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Summary

This thesis contributes to the empirical asset pricing literature on both the cross-
section and time series of stock returns. It also contributes to the recent but rapidly
growing literature on total and idiosyncratic risk and to the literature on the

dependence structure of stock market returns.

Concerning the asset pricing problem, the main contribution is a novel beta-pricing
representation of Harvey and Siddique’s (2000) 3-moment conditional CAPM. Its
main advantage is that both its beta coefficients and risk premia can be interpreted as
parameters of appropriate regression models. In an empirical application to US
stocks sorted into 30 industry portfolios, I add to the extant evidence that, while
coskewness helps explain a substantial portion of the cross section of average returns
and the coskewness premium is of the same order of magnitude as the covariance
premium, the estimated unconstrained 3-moment model implies a utility function

that is not concave over the relevant wealth range.

To study the behaviour over time of total and idiosyncratic risk, I construct a unique
and comprehensive firm and industry-level dataset of stock returns and volatilities in
the Euro area, I derive a version of Campbell, Lettau, Malkiel and Xu’s (2001)
decomposition of total risk into idiosyncratic and systematic risk based on returns
instead of excess returns and I define an original average correlation index. This
average correlation index is very useful to study the aggregate dynamic behaviour of
the correlations between a large number of assets. I find that European stocks have
indeed become more volatile, and that idiosyncratic risk is the largest component of
this volatility. I also find that the potential benefit of diversification strategies in

Europe remains substantial and relatively stable over time.

I confirm earlier findings based on US data, e.g. Whitelaw (1994) and Goyal and

Santa Clara (2003), that the simple lagged market variance-return relation is positive



but statistically insignificant. I question, however, Goyal and Santa Clara’s (2003)
conclusion that the return on the market portfolio is positively related to the
idiosyncratic component of lagged total volatility. Instead, I find that when market
volatility is also included in a long-run predictive regression, the relation between
market return and average idiosyncratic volatility is negative. This is a striking
confirmation, obtained using Euro area data, of a similar finding recently reported by
Guo and Savickas (2003) for a portfolio of the 500 largest US stocks. I show that
this result depends on the circumstance that market and average idiosyncratic
volatility jointly proxy for average correlation and thus, perhaps surprisingly, for a

component of systematic risk.

I also estimate the correlations of Euro-area market, industry and sector stock
indices in a large-scale multivariate conditional setting, using extensions of Engle’s
(2002) Dynamic Conditional Correlation GARCH model. For comparison, I also
apply the same estimation strategy to a sample of Euro area stock with largest
market capitalization. I do not find evidence of a deterministic time trend either in
individual stock and industry correlations or in sector or country level equity
correlations. The latter however dramatically increase in recent years due to a
structural break shortly before the launch of the Euro. These findings imply that,
while industry and firm level diversification have retained their effectiveness,
investment managers engaged in asset allocation in the Euro area should not rely any

longer on country level diversification strategies.

Finally, I derive original analytical results on the relation between discount factor
volatility and conditional return volatility. This relation provides the amount of
discount factor volatility that rational asset pricing models must generate in order to
explain conditional return volatility. In an empirical application to the US stock
market, [ find that it takes about 7 percent discount factor volatility to explain the
conditional return volatility from 1871 to 2003, given about 4 percent dividend

growth volatility.
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Chapter 1: Introduction and Overview

1.1. Introduction

Any distribution can be described by its moments. For example, the mean is the first
moment, variance is a second moment ‘centered’ around the mean and skewness is a
centered third moment. In this thesis, I make large use of the notion of moments in
discussing and characterizing the multivariate distribution of equity returns. I study
mainly first, second and third moments. I pay special attention to their interaction, as
emphasized by modern asset pricing theory, and I discuss the portfolio, investment
and risk management implications of alternative first and second moment models, of
alternative views about their role in asset pricing and of a number of related

empirical findings.

In the next section, I define and contrast unconditional and conditional moments. In
Section 1.3, I introduce the old and new paradigms of asset returns. In Section 1.4, |
specify the main research questions. In Section 1.5, I explain the motivations of this
study. In Section 1.6, I outline the structure of this thesis. In Section 1.7, I provide
an overview of the main theoretical results and empirical findings and I highlight
their contribution to the extant financial and econometric literature. Section 1.8

concludes.

1.2. Conditional vs. Unconditional Moments

Time series of asset returns can be seen as realizations yy, ya, ..... y, of a multivariate
random variable y drawn from a joint probability distribution p(yi, ya, ..... Vi)
Similarly, future returns can be seen as realizations ;. of a random variable drawn
from the conditional probability distribution p(y.«1ly1, 2, ... ). Loosely speaking,
stationary series have time invariant moments. Strictly stationary series are
realizations of random variables drawn from a time invariant probability distribution

and, therefore, all their moments are time invariant. Covariance stationary, also



known as wide sense or weakly stationary, series have finite and time invariant first,
second and cross-second moments (e.g., respectively, the mean, variance and
autocovariances/autocorrelations). Thus, strictly stationary series with finite first and
second moments are also covariance stationary but not vice versa. Since
independence of two random variables refers to the possibility of writing their joint
density function as the product of their marginal densities, serial independence
requires that all the cross-moments between any polynomial of current and past
realizations be zero. It therefore requires independence between all the moments.
Formally, for any random process, and hence also for any return y, serial
independence (i.e. independence between y, and y,;) means that E[g(y)h(y..)] =
Elgyv)|E[h(yi)] for any integer i, implying that Cov[g(y,),h( vy )]:0 for any
measurable function g and 4 and, therefore, for any cross-moment of y, and y,..
Autocorrelation is one possible source of serial dependence in returns. It implies
linear dependence of the mean of the process on past realizations, and it therefore
corresponds to dependence in the first moment. More general forms of serial
dependence introduce linear relations between different moments. These might

appear as non-linearities in the dependence in first moments.

One way to summarize serial dependence and co-dependence between moments is to
let the corresponding polynomials of returns g(y,) be determined by data generating
processes similar to those commonly used for returns, e.g. auto-regressive moving
averages (ARMA). Serial dependence between moments can then be modelled as

dependence between polynomials of current returns and past return realizations. For

example, with g(y,)=y,, the expectation of y, conditional on its past history
u, =E,_ (y,),1e. the first conditional ‘centered” moment of y,, can be defined as a
function of y.; (i > 0). Using a simple autoregressive specification, we might let
gy, )=a+bg(y,_)+¢ or y, =a+bg(y,_,)+e¢,, where a and b are constants and
g, =y, — M, 1s a conditionally zero-mean return innovation. In this specification, the

first moment is a function of the past realization of the process, i.c.

M, =E_(y)=a+by, . Similarly, with g(y,)= g, the conditional expectation

10
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W

o (&) =(y,— 1) =(y,—a—by, ) is the conditional variance of the return

process and it depends upon the past history of the latter.

Specifications like these introduce the distinction between conditional and
unconditional moments and allow the former to be time-varying. In Finance, this
distinction is important unless we assume that assets are held for a long period of
time. In this case the relevant conditioning information set is far in the past and its
influence on conditional expectations is negligible, e.g. for (stationary) series for
which E[g(y,)] exists, limyioo  Ei[g()] = E[g(y:)]. The distinction between

conditional and unconditional variance was emphasized by Engle (1982).

If a process is covariance stationary, its unconditional moments exist and they are
the mean of the conditional moments over all the possible realizations of the process

itself, i.e.

E{E,_,[g(y,)] Tl +oo}

A E{E,_k lg)] ke °°’+OO)}

=E{E,_k[g(y,)] Bl 0l +oo} (1.1)

Thus, if a process is co-variance stationary, its unconditional variance exists and it is

the expectation of the conditional variance conditional upon all the possible

realizations, i.e. letting g(y, ) = &, the unconditional variance of y, is

o2 =EE, elfk=1, 2, .. +aj (1.2)

y

As pointed out by Loretan and Phillips (1994), the existence of unconditional

moments critically depends on the shape of the density in the tails, i.e. if the density

11



function does not decline rapidly enough as we move away from the centre of the
distribution some of the moments might not exist. For example, returns with finite
conditional variance might display infinite unconditional variance. The density in
the tails of a distribution, i.e. its ‘tickness’ and the related height of the peak towards
the central part of the distribution (leptokurtosis), is captured by the fourth moment,
the kurtosis.

1.3. Old and New Paradigm

The last decades have witnessed a radical transformation in the way financial theory
and financial econometrics researchers model one of their primary objects of
interest, asset returns. In the old paradigm, returns were thought to be independently
drawn from an underlying joint distribution with time-invariant moments and all the
moments existed. In other words, returns were assumed to be independently,
identically distributed (henceforth, i.i.d.). This view was particularly common in the
fifties and sixties and it is summarized by the random walk representation (see
Malkiel (1990) for a discussion) of the asset price process with constant drift and
white noise error'. In the random walk model of asset prices, returns have finite
moments of any order and conditional and unconditional moments are the same.
Normality of the error term, moreover, implies that the entire multivariate
distribution of asset returns can be described by its first and second moments. This,
in turn, implies that rational investors should only be concerned about the mean and
variance of their portfolios, leaving no room for any role of higher moments in the
portfolio optimization problem, as in Markowitz (1952, 1959) mean-variance-
portfolio theory. In such a setting, broadly corresponding to the static Capital Asset
Pricing Model (CAPM) of Sharpe (1964) and Lintner (1965), only the first two
moments of the multivariate return distribution would have asset pricing

implications.

2
' Formally: d?P = udt + sc\/a with y = E(%ﬁi), a — E(EPE - ,uj , P is the price, € i.i.d and

E(e) =0. Here E() represents both the unconditional and conditional expectation operator.

12



This paradigm came under intense scrutiny, especially in the 1980s and 1990s. Four
main issues about the distribution of asset returns drew the attention of the empirical
financial literature, namely whether financial series are independently distributed,
whether they are identically distributed over time, whether all the moments of the
asset returns distribution exist and whether returns are normally distributed. A large
body of evidence, as summarized in Pagan (1996), has since then made clear that,
while high frequency returns are virtually serially uncorrelated and lower frequency
returns are generally little auto-correlated, there is considerable serial dependence in
higher moments. For example, there is overwhelming evidence of conditional
heteroskedasticity and time variation in second moments. Furthermore, evidence on
return predictability suggests that first moments are time-varying. For example,
while monthly returns are generally found to be strikingly unpredictable?, there is
evidence that annual returns are somewhat predictable and returns at five-year
horizons are very predictable (Fama and French (1989) and Cochrane (1999)) using
forecasting variables such as the dividend yield, the price earning ratio and other
functions of stock prices normalized by an appropriate divisor to make them
stationary. This suggests that the mean of the return process is time varying and

driven by a slow moving state variable.

Recent studies in the empirical finance literature have reported evidence of two

types of asymmetries in the distribution of stock returns. The first is skewness, i.e.

E,(g},,), or asymmetry in the distribution of individual stock returns, which has

been reported and studied by numerous authors over the last three decades. See,
among others, Simkowitz and Beedles (1978) and Singleton and Wingender (1986).

The second type of asymmetry is in the joint distribution of stock returns. One

possible source of such an asymmetry is coskewness, i.e. E,(¢,,,,&’,.,), where &

i+l

and ¢ are two zero-mean return innovations. Evidence that stock returns exhibit

Jst+l

> Monthly and higher frequency stock returns typically have slight, statistically significant
predictability with coefficient of determination R of about 1 percent.

13



some form of asymmetric co-dependence has been reported by several authors in
recent years, see for example Erb, Harvey, and Viskanta (1994), Longin and Solnik
(2001), Ang and Bekaert (1999, 2002), Ang and Chen (2000, 2002), Campbell,
Koedijk, and Kofman (2002), and Bae, Karolyi, and Stulz (2003). The presence of
either of these asymmetries violates the assumption of normally distributed portfolio

returns, which underlies traditional mean-variance analysis (see Ingersoll (1987)).

Pagan (1996), Campbell, Lo, and MacKinlay (1997) and Cochrane (1999), among
many others, provide a summary of the main stylized empirical features of the
multivariate distribution of asset returns, such as serial dependence, time variation in
first, second and higher moments and non-normality. As these features have become
common characteristics of models of asset returns, the old paradigm has been
gradually abandoned in favour of a more complex one. In this new paradigm, the
multivariate distribution of asset returns cannot be described simply by its first and
second moments and conditional and unconditional moments are not in general the

same.

1.4. The Fundamental Research Questions

The research questions that I address in this thesis are both theoretical and empirical
in nature. They can be grouped around two closely related themes. The first theme is
the asset pricing problem, concerned with the determination of mean returns. The

second theme is the dynamic behaviour of second moments.

Concerning the asset pricing problem, an important research question is whether
investors are rewarded not only for holding portfolios that perform poorly when
aggregate returns are low, as in Sharpe (1964) and Lintner’s (1965) CAPM, but also
for holding portfolios that perform poorly when volatility is high. One way of
reformulating this question is to ask whether asset coskewness, in addition to the
covariance with the market portfolio, explains the cross-section of average asset

returns. In the empirical investigation of this issue, I focus on the explanatory power

14



of coskewness for the cross-section of average returns on a particular set of
benchmark assets, i.e. the portfolios formed sorting by industry the NYSE, AMEX
and NASDAQ stocks included in the database of the Center for Research on
Security Prices (CRSP) of the University of Chicago. A further research question
related to the asset pricing problem is whether the idiosyncratic component of
aggregate volatility plays any role in asset pricing. I empirically investigate this

issue using an extensive dataset on Euro area stocks.

Concerning the second moments of equity returns, the main research question is how
to model the variation in equity volatility and correlations over time. I study both
market and idiosyncratic volatility, and country, industry and firm-level volatility
and correlations. In particular, using a largely original Euro area dataset, I
investigate long term trends and short run dynamics such as the dependence of these
moments on the sign of return innovations. A related research question concerns
how the second moment dynamics of large systems of financial variables, such as

portfolios with many assets, can best be modelled.

