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Summary
The present study investigated the mechanisms underlying a pharmacologically induced 

long-term enhancement (LTE) o f  fast excitatory synaptic transmission in the C A l region 

o f  the rat hippocampus in vivo. The role o f  cholinergic, glutamatergic and galaninergic 

receptors in the LTE induced by methoctramine, an M 2  muscarinic acetylcholine (mACh) 

receptor antagonist, was investigated. Furthermore, the requirement for certain kinases 

in the induction and maintenance-expression o f  methoctramine LTE was assessed.

Finally the ability o f  the Alzheimer’s disease (AD) associated protein; amyloid P (AP), 

to inhibit the LTE was evaluated.

Experiments were carried out on aduh male Wistar rats under urethane anesthesia. 

Electrodes were implanted in the C A l region o f  the hippocampus and the excitatory 

postsynaptic potential (EPSP) amplitude was measured. Drugs were delivered either via 

a cannula into the lateral cerebral ventricle (i.c.v .) or systemically. Methoctramine, 

induced a rapid (generally <8 min onset) and persistent (>2hrs) enhancement o f  synaptic 

transmission. Consistent with this, another M 2  preferring mACh receptor antagonist, 

gallamine, also enhanced synaptic transmission. In contrast BIBN-99, which is also an 

M 2 mACh receptor antagonist failed to affect synaptic transmission, indicating that not 

all M2 mACh receptor antagonists share the ability to induce an (LTE).

The role o f  a variety o f  cholinergic and glutamatergic receptors in methoctramine LTE 

was further investigated. A  broad spectrum nicotinic ACh (nACh) receptor antagonist, 

mecamylamine, did not significantly affect methoctramine LTE. However, an a7 nACh 

receptor antagonist, methyllycaconitine, appeared to delay the onset o f  methoctramine- 

induced LTE but did not block methoctramine LTE. These results suggest that nACh 

receptor activation is not necessary for methoctramine LTE. Pre-treatment with the 

competitive N-methyl-D-aspartate (NM DA) receptor antagonist d-AP5 (D-(-)-2-amino- 

5-phosphonopentanoic acid) or the non-competitive antagonist memantine did not block 

methoctramine-induced LTE, which suggests that methoctramine LTE is N M D A  

receptor-independent. The group I metabotropic glutamate (mGlu) receptor antagonist



LY367385 at a dose that blocks mGlul receptors did not block methoctramine LTE, 

which suggests that methoctramine LTE is mGlul receptor-independent.

The role o f the galaninergic sytem in methoctramine LTE was also assessed. The 

application o f exogenous galanin increased the initial enhancement induced by 

methoctramine. Pre-treatment with the galanin receptor antagonist M35 strongly 

inhibited methoctramine LTE, which suggests that methoctramine LTE requires the 

action of endogenous galanin at its receptors.

The role of protein kinase C (PKC) and protein kinase A (PKA) in methoctramine LTE 

was also studied. The PKCzeta and protein kinase M (PKM)zeta pseudosubstrate 

inhibitor (ZIP) blocked methoctramine induced LTE. This suggests that methoctramine- 

induced LTE involves the activation of the atypical PKC/Mzeta isoform. Pre-treatment 

with the PKA inhibitor Rp-cAMPs (Rp-cyclic 3’,5’- hydrogen phosphorothioate 

adenosine) blocked methoctramine LTE, which implies that the induction of 

methoctramine LTE is PKA dependent. In contrast, the maintenance of methoctramine 

LTE appears to be independent of these kinases as application o f the PKA inhibitor or 

PKC/Mzeta inhibitor 30 min after the induction o f methoctramine LTE did not 

persistently reverse the maintenance o f LTE. Pre-treatment with A|3 at a dose that 

blocks high frequency stimulation (HFS) induced long-term potentiation (LTP) did not 

affect methoctramine LTE, which suggests that methoctramine LTE is insensitive to 

inhibition by Ap.

The finding that methoctramine-induced LTE is NMDA receptor-independent and also 

insensitive to inhibition by AP suggests that the mechanisms underlying methoctramine 

LTE are at least partially distinct from those underlying NMDA receptor-dependent LTP 

induced by standard HFS protocols at CAl synapses. The finding that galanin 

facilitated, whereas a galanin receptor antagonist reduced methoctramine LTE suggests 

that the galaninergic system is an effective modulator o f cholinergic mediated changes 

in synaptic transmission in the hippocampus. Therefore, the role o f galanin receptor 

activation in this and other forms of hippocampal plasticity warrants further study.
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1.1 The hippocampal formation

1.1.1 Anatomy of the hippocampus

The hippocampal formation is located in the medial temporal lobe and it is comprised of 

the dentate gyrus, hippocampus proper, subicular complex and the entorhinal cortex. 

The hippocampus proper is divided into three areas; comus ammonis area 3 (CA3), CA2 

(usually treated as part of CA3) and CA l, which are collectively referred to as Ammon’s 

horn. The fields o f the hippocampal formation are linked by three mainly unidirectional 

connections, which are usually referred to as the trisynaptic pathway (Amaral and Witter, 

1989; Witter et al., 2000). The main input o f the trisynaptic pathway are the granule 

cells o f the dentate gyrus, which receives its major input from the entorhinal cortex via 

the perforant pathway. The dentate gyrus sends information to the CA3 area via the 

mossy fibres. The mossy fibres also project back to the granule cells and thus form a 

recurrent network (Lisman and Otmakhova, 2001). The pyramidal cells o f the CA3 

provide the major input to the CAl field o f the hippocampus via the Schaffer collaterals. 

Similar to the dentate the CA3 neurons also have projections that feedback and connect 

with other CA3 neurons (Amaral and Witter, 1989; Lisman and Otmakhova, 2001). The 

CAl region completes the trisynaptic pathway and sends information back to the 

entorhinal cortex by a direct projection to the entorhinal cortex. In addition, the CAl 

also projects to the subiculum, which also projects to the entorhinal cortex (Amaral and 

Witter, 1989; Buzsaki, 1989; Freund and Buzsaki, 1996). The hippocampus proper 

(CAl and CAS) has a lamellar organisation and these lamellae are referred to as the 

alveus, stratum oriens, stratum pyramidale, stratum radiatum and also the stratum 

lacunosum-moleculare (Andersen et al., 1969; Freund and Buzsaki, 1996). The cell 

bodies o f the pyramidal cells o f the Schaffer collateral projection are located in the 

stratum pyramidale and their dendrites extend to the stratum oriens and stratum radiatum 

where they are referred to as basal and apical dendrites, respectively.
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1.1.2 The role of the hippocampus in learning and memory

Medial temporal lobe resection caused an immediate and profound impairment of 

memory in a patient referred to as H.M., and thus suggested that this area o f the brain is 

involved in memory (Scoville and Milner, 1957). H.M. underwent this radical and 

experimental procedure as a last resort to treat his severe epilepsy and as a consequence 

he developed anterograde amnesia (memory for new information) along with retrograde 

amnesia (a temporally graded impairment for information learned prior to surgery) 

(Scoville and Milner, 1957). This case is often quoted as evidence that the hippocampus 

plays a critical role in memory, however a magnetic resonance imaging (MRI) study o f 

H.M.’s brain demonstrated that in addition to the hippocampus other structures such as 

the amygdala and entorhinal cortex are also damaged and thus may contribute to the 

observed impairment in memory (Corkin et al., 1997). Direct evidence for a role o f the 

hippocampus proper in memory was provided by another clinical case, R.B., who 

sustained a bilateral lesion involving the entire CAl area and concomitant anterograde 

amnesia accompanied by little if any retrograde amnesia (Zola-Morgan et al., 1986). 

Analysis o f these clinical cases and the effects o f similar lesions induced in animal 

models suggests that the severity o f memory impairments correlates with the extent of 

the damage to the hippocampal formation (Parkin, 1996; Zola-Morgan et al., 1986; Zola 

and Squire, 2001). However, more severe memory impairments were produced when the 

damage was increased to include the adjacent entorhinal and parahippocampal cortices 

(Jarrard, 1995; Zola-Morgan et al., 1994). Interestingly, lesions o f the perirhinal and 

parahippocampal cortex that spare the amygdala and hippocampal formation produce 

severe memory impairment (Zola-Morgan et al., 1989). In conclusion, the

communication via the bidirectional circuitry between the neocortex, the 

parahippocampal region and the hippocampus proper appears to play a critical role in 

memory function (Eichenbaum, 2000; Eichenbaum et al., 1996; Witter et al., 2000).
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1.2 The hippocampus and synaptic plasticity

1.2.1 Hippocampal synaptic plasticity and memory

In 1894, Ramon y Cajal suggested that memory is stored as an anatomical change in the 

synaptic strength of neuronal connections (Ramon y Cajal, 1894). In 1949 Donald Hebb 

proposed that memory involves the strengthening of synaptic connections, which occurs 

when a presynaptic neuron repeatedly or persistently takes part in firing the postsynaptic 

cell (Hebb, 1949). The discovery o f hippocampal LTP, whereby brief repetitive 

activation o f  the excitatory synapses results in a persistent increase in synaptic strength 

provided an experimental analogue o f Hebb’s postulated learning induced changes in 

synaptic strength (Bliss and Gardner-Medwin, 1973; Bliss and Lomo, 1973). 

Furthermore the properties that Hebb expected to be a feature o f an associative memory 

mechanism are similar to the characteristics o f LTP, which include cooperativity, input- 

specificity, associative interactions, persistence and rapid induction.

LTP involves the presynaptic release of glutamate, which will then excite the 

postsynaptic cell provided that the afferent stimulation was sufficient to depolarise the 

postsynaptic membrane. The demonstration o f a stimulus intensity threshold for the 

sufficient depolarization o f the postsynaptic cell and thus production o f LTP is referred 

to as cooperativity (Malenka, 2003). The potentiation o f the synapses on the 

postsynaptic cell is input specific, as the increase in synaptic strength at one set o f 

synapses does not occur in other synapses on the same cell, thus the use o f a synapse 

specific mechanism greatly increases the storage capacity o f the individual neurons 

(Martin et al., 2000). The associative property o f LTP means that concurrent activation 

o f independent weak and strong synaptic inputs produces LTP o f the weak input, where 

independent tetanisation o f the weak input would not result in LTP (Teyler and 

DiScenna, 1987). This associative property allows the neuron to integrate information 

that is conveyed by different sets o f afferents that synapse on the same postsynaptic cell.
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Finally, LTP is generally rapidly induced and can persist for hours to months in 

experimental models depending on the protocol used to induce it (Abraham, 2003).

A study on the effect o f ageing on both LTP and memory observed that the persistence 

o f LTP was statistically correlated with the rate o f learning and/or the degree of 

retention o f spatial memory over time, which suggests that both phenomena are linked 

(Barnes, 1979; Barnes and McNaughton, 1985). Similarly, spatial learning in vivo was 

previously shown to correlate with LTP of the population spike in slices taken from 

animals after training (Kleschevnikov and Marchbanks, 1993). The role o f LTP in 

memory is supported by a study where inhibitors o f LTP also inhibited hippocampal 

dependent learning (Morris et al., 1986). LTP and hippocampal memory formation are 

both believed to involve gene expression, protein synthesis and the formation of new 

synaptic connections, which is supported by the observation that protein synthesis 

inhibitors block both phenomena (Lynch, 2004). However, some studies have 

demonstrated a lack o f correlation between the ability to induce LTP and spatial learning. 

For instance LTP was absent but spatial learning was unimpaired in transgenic mice 

lacking the AMPA receptor subunit GluR-1 mice (Zamanillo et al., 1999). Similarly, in 

the rat the antisense knock-down for a presynaptic A-type vohage dependent channel 

(Kvl .4) mRNA resulted in normal spatial learning but LTP was eliminated (Meiri et al., 

1998).

The initial experimental LTP was induced using highly synchronous activity (Bliss and 

Lomo, 1973) that has never been observed in vivo, however LTP has also been induced 

by protocols that mimic theta rhythm, which is the naturally occurring hippocampal 

activity associated with exploratory behaviour (Diamond et al., 1988). In addition, it has 

been suggested that a naturally occurring form of hippocampal CAl activity known as 

field sharp waves may be sufficient for the induction o f a long-term synaptic 

modification in the CAl region (Buzsaki, 1989). This seems plausible since sharp field 

waves represent the summed postsynaptic depolarisation o f large numbers o f pyramidal 

cells in the CAl and subiculum and are assumed to represent synchronous excitation of 

pyramidal cells by the Schaffer collaterals o f the CA3 (Buzsaki, 1989).
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Metaplasticity refers to a mechanism whereby synaptic activity that does not alter 

synaptic strength may lead to a persistent change in the direction or degree o f synaptic 

plasticity in response to subsequent episodes o f synaptic activity (Abraham and Bear, 

1996; Abraham and Tate, 1997) For instance, in the dentate gyrus LTP induced by weak 

stimulation was facilitated by prior stimulation (Christie et al., 1995). Therefore, 

metaplasticity may allow the intergration o f a response across temporally spaced 

episodes o f synaptic activity, which would be a valuable feature o f an associative 

memory model. Although the underlying mechanisms o f metaplasticity are unknown 

they may involve an alteration in one or more o f the following; NMDA receptor 

function, Ca^^ buffering, the state o f kinases or phosphatases and/or the mechanisms 

involved in protein synthesis (Abraham and Bear, 1996; Abraham and Tate, 1997).

1.2.2 Glutamate receptors and synaptic plasticity

Glutamate binds to ionotropic and metabotropic receptors in the hippocampus.

The metabotropic glutamate receptors comprise o f a family o f G protein coupled 

receptors, whereas the ionotropic receptors can be fiarther subdivided into at least two 

types, termed AMPA and NMDA receptors. The induction o f LTP involves the 

presynaptic release o f glutamate along with sufficient depolarization o f the postsynaptic 

membrane. The depolarization o f the postsynaptic cell is brought about by a glutamate 

mediated activation o f the postsynaptic a-amino-5-hydroxy-3-methyl-4-isoxazole 

propionic acid (AMPA) receptors and a decrease in GABAergic (y-amino-butyric acid) 

inhibition (Collingridge, 2003). Following sufficient depolarization the binding of 

glutamate promotes the opening o f NMDA receptors, which allows Ca^^ as well as Na^ 

to enter the dendritic spine. It is widely believed that the influx o f calcium into the 

postsynaptic dendritic spine is the critical event leading to LTP (Bennet, 2000, Bliss and 

Collingridge, 1993; Lynch, 2004; Malenka and Nicoll, 1999).

NMDA receptors become active only on depolarisation due to a voltage dependent block 

o f the associated ion channel by a magnesium ion. Since the NMDA receptor is dually
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regulated by both the ligand and voltage, it acts as a coincidence detector and thus plays 

a pivotal role in LTP (Platenik et al., 2000). The importance of NMDA receptor activity 

in LTP and memory is supported by the ability of NMDA receptor antagonists to impair 

both of these phenomena in vivo (Davis et al., 1992; Morris, 1989). Interestingly, the 

CAl region of the hippocampus has also been associated with a NMDA receptor 

independent form of LTP, which is associated with Ca^  ̂ entry via vohage dependent 

Ca^  ̂channels (VDCCs) (Grover, 1998; Morgan and Teyler, 1999).

AMPA receptors are permeable to Na^ and and thereby mediate the major inward 

current required for synaptic responses, including depolarisation of the postsynaptic cell. 

AMPA receptors are comprised of subunits GluRl-GluR4. The subunit composition 

determines the permeability of Ca^^and AMPA receptors assembled from GluR2 

subunits are impermeable to Ca^  ̂ relative to those assembled from GluRl, GluR3 and 

GluR4 (Lynch, 2004). The GluR2 subunit is constitutively delivered to synapses, 

whereas the delivery of the GluRl subunit to the synapse requires HFS or the presence 

of CaMKII (Song and Huganir, 2002). Intriguingly, prior to LTP many synapses in the 

CAl region are characterised by a high level o f NMDA receptor activity and a lack of 

AMPA receptor activity (Lisman, 2003; Malenka and Nicoll, 1999; Song and Huganir, 

2002). These synapses are termed ‘silent synapses’ as they are unable to respond to 

synaptically released glutamate owing to the voltage dependent block of NMDA 

receptors by Mg^\ An ahemative theory to the ‘silent synapse’ theory postulates that 

both receptor types exist at the postsynaptic membrane prior to stimulation but that 

extrasynaptic glutamate spillover selectively activates NMDA receptors, as NMDA 

receptors have slow unbinding and desensitisation rates relative to AMPA receptors 

(Kullmann, 2003). The existence of functional AMPA receptors at the synapse prior to 

LTP is controversial, however many studies have shown that LTP induction can rapidly 

enhance AMPA receptor function in the absence of an observable change in NMDA 

receptor function (Malenka and Nicoll, 1999; Malinow, 2003; Nicoll, 2003). It is 

believed that trafficking of GluRl containing AMPA receptors to the postsynaptic 

membrane or that the modification of the receptor by a kinase underlies this rapid 

enhancement (Malinow, 2003). Evidence for the trafficking of AMPA receptors to the
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postsynaptic membrane was provided by a previous in vitro study using tagged AMPA 

receptor subunits, which showed that tetanic stimulation induces a rapid delivery o f 

tagged receptors into dendritic spines as well as clusters in dendrites (Shi et al., 1999) 

and the activation of CaMKII (calcium/calmodulin-dependent protein kinase II) 

(Hayashi et al., 2000; Poncer et al., 2002) and PKMzeta (Ling et al., 2006) is associated 

with facilitating this phenomenon. In addition, the phosphorylation of the GluRl 

subunit by PKA (Banke et al., 2000) and CaMKII (Barria et al., 1997; Lisman, 2003) is 

associated with an increase in channel conductance. AMPA receptors appear to be 

involved in both LTP and memory as drugs known as AMPAkines, which decrease 

AMPA receptor desensitisation and thus prolong the duration o f their activation, 

enhance both phenomena (Martin et a l, 2000).

Presynaptically released glutamate may also activate metabotropic glutamate (mGlu) 

receptors, which are a class o f G protein coupled receptors. The mGlu receptor class can 

be subdivided into three groups, group I mGlu, group II mGlu and group III mGlu 

receptors and their activation triggers the production o f intracellular second messengers. 

Most studies have focused on the involvement o f group I mGlu receptor in hippocampal 

LTP. Group I mGlu receptor activation has been shown to induce a slow-onset long­

term enhancement o f CAl hippocampal synaptic transmission in vitro (Bortolotto and 

Collingridge, 1995) and also in vivo (Manahan-Vaughan and Reymann, 1997). Group I 

mGlu receptor activation has been associated with facilitating hippocampal LTP in vitro 

(McGuinness et al., 1991) and also in vivo (Riedel et al., 1995a). Conversely group I 

mGlu receptor antagonists have been shown to inhibit the induction o f LTP, however 

some studies have found that group I mGlu antagonists do not affect LTP (Anwyl, 1999). 

The role o f group I mGlu receptors in spatial learning has also been investigated and 

group I mGlu receptor antagonists impair spatial learning, whereas group I mGlu 

receptor agonists applied after learning facilitate recall (Riedel, 1996; Riedel et al., 

1995b). The group I mGlu receptor includes two receptor subtypes, the mGlu la  and the 

mGlu5 receptor subtype. The role o f mGlula receptors in synaptic plasticity in the CAl 

region is complex as many immunocytochemical studies were unable to detect mGlula 

receptors in this region (Baude et al., 1993, Romano et al., 1995). However, mGlula
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mRNA was detected in CAl pyramidal cells (Berthele et al., 1998; Shigemoto et al., 

1992) and a more recent study revealed low levels o f mGlul receptors in the CAl region 

(Ferraguti et al., 1998). In addition, a previous study found that mGlul receptor knock­

out mice exhibited deficits in LTP in the CAl region (Aiba et al., 1994), although 

another mGlul receptor knock-out study failed to find any change in LTP in the CAl 

region (Conquet et al., 1994). In contrast to the distribution of mGlul receptors in the 

CAl the mGlu5 receptor is highly expressed in CAl pyramidal cells (Romano et al., 

1995). Elucidating the role o f mGlu5 receptors in hippocampal LTP is also complicated 

as activation of mGluS receptors have been associated with long-term depression (LTD) 

in the CAl region in vitro (Huang and Hsu, 2006), which was absent in mGlu5 knock­

out mice (Huber et al., 2001). Antagonism o f mGlu5 receptors has been associated with 

inhibition o f LTP in the dentate gyrus o f  fi'eely behaving animals (Naie and Manahan- 

Vaughan, 2004). In addition, mice lacking mGluS receptors were found to have reduced 

LTP and deficits in spatial learning (Jia et al., 1998; Lu et al., 1997). The inhibition of 

NMDA receptor activity appeared to underlie the reduction in LTP in mGlu5 receptor 

knock-out mice as CAl neurons from these mice showed a complete loss o f the NMDA 

receptor component of LTP, whereas the AMPA receptor component was unahered (Jia 

et al., 1998).

1.2.3 Intracellular biochemical events and LTP

It is widely believed that the influx o f calcium into the postsynaptic dendritic spine is 

the critical event leading to LTP (Bennet, 2000; Bliss and Collingridge, 1993; Lynch, 

2004; Malenka and Nicoll, 1999). The increase in calcium concentration in the 

postsynaptic cell is achieved by an influx o f Ca^^ following activation o f NMDA 

receptors or voltage dependent calcium channels (VDCCs), however Ca^^ may also be 

released from intracellular stores (Malenka, 1991; Morgan and Teyler, 1999; Voronin et 

al., 1995). Evidence for a role o f Ca^^ released from intracellular stores in LTP was 

provided by previous in vitro studies that found LTP in the CAl region was blocked by 

thapsigargin, which depletes intracellular Ca^^ stores (Harvey and Collingridge, 1992)
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and also dantrolene, which antagonises the ryanodine receptor and thus inhibits Ca^^ 

induced Ca^^ release (Obenaus et a l, 1989). Furthermore the role o f  each calcium 

source in the observed LTP appears to depend on the protocol used to induce LTP and a 

previous study proposed that each Ca^^ source appears to be tuned to the differential 

protocols (Raymond and Redman, 2002). This proposition is supported by the finding 

that different induction protocols have differential sensitivities to Ca^^ buffers (Lisman, 

2003). The critical role o f Ca^^ in LTP is supported by the observation that LTP is 

blocked by preventing the postsynaptic increase in calcium (Lynch et al., 1983; Mulkey 

and Malenka, 1992), whereas artificially elevating the postsynaptic calcium 

concentration using photolysis o f caged calcium mimics LTP (Malenka et al., 1988). 

The transient elevation o f  Câ "̂  concentration in the postsynaptic spine can be transduced 

into a prolonged kinase activity that persists in the absence o f elevated Ca^^ levels and 

thus mediates a persistent modification in synaptic strength.

The increase in Câ "̂  concentration activates the Ca^Vcalmodulin-activated adenylyl 

cyclase (AC) and the concomitant increase in cAMP (cyclic-adenosine monophosphate) 

activates PKA (Chetkovich and Sweatt, 1993). The activation o f PKA has been 

implicated in numerous mechanisms that modulate/enhance synaptic transmission 

(Lynch, 2004; Nguyen and Woo, 2003). The role o f the cAMP/PKA pathway in 

synaptic plasticity is supported by the observation that the induction o f LTP involves a 

rise in cAMP (Chetkovich and Sweatt, 1993), activation of PKA (Roberson and Sweatt, 

1996) and also phosphorylation o f PKA substrates (Blitzer et al., 1998). The 

cAMP/PKA pathway modulates ion conductance by phosphorylating the GluRl subunit 

of AMPA receptors (Roche et al., 1996) and thereby directly increases AMPA receptor 

flinction (Banke et al., 2000; Bliss and Collingridge, 1993), which is associated with the 

induction of LTP (Lee et al., 2000). In addition, the synthesis o f additional AMPA 

receptors, which accompanies LTP, appears to be PKA dependent (Nayak et al., 1998). 

