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Summary

This thesis contributes to the empirical asset pricing literature on both the cross- 

section and time series o f stock returns. It also contributes to the recent but rapidly 

growing literature on total and idiosyncratic risk and to the literature on the 

dependence structure o f stock market returns.

Concerning the asset pricing problem, the main contribution is a novel beta-pricing 

representation o f Harvey and Siddique’s (2000) 3-moment conditional CAPM. Its 

main advantage is that both its beta coefficients and risk premia can be interpreted as 

parameters o f appropriate regression models. In an empirical application to US 

stocks sorted into 30 industry portfolios, I add to the extant evidence that, while 

coskewness helps explain a substantial portion o f the cross section o f average returns 

and the coskewness premium is o f  the same order o f magnitude as the covariance 

premium, the estimated unconstrained 3-moment model implies a utility function 

that is not concave over the relevant wealth range.

To study the behaviour over time o f total and idiosyncratic risk, I construct a unique 

and comprehensive firm and industry-level dataset o f  stock returns and volatilities in 

the Euro area, 1 derive a version o f Campbell, Lettau, Malkiel and X u’s (2001) 

decomposition o f total risk into idiosyncratic and systematic risk based on returns 

instead o f excess returns and I define an original average correlation index. This 

average correlation index is very useful to study the aggregate dynamic behaviour o f 

the correlations between a large number o f  assets. I find that European stocks have 

indeed become more volatile, and that idiosyncratic risk is the largest component o f 

this volatility. I also find that the potential benefit o f diversification strategies in 

Europe remains substantial and relatively stable over time.

I confirm earlier findings based on US data, e.g. W hitelaw (1994) and Goyal and 

Santa Clara (2003), that the simple lagged market variance-retum relation is positive
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but statistically insignificant. I question, however, Goyal and Santa Clara’s (2003) 

conclusion that the return on the market portfolio is positively related to the 

idiosyncratic component o f lagged total volatility. Instead, I find that when market 

volatility is also included in a long-run predictive regression, the relation between 

market return and average idiosyncratic volatility is negative. This is a striking 

confirmation, obtained using Euro area data, o f a similar finding recently reported by 

Guo and Savickas (2003) for a portfolio o f  the 500 largest US stocks. I show that 

this result depends on the circumstance that market and average idiosyncratic 

volatility jointly proxy for average correlation and thus, perhaps surprisingly, for a 

component o f systematic risk.

I also estimate the correlations o f Euro-area market, industry and sector stock 

indices in a large-scale multivariate conditional setting, using extensions o f Engle’s 

(2002) Dynamic Conditional Correlation GARCH model. For comparison, 1 also 

apply the same estimation strategy to a sample o f Euro area stock with largest 

market capitalization. I do not find evidence o f a deterministic time trend either in 

individual stock and industry correlations or in sector or country level equity 

correlations. The latter however dramatically increase in recent years due to a 

structural break shortly before the launch o f  the Euro. These findings imply that, 

while industry and firm level diversification have retained their effectiveness, 

investment managers engaged in asset allocation in the Euro area should not rely any 

longer on country level diversification strategies.

Finally, I derive original analytical results on the relation between discount factor 

volatility and conditional return volatility. This relation provides the amount o f 

discount factor volatility that rational asset pricing models must generate in order to 

explain conditional return volatility. In an empirical application to the US stock 

market, I find that it takes about 7 percent discount factor volatility to explain the 

conditional return volatility from 1871 to 2003, given about 4 percent dividend 

growth volatility.
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Chapter 1: Introduction and Overview

1.1. Introduction

Any distribution can be described by its moments. For example, the mean is the first 

moment, variance is a second moment ‘centered’ around the mean and skewness is a 

centered third moment. In this thesis, I make large use o f the notion of moments in 

discussing and characterizing the multivariate distribution o f equity returns. I study 

mainly first, second and third moments. I pay special attention to their interaction, as 

emphasized by modem asset pricing theory, and I discuss the portfolio, investment 

and risk management implications o f alternative first and second moment models, of 

alternative views about their role in asset pricing and of a number of related 

empirical findings.

In the next section, I define and contrast unconditional and conditional moments. In 

Section 1.3, I introduce the old and new paradigms of asset returns. In Section 1.4, I 

specify the main research questions. In Section 1.5, 1 explain the motivations of this 

study. In Section 1.6, I outline the structure of this thesis. In Section 1.7, I provide 

an overview of the main theoretical results and empirical findings and I highlight 

their contribution to the extant financial and econometric literature. Section 1.8 

concludes.

1.2. Conditional vs. Unconditional Moments

Time series of asset returns can be seen as realizations y i ,y 2,  o f a multivariate

random variable y  drawn from a joint probability distribution p(y\, y 2, ....  yi).