My overall aim is to study the stylized features of the multivariate return distribution
relevant in portfolio theory, asset pricing and risk management. Since financial
economics is still very far from the full identification of a structural model capable
of jointly describing all the moments of the multivariate distribution of assets
returns, a reasonable intermediate aim is to estimate reduced form representations
that are empirically successful. At a minimum, however, these representations
should display the desirable property of not being in conflict with the modern
paradigm of the multivariate distribution of asset returns. Since the latter recognizes
that returns first and second moments (mainly volatility and correlation) are not
static, both conditionally and unconditionally, it is important to study their dynamics

over time and to allow for asymmetry in the multivariate return distribution.
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1.5. Motivations

The investigation of the asset pricing problem is motivated by its profound
implications for capital budgeting, portfolio selection and portfolio management.
There is ongoing debate on the ability of the CAPM to explain the cross-section of
average asset returns. In particular, there is puzzling evidence on the limited ability
of theoretically motivated risk factors to drive out the explanatory power of firm
characteristics such as size and book-to-market ratio, see Fama and French (1992,
1993, 1995), momentum, as in Jagadeesh and Titman (1993), coskewness (i.e.
systematic skewness), as in Harvey and Siddique (2000) and Dittmar (2002), and
industry, as in Moskowitz and Grinblatt (1999) and Dittmar (2002). The evidence on
the asymmetry of the multivariate distribution of asset returns suggests that, if
investors’ preferences are not restricted to be defined only over the first two
moments, expected returns might depend on higher order odd moments. This
possibility motivates the study of the explanatory power of asset coskewness in the
cross-section of excess returns, as in Harvey and Siddique (2000), Dittmar (2002)
and Post, Levy and Van Vliet (2003, 2005). I focus on the cross-section of
portfolios® formed sorting stocks according to the industry in which the issuing firm
operates because this characteristic has been used less frequently in the extant
empirical literature as a sorting criterion and it is known, see Dittmar (2002), for
producing a very dispersed (and therefore challenging) cross-section of average
returns. This way I minimize a possible ‘data snooping’ bias (that might arise when
fitting the cross-section of more researched and therefore better known portfolios). I
use industry portfolios based on CRSP stock data because the latter has become a
benchmark dataset for the empirical literature that studies the cross-section of
average returns (perhaps because of the high quality of the data, available in a

format that facilitates scientific investigation).

The exploration of the role of the idiosyncratic component of aggregate risk in the

determination of expected returns is, as suggested by Constantinides (2002), among

* I thank K. French for making this data publicly available for download.
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the most promising research avenues to extend the neo-classical rational asset
pricing model based either on a representative agent or on the assumption of
complete capital markets. While there are previous contributions that use US data,
e.g. Goyal and Santa Clara (2003), there is no previous study that examines this
issue in Euro area stock markets. Therefore, in the empirical investigation of the
extent to which volatility, both systematic and idiosyncratic, predicts market return I

use European stocks data.

The quest for a better understanding of the dynamic behaviour of systematic
volatility, aggregate idiosyncratic volatility and equity correlations, the second major
theme of this thesis, is motivated by the relevance of these variables for applied
portfolio management, risk management and asset pricing. While systematic,
market-wide volatility is most important to the holders of well diversified portfolios,
both total and idiosyncratic volatility are relevant for incompletely diversified
investors. In particular, as remarked by CLMX (2001), the level of aggregate
idiosyncratic risk (as measured by average firm and industry-level variance) is
important in determining the number of stocks required to achieve a relatively
complete diversification whereas the level of aggregate asset correlation determines
the extent to which portfolio managers can benefit from diversification. Knowledge
of both systematic and idiosyncratic volatility patterns and of the correlation among
assets is also relevant to the financial industry since they are important parameters
for pricing contingent-claims derivative securities. The relative importance of
diversifiable and non-diversifiable risk is also relevant for risk managers and
regulators alike, as it is a required input of market and credit risk “internal” models
adopted by banks and other regulated intermediaries under the new Basel II Capital
Accord®. Also, since the level and dynamics of aggregate correlation, both in the
short and in the long run, have obvious systemic implications, their knowledge is
particularly important for the regulators of financial intermediaries and markets. It is
therefore important to investigate whether the developments reported by CLMX

(2001), mainly a long-run upward trend in firm-level volatility and declining

* See on this, for example, the CreditMetrix technical document distributed by JP Morgan.
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correlations, are specific to United States markets or whether they obtain more
globally. Thus, in studying volatility and correlation dynamics, I will mainly focus
on European stocks. This is because, while the seminal contribution of CLMX
(2001) has sparked a burgeoning literature focussing on US data, very little is known
on the behaviour of idiosyncratic volatility and industry and firm-level correlations

trends in the Euro Area.

The study of the behaviour over time of correlations amongst European financial
markets is especially important from an investment management perspective. For
example, a growing body of empirical evidence on the performance of mutual and
pension fund managers suggests that they often under-perform their benchmarks
(Blake and Timmerman (1998), Wermers (2000), Baks, Metrick and Wachter
(2001), and Coval and Moskowitz, (2001)). Instead of engaging either in expensive
but ineffective active portfolio management practices or in almost equally expensive
attempts to fully replicate international stock market portfolios, the strategy of
buying the market index for each country might yield an effective and cost-efficient
international diversification. This provides asset diversity within each country
together with international diversification across political frontiers. The success of
this strategy, however, depends crucially on the magnitude of the correlations among
national markets relative to the correlation among the stocks included in the market
index for each country. International correlations tend also to rise with the degree of
international equity market integration (Erb, Harvey and Viskanta (1994) and
Longin and Solnik (1995)), which has gathered pace in Europe since the mid-1990s
(Hardouvelis, Malliaropulos and Priestley (2000) and Fratzschler (2002))°. It is
therefore of considerable interest to investigate the relative strengths of the trends in
correlations at the market index level as well as at the firm level in European equity
markets, because the findings have relevance for the diversification properties of

passive and active international investment strategies.

> Fratzschler (2002) also notes that the euro-zone equity market has now surpassed the United States
market as the most influential determinant of euro-zone country equity returns.
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1.6. Structure of the Thesis

The first part of this thesis is devoted to the discussion of the extant literature on
asset pricing and volatility. This is done in Chapters 2 and 3, respectively. The
second part presents original, largely empirical results on asset pricing and on
volatility modelling. In particular, my novel contributions appear in Chapters 4 to 7
and in Chapter 8 I discuss their implications for the asset pricing and investment

management problem.

[ first discuss, in Chapter 2, the modern view of the multivariate distribution of asset
returns within the conceptual framework of modern asset pricing theory. This
provides the motivation for the discussion, in Chapter 3, of the theoretical and
empirical literature on second moments. Chapter 4 focuses on the cross-sectional
dimension of the asset pricing problem and, in particular, on whether coskewness
helps explain the cross-section of average returns. This Chapter is based on two
papers, Poti (2005b and 2005c¢), presented at the Annual Meeting of the Financial
Management Association (New Orleans, 2004) and discussed at the Doctoral
Colloquium of the European Finance Association (Moscow, 2005). In Chapter 5, I
study systematic and idiosyncratic volatilities and correlations of Euro area stocks in
a simple unconditional setting. This Chapter is based on two studies, Kearney and
Poti (2003) and Kearney and Poti (2005b). The former was presented at the
European Finance Association (EFA) Annual Meeting (Glasgow, 2003). The latter
was presented at the European Financial Management Association (EFMA) Annual
Meeting (Milan, 2005) and has been accepted for presentation at the Financial
Management Association (FMA) Annual Meeting (Chicago, 2005). In Chapter 6, I
model and estimate correlations in the Euro area in a conditional setting. This
Chapter is based on a paper forthcoming in the Research in International Business
and Finance, Kearney and Poti (2005a). Chapter 7 is devoted to the study of the
time series of stock market returns and, in particular, of the relation between
volatility of discount factors and conditional return volatility. This Chapter draws

heavily on a paper forthcoming in the Applied Financial Economics Letters, Poti
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(2005a). Chapter 8 summarizes the main findings, provides a discussion of their
implications, outlines directions for future research and draws together the
conclusions. More details on the papers on which this thesis in based, together with
sample econometric code (mainly written in RATS, but I will likely add code in
other languages in the future) and data sets used for some of the estimation

procedures, is available on my website, www.valeriopoti.com, and on my personal

page on the Social Science and Research Network website.

1.7. Main Findings and Contributions

This thesis contributes to the empirical asset pricing literature on both the cross-
section and time series of stock returns. It also contributes to the literature on the
dependence structure of stock market returns and to the recent but rapidly growing
literature on total and idiosyncratic risk. I now provide a detailed account of the

main findings and contributions of each chapter.

In Chapter 4, I derive a novel beta-pricing representation of Harvey and Siddique’s
(2000) version of the 3-moment conditional CAPM. Its main advantage is that both
its beta coefficients and risk premia can be interpreted as parameters of appropriate
regression models. In an empirical application to US stocks sorted into 30 industry
portfolios, I also add to the extant evidence that, while coskewness helps explain a
substantial portion of the cross section of average returns and the coskewness
premium is of the same order of magnitude as the covariance premium, the
estimated unconstrained 3-moment model implies a utility function that is not
concave over the relevant wealth range. This confirms earlier results, based on
different datasets and a different conditioning information set, reported by Dittmar

(2002) and Post, Levy and VanVliet (2003).

In Chapter 5, I extend CLMX’s (2001) study to European equity markets. To this
end, I construct a unique and comprehensive firm and industry-level dataset of stock

returns and volatilities in the Euro area. I also derive in an alternative and more
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intuitive manner the main results underlying CLMX’s (2001) decomposition of total
risk into idiosyncratic and systematic risk and I develop a version of this
decomposition based on returns instead of excess returns. Furthermore, I derive an
original average correlation index that is computationally easy to construct and I
discuss its properties. This average correlation index is very useful to study the
aggregate dynamic behaviour of the correlations between a large number of assets. |
find that European stocks have indeed become more volatile, and that idiosyncratic
risk is the largest component of this volatility. I also find that the potential benefit of
diversification strategies in Europe remains substantial and relatively stable over
time. Because of the larger idiosyncratic volatility of the typical stock, however, it
now takes many more stocks to diversify it away. For example, the number of stocks
required for residual idiosyncratic volatility to be reduced to 5 percent in a portfolio
of European stocks has risen from 35 in 1974 to 166 in 2003. Stock correlations are
on average low, i.e. their long run mean is about 20 percent, thus implying a
correspondingly low explanatory power for the market model, i.e. about 4 percent.
This is about half the explanatory power of the market model for the average US
stock reported by CLMX (2001). CLMX (2001) find, however, that the explanatory
power of the market model is declining over time in the United States, while there is
no evidence of such a phenomenon in the Euro area. Market volatility forecasts both
industry and firm-level volatility. This contrasts with CLMX (2001) who find that
firm-level volatility predicts both market and industry-level volatility in the United
States. These findings are of interest for investors throughout the world who hold
international equity portfolios and especially for European individual and
institutional investors who are recently tending to hold greater proportions of their

portfolios in stocks®.

In Chapter 5, using Euro area data, I also confirm earlier findings based on US data,

e.g. Whitelaw (1994) and Goyal and Santa Clara (2003), that the simple lagged

® The desire to supplement social security benefits and public pension provisions, shrinking because
of a rapidly ageing population, contributes towards this shift in investment habits. See Guiso,
Haliassos and Jappelli (2002) for an extensive review of the empirical evidence on increasing stock
market participation in Europe and the importance of its demographic determinants.
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market variance-return relation is positive but statistically insignificant. However, I
question Goyal and Santa Clara’s (2003) conclusion that the return on the market
portfolio is positively related to the idiosyncratic component of lagged total
volatility. Instead, I find that when market volatility is also included in a long-run
predictive regression, the relation between market return and average idiosyncratic
volatility is negative. This is a striking confirmation, obtained using Euro area data,
of a similar finding recently reported by Guo and Savickas (2003) for a portfolio of
the 500 largest US stocks. I show that this result depends on the circumstance that
market and average idiosyncratic volatility jointly proxy for average correlation and

thus, perhaps surprisingly, for a component of systematic risk.

In Chapter 6, I estimate the correlations of Euro-area market, industry and sector
stock indices in a large-scale multivariate conditional setting, using extensions of
Engle’s (2002) Dynamic Conditional Correlation GARCH model. For comparison, I
also apply the same estimation strategy to a sample of Euro area stock with largest
market capitalization. I do not find evidence of a deterministic time trend either in
individual stock and industry correlations, consistently with the findings in Chapter
5, or in sector or country level equity correlations. The latter however dramatically
increase in recent years due to a structural break shortly before the launch of the
Euro. These findings imply that, while industry and firm level diversification have
retained their effectiveness, investment managers engaged in asset allocation in the
Euro area should not rely any longer on country level diversification strategies.
Moreover, the very high correlation between Euro area markets implies that a
European-wide factor should largely replace country factors (and perhaps US
factors) in factor models of European stock returns. Finally, as reported mainly in
Chapter 6, I find weak evidence of increasing correlations depending on past returns,
but I confirm the presence of a more general, yet unknown, form of asymmetry in
the dependence structure of equity returns in the Euro area, at the firm, industry and

country level.
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Chapter 7 contains original analytical results on the relation between discount factor
volatility and conditional return volatility. This relation provides the amount of
discount factor volatility that rational asset pricing models must generate in order to
explain conditional return volatility. In an empirical application to the US stock
market, | find that it takes about 7 percent discount factor volatility to explain the
conditional return volatility from 1871 to 2003, given about 4 percent dividend

growth volatility.