PKA can also modulate neuronal excitability by phosphorylating K^ channels (Hoffman 

and Johnston, 1998) and Ca^^ channels (Gray and Johnston, 1987). Many studies have 

reported that the cAMP/PKA pathway enables long lasting forms o f LTP (Bach et al., 

1999; Frey et al., 1993; Nguyen and Kandel, 1997; Silva et al., 1998; Woo et al., 2002)
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and transgenic mice in which PKA function is decreased exhibit impaired L-LTP and 

spatial memory, which suggests that PKA plays a critical role in consolidation (Abel et 

al., 1997). However studies on the role o f the cAMP/PKA pathway in the early phase o f 

LTP or less persistent forms of LTP have yielded variable results (Blitzer et al., 1995; 

Nguyen and Woo, 2003; Otmakhov and Lisman, 2002; Otmakhova et al., 2000; Winder 

et al., 1998; Woo et al., 2002; Woo et al., 2003). This lack o f consistency may be 

accounted for by the suggestion that the cAMP/PKA pathway has distinct roles in 

different forms of plasticity, which in turn have differential sensitivities to 

pharmacological inhibition or genetic modulation o f the cAMP/PKA pathway (Nguyen 

and Woo, 2003; Otmakhova et al., 2000). The increase in cAMP has also been 

associated with the activation o f the BDNF receptor TrkB and subsequent induction o f 

brain-derived neurotrophic factor (BDNF)-dependent long-lasting potentiation at the 

Schaffer collaterals (Patterson et al., 2001).

The cAMP/PKA pathway was found to gate the induction o f LTP by decreasing 

phosphatase activity, and thereby enhances the autophosphorylation o f CaMKII (Blitzer 

et al., 1998; Blitzer et al., 1995). Once autophosphorylated CaMKII does not require 

Ca^^ and therefore becomes constitutively active, which implies that this kinase may 

serve as a reversible molecular switch capable o f  storing information for long periods o f 

time (Lisman, 1994; Lisman and Fallon, 1999). Importantly an amino acid substitution 

at Thr-286, which prevents autophosphorylation, was shown to impair memory and also 

to block LTP (Giese et al., 1998). The role o f CaMKII in LTP is supported by the 

finding that its expression is particularly high in the postsynaptic density, which is an 

ideal location to respond to changes in Ca^^ concentration. Mutant mice lacking 

aCaMKII and transgenic mice expressing a mutant form of CaMKII show impaired LTP 

and hippocampal dependent memory (Fukunaga and Miyamoto, 2000; Silva et al., 1992). 

In addition, LTP was blocked by injecting inhibitors o f CaMKII into the postsynaptic 

cell (Madison et al., 1991), whereas the introduction o f an activated Ca^^ independent 

CaMKII into CAl neurons potentiated synaptic transmission and occluded LTP induced 

by HFS (Lledo et al., 1995; Pettit et al., 1994). Initially CaMKII was found to modulate 

LTP by phosphorylating the GluRl subunit o f existing AMPA channels and thereby
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increase their conductance (Barria et al., 1997; Lisman, 2003). However, LTP is also 

believed to involve an increase in AMPA receptor conductance following the insertion 

of GluRl containing AMPA receptors into dendritic spines (Shi et al., 2001; Shi et al., 

1999) and CaMKII is believed to facilitate this process (Lisman, 2003, Lynch, 2004). 

The role o f CaMKII in AMPA receptor trafficking is supported by the finding that 

recombinant GluRl overexpressed in CAl pyramidal cells can be delivered to synapses 

after the expression o f constitutively active CaMKII (Hayashi et al., 2000). Similarly, 

the expression o f a constitutively active tagged CaMKII was associated with a reduction 

in the proportion o f synapses devoid o f AMPA receptors compared with non-infected 

nearby neurons (Poncer et al., 2002). Therefore, CaMKII may facilitate the insertion o f 

AMPA receptors at synapses that do not express surface synaptic AMPA receptors and 

thus convert ‘silent synapses’ into ‘non silent synapses’ (Lisman, 2003; Malenka and 

Nicoll, 1999; Song and Huganir, 2002) and/or increase the number o f AMPA receptors 

at synapses that already contain functional AMPA receptors.

The increase in Ca^^ in the postsynaptic cell stimulates phosphatidylinositol-4,5- 

bisphosphate (PIP2 ) hydrolysis by phospholipase C (PLC), which generates a variety of 

second messengers, including diacylglycerol (DAG) and inositol 1,4, 5-triphosphate 

(IP3). IP3 releases calcium from intracellular stores, which in conjunction with DAG, 

activates PKC. PKC was the first kinase to be implicated in LTP and therefore its 

involvement has been studied extensively. Inhibitors o f PKC impair LTP (Hvalby et al., 

1994; Lovinger et al., 1987; Malinow et al., 1988) and also impair learning (Nogues, 

1997; Paratcha et al., 2000). In addition, PKC knock-outs exhibit diminished LTP 

(Abeliovich et al., 1993). Conversely intracellular injection o f the catalytic subunit o f 

PKC induces synaptic potentiation (Hu et al., 1987) as does the extracellular application 

o f activators o f PKC, such as phorbol esters (Goda et al., 1996; Kamal et al., 2003). 

PKC activity is associated with enhanced neurotransmitter release (Malenka et al., 

1986b; Swartz et al., 1993), inhibition o f K"̂  channels (Baraban et al., 1985; Hoffman 

and Johnston, 1998), modulation of NMDA receptors (Lan et al., 2001; Lu et al., 2000) 

and also morphological changes (Pilpel and Segal, 2004). PKC also appears to be 

involved in the activation o f the non-receptor protein tyrosine kinase (Lu et al., 1999),
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which is important as src activity accompanies and is necessary for LTP induction in 

CAl pyramidal neurons (Lu et al, 1998). The role of the src family in LTP is supported 

by the finding that transgenic animals lacking the src family member fyn exhibit deficits 

in LTP (Huang and Hsu, 1999).

PKC is a multigene family and multiple isoforms are transiently activated in the 

induction of LTP (Hrabetova and Sacktor, 1996; Sacktor et al., 1993). However a single 

isoform, PKMzeta, exists as an independent catalytic domain of the atypical PKCzeta 

and is persistently activated during the maintenance phase of LTP (Hernandez et al., 

2003). PKMzeta is formed following proteolytic cleavage of the full length PKCzeta 

atypical isoform (Kishimoto et al., 1983). However, a PKCzeta knock-out mouse, in 

which the catalytic domain is spared, still expresses neuronal PKMzeta, which indicates 

that PKMzeta may also be generated by de novo protein synthesis (Hernandez et al., 

2003). It appears that particular forms of stimulation may prompt de novo synthesis of 

PKMzeta as metabolic labelling of PKMzeta showed that tetanic stimulation induces the 

protein synthesis o f PKMzeta using neuronal specific PKMzeta mRNA, which is 

generated by an internal promoter within the PKCzeta gene (Hernandez et al., 2003). 

Following synthesis PKMzeta is transported to the synaptodendritic compartments of 

neurons (Muslimov et al., 2004). PKC/Mzeta inhibitors reversed the maintenance of 

LTP in the dentate gyrus in vivo (Pastalkova et al., 2006) and in the CAl in vitro (Ling 

et al., 2002; Serrano et al., 2005). Furthermore introduction of active PKMzeta into the 

postsynaptic cell induced synaptic potentiation, which occluded LTP induced by tetanic 

stimulation (Ling et al., 2002; Pastalkova et al., 2006; Serrano et al., 2005). These 

findings infer that PKMzeta is necessary and sufficient for the maintenance of LTP. The 

maintenance of LTP usually refers to a persistent biochemical signal that lasts in a cell 

and acts on an effector such as a glutamate receptor, which results in the expression of 

LTP. A recent study found that PKMzeta specifically maintains a long-term increases in 

active postsynaptic AMPA receptor number (Ling et al., 2006), which was 3-4 fold 

greater than the increase in AMPA receptor function associated with CaMKII (Poncer et 

al., 2002). There was no evidence of a conversion of synapses containing NMDA 

receptors only, ‘silent synapses’, into ‘non-silent’ synapses containing NMDA and
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AMPA receptors and thus it was concluded that the increase in AMPA receptor function 

occurred at synapses containing only AMPA receptors (Ling et al., 2006).

The activation of intracellular kinases prompts the activation of transcription factors and 

thereby initiates the increase in protein synthesis that accompanies LTP. Previous 

studies have shown that CaMKII and PKA are associated with the activation of CREB 

(cAMP responsive element-binding protein) (Hu et al., 1999), which is important since 

CREB activity plays an important role in spatial learning (Bourtchuladze et al., 1994; 

Pittenger et al., 2002) and also LTP. Mutant mice lacking CREB display LTP that 

decays faster than usual (Bourtchuladze et al., 1994). Similarly PKA and PKC modulate 

the activity of the MAPK (mitogen activated protein kinase) signalling pathway (Sweatt, 

1999), which is necessary for LTP in the CAl (English and Sweatt, 1997; Impey et al., 

1998). Hippocampal MAPK is also activated by p-adrenergic receptors, mGlu receptors, 

mACh receptors (Roberson et al., 1999) and also BDNF (Gottschalk et al., 1999). 

Furthermore MAPK is also involved in the activation of CREB (Impey et al., 1998; 

Roberson et al., 1999), which suggests that MAPK serves as an integrator of a wide 

variety of convergent receptor generated messengers allowing for the functional 

integration of diverse cell surface signals at the level of the cell nucleus (Dineley et al., 

2001a).

In conclusion the induction of LTP involves the transient elevation of second 

messengers, which activates protein kinases (Dineley et al., 2001a). Furthermore the 

maintenance of LTP is generally divided into two phases; early LTP (E-LTP) and late 

LTP (L-LTP) (Dineley et al., 2001a; Huang, 1998). E-LTP involves persistent kinase 

activation and thus it is suggested that autonomously active kinases such as CaMKII and 

PKMzeta maintain this phase. In contrast L-LTP involves protein synthesis and altered 

gene expression (Dineley et al., 2001a). The increase in protein synthesis that 

accompanies LTP is believed to mediate some of the morphological changes such as the 

increase in the postsynaptic area, spine number and spine area that are associated with 

LTP (Lynch, 2004; Ma et al., 1999).
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1.3 The cholinergic system and the hippocampus

1.3.1 The discovery of ACh and source of hippocampal ACh

Hunt and Taveau ‘discovered’ ACh 100 years ago, when they first demonstrated its 

powerful hypotensive action (Hunt and Taveau, 1906). Experimental proof in favour of 

ACh as a chemical transmitter at the vagal endings in the heart came from Loewi in 

1921, although he named this active substance ‘vagusstofP (Loewi, 1921). The release 

o f ACh from the intact cerebral cortex was established by assaying saline that had been 

exposed to the surface o f the cortex (Elliott et al., 1950) and shortly after the excitatory 

effect of ACh on cortical neurons was demonstrated (Kmjevic and Phillis, 1963; 

Spehlmann, 1963). Kmjevic and Phillis (1963) were intrigued by the finding that 

sometimes the application of ACh did not have any perceptible affect, however in these 

instances ACh was still able to strongly potentiate other forms of excitation, thus ACh is 

the prototypical neuromodulator (Kmjevic and Phillis, 1963). ACh consists o f a choline 

group, which is available via diet, and an acetyl group, provided by acetyl-Coenzyme A. 

The synthesis o f ACh takes place in the axonal terminals and is catalysed by the 

cytosolic enzyme choline acetyhransferase (ChAT) (van der Zee and Luiten, 1999).

The hippocampus receives a major cholinergic input from the medial septum and the 

vertical limb of the diagonal band o f Broca (MSDB) via the fimbria-fomix (Kmjevic, 

2004; Milner et al., 1983; van der Zee and Luiten, 1999). This projection is comprised 

of heterogeneous nuclei and also contains GABAergic neurons, which are also known to 

innervate the hippocampus (Segal and Auerbach, 1997; van der Zee and Luiten, 1999). 

The septo-hippocampal projection also contains a neuropeptide projection (Senut et al., 

1989) and a possible glutamatergic projection (Sotty et al., 2003). ACh is believed to 

modulate synaptic transmission via activation o f  metabotropic muscarinic ACh receptors 

and/or ionotropic nicotinic ACh receptors. The mACh receptor family consists o f 5 

heterogeneous G protein coupled mACh receptor subtypes (Mi-Ms) and all 5 are 

expressed in the hippocampus (Caulfield, 1993; Levey et al., 1995). The nACh receptor
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family consists of ligand gated ion channels and the nACh receptors are formed by five 

subunits arranged around a central pore that is perpendicular to the membrane (Pereira et 

al., 2002). To date nine nACh receptor a  subunits ((x2-al0) and three nACh receptor P 

subunits (P2-P4) have been cloned and sequenced from the brain tissue of various 

animal species (Pereira et al., 2002). Of the neuronal nACh receptors subunits cloned 

al, aSp4 and a4p2 nACh receptors are the most abundantly expressed in the 

hippocampus (Alkondon et al., 2000a).

1.3.2 The release of ACh in the hippocampus

Numerous studies have shown that in awake animals hippocampal ACh increases in a 

variety of tasks and also in conditions where the environment requires the analysis of 

novel stimuli that may represent a threat or offer a reward (Fadda et al., 2000; Inglis and 

Fibiger, 1995; Mark et al., 1996; Thiel et al., 1998), for review see (Pepeu and 

Giovannini, 2004). The activity of the medial septum is correlated with the release of 

ACh in the hippocampus as electrical stimulation of the medial septum is known to 

increase hippocampal ACh release (Dudar, 1977; Smith, 1974) and the infusion of 

cholinergic agents into the septum also modulates hippocampal ACh release (Elvander 

et al., 2004). In addition, many neurotransmitters such as dopamine (Imperato et al., 

1993), serotonin (Consolo et al., 1994b) and adenosine (Cunha et al., 1995) also 

augment hippocampal ACh release. The activity of glutamatergic receptors is involved 

in hippocampal ACh release, as both non-NMDA receptor antagonists and NMDA 

receptor agonists injected i.c.v. (intra-cerebroventricular) increase the release of ACh 

from the hippocampus in vivo (Giovannini et al., 1994; Giovannini et al., 1998). 

Likewise, the activity of GABAergic receptors modulates hippocampal ACh release, as 

the GABAa receptor agonist, muscimol, applied intrahippocampally increases the 

release of hippocampal ACh (Giovannini et al., 1994), which correlates with the 

identification of GABAa receptors on cholinergic neurons (Gao et al., 1995). The 

extracellular concentration of ACh regulates ACh release via presynaptic inhibitory 

auto-receptors on cholinergic terminals (Bernard et al., 2003; Kitaichi et al., 1999;
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Quirion et al., 1995; Rouse et al., 2000; Stillman et al., 1996; Vannucchi and Pepeu, 

1995) but also see (Vannucchi and Pepeu, 1995). This correlates with the ability o f  

M2/M4  mACh receptor antagonists to increase the level o f  ACh in the hippocampus in 

vivo (Carey et al., 2001; Kitaichi et al., 1999; Quirion et al., 1995; Stillman et al., 1996; 

Stillman et al., 1993; Vannucchi and Pepeu, 1995; Vannucchi et al., 1997). A previous 

in vitro study proposed that ACh release is mediated primarily by the M2 mACh receptor 

in the hippocampus and cerebral cortex, but predominantly by the M4  mACh receptor in 

the striatum (Zhang et al., 2002). This proposition is supported by an in vivo study in 

the hippocampus that found that an M4  mACh receptor antagonist had a weak effect on 

hippocampal ACh release relative to the prominent effect o f  an M2 mACh antagonist on 

ACh release (Kitaichi et al., 1999).

Nicotine injected systemically (i.p.) increased the release o f  hippocampal ACh and this 

increase was blocked by pretreatment with nACh receptor antagonist, mecamylamine, 

which suggests that nACh receptors may also play a role in hippocampal ACh release 

(Tani et al., 1998). Finally galanin, an endogenous neuropeptide, has also been shown to 

modulate ACh release, however its effect on ACh release is location-specific as galanin 

has opposite effects on ACh release in the dorsal and ventral hippocampus, where local 

galanin injections increase and decrease ACh release, respectively (Schott et al., 2000).

1.3.3 The distribution of ACh receptor subtypes in the hippocampus

The Ml mACh receptor is the most abundant subtype in the hippocampus (Levey, 1993; 

Levey et al., 1995) and also predominantly expressed at postsynaptic sites (Levey et al., 

1995; Rouse et al., 1999). Although M2 receptors are not as abundant as Mi receptors 

they have a higher affinity for ACh (Auerbach and Segal, 1996). Analysis o f  the 

hippocampal distribution o f M2 mACh receptors found that they are expressed in a 

striking network along the stratum oriens/alveus border and also on varicose processes 

along the pyramidal layer and occasionally in the stratum radiatum (Levey, 1993; Levey 

et al., 1995). Further investigations o f  the neurons expressing M2 mACh receptors

16



suggest that they are located predominantly on the presynaptic membrane of cholinergic 

and non-cholinergic cells (Levey et al., 1995, Rouse et al., 2000), where they are 

believed to fianction as auto-receptors on cholinergic neurons (Carey et al., 2001; 

Quirion et al., 1995; Rouse et al., 2000; Rouse et al., 1999; Stillman et al., 1996; 

Stillman et al., 1993) and also heteroreceptors on both GABAergic (Hajos et al., 1998; 

Rouse et al., 2000; Rouse et al., 1999) and possibly glutamatergic (Marchi and Raiteri, 

1989; Nikbakht and Stone, 1999) neurons. Analysis o f the distribution o f M3 mACh 

receptors shows that they are expressed on pyramidal and non-pyramidal neurons in the 

stratum oriens and stratum lucidum in CA3 and in the stratum lacunosum-moleculare in 

the CAl (Levey et al., 1995). Although mRNA for m5 has been detected in the CAl 

pyramidal cells the protein has not been detected in the hippocampus and therefore it 

appears unlikely that M? mACh receptor activation significantly contributes to 

hippocampal synaptic plasticity (Levey, 1993; Levey et al., 1995). O f the neuronal 

nACh receptors subunits cloned al, o3p4 and a4|32 nACh receptors have been shown to 

be pre- and post-synaptically expressed in the hippocampus. The a7, a3|34 and a4p2 

nACh receptors are abundantly expressed on the somatodendritic region o f hippocampal 

interneurons (Alkondon and Albuquerque, 2002, Alkondon et al., 2000b).

1.3.4 The role of the cholinergic system in attention, learning and 

memory

Cholinergic activity facilitates human and animal memory (Aigner, 1995; Blokland, 

1995; Deutsch, 1971; Furey et al., 2000; Parent and Baxter, 2004). However, it is 

unclear if ACh directly enhances memory or indirectly ahers attention since sensory 

stimuli that produce arousal and attention also increase the concentration of extracellular 

ACh in the hippocampus (Inglis and Fibiger, 1995). Evidence that the cholinergic 

system is involved in attention was provided by a study with positron emission 

tomography in humans subjected to a visual working memory task in which systemic 

application o f the acetylcholinesterase (AChE) inhibitor, physostigmine, improved 

working memory by enhancing selective attention (Furey et al., 2000). This study in
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humans concluded that the effect o f cholinergic enhancement is not due to a simple 

increase in alertness or arousal, since physostigmine increased the selectivity o f 

responses to task-relevant stimuli but did not increase the response to all stimuli (Furey 

et al., 2000). However, this study involving a cholinergic enhancement o f selective 

attention could not ascertain if ACh was having a direct effect on systems that control 

attention or if the enhancement involved modulation o f the effect o f the input from the 

control systems on local neural activity in perceptual areas. Interestingly, a study on the 

role o f ACh in attention did not report a correlation between attention and ACh release 

(Passetti et al., 2000). In addition, lesions that impair performance on a variety of 

attentional tasks do not substantially affect memory, however it is difficult to draw 

conclusions from these studies as there are many varieties o f attentional processing and 

likewise many different kinds o f memories (Parent and Baxter, 2004).

The observation that hippocampal ACh release increases during learning and also the 

finding that the increase in ACh release is positively correlated with performance 

improvement during the task, suggests that changes in the activity o f cholinergic neurons 

are involved in learning (Fadda et al., 2000). Intriguingly, the cholinergic system is 

activated in response to novel inputs but not when the stimuli are repeated, leading to 

habituation (Acquas et al., 1996), which has lead to the proposition that the cholinergic 

system is activated by tasks that require the analysis o f novel stimuli representing a 

threat or offering a reward and thus supports a role for ACh in the learning o f new 

information (Parent and Baxter, 2004; Pepeu and Giovannini, 2004).

The distinction between attention and memory is difficult and according to Hasslemo 

and Bower (1993) the conceptual divisions between learning and memory may not be 

reflected on a physiological level (Hasselmo and Bower, 1993). In addition, it is not 

established where pure attention ends and learning information begins and consequently 

it may be more useful to focus on the neuromodulatory effects o f ACh. It has been 

proposed that the cholinergic system regulates the interaction between the cortex and 

hippocampus and thus mediates a switch from the learning o f new information to the 

retrieval o f previously learned information (Hasselmo, 1999). In this context ACh is
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believed to enhance learning o f  new information by inhibiting the intrinsic hippocampal 

circuitry and thereby ACh prevents interference from previously stored memories whilst 

simultaneously enhancing encoding by increasing the response to afferent stimulation 

(Hasselmo, 1999; Hasselmo and Bower, 1993; Hasselmo and Schnell, 1994; Kremin et 

al., 2006).

1.3.5 The role of the cholinergic receptor subtypes in learning and 

memory

Evidence for a role o f  Mj mACh receptors in learning was provided by a study that 

reported enhanced performance in an inhibitory avoidance task following  

intrahippocampal injection o f  a compound isolated from snake venom, MT2, which is a 

Ml receptor selective agonist (Adem and Karlsson, 1997; Ferreira et al., 2003; 

Jerusalinsky et al., 1993), similar results were obtained with other Mi receptor agonists 

(Ruske and White, 1999; Sen and Bhattacharya, 1991). However studies with Mi 

mACh receptor knock-out mice did not reveal major cognitive deficits in different 

hippocampus-dependent learning tasks, which suggest that Mi mACh receptors play an 

important role in memory but are not essential (Miyakawa et al., 2001).

Many studies have shown that M 2/M 4  mACh receptor antagonists delivered i.c.v. or 

systemically facilitate cognition (Aura et al., 1997; Baratti et al., 1993; Carey et al., 2001; 

Lachowicz et al., 2001; Packard et al., 1990; Sen and Bhattacharya, 1991). However, 

intrahippocampal injections o f  methoctramine alone did not enhance working memory 

(Ohno et al., 1994). Finally, M 2  receptor knock- out mice also exhibit deficits in spatial 

learning (Seeger et al., 2004), which suggests that the activity o f  M 2  mACh receptors is 

required for learning, although pharmacological antagonists o f  M 2 mACh receptors 

enhance cognition (Aura et al., 1997; Baratti et al., 1993; Carey et al., 2001; Lachowicz 

et al., 2001; Packard et al., 1990; Sen and Bhattacharya, 1991).

It appears that a4p2 and a7nACh receptor are involved in cognition since the local 

hippocampal application o f  the a7nACh receptor antagonist methyllycaconitine or the
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a4p2 nACh receptor antagonist dihydro-P-erythroidine impair learning and memory 

(Bancroft and Levin, 2000; Felix and Levin, 1997; Levin et al., 2002). In addition, 

learning and memory is impaired by the non-selective nicotinic antagonist 

mecamylamine (Levin, 1992) Conversely, learning and memory are improved by the 

a l nACh receptor agonist 3-(2,4-dimethoxybenzylidene)-anabaseine (GTS-21) 

(Arendash et al., 1995) or the a4^2 nACh receptor agonist (S)-3-methyl-5-(l-methyl-2- 

pyrrolidinyl) isoxazole (ABT 418) (Buccafusco et al., 1995).

