lhw;Φ) = 0.000472, max(lhw;Θ) = 0.000446
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Fig. 4.27: Example 4: the MCMC sample box plots for the model MP-M-EX04.

102



●●●●●●●

●●

●

●

●●

●●●●●●●

●

●●
●●●

●●

●●

●●

●

●●●

●●

●

●●●●

●

●●

●

●●

●

●

●●

●●●●●●●●●

●●●●

●

●

●●●

●●

●●

●

●

●●

●

●●

●●●

●●

●

●●

●●

●●●●

●●

●●●●●●

●●●●

●

●

●

●

●

●

●

●●●●●●

●

●●●

●

●●●

●●

●●

●●

●●

●

●●●

●

●●

●

●

●●

●●●

●

●●●

●●

●●●●

●●●●●

●

●

●

●●●●●

●●●

●●

●

●●●

●●●●

●

●●●

●

●●●●●

●

●●

●●

●●

●●●●●●●●●●

●
●
●

●●●●

●
●●●

●

●●
●
●
●
●
●●●
●
●
●
●●●

●●●
●

●

●●
●
●●

●●
●

●●●●●
●
●
●

●●●

●●

●●●●

●●●
●●

−0.5

0.0

0.5

Φ1,1,1 Φ288,1,1 Θ1,1,1 Θ288,1,1

(a) Φ (ϕ) and Θ (ϑ): max(lhw;Φ) =

0.000271, max(lhw;Θ) = 0.000266

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●
●

●●

●
●
●
●
●
●

●
●

●

●

●●
●

●
●

●

●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●●●

●

●

●●

●

●

●

●●●

●

●

●

●●
●

−1.0

−0.5

0.0

0.5

β

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●
●

●

●

●●

●

●●●

●●

●
●

●

●

●●●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

230

240

250

260

Σe
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Fig. 4.28: Example 4: the MCMC sample box plots for the model SD-U-EX04.
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Fig. 4.29: Example 4: the MCMC sample box plots for the model DSD-U-EX04.
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Fig. 4.30: Example 4: the MCMC sample box plots for the model MP-U-EX04.

Let Ω = (ϕ, ϑ, β,Σe , α0). In the forecasting of VARMA models, the h-step-ahead

prediction mean can be approximated by (the model index is dropped in this para-

graph):

EΩ|y1:n(yt+h|y1:t) =

∫
yt+h py(t+1):(t+h)|Ω,y1:t(y(t+1):(t+h))pΩ|y1:n(Ω) dy(t+1):(t+h)dΩ (4.64)

≈ ŷt+h|1:t =
1

ns

ns∑
i=1

yt+h,i,

where y1:n is the data part used in fitting; ns is the number of MCMC samples. ŷt+h|1:t

is the approximated h-step-ahead prediction of yt+h, conditioning on y1:t. For the ap-

proximation in the second line, conditioning on each MCMC sample Ωi ∼ pΩ|y1:n(Ω), a

realisation y(t+1):(t+h),i is generated from py(t+1):(t+h)|Ω,y1:t(y(t+1):(t+h)) and then all sam-

ples yt+h,i are averaged.

The prediction of the original traffic flow is similar to the above procedure except

that each realisation y(t+1):(t+h),i is converted to z(t+1):(t+h),i by Equations (4.52), (4.53)

and (4.55). For comparison purposes, the mean absolute error is computed by:

rMAE;h =
1

|T |
∑
t∈T

|ẑt+h|1:t − zt+h|. (4.65)

This error is evaluated by using another validation dataset for each example (6-day data

for Example 3 and 5-day data for Example 4) and shown in Figures 4.31 and 4.32. Note

that univariate models are only used for station 3.
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Fig. 4.31: Example 3: the mean absolute errors of h-step-ahead predictions.
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Fig. 4.32: Example 4: the mean absolute errors of h-step-ahead predictions.

106



Logically, the prediction error of step (h + 1) should be worse than prediction of

step h but it is not always the case in the above plots, especially in the DSD models.

This issue may be because that the validation dataset is not large enough, inducing

randomness or bias in prediction error, or there is a mismatching between the models

and the data.

In overall, for these two real datasets, even though the predictions of multivariate

models (station 3) are better, the error differences are unfortunately small. So, it may

be better to use a univariate model to save the computation cost.

On the other hand, the prediction seems more sensitive to the preprocessing step,

or equivalently the modelling of the process mean. MP models are consistently the

best while DSD models have worst errors. The reason why the errors of DSD models

are so bad can be perceived by examining the conversion from a sample y(t+1):(t+h) to

z(t+1):(t+h) when t+ h− s ≤ t (the sample index is dropped):

(zt+h − zt+h−s)− (zt+h−1 − zt+h−s−1) = yt+h

⇒ zt+h = yt+h + zt+h−1 + zt+h−s − zt+h−s−1

⇒ zt+h =
h∑
i=1

(yt+i) + zt + zt+h−s − zt−s. (4.66)

As the prediction is conditioning on z1:t, the term (zt + zt+h−s − zt−s) is exact. So,

the variance of prediction zt+h comes from the sum of residuals yt+i (1 ≤ i ≤ h),

which increases with the prediction step h. This issue of accumulated variance does

not happen with SD and MP models.

The one-step-ahead predictions and multi-step-ahead predictions (from step 1 to

step s) of station 3 on day 21 are plotted in Figures 4.33 and 4.34. The predictions of

univariate models are omitted as they are similar to multivariate models’ predictions.

The large [5% − 95%] quantile intervals of DSD models confirm the above analysis

of prediction variance. The one-step-predictions are always better and have smaller

[5%− 95%] quantile intervals.
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Fig. 4.33: Example 3: the blue and red solid lines are the means of one-step-ahead pre-

dictions and multi-step-ahead predictions (from step 1 to step s) of zt,3. The coloured

dot lines correspond to the 5% and 95% quantiles of the predictions.
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Fig. 4.34: Example 4: the blue and red solid lines are the means of one-step-ahead pre-

dictions and multi-step-ahead predictions (from step 1 to step s) of zt,3. The coloured

dot lines correspond to the 5% and 95% quantiles of the predictions.
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4.2.5 Remarks of STFF

From the previous inference and analysis, we have several remarks about the VARMA

model and the STFF problem:

• The difference operator of lag 1 should be avoided in the multi-step-ahead pre-

diction as the variance increases with the prediction step.

• The mean and the residual of a time series are strongly related. In previous

models, we use simple mean modelling for the traffic flow (implicitly or explicitly

by different preprocessing methods) and focus on the VARMA modelling of the

residual. However, it has been seen that the prediction result is more sensitive

to the preprocessing method, or equivalently the mean. So, maybe it is better

to model a mean function as close to the true value as possible first, i.e. it is

modelled so that the variance of the resulting residual is small. For the target

problem, perhaps using other traffic variables may yield a better mean function.

• When the traffic networks become larger, the number of parameters increases

unavoidably. In that case, VARMA models and other spatial-temporal models

may have a scalability problem as the computation cost increases sharply and the

inference process cannot be parallelised. So, an ideal model should be designed

so that its inference process can be divided into as many small tasks or compo-

nents as possible. This divisibility property can be achieved by either computing

parallelism or modelling.

• To meet the time constraint of real-time applications, the modelling should fa-

cilitate the application of sequential inference.

For a normal traffic dataset, i.e. there is no incident and the traffic pattern is

very similar across all days, a simple model like MP-U works really well for the STFF

problem. However, when there is a shift of traffic pattern, the prediction may not be

precise any more as the fitted model has been long adapted to the previous pattern.

We will illustrate this problem with an unusual traffic dataset.

The 4-day traffic flow plotted in Figure 4.35(a) is a part of a 1-minute VISSIM

dataset in Section 6.1.2. In the flow series of Figure 4.35(a), a traffic incident occurs

on day 3 (at around t = 3120) and the traffic pattern changes quite significantly.
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The preprocessing method MP is used with a time-varying daily mean mt which is

the daily average of the first 2 day flow zt. The resulting residual yMP ;t is plotted in

Figure 4.35(b).

A simple pure zero-mean ARMA(2,2) is fitted to yMP ;1:nf where nf is the ending

point of the fitting set. We would like to see the behaviour of ARMA prediction during

the incident interval by adjusting the fitting ending point nf . For statistical inference,

simple MLE and plugged-in prediction are used in this illustration.

The one-step-ahead predictions obtained with nf = 3130, 3145 and 3155 are shown

in Figure 4.36(a). It can be seen that even though the incident has occurred at time

t = 3120, the ARMA(2,2) is only ”adapted” to the new pattern and provides reasonable

one-step-ahead prediction with nf ≥ 3155.

For the purposes of multi-step-ahead prediction, the model needs longer time for

the adjustment. The 200-step-ahead predictions with nf = 3155, 3165 and 3175 are

plotted in Figure 4.36(b) which clearly shows the exponential decaying effect of ARMA

prediction. Only with more traffic incident data points that ARMA can adjust the

decaying rate better to the unusual pattern.
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Fig. 4.35: The traffic flow zt and the residual yMP ;t of a 1-minute VISSIM dataset.

The blue vertical lines mark a duration when a traffic incident occurs.

So, in this illustration of unusual traffic pattern, there are two important points:

• A fitted model, e.g. a VARMA model, may be too adapted to the normal traffic

pattern. So, when an incident occurs, its performance becomes worse and re-

fitting is necessary. This requirement again calls for sequential inference.
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• To avoid the case where a model needs to shift back and forth between normal

and unusual traffic patterns, a good model should portray a ”stable relation-

ship” between traffic variables. A stable relationship is one that stays almost

correct (with small error) in any case. Such a relationship may come from the

transportation theory but probably requires more traffic information, e.g. speed,

density, etc.
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Fig. 4.36: One-step-ahead and multi-step-ahead predictions of the residual yMP ;t dur-

ing a traffic incident. The coloured curves are plugged-in prediction means obtained

by fitting ARMA(2,2) with different fitting sets. The coloured vertical lines mark the

ending points of the corresponding fitting sets.

This concludes the application of the VARMA model in STFF. We will return to

the STFF problem with a new spatial-temporal model in Chapter 6.
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4.3 Conclusion

In this chapter, we have introduced the VARMA model with a sparse form and user-

defined constraint on AR, MA matrices. Such a model may use fewer parameters when

designed with extra information from the target problem. For the variable correlation

problem of the VARMA model, an improved MCMC algorithm is proposed, making use

of the marginalisation and the correlation direction information in the Hessian matrix.

Then, we apply the VARMA model to the STFF problem with two traffic datasets

in Dublin, using the network information to constrain the structure of AR matrices.

VARMA and ARMA models with different preprocessing methods are compared in

terms of one-step-ahead and multi-step-ahead predictions. Finally, we conclude the

chapter with several remarks on the VARMA model and the STFF problem.
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Chapter 5

Sequential inference with the

iterLap approximation

This chapter discusses two statistical inference implementation methodologies: func-

tional approximation and sequential inference with unknown parameters. For the func-

tional approximation, we introduce some modifications to the implementation of the

iterLap method, previously mentioned in Section 2.3.2, then compare the performance

of two versions with some examples. Based on this modified approximation, a sequen-

tial inference method for the DM is proposed, characterised by two key points. Firstly,

the method relies on a smooth and continuous functional approximation instead of

discrete particles, which are very prone to degeneracy. Secondly, it is able to do joint

sequential inference on the state vector and the unknown parameter.

The motivation of sequential inference in this thesis originates from a dynamic sub-

model which is a part of a spatial-temporal model in the next chapter. Also, in a

real-time application like STFF, sequential inference is essential in obtaining a feasible

solution within a time constraint.