1.8. Summary and Conclusions

In this Chapter, I first introduced some preliminary material on the distinction
between conditional and unconditional moments and how it arises in the transition
from the old to the new paradigm of asset returns. I then specified the fundamental
research questions of this thesis and discussed the motivations that drive their
investigation. In particular, I discussed the connection between the research
questions and unresolved issues in asset pricing and second moment modelling and
their relevance for applied portfolio and investment management. Finally, I outlined
the structure of the thesis and I summarized the main findings and their contribution

to the extant literature.
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Chapter 2: The Asset Pricing Literature

2.1. Introduction

In this chapter, I review the literature on the distribution of asset returns and on the
closely related topic of asset pricing. Rather than attempting to list all the countless
contributions, my aim is to show how the discovery of moment dynamics and their
role in asset pricing unfolded over the transition from the old view of asset returns,
based on the random walk model and on the identity between conditional and
unconditional moments, to the new paradigm that allows for time-varying
conditional moments and returns predictability. I first show, however, how all asset
pricing models can be derived as specializations of a common analytical framework,
the general stochastic discount factor model with possibly time-varying risk premia
and returns predictability. I then discuss at more length selected specifications
consistent with the modern view of asset returns. In particular, I focus on
specifications that allow for systematic skewness and idiosyncratic risk to play a role

in asset pricing.

The Chapter is organized in seven main sections. The next two sections introduce
the stochastic discount factor approach to asset pricing. In particular, Section 2.2
focuses on the stochastic discount factor framework and its beta-pricing
representation and Section 2.3 derives the general linear factor model from the
stochastic discount factor representation of the asset pricing problem. In Section 2.4
and 2.5, I provide a brief account of developments in the theory of efficient markets
and rational asset pricing, I introduce coskewness as a priced risk exposure, and I
discuss the possible role of idiosyncratic risk in asset pricing. Section 2.6 reviews
the alternative behavioural approach to asset pricing and Section 2.7 discusses the
dichotomy between absolute and relative pricing. The last section summarizes the

chapter and draws together the conclusions.
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2.2. Stochastic Discount Factor Pricing

I begin the discussion of the asset pricing problem imposing at first as little structure
as possible. I do this by invoking a theorem credited to Harrison and Kreps (1979).
This theorem says that, given free portfolio formation and the law of one price, a
stochastic process m;.; that prices all assets exists. This process is called the
stochastic discount factor (henceforth SDF) and satisfies the following condition for

all payoffs x;+; and payoff prices p;:

pl = El(ml+lxl+l) (21)

Here, the expectation is taken conditional on the available information set. Under the
additional assumption of no arbitrage, as shown by Harrison and Kreps (1979) and
popularized by Hansen and Richard (1987), m,.; must be positive. Moreover, if m,,
lies in the payoff space, then it is unique. Thus, in complete capital markets, the SDF
is unique. We might denote this unique SDF as mys, . Conversely, if my., is not
restricted to lie in the payoff space, any process with the same projection my on
the payoff space will satisfy (2.1) and price the payoffs. Thus, in an incomplete
capital market, there is an infinite number of m;,.; such that (2.1) holds for every
priced payoff x;,.;. In other words, if the set of the assets being priced spans all
possible payoffs, m,.; is unique. Instead, if the priced assets are only a subset of the
universe of assets, there is an infinite choice of processes m,.; that satisfy (2.1).
These processes share the same projection on the priced payoff space. Trivially, any
linear combination of these processes prices the assets. Virtually all asset pricing

models can be derived by defining what determines m,+ 1.
2.2.1 Alternative Representations

Using the familiar statistical result that the expectation of the product of two random
variables equals the product of their expectations plus their covariance, the SDF

model can be expressed in a more useful guise as follows:
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Pr = E(myi1) Ex1) + Covmy1, Xi+1) (2.2)

By definition, the price of any payoff constructed as the sum of one and the return

on an asset, i.e. 1+ R ,, must be equal to 1. Thus, setting p, = 1 in (2.2):

Tt 2

1=E(m,)EQ1+R,.)+Cov|m,.0+R,.)] 2.3)

Therefore,

1+1°

El(ml+]) EI (ml+|)

I El (RI.H-] ) = 1 e COV’ <m R,JH )

(2.4)

Notice that (2.1) must also apply to the asset with the conditionally risk-free rate of
return R;,.1. Therefore, setting p, = 1 and x,+; = 1 + Ry and noting that, by

definition, Ry is known at time 7, (2.1) implies E,(m,, )(1+ R, ,) =1 and therefore:

1
1+R,, =— DS
N ) )

Using (2.5), (2.4) can be rewritten in terms of excess-returns’, defined as the

difference between the asset return and the return on the risk free asset:

" This relation can also be derived considering that, since excess returns r;, are the difference between
two unit-price payoffs (the payoff 1 + R, of asset i/ and the payoff 1 + Rj;., of the risk free asset)
their price must be zero under the law of one price. More formally, consider payoffs formed by 1 plus
a rate of return, i.e. 1 + R;.,. In the terminology of the SDF literature, these payoffs are called ‘gross
returns’ whereas R, are called ‘net returns’. The price of gross returns is 1 by definition, as you
must pay | unit of the numeraire (say, a particular currency) to purchase them. Thus, since excess
returns can be seen as the difference between two gross returns, i.e. the gross return on a risky asset
and the gross return on the risk free asset, their price is zero. Therefore, replacing x,., with r;,.,,
setting p, to zero and solving for the expected excess return on asset / we have the result.
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P Covl (ml+l ’r:,/+l)

E(rise) = (2.6)
, EI (ml+l)
Using (2.5), the latter can be rewritten as follows:
E(riqv1)=-(01+ Rf,M)Cov,(mH,,r,‘,H) (2.7)

An interesting implication of (2.7) is that no strategy can offer a (discounted) Sharpe
Ratio higher than the volatility of the stochastic discount factor. This is the Hansen
and Jagannathan (1991) bound, and it follows from (2.7) because the correlation

between any two variables is bounded above and below by one, i.e.

COV, (ml+1’r/,l+]) = C()I’I’; (m/+1’rl‘r+l)o'l(ml+l)o-l (”;,Hl) 5 ‘O-/(mlﬂ)o-l (rl,/+l) and thus
Er (r:,/+l) -
—L < (14 R, )o (m,,,) (2.8)
O-/(r:,Hl)

Dividing and multiplying the right hand side of (2.6) by the variance of the SDF

yields the beta-pricing representation of the implications of (2.1) for excess returns:

(2.9)

E(rir1) = ﬂm./.r|:— M}

El (m/+l)

Covim v )
Here, ﬂm‘,., = t t+1°%0t+1

is a coefficient of the regression of the asset excess-
Var,(m

t+1
return on the SDF. Using (2.5), the beta-pricing representation in (2.9) can be

rewritten as follows:

E(r,1) = Bo |- Var,om )1+ R, )] (2.10)
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2.2.2  Excess Returns and the Mean of the SDF

For realistically low values® of R we can approximate the right-hand side of

i+l

(2.5) as follows:

1 —
El (ml+])

] 2.11)

Thus, for realistically low values of the risk free rate, the mean of the SDF is
approximately equal to 1. Under this approximation, the mean of the SDF does not
identify excess return means in (2.7) and (2.10). Using (2.11) in (2.7), then we might

approximate expected excess returns as follows:

El (r/,l+l) = _CYOVI (ml+l’rl,/+1) (212)

Similarly, using (2.11) in (2.10), we might approximate the beta pricing

representation of expected excess returns in the following way:

E/ (r/,l+l) = ﬂl".l.l [_ Varl (ml+l)] (213)
2.3. Factor Models
Equation (2.1) and its representations in (2.7) and (2.10), like their approximate
counterparts in (2.12) and (2.13), represent very general asset pricing results. All

conditional linear factors models can be derived as specializations of these equations

by specifying m;, as a linear function of a number of factors f;;;:

m,, =a,+bf. (2.14)

¥ The historical average of the risk-free rate is about 6 percent per annum, see for example Cochrane
(2001).
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This is said to be a conditional linear factor model (LFM) because the parameters of
the SDF are allowed to be time-varying conditional on available information. Fixing
the parameters of the SDF yields instead the general unconditional LFM. The asset
pricing implications of any conditional and unconditional linear factor model can be
represented as specifications of the implications of (2.1) and (2.14). Using the latter

in (2.4), the no-arbitrage implications for the cross-section of expected returns are:

1 - Cov, (R,_msfm )bx

(2.15a)
E(m.,,) E(m.,,)

I+E(R ,.\) =

Or,
EI(RI,/+1) 5 R_/.Hl e (1 e R/',l+l )COV, (R/,l+l’.fl+l %l

(2.15b)
= RfJ+1 i (1 + R,/'./+I)C0vl (RI,I+]’.fI+| )ft

Here, Cov, (Rm,,fm) can be interpreted as the quantity of factor risk and & =—-5,

as the vector of factor risk prices. This equation can be easily rewritten in beta-
pricing form, thus giving the beta-pricing representation of the asset pricing

implication of (2.1) and (2.14):

AN ES SRED ) (2.16)
where,

B =Var () Cov,(furs Riyun) @.17)

A =—(+R,, War(f. b (2.18)
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Here, f,, is a vector of coefficients from the regression of asset i on the factors and

/4 1s a parameter vector. The former can be seen as the factor loadings and the latter
can be seen as the risk premia or the price of the factors. When pricing excess

returns, we can use the approximation in (2.11) and  set

Em) =a,+b/E(f,,,)=1. Then we can apply (2.12) and (2.13) and rewrite the
t ml+1

covariance and beta-pricing relations in (2.15b) and (2.16) as follows:

E () = =Cov, {1 s S 1+ Ry b, = =Cov (101, fr B 2.19)

B ()= PEA, (2.20)
where,

B =Var(f...) ' Cov,(fruin) @21)

A, ==(+R, War,(f., b, = Var,(f... b, (2.22)

Here, f,, is a vector of coefficients from the regression of asset i excess returns on

the factors while all the other symbols are defined as before.

Letting z, represent a vector of variables that summarize the relevant conditioning
information, we can write a, = a(z,) and b, = b/(z,) for conditional models. The
simplest way to model conditional time-variation in the parameters of (2.14) is to

specify them as a linear function of the set of conditioning variable:

a=a+dz 2.23)
e '

30



Here, a; is a scalar, b, p° are Nx1 vectors, z, is a kx1 vector of conditioning

variables, @' is a kx 1 vector and ' is an kx N matrix. Using, (2.23) we can rewrite

(2.14) as follows:

!

m — a +a z, +(° +b' 2N
' ’ '
0 1 0 1
=g ta 2+ g5 bl (2.24)

l/

=a’+d'z, +b° £, +b* (f, ®z)
Here, b* is a [(k x N)x1] vector obtained stacking the N columns of 4', i.e
b* =vec(b') 2.25)

The specification in (2.24) and (2.25) can be seen as an unconditional model, i.e. a

model with time-invariant parameters, in the new set of factors

Zl
s B (2.26)
f;+| ® ZI

For convenience, we can also rewrite (2.24) folding the unconditional mean of these
factors in the constant and write the SDF as a linear function of a new set of

unconditionally de-meaned factors:
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m, =[a’ +a' E(z,)+b" E(f,))+b* E(f,,, ® z,)]+

$ab [2, = Bz 1+, - EE, ]

+b2 I;/;+l ®Zl —E(.f;ﬂ ®ZI )]
=d+a z +b° Z+| +5% (f, ®z,)

!
b

l

Here,

G=a’+a" E(z,)+b° E(f,,)+b* E(f,, ®z,)

g, =8z )
F, = fra—E(f)
| fn®z, - E(f,,®2,)|
-
b3 = bO
b2

£

(2.27)

(2.28)

(2.29)

(2.30)

~Since the parameters of the factors in (2.27) are by definition constant over time, the

conditional and unconditional implications of the model are the same. In particular,

we can derive the unconditional implications without worrying about co-variation

between the parameters of the SDF and the factors. To this end, we may take the

unconditional expectation of (2.1) with the SDF specified as in (2.27). The

covariance and beta-pricing representations of the implication of this unconditional

expectation are the following:

E(r,.) = ‘COV(”I,HPEHXI I )b3 = _Cov(rl,wnEn

E(rl,l+l ) i ﬂzlj’

where,

2.31)

(2.32)
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B, =Var(E.,,) Cov(F,,.r,,..)=Var(E,, ] Cov(F,,.1,,..) 2.33)

t+1°%0+1

A=—0+R, WarF, b = -Var(F, p° (2.34)

2.4. Asset Pricing Paradigms and EMH

The efficient market hypothesis (henceforth, EMH), as formulated by Fama (1970,
1976), requires that conditional future cash-flows expectations and conditional
moments of the multivariate return distribution be formed using all the available
relevant information’ and, ultimately, that they do not deviate in any systematic (i.e.
exploitable) way from the unconditional ones'’. This implies that returns deviations
from their possibly time-varying equilibrium conditional expectations follow a fair
game process (see, for a simple taxonomy, Copeland and Weston (1991)) with zero
conditional and unconditional mean but with possibly time-varying higher order
moments. On average, then, returns equal conditional expected returns or,
equivalently, expected returns conditional on the available information set are
unbiased estimates'' of actual future returns. The key difference between rational
asset pricing under the old and new paradigm'” is that conditional expected returns
and higher order moments of the returns deviations from their conditional means are

fixed in the former and possibly time-varying in the latter.

° This is a definition of market efficiency implied by Fama’s (1970) discussion and reported in Fama
(1976).

"% Recall that, if the distribution of the relevant conditioning variables is known, unconditional
moments can be derived from the conditional ones. Therefore, if either asset cash-flows conditional
expectations or conditional return moments are not formed using all the available relevant
information, superior forecasts of asset prices could be formed by using conditioning variables that
convey the relevant information neglected by market prices. These forecasts would be exploitable to
earn above-average risk-adjusted returns. Clearly, this does not need to apply to conditional asset
cash-flows expectations and return moments formed using subsets of the available information set,
such as the data available to the econometrician.

" This condition can be formulated as follows: E(r,) = E[r,, - E(r,, |Q)], where Q denotes the
conditioning information set.