1.3.6 The cholinergic system and cognitive dysfunction

Many studies have endeavoured to elucidate the function of the cholinergic system in the 

central nervous system (CNS) as deterioration of the cholinergic system is believed to 

contribute to the cognitive deficits associated with Alzheimer’s disease (AD) and also 

possibly healthy ageing (Bartus et al., 1982; Mesulam, 1996). The degeneration of the 

cholinergic system in AD is supported by many studies which found that AD is 

associated with a dramatic depletion in cholinergic markers (Francis et al., 1999). The 

lesions associated with AD, the A^-containing neuritic plaques and the tau containing 

neurofibrillary tangles, are present in the cholinergic septal-hippocampal and basal 

forebrain-neocortical pathways (Whitehouse et al., 1982). In addition, studies have 

suggested that AP may reduce ACh synthesis/release (Hoshi et al., 1997) and/or inhibit 

the coupling of ACh receptors to G proteins (Kelly et al., 1996). The release of ACh 

reduces with increased age as the release of ACh is reduced in the cerebral cortex, 

hippocampus and striatum in aged rats relative to young rats (Wu et al., 1988). 

Interestingly, the level of hippocampal ACh release appears to correlate with cognitive 

function as rats that display memory deficits often display correlated decreases in ACh 

release, whereas aged rats that have unimpaired memory did not exhibit a decrease in 

ACh release relative to young rats (Quirion et al., 1995). Finally, the use of 

acetylcholinesterase (AChE) inhibitors such as tacrine, donepezil and rivastigmine, 

increase the extracellular concentration of endogenous ACh and are associated with 

improved cognitive function in AD (Francis et al., 1999).
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Given that the loss o f  cholinergic markers is associated with the pathology o f  AD many 

studies have endeavoured to reproduce the accompanying cognitive dysfunction by 

inducing lesions o f  the cholinergic system in experimental animal models. However, 

cholinergic lesion studies fail to consistently cause cognitive deficits. It is possible that 

lesioning induces a reorganization o f  the brain that can compensate for the loss o f  the 

cholinergic system. Alternatively, this lack o f  consistency could be explained by the use 

o f  unselective lesioning agents and/or an inefficient abrogation o f  the cholinergic system. 

The importance o f  effective abrogation o f  the cholinergic system was highlighted by a 

previous study with i.c.v. injections o f  192IgG-saporin, the most selective procedure for 

disruption o f  the cholinergic system, where only very extensive lesions involving >90%  

o f  cholinergic neurons reliably resulted in severely impaired performance (Parent and 

Baxter, 2004; Wrenn and W iley, 1998).

It appears that additional factors may contribute to the cognitive dysfunction associated 

with AD such as a reduction in the efficiency o f  coupling o f  mACh receptors to effector 

systems such as PIP2 turnover (Chouinard et al., 1995; Ladner et al., 1995). It has also 

been proposed that a disturbance o f  the G ABAergic-cholinergic interaction may underlie 

AD memory deficits (Araki et al., 1996). This proposition is supported by a previous 

study that showed selective lesioning o f  the septal GABAergic projection combined with 

lesioning o f  the septal cholinergic system (using 192IgG-saporin) impaired 

hippocampal-dependent memory, whereas selective lesions o f  the septo-hippocampal 

G ABA projection or cholinergic projection alone did not impair spatial learning (Pang et 

al., 2001). In addition, the interaction o f  the cholinergic septo-hippocampal projection 

with the peptidergic and putative glutamatergic septo-hippocampal projections may also 

contribute to the role o f  ACh in AD (Parent and Baxter, 2004). Evidence for the role o f  

the neuropeptide, galanin, in AD was provided by the finding that galanin and galanin 

receptors are overexpressed in limbic brain regions o f  AD patients (Counts et al., 2003).

Originally the neuropathological plaques that accompany A D  were believed to mediate 

the impairment in cognition, however more recently it has been proposed that prior to
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the development o f  plaques, soluble non-fibrillar Ap initiates a complex cascade o f  

biochemical and cellular changes that culminate in cognitive and memory impairment. 

This proposition is substantiated by the finding that the level o f  soluble non-fibrillar Ap 

in the brain measured post mortem, correlates with the severity o f  clinical dementia 

suffered by patients (Lue et al., 1999; McLean et al., 1999), whereas cognitive deficits 

correlate poorly with the presence o f  fibrillar AP (Terry, 2000). The deleterious effect o f  

Ap on hippocampal function was demonstrated by the ability o f  soluble non-fibrillar Ap 

injected i.c.v. prior to HFS to block LTP (Cullen et al., 1997) and likewise impair 

learning (Flood et al., 1991). Furthermore transgenic m ouse models with APP-linked 

familial AD mutations have an age-dependent impairment o f  learning and memory and 

also a deficit in hippocampal LTP prior to Ap plaque desposition, for review see (Rowan 

et al., 2003; Selkoe, 2002).

Although AD involves many pathological changes in addition to the loss o f  the 

cholinergic system many studies support the view  that the cholinergic system plays an 

important role in modulating learning and memory deficits (Parent and Baxter, 2004; 

Pepeu and Giovannini, 2004; Steckler et al., 1998). This concept is supported by studies, 

which found that impaired cognitive functions caused by lesions o f  the hippocampus are 

reversed by muscarinic agonists (Fisher et al., 1991; Inagawa, 1994; Yamazaki et al., 

1991). The role o f  the cholinergic system in learning and memory is also supported by 

the ability o f  mACh receptor antagonists, such as scopolamine (Blokland, 1995; Steckler 

et al., 1998) to induce a deficit in learning. Conversely AChE inhibitors ameliorate the 

scopolamine-induced deficit in learning (Bejar et al., 1999; Braida et al., 1996), which is 

reminiscent o f  the ability o f  AChE inhibitors to improve cognitive deficits associated 

with AD (Francis et al., 1999). Likewise, enhanced release o f  endogenous ACh 

follow ing antagonism o f  presynaptic inhibitory M 2 /M 4  mACh receptors has also been 

found to ameliorate the cognitive deficits induced by scopolamine (Quirion et al., 1995), 

brain injury (Pike and Hamm, 1995) and also the cognitive impairment associated with 

aging and (Quirion et al., 1995; Tombaugh et al., 2002). M i mACh agonists have also 

been reported to reduce the cognitive impairments induced by scopolamine (Iga et al., 

1996) and other pharmacological agents (Brandeis et al., 1995). The nACh receptors
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also appear to have a significant role in the cognitive dysfunction associated with loss of 

the cholinergic system, since nicotine reverses memory deficits caused by lesions o f the 

cholinergic system in animals (Decker et a l, 1992; Levin et al., 1993; Yamazaki et al., 

2002). Similarly, nicotine partially ameliorates the cognitive deficit in patients with 

Alzheimer’s (Newhouse et al., 2004). The activity of a7 nACh receptor is believed to 

mediate neuroprotection against AP- induced neurotoxicity (Kihara et al., 2001, Shaw et 

al., 2002), which may underlie the effect o f nicotine in AD. The role o f  the cholinergic 

system in memory deficits is also supported by the suggestion that the alterations in the 

expression of hippocampal mACh and nACh receptors following prolonged exposure to 

antipsychotics (Terry et al., 2005; Terry et al., 2006a) underlies the memory 

impairments associated with long-term use o f antipsychotics (Terry et al., 2006b).

In conclusion, it is generally accepted that the cholinergic system is involved in 

cognition, however an outstanding question is: how does the activation o f cholinergic 

receptors contribute to learning and memory processes?

1.3.7 Muscarinic acetylcholine (mACh) receptors and hippocampal 

synaptic plasticity

Evidence supporting the hypothesis that the cholinergic system mediates it effects on 

learning and memory in the hippocampus was provided by a study which showed that 

spatial discrimination learning selectively increases mACh receptor immunoreactivity in 

cell bodies of the CAl region pyramidal neurons (van der Zee and Luiten, 1999). It has 

been proposed that an LTP-like plasticity underlies learning and memory (Lynch, 2004; 

Morris et al., 1986) and thus if ACh plays a role in memory it would be expected to 

induce/modulate this type o f plasticity.

The application o f the acetylcholinesterase (AChE) inhibitor, physostigmine, increases 

the extracellular ACh concentration and was previously shown to induce an LTP-like 

persistent enhancement o f the population spike in the hippocampus in vivo (Ito et al., 

1988; Levkovitz and Segal, 1994). This finding is consistent with a role for
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hippocampal ACh in learning as spatial learning in vivo was previously shown to 

correlate with LTP o f the population spike in slices taken from animals after training 

(Kleschevnikov and Marchbanks, 1993). A similar enhancement o f  the population spike 

was obtained with another AChE inhibitor in vitro (Kojima and Onodera, 1998). An in 

vitro study found that somatically applied ACh caused a long term increase in 

glutamatergic synaptic transmission in the C A l region (de Sevilla et al., 2005).

Antagonists o f  presynaptic inhibitory M 2 /M 4  mACh receptors, 11-[2- 

[(diethylamino)methyl]-l-piperidinyl] acetyl-5, ll-dihydro-6H -pyrido-[2, 3b] [1, 4] 

benzodiazepine-6 -one (AF-DX116) or methoctramine, which increase the concentration 

o f  extracellular ACh, have also been shown to induce a long term increase in synaptic 

transmission in the C A l region o f  the hippocampus in vivo (Li, 2002). This M 2  receptor 

mediated enhancement o f  synaptic transmission was muscarinic receptor dependent as it 

was blocked by pretreatment with an unselective mACh receptor antagonist, 

scopolamine (Li, 2002). However, the maintenance o f  methoctramine LTE was not 

mACh receptor-dependent as scopolamine at a dose that blocked the induction o f  

methoctramine LTE, failed to significantly alter methoctramine LTE when it was 

applied 30 min after methoctramine (Li, 2002). The Mi receptor antagonist telenzepine 

(Galvan et al., 1989) and the Mj/Ms receptor antagonist 4-diphenylacetoxy-N- 

methylpiperedine methiodide (4-DAMP) (Doije et al., 1991) blocked the 

methoctramine-induced LTE o f synaptic transmission (Li, 2002), which suggests that 

methoctramine LTE is dependent on the activation o f  non-M 2 mACh receptors. A 

somewhat similar increase in synaptic transmission was obtained in vitro following bath 

application o f an M 2  receptor antagonist and this enhancement was absent in M 2 knock­

out mice (Seeger et al., 2004).

Bath application o f  a muscarinic agonist, carbachol, was previously shown to induce a 

slow onset long lasting enhancement o f  synaptic transmission, which was referred to as 

muscarinic LTP (LTPm) (Auerbach and Segal, 1996; Seeger et al., 2004; Segal and 

Auerbach, 1997). This enhancement was found to comprise o f  a transient and reversible 

increase in response to NMDA, whereas responses to  AMPA increased gradually and
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remained potentiated after washout (Auerbach and Segal, 1996; Segal and Auerbach, 

1997). LTPm was not associated with a change paired-pulse facilitation or the size o f  

the afferent volley, which suggests a postsynaptic locus o f  action (Auerbach and Segal, 

1996; Yun et al., 2000). Auerbach and Segal (1996) proposed that LTPm is mediated 

by postsynaptic M2 receptors. The role o f  M2 receptors in LTPm is consistent with the 

lack o f  LTPm in slices from M2 knock-out mice (Seeger et al., 2004).

Establishing the mechanism by which ACh receptor activation induces an increase in 

synaptic transmission is complex as the effect o f ACh on synaptic transmission appears 

to depend on the exact site o f  ACh release/application. The location-specific effect o f  

ACh on synaptic transmission was demonstrated by a previous in vitro study in the C A l, 

which found that ACh applied to the dendrities decreased the magnitude o f  the locally 

evoked EPSP via presynaptic inhibition, whereas ACh applied to the cell body layer 

resulted in an increase and prolongation o f  EPSPs along with a transient decrease in the 

recurrent somatic IPSPs (Valentino and Dingledine, 1981).

Distinct pools o f  receptor subtypes may exert differential and even opposing effects on 

cellular activity. For instance the activation o f presynaptic M 2 / M 4  receptors suppresses 

somatic calcium currents and inhibits transmitter release (Krnjevic, 2004). However, it 

appears that there are at least two other distinct pools o f  M2 receptors located 

postsynaptically in the hippocampus, which have opposing functions. The activation o f  

postsynaptic M2 receptors that are positively coupled to inwardly rectifying channels 

will decrease the excitability o f  the postsynaptic cell (Seeger and Alzheimer, 2001), 

whereas the activation o f  postsynaptic M2 receptors may also block an outward 

current, and thus increase the excitability o f  the postsynaptic cell (Dutar and Nicoll, 

1988). A similar situation appears to apply to Mi receptors as the activation o f Mi 

receptors expressed on the postsynaptic cell are associated with an increase in 

excitability (de Sevilla et al., 2005; Iga et al., 1996), whereas the activation o f  Mi 

receptors expressed on the presynaptic cell are associated with a decrease in 

neurotransmitter release (Kremin et al., 2006; Sheridan and Sutor, 1990). It has been 

suggested that these differential effects o f  ACh on cellular excitability may achieve a
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suppression of presynaptic transmission and thus prevent interference from old 

memories whilst simultaneously enhancing encoding by increasing postsynaptic activity 

in response to afferent stimulation (Hasselmo, 1999; Hasselmo and Bower, 1993; 

Hasselmo and Schnell, 1994; Kremin et al., 2006).

ACh also appears to modulate hippocampal LTP as the muscarinic receptor dependent 

antagonist, scopolamine, blocks the cholinergic enhancement o f hippocampal LTP that 

occurs during walking in rats (Leung et al., 2003). Establishing the role o f ACh in 

hippocampal LTP is difficult as many investigations have found that mACh receptor 

antagonists do not effect the induction o f tetanic-LTP in the CAl region (Kikusui et al., 

2000; Sokolov and Kleschevnikov, 1995; Tanaka et al., 1989) or in the dentate gyrus 

(Abe et al., 1994) and the disruption o f the cholinergic system does not consistently 

affect the induction o f LTP at the CAl ex vivo (Jouvenceau et al., 1996; Yamazaki et al., 

2002). However, LTP induced by weak conditioning stimulation appears to be 

cholinergic-dependent (Abe et al., 1994; Huerta and Lisman, 1993; Ovsepian et al., 2004) 

and mACh receptor activation facilitates LTP induced by tetanic stimulation (Blitzer et 

al., 1990; Iga et al., 1996; Leung et al., 2003; Shimoshige et al., 1997; Shinoe et al., 

2005; Ye et al., 2001). Therefore it is believed that mACh receptors contribute to 

particular forms of synaptic plasticity but are not essential for all types o f synaptic 

plasticity.
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1.3.8 Nicotinic acetylcholine (nACh) receptors and hippocampal 

synaptic plasticity

Nicotine induces a slowly developing potentiation in the dentate gyrus o f the mouse, 

which is believed to involve activation o f a7nACh and a4p2 nACh receptors 

(Matsuyama and Matsumoto, 2003; Matsuyama et al., 2000). Nicotine has been found 

to facilitate the induction o f LTP (Fujii et al., 1999; Ji et al., 2001; Mann and Greenfield, 

2003) and reverse the cholinergic lesion-induced impairment o f LTP induction 

(Yamazaki et al., 2002) in the CAl region o f the hippocampus. Isolation o f the nACh 

receptor sub-types involved in the nicotinic effect on plasticity is complicated as nACh 

receptors desensitise following activation (Alkondon et al., 1998; Alkondon et al., 1997), 

which explains the finding that the effect o f nACh receptor agonists on LTP are 

mimicked by a7nACh antagonists (Fujii et al., 2000a). Since nACh receptors are highly 

expressed on intemeurons they are believed to mediate facilitation o f LTP through 

disinhibition of glutamatergic neurons (Frazier et al., 1998; Ji and Dani, 2000; Jones and 

Yakel, 1997; McQuiston and Madison, 1999), which is substantiated by the finding that 

nicotine reverses GABAergic inhibition o f LTP (Fujii et al., 2000b). However, a7nACh 

receptors are also expressed presynaptically on glutamatergic neurons and their 

activation enhances glutamate release (Gray et al., 1996), which could also contribute to 

the role o f nACh receptor activation on plasticity. A direct role for nACh receptors in 

depolarisation o f the postsynaptic pyramidal cell is controversial as the initial evidence 

fi-om slice recordings did not support the expression o f nACh receptors on the 

postsynaptic membrane of pyramidal neurons (Frazier et al., 1998; Jones and Yakel, 

1997; McQuiston and Madison, 1999). However, Ji et al. (2001) demonstrated the 

presence of nACh on the membrane o f postsynaptic pyramidal cells. In addition, they 

demonstrated that in the CAl pyramidal cells in vitro the observed facilitation o f LTP 

induction following local application o f ACh was predominantly due to a7nACh 

receptor activation (Ji et al., 2001). They proposed that the activation o f a7nACh 

receptors facilitated the induction o f LTP by enhancing depolarisation o f the 

postsynaptic cell and increasing the level o f  intracellular calcium (Ji et al., 2001). The
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proposed role of a7nACh receptors in influx correlates with the result of a previous 

study where a7nACh receptors were found to have a greater relative permeability to 

Ca^  ̂than NMDA receptors and also other nACh receptors (Seguela et al., 1993).

The effect of nACh receptor activation on LTP also appears to be location specific. It 

has been suggested that in the CAl region the activation of nACh receptors on 

interneurons that directly innervate pyramidal neurons causes inhibition of pyramidal 

cells, whereas activation of nACh receptors that innervate other intemeurons causes 

disinhibition of pyramidal cells (Ji and Dani, 2000; Yamazaki et al., 2005). This is 

supported by the finding that in the CAl there are distinct subsets of interneurons, which 

are distinguished with regard to nicotinic receptor expression (McQuiston and Madison, 

1999). Furthermore the classification of intemeurons with regard to nACh receptor 

expression also correlates strongly with morphological characteristics (McQuiston and 

Madison, 1999).

1.3.9 ACh and hippocampal neuronal excitability

The ACh mediated increase in excitability in the CAl region of the hippocampus is 

associated with membrane depolarization, impairment of adaptation during repetitive 

spike firing, suppression of slow-afterhyperpolarisation and the appearance of after 

depolarization (Dutar and Nicoll, 1988; Krnjevic, 2004; Segal, 1988; Segal and 

Auerbach, 1997). Most of these effects are achieved by the reduction or blockade of 

several neuronal potassium currents (Cole and Nicoll, 1984; Dutar and Nicoll, 1988; 

Segal, 1988; Segal and Auerbach, 1997). The first hippocampal membrane current 

found to be blocked by ACh was the voltage-dependent, Ca^  ̂ independent, resting 

outward rectifying M-current ( I m ) ,  however currents seem to exhibit differential 

sensitivities to ACh as a previous study found that low concentrations of ACh enhance 

excitability by preferentially acting on a voltage and Ca^  ̂ independent ‘leak’ current 

( I l e a k )  (Brown et al., 1997; Loffelholz, 1996; Madison et al., 1987). The blockade of 

M-current ( I m )  along with the ‘leak’ current ( I l e a k )  results in the suppression of
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adaptation, which makes the neuron more excitable and hence more responsive to 

stimulation, as adaptation involves a decrease in firing during sustained excitatory 

stimulation (Cole and Nicoll, 1984; Madison et al., 1987; Segal, 1988). Madison et al. 

(1987) proposed that synaptically released ACh is likely to mediate blockade o f the 

voltage and Ca^^ dependent current that underlies the slow afterhyperpolarisation ( I a h p ) -  

Successive sAHPs result in hyperpolarisation, which normally prevents sustained firing 

in response to a depolarizing input, therefore blockade o f this current by ACh would 

promote sustained action potential discharge to depolarizing stimuli (Brown et al., 1997; 

Cole and Nicoll, 1984; Kmjevic, 2004; Madison et al., 1987; Segal, 1988). ACh may 

also mediate excitatory effects via the blockade of a transient outward, voltage-activated 

delayed rectifier like current ( Ik)  (Brown et al., 1997; Cole and Nicoll, 1984; 

Krnjevic, 2004; Madison et al., 1987, Segal, 1988).

The closing o f channels may depolarize the membrane and thus ACh may indirectly 

modulate other ionic conductances such as Na^, Ca^^ CP (Brown et al., 1997; Caulfield, 

1993; Felder, 1995; Kmjevic, 2004; Segal and Auerbach, 1997). Indeed the activation 

o f mACh receptors has been associated with increased Ca^^ influx through VDCCs in 

the entorhinal cortex (Klink and Alonso, 1997) and also enhanced Ca^^ entry via NMDA 

receptors (Egorov et al., 1999; Markram and Segal, 1990). Mi mACh receptor 

activation has been shown to enhance NMDA receptor activity in the CAl region o f the 

hippocampus (Marino et al., 1998; Markram and Segal, 1990). Furthermore the 

selective Mi-toxin antagonist was shown to block a carbachol mediated enhancement of 

NMDA currents in the CAl region in vitro (Rouse et al., 1999). The role of the Mi 

receptor in the regulation of NMDA receptor currents also correlates with an 

immunocytochemical study that found the NRl subunit o f the NMDA receptor and the 

Ml receptor are co-localised in the rat hippocampus (Rouse et al., 1999). ACh receptors 

are coupled to G proteins and thus their activation may also generate second messengers 

and thus may mediate an increase in the release o f Ca^^ from intracellular stores, which 

is also associated with an increase in neuronal excitability (Segal and Auerbach, 1997). 

Although ACh is believed to enhance excitability o f the post synaptic neuron a previous 

study determined that in the CAl region ACh may also activate the inwardly rectifying
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current and thus decrease glutamatergic synaptic transmission (Seeger and Alzheimer, 

2001). Furthermore ACh has also been reported to suppress high voltage gated Ca^^ 

currents, which is believed to underlie the ability o f  mACh receptor activation to 

modulate presynaptic neurotransmitter release (Brown et al., 1997; Krnjevic, 2004).

A link between neuronal excitability and learning was provided by a previous study that 

observed that a reduction in sAHP in the CAl region o f the hippocampus correlates with 

learning in the Morris water maze as this phenomenon was absent in animals that failed 

to learn the task (Oh et al., 2003). The dysfunction of the mechanisms underlying 

neuronal excitability has been associated with aging and aged rats have been shown to 

express an increase in L-type calcium channels which have been linked to slow 

afterhyperpolarisation (Marrion and Tavalin, 1998). Dysfunction o f sAHP correlates 

with learning as the CAl neurons o f aged rodents exhibit both a larger sAHP and a 

depressed membrane excitability that vary inversely with hippocampal-dependent 

learning (Disterhoft et al., 1996).

1.3.10 Cholinergic signaling mechanisms

ACh stimulates the activation o f enzymes that generate second messengers and thereby 

modulates the activity o f intracellular kinases such as PKA and PKC (LofFelholz, 1996), 

which are involved in synaptic plasticity (Lynch, 2004; Nguyen and Woo, 2003). ACh 

may increase the intracellular Ca^^ concentration by modulating ionic conductance or 

via the generation o f second messengers associated with the release o f Ca^^ from 

intracellular stores (Felder, 1995; Segal and Auerbach, 1997) and an increase in 

intracellular Ca^^ is involved in the activation o f many kinases (Felder, 1995; Lisman, 

2003; Lynch, 2004). The role o f kinase activity in mACh receptor mediated 

enhancement o f synaptic transmission has been documented previously (Auerbach and 

Segal, 1996; Li, 2002).
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Agonist stimulation o f Mi, M3 and M5 receptors stimulate PIP2 hydrolysis by PLC and 

generate a variety o f second messengers, including diacylglycerol and IP3 . IP3 releases 

calcium from intracellular stores, which in conjunction with DAG, activates PKC. The 

ability o f  mACh receptors to activate PKC is supported by the finding that PKC 

activation accounts for many o f the effects o f muscarinic receptor activation (Cantrell et 

al., 1996; Malenka et al., 1986a; May et al., 1999; Stratton et al., 1989). Kinase 

activation may also initiate feedback regulation as the phosphorylation o f muscarinic 

receptors by PKC has been associated with a decrease in mACh receptor function 

(Hosey, 1992; Jia et al., 1989; Scherer and Nathanson, 1990) and may even prompt 

mACh receptor internalisation (Jia et al., 1989; Liles et al., 1986; Pediconi and Barrantes, 

1995).