5.1 The iterated Laplace approximation

5.1.1 Modifying the iterLap method

The iterLap method has been summarised in Section 2.3.2 with an example. After

checking its R implementation, we try to improve its performance by some modifica-
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tions.

Stopping rule by the normalising constant

As a reminder, iterLap approximates a non-normalised density qx(·) at iteration nc by:

qx(x) ≈ q̃nc;x(x) =
nc∑
i=1

wiN(x|µi, Qi), (5.1)

where µi, Qi are found by an optimisation procedure and non-normalised weights wi

are estimated by quadratic programming in Section 2.3.2. By the above approximation,

the normalising constant ζ of qx(·) is estimated by:

ζ =

∫
qx(x)dx ≈ ζ̃nc =

∫
q̃nc;x(x)dx =

nc∑
i=1

wi. (5.2)

The constant ζ̃nc represents the probability mass of the approximated density q̃nc;x(x).

Hence, in Bornkamp (2011a), the iterative process stops when ζ̃nc does not improve

any more, i.e. satisfying the following equation:

|ζ̃nc − 0.5(ζ̃nc−1 + ζ̃nc−2)|/ζ̃nc < δζ , (5.3)

with a predefined threshold δζ .

However, even though a new component N(x|µi, Qi) does not improve the estimated

volume of q̃nc;x(x), it may still correct the density and decrease the approximation error.

Furthermore, a new component generates more explored points which may be useful

in the optimisation and quadratic programming step. Hence, we remove this stopping

criterion from the iterLap source code.

Residual function

At each iteration, iterLap (Bornkamp, 2011b) finds a new component by minimising a

residual function ga;nc(x) with:

z = qx(x)− q̃nc;x(x), (5.4)

ga;nc(x) =

− log(z) if z ≥ zl > 0

− log(exp(z − zl)zl) if z < zl

, (5.5)
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where zl is a predefined positive lower bound. The new component’s mean and precision

matrix are obtained by:

µnc+1 = arg min
x
{ga;nc(x)}, (5.6)

Qnc+1 =
∂2ga;nc(x)

∂x2

∣∣∣∣
x=µnc+1

. (5.7)

We will use the following example to illustrate and discuss the above step.

Example 5 Consider a non-normalised density qx(·):

qx(x) = exp

(
− 1

2× 52
x2 − 1

2× 52
(|x| − 0.5)3

+

)
, (5.8)

where a+ = a if a ≥ 0 and a+ = 0 if a < 0.

At iteration 1, qx(·) is approximated by q̃1;x(·) with a single normal component and

the residual function is ga;1(·). The functions qx(·), q̃1;x(·) and exp (−ga;1(·)) are plotted

in Figure 5.1. The maximum points of exp (−ga;1(·)) or equivalently, the minimum

points of ga;1(·), are also shown, representing the next potential component means.
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x

Fig. 5.1: Example 5: the blue and black lines show the target density qx(·) and

the approximated density q̃1;x(·); the purple line is exp (−ga;1(·)) with red crosses as

maximum points (the leftmost and rightmost crosses are actually inf and − inf); the

lower bound zl = 0.05 is marked by dashed horizontal line.

Figure 5.1 shows that there are two potential maximum points at inf and − inf,

which are not good locations for new components at all because they do not have any

effect on the approximation. So, these locations should be avoided to save computation

time.
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From Equation (5.4) and Figure 5.1, it can be seen that iterLap prefers choosing the

locations at which qx(x) is significantly underestimated by q̃nc;x(x)). The locations in

the overestimated region (qx(x) < q̃nc;x(x))) are ignored. However, by experimenting

with several residual functions and examples, we find that adding new components

in the overestimated region does improve the approximation. Partially, this may be

because the explored variable space is extended by a more lenient rule, which in turn

improves the optimisation and quadratic programming steps.

So, we decide to use a new residual function gnc;rb(x) with:

z = qx(x)− q̃nc;x(x), (5.9)

gb;nc(x) =

− log(z + εz) if z ≥ 0

−[log(−z + εz) + α(log (qx(x))− lqmax;x)]/(1 + α) if z < 0

, (5.10)

where lqmax;x is the maximum log value of log (qx(x)) until the current iteration; a very

small constant εz = e−10 is used only for the positivity condition of the log operator;

α > 0 is an optional coefficient which pulls the optimisation point of gb;nc(x) to a

location of high log density value, log (qx(x)). Figure 5.2 illustrates the above residual

function gnc;rb(x) with α = 0 and α = 3.
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Fig. 5.2: Example 5: the blue, black and purple lines show the target density qx(·),

the approximated density q̃1;x(·) and the function exp (−gb;1(·)) with red crosses as

maximum points of exp (−gb;1(·)).

Select starting points for the optimisation
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Using different starting points for the optimisation of gb;nc(x) results in different com-

ponent means. Bornkamp (2011a) uses the ratio qx(x)/q̃nc;x(x) as the criterion of

choosing the optimisation starting points. However, such a criterion may lead to a

point located at the distribution tail. For example, with a t-distribution qx(x) and a

normal distribution q̃nc;x(x), the ratio is extremely large at the tail.

So, we use the absolute difference |qx(x)− q̃nc;x(x)| as a selection criterion which is

closely related to the residual function gb;nc(x). As a reminder of Section 2.3.2, iterLap

keeps a m× dx matrix X of all explored locations, a vector y of target density values

qx(·) and a m× nc matrix Z of component density values N(·|µi, Qi) evaluated at the

explored locations. The algorithm to select starting points Xs from X is shown in

Algorithm 12.

Algorithm 12 Select optimisation starting points

1. Let Xa = X. Remove from Xa points xi with small target density values, i.e.

satisfying the condition: log (qx(xi))− lqmax;x < δlq

2. Find a point xj in Xa which maximises |qx(xj)− q̃nc;x(xj)|. Add that point xj to

Xs.

3. Remove from Xa points xk close to xj.

4. Stop the algorithm if there are enough starting points in Xs or if Xa is empty.

Otherwise, repeat steps 2→ 4.

A note on standardising qx(·) and q̃x(·)

Usually, the comparison between two densities is done based on their normalised den-

sities. However, aside from the difficulty of obtaining the normalising constant, there

is another issue. It is almost impossible to have a ”good” approximation at the tail

by any method. The absolute difference |qx(x) − q̃x(·)| at a specific location at the

tail may be extremely small but in high dimension space, the sum of all the absolute

differences in every direction of the tail may become significant. Consequently, even

though q̃x(·) is a ”good” approximation of qx(·) locally, the normalised p̃x(·) is however

a ”poor” approximation of the normalised px(·).
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Hence, instead of globally normalising qx(·) and q̃x(·), we only standardise these

two densities on a user-defined grid Xg. qx(·) is evaluated for all grid points xj and the

standardised density rx(·) on the grid is obtained by:

rx(xj) =
qx(xj)∑
j′ qx(xj′)

. (5.11)

The standardised r̃x(·) is obtained in a similar manner. So, local comparison of two

densities can be done by analysing the standardised densities. There is one statistic

s(rx, r̃x) that we find reasonable for the comparison purposes between two standardised

densities:

s(rx, r̃x) =
∑
xi∈Xg

|rx(xi)− r̃x(xi)|. (5.12)

With the same grid Xg, s(rx, r̃a;x) can be compared with another s(rx, r̃b;x).

Scaling a component’s Hessian

In iterLap, the Hessian of gb;nc(x) at the mode is used as the component’s precision

matrix. Usually, the sharper the curvature of gb;nc(x), the larger the eigenvalues of the

Hessian matrix at the mode and the more focused the corresponding normal component.

In some cases, the numerically evaluated Hessian matrix at the mode is sharper

than the actual curvature and iterLap may fail to improve such a target density. For

example, in Example 5, the function log (−qx(x)) is a quadratic function near the mode

x = 0 but it becomes a cubic function with much sharper curvature when |x| > 0.5. As

a result, the approximated q̃1;x(x) at the first iteration is much flatter than the target

density, which is shown in Figure 5.2. Unfortunately, in this example, even with more

extra components, the iterLap approximation does not improve.

There are two ways to get around this issue. Firstly, we can allow a manual scaling

of the Hessian matrix. With a user-defined scale factor κa, a new component is added

with a precision matrix:

Qnc+1 = κa
∂2ga;nc(x)

∂x2

∣∣∣∣
x=µnc+1

. (5.13)

This modification is analogous to using kernel density estimation with a small band-

width. A component with large precision matrix affects the approximation in a small

region.
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With κa = 1.5, the standardised densities for Example 5 are shown in Figure 5.3(a).

Clearly, the approximation becomes much better.
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(a) κa = 1.5 with no multiplicative scaling.

r̃nc;x(·) has nc = 14 components
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(b) Multiplicative scaling with ndup = 3 and

κb = 1.25. κa = 1. r̃nc;x(·) has nc = 12 compo-

nents

Fig. 5.3: Example 5: the iterLap approximation with hessian scaling and multiplica-

tive scaling; the blue and black curves are the standardised densities rx(·) and r̃nc;x(·).

One potential problem with this manual scaling is that all precision matrices become

larger and all corresponding components are sharper, affecting only small local regions

centred at the means. Similar to the case of using a small bandwidth in kernel method,

the approximation becomes wriggly and only gets smoother with a larger number of

components.

In a second attempt, we try to only adjust the Hessian matrix when needed. In

Figure 5.2, one of the potential means for the next components is µ = 0 (by the

optimisation of gb;1(·)). As µ = 0 is already a component mean of the approximated

q̃1;x(·), iterLap will not accept µ = 0 as a mean of a new component and try to find

other locations. Also, even if µ = 0 is accepted, a new component with mean µ = 0

and the usual precision matrix will not make any difference. So, we make the following

modifications:

• Allow the duplication of component means but there are no more than ndup

duplicates at a specific location. (xi2 is a duplicate of xi1 if xi1 , xi2 are close

enough)

• Assume that the component N(·|µ = xi1 , Q = Qi1) is added first at the location
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xi1 . Then, more duplicates xij of xi1 are found and corresponding components

N(·|µ = xij , Qij) are added to the iterLap approximation. Qij is calculated by:

Qij = κjbQi1 , (5.14)

with a user-defined factor κb

We call this multiplicative scaling which can be used in conjunction with the usual

Hessian scaling. In that case, only the first Hessian Qi1 is scaled with κa. However,

usually either Hessian scaling or multiplicative scaling is used. The approximation

for Example 5 with multiplicative scaling (ndup = 3 and κb = 1.25) is shown in Fig-

ure 5.3(b).

Other modifications

There are some other modifications to iterLap, including:

• The functionality of manually adding optimisation starting points to Xs and

explored points to X. Generally, when a new normal component with mean

µ is added to the iterLap approximation, aside from the starting points and

explored points proposed by iterLap, a user can manually add points relative

to the mean µ. This is useful in the case a user knows something about the

target density, e.g. the support or the variable correlation. For example, a user

may add more starting points, checking if there is any unexplored mode in the

interested support. Another potential usage of this functionality is when x can

be decomposed into (xa, xb) and the conditional expectation Exa|xb(xa) is known

by a function f(xb) (this frequently occurs in Bayesian inference with conjugate

prior). Hence, when a new component with mean µ = (µa, µb) is added, it may

be worth to check the locations (f(µb + δb), µb + δb).