"> The key difference is therefore that the former relies on a random walk whereas the latter in based
on a fair game view of conditionally unexpected returns. Also recall that conditional and
unconditional moments are the same only in the random walk case.
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The old paradigm implied the EMH, but the reverse is not true. In particular, within
the new paradigm of asset returns, it is possible to recognize explanations for asset
pricing phenomena based either on asset pricing models with investors that process
information and decide upon it rationally, and thus consistently with the EMH, or on
models that allow for some degree of investors’ irrationality. I call the former

rational asset pricing models and the latter behavioural asset pricing models.
2.5. Rational Asset Pricing Models

Rational asset pricing models can be interpreted as specifications of a unified
theoretical framework, the neoclassical rational economic model (Constantinides
(2002)), that views expected excess returns as the reward demanded by risk averse,
expected utility optimizing investors for bearing non diversifiable risk. These
investors have unambiguously defined preferences over consumption. If we add the
assumptions that investors’ expectations are rational and investors’ beliefs
consistent, in the sense implied by Sargent’s (1993) discussion of the rational
expectation equilibrium, this framework implies the EMH. Versions of this theory
allow for market incompleteness, market imperfections, informational asymmetries,
and learning. The theory also allows for differences among assets for liquidity,

transaction costs, tax status, and other institutional factors.

2.5.1 Consumption Asset Pricing

For inter-temporal utility maximizing investors, m,.{ depends on their impatience
and on the marginal utility of whatever they must give up in order to acquire

additional units of the payoff x,.. To see this, suppose that investors extract utility

from consumption, and that they have the following 2-period utility function:

u(c/ cl,) = uc))+ BEu(c!,)] (2.35)
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Here, ¢/ denotes investor j’s consumption and f is the subjective discount factor

that represents the investors’ impatience, that is by how much, under any
circumstance, any payoff is worth less if it is paid at a later date. Subjective discount
factors should be always less than unity for impatient investors. Desirable properties
of investors’ utility function, as argued by Arrow (1971), are positive and decreasing
marginal utility of wealth and non-increasing absolute risk aversion. Positive

marginal utility of wealth, or ;' > 0, implies investors’ non satiation (NS), whereas

decreasing marginal utility, ;"< 0, implies risk aversion (RA). Non increasing

absolute risk aversion (NIARA),

M < (. implies that risky assets are not

¢
inferior goods, and as shown in Arditti (1967), it is a sufficient condition for 4" > (.
Hence 3" >( implies NIARA and aversion to negative skewness. NIARA, for a
utility maximizing, risk-averse individual, and hence with positive marginal utility
and RA, is also related to prudence as defined by Kimball (1990). Included in the set
of utility functions that display these desirable attributes are the logarithmic, power
and negative exponential utility function. It should be noted that the popular

quadratic utility function does not satisfty NIARA.

The investor in f must decide how much to consume and how much to invest in the
asset that offers the pay-off x,.;. Subject to his inter-temporal budget constraint, the
more of the asset he purchases, the less his consumption today but the more he will
be able to consume in the future. The problem of a rational investor, therefore, is to

find the level of investment that maximizes his expected utility. Assuming that the
utility function is concave, denoting by 4’ (c/) the marginal utility of consumption

u' (C,‘L, )

- (2.1) can be seen as the first order condition for the
u'(c)

and setting m/ =p

maximization of the investor’s expected utility, i.e. the expectation of (2.35), given

the price p; of the pay-off x;;. In this setup, treating the subjective discount factor as

"3 It has nothing to do with the CAPM asset beta but I keep this notation because it is almost standard
in the literature.
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an inter-temporal constant, the SDF m,.{ is proportional to marginal utility growth
and (2.7) implies that investors are willing to pay more for assets that are expected to

pay off handsomely when marginal utility of consumption is high.

The SDF, i.e. the process m;,.; that prices all pay-offs, depends in general on the
circumstances (factors) that determine the extent to which investors’ aggregate
marginal utility in 7+1 is high relative to the previous period. The shape of investors’
utility and the extent to which investors can freely form portfolios has also
implications for the shape of the SDF that prices the assets. For example, NS imply
no-arbitrage and therefore a positive SDF. Furthermore, if the utility function is
concave, marginal utility is high when resources to purchase additional units of
consumption are scarce and therefore consumption is low. A payoff that would make
additional resources available when these are needed the most would be particularly
welcome and the investors would value it more (m,.; is high). This implies a SDF
decreasing in wealth. At a more technical level, the shape of investors™ utility also
has implications for how closely the SDF that prices all assets resembles the shape
of individual investors’ marginal utility growth. In other words, whether aggregation
of individual investors’ marginal utility growth results in a SDF defined over
aggregate wealth with the same shape as the individual investors’ SDF depends, in
general, on the shape of utility. In empirical applications, the assumption that prices
are set by a representative investor allows to bypass this issue (essentially, leaving it

in the background for asset pricing theorists).

2.5.2 Representative Investor

Under the representative investor assumption, ¢/ = ¢, and the SDF m,;; can be

expressed in terms of marginal utility of aggregate consumption:

B e (2.36)
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The asset pricing implications of the representative investor assumption and of the
assumption that capital markets are complete are the same. This is because, in
complete capital markets, as in Lucas (1978), investors can exchange contingent
claims on any future state of the world. Full risk sharing and diversification are
therefore optimal for all investors, who then hold portfolios with risky assets in
identical proportions. In these circumstances, pricing assets with respect to
individual investors’ consumption or with respect to aggregate consumption is

equivalent because marginal utility growth is the same for all investors.

In a 2-period setting, investors must consume at the end of the second period all their
wealth. Thus, in the SDF in (2.36), we can substitute out the representative
investor’s consumption with wealth. In a multi-period setting, consumption and
wealth are equivalent only if either returns are unpredictable, as in the old paradigm,
or predictability has no effect on inter-temporal optimal consumption-investment
and portfolio choices. Strictly, the latter condition requires the assumption of
logarithmic'* utility. The empirical literature, e.g. Jagannathan and Wang (1996) and
Lettau and Ludvigson (2000), however, often assumes that the SDF pricing equation
holds conditionally period by period even under other type of utility functions. This
corresponds to the assumption that predictability is at most a second order effect
relative to the variability in consumption and wealth. Under these conditions, the
inter-temporal marginal rate of substitution in (2.36) can be expressed as a function

of aggregate wealth:

u' W)

(2.37)
A

mey = f

The SDF of a representative investor with preferences defined over wealth that

display NS, RA and DIARA is positive, decreasing and concave in wealth.

'“ As explained in Cochrane (2005), for this type of utility function substitution effects (higher
expected return implies an higher opportunity cost of current consumption and therefore tends to
decrease it) and income effects (higher expected return imply higher next period wealth and therefore
tends to increase consumption) exactly offset each other.
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255 CAPM

The CAPM is a special single factor model. In its original version, it is a static
equilibrium model. Under investors’ NS, it can be derived either assuming a
representative investor with quadratic utility, thus excluding preference for moments
of the multivariate distribution of asset returns higher than the second, or allowing
for preference for higher moments (as under a power utility function) but assuming
that returns are multivariate normal, and that investors, rational and risk averse, can
freely diversify and have access to the same information. The latter assumption,
even when a subset of investors is imperfectly rational, can be replaced by the
assumption that the most informed marginal investor is rational and can borrow and
lend without limits at the risk-free rate (this, essentially, requires a frictionless
capital market). Quadratic utility assures that the #” term in (A.5) in Appendix A is
zero. Under a multivariate normal distribution, the covariance with the squared rate
of return on investor’s wealth is zero (because of the symmetry of the normal
distribution). In either case, the SDF depends linearly only on the return on the

mean-variance efficient portfolio of risky assets, i.e. (2.14) becomes:

m,, =a+br (2.38)

m,t+1

From (2.32), then, the expected excess return on any asset is proportional to the
coefficient of the regression of the asset excess returns on the portfolio excess return
and captures the asset systematic risk exposure. The proportionality coefficient, i.e.
the risk-premium, is the market expected excess return. This is because, by
construction, the regression coefficient f,,,, of the market excess return on itself

equals 1 and therefore, from (2.32), 4,, = E(#pm.1+1).
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254 (C)CAPM

We might extend the CAPM to an inter-temporal setting, where returns are not i.i.d.
and moments are allowed to be time-varying, by letting the CAPM hold
conditionally, period by period. This is clearly an approximation, as a rational mean-
variance investor would anticipate the possibility of variation in the first moment of
the return distribution and thus would seek to hedge against adverse (negative)
changes in expected returns, i.e. a demand for hedging against reinvestment risk
would arise and a corresponding risk premium would enter the equilibrium expected
return determination equation. Since in a two-period CAPM expected returns are
proportional to expected market variance, the latter would show up as an additional
risk factor with a positive risk price in the SDF of the representative investor, as in

Merton’s (1973) Inter-temporal CAPM (henceforth, I[CAPM), i.e.

El (r:,/+l) = —bl,/COVI (rm,l+l ’rl.l+| ) - bZ,I(’VOVI (Z/+l ’rl,l+l) (239)

Here z,,, is a state variable that describes the state of the investment opportunity

set, i.e. it captures reinvestment risk. Merton (1980), however, points out that the
hedging motive is likely not very important. Following Merton’s (1980) advice,
Jagannathan and Wang (1996) set the price of reinvestment risk to zero and

approximate the SDF as a linear function of the return on the market portfolio with

time-varying parameters, i.e. m,,, =a, +b,r, Such a SDF summarizes the asset

¢ P -
pricing implication of the conditional CAPM, henceforth (C)CAPM. Alternatively,
we could just treat this specification of the SDF as a reduced form representation of
the true inter-temporal SDF. In any case, letting the SDF parameters depend linearly
on the conditioning variable z;, as in (2.23), and setting fi+; = rm1 in (2.14), we

have:

My =ap+aize + (bO i ber) Vm,t+1

=ag+ aizi+ boVmer1 + D121V 1 (2.40)
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Using (2.40) in (2.20), the beta-pricing representation of the conditional excess
return pricing implications of the (C)CAPM is the following:

El (rl,l+l) - ﬂm.uj’m,l (241)

Here, f,.i 1s a time-varying coefficient of the regression of r;, on r,,, and 4,,, is the

conditional market risk premium, given by (2.22):

A, = =Var.(r,, )b, (2.42)

m 1

Also, since by definition £, »,, = 1, we have from (2.41) that 4,,, = E{rm+1). Hence,
the conditional market risk premium is equal to the conditional market expected

excess return. Since, as shown in Appendix A, b, = —-RRA,, the market risk

premium in (2.42) can be rewritten as follows:

ﬂ' = El (rm_l+]) i RRA[VCII", (rm./+|) (243)

'm,t

RRA, can be interpreted as the representative investor’s relative risk aversion
parameter for reasons that become clear by examining the derivation of the stylized

risk-return relation reported in B.5.

To derive the unconditional implications of the conditional SDF model in (2.40), I

apply (2.41) and take unconditional expectations of both sides:

E(ri,Hl) = E(ﬂ,,,.,,,;{,,,q,) = ﬁ,’,/l, = ﬂ:,ii: it ,Bm,ijvm i ,B:m,illzm (244)

Here, B.; fm: and B..; are regression coefficients of r;,+1 on, respectively, z;, 7+
and zg#,.+1. Equivalently, the SDF in (2.40) can be seen as a linear function of z,

Fme+1 and zgy+1. Hence, (2.44) can be derived applying (2.32) to (2.40) with the

40



elements of F; in (2.26) given by z;, rp+1 and zgy, +1. Notice that, if the parameters
of the SDF are fixed, a, = ap = a and b, = by = b, the preceding equations simplify to
the unconditional CAPM (CAPM), i.e. mys) = a + brp+1, and E(7;1+1) = Bm.idm-

2.5.5 Conditioning Variables

A critical consideration in estimating the (C)CAPM, or any conditional asset pricing
model, is the choice of the conditioning variable z,. The conditioning variable should
capture the time variation in the parameters of the SDF. There are two main
theoretical reasons why the parameters of a SDF conditionally defined over market

wealth might change over time.

One relates to non-market sources of risk and the impact of economy-wide shocks
on the marginal utility of stock market wealth. From this perspective, we seek
conditioning variables that proxy for the state of the economy and, in particular, for
sources of systematic variation in non-market wealth, such as labor income shocks
and real estate returns. These are labeled by Cochrane (2001) “distress risk’ factors
or recession variables and should capture sources of systematic risk different from
the stock market. During a recession unemployment is high, labor income is low and
more volatile and property prices falter. If investors’ marginal utility of stock market
wealth is higher under these circumstances than in good times, variables that capture
the state of the economy should show up as priced risk factors alongside the stock
market factor. This ultimately implies that investors” utility is not defined only over
stock market wealth but also over other forms of wealth. In turn, this implies that the
stock market is not a good proxy for overall wealth. The recession state variables do
not need to predict anything (either the stock market or the future state of the
economy) but they should be highly correlated with the wider economy or particular
(sizeable) portions of it unrelated to the stock market. In other words, they should
represent good instruments for the state of portions of the economy unrelated to the
stock market but relevant in determining investors’ marginal utility. High correlation

implies that the conditioning variable should be either highly pro-cyclical or anti-
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cyclical relative to these portions of the economy. If they were pro-cyclical, they
would command a positive risk premium. If they were anti-cyclical, they would
command a negative risk premium (exposure to them would represent an insurance

against a non-stock market source of systematic risk).

The other theoretical reason why the parameters of the SDF might change over time
relates, in Merton’s (1973) ICAPM framework, to inter-temporal risk and to the
impact of changes to the future investment opportunity set on marginal utility of
wealth. Thus we seek conditioning variables that summarize the predictable
evolution of the investment opportunity set and hence provide a summary measure
of expected excess returns. These variables should, in other words, predict excess
returns. In particular, in a world where only systematic risk matters to investors, the
conditioning variable should help forecast market returns. The empirical literature
has proposed a number of variables that help predict future returns. The most
successful are the stochastically de-trended short term interest rate, employed among
others by Scruggs (1998), the book to market value ratio, the dividend-price ratio,
used by Campbell and Shiller (1988), and the observable proxy for the consumption-
wealth ratio proposed by Lettau and Ludvigson (2001). Theoretical arguments that
suggest that the consumption-wealth ratio and the dividend-price ratio should predict

future returns are especially compelling.