The M2/M4 mACh receptors are mainly located presynaptically and are negatively 

coupled to adenylyl cyclase (AC), therefore activation o f these receptors results in a 

decrease in the intracellular cAMP concentration and a subsequent reduction in PKA 

activity (Caulfield, 1993). Thus antagonism of these receptors has been associated with 

increased PKA activity. Although M2/M4 receptor activation inhibits AC and thus PKA, 

it has been suggested that the activation o f Mi receptors and the concomitant increase in 

intracellular Câ  ̂ may also stimulate AC and thus may activate PKA (Caulfield, 1993). 

The activation of mACh receptors also prolongs the activation o f the hippocampal 

MAPK family (Rosenblum et al., 2000) and this is believed to involve mACh receptors 

that couple to Gi and Gq proteins (Loffelholz, 1996).

I

The activation of a7nACh receptors have a greater relative permeability to Ca than 

NMD A receptors and also other nACh receptors (Seguela et al., 1993). Therefore, the 

activation o f aVnACh receptors on the postsynaptic pyramidal cell may facilitate 

depolarisation and increase the intracellular calcium concentration and thus facilitate the 

activation of kinases such as, PKA, PKC and CaMKII. In addition, the activation o f
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nACh receptors was previously found to induce the activation of MAPK (Dajas-Bailador 

et al., 2002) and phosphatidylinositoB-kinase (Kihara et al., 2001).
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1.4 The neuropeptide galanin

Galanin, a 29 amino acid neuropeptide, was originally isolated from the porcine intestine 

(Bedecs et al., 1995; Tatemoto et al., 1983). However galanin has a widespread 

distribution in the CNS and in the periphery (Crawley, 1996; Gentleman et al., 1989). 

Galanin is believed to be co-transported with classical neurotransmitters being present in 

cholinergic, GABAergic, noradrenergic and serotonergic neurons (Chan-Palay, 1988; 

Melander et al., 1986; Miller et al., 1997). Endogenous galanin is tonicallly released 

from the ventral hippocampus of freely behaving rats and enhanced following electrical 

stimulation o f the diagonal band o f Broca (Consolo et al., 1994a). To date three galanin 

(Gal) receptor subtypes Gal-receptor 1, Gal-receptor 2 and Gal-receptor 3 have been 

identified and cloned (Branchek et al., 2000). Gal-receptor 1 is highly expressed in the 

ventral hippocampus (Gustafson et al., 1996) and its activation results in a decrease in 

AC activity as it is coupled to Gi/o protein (Wang et al., 1998). Gal-receptor 2 is 

expressed mainly in the granule cell layer o f the dentate gyrus in both the dorsal and 

ventral hippocampus (Fathi et al., 1997; O'Donnell et al., 1999). Gal-receptor 2 is 

coupled to Gi/o (Wang et al., 1998) and also Gq/11 proteins, which induces the 

activation o f phospholipase C (Smith et al., 1997), which is required for PKC activation. 

Gal- receptor 3 is preferentially expressed in the hypothalamic nuclei, pituitary, spinal 

cord and has also been reported to occur in the pyramidal cell layer o f the hippocampus 

(Kolakowski et al., 1998; Smith et al., 1997). Gal-R3 also couples to Gi/o and therefore 

inhibits adenylyl cyclase (Kolakowski et al., 1998).

An in vitro study found that galanin inhibits LTP in the CAl region (Coumis and Davies, 

2002; Sakurai et al., 1996). Galanin attenuates (Badie-Mahdavi et al., 2005a; Badie- 

Mahdavi et al., 2005b), whereas a Gal-receptor 2 agonist fiilly blocked (Badie-Mahdavi 

et al., 2005b) LTP induced in the dentate gyrus in vitro. The inhibitory effect o f galanin 

on LTP in vitro is consistent with the results o f an in vivo transgenic study which found 

that LTP in the dentate gyrus was enhanced in galanin knock-out mice and reduced in 

galanin over-expression mice (Mazarati et al., 2000). In the CAl region o f the
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hippocampal slice galanin was found to block the slow cholinergic excitatory EPSP 

induced by the release o f endogenous ACh from the stratum oriens (Dutar et al., 1989).

Galanin has also been shown to modulate ACh release, however its effect on ACh 

release is location specific as exogenously applied galanin has the opposite effect on 

ACh release in the dorsal and ventral hippocampus, where local galanin injections 

increase and decrease ACh release, respectively (Schott et al., 2000). Galanin injected 

i.c.v. decreases ACh release in the ventral hippocampus without altering ACh release in 

the dorsal hippocampus (Fisone et al., 1987). In contrast galanin infused into the medial 

septum increases ACh release in the ventral hippocampus (Elvander et al., 2004), which 

is consistent with the results o f a previous study that found galanin excites neurons from 

the diagonal band o f  Broca (dBB) (Jhamandas et al., 2002).

The effect o f galanin on learning is somewhat complicated, however the effect appears 

to depend on site o f application, as galanin injected into the ventral hippocampus 

impairs learning (Ogren et al., 1996; Schott et al., 1998) although a lower dose was also 

shown to facilitate learning (Ogren et al., 1996). In contrast, galanin injected into the 

dorsal hippocampus did not significantly affect spatial learning, although it tended to 

facilitate learning (Ogren et al., 1999). Galanin injected into the medial septum was 

shown to facilitate spatial learning (Elvander et al., 2004). However, galanin injected 

i.c.v. impairs spatial learning (Kinney et al., 2003), whereas the galanin antagonist, M35, 

injected i.c.v., facilitated acquisition in a spatial learning task in the rat (Ogren et al., 

1992). This suggests that endogenous galanin plays a role in learning. Interestingly, 

galanin also appears to antagonise the effects of muscarinic receptor activation as i.c.v. 

injections o f the galanin receptor antagonist, galanin(l-13)-Pro-Pro-Ala-Leu-Ala-Leu- 

Ala amide (M40), enhanced the ability o f the systemically applied muscarinic Mi 

agonist, 3-(3-S-n-pentyl-l,2,5-thiadiazol-4-yl)-l,2,5, 6-tetrahydro-l-methylpyridine 

(TZTP), to ameliorate deficits in a delayed non-matching to position performance task 

(DNMTP) task, whereas M40 alone had no affect on learning (McDonald et al., 1998).
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Finally galanin also acts as an anticonvulsant as galanin overexpressing mice were less 

susceptible, whereas galanin knock-out mice were more susceptible to seizures induced 

by perforant path stimulation relative to wild-type mice (Mazarati et al., 2000). The 

anticonvulsant effect o f galanin is associated with the inhibitory effect o f galanin on 

hippocampal glutamate release (Mazarati et al., 2000; Zini et al., 1993a; Zini et al., 

1993b).
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1.5 Objectives

Deterioration o f  the cholinergic system is believed to contribute to the cognitive deficits 

associated with AD and also possibly healthy aging. AChE inhibitors increase the 

extracellular concentration o f endogenous ACh and are associated with improved 

cognitive fianction in AD. However, AChE inhibitors would be expected to partly 

negate their enhancement o f  the cholinergic system since the increase in ACh will 

inhibit its own release through the activation o f presynaptic inhibitory M2/M4  mACh 

receptors. Agents which antagonise M2/M4 mACh receptors increase ACh release and 

have also been found to enhance cognition and ameliorate cognitive deficits associated 

with ageing in animal models. Therefore, it has been suggested that M2/M4 mACh 

receptor antagonists may be o f  potential therapeutic benefit in the treatment o f  AD. 

Previous experiments in this laboratory found that M2 mACh receptor antagonists, AF- 

DX116 and methoctramine, injected i.c.v., induced a fast onset and long-term 

enhancement in synaptic transmission (Li, 2002). The purpose o f  the present series o f  

experiments was to further investigate the mechanism underlying this LTE o f synaptic 

transmission.

The main objectives o f this thesis were as follows:

(1) To compare the effect o f  different M2 mACh receptor antagonists on synaptic 

transmission in the CAl region o f the hippocampus.

(2) To investigate the role o f  nACh receptor activation in methoctramine LTE.

(3) To investigate the NMD A receptor and group I mGlu receptor dependence o f  

methoctramine LTE.

(4) To evaluate the role o f  different kinases in the induction, maintenance and 

expression o f  methoctramine LTE.

(5) To determine the galanin receptor dependence o f  methoctramine LTE

(6 ) To assess the ability o f  Ap to inhibit methoctramine LTE.

It is hoped that this work will contribute to the understanding o f  how the cholinergic 

system modulates hippocampal function and thus lead to improved pharmacological 

treatments for central nervous system disorders.
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II. Materials and Methods



2.1 Animals

All animals used in this study were male Wistar rats (in-bred strain). Bioresources 

Unit, Trinity College Dublin) weighing between 250-360g, which corresponds to an 

age o f two to four months. The rats were housed two per cage in a Scantainer 

(Denmark) and maintained between 19-24 °C under a twelve hour light /dark cycle 

with free access to food (standard rodent chow) and water at all times.

2.2 Anaesthesia

Animals were weighed before each experiment to determine the dose of anaesthetic 

required. Anaesthesia was induced using urethane (ethyl carbamate; 1.5 mg/kg i.p.). 

Fifteen minutes after the first dose the animal was tested for depth of anaesthesia by 

pinching the animal’s paw to determine if there was any muscle reflex. If there was 

a response to this stimulus a supplemental dose o f urethane was delivered. The 

animal remained immobilised and anaesthetised for at least 4-6 hrs.

2.3 Surgery

The hair over the scalp was removed with a scissors and 2ml o f lidocaine 

hydrochloride with adrenalin (Norocaine) was injected subcutaneously over the skull. 

A scalpel was used to make a midline incision from between the ears to between the 

eyes. The periosteum was removed by scraping with a scalpel and any excess tissue 

was cut away. The skull was dried with tissue paper and the skull plates were 

revealed.

2.4 Electrode implantation

A monopolar recording electrode and a bipolar stimulating electrode was used for 

each experiment. The electrodes were made in the laboratory by taking two lengths 

of Teflon coated tungsten wire (625)om tungsten diameter, 750 jxm total external 

diameter. Advent Research Materials, Ltd.) and the teflon at one of the ends was
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removed using a scalpel. Each of the two wires were soldered to an individual pin o f 

a two pin connector and then twisted together using a forceps. The wires were then 

glued together using cyanoacrylate to make them stronger and they were sealed into 

place at the point where the wires join the socket with dental (acrylic) cement to 

ensure a stable connection. The ends of the wires were cut at an angle to expose the 

tips so that one was marginally below the other. The reference and ground electrodes 

were made from small stainless steel screws (Plastics 1 Inc, Bilaney, Germany) to 

which single pins were soldered.

The intersection o f bregma with the midline was used as the zero reference point in 

order to mark out with a compass and waterproof pen the coordinates for the sites of 

insertion o f reference and earth screws and the recording and stimulating electrodes. 

The recording electrode was positioned 3.4mm posterior to bregma and 2.5mm 

lateral (right) to the midline. The stimulating electrode was positioned 4.2mm 

posterior to bregma and 3.8mm lateral (right) to the midline. The reference and 

ground electrodes were positioned on the opposite hemisphere (left) to that used for 

electrode implantation. The ground electrode was positioned 7mm posterior to 

bregma and 5 mm lateral to the midline (left). The reference electrode was located 

8mm anterior to bregma and 1 mm lateral (left) to the midline. Coordinates for the 

electrode positions were obtained by referring to the rat brain atlas of Paxinos and 

Watson (1998).

Burr holes were drilled over the electrode implantation sites using drill bits of 1.5mm 

and 1mm. Care was taken not to disturb the dura matter or cortical hemispheres 

whilst drilling. The two modified screws designed to act as reference and ground 

electrodes (as described above) were put in place and secured using a small amount 

of glue and powder cement. The rat was then placed onto a heating blanket (Harvard 

Apparatus Homeothermic Blanket Control Unit), which was used to monitor and 

maintain the rat’s temperature between 36.5-37.5 °C throughout the experiment. The 

rat was placed on the heating blanket for approximately lOmin before being placed in 

the stereotaxic recording apparatus (KOPF Instruments, USA). The dura matter in 

the electrode holes were pierced using a sharp sterile syringe needle. The holes were 

kept moist using saline applied by syringe and needle. The recording and stimulating 

electrodes were lowered into the CAl region o f the dorsal hippocampus until the
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desired response was found (as outlined in 2.7). A drop of superglue was applied 

around the electrodes and the entire assembly was secured using dental cement.

2.5 Intra-cerebroventricular (i.c.v.) cannula implantation and 

injections

Cannulae were used to deliver drugs to the brain via the lateral cerebral ventricle. 

The optimal location for the injection into the lateral cerebral ventricle was 0.5mm 

posterior, 1mm lateral and ventral 4mm from the outer surface o f  the skull. These 

coordinates were obtained by referring to the rat brain atlas of Paxinos and Watson 

(1998) and were determined to be effective by this research group. The external 

cannulae were constructed using a stainless steel hypodermic needle (22 gauge, 

0.7mm outer diameter) which was cut to 12mm in length. The bevelled end o f the 

needle was ground to a length o f 1.5 mm to reduce the angle o f the exposed tip. An 

internal plug (stylet) was made from 28 gauge (0.36 diameter) stainless steel wire 

that was kept in the cannula when it was not in use and served to prevent blockages. 

The internal plug (stylet) protruded by 1 mm below the end of the external cannula.

The cannula was implanted above the right lateral ventricle and sealed into place 

with glue and dental cement 30 minutes before the electrodes were implanted. For 

intra-cerebroventricular injections the stylet was removed and the drug/vehicle was 

delivered via a 10 1̂ Hamilton syringe to which an internal cannula (28 gauge, 

0.36mm outer diameter) was attached. The internal cannula was designed so that it 

protruded by 1mm below the end of the extemal cannula. The drugs/vehicles were 

delivered in a 5 îl volume (except for experiments with the ZIP where 7 ^1 was 

injected). The drug/vehicle was injected over a 3-4 min period and stimulation was 

stopped immediately before the start of infusion and resumed immediately after the 

delivery of the drug/vehicle. The internal cannula was left in place for 5 minutes 

after the drug/vehicle was injected to allow for diffusion and to avoid reflux. Then 

the internal cannula was removed carefully over a 5 minute period. Verification of 

the location of the cannula was carried out post-mortem by the spread o f dye (Indian 

ink) after it was injected i.c.v.

39



2.6 Recording apparatus

The electrophysiological recording apparatus was surrounded by a Faraday cage to 

isolate the signal from environmental electrical interference. The Faraday cage and 

the electrical electrophysiological equipment were grounded to a central point to 

eliminate electrical interferaice. The electrophysiological equipment consisted of a 

constant current isolation unit (Grass Instrument Co. photoelectric stimulus isolation 

unit) linked to the stimulating output of the recording unit. The evoked response was 

transmitted via a pre-anplifier (gain 11) to an analogue-to-digital converter (MacLab 

2e, Analog Digital Instruments) operated by scope Program versions 3.6 using an 

Apple Machintosh Power PC 8200/120.

2.7 Location of recording and stimulating electrodes during surgery

The locations of the recording and stimulating electrode are outlined using a 

schematic diagram of a coronal section of the rat hippocampus (see Fig. 2-2).

The rat was placed in the stereotaxic apparatus and the electrodes were brought to the 

surface of the dura This position signified the zero reference point. The depths o f 

the electrodes moving through the cortical and hippocampal layers to the daidrites o f 

the stratum radiatum were monitored as they were lowered through the tissue. 

Responses (evoked using 0.2 ms duration, 3mA pulse at a frequency o f 0. IHz) were 

displayed on the computer screen as the electrodes were lowered into place in the 

CAl area. Both the cerebral cortex and hippocampal formation possess laminar 

structures. When a local depolarisation such as an excitatory postsynaptic potential 

(EPSP) was created, an electron sink was set up along a vertical superficial axis. A 

phase reversal was encountered when this dipole was crossed; indicating that this 

was the area generating electromotive forces and the response recorded was not from 

a distal site by voltage conduction. From this method it was possible to determine 

which layer the electrodes were in by referring to the electrophysiological criteria 

determined for each region o f the hippocampus as described previously (Leung, 

1980). The monopolar recording electrode was placed on the surface o f the dura and
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the bipolar stimulating electrode was lowered to a depth of 2 mm. The stimulating 

electrode was then lowered in increments of 200^m to a depth o f approximately 

2.5mm. The first potential recorded was a small negative response of approximately 

10ms duration, which was generated when the stimulating electrode penetrated the 

alveus. The stimulating electrode was lowered approximately another 200 |im and a 

larger negative response was seen as the stimulating electrode penetrated the stratum 

oriens (see Fig. 2-la). As the stimulating electrode approached the cell body layer 

the amplitude o f the evoked response became smaller and reversed when the 

stimulating electrode passed through the cell body layer into the dendritic layer of the 

stratum radiatum (see Fig. 2-lb-c).

The monopolar recording electrode w'as lowered 2mm from the dura and the positive 

response increased in amplitude (see Fig. 2-Id). The recording electrode was lowered 

500 |xm and the response became smaller as the recording electrode penetrated the 

cell body layer (see Fig. 2-le). The recording electrode was lowered 200 |xm and 

stimulation was stopped for 5 minutes so as not to over stimulate the brain. Once 

stimulation was resumed the response was a negative EPSP (see Fig. 2-1 f). The 

EPSP was recorded (and was evoked by a 0.2 ms duration, 2.3mA pulse at a 

frequency of 0.033 Hz) for 10 minutes. The stimulation electrode was adjusted in 

increments of 20|xm to maximise the response and thai the recording electrode was 

adjusted in increments o f 20|j.m to further maximise the response. Typically the 

latency o f  the EPSP was less than 15ms and the maximal amplitude was greater than 

2mV.

On average the depth of the stimulating electrode was approximately 2.9mm from 

the dura, whereas the average depth of the recording electrode was approximately 

2.7mm from the dura
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Fig. 2-1. Schematic diagram of a coronal section of the rat hippocampus showing 

the sites of the recording and stimulating electrodes and a representative trace.
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Fig. 2-2. Representative EPSP traces from a single experiment during which the 

electrodes were lowered into place. Monitoring of the characteristic shape indicated 

the position of the electrode in the CAl area of the dorsal hippocampus in the 

urethane anaesthetised rat. (a) Potential recorded when recording electrode was at the 

dura and the stimulating electrode was in the stratum oriens. (b) Potential recorded 

when recording electrode was at the dura and the stimulating electrode was in 

pyramidal cell body layer, (c) Reversal of potential when the recording electrode 

was at the dura and the stimulating electrode was in the stratum radiatum. (d) The 

positive potential increased in amplitude when the recording electrode was lowered 

2mm below the dura (e) The positive potential decreased as the recording electrode 

entered the cell body layer, (f) The electrodes were adjusted until the EPSP was 

optimal. Horizontal bar Sms; vertical bar, l.OmV.
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2.8 Input/Output curves (I/O)

The animal was allowed to recover for a period o f one hour post electrode 

implantation and then an I/O curve was determined. This involved stimulation with 

a 0.2 ms duration, 1.4-4.5mA pulse at a frequency of 0.033 Hz. The stimulation was 

applied twice at each intensity using a range of intensities at 0.3mA intervals.

2.9 EPSP Recordings

The population field EPSP was used as a measure o f synqjtic transmission in the 

stratum radiatum of the CAl region by stimulating the Schaffer collaterals 

/commissural fibers. Test EPSPs were evoked by a single square wave pulse o f 

current at low frequency (0.033 Hz, 0.2ms duration) generated by a constant current 

isolation unit. The test stimulus intensity was set to evoke responses of 55-60% of 

maximum EPSP amplitude (typically 2.2-2.8mA). Baseline synaptic transmission 

was recorded for at least one hour prior to pharmacological intervention.

2.10 Drug Treatment

Peptides were dissolved in milli-Q water. All other drugs were dissolved in distilled 

water except for LY367385 and BIBN-99, which were dissolved in saline. Drugs 

were administered via either the intra-peritoneai (i.p.) or intra-cerebroventricle (i.c.v.) 

routes.

2.11 Data Analysis

EPSP amplitude was taken as a measure of excitatory synaptic transmission. For the 

purpose o f graphical presentation data was expressed in epochs o f 5 min and S.E.M. 

was calculated using Microsoft Excel 6.0. A stable baseline was recorded for 60 min 

prior to pharmacological intervention. The effect o f pharmacological intervention on 

synaptic transmission was expressed as a percentage o f the average EPSP amplitude 

of the proceeding 60 min (baseline). For the purpose of statistical analysis data was
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expressed in epochs o f 10 min. Statistical comparison were made between average 

baseline EPSP ampiltude 10 min prior to drug treatment compared to 10, 60 and 120 

min after drug treatment (unless otherwise stated) and means were expressed with 

S.E M. Statistical significance o f the difference between the means was estimated 

using two tailed paired and unpaired Student’s t-test. Statistical significance was 

taken at the 95% level (P-values< 0.05). P-values referred to in the graph legend are 

the result of the conparison of the drug treated group with the vehicle treated group 

at 120 min after drug/vehicle unless otherwdse stated (unpaired t-test). The data were 

analysed using JMP IN 3.2.1 statistical software on a Mac OS X (version 10.3.9).
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2.12 Drugs

D-AP5 

Amyloid P 

BIBN-99

BIM

Dental acrylic liquid 

and powder

Galanin (rat)

Gallamine

M35

Indian ink

D-(-)-2-Amino-5-phosphonopentanoic acid (Tocris)^

Synthetic human amyloid P (1-42) (Bachem)^

(5,1 l-dihydro-8-chloro-l l-[[4-[3-[(2,2-dimethyl-l- 

oxopenty l)ethy lamino] propyl] -1 -piperidiny 1] acetyl ] -6H- 

pyrido[2,3-b][l,4]benzodiazepin-6-one) (gift from Boeringer 

Ingelheim, Germany)

Bisindolylmaleimide I hydrochloride (Calbiochem, CN 

Biosciencecs (UK) Ltd., Boulevard Industrial Park, Beeston, 

Nottingham, NG9 2JR UK, cnbiosciences.co.uk)

Associated Dental Products Ltd., Purton, Swindon, Wiltshire, 

SN5 9HT, UK

H-Gly-Trp-Thr-Leu-Asn-Ser-Ala-Gly-Tyr-Leu-Leu-Gly-Pro- 

His-Ala-Ile-Asp-Asn-His-Arg-Ser-Phe-Ser-Asp-Lys-His-Gly- 

Leu-Thr-NH2 (Bachem)^

N- [2- [2,3-bis(2-diethylaminoethoxy)phenoxy] ethyl] -N-ethyl- 

ethanamine (Sigma)^

Galanin (1-13)-Bradykinin (2-9) amide (Bachem)^

Geoge T. Gurr Ltd., London, SW6, UK
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LY367385 (S)-(+)-a-Amino-4-carboxy-2-methylbenzeneacetic acid 

(Tocris)'

Mecamylamine N,2,3,3-Tetramethylbicyclo(2.2. l)heptan-2-amine 

Hydrochloride (Sigma)^

Memantine 3,5-Dimethyl-1-adamantanamine hydrochloride (Sigma)

Methoctramine N,N’-bis[6-[[(2Methoxphenyl)methyl]amino]hexyl]-l,8-

Methyllcaconitine

Citrate

octane diamine tetrahydrochloride (RBI)

[ 1 a,4(S),6p, 14a, 16p]-20-Ethy 1-1,6, 14,16-tetramethoxy-4-[ [ [2- 

(3-methyl-2,5-dioxo-l-pyrrolidinyl)benzoyl]oxy]methyI]- 

aconitane-7,8-diol citrate (Sigma)^

(-)-Nicotine (-)-Nicotine (+)-bitartrate salt (Sigma)

Lidocaine hydrochloride

with adrenaline Norocaine (Norbrook Labratories Ltd., Newry BT35 6JP, 

Northern Ireland)

ZIP Myr-Ser-Ile-Tyr-Arg-Arg-Gly-Ala-Arg-Arg-Trp-Arg-Lys- 

Leu-OH (Biosource International, Inc., 542 Flynn Road, 

Camarillo, CA 93012, USA).