• In the quadratic programming step for estimating w, we use weighted least

squares:

w = arg min
b

[(y − Zb)T (ωxI)(y − Zb)], b ≥ 0. (5.15)

where ωx;i is a weight for a explored point xi in X. It is designed that a user can

adjust the weight ωx;i for a location of a component mean µ = xi.
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• Make the code more robust to computer numerical issues, e.g. derive the matrix

Z from a normalised log version, make the Hessian matrix of gb;nc(x) positive

definite and scale the parameters in the quadratic programming step.

The iterLap version with all above modifications is named mod-iterLap and will be

compared the original iterLap by some examples in the next section. In each example,

both versions are run with a predefined maximum number of components nc;max but

the resulting approximations may have less components than nc;max due to stopping

rules. Furthermore, in mod-iterLap, we use a simplification step to remove insignificant

components, e.g. components with normalised weights wn;i < e−5. This simplification

reduces the computation cost when the approximation is used for other purposes.

5.1.2 Comparison

Firstly, we consider a density with a non-linear dependency in two-dimensional space.

In this section, notations q̃o;x(·), r̃o;x(·) are the approximated densities of the original

iterLap and q̃m;x(·), r̃m;x(·) are for the modified iterLap.

Example 6 Define a target density px(·) on x = (xa, xb):

px(x) = N(xa|µ = 0, σ2 = 102)N(xb|µ = 0.03(xa − 3)2 + 5, σ2 = 12). (5.16)

Both approximations are run with the maximum number of components nc;max =

50. r̃o;x(·) stops with nc = 11 components while r̃m;x(·) has nc = 27 components. The

contours of the standardised densities are shown in Figure 5.4. Clearly, the modified

version has a better capture of the non-linear dependency.

Figure 5.4 shows the variable correlation but not the approximation error. So, to

visually compare two approximations, rx(·) is evaluated in a grid and then sorted in

decreasing order of rx(·). The approximated r̃·;x(·) is sorted by the same order. Both of

them are then plotted in Figure 5.5. We also calculate the statistic of Equation (5.12)

for two approximations: s(rx, r̃o;x) = 0.424 and s(rx, r̃m;x) = 0.078. Running times in

R language are included in the standardized density plots in this section.
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Fig. 5.4: Example 6: the blue and black contours are the target standardised density

rx(·) and the approximated standardised density r̃·;x(·) respectively. The red crosses

are the component means.
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Fig. 5.5: Example 6: the plots of the ordered standardised densities. The blue and

black curves are rx(·) and r̃·;x(·) respectively.
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The next example is for testing a density with non-linearity and multi-modality.

Example 7 Define a target density px(·) on x = (xa, xb):

px(x) = 0.5N(xa|µ = −1, σ2 = 6)N(xb|µ = −0.5(xa + 1)2 + 3, σ2 = 2) (5.17)

+ 0.5N(xa|µ = 1, σ2 = 6)N(xb|µ = 0.5(xa − 1)2 − 3, σ2 = 2).

With nc;max = 100, iterLap stops with r̃o;x(·) of nc = 12 components while mod-

iterLap has r̃m;x(·) with nc = 56 components. The contour plots and ordered stan-

dardised density plots are shown in Figure 5.6 and Figure 5.7. s(rx, r̃o;x) = 0.602 and

s(rx, r̃m;x) = 0.066.
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(a) iterLap
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(b) mod-iterLap

Fig. 5.6: Example 7: the blue and black contours are the target standardised density

rx(·) and the approximated standardised density r̃·;x(·) respectively. The red crosses

are the component means.

In Example 8, we try increasing the dimension of the parameter space.

Example 8 Define a target density px(·) on x = (xa, xb, xc) (dim(xa) = dim(xb) = 1,

dim(xc) = 4):

px(x) = N(xa|µa,Σa = σ2
a.I) (5.18)

N(xb|µb = A(xa − µa) + b,Σb = σ2
b .I)

N(xc|µc = C(x1 − µa, xb − µb)2,Σc = σ2
c .I),
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(b) mod-iterLap: 5.090 seconds

Fig. 5.7: Example 7: the plots of the ordered standardised densities. The blue and

black curves are rx(·) and r̃·;x(·) respectively.

with:

µa = −0.5, σ2
a = 6.0, (5.19)

A = −2.0, b = −1.0,

σ2
b = 0.2, C =


0.9 0.3

−0.3 −1.1

−0.5 −0.6

0.3 0.2

 ,

σ2
c = (0.6, 0.7, 0.8, 0.9)/3.

Notice that there is a linear dependency of xa, xb and a non-linear dependency of xa, xb

and xc. The conditional variances σ2
b and σ2

c define the dependency strength. As it is

impossible to visualise this density, we only show the ordered standardised densities in

Figure 5.8. With nc;max = 200, r̃o;x(·) has nc = 17 components and r̃m;x(·) has nc = 73

components. s(rx, r̃o;x) = 0.733 and s(rx, r̃m;x) = 0.115.

So, the functional approximation method still works with dim(x) = 6. We further

increase the dimension to see its performance with Example 9.

Example 9 The same target density form in Equation (5.18) is used with dim(xa) =
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Fig. 5.8: Example 8: the plots of the ordered standardised densities. The blue and

black curves are rx(·) and r̃·;x(·) respectively.

dim(xb) = 2, dim(xc) = 5 and following parameters:

µa = (−0.5,−1.0), σ2
a = (6.0, 7.0), (5.20)

A =

 0.5 −1.2

−2.9 −1.3

 , b = (−1.0,−1.5),

σ2
b = (0.2, 0.3), C =



0.9 −1.3 −0.3 0.8

−0.7 0.8 −0.1 0.6

0.7 −0.6 1.4 1.5

1.2 −1.2 0.3 0.0

1.3 1.4 1.4 0.0


,

σ2
c = (0.8, 0.9, 1.0, 1.1, 1.2)/4.

The iterLap and mod-iterLap approximations are first run with nc;max = 200. r̃o;x(·)

and r̃m,a;x(·) have nc = 20 and nc = 50 components respectively and are plotted

in Figures 5.9(a) and 5.9(b). Even though r̃m,a;x(·) is better, it may not be very

satisfying. Hence, we run mod-iterLap with more components and obtain r̃m,b;x(·)

with nc = 237 components and r̃m,c;x(·) with nc = 345 components in Figures 5.9(c)

and 5.9(d). The approximations do get better with s(rx, r̃o;x) = 0.763, s(rx, r̃m,a;x) =

0.522, s(rx, r̃m,b;x) = 0.295 and s(rx, r̃m,c;x) = 0.244 but approximation errors are not

as good as ones of previous examples.

So, like many other methods, iterLap suffers from the curse of dimensionality, es-

pecially when there is non-linear dependency between many variables.
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(a) iterLap: nc = 20 (4.441 seconds)
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(c) mod-iterLap: nc = 237 (1.5 hours)
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(d) mod-iterLap: nc = 345 (7.0 hours)

Fig. 5.9: Example 9: the plots of the ordered standardised densities. The blue and

black curves are rx(·) and r̃·;x(·) respectively.

In the last example, we will see how iterLap works with a non-normal noise and a

constrained variable space. When used directly on such a constrained space, iterLap

may have numerical issues in the optimisation and the Hessian evaluation at locations

along the constrained border. Hence, it is better to transform a constrained space to

a non-constrained space.

Example 10 Consider a DLM:

yt = xt + vt (t = 1 : n), (5.21)

xt = xt−1 + ut (t = 2 : n), (5.22)

where ut ∼ N(0, σ2
u = λ−1

u ), vt ∼ N(0, σ2
v = λ−1

v ). The priors for precision parameters

are λu ∼ Gamma(a = 1, b = 0.5), λv ∼ Gamma(c = 1, d = 0.5).
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Notice that x = x1:n is an intrinsic Gaussian distribution with a precision matrix:

Qx = λu


1 −1 0 0 . . .

−1 2 −1 0 . . .

0 −1 2 −1 . . .

. . . . . . . . . . . . . . . .

 . (5.23)

One hundred data points y1:n (n = 100) are generated from Equation (5.21) with

λ?u = 1/22, λ?v = 1/12. The joint posterior of (λu, λv, x) is:

pλu,λv ,x|y(λu, λv, x) ∝ Gamma(λu|a, b)Gamma(λv|c, d) (5.24)

N(x|0, Qx)N(y|x,Qy = λvIn).

It can be seen that the full conditional posterior of x is:

px|λu,λv ,y(x) = N(x|µ′x, Q′x), (5.25)

with:

Q′x = Qx +Qy, (5.26)

Q′xµ
′
x = Qyy. (5.27)

Using Equation (5.25) to marginalise Equation (5.24) with respect to x, we can obtain

the marginal density pλu,λv |y(λu, λv):

pλu,λv |y(λu, λv) ∝ qλu,λv |y(λu, λv) (5.28)

= Gamma(λu|a, b)Gamma(λv|c, d)

(2π)−(n−1)/2λ(n−1)/2
u |Q′x|−1/2|Qy|1/2

exp

[
−yTQyy + µ′ Tx Q′xµ

′
x

2

]
.

The log transform is used on (λu, λv) to get τu = log(λu) and τv = log(λv), which

are non-constrained variables. The corresponding non-normalised marginal density

qτu,τv |y(τu, τv) is:

qτu,τv |y(τu, τv) = qλu,λv |y(λu, λv)λuλv, (5.29)

which is then approximated by iterLap. Finally, the approximated density q̃τu,τv |y(τu, τv)

is converted back to q̃λu,λv |y(λu, λv) by Equation (5.29).
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Fig. 5.10: Example 10: the blue and black contours are the target standardised

density r and the approximated standardised density r̃ respectively. The red crosses

are the iterLap component means (in the parametrisation (τu, τv) or the corresponding

transform (λu, λv) of component means (τu, τv). iterLap has nc = 6 components and

mod-iterLap has nc = 19.

Two versions, iterLap and mod-iterLap, are run with nc;max = 30. The contour

plots of standardised densities of (τu, τv) and (λu, λv) are shown in Figure 5.10

The ordered standardised densities are plotted in Figure 5.11. In the parametri-

sation (τu, τv), s(r, r̃o) = 0.125, s(r, r̃m) = 0.03 while in the parametrisation (λu, λv),

s(r, r̃o) = 0.135, s(r, r̃m) = 0.032.

Instead of transforming the densities back and forth between constrained space and

non-constrained space, which involves the evaluation of a Jacobian, it may be more

practical to work directly on the non-constrained space in some cases, e.g. specify the

prior and approximate the posterior on (τu, τv) in Example 10.
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(a) iterLap: (τu, τv) (0.498 seconds)
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(c) mod-iterLap: (τu, τv) (5.024 seconds)
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(d) mod-iterLap: (λu, λv) (5.024 seconds)

Fig. 5.11: Example 10: the plots of the ordered standardised densities. The blue and

black curves are rx(·) and r̃·;x(·) respectively.

In all examples, mod-iterLap achieves better performance with longer running time.

This computation cost is reasonable as the mod-iterLap add more components to cor-

rect the approximation without getting stuck like the original iterLap. The more the

number of components, the longer the running time. In practice, the trade-off between

correctness and running time can be controlled by the maximum number of components

nc;max. Another point is that the code of all these examples, iterLap, mod-iterLap is

written in R. Hence, the running time should improve significantly if the code is ported

to C language.

This concludes the discussion and comparison of functional approximation. In the

next section, we will apply iterLap to sequential inference.
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5.2 Sequential inference with iterLap

A sequential inference method for both the state vector and unknown parameters is

proposed in this section. As we have seen in Chapter 2, the degeneracy problem is

caused by a mismatched sampling proposal and can be especially severe in the sequen-

tial context. Hence, in this section, the iterLap method is used in each iteration to

provide a continuous approximation of the filtering distribution, avoiding the degener-

acy of sequential inference.