To show that the consumption—aggregate wealth ratio summarizes agents’
expectations of future returns, Lettau and Ludvigson (2001), using a log-linear
approximation to a representative investor’s inter-temporal budget constraint W, =
(1 + Ry1)(W, - C)), express the log consumption—wealth ratio in terms of future
returns to the market portfolio and future consumption growth. Because this
approximation is based on the agent’s inter-temporal budget constraint, it holds both
ex post and ex ante. Accordingly, the log consumption—wealth ratio may be
expressed in terms of expected returns to the market portfolio and expected

consumption growth as:
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¢,-w 2E3p] (# 0 - Bek ) (2.45)
J=1

Here, lower case letters denote logarithms of (per capita) consumption and wealth
and p, is the steady-state ratio of invested to total wealth. This essentially means

that, given the representative investor’s wealth, the amount of consumption today
depends on the amount he wishes to be able to afford to consume tomorrow and,
therefore, on his expected future consumption. Under Muth’s (1961) rational
expectations (henceforth RE), the above equation implies that, if consumption
growth is not too volatile (something that appears to be true empirically), the
variation in the log consumption—wealth ratio must be driven by variation in
expected returns. It therefore summarizes expectations of future returns on the
market portfolio. Intuitively, if the consumption-wealth ratio is high, then the agent
must be expecting either high returns on wealth in the future or low consumption
growth rates (boosting in both cases current consumption). Since consumption
growth rates are fairly stable, however, swings in the consumption-wealth ratio
should be related to changing agents’ expectations about aggregate returns and,

under RE, they should predict aggregate returns.

Of course, the log consumption—aggregate wealth ratio is not observable because
human capital is not observable. To overcome this obstacle, Lettau and Ludvigson
(2001) construct a proxy based on observable quantities. Denote non-human or asset
wealth by 4, and its log as a,. Also, assume that human capital H, is on average a
constant multiple of labor Y, income. Its logarithm then can be written as

h, =k+y, +v,, where k is a constant and v, is a mean zero stationary random

variable. Lettau and Ludvigson (2001) reformulate the bivariate cointegrating
relation between ¢, and w, in the consumption-wealth ratio equation (¢, and w, are
both integrated but their linear combination on the right hand side is stationary) as a
trivariate co-integrating relation involving the three observable variables log
consumption ¢, log nonhuman or asset wealth a,, and log labor earnings y,. Since ¢,

and a, are both I(1), such a reformulation is possible, by Engle and Granger (1987)
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representation theorem, under the condition that labor income is integrated and the

rate of return to human capital is stationary. Aggregate wealth is W, = 4, + H, and

log aggregate wealth may be approximated as w, = wa, + (1 - w)h, where @ equals

A
the average share of nonhuman wealth in total wealth, —~. The left-hand side of

(¢

(2.45) may then be expressed as follows:

c,—w, =c,—wa, —(1-w)h,
=c, —aa, —(1-w)k+y+v),

=, ~aa, - (1-@)y, - (1- o)k +), 2A40)

= cay, - (1 -k, — (1 -w)v,

Here, cay, =c, —wa, —(1-w)y, is the difference between log consumption and a

weighted average of log asset wealth and log labor income. Solving (2.46) for cay,

and using (2.45), we can write:

cay, =(1-w)k +E, i BT — e, )+ (=@,
J=1 ) -

—4¢,.. ) =@y, (2.47)

m,l+

=const.+ E, Y pl(r,
J=1

Because all the variables on the right-hand side of the above equation are stationary,
the model implies that cay;, is stationary and hence that consumption, asset wealth,
and labor income share a common stochastic trend (they are cointegrated), with @
and 1 — o parameters of this shared trend. If the cointegrating parameter ® can be
consistently estimated, cay, can be treated as observable. As long as the error term v,
on the right-hand side is not too variable, this equation also implies that cay, should
be a good proxy for the unobservable quantities on the right hand side of (2.47) and
therefore for variation in the log consumption—aggregate wealth ratio and expected

returns. An important issue in using the left-hand side of this equation as a
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conditioning variable is the estimation of the parameters in cay, Lettau and
Ludvigson (2001) discuss how the cointegrating parameter @ can be estimated
consistently. As suggested by Lettau and Ludvigson (2001), it is the cay, time-series
constructed using the estimated @ parameter and the observed log consumption c,,
log asset wealth @, and log labor earnings y, that can be employed as a scaling

variable in a conditional asset pricing model.

The specification of the consumption-wealth ratio equation reported above is
analogous to the linearized formula for the log dividend—price ratio (Campbell and
Shiller (1988)), where consumption enters in place of dividends and wealth enters in

place of price:

p,—d, =const.+ E, ip a (Ad,, -, (2.48)
=

mt+ )

Here, d, denotes log-dividends, r, denotes returns, and p can be seen as the steady
state dividend yield. Because all the variables on the right-hand side of the above
equation are stationary, the model implies that p, — d, is stationary and hence that
prices and dividends share a common stochastic trend (they are cointegrated), with 1
and —1 parameters of their cointegrating relation. If the dividend-price ratio is high,
investors must be expecting either high returns on the stock market portfolio in the
future or low dividend growth rates. Since both consumption and dividends are not
very volatile and their growth rates are relatively unpredictable, high wealth and
high stock market prices relative to, respectively, consumption and dividends (but
also relative to the book value and other metrics) must predict low future returns.
The key difference between the consumption-wealth ratio and the dividend-price
ratio is what is on the right-hand side: in the equation for the consumption-wealth
ratio it is the return to the entire market portfolio and consumption growth, whereas
in the dividend-price ratio equation it is the return to the stock market component of

wealth and dividend growth.
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Lettau and Ludvigson (2001) and Guo and Savickas (2003) present evidence that
cay, is a good predictor of excess returns on aggregate stock market indices.
Evidence that the price-dividend ratio is a good predictor of returns is given, among
others, by Campbell and Shiller (1988), Campbell (1991) and, more recently,
Cochrane (1999, 2001). It is worth stressing that predictability is a long-horizon
effect. The predictability of 1 to 5 year returns using the dividend-price ratio as a
forecasting regression variable is reported in Table 2.1, reproduced from Cochrane
(1999). The dividend-price ratio predicts 17% of the variation in 1 year returns and
its explanatory power rises steadily as the horizon increases. It predicts up to 59% of
the variation in 5 year returns. Even though the explanatory power, R?, of the
regression is inflated by an overlapping observations problem, the results at different
horizons are reflections of a single underlying phenomenon. Even a small short run
predictive power or non zero contemporaneous correlation build up to yield
substantial returns predictability at longer horizon if the forecasting variable is
persistent. For example, if daily returns are very slightly predictable by a slow-
moving (i.e., persistent) variable, that predictability adds up over long horizons. As
argued by Cochrane (1999) in a very illuminating way, you can predict that the
temperature in Chicago will rise about one-third of a degree per day in spring. This
forecast explains very little of the day to day variation in temperature but, because
temperature changes are persistent (within each season), it tracks almost all the rise
in temperature from January to July. Thus, the R? rises with horizon. Precisely,

suppose that we forecast excess returns with a forecasting variable x:

rl+l =d +bxl +el+l (2 49)
xr+l = Eik pxr +g/+l

Even for small values of short-horizon » and R” in the first equation above, a large
coefficient p in the second equation implies that the long-horizon regression has a
large regression coefficient » and a large R®. This regression has a powerful
implication: stocks are in many ways like bonds. Any bond investor understands that

a string of good past returns that pushes the price up is bad news for subsequent
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returns. Many stock investors see a string of good past returns and interpret this as a
sign of a bull market, concluding that future stock returns will be good as well. The
regression reveals the opposite: a string of good past returns which drives up stock

prices is bad news for subsequent stock returns, as it is for bonds.

Table 2.1
Returns Predictability
Horizon kb Standard Error R’
1 years -1.04 0.33 017
2 years -2.04 0.66 0.26
3 years -2.84 0.88 0.38
5 years -6.22 1.24 0.59

Notes. This table reports OLS regressions of excess-returns (value-weighted NYSE -
Treasury bill rate) on value-weighted price/dividend ratio (reproduced from Cochrane
(2001)):

Pk =a+ b(P/D)+e

Fi—r.x denotes the kth year return. Standard errors use GMM to correct for
heteroskedasticity and error autocorrelation.

The co-integrating relation between consumption, asset wealth, and labor income
and between consumption and dividends imply that asset prices are set according to
the rational valuation formula (RVF), i.e. prices and wealth equal the present value
of the rational expectation of future cash flows, either consumption (real cash flows)
or dividends, discounted at the equilibrium expected rate of return. The RVF is the
solution to a stochastic differential equation where prices equal the present value of
the rational expectation of next period dividend or consumption flows and capital
gains discounted at the equilibrium expected rate of return. For this differential
equation to have a determinate solution, a boundary condition that rules out bubbles
must hold. Without this condition (equivalent to requiring that sooner or later any

bubble bursts), any self-fulfilling expectation of capital gains would imply a
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different yet legitimate solution. In turn, the lack of this boundary condition would
imply that the right hand side of (2.47) and (2.48) contains a non-stationary bubble
component (in addition to the stationary terms in the rate of future returns and of

consumption or dividend growth) and the left hand side would be non-stationary.

The intimate relation between stationarity of the left-hand side of (2.47) and (2.48)
and rational valuation has generated intense interest in tests of the co-integrating
relation between variables such as prices and dividends or consumption, asset wealth
and labor income. While Lettau and Ludvigson (2001) find that consumption, asset
wealth and labor income are co-integrated and a large body of evidence suggests that
the dividend-price ratio is stationary, see for example Cochrane (1999, 2001), the
evidence that prices and dividends are co-integrated is at best weaker. In particular,
tests based on the Engle and Granger (1987) methodology find limited evidence of
cointegration between dividend and prices, see for example Campbell and Shiller
(1987), Diba and Grossman (1988), Froot and Obstfeld (1991), Balke and Wohar
(2001). Since prices are much more volatile than dividends, see for example
Campbell and Shiller (1987, 1988), it is possible that these tests fail to detect
cointegration because the parameters of the cointegrating relation are time varying
and, in particular, they display heteroskedastic variability characterized by clustering
over time. Heteroskedastic time-variation in the parameters of the cointegrating
relation in turn might help explain heteroskedastic excess volatility of prices over
fundamentals. Harris, McCabe and Leybourne (2002) introduce a test for stochastic
cointegration, where the parameters of the cointegrating relation are allowed to be
time varying. This test encompasses the test for cointegration with fixed parameters
of the cointegrating relation, defined stationary cointegration. McCabe, Leybourne
and Harris (2002) find mixed evidence in favour of stochastic cointegration between
stock and dividends but this evidence is stronger than the evidence in favour of

stationary cointegration.
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2.5.6 The Role of Systematic Skewness

Non normal return distributions cannot be entirely described by first and second
moments. Unless investors display a special type of preferences (quadratic), they
care about higher moments. In particular, while NIARA rules out preference for
negative portfolio skewness, decreasing absolute risk aversion (DARA) implies
preference for positive skewness. As argued by Richter (1960), Levy (1969) and
Kraus and Litzenberger (1976), an exact preference ordering for risky portfolios
using the first three moments of the portfolio return is possible, in general, only for
an investor with a cubic utility function of wealth. Unfortunately, as shown by Levy
(1969) and Tsiang (1972), this third degree polynomial utility function is unsuitable
to model the preferences of a risk adverse investor. Duly restricted third order Taylor
expansions of admissible non-polynomial utility functions can be used instead.
Under (NS, RA and) DARA and hence if the investor has a preference for positive
portfolio skewness, he should be willing to accept a somewhat lower expected return

to hold assets with positive coskewness.
2.5.7 The 3M-CAPM

Kraus and Litzenberger’s (1976) consider the optimal portfolio choice of a
representative investor that lives in a 1-period economy. His utility is defined over
end of period wealth W, i.e. u = u(W), and it is not restricted to any particular
functional form. The only requirement is that it be continuous and three times
continuously differentiable over the range of wealth. In this very simple 1-period
setting, where the investor does not have to solve the usual optimal consumption-
investment decision problem that arises in multi-period (2 or more periods) models,

the Euler equation for the maximization of his expected utility is:

EW @, .)r.) =0 (2.50)
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As shown in Appendix A, a third order Taylor expansion of a standardized utility

function around the point Wy = E(W) =1 yields:

- E(Rm,, )]2 1 02.1 [RHLH-I - E(Rm.l )]z

)]+ 6, [r
(2.51)

Z’{(I/Vm.ul ) = [Rm.l+l . E(R

m.t m, 1+l

=l = EG, )|+ 0, — ECoDOF + 6,700 — EC D]

1 1 ; .
Here, .= Eu”(l) and 6, :gu”'(l). In the second line of (2.51), I use excess

returns instead of returns because, in this simple 1-period setting where the
distinction between unconditional and conditional moments is irrelevant, the risk

free rate is known with certainty (also conditionally) and, therefore,

R,.q—-ER,)=r,,—E(r,,). Differentiating (2.51) once with respect to

m,t+1 m,t+1 m.,t

wealth, marginal utility can be approximated as follows:

m,i+1

u'(ry ) 21420, 10 — EGry )]+ 30, I — EG ) (2.52)

Using (2.52) in (2.50) yields Kraus and Litzenberger’s (1976) 3M-CAPM.