Rp-cAMPS Rp-Cyclic 3’,5’- hydrogen phosphorothioate adenosine 

triethylammonium salt (RBI)"*

Saline Sodium chloride injection (Baxter Healthcare Ltd., Thetford, 

Norfolk, England)
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Urethane Ethyl carbamate (Sigma)^

Notes

‘Tocris Cookson Ltd., Northpoint Fourth Way, Avonmouth, Bristol, BSl 1 8TA UK

vvwAv.tocris.comy

^Bachem, Bubendorf, Switzerland (httpiZ/wwyv. bachem. co i t v 

^Sigma, 3050 Spruce Street, Saint Louis, Missouri 63103 USA, 

(w'ww.sigma-aldrich.com')

‘‘RBI-Research Biochemicals International, One Strathmore Road, Natick, MA 

01760-2447 USA, (vvww.Sigma-aldrich.com)
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III. Results



3.1 The effect of M2 mACh receptor antagonists on synaptic 
transmission

3.1.1 The effect of the methoctramine on synaptic transmission

Previous studies found that methoctramine preferentially binds to the M2 mACh receptor 

(Caulfield, 1993; Doods et al., 1993c; D oije et al., 1991; Waelbroeck et al., 1990). The 

dose o f  methoctramine used in the present study was based on a previous study where 

methoctramine (17nm ol/2.5^L) injected i.c.v. was found to induce a long-term  

enhancement o f  synaptic transmission (Li, 2002). Methoctramine (34nm ol/5nl) injected 

i.c.v. induced a rapid (<8 min onset) and long-term enhancement (LTE) (>2hrs) o f  

synaptic transmission (128.5±3.4%  and 128.6±3.3%  o f  baseline at 10 and 120 min after 

methoctramine, respectively; P<0.05 at 10 and 120 min after methoctramine compared 

to pre-methoctramine baseline, paired t-test, n=5) (Fig.3-1). The methoctramine- 

induced LTE was significantly different fi'om the vehicle treated group (n=5, ?<0.05 at 

10 and 120 min after injection, unpaired t-test). The baseline o f  the vehicle treated 

control group did not change significantly during the recording period (100.6±2.3%  and 

99.4±4%  at 10 and 120 min after vehicle injection, respectively; P>0.05 at 10 and 120 

min after vehicle compared to pre-injection baseline, paired t-test, n=5).
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3.1.2 The effect of gallamine on synaptic transmission

Gallamine is commonly referred to as a mixed muscarinic and nicotinic ACh receptor 

antagonist, however there is evidence that it preferentially binds to M 2 muscarinic 

receptors (Burke, 1986; Price et al., 1986). The doses used in the present study were 

estimated from a previous study, which observed the behavioural effects o f  gallamine 

applied intrahippocampally (H oss et al., 1990). Gallamine (25nm ol) injected i.c.v. 

induced a long-term enhancement o f  synaptic transmission, although the enhancement 

was not significant in the first 10 min (98 .6±1.2% and 112.2±2.6 % o f  baseline at 10 and 

120 min after gallamine, respectively; P>0.05 and P<0.05 at 10 and 120 min after 

gallamine compared to pre-gallamine baseline, respectively, paired t-test, n=4) (Fig.3-2). 

The gallamine-induced LTE was significantly different fi'om the vehicle treated group at 

120 but not 10 min after gallamine (P>0.05 and P<0.05 at 10 and 120 min after 

gallamine compared to the vehicle control group, respectively, unpaired t-test, n=4). 

The baseline o f  the vehicle injected control group did not change significantly 

throughout the recording period (100.6±2.3%  and 99.4±4%  o f  baseline at 10 and 120 

min after vehicle, respectively; P>0.05 at 10 and 120 min after vehicle compared to pre­

vehicle baseline, paired t-test, n=5). Higher doses o f  gallamine (42-56nm ol) injected 

i.c.v. also induced a long-term enhancement o f  synaptic transmission, although the 

enhancement was not significant in the first 10 min (96.3±5.7%  and 125.3±8.5%  o f  

baseline at 10 and 120 min after gallamine, respectively; P>0.05 and P< 0.05 at 10 and 

120 min after gallamine compared to pre-gallamine baseline, respectively, paired t-test, 

n=5) (Fig.3-2). The gallamine-induced LTE was significantly different from the vehicle 

treated group at 120 but not 10 min after gallamine (P>0.05 and P<0.05 at 10 and 120 

min after gallamine compared to the vehicle control group, respectively, unpaired t-test, 

n=5). One animal that received gallamine (56nm ol) exhibited behavioural evidence o f  

mild seizure type activity (shivers, jerking and bulging eye movements) towards the end 

o f  the recording period; however this activity did not affect the EPSP amplitude. The 

slightly lower dose o f  42nmol did not cause these effects.
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3.1.3 The effect BlBN-99 on synaptic transmission

BIBN -99 was previously characterised as a lipophilic and high affinity competitive 

antagonist selective for the M2 mACh receptor subtype (Doods et al., 1993a; Doods et 

al., 1993b). The effect o f  BEBN-99 injected i.c.v. on synaptic transmission has not 

previously been reported. In the present study the effect o f  a range o f  doses on synaptic 

transmission was investigated. BIBN-99 (22nmol or 44nmol) injected i.c.v. did not 

significantly change synaptic transmission (101.4±4.1%  and 98 .6±7 .7% o f  baseline at 10 

and 120 min after BIBN-99 injection, respectively; P>0.05 at 10 and 120 min after 

BIBN-99 compared to pre-BIBN-99 baseline, paired t-test, n=5) (Fig.3-3). The EPSP 

amplitude o f  the BIBN-99 injected group was not significantly different from the vehicle 

pre-treated group (P>0.05 at 10 and 120 min after injection compared to the vehicle pre­

treated control group, respectively, unpaired t-test, n=5). The baseline o f  the vehicle  

treated control group did not change significantly throughout the recording period 

(101.6±3.9%  and 103.8±2.8%  o f  baseline at 10 and 120 min after vehicle, respectively; 

P>0.05 at 10 and 120 min after vehicle compared to pre-vehicle baseline, paired t-test, 

n=5). In a pilot study, a higher dose o f  BIBN-99 (66nmol) injected i.c.v. transiently 

depressed baseline (20%) for approximately 1 hour followed by a return to pre-injection 

baseline (n= l).
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Fig. 3-1. Methoctramine, an antagonist o f  M2 mACh receptors, induced a rapid and 

long-term enhancement o f  synaptic transmission in the CAl region o f  the hippocampus 

in vivo. Methoctramine (meth., 34nmol) injected i.c.v. significantly enhanced the EPSP 

amplitude for at least 2hrs, (n=5; o), P<0.05 compared to pre-methoctramine baseline or 

vehicle i.c.v. (n=5; •). All animals received a vehicle (water) injection (#) 30 min 

before vehicle/methoctramine injection (*). Insets show traces o f  the field EPSPs 

recorded at times indicated. Horizontal bar, Sms; vertical bar, l .OmV.
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Fig. 3-2. Gallamine, an antagonist of M2 mACh receptors, induced a slow-onset long­

term enhancement of synaptic transmission in the CAl region of the hippocampus in 

vivo. Gallamine (gall., 25nmol) injected i.c.v. induced a slow-onset significant 

enhancement of the EPSP amplitude, (n=4; o), P<0.05 compared to pre-gallamine 

baseline and vehicle i.c.v. (n=5; •). Gallamine (42-56nmol) injected i.c.v. induced a 

slow-onset significant enhancement of the EPSP amplitude, (n=5; T), P<0.05 compared 

to pre-gallamine baseline or vehicle i.c.v. (n=5; •). All animals received a vehicle 

(water) injection (#) 30 min before vehicle/gallamine injection (*). Insets show traces of 

the field EPSPs recorded at times indicated. Horizontal bar. Sms; vertical bar, l .OmV.
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Fig. 3-3. BIBN-99, an antagonist o f  M2 mACh receptors, failed to significantly alter 

synaptic transmission in the CAl region o f  the hippocampus in vivo. BIBN-99 (22- 

44nmol) injected i.c.v. failed to significantly alter EPSP amplitude during the 2 hr 

recording period, (n=5; o), P>0.05 compared to pre-BIBN-99 baseline or saline i.c.v. 

(n=5; • ) .  All animals received a vehicle (saline) injection (#) 30 min before 

saline/BIBN-99 injection (*). Insets show traces o f  the field EPSPs recorded at times 

indicated. Horizontal bar. Sms; vertical bar, l.OmV.
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3.2 The effect of nicotinic receptor agents on methoctramine LTE

3.2.1 The effect of mecamylamine (MEC)

Methoctramine has been reported to increase ACh release in the hippocampus in vivo 

(Stillman et al., 1993) and therefore the action o f ACh at nicotinic ACh receptors may be 

necessary for the induction o f LTE by methoctramine. Mecamylamine blocks most 

neuronal nACh receptors in the low micromolar range (Wonnacott et al., 1991), however 

mecamylamine is believed to be somewhat less potent at blocking a7nACh compared to 

a/p heteromers (Chavez-Noriega et al., 1997). The dose of mecamylamine used in the 

present study was based on the dose used in a previous study which prevented 

discernable activation o f hippocampal nACh receptors (Tani et al., 1998). 

Mecamylamine (3mg/kg, i.p.) injected 30 min before methoctramine had no discernible 

effect on baseline (see table 3.2). Methoctramine subsequently induced a significant 

LTE although the enhancement in the first 10 min was not statistically significant 

(122.3±8.8% and 134.6±8.6% of baseline at 10 and 120 min after methoctramine, 

respectively; P=0.06 and P< 0.05 at 10 and 120 min after methoctramine compared to 

pre-methoctramine baseline, respectively, paired t-test, n=5) (Fig.3-4). The 

methoctramine-induced LTE in animals pre-treated with mecamylamine was not 

significantly different fi'om the LTE in the vehicle pre-treated control group (P>0.05 at 

10 and 120 min after methoctramine compared to the vehicle pre-treated methoctramine 

group, unpaired t-test, n=5). The LTE of the vehicle pre-treated methoctramine control 

group was significant (120.6±3 .4% and 124.5±1.6% o f baseline at 10 and 120 min after 

methoctramine, respectively; P<0.05 at 10 and 120 min after methoctramine compared 

to pre-methoctramine baseline, paired t-test, n=5).
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3.2.2 The effect of methyllycaconitine (MLA)

As mecamylamine is believed to be somewhat less potent at blocking a7nACh compared 

to a/p heteromers (Chavez-Noriega et al., 1997) it was decided to investigate the effect 

o f applying the a l nACh receptor antagonist methyllycaconitine. Methyllycaconitine 

was previously characterised as a selective a7 nACh receptor antagonist (Macallan et al., 

1988). The dose of methyllycaconitine used in the present study was based on the dose 

of methyllycaconitine reported to impair spatial memory (Felix and Levin, 1997). The 

0.1 nicotinic ACh receptor antagonist, methyllycaconitine (SOnmol or 65nmol), was 

injected i.c.v. 30 min before methoctramine and had no discernible effect on baseline 

transmission (see table 3.2). Methoctramine subsequently induced a significant LTE, 

although the enhancement in the first 10 min was not statistically significant 

(107.7±3.1% and 115±3.6% of baseline at 10 and 120 min after methoctramine, 

respectively; P>0.05 and P<0.05 at 10 and 120 min after methoctramine compared to 

pre-methoctramine baseline, respectively, paired t-test, n=5) (Fig.3-5). The

methoctramine-induced LTE in animals pre-treated with methyllycaconitine was 

significantly reduced compared to LTE in the vehicle pre-treated control group during 

the initial 10 min but not thereafter (P<0.05 and P>0.05 at 10 and 120 min after 

methoctramine compared to LTE of the vehicle pre-treated control group, respectively, 

unpaired t-test, n=5). The methoctramine LTE of the vehicle pre-treated methoctramine 

control group was significant (123 .5±1.4% and 118±1.8% of baseline at 10 and 120 min 

after methoctramine, respectively; P<0.05 at 10 and 120 min after methoctramine 

compared with pre-methoctramine baseline, paired t-test, n=5).
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In view o f the significant delay in the onset o f the methoctramine LTE in the presence o f 

methyl lycaconitine it was decided to evaluate the effect o f a combination of 

methyllycaconitine and mecamylamine. The injection o f mecamylamine (3mg/kg, i.p.) 

and methyllycaconitine (65nmol, i.c.v.) at 30 and 25 min before methoctramine, 

respectively had no discernible effect on baseline transmission (see table 3.2). 

Methoctramine subsequently induced a significant LTE, although the enhancement in 

the first 10 min was not statistically significant (109.8±3.8% and 116.3±4.8% of 

baseline at 10 and 120 min after methoctramine, respectively; P>0.05 at 10 min and 

P<0.05 at 120 min compared to pre-methoctramine baseline, paired t-test, n=5) (Fig.3-6). 

Although the onset of methoctramine-induced LTE in animals pre-treated with both 

methyllycaconitine and mecamylamine was initially delayed, this reduction was not 

significant compared to the methoctramine LTE in the vehicle pre-treated control group 

(P>0.05 at 10 and 120 min after methoctramine compared to vehicle pre-treated control 

group, unpaired t-test, n=5). Methoctramine LTE of the vehicle pre-treated 

methoctramine group was significant (120.6±3.4% and 124.5±1.6% of baseline at 10 

and 120 min after methoctramine, respectively; ?<0.05 at 10 and 120 min after 

methoctramine compared to pre-methoctramine baseline, paired t test, n=5).

3.2.3 The effect of nicotine

The dose of nicotine employed in the present study was based on a previous in vivo 

study, which found that nicotine (3mg/kg, i.p.) caused a long- term enhancement of 

synaptic transmission in the mouse dentate gyrus (Matsuyama et al., 2000). The 

baseline of the nicotine pre-treated plus vehicle group did not significantly change 

(96.2±2%, 94.7±3.4% at 10 and 120 min after nicotine injection, respectively; ?>0.05 at 

10 and 120 min after injection compared to pre-vehicle baseline, paired t-test, n=4). 

Nicotine (3mg/kg, i.p.) injected 30 min before methoctramine had no discernible effect 

on baseline transmission (see table 3.2). Methoctramine subsequently induced a 

significant LTE (131.5±4.5% and 137.1±4% of baseline at 10 and 120 min after
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methoctramine, respectively; P<0.05 at 10 and 120 min after methoctramine compared 

to pre-methoctramine baseline, paired t-test, n=5) (Fig.3-7). Nicotine pre-treatment 

tended to increase methoctramine LTE compared to the methoctramine LTE of the 

vehicle pre-treated control group, however, the methoctramine LTE was not 

significantly different between these groups (P>0.05 at 10 and 120 min after 

methoctramine compared to the LTE of vehicle pre-treated control, unpaired t-test, n=5). 

Methoctramine-induced LTE of the vehicle pre-treated control group was significant 

(126.8±4.7% and 126.8±3.5% of baseline at 10 and 120 min after methoctramine for the 

vehicle pre-treated methoctramine control group, n=5). The methoctramine LTE of the 

vehicle control group was statistically significant (P<0.05 at 10 and 120 min after 

methoctramine compared to pre-methoctramine baseline, respectively, paired t-test, n=5). 

In pilot experiments higher doses of nicotine were also injected systemically, however 

they were found to cause a transient decrease in synaptic transmission.
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Fig. 3-4. Mecamylamine, a broad spectrum nicotinic receptor antagonist, did not 

significantly affect LTE. Mecamylamine (MEC, 3mg/kg, i.p.) had no significant effect 

on methoctramine LTE, (n=5; o), P>0.05 compared to the vehicle injected control (n=5; 

•). Mecamylamine/vehicle (#) was injected 30 min before methoctramine (*). Insets 

show traces of the field EPSPs recorded at times indicated. Horizontal bar. Sms; vertical 

bar, l.OmV.
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Fig. 3-5. Methyllycaconitine, an inhibitior of a7 nicotinic receptors, delayed the onset 

but did not block LTE. Methyllycaconitine (MLA, 50-65nmol) injected i.c.v. 

significantly reduced the initial enhancement of the EPSP amplitude induced by 

methoctramine, (n=5; o), P<0.05 at 10 min and P>0.05 at 120 min compared to the 

vehicle injected control group (#) (n=5; •). Methyllycaconitine/vehicle (#) was injected 

30 min before methoctramine (*). Insets show traces of the field EPSPs recorded at 

times indicated. Horizontal bar, Sms; vertical bar, 1 OmV.
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Fig. 3-6. The combination of mecamylamine and methyllycaconitine tended to delay 

the onset of LTE but failed to significantly affect LTE. Mecamylamine (3mg/kg, i.p.) 

and methyllycaconitine (65nmol) i.c.v. did not significantly affect methoctramine- 

induced LTE, (n=5; o), P>0.05 compared to vehicle injected control (#) (n=5; •). 

Mecamylamine/vehicle (#) and methyllycaconitine/vehicle (^) were injected 30 min and 

25 min before methoctramine (*), respectively. Insets show traces of the field EPSPs 

recorded at times indicated. Horizontal bar, Sms; vertical bar, 1 .OmV.
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Fig. 3-7. Nicotine, applied systemically, failed to significantly affect LTE.

Nicotine (nico., 3mg, i.p.) did not significantly affect methoctramine-induced LTE, (n=5; 

T), P>0.05 compared to the vehicle injected control (n=5; •). Nicotine (3mg, i.p.) 

followed 30 min later by a vehicle injection (i.c.v.) failed to significantly affect the 

amplitude of the EPSPs, (n=5; o), P>0.05 compared to pre-nicotine baseline. 

Nicotine/vehicle (#) was injected 30 min before vehicle/methoctramine (*). Insets show 

traces of the field EPSPs recorded at times indicated. Horizontal bar. Sms; vertical bar, 

l.OmV.
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3.3 The effect of glutamate receptor antagonists on methoctramine 
LTE

3.3.1 The effect of the competitive NMDA receptor antagonist, d-AP5

Previous studies found that the competitive NMDA receptor antagonist d-AP5 (0.1 iimol) 

injected i.c.v. blocked HFS induced LTP in the CAl region o f the urethane anaesthetised 

rat (I. Klyubin, TCD, personal communication), and also in freely behaving rats (Leung 

and Shen, 1999). D-AP5 (0. l|imol) was injected i.c.v. 15 min before methoctramine 

and had no discernible effect on baseline (see table 3.2). Methoctramine subsequently 

induced a significant LTE ahhough the enhancement in the first 10 min was not 

statistically significant (114±7.2% and 121.5±6.7% of baseline at 10 and 120 min after 

methoctramine compared to pre-methoctramine baseline, respectively; P>0.05 and 

P<0.05 at 10 and 120 min after methoctramine compared to pre-methoctramine baseline, 

respectively, paired t-test, n=5) (Fig.3-8). The methoctramine-induced LTE in animals 

pre-treated with d-AP5 was not significantly different from the methoctramine LTE in 

the vehicle pre-treated control group (P>0.05 at 10 and 120 min after methoctramine 

compared to the vehicle pre-treated methoctramine control group, respectively, n=5, 

unpaired t-test). The methoctramine-induced LTE in the vehicle pre-treated 

methoctramine group was significant (120.2±2.2% and 117.1±L8% of baseline at 10 

and 120 min after methoctramine, respectively; P<0.05 at 10 and 120 min after 

methoctramine compared to pre-methoctramine baseline, paired t-test, n=5).
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3.3.2 The effect of the non-competitive NMDA receptor antagonist, 
memantine

The non-competitive NMDA receptor antagonist, memantine (20mg/kg, i.p ), was 

previously found to block LTP induced by HFS in the CAl region of the urethane 

anaesthetised rat (I. Klyubin, TCD, personal communication). Memantine (20mg/kg, 

i.p.) was injected 30 min before methoctramine and had no discernible effect on baseline 

(see table 3.2). Methoctramine subsequently induced a significant LTE (111.8±3.7% 

and 108.9±1.1% of baseline at 10 and 120 min after methoctramine, respectively; 

P<0.05 at 10 and 120 min after methoctramine compared to pre-methoctramine baseline, 

paired t-test, n=5) (Fig.3-9). The methoctramine-induced LTE in animals pre-treated 

with memantine was not significantly different fi'om the LTE in the vehicle pre-treated 

control group (?>0.05 at 10 and 120 min after methoctramine compared to vehicle plus 

methoctramine group, unpaired t-test, n=5). The methoctramine LTE of the vehicle pre­

treated methoctramine control group was significant (115.1±3.8% and 114.2±5.5% of 

baseline at 10 and 120 min after methoctramine, respectively; P<0.05 at 10 and 120 min 

after methoctramine compared to pre-methoctramine baseline, paired t-test, n=5).
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3.3.3 The effect of the group I metabotropic glutamate receptor 
antagonist, LY367385

The dose o f the group I metabotropic glutamate receptor antagonist, LY367385, used in 

the present study was based on the dose of LY367385 (8-32nmol, i.c.v.) found to inhibit 

LTP in the dentate gyrus in a previous in vivo study (Naie and Manahan-Vaughan, 

2005). LY367385 (29nmol) was injected i.c.v. 30 min before methoctramine and had no 

discernible effect on baseHne (see table 3.2). Methoctramine subsequently induced a 

significant LTE (132.6±4.2% and 124.5±4.6% of baseline at 10 and 120 min after 

methoctramine, respectively; P<0.05 at 10 and 120 min after methoctramine compared 

to pre-methoctramine baseline, paired t-test, n=5) (Fig. 3-10). Methoctramine LTE of 

the LY367385 pre-treated group was not significantly different fi'om the methoctramine 

LTE of the vehicle pre-treated control group (P>0.05 at 10 and 120 min after 

methoctramine compared to the LTE o f vehicle pre-treated control, unpaired t-test, n=5). 

Methoctramine LTE of the vehicle pre-treated methoctramine group was significant 

(126.4±4.8% and 129.5±2.5% of baseline at 10 and 120 min after methoctramine, 

respectively; P<0.05 at 10 and 120 min after methoctramine compared to pre- 

methoctramine baseline, paired t-test, n=5).
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Fig. 3-8. The NMDA receptor antagonist, d-AP5, did not significantly affect LTE. D- 

AP5 (0.1 ̂ mol) injected i.c.v. did not significantly affect methoctramine LTE, (n=5; o), 

P>0.05 compared to vehicle injected control (n=5; •). D-AP5 /vehicle (#) was injected 

15 min before methcotramine (*). Insets show traces of the field EPSPs recorded at 

times indicated. Horizontal bar. Sms; vertical bar, l.OmV.
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Fig. 3-9. The NMDA receptor antagonist, memantine, did not significantly affect LTE. 

Memantine (20mg/kg, i.p.) did not significantly affect methoctramine LTE, (n=5; o), 

P>0.05 compared to vehicle injected control (n=5; •). Memantine/vehicle (#) was 

injected 30 min before methoctramine (*). Insets show traces of the field EPSPs 

recorded at times indicated. Horizontal bar. Sms; vertical bar, 1 .OmV.
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Fig. 3-10. LY367385, a Group I metabotropic receptor antagonist, did not significantly 

affect LTE. LY367385 (29nmol) injected i.c.v. did not significantly affect 

methoctramine LTE, (n=5; o), P>0.05 compared to vehicle injected control (n=5; •). 

LY367385/vehicle (#) was injected i.c.v. 30 min before methoctramine (*). Insets show 

traces of the field EPSPs recorded at times indicated. Horizontal bar. Sms; vertical bar, 

l.OmV.

