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Summary Methods and Results

The effect of antiviral therapy on MMP/TIMP expression in THP-1 and LX-2 cells 

and in HIV/HCV co-infected patients: MMP-9 activity was measured by gelatin 

zymography, MMP-9 mRNA expression by real-time RT PCR, and MMP-9, MMP-2, and 

TIMP-1 protein expression by ELISA. Cells were treated for 48 hr unless otherwise stated. 

In THP-1 cells, interferon-a2a (IFN-a2a) dose-dependently decreased MMP-9 activity 

relative to PMA (50 ng/ml) controls ( / ’<0.05). IFN-a2a (250 lU/ml) alone, or in 

combination with ribavirin (RBV; 10 |iM), decreased MMP-9 activity compared to PMA 

(44±4.2 and 60±1.4 versus 100±3.1 AU; /*<0.05) while RBV increased MMP-9 activity by 

~50 % (F<0.05). At the mRNA level, RBV alone and in combination with IFN-a2a 

increased MMP-9 expression by ~2.5 fold compared to PMA controls (771 ±116, 772±42 

versus 488±45, P<0.05), while IFN-a2a had no effect. Investigating this disparity between 

extracellular MMP-9 activity and intracellular MMP-9 mRNA it was found that RBV 

caused a robust increase in intracellular MMP-9 protein levels, while IFN-a2a had no 

effect. However, in combination with RBV, IFN-a2a reduced the RBV-mediated increases 

from 5.5±0.4 to 3.3±0.4 ng/ml (P<0.05). Co-treatment of THP-1 cells with the proteasome 

inhibitor MG 132 (200 nM) increased (P<0.05) MMP-9 activity compared to PMA alone 

(178±23 versus 100±6.1 AU). However, it did not alter the effect of IFN-a2a on RBV- 

mediated increased MMP-9 activity in THP-1 cells. However, assessment of the temporal 

effects of IFN-a2a on MMP-9 mRNA expression revealed an -65  % reduction (P<0.05) at 

24 hr compared to PMA controls, while no effect at 48 and 72 hr were recorded. RBV, 

IFN-a2a, and the combination o f both drugs, did not affect cell viability, or the process of 

differentiation from monocytes to macrophages, at the concentrations used in this study.

In LX-2 cells, IFN-a2a alone, or in combination with RBV, did not alter MMP-9 activity. 

However, RBV increased MMP-9 activity compared to PMA (134±4.1 versus 100±0.9



AU; /*<0.05). RBV and IFN-a2a alone, or in combination, did not alter MMP-9 mRNA 

expression compared to PMA controls.

Saquinavir (SQV; 5 |^M) and lopinavir (LPV; 10 |o.M) decreased (P<0.05) MMP-9 activity 

in THP-1 and LX-2 cells, respectively. Abacavir, zidovudine, efavirenz, nevirapine, and 

atazanavir had no effect in either cell line. Both, SQV and LPV had no effect on cell 

viability at the concentrations studied.

MMP-9, activity was 4 fold (P<0.05) higher in HIV/HCV co-infected and HIV mono­

infected patients than in healthy controls (86±16 and 82±15 versus 21±4.7 AU). In HCV 

mono-infected patients MMP-9 activity was similar to that o f healthy controls (32.9±5.1 

versus 21±4.7 AU). MMP-9 protein expression was also higher in HIV/HCV co-infected 

patients (367.6±73.6 ng/ml) and HIV mono-infected patients (332.2±54.1) compared to 

healthy controls (129±23.9 ng/ml; / ’<0.05). MMP-2 activity was similar in all groups 

studied, as was TIMP-2 expression. In HIV/HCV co-infected patients, RBV/PEG-IFN-a2b 

decreased (P<0.05) plasma MMP-9 activity by ~70 % (Baseline versus Day 14: 98.8±17.3 

vs 28.1±11.6 AU; / ’<0.05). MMP-9 protein expression was also reduced (Baseline versus 

Day 14: 458.7±95.7 vs 120.4±46.8 ng/ml; F<0.05). MMP-2 activity and TIMP-2 

expression was not altered following treatment with RBV/PEG-IFN-a2b in the HIV/HCV 

co-infected group.

The effect o f HIV-1 Tat clades B and C and HCV NS3 on MMP-9, TIM P-1, TNF-a  

and IL -ip  abundance in THP-1 ceils: MMP/TIMP and cytokine expression was 

measured by ELISA and MMP-9 activity by gelatin zymography. Cells were exposed for 

48 hr to Tat clades and NS3 at concentrations o f 37.5, 75, 150, 300, and 400 ng/ml, and 

0.5, 1, 5, and 10 ^ig/ml, respectively. HIV-1 Tat clade B increased MMP-9 expression at 

300 and 400 ng/ml concentrations compared to PMA (20 ng/ml) controls (1.3±0 and 1.5±0



versus 1±0 fold induction; f ’<0.05) but had no effect on MMP-9 activity at any 

concentration studied. TIMP-1 expression was increased by Tat B at 300 and 400 ng/ml, 

w ith a >6 fold increase at the latter concentration compared to PMA (4.4±0.52 and 7.1±1.7 

versus 0.99±0 fold induction; / ’<0.05). Tat B increased the expression o f  TN F-a dose- 

dependently against PMA (1.9±0.1, 1.9±0, 2.9±0.1, 3.3±0, and 4±0.2 versus 1±0.1 fold 

induction; / ’<0.05).

Over the concentration range studied, Tat clade C did not alter MMP-9 expression or 

activity. Tat clade C caused a subtle dose-dependent increase in TlMP-1 expression, 

reaching significance at concentrations o f 150, 300, 400 ng/ml compared to PMA (1.9±0.2, 

2+0.1, and 2.4±0.2 versus 1±0.1 fold induction; /*<0.05). TN F-a production was not 

altered by Tat clade C against PMA controls.

HCV NS3 protein increased MMP-9 expression at 5 and 10 |ig/ml compared to PMA 

(1.9±0.1 and 2.6±0.3 versus 1±0.2 fold induction; / ’<0.05) and increased MMP-9 activity 

at 10 ^g/ml (1.6±0 versus 1±0 fold induction; P<0.05). NS3 also increased TIMP-1 

expression at concentrations o f 1, 5, and 10 |ag/ml, compared to PMA controls, reaching 

significance at the latter two concentrations (4.7±0.9, and 4.4±1.3 versus 0.7±0.1 fold 

induction; / ’<0.05). NS3 induced TNF-a expression >3 fold at the highest concentration 

studied (10 ^g/ml) compared to PMA (4.3±0.6 versus 1±0.6 fold induction; / ’<0.05). 

Finally, NS3 increased IL -ip  expression in a dose-dependent manner at concentrations o f 

1, 5, and 10 |ag/ml against PMA controls (1.8±0, 3.2±0, and 4.2±0.1 versus 1±0 fold 

induction; P<0.05).

The effect of HIV-1 Tat clades A, B, C, and D on IFN-y and TNF-a production by 

CD3^ T cells and Vy9V52 T cells: The percentage o f cells staining positive for IFN-y and 

TN F-a was determined by flow cytometry while cytokine secretion was quantified by



ELISA. Cells were exposed to Tat clades for 48 hr. The percentage o f CD3^ T cells that 

stained positive for IFN-y were similar to background under non-stimulated conditions and 

HMB-PP/IL-2 (10 nM/50 U/ml)-stimulated conditions. PMA/I (10 ng/ml/1 ^g/ml) 

stimulation increased (P<0.05) the number o f cells staining positive for IFN-y (38±6.8 

versus 0.4±0.1 and 1.3±0.5 %). The percentage o f TNF-a positive cells was also minimal 

in unstimulated and HMB-PP/IL-2-stimulated cells but increased in cells exposed to 

PMA7I (41±9 versus 0.53±0.2 and 1.4±0.6 %; P<0.05). When CD3"^ T cells were exposed 

to Tat clades A, B, C, and D (200 ng/ml) under either basal, or stimulated conditions, there 

was no effect on the percentage o f cells producing IFN-y or TNF-a.

The mean percentage o f Vy9V52 T cells staining positive for IFN-y under basal conditions 

was 2.0±0.4 % and was not altered by exposure to any Tat clades. Stimulation with HMB- 

PP/IL-2 induced an -2 4  fold increase in IFN-y staining (48±14 versus 2.0±0.4 %; /*<0.05). 

PMA/I stimulation caused an -3 4  fold increase in IFN-y staining (67±14 versus 2.0±0.4 %; 

F<0.05). As in unstimulated cells, exposure to Tat clades A, B, C, and D did not alter IFN- 

y positive cells at the concentration studied. Mean percentage o f Vy9V62 T cells staining 

positive for TNF-a under basal conditions was 2.9±0.6 % and was not altered by exposure 

to any o f  the Tat clades investigated. HMB-PP/IL-2 stimulation caused an -1 4  fold 

increase in TN F-a staining (41±12 versus 2.9±0.6 %; P<0.05). PMA/I stimulation caused 

an -2 4  fold increase in TN F-a staining (71±12 versus 2.9±0.6 %; P<0.05). As in 

unstimulated cells, exposure to Tat clades A, B, C, and D did not alter the percentage o f 

TNF-a positive cells at the concentration studied.

In unstimulated CD3^ T cells, Tat clades A, B, C, and D did not alter IFN-y production 

compared to untreated (medium) controls (49±1.6, 44±6.4, 46±3.5, and 35±2.9 versus 

43±3.8 pg/ml respectively). Following stimulation by HMB-PP/IL-2, IFN-y levels did not 

increase significantly. Tat clades A, C, and D did not alter IFN-y secretion, but Tat clade B



elicited an -fold increase in IFN-y levels relative to HMB-PP/IL-2 controls (105±4.2 

versus 57±5.9 pg/ml; P<0.05). PMA/I stimulation induced IFN-y secretion (734±17 versus 

43±3.8 pg/ml; P<0.05), however, this was not altered by any of the Tat clades investigated. 

'FNF-a was undetectable under non-stimulated conditions. Exposure of cells to Tat clades 

at the concentrations studied did not induce TNF-a to detectable levels. Stimulation with 

HMB-PP/IL-2 induced (P<0.05) TNF-a secretion (252±33 pg/ml). However, none of the 

Tat clades studied altered this response. PMA/I also increased TNF-a production (752±13 

pg/ml; P<0.05), and the response was not altered by the presence of Tat clades 

investigated.

In Vy9V82 T cell lines Tat clades A, B, C, and D significantly (P<0.05) increased IFN-y 

secretion compared to untreated cells, with clade B generating the largest increase (26±1.5, 

48±1.4, 24±1.2, and 22±2.7 versus 13±0.8 pg/ml). Re-stimulation with HMB-PP/IL-2 

resulted in an ~4 fold increase of IFN-y levels (51±8.7 versus 13±0.8 pg/ml; P<0.05), and 

under these conditions. Tat clade B, but not A, C, or D, further increased secretion 

(117±5.7 versus 51±8.7 pg/ml; /*<0.05). PMA/I re-stimulation also resulted in increases of 

IFN-y secretion by these cells (80±20 versus 13±0.8 pg/ml; / ’<0.05), and again Tat clade 

B, but not A, C, or D, induced an ~4 fold IFN-y production compared to PMA/I controls 

(326±5.2 versus 80±20 pg/ml; P<0.05).
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Chapter 1.

Introduction



1.1 Human Im m unodeficiency Virus-1 (HIV-1)

1.1.1 Origin, classification and structure

Acquired immunodeficiency syndrome (AIDS) was first reported in the United States of 

America in 1981 and, following a subsequent period of intensive research, human 

immunodeficiency virus (HIV) was identified as the causative agent. Originally defined as

lymphadenopathy-associated virus (LAV) and human T-lymphotropic virus type III

1 2(HTLV-III) ’ , the virus was most likely brought from Central Africa to Haiti, then from 

Haiti to the USA, before eventually spreading worldwide There are two major subtypes 

of the virus, HIV-1 and HIV-2, believed to have emanated from strains of simian 

immunodeficiency virus (SIV) in chimpanzees and sooty mangabey monkeys, respectively 

The predominant agent of global HIV infection is HIV-1, with HIV-2 being restricted 

mainly to specific regions of Western and Central Africa and perceived as less virulent 

The virus is classified as a member of the Lentivirus genus of the Retroviridae family and, 

typical of such viruses, disease progresses over a chronic course, with a long period of 

clinical latency and persistent viral replication. The retrovirus genome features two 

identical copies of single-stranded RNA molecules and is characterised by the presence of 

the structural genes Gag, Pol, and Env. The Gag gene encodes the structural proteins o f the 

core (p24, p7, p6) and matrix (p i7) and the Env gene encodes the envelope glycoproteins 

gpl20 and gp41, responsible for the recognition of cell surface receptors. The Pol gene 

encodes for enzymes that are critical for successful viral replication, namely reverse 

transcriptase (responsible for the conversion of viral RNA into DNA), integrase 

(incorporates viral DNA into host chromosomal DNA), and protease (cleaves large Gag 

and Pol protein precursors into their components). A complement o f three additional 

regulatory proteins. Tat, Rev, and Nef, and three accessory proteins, Vif, Vpr, and Vpu, not
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found in other retroviruses, also have a fundamental role in the modulation of viral 

replication.

1.1.2 Replication cycle

HIV entry into target cells is initiated by gpl20 binding to the monomeric glycoprotein 

CD4 receptor and one chemokine co-receptor, either CXCR4 or CCR5  ̂ (Figure 1.1). The 

stability afforded by this double bind facilitates the N-terminal fusion peptide gp41 in 

successful penetration of the cell membrane. CD4 is expressed on the cell surface of the 

majority of circulating T lymphocytes, on T cell precursors within the bone marrow and 

thymus, on monocytes/miacrophages, eosinophils, dendritic cells and microglial cells of the 

central nervous system. However, CXCR4 and CCR5 are differentially expressed on HIV 

cellular targets, giving rise to the phenomenon of viral tropism CXCR4 is present on 

many cells including T lymphocytes, while CCR5 is more abundant on 

monocytes/macrophages, dendritic cells and activated T lymphocytes. Preferential binding 

to either receptor therefore, distinguishes HIV-1 strains that are T lymphocyte-tropic (T- 

tropic) or macrophage-tropic (M-tropic), which is manifest in differential disease

o

pathogenicity and progression .

Subsequent to the fusing of viral and cell membranes, the viral core is released into the 

cytoplasm of the cell where the process of uncoating liberates viral RNA. Through its 

ribonuclease H active site, the reverse transcriptase enzyme initiates the conversion of the 

viral RNA genome into full length, double-stranded, pro-viral DNA which is in turn 

inserted into the host chromosome by the action of the enzyme integrase Upon cell 

activation, transcription of pro-viral DNA into mRNA is stimulated by the binding of Tat 

to the transactivation response element (TAR) site of the long terminal repeat (LTR), 

facilitating the formation o f longer RNA transcripts and increasing the production of viral
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mRNA several hundred fold Rev is responsible for the subsequent transportation of 

viral mRNA from the nucleus to the cytoplasm and the expression of the structural proteins 

Gag, Pol and Env. The N ef regulatory protein is considered a major virulence factor as it 

perpetuates high viral loads through Fas L-mediated apoptosis o f uninfected bystander 

CD4^ T cells It also facilitates infected cells in evading the host cellular immune 

response by downregulating cell surface CD4 and class I major histocompatibility (MHC) 

molecules Similarly, accessory proteins Vif, Vpr, and Vpu counteract innate 

antiretroviral factors such as the AP0BEC3G enzyme induce T cell depletion and 

antagonise the antiviral function of tetherins, proteins which retard the cell surface release 

of virions respectively.

Successfully released virions from the infected cell, emerge by budding as immature viral 

particles which, when the Gag polyprotein is cleaved by HIV-1 protease, undergo marked 

morphological change resulting in the formation of mature, infectious virus particles. The 

final virion is composed of an internal cone-shaped capsid built from p24gag capsid protein 

surrounded by the viral lipid envelope and scaffolded by matrix protein pl7gag spiked with 

glycosylated gpl60 (gpl20 and gp41)
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Figure 1.1 Schematic representation of the HIV-1 replication cycle. Binding of envelope 

proteins to CD4 and CCR5 cell surface receptors facilitates viral attachment (1). Fusion of 

the virus with the cell releases its contents into the cytoplasm (2). Reverse transcriptase 

(RT) initiates the reverse transcription of viral RNA into double-stranded DNA (3). 

Integrase then transfers the copy DNA into the cell nucleus and facilitates its integration 

into the host cell genome (4). Cellular machinery transcribes pro-viral DNA into mRNA 

that migrates to the cytoplasm, where ribosomes produce the encoded proteins (5). Viral 

RNA and replicative enzymes then move toward the cell membrane, where they form a 

budding virus particle (6). Modification of viral protein chains by the protease enzyme 

enables virions to mature into a form capable of infecting a new cell (7). Diagram adapted 

from Watkins, 2008
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1.1.3 Distribution

In 2009, UNAIDS estimated that 33.3 miUion people worldwide were HIV-1 infected and 

that 2.6 million new cases o f infection occurred that year (UNAIDS Report on the Global 

AIDS Epidemic, 2010). The same organisation state that HIV-1 is currently the fourth 

biggest killer in the world, with an annual death toll o f about 2 million, the vast majority of 

which occur in sub-Saharan Africa where an estimated 22.5 million individuals have 

contracted the virus. The worst affected countries include South Africa, Botswana, 

Mozambique, Zimbabwe, United Republic of Tanzania and Ethiopia, where in some cases, 

the prevalence of infected adults can be greater than 10%. The estimated number o f people 

currently living with HIV in Asia and the Pacific region is >4 million, in Latin America 

and the Caribbean, 1.4 million, in Eastern Europe and Central Asia, 1.4 million, in Western 

and Central Europe, 820,000, and in North America, 1.5 million.

1.1.4 Diversity

HIV-1 is characterised by an extensive genetic diversity, producing variants o f distinct 

molecular subtypes and recombinant forms that are unevenly distributed throughout the 

world. Such variability is a distinct advantage for the virus in evading the host immune 

response, and to counter the effects of therapeutic and prophylactic measures 

Contributory factors to HIV variability are; an extremely high degree of error in the proof­

reading capacity o f the reverse transcriptase enzyme, introducing, on average, one 

substitution per genome per replication round , the rapidity o f viral replication, estimated 

at 10'° virions / day in the infected individual and the potential for an infective virus to 

mutate within the host, leading to the expression of a series o f related molecular clones .
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Three classes of HIV-1 have emerged across the globe: M (major), O (outlier) and N (non-

M /non-0). Group M, which accounts for >90% of documented HIV-1 infections

worldwide, can be further subdivided into 9 phylogenetic subtypes, or clades, of A-D, F-H,

and J and K (Figure 1.2), in addition to several circulating recombinant forms HIV-1

clade B predominates in Western industrialised nations, and in Latin America and the

Caribbean, but represents a mere 11% of global infections. In contrast, clade C comprises

some 48% of worldwide infections, and is the predominant subtype in Southern and

Eastern Africa and India Within group M, average inter-subtype genetic variability is

15% for the Gag gene and 25% for the Env gene Furthermore, there are emerging

subtypes within subtypes, appearing to be phylogenetically more closely related to each

other than to other subtypes, with, for example, clades A and F currently classified as A1

and A2, and FI and F2, respectively HIV-1 inter-clade recombinant forms have also

been identified. ‘Circulating recombinant forms’ (CRFs) arise from individuals infected

with two or more viral subtypes and are designated as such when an identical recombinant

28virus is characterised in at least three epidemiologically unrelated people . Populations 

featuring multiple subtypes and CRFs increases the probability that individuals will 

become ‘superinfected’, resulting in the generation o f several recombinants, referred to as 

‘unique recombinant forms’ (URFs), which are then classified as CRFs when spread to 

others
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Figure 1.2 The global distribution o f HIV-1 subtypes and circulating recombinant forms 

(CRFs). Diagram taken from Taylor et a l ,  2008

1.1.5 Disease progression

Viral transmission is dependent on direct contact with infected blood or secretions,

31commonly through sexual intercourse or intravenuous drug use (IVDU) . Withm 10-12 

days o f infection, viral RNA is detectable in the blood, and increases rapidly to peak levels

■j 2  -j-

during the acute phase o f  infection . Concurrently, CD4 T cell numbers decline 

dramatically and most patients present with flu-like symptoms o f fever, skin rash, oral 

ulcers, lymphadenopathy, pharyngitis, malaise, myalgia and weight loss Over a 

subsequent 7-14 day period, most patients become asymptomatic, HIV viremia declines.



and CD4^ T cell numbers recover (although not to pre-infection levels), reflective o f innate 

and adaptive antiviral immune responses Nonetheless, the disease continues to progress, 

viral replication continues, and immune cells are subjected to chronic activation, 

particularly in lymphoid compartments where tissues are destroyed as a result. Host failure 

to exert viral containment and reconstitution of memory T cells in mucosal lymphoid tissue 

and nodes, heralds a decline in €04"^ T cells to < 200 cells/|il and an increased risk of 

opportunistic infections by bacteria, other viruses, fungi and parasites, and the 

development o f tumours. Progression to AIDS is characterised by lymph node swelling, 

severe weight loss, fever, and respiratory, gastrointestinal, and neurological pathology, and 

the development of potentially fatal diseases such as Kaposi’s sarcoma and non-Hodgkin’s 

lymphoma The chronology and severity of disease progression from the time o f initial 

infection is highly dependent on the infecting virus isolate and the ability of the host to 

mount an effective antiviral cellular and humoral response. Indeed, a proportion of infected 

individuals, dubbed ‘elite controllers’, maintain undetectable HIV viremia for a period of 

many years and show no signs o f disease progression HIV-1 resistance in such patients 

may be directly attributable to cellular correlates such as CDS"  ̂T cell-mediated response 

or genetic correlates such as homozygosity for the A3 2 alleic variant of the CCR5 protein 

or human leukocyte antigen (HLA) polymorphisms, notably HLAB*27 and B*57 

alleles

The clinical manifestations of HIV-1-infected patients are primarily a consequence o f the 

capacity of the virus and its components to disrupt immune system functions. The HIV-1 

Tat protein, previously referred to for its role in viral replication (section 1.1.2), is a known 

pleiotropic factor that contributes to disordered immunity.
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1.1.6 Tat and its contribution to disease pathogenesis

HIV-1 /rara-activator protein, Tat, is an 86-101 amino acid polypetide (9-11 kDa) essential 

for initiating transcription and RNA chain elongation of the HIV-1 LTR. Two exons 

encode the full length 101 amino acid Tat, the first o f which encodes residues 1-72, and the 

second, residues 73-101 Tat can be arbitrarily considered as containing several domains 

(Figure 1.14), with first exon encoding the N-terminal acidic domain 1 (aa 1-20), the 

highly conserved cysteine-rich domain 2 (aa 21-40), the core region domain 3 (aa 41-48), 

and the arginine and lysine-rich basic domain 4 (aa 49-72). The second exon encodes the 

C-terminal domain 5, which starts at amino acid position 73. The domains of the first exon 

are considered sufficient for full transactivating function, while the second exon is not 

required for transactivation In the absence of virally-encoded Tat, very low level gene 

expression is directed by the pro-viral LTR, but in the presence of Tat, transcription is 

increased several hundred-fold Tat binds to a short, c«-acting RNA target composed of 

a stem, a bulge and a loop, that is known as the /ra«5-activation response region (TAR). 

Located at the 5’ end of HIV LTR, TAR association enables Tat to recruit the complex of 

cyclin-dependent kinase 9 (CDK9) forming the positive transcription elongation factor B 

complex. CDK9, in turn phosphorylates the carboxy terminus domain o f RNA polymerase

II, enhancing elongation o f the viral promoter

Tat represents a highly significant factor in the pathogenesis of HIV disease. The protein is 

actively released from unruptured, HIV-infected cells and is detectable in ex vivo culture 

supernatants and in the serum of HIV-infected patients Tat has the ability to enter 

cells, most likely through cell membrane heparan sulphate proteoglycans, and to 

translocate to the nucleus, maintaining an active form as it does so As a consequence, 

HIV LTR transcriptional activity within infected, but otherwise quiescent cells can be 

stimulated by Tat, thereby increasing the amount of infectious virions in circulation
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Furthermore, Tat can ^rara-activate cellular genes such tumour necrosis factor-a (TNF-a), 

interleukin-2 (IL-2), and interleukin-6 (lL-6) in uninfected cells, potentially priming 

them for subsequent infection with HIV-1. Indeed, Tat activates T lymphocytes in vitro, 

rendering them highly permissive for productive HIV-1 infection Tat also activates 

uninfected B lymphocytes, indicating that it may contribute to B cell hyperactivation 

during early stage HIV-1 infection and activation-induced B cell death mediated by Fas 

during late stage HIV-1 infection Additionally, Tat impairs the cytotoxic activity of 

natural killer cells induces chemokine HlV-1 coreceptors in PBMCs and stimulates 

the chemotaxis of numerous cell types, including the major targets of HIV infection 

Finally, Tat is also a suspected cofactor in AIDS-associated pathologies such as Kaposi’s 

sarcoma and HIV-associated dementia (HAD)

Figure 1.3 Diagram depicting the physical domains of the 101 amino acid isoform of HIV- 

1 Tat protein. Diagram adapted from Jeang et al, 1999 .

1.1.7 Co-infection with hepatitis C virus (HCV)

HIV and HCV co-infection is common among intravenous drug users (IVDUs) and 

haemophiliacs who received contaminated blood or blood products prior to routine 

serologic screening o f donated blood for HCV. One-fourth to one-third o f patients infected 

with HIV in Europe and the United States are co-infected with HCV, and up to 10% of all
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HCV-infected patients are co-infected with HIV. This suggests a global co-infection 

prevalence o f 4-5 million individuals

Co-infection with HCV, in addition to increasing the rate o f HCV replication and 

augmenting the dysregulation o f the immune response accelerates the progression o f 

liver fibrosis . Furthermore, decompensated liver disease and hepatocellular carcinoma 

occur with greater frequency in co-infected patients than in HCV mono-infected patients 

The mechanistic basis for accelerated hepatic damage may be a consequence o f 

generalised immune suppression resulting from diminished CD4^ T cell numbers, or, as a 

number o f  studies have suggested, a result o f  intrahepatic interactions between HIV and/or 

viral proteins and resident cells. For example, Tuyama and colleagues have demonstrated 

that HIV can infect hepatic stellate cells (HSCs), promoting the expression and secretion o f 

collagen I and monocyte chemoattractant protein-1 (MCP-1), and also enabling the transfer 

o f infectious virus to lymphocytes in co-culture ™. Type I collagen production by HSCs is 

a hallmark o f fibrogenesis and MCP-1, a potent chemoattractant for monocytes and 

lymphocytes, is up-regulated during chronic hepatitis and correlates with inflammatory 

infiltration o f the portal tract Notably, other researchers have shown that HIV envelope 

protein gp l20  mediates the chemotaxis o f HSCs by upregulating MCP-1, and additionally, 

induces the expression o f  tissue inhibitor o f  metalloproteinase-1 (TIMP-1) Furthermore, 

gp l20  induces HCV replication and enhances HCV-regulated, profibrotic, transforming 

growth factor-pl (TGF-(31) in hepatoctyes

Finally, therapeutic side-effects also warrant consideration as, in a percentage o f co- 

infected patients in receipt o f  highly active antiretroviral therapy (HAART), particularly 

protease inhibitor-based regimens, hepatic damage is exacerbated by hepatotoxicity and 

necro-inflammatory lesions Nevertheless, the degree o f pre-existing liver fibrosis ,
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and infection with HCV genotype 3 are also important risk factors for hepatotoxicity, 

regardless of HAART composition.

1.2 Hepatitis C Virus (HCV)

1.2.1 HCV disease

Following the identification of hepatitis A and B viruses in the 1970s, a blood borne, non- 

A, non-B agent, responsible for the majority of transfusion associated cases of hepatitis, 

was recognised. The culprit was not identified until 1989 as the development of 

recombinant DNA technology allowed the cloning of a virus genome which was 

subsequently named hepatitis C virus In addition to contaminated blood transfusions, 

the main routes o f transmission are intravenous drug use and reused medical supplies. 

Sexual transmission of HCV is possible, and recent evidence indicates that risk of

transmission is commensurate to increasing numbers of sexual partners, particularly if

80  82those partners are co-infected with HIV ' .