Similarly, future returns can be seen as realizations of a random variable drawn

from the conditional probability distribution p{yt^\\y\, y i ,  >"t)- Loosely speaking,

stationary series have time invariant moments. Strictly stationary series are 

realizations of random variables drawn from a time invariant probability distribution 

and, therefore, all their moments are time invariant. Covariance stationary, also
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known as wide sense or weakly stationary, series have finite and time invariant first, 

second and cross-second moments (e.g., respectively, the mean, variance and 

autocovariances/autocorrelations). Thus, strictly stationary series with finite first and 

second moments are also covariance stationary but not vice versa. Since 

independence of two random variables refers to the possibility of writing their joint 

density function as the product o f their marginal densities, serial independence 

requires that all the cross-moments between any polynomial of current and past 

realizations be zero. It therefore requires independence between all the moments. 

Formally, for any random process, and hence also for any return y,, serial 

independence (i.e. independence between y, and y,.!) means that £[g-(y,)/2(y,.,)] = 

E[g{y,)\E[h{y,.i)] for any integer /, implying that Cov[g{y,),h{y,_,)] = Q for any 

measurable function g  and h and, therefore, for any cross-moment of y, and 

Autocorrelation is one possible source of serial dependence in returns. It implies 

linear dependence of the mean of the process on past realizations, and it therefore 

corresponds to dependence in the first moment. More general forms of serial 

dependence introduce linear relations between different moments. These might 

appear as non-linearities in the dependence in first moments.

One way to summarize serial dependence and co-dependence between moments is to 

let the corresponding polynomials o f returns g{y,) be determined by data generating 

processes similar to those commonly used for returns, e.g. auto-regressive moving 

averages (ARMA). Serial dependence between moments can then be modelled as 

dependence between polynomials of current returns and past return realizations. For 

example, with giy , ) -  y, , the expectation of y, conditional on its past history 

= E,_^{y,), i.e. the first conditional ‘centered’ moment ofjv,, can be defined as a 

function of y,.j (i > 0). Using a simple autoregressive specification, we might let 

g i y , ) = « + bg{y,_j) + £■, or y, = a + bg{y,_^) + e , , where a and h are constants and 

e, = y, -  //, is a conditionally zero-mean return innovation. In this specification, the 

first moment is a function o f the past realization of the process, i.e. 

/y,,, = £,_i(_y,) = a + . Similarly, with g i y , )  = £f ,  the conditional expectation
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^l( = -  (>’( ~ iyi is the conditional variance of the return

process and it depends upon the past history of the latter.

Specifications like these introduce the distinction between conditional and 

unconditional moments and allow the former to be time-varying. In Finance, this 

distinction is important unless we assume that assets are held for a long period of 

time. In this case the relevant conditioning information set is far in the past and its 

influence on conditional expectations is negligible, e.g. for (stationary) series for 

which E[g(y,)] exists, lim̂ _+cx) E,.k[g(y,)] = E[g(y,)]. The distinction between 

conditional and unconditional variance was emphasized by Engle (1982).

If a process is covariance stationary, its unconditional moments exist and they are 

the mean o f the conditional moments over all the possible realizations of the process 

itself, i.e.

Thus, if a process is co-variance stationary, its unconditional variance exists and it is 

the expectation of the conditional variance conditional upon all the possible 

realizations, i.e. letting g i y , ) ~  , the unconditional variance of y, is

As pointed out by Loretan and Phillips (1994), the existence of unconditional 

moments critically depends on the shape of the density in the tails, i.e. if  the density

( 1 . 1 )

( 1.2 )
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function does not decline rapidly enough as we move away from the centre o f the 

distribution some o f the moments might not exist. For example, returns with finite 

conditional variance might display infinite unconditional variance. The density in 

the tails o f a distribution, i.e. its ‘tickness’ and the related height o f the peak towards 

the central part o f the distribution (leptokurtosis), is captured by the fourth moment, 

the kurtosis.

1.3. Old and New Paradigm

The last decades have witnessed a radical transformation in the way financial theory 

and financial econometrics researchers model one o f their primary objects of 

interest, asset returns. In the old paradigm, returns were thought to be independently 

drawn from an underlying joint distribution with time-invariant moments and all the 

moments existed. In other words, returns were assumed to be independently, 

identically distributed (henceforth, i.i.d.). This view was particularly common in the 

fifties and sixties and it is summarized by the random walk representation (see 

Malkiel (1990) for a discussion) o f the asset price process with constant drift and 

white noise error’. In the random walk model o f asset prices, returns have finite 

moments o f any order and conditional and unconditional moments are the same. 