Interpreting marginal utility «'(W,, ,,) as a SDF, (2.50) can be seen as a version of

(2.1) where x.+; = r; and, because r; is an excess return, p, = 0. In (2.52), the SDF is

approximated as a linear function of the market excess return and its square and thus
it can be seen as an instance of (2.14) with f, ., =r,,, —E(,,) and
fz,,+1 — [rmm = E( )]2 ,ar=1, by, =261, by, = 36,. Applying (2.6), and dropping
time-subscripts for notational simplicity, (2.50) and (2.52) imply:
E:[u'(r, |0)—E@'(r, |0))] [r, — E(r,
o A {[ (7 |0)— EQu'(r,, |O))] I — E( ,)]}
r’ = — =

, i , (2.53)
Elu'(r, |0)] Elu'(r, |0)]
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Here, differentiating (2.52) once, u"(r,

. 160)=26, +60,r, and, differentiating it
once more, u"(r, | @)= 60,. Finally, multiplying and dividing the first and second

term on the right-hand side of this equation by, respectively, E[r,, — E(rn)]* and E[r,

— E(r,,)]’ and re-arranging, we can write'’:

E(r/) = 51ﬂ/ 2 62)/1 (254)
Where,
5, = — W', | ONEL, — £GP (2.55)
Elu'(r, | 6)]
1 3
= E[u"(r, | O))E[r, — E(r,)]
ol , (2.56)
E[u'(r, | 0)]
e E[(r, —EE (), = Ez(r,,,))] (2.57)
[t 210
_ Bl - EG ), —E(r, )] (2.58)

E[rlﬂ ik E(rﬂl )]3

Here, the coefficient J; is the beta premium and the coefficient J, is the gamma
premium. This is a beta-gamma representation of the implications of (2.50) and
(2.52) for the cross-section of asset returns. It is different from the beta-pricing
representations described in (2.20) because beta and gamma are not multiple

regression coefficients. The assumption of greed implies E[u'(r, | €)] > 0 and, under

RA, E[u'(r,|6)]<0. Thus, since E[r, — E(r,)]’ 20, the beta coefficient J; is

m

" I also assume that the second derivative of the utility function does not depend on the interaction

between market and asset unexpected returns, Cov{u"(rm | 9),[ri —E(r) rm — E(ry )]} =0, and that

the third derivative does not depend on the interaction between squared market unexpected returns

and asset unexpected returns Cov " (1, | 0), ["i —E(r) ) ry - E(rny )]2 . These are very useful and

reasonable simplifications that, intuitively, correspond to the requirement that absolute risk aversion
and preference towards skewness do not depend on the relation between a single asset and the market
portfolio or its square (rather, they should depend only on the latter, i.e. the market return and its
square). Essentially, only changes in overall wealth and in its volatility should determine moves along
the utility function and, therefore, changes in the point at which its derivatives are evaluated.
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positive for risk-averse, greedy investors. If the market portfolio skewness is
negative (as it is often the case empirically) and if there is a market reward for
holding assets with negative systematic asset coskewness, the gamma coefficient J,
is positive. This can also be seen by noting that, under the assumption of greed and

NIARA, E[u'(r, |0)]>0 and E[u"(r, | 0)] = 0 respectively. Since empirical market

portfolio skewness is usually found to be negative, i.e. E[r, — E(r,)]’ <0, then

m

0, 20. While ¢, represents investors’ reward for systematic variance, i.e. for

holding assets that increase the volatility of the overall market portfolio, 0>
compensates investors for systematic negative skewness, i.e. for holding assets that
decrease the skewness of the overall market portfolio (that cause the distribution of

portfolio returns to be skewed to the left).
2.5.8 The 3M-(C)CAPM

While allowing utility to contain a cubic term in wealth, its parameters could be
allowed to be time varying. For example, the elements of 4 in (2.53) could be
specified as a function of conditioning information. A particularly interesting
possibility is that they vary with the business cycle or that they are a function of
conditioning variables that represent investors’ expectations about future returns.
This would yield a conditional version of Kraus and Litzenberger (1976) 3M-
CAPM. Following a similar approach, Harvey and Siddique (2000) propose a
conditional asset pricing equation where expected asset excess returns are a function
of their conditional covariance and coskewness with the market portfolio and the

prices of covariance and coskewness risk also vary over time:

Bt =& Cov(r, ..:m.0)
= ¢1¢ Cov, ('},:+1”7::,/+1) + &, Cov, (”,,H] >rn3,:+1) (2.59)
Where:
VR Var, (rn?.m YT )7_ Skew, (., ,.1)E, (r,;?,?ru)
Var (oo ar (e o ) = [Skew (e o0

m,i+1
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VCII”, (I"m 1+1 )El (rn‘fwl ) B Sk@W, (}”m 1+1 )EI (rm 1+1 )
Can T D = : ) : =
)Var/ (rm,l+l ) a [Skewl (rm,l+l )]h

Var, (r,

m,t+1

Here, the symbol Skew,(r,, ,.,)= E{[r, ., — E (7, ., )]’} represents the skewness of

the market portfolio in 7+1 conditional on information available at time 7, while the
other symbols (e.g. conditional expectation and variance operators) have the usual
meaning. The pricing equation in (2.59) can be derived from (2.19) specifying the

SDF m;.; as a quadratic polynomial in the market excess return r,,.; with

parameters a,, b, and b,, that are allowed to vary over time, el v = ks and

therefore'®, a, + H'E (f,,)=1.

2
M1 = Ay + bigmer1 + by,

o (2.60)

Interpreting m;,.; in (2.60) as the SDF implied by a third order Taylor expansion of
the representative investor’s utility function, the pricing equation in (2.59) can be
seen as the cross-sectional implication of a conditional version of the 3 moment
CAPM (henceforth, 3M-(C)CAPM). Under this model, if investors like positive
portfolio skewness, they should accept a negative risk premium to hold assets with
positive coskewness because these assets contribute to increase the skewness of the
overall market portfolio. The price of coskewness risk &, therefore, should be
negative. It is worth at this point highlighting the difference with the 3-moment
model derived by Kraus and Litzenberger (1976) where, if market portfolio
skewness is negative, positive asset coskewness implies a negative gamma and a
positive d,. In other words, the specification of the systematic third moment
premium used by Harvey and Siddique (2000) and by Kraus and Litzenberger

(1976) are not equivalent.

'® Recall that, as shown in Section 2.2, in (2.12), and 2.3, in (2.19) and (2.22), without this
approximation and the resulting restriction on the relation between the intercept and the mean of the
factors the risk free return would show up in the equations for the risk prices.
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2.5.9 Tests of the IM-(C)CAPM

Harvey and Siddique (2000) test the 3M-CAPM on Centre for Research on Security
Prices (CRSP) NYSE, AMEX and NASDAQ stock data over the period 1963-1993.
They find that the 3M-CAPM significantly improves on a 2 moment CAPM
specification. They report that coskewness helps explain the cross-section of average
excess-returns on 32 industry portfolios and 25 size and book-to-market value sorted
portfolios. Moreover, they find that coskewness retains a significant explanatory
power even after the inclusion of factors related to size and book to market value
that have been found by Fama and French (1992, 1993, 1995) to empirically explain
a large portion of the cross-sectional variation in average asset returns. In particular,
they find that systematic skewness is important and commands on average a risk

premium of 3.6 percent per annum.

Dittmar (2002) specifies a conditional model by expressing the parameters of a
quadratic and cubic SDF as linear functions of a set of conditioning variables. The
quadratic SDF implies the 3M-(C)CAPM whereas the cubic SDF implies a 4
moment CAPM where preference for co-kurtosis (the systematic fourth moment), is
allowed. The conditioning variables include one lag of the market excess-return, of
the dividend yield, the spread of the 3 Month T-Bill over the 1 Month T-Bill rate and
the 1 Month T-Bill rate itself. He finds evidence of substantial non-linearity in the
pricing kernel and that both the quadratic and cubic SDF fit well the cross-section of
US industry equity indices average returns over the period 1963-1995. After
imposing the regularity conditions on the shape of the utility functions that
correspond to standard risk aversion, i.e. positive marginal utility, RA and NIARA
over all values of wealth, the estimated gamma premium remains statistically and
economically significant but it becomes much smaller, thus considerably reducing
the ability of the estimated 3 and 4 moment conditional specifications to explain the

cross-section of average returns.
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Post, Levy and van Vliet (2003) criticise previous empirical tests of the 3M-CAPM,
such as Harvey and Siddique (2000), on the grounds that they fail to check whether
the decreasing marginal risk-aversion requirement is satisfied by the estimated
pricing model. Consistently with Dittmar (2002), they show that the gamma
(standardised asset co-skewness) premium turns out very small when the appropriate
regularity conditions (risk aversion) are imposed on the shape of the investor utility
function. In fact, fitting a cubic utility to data on the Fama and French (1995) market
portfolio and on 10 size-ranked portfolios for the period 1963-2001, their estimated
expected utility function does not satisfy the concavity requirement over the relevant
wealth interval and thus the market portfolio is not guaranteed to be efficient for the
representative investor. Moreover, they find that the market portfolio is likely to
minimize the sample expected utility, rather than maximize it as predicted by the

3M-CAPM.
2.5.10 3M-CAPM vs. (C)CAPM

Even though the (C)CAPM uses the assumption that investors have a quadratic
utility function and its pricing kernel does not incorporate 3 order terms, the
unconditional implications of both the 3M-CAPM and the (C)CAPM contain a
premium for a cross third moment of asset returns. The 3M-CAPM contains a
premium for the cross third moment between asset return and the square of the
market return, i.e. a premium for Cov(r;,, rm,,z). The (C)CAPM contains a cross third
moment between the asset return, the market return and a conditioning variable that

influences marginal utility of market wealth, i.e. a premium for Cov(r,, .z, r, ).

i2<t-1"myt
Equivalently, asset coskewness can be seen as the covariance between the asset

return and market volatility'’, whereas in the (C)CAPM the expression

Cov(r,,,z,,r,,) can be interpreted as the covariance between the asset return and

the sensitivity of the market return to the conditioning variable. In other words, in

the 3M-CAPM investors are rewarded for holding assets that perform poorly at

"7 More accurately, coskewness should be seen as the covariance with the realization of the market
second moment.
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times of high market volatility, whereas in the (C)CAPM they are rewarded for
holding assets that do poorly when the return on the stock market portfolio is very
reactive to the conditioning variable, and hence when it is very reactive to either

returns on non market wealth or expected stock market returns. There are a number

of circumstances under which the (C)CAPM expression Cov(r,,,z,r,,) could

proxy for asset coskewness and vice versa. This would be the case if z,; was a good

proxy for r,,, and hence when the former forecasts the latter.

2.5.11 The Role of Idiosyncratic Income Risk

All the (rational) asset pricing models mentioned above predict that expected asset
excess-returns can be explained on the basis of their relation to one or more
pervasive risk factors. As remarked by Chen, Roll and Ross (1986), financial theory
has focussed on systematic influences as the likely sources of risk, assuming the
ability of investors to hold diversified portfolios. The general conclusion is that a
risk premium is required to compensate for the influence of systematic economic
news on the payoff of a particular asset, but no extra reward can be earned by
needlessly bearing diversifiable risk. Under this theoretical perspective, therefore, no
priced risk premium should be related to the residual variance of stock returns. The
recent literature, however, has re-examined the relation between risk and return

focussing on the role played by total risk, including idiosyncratic risk.

Models such as the CAPM based on complete capital markets are underpinned by
the abstraction of the retired wealthy investor or, alternatively, by the assumption
that investors live in a world where all sources of income (including labour income)
correspond to traded securities. Malkiel and Xu (2000) show that, under an extended
version of the CAPM, when some individuals are not fully diversified, nobody can
hold the market portfolio and the relevant measure of risk is a combination of
systematic and idiosyncratic variance. Merton (1987) develops a model of capital
market equilibrium with rational investors and limited information. In the model,

investors only know about a subset of the available securies and thus diversification
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is, in general, incomplete. Among the main predictions is that idiosyncratic risk has
implications for both the cross-section of asset expected returns and for the market
expected return. More generally, if we allow for incomplete capital markets, we
must recognise that investors’ utility might fluctuate as a result of shocks that do not
correspond only to the volatility of their traded assets holdings. This can be
modelled within a conditional asset pricing framework by either introducing factors
or conditioning variables that correspond to sources of variation of marginal utility

unrelated to the stock market.

Even in incomplete markets, however, the risk associated with uninsurable
idiosyncratic shocks matters for the pricing of financial assets only if these affect the
average investor. A classical example is represented by unemployment income
shocks. They are not insurable because of moral hazard and asymmetric information
problems (a case of missing markets). This makes it impossible for investors to
eliminate these risks through diversification'®. They also affect the average investor.
Virtually everybody is exposed to the risk of becoming unemployed. Investors might
try to use traded financial assets to hedge this risk but, in doing so, they cannot take
each others’ offsetting positions because everybody has an exposure of the same
sign. As a consequence, their hedging positions influence asset prices and expected
returns. Therefore, while non-insurable shocks are by definition entirely non-
diversifiable (because of ‘missing markets’, both the average variance and average
covariance are not diversifiable, rather than just the latter as in the case of insurable
shocks), they must affect the average investor and thus, in a sense, they must be
“systematic” in order to have asset pricing implications. If, however, idiosyncratic
shocks are contemporaneously correlated with systematic stock market shocks, they
can be quickly traded away by taking hedging positions in the stock market portfolio
and covariance with the stock market portfolio would be again the only relevant risk

exposure.

"® If there was no moral hazard and asymmetric information problems, investors would pool these
risks together alongside all other risks. Everybody would end up holding a small share of the market
portfolio, including everybody else’s labour skills, and only the average covariance of labour income
with the market portfolio would have to be borne by somebody. The average idiosyncratic variance
would be diversified away.
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Therefore, while a condition for sources of non-insurable idiosyncratic risk to affect
asset prices is that they affect the average investor, they should be uncorrelated with
the stock market in order for this type of risk to have asset pricing implications
beyond those captured by exposure to the stock market alone. To reproduce these
conditions, Constantinides and Duffie (1996) impose that, while idiosyncratic
shocks are not correlated'® with stock market returns and hence they cannot be either
diversified or traded away, the distribution of the former across individuals depends
on the realization of the latter. A suitable non-linearity in the utility function then
ensures that idiosyncratic marginal utility shocks are systematic and correlated with

the market return even though idiosyncratic shocks are not correlated with the latter.
2.5.12 The Market Risk Premium in Integrated and Segmented Markets

To illustrate the effect of the assumptions that markets are integrated and that
investors are able to fully diversify, it is useful to compare the two limiting cases of
complete market integration and complete market segmentation. Preliminarily, let

asset excess-returns be generated by the following model:
Pirel = BElFit) T &oel (2.61)
Here, ¢ ;,+1 denotes a conditionally zero mean random residual. The aggregate

market excess-return equation can be obtained averaging (2.61) across all assets.