HCV currently infects some 170 million people worldwide and is believed to kill an 

estimated 350,000 people each year Its global distribution is disparate but the highest 

rates of transmission occur in Egypt, where at least 14 % of the population are infected, 

and in nations where HIV is widespread, there is the suspicion that large numbers of HCV

o c

infected individuals remain undiagnosed (Figure 1.3). HCV infection causes acute 

hepatitis, which is self-resolving in 20-50 % of cases but does not confer permanent 

immunity. In the majority o f cases (50-80 %), a chronic disease is manifested, resulting in 

cirrhosis (in -10-20 % of cases after 10-20 years), and hepatocellular carcinoma (1-4 %

• 84incidence rate per year in patients with HCV-related cirrhosis) .
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A feature o f HCV, similar to HIV, is a propensity for genomic mutation leading to the 

generation of a number of viral subtypes. Phylogenetic analysis of full-length or partial 

sequences of HCV strains from different geographical regions has identified six main 

genotypes, numbered 1 to 6, and a large number o f subgroups within each genotype, 

identified by lower case letters. Furthermore, HCV displays heterogeneity within an 

individual patient as a series of quasispecies, which are variants of the predominant 

infecting strain Such a large number of variants, a consequence of the high error rate of 

the viral RNA-dependent RNA polymerase (RdRP), has implications for the severity and 

aggressiveness of liver infection as well as response to therapy.
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Figure 1.4 Global prevalence of HCV infection and the distribution of the six major

85genotypes by continent. Diagram adated from Gravitz, 2011 .
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1.2.2 M olecular biology of HCV

Hepatitis C virus (HCV) is a small (-50 nm diameter), enveloped, positive strand RNA 

virus belonging to the Hepacivirus genus in the Flaviviridae family. The HCV genome is a 

single-stranded RNA molecule containing a single open reading frame (ORF) encoding a 

polyprotein o f approximately 3,000 amino acids. The ORF is flanked by 5’ and 3’ 

untranslated regions (UTRs) bearing highly conserved RNA structures essential for 

replication and the initiation o f translation. The 5’ UTR contains an internal ribosome entry 

site (IRES) that binds the 40S ribosomal subunit and directs polyprotein translation. The 

polyprotein precursor is then subjected to processing by host and viral proteases both 

during and after translation on the endoplasmic reticulum (ER) to yield ten mature viral

• 87protems . Three o f these proteins are structural, consisting of a core protein (C), which 

forms the viral nucleocapsid, and two envelope glycoproteins (El and E2). Six are non- 

structural proteins, NS2, NS3, NS4A, NS4B, NS5A, and NS5B. Structural and non- 

structural proteins are separated by the small membrane peptide p7 (Figure 1.4).

1.2.2.1 HCV structural proteins

The HCV core protein (C) is a RNA-binding protein which forms the structural component 

of the virus particle It is cleaved from the viral polypeptide by a host signal peptidase 

cleavage at the C-terminus, producing the immature form of the protein, which when 

processed further by a host signal peptide peptidase, yields the mature form Most of the 

C protein is found in the cytoplasm, bound to ER membranes or located on the surface of 

lipid droplets (intracellular organelles involved in lipid storage and vesicular trafficking), 

while a small amount is also found in the nucleus. In addition to its role in nucleocapsid 

formation, HCV core can also function as a modulator o f cell signalling, apoptosis, 

proliferation, and lipid metabolism
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HCV El and E2 are type-I transmembrane glycoproteins that form heterodimers on the ER 

where they are glycosylated, and, following cleavage by the host signal peptidase, their 

signal-like sequence is reoriented towards the cytosol, leading to a single transmembrane 

passage El and E2 are thought to induce fusion between the viral envelope of the host 

cell membrane participate in the assembly of infectious particles and, because of 

their exposure on the cell surface, act as a ligand for cellular receptors such as CD81, thus 

facilitating viral entry

1.2.2.2 HCV non-structural proteins

NS2 is a non-gylcosylated integral membrane protein containing a dimeric cysteine 

protease with two composite active sites. Considered non-essential for the formation of the 

replication complex NS2 mediates the proteolytic cleavage of the NS2-NS3 junction, a 

zinc-dependent autocatalytic cleavage that detaches NS2 from the downstream portion of 

the precursor polyprotein

NS3 contains a serine protease domain and an RNA helicase domain. Protease activity of 

NS3 is enhanced by NS4A as a co-factor, as it allows the induction of a conformational 

change that induces a repositioning of the catalytic triad Furthermore, NS3 has no 

transmembrane domain, but when co-expressed with NS4A, is found in association with 

ER or ER-like membranes The NS3-4A complex is responsible for downstream NS3 

polyprotein cleavage, activity essential for the generation o f components o f viral RNA 

replication and has also been shown to abrogate host cell antiviral immune responses 

The NS3 helicase domain comprises the C-terminal amino acids o f NS3 and possesses 

multiple functions, including RNA-stimulated NTPase activity, RNA binding, and the 

unwinding of RNA regions at the termini of positive and/or negative strands

15



NS4B is a hydrophobic non-structural protein containing four transmembrane proteins that 

are palmitoylated in its C terminal region. Palmitoylation assists the process of 

oligomerisation which is regarded as essential for HCV replication The protein is also 

believed to induce intracellular membrane alterations. Membranous structures augmented 

by NS4B most likely support RNA replication

NS5A is a phosphoprotein containing a unique amphipathic alpha-helix at its N-terminus 

and is detected in association with ER or ER-derived membranes. NS5A is an integral part 

o f HCV genome replication and is being investigated as a modulator of the interferon 

immune response, a potential mechanism for viral evasion of host defences

NS5B is a membrane-associated protein containing a C-terminal anchoring transmembrane 

domain. NS5B is an RNA-dependent RNA polymerase (RdRP), essential for viral 

replication, and is thus a key protein for specifically targeted antiviral therapy

Finally, the p7 polypetide, located at the junction of the structural and non-structural 

proteins, is a small, intrinsic membrane protein composed of two transmembrane domains

I
with both its N- and C- termini oriented toward the lumen of the ER . It belongs to a 

family of viral proteins called viroporins that form ion channels and serves an essential role 

in the production of infectious viral particles during the HCV life cycle
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Figure 1.5 (a) Schematic representation of the structure o f HCV genome showing the long 

open reading frame (ORF) encoding structural and non-structural genes, and 5’ and 3’ 

untranslated regions (UTRs). The polyprotein processing scheme is shown below. Closed 

circles indicate signal peptidase cleavage sites; the open circle indicates signal peptide 

peptidase cleavage site, (b) The topology o f HCV proteins with respect to a cellular 

membrane. Diagram taken from Lindenbach and Rice, 2005
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1.2.3 Virus entry, replication, and maturation

Infection by HCV occurs only in humans and chimpanzees and is mediated through 

interactions between its viral glycoproteins and a series of cell surface molecules, primarily 

in hepatocytes but also in B cells and dendritic cells amongst others (Figure 1.5). Host 

proteins, CD81, scavenger receptor class B type 1 (SR-Bl), and claudin-1 (CLDNl) are 

thought essential co-receptors for viral entry. Glycosaminoglycans (GAGs) and possibly, 

low density lipoprotein (LDL) receptors, have also been suggested to facilitate virus 

uptake. Notably though, in vitro cell models exist that express all of these entry factors yet 

remain resistant to HCV infection, suggesting that one or more essential molecule/s has yet 

to be identified The E2 envelope protein interacts with the large extracellular loop of 

CD81 and activates Rho GTPases, stimulating an actin-dependent re-localisation to 

intercellular contact regions, enabling virus contact with the CLDNl co-receptor A 

clathrin-dependent endocytosis ensues ' and fusion of the virus to the cell membrane is 

potentially assisted by the presence o f heparan sulphate GAGs and/or LDL While 

treatment o f target cells with glycosidases has been shown to reduce HCV infectivity 

and anti-LDLr antibodies demonstrate modest inhibition of HCV entry a definitive case 

for the role of each remains to be established.

HCV enters the cell by clathrin-mediated endocytosis ' leading to the release of a single­

stranded, positive-sense HCV RNA genome which is directly translated. HCV translation 

initiation occurs through the formation of a binary complex between the internal ribosomal 

entry site (IRES) and the 40S ribosomal subunit. This formation is followed by the 

assembly o f a 48S-like complex at the AUG initiation codon after the association of 

eukaryotic initiation factor 3 (eIF3) and the ternary complex of eIF2-Met-tRNA-GTP ' 

The rate limiting step is the GTPase-dependent association of the 60S subunit to form an 

SOS complex Translation of the HCV open reading frame (ORF) produces a
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polyprotein precursor that is co- and post-translationally processed by cellular and viral 

proteases to form the mature structural and non-structural proteins. The exact composition 

o f a membrane-associated RNA replication complex requires much further elucidation. 

Studies have suggested interactions between HCV RNA replication and cellular lipid 

metabolism for example and a diverse range of host factors including cyclophilin B (a 

cytosolic peptidyl-prolyl cis-trans isomerase), and FKBP8 (a member of the FK506- 

binding protein family) and Hsp90 (an abundant cellular heat shock protein), are thought to 

influence NS5A and NS5B activity As systems allowing the production of

sufficient amounts of virus particles have only recently been developed, little is known 

about late-stage HCV lifecycle. Particle formation may be initiated by core protein 

interactions with the RNA genome, leading to selective packaging and a repression of 

translation from the IRES, suggesting a potential mechanism for a translation / replication 

switch to assembly Additionally, El and E2 retention in ER compartments might 

facilitate nucleocapsid envelope acquisition by budding through ER membranes and 

eventual export via secretory pathways
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Figure 1.6 Schematic representation of HCV Hfe cycle. After entry into the cell and 

uncoating, the HCV genome ftinctions in three main roles; translation, replication and 

packaging into nascent virions. Diagram taken from Lindenbach and Rice, 2005

1.2.4 Immune response to HCV infection

Onset of HCV infection is typically asymptomatic and is usually not diagnosed until serum 

alanine aminotransferase (ALT) levels increase in response to the development of acute 

hepatitis, usually some 10-14 weeks later. At such time, HCV antibodies are detectable and

1 OftHCV-specific T cell populations appear in the liver , a consequence of the adaptive 

immune response.
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Within days of the initial infection however, innate immune responses are activated, the 

most significant of which is the induction of intrahepatic type I interferon (IFN) gene 

expression and associated IFN-stimulated genes (ISGs) Recognition o f viral RNA by 

hepatocytes is accomplished by toll-like receptor 3 (TLR3) and retinoic acid-inducible 

gene I (RIG-I), which signal through caspase activation and recruitment domain inducing 

IFN-beta (CARDIF), toll-interleukin-lR domain-containing adaptor inducing IFN-beta 

(TRIF), and IFN-beta promoter stimulator 1 (lPS-1). The subsequent phosphorylation of 

IFN regulatory factors 1 and 3 (IRFl and 3) and nuclear factor-kappa B (NF-kB), and their 

nuclear translocation, induces transcription of both IFN-a and IFN-p. These molecules are 

in turn secreted and bind to receptors that signal through JAK-STAT pathways, which 

stimulate the transcription of inflammatory cytokines, the pattern recognition pathway 

proteins, and effector proteins, all of which induce an antiviral state within the cells.

However, HCV is concurrently subverting this innate response by counter-evasive actions 

at each critical step. For example, NS3/4A protease has been shown to cleave TRIF, thus 

reducing its abundance and inhibiting downstream IRF3 and NF-kB signalling in cell 

culture Core protein is also evidenced to bind to STAT-1, decreasing its 

phosphorylation and thus reducing ISG-3 binding to DNA, and ultimately disrupting IFN- 

stimulated gene transcription NS5A induction of interleukin-8 (IL-8) expression has 

also been shown to correlate to an inhibition o f IFN antiviral activity E2 has also been 

demonstrated to possess a sequence that is identical to the phosphorylation site o f protein 

kinase R (PKR), resulting in inhibition of its kinase activity PKR is an ISO with 

significant anti-HCV properties as it inhibits the protein synthesis of viral RNA.

Natural killer (NK) cells are an important component o f the innate immune response to 

viral infection as they exert potent cytotoxic effects and are rapid producers o f antiviral 

cytokines, namely type II IFN-y. Several ISGs induced by HCV infection are known to
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have roles in augmenting the effects of NK cell function. Notwithstanding, data derived 

from chronically infected HCV patients indicates that both NK number and function are 

significantly decreased compared to healthy controls and in vitro, HCV E2 has been 

shown to inhibit NK cell cytokine production, cytotoxic granule release, and proliferation

134, 135

Innate immune responses regulate subsequent adaptive responses through cytokine 

activation o f dendritic cells (DCs) and other antigen presenting cells. Studies have reported 

that DCs generated from HCV-infected patients indicate impaired functionality, reduced 

IFN-y production, and a diminished ability to stimulate the proliferation of CD4"  ̂T cells 

CD4"  ̂ T helper cells are critical to both the generation and maintenance o f adaptive 

immune responses, mainly through their cytokine production which primes CDS"  ̂cytotoxic 

T cells for virus-infected cells and augments antibody production by B cells. Both 

chimpanzee and natural human infection studies have shown that clearance of HCV 

correlates with a sustained HCV-specific CD4^ T cell response. In chimpanzee models of 

acute infection, the initiation of CD4"  ̂ T cell responses is temporarily associated with a 

substantial decrease in viremia, and the accumulation of HCV-specific CD4"  ̂ T cells in 

liver tissue appears to be essential for clearance of HCV Furthermore, patients that

generate a polyclonal HCV-specific CD4"  ̂T cell response are more likely to clear HCV, 

while those who do not are likely to develop persistent infection Similarly, the extent 

of CD8^ T cell responses are positively correlated with clearance o f the virus in primates 

and humans

Although neutralising antibodies to HCV have been identified the precise role of the 

adaptive humoral immune response in HCV infection remains to be defined. Unlike acute 

hepatitis B, in which the development of antibody to hepatitis B surface antigen marks the 

onset of recovery, no distinct pattern of antibody production exists in HCV patients who
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recover from infection or become chronically infected. The highly mutational nature of 

HCV also suggests that antibodies with potentially neutralising capacity may well be 

ineffective due to successful evasion by quasispecies (Figure 1.6).

Finally, host genetic determinants are undoubtedly a factor in the immune response to 

HCV. Differences with respect to prevalence and clearance of the virus have been 

documented amongst ethnic groups, with a more frequent occurrence of chronic infection 

and poorer response to therapy attributable to African Americans for example 

Genetic associations between genes related to immune system function, such as HLA class 

II major histocompatibility complex (MHC) and effective viral clearance have been 

extensively studied, with meta-analysis indicating that DQB 1*0301 and DRB1*1101 

alleles confer the greatest advantage More recent evidence indicates that certain single 

nucleotide polymorphisms (SNPs) in close proximity to the type III IFN-X IL28B gene, 

have strong predictive value in anticipating both spontaneous and treatment-induced 

clearance of HCV
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Figure 1.7 HCV conspires to evade (red) the host immune defences (black) by many 

possible routes. Diagram adapted from Eisenstein, 2011

1.2.5 NS3 as an im m unom odulator during H CV infection

The HCV genome, as related in section 1.2.2, encodes a polyprotein featuring a structural 

region (C-p7 proteins) and a non-structural region (NS2-NS5B proteins). The NS3 protein 

is a 70 kDa bifunctional enzyme containing a serine protease and an RNA helicase, 

essential for HCV replication. The N-terminal third of the protein contains the protease 

activity responsible for processing of the non-structural region o f the polyprotein 

The C-terminal two thirds o f NS3 is an RNA helicase of DExH/D, a subgroup of DNA and 

RNA helicases within helicase superfamily 2 Members of this family feature a core
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helicase structure consisting of paired RecA-like folds (domains 1 and 2). With these two 

domains, NS3 helicase has a third domain that forms a single-stranded DNA/RNA binding 

groove (Figure 1.13). Helicase activity is essential for replication of the viral RNA

157 158genome and is believed to complex with NS5B polymerase during viral replication 

NS3 also participates in the intracellular assembly and packaging of infectious virus 

particles

Further to its replicative functions, NS3 possesses considerable immunomodulatory 

properties. Probably the most researched extravirological effect is its ability to suppress 

antiviral signalling, the mechanisms of which were touched on briefly before (section 

1.2.4). In greater detail, activation of TLR3 and RIG-I receptors in response to HCV viral 

entry and uncoating, and cytosolic attachment, respectively, results in activation o f 1RF3. 

Subsequent IRF3 nuclear transactivation of the IFN-P promoter induces IFN-P expression 

and leads to ISO activation, the products of which are effectors o f the innate immune 

response. However, the signalling pathways from TLR3 and RIG-I to activated IRF3 are 

dependent on the specialist proteins TRIF and CARDIF Evidence derived from in

vitro studies suggests that HCV-induced blockage o f IRF3 activation is mediated by NS3. 

Li and colleagues for example have demonstrated that specific proteolysis o f TRIF by 

the NS3/4A complex reduces its abundance and inhibits upstream IRF-3 signalling. 

NS3/4A has also been shown to cleave the RIG-I adaptor protein IPS-1 from the 

mitochondrial membrane, thereby diminishing interaction with RIG-I and preventing 

downstream activation o f IRF-3 Supportive o f these findings, disruption o f NS3/4A 

function by mutation or pharmacological inhibition restores RIG-I signalling and IRF-3 

phosphorylation Further evidence indicates that NS3 impairs the function of

dendritic cells by inducing the expression of FasL-mediated apoptosis, interfering with 

allostimulatory capacity, inhibiting nuclear translocation of NF-kB, and reducing TLR
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signalling, all possible mechanisms for the impaired T cell response typical of chronically 

infected individuals The data outlined above is consistent with an NS3-mediated viral 

evasion of host cellular antiviral defences.

Proteaae

NS4B NS5A NS5B

Figure 1.8 Diagram featuring the location and enzymatic composition of the NS3-coding 

sequence in the HCV genome. Full-length NS3 protein is located from amino acids 1027 to 

1658 of genotype lb  polyprotein consensus sequence (NCBI accession number AJ238799) 

Adapted from Raney et al, 2010

1.2.6 D evelopm ent o f H C V -induced liver fibrosis

During the course of chronic HCV infection necrotic damage of liver tissue represents the 

end result o f the targeted host immune response toward HCV-infected hepatocytes. The 

early events o f liver fibrosis are characterised by an increase of cytokine and growth factor 

secretion, such as interleukin-ip, tumour necrosis factor-a (TNF-a), and transforming 

growth factor-pi (TGF-pi), and connective tissue growth factor (CTGF) by

infiltrating CD4^ and CD8^ T cells, monocytes/macrophages, and resident inflammatory 

cells These soluble factors activate hepatic stellate cells (HSCs), which then adopt a 

myofibroblast phenotype that is characterised by the expression of the intermediate
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filament a-smooth muscle actin (a-SMA) and profibrotic genes including collagen I and 

select matrix metalloproteinsases (MMPs) and tissue inhibitors o f metalloproteinases 

(TIMPs) '™. Recognising tissue damage, HSCs proliferate and migrate to the site o f injury, 

initiating the secretion and deposition o f  extracellular matrix (ECM) proteins rich in 

fibrillar collagen type I and III, the main components o f fibrotic tissue in the cirrhotic liver 

>7 '. IV2 j 7) lyj studies indicate that secreted TIMPs exert marked biological

effects, significantly inhibiting the proteolytic activity o f concurrently expressed MMPs

1 7 ^and thereby protecting newly formed matrix from degradation . However, regression o f  

fibrosis, as witnessed in patients who successfully clear HCV infection, corresponds to an 

alteration in the MMP/TIMP balance that favours matrix degradation, and extensive 

apoptosis o f activated HSCs Progression o f fibrosis is responsible for the

development o f cirrhosis
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Figure 1.9 Alterations to normal hepatic architecture (A) characteristic of advanced 

hepatic fibrosis (B). Following liver injury, stimuli from infiltrating lymphocytes causes 

resident HSCs to become activated and proliferate, secreting large amounts of extracellular 

matrix proteins. Hepatic macrophages, such as the activated Kupffer cell, play an 

important role in regulating tissue remodelling by their release of soluble factors. 

Deposition o f fibrillar matrix results in damage to hepatic parenchyma including 

hepatocyte apoptosis, loss of microvilli and loss of endothelial fenestration. Diagram taken 

from Dataller and Brenner, 2005



1.3 Pharm acological m anagem ent of HIV and HCV  

1.3.1 HIV antiretroviral therapy

Whilst the first pharmacological agent shown to inhibit HIV replication was suramin

1 yo
, the first compound licensed for clinical use was zidovudine in 1987. Since then, in 

excess of twenty five anti-HIV compounds have been approved for treatment, categorised 

according to their specific pharmacological target: nucleoside reverse transcriptase 

inhibitors (NRTIs); nucleotide reverse transcriptase inhibitors (NtRTIs); non-nucleoside 

reverse transcriptase inhibitors (NNRTIs); protease inhibitors (Pis); fusion inhibitors (FIs); 

co-receptor inhibitors (CRIs); and integrase inhibitors (INIs) (Table 1.1) (Figure 1.8).

Zidovudine (AZT), like other members of the nucleoside reverse transcriptase inhibitor 

(NRTI) class, is a nucleoside analogue which undergoes a three step intracellular 

phosphorylation to its 5’-triphosphate derivative in order to compete with cellular 

triphosphate substrates for viral DNA synthesis by the reverse transcriptase enzyme. 

Incorporation into the growing chain as an alternate substrate results in chain termination 

With a similar mode of action, nucleotide reverse transcriptase inhibitors (NtRTIs) 

such as tenofovir (TDF) are nucleotide analogues that require only a two step 

phosphorylation.

Reverse transcriptase is also the target for non-nucleoside reverse transcriptase inhibitors

(NNRTIs) such as nevirapine (NVP), with their site of action being the allosteric site. Due

to the proximity o f this site to the catalytic site, NNRTIs interfere with the binding of RT

181to viral RNA and in doing so, disrupt its function

Ten protease inhibitors (FIs) are currently licensed for clinical use. With the exception of

tipranavir (which has a coumarin scaffold), Pis are based on the peptidomimetic principle

in which their hydroxyethylene scaffold mimics the peptide linkage cleaved by HIV

29



protease, but is itself resistant to cleavage Acting as substrate, Pis thus prevent HIV 

protease from initiating proteolytic processing of precursor viral proteins into mature viral 

proteins.

Enfuvirtide (D PI78) comprises the sole licensed fusion inhibitor (FI) currently available.

Enfuvirtide, as a result o f interactions with the heptad repeat (HR) regions of gp41, blocks

1 8 1fusion of the virus particle and the extracellular membrane . In contrast to all other 

antiretrovirals, enfuvirtide must be administered parenterally, owing to its polymeric 

structure, and is thus limited to salvage therapy for treatment-experienced patients. The co­

receptor inhibitors (CIs), maraviroc (MVC) and vicriviroc (VCV), the latter awaiting Food

184and Drug Administration (FDA) approval, are CCR5 chemokine receptor antagonists 

and thus have limited clinical utility as they are effective against M-tropic viral strains 

only. Raltegravir (MK0158) is the sole integrase inhibitor (INI) licensed for clinical use, 

although elvitegravir (EVG) is currently undergoing clinical trials. Both compounds are

185designed to inhibit integrase insertion of pro-viral DNA into host genomic DNA 

Finally, the maturation inhibitor, bevirimat (BVM), acts by blocking the final cleavage 

event in Gag processing, the separation of the capsid protein from its C-terminal spacer 

peptide 1, resulting in the formation of non-infectious virions . BVM is not yet m receipt 

of FDA approval for clinical use.

The optimal time at which to start antiretroviral therapy has, historically, been a 

contentious issue in the clinical manangement of HIV infection. Current European AIDS 

Clinical Society (EACS) guidelines recommend treatment of primary HIV infection if 

CD4^ T cell count is <350/|o.l at month 3 or beyond This threshold was established, in 

part, because it was midway between the lower limit of normal (500 cells/^il) and the 

threshold typically used to define AIDS (200 cells/|il). A majority of cohort studies would
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seem to suggest that 350 cells/|il could be close to the threshold at which the benefits of

1 1 ROstarting therapy outweigh the risk of delaying treatment

Combination treatment with three or more anti-HIV agents is known as highly active 

antiretroviral therapy (HAART), and since its adoption as standard o f care in 1996, the 

clinical profile of the disease has changed to a chronic, manageable condition. 

Individualised regimens selected from the major NRTI/NNRTI and PI classes have 

facilitated HIV infected patients in achieving viral suppression to undetectable levels, 

restoration o f CD4^ T cell counts to near norms, and as a consequence, significantly 

reduced morbidity and mortality However, despite the successes o f antiretroviral 

therapy, many limitations remain. As the virus cannot be eradicated, treatment is lifelong, 

thus requiring sustained patient compliance to a complex therapeutic regimen. Owing to 

the highly mutational nature of the virus, resistance has been attributed to the three major 

classes (NRTIs, NNRTIs, and Pis) and cross-resistance between individual class

members has also been documented Furthermore, a range of adverse effects have

been reported in treated patients. Several reverse transcriptase inhibitors may induce 

mitochondrial toxicity, resulting in peripheral neuropathy and myopathy, and also rare, but 

potentially fatal, incidences of lactic acidosis Hypersensitivity reactions have also been 

attributed to these agents, with abacavir treatment in particular resulting in fever, skin rash, 

and a range of respiratory and gastrointestinal symptoms Protease inhibitor-based 

regimens are most closely associated with the development of metabolic complications 

such as dyslipidaemia, lipodystrophy, and insulin resistance and diabetes increasing

risk for the development of cardiovascular disease in patients.

Newer therapeutic classes such as entry, fusion, and maturation inhibitors may help to 

circumvent cross resistance with older compounds, but optimal clinical management o f the 

virus will undoubtedly be an ongoing challenge.
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Table 1.1 Current HIV-1 antiretroviral agents and their mechanism of action

Class Compound (abbreviation) Mechanism of action

NRTI Zidovudine (AZT), abacavir (ABC), 

lamivudine (3TC), stavudine (d4T), 

didanosine (ddl), zalcitabine (ddC), 

emtricitabine ((-)FTC)

Nucleoside analogues whose 

triphosphate form acts as substrate 

for HIV-1 RT.

NtRTI Tenofovir (TDF) Nucleotide analogue with a similar 

mechanism of action to NRTIs.

NNRTI Nevirapine (NVP), efavirenz (EFV), 

fetravirine (TMC125), rilpivirine 

(TMC278)

Bind to non-catalytic site of HIV-1 

RT inducing conformation change.

PI Saquinavir (SQV), lopinavir (LPV), 

ritonavir (RTV), atazanavir (ATV), 

nelvinavir (NFV), fosamprenavir (FPV), 

amprenavir (APV), indinavir (IDV), 

darunavir (DRV), tipranavir (TPV)

Mimic the peptide linkage cleaved 

by HIV-1 protease.

FI Enfuvirtide (DP 178) Binds to HR region of gp41 and 

blocks fusion of virus particle to 

cellular membrane

CRI Maraviroc (MVC), vicriviroc (VCV) CCR5 chemokine antagonists.

INI Raltegravir (MK0158), elvitegravir 

(EVG)

Inhibits integration o f strand 

transfer o f viral DNA into host cell 

DNA

MI Bevirimat (BVM) Prevents cleavage of precursor 

polyprotein by protease.
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Figure 1.10 Diagram illustrating the HIV-1 life cycle and its major antiretroviral drug 

targets. Entry of extracellular virions to their target cell is achieved by attachment to the 

CD4 receptor, binding to CCR5 or CXCR4 coreceptors, and membrane fusion. Maraviroc 

is designed to block CCR5 binding and enfuvirtlde blocks fusion. Transcription of viral 

RNA into pro-viral DNA is catalysed by the reverse transcriptase enzyme, a step inhibited 

by nucleoside/nucleotide analogues (NRTIs/NtRTIs) and non-nucleoside reverse 

transcriptase inhibitors (NNRTIs). HIV integrase facilitates the incorporation of pro-viral 

DNA into host chromosomes, a process inhibited by integrase inhibitors (INIs) such as 

raltegravir. Following transcription and translation of the HIV genome, immature virions 

bud from the cell surface requiring proteolytic cleavage by HIV protease to produce 

mature, infectious viruses. This step is inhibited by protease inhibitors (Pis). Diagram 

taken from Volberding and Deeks 2010
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1.3.2 HCV therapy

Following the completion of large scale clinical trials the standard o f care (SOC) for

chronic hepatitis C during the last decade has consisted of pegylated interferon-alpha 2a 

(PEG-IFN-a2a), or pegylated interferon-alpha 2b (PEG-IFN-a2b), in combination with 

ribavirin (RBV).