5.2.1 The sequential inference algorithm

We consider a sub-class of the DM in which the state vector xt follows a linear trans-

formation:

yt ∼ pyt|xt,ϕ(·), (5.30)

xt = Gxt−1 + h+ ut, (5.31)

where ut
iid∼ N(0,Σu = Q−1

u ) and ϕ is a vector including all unknown parameters (G, h

and Qu can all be unknown parameters). The prior of this model is defined by pϕ,x1(·)

with a starting state x1.

Assume that up to time t, there is an approximation of the density pϕ,xt|y1:(t−1)
(·) ≈

p̃ϕ,xt|y1:(t−1)
(·). At t = 1, the above density is the predefined prior.

The first step is to update from p̃ϕ,xt|y1:(t−1)
(·) to p̃ϕ,xt|y1:t(·) with a new data point

yt. The mixture approximation p̃ϕ,xt|y1:t(·) is obtained by using iterLap of the previous

section:

p̃ϕ,xt|y1:t(ϕ, xt) ∝ p̃ϕ,xt|y1:(t−1)
(ϕ, xt)pyt|xt,ϕ(yt) (5.32)

≈
∑
i

wn;iNi(ϕ, xt|µi;ϕ,xt , Qi;ϕ,xt) (5.33)

=
∑
i

wn;ip̃i;ϕ,xt|y1:t(ϕ, xt), (5.34)

where wn;i are normalised weights
∑

iwn;i = 1.

In the second step, we want to evolve p̃ϕ,xt|y1:t(·) to p̃ϕ,xt+1|y1:t(·) by the state equation

Equation (5.31). Decomposing each normal component p̃i;ϕ,xt|y1:t(ϕ, xt) into p̃i;ϕ|y1:t(ϕ)
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and p̃i;xt|ϕ,y1:t(xt), we have:

p̃i;ϕ|y1:t(ϕ) = Ni(ϕ|µi;ϕ, Qi;ϕ), (5.35)

p̃i;xt|ϕ,y1:t(xt) = Ni(xt|µi;xt|ϕ, Qi;xt|ϕ), (5.36)

where µi;ϕ, Qi;ϕ, µi;xt|ϕ and Qi;xt|ϕ can be easily evaluated by properties of the nor-

mal distribution. Combined with the linear transformation of xt+1, the joint density

p̃ϕ,xt,xt+1|y1:t(·) is:

p̃ϕ,xt,xt+1|y1:t(ϕ, xt, xt+1) (5.37)

=
∑
i

wn;iNi(ϕ|µi;ϕ, Qi;ϕ)Ni(xt|µi;xt|ϕ, Qi;xt|ϕ)N(xt+1|Gxt + h,Qu).

Then, the marginal density p̃ϕ,xt+1|y1:t(·) is calculated by:

p̃ϕ,xt+1|y1:t(ϕ, xt+1) =

∫
p̃ϕ,xt,xt+1|y1:t(ϕ, xt, xt+1)dxt (5.38)

=
∑
i

wn;iNi(ϕ|µi;ϕ, Qi;ϕ)

∫
Ni(xt|µi;xt|ϕ, Qi;xt|ϕ)N(xt+1|Gxt + h,Qu)dxt

=
∑
i

wn;iNi(ϕ|µi;ϕ, Qi;ϕ)pi;xt+1|ϕ,y1:t(xt+1).

For each component integral, we have:

pi;xt+1|ϕ,y1:t(xt+1) =

∫
Ni(xt|µi;xt|ϕ, Qi;xt|ϕ)N(xt+1|Gxt + h,Qu)dxt (5.39)

=

∫
(2π)−dx|Qi;xt|ϕ)|1/2|Qu|1/2 exp

(
−1

2

[
(xt − µi;xt|ϕ)TQi;xt|ϕ(xt − µi;xt|ϕ)

+ (xt+1 −Gxt − h)TQu(xt+1 −Gxt − h)

])
dxt

=

∫
(2π)−dx |Qi;xt|ϕ)|1/2|Qu|1/2 exp

(
−1

2

[
xTt (Qi;xt|ϕ +GTQuG)xt

− 2xTt (Qi;xt|ϕµi;xt|ϕ +GTQue) + eTQue+ µTi;xt|ϕQi;xt|ϕµi;xt|ϕ

])
dxt

=

∫
(2π)−dx |Qi;xt|ϕ)|1/2|Qu|1/2 exp

(
−1

2

[
(xt − µ′)TQ′(xt − µ′)

+ eTQue+ µTi;xt|ϕQi;xt|ϕµi;xt|ϕ − µ′TQ′µ′
])

dxt

= (2π)−dx/2|Qi;xt|ϕ)|1/2|Qu|1/2|Q′|−1/2

exp

(
−1

2

[
eTQue+ µTi;xt|ϕQi;xt|ϕµi;xt|ϕ − µ′TQ′µ′

])
,
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with:

e = xt+1 − h. (5.40)

Q′ = Qi;xt|ϕ +GTQuG. (5.41)

Q′µ′ = Qi;xt|ϕµi;xt|ϕ +GTQue. (5.42)

Hence, the marginal density p̃ϕ,xt+1|y1:t(·) can be evaluated exactly.

These two steps are done repeatedly, leading to the sequential approximation p̃ϕ,xt|y1:t(·)

for any t. The above procedure is summarised in Algorithm 13.

Algorithm 13 Sequential inference with iterLap

1. With a known density p̃ϕ,xt|y1:(t−1)
(·) (that can be numerically evaluated), use iter-

Lap to approximate p̃ϕ,xt|y1:t(·) ∝ p̃ϕ,xt|y1:(t−1)
(·)pyt|xt,ϕ(·) by a mixture of normal

distributions.

2. Marginalise the mixture density p̃ϕ,xt,xt+1|y1:t(·) = p̃ϕ,xt|y1:t(·)N(xt+1|Gxt + h,Qu)

analytically with respect to xt and get p̃ϕ,xt+1|y1:t(·), using Equations (5.38)

and (5.39).

3. Repeat steps 1 and 2 with t = t+ 1.

Notice that as the approximated joint density p̃ϕ,xt|y1:t(·) is a mixture of normal

distributions, we can easily derive the marginal normal densities p̃ϕi|y1:t(·) and p̃xt,i|y1:t(·)

(ϕ = (ϕ1, ..., ϕdϕ); xt = (xt,1, ..., xt,dx)).

In the case that the state equation is non-linear and xt ∼ pxt|xt−1,ϕ(·), the above

procedure can be altered to approximate p̃ϕ,xt,xt+1|y1:t(·) by another mixture of normal

distributions using iterLap. Then the mixture density can be marginalised by prop-

erties of the normal distribution, leading to p̃ϕ,xt+1|y1:t(·). Such a modification results

in another layer of approximation error. However, in this thesis, we will not consider

such a case.

134



5.2.2 Examples

The proposed sequential inference algorithm is now tested with the following example.

Example 11 Two thousands data points are generated by a model:

yt = bx2
t + vt, (5.43)

xt − 10 = a(xt−1 − 10) + ut, (5.44)

where ut
iid∼ N(0, σ2

u = λ−1
u ) and vt

iid∼ N(0, σ2
v = λ−1

v ). Denoting τu = log(λu) and

τv = log(λv), the data is generated with the following parameter values:

a? = 0.8, b? = 2.0, (5.45)

τ ?u = log(0.4−2), τ ?v = log(0.2−2).

In this example, we assume that b = b? and τv = τ ?v are known and use sequential

inference on (a, τu, xt). The priors for a, τu and x1 are:

pa(·) = N(·|µa = 0, σ2
a = 0.22), (5.46)

pτu(·) = N(·|µτu = τ ?u − 0.5 = 1.333, σ2
τu = 0.52), (5.47)

px1(·) = N(·|µx1 = 10, σ2
x1

= 0.52). (5.48)

Algorithm 13 is used on this example and the sequential approximation of density

pa,τu,xt|y1:t(·) is summarised in Figure 5.12. The sequential inference method seems to

work well in this example.

We now try sequential inference on a more complex case.

Example 12 This example uses the same model and dataset of Example 11. However,

coefficient b is now unknown and sequential inference is applied on (a, b, τu, xt). The

priors for these parameters are:

pa(·) = N(·|µa = 0, σ2
a = 0.22), (5.49)

pb(·) = N(·|µb = 1, σ2
a = 0.22), (5.50)

pτu(·) = N(·|µτu = τ ?u − 0.5 = 1.333, σ2
τu = 0.52), (5.51)

px1(·) = N(·|µx1 = 10, σ2
x1

= 0.52). (5.52)
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Fig. 5.12: Example 11: summary of filtering densities pa|y1:t(·), pτu|y1:t(·) and pxt|y1:t(·).

The blue and purple solid lines represents the mean µ and the mode ξ of a particular

density. The blue dashed lines mark the interval [µ−2σ, µ+2σ] with standard deviation

σ. The red lines represent the true value of the random variables. Figure 5.12(d) is an

enlargement of Figure 5.12(c).

Results of pa|y1:t(·), pb|y1:t(·), pτu|y1:t(·) and pxt|y1:t(·) are shown in Figure 5.13. In-

ference of a and τu seems satisfying as the true values are contained in the intervals

[µ − 2σ, µ + 2σ]. On the other hand, the method overestimates b and underestimates

xt in Figures 5.13(c) and 5.13(d). Still, with a prior of b quite far from the true value

b?, the approximation method has managed to pull the density pb|y1:t(·) close enough

towards the true value.

Inference of b and xt shows us the identifiability issue in the sequential approxima-

tion approach of this model. As yt = bx2
t + vt in Equation (5.43), conditioning on yt,

one can have a large estimated mean µb and a small estimated mean µxt (as in Fig-
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ures 5.13(c) and 5.13(d)) or vice versa. This identifiability problem makes it hard to

estimate correctly the unknown parameters and becomes more severe with sequential

approximation (as there is approximation error in each iteration). Perhaps, an offline

method would yield a better estimation (however, in Section 6.3.1, we will see that

even an offline estimation of the DM is sensitive to the identifiability problem). Still,

by the proposed method, the sequential estimation yt = µbµ
2
xt is consistent with yt and

this result may be good enough in practise, depending on the application context.
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Fig. 5.13: Example 12: summary of filtering densities pa|y1:t(·), pτu|y1:t(·) and pxt|y1:t(·).

The blue and purple solid lines represents the mean µ and the mode ξ of a particular

density. The blue dashed lines mark the interval [µ−2σ, µ+2σ] with standard deviation

σ. The red lines represent the true value of the random variables.

Example 13 In the last example, sequential inference is used on the unknown param-
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eter vector (a, τu, τv, xt). The priors for these parameters are:

pa(·) = N(·|µa = 0, σ2
a = 0.22), (5.53)

pτu(·) = N(·|µτu = τ ?u − 1.0 = 0.833, σ2
τu = 0.12), (5.54)

pτv(·) = N(·|µτv = τ ?v − 1.0 = 2.219, σ2
τv = 0.12), (5.55)

px1(·) = N(·|µx1 = 10, σ2
x1

= 0.52). (5.56)
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Fig. 5.14: Example 13: summary of filtering densities pa|y1:t(·), pτu|y1:t(·) and pxt|y1:t(·).

The blue and purple solid lines represents the mean µ and the mode ξ of a particular

density. The blue dashed lines mark the interval [µ−2σ, µ+2σ] with standard deviation

σ. The red lines represent the true value of the random variables.