68



3.4 The galaninergic system and methoctramine LTE

3.4.1 The effect of galanin

The doses of galanin used in these experiments were determined from previous studies 

on the effects of galanin in the hippocampus (Consolo et al., 1991; Consolo et a l, 1998). 

Galanin has been reported to be rapidly cleared (5-20min) from the extracellular space 

after infusion into the ventral hippocampus (Schott et al., 1998), therefore in the present 

study galanin was injected either 5 min before methoctramine or at the same time as 

methoctramine. Pilot studies showed that lower doses o f galanin (2.25nmol or 4.5nmol) 

had no discernible effect on baseline. Galanin (2.25 nmol) injected i.c.v. 5 min before 

methoctramine (n=3) tended to increase methoctramine LTE but the facilitation was 

only apparent 20 min after methoctramine (142% o f pre injection baseline 20 min after 

methoctramine) (Fig.3-11 A). Galanin (4.5 nmol) was injected i.c.v. 5 min before or co­

injected with methoctramine. The subsequent methoctramine-induced LTE was 

significant (147.8±5.7% and 136.9%±6.8% of baseline at 10 and 120 min after 

methoctramine, respectively; P<0.05 at 10 and 120 min after methoctramine compared 

to pre-methoctramine baseline, paired t-test, n=5) (Fig.3-1 IB). Galanin significantly 

facilitated the initial enhancement induced by methoctramine compared to the vehicle 

pre-treated methoctramine control group initially but not at later stages (?<0.05 and 

?>0.05 at 10 and 120 min after methoctramine compared to the vehicle pre-treated 

methoctramine control group, respectively, unpaired t-test, n=5). The methoctramine 

LTE o f the vehicle pre-treated methoctramine control group was significant 

(126.8±4.7% and 126.8±3.5% of baseline at 10 and 120 min after methoctramine, 

respectively; P<0.05 at 10 and 120 min after methoctramine compared to pre- 

methoctramine baseline, paired t-test, n=5). Galanin (4.5 nmol) i.c.v. applied 5 min 

after methoctramine (n=2) tended to have no effect on the expression o f methoctramine 

induced LTE (129.7% of pre injection baseline 10 min after galanin and no further 

enhancement was observed). Higher doses o f galanin (6-45nmol) caused a decrease in
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baseline (approximately 15%), however, the level o f methoctramine LTE appeared to be 

facilitated (n=5).

3.4.2 The effect of the galanin receptor antagonist, M35

M35 is a chimeric peptide [galanin (l-13)-bradykinin (2-9) amide]) (Bartfai et al., 1992) 

and has equal affinity for Gal-receptorl and Gal-receptor2 (Fathi et al., 1997). M35 

(Inmol) delivered to the ventral hippocampus was previously shown to block the 

learning impairment caused by galanin (3nmol) delivered to the ventral hippocampus 

(Schott et ai., 2000). The galanin receptor antagonist, M35 (4.5nmol), was injected i.c.v. 

5 min before methoctramine. The enhancement was not significant at the initial stage 

and borderline significant at the end of the recording period (112±4 .1% and 108 .4±4.2% 

at 10 and 120 min after methoctramine, respectively; P>0.05 and P=0.05 at 10 and 120 

min after methoctramine compared to pre-injection baseline, respectively, paired t-test, 

n=5) (Fig.3-12). The methoctramine-induced enhancement in animals pre-treated with 

M3 5 was significantly different fi’om the LTE in the vehicle pre-treated control group 

(P<0.05 at 10 and 120 min after methoctramine compared to the vehicle pre-treated 

methoctramine group, unpaired t-test, n=5). The methoctramine LTE of the vehicle pre­

treated methoctramine control group was significant (132.8±4.2% and 130.7±6,3% of 

baseline at 10 and 120 min after methoctramine, respectively; ?<0.05 at 10 and 120 min 

after methoctramine compared to pre-methoctramine baseline, paired t-test, n=5).
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Fig. 3-11 A. The neuropeptide galanin (2.25nmol) tended to increase the initial LTE. 

Galanin (2.25nmol) injected i.c.v. tended to increase the initial enhancement induced by 

methoctramine (n=3; o) compared to the vehicle injected control (n=5; •). 

Gralanin/vehicle (#) was injected 5 min before methoctramine (*). Insets show traces of 

the field EPSPs recorded at times indicated. Horizontal bar, Sms; vertical bar, l .OmV.
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Fig. 3-1 IB. The neuropeptide galanin (4.5nmol) significantly increased the initial 

enhancement but did not significantly affect the later stage of the LTE. Galanin 

(4.5nmol) injected i.c.v. significantly increased the initial enhancement induced by 

methoctramine (n=5; o) P<0.05 and P>0.05 at 10 and 120 min after methoctramine 

compared to the vehicle injected control (n=5; •). Galanin/vehicle (#) was injected 5 

min before or with methoctramine (*). Insets show traces of the field EPSPs recorded at 

times indicated. Horizontal bar, Sms; vertical bar, l .OmV.

72



180 1
Vehicle+Meth.
.1 .2

-60

M35 + Meth.

0  tn
S 140

1 120

Lu 80
•  Vehicle 
O M35

Meth.

0 60 
Time (min)

120

Fig. 3-12. M3 5, a galanin receptor antagonist, strongly reduced LTE. M35 (4.5nmol) 

injected i.c.v. significantly diminished methoctramine LTE, (n=5; o), P<0.05 compared 

to the vehicle injected control (n=5; •). M3 5/vehicle (#) was injected 5 min before 

methoctramine (*). Insets show traces of the field EPSPs recorded at times indicated. 

Horizontal bar, Sms; vertical bar, l.OmV.
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3.5 The effect of kinase inhibitors on methoctramine LTE

3.5.1 The effect of the PKA inhibitor, Rp-cAMPs, on the induction and 
maintenance-expression of methoctramine LTE

A previous study found that Rp-cAMPs, a selective and potent PKA inhibitor, injected 

(0.2 [xmol) i.c.v. blocked methoctramine LTE (Li, 2002). In the present study Rp- 

cAMPS (0.2-0.43 |xmol) was injected i.c.v. 30 min before methoctramine and did not 

have a statistically significant effect on baseline synaptic transmission (see table 3.2). 

Rp-cAMPs blocked the methoctramine-induced LTE (105.4±6.3% and 101.6±9.3% of 

baseline at 10 and 120 min after methoctramine, respectively; P>0.05 at 10 and 120 min 

after methoctramine compared to pre-methoctramine baseline, n=5, paired t-test) (Fig.3- 

13). The methoctramine-induced LTE in animals pre-treated with Rp-cAMPs was 

significantly different from the LTE in the vehicle pre-treated control group at 120 min 

but not at 10 min (P>0.05 and P<0.05 at 10 and 120 min after methoctramine compared 

to the vehicle pre-treated methoctramine control group, respectively, unpaired t-test, 

n=5). The methoctramine LTE of the vehicle pre-treated methoctramine control group 

was significant (119±1.8% and 125±2% of baseline at 10 and 120 min after 

methoctramine, respectively; P<0.05 at 10 and 120 min after methoctramine compared 

with pre-methoctramine baseline, paired t-test, n=5).

Rp-cAMPs was applied after the induction o f methoctramine LTE to investigate if  PKA 

activity was required for the maintenance-expression o f methoctramine LTE. Rp- 

cAMPS (0.2|imol) injected i.c.v. 30 min after methoctramine transiently (for 

approximately 40min) reduced methoctramine LTE, the peak inhibition occurring at 20 

min after Rp-cAMPs. Thus the reduction was statistically significant at 20 but not at 

90min after Rp-cAMPs (113±4.5% and 118.7±4% o f baseline at 20 and 90 min after the 

application o f Rp-cAMPS; P<0.05 at 20 min and P>0.05 and 90 min after Rp-cAMPS 

compared to pre-Rp-cAMPS baseline, respectively, paired t-test, n=5) (Fig.3-14). 

Moreover, the methoctramine-induced LTE in the group treated with Rp-cAMPS after
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methoctramine was significantly different from the LTE in the vehicle treated group at 

20 min but not at 90 min after Rp-cAMPs (?<0.05 at 20 min after Rp-cAMPs and 

P>0.05 at 90 min after Rp-cAMPS compared to the vehicle treated group, unpaired t-test, 

n=5). The methoctramine LTE of the vehicle treated group did not significantly change 

after vehicle injection (128.3±5.5% and 120.4±4.9% of baseline at 20 and 90 min after 

vehicle injection; P>0.05 at 20 and 90 min after vehicle compared to pre-vehicle 

baseline, paired t-test, n=5). The methoctramine LTE was significant in both the vehicle 

and Rp-cAMPS treated groups (P<0.05 at 10 and 120 min after methoctramine 

compared to pre-methoctramine baseline, respectively, paired t-test n=5).
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Fig. 3-13. Rp-cAMPs, an inhibitor of PKA, blocked the induction of the LTE. 

Rp-cAMPs (0.2-0.43jimol) injected i.c.v. significantly inhibited methoctramine-induced 

LTE, (n=5; o), P<0.05 compared to the vehicle injected control (n=5; •). Rp- 

cAMPs/vehicle (#) was injected 30 min before methoctramine (*). Insets show traces of 

the field EPSPs recorded at times indicated. Horizontal bar. Sms; vertical bar, 1.0mV.
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Fig. 3-14. Rp-cAMPS, an inhibitor of PKA, transiently reversed the LTE. RP-cAMPs 

(0.2|imol) injected i.c.v. transiently reversed methoctramine-induced LTE, (n=5; o), 

P<0.05 and P>0.05 at 20 and 90 min after Rp-cAMPs, respectively, compared to the 

vehicle injected control, (n=5; •). Rp-cAMPS/vehicle (#) was injected 30 min after 

methoctramine (*). Insets show traces of the field EPSPs recorded at times indicated. 

Horizontal bar. Sms; vertical bar, 1 OmV.
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3.5.2 The effect of the PKC inhibitor, Bisindolylmaleimide I (BIM), on 

the induction of methoctramine LTE

Bisindolylmaleimide I (BIM) has been characterised as a selective and potent PKC 

inhibitor (Toullec et al., 1991). In a previous in vivo study the PKC inhibitor, BEM 

(89nmol, i.c.v.) blocked methoctramine LTE (Li, 2002). The PKC inhibitor, BIM 

(89nmol), was injected i.c.v. 30 min before methoctramine and had no discernible effect 

on baseline (see table 3.2). Methoctramine subsequently induced a significant LTE 

although the enhancement in the first 10 min was not statistically significant 

(110.9±5.4% and 113.2±3.8% of baseline at 10 and 120 min after methoctramine, 

respectively; P>0.05 and P< 0.05 at 10 and 120 min after methoctramine compared to 

pre-methoctramine baseline, respectively, paired t-test, n=5) (Fig.3-15). The 

methoctramine-induced LTE in animals pre-treated with BIM was not significantly 

different from the LTE in the vehicle pre-treated control group (P>0.05 at 10 and 120 

min after methoctramine compared to the vehicle pre-treated methoctramine group, 

unpaired t-test, n=5). However, fi'om the graph (Fig. 3-15) it is apparent that BIM 

reduced methoctramine LTE for most o f the recording period. For example, the 

reduction was statistically significant at 60 min after methoctramine (see table 3.2). The 

methoctramine LTE of the vehicle pre-treated methoctramine control group was 

significant (121.6±3.2% and 124.9±3.5% of baseline at 10 and 120 min after 

methoctramine, respectively; P<0.05 at 10 and 120 min after methoctramine compared 

to pre-methoctramine baseline, paired t-test, n=5). The effect of a higher dose o f BIM 

on methoctramine LTE was not evaluated as BEM is not water soluble at higher 

concentrations.
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3.5.3 The effect of the PKC/Mzeta pseudosubstrate myristoylated 
peptide inhibitor (ZIP), on the induction and maintenance- 
expression of methoctramine LTE

PKMzeta has been identified as the constitutively active catalytic domain o f PKCzeta 

(Sacktor et al., 1993). Staurosporine is not an effective inhibitor o f PKC/Mzeta (Kochs 

et al., 1993; Ling et al., 2002; McGlynn et al., 1992). Since BIM is an analogue o f 

staurosporine (Toullec et al., 1991) BIM may not inhibit PKC/Mzeta. In contrast, the 

PKCzeta pseudosubstrate peptide inhibitor (ZIP) has been reported to inhibit PKMzeta 

(Ling et al., 2002) and therefore is referred to as a PKC/Mzeta inhibitor in the present 

study. The dose of the ZIP used in the present study was chosen on the basis o f a 

previous study in the dentate gyrus in vivo where ZIP (lOnmol, i.h.) reversed the 

maintenance o f LTP (Pastalkova et al., 2006). ZIP (1.75nmol/7nl) had no discernible 

effect on baseline (see table 3.2). ZIP (1.75nmol/7fxl) injected i.c.v. 30 min before 

methoctramine blocked the methoctramine-induced LTE (103.9±3.4% and 108.4±4.7% 

of baseline at 10 and 120 min after methoctramine, respectively; P>0.05 at 10 and 120 

min after methoctramine compared to pre-methoctramine baseline, paired t-test, n=5) 

(Fig.3-16). The animals pre-treated with ZIP were also significantly different from the 

vehicle pre-treated control group (P<0.05 at 10 and 120 min after methoctramine 

compared to the vehicle pre-treated methoctramine group, unpaired t-test, n=5). The 

methoctramine LTE of the vehicle pre-treated methoctramine control group was 

significant (118.8±1.7% and 125.3±2.8% of baseline at 10 and 120 min after 

methoctramine, respectively; P<0.05 at 10 and 120 min after methoctramine compared 

to pre-methoctramine baseline, paired t-test, n=5).

ZIP was previously shown to reverse the maintenance-expression of LTP in the dentate 

gyrus in vivo (Pastalkova et al., 2006) and in the CAl in vitro (Ling et al., 2002; Serrano 

et al., 2005). Therefore, the effect o f ZIP on the maintenance-expression of 

methoctramine LTE was investigated. ZIP (1.75nmol/7nl) was injected i.c.v. 30 min 

after methoctramine. Methoctramine LTE did not change significantly after the 

application of the ZIP (123 .4±3 .5% of baseline at 90 min after the application of ZIP;
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P>0.05 compared to pre-ZIP baseline, paired t-test, n=5) (Fig. 3-17). Moreover the 

methoctramine-induced LTE in the group treated with ZIP was not significantly 

different from the LTE in the vehicle treated group (P>0.05 o f baseline at 90 min after 

ZIP compared to the vehicle treated group, unpaired t-test, n=5). The methoctramine 

LTE was significant both in the vehicle and ZIP treated groups (P<0.05 at 10 and 120 

min after methoctramine compared to pre-methoctramine baseline, respectively, paired 

t-test, n=5) (Fig.3-14). Pilot studies indicated that the ZIP (5nmol/5nl) or (2.5nmol/5nl) 

injected i.c.v. tended to increase synaptic transmission (10-15%, n=2). Therefore, the 

effects o f higher doses of ZIP on methoctramine LTE were not tested.
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Fig. 3-15. BIM, an inhibitor of PKC, tended to reduce LTE.

BIM (89nmol) injected i.c.v. decreased methoctramine LTE, however this decrease was 

not significant at 2 hrs, (n=5; o), P>0.05 compared to the vehicle injected control (n=5; 

•). BIM/vehicle (#) was injected 30 min before methoctramine (*). Insets show traces 

of the field EPSPs recorded at times indicated. Horizontal bar. Sms; vertical bar, 1 ,OmV.
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Fig. 3-16. ZIP, an inhibitor of PKC/Mzeta, inhibited LTE induction.

ZIP (1.75nmol) injected i.c.v. significantly inhibited methoctramine LTE (n=5; o) 

P<0.05 compared to the vehicle injected control (n=5; •). ZIP/vehicle (#) was injected 

30 min before methoctramine (*). Insets show traces of the field EPSPs recorded at 

times indicated. Horizontal bar, Sms; vertical bar, l .OmV.
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Fig. 3-17. ZIP, an inhibitor o f PKC/Mzeta, did not reverse LTE. ZIP (1.75nmol) 

injected i.c.v. did not significantly affect methoctramine LTE, (n=5; o), P>0.05 

compared to the vehicle injected control (n=5; •). ZDP/vehicle (#) was injected 30 min 

after methoctramine (*). Insets show traces of the field EPSPs recorded at times 

indicated. Horizontal bar, Sms; vertical bar, 1.0mV.
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3.6 The effect of amyloid P on methoctramine LTE

A dose o f Ap (15pmol) that was previously found to block HFS induced LTP in the CAl 

region o f the region o f the urethane anaesthetised rat (I. Klyubin personal 

communication) was studied. Ap (ISpmol) was injected i.c.v. 30 min before 

methoctramine and had no discernible effect on baseline (see table 3.2). Methoctramine 

subsequently induced a significant LTE (115.4±4.3% and 132.1± 9.9% of baseline at 10 

and 120 min after methoctramine, respectively; P<0.05 at 10 and 120 min after 

methoctramine compared to pre-methoctramine baseline, paired t-test, n=5) (Fig. 3-18). 

Methoctramine LTE of the Ap pre-treated group was not significantly different from the 

methoctramine LTE of the vehicle pre-treated control group (P>0.05 at 10 and 120 min 

after methoctramine compared to LTE in the vehicle pre-treated control group, unpaired 

t-test, n=5). The methoctramine LTE o f the vehicle pre-treated methoctramine control 

group was significant (116.4±5% and 120.3±3.3% o f baseline at 10 and 120 min after 

methoctramine, respectively; P<0.05 at 10 and 120 min after methoctramine compared 

to pre-methoctramine baseline, paired t-test, n=5).
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Fig. 3-18. Ap did not significantly affect LTE.

AP (ISpmol) did not significantly affect methoctramine LTE, (n=5; o), P>0.05 

compared to vehicle injected control (n=5; •). Ap/vehicle (#) vî as injected i.c.v. 30 min 

before methoctramine (*). Insets show traces of the field EPSPs recorded at times 

indicated. Horizontal bar. Sms; vertical bar, 1 OmV.
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Table 3-1 The effect of different Mi mACh receptor antagonists on 
synaptic transmission

Post-drug

Pre-D rug

D rug Dose n lOmin 60min 120nii

Methoctramine 34nmol 5 101.5 128.5 131.1 128.6

±2 ±3.4*" ±3.5** ±3.33*'

Gallamine 25nmol 4 99.2 98.6 115.7 112.2

±2.3 ±1.2* ±3.9*'' ±2.6*''

Gallamine 42/56nmol 5 102.3 96.3 120 125.3

±4.1 ±5.7 ±7.9 ±8.5*"

BIBN-99 22/42nmol 5 100.7 101.4 100.8 98.6

±3.5 ±4.1 ±5.8 ±7.7

Values are mean ± S.E.M.

* P<0.05 compared to interleaved vehicle treated animals (see resuhs) (unpaired t-test)

* P<0.05 compared to pre-drug baseline (paired t-test)
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Table 3-2 The effect of different drugs on methoctramine LTE
Post-drug

Drug

Mecamylamine

Methyllycaconitine

Mecamylamine

Methyllycaconitine

Nicotine

d-AP5

Memantine

LY367385

Galanin

M35

Rp-cAMPs

BIM

ZIP

Dose

Pre-

Drug

Pre-

Meth.
lOmin 60min llO m in

3mg/kg 5 102.5± 100.2 122.3 137.6 134.6

1.43 ±2.2 ±8.8 H- 00 ±8.6*

50/65nmol 5 100.9± 101± 107.7 118.2 115

0.3 1.1 ±3.1* ±7.1* ±3.6*

3mg/kg 5 100.1± 102.3± 109.8 120.5 116.3

65nmol 0.43 1.22 ±3.8 ±3* ±4.8*

3mg/kg 5 101.4 103 131.5 138.4 137.1

±1.2 ±2.1 ±4.5" ±4.1* ±4*

0. l(unol 5 104.2 103.2 114 124.6 121.5

±2.8 ±2.2 ±7.2 ±6.6* ±6.7*

20mg/kg 5 101.3 101.4± 111.8 114.1 108.9

±1.4 1.43 ± 3 . / ±1.25* ±1.1*

29nmol 5 99.9 102.8 132.6 129.1 124.5

±1 ±3.9 ±4.3* ±4.5* ±4.6*

4.5nmol 5 N/A N/A 147,8 148.6 136.9

±5.7** ±7.1* ±6.8*

4.5nmol 5 N/A N/A 112 115.5 108.4

±4.1* ±4.4** ±4.2**

0.2/0.43 5 101.1 98.5 105.4 102.7 101.6

nmol ±1.7 ±3.7 ±6.3 ±7.31* ±9.3*

89nmol 5 101.5 102.4 110.9 114.2 113.2

±1.9 ±2.5 ±5.4 ±2.7** ±3.8*

1.75nmol 5 100.1 97.9 103.9 106.4 108.3

±1.3 ±3 ±3.4* ±5.4* ±4.7*

15pmol 5 102.4 103.5 115.4 130.7 132.1

±1.4 ±1.8 ±4.3* ±9.6* ±10*

Values are mean ± S.E.M.

* ?<0.05 compared to interleaved methoctramine treated animals (see results) (unpaired t-test)

* ?<0.05 compared to pre-methoctramine baseline (paired t-test)

Comparison of pre drug baseline with pre methoctramine baseline was not significant for all groups.
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IV. Discussion



4.0 Discussion

In the present study an M2 mACh receptor antagonist, methoctramine, induced a rapid 

and persistent (>2hrs) enhancement o f  synaptic transmission in the C A l region o f  the 

intact hippocampus (methoctramine LTE). Consistent with this, another M 2 preferring 

mACh receptor antagonist, gallamine, also enhanced synaptic transmission. In contrast 

BIBN-99, which is also an M 2 mACh receptor antagonist failed to affect synaptic 

transmission, indicating that not all M 2 receptor antagonists share the ability to induce an 

LTE.

The role o f  a variety o f  cholinergic and glutamatergic receptors in methoctramine LTE 

was further investigated. A broad spectrum nACh receptor antagonist, mecamylamine, 

did not significantly affect methoctramine LTE. However, an a7 nACh receptor 

antagonist, methyllycaconitine, appeared to delay the onset o f  methoctramine-induced 

LTE but did not block methoctramine LTE. These results suggest that nACh receptor 

activation is not necessary for methoctramine LTE. Pre-treatment with the competitive 

NM DA receptor antagonist d-AP5 or the non-competitive antagonist memantine did not 

block methoctramine-induced LTE, which suggests that methoctramine LTE is N M D A  

receptor-independent. The group I mGlu receptor antagonist, LY 367385, at a dose that 

blocks m Glul receptors did not block methoctramine LTE, which suggests that 

methoctramine LTE is mGlul receptor-independent.

The role o f  the galaninergic sytem in methoctramine LTE was also assessed. The 

application o f  exogenous galanin increased the initial enhancement induced by 

methoctramine. Pre-treatment with the galanin receptor antagonist M35 strongly 

reduced methoctramine LTE, which suggests that methoctramine LTE requires the 

action o f  endogenous galanin at its receptors. The role o f  PKC and PKA in 

methoctramine LTE was also studied. Pre-treatment with the PKC/Mzeta 

pseudosubstrate inhibitor (ZIP) blocked methoctramine-induced LTE. This suggests that 

methoctramine-induced LTE involves the activation o f  the atypical PKC/Mzeta isoform.
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Pre-treatment with the PKA inhibitor Rp-cAMPs blocked methoctramine LTE, which 

implies that the induction o f methoctramine LTE is PKA dependent. In contrast, the 

maintenance o f methoctramine LTE appears to be independent o f these kinases as 

application of the PKA inhibitor or PKC/Mzeta inhibitor 30 min after the induction of 

methoctramine LTE did not persistently reverse LTE. Finally pre-treatment with Ap at a 

dose that blocks HFS induced LTP did not affect methoctramine LTE, which suggests 

that methoctramine LTE is insensitive to inhibition by Ap.
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4.1 M2 mACh receptor antagonists and the induction of LTE

4.1.1 The effects of different M2 mACh receptor antagonists on 

synaptic transmission in the CAl region of the hippocampus

In the present study methoctramine, an M 2 mACh receptor antagonist, induced a rapid 

(generally <8 min onset) and long-term (>2hrs) enhancement o f  synaptic transmission in 

the C A l region o f  the intact hippocampus, which was referred to as methoctramine LTE. 