RBV (l-P-D-ribofuranosyl-lH-l,2,4-triazole-3-carboxamide), is a guanoside nucleoside 

analogue, synthesised at ICN Pharmaceuticals in 1970, and originally marketed as an anti- 

HCV therapeutic by Schering-Plough as Rebetol in 2001. PEG-IFN-a2a, a 40 kDa 

branched molecule, and PEG-IFN-a2b, a 12 kDa linear molecule, were developed by 

Hoffmann-La Roche and Schering-Plough respectively, and granted approval by the FDA 

in 2001. The development o f these two polyethylene glycol-conjugated interferons 

represented distinct pharmacokinetic/pharmacodynamic advantages over their non­

conjugated predecessors. PEG-IFN-a has a reduced rate of degradation and clearance with 

an extended half-life, and a doubling of patient sustained virological response has been 

achieved following its introduction Both PEG-IFN-a and RBV constitute non­

specific pharmacological inhibitors of HCV. Exogenous recombinant IFN therapy is 

believed to mimic the effects of endogenous IFN in creating a non-virus-specific antiviral 

state in cells via increased expression of ISGs, while RBV potentially mediates a variety of

OOfxantiviral effects, one being the inhibition of RdRP

In advance of commencing anti-HCV therapy patients are typically tested for HCV RNA 

with a quantitative amplification assay, establishing baseline levels against which virologic 

response can be measured and providing an indication of the likelihood o f that response, as 

high viral loads are negatively correlated to treatment response . Subsequent 

determination of important clinical parameters such as early virological response (EVR), a
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>2 logio reduction in HCV RNA levels within 12 weeks of initiating therapy, and sustained 

virological response (SVR), undetectable HCV RNA >6 months after completion of 

therapy, can also be measured by such means. Determination of HCV genotype is also 

important as patients with treatment-refractory genotypes 1 and 4 may require treatment of 

longer duration and higher dosage than treatment-favourable genotypes 2 and 3. Baseline 

liver biopsy may also be performed in genotype 1 and 4 patients to assess histologic grade 

and stage in advance of treatment but, due to its highly invasive nature, is often foregone in 

genotype 2 and 3 patients in whom the benefits o f treatment are thought to outweigh 

considerations of disease severity and potential for progression

Treatment regimens consist o f weight-based PEG-IFN-a2b (1.5 ng/kg) or fixed-dose PEG- 

IFN-a2a, administered weekly by subcutaneous injection, with daily oral RBV. Dosage of 

RBV is dependent on patient genotype and body mass. Genotype 1 patients are 

recommended for 1000 mg/day for those <75 kg, and 1200 mg/day for those >75 kg, for a 

total of 48 weeks. While genotype 2 and 3 patients can be treated with 800 mg/day, 

regardless of body mass, for only 24 weeks PEG-IFN-a/RBV combination therapy has 

led to the achievement of SVRs in 42-52 %, 65-85 %, and 76-82 % of individuals infected 

with HCV genotype 1, genotypes 4, 5 and 6, and genotypes 2 and 3, respectively In 

HCV/HIV co-infected patients, across all genotypes, SVR rates range between 27-55 % 

Combination treatment is not without significant toxicity and side-effects however. 

Reported adverse events in patients undergoing PEG-IFN-a/RBV therapy include 

neutropenia, thrombocytopenia, anaemia, psychiatric disorders, and thyroid dysfunction 

Adverse effects are relatively common and may lead to a discontinuation of 

treatment in an estimated 10-15 % of patients

Recent advances in the understanding of HCV genomic organisation and life cycle, allied 

to the development of HCV replicons and infectious viral particles in tissue culture, have
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facilitated the rational design of compounds that specifically target HCV replication. 

Telaprevir and boceprevir are two protease inhibitors that have been licensed for clinical 

use in 2011 and represent the prototype direct acting antivirals (DAAs) for HCV. 

Telaprevir, produced by Vertex Pharmaceuticals in the USA, is a peptidomimetic serine 

protease inhibitor that binds covalently to the NS3/4A protease, with slow binding and

• 215dissociation kinetics . Early in vitro characterisation of the drug demonstrated a time and 

dose dependent inhibition of HCV RNA in replicon cells, culminating in a complete 

elimination after a two week incubation Boceprevir is also a covalent, linear protease 

inhibitor that binds reversibly to the NS3 protease active site and exhibits potent activity in 

the HCV replicon system (EC50 0.3-0.4 fiM), a potency that is enhanced in combination 

with IFN Phase III clinical trial data showed that the addition of telaprevir to PEG-IFN- 

a/RBV for 12 wks o f a 48 wk treatment course for gentotype 1 patients increased SVR 

rates from 24 % to 88 % in relapsers, from 15 % to 59 % in partial responders, and from 5 

% to 33 % in null responders Adding boceprevir to SOC for genotype 1 patients for 32- 

44 wks resulted in an increased SVR from 29 % to 75 % in relapsers and from 7 % to 52 % 

in partial responders (null-responders were not included) These are encouraging results 

for the future treatment of chronic hepatitis C, particularly for patients with treatment- 

refractory genotypes. A plethora of additional DAAs are moving toward approval for 

clinical use such as mericitabine, an NS5B inhibitor, BMS-790052, an NS5A inhibitor, and 

alisporivir, a cyclophilin inhibitor, that may eventually permit IFN-free regimens, but 

important issues surrounding cost, drug resistance, and side effects remain to be overcome.
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Figure 1.11 Diagram illustrating the HCV life cycle and the stages of which that have been 

targeted for development of direct acting antiviral (DAA) compounds. After entry into the 

cell, viral RNA is translated into a single polyprotein which is subsequently cleaved into a 

series of functional proteins by NS3/4A. Boceprevir and telaprevir block NS3/4A protease 

activity. Replication of viral RNA is dependent on the action of NS5A, NS5B, and 

cyclophilin B, a protein which interacts with NS5B to stimulate its RNA binding activity. 

Specific inhibitors of each of these proteins are currently undergoing clinical trials. In 

theory, all steps o f the HCV life cycle are targets for pharmacological intervention, and 

further classes such as entry inhibitors are under development. Diagram taken from 

Schlutter 2011
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1.4 M atrix m etalloproteinases (M M Ps) and their role in HIV and HCV  

infection  

1.4.1 Background

Matrix metalloproteinases (MMPs), also known as matrixins, are a group of highly 

conserved proteolytic enzymes that have important roles in normal physiological processes 

such as embryogenesis, morphogenesis, bone elongation, menstruation, and wound 

healing, mainly by regulating the turnover of ECM components. MMPs can also mediate 

cell migration, and the activation or inactivation o f numerous soluble factors. 

Dysregulation o f MMP expression is implicated in the pathophysiology of arthritis, cancer 

and cardiovascular disease ' . MMPs are also highly significant immunomodulators as

they facilitate leukocyte recruitment, cytokine and chemokine processing and defensin 

activation and, with their endogenous tissue inhibitors of metalloproteinases

(TIMPs), are known to contribute to HIV/HCV disease pathogenesis by involvement in 

HIV-associated dementia and HCV-related liver fibrosis and cirrhosis ' .

1.4.2 Classification and structure

MMPs are a subfamily o f zinc- and calcium-dependent enzymes belonging to the 

metzincin super-family and have traditionally been categorised into groups in accordance 

with substrate specificity, primary structure and cellular location as collagenases, 

gelatinases, stromelysins and membrane-type MMPs (MT-MMPs). Alternatively, MMPs 

can be classified based on differences in domain structure (Figure 1.10). The majority of 

MMPs share a common domain structure comprising of an N-terminal predomian, which is 

a signal peptide for secretion, a prodomain to maintain latency, a catalytic domain
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containing a zinc ion (Zn "̂ )̂ in the active site, and a C-terminal hemopexin (HPX)-like 

domain linked to the catalytic domain through a hinge region However, MMP-23, in 

contrast to the other MMPs, lacks the HPX domain which is substituted by a C-terminal 

cysteine array region and an immunoglobulin G-like domain, and, instead of the N- 

terminal peptide, an N-terminal type II transmembrane domain. The gelatinases, MMP-2 

and -9, feature a catalytic domain containing an insert of three fibronectin type II repeats. 

MMP-9 also has a collagen-like sequence at one end o f this domain. Finally, four o f the six 

MT-MMPs are anchored to the cell surface by a carboxyl-terminal transmembrane domain, 

the other two by a glycosylphosphatidylinositol (GPI) anchor, following the HPX domain.
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Figure 1.12 Classification of MMPs based on domain structure. The majority of MMPs 

feature a conserved domain structure of pro-domain, catalytic domain, hinge region and 

hemopexin (HPX) domain (1). Uniquely, MMP-2 and MMP-9 have three fibronectin type 

II repeats in their catalytic domains (2). Membrane type-MMPs (MT-MMPs) are linked to 

the plasma membrane by a transmembrane domain or a glycosylphosphatidylinositol (GPI) 

linkage, attached to the HPX domain (3). MMP-7 and -26, the matrilysins, lack hinge and 

HPX domains (4). Diagram adapted from Page-McCaw et al., 2007
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1.4.3 Regulation of MMP activity

Appropriately for enzymes that may be deleterious to the host, the expression and activity 

of MMPs is a tightly regulated process, occurring at several levels including gene 

transcription, post-transcriptional modification, localisation, pro-enzyme activation and 

enzyme inhibition.

Changes in expression of MMP genes are the result o f targeting by signal transduction 

pathways o f particular elements within promoter regions in response to stimuli such as 

inflammatory cytokines (IL-ip, IL-6, IL-11, TNF-a) or growth factors (TGF-P). Recruited 

by activation o f signalling intermediates such as mitogen activated protein kinases 

(MAPK) and signal transducers and activators of transcription (STAT), MMP promoters 

feature the cw-acting elements, activator protein-1 (AP-1), nuclear factor kappa B (NF- 

kB), and nuclear stimulating protein-1 (SP-1), that cooperate to enhance transactivation of 

most MMPs . Impairing these signal pathways, by reduced synthesis or by inhibition of

233phosphorylation, blocks transactivation and leads to silenced gene expression

Post-transcriptional modification of MMPs involves secretion as proMMPs, or zymogens, 

maintained in a catalytically inactive state by the interaction between the thiol group of a 

pro-domain cysteine residue and the zinc ion o f the catalytic site. Disruption o f this 

interaction by proteolysis of the pro-domain or by modification of the cysteine thiol group 

results in conversion to active proteinases, a process often referred to as the ‘cysteine 

switch’ Plasmin, which is produced by the action o f urokinase on plasminogen, can 

activate a number of MMPs by cleavage o f the pro-domain. While activation o f most 

MMPs occurs extracellularly, MMP-11 and the MT-MMPs are activated intracellularly via 

cleavage of their pro-peptide by the pro-hormone convertase furin. This results in secretion 

of an active enzyme form
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Localisation also represents a significant regulatory pathway of MMP activity. Membrane- 

bound MMPs for example are anchored by means of transmembrane (TM) (MMP-14, -15, 

-16, -24), glycosylphosphatidylinositol (GPI) (MMP-17, -25), or N-terminal signal (SA) 

(MMP-23) linkages. Anchoring to the cell surface thus enables select MMPs to maintain 

high local enzyme concentrations and also results in more targeted enzyme catalysis

•yyc
toward specific pericellular substrates

A family of four proteins known as TIMPs (TIMP-1, -2, -3, and -4) represent the 

predominant natural MMP inhibitors, forming non-convalent binding complexes in a 1:1 

stoichiometry to the catalytic site Whilst most of their biological activity is attributable 

to sequences within the N-terminal domain, C-terminal domain interactions are possible 

with the catalytic sites of some MMPs and with the HPX domains o f MMP-2 and -9 

(Figure 1.12). All four TIMPs are broadly inhibitory towards most active forms of MMPs, 

although TIMP-1 is a poor inhibitor of MMP-19 and a number of the MT-MMPs 

Paradoxically, MMP/TIMP interactions may result in activation. Indeed, TIMP-2 

participates in the MMP-14 activation of proMMP-2, forming a trimeric complex in which 

the C termini of proMMP-2 and TIMP-2 interact while the N termini of MMP-14 and 

TIMP-2 interact The other major endogenous inhibitor of MMP activity is a2- 

macroglobulin (a2-M), a glycoprotein consisting of four identical subunits found in the 

blood and tissue fluids. a2-M is a broad-spectrum proteinase inhibitor, entrapping mainly 

circulatory MMPs and effecting irreversible clearance via scavenger receptor-mediated 

endocytosis
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Figure 1.13 Schematic diagram of MMP regulation. MMP RNA transcription (1) and 

protein synthesis (2) can be controlled at the level o f secretion as latent pro-MMPs, or 

zymogens, in which the cysteine residue in the pro-domain is bound to the catalytic zinc 

ion (3), and subcellular or extracellular localisation in which MT-MMPs are anchored to 

the cell surface (4). Extracellular control o f MMP activity is mediated by zymogen 

activation via numerous proteolytic cascades (5), and the expression o f  endogenous 

inhibitors (6) and protease degradation (7). In addition, substrate availability and 

accessibility may determine the extent o f MMP activity. Diagram taken from Page-McCaw 

et al., 2007.
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Figure 1,14 3D diagram of human proMMP-2 / TIMP-2 complex. Zinc and calcium ions 

are indicated by green and blue spheres, respectively, in the catalytic domain. Diagram 

taken from Murphy and Nagase, 2008
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1.4.4 MMP dysregulation during HIV and HCV infection -  implications for 

pathogenesis

Dysregulated MMP expression and activity is indicated in both HIV- and HCV-infected 

patients. While appropriate MMP production facilitates an effective immune response, 

abberant production may enhance disease progression and host tissue damage by altering 

cellular migration and inducing pathological ECM remodelling. Changes in circulatory and 

tissue levels o f the gelatinases, MMP-2 and MMP-9, and their natural inhibitors TIMP-1 

and TIMP-2, have been recorded in HIV-infected patients and similarly in HCV-

infected groups While the MMP status of co-infected patients is poorly

characterised to date, increases in plasma and serum TIMP-1 levels have been described

249 , 250

1.4.4.1 MMP / TIM ? mediated pathogenesis during HIV infection

One of the earliest rationales for MMP-mediated pathogenesis in HIV was described by

251Dhawan and colleagues , who showed that increased invasion o f a basement membrane 

model by HIV-infected monocytes was associated with an upregulation of a 92kDa 

metalloproteinase (MMP-9). Later, the same authors showed that infected monocytes 

expressing high levels of this enzyme increased the permeability o f endothelial cell layers 

and that incubation with TIMP-1 or TIMP-2 abrogated the effect . These observations 

are consistent with MMPs facilitating the dissemination o f the virus through degradation of 

cellular and ECM barriers. Alterations of brain microvasculature and the blood-brain 

barrier (BBB), common in HIV-1 infection, particularly in patients with HIV-associated 

dementia (HAD), facilitate the entry of activated and infected mononuclear cells into the 

central nervous system (CNS) . Induction of MMP-9 has also been noted in the 

cerebrospinal fluid (CSF) of patients with HAD and both MMP-9 and MMP-2 are
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associated with neural damage by dint of myelin degradation and neurotoxic protein 

induction, respectively Deleterious MMP activity is also suspected in a number of

other HIV-associated diseases. Kaposi’s sarcoma (KS) is a virally-induced, AIDS-defining 

cancer which manifests as lesions on the skin, mouth, gastrointestinal, or respiratory tracts. 

Increases in MMP-2 have been found in the plasma of HIV-infected KS patients compared

' yen  '7^8
to non-infected KS patients and both MMP-2 and MMP-9 are overexpressed in cells 

from KS lesions. Invasion of endothelial cells signifies the initial phase of tumor- 

associated angiogenesis, and in vitro inhibition of MMP-2 by TIMP-2 has been shown to 

inhibit endothelial cell invasion induced by AIDS-KS cell supernatants . Such data 

suggest that MMP activation is central to AIDS-KS progression and might represent an 

appropriate therapeutic target In addition, overexpressed MMP-9 and TIMP-1 mRNA 

has been reported in the renal tissue o f patients with HIV-associated nephropathy and 

induction of various MMPs, including MMP-9, have been recorded in the saliva and 

gingival tissue of HIV-infected patients though evidence for a pathological role for

MMPs in both conditions remains to be established.

1.4.4.2 MMP/TIMP mediated effects on the pathology of HCV infection

MMPs play a fundamental role in modulating the course of HCV-related pathology as they 

contribute to both hepatic fibrogenesis and fibrolysis. Activated hepatic stellate cells 

(HSCs), the predominant cellular source of collagen production during liver fibrosis, 

express MMP-2, -14, and -9, and TIMP-1 and -2. MMP-2, and its endogenous activator 

MMP-14, are increased in liver tisue from HCV patients with chronic hepatits and/or liver 

fibrosis, compared to normal tissue Temporal analysis of experimental carbon 

tetrachloride (CCl4)-induced liver fibrosis in rats suggests a relationship between

263progression of liver fibrosis and increased hepatic MMP-2 expression and activity 

MMP-2 is also an autocrine proliferation and migration factor for HSCs and as
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MMP-14 is a membrane-bound molecule, localisation o f  active MMP-2 on the cell surface 

of HSCs might optimise its ability to disrupt normal cell-matrix interactions and enhance 

the progression o f fibrosis. In rodents, MMP-9 is produced by a range o f hepatic cell types 

, during CCU-induced liver injury , and in hepatic stellate cells stimulated with IL-1 

ex vivo Futhermore, the expression and activity o f  MMP-9 are increased in HCV- 

infected patients Interestingly, the clinical studies suggest a transient activation o f

MMP-9 that is more indicative o f liver inflammation than fibrosis stage. Factoring 

evidence that MMP-9 activates latent TGF-(3 , a stimulant for HSC activation and 

collagen deposition, reinforces the idea that MMP-9 might participate primarily in early 

stage fibrogenic events.

Increased plasma and serum levels o f TIMP-1 and -2 have been recorded in HCV patients 

compared to healthy controls , with positive correlations to fibrosis stage shown in

one o f  these studies. To what extent circulatory TIMP levels are reflective o f the tissue 

status is uncertain, but Yata and colleagues have reported induction o f hepatic TIMP-1 

mRNA in HCV patients compared to controls that are commensurate with the degree o f  

infection and cirrhosis. By utilising immunoelectron microscopy techniques, the authors 

also demonstrated localisation o f  TIMP-1 to resident stellate and fibroblast cell types. 

Studies using animal models o f progressive fibrosis and explanted human liver tissue also 

support an associated upregulation o f TIMP-1 and TIMP-2

Liver fibrosis is a dynamic process, undergoing phases o f  progression and regression, and 

also resolution in the case o f patients who successfully clear the hepatitis C virus, and 

when experimental liver injury is ceased. In a superbly conceived study, Iredale and 

colleagues demonstrated that alterations to the MMP/TIMP balance that favour matrix 

degradation might provide a mechanistic basis for such phenomena. This study, using a 

rodent model, showed that CCI4 treatment for a 4 week period generated significant liver
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fibrosis, which progressed to cirrhosis after an additional 8 weeks exposure. Cessation of 

the insult at the 4 week timepoint however, resulted in complete resolution of fibrosis and 

restoration o f normal liver histology. The authors documented that resolution coincided 

with marked apoptosis o f myofibroblast-like HSCs, a reduction in both TIMP-1 and TIMP- 

2, and perhaps of greatest significance, an increase in collagenolytic activity that coincided 

with degration o f fibrotic matrix. Decreased TIMP expression may be a direct consequence 

of HSC apotosis o f course, but an additional finding of this study was that MMP-13 levels 

remained unchanged throughout the regression phase. This suggests that a cellular source 

of matrix degrading MMPs, other than HSCs, mediate the process of fibrosis resolution, 

quite possibly a circulatory infiltrate such as the macrophage. During fibrosis progression, 

as previously mentioned, macrophages can promote the activation of HSCs via TGF*pi 

secretion, but in contrast, Duffield and colleagues have shown that experimental 

deletion o f macrophages at the onset of fibrosis resolution suppresses ECM degradation 

and the loss of activated HSCs. This opens the possibility that macrophages induce 

apoptosis of HSCs, possibly through expression of TNF-related apoptosis-inducing ligand 

(TRAIL) and other apoptotic stimuli (Figure 1.13). A potenfial regulator of this 

macrophage duality could be TNF-a, or indeed its downstream signalling mediator, NF-kB 

Macrophages may also indirectly mediate fibrosis resolution by recruitment of

• 278neutrophils, an adundant source of collagen degrading MMP-8, to liver tissue . The 

extent to which macrophages directly mediate matrix degradation, most likely through 

MMP-9, is an important future question that has implications for both HIV and HCV 

infection in terms of immunoregulation and immunopathogenesis.
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Figure 1.15 Schematic diagram depicting the potential role of macrophages in both the 

progression and regression of hepatic fibrosis. Duality of macrophage function is indicated 

by possible TGF-pi-mediated promotion of stellate cell activation during fibrosis 

progression and potentially TRAIL-mediated stellate cell apoptosis during fibrosis 

regression. Declining stellate cell numbers is associated with reduced expression of TIMP- 

1, thus facilitating MMP secretion by macrophages, stellate cell subsets, or alternative cell 

types. Diagram taken from Friedman, 2005

1.4.5 MMP/pro-inflammatory cytokine and chemokine interactions

In the context of viral infection, MMPs function not only as effectors o f tissue remodelling 

but also mediate important aspects of the inflammatory response to infection by 

interactions with cytokines, chemokines and other immunomodulatory proteins. The
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cellular components o f the inflammatory response include monocytes, macrophages, B- 

and T-lymphocytes, and neutrophils, each with their own specific patterns of MMP 

production, secretion, and activation. Monoctyes and macrophages are sources of MMP-1, 

-2, -3, -9, -14, -17 and the elastase, MMP-12 T-cells, predominantly MMP-2 and -9 

and neutrophils, MMP-8, and -9 In addition, these MMP producing immune

cells are also significant sources of cytokines, including the major pro-inflammatory 

cytokines, TNF-a and IL-ip, both of which contribute to the pathogenesis of HIV and

784HCV infection. TNF-a and IL-ip are upregulated in monocytes infected with HIV 

and are overexpressed in the serum and culture supernatants of cells from HIV patients 

. Either alone, or in synergy with other cytokines such as IL-6, evidence suggests that 

both TNF-a and IL -ip enhance HIV replication in infected cells, mainly through NF-kB-

9 8 8  9 0 0mediated transactivation of the viral LTR ' . Increased TNF-a and IL-ip have also

been detected in the serum of HCV patients, particularly amongst chronically infected

291patients with liver cirrhosis and hepatocellular carcinoma , and as previously mentioned 

(section 1.2.6), both are considered pro-fibrogenic as they contribute to the activation of 

collagen-producing HSCs during fibrosis progression. Upregulation of IL-ip may be 

particularly damaging as it has been shown in culture to increase the activation and

292proliferation o f myofibroblasts while dose-dependently increasing collagen synthesis

9Q -}

. Given their common cellular sources, prominent MMP/cytokine interactions pertain, 

realising often divergent effects. TNF-a and IL-ip both modulate the expression and 

regulation of MMPs and are known to induce MMP-9 in human monocytes and

macrophages Exposure of monocytes to exogenous TNF-a and IL-ip, in the

presence o f macrophage colony-stimulating factor (M-CSF) or granulocyte-macrophage 

colony-stimulating factor (GM-CSF) (regulators of differentiation to macrophages) induces 

the production o f MMP-1, MMP-9, and TIMP-1 in vitro Cell-cell contact between 

activated T cells and monocytes is also sufficient to upregulate these MMPs and to
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simultaneously enhance TNF-a and IL-ip production By cleavage o f cell surface

proteins, MMPs can in turn, function as regulators o f TNF-a and IL-ip. Gearing et al 

were one of the first investigators to provide evidence that MM? proteolytic cleavage of 

the membrane-bound TNF-a precursor protein was responsible for the release of mature 

TNF-a from leukocytes. Subsequent studies in monocytes implicated additional cytokines 

dependent on similar activation by MMPs, including M-CSF and TGF . Conversely, the 

ability o f IL -lp to increase MMP expression is negatively regulated by MMPs themselves, 

as MMP-1, -2, -3, and -9 have been shown to degrade IL-ip It is also noteworthy that 

inflammatory mediators may act as inhibitors of MMP production, as both type I and II 

IFNs, and TGF-(31, have been shown to reduce MMP-9 expression in monocytes

Chemokines, proteins which facilitate the recruitment of lymphocytes, neutrophils and 

monocytes to sources of inflammation are also targets for cleavage by MMPs. C-C 

motif ligand-7 (CCL7) and CXC-motif ligand-12 are substrates for MMP-2 while 

MMP-9 cleaves and activates CXCL6 and CXCL8 (also known as IL-8) and inactivates 

CXCL-1 and CXCL-4 Matrix degradation by MMPs also facilitates leukocyte

extravastion, a critical event for successful immune surveillance during the inflammatory 

response. Monocyte migration for example, is dependent on MMP-induced cleavage of 

basement membrane components and cell surface molecules including CD 16 and L- 

selectin and also the potential regulation of Pi and P2-integrin receptor function 

Taken together, the above data points to MMPs functioning as both effectors and 

regulators o f the innate immune response, exerting both pro- and anti-inflammatory 

effects.
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1.4.6 Tat and NS3 as mediators of MMP and cytokine dysregulation

Several lines of evidence indicate that both HIV Tat and HCV NS proteins may contribute 

to the inflammatory response to viral infection by upregulating MMP activity and the 

production of pro and anti-inflammatory cytokines. In monoctyes, a major target for HIV 

infection and a significant source of MMPs and cytokines during the course of the disease, 

exposure to extracellular Tat has revealed a plethora of pathogenic effects. For instance, 

monocytes subjected to Tat in vitro aggregate, adhere to, and disrupt endotheial cell 

monolayers in tandem with increasing MMP-9 synthesis and release These findings 

were highly significant as they implicated Tat as a potential mediator of the MMP- 

associated extravastion of monocytes into tissues and the subsequent tissue and organ 

damage witnessed during conditions such as HAD. Indeed, brain-derived Tat sequences 

from demented AIDS patients display increased MMP-2 and -7 when expressed in primary

312human macrophages and conditioned medium from these cultures is neurotoxic 

Significantly, it has also been shown in astrocytes, a source of inflammatory activity in the 

CNS, that MMP-9 expression induced by Tat is in turn dependent on Tat-induced TNF-a 

production In the context of KS development, Tat and basic fibroblast growth factor 

(bFGF), a major angiogenic factor, combine synergistically to increase MMP-2 secretion 

from enthothelial cells Enhanced bFGF production by endothelial cells is augmented 

by IFN-y, TNF-a, and IL-ip a further example of MMP/cytokine relatedness during 

AIDS pathogenesis.

Cytokine dysregulation during HIV infection is extensive and Tat-mediated cytokine 

dysregulation is implicated in host damage and the development of opportunistic infections 

IL-10, a significant cytokine during HIV infection which shifts the immune response 

from a Thl dominance to that of a Th2 has been shown by a number of studies to 

increase in monocytes as a resuh of Tat exposure Inductions of pro-inflammatory
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320 321IL-6 and IL-8 have also been recorded in Tat-transfected HeLa cells. TNF-a is a 

major mediator o f inflammation that is mainly produced and secreted by macrophages. In 

HIV-infected monocyte-derived macrophages in vitro TNF-a is upregulated and 

constitutively secreted, and also augments the infectivity of macrophages in an autocrine 

fashion PBMCs and €04"^ T cells also produce TNF-a following HIV infection in

vitro Addition o f recombinant TNF-a to these cultures increases viral replication by up 

to 10,000-fold, an effect abrogated by neutralisation antibodies. Increased TNF-a is also 

detected in the sera and ex vivo culture supemates of HIV-infected patients Tat has

been demonstrated to upregulate TNF-a in human macrophages via protein kinase C 

(PKC) pathways PKR and calcium signalling have also been identified as other 

potential Tat-induced regulators of TNF-a production Additionally, Tat has been

shown to interact with CD40 to induce TNF-a in monocytes and microglia thereby 

increasing inflammatory processes within the CNS IL-ip is another important 

inflammatory cytokine mainly produced by cells of the macrophage lineage in response to 

infection and inflammation. In vitro infection of MDMs with HIV-1 upregulates IL-ip

331secretion and monocytes isolated from HIV-infected individuals are seen to express the

•J

two biologically active forms of the cytokine, IL -la  and IL-ip . The effects o f Tat on 

IL-ip expression are limited; Buonaguro et al found no direct effect in transfected T

cell and monocytic cell lines, while Nath et al have described increased production in

monocytic but not astrocytic cell types. IFN-y is a highly pleiotropic cytokine produced by 

activated T cells and NK cells in response to pathogen invasion. HIV-infected 

macrophages exposed to IFN-y leads to a reduction in viral replication while

exposure o f macrophages and monocytes to IFN-y in advance o f infection results in 

subsequently increased viral replication . IFN-y secretion is significantly reduced in the 

supemates of HIV patient-derived PBMCs including both CD4^ and CDS"  ̂T cell subsets

338 . Evidence suggests that Tat can synergise with IFN-y to increase the production of

53



CXCLIO, a chemokine implicated in the progression of HAD, in macrophages 

Combined with other data indicating that IFN-y enhances the neurotoxicity o f Tat and 

gpl20 suggests a pro-inflammatory role for IFN-y in association with Tat.