The results of this example are summarised in Figure 5.14. With both unknown

τu and τv, the method has difficulty in parameter estimation, only managing to pull

variables a and τu closer to the true values. Variable τv becomes more and more

overestimated over time. When we check the sequential inference code in details,
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this issue seems to be coming from the optimisation step of iterLap (pyt|b,τv ,xt(yt) =

N(yt|µ = bx2
t , σ

2 = exp(−τv)) is increasing with respect to τv).

5.3 Conclusion

In this chapter, we have improved the functional approximation method iterLap and

evaluated its performance with several examples. Then, based on iterLap, a new se-

quential inference method is proposed for both the state vector and parameters in the

DM, using a continuous approximation to avoid the degeneracy issue in sampling-based

sequential inference. This new method is then analysed with some simulated exam-

ples, yielding varying results. In general, the method has good performance but it is

sensitive to the identifiability issue and may have trouble with estimating an unknown

variance (or precision). Practically, the identifiability issue may be avoided or lessened

by careful modelling and the variance estimation problem of the DM may be handled

by fixing either the state noise variance or observation noise variance or coupling the

two variances, e.g. τu = ατv with a predefined coefficient α. In any case, the estimation

of the state vector xt seems to be fine and compatible with the observation yt.

The next chapter resumes the discussion of the STFF problem and applies the

proposed sequential inference method for a particular sub-model.
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Chapter 6

Spatial-temporal modelling of

transportation networks

In this chapter, the motivation for a new spatial-temporal model of STFF is first

discussed. By the works on estimating the current number of vehicles within a link

(Papageorgiou and Vigos, 2008; Vigos and Papageorgiou, 2010), we assume that these

variables are known (or estimated) and use them as observations in the new spatial-

temporal model. The model is evaluated using data that is generated by the popular

transportation micro-simulator VISSIM.

A new model is proposed, consisting of four sub-models. Each sub-model corre-

sponds to a specific part of a traffic network.

• A link-outflow sub-model for the one-step-ahead outflow with inputs as the cur-

rent inflow and the number of vehicles within a link.

• A junction sub-model that relates inflows and outflows of a particular junction,

based on the latent turning rate of vehicles.

• A root sub-model for the inflows of root-links which are located at the border of

a traffic network and have no upstream information.

• A link-vehicle sub-model that provides the number of vehicles by the current

inflow, outflow and the previous number of vehicles in a specific link.

Specifically, the modelling and inference for the first two sub-models are provided. The

sequential method proposed in the previous chapter is used for the DM of the junction
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sub-model, meeting the time constraint of real-time applications. Then, how inference

for the last two sub-models may be done is discussed.

6.1 The spatial-temporal model

6.1.1 Motivation

The motivation of this chapter comes from the discussion of Section 4.2.5. A new

model is proposed with some characteristics:

• The model focuses on modelling the mean of the traffic variables and uses simple

iid random noise for the residuals.

• To solve the scalability problem, the model can be divided into several compo-

nents on which the inference can be done conditionally independently.

• For the real-time requirement, sequential inference can be used on each compo-

nent.

• The model should be robust to the occurrence of a traffic incident and the de-

pendency between variables is as stable as possible.

In our opinion, using only previous flow information may not be enough for an

accurate prediction, especially in the case of traffic incident. Denoting the network

state information at time t by ψt, we want to include relevant traffic information in ψt,

which is used to obtain the traffic flow prediction ẑt+1.

By a stable and good modelling, accurate state information ψt may provide a precise

one-step-prediction ẑt+1. However, there is a mutual cause-effect relationship between

the flow and the state in STFF. As we want the multi-step-ahead prediction ẑ(t+1):(t+h),

the network state ψ̂(t+1):(t+h−1) forecasting needs to be given too. Furthermore, to

maintain the prediction accuracy of ẑt+h, ψ̂t+h−1 should also be as accurate as possible.

Usually, the flow information is included in the network state and the flow prediction

problem extends to the network state prediction.

So, in this chapter, we decide to use the number of vehicles within a link νt and the

flow zt as the network state. The reason is because νt is a good explanatory variable

for zt+1, which will be seen in the link-outflow sub-model of Section 6.2. Also, there
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Fig. 6.1: The simulated network map: the black links are the directed road links and

the blue circles represent the junctions.

is the conservation equation of vehicles in Section 3.3 to maintain the strong coupling

between νt and zt. At the moment, it is assumed that the number of vehicles within a

link νt can be obtained by either a direct mean such as video detector or an estimation

method in Papageorgiou and Vigos (2008) and Vigos and Papageorgiou (2010).

6.1.2 A VISSIM dataset

As the Dublin traffic datasets in Section 4.2.1 do not contain the number of vehicles

within a link νt, we use the micro-simulator VISSIM to generate a new traffic dataset. In

VISSIM, a virtual traffic environment is created where each bus, vehicle or pedestrian

is simulated completely as an entity with its own goal and behaviour. A user only

needs to specify the high-level information such as the virtual network map, the vehicle

input volume, the traffic light sequence, etc. and VISSIM will automatically run the

simulation and record the specified traffic variables. To the user (or at least to us), the

random process of the VISSIM simulation is unknown.

Example 14 A one-minute dataset of 4 days is simulated by VISSIM with the network

map in Figure 6.1. The links and junctions have naming codes as L-ABBCC and J-

BBCC with:

• A is either H for a horizontal link or V for a vertical link.

• BB and CC are the row and column indices of a link or a junction.

For each link, the inflow z1;t, the outflow z2;t and the number of vehicles νt are recorded

as in Figure 6.2. As each link has 2 lanes, all the statistics are aggregated for the whole

link.
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Fig. 6.2: A road link with the inflow z1;t, the outflow z2;t and the number of vehicles

νt: the blue circles are the junctions and the green circles are the detector locations for

the inflow and outflow of the link.
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Fig. 6.3: The outflow z2;t of link L-H0203. The blue vertical lines mark a duration

when a traffic incident occurs.

We call links L-V0102, L-H0101 and L-H0201 root links as there is no upstream

information for these links in this simulated scenario. For the VISSIM simulation, the

traffic volumes of these root links must be provided. To simulate a traffic incident in

this dataset, the inflow of root link L-H0201 is blocked for 6 hours on the third day

and this incident affects the whole traffic network consequently.

There is no restriction for the flow direction in each junction. For example, in

junction J-0103, the flow of link L-H0103 can go to either link L-V0101 or L-H0104.

For the number of vehicles within a link, the true quantity ν?t is obtained from

VISSIM. Then, in each link, an iid error is then added to this true quantity for the

observed value: νt = ν?t + e?ν;t. The error is chosen so that the relative mean square

error (rmse) of νt and ν?t is about 15% for 1-minute dataset, according to the result in

Vigos and Papageorgiou (2010) (rmse is the ratio between the standard deviation of

e?ν;t and the mean of true value). To make the simulation more realistic, the observed

value νt is used instead of the true value ν?t for statistical inference in this chapter.

.

144



The outflow z2;t of link L-H0203 is shown in Figure 6.3 (this plot is a duplicate of

Figure 4.35(a)). It can be seen in the plot that the traffic pattern during the incident

(t = 3120 : 3480) is quite different from the usual pattern.

6.1.3 The general model

Denote the individual inflow, outflow and number of vehicles of link i by z1;t,i, z2;t,i

and νt,i. It can be seen from Figure 6.1 that the inflow of one link is the out-

flow of another junction. For notation purposes, the outflow vector of junction j

is denoted by ζ2;t,j = (z1;t,i1 , z1;t,i2 , ...). Similarly, the inflow vector of junction j is

ζ1;t,j = (z2;t,i′1
, z2;t,i′2

, ...). Depending on a context, the link index and junction index

may be dropped for simplicity in this chapter. Also, the link index set of all root links

is denoted by R. Notice that the set of junction outflows ζ2;t,j is equivalent to the set

of link inflows z1;t,i with i /∈ R.

The general model is constructed by 4 components:

• A link-outflow sub-model for link i is defined by the density pz2;t,i|Ωa;i,z1;1:(t−1),i,ν1:(t−1),i
(·)

with unknown parameter Ωa;i. In this thesis, only the one-step-behind net-

work information is used for the current outflow. So, the density is simplified

to pz2;t,i|Ωa;i,z1;t−1,i,νt−1,i
(·).

• For junction j, the relationship between the junction inflow ζ1;t,j and the junction

outflow ζ2;t,j is defined by:

pζ2;t,j ,χb;t,j |Ωb;j ,Db;t−1,j ,ζ1;t,j(·) = pζ2;t,j |Ωb;j ,χb;t,j ,ζ1;t,j(·)pχb;t,j |Ωb;j ,Db;t−1,j
(·), (6.1)

with unknown parameter Ωb;j and latent variable χb;t,j. Db;t−1,j is the shorthand

for (ζ1;1:(t−1),j, ζ2;1:(t−1),j). This sub-model is actually a DM and will be clarified

in Section 6.3.

• The inflow of a root link i ∈ R can be modelled as a DM:

pz1;t,i,χc;t,i|Ωc;i,z1;1:(t−1),i
(·) = pz1;t,i|Ωc;i,χc;t,i(·)pχc;t,i|Ωc;i,z1;1:(t−1),i

(·), (6.2)

with unknown parameter Ωc;i and latent variable χc;t,i.

• The number of vehicles within link i follows the conservation equation:

νt,i = νt−1,i + z1;t,i − z2;t,i + eν;t,i, (6.3)
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where eν;t,i
iid∼ N(0, σ2

ν;i). Conditioning on (νt−1,i, z1;t,i, z2;t,i), this is a simple linear

model with unknown parameter Ωd;i = σ2
ν;i.

An independent prior will be used for the above model:

pΩa,Ωb,Ωc,Ωd(·) =
∏
i

pΩa;i(·)
∏
j

pΩb;j(·)
∏
i′∈R

pΩc;i′
(·)
∏
i′′

pΩd;i′′
(·) (6.4)

The only common variables among 4 sub-models are the observations of flows and the

number of vehicles. So, with the independent prior, we have:

pΩa;i|z1;1:t,i,z2;1:t,i,ν1:t,i,...(·) = pΩa;i|z1;1:t,i,z2;1:t,i,ν1;1:t,i(·), (6.5)

pΩb;j ,χb;1:t,j |ζ1;1:t,i,ζ2;1:t,i,...(·) = pΩb;j ,χb;1:t,j |ζ1;1:t,i,ζ2;1:t,i(·), (6.6)

pΩc;i,χc;1:t,i|ζ1;1:t,i,...(·) = pΩc;i,χc;1:t,i|ζ1;1:t,i(·) i ∈ R, (6.7)

pΩd;i|z1;1:t,i,z2;1:t,i,ν1:t,i,...(·) = pΩd;i|z1;1:t,i,z2;1:t,i,ν1;1:t,i(·). (6.8)

This property of conditional independence allows separate inference (estimation and

filtering of parameters and latent variables) for each link, junction and sub-model,

relieving the scalability problem in an expanded traffic network.

For the forecasting, the link-outflow sub-model allows the one-step-ahead predic-

tions of all link outflows. Combining the link-outflow and the junction sub-models

gives us the one-step-ahead inflow predictions of all non-root links i /∈ R. The stan-

dalone root sub-model is capable of multi-step-ahead inflow predictions of all root links

i ∈ R. The link-vehicle sub-model connects all together, giving the multi-step-ahead

predictions for the whole network. The first two sub-models will now be examined in

more details.