With N assets, the aggregate market portfolio excess-return 7, ,+; is the following:

N N N
rm,H—l = Z]twl,l rl,l+1 :Z;d W/,l El (rl,l+l )+Z} wl,/g/,l+l (262)
= 1= =

' If idiosyncratic and systematic stock market shocks are contemporaneously correlated covariance
with the stock market portfolio would be the only relevant risk exposure.
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If assets are priced in integrated markets, the aggregate expected risk-return equation

implied by the CAPM is (2.43) with constant a, and b;:

El(rm.t*l) i RRA1 Vart("m,l* 1)
= RRA, MKT, (2.63)

Here, MKT, = Varrm-1) denotes the conditional variance of the market portfolio

i : : : ; 0 W)
conditional on information available at time 7 and RR4, = —W, , ”(W !
‘Y

m,t

s the

relative risk aversion coefficient.

Assume now that assets are priced in segmented markets so that investors cannot
diversify (i.e. each investor can hold only one asset). In this extreme situation,
applying (B.13) from Appendix B, the expected risk-return relation for each single
asset resembles the risk-return relation for the market portfolio implied by (2.43)

under an integrated capital market:
E’(r[.,-p [) = RRA,‘[ Var,(r,-‘,J [) (264)
Here, RRA;, is the relative risk aversion coefficient of investor i that holds asset i.

With N assets and using (2.62) and (2.64), the aggregate portfolio return r,, 4 is the

following:

rm,l+1

N N
= Y w, RRAVar (1., )+2w, &, (2.65)
i=1 i=1

Taking conditional expectations of both sides of (2.65) and assuming that relative

risk aversion is constant in wealth, the aggregate risk-return equation is:
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4

E (rm,r+l)= ﬁwl,lCRRAI/Var; (rl.l+l)
i=l1

L
= CRRA, S w, Varr,,.,) (2.66)
i=1

i,r+1

= CRRA, -VAR,

Here, CRRA, is a constant relative risk aversion coefficient implied by an
appropriate utility function, CRRA, = ‘Zviw,.,CRRA,, and VAR, = }iw,’, Var, (i) 18
the average total conditional variance of asset returns. The second equality in (2.66)
follows from the first one because relative risk aversion is by assumption constant in
wealth and thus it is also independent of the second moments of wealth. Comparing
(2.66) with (2.63) clarifies that, in segmented capital markets or, more generally,
whenever investors do not hold fully diversified portfolios, the market risk premium
depends on aggregate total risk, which in turn includes both systematic and
idiosyncratic risk. In a more sophisticated setting, this is also one of the main
predictions of Merton’s (1987) model with limited information and incomplete

diversification.

French, Schwert and Stambaugh (1987) found evidence that, while actual volatility
and actual returns are negatively correlated, the expected component of the stock
market excess return is positively related to the predictable stock market volatility.
Both these results provide evidence of a positive relation between the market risk
premium and expected market volatility?’. Yet, many empirical studies fail to agree
on the sign of this relation. Estimates of the simple risk-return relation range from
significant positive, such as in Harvey (1989), Turner, Startz and Nelson (1989), to
significant negative, as in Campbell (1987), Glosten, Jagannathan and Runkle
(1993). Whitelaw (1994) finds that the simple lagged market variance-return relation
is positive but statistically insignificant. Within Merton’s (1973) ICAPM, Scruggs

%% A positive relation between expected components of market return and volatility implies that, when
expected volatility increases, it raises the expected market return and actual volatility. Higher
expected returns lead to negative actual returns because prices fall. Hence, it implies a negative
relation between actual volatility and returns.
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(1998) specifies a conditional two-factor model of the market risk premium. In this
model the market risk premium is a function of the conditional market variance and
the conditional covariance between market excess returns and a variable that
describes the state of the investment opportunities in the economy. The state variable
chosen by Scruggs (1998) is the conditional excess return on long term US
government bonds. Goyal and Santa-Clara (2001, 2003) provide puzzling evidence
on the trade-off between risk and return on the US stock market. Using the CRSP
database of daily price data starting in July 1962, they compute monthly aggregate
excess-return and monthly average total excess-return variance time series for a
portfolio that includes all the stocks listed in the main US stock markets (AMEX,
NYSE, NASDAQ). They find that there is a significant positive relation between
excess-return on the market portfolio and lagged average total variance. Moreover,
they find that market variance alone has little explanatory power for market returns.
They conclude that there is a significant relation between risk and return, except that
risk is measured as total risk, including idiosyncratic risk, rather than only
systematic risk. Harvey (1996 and 2000) recognises the link between financial
market integration and the relative importance of systematic and total volatility in
driving aggregate returns. He finds that the return on little integrated emerging
markets is more related to its own total variance than to the variance of the world

market portfolio relative to the developed countries markets.

2.6. Behavioural Models

The behavioural finance explanation of the stylized features of the distribution of
asset returns also belongs to the new paradigm. While it does not rule out time
varying risk and risk premia, it allows for investors’ irrationality and market
inefficiency. Under this approach, it is admissible that asset prices and expected
returns are not the solution to a general equilibrium model with fully rational, risk
averse economic agents and competitive financial markets. See, for a review,
Barberis and Thaler (2003)). The literature on limits to arbitrage clarified that, in the

presence of noise trader risk, risk-averse market participants with short horizons
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(finitely lived) might not have the incentive to trade quickly as to exploit all
available information even though financial markets are competitive and hence
investors are price takers. This is the perspective advocated, among others, by
DeLong, Shleifer, Summers and Waldmann (1990a and 1990b) and Shleifer and
Vishny (1997). Noise trader risk is the risk that mispricing caused by the net demand
of irrational (and hence uninformed) noise traders might worsen in the short run
before trades by rational (and hence informed) traders manage to correct it. The
relevant notion of rationality is, in this context, the definition embedded in Muth’s

(1961) rational expectation hypothesis.

The behavioural perspective also allows for non standard utility functions where
investors either do not have unambiguously defined preferences over consumption
or they display risk seeking over certain portions of the utility function domain. For
example, Prospect Theory and Cumulative Prospect Theory, formulated by
Kahneman and Tversky (1979) and Tversky and Kahneman (1992) respectively,
imply framing and S-shaped utility functions defined over gains and losses instead
of over consumption and wealth as in the standard Expected Utility framework. In
particular, these utility functions display risk aversion over gains and risk seeking
over losses below a threshold. Behavioural Portfolio Theory, advocated by Shefrin
and Statman (2002), predicts instead risk aversion over losses and risk seeking over
gains and thus an inverse S-shaped utility function. These non standard utility
functions rationalize evidence that investors, under certain circumstances, display
risk seeking behaviour. Active stock traders appear to play negative-sum games and
their behavior can sometimes be interpreted as ‘gambling’ (see Statman (2002)). In
addition, psychologists led by Kahneman and Tversky (1979) find experimental
evidence for local risk seeking behavior. More specifically, Post and Levy (2002)
argue that a number of celebrated asset pricing anomalies, such as the low average
yield on stocks with large capitalization, growth stocks and past winners, could be

explained by risk aversion over losses and risk seeking over gains.

62



Numerous contributions from the literature on non standard utility theory and
behavioural asset pricing (see for a review Shefrin (2005)), thus, admit a non linear
pricing kernel that implies non concavity of the utility function over certain ranges
of wealth, and thus an increasing SDF and a violation of RA. Friedman and Savage
(1948) and Markowitz (1952) argue that the willingness to purchase both insurance
and lottery tickets implies that marginal utility is increasing over a range. See
Hartley and Farrell (2002) and Post and Levy (2002) for a recent discussion. S-
shaped utility functions, such as the function implied by Kahneman and Tversky’s
(1979) prospect theory, do not satisfy either RA or NIARA. Inverse S-shaped utility
functions, such as the specification implied by Shefrin and Statman’s (2002)
behavioural portfolio theory, violate RA but satisfy NIARA at every point in the

domain where the function is differentiable.

2.7. Absolute vs. Relative Pricing

Financial theory has extensively addressed the issue of how to model the mean
behaviour of asset returns and link it to other variables. In particular, asset pricing
models relate mean returns to higher moments. The latter are typically cross-
moments formed between the asset return and other variables. These variables can
be either economic fundamentals and other non-asset variables, or returns on other
assets such as the market portfolio. The first approach is known as absolute pricing,
e.g. Lucas’ (1978) Consumption CAPM, whereas the second is known as relative
pricing, e.g. the Sharpe (1964) and Lintner (1965) CAPM and especially the Asset
Pricing Theory (APT), proposed by Ross (1976). The APT requires for its derivation
less restrictive assumptions than the CAPM, such as that investors are greedy, that
markets are frictionless (or, at least, that diversification is not too costly) and that the
returns variance-covariance matrix has a well defined factor structure. The latter
requirement guarantees that diversified portfolios can be closely replicated by
portfolios that mimic the exposure to single factors. It does not, however, require
market completeness (or, equivalently, the representative investor assumption). It

provides a no-arbitrage pricing relation between diversified portfolios of assets
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based on their sensitivity to a set of pervasive risk factors and on the equilibrium risk
premium for the exposure to each factor. Chen, Roll and Ross (1986) proxy for the
factors using macro-economic variables deemed to drive the variation in stock
returns. Within a multi-factor model for asset returns derived from the APT,
Koutulas and Kryzanowski (1996) estimated conditional time-varying risk premia
and conditional volatilities associated with each pervasive risk factor. They found
that five pervasive risk factors, namely the lag of industrial production, the Canadian
Index of 10 Leading Indicators, the US Composite Index of 12 leading Indicators,
the exchange rate and the residual market factor, have priced risk premia, including

the residual market factor.

For large and diversified portfolios, the implications of the CAPM and of the APT
are the same when there is only one pervasive risk factor, the market portfolio. In
this case, the expected excess return on the market portfolio would be the only risk
premium priced in equilibrium for any diversified portfolio. Neither the CAPM nor
the APT admit any risk premium related to idiosyncratic risk (exposure to asset-
specific, non-pervasive risk factors), which is expected to be diversified away. It
should be noted however that the CAPM, contrary to a popular misinterpretation, is
not a special case of the APT. The latter imposes an assumption, namely that the
idiosyncratic residuals are uncorrelated, that the CAPM does not require. In the
CAPM, idiosyncratic residuals are uncorrelated only on average (with capitalization
weights). This is not an assumption, but an implication that follows by construction
from the CAPM prediction that these residuals are the error terms of the regression
of a set of asset excess returns on their own capitalization-weighted average, namely

the market excess returns.

2.8. Summary and Conclusions

In this section [ have summarized the important developments in asset pricing theory
along with the transition from the old to the new paradigm of asset returns, and I

have shown how the various asset pricing models can be seen as specializations of
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the general SDF model. I have thus reviewed a number of specifications of this
model. Whenever possible, 1 highlighted the connections between the implications
of the various asset pricing models and interesting patterns in equity returns and
their moments. I also discussed the role of volatility in asset pricing theory and the

assumptions implied by empirical tests of the conditional risk-return relation.

The SDF representation of the asset pricing problem is surprisingly flexible, yet it
allows explanations for the observed patterns in asset returns to be generated in a
rigorous and testable manner. The only requirement is that the SDF be linear in the
factors. Since this approach allows for considerable flexibility in specifying the
functional form of the SDF, it can capture non-linearity in the behaviour of marginal
utility and time variation in the parameters of the utility function. It therefore serves
as a useful framework to specify alternative asset pricing models that allow for a
variety of factors to be priced in the time series and cross section of asset returns
under alternative assumptions about the multivariate distribution of asset returns,
investors’ preferences and market completeness. All the asset pricing models
estimated in Chapter 4, 5 and 7 can be seen as specializations of a SDF model.
Chapter 4 will explicitly derive a beta-pricing representation of the 3M-CAPM from
a quadratic SDF model. Chapter 5 will test whether aggregate idiosyncratic risk is
priced in the time series of aggregate returns and thus whether it is a candidate to
enter the SDF equation as a factor. In Chapter 7, I will allow for heteroskedasticity

and serial dependence in the second moments of the market return risk factor.
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Chapter 3: The Second Moments Literature

3.1. Introduction

A rich literature on the second moments (volatilities and correlations) of the
empirical distribution of asset returns both contributed to and was promoted by the
abandonment of the i.i.d hypothesis. In this section, I will review a number of
contributions on empirical models and methodologies for the estimation of second
moments of asset returns. In doing so, I will pay special attention to clarify the

differences between conditional and unconditional estimates.

I will first review, in Section 3.2, the literature on market-wide volatility and the
more recent contributions on individual stock volatility, idiosyncratic stock volatility
and stock correlations. I will introduce, in Section 3.3, the variance decomposition
methodology proposed by Campbell, Lettau, Malkiel and Xu (2001), henceforth
CLMX (2001), because it provides a neat analytical framework to isolate the main
components of the variability of the typical asset. I will then examine the main
problems that arise when measuring variance components within a CAPM
framework. In doing this, I will pay special attention to the instability of the beta
coefficients in the market model. In Section 3.4, I will outline the distinction
between unconditional and conditional second moments estimation methodologies
and [ will introduce the literature on multivariate conditional second moments. I will
then discuss at some length Engle’s (2002) and Engle and Sheppard’s (2001 and
2002) dynamic conditional correlation GARCH (DCC-GARCH) model because it
provides a feasible way to estimate the parameters that govern the dynamics of large
variance-covariance matrices and, in particular, of the associated correlation process.