The genetic diversity o f HIV, the extent o f which was discussed in section 1.1.4, not only 

contributes to successful circumvention of host immune responses but also has profound 

implications for the relative pathogenesis of individual viral subtypes. Recent evidence 

suggests differential cytokine expression in response to Tat clades of B and C subtype. 

Investigating effects in monocytes, Campbell et al relate that Tat B induces TNF-a and 

IL-6 to a greater extent than Tat C, and in a follow-up study by Wong and colleagues a 

similar comparative effect was reported for IL-10. The only other published study to assess 

Tat clade differences in respect to cytokine production is that of Gandi et al where the 

authors relate alternate findings as Tat C was evidenced to increase IL-10 secretion above 

that of Tat B.

HCV proteins have also shown potential for extravirological MMP and cytokine 

augmentation. In a study by Nunez and colleagues which documented increased 

intrahepatic cyclooxygenase 2 and MMP-2 and -9 in a group of chronically infected HCV 

patients, both core and NS5A were shown to upregulate MMP-9 gene expression in 

hepatocye-derived transfected cells. A paper by Mazzocca et al also determined that E2 

binding to cell surface receptor CD81 on primary human HSCs increased MMP-2 

synthesis and activity in a time-dependent fashion until experiments were terminated at 24 

hr. Similar effects were recorded by the same study in NIH3T3 mouse fibroblasts. Such 

results could well reflect the early stages of fibrogenic events in which increased gelatinase 

activity contributes to inflammation and deleterious cellular activation (see section 1.3.5).
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In a recent study using DCs isolated from healthy donors, Krishnadas and co-workers 

demonstrated selective IL-12 suppression by core, NS3, NS4, and NS5 proteins confirming 

earlier findings by others using macrophages . In PBMCs o f both healthy donors and 

HCV chronically-infected patients, Brady et al have also shown that NS4 induces IL- 

10, the source of which was monocytes, as determined by cell separation techniques. 

Additionally, core and NS3 (but not E2) can also increase TNF-a and IL-10 secretion by 

monocytes from healthy and HCV-infected donors All o f these studies relate either 

direct or indirect cellular impairments as a result of interactions with viral proteins, 

indicating that extracellular core and NS proteins in particular are significant 

immunomodulators.

Most published studies to date feature HIV-1 Tat B isolates, the most common subtype in 

North America and Western Europe but only a minority of the global HIV population 

compared to clade C strains, which comprise over 55 % The clade-specific studies of 

Tat effects on cytokine production mentioned above are an important step in addressing 

this considerable shortfall in the literature and continuing research should help to 

characterise the significant differences in the pathogenesis o f the major clades. 

Furthermore, the effect of Tat clades on MMP/TIMP expression is unknown at the present. 

Extracellular HCV NS3 protease activity is also deserved of much futher investigation. Its 

immunomodulatory potential, in part, may be better understood by an assessment of its 

effects on cytokine and MMP/TIMP production in relevant cell models.

1.4.7 MMP expression in response to antiviral therapy

Considering the implications for dysregulated MMP expression in the context o f HIV and 

HCV infection, the effects of antiretroviral agents on MMPs have been relatively poorly
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explored to date. Assessing the neuropathological implications of altered MMP activity 

during HIV infection, a study by Liuzzi et al was one of the earliest to demonstrate 

direct MMP modulatory effects by anti-HIV agents. Subjecting neuronal cell cultures to 

nano molar concentrations o f zidovudine, an NRTI, and indinavir, a PI, resulted in a dose- 

dependent reduction o f MMP-9 activity and mRNA expression. These findings were 

further investigated by examination of MMP-9 levels in PBMCs isolated from HIV- 

infected patients relative to treatment status. Supernatants from cell cultures isolated from 

treatment-naive patients displayed significantly higher MMP-9 activity and mRNA 

expression than from HAART-treated patients. Indeed, MMP-9 abundance in treated 

patients was comparable to healthy donors In examining the potentially deleterious role 

of reduced MMP-9 in Pl-mediated alterations of adipocyte function, successive studies by 

Bourlier et al and De Barros et al also related reductions of gelatinolytic activity by 

a range of Pis including, indinavir, saquinavir, ritonavir, and nelfmavir, at concentrations < 

10 ^M.

Interferon, as a therapeutic with general anti-inflammatory properties, is a potential MMP 

modulator. While affirmative data exists from in vitro and in vivo studies, effects are 

divergent and a lack o f consensus pervades clinical studies. In demonstrating reduced 

MMP-9 levels in HIV-infected monocytes in vitro through IFN-y treatment, Dhawan and 

co-authors reported that IFN decreases MMP abundance. Cancer-related studies have 

also reported that IFN-a therapy suppressed MMP-9 expression with IRFl

‘y e n
activation suggested as the mechanistic basis for such an effect . In HSCs, stimulated 

with IL -lp and TNF-a, Gianelli and colleagues report that MMP-9 mRNA is decreased 

by the addition of IFN-a. Contrary to this, Diaz-Sanjuan and colleagues showed that 

IFN-a increased MMP-13 mRNA expression in cultures of the same cell type. 

Interestingly, IFN-y has been shown to synergise with IL -ip to increase MMP-9 activity in
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tuberculosis-infected monocytes Patient based studies of IFN effects on MMPs centre 

in the main on HCV mono-infected groups and in more recent years have included 

assessments of combination therapy with RBV. IFN monotherapy increases the serum

" \ f \  1MMP-l/TIMP-1 ratio and improves fibrosis score in responders , and reduces serum 

TIMP-1 and alanine aminotransferase (ALT) levels in patients who achieved a SVR In 

a study by Flisiak et al , the combination of PEG-IFN-a2b with RBV was found to 

increase MMP-1 and reduce TIMP-1 in the plasma of HCV-infected patients with a SVR. 

In non-reponders, TIMP-1 remained significantly elevated compared to controls during 

treatment and follow-up. The same treatment in another group of HCV-infected patients 

resulted in decreased levels of MMP-9 but not MMP-2, TIMP-1 or -2, in SVRs, findings 

also confirmed at the liver tissue level Interestingly, in a group of HIV/HCV co­

infected patients who were treatment naive for anti-HCV therapy, but HAART experienced 

in the majority of cases, plasma TIMP-1 was significantly elevated compared to healthy 

controls, with no differences in MMP-9 levels

Overall, the findings of these studies would seem to suggest pharmacological effects by 

anti-HIV and anti-HCV therapeutics beyond inhibition o f viral replication and indicate that 

disease-associated pathologies in which MMPs are prominent may be influenced by the 

effects of such agents. Importantly though, in HIV/HCV co-infection where disease 

pathogenesis is exacerbated, data is lacking, and the cellular source of potential therapy- 

induced alterations to circulatory MMP/TIMP levels requires identification. Given the 

capacity of cells o f the monocyte / macrophage and HSC lineage to mediate disease 

pathogenesis, in vitro models would represent an appropriate area o f investigation.
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1.5 Innate immunity and cytokine regulation of the immune response to 

infection

1.5.1 The components of innate immunity

Innate immune responses are rapidly activated against HIV and HCV infection and are a 

critical determinant of both the degree of infectivity and the subsequent course of disease 

progression. Indeed, the functions o f later T and B cell-mediated adaptive immune 

responses to viral infection are thought closely related to the quality of the initial innate 

immune response. The innate immune system consists of cellular components such as 

monocytes, macrophages, dendritic cells (DCs), natural killer cells (NKs), and y6 T cells, 

and their respective antiviral and immunomodulatory factors.

Innate cells o f myeloid lineage including monocytes, macrophages, and bone marrow- 

derived DCs play an important role in initial viral infection and contribute to its 

pathogenesis throughout the course of infection. By virtue of CD4 and CCR5 receptor 

expression, these cells represent a major target for HIV-1 infection and act as subsequent 

viral reservoirs, contributing to continuous residual virus replication Macrophages, 

unlike T cells, are resistant to the cytopathic effects of the virus and their ability to 

migrate to organs and survive in tissues facilitates viral dissemination. Furthermore, acting 

as antigen presenting cells (APCs) or as a scource of chemotactic cytokines, their 

interaction with CD4"  ̂ T cells may favour intercellular virus transmission. However, 

macrophages are also central to immune control of infection, either by directly destroying 

invading pathogens by the release of antiviral enzymes such as AP0BEC3G or by 

secreting cytokines such as type I IFN and TNF-a/p that are capable of viral inhibition or

• 368 369activation of alternate innate and adaptive defences
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DCs are instrumental in pathogen-specific immune responses via expression of pattern 

recognition receptors such as Toll-like receptors (TLRs) and C-type lectin DC-SIGN (DC- 

specific intercellular adhesion molecule-grabbing non-integrin). TLRs are capable of 

detecting dsRNA and ssRNA during viral infection have been shown to recognise

simian immunodeficiency virus (SIV) in vivo and recent findings indicate that specific 

TLR blockade could result in impaired DC recognition of HCV An initial target for 

HIV infection, DCs also facilitate viral transmission to CD4"  ̂T cells and macrophages via 

binding of virions to DC-SIGNs TLR signalling also induces the differentiation of

immature DCs to mature DCs, leading to an overexpression of major histocompatibility 

complex (MHC) antigens, inflammatory chemokine receptors, and a range of inflammatory 

cytokines, including IL-2, IL-10, IL-12, IL-18, and TNF-a

•3 Q A

NK cells are specialised in their recognition o f virus-infected cells and are activated by 

IL-12 release from macrophages and DCs, resulting in cell lysis o f the latter They

382 383express soluble anti-viral factors such as IFN-y , perforin and granzymes , FasL and 

TRAIL and also secrete a range of CC chemokines Indeed, NK cells isolated from 

HIV-infected patients have been shown to secrete M IP-la and MIP-I(3 (macrophage 

inhibitory protein-la and -IP), and RANTES (regulated upon activation, normal T cell 

expressed and secreted), all CC chemokines capable of macrophage-tropic HIV-1 

suppression

The immunomodulatory potential of y8 T cells is becoming increasingly apparent and it is 

thought that these cells may play a critical role in linking innate and adaptive immunity. 

An explanation of their role in HIV-1 infection follows.
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1.5.2 y8 T cell response to HIV-1 infection

The majority of T cells in peripheral blood feature a T cell receptor (TCR) composed

• 387of a and P chains, while a smaller population bear a TCR comprising y and 5 chains 

The predominant y5 T cell within adults is the Vy9V62-encoded TCR subset, which 

comprises some 1-5% of peripheral blood T lymphocytes Vy9V62 T cells are innate 

lymphocytes that recognise nonpeptidic phosphoantigens alkylamines and

aminobisphosphonates and do so without the requirement for uptake, processing, or 

major histocompatibility class (MHC) I or II expression Stimulation of Vy9V82 T cells 

in vitro with phosphoantigens induces their activation and expansion, and the production of 

Thl cytokines IFN-y and TNF-a Under certain conditions, Vy9V62 T cells can also

secrete IL-2, IL-4, IL-10 and IL-17 and IL-22 Antigen-stimulated Vy9V82 T cells 

also produce P-chemokines such as M IP-la and MIP-1(3 and RANTES, both natural 

ligands for the CCR5 HIV-1 co-receptor Thus, Vy9V52 T cells, in response to

antigen, can rapidly produce an array of cytokines and chemoattractants likely to facilitate 

the host immune response to infection.

Vy9V52 T cells display diverse responses to HIV in vitro and in vivo, including the 

mediation o f cytotoxicity, modulation of viral expression, recognition of lymphomas, and 

repertoire alteration.

Vy9V62 T cell clones have been demonstrated to lyse (in a MHC-unrestricted manner) 

HIV-infected T cell lines more efficiently than uninfected control cells A study 

investigating the influence of mycobacterial co-infection on HIV disease progression in 

which HIV-infected promonocytic cells (U l) were exposed to Vy9V62 T cells stimulated 

with mycobacterial Ag, noted two distinct but connected effects; Ul cell death and viral 

expression Both effects were mediated by the Vy9V62 T cell release of IFN-y and
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TNF-a, although Fas ligand (FasL) also contributed to U1 apoptosis. The extent of U1 

survival, and thus HIV expression, was dependent on mycobacterial Ag concentration, 

coupled to the differential secretory potentcy of Vy9V82 cells. When Ag concentration was 

low, cytokine production by Vy9V62 cells was reduced and viral expression perpetuated. 

Indeed, HIV patients co-infected with mycobacterium tuberculosis exhibit increased y6 T 

cell percentages that are associated with a greater disease severity than mono-infected 

patients Simian y6 T cells can suppress SIV replication in infected T cells and induce 

cytoxic effects that are calcium-dependent, indicating that cytotoxicity is mediated by the 

perforin/granzyme pathway rather than the Fas-FasL pathway

B cell lymphomas such as Burkitt’s lymphoma (BL) are a common AIDS-associated 

cancer and in response to co-culture with a BL-derived cell line, Daudi, Vy9V52 T 

cells can proliferate in a HLA-unrestricted manner Furthermore, in a similar in vitro 

model, Vy9V52 specifically lyse Daudi cells and secrete low levels o f IFN-y and GM-CSF 

in reponse to stimulation with Daudi cells

Increases in relative and absolute numbers of y6 T cells have been recorded in the 

peripheral blood of HIV-1-infected individuals, including those free of clinical infections 

caused by opportunistic pathogens Such increases are likely reflective of enhanced

V81 subsets, whh a resultant inversion of the normal adult peripheral blood V82 to V51 

ratio In the absence of a clonal expansion of V51 T cells, increased numbers in the 

circulation are thought a consequence of increased trafficking from various tissues 

potentially a result o f heightened MMP and cytokine production. A restoration of normal 

y5 T cell repertoire has been shown in HIV patients as a result of HAART. Bordon et 

reported recovery o f normal Vy9 TCR repertoire to correlate positively with longer 

duration of therapy and attainment o f viral suppression. Martini et al also showed 

improved y5 T cell reactivity after only 3 months o f HAART. However, Poles and
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colleagues describe an expansion of V61, and a contraction of V62 T cells, in both the 

mucosa and the peripheral blood of HIV-infected patients that persists without reversion 

despite treatment with HAART. It is notable though that nearly 43% of the treated subjects 

had detectable viremia despite chronic HAART and a further 25% had only recently 

initated therapy.

A previous study suggested that HIV-1 Tat could interfere with chemokine receptor 

function as its N-terminal cysteine-rich domain contains CXC and CC chemokine-like 

sequences, and thus contribute to the disordered distribution of y8 T cells observed in HIV- 

infected patients Despite these findings no further studies have been conducted on the 

effects of Tat on y5 T cell repertoire or function to date. Furthermore, in light of 

differential modulation by subtypes B and C of cytokine expression in monocytes shown 

recently, it remains to be established whether distinct Tat clades influence y8 T cells 

similarly.

1.5.3 The role of interferon-y and tumour necrosis factor-a in regulating the 

immune response to HIV-1 infection 

1.5.3.1 Interferon-y

Interferons (IFN-a, -P, -y, - X )  possess a wide variety of antiviral and antiproliferative 

effects and are capable of non-specific viral inhibition. The IFN family consists of type I 

IFN (a/p), type II IFN (y), and the recently characterised type III IFN ( X ) .  Originally 

defined as an antiviral agent IFN-y, distinct from type 1 and III IFN, is involved in the 

regulation of nearly all phases of the immune and inflammatory response to infection, and 

is thus better defined as an immunoregulatory cytokine. IFN-y is secreted by activated NK 

cells T helper cells of the Thl subset CDS"̂  cytotoxic T (CTL) cells and y5 T
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cells (see section 1.5.2), and exerts its biological functions through the transcriptional 

regulation o f interferon-stimulated genes (ISGs) upon binding to its cognate receptor 

(IFNGR). The signals initiated by IFN-y receptor binding are mediated predominantly by 

the classic JAK/STAT signalling pathways

IFN-y stimulates antigen presentation by upregulating class I and II antigen presentation 

pathways. Cell surface class I MHC upregulation by IFN-y is important for host response 

to intracellular pathogens, as it increases the potential for CTL recognition o f foreign 

peptides and thus promotes the induction of cell-mediated immune surveillance 

Induction of class II MHC molecules by IFN-y promotes antigen presentation properties in 

macrophages and peptide-specific activation of CD4^ T cells IFN-y also induces de 

novo class II MHC expression on fibroblasts, keratinocytes, and endotheial and epithelial 

cells, cells that would not otherwise express MHC molecules, thus enabling these cell 

types to function as temporary APCs at sites of immune activity

Disease progression subsequent to infection with HIV-1 has been shown to correlate with a 

shift from a T helper type 1 (Thl) to a T helper type 2 (Th2) cytokine response Thl

cells are characterised by secretion of antiviral cytokines, IFN-y and IL-2, while Th2 cells 

are characterised by secretion of predominantly proviral cytokines such as IL-4, IL-10, and 

IL-13. IFN-y plays an important role in regulating the balance between Thl and Th2 cells 

by increasing IL-12 synthesis IL-12 is the primary effector that drives developing

CD4^ cells to become Thl cells in a positive feedback loop, IL-12 directly induces

IFN-y gene transcription and secretion in antigen-stimulated naiVe CD4^ T cells 

and also NK cells

IFN-y can also have direct effects on humoral immunity by regulating the development, 

proliferation, and immunoglobulin (Ig) secretion and chain switching, of B cells. As
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different Ig isotypes promote distinct effector functions in the host, IFN-y can facilitate 

interaction between the humoral and cellular components o f the immune response and 

increase antiviral defences by selective induction o f particular Ig isotypes

1.5.3.2 Tumour necrosis factor-a

Tumour necrosis factor-a (TNF-a) was originally characterised for its ability to induce 

tumour cell apoptosis and cachexia but is now recognised as a central mediator o f  a broad 

range o f  biological activities, encompassing inflammatory and immune responses. TNF-a, 

and other members o f the TNF cytokine family, interact with more than one receptor of a 

corresponding superfamily o f cognate receptors that include T N FR l, TNFR2, 

lymphotoxin-P receptor, and the herpes virus entry mediator TN FRl is widely

expressed throughout human tissues and acts as the main receptor for TNF-a, while 

TNFR2 is exclusive to leukocytes and binds both TNF-a and TNF-(3. Binding o f TNF-a to 

these two receptors results in downstream activation o f caspases (3, 6, 7, and 8) and the 

transcription factors, AP-1 and N F-kB

As a result o f its ability to induce NF-kB, a transcriptional activator o f the HIV-1 LTR, 

pro-viral effects have been attributed to TNF-a in chronically infected T cell and 

monocytic cell lines However, pre-incubation o f human macrophages with TNF-a

inhibits HIV-1 entry suggesting that TNF-a may also confer host cellular resistance

to infection. The CC chemokines RANTES and M IP -la  and - ip  have been identified as 

effective inhibitors o f H IV -1 entry into susceptible cells by competing with the virus for 

receptor binding . Lane and colleagues showed that TNF-a treatment o f  freshly 

HIV-infected monocytes and alveolar macrophages increased RANTES production, 

thereby suppressing viral replication. This effect was abrogated by immunodepletion of 

RANTES alone, or in combination with M IP -la  and -ip . Additionally, it was reported that
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exposure to TNF-a reduced CCR5 expression in both cell types. Given that NK cells are a 

significant source o f TNF-a and M IP-la these cells may also mediate a similar 

antiviral pathway during early stage infection. The above data would suggest that TNF-a 

exerts differential modulation o f monocytes/macrophages latently infected, and newly 

infected, by HIV.

TNF-a may also interact with other cytokines to regulate the immune response to HIV 

infection. IL-10 is a cytokine produced by DCs and Th2 cells that inhibits the production 

o f pro-inflammatory cytokines and chemokines and displays predominantly pro-viral 

activity During in vitro HIV infection of macrophages, IL-10 has been shown to inhibit 

viral replication based on the prevention of synthesis and release o f endogenous TNF-a 

and IL-6 However, lower concentrations of IL-10 resulted in enhanced HIV 

replication, an effect correlated to the cooperation of the released TNF-a and IL-6 

TNF-a and IL-12 synergise to increase IFN-y secretion by NK cells and, interestingly, 

IL-10 production in response to infection with Listeria monocytogenes inhibits this 

response in immunodeficient mice

1.6 Rationale and aims

MMPs and their natural inhibitors, TIMPs, and the cytokines TNF-a, IL -ip and IFN-y, are 

an integral part of the inflammatory and immune response to HIV and HCV infection, 

exerting potentially significant pathological and immunoregulatory effects during the 

course o f both infections. Some evidence suggests that MMP/TIMP and cytokine 

expression is altered by both exogenous therapeutic agents and endogenous viral proteins.
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As such, select anti-HIV and anti-HCV compounds have been shown to alter the 

MMP/TIMP balance in vitro in a limited number of cell types and in vivo in HIV and HCV 

mono-infected patients. The HIV-1 regulatory protein Tat has been evidenced to induce 

MMP and cytokine expression, with recent data indicating a differential modulation of 

cytokine expression in respect to individual HIV subtypes, or clades. HCV non-structural 

(NS) proteins have also demonstrated extravirological functions including the potential to 

mediate changes to cytokine production in non-infected cells.

The effects of HIV/HCV antiviral therapy on important cellular sources of MMPs and 

TIMPs during infection such as monocytes/macrophages and hepatic stellate cells requires 

much further characterisation and the effects of combination ribavirin/pegylated interferon- 

a  (RBV/PEG-IFN-a) therapy on the MMP/TIMP status of HIV/HCV co-infected patients 

have not been described to date by any investigators. The effects of HIV-1 Tat clades on 

MMP and TIMP production in immune cells has also not been studied and considering 

their often concomitant effects, a parallel assessment involving pro-inflammatory TNF-a 

and IL -ip cytokine secretion may serve to further delineate the respective pathogenesis of 

HIV-1 genetic subtypes, which to date is poorly understood. Furthermore, an additional 

investigation into the effects of HCV NS3 protein on the same parameters might contribute 

to an understanding of how viral proteins contribute to impaired immunity and accelerated 

disease progression in HIV/HCV co-infection. Additionally, the potential for Tat clades to 

affect differential cytokine expression patterns in T lymphocytes and their Vy9V62 subset 

has not been explored to date, despite the significant immunomodulatory properties of 

these cells.

Therefore, the overall aims of this thesis are to investigate the effects o f antiviral therapy 

and HIV and HCV proteins on MMP/TIMP abundance and cytokine production in both in 

vitro and in vivo settings where appropriate. Specifically, THP-1 monocyte/macrophage
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and LX-2 hepatic stellate cell models are employed to assess the effects of HIV Pis, 

NRTIs, and NNRTIs, and RBV and IFN-a on MMP-9 activity and mRNA expression. An 

accompanying clinical study also investigates the MMP/TIMP status o f patients either 

mono-infected with HIV or HCV, or co-infected with both viruses. The effect o f initiating 

RBV/PEG-IFN-a2b therapy on the MMP/TIMP status of the latter patient group is also 

examined.

In view of evidence that HIV-1 Tat protein trans-activates numerous non-viral genes 

differentially based on genetic subtype, and that HCV NS3 protein may also exert 

pleiotropic effects, THP-I monocytes/macrophages are subjected to Tat clades B and C 

and NS3 protease. Employing a range of concentrations for each protein, effects on MMP- 

9/TIMP-l abundance and TNF-a/IL-ip secretion are examined.

Factoring the importance of T lymphocyte cytokine production during viral infection and 

the emerging significance of the Vy9V82 T cell subset with respect to immunomodulation, 

the principal aims of the third study are to; 1.) quantify the percentage of these cells 

producing IFN-y and TNF-a, and, 2.) determine the levels of IFN-y and TNF-a secreted by 

these cells, when challenged with Tat clades, A, B, C, and D, under both stimulated and 

non-stimulated conditions.

67





Chapter 2.

Cells and materials





2.1 Cells and cell culture reagents

THP-1 Cells:

THP-1 cells are a pro-monocytic human leukaemic cell line cultured from the blood o f a 

boy with acute monocytic leukaemia These cells grow in suspension, and can be 

differentiated into adherent cells of a macrophage phenotype by exposure to phorbol esters 

458 ^ pj.Qf Joseph Keane, Trinity College Dublin.

LX-2 Cells:

LX-2 cells are an adherent human hepatic stellate cell line, which were selected through 

spontaneous immortalisation in low serum conditions Prof Scott L. Friedman (Mount 

Sinai School of Medicine, New York) kindly donated these cells.

Peripheral Blood Mononuclear Cells (PBMCs):

PBMCs were isolated from the venous blood of healthy male donors by gradient density 

centrifugation using Lymphoprep™ immediately before experimentation.
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Table 2.1 The main cell culture reagents used in the study.

Product Supplier

RPMI 1640 Invitrogen (Paisley, UK)

Dulbecco’s M odified Eagles Medium (DMEM) Sigma-Aldrich (Arklow, Rep o f  Ireland)

Foetal bovine serum Sigma-Aldrich

Penicillin Sigma-Aldrich

Streptomycin Sigma-Aldrich

L-glutamine Sigma-Aldrich

Trypsin Sigma-Aldrich
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2.2 Consumables

Table 2.2 Major consumable items used in the study.

Product M anufacturer

12-well plate, Nunclon''’'^A Surface, sterile Nunc (Kamstrupvej, Denmark)

24-well plate, sterile Sarstedt (Numbrecht, Germany)

48-well plate, Nunclon^'^A Surface, sterile Nunc

96-well plate, NunclonT^A Surface, sterile Nunc

White 96-well plates Greiner Bio-One (Frickenhausen, 

Germany)

MicroAmp® Fast Optical 96-Well Reaction Plate Applied Biosystems (Carlsbad, USA)

T75-cell culture flask, Nunclon^'^A Surface, filter 
cap, sterile

Nunc

T150-cell culture flask, Nunclon™A Surface, 
filter cap, sterile

Nunc

Cryogenic vials, sterile Coming (Amsterdam, Netherlands)

Serological pipettes, sterile Coming

Syringes and needles, sterile Becton, Dickinson and Company 

(Oxford, UK)

Microtubes Sarstedt
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2.3 Pharmacological agents and recombinant proteins

Table 2.3 comprises the antiretroviral agents and recombinant proteins, with their 

suppliers, used in this study. Pharmacological agents and proteins not mentioned were 

obtained from Sigma-Aldrich (Arklow, Co. Wicklow, Rep o f Ireland).

Table 2.3 Antiretroviral agents and recombinant proteins

Compound Class Supplier

Efavirenz NNRTI Boehringer Ingelheim (Ingelheim, Germany)

Nevirapine NNRTI Boehringer Ingelheim

Abacavir sulphate NRTI NIAD, NIH (Bethesda, MD, USA)

Zidovudine NRTI USP Reference Standards (Rockville, MD, USA)

Lopinavir PI Boehringer Ingelheim

Atazanavir sulphate PI GlaxoSmith-Kline (Uxbridge Middledex, UK)

Saquinavir mesylate PI USP Reference Standards (Rockville, MD, USA)

HCV NS3 n/a Prospec (East Brunswick, NJ, USA)

HIV-1 Tat Clades n/a Prospec

Interferon alpha 2a n/a Prospec

proMMP-9 n/a AnaSpec (Fremont, CA, USA)
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2.4 Enzymes and primers for real-time RT-PCR  

Table 2.4 Enzymes used and their suppliers.

Enzyme Company

Deoxyribonuclease I, Amplification Grade Invitrogen (Paisley, UK)

M-MLV Reverse Transcriptase Sigma-Aldrich

QuantiTect SYBR Green PCR Kit, Qiagen (Crawley, UK)

Table 2.5 QuantiTec Primers for real-time RT-PCR. All RT-PCR primers were purchased 

from Qiagen as part o f a predesigned QuantiTec Primer Assay and selected according to 

species and target gene of interest.

Target Species Detected transcript Amplicon length Product code

MMP-9 Human NM_004994 115 bp QT00040040

GAPDH Human NM_002046 119 bp QTO1192646
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2.5 Antibodies

Table 2.6 Details of the antibodies used for flow cytometric analysis, their source, 

conjugation, and suppliers.