6.2 The link-outflow sub-model

In this section, we analyse the link outflow z2;t based on the one-step-behind observa-

tions z1;t−1 and νt−1. The scatter plots of these quantities for link L-H0203 are shown

in Figure 6.4. From the figure, it is seen that the mean of z2;t is reasonably linear

against z1;t−1 but is better modelled by a piecewise polynomial function of νt−1. Also,

the horizontal variation of z2;t with respect to z1;t−1 (analogous to the conditional vari-

ance) is larger than the variation of the pair (νt−1, z2;t). With the smaller variation,

using νt−1 should yield better prediction of z2;t.
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Fig. 6.4: Link L-H0203: the scatter plots of (z1;t−1, z2;t) and (νt−1, z2;t) for all days.

The blue curves are the smoothing means provided by R function geom smooth.

In Figure 6.4, the dependency between z2;t and νt−1 changes significantly around

at νt−1 = 45. This shifting corresponds to the congestion time when the link is full of

vehicles (high values of νt−1).

These dependencies seem to be independent on the day. The scatter plots of

(νt−1, z2;t) on days 2 and 3 are shown in Figure 6.5. As there is a traffic incident

on day 3, these plots implies that the dependency of (νt−1, z2;t) is robust to the inci-

dent. The plots of (z1;t−1, z2;t) of separate days are not shown, but also exhibit a stable

dependency with respect to the incident.
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(b) Day 3 with a traffic incident

Fig. 6.5: Link L-H0203: the scatter plots of (νt−1, z2;t) of separate days. The blue

curves are the smoothing means provided by R function geom smooth.

Linear regression with smoothing is now tried with these variables. The following
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models are fitted with the first 2 days data, using R linear regression function lm:

LO-D1-I : z2;t = β0 + βz;1z1;t−1 +
∑
i

βz;i+1(z1;t−1 − bi)+ + ez;t, (6.9)

LO-D1-V : z2;t = β0 + βν;1νt−1 +
∑
j

βν;j+1(νt−1 − cj)+ + ez;t, (6.10)

LO-D1-IV : z2;t = β0 + βz,1z1;t−1 +
∑
i

βz;i+1(z1;t−1 − bi)++

βν;1νt−1 +
∑
j

βν;j+1(νt−1 − cj)+ + ez;t, (6.11)

LO-D2-I : z2;t = β0 + βz;1z1;t−1 + βz;2z
2
1;t−1 +

∑
i

βz;i+2(z1;t−1 − bi)2
+ + ez;t, (6.12)

LO-D2-V : z2;t = β0 + βν;1νt−1 + βν;2ν
2
t−1 +

∑
j

βν;i+2(νt−1 − cj)2
+ + ez;t, (6.13)

LO-D2-IV : z2;t = β0 + βz;1z1;t−1 + βz;2z
2
1;t−1 +

∑
i

βz;i+2(z1;t−1 − bi)2
++

βν;1νt−1 + βν;2ν
2
t−1 +

∑
j

βν;i+2(νt−1 − cj)2
+ + ez;t, (6.14)

where the knots are manually chosen with b = (5, 15, 25) and c = (35, 45, 55); ez;t is

iid normal random noise; the codes on the rightmost are used to denote the linear

models. After these models are fitted, we obtain the one-step-ahead prediction ẑ2;t|t−1

and calculate the mean square error. The mean square error smse;1 is calculated from

the last 2 days’ data while smse;2 is only for the duration during the traffic incident

(t = 3120 : 3480). These errors are summarised in Table 6.1. The one-step-ahead

prediction of model LO-D1-IV for the last 2-day outflow of link L-H0203 is shown in

Figure 6.6(a).

The same procedure is used on the outflow of link L-H0104. The resulting mean

square error is in Table 6.2 and the one-step-ahead prediction is plotted in Figure 6.6(b).

So, even though the models are fitted with first 2-day data, its prediction is still

useful during the time of the traffic incident. Furthermore, using the number of vehicles

νt−1 yields better prediction as we have expected. The difference in using polynomial

splines of degree 1 (D1) and degree 2 (D2) is quite small in this scenario.

Bayesian sequential inference of a linear model is done quite simply by using the

conjugate prior, normal and inverse gamma distributions, on the linear coefficient and

the variance parameters (Bishop, 2006,chap. 3).
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Table 6.1: The mean square error of one-step-ahead prediction for the link-outflow

sub-model (Link L-H0203): smse;1 is for the last 2-day data and smse;2 is for the duration

during the traffic incident.

LO-D1-I LO-D1-V LO-D1-IV LO-D2-I LO-D2-V LO-D2-IV

smse;1 13.4687 9.9678 9.1324 13.4687 10.0524 8.9887

smse;2 19.4746 14.4983 13.9870 19.4746 14.7115 14.2640

Table 6.2: The mean square error of one-step-ahead prediction for the link-outflow

sub-model (Link L-H0104): smse;1 is for the last 2-day data and smse;2 is for the duration

during the traffic incident.

LO-D1-I LO-D1-V LO-D1-IV LO-D2-I LO-D2-V LO-D2-IV

smse;1 6.3415 3.1562 3.0876 6.3415 3.1027 3.0008

smse;2 9.7636 4.5032 4.5551 9.7636 4.5132 4.7681
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(b) Link L-H0104

Fig. 6.6: The one-step-ahead prediction of link outflow for the last two days: the black

and red curves are the true outflow and the prediction respectively. The blue vertical

lines mark a duration when a traffic incident occurs.
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Fig. 6.7: The junction J-0103 with the inflow ζ1;t, the outflow ζ2;t: the green circles

are the detector locations for the flows.

6.3 The junction sub-model

We now examine the junction sub-model which relates ζ2;t (dζ;2 = dim(ζ2;t)) and ζ1;t

(dζ;1 = dim(ζ1;t)) (or equivalent z1;t and z2;t). An enlarged map for the junction J-0103

is shown in Figure 6.7. We propose using the following DM model for a junction (the

junction index is dropped):

ζ2;t = At(xt)ζ1;t + vt, (6.15)

xt = xt−1 + ut, (6.16)

where vt
iid∼ N(0, σ2

v = λ−1
v ) (a multivariate normal noise with a diagonal variance

matrix Σv = σ2
vI); ut

iid∼ N(0,Σu = Q−1
u ); xt is a state vector of length dx. The

dζ;2 × dζ;1 matrix At with column-sums 1 represents the turning rate from the inflow

ζ1;t to the outflow ζ2;t. As it is hard to work directly on the constrained space of At, a

non-linear transform is used on the non-constrained space xt.

Denote a single entry of At at row i and column i′ by At,i,i′ . Note that At,i,i′ is

non-negative and if At,i,i′ = 0, then there is no connection between the inflow ζ1;t,i′

and the outflow ζ2;t,i. Let Bt be another dζ;2 × dζ;1 matrix with Bt,i,i′ = − inf if there

is network connection between ζ1;t,i′ and the outflow ζ2;t,i. Also, for each column i′ of

Bt, there must be one predefined entry of value 0: Bt,i,i′ = 0. The locations of these

zero-entries can be randomly chosen. Then At can be constructed from Bt using the
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logistic transformation:

At,i,i′ =
exp(Bt,i,i′)∑
k exp(Bt,k,i′)

. (6.17)

For example, the matrix Bt for the junction J-0103 in Figure 6.7 can be defined as:

Bt =

xt,1 xt,2

0 0

 . (6.18)

So, the state xt = (xt,1, xt,2) is a vector of non-zero finite entries Bt,i,i′ .

For the analysis purposes, in addition to the data of junction J-0103, we use another

simulated dataset described in Example 15.

Example 15 Consider an imaginary junction with 2 inflows (dζ;1 = 2) and 3 outflows

(dζ;2 = 3). There are 4 inflow-outflow connection pairs (1 → 1), (1 → 2), (1 → 3),

(2→ 1) and Bt is chosen as

Bt =


xt,1 0

xt,2 − inf

0 − inf

 . (6.19)

Then, instead of using from a random walk, we generate n = 2000 points x?t from a

deterministic function:

x?t,1 = sin(πt/100), (6.20)

x?t,2 = cos(πt/100). (6.21)

Assuming that the above deterministic trace is from a random walk, the precision

matrix Q?
u is estimated:

Q?
u =

2026.59 −0.03

−0.03 2024.56

 . (6.22)

The inflow series ζ1;t is chosen from the VISSIM flow series. Then, conditioning on

ζ1;t and xt, n = 2000 outflow points ζ2;t are generated by Equation (6.15) with λ?v =

(1, 4/9, 0.25). The plots of ζ1;t,1, ζ2;t,1 and At,·,1 are shown in Figure 6.8.
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Fig. 6.8: Example 15: the plots of inflow ζ1;t,1, outflow ζ2;t,1 and turning rates At,·,1. In

Figure 6.8(c), the black, blue and purple curves are At,1,1, At,2,1 and At,3,1 respectively.

6.3.1 Offline estimation

Before working on sequential inference, it is best to analyse the junction sub-model

using an offline method, which is free of approximation error. In practise, such an

offline method can be used for a small portion of the dataset and the result is then

used as a prior for subsequent sequential inference.

The maximum a posteriori probability (MAP) estimation method is used for this

model. Denoting the priors of λv and Qu by pλv(·) and pQu(·), MAP maximises the

joint posterior of parameters and state vector pλv ,Qu,x1:n|ζ1;1:n,ζ2;1:n(·). This optimisa-

tion process for the DM is however not trivial due to the strong dependency within

(λv, Qu, x1:n) and the high dimension of the variable space. So, we will use a special

optimisation procedure for this issue.
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Conjugate priors are used for λv and Qu with:

pλv(·) =
∏
i

pλv;i(·) =
∏
i

Gamma(·|αλ;i, βλ;i), (6.23)

pQu(·) = W (·|Vu, nu), (6.24)

where αλ;i and βλ;i are the shape and rate parameters of the gamma distribution; Vu

and nu are the scale matrix and the degree of the Wishart distribution. The joint

posterior pλv ,Qu,x1:n|ζ1;1:n,ζ2;1:n(·) is then:

pλv ,Qu,x1:n|ζ1;1:n,ζ2;1:n(λv, Qu, x1:n) (6.25)

∝
∏
i

Gamma(λv;i|αλ;i, βλ;i) W (Qu|Vu, nu)

n∏
t=2

N(xt|xt−1, Qu)
n∏
t=1

N(ζ2;t|ct = At(xt)ζ1;t, Q = λvI),

∝
∏
i

λ
αλ;i−1
v;i exp(−βλ;iλv;i) |Qu|(nu−dx−1)/2 exp(− tr(V −1

u Qu)/2)

|Qu|(n−1)/2 exp

[
−
∑n

t=2(xt − xt−1)TQu(xt − xt−1)

2

]
∏
i

λ
n/2
v;i exp

[
−
∑n

t=1(ζ2;t − ct)TλvI(ζ2;t − ct)
2

]
.

where ct = At(xt)ζ1;t is the conditional mean of ζ2;t.

From Equation (6.25), it can be seen that the full conditional posteriors of λv and

Qu are still gamma and Wishart distributions :

pλv |Qu,x1:n,ζ1;1:n,ζ2;1:n(·) =
∏
i

Gamma(·|α′λ;i, β
′
λ;i), (6.26)

pQu|λv ,x1:n,ζ1;1:n,ζ2;1:n(·) = W (·|V ′u, n′u), (6.27)

with:

α′λ;i = αλ;i + n/2, (6.28)

β′λ;i = βλ;i +

∑n
t=1(ζ2;t,i − ct,i)2

2
, (6.29)

V ′−1
u = V −1

u +
n∑
t=2

(xt − xt−1)(xt − xt−1)T , (6.30)

n′u = nu + n− 1. (6.31)

Unfortunately, the full conditional posterior of the state vector x1:n is intractable.