Gallamine, an M 2 preferring mACh receptor antagonist, also enhanced synaptic 

transmission. However, the onset o f  the gallamine-induced enhancement was slower 

(20-30m in) compared to methoctramine (8min). In contrast, BIBN-99, which is also an 

M 2 mACh receptor antagonist failed to affect synaptic transmission

The ability o f  methoctramine to induce an LTE is consistent with a previous study, 

which demonstrated that methoctramine delivered i.c.v. persistently enhanced synaptic 

transmission in vivo (Li, 2002). The methoctramine LTE was proposed to involve 

inhibition o f  M 2 receptors as methoctramine was previously shown to preferentially bind 

to the M 2 mACh receptor (Caulfield, 1993; D oods et al., 1993c; Dorje et al., 1991; 

Waelbroeck et al., 1990) and was mimicked by another M 2 mACh receptor antagonist 

A F-D X  116 (Li, 2002).

The neuromuscular blocker gallamine is usually referred to as a mixed mACh and nACh 

receptor antagonist, which preferentially binds to M 2 mACh receptors (Burke, 1986; 

Price et al., 1986; Tucek and Proska, 1995). Gallamine delivered i.c.v. induced an LTE 

o f  synaptic transmission, which supports the hypothesis that methoctramine LTE is 

mediated by antagonism o f  M 2 mACh receptors. Gallamine was previously reported to 

induce a rapid and significant increase in synaptic transmission in vitro, which appeared 

to be M 2 mACh specific as it was absent in M 2 knock-out mice (Seeger et al., 2004). 

The ability o f  gallamine applied to the bath to induce a rapid increase in synaptic 

transmission suggests that the slow-onset o f  the gallamine-induced LTE in the present
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study is a result o f  delayed diffusion o f  gallamine from the lateral ventricle. Indeed, the 

highly polar character o f  gallamine (Bowan and Rand, 1970) is likely to delay the 

diffusion o f  gallamine from the lateral ventricle, which could account for the slow-onset 

(20-30m in) o f  the gallamine-induced LTE relative to the fast onset (8min) o f  the 

methoctramine-induced LTE. In addition, the molecular weight o f  methoctramine is 

approximately one fifth that o f  gallamine, which may also contribute to the slow  onset o f  

gallamine-induced LTE. The slow-onset o f  the gallamine-induced LTE relative to the 

fast onset o f  the methoctramine-induced LTE may also be explained by the finding that 

these tw o compounds have different mechanisms o f  inhibition, since methoctramine is a 

competitive inhibitor (Rosini et al., 1999), whereas gallamine is believed to be both a 

competitive and allosteric inhibitor (Burke, 1986; Tucek and Proska, 1995).

In the present study BIBN-99 failed to affect synaptic transmission and the effect o f  a 

range o f  doses was tested (22nmol-66nmol). BIBN-99 is a high affinity competitive M 2 

mACh receptor antagonist (Doods et al., 1993a; Doods et al., 1993b), which would be 

expected to diffuse readily from the lateral ventricle as it is a lipophilic compound 

(Doods et al., 1993a; Doods et al., 1993b). The effect o f  BEBN-99 on baseline synaptic 

transmission has not previously been reported, however BIBN-99 ameliorates the deficit 

in theta burst LTP in aged impaired rats but does not enhance the level o f  LT? induced 

by theta burst in young rats (Tombaugh et al., 2002). In the present study the lack o f  

effect o f  BIBN-99 on synaptic transmission compared to the effect o f  methoctramine 

and gallamine is surprising and indicates that not all M 2 mACh receptor antagonists 

share the ability to induce an LTE. Overall, the induction o f  an LTE by methoctramine 

and gallamine in the present study and by A F-D X 116 in a previous study (Li, 2002) 

strongly supports the hypothesis that M 2 mACh receptor antagonism is responsible for 

their ability to induce an LTE.
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4.1.2 Putative mechanisms underlying M2 mACh receptor antagonist- 

induced LTE

The present study found that M 2 antagonists, methoctramine and gallamine, are capable 

o f inducing a long-term enhancement of synaptic plasticity. Presynaptic M2 receptors 

suppress somatic calcium currents and thus inhibit release, therefore it is possible that an 

increase in transmitter release is required for the induction of methoctramine LTE 

(Kmjevic, 2004). Since the M2 mACh receptor can act as an auto-receptor and 

heteroreceptor the modulation o f ACh, GABA and glutamate release along with their 

respective receptors may be involved in methoctramine LTE (Freund, 2003; Hajos et al., 

1998; Marchi and Raiteri, 1989; Nikbakht and Stone, 1999; Quirion et al., 1995, Rouse 

et al., 2000; Stillman et al., 1996). However, it appears that there are at least two other 

distinct functions o f M2 receptors located postsynaptically in the hippocampus. Thus, 

blockade of postsynaptic M2 receptors that are positively coupled to an inwardly 

rectifying current could contribute to the LTE induced by M2 mACh receptor 

antagonists as the activation o f these postsynaptic M2 receptors is associated with 

inhibition of glutamatergic transmission in the CAl (Seeger and Alzheimer, 2001). In 

contrast, the activation o f postsynaptic M2 receptors may also block an outward 

current, and thus increase the excitability o f the postsynaptic cell (Dutar and Nicoll, 

1988; Muller and Misgeld, 1986). However, inhibition o f this particular pool of 

postsynatic M2 mACh receptors would be expected to oppose the induction o f an LTE 

by an M 2 mACh receptor antagonist.

The ability o f methoctramine and other M 2 receptor antagonists to enhance synaptic 

transmission in vivo is in contrast with previous in vitro studies that reported cholinergic 

drugs induce an enhancement o f synaptic transmission via activation o f M2 mACh 

receptors (Auerbach and Segal, 1996; Segal and Auerbach, 1997). A previous in vitro 

study reported a slow-onset persistent potentiation induced by an mACh receptor agonist 

carbachol (LTPm), which was blocked by an M2 receptor antagonist (methoctramine) 

but not M 1/M3 receptor antagonists (Auerbach and Segal, 1996). Consistent with this,
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LTPm was absent in M 2 knock-out mice (Seeger et al., 2004). This in vitro M 2 mACh 

receptor activation-dependent increase in synaptic transmission is difficult to reconcile 

with the present study, where an M 2 mACh receptor antagonist methoctramine induced a 

long-term enhancement o f  glutamatergic synaptic transmission. This suggests that the in 

vitro and in vivo mediated increase in synaptic transmission involves recruitment o f  

different pools o f  M 2 mACh receptors, which is consistent with the proposition that 

presynaptic and postsynaptic M 2 mACh receptors can have opposing functions in the 

hippocampus. It is plausible that the relative muscarinic receptor subtj^e selectivity o f  a 

particular drug and/or differences between the experimental techniques employed 

determine which o f  the M 2 receptor mediated functions will predominate.

The activity o f  the cholinergic system is ahered by the preparation o f  the in vitro 

hippocampal slice, as this involves severing o f  the cholinergic inputs to the hippocampus 

and therefore the basal activation o f  M 2 receptors by endogenous ACh would be 

expected to be greatly diminished relative to in vivo experiments. In addition, in vitro 

investigations often require the addition o f  bicuculline to the bath and this compound has 

recently been shown to alter the expression o f  mACh receptors on the neuronal 

membrane (Schneider and Rodriguez de Lores Arnaiz, 2006). The discrepancies 

between in vitro and in vivo results may also be explained by exogenous stimulation o f  

mACh receptors using carbachol as opposed to an indirectly mediated stimulation o f  

endogenous mACh receptors using methoctramine. Methoctramine may stimulate 

mACh receptors by amplifying the release o f  endogenous ACh and therefore bring about 

a more physiological pattern o f  mACh receptor stimulation compared to carbachol. It is 

important to take into account that carbachol may transiently reduce ACh release by 

activating presynaptic inhibitory receptors. Previous studies reported that in vitro 

somatically applied ACh (de Sevilla et al., 2005) and in vivo system ic/localised  

application o f  physostigmine (Ito et a l , 1988; Levkovitz and Segal, 1994) persistently 

enhanced hippocampal synaptic transmission. These methods increased the local ACh 

concentration and therefore may be analogous to methoctramine. However, these 

methods would be expected to partly negate their enhancement o f  the cholinergic system
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since ACh will inhibit its own release through the activation o f  presynaptic inhibitory 

receptors, unlike methoctramine.

Many studies suggest that M 2 receptor activation enhances synaptic transmission by 

directly increasing the excitability o f  the postsynaptic cell (Auerbach and Segal, 1996; 

Dutar and Nicoll, 1988, Segal and Auerbach, 1997). However, M 2 receptor mediated 

disinhibition may regulate LTP induced by theta burst conditioning stimulation since it 

was strongly reduced in M 2 knock-out mice and pretreatment with a G ABAa receptor 

antagonist, bicuculline, restored STP and significantly abrogated the inhibition o f  LTP 

(Seeger et al., 2004). In addition, whole-cell recordings from C A l pyramidal cells  

demonstrated a much stronger disinhibition o f  GABAergic than glutamatergic 

transmission in M 2 knock-out mice, which was particularly prominent during stimulus 

trains (Seeger et al., 2004). The results o f  this in vitro study suggest that endogenously 

released ACh regulates hippocampal plasticity primarily via the activation o f  M 2 

receptors located on intemeurons, which leads to suppressed G ABAa receptor mediated 

transmission and thus disinhibition o f  pyramidal cells (Seeger et al., 2004).

The M 2 mACh receptor antagonist methoctramine is unlikely to mediate an LTE o f  

synaptic transmission via an increase in G ABA release as the activation o f  interneurons 

that directly inhibit the pyramidal cells would be expected to result in a decrease in 

transmission (Gulyas et al., 1993; M iles et al., 1996). However, an increase in G ABA  

release can cause an increase in ACh release since activation o f  G ABA a receptors 

located presynaptically (Gao et al., 1995) was previously shown to increase ACh release 

in vivo (Giovannini et al., 1994). In addition, inhibitory systems are complex and it is 

possible that enhanced G ABA release could promote inhibition o f  intemeurons that 

inhibit pyramidal cells, which would disinhibit pyramidal cells and thus increase their 

excitability (Freund, 2003; Hajos et al., 1998). Finally ACh may indirectly modulate 

GABAergic transmission as the activation o f  mACh receptors has been shovm to 

increase the release o f  endocannabinoids (Fukudome et al., 2004; Kim et al., 2002), 

which are associated with the suppression o f  GABAergic inhibition and subsequent 

disinhibition o f  pyramidal cells (Kim et al., 2002).
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A previous in vivo study showed that pre-treatment with either the Mi receptor 

antagonist telenzepine (Galvan et al., 1989) or the M1/M3 receptor antagonist 4-DAM P  

(D oije et al., 1991) blocked methoctramine induced L IE  (Li, 2002), which suggests that 

methoctramine LTE is dependent on activation o f  non-M 2  mACh receptors. The 

apparent role o f  Mi mACh receptors in methoctramine LTE is consistent with a previous 

in vitro study where somatically applied ACh (de Sevilla et al., 2005) induced a long 

term increase in glutamatergic transmission, which was blocked by the M i mACh 

receptor antagonist, pirezepine. It is unlikely that the Mi receptor mACh activation 

alone explains methoctramine LTE since the i.c.v. application o f  a Mi receptor mACh 

receptor agonist, (S)-(-)-2,8-dim ethyl-3-m ethylene-l-oxa - 8 -azaspiro [4,5] decane-L- 

tartarate monohydrate (YM  796), failed to induce a persistent enhancement o f  synaptic 

transmission (Li, 2002). This suggests that Mi receptor mACh receptor activity may be 

necessary but that Mi receptor activity alone does not account for the induction o f  LTE 

by methoctramine. The putative role o f  M 3  mACh receptor activation in methoctramine- 

induced LTE is consistent with a previous study where M 3  receptor activation was found 

to increase the release o f  Ca^  ̂ from intracellular stores (Wakamori et al., 1993). 

However, M 3  mACh receptors were found to underlie the carbachol (high concentration) 

mediated inhibition o f  synaptic transmission in the hippocampus (Auerbach and Segal, 

1996). Finally, it appears that methoctramine LTE requires transient mACh receptor 

activation as it was previously found that a non-specific mACh receptor antagonist, 

scopolamine, at a dose that blocked the induction o f  methoctramine LTE failed to 

significantly alter methoctramine LTE when it was applied 30 min after methoctramine 

(Li, 2002).
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4.2 The role of nACh receptors in methoctramine LTE

A methoctramine-induced increase in hippocampal ACh release (Stillman et al., 1996) 

may activate nACh receptors and thus it is possible that nACh receptor activation 

contributes to methoctramine LTE. Mecamylamine injected systemically before 

methoctramine did not significantly affect methoctramine LTE. In contrast, 

methyllycaconitine, the a7nACh receptor antagonist, delayed the onset of 

methoctramine LTE. The dose of mecamylamine used in the present study was based on 

the dose used in a previous study, which prevented activation o f hippocampal nACh 

receptors (Tani et al., 1998), however another study showed that mecamylamine is less 

potent at blocking a7nACh compared to a/p heteromers (Chavez-Noriega et al., 1997). 

Therefore, both mecamylamine and methyllycaconitine were applied to determine if a 

more complete inhibition o f nACh receptors might completely block methoctramine 

LTE. However, the combination did not block methoctramine LTE.

The activation o f a7nACh may contribute to the initial enhancement induced by 

methoctramine by indirectly disinhibiting pyramidal cells (Frazier et al., 1998; Ji and 

Dani, 2000; Jones and Yakel, 1997; McQuiston and Madison, 1999) or by directly 

increasing glutamate release (Gray et al., 1996). Alternatively, the activation o f a7nACh 

receptors on the postsynaptic pyramidal cell may facilitate depolarisation and increase 

the intracellular calcium concentration, which could also contribute to the initial 

enhancement induced by methoctramine. The putative role of nACh receptors in Ca^^ 

influx correlates with a previous study where a7nACh receptors were found to have a 

greater relative permeability to Ca^^ than NMDA receptors and also other nACh 

receptors (Seguela et al., 1993). The activation o f nACh receptors was previously found 

to stimulate MAPK and phosphatidylinositoB-kinase (Dineley et al., 2001b; Kihara et 

al., 2001; Wang et al., 2001) and activation o f these kinases may also contribute to the 

onset o f methoctramine LTE.
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A previous in vivo study in the C A l found that methyllycaconitine significantly reduced 

LTP (Freir and Herron, 2003). In the present study methyllycaconitine delayed the onset 

o f  methoctramine LTE, whereas in the previous in vivo study on LTP in the C A l the 

reduction in LTP was maximal 40 min after HFS (Freir and Herron, 2003). Comparison 

o f  the role o f  a7nACh receptors in LTP induced by HFS and methoctramine-induced 

LTE in the C A l region in vivo suggests that aTnACh receptors are differentially 

recruited by both o f  these protocols. The present study also found that the N M D A  

receptor antagonist memantine had no effect on methoctramine LTE. Memantine was 

reported to antagonise a7nACh receptors more potently than N M D A  receptors (Aracava 

et al., 2005) and therefore, its lack o f  effect on methoctramine LTE is inconsistent with 

the effect o f  methyllycaconitine on methoctramine LTE. Ahhough this lack o f  

consistency is difficult to explain it is possible that the local application o f  

methyllycaconitine inhibited a local population o f  aTnACh receptors that are involved in 

methoctramine LTE more effectively than memantine. To further investigate the role o f  

nACh receptors in methoctramine LTE nicotine was injected system ically prior to 

methoctramine. Nicotine pre-treatment tended to augment methoctramine LTE; 

however this increase was not statistically significant.

In the present study an aTnACh receptor antagonist delayed the onset o f  methoctramie 

LTE but did not block methoctramine LTE. In contrast, pre-treatment with an M 1/M 3  

mACh receptor antagonists blocked methoctramine LTE (Li, 2002). This suggests that 

methoctramine LTE involves a predominant activation o f  M 1/M 3  mACh receptors over 

nACh receptors.
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4.3 The role of glutamate receptors in methoctramine LTE

4.3.1 The role of NMDA receptor activation

NMDA receptor activity requires coincident depolarisation of the postsynaptic cell and 

glutamate binding (Collingridge, 2003; Platenik et al., 2000). Previous studies have 

shown that ACh can inhibit several currents including voltage gated Ca^  ̂ dependent 

potassium channels, which underlies the slow afterhyperpolarisation ( I a h p )  and also the 

voltage dependent Ca^  ̂ independent M current (Im) (Dutar and Nicoll, 1988; Egorov et 

al., 1999; Madison et al., 1987; Segal and Auerbach, 1997). Blockade of these 

conductances can augment firing and calcium responses and thus lead to depolarisation 

of the postsynaptic cell, which could facilitate activation of NMDA receptors and 

VDCCs (Jerusalinsky et al., 1997). Indeed the activation of mACh receptors has been 

associated with increased Ca^  ̂entry via NMDA receptors (Egorov et al., 1999; Marino 

et al., 1998; Markram and Segal, 1992).

The present study found that the NMDA receptor competitive antagonist d-AP5 and the 

non-competitive NMDA receptor antagonist memantine failed to block methoctramine 

LTE. The NMDA receptor antagonist, d-AP5 but not memantine, tended to reduce the 

initial enhancement induced by methoctramine, which suggests that NMDA receptor 

activation may be necessary for the initial enhancement but is not required for 

methoctramine LTE. The doses of d-AP5 and memantine used in the present study were 

previously shown to block LTP induced by HFS (L Klyubin, TCD, personal 

communication). Therefore, the finding that NMDA antagonists do not block 

methoctramine LTE suggests that the mechanism underlying methoctramine LTE is at 

least partially distinct fi'om the mechanism involved in LTP induced by HFS. The 

activation of mACh receptors was previously reported to increase Ca^  ̂influx through 

VDCCs (Klink and Alonso, 1997), however VDCCs do not appear to be involved in 

methoctramine LTE as pre-treatment with the VDCC inhibitor, mibefradil, did not 

significantly affect methoctramine LTE (Li, 2002).

98



The NM D A receptor-independence o f  methoctramine LTE is consistent with a previous 

in vitro study, which found that somatically applied ACh induced an N M D A  receptor- 

independent enhancement o f  transmission at C A l glutamatergic synapses (de Sevilla et 

al., 2005). This previous in vitro ACh-mediated enhancement was shown to involve a 

postsynaptic muscarinic mechanism that appeared to be mediated by calcium released 

from the endoplasmic reticulum (de Sevilla et al., 2005). Methoctramine LTE is 

blocked by M1/M3 receptors (Li, 2002), which are predominantly expressed on the 

postsynaptic membrane. Therefore, methoctramine induced LTE may also involve the 

release o f  Ca^  ̂ from intracellular stores following activation o f  postsynaptic mACh 

receptor. This mechanism would be consistent with previous investigations where 

mACh receptor activation was shown to initiate the release o f  calcium from intracellular 

stores via activation o f  second messenger systems (Berridge and Irvine, 1989; Markram 

and Segal, 1992).

A  previous in vitro study found that endogenously released ACh facilitated LTP 

independently o f  NM D A receptor activation by inhibiting GABAergic neurons that 

modulate pyramidal neurons (Y e et al., 2001). Similarly, methoctramine LTE may 

involve an NM D A receptor independent decrease in GABAergic transmission.

4.3.2 The role of group I metabotropic glutamate receptor activation

There is evidence that M 2 mACh receptor antagonism may increase the release o f  

glutamate (Marchi and Raiteri, 1989; Nikbakht and Stone, 1999) and thus the activation 

o f  metabotropic glutamate receptors may also contribute to methoctramine LTE. A  

previous study demonstrated that the activation o f  group I metabotropic glutamate 

receptors mediates a slow-onset potentiation in the C A l region in vivo (Manahan- 

Vaughan and Reymann, 1997). In addition, the activation o f  both group I mGlu 

receptors and mACh receptors is associated with the recruitment o f  PKC (Angenstein et 

al., 1999; Cantrell et al., 1996; Codazzi et al., 2006; Malenka et al., 1986a; Stratton et al., 

1989). Since methoctramine LTE requires the activation o f  PKC (see 3.5.2 and 3.5.3 in
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the present study), it is possible that methoctramine recruits mGlu receptors along with 

mACh receptors in order to achieve the required PKC activation. Methoctramine LTE 

may also involve a release of Ca^^ from intracellular stores and this may also involve 

group I mGlu activation as a previous in vitro study showed that a group I mGlu 

antagonist, LY367385, blocked the increase in intracellular calcium and the direct 

depolarization o f CAl hippocampal neurons induced by the group I mGlu receptor 

agonist, DHPG (Mannaioni et al., 2001).

In the present study LY367385 at a dose that blocks mGlul receptors did not affect 

methoctramine LTE, which suggests that the activation o f mGlul receptors is not 

involved in methoctramine LTE. The application o f a similar dose o f LY367385 was 

previously shown to inhibit LTP in the dentate gyrus o f freely behaving animals (Naie 

and Manahan-Vaughan, 2005). The present study provides evidence that methoctramine 

LTE is mGlul receptor-independent. LY367385 is more selective at mGlu la  receptors 

relative to mGlu5 receptors (Clark et al., 1997) and there are several other mGlu 

receptor subtypes, thus this study does not completely dismiss a role for mGlu receptor 

activation in methoctramine LTE.
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4.4 The role of the galaninergic system in methoctramine LTE

In the present study the galanin receptor antagonist, M 35, strongly inhibited 

methoctramine LTE, whereas exogenously applied galanin increased the initial 

enhancement induced by methoctramine. M3 5 is a chimeric peptide [galanin (1-13)- 

bradykinin (2-9) amide]) (Bartfai et al., 1992) and has an equal affinity for Gal-receptorl 

and Gal-receptor2 (Fathi et al., 1997). M35 (Inm ol) delivered to the ventral 

hippocampus was previously shown to block the learning impairment caused by galanin 

(3nmol) delivered to the ventral hippocampus (Schott et al., 2000). Given the selectivity  

o f  M 35 for galanin receptors it seems likely, that M35 inhibits methoctramine LTE by 

blocking the action o f  tonically released endogenous galanin and/or galanin released by 

methoctramine.

Galanin is believed to be co-transported with classical neurotransmitters, being present 

in cholinergic, GABAergic, noradrenergic and serotonergic neurons (Chan-Palay, 1988, 

Melander et al., 1986; Miller et al., 1997). Methoctramine is thought to act primarily as 

an antagonist o f  M 2 /M 4  receptors, which are presynaptic inhibitory auto-receptors on 

cholinergic neurons (Kitaichi et al., 1999; Quirion et al., 1995; Stillman et al., 1996; 

Stillman et al., 1993; Vannucchi and Pepeu, 1995; Vannucchi et al., 1997) and 

heteroreceptors on GABAergic neurons (Freund, 2003; Hajos et al., 1998; Rouse et al., 

2000; Rouse et al., 1999) in the hippocampus. Therefore, it is possible that 

methoctramine directly increased the release o f  galanin from cholinergic and 

GABAergic neurons in the hippocampus. Endogenous galanin is tonicallly released 

from the ventral hippocampus o f  freely behaving rats and enhanced following electrical 

stimulation o f  the diagonal band o f  Broca (dBB) (Consolo et al., 1994a), which may be 

due to the co-release o f  galanin from septo-hippocampal cholinergic and GABAergic 

neurons. Therefore, it is also possible that methoctramine initiates galanin release by 

activating the diagonal band o f  Broca.
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Galanin was found to increase the initial enhancement induced by methoctramine and 

this increase appeared to depend on the dose o f galanin applied. The ability o f galanin 

to augment methoctramine L IE  is consistent with the finding that M3 5 reduced 

methoctramine LTE. However, M3 5 reduced the methoctramine LTE throughout the 2 

hr recording period, whereas exogenously applied galanin increased (for approximately 

50 min) the initial enhancement induced by methoctramine. These results suggest that 

the activation of galanin receptors is necessary for methoctramine LTE, and that 

increased galanin receptor activity during the induction (via exogenously applied galanin) 

can further facilitate the initial enhancement induced by methoctramine. Although 

galanin is cleared rapidly from the extracellular space (Schott et al., 1998) it is unlikely 

that rapid clearance explains the transient effect of exogenously applied galanin as pilot 

studies indicated that galanin injected after methoctramine did not seem to affect the 

methoctramine-induced LTE. The lack o f effect of galanin applied after methoctramine 

suggests that galanin acts on the induction but not the maintenance o f methoctramine 

LTE.