Target Source Conjugate Supplier

CD3 Mouse FITC Immunotools (Friesoythe, Germany)

CD14 Mouse FITC Immunotools

CD3 Mouse Pacific Blue BD Biosciences (Oxford, UK)

CD4 Mouse PE BD Biosciences

CD19 Mouse APC BD Biosciences

IFN-y Mouse APC BD Biosciences

TNF-a Mouse FITC BD Biosciences

V82 Mouse PE BD Biosciences

IgGl Rat Miltenyi Biotec (Bergisch Gladbach, Germany)
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2.6 Equipment

Table 2.7 Details o f the equipment used in the study and their suppliers

Equipment

7900HT Fast Real-time PCR System

Analytical balance

Autoclave

Automated pipettes

Pipetman Ultra 8-channel

Cell Sorter

Centrifuge

Flow Cytometer

Freezer (-80°C)

Gel documentation system 

Gel electrophoreses system 

Incubator (37 °C, 5% CO2, 95 % rh) 

Inverted microscope 

Laminar Flow Hood

M odel/Supplier

Applied Biosystems 

Mettler, AE240 

Dixons (Wickford, UK)

Gilson, Inc. (2 |j,l-5000 }xl) (20--300 p.1) 

Gilson Inc. (20-300 p.1)

Beckman Coulter, MoFlo™ XDP 

Hettich Zentrifugen, EBA 12R/mikro 22R 

Beckman Coulter, CyAn™ ADP 

Thermofisher Scientific, Revco Value Plus 

Syngene, GeneGenius 

Bio-Rad, Mini-Protean 

Memmert, Inco2 

VWR, VistaVision™

Mason Technology, BioBan 48
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Table 2.7 cont.

Equipment M odel/Supplier

Luminometer Thermofisher Scientific, Fluoroskan AscentFL

Microplate reader BioTek, EL 808

Microplate washer Bio Tek, ELx405

Micro-Volume UV-Vis Thermofisher Scientific, Nanodrop ND 8000

Spectrophotometer

Neubauer haemocytometer BRAND GMBH + CO KG, Blaubrand®

pH meter Mettler-Toledo Inc., MP230

Thermocycler MJ Research Inc, P IC -100

78



Chapter 3.

Effect of ribavirin and interferon on MMP-9 abundance in 

THP-1 and LX-2 cells and in HIV/HCV co-infected patients





3.1 Introduction

Since the advent o f highly active antiretroviral therapy (HAART) in the mid-nineties, 

mortality associated with human immunodeficiency virus (HIV) has declined and the 

clinical profile of the disease has diminished in severity However, immunopathological 

complications remain a significant factor in the management o f the disease, and co- 

infection with hepatitis C virus (HCV) has emerged as a major detriment to the survival of 

patients

The pathophysiology of both viruses is well characterised and key cellular targets have 

been identified. For example, monocytes/macrophages are known reservoirs o f the HIV 

virus and disruption of the vascular endothelium during infection permits the migration of 

activated cells to tissues, thus facilitating viral dissemination and organ damage With 

regard to HCV infection, activation o f resident hepatic stellate cells (HSCs) characterises 

remodelling of liver tissue. Upon activation, HSCs adopt a myofibroblast-like phenotype 

and express profibrogenic cytokines and type I and III collagen The net result of which 

is the accumulation of extracellular matrix (ECM) and the formation o f scar tissue 

Liver macrophages are also implicated in this process as they can activate hepatic stellate

9 77cells by secreting paracrine factors such as transforming growth factor-pi (TGF-pl)

Matrix metalloproteinases (MMPs), a large group of proteolytic enzymes regulated via 

gene expression, precursor activation and inhibition by their endogenous tissue inhibitors 

of metalloproteinases (TIMPs), contribute to cell migration, activation and inactivation of

9  "J A

soluble factors, and the regulation of ECM constituents . As activated 

monocytes/macrophages and HSCs both express a range of MMPs and TIMPs, MMPs may 

play a fundamental role in HIV/HCV-associated pathology. In experimental models of 

CCU-induced liver fibrosis MMP-2 and -9 are increased and have been shown to
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activate HSCs via cytokine stimulation, which in turn stimulates collagen production 

during the early stages of fibrogenesis During later stages, enhanced MMP-9-

mediated degradation of type I collagen, coupled with a corresponding reduction in TIMP 

expression, may contribute to fibrolysis, a process facilitated by increased apoptosis of 

both HSCs and macrophages This indicates that in vivo, liver fibrosis is probably a 

process of continual flux, involving phases o f progression and regression Such data 

suggests a prominent role for cells of the monocyte/macrophage and hepatic stellate cell 

lineage in immunopathological events in which MMPs and their inhibitors are prominent.

Data on the effect of anti-HIV and anti-HCV pharmacological agents on MMP abundance

■3 C A  "J < 0

in relevant cell models is limited ’ , and while it is well documented that MMPs are

highly dysregulated in HIV and HCV mono-infected patients 228,246.249,261,351,469,470̂  

consensus exists and their status in co-infected groups is poorly investigated. Furthermore, 

it remains to be established if anti-HCV therapy alters MMP and TIMP expression in co­

infected patients. Therefore, we conducted an in vitro study to examine the effects of RBV, 

IFN-a, and a selection of clinically prescribed HIV antiviral agents on MMP-9 activity and 

expression in cells o f an inflammatory and fibrotic phenotype, namely THP-1 

monocytes/macrophages and LX-2 hepatic stellate cells. Additionally, as MMP-9 and 

MMP-2 are contributory to disease progression in HIV/HCV patients, and factoring their 

endogenous regulation by TIMPs, we also investigated if MMP-9, MMP-2 and TIMP-2 

activity and abundance differ in HIV/HCV co-infected patients compared to HIV and HCV 

mono-infected patients and healthy controls. We also assessed the effects of initiating 

HCV therapy (ribavirin and pegylated-interferon-a2b) on MMPs in HIV/HCV co-infected 

patients.
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3.2 M ethods

3.2.1 Cell culture

THP-1 cells were cultured in Roswell Park Memorial Institute medium (RPMI 1640, L- 

glutamine, 25 mM HEPES) (Invitrogen, Paisley, UK) supplemented with 10% foetal 

bovine serum, 100 U/ml penicillin, and 100 mg/ml streptomycin (all Sigma-Aldrich, 

Arklow, Rep o f  Ireland) in a humidified atmosphere at 37 °C and 5 % CO2. Flasks were 

divided 1:3 every 3-4 days. LX-2 cells were cultured under identical atmospheric 

conditions in Dulbecco's M odified Eagle's Medium (DM EM , 4500 mg/1 glucose) (Sigma- 

Aldrich) supplemented with 10 % foetal bovine serum, 2 mM glutamine and 100 U/ml 

penicillin, and 100 mg/ml streptomycin. Cells were subcultured every 2-3 days using 

Trypsin solution (Sigma-Aldrich). Both cell lines were periodically tested for mycoplasma 

contamination using M ycoAlert® M ycoplasma Detection kit (Lonza, Slough, UK). In 

order to determine cell number and viability, cells were stained with Trypan Blue (Sigma- 

Aldrich) (0.4 % w/v; 1:5) for 5 min and counted using a Neubauer haemocytometer. Cell 

number per ml o f  culture medium was calculated using the follow ing equation:

n u m b e r  o f  c o u n te d  ce l ls  x  10 0 0 0  x  6
C e l l s / m l  = ------------------ ------------------- --------------------

8 s q u a r e s  x  5

3.2.2 Preparation of pharmacological agents

HIV antiretrovirals (see Table 2.2), phorbol 12-myristate 13-acetate (PMA), M G132, and 

doxorubicin hydrochloride (DOX) (all Sigma-Aldrich) drug stocks were solubilised in 

dimethyl sulphoxide (DMSO) (Sigma-Aldrich), while RBV (Sigma-Aldrich), and IFN-a2a
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(see Table 2.3) were solubilised in sterile dH20 (18 All working solutions were

prepared in medium and cells exposed to drugs for 48 hr unless otherwise indicated. Final 

solvent concentrations were as follows; atazanavir (Ctman 0.05 % v/v DMSO), lopinavir 

(Cfinai=0.16 % v/v DMSO), saquinavir (Cfinai= 0.04 % v/v DMSO), abacavir (Cfinai= 0.05 % 

v/v DMSO), zidovudine (Cfinai= 0.04 % v/v DMSO), efavirenz (Cf,nai= 0.1 % v/v DMSO), 

nevirapine (Cf,nai= 0.07 % v/v DMSO), PMA (Cfinai= 0.05 % v/v DMSO), MG132 (Cf,nai= 

0.01 % v/v DMSO), and doxorubicin (Cfinai= 0.05 % v/v DMSO).

3.2.3 Patient selection and treatment

The patient study was approved by the local ethics committee and informed consent 

obtained.

HIV/HCV co-infected patients and age, gender, and risk factor matched HIV m ono­

infected, and HCV mono-infected patients («= 10/group), were recruited from patients 

attending the Department o f  Genitourinary Medicine and Infectious Diseases, St Jam es’s 

Hospital. Age and gender matched healthy controls were recruited from staff at the 

hospital. Exclusion criteria included smoking, a disease (cancer, inflammatory condition or 

obstructive airway disease) or therapies known to alter MMP activity (e.g., statins). The 

HIV/HCV co-infected patients, a subset o f  a larger study group , received RBV (1000 

mg/day for patients <75 kg or 1200 mg/day for patients >75 kg orally) and PEG-IFN-a2b 

(1.5 |.ig/kg/week subcutaneously) and were followed for 14 days upon commencing 

treatment. Venous blood was reserved at baseline in all groups, and on days 3 and 14 in the 

HIV/HCV co-infected group. Blood samples were collected in EDTA and lithium heparin 

tubes, centrifuged (1650 rpm, 25 min, 4 °C), and the top plasma layer was aliquoted into 

1.5 ml screw-cap tubes and stored at -80 “C until required.
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3.2.4 Hospital laboratory analysis

HCV infection was confirmed using HCV antibodies (Abbott IMX V3.0; Abbott/Murex 

Laboratories Ltd., Maidenhead, UK) and recombinant immunoblot assay (RIBA) (Chiron 

V3.0; Chiron Corporation, Emeryville, USA). Patients were genotyped by restriction 

fragment length polymorphism (RFLP) as described by others HIV viral load was 

quantified using Cobas Amplicor V I.5 (Roche Diagnostics Ltd, Lewes, UK), which has a 

limit of detection of 50 HIV-1 RNA copies/ml. Biochemical and haematological 

parameters were measured using standard laboratory techniques.

3.2.5 Gelatin zymography of culture medium and plasma

THP-1 monocytes were seeded at a density of 5 x 10  ̂cells/well in 24-well plates in serum- 

free RPMI and exposed to either ribavirin (RBV) (10 |J.M), interferon-a2a (IFN-a2a) (250 

lU/ml), HIV protease inhibitors (Pis); atazanavir (ATV), lopinavir (LPV) and saquinavir 

(SQV), HIV nucleoside reverse transcriptase inhibitors (NRTIs); abacavir (ABC) and 

zidovudine (ZDV), or HIV non-nucleoside reverse transcriptase inhibitors (NNRTIs); 

efavirenz (EFV) and nevirapine (NVP) at concentrations of 1, 5 and/or 10 |uiM. One hour 

later, cells were activated with phorbol 12-myristate 13-acetate (PMA; 50 ng/ml), to 

initiate differentiation to macrophages. Experiments were also conducted in the presence of 

the proteosomal inhibitor MG 132 (200 nM), in which case cells were pre-treated with the 

compound for 1 hour in advance o f RBV/IFN-a treatment as above.

LX-2 hepatic stellate cells were seeded at a density o f 4 x 10"̂  cells/well in 24-weIl plates 

in DMEM containing 10% FBS and allowed to attach overnight. Wells were then washed 

once with phosphate buffered saline (PBS; containing MgCb and CaCh) (Sigma-
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Aldrich), serum-free DMEM substituted, and cells exposed to antiviral agents and PMA 

as above. For both cell lines, all treatments were done in duplicate and terminated after 

48 hr. Medium or PMA acted as controls where appropriate. The concentrations of the 

antiviral drugs used in the in vitro experiments reflect mean/median plasma Cmax values 

derived from the following published clinical studies: ribavirin (2.7 |ig/ml interferon 

(12.1 ng/ml Pis atazanavir (3.2 ng/ml lopinavir (9.7 ng/ml saquinavir (3 

|ig/ml NRTIs abacavir (3.2 (J.g/ml zidovudine (1 |ig/ml NNRTIs efavirenz 

(3.3 |ng/ml and nevirapine (1.9 f^g/ml Conditioned medium was then collected, 

cleared by centrifugation (5000 g; 5 min), aliquoted, and stored at -80 °C. In advance of 

zymographic analysis both culture medium supernatants and plasma samples were 

mixed with a 2X non-reducing sample buffer (50 mM Tris-HCl, pH 6.8; 0.1 % w/v 

bromophenol blue, 10 % v/v glycerol and 2 % w/v SDS; final concentrations), vortexed, 

and centrifuged (1800 g, 5 min, 4° C) to remove any remaining particulate matter. Equal 

volumes of samples along with recombinant human MMP-2 and MMP-9 standards were 

subjected to electrophoresis on an 8 % SDS-polyacrylamide gel (0.75 cm thickness; 5 % 

stacking gel; Table 3.3) co-polymerised with 0.1 % (w/v) gelatin. Gels were run at 100 V 

for 1.5 hr in a buffer of composition: 25 mM Tris base, 192 mM Glycine, 0.1% (w/v) 

SDS. Gels were then washed in Triton X-100 (2.5 % v/v) for 30 min and incubated for 

18 hr at 37 °C in an incubation buffer of composition 50 mM Tris HCl, pH 7.6, 10 mM 

CaCb, 50 M NaCl. Gels were rinsed in destain (1:3:6; glacial acetic acid: methanol: 

dH20) followed by staining (0.05 % w/v coomassie brilliant blue R250 in destain 

solution) for 1 hr followed by destaining (5 min). Gelatinolytic activity, clear band on 

blue background, was quantified using a Gel documentation system (Syngene, 

Cambridge, UK). Samples were normalised to control (PMA). To ensure that non­

specific protease activity did not confound the results, identical gels were incubated in
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either incubation buffer or one supplemented with 20 mM EDTA to inhibit MMP 

activity.

Table 3.1 Composition o f the resolving and stacking gels used for gelatin zymography.

Resolving gel (8 %) Stacking gel (5 %)

dH20 2.6 ml 1.4 ml

Gelatin (5 mg/ml) 2 ml -

30 % (w/v) Acrylamide/Bis-acrylamide 2.7 ml 0.33 ml

Tris HC1(1.5 M, pH 8.8) 2.5 ml -

Tris HC1(1 M, pH 6.8) - 0.25 ml

10 % (w/v) SDS 100 1̂ 20 ^l

10 % (w/v) ammonium persulphate 100 (il 20 III

TEMED 6 )xl 2 |j,l

3.2.6 Real-tim e RT-PCR

3.2.6.1 RNA isolation and cDNA Synthesis

THP-1 and LX-2 cells were seeded and treated as described previously (section 3.2.5). 

Total cellular RNA was extracted using TRI Reagent^"' (Sigma-Aldrich). In brief, cells 

were lysed in the wells by addition of TRI Reagent™ (200 |il/well) and the content of the 

wells transferred to sterile microtubes. Chloroform (40 |̂ 1) was added to each sample,
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mixed for 15 s, and incubated at room temperature for 15 min. The aqueous and organic 

layers were separated by centrifugation (12,000 g, 15 min, 4 °C), and the colourless upper 

aqueous phase containing the RNA was carefully transferred to a sterilised tube. RNA was 

precipitated by addition o f isopropanol (100 |il) and pelleted by centrifugation (12,000 g, 

10 min, 4 °C). The pellet was washed with 75 % (v/v) ethanol (200 ^1), vortexed and 

pelleted by centrifugation (12,000 g, 10 min, 4 °C). The resulting RNA pellet was air-dried 

for 5-10 min and dissolved in 0.1 % (v/v) diethylpyrocarbonate (DEPC)-treated water (13 

Ml).

The integrity o f the RNA samples was assessed using agarose gel (1 % w/v) 

electrophoresis (Figure 3.1). As can be seen all samples showed 2 clear bands 

corresponding to 28S rRNA and IBS rRNA in a ratio o f  2:1, respectively. There was no 

smearing noted between bands, which would represent RNA degradation. A third minor 

band corresponding to 5S rRNA was also noted. Further, concentration and possible 

contamination were assessed by UV spectrophotometry. Samples (1 ng) were then treated 

with 1 U o f DNase I in IX DNase I Reaction Buffer and incubated at room temperature 

(<15 min) to remove any DNA contamination. The reaction was stopped by addition o f  

EDTA (25 mM; 1 |̂ 1) and heat inactivation at 65 °C for 10 min. DNase I treated RNA was 

stored at -20°C until required. cDNA was synthesised by reverse transcription o f 800 ng o f  

DNase I treated RNA using M-MLV Reverse Transcriptase in a two-step reaction. RNA 

samples were denatured and annealed with anchored oligo(dT )23  primers (5 |iM) in a 

mixture containing dNTPs (1 mM) at 70 °C for 10 min. The reaction was then cooled (4 

°C) and the remaining components added (M-MLV Reverse Transcriptase Buffer, 200 U 

M-MLV Reverse Transcriptase, 20 U RNase Inhibitor). This was then incubated for 10 

min at room temperature, followed by 50 min at 37 °C. The reaction was terminated by 

heat inactivation at 92 °C for 10 min.
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28S rRNA 
18S rRNA

5S rRNA

Figure 3.1 Assessment of the integrity of RNA samples isolated using TRI Reagent .A 

typical midi gel (1 % w/v agarose) showing 28S rRNA, IBS rRNA and 5S rRNA bands. 

Image is presented as a negative for clarity.

3.2.6.2 Real-time RT-PCR

Real-time RT-PCR was performed using a QuantiTect SYBR Green Assay and a 

QuantiTec Primer Assay (Qiagen, Crawley, UK) with primers for human MMP-9 (sense 

5’-CCCGGAGTGAGTTGAACCA-3’; antisense 5’-GGATTTACATGGCACTGCCA-3’ 

[NM_004994]) and human glyceraldehyde 3-phosphate dehydrogenase (GAPDH) (sense 

5’-GAAGGTGAAGGTCGGAGTC-3’; antisense 5’-GAAGATGGTGATGGGATTTC-3’ 

[NM_002046]). cDNA (1.5 |̂ 1) was added to a reaction mix containing 7.5 )al of 

QuantiTect SYBR Green, 1.5 |il of the Primer set and 4.5 |xl of RNase-free water (PCR- 

grade) in a fast optical 96-well plate. This was covered with an optical adhesive film, 

briefly shaken, and analysed in a 7900HT Fast Real-time PCR System (Applied 

Biosystems) (see Table 3.2 for cycling parameters).

Correction for background fluorescence was achieved through setting ROX dye as an 

internal fluorescence reference. Furthermore, each real-time PCR run contained a melting 

point analysis ranging from 60 °C to 95 °C over 30 min and a continuous fluorescence
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measurement to identify formation of primer-dimers. Data collection and analysis was 

acquired using SDS software v2.2.1, in which the threshold level was set to 0.4. Threshold 

cycle (Ct) was defined as the point where the fluorescence crosses the threshold line and 

was set in the exponential phase of the amplification. Amplification efficiencies of the 

individual primer sets was obtained by plotting the mean threshold cycle (Ct) values 

against the logarithm of DNA mass, in order to determine slope and linearity. Relative 

mRNA expression was analyzed according to the following equation

ratio -
^Ct^arget ( c o n t r o l - s a m p l e )

( c o n t r o l - s a m p l e )

In order to make valid comparisons between samples, amplification efficiency for each 

primer set was determined using a serial dilution from 40 ng of control cDNA (1, 1:3, 1:10, 

1:30, 1:100). Recorded amplification efficiencies for MMP-9 and GAPDH gene transcripts 

were 87.5 % and 89.8 %, respectively (r^>0.98).

Real-time PCR efficiency (E) was calculated using the slope of the amplification efficiency 

of the individual primer sets, according to E = Etarget describes real-time PCR

efficiency of the target gene transcript and Eref is the real-time PCR efficiency of a house­

keeping gene transcript ACttarget is the difference of mean Ct value of control minus 

treated sample o f the target gene transcript. Furthermore, the ACtref value describes the 

difference of the mean Ct value of the control minus the treated sample of the house­

keeping gene transcript.
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Samples were analysed in duplicate. Each assay included a no-template control and a no 

reverse transcriptase-control.

Table 3.2 Real-time theromcycler conditions

Step Time Temperature Comment

Initial activation step 15 min 95 °C

Denaturation 15 sec 94 °C

Annealing 30 sec 55 °C

Extension 30 sec 72 °C Fluorescence data collection

40 cycles

3.2.7 Determination of MMP-9 and TIMP-2 expression by ELISA

THP-1 cells were seeded in 12-well plates at a density of 1 x 10  ̂cells/well and treated with 

RBV/IFN-a2a as described previously (section 3.2.5). After 48 hr medium was removed, 

wells washed twice with cold PBS, and attached cells lysed by the addition of lysis buffer 

(50 mM Tris-HCl, pH 7.4; 150 mM NaCl; 1 mM EDTA, 1 % v/v Triton X-100, 0.1 % w/v 

SDS) supplemented with a protease inhibitor cocktail (4 |il/ml) on a plate shaker (100 rpm, 

5 min, 4 °C). Lysates underwent two subsequent freeze/thaw cycles. Following 

centrifugation (800 g, 5 min, 4 °C), supernatants were removed and stored at -80 °C. For 

analysis, THP-1 cell lysates were assayed undiluted, while plasma samples were diluted 

1:50 in assay diluent. MMP-9 and TIMP-2 abundance was quantified by using the Human 

MMP-9 Quantikine ELISA Kit and Human TIMP-2 Quantikine ELISA Kit (R&D
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Systems, Abingdon, UK) respectively, in accordance with manufactures protocol. The 

lower limit of detection for MMP-9 and TIMP-2 were <0.156 ng/ml and 0.011 ng/ml, 

respectively. The intra-assay coefficients o f variation and the inter-assay coefficients of 

variation for MMP-9 were 2.0 % and 7.9 %, respectively. For TIMP-2 these values were 

4.4 % and 6.8 %, respectively. Optical density was read at 450 nm with a reference 

wavelength of 540 nm. MMP-9 and TIMP-2 levels were determined by interpolation from 

their respective standard curves. Samples and standards were analysed in duplicate and 

expressed as ng/ml.

3.2.8 Assessment of differentiation markers by flow cytometry

THP-1 cells were seeded in 12-well plates at a density of 1 x 10  ̂cells/well and treated with 

RBV/IFN-a2a as described previously (section 3.2.5). After a 48 hr incubation, culture 

medium from all wells was discarded and 1.5ml of EDTA (10 mM) added. Plates were 

placed on a shaker (100 rpm, 15 min, 21 °C), and subsequently cells from each well were 

detached by gentle agitation using a cell scraper and transferred to microtubes tubes. After 

centrifugation (800 g, 5 min, 21 °C), cells were resuspended in 100 |̂ 1 of PBA buffer (1 % 

v/v BSA; 0.02 % w/v NaNs; dissolved in PBS), and 50 |il of each sample was added to 

FACS tubes containing 0.8 |xg o f FITC-conjugated mouse anti-Human CD 14 mAb 

(Immunotools, Friesoythe, Germany). Tubes were incubated in the dark for 15 min. Cells 

were then washed with 2 ml of PBA/tube and resuspended in 500 |j,l o f 2 % w/v 

paraformaldehyde (PFA). The mean fluorescent intensity of each sample was determined 

by electronic gating on the cell population using a CyAn ADP (Beckman Coulter, High 

Wycombe, UK) flow cytometer running Summit software (Dako, Fort Collins, USA), with 

unstained cells acting as control.
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3.2.9 Cell viability assay

THP-1 cells were seeded at a density o f 4 x 10"̂  cells/well in 96-well plates using serum- 

free RPMI. LX-2 cells were seeded at a density o f 8 x 10^ cells/well in 96-well plates in 

complete DMEM and were allowed to attach for 24 hr, after which time cells were washed 

with PBS and the medium changed to serum-free DMEM. Cells were treated with ribavirin 

(RBV 10 1J.M), interferon-a2a (IFN-a2a) (250 lU/ml), saquinavir (SQV, 5 |j.M), lopinavir 

(LPV, 10 i^M), doxorubicin hydrochloride (DOX, 10 and 50 |j,M) and medium in the 

presence o f phorbol 12-myristate 13-acetate (PMA, 50 ng/ml) for 48 hrs. At the end o f  the 

incubation time 20 |al o f CellTiter-Blue® (Promega, Madison, USA) reagent was added to 

each well and incubated for 3 hours at 37 °C. After a brief shake (10 s), the absorbance was 

measured at a wavelength o f  540 run with a reference wavelength o f  650 nm using a 

mircoplate reader (BioTek, EL 808).

3.2.10 Data and statistical analysis

MMP activity was expressed as arbitrary units (AU) based on densitometric measures o f 

gelatin lysis. Data was normalised to PMA controls. MMP-9 mRNA expression was 

calculated as described previously (section 3.2.6.2) and expressed as fold changes. Data 

was again normalised to PMA controls. MMP and TIMP abundance was determined by 

interpolation o f unknown data from their respective standard curves using KCjunior™  

software (Bio-Tek, Vermount, USA). Data from cell viability experiments were 

normalised to medium controls and expressed as a percentage. M ean fluorescent intensities 

(MFIs) were obtained from gated flow cytometry histograms using Summit© software 

(Dako, Fort Collins, USA).
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Data were analysed by one-way ANOVA with post hoc analysis (Bonferroni or Dunnetts; 

GraphPad Prism, version 5.01) or paired Student’s /-test where appropriate. Data are 

expressed as mean ± SEM. All samples were assayed in duplicate or triplicate and 

experiments were repeated at least three independent times (n). A value of f*<0.05 was 

taken to indicate statistical significance.

3.3 Results

3.3.1 Effects of RBV/IFN-a2a on MMP-9 abundance in THP-1 cells

MMP-9 activity and mRNA expression were non-detectable in inactivated THP-1 cells of 

the monocyte phenotype. However, following exposure to PMA for 48 hr, MMP-9 activity 

and expression increased as cells underwent differentiation to macrophages.

In PMA activated cells IFN-a2a dose-dependently decreased MMP-9 activity (Figure 3.2 

A). In all subsequent experiments, lFN-a2a was used at a concentration of 250 lU/ml. 

IFN-a2a (250 lU/ml) alone, and in combination with RBV (10 |iM), decreased MMP-9 

activity (44±4.2 and 60±1.4 versus 100±3.1 AU; / ’<0.05), while RBV increased activity by 

approximately 50 % (P<0.05; Figure 3.2 B).

At the mRNA level, RBV alone and in combination with IFN-a2a increased MMP-9 

expression compared to PMA controls (RBV, RBV/IFN-a versus PMA: 771±116, 772±42 

versus 488±45; P<0.05; Figure 3.2 C), while IFN-a2a had no effect. The disparity between 

extracellular MMP-9 activity and intracellular MMP-9 mRNA was investigated further by 

looking at effects on intracellular MMP-9 abundance, the effect of proteosomal inhibition 

and temporal mRNA expression patterns. RBV caused a robust increase in intracellular 

MMP-9 protein levels, while IFN-a2a had no effect. However, in combination with RBV,
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IFN-a2a reduced the RBV-mediated increases from 5.5±0.4 to 3.3±0.4 ng/ml ( / ’<0.05; 

Figure 3.2 D). To ascertain if  this was due to increased proteosomal degradation, the 

experiments were repeated in the presence o f MG132, a proteosomal inhibitor. Co­

treatment o f THP-1 cells with the proteasome inhibitor MG132 (200 nM) increased 

(P<0.05) MMP-9 activity compared to PMA alone (178±23 versus 100±6.1 AU; Figure 

3.3 A). However, it did not alter the effect o f IFN-a2a on RBV-mediated increased MMP-9 

activity in THP-1 cells. When the temporal effects o f IFN-a2a on MMP-9 mRNA 

expression were assessed, it was found that it reduced (/*<0.05) MMP-9 mRNA by 

approximately 65% at 24 hrs, while having no effect at the later time points studied 

compared to PMA treated controls (Figure 3.3 B).

3.3.2 Effects of RBV/IFN-a2a on THP-1 cell viability and surface markers of 

differentiation

To ensure our results were not confounded by cytotoxic effects o f  the drugs used, we 

assessed their effect on cell viability using a CellTiter-Blue cell viability assay. RBV, IFN- 

a2a, and the combination o f  both drugs, did not affect cell viability at the concentrations 

used in this study. Doxorubicin (10 fxM) was employed as a positive control, and reduced 

MMP-9 activity by ~85 % (14±3 versus 100±0.5 AU; P<0.05; Figure 3.4 A). Additionally, 

to ensure that our results were not simply due to effects on the differentiation process o f 

monocytes to macrophages, we analysed their effects on CD 14, a monocyte cell surface 

marker that is down-regulated during differentiation. All PMA treated samples showed 

significant reduction (P<0.05) in CD 14 mean fluorescent intensities (MFI) compared to 

untreated monocytes and CD 14 expression was not altered by RBV or IFN-a2a, alone, or 

in combination (Figure 3.4 B).