Still, it is noted that the gradient and the hessian of − log(px1:n|λv ,Qu,ζ1;1:n,ζ2;1:n) can be

computed analytically by the chain rule.
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With the full conditional posteriors of λv, Qu and x1:n, the optimisation procedure

is summarised in Algorithm 14.

Algorithm 14 Optimisation of pλv ,Qu,x1:n|ζ1;1:n,ζ2;1:n(·) for the junction sub-model

1. Calculate the mode λv of pλv |Qu,x1:n,ζ1;1:n,ζ2;1:n(·) =
∏

iGamma(·|α′λ;i, β
′
λ;i). Set

λv = λv.

2. Calculate the mode Qu of pQu|λv ,x1:n,ζ1;1:n,ζ2;1:n(·) = W (·|V ′u, n′u). Set Qu = Qu.

3. Use Newton optimisation on the state vector for nopt;x iterations:

x1:n = arg min
x

(− log(px1:n|λv ,Qu,ζ1;1:n,ζ2;1:n)), (6.32)

and set x1:n = x1:n.

Like Gibbs sampling, Algorithm 14 is applied repeatedly for nopt iterations. Notice

that while Gibbs sampling samples the full conditional posterior, the above algorithm

directly locates the modes of the full conditional posteriors. For λv and Qu, those modes

can be obtained analytically by using the properties of gamma and Wishart distribu-

tions. For notation purposes, denote the optimisation result of the above procedure by

(λv, Qu, x1:n).

The optimisation is implemented both in R and C languages. For the dataset of

Example 15, the evaluation of pλv ,Qu,x1:n|ζ1;1:n,ζ2;1:n(·) for 100 points takes 580.965 seconds

in R and 0.122 seconds in C (4762 times faster). Also, to avoid the finite difference of

the gradient evaluation used in Newton optimisation and speed up the above process,

we directly obtain the gradient as mentioned previously.
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Optimisation results

For Example 15, the priors are set with :

αλ = (2.000, 2.020, 2.040), βλ = (0.100, 0.101.0.102), (6.33)

Vu =

 2.500 −0.003

−0.003 2.692

 , nu = 4.

Ten optimisations with random initial values (λv, Qu, x1:n) are run for Example 15. In

each run, there are nopt = 5000 iterations for the main loop and nopt;x = 10 iterations

for the sub-optimisation of x1:n. The optimisation traces of λv and Qu in the first 60

iterations are plotted in Figure 6.9. The whole series of the state vector x1:n in the last

optimisation iteration is shown in Figure 6.10.

In Figure 6.10, during some intervals (t = 1 : 100 and t = 1100 : 1600) the

estimation xt is much smoother than the true series x?t . These intervals correspond to

the durations where both the inflow ζ1;t and the outflow ζ2;t are very small, as plotted

in Figure 6.8. Small values of ζ1;t and ζ2;t give less information to the turning rate

matrix At (or equivalently xt), according to Equation (6.15). Hence, the estimation of

xt during these interval is driven mostly by the random walk.

The estimation ζ2;t+k|t = At(xt)ζ1;t+k of the outflow ζ2;t+k|t, using the optimisation

state xt and the inflow ζ1;t+k, is not a ”true” prediction as xt is obtained by conditioning

on the whole data. Still, the comparison between ζ2;t|t−k and ζ2;t could confirm the

compatibility between the offline estimation and the data. Hence, the estimations ζ2;t|t

and ζ2;t|t−10 for the duration t = 1000 : 1200 are shown in Figures 6.11 and 6.12. The

mean square error smse;i,k between ζ2;t+k,i|t and ζ2;t+k,i is also summarised in Table 6.3.
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Fig. 6.9: Example 15: the optimisation traces of λv and Qu in the first 60 iterations.

Different coloured curves correspond to the traces of different optimisation runs. The

red dashed lines mark the true value λ?v and Q?
u.
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Fig. 6.10: Example 15: the estimation series of xt. Different coloured curves corre-

spond to the series of different optimisation runs. The red dashed curves mark the true

series x?t .

0

5

10

1000 1050 1100 1150 1200
t

ζ 2
;t,

1

(a) ζ2;t,1

0

3

6

1000 1050 1100 1150 1200
t

ζ 2
;t,

2

(b) ζ2;t,2

−3

0

3

6

1000 1050 1100 1150 1200
t

ζ 2
;t,

3

(c) ζ2;t,3

Fig. 6.11: Example 15: the estimation ζ2;t|t. Different coloured curves correspond

to the series of different optimisation runs. The red dashed curves represent the true

outflow ζ2;t.
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Fig. 6.12: Example 15: the estimation ζ2;t|t−10. Different coloured curves correspond

to the series of different optimisation runs. The red dashed curves represent the true

outflow ζ2;t.

The last puzzle of these results is that the estimation Qu is much higher than the

true precision matrix Q?
u. This in turn causes the estimation xt to be globally smoother

than x?t . This issue may be clearer by analysing the components of the joint posterior

pλv ,Qu,x1:n|ζ1;1:n,ζ2;1:n(·). The log density components lpa = log(pλv), lpb = log(pQu), lpc =

log(px1:n|Qu) and lpd = log(pζ2;1:n|λv ,x1:n,ζ2;1:n), evaluated at the true value (λ?v, Q
?
u, x

?
1:n)

and the estimation (λv, Qu, x1:n), are shown in Table 6.4.

The component lpd measures the matching between the state vector xt (or ct =

At(xt)ζ1;t) and the outflow ζ2;t. The higher the log density lpd, the closer the distance

between ct and ζ2;t. So, in Table 6.4, lpd is indeed higher at the true value (λ?v, Q
?
u, x

?
1:n)

than at the estimated value (λv, Qu, x1:n). However, this is countered by the component

lpc. The higher the precision Qu and the smoother the state vector xt, the larger the
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Table 6.3: Example 15: the mean square error smse;i,k between ζ2;t+k,i|t and ζ2;t+k,i.

k

0 10 20 30

smse;1,k 1.183 1.832 3.299 5.425

smse;2,k 2.827 2.739 3.380 4.720

smse;3,k 4.525 4.737 5.160 5.737

log density lpc = log(px1:n|Qu) of the random walk. In total, the log of joint posterior

is truly higher at the estimated value.

This issue is partially solved by using a stronger prior on Qu to balance the density

of the random walk, preventing the precision matrix from going too high. Depending

on the context, one can also fix either the observation precision λv (how close the

conditional mean ct and the outflow are) or the state precision matrix Qu (how smooth

the state vector is) to its own preference and estimate the remaining variables. Maybe,

the best solution is by looking at the marginal density pλv ,Qu|ζ1;1:n,ζ2;1:n(·). However,

for this non-linear model, the marginalisation cannot be done analytically and exactly.

The INLA method (Rue et al., 2009) can approximate the marginal density but one

needs to be wary of the approximation of the state vector.

Even though there is a difficulty with parameter estimation of this model, the results

of the state vector are still reasonable, leading to the matching between ζ2;t+k|t and

ζ2;t+k. For our purposes in the traffic modelling, this seems to be good enough.

Table 6.4: Example 15: the log density components lpa = log(pλv), lpb = log(pQu),

lpc = log(px1:n|Qu) and lpd = log(pζ2;1:n|λv ,x1:n,ζ2;1:n), evaluated at the true value

(λ?v, Q
?
u, x

?
1:n) and the estimation (λv, Qu, x1:n).

lpa lpb lpc lpd Total

(λ?v, Q
?
u, x

?
1:n) −16.358 −780.709 9547.690 −10832.427 −2081.805

(λv, Qu, x1:n) −16.880 −1219.176 11576.200 −11253.044 −912.899
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Fig. 6.13: Junction J-0103 of Example 14: the optimisation traces of λv and Qu in

the first 30 iterations. Different coloured curves correspond to the traces of different

optimisation runs.
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Fig. 6.14: Junction J-0103 of Example 14: the estimation series of xt. Different

coloured curves correspond to the series of different optimisation runs.
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Fig. 6.15: Junction J-0103 of Example 14: the estimation ζ2;t|t. Different coloured

curves correspond to the series of different optimisation runs. The red dashed curves

represent the true outflow ζ2;t. The purple vertical lines mark the starting point of the

traffic incident.

A similar procedure is applied on the VISSIM dataset of junction J-0103 in Fig-

ure 6.7. The priors for this dataset are set with:

αλ = (2, 2), βλ = (0.1, 0.1), (6.34)

Vu =

2.5 0.0

0.0 2.5

 , nu = 4.

The estimations of λv, Qu, xt, ζ2;t|t and ζ2;t|t−10 are shown in Figures 6.13 to 6.16.
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Fig. 6.16: Junction J-0103 of Example 14: the estimation ζ2;t|t−10. Different coloured

curves correspond to the series of different optimisation runs. The red dashed curves

represent the true outflow ζ2;t. The purple vertical lines mark the starting point of the

traffic incident.

Table 6.5: Junction J-0103 of Example 14: the mean square error smse;i,k between

ζ2;t+k,i|t and ζ2;t+k,i.

k

0 10 20 30

smse;1,k 3.104 3.134 3.163 3.173

smse;2,k 3.753 3.802 3.842 3.855

There is an interesting point in these results. Even though (λv, Qu) converges

very quickly after 30 iterations, the series xt of different optimisation runs are quite

different (after 5000 iterations), being about parallel with each other. This is explained

by examining the map of junction J-0103 in Figure 6.7 and the corresponding matrix

Bt in Equation (6.18). In the modelling of Bt of junction J-0103, xt,1 and xt,2 affects

the turning rate from the inflows ζ1;t,1 and ζ1;t,2 to the outflow ζ2;t,1 respectively. Hence,

conditioning on ζ2;t,1, one estimation may have a high value of xt,1 and a low value of

xt,2 while another estimation may be completely opposite (notice the relative order of

series xt,1 and xt,2 in Figures 6.14(a) and 6.14(b)). This is an identifiability issue for

the state vector of this model.

The estimations ζ2;t|t and ζ2;t|t−10 seem fine even in the occurrence of the traffic

incident. The mean square error smse;i,k is summarised in Table 6.5.
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This concludes the offline estimation for the junction model. We move on with

sequential inference for this dynamic non-linear model.

6.3.2 Sequential inference

Algorithm 13 in Section 5.2 is applied to the sequential inference of the junction sub-

model of Equation (6.15). As iterLap has better performance in a non-constrained

space, we use the log transform on τv = log(λv) and the Cholesky decomposition on

the symmetric positive definite precision matrix Qu = RT
uRu with an upper triangular

matrix Ru. For notation purposes, denote ru as a vector of upper triangular entries of

Ru. Then, the junction sub-model can be parametrised by (τv, ru). Also, sequential

inference of this sub-model requires a prior for the initial state vector x1.

Notice that the Cholesky decomposition is unique only under a certain constraint

(diagonal entries of Ru are strictly positive). Hence, the mapping from ru ∈ Rdru to

Qu is many-to-one, which may lead to the identifiability problem. In this case, using

Bayesian inference with a prior centred on a particular region will favour values of ru

near that region, lessening the identifiability issue.

The priors for Example 15 are N(τv|µτv , Qτv), N(ru|µru , Qru) and N(x1|µx1 , Qx1)

with parameters:

µτv = (−1,−1,−1), µru = (3, 0, 3), µx1 = (0, 0), (6.35)

Qτv = 25 I3, Qru = 1 I3, Qx1 = 0.04 I2,

where the arrangement of ru in Ru is:

Ru =

ru;1 ru;2

0 ru;3

 . (6.36)

The true values of this parametrisation for Example 15 are τ ?v = (0.000,−0.811,−1.386)

and ru = (45.018,−0.001, 44.995).