It is possible that galanin modulates methoctramine LTE indirectly via another 

neurotransmitter as galanin administered i.c.v. induced long term changes (greater than 3 

hours) in the levels o f serotonin and noradrenaline in the ventral hippocampus and also 

modulated the activity o f the raphe nucleus and locus coeruleus (Kehr et al., 2001; 

Ogren et al., 1999; Xu et al., 1999). Gralanin can also reduce the release o f dopamine 

from the forebrain (Ericson et al., 1999). The role o f noradrenaline may be particularly 

relevant since virtually all galanin-containing fibers in the dorsal hippocampus are 

identical to noradrenergic terminals originating in the locus coeruleus (Xu et al., 1998).

The ability of galanin to enhance methoctramine LTE contrasts with in vitro findings in 

the rat, mouse and guinea pig transverse hippocampal slice where galanin inhibited LTP 

(Coumis and Davies, 2002; Sakurai et al., 1996). Galanin’s inhibition o f LTP was found 

to be independent o f NMDA receptor and metabotropic glutamate receptor function, 

indicating that galanin acts downstream of glutamate receptor activation, possibly at the 

level of kinase regulation to prevent the establishment o f LTP. Although both
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methoctramine LTE and HFS induced LTP seem to depend on activation o f kinases (Li, 

2002) it is highly likely that they both utilise different signalling mechanisms to achieve 

kinase activation and in turn that galanin modulates these signalling mechanisms 

differentially. The results o f the present study also contrast with another in vitro study 

where galanin was found to block the slow cholinergic EPSP induced by release o f 

endogenous ACh from the stratum oriens, as recorded intracellularly in the CAl neurons 

o f the ventral hippocampal slice (Dutar et al., 1989). Therefore, the results o f the 

present study suggest that in the hippocampus galanin has a facilitatory effect on 

methoctramine LTE independent o f its inhibitory effect on LTP and the cholinergic 

EPSP. Alternatively, the lack of conformity between the previous in vitro and present in 

vivo resuhs may be accounted for by differences between the slice preparation and the 

intact hippocampus as slice recording often entails removal o f the medial septal region. 

Removal o f the medial septum could alter the effect o f galanin on the hippocampus 

since galanin can increase ACh release in the ventral hippocampus following its inflision 

into the medial septum (Elvander et al., 2004). Intriguingly, the enhanced release o f 

ACh following infijsion o f galanin into the medial septum decayed substantially with 

time (Elvander et al., 2004), which is reminiscent o f galanin’s transient augmentation of 

methoctramine LTE in the present study. Somewhat similarly, galanin administered 

i.c.v. was previously shown to stimulate the cGMP pathway in the rat ventral 

hippocampus in vivo, via galanin receptors located outside the hippocampus (Console et 

al., 1998). Previous studies have found that galanin has the opposite effect on ACh 

release in the dorsal and ventral hippocampus, as local galanin injections increase and 

decrease ACh release, respectively (Schott et al., 2000). The location dependent nature 

o f the hippocampal response to galanin may account for the differential effects of 

galanin on hippocampal plasticity in vitro and in the present study.

Galanin and galanin receptors are over-expressed in limbic brain regions o f AD patients 

(Counts et al., 2003). Since galanin inhibits LTP (Coumis and Davies, 2002; Sakurai et 

al., 1996) and the release o f ACh (Schott et al., 2000), the increase in the galaninergic 

system that accompanies AD has been proposed to play a deletrious role in AD. 

However, galanin inftised into medial septum increases ACh release in the ventral
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hippocampus (Elvander et al., 2004) and excites choHnergic neurons o f the dBB 

(Jhamandas et al., 2002). Therefore, it has been suggested that galanin may play a 

compensatory role in AD by augmenting the release of ACh from the remaining 

cholinergic neurons, which would delay the progression of AD pathology linked to the 

decrease in cholinergic tone (Counts et al., 2003; Jhamandas et al., 2002). In the present 

study galanin facilitated and M3 5 blocked a cholinergic mediated enhancement in 

synaptic transmission. These findings are consistent with the proposition that the 

observed increase in the galaninergic system that accompanies AD may be part o f a 

homeostatic mechanism that compensates for the decrease in cholinergic tone.
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4.5 The role of protein kinase activation in methoctramine LTE

4.5.1 The role of PKA activation

In the present study the PK A inhibitor, Rp-cAMPs, blocked methoctramine induced 

LTE. This suggests that a methoctramine induced increase in cAM P and subsequent 

PKA activity is necessary for methoctramine LTE, The M 2 mACh receptor is mainly 

located presynaptically and negatively coupled to adenylyl cyclase (Caulfield, 1993), 

therefore antagonism o f  this receptor by methoctramine may cause an increase in the 

intracellular cAMP concentration and subsequent activation o f  PKA. Since 

methoctramine increases ACh release (Stillman et al., 1993), it may indirectly activate 

other cholinergic receptors, which have also been shown to modulate the cAM P/PKA  

pathway (Caulfield, 1993; Felder, 1995) and thereby may also contribute to the 

induction o f  methoctramine LTE. M 2 mACh are heteroreceptors, thus M 2 mACh 

antagonists may induce an increase in G ABA and glutamate release along with 

activation o f  their respective receptors, which may also be involved in methoctramine 

LTE (Freund, 2003; Hajos et al., 1998; Marchi and Raiteri, 1989; Nikbakht and Stone, 

1999; Quirion et al., 1995; Rouse et a l ,  2000; Stillman et al., 1996). Therefore, the 

activation o f  the cAM P/PKA pathway by a variety o f  cholinergic and non-cholinergic 

receptors could contribute to methoctramine LTE.

The PKA inhibitor, Rp-cAMPS, was also applied after the induction o f  methoctramine 

LTE to investigate if  a persistent enhancement o f  PKA activity is necessary for the 

maintenance-expression o f  methoctramine LTE. This was investigated using the dose o f  

Rp-cAM Ps that blocked the induction o f  methoctramine LTE but that did not 

significantly affect baseline transmission. Rp-cAM Ps applied 30 min after 

methoctramine transiently reduced LTE for approximately 40 min but did not 

persistently reverse the LTE. The reduction in LTE was maximal and statistically 

significant at 20 min after Rp-cAMPs. The transient nature o f  the reduction indicates 

that the maintenance o f  methoctramine LTE is independent o f  PKA activation.
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Alternatively, the dose o f Rp-cAMPS used may not have been sufficient to strongly 

inhibit PKA activity. The maintenance of LTP usually refers to a persistent biochemical 

signal that lasts in a cell, whereas the expression o f LTP refers to the action o f the 

persistent biochemical signal upon an effector such as a glutamate receptor (Sweatt, 

1999). Therefore, the inhibition o f maintenance should be irreversible. In contrast it has 

been suggested that the inhibition o f the expression of an LTP should be reversible as 

the LTP will recover following removal o f the inhibitor as the persistent biochemical 

process that maintains expression is unaffected (Sweatt, 1999). Therefore, the finding 

that Rp-cAMPs applied after the induction o f methoctramine LTE transiently reduced 

LTE suggests that PKA may be involved in the expression o f methoctramine-induced 

LTE.

Many studies have reported that the cAMP/PKA pathway is necessary for long lasting 

forms o f LTP (Abel et al., 1997, Bach et al., 1999; Frey et al., 1993; Nguyen and Kandel, 

1997; Silva et al., 1998; Woo et al., 2002), whereas studies on the role o f the 

cAMP/PKA pathway in the early phase o f LTP or less persistent forms of LTP have 

yielded variable results (Blitzer et al., 1995; Nguyen and Woo, 2003; Otmakhov and 

Lisman, 2002; Otmakhova et al., 2000; Winder et al., 1998; Woo et a l, 2002; Woo et al., 

2003). The ability o f Rp-cAMPS to block the induction but not persistently reverse the 

maintenance o f methoctramine LTE suggests that PKA is not required for the duration 

o f methoctramine LTE. The cAMP/PKA pathway was previously shown to gate the 

induction of LTP by decreasing phosphatase activity, which triggers the 

autophosphorylation o f CaMKII (Blitzer et al., 1998; Blitzer et al., 1995). Therefore, the 

cAMP/PKA pathway may play an essential but brief role during the induction of 

methoctramine LTE by triggering the autophosphorylation o f CaMKII. The idea that 

activation of PKA plays a brief role during the induction o f methoctramine LTE is 

consistent with a previous in vitro investigation o f LTP, where PKA was found to be 

activated at 2 and 10 min after the delivery o f HFS in the CAl area of the hippocampal 

slice (Roberson and Sweatt, 1996).
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4.5.2 The role of PKC activation

In the present study the PKC inhibitor, BIM, decreased methoctramine-induced LTE 

over the 2 hr recording period. Although this decrease was not statistically significant 

at the final time point it was significant at 60 min and therefore considered significant 

overall. The finding that BIM  decreased methoctramine LTE is somewhat consistent 

with a previous in vivo study where BIM blocked methoctramine LTE (Li, 2002). A  

role o f  PKC in methoctramine LTE is consistent with the idea that methoctramine may 

increase the release o f  ACh to initiate LTE, since PKC activation can account for many 

o f  the effects o f  muscarinic receptor activation (Cantrell et al., 1996; Malenka et al., 

1986a; May et al., 1999; Stratton et al., 1989). However, M 2  mACh are heteroreceptors, 

which suggests that increased G ABA and glutamate release along with the activation o f  

their respective receptors may also be involved in methoctramine LTE (Freund, 2003; 

Hajos et al., 1998; Marchi and Raiteri, 1989; Nikbakht and Stone, 1999; Quirion et al., 

1995; Rouse et al., 2000; Stillman et al., 1996). The stimulation o f  glutamatergic 

receptors is associated with activating PKC; therefore methoctramine LTE may recruit 

PKC via the activation o f  glutamatergic receptors and/or mACh receptors. The 

activation o f  M i, M 3 and M 5 mACh receptors and also glutamatergic receptors 

stimulates PIP2 hydrolysis by PLC, which generates a variety o f  second messengers, 

including IP3 and diacylglycerol. IP3 releases calcium fi-om intracellular stores, which in 

conjunction with diacylglycerol, displaces the inhibitory regulatory subunit and thus 

activates PKC.

PKC is a multigene family and multiple isoforms are transiently activated in the 

induction o f  LTP (Hrabetova and Sacktor, 1996; Sacktor et al., 1993). However a single 

isoform, PKMzeta, exists as an independent catalytic domain o f  the atypical PKCzeta 

isoform and is persistently activated during the maintenance phase o f  LTP (Hernandez et 

al., 2003). As the PKMzeta isoform lacks a regulatory subunit its activation does not 

require the presence o f  diacylglycerol or IP3. PKMzeta is formed following proteolytic 

cleavage o f  the full length PKCzeta atypical isoform (Kishimoto et al., 1983). However,
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particular forms o f stimulation may prompt de novo protein synthesis o f PKMzeta as 

metabolic labelling of PKMzeta found that tetanic stimulation induces the synthesis o f 

PKMzeta using neuronal specific PKMzeta mRNA, which is generated by an internal 

promoter within the PKCzeta gene (Hernandez et al., 2003).

The PKCzeta pseudosubstrate peptide inhibitor (ZIP) employed in the present study has 

also been reported to also inhibit PKMzeta (Ling et al., 2002) and therefore is referred to 

as an PKC/Mzeta inhibitor in the present study. In this present study ZIP blocked 

methoctramine LTE. The essential role o f PKC/Mzeta in methoctramine LTE is in 

contrast wdth a previous in vitro study in the CAl where ZIP, applied to the bath 120 

min before HFS, did not block the initial 60 min o f LTP induced by tetanic stimulation 

(Serrano et al., 2005). A recent in vivo study in the dentate gyrus reported that ZIP 

applied 1 hr after HFS rapidly reversed LTP (Pastalkova et al., 2006), however the effect 

o f ZIP on the induction o f LTP in vivo was not reported. The finding that ZIP blocks 

the induction o f methoctramine-induced LTE suggests that methocramine-induced LTE 

recruits PKC/Mzeta during the induction, whereas LTP induced by HFS appears to 

recruit PKC/Mzeta 60 min post the induction of LTP. The present experiments on 

methoctramine LTE were carried out in the intact hippocampus, whereas the previous 

studies on the effect o f ZIP on the induction of LTP by HFS were undertaken in the in 

vitro slice; therefore differences between the two preparations may influence the 

recruitment of PKC/Mzeta. Indeed there is evidence to suggest that differences between 

the in vivo and in vitro preparation influence the sensitivity o f PKC/Mzeta to inhibition 

as ZIP required 2 hours to reverse LTP o f the EPSP recorded in the CAl region in vitro 

(Serrano et al., 2005), whereas ZIP reversed LTP recorded in the dentate gyrus in vivo in 

15 minutes (Pastalkova et al., 2006).

ZIP reversed LTP maintenance-expression in the CAl region in vitro (Ling et al., 2006; 

Serrano et al., 2005) and in the dentate gyrus in vivo (Pastalkova et al., 2006) and 

therefore, it was decided to evaluate the effect o f ZIP applied after methoctramine. The 

application o f ZIP (at a dose that blocked the induction o f LTE) 30 minutes after 

methoctramine did not reverse methoctramine LTE. This finding suggests that
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PKC/Mzeta is not involved in the maintenance-expression of methoctramine LTE and is 

in contrast with the role of PKC/Mzeta in the maintenance-expression o f LTP induced 

by HFS in the dentate in vivo (Pastalkova et al., 2006) and in the CAl in vitro (Ling et 

al., 2002; Serrano et al., 2005),

In the present study BIM decreased, whereas ZIP completely blocked the induction of 

LTE by methoctramine, which suggests that at the dose used BIM does not effectively 

inhibit PKC/Mzeta. Previous studies found that a compound that is structurally related 

to BIM, staurosporine (Toullec et al., 1991), is not an effective inhibitor o f atypical 

PKC/Mzeta isoforms (Kochs et al., 1993; Ling et al., 2002; McGlynn et al., 1992). This 

suggests that BIM may not inhibit the atypical PKC/Mzeta isoforms. However, the 

results o f the present study suggest that BEM may partially inhibit the PKC/Mzeta 

isoform as this would explain the ability o f BIM to decrease methoctramine LTE. 

Alternatively, the finding that BIM reduced methoctramine LTE may indicate that 

methoctramine LTE also involves the activation o f typical PKC isoforms which are 

readily inhibited by BIM. Finally, the block of methoctramine-induced LTE by ZIP 

does not distinguish between the involvement o f PKMzeta and PKCzeta in 

methoctramine LTE.
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4.6 Amyloid P-protein (AP) does not block methoctramine LTE

Soluble non-fibrillar Ap has been proposed to initiate a complex cascade o f biochemical 

and cellular changes that culminate in cognitive impairment (Hardy and Selkoe, 2002; 

Selkoe, 2002; Selkoe and Schenk, 2003). This proposition is supported by the finding 

that soluble non-fibrillar Ap injected i.c.v. prior to HFS blocks LTP (Cullen et al., 1997) 

and likewise impairs learning (Flood et al., 1991). In the present experiments i.c.v. 

application o f soluble non-fibrillar Ap at a dose which was previously shown to block 

HFS induced LTP (I. Klyubin, TCD, personal communication), failed to block 

methoctramine induced LTE. The concentration o f soluble non-fibrillar Ap injected in 

the present study is believed to reflect the level o f soluble non-fibrillar Ap present in the 

brain o f  pre-dementia patients with AD (Walsh et al., 2000). Since the dose o f Ap used 

in the present study was previously shown to block LTP the lack o f effect o f AP on 

methoctramine LTE in the present study suggests that the mechanisms underlying 

methoctramine LTE and LTP induced by HFS are at least partially distinct.

Methoctramine LTE was blocked by M 1/M 3 receptor antagonists, which suggests that 

methoctramine LTE involves the activation o f M 1/M 3 mACh receptors (Li, 2002). A 

previous in vitro study found that Ap impairs muscarinic receptor coupling to G proteins 

(Kelly et al., 1996). Therefore, the lack o f effect o f Ap on methoctramine LTE suggests 

that the dose o f Ap used in the present in vivo study does not significantly impair the 

coupling of mACh receptors to G proteins. A previous in vitro study showed that the 

treatment of cultured hippocampal neurons with AP results in inhibition o f PKA and a 

concomitant decrease in glutamate stimulated phosphorylation o f CREB (Vitolo et al., 

2002). Ap inhibited LTP in the hippocampal slice and this inhibition was reversed by 

agents that enhance the cAMP/PKA pathway, which suggests that the Ap mediated 

inhibition o f LTP involves abrogation o f the cAMP/PKA pathway (Gong et al., 2004; 

Vitolo et al., 2002). In the present study the PKA inhibitor, Rp-cAMPs, blocked 

methoctramine LTE, which suggests that methoctramine LTE is PKA-dependent. The
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lack o f effect o f Ap on methoctramine LTE suggests that Ap did not sufficiently inhibit 

the cAMP/PKA relative to Rp-cAMPs.

The mechanism underlying methoctramine LTE appears to be insensitive to the 

deletrious effects of Ap, however it is also possible that methoctramine may oppose the 

adverse effects of Ap pre-treatment. Interestingly, a previous in vitro study showed that 

co-administration of Ap with an AChE inhibitor prevented the Ap induced suppression 

of LTP o f the population spike in the CAl region and AChE inhibitors alone did not 

significantly affect baseline or the magnitude o f LTP (Ye and Qiao, 1999). The 

mechanisms underlying methoctramine LTE and LTP appear to be distinct; however this 

previous in vitro study suggests that enhanced cholinergic transmission at the time o f AP 

application may actually compensate for the adverse effects o f AP on the hippocampus. 

Methoctramine has been previously shown to increase the release o f ACh in the 

hippocampus in vivo (Stillman et al., 1996) and therefore might overcome the inhibition 

o f LTP by Ap.
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V. Conclusion



5.0 Conclusion

A previous study found that M2 mACh receptor antagonists, AF-DX116 and 

methoctramine, injected i.c.v. induced a fast onset and long-term enhancement in 

synaptic transmission (Li, 2002). Likewise, in the present study the M2 mACh receptor 

antagonist, methoctramine, induced a fast (generally <8 min onset) and persistent (>2hrs) 

enhancement o f  synaptic transmission in the CAl region o f the intact hippocampus 

(methoctramine-induced LTE). Consistent with this, another M2 preferring mACh 

receptor antagonist, gallamine, also enhanced synaptic transmission. However, the onset 

o f the gallamine-induced enhancement was slower (20-3 Omin) compared to 

methoctramine (8 min). In contrast, BIBN-99, which is also an M2 mACh receptor 

antagonist failed to affect synaptic transmission, indicating that not all M2 mACh 

receptor antagonists share the ability to induce an LTE.

The role o f  a variety o f cholinergic and glutamatergic receptors in methoctramine LTE 

were investigated further. A broad spectrum nACh receptor antagonist, mecamylamine, 

did not significantly affect methoctramine LTE. However, an a7 nACh receptor 

antagonist, methyllycaconitine, appeared to delay the onset o f  methoctramine-induced 

LTE but did not block methoctramine LTE. These resuhs suggest that nACh receptor 

activation is not necessary for methoctramine LTE. Pre-treatment with the competitive 

NMDA receptor antagonist d-AP5 or the non-competitive antagonist memantine (at 

doses that blocked LTP induced by HFS) did not block methoctramine-induced LTE, 

which suggests that methoctramine LTE is NMDA receptor-independent. The group I 

mGlu receptor antagonist, LY367385, at a dose that blocks mGlul receptors failed to 

block methoctramine LTE, which suggests that methoctramine LTE is mGlul receptor- 

independent.

The role o f  the galaninergic sytem in methoctramine LTE was also assessed. The 

application o f  exogenous galanin increased the initial enhancement induced by 

methoctramine, whereas pre-treatment with the galanin receptor antagonist M35 blocked
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methoctramine LTE. These results suggest that the activation o f  galanin receptors is 

necessary for methoctramine LTE, and that increased galanin receptor activity during 

the induction (via exogenously applied galanin) can further facilitate the initial 

enhancement induced by methoctramine. Interestingly, pilot studies indicated that 

galanin injected after methoctramine did not seem to affect the methoctramine-induced 

LTE. The apparent lack o f  effect o f  galanin applied after methoctramine suggests that 

galanin acts on the induction but not the maintenance-expression o f  methoctramine LTE.

The role o f PKC and PKA in the induction and maintenance-expression o f  

methoctramine LTE was also studied. Pre-treatment with the PKC/Mzeta 

pseudosubstrate inhibitor (ZIP) blocked methoctramine-induced LTE. Thus 

methoctramine-induced LTE appears to involve the activation o f  the atj^ical 

PKC/Mzeta isoform. The block o f methoctramine-induced LTE by ZIP does not 

distinguish between the involvement o f  PKMzeta or PKCzeta in methoctramine LTE. 

Pre-treatment with the PKA inhibitor Rp-cAMPs blocked methoctramine LTE, which 

implies that the induction o f  methoctramine LTE is PKA-dependent. In contrast, the 

maintenance o f  methoctramine LTE appears to be independent o f  these kinases as 

application o f the PKA inhibitor or PKC/Mzeta inhibitor 30 min after the induction o f  

methoctramine LTE did not persistently reverse LTE. Pre-treatment with Ap at a dose 

that blocks HFS induced LTP did not affect methoctramine LTE, which suggests that 

methoctramine LTE is insensitive to inhibition by Ap.

The finding that methoctramine-induced LTE is NM DA receptor-independent and also 

insensitive to inhibition by Ap (at doses that block LTP induced by HFS) suggests that 

at least some o f  the mechanisms underlying methoctramine LTE are distinct from those 

underlying NMDA receptor-dependent LTP induced by standard HFS protocols at CAl 

synapses. In the present study antagonists o f  nACh receptors, NMDA receptors and a 

group I mGlu receptor antagonist did not block methoctramine LTE. Since, a previous 

study found that methoctramine LTE was blocked by M1/M3 receptor antagonists (Li, 

2002), the present study is consistent with the proposal that methoctramine LTE is 

predominantly dependent on mACh receptor activation.
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In the present study galanin facilitated the initial enhancement induced by 

methoctramine, whereas the galanin receptor antagonist M35 strongly inhibited 

methoctramine-induced LTE. Therefore, this study suggests that the galaninergic 

system is an effective modulator of a cholinergic mediated increase in synaptic 

transmission in the hippocampus. Pilot studies suggested that galanin acts on the 

induction but not the maintenance-expression o f methoctramine LTE and thus it would 

be interesting to extend these results. Analysis o f the effect of M3 5 on the maintenance- 

expression o f methoctramine LTE would help to clarify if  the maintenance-expression of 

methoctramine LTE is galanin receptor-dependent. The effect o f galanin and M35 on 

methoctramine LTE suggests that the role o f galanin in this and other forms of 

hippocampal plasticity warrants further study.
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