95



3.3.3 Effects of RBV/IFN-a2a on MMP-9 activity and expression in LX-2 cells

In LX-2 cells, MMP-9 activity and mRNA expression were undetectable prior to activation 

with PMA. PMA upregulated MMP-9 activity and mRNA expression at 48 hr. In this cell 

line, IFN-a2a alone, or in combination with RBV, did not alter MMP-9 activity. However, 

RBV increased MMP-9 activity compared to PMA alone (134±4.1 versus 100±0.9 AU; 

/*<0.05; Figure 3.5 A). RBV and IFN-a2a alone, or in combination, did not alter MMP-9 

mRNA expression compared to PMA controls at 48 hr (Figure 3.5 B).

3.3.4 Effects of HIV ART on MMP-9 activity in THP-1 cells

Incubation o f THP-1 cells with the HIV antiretroviral drugs abacavir, zidovudine, 

efavirenz, nevirapine, lopinavir, and atazanavir did not alter MMP-9 activity, with the 

exception o f saquinavir (SQV). At a concentration of 5 |iM, SQV decreased MMP-9 

activity (44±2.3 versus 100±1.6 AU; /*<0.05; Figure 3.6 A). To discount the influence of 

cytotoxicity in this finding, we conducted parallel cell viability assays, demonstrating SQV 

had no cytotoxic effects at this concentration. Doxorubicin (10 |iM), employed as a 

positive control, reduced MMP-9 activity by ~85 % (14±3 versus 100±0.5 AU; P<0.05; 

Figure 3.6 B).

3.3.5 Effects of HIV ART on MMP-9 activity in LX-2 cells

Exposure o f LX-2 cells to the same HIV antiretroviral drugs did not alter MMP-9 activity, 

with the exception of lopinavir (LPV). LPV (10 |j,M) decreased MMP-9 activity (53±6.8 

versus 100±4.6 AU; / ’<0.05; Figure 3.7 A). To rule out the possibility of cytotoxicity, we
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also conducted parallel cell viability assays, showing that LPV had no cytotoxic effects at 

the concentration studied. Doxorubicin (50 |iM) was employed as a positive control, and 

reduced MMP-9 activity by -40  % (60±2 versus 100±1.9 AU; / ’<0.05; Figure 3.7 B).

3.3.6 Patient characteristics and hospital laboratory analysis

The majority of HIV/HCV co-infected patients included in this study were male, prior 

injecting drug users, of HCV genotype 3. Full baseline characteristics for the HIV/HCV 

co-infected cohort are outlined in Table 3.3.

3.3.7 Effects of disease and RBV/PEG-IFN-a2b therapy on the MMP/TIMP 

status of patients

A representative in vitro zymogram (Figure 3.8 A) illustrates plasma MMP-9 and MMP-2 

activity in the patient study groups and shows the effect o f RBV/PEG-IFN-a2b treatment 

at follow-up on days 3 and 14. A zymogram of the same samples incubated in the presence 

o f EDTA (20 mM) is presented at (B).

MMP-9, activity was 4 fold (P<0.05) higher in HIV/HCV co-infected and HIV mono­

infected patients than in healthy controls (86±16 and 82±15 versus 21±4.7 AU). In HCV 

mono-infected patients MMP-9 activity was similar to that o f healthy controls (32.9±5.1 

versus 21 ±4.7 AU) and was approximately 60 % lower (P<0.05) than in the HIV/HCV or 

HIV infected groups (Figure 3.9 A). MMP-9 protein expression was also higher in 

HIV/HCV co-infected patients (367.6±73.6 ng/ml) and HIV mono-infected patients 

(332.2±54.1) compared to healthy controls (129±23.9 ng/ml; P<0.05, Figure. 3.9 B).
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MMP-2 activity was similar in all groups studied, as was TIMP-2 expression (Table 3.4). 

In HIV'HCV co-infected patients, RBV/PEG-IFN-a2b caused a 70 % decrease (P<0.05) in 

plasma MMP-9 activity by day 3, and was maintained for the study duration (Baseline 

versus Day 14: 98.8±17.3 vs 28.1±11.6 AU; P<0.05; Figure 3.9 C). MMP-9 protein 

expression was similarly reduced (Baseline versus Day 14: 458.7±95.7 vs 120.4±46.8 

ng/ml; P<0.05; Figure 3.9 D). MMP-2 activity was not altered following treatment with 

RBV/PEG-IFN-a2b in the HIV/HCV co-infected group, and similarly TIMP-2 expression 

was unchanged (Table 3.4).
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Figure 3.2 Effect of IFN-a2a concentration (A) and RBV/IFN-a2a (250 IU/ml/10 |iM) (B) 

on MMP-9 activity in THP-1 cells. The effect of RBV/IFN-a2a (250 IU/ml/10 |iM) 

treatment on MMP-9 mRNA expression (C) and intracellular protein expression (D) are 

also shown. MMP-9 activity was measured in culture medium supernatants, and mRNA 

and protein levels in whole cell lysates («=4; mean ± SEM; one-way ANOVA with 

Dunnetts post hoc test; horizontal capped bars indicate statistically significant differences 

from PMA positive controls at P <0.05).
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Figure 3.3 Effect of RBV/IFN-a2a (250 IU/ml/10 |j,M) treatment on MMP-9 activity when 

combined with the proteasomal inhibitor, MG 132 (200 nM) (A). The temporal effects of 

IFN-a2a (250 lU/ml) on MMP-9 mRNA expression are also shown (B). For all 

experiments, cells were seeded in serum-free medium and incubated with treatments for 48 

hr before analysis (with the mRNA time course including additional analyses at 24 and 72 

hr). MMP-9 activity was measured in culture medium supernatants and mRNA in whole 

cell lysates (n=4; mean ± SEM; one-way ANOVA with Dunnetts post hoc test or paired t- 

test; horizontal capped bars indicate statistically significant differences from PMA positive 

controls at P <0.05).
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(A) (B)

+PMA

Figure 3.4 Effect o f RBV/IFN-a2a (10 |iM/250 lU/ml) treatment on cell viability (A) and 

the expression of the cell surface marker CD 14 (B) in THP-1 cells. For all experiments, 

cells were seeded in serum-free medium and incubated with treatments for 48 hr before 

analysis. The effects of treatment with respect to cytotoxcity were determined by CellTiter- 

Blue Cell Viability Assays using doxorubicin (DOX; 10 ^M) as a positive control. CD 14 

expression was determined by flow cytometric analysis («=4; mean ± SEM; one-way 

ANOVA with Dunnetts post hoc test; horizontal capped bars indicate statistically 

significant differences from untreated (medium) controls at P <0.05).
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Figure 3.5 Effect of RBV/IFN-a2a (10 |iM/250 lU/ml) treatment on MMP-9 activity (A) 

and MMP-9 mRNA expression (B) in LX-2 cells. For all experiments, cells were seeded in 

serum-free medium and incubated with treatments for 48 hr before analysis. MMP-9 

activity was measured in culture medium supernatants and mRNA in whole cell lysates 

(n=4; mean ± SEM; one-way ANOVA with Dunnetts post hoc test; horizontal capped bars 

indicate statistically significant differences from PMA positive controls at P <0.05).
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(A) (B)

Figure 3.6 Effect of SQV (1 |iM and 5 |iM) treatment on MMP-9 activity in THP-1 cells 

(A). Corresponding cytotoxicity assays for SQV (5 fiM) are presented at (B) using 

doxorubicin (DOX; 10 ^M) as a positive control. For all experiments, cells were incubated 

with treatments for 48 hr in serum-free medium before analysis («=4; mean ± SEM; one­

way ANOVA with Dunnetts post hoc test; horizontal capped bars indicate statistically 

significant differences from PMA positive controls or untreated (medium) controls at P 

<0.05).
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(A) (B)

+PMA

Figure 3.7 Effect o f LPV (5 j^M and 10 |^M) treatment on MMP-9 activity in LX-2 cells 

(A). Corresponding cytotoxicity assays for LPV (10 ^iM) are presented at (B) using 

doxorubicin (DOX; 50 |iM ) as a positive control. For all experiments, cells were incubated 

with treatments for 48 hr in serum-free medium before analysis («=4; mean ± SEM; one­

way ANOVA with Dunnetts post hoc test; horizontal capped bars indicate statistically 

significant differences from PMA positive controls or untreated (medium) controls at P 

<0.05).
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Figure 3.8 A representative zymogram (A) showing gelatinolytic activity at 92 , 82 and 72 

kDa, corresponding to pro-MMP-9, active-MMP-9, and active-M M P-2, respectively, in the 

plasma o f HIV/HCV co-infected, HCV mono-infected, and HIV mono-infected patients. 

For HIV/HCV co-infected patients, the effect o f RBV/PEG-IFN-a2b is also shown 

subsequent to 3 and 14 days o f treatment. A zymogram o f the same samples incubated in 

the presence o f EDTA (20 mM) is presented at (B).
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Figure 3.9 Quantitation of active plasma MMP-9 activity (A) and MMP-9 protein 

expression (B) in HIV/HCV co-infected, HIV mono-infected, and HCV mono-infected 

patient groups. Effect of RBV/PEG-IFN-a2b on plasma MMP-9 activity (C) and MMP-9 

protein expression (D) when measured after 3 and 14 days of treatment in HIV/HCV co­

infected patients («=10/group; mean ± SEM; one-way ANOVA with Bonferroni post hoc 

test; horizontal capped bars indicate statistically significant differences between patient 

groups or baseline levels at P <0.05).
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Table 3.3 Main characteristics of HIV/HCV co-infected patients {n= 10)

Age (years)

Sex {n, male)

Weight (kg)

HIV-1 acquisition risk factor («) 

Injecting drug user 

Haemophiliac 

Sexual

Baseline HIV viral load (copies/ml) 

Baseline CD4 count (cells/|al) 

Antiretroviral treatment (n)

2 NRTIs + 1 PI

2 NRTIs + 1 NNRTI

3 NNRTIs 

Untreated

HCV genotype {n)

1

38 (33-42)

8

61(55-89)

6

3

1

50 (50-621) 

652 (325-787)

3

4 

1

2

3

4

AST/ALT ratio 0.91 (0.82-1.4)

Baseline HCV viral load (lU/ml) 8.5 X 10  ̂(2.8 X 10^-1.3 x 10 )̂

All continuous variables are reported as median and interquartile range as a m easure o f  central tendency. 
Categorical or dichotom ous variables are reported as the num ber o f  patients to which they correspond.

HIV, human im m unodeficiency virus; HCV, hepatitis C virus: NRTI, nucleoside reverse transcriptase 
inhibitor; NNRTI, non-nucleoside reverse transcriptase inhibitor; PI, protease inhibitor.
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Table 3.4 MMP-2/TIMP-2 abundance in plasma of patients HIV/HCV co-infected, HIV 

mono-infected, and HCV mono-infected, and the effect of initiating RBV/PEG-IFN-a2b 

combination treatment on these parameters in the co-infected group at day 14.

Patients (/i=l 0/group) MMP-2 activity (AU) 

(Baseline / Day 14)

TIMP-2 expression (ng/mi) 

(Baseline / Day 14)

HIV/HCV 71.6±10.3/75.1±17.9" 78.2±6.1 /85.3±11.8^

HIV 74.3±12.4 62.9±6.3

HCV 79.3±13.7 74.3±4.2

Healthy controls 88.9±9.5 75±3.3

A ll data are expressed as mean ± SEM . ^indicates values measured at day 14 subsequent to start o f  therapy. 
RBV , ribavirin; PEG -IFN -a2b, pegylated-interferon alpha 2b; M M P-2, matrix m etalloproteinase-2; TIM P-2, 
tissue inhibitor o f  m etalloproteinase-2; HIV, human im m unodeficiency virus; HCV, hepatitis C virus.
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3.4 Discussion

In this study we demonstrated that RBV/IFN-a ahers MMP-9 activity and mRNA in THP- 

1 monocyte/macrophage cells, but not in LX-2 hepatic stellate cells and that this effect is 

mediated by IFN-a. We also show that the HIV protease inhibitors, saquinavir and 

lopinavir, inhibit MMP-9 activity in THP-1 and LX-2 cells, respectively. In a follow-up in 

vivo study, we show that MMP-9 levels in plasma from a HIV/HCV co-infected, and a 

HIV mono-infected patient group, were approximately 3 fold higher than a HCV mono­

infected group and healthy controls. MMP-2 and TIMP-2 levels were similar in all groups. 

Furthermore, in the HIV/HCV co-infected group, RBV/PEG-IFN-a2b therapy reduced 

plasma MMP-9 activity and protein expression.

Activated macrophages and hepatic stellate cells (HSCs) are central to the pathophysiology 

of HIV and HCV infection, with MMP-9 over-expression being implicated in tissue 

remodelling in vivo. For instance in patients with HIV-associated dementia (HAD),

infiltration of activated macrophages is increased and up-regulated MMP-9 activity

228contributes to degradation of ECM components o f the blood-brain barrier . During 

chronic HCV infection, the activation of HSCs, augmented by macrophages, is a key event 

in hepatic fibrosis that is mediated by an interplay between numerous pro-inflammatory 

cytokines and MMP-9 activity . Although few studies describe the potential relationship 

between MMPs and antiretroviral agents in vitro, it has been reported that anti-HIV drugs 

zidovudine and indinavir, inhibit MMP-9 expression and activity in neuronal cells 

while saquinavir and nelvinavir exert similar effects in preadipocytes . However, 

information on the effect o f anti-HCV agents on MMP-2, or MMP-9, abundance is sparse. 

Nevertheless, we found that RBV/IFN-a inhibits MMP-9 activity in THP-1 

monocytes/macrophages, while having no effect in LX-2 HSC cells. This is attributable to 

IFN-a as it inhibited the inductive effect of RBV on MMP-9 activity and protein
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expression in THP-1 cells. We also show that IFN-a dose-dependently inhibits MMP-9 

activity. However, this was not reflected at the transcriptional level as IFN-a did not alter 

the RBV-mediated increase in MlVIP-9 mRNA expression. This disparity may reflect an 

early (24 hr) inhibitory effect o f  IFN -a on MMP-9 mRNA expression which is reflected in 

a decrease in intracellular/extracellular MMP-9 protein expression at 48 hr compared to 

RBV alone; no transcriptional effects were noted at 48 and 72 hr. This hypothesis is 

strengthened by the observation that the inhibitory effects o f IFN-a on extracellular MMP- 

9 is unaffected by proteasomal inhibition.

We also screened a selection o f anti-HIV agents from the three major classes prescribed to 

patients and discovered that exposure o f activated THP-1 and LX-2 cells to nucleoside 

reverse transcriptase inhibitors and non-nucleoside reverse transcriptase inhibitors did not 

alter MMP-9 activity. However, the protease inhibitors saquinavir and lopinavir, inhibited 

MMP-9 activity in THP-1 and LX-2 cells, respectively. Although the mechanism 

underlying this was not investigated in the present study, De Barros et al found that in 

human preadipoctyes, saquinavir, nelfinavir and the proteasome inhibitor lactacystin 

inhibit the activity o f the 20S proteasome resulting in accumulation o f  1-kQP, which 

prevents NF-kB from initiating MMP-9 transcription. Therefore, HIV-protease inhibitors 

may inhibit MMP-9 expression through modification o f NF-?cB signalling. Our data, and 

that o f de Barros et al, also indicate that these effects appear to be drug-, rather than class-, 

specific and may also be cell-type specific.

Our clinical study found increased MMP-9 abundance in plasma from HIV and HIV/HCV 

co-infected, compared to HCV mono-infected, patients. Indeed, MMP-9 levels in the latter 

group were comparable to healthy controls. This would indicate that HIV infection is 

driving the increase in MMP-9 expression. Our patient data, indicating increased plasma 

MMP-9 and unaltered MMP-2 and TIMP-2 abundance compared to healthy controls,
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contrasts with an earlier study assessing the MMP/TIMP status of co-infected patients 

In that study, Mastroianni and co-authors showed that in HIV patients, who were either 

HCV-positive, or HCV-negative, plasma TIMP-1 was increased and MMP-9 was reduced 

compared to healthy controls. Furthermore, TIMP-1 levels were significantly higher in co­

infected patients versus HIV mono-infected patients. Similar to our cohort, the co-infected 

patients were treatment naive for anti-HCV therapy but treatment experienced for anti-HIV 

therapy at the time of sampling. Unfortunately, though, the study lacks a matched HCV 

mono-infected group for comparison o f TIMP-1 plasma levels.

In a HCV treatment naive group, the initiation o f RBV/PEG-IFN-a2b combination therapy 

in our co-infected cohort significantly reduced their enhanced plasma MMP-9 activity and 

protein expression, a finding which is unique in the literature. The combination o f RBV 

and PEG-IFN-a represents the consensus treatment for chronic HCV patients and in 

addition to its main function o f viral suppression, may also possess antifibrotic properties 

In HSCs for example, IFN-a inhibits collagen synthesis in vitro and reduces a-smooth 

muscle actin (a marker of cell differentiation to a myofibroblast phenotype) in patients

362with chronic HCV subsequent to treatment . More recently, RBV has been shown to 

decrease HCV sera-stimulated HSC proliferation, with or without IFN-a As MMPs 

regulate ECM turnover and influence HSC activation through a range o f soluble factors, 

the modulation of MMP activity may be significant to these outcomes. There has also been 

much investigation over the last decade as to the influence o f HIV antiretroviral therapy on 

liver fibrosis in co-infected patients, and, notwithstanding the substantive risk of 

hepatotoxicity, data would suggest that the use o f Pl-based HAART is associated with a 

reduction in both the severity of fibrosis and its rate o f progression ’ . Longitudinal

studies documenting fibrosis stage allied to MMP status in treated patients may in the 

future provide evidence as to whether PI/MMP interactions are significant in this context.



While we have not presented histological data for our HIV/HCV co-infected patients, 

median AST/ALT ratios of 0.91 at baseline are indicative of impaired liver function. 

Correlations to the extent, or indeed absence, of liver fibrosis with circulatory MMP-9 

expression and treatment status in HCV infected groups would have been of interest, but of 

somewhat limited value in view of the fact that liver fibrosis proceeds over a time-course 

well in excess of RBV/PEG-IFN-a treatment duration.

In conclusion, the present study shows that monocyte/macrophage cells are a target for 

MMP-9 modulation by antiretroviral therapies, as evidenced in vitro in THP-1 cells. The 

combination o f RBV/PEG-lFN-a2b reduces plasma MMP-9 in vivo, as over-expression of 

circulatory MMP-9 in a HIV/HCV co-infected group was attenuated by the initiation of 

this therapy. This provides evidence that these agents possess pharmacological activity, 

beyond viral inhibition, that may influence pathological processes involving abnormal 

MMP expression.
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Chapter 4.

Effects of HIV-1 Tat clades B and C and HCV NS3 on 

inflammatory markers in THP-1 cells





4.1 Introduction

HIV-1 infection is characterised by systemic chronic immune activation that is believed to 

be the primary' driver of disease progression HIV/HCV co-infected patients display

increased immune activation compared to HIV mono-infected patients and co-infection 

is known to alter the natural history of chronic hepatits C, disrupting innate immune 

responses augmenting viral replication and accelerating the progression of liver

fibrosis As previously discussed (section 1.5.1), the innate immune response is critical 

for defence against viral infection and is also a determinant of disease progression and 

outcome. Dysregulated innate immunity could, therefore, be a contributory factor to the 

immunopathogenesis of HIV/HCV infection. Some evidence suggests that HIV-1 Tat and 

HCV NS3 proteins contribute to innate immune dysfunction by mediating aberrant MMP 

and cytokine expression, particularly in cells of the monocyte/macrophage lineage.

The HlV-1 transactivator protein Tat, is an 86-101 residue (9-11 kDa) regulatory protein 

essential for viral replication Tat transactivates HIV-1 gene expression by interacting 

with sequences in the HIV-1 long terminal repeat (LTR) to promote transcription initiation 

o f the integrated proviral genome and to stimulate the elongation of newly initiated viral 

transcripts " . I n  addition to its primary function and localisation in the nucleus. Tat is 

actively released from unruptured, HIV-infected cells and is detectable in ex vivo culture 

supernatants and in the serum of HIV-infected individuals While extracellular Tat

can enter and transactivate the HIV-1 LTR in neighbouring cells it can also

transactivate a host of non-viral genes in uninfected cells, including those of MMPs and 

cytokines. For example. Tat has been shown to increase the expression and activity of 

MMP-9 in monocytes and neuronal cells MMP-2 in endothelial cells and induce

the expression of pro-inflammatory cytokines IL-1 IL-6 IL-8 IL-10 and 

TNF-a in monocytes and macrophages. HIV-1 comprises a range of viral subtypes

115



known as clades, and this diversity has important impHcations for the pathogenicity of the 

virus Indeed, recent studies conducted using Tat of clade B and C (the most prevalent 

subtypes in North America and Westem Europe, and Sub-Saharan African regions, 

respectively) suggest contrasting regulation of cytokine production. Campbell and 

colleagues reported an impaired ability by Tat clade C to induce TNF-a in comparison 

to Tat clade B. A subsequent study also confirmed clade B Tat to be a potent inducer of 

TNF-a, and also IL-6, but not IL-10, which was preferentially increased by clade C Tat 

Conversely, investigations conducted by Wong and colleagues indicated reduced ability 

to augment IL-10 production by Tat C in comparison to Tat B. This differential modulation 

of monocyte/macrophage cytokine expression indicates one possible mechanism for 

differences in the pathogenicity of HIV-1 viral strains.

The HCV non-structural protein NS3, is a 70 kDa serine protease belonging to the 

trypsin/chymotrypsin protease superfamily It occupies amino acids 1027 to 1658 of the 

HCV polyprotein, followed in sequence by the NS4 (A, B) and NS5 (A, B) proteins. The 

NS3-NS5B region is essential for genome replication The N-terminal amino acids of 

NS3 contain protease activity while the C-terminal portion encodes helicase activity

that assists RNA folding polymerase processivity and/or genome encapsidation 

necessary steps for successful viral replication. In addition to these functions, a number of 

reports attribute extravirologic properties to HCV NS proteins. NS3 has been demonstrated 

to increase TNF-a and IL-10 in monocytes and to inhibit dendritic cell (DC) differentiation 

from PBMCs of HCV-infected patients Others have shown that impaired DC 

functionality subsequent to NS3 (and NS4 and NS5) exposure correlates with marked 

reductions in IL-12 NS4 also mediates IL-12 inhibition in monocytes isolated from 

HCV-infected patients and NS5A upregulates IL-8 expression in HeLa cells One
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study to date has shown NS-mediated MMP induction, with NS5B transfected hepatocytes 

displaying increased MMP-9 gene expression

The data outlined above indicates that HIV-1 Tat and HCV NS3 proteins dysregulate 

MMP and cytokine expression, effects which may have significant immunomodulatory 

potential during the course of infection. For example, induction of IL-10, a T helper 2 

(Th2) cytokine, is implicated in suppression of cellular immune responses during HIV 

infection and persistence of viral replication in chronically infected HCV patients

Increased IL-6 expression has also been shown to augment HIV-1 replication in 

latently infected macrophages and impair macrophage functionality while decreased

IL-12 production has been identified as a potential factor in impaired innate and Thl cell- 

mediated responses observed in AIDS patients Furthermore, upregulated MMP 

expression, particularly MMP-2 and MMP-9, contributes to viral dissemination and is 

implicated in the pathogenesis of HIV/HCV infection through a myriad o f pathways (see 

section 1.1.1).

TNF-a and IL-ip, which are up-regulated during HIV/HCV infection and contribute

288  290  292  •significantly to disease progression ’ ’ , maintain a broadly reciprocal relationship

with MMP expression and activity. Both cytokines have been demonstrated to induce 

MMP-9 by complexing with ECM components and in turn, MMP-9 has been shown

to regulate their expression by cleavage of membrane-bound precursor proteins and/or 

protein degradation An up-regulation therefore, of any element of this inflammatory

triad could have significant implications for disordered immune responses and thus 

accelerated disease progression. In the previous chapter we related increased MMP-9 

levels in HIV mono-infected and HIV/HCV co-infected patients and showed that activated 

monocytes/macrophages expressing high levels o f MMP-9 are a target for pharmacological 

inhibition of its activity. The extravirological effects o f HIV-1 Tat and HCV NS proteins in
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cells o f  this lineage as described above, suggests a possible pathway for increased MMP 

expression in HIV/HCV co-infection that may well be associated with up-regulated TNF-a 

and IL -ip  production. However, no studies to date have assessed the effects o f  H IV -1 Tat 

subtypes and HCV NS3 on the expression o f  MMPs and their endogenous inhibitors, 

TIMPs, in which concurrent regulation o f  immunomodulatory cytokines such as TNF-a 

and IL -ip  could be o f  major significance.

The aims o f  this in vitro  study are therefore, to investigate the effects o f  HIV-1 Tat clades 

B and C and HCV NS3 on M M P-9, TIMP-1, TNF-a, and IL-ip production by activated 

monocytes/macrophages.

4.2 M ethods 

4.2.1 Cell culture

THP-1 cells were cultured in RPMl 1640 medium (L-glutamine, 25 mM HEPES) 

(Invitrogen, Paisley, UK), supplemented with 10 % foetal bovine serum, 100 U/ml 

penicillin, and 100 mg/ml streptomycin (all Sigma-Aldrich, Arklow, Rep o f  Ireland) in a 

humidified atmosphere at 37 °C and 5 % CO2 . Flasks were divided 1:3 every 3-4 days. To 

determine the amount o f  viable cells, an aliquot were stained with Trypan Blue (Sigma- 

Aldrich) (0.4 % w/v; 1:5) for 5 min and counted using a Neubauer haemocytometer. Cell 

number per ml o f  culture medium was calculated using the equation specified previously in 

section 3.2.1. For experiments cells were seeded in serum-free RPMI. Phorbol 12- 

myristate 13-acetate (PMA) was prepared in DM SO ( C f , n a i =  0.02 % v/v), HCV NS3 was 

prepared in buffer (20 mM Tris-HCl, pH 8, 8 M urea, 10 mM B-M E), while all other
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agents were prepared in sterile dH20 (18 MQ’''”). All working solutions were prepared in 

medium.

4.2.2 Determination of MMP-9, TIMP-1, TNF-a, and IL-ip expression by 

ELISA

Cells were seeded in 24-wellplates at a density o f 3.75 x 10  ̂ cells/well and exposed to 

either recombinant Tat clade B (37.5, 75, 150, 300, and 400 ng/ml). Tat clade C (as for Tat 

B), HCV NS3 (0.1, 0.5, 1, 5, and 10 |ig/ml), or medium. One hour later, cells were 

activated with PMA (20 ng/ml) to initiate differentiation to macrophages. All treatments 

were done in duplicate and terminated after 48 hr.

Cell debris was removed by centrifugation (5000 g, 5 min, 4 °C) and samples were 

aliquoted and stored at -80 °C until required. Samples were diluted 1:150 for MMP-9, and 

1:100 for TlMP-1, analysis in reagent diluent (PBS, pH 7.2; 1 % w/v bovine serum 

albumin) prior to measurement of protein levels by ELISA (Human MMP-9 DuoSet, 

Human TIMP-1 DuoSet, Human TNF-a DuoSet, and Human IL-ip DuoSet; R&D 

Systems) according to manufactures protocol. Optical density was read at 450 nm with a 

reference wavelength of 540 nm. Samples and standards were assayed in duplicate and 

protein levels were determined by interpolation from their respective standard curves.

4.2.3 Determination of MMP-9 activity by gelatin zymography

Cells were seeded in 24-wellplates (3.75 x 10  ̂cells/well) and treated as above. After 48 hr, 

the conditioned medium was collected and cell debris removed by centrifugation (5000 g, 

5 min, 4 °C). Briefly, samples were diluted 1:10 with non-reducing sample buffer and
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subjected to gelatin zymography utilising 8 % SDS-polyacrylamide gels containing 1 

mg/ml gelatin. Gels were washed in Triton X-100 (2.5 % v/v) for 30 min and incubated for 

a further 18 hr at 37 °C in incubation buffer of composition 50 mM Tris HCl, pH 7.6, 10 

mM CaCb, 50 M NaCl. Gels were rinsed in destain (1:3:6; glacial acetic acid: methanol: 

dH20) followed by staining (0.05 % w/v coomassie brilliant blue R250 in destain solution) 

for 1 hr followed by destaining (5 min). Gelatinolytic activity was quantified using a gel 

documentation system (Syngene, Cambridge, UK).