In the final section, I will draw together the main conclusions of the chapter.
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3.2. Second Moments

As a preliminary definitional matter, recall that variance and correlation are second
moments centred around the mean, i.e. the first moment, of a random variable. When
the random variables under consideration are returns, volatility is their standard
deviation, i.e. the square root of variance and correlation is the covariance between
returns standardised by their own volatility. These variables will generally be the
focus of the discussion that follows. Developments in financial time series
econometrics have led to vast improvements in our understanding of the behavior of
the second moments of return distributions over time. Early contributions, such as
the pioneering work of Officer (1973) and Schwert (1989), popularized the notion
that stock market volatility changes over time. It therefore became clear that the
assumption that returns at different points in time were drawn from the same
conditional distribution was too restrictive. This represented a lethal blow for the
i.i.d. hypothesis. Once it became clear that asset volatility and, more generally,
second moments, were time-varying, researchers became interested in whether and

how they could be modelled.

3.2.1 Systematic vs. Ildiosyncratic Volatility

A striking feature of the extant literature on financial volatility is the overwhelming
prevalence of contributions on aggregate market risk. Partial surveys of this
enormous literature are given by Bollersev, Chou and Kroner (1992), Ghysel,
Harvey and Renault (1996) and Campbell, Lo and MacKinlay (1997). Aggregate
market volatility is relevant to any holder of diversified portfolios and to any model
of asset returns developed under the general framework of the Sharpe (1964) and
Lintner’s (1965) CAPM. Under this theoretical perspective, firm volatility is
interpreted as idiosyncratic risk that can be diversified away and that therefore
deserves no attention. More recently, however, financial researchers have begun to
re-examine the nature and the behaviour of risk in equity markets, addressing both

market risk and idiosyncratic risk and the closely related issue of the correlation
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among asset returns. Recent evidence, provided by among others Barber and Odean
(2000) and Benartzi and Thaler (2001), suggest that investors often hold
undiversified portfolios, and even if they are keen to diversify, they tend to hold a
limited number of assets to reduce transaction costs. Therefore their relevant
measure of risk, as shown by Malkiel and Xu (2000), may well be total risk.
Barberis and Thaler (2003) provide a review of this ‘insufficient diversification’

puzzle.

In this vein, CLMX (2001) analyse the long-term trends in both firm-level and
market volatility in United States stock markets over the period from 1962 to 1997.
Using daily data on all the stocks traded throughout the period on three US markets
(AMEX, NASDAQ and the NYSE), they show that while market volatility has not
exhibited any significant trend, a decline in overall market correlations has been
accompanied by a parallel increase in average firm-level volatility. In explaining
their findings, CLMX (2001) suggest that they might emanate from a number of
factors, such as the tendency for firms to access the stock market earlier in their
development, the existence of time varying betas, executive compensation schemes
that reward greater stock volatility, and/or the tendency for large conglomerates to
be broken into smaller, less diversified corporations. Whatever the cause, the
findings of CLMX (2001) have important implications for portfolio management
because they impact significantly on the extent to which diversification can reduce
idiosyncratic risk. A conventional rule of thumb, based on Bloomfield, Leftwich and
Long (1977), suggests that a randomly chosen portfolio of 20 stocks produces most
of the reduction in idiosyncratic risk that can be achieved through diversification.
The CLMX (2001) finding that average firm-level volatility has trended upwards in
United States stock markets implies that a growing number of stocks is needed to
achieve any desired level of diversification. On the other hand, the lower average
correlation among the stock returns has increased the potential benefit from
diversification because it implies a smaller contribution to portfolio risk of the

portion that cannot be diversified away.
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3.2.2 Clustering

An empirical feature of volatility and, more recently, correlation that has attracted
considerable attention is that the time series of their realizations tend to exhibit a
clustering behaviour. There are periods of high volatility and high correlations and
periods when asset returns tend to be more stable and less correlated. Therefore,
returns series often display excess kurtosis relative to the multivariate normal
distribution (see, for example, Gallant, Rossi and Tauchen (1992)). Mandelbrot
(1963) first noticed this phenomenon and French, Schwert and Stambaugh (1987)
and Schwert (1989) were among the first to systematically study the clustering
behaviour of stock market volatility series. It soon became clear that not only the
multivariate distribution of asset returns exhibits time varying second moments but,
especially in high frequency series (monthly or higher), the magnitude of their
variation is related to how much they change in nearby periods. In other words,
volatility and, more generally, the second moments of asset returns display a slow-
moving persistent behaviour. After a shock, they tend to mean revert to their long
run average rather slowly. It therefore takes time for the effect of each shock to die
out. The literature on conditional heteroskedasticity models, initiated by Engle
(1982), elegantly captures this behaviour. In these models, conditional second
moments depend non-trivially on past states of the world. This conditional
heteroskedasticity implies leptokurtosis and therefore an underlying unconditional
distribution with fatter tails than under the homoschedasticity hypothesis and the

multivariate normal case.

3.2.3 Asymmetry

Schwert (1989) also noticed that stock market volatility tends to rise during market
downturns and to fall during market upturns. The relation between individual stock
returns and volatility exhibits a similar pattern (see, among others Cheung and Ng

(1992)). Also, while volatility tends to increase after large returns of both positive
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and negative sign because of its persistence, it rises more following negative returns
than following equally large positive returns. Thus, volatility is usually negatively
correlated (again, especially in monthly or higher frequency data) with both
contemporaneous and lagged returns. Campbell and Hentschel (1992) labelled the
negative correlation between volatility and contemporaneous and lagged returns as
contemporaneous and predictive asymmetry, respectively, perhaps because it implies

that the distribution of asset returns is skewed to the left.

Two explanations for this phenomenon are popular in the financial literature, the
‘leverage effect’ and the ‘volatility feed back effect’. According to the leverage
effect, a large negative return reduces the value of the firm’s equity and thus
increases financial leverage, in turn rising equity return volatility (e.g. Black (1976)
and Christie (1982)) for a given level of asset volatility. More specifically, suppose
that bad news regarding operating margins reduce the market value of a firm’s
assets. The lower asset value must be matched by a decline in the liabilities’ value.
However, the equity value declines more than the debt value because the latter is
more senior. This increases leverage and thus the volatility of the return on equity.
Empirically, this effect implies that future volatility is negatively correlated with
current returns, and it might also generate contemporaneous negative correlation in
low frequency data because of time aggregation. Black (1976) realized, however,
that the financial leverage effect alone is empirically insufficient to explain the size
of the observed asymmetry. This has also been documented by Christie (1982) and
Schwert (1989). Alternatively, if the market risk premium is an increasing function
of expected volatility, as implied by many asset pricing models with conditionally
time varying moments (such as Merton’s (1973) ICAPM) and as suggested by the
findings of French, Schwert and Stambaugh’s (1987), large negative returns increase
future volatility more than positive returns due to a volatility feedback effect (e.g.
Campbell and Hentschel (1992)). According to this effect, the impact of negative
news on volatility is larger than the effect of positive ones because the former is
compounded by the dependence of the expected stock return on expected volatility

whereas the latter is dampened. More specifically, both negative and positive news
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cause volatility and, because the latter is persistent, increase expected volatility.
When the latter rises, however, the expected return also rises, the stock price drops
and the realized return is negative. The latter amplifies the negative return initially
produced by a piece of bad news, and it dampens the positive return first induced by
a piece of good news. Empirically, this effect implies that future returns are
positively correlated with current volatility, and future volatility is negatively
correlated with current returns (however, time aggregation might also lead to

contemporaneous negative correlation in low frequency data).

Bekaert and Wu (2000) provide a unified framework to examine which of these
competing explanations is best able to capture asymmetry in equity return volatility.
Using data on stocks included in the Nikkei 225 index, they construct a proxy for the
Japanese market portfolio and other portfolios with different leverage. They find that
although volatility asymmetry is generally present and significant, its source differs
across portfolios. More crucially, while it is important to include leverage ratios in
the volatility dynamics, their economic effects are mostly dwarfed by the volatility

feedback mechanism. They do not find significant asymmetries in conditional betas.

It has also been known for some time that equity return correlations tend to decline
in bull markets and to rise in bear markets (De Santis and Gerard (1997), Ang and
Bekaert (2002), and Longin and Solnik (2001)). In particular, Longin and Solnik
(2001) use extreme value theory to show that it is not volatility per se that affects
correlations®’, but rather the market trend (whether positive or negative returns
prevail). Forbes and Rigobon (2002), however, warn against the danger of over-
estimating the rise in correlations at times when the market in which one of the
assets is traded is unusually volatile. They show that the standard correlation

coefficient computed using only large absolute returns is higher than the correlation

*! They test whether the correlation of the absolute value of returns in excess of a given threshold go
asymptotically to zero as it should under the null of multivariate normality. They find that this is the
case only for correlations amongst large positive returns but not for correlations amongst very
negative returns. Therefore, returns are multivariate normal in the upper tail but depart from
normality in the lower tail.
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coefficient computed using all the returns in the sample even when the correlation
parameter of the underlying data generating process is the same. They argue that this
bias is introduced by estimating correlations conditioning on large absolute
deviations, and they show how to adjust the correlation coefficient estimate in order
to alleviate the problem. Ang and Chen (2002) discuss the problem of conditioning
bias introduced by estimating correlations conditional on high or low returns and on
high or low volatility, and they propose a statistic to test the null of multivariate
normality against the alternative of asymmetric correlations in downside and upside
markets. Recent evidence, provided (among others) by Cappiello, Engle and
Sheppard (2003), suggests that correlations display asymmetric reactions to past
Jjoint negative and positive returns. Similarly, Bekaert and Wu (2000) find that
volatility feedback is enhanced by a phenomenon that they term covariance
asymmetry, i.e. conditional covariances with the market increase significantly only

following negative market news.

As noticed by Cappiello, Engle and Sheppard (2003), little theoretical framework is
available to explain this evidence. Focusing on the asymmetric reaction of
correlations to past returns innovations of the same sign (returns are either both
positive or both negative), they propose a possible explanation using the notion that
risk premia are time-varying. In particular, consider risk premia that vary as a
function of time-varying conditional variances. Following negative news on two
assets, both their volatilities are likely to increase due to either the leverage or the
volatility-feed-back effect. If this increase in volatility feeds into volatility
expectations, as would be justified by the persistence of volatility series and as
explicitly modelled by the volatility feed-back effect of Campbell and Hentschel
(1992), investors demand a higher expected return to hold the two assets, thus

requiring their prices to drop further. This implies an increase in their correlation.
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3.2.4 Skewness

Asymmetry in the multivariate distribution of stocks returns encompasses all the
phenomena of changing second moments depending on the sign of either current or
past realizations of moments of odd order. For example, rising volatility in a market
downturn implies a stock return distribution skewed to the left, just like rising
correlations following joint negative return realizations imply, ceteris paribus, a

multivariate distribution skewed to the left.

From this perspective, a more general explanation for the observed asymmetry in the
distribution of individual stocks and portfolios of stocks is that variability and
dependence in returns is higher and possibly non-linear for large negative returns. In
other words, the degree of variability of asset returns and of their co-dependence
might be both an increasing function of the absolute size (to explain volatility and
correlation time-clustering) and a decreasing function of the size of asset returns.
This function might be either linear or non-linear (Patton (2002)). In both cases,
volatility and correlation would be linear approximations to the true function that
describes the variability and co-dependence of asset returns, locally-valid in a

neighbourhood of the current returns.

Patton (2002a) and Patton (2002b), among others, show that asymmetry in the
dependence structure, and in particular in the dynamic behaviour of correlations,
leads to nonzero asset coskewness and portfolio skewness. Depending on the
composition of the portfolio, this behaviour of correlations might imply negative
portfolio skewness even if the skewness of the individual assets is on average non-
negative or even positive. For example, the skewness of a portfolio of two assets is a
function of the skewness of the individual assets, and two co-skewness terms. If the
co-skewness terms are negative enough, they might more than offset positive

skewness terms. In a portfolio with a large number of assets, the skewness terms
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would be diversified away but not the co-skewness terms. If asset co-skewness is on

average negative, portfolio skewness would be negative.

The magnitude of both Cov,(r, and Cov(r ,) 1is related to the

Tt
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amount of asset coskewness®. In particular, the larger the asset coskewness, the

larger the two quantities Cov, (7, pm) and Cov(r, 7,.1) - This is true also for
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portfolio skewness, i.e. for Cov(r ) and Cov(r, ). While the first
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quantity, i.e. Cov,(r ,fm) , has the most direct asset pricing implications and it is
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therefore popular in the asset pricing literature, see for example the discussion of the

3M-CAPM in Chapter 2, the second quantity, i.e. Cov(r, ), has the most
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intuitive implications for the shape of the multivariate distribution of asset returns. It

2 Recall that asset coskewness with a portfolio is defined in this thesis as E(e,,.&,,) Whereas
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implies that adding assets with negative coskewness increases the average
covariance in the left-hand tail of the multivariate distribution of assets returns. As a
result, the left-hand tail of the portfolio distribution becomes fatter relative to the

right-hand tail. This is reflected in a portfolio distribution more skewed to the left.

Recent contributions have examined the distribution of second moments, treated as
observable variables, in order to depict a more accurate picture of the multivariate
distribution of asset returns. For example, Andersen, Bollersev, Diebold and Ebens
(2001), study realized daily equity return volatilities and correlations obtained from
high-frequency intraday transaction prices on individual stocks in the Dow Jones
Industrial Average. They find that the unconditional distribution of realized
volatilities and correlations implies that the unconditional distributions of realized
variances and covariances are highly right-skewed. This in turn implies a lefi-

skewed multivariate returns distribution®’.

Increasing volatilities during market downturns necessitates investing in a larger
number of stocks to diversify away the idiosyncratic volatility of the typical stock to
any desired extent, whereas increasing correlations reduce the effectiveness of
diversification strategies precisely at the time when portfolio managers are most
reliant on them to reduce the overall risk of their investments. Awareness of the
asymmetric behaviour of volatilities and correlations in bull and bear markets can
thus lead portfolio managers to better define their asset allocation strategies. Risk
managers can also use this information to specify more accurate Value at risk (VaR)
models. In particular, incorporating asymmetric correlation behaviour in the
generating stochastic process of portfolio returns leads to VaR estimates consistent
with asymmetric portfolio returns distributions. This represents a substantial

improvement on simpler models that use a multivariate normal distribution’*.

2 However, they confirm the known result that distributions of the returns scaled by realized standard
deviations are approx