To speed up the inference, we implement the sequential procedure for this junction

sub-model both in R and C languages. The speed comparison between these 2 imple-

mentations is shown in Table 6.6, indicating that the C implementation is significantly

faster.

The filtering distributions of (τv, ru, xt) are summarised in Figures 6.17 and 6.18.

The results of τv and xt seem to be consistent with the true values. On the other hand,
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Table 6.6: Speed comparison for Example 15: the running time (seconds) for 1000

evaluations of pτv ,ru,xt|ζ1;1:(t−1),ζ2;1:(t−1)
(·) and pτv ,ru,xt|ζ1;1:t,ζ2;1:t(·).

pτv ,ru,xt|ζ1;1:(t−1),ζ2;1:(t−1)
(·) pτv ,ru,xt|ζ1;1:t,ζ2;1:t(·)

R 9.145 9.814

C 0.075 0.087

inference of ru fails to contain the true value within its interval, again indicating the

difficulty in the joint sequential inference of both state and observation noise precisions.

In Figure 6.18, during time intervals t = 1 : 100 and t = 1100 : 1600, the intervals

of pxt|ζ1;1:t,ζ2;1:t(·) are wider than usual. This is due to the same reason of low values

of ζ1;t and ζ2;t, mentioned in the offline estimation section (during the initial interval

t = 1 : 100, the uncertainty of xt is also caused by lack of data in sequential inference).

The estimation ξζ2;t = At(ξxt)ζ1;t (ξxt is the mode of pxt|ζ1;1:t,ζ2;1:t(·)) is computed

and plotted together with ζ2;t in Figure 6.19, showing the compatibility between this

inference and the dataset.
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Fig. 6.17: Example 15: summary of filtering densities pτv |ζ1;1:t,ζ2;1:t(·) and

pru|ζ1;1:t,ζ2;1:t(·). The blue and purple solid lines represents the mean µ and the mode ξ

of a particular density. The blue dashed lines mark the interval [µ− 2σ, µ + 2σ] with

standard deviation σ. The red dashed lines represent the true value of the random

variables.
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Fig. 6.18: Example 15: summary of filtering density pxt|ζ1;1:t,ζ2;1:t(·). The blue and

purple solid lines represents the mean µ and the mode ξ of a particular density. The

blue dashed lines mark the interval [µ − 2σ, µ + 2σ] with standard deviation σ. The

red dashed lines represent the true value of the random variables.

Sequential inference is now used for the dataset of junction J-0103 in Example 14

with prior parameters:

µτv = (−1,−1), µru = (15, 0, 15), µx1 = (0, 0), (6.37)

Qτv = 4 I3, Qru = 1 I3, Qx1 = 0.04 I2,

From the optimisation results of (λv, Qu), the transformed optimisation values of τv

and ru are τ v = log(λv) = (−1.168,−1.338) and ru = (119.323,−0.059, 119.806). Note

that these values are from the optimisation conditioning on all the data.

The sequential inference results are summarised in Figures 6.20 and 6.21. In this

dataset, estimations of τv and ru are very different from the optimisation results. This

difference may be caused by many factors: the parametrisation, the prior, the accu-

mulated error in the sequential method or the mismatching between this particular

dataset and the model. Still, the method provides reasonable results of xt where the

optimised series xt is quite close to the mean µxt and the mode ξxt of the filtering

distribution pxt|ζ1;1:t,ζ2;1:t(·). Also, the estimation ξζ2;t plotted in Figure 6.22 is near to

the observation ζ2;t, confirming this model’s usefulness.

In Figure 6.20, the filtering densities pτv |ζ1;1:t,ζ2;1:t(·) and pru|ζ1;1:t,ζ2;1:t(·) seem to be

shifting according to time index t. This fact suggests that the state and observation

noise precisions may be time-dependent, which is quite usual in real datasets. Still, in
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Fig. 6.19: Example 15: plots of ξζ2;t = At(ξxt)ζ1;t where ξxt is the mode of

pxt|ζ1;1:t,ζ2;1:t(·) for t = 1000 : 1200. The purple solid lines and red dashed lines are

ξζ2;t and ζ2;t respectively.

most cases, statisticians insist on a simple model with a constant precision. So, we will

follow this practise and may consider using a time-dependent precision in the future.

In summary, there are issues in both offline and online parameter estimation meth-

ods for the proposed junction sub-model. For the simulated dataset, two methods have

difficulties in estimating the state noise precision Qu (or ru). For the VISSIM dataset,

these two methods hand out two different parameter estimation results. As there is

no comparison with the true values, it is hard to say either one of them is close to the

truth or is better than the other one. Still, with no approximation error, we expect

that the offline estimation results are more ”stable”.

From another point of view, both methods manage to provide ”reasonable” esti-

mated parameter values so that inference of state vector is agreeable, giving a good
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estimation of the junction outflows. As this is our most important goal, we judge that

this model and both inference methods are satisfying for our purposes.

6.4 Discussion

It is assumed that there is no upstream information for a root-link and we are back to

the univariate STFF problem. Also, notice that even if there are other traffic variables

such as speed, volume, density, etc. for the root-link, these variables cannot be used as

regressors for the target sub-model. The reason is because we are doing the multi-step

ahead prediction of time t+ h given only the data up to time t. So, at time t, there is

no information of other variables at time t + h − 1 to be used for the flow prediction

of time t+ h.

One possible solution is to use a univariate AR model with a MP preprocessing

method as in Chapter 4. In this case, if a traffic incident occurs at the root-link, the

AR model may not have a good prediction of what will happen but it is still able to

adapt to the incident (by using online estimation for the AR model). Once an incident

takes place and the root sub-model adapts, the other sub-models can propagate the

incident effect to the rest of the network.

To make the root sub-model more sensitive and adaptive to an incident occurrence,

perhaps a smoothing spline model may work. We plan to use a spline for the root-link

inflow:

ζ1; t =

p∑
i=0

αit
i +

jt∑
j=1

βj(t− jk)p+ + et, (6.38)

where p is the spline degree; k is a time interval between two consecutive knots; jt is a

natural number satisfying jt < bt/kc ≤ jt + 1; et may be a normal noise N(0, σ2
e). The

parameter vector for this model is (α, β, σ2
e). With Equation (6.38), we expect that the

smoothing spline can adapt to the data by changing every k time steps. Tebaldi et al.

(2002) and Anacleto Junior et al. (2013a) also use smoothing spline but the models

are different from the above.

The link-vehicle sub-model is simple, following the linear conservation Equation (6.3).

The only parameter is the noise precision which can be sequentially estimated by using

a conjugate gamma distribution.
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This sub-model however is very crucial in the general modelling as it conserves the

number of vehicles traffic networks. Usually multi-step ahead prediction decays quite

quickly and the performance becomes worse over time. These shortcomings may be

overcome by preserving the network state as much as possible.

Bayesian network and traffic cycles

Modelling a traffic cycle may be intriguing due to the causality issue among flows and

some models such as Queen and Albers (2009) and Anacleto Junior et al. (2013b)

cannot handle such a traffic cycle. However, this problem is solved completely in our

model by breaking a traffic cycle to temporal dependencies of flows of different time

points. Figure 6.23 shows a network map with a traffic cycle. Bayesian network for

this network map is shown in Figure 6.24 at time t and t + 1. Latent variables such

as ones in the junction sub-model are omitted for the sake of simplicity. Notice that a

junction-inflow is a vector of link-outflows of some links, e.g. ζJ1,1;t = (zL1,2;t, zL3,2;t),

and a junction-outflow comprises link-inflows, e.g. ζJ1,2;t = zL2,1;t. Clearly, it is seen

that there is no cycle in such a DAG.

6.5 Conclusion

We have proposed the spatial-temporal model for the STFF problem, primarily focusing

on the multi-step-ahead prediction in the occurrence of a incident. This general model

comprises four sub-models, each of which is responsible for a particular section of traffic

networks.

To handle the scalability problem of extending traffic networks, statistical inference

of each sub-model can be done conditionally independent with each other. Further-

more, each sub-model is designed so that sequential inference is applicable, meeting

the constraints of real time applications. The link-outflow and the junction sub-models

are explicitly analysed with proposed inference methods. We have also discussed about

possible modelling of the root and link-vehicle sub-models and expect to implement

them soon.
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Fig. 6.20: Junction J-0103 of Example 14: summary of filtering densities pτv |ζ1;1:t,ζ2;1:t(·)

and pru|ζ1;1:t,ζ2;1:t(·). The blue and purple solid lines represents the mean µ and the mode

ξ of a particular density. The blue dashed lines mark the interval [µ− 2σ, µ+ 2σ] with

standard deviation σ. The brown dashed vertical lines mark a duration when a traffic

incident occurs.
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Fig. 6.22: Junction J-0103 of Example 14: plots of ξζ2;t = At(ξxt)ζ1;t where ξxt is the
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Fig. 6.23: A network map with a traffic cycle.
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Fig. 6.24: A Bayesian network for the network map in Figure 6.23. Blue, pink, green

and red connectors are for the link-inflow, junction, root-inflow and number-of-vehicle-

within-a-link sub-models respectively. Connectors with no source nodes originate from

variables at time t− 1 which are omitted together with latent variables for the sake of

simplicity.
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Chapter 7

Conclusion

In the first part of this thesis, we have applied the VARMA model to the STFF prob-

lem, together with an improved MCMC algorithm designed to deal with the variable

correlation issue of the VARMA model. For a dataset with a normal traffic pattern,

using a daily mean with a VARMA noise would be satisfying enough. However, when

an incident occurs and the traffic pattern shift significantly, such a model may suffer

from the exponential decaying and the slow adaptation of the VARMA model.

So, the second proposed model is designed to be as robust to the incident occurrence

as possible, with a stable relationship between traffic variables. The model comprises

of four sub-models, each of which is conditionally independent with each other and

can be analysed separately, satisfying the scalability property. Also, to meet the real-

time requirements, each sub-model supports sequential inference. The link-outflow and

junction sub-models have been implemented and tested with VISSIM dataset, giving

reasonable results.

For sequential inference of the DM, we propose a new continuous sequential approx-

imation for both state vector and parameters. This new algorithm has been examined

with several examples, giving varying results. In general, the algorithm works fine

but has difficulties with identifiability and variance estimation. The core of this se-

quential approximation is iterLap (Bornkamp, 2011a), in which we have made several

modifications to improve the performance.

As this research progresses, several challenges arises, giving way to possible future

research:

• Implement the root and link-vehicle sub-models then combine together and anal-
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yse multi-step-ahead prediction with the VISSIM data.

• For the junction sub-model, the random walk of the state vector can be replaced

by a smoothing spline like Equation (6.38). In that case, the random smoothing

spline can be thought as a time-variant mean of the usual state series, which

might be more interesting to multi-step-ahead prediction. Also, such a model

moves all the uncertainty to the observation equation, which is a good thing to

our sequential approximation algorithm.

• For sequential inference of the DM, we would like to compare the proposed al-

gorithm with the particle filter, especially for datasets with outliers where the

degeneracy is the most severe. More examples of sequential parameter estima-

tion to illustrate the method performance is also preferred. Furthermore, a new

sequential algorithm is needed for the following model:

yt ∼ pyt|xt,ϕ(·), (7.1)

xt =

p∑
i=0

αit
i +

jt∑
j=1

βj(t− jk)p+, (7.2)

which is the generalized model for the proposed root sub-model. Comparison

between such a smoothing model and a dynamic model would be interesting in

both theory and practice.
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