4.2.4 Data and statistical analysis

MMP-9, TIMP-1, TNF-a, and IL -ip abundance were determined by interpolation from 

respective standard curves using KCjunior'*''^ software (Bio-Tek, Vermount, USA). Data 

was normalised to PMA controls and expressed as relative fold increases. MMP-9 activity 

data was also normalised to PMA controls and expressed as arbitrary units (AU) based on 

densitometric measures of gelatin lysis.

Data were analysed by one-way ANOVA with post hoc analysis {Dunnetts', GraphPad 

Prism, version 5.01). Data are expressed as mean ± SEM. All samples were assayed in 

duplicate and experiments were repeated at least three independent times {n). A value of 

/ ’<0.05 was taken to indicate statistical significance.
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4.3 Results

4.3.1 Effects of Tat clade B on MMP-9, TIMP-1, and TNF-a abundance

MMP-9 expression and activity, and TIMP-1 and TN F-a expression, were non-detectable 

in inactivated THP-1 cells o f the monocyte phenotype. However, following exposure to 

PMA for 48 hr, MMP, TIMP and cytokine expression increased as cells underwent 

differentiation to macrophages. In PMA treated cells, HIV-1 Tat clade B increased MMP-9 

expression at 300 and 400 ng/ml concentrations (1.3±0 and 1.5±0 versus 1±0 fold 

induction; P<0.05; Figure 4.1 A) but had no effect on MMP-9 activity at any concentration 

studied (Figure 4.1 B).

TIMP-1 expression was significantly increased by Tat B at 300 and 400 ng/ml, with a >6 

fold increase at the latter concentration compared to PMA controls (4.4±0.52 and 7.1±1.7 

versus 0.99±0 fold induction; P<0.05; Figure 4.1 C).

Tat B increased the expression o f TNF-a dose-dependently against PMA (1.9±0.1, 1.9±0, 

2.9±0.1, 3.3±0, and 4±0.2 versus 1±0.1 fold induction; P<0.05; Figure 4.1 D).

4.3.2 Effects of Tat clade C on MMP-9, TIMP-1, and TNF-a abundance

Over the concentration range studied (37.5-400 ng/ml) Tat clade C did not alter MMP-9 

abundance or activity in conditioned medium from THP-1 cells activated by PMA (Figure

4.2 A and B, respectively).

Tat clade C caused a subtle dose-dependent increase in TIMP-1 expression, reaching 

significance at concentrations o f 150, 300, 400 ng/ml compared to PMA (1.9±0.2, 2+0.1, 

and 2.4±0.2 versus 1±0.1 fold induction; P<0.05; Figure 4.2 C).
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TN F-a levels were unchanged relative to PMA controls following exposure o f cells to Tat 

clade C over the range o f  concentrations studied (Figure 4.2 D).

4.3.3 Effects of HCV NS3 on MMP-9 and TIMP-1 abundance

HCV NS3 protein increased MMP-9 expression in THP-1 cells at concentrations o f 5 and 

10 |J.g/ml compared to PMA (1.9±0.1 and 2.6±0.3 versus 1±0.2 fold induction; P<0.05; 

Figure 4.3 A). The increase in MMP-9 protein expression was also accompanied by 

enhanced MMP-9 activity at a concentration o f 10 |xg/ml (1.6±0 versus 1±0 fold induction; 

F<0.05; Figure 4.3 B).

Interestingly, NS3 also increased TIMP-1 expression at concentrations o f 1, 5, and 10 

|ig/ml, compared to PMA controls, reaching significance at the latter two concentrations 

(4.7±0.9, and 4.4±1.3 versus 0.7±0.1 fold induction; P<0.05; Figure 4.3 C).

4.3.4 Effects of HCV NS3 on TNF-a and IL-ip expression

NS3 induced TN F-a expression in THP-1 cells >3 fold at the highest concentration studied 

(10 |ag/ml) compared to PMA (4.3±0.6 versus 1±0.6 fold induction; P<0.05; Figure 4.4 A). 

In contrast, NS3 increased IL -ip  expression in a dose-dependent manner at concentrations 

o f 1, 5, and 10 (ig/ml against PMA controls (1.8±0, 3.2±0, and 4.2±0.1 versus 1±0 fold 

induction; P<0.05; Figure 4.4 B).
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Figure 4.1 The concentration-dependent effects o f HIV-1 Tat clade B on MMP-9 

expression (A), MMP-9 activity (B), TIMP-1 expression (C), and TNF-a expression (D) in 

THP-1 cells activated by PMA (20 ng/ml). All experiments were performed in serum-free 

medium and supernatants collected after 48 hr exposure to Tat (n=4; mean ± SEM; one­

way ANOVA with Dunnetts post hoc test; horizontal capped bars indicate statistically 

significant differences from PMA positive controls at P <0.05).
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Figure 4.2 The concentration-dependent effects HIV-1 Tat clade C on MMP-9 expression 

(A), MMP-9 activity (B), TIMP-1 expression (C), and TNF-a expression (D) in THP-1 

cells activated by PMA (20 ng/ml). All experiments were performed in serum-free medium 

and supernatants collected after 48 hr exposure to Tat (n=4; mean ± SEM; one-way 

ANOVA with Dunnetts post hoc test; horizontal capped bars indicate statistically 

significant differences from PMA positive controls at P <0.05).
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Figure 4.3 The concentration-dependent effects of HCV NS3 on MMP-9 expression (A), 

MMP-9 activity (B), and TIMP-1 expression (C) in THP-1 cells activated by PMA (20 

ng/ml). All experiments were performed in serum-free medium and supernatants collected 

after 48 hr exposure to NS3 (n=4; mean ± SEM; one-way ANOVA with Dunnetts post hoc 

test; horizontal capped bars indicate statistically significant differences from PMA positive 

controls at P <0.05).
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Figure 4.4 The concentration-dependent effects of HCV NS3 on TNF-a expression (A) 

and IL -ip expression in THP-1 cells activated by PMA (20 ng/ml). All experiments were 

performed in serum-free medium and supernatants collected after 48 hi' exposure to Tat 

(a7= 4 ; mean ± SEM; one-way ANOVA with Dimnetts post hoc test; horizontal capped bars 

indicate statistically significant differences from PMA positive controls at P <0.05).
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4.4 Discussion

In this study we have demonstrated that HIV-1 Tat clades B and C differentially modulate 

MMP-9, TIMP-1, and TNF-a production in THP-1 monocytes/macrophages. We have also 

shown that HCV NS3 upregulates MMP-9, TIMP-1, TNF-a, and IL-ip in these cells.

Dysregulated MMP/TIMP and pro-inflammatory cytokine expression has been ascribed to 

HIV/HCV infection and contributes to the pathogenesis of both viruses 

Imbalance o f these soluble factors may result from direct virus/cell interactions or could be 

a consequence of non-specific immune activation. HIV-1 Tat and HCV NS proteins have 

indispensible roles in productive viral replication but also possess pleiotropic

properties that influence the expression o f several non-viral genes Recent

evidence indicates that Tat exerts its extravirological effects differentially according to 

viral subtype, as exposure of monocytes to Tat clades B and C has been shown to augment 

the expression of cytokines such as TNF-a, lL-6, and lL-10 to varying degrees In

the current study we demonstrate that Tat clade B increases TNF-a production by PMA- 

activated THP-1 cells in a concentration-dependent manner, while Tat clade C has no 

effect. This finding supports evidence presented by Gandhi and colleagues who showed 

significant upregulation of TNF-a and IL-6, both pro-inflammatory cytokines, in 

monocytes treated with Tat B. They also demonstrate that expression of anti-inflammatory 

lL-4 and IL-10 was higher in Tat C treated cells, suggesting distinct Tat modulation of 

inflammatory pathways based on genetic subtype. Indeed, we also show that Tat B 

augments MMP/TIMP expression to a greater degree than that o f Tat C in THP-1 s. We 

report increased MMP-9 expression in Tat B treated cells, a finding that was not associated 

with increased MMP-9 activity, possibly reflecting enhanced levels o f the pro-enzyme, and 

a marked induction of TIMP-1. Tat C failed to alter MMP-9 abundance but did increase
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TIMP-1 by a modest 1.5 fold at the highest concentration studied. To our knowledge, these 

are the first data to document the effects o f Tat clades on MMP/TIMP expression.

HlV-1 clade B remains the predominant subtype in Western countries, with a progressive 

introduction of non-B clades from countries with higher incidences of epidemic disease, 

while clade C represents the most prevalent form globally Subtype diversity has 

important clinical implications for differences in transmission and replication o f the virus, 

but also for differential disease pathogeneity For example, the incidence of

neurological disease in HIV-IB-infected individuals within the US and Europe is estimated 

at 15-30 %, while only 1-2 % of clade C-infected individuals suffer from such 

complications Tat is known to play a significant neuropathogenic role during HIV

infection. Release from infected macrophages and glial cells facilitates its interaction with 

neurons and it has been demonstrated that Tat induces cell death by apoptosis o f neuron 

cultures TNF-a has been shown to potentiate apoptosis in primary human and rat

neurons exposed to Tat and to synergise with Tat to induce the neurotoxic

chemokine CXCLIO in human astocytes . Furthermore, Tat sequences derived from the 

brains o f demented AIDS patients induce MMP expression when expressed in human 

macrophages, and the conditioned media from these cultures is highly neurotoxic 

Indeed, inductions o f MMP-9 have been reported in the CSF of patients with HIV- 

associated dementia and it is likely that MMP proteolysis facilitates the

extravasation o f infected mononuclear cells across the blood-brain barrier . Our data, 

indicating that clade B Tat stimulates the production of MMP-9 and TNF-a, is therefore 

supportive o f HIV-IB augmenting neuropathgenesis in vivo. However, the increases 

observed in MMP-9 and TNF-a expression were accompanied by a prominent induction of 

TlMP-1 expression in Tat B treated cells, suggesting an inhibition of proteolysis. Indeed, 

the results of zymographic analysis, a sensitive measure of gelatinolytic activity by the
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active enzyme, revealed no effect. Concurrent MMP-9 and TIMP-1 upregulation is 

common in a number of neuroinflammatory settings and may well reflect

compensatory mechanisms to mitigate on-going tissue destruction O f course, the 

physiological functions of TIMPs are not restricted to MMP inhibition, and a direct 

neuroprotective effect has been attributed to TIMP-1 by its reduction o f glutamic acid- 

induced excitotoxic injury Tat clade C induced TIMP-1 expression in a dose-dependent 

manner to a maximal 1.5 fold increase at the upper concentration studied (400 ng/ml) and 

did not affect changes to MMP-9 and TNF-a abundance. A deleterious role for clade C Tat 

in immunopathogenesis involving aberrant ECM degradation and/or activated pro- 

inflammatory pathways would therefore, seem unlikely.

The current study also demonstrates that HCV NS3 alters MMP/TIMP expression in THP- 

1 cells, significantly increasing MMP-9 abundance and TIMP-I expression. TNF-a 

production was also increased by NS3, and a dose-response induction of pro-inflammatory 

IL -ip was shown. These data almost certainly provide the first evidence that NS3 

modulates MMP/TIMP expression and could, in tandem with the data already discussed, 

provide a rationale for accelerated disease progression in HIV/HCV co-infection. Indeed, 

production of TNF-a and IL-ip correlate positively with disease severity during HCV 

infection contributing to the most significant pathology o f HCV infection, that of

“yfifi  c "in S ^ 8
liver fibrosis, by synergistic cellular and MMP activation ’ ’ , and as discussed

indepth in section 1.1.1.2, the relative expression of MMP-9 and TIMP-1 has a profound 

effect on fibrogenic and fibrolytic activity in the liver. In addition, others have documented 

impairments to innate immune responses as a result o f NS3-mediated changes to cytokine 

expression, effects that may well mirror the cellular abnormalities observed in HCV- 

infected individuals. In this respect the findings presented by Dolganiuc et al show that 

TNF-a production is increased in monocytes exposed to NS3 over 48 hr periods (directly
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reflective of our own data), and this effect results in inhibited differentiation and 

allostimulatory capacity of immature dendritic cells (DCs). Supporting these results, others 

have demonstrated that NS3 mediates a downregulation of IL-12, a significant 

immunomodulatory cytokine during infection, inducing similar impairments to DC 

functionality

The concentration range selected for Tat clades and NS3 in this study is in keeping with 

values adopted by other comparable studies Although we have not investigated the

mechanistic basis for our findings, previous reports indicate common transcriptional 

pathways for both viral proteins. HIV-1 Tat induces MMP-9 in moncytes through protein 

tyrosine phosphatase (PTPase) activation o f nuclear transcription factor NF-kB and 

induces TNF-a in macrophages by initiating the protein kinase C (PKC) pathway and 

downstream mitogen-activated kinases (MAPK) p38 and extracellular regulated (ERK) 

1/2, and NF-kB NS3 increases TNF-a production in monocytes via toll-like receptor 

(TLR) 2 and subsequent induction of IL-1 receptor associated kinase (IRAK) activity, 

phosphorylation of p38, ERK, and c-jun N-terminal (JNK) kinases, and ultimate activation 

of NF-kB

In conclusion, the results o f this study have shown that exposure of THP-1 

monocytes/macrophages to HIV-1 Tat clades B and C alters the MMP-9/TIMP-1 balance 

in favour of TIMP-1. In Tat B treated cells this effect is more prominent and is 

accompanied by increased production of pro-inflammatory TNF-a. HCV Exposure of these 

cells to NS3 also induces MMP-9 and TIMP-1 abundance, again favouring TIMP-1 

dominance, and markedly increases both TNF-a and IL-ip cytokines. These results raise 

the possibility that HIV and HCV viral proteins might combine to enhance inflammatory 

pathways and chronic activation of innate immune responses leading to the accelerated 

disease progression characteristic of HIV/HCV co-infected patients.
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Chapter 5.

Effects of HIV-1 Tat clades A, B, C, and D, on cytokine 

production in human CD3^ T cells and Vy9V62 T cell

subsets
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5.1 Introduction

HIV-1 has evolved from its initial discovery and characterisation to what is now a 

genetically diverse range of viral subtypes (clades A, B, C, D, E, F, G, K and O). 

According to recently published data, the most globally prevelant of these HIV-1 genetic 

forms are clades A, B, C, and D, with clade C accounting for almost 50 % of all HIV-1 

infections worldwide The highly mutational nature of the virus, allied to a propensity 

for genomic recombination and the influence of wide-ranging host, environmental, and/or 

therapeutic selection pressures are factors contributing to genetic diversification . Such 

diversity has implications for differential disease transmission and replication rates, 

responses to antiretroviral therapy (including the development of resistance) and vaccine 

development, but also for the pathogenicity of the virus.

The HIV-1 transcription factor Tat, is a significant mediator of viral pathogenesis and 

AIDS-related diseases Tat can be released into the extracellular environment and has 

the ability to cross the membrane of neighbouring cells, via interactions with specific cell 

surface receptors, and to translocate to the nucleus, maintaining an active form as it does so 

As a consequence, HIV-1 LTR transcriptional activity within infected, but otherwise 

quiescent cells, can be stimulated by Tat, thereby increasing the amount o f infectious 

virions in circulation Tat also demonstrates additional pathogenic properties as it 

activates uninfected primary T and B lymphocytes induces chemokine HIV-1

coreceptors in PBMCs stimulates the chemotaxis o f numerous cell types and is also a 

suspected neurotoxin, implicated in HIV-associated dementia (HAD)

Some studies also demonstrate that Tat is a modulator of cytokine production

with recent evidence indicating clade-specific effects as subtypes B and C were shown to

differentially augment TNF-a, IL-6, and IL-10 secretion by monocytes
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Dysregulation o f the cytokine profile is symptomatic of HIV-1 infection with decreases in 

T-helper type 1 (Thl; IL-2, IFN-y) and increases in T-helper type 2 (Th2; IL-10, IL-13), 

and pro-inflammatory (IL-1, TNF-a) cytokines typically observed during the course o f the 

disease Such abnormalities in cytokine secretion impairs cell-mediated immunity, an 

important consequence as long-term control of infection is dependent on an appropriate 

irmate immune cytokine response Studies concerning the influence of Tat on cytokine 

dysregulation are largely confined to the monocyte/macrophage, and whilst cells of this 

lineage are a major target for infection by HIV-1 and are an important source of cytokine 

production, a critical event in early HIV-1 infection is the disruption of T lymphocyte 

homeostasis, with alterations to their cytokine profile particularly significant for disease

4 2 6 , 4 2 7 , 543 , 544progression ’ .

y5 T cells are a subset of human T lymphoctyes that, similar to aP T cells, recognise 

antigen with their TCRs, perform comparable cellular functions, retain an immunological 

memory, and act as potent antigen-presenting cells The adult human y5 T cell 

repertoire comprises V61 and V62 subsets with a predominant population bearing 

Vy9V52-encoded TCRs which form approximately 1 to 5 % of peripheral blood T cells. 

Vy9V52 T cells respond to phosphoantigens such as (£)-4-hydroxy-3-methyl-but-2 enyl 

pyrophosphate (HMB-PP) and isopentenyl pyrophosphate (IPP), rapidly producing the Thl 

antiviral cytokine IFN-y and the pro-inflammatory cytokine TNF-a Activated Vy9V62 

T cells demonstrate potent anti-HIV activity in vitro, inhibiting viral replication by both 

cytolytic and non-cytolytic effects and can influence dendritic cell maturation

along with T cell and B cell responses thus exhibiting indirect antiviral

properties. However, successive reports indicate a depletion and loss of functionality of 

Vy9V52 cells in HIV-infected patients the consequence of which may be

increased susceptibility to opportunistic infections
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Despite the substantial anti-viral potential o f Vy9V62 T cells, effects that may well be 

cytokine dependent, and their paradoxical anergy in the face o f HIV infection in vivo, no 

studies to date have assessed the impact of Tat on their production o f IFN-y and TNF-a. As 

these two cytokines mediate variable effects on the pathogenicity o f HIV infection, IFN-y 

being broadly anti-viral and TNF-a broadly pro-viral, modulation of either by Tat could 

profoundly affect T cell immunoregulatory potential as a whole. Furthermore, as Tat clade 

may differentially influence cytokine expression, this may impact on disease progression 

and outcome. Therefore, the aims of the present study were to; 1.) assess the effects of Tat 

clades A, B, C, and D on the percentage of T cells and their Vy9V52^ subsets 

producing IFN-y and TNF-a, and, 2.) determine if this is reflected in changes to their 

secretion pattern in both cell types.

5.2 M ethods

5.2.1 Blood samples and isolation of PBMCs

For all experiments, venous blood samples were obtained from healthy male donors with 

peripheral blood mononuclear cells (PBMCs) isolated by gradient density centrifugation on 

Lymphoprep (Axis-Shield, Oslo, Norway). Briefly, samples were collected in EDTA and 

lithium heparin tubes, diluted 1:1 in complete RPMI 1640 (L-glutamine, 25 mM HEPES) 

(Invitrogen, Paisley, UK) supplemented with 10 % foetal bovine serum, 100 U/ml 

penicillin, and 100 mg/ml streptomycin (all Sigma-Aldrich, Arklow, Rep o f Ireland), 

layered over 7.5 ml of Lymphoprep in 50 ml tubes, and centrifuged (1650 rpm, 25 min, 21 

°C). The resultant buffy coat was transferred to a clean tube and washed twice in medium. 

An aliquot of cells were stained with Trypan Blue (Sigma-Aldrich) (0.4 % w/v; 1:5) for 5
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min and counted using a Neubauer haemocytometer. Cell number per ml of culture 

medium was calculated using the equation specified previously in section 3.2.1.

5.2.2 Magnetic bead enrichment of CD3^T cells

T cells were enriched from PBMCs by staining with a FITC-conjugated CD3 mAb 

(Immunotools, Friesoythe, Germany) followed by positive selection using the Anti-Mouse 

IgGl MicroBeads kit (Miltenyi Biotec, Bergisch Gladbach, Germany). In brief, PBMCs 

from each donor were resuspened in 1 ml of phosphate-buffered saline (PBS; containing 

MgCli and CaCb) (Sigma-Aldrich) and fluorescently labelled with 10 |al o f mouse IgGl- 

CD3 mAb for 15 mins in the dark at room temperature. Cells were then washed in 2 ml of 

an assay-specific buffer (PBS, pH 7.2; supplemented with 0.5 % w/v BSA; 2 mM EDTA), 

centrifuged (300 g, 10 min, 21 °C), and resuspended in 80 |li1 of this buffer. Anti-mouse 

IgGl MicroBeads (20 |al) were added per tube, mixed by vortexing, and incubated at 4 °C 

for 15 min. Subsequently, cells were washed as before, resuspended in 500 nl of buffer, 

and passed through a MACS® column (Miltenyi Biotec). The magnetically labelled cells 

retained in the column were eluted with the aid of buffer under a column plunger. Purity of 

cell fractions was determined as 91 %, using flow cytometric analysis in which forward 

scatter was plotted against FITC-conjugated CD3^ cells, using unstained cells as controls.
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Figure 5.1 Electronically gated region within a representative flow cytometric dot plot 

indicating the purity of CD3^ magnetic bead-enriched T cells.

5.2.3 Vy9V82 T cell expansion and purification

Lines of Vy9V52 T cells were generated by subjecting PBMCs to a single stimulation with 

HMB-PP (10 nM) (kindly donated by Drs. Hassan Jomaa and Armin Reichenberg, Jomaa 

Pharmaka GmbH, Giessen, Germany) in complete RPMI supplemented with IL-2 (50 

U/ml), donated by the National Cancer Institute, Frederick Research Foundation Biological 

Resources Branch, USA. Cultures were fed every 3 days with fresh medium containing IL- 

2 and harvested on days 14-21. For phenotypic characterisation, cells were firstly washed 

with PBA buffer (PBS; 1 % w/v BSA), centrifuged (2000 rpm, 7 min, 21 °C), and then 

resuspended in 50 |il of buffer and stained with 10 |al of FlTC-conjugated CD3 mAb and 

10 |Lil o f PE-conjugated V52 mAb (BD Biosciences, Oxford, UK) / 1 x 10  ̂cells for 30 min 

in the dark on ice. Cells were washed once again, combined in 1 ml o f PBA buffer, and 

sorted using a MoFlo™ XDP Cell Sorter (Beckman Coulter, Miami, FL, USA). Purity was 

determined as 99 % by flow cytometric analysis, plotting FITC CD3^ against PE V52^, 

using unstained cells as a control.
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Figure 5.2 Electronically gated region within a representative flow cytometric dot plot 

indicating the purity o f expanded Vy9V52^T cells.

5.2.4 Exposure o f PBM Cs, CD3^ T cells, and Vy9V62 T cell lines to HIV-1 Tat 

clades

PBMCs were seeded in 24 well-plates at a density of 5 x 10  ̂cells/ml in complete RPMI 

medium and exposed to HIV-1 Tat clades A, B, C, or D (200 ng/ml) for 24 hr. Samples 

were then stimulated for a further 24 hr with phorbol 12-myristate 13-acetate (PMA; 10 

ng/ml)/ionomycin (I; 1 |ag/ml) (Sigma-Aldrich), or (£)-4-hydroxy-3-methyl-but-2 enyl 

pyrophosphate (HMB-PP; lOnM) / interleukin-2 (IL-2; 50 U/ml), in the presence of 

Brefeldin A (10 |ig/ml) (Sigma-Aldrich), an inhibitor of protein translocation from the 

endoplasmic reticulum to the Golgi apparatus. Enriched T cells were seeded in 48 

well plates at a density of 1 x lO^cells/well while Vy9V62 T cell lines were seeded in 96 

well plates at a density of 5 x lO^cells/well. Both cell fractions were treated identically to 

PBMCs, save for the addition of Brefeldin A.
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HIV-1 Tat clades, HMB-PP, and IL-2 were prepared in sterile dHaO (18 PMA, I,

and Brefeldin A were prepared in DMSO (Cf,nai= 0.01% v/v, 0.01% v/v, 0.13% v/v, 

respectively). All working stocks were prepared in medium.

5.2.5 Intracellular analysis of cytokine production in PBMC subsets

Following exposure to HIV-1 Tat clades and PMA/I activation, PBMCs were harvested, 

washed in PBA buffer containing sodium azide (1 % v/v BSA; 0.02 % w/v NaNs; 

dissolved in PBS), centrifuged (600 g, 5 min, 21 °C), and resuspended in 50 îl o f PBA. 

Using fluorescence-activated cell sorting (FACS) tubes, each sample was extracellularly 

labelled with 2 |il of Pacific Blue-conjugated CD3 mAb (BD Biosciences) and 3 |il of PE- 

conjugated V52 mAb for 15 min in the dark. Cells were then washed with 2 ml of PBA / 

tube, centrifuged (800 g, 7 min, 21 °C), and supernatants discarded. In advance of 

intracellular staining, cells were fixed by resuspending in 500 |il of 2 % w/v 

paraformaldehyde (PFA) and incubated for 10 min in the dark. After washing, cells were 

then permeabilised in PBA containing 0.2 % w/v saponin for 10 min in the dark. Tubes 

were then centrifuged and cell pellets incubated with the anti-cytokine mAbs, APC- 

conjugated IFN-y (1 |il) and FITC-conjugated TNF-a (1 (il) (both BD Biosciences) for 20 

min in the dark. Cells were then washed, resuspended in PBS and analysed using a seven 

colour CyAn ADP (Beckman Coulter, High Wycombe, UK). Cell populations were 

defined by forward scatter, side scatter, and fluorescent channels utilising blue laser and 

red laser excitation at 488 nm and 635 nm wavelengths, respectively. Data was expressed 

as percentage of cells staining antigen positive from electronically gated dot plots.
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5.2.6 Cytokine quantification by ELISA

Conditioned medium was reserved from CD3^ T cells and Vy9V52 T cell subsets treated 

as described above (section 5.2.4). Cell debris was removed by centrifugation (5000 g, 5 

min, 4 °C) and samples aliquoted and stored at -80 °C until required.

Stimulated T cell samples were diluted 1:3 in reagent diluent (PBS, pH 7.2; 1 % w/v BSA) 

prior to measurement o f IFN-y and TNF-a levels by ELISA (Human IFN-y DuoSet and 

Human TNF-a DuoSet; R&D Systems) according to manufactures protocol. Optical 

density was read at 450 nm with a reference wavelength of 540 nm.

5.2.7 Data and statistical analysis

The percentage o f cells positive for intracellular IFN-y and TNF-a staining were derived 

from gated flow cytometry histograms using Summit© software (Dako, Fort Collins, 

USA). IFN-y and TNF-a abundance were determined by interpolation from respective 

standard curves using KCjunior^'^ software and expressed as pg/ml.

Flow cytometry data for intracellular cytokines was derived from four independent 

experiments (o=4). ELISA samples were assayed in duplicate and experiments were 

repeated three independent times (n=3). Data was analysed by one-way ANOVA with post 

hoc analysis (Bonferroni or Dunnetts', GraphPad Prism, version 5.01) as appropriate and 

expressed as mean ± SEM. A value of P<0.05 was taken to indicate statistical significance.
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5.3 Results

5.3.1 Effects of HIV-1 Tat elades on the percentage of CD3^ T cells staining 

positive for intracellular IFN-y and TNF-a

Using flow cytometry, we investigated intracellular IFN-y and TN F-a production by 

human T cells. The percentage o f electronically gated CDS'^T cells that stained positive for 

IFN-y were similar to background under non-stimulated conditions and HMB-PP/IL-2 (10 

nM /50 U/ml)-stimulated conditions (0.4±0.1 and 1.3±0.5 %; Figure 5.3 A and B). 

Stimulation by PMA/I (10 ng/ml/1 |ig/ml) significantly increased (P<0.05) the number o f 

cells staining positive for IFN-y (38±6.8 versus 0.4±0.1 %; Figure 5.3 C). Similarly, the 

percentage o f  TNF-a positive cells was minimal in unstimulated and HMB-PP/IL-2- 

stimulated cells (0.53±0.2 and 1.4±0.6 %; Figure 5.4 A and B) but increased substantially 

in cells exposed to PMA/I (41 ±9 %; P<0.05; Figure 5.4 C). When 003"^ T cells were 

exposed to Tat clades A, B, C, and D (200 ng/ml) under either basal, or stimulated 

conditions, there was no effect on the percentage o f cells producing IFN-y or TNF-a.

5.3.2 Effects of HIV-1 Tat clades on the percentage of Vy9V82 T cells staining 

positive for intracellular IFN-y and TNF-a

The mean percentage o f Vy9V52 T cells staining positive for IFN-y under basal conditions 

was 2.0±0.4 % and was not altered by exposure to any Tat clades (Figure 5.5 A). Upon re­

stimulation with HMB-PP/IL-2, an ~24 fold increase in IFN-y staining occured (48±14 

versus 2.0±0.4 %; P<0.05; Figure 5.5 B). PMA/I re-stimulation caused an -3 4  fold 

increase in IFN-y staining (67±14 versus 2.0±0.4 %; P<0.05; Figure 5.5 C). As in 

unstimulated cells, exposure to Tat clades A, B, C, and D did not alter IFN-y positive cells 

at the concentration studied.
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Mean percentage of Vy9V82 T cells staining positive for TNF-a under basal conditions 

was 2.9±0.6 % and was not altered by exposure to any of the Tat clades investigated 

(Figure 5.6 A). HMB-PP/IL-2 re-stimulation caused an ~14 fold increase in TNF-a 

staining (41±12 versus 2.9±0.6 %; /*<0.05; Figure 5.6 B). PMA/I re-stimulation caused an 

~24 fold increase in TNF-a staining (71±12 versus 2.9±0.6 %; P<0.05; Figure 5.6 C). As 

in unstimulated cells, exposure to Tat clades A, B, C, and D did not alter the percentage of 

TNF-a positive cells at the concentration studied.

5.3.3 Effects of HIV-1 Tat clades on IFN-y secretion by CD3^ T cells

In unstimulated magnetic bead-enriched CD3^ T cells, Tat clades A, B, C, and D did not 

alter IFN-y production compared to untreated (medium) controls (49±1.6, 44±6.4, 46±3.5, 

and 35±2.9 versus 43±3.8 pg/ml respectively; Figure 5.7 A). Following stimulation by 

HMB-PP/IL-2, IFN-y levels did not increase significantly (57±5.9 versus 43±3.8 pg/ml; 

Figure 5.7 B). While Tat clades A, C, and D did not alter IFN-y secretion under these 

conditions, Tat clade B elicited an -fo ld  increase in IFN-y levels relative to HMB-PP/IL-2 

controls (105±4.2 versus 57±5.9 pg/ml; P<0.05; Figure 5.7 B). In samples stimulated with 

PMA/I, a massive induction of IFN-y secretion occurred (734±17 versus 43±3.8 pg/ml; 

P<0.05; Figure 5.7 C). However, the inductive effect mediated by clade B under HMB- 

PP/IL-2 conditions was lost, and IFN-y levels were not altered by any of the Tat clades 

investigated.
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5.3.4 Effects of HIV-1 Tat clades on TNF-a secretion by CD3^ T ceils

In culture medium supernatants from unstimulated CD3^ T cells, TNF-a was undetectable. 

Exposure of these cells to Tat clades at the concentrations studied did not induce TNF-a to 

detectable levels. Stimulation of CD3^ T cells with HMB-PP/IL-2 induced ( / ’<0.05) TNF- 

a secretion (252±33 pg/ml; Figure 5.8 A). However, none of the Tat clades studied altered 

this response (Figure 5.8 A). Likewise, PMA/I also increased TNF-a production (752±13 

pg/ml; P<0.05), and the response was not altered by the presence o f Tat proteins 

investigated (Figure 5.8 B).

5.3.5 Effects of HIV-1 Tat clades on IFN-y secretion by Vy9V62 T cells

In view of the evidence that increased IFN-y production resulted from Tat clade B 

exposure of phosphoantigen-stimulated CD3^ T cells, we speculated that this may also 

occur in Vy9V52 T cell subsets as they are know responders to HMB-PP in vitro As 

TNF-a levels were unchanged however, we elected not to further investigate the effects of 

Tat clades on seretion of this cytokine by Vy9V62 T cells.

In expanded Vy9V62 T cell lines, generated by a single initial exposure of PBMCs to 

HMB-PP/IL-2 (10 nM/50 U/ml) and subsequent culture in the presence of IL-2 (50 U/ml), 

Tat clades A, B, C, and D significantly ( / ’<0.05) increased IFN-y secretion compared to 

untreated cells, with clade B generating the largest increase (26±1.5, 48±1.4, 24±1.2, and 

22±2.7 versus 13±0.8 pg/ml; Figure 5.9 A). When re-stimulated with HMB-PP/IL-2, an ~4 

fold increase in IFN-y levels was noted (51±8.7 versus 13±0.8 pg/ml; P<0.05; Figure 5.9 

B), and under these conditions. Tat clade B, but not A, C, or D, further increased secretion 

(117±5.7 versus 51±8.7 pg/ml; / ’<0.05; Figure 5.9 B). Using PMA/I as a stimulant also 

resulted in increases of IFN-y secretion by these cells (80±20 versus 13±0.8 pg/ml;
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P<0.05), and again Tat clade B, but not A, C, or D, demonstrated an ~4 fold IFN-y 

production increase compared to PMA/I controls (326±5.2 versus 80±20 pg/ml; P<0.05; 

Figure 5.9 C).
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Figure 5.3 Effect o f HIV-1 Tat clades A, B, C, and D (200 ng/ml) on the percentage of 

CD3^ T cells staining positive for intracellular IFN-y. Column bar graphs and 

representative flow cytometric dot plots indicate the percentage of cells staining positive 

for IFN-y under non-stimulated (A), HMB-PP/IL-2-stimulated (10 nM/50 U/ml) (B), and 

PMA/I-stimulated (10 ng/ml/1 f^g/ml) (C) conditions after 48 hr incubations («=4; mean ± 

SEM; one-way ANOVA with Dunnetts post hoc test; horizontal capped bars indicate 

statistically significant differences from controls at P <0.05). Representative flow 

cytometry dot plots contain numbers in upper right hand quadrants indicating the 

percentage of T cells positive for IFN-y from an individual donor.
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Figure 5.4 Effect of HIV-1 Tat clades A, B, C, and D (200 ng/ml) on the percentage of 

CD3^ T cells staining positive for intracellular TNF-a. Column bar graphs and 

representative flow cytometric dot plots indicate the percentage of cells staining positive 

for TNF-a under non-stimulated (A), HMB-PP/IL-2-stimulated (10 nM/ 50 U/ml) (B), and 

PMA/I-stimulated (10 ng/ml/1 |ag/ml) (C) conditions after 48 hr incubations {n-A\ mean ± 

SEM; one-way ANOVA with Dunnetts post hoc test; horizontal capped bars indicate 

statistically significant differences from controls at P <0.05). Representative flow 

cytometry dot plots contain numbers in upper right hand quadrants indicating the 

percentage of T cells positive for TNF-a from an individual donor.
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Figure 5.5 Effect of HIV-1 Tat clades A, B, C, and D (200 ng/ml) on the percentage of 

Vy9V62^ T cells staining positive for intracellular IFN-y. Column bar graphs and 

representative flow cytometric dot plots indicate the percentage of cells staining positive 

for IFN-y under non-stimulated (A), HMB-PP/IL-2-stimulated (10 nM/50 U/ml) (B), and 

PMA/I-stimulated (10 ng/ml/1 |ag/ml) (C) conditions after 48 hr incubations («=4; mean ± 

SEM; one-way ANOVA with Dunnetts post hoc test; horizontal capped bars indicate 

statistically significant differences from controls at P <0.05). Representative flow 

cytometry dot plots contain numbers in upper right hand quadrants indicating the 

percentage of CD3"  ̂T cells positive for IFN-y from an individual donor.
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Figure 5.6 Effect of HIV-1 Tat clades A, B, C, and D (200 ng/ml) on the percentage of 

Vy9V52^ T cells staining positive for intracellular TNF-a. Column bar graphs and 

representative flow cytometric dot plots indicate the percentage of cells staining positive 

for TNF-a under non-stimulated (A), HMB-PP/IL-2-stimulated (10 nM/50 U/ml) (B), and 

PMA/I-stimulated (10 ng/ml/1 ^g/ml) (C) conditions after 48 hr incubations (n=4; mean ± 

SEM; one-way ANOVA with Dunnetts post hoc test; horizontal capped bars indicate 

statistically significant differences from controls at P <0.05). Representative flow 

cytometry dot plots contain numbers in upper right hand quadrants indicating the 

percentage of T cells positive for TNF-a from an individual donor.
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Figure 5.7 Effect of HIV-1 Tat clades A, B, C, and D (200 ng/ml) on IFN-y secretion after 

48 hrs in T cells isolated from PBMCs of healthy donors. IFN-y was measured in 

culture medium supernatants of un-stimulated (A), HMB-PP/IL-2-stimulated (10 nM/50 

U/ml) (B), and PMA/I-stimulated (10 ng/ml/1 |ig/ml) (C) cells. Column bar graphs 

indicate cytokine levels from 3 donors (mean ± SEM; one-way ANOVA with Dunnetts 

post hoc test; horizontal capped bars indicate statistically significant differences from 

controls at P <0.05).
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Figure 5.8 Effect o f HIV-1 Tat clades A, B, C, and D (200 ng/ml) on TNF-a secretion 

after 48 hrs in CD3^ T cells isolated from PBMCs o f healthy donors. TNF-a was measured 

in culture medium supernatants o f HMB-PP/IL-2-stimulated (10 nM/50 U/ml) (A) and 

PMA/I-stimulated (10 ng/ml/1 |ag/ml) (B) cells. Column bar graphs indicate cytokine 

levels from 3 donors (mean ± SEM; one-way ANOVA with Dunnetts post hoc test; 

horizontal capped bars indicate statistically significant differences from controls at P 

<0.05).
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Figure 5.9 Effect of HIV-1 Tat clades A, B, C, and D (200 ng/ml) on IFN-y secretion after 

48 hrs in Vy9V62 T cells expanded from PBMCs o f healthy donors under un-stimulated 

(A) and under re-stimulated conditions by HMB-PP/IL-2 (10 nM/50 U/ml) (B) and PMA/I 

(10 ng/ml/1 ng/ml) (C). Column bar graphs indicate cytokine levels from 3 donors (mean ± 

SEM; one-way ANOVA with Bonferroni or Dunnetts post hoc tests; horizontal capped 

bars indicate statistically significant differences from controls and between Tat clades at P 

<0.05).
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5.4 Discussion

In this study we demonstrate that exposure of human PBMCs in vitro to HIV-1 Tat clades 

A, B, C, and D does not alter the percentage of CD3^ T cells or Vy9V52 T cells producing 

IFN-y and TNF-a. However, the amount o f secreted IFN-y is significantly increased by Tat 

clade B in CD3^ T cells under HMB-PP/IL-2-stimulated conditions. Furthermore, in 

Vy9V62 T cells, all clades increased IFN-y secretion, with Tat clade B induction the most 

prominent. Under re-stimulted conditions, clade B maintained an inductive effect on IFN-y 

secretion.

Due to its efficient cell membrane transduction properties, the HIV-1 regulatory protein 

Tat is released into the microenvironment and the circulation, and is readily taken up by 

surrounding cells Subsequently, Tat can initiate a number o f kinase- and calcium- 

related signalling pathways resulting in downstream activation of transcription factors such 

as activator protein-1 (AP-1) and nuclear factor-kappa B (NF-kB) NF-kB is

regarded as a major transcriptional regulator for the expression of cytokines involved in 

immune and inflammatory responses such as IFN-y and TNF-a IFN-y is a pleiotropic 

cytokine produced primarily by thymus-derived cells in response to viral infection. 

Although originally defined as an antiviral agent, it is involved in the regulation o f nearly 

all phases o f the immune and inflammatory responses, including the activation and 

differentiation of T cells, B cells, NK cells and macrophages, stimulation of antigen 

presentation through class I and II MHC molecules, and the orchestration o f leukocyte-

C C Q

endothelium interactions, amongst many other functions . In HIV-mfected patients, the 

shift from a T helper type 1 (Thl) to a T helper type 2 (Th2) cytokine response may 

indicate enhanced disease progression Thl cells are characterised by secretion of

antiviral cytokines, IFN-y and IL-2, and IFN-y plays an important role in regulating the 

Thl/Th2 balance The pro-inflammatory cytokine TNF-a, also exerts a broad range of
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biological activities, encompassing inflammatory and immune responses. Produced by a 

range of immune cells in response to various stimuli, including viral infection, TNF-a can 

mature and activate antigen presenting cells (APCs), induce cytokine production by 

monocytes, activate cytotoxic T lymphocytes, and induce apoptosis of mature T cells 

Owing to its ability to induce NF-kB, a transcriptional activator o f the HIV-1 LTR, pro- 

viral effects have been attributed to TNF-a

Investigating the percentage of T cells staining positive for IFN-y and TNF-a by flow 

cytometric analysis, we report that exposure to Tat clades A, B, C, and D does not induce 

any effects at the concentration studied in CD3^, or Vy9V52'^ subsets. We went on to 

investigate whether Tat A, B, C, or D influenced the amount of secreted IFN-y and TNF-a 

by these cells. Exposure o f CD3^ T cells to Tat clades revealed that clade B induced the 

secretion of IFN-y when cells were stimulated with the phosphoantigen HMB-PP, in 

combination with IL-2. Under non-stimulated and PMA/I-stimulted conditions there was 

no significant effect. Under both stimulated and non-stimulated conditions, TNF-a 

secretion was unaltered as a result of exposure to Tat clades. Whilst IL-2 is a broad T cell 

stimulant, HMB-PP has been shown to be a specific and potent y8 T cell activator We 

hypothesised therefore, that the induction of IFN-y by Tat B in CD3^ T cells stimulated 

thus may have been indicative of effects emanating from Vy9V62 subsets. Although Tat B 

also induced IFN-y production under PMA/I-stimulated conditions, the increase failed to 

reach significance. Due to the massive upregulation of IFN-y production by cells activated 

with these agents (734±17 versus 57±5.9 pg/ml), detectable differences between samples 

may have been obscured. Indeed, our subsequent experiments using HMB-PP/IL2 

expanded Vy9V62 cells showed that all clades significantly induce IFN-y production, but 

only Tat clade B maintains its effect when cells are re-stimulated with HMB-PP/IL2 or 

PMA/I.
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The differential effects of HIV-1 Tat subtypes on cytokine activation was explored in a 

recent publication by Wong and colleagues Assessing the potential for Tat clades B 

and C to induce the immunosuppressive cytokine IL-10 in monocytes, the study reports 

that the cysteine to serine mutation at position 31, which is found in >90 % of clade C Tat 

proteins, results in a marked decrease in IL-10 production compared to clade B Tat. This 

C31S mutation disrupts the ^°C-C motif which is essential for the induction of an inward 

Ca^^ flux, and as previous studies have indicated, an increase in cytoplasmic Ca^^ 

concentration is critical to Tat-induced IL-10 and TNF-a production in monocytes 

Whilst these studies provide important information regarding the mechanisms by which 

HIV-1 Tat subtj^pes might contribute to immunodeficiencies in vivo, the cell type o f these 

and other investigations are almost entirely restricted to those of the monocyte/macrophage 

lineage. The current study is the first to demonstrate that differential cytokine modulation 

by Tat clades may also be cell type-specific. In the previous chapter we confirmed the 

findings of others with respect to Tat clade B induction of TNF-a in 

monocytes/macrophages but report here that such effects may not apply to T cells, as 

Tat B did not alter TNF-a in CD3^ cells. In these cells, and in Vy9V82 subsets, we have 

also shown that Tat B increases IFN-y secretion, an effect that does not correspond with an 

increased number of cells producing this cytokine. Evidence suggests that Vy9V52 T cells 

possess substantive antiviral properties, exhibiting potent lytic activity against virally- 

infected cells participating in antiviral immune surveillance and mediating

immune cell maturation and activation During HIV infection, polyclonal decreases

in absolute numbers o f Vy9V82 T cells are indicated and those that remain are

typically anergic, unable to proliferate and/or express the IL-2 receptor Initiation

of HAART however, appears restorative to both Vy9V52 functionality and number
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Reports indicate that IFN-y exerts an inhibitory role on HIV-1 replication in monocytes 

and macrophages and facilitates immunological benefit in vivo when secreted by

activated Vy9V62 T cells There are also studies to suggest an opposing stimulatory 

role. For example, exposure of chronically infected U l monocytes to IFN-y activates HIV 

replication enzyme activity and treatment of U937 monocytes with IFN-y modestly 

increases HIV expression, but when added with TNF-a, IFN-y synergistically potentiates 

the stimulatory effect of TNF-a Furthermore, IFN-y has been found to increase HIV-I- 

induced syncytium formation in PBMCs and CD4"  ̂T cells infected with the virus in vitro 

Our data, and that of others demonstrates that activated Vy9V62 T cells produce 

significant amounts of IFN-y and TNF-a. Dysregulated production of IFN-y by Tat B as 

we have shown here, could suggest a pro-viral role for Vy9V52 T cells in circulation. 

Other studies indicate that IFN-y augments HIV-1 Tat-induced neurotoxicity and so 

contributes to the development of HIV-associated dementia. Co-operative interaction 

between IFN-y and Tat dramatically increases macrophage expression o f CXCLIO, a 

chemokine closely associated with CNS disease during HIV infection As the 

extravastion of lymphocytes, including y5 T cells, to sites o f inflammation is also 

orchestrated by IFN-y-mediated upregulation of CXCLIO Vy9V62 T cells secreting

large amounts of IFN-y could represent another avenue by which HIV subtype B induces 

neuroAIDS. Finally, depletion, and loss of functionality of Vy9V62 T cells soon after HIV- 

RNA rebound could be facilitated by increased secretion o f IFN-y. Pro-apoptotic 

molecules such as caspase 1 protein kinase R (PKR) TNF-a receptor (TNFR)

c o c

and Fas/Fas Ligand (Fas/Fas L) are induced by IFN-y, and a previous study has 

indicated that Vy9V52 cells are susceptible to activation-induced cell death triggered by 

Fas/Fas L interactions
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In conclusion, we have shown that exposure o f CD3^ T cells and Vy9V62 subsets to clades 

A, B, C and D, at a concentration anticipated to be reflective of in vivo levels augments 

IFN-y and TNF-a secretion differentially and that these effects are not associated with 

changes to the number o f cells producing each cytokine. Changes in cytokine secretion 

levels pertained to IFN-y and were most pronounced in Vy9V62 T cells exposed to Tat 

clade B. These results indicate that HIV-1 Tat clade B may influence the extensive 

immunoregulatory potential o f Vy9V52 T cells by increasing IFN-y secretion.
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6.1 Conclusions

Dysregulated MMP/TIMP expression has been described in HIV- and HCV-infected 

patients and some evidence suggests that antiviral pharmacological agents modulate MMP 

abundance in vitro and in vivo. However, a lack of consensus pervades the data and no 

studies to date have assessed the MMP status o f HIV/HCV co-infected patients or the 

effects of initiating RBV/PEG-IFN-a combination therapy on MMPs in these patients. 

Furthermore, data describing the effects of antiviral therapy on MMP expression in 

relevant cellular sources is limited. Therefore, the first study (Chapter 3) of this thesis 

assessed the effects of anti-HCV and anti-HIV pharmacological agents on MMP-9 

production in human THP-1 monocytes/macrophages and LX-2 hepatic stellate cells in 

vitro. A follow-up clinical study sought to quantify circulatory MMP-2, MMP-9, and 

TIMP-2 abundance in HIV/HCV co-infected patients and to determine the effects of 

initiating RBV/PEG-IFN-a2b combination therapy on these MMPs.

In THP-1 cells, IFN-a2a dose-dependently decreased MMP-9 activity, an effect that was 

maintained when IFN-a2a was combined with RBV, using concentrations reflective of 

plasma levels for both drugs. RBV increased MMP-9 activity. At the mRNA level, RBV 

alone, and in combination with IFN-a2a, increased MMP-9 expression while IFN-a2a had 

no effect. Investigating the disparity between extracellular MMP-9 activity and 

intracellular MMP-9 mRNA, RBV was found to increase intracellular MMP-9 protein 

levels, while IFN-a2a had no effect. In combination with RBV however, IFN-a2a reduced 

the RBV-mediated increases. Co-treatment o f THP-1 cells with a proteasome inhibitor 

increased MMP-9 activity but did not alter the effect of IFN-a2a on RBV-mediated 

increased MMP-9 activity. Assessment o f temporal IFN-a2a effects on MMP-9 mRNA 

revealed reduced expression at 24 hr compared to controls, while no effects at 48 hr and 72 

hr were recorded. In LX-2 cells, IFN-a2a alone, or in combination with RBV, did not alter
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MMP-9 activity. However, RBV increased MMP-9 activity. RBV and IFN-a2a alone, or in 

combination, did not alter MMP-9 mRNA expression. The HIV protease inhibitors, 

saquinavir and lopinavir decreased MMP-9 activity in THP-1 and LX-2 cells, respectively. 

Abacavir, zidovudine, efavirenz, nevirapine, and atazanavir had no effect in either cell line.

In our clinical study, MMP-9 abundance was higher in HIV/HCV co-infected and HIV 

mono-infected patients compared to healthy controls. In HCV mono-infected patients 

MMP-9 levels were similar to that o f healthy controls. MMP-2 activity was similar in all 

groups studied, as was TIMP-2 expression. In HIV/HCV co-infected patients, RBV/PEG- 

IFN-a2b decreased plasma MMP-9 abundance compared to baseline at 3 day and 14 day 

timepoints. MMP-2 activity and TIMP-2 expression was not altered following treatment in 

these patients. These findings indicate that in vitro, monocytes/macrophages and hepatic 

stellate cells are targets for MMP-9 modulation by antiviral agents. MMP-9 over­

expression in HIV/HCV co-infected patients is most likely a consequence o f HIV infection 

and is markedly decreased by the initiation of RBV/PEG-IFN-a2a therapy. The results of 

our in vitro investigations suggest that this effect may be mediated in immune cells rather 

than hepatic cells.

It has been demonstrated that HIV-1 and HCV viral proteins exert pleiotropic effects that 

modulate the expression of non-viral genes in uninfected cells. The HIV-1 transcription 

factor Tat has been shown to influence MMP and cytokine expression and recent data 

suggests that these effects are differentially modulated based on viral subtype, or clade. 

HCV non-structural proteins such as NS3 are evidenced to mediate dysregulation of 

cytokine production. Both viral proteins have been shown to exert these extravirological 

effects in immune cells, suggesting a role in HIV/HCV-related immunopathology. As no 

studies to date have assessed the effects of Tat subtypes or NS3 on MMP/TIMP
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expression, we investigated whether these proteins alter MMP/TIMP abundance and pro- 

inflammatory cytoicine expression in THP-1 monocytes/macrophages (Chapter 4).

HIV-1 Tat clade B increased MMP-9 and TIMP-1 expression. Tat B also increased the 

expression of TNF-a in a dose-dependent manner. Tat clade C did not alter MMP-9 

abundance but caused a subtle dose-dependent increase in TIMP-1 expression. TNF-a 

production was not altered by Tat clade C. HCV NS3 protein increased MMP-9 and TIMP- 

1 expression. NS3 also induced TNF-a expression, and IL-ip expression was increased in 

a dose-dependent manner. These results are indicative of HIV and HCV viral proteins 

functioning as significant immunomodulators in which inflammatory pathways are 

activated. The differential effects in this respect observed for Tat clades B and C also 

suggest a possible mechanism for the enhanced pathogeneity of HIV-IB infection, 

particularly in relation to the development of neurological dysfunction where the activity 

of MMPs and pro-inflammatory cytokines are prominent. Overall, these data raise the 

possibility that the pleiotropic effects of Tat and NS3 during HIV/HCV infection might 

contribute to the chronic immune activation that persists in the majority of patients and 

could facilitate the accelerated disease progression characteristic of co-infected patients.

To further investigate the immunomodulatory potential of HIV-1 Tat with respect to its 

viral subtypes we conducted an in vitro study to determine the effects o f exposing T 

lymphocytes to the four predominant global HIV-1 clades A, B, C, and D, on IFN-y and 

TNF-a production (Chapter 5). To date, the effects of Tat clades on cytokine production 

have only been assessed in cells of the monocyte/macrophage lineage despite the 

significance of T cell responses for effective cell-mediated immunity during infection.

Using flow cytometric analysis, it was determined that the percentage of CD3^ T cells that 

stained positive for IFN-y were similar to background under non-stimulated conditions and 

HMB-PP/IL-2-stimulated conditions. PMA/I stimulation increased the number of cells
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staining positive for IFN-y. The percentage o f TNF-a positive cells was also minimal in 

unstimulated and HMB-PP/IL-2-stimulated cells but increased in cells exposed to PMA/I.

T cells exposed to Tat clades A, B, C, and D under either basal, or stimulated 

conditions, showed no alteration to the percentage of cells producing IFN-y or TNF-a.

The mean percentage of Vy9V52 T cells positive for IFN-y under basal conditions was not 

altered by exposure to any Tat clades. Stimulation with HMB-PP/IL-2 or PMA/I induced 

IFN-y staining. As in unstimulated cells, exposure to Tat clades A, B, C, and D did not 

alter IFN-y positive cells. Vy9V82 T cells staining positive for TNF-a under basal 

conditions was not altered by exposure to any of the Tat clades investigated. HMB-PP/IL-2 

or PMA/I stimulation increased TNF-a staining and as in unstimulated cells, exposure to 

Tat clades A, B, C, and D did not alter the percentage o f TNF-a positive cells.

Quantifying cytokine secretion by ELISA analysis, in unstimulated CD3^ T cells. Tat 

clades A, B, C, and D did not alter IFN-y secretion. Following stimulation by HMB-PP/IL- 

2, IFN-y secretion did not increase significantly. Tat clades A, C, and D did not alter IFN-y 

secretion, but Tat clade B increased IFN-y levels relative to HMB-PP/IL-2 controls. PMA/I 

stimulation induced IFN-y but this was not altered by any of the Tat clades investigated. 

TNF-a was undetectable under non-stimulated conditions and exposure o f cells to Tat 

clades did not induce TNF-a to detectable levels. Stimulation with HMB-PP/IL-2 induced 

TNF-a secretion and none of the Tat clades studied altered this response. PMA/I also 

increased TNF-a production and again, the response was not altered by the presence o f Tat 

clades. In Vy9V52 T cell lines. Tat clades A, B, C, and D increased IFN-y secretion, with 

clade B generating the largest response. Re-stimulation with HMB-PP/IL-2 resulted in 

increased IFN-y levels, and under these conditions. Tat clade B, but not A, C, or D, further 

increased secretion. PMA/I re-stimulation also resulted in increased IFN-y secretion by
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these cells, and again Tat clade B, but not A, C, or D, further induced production compared 

to PMA/I controls.

The results of this study relate the potential for HIV-1 Tat clades to modulate IFN-y and 

TNF-a production by T lymphocyte subsets under stimulated and unstimulated conditions. 

We have demonstrated that exposure of PBMCs to Tat clades A, B, C, and D, does not 

alter the percentage of CD3^ and Vy9V62'^ T cells producing each cytokine. However, Tat 

clade B induced IFN-y secretion in T cells under HMB-PP/IL-2-stimulated

conditions and this effect was repeated in Vy9V62 subsets where all clades induced IFN-y 

secretion, an effect maintained only by Tat B when cells were re-stimulated. As IFN-y is a 

cytokine with extensive immunoregulatory potential, enhanced Tat B-mediated secretion 

by Vy9V62 T cells could mediate a series of divergent pro- and anti-viral/inflammatory 

effects in vivo.

The overall aims of this thesis were to assess the inflammatory response to HIV/HCV 

infection with particular interest to the expression of MMPs and their natural inhibitors, 

TIMPs, and cytokines possessing significant inflammatory/immunoregulatory functions, 

namely TNF-a, IL-ip, and IFN-y. This objective was founded on the basis that 

MMP/TIMP and cytokine production is highly dysregulated in HIV and HCV patients and 

that aberrant expression of these factors mediates extensive immunopathology during the 

course of both infections. We aimed to delineate the effects of antiviral therapy on 

MMP/TIMP abundance in vitro, using immortalised cell lines, and in vivo, through a 

HIV/HCV co-infected patient cohort. We also investigated the potential for HIV and HCV 

viral proteins to regulate the expression of MMPs and TIMPs, and TNF-a, IL-ip and IFN- 

y, in immortalised and/or primary leukocytes in vitro. The results of our studies relate that 

antiviral therapeutic agents modulate MMP expression in vitro and in vivo and that HIV-1 

Tat and HCV NS3 proteins upregulate MMP/TIMP abundance and TNF-a, IL-lp and/or
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IFN-y production. Tat differentially based on viral subtype. The translational value of our 

in vitro findings may be mitigated by the lack of a viral cell model and the inherent 

artificiality of cell culture where cells exist in monolayers and are not subject to 

interactions with extracellular matrix components and the host o f soluble factors 

encountered in vivo.

Taken together, the results o f these studies contribute to our understanding of MMP/TIMP 

dysregulation during HIV/HCV infection and their modulation by antiviral therapies. They 

also indicate the potential for HIV and HCV viral proteins to orchestrate aberrant 

expression of MMPs, TIMPs, and the immunomodulatory cytokines TNF-a, IL -ip, and 

IFN-y.
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