Normality o f the error term, moreover, implies that the entire multivariate 

distribution o f asset returns can be described by its first and second moments. This, 

in turn, implies that rational investors should only be concerned about the mean and 

variance o f  their portfolios, leaving no room for any role o f higher moments in the 

portfolio optimization problem, as in M arkowitz (1952, 1959) mean-variance- 

portfolio theory. In such a setting, broadly corresponding to the static Capital Asset 

Pricing Model (CAPM) o f Sharpe (1964) and Lintner (1965), only the first two 

moments o f the multivariate return distribution would have asset pricing 

implications.

dP
=  judt +  GO with /u =  E

f d P ^
, o -  = £

( d P  ]
P V P y I P )

2

, P  is the price, e i . i .d and 

£ (e )  =0. Here E{)  represents both the unconditional and conditional expectation operator.
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This paradigm came under intense scrutiny, especially in the 1980s and 1990s. Four 

main issues about the distribution o f asset returns drew the attention o f the empirical 

financial literature, namely whether financial series are independently distributed, 

whether they are identically distributed over time, whether all the moments o f the 

asset returns distribution exist and whether returns are normally distributed. A large 

body o f evidence, as summarized in Pagan (1996), has since then made clear that, 

while high frequency returns are virtually serially uncorrelated and lower frequency 

returns are generally little auto-correlated, there is considerable serial dependence in 

higher moments. For example, there is overwhelming evidence o f  conditional 

heteroskedasticity and time variation in second moments. Furthermore, evidence on 

return predictability suggests that first moments are time-varying. For example, 

while monthly returns are generally found to be strikingly unpredictable , there is 

evidence that annual returns are somewhat predictable and returns at five-year 

horizons are very predictable (Fama and French (1989) and Cochrane (1999)) using 

forecasting variables such as the dividend yield, the price earning ratio and other 

functions o f stock prices normalized by an appropriate divisor to make them 

stationary. This suggests that the mean o f the return process is time varying and 

driven by a slow moving state variable.

Recent studies in the empirical finance literature have reported evidence o f two 

types o f asymmetries in the distribution o f stock returns. The first is skewness, i.e. 

£■, ) ,  or asymmetry in the distribution o f individual stock returns, which has

been reported and studied by numerous authors over the last three decades. See, 

among others, Simkowitz and Beedles (1978) and Singleton and Wingender (1986). 

The second type o f asymmetry is in the jo in t distribution o f stock returns. One 

possible source o f  such an asymmetry is coskewness, i.e. £,(£, , where

and are two zero-mean return innovations. Evidence that stock returns exhibit

■ M onthly and higher frequency stock  returns ty p ica lly  have sligh t, sta tistica lly  sign ifican t  
predictab ility  w ith  c o e ffic ie n t o f  determ ination o f  about 1 percent.

13



some form o f asymmetric co-dependence has been reported by several authors in 

recent years, see for example Erb, Harvey, and Viskanta (1994), Longin and Solnik 

(2001), Ang and Bekaert (1999, 2002), Ang and Chen (2000, 2002), Campbell, 

Koedijk, and Kofman (2002), and Bae, Karolyi, and Stulz (2003). The presence of 

either o f these asymmetries violates the assumption o f normally distributed portfolio 

returns, which underlies traditional mean-variance analysis (see Ingersoll (1987)).

Pagan (1996), Campbell, Lo, and MacKinlay (1997) and Cochrane (1999), among 

many others, provide a summary o f  the main stylized empirical features o f the 

multivariate distribution o f asset returns, such as serial dependence, time variation in 

first, second and higher moments and non-normality. As these features have become 

common characteristics o f models o f asset returns, the old paradigm has been 

gradually abandoned in favour o f a more complex one. In this new paradigm, the 

multivariate distribution o f asset returns cannot be described simply by its first and 

second moments and conditional and unconditional moments are not in general the 

same.

1.4. The Fundamental Research Questions

The research questions that I address in this thesis are both theoretical and empirical 

in nature. They can be grouped around two closely related themes. The first theme is 

the asset pricing problem, concerned with the determination o f mean returns. The 

second theme is the dynamic behaviour o f second moments.

Concerning the asset pricing problem, an important research question is whether 

investors are rewarded not only for holding portfolios that perform poorly when 

aggregate returns are low, as in Sharpe (1964) and Lintner’s (1965) CAPM, but also 

for holding portfolios that perform poorly when volatility is high. One way o f 

reformulating this question is to ask whether asset coskewness, in addition to the 

covariance with the market portfolio, explains the cross-section o f  average asset 

returns. In the empirical investigation o f  this issue, I focus on the explanatory power
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o f coskewness for the cross-section o f average returns on a particular set o f 

benchmark assets, i.e. the portfolios formed sorting by industry the NYSE, AMEX 

and NASDAQ stocks included in the database o f the Center for Research on 

Security Prices (CRSP) o f the University o f Chicago. A further research question 

related to the asset pricing problem is whether the idiosyncratic component o f 

aggregate volatility plays any role in asset pricing. I empirically investigate this 

issue using an extensive dataset on Euro area stocks.

Concerning the second moments o f equity returns, the main research question is how 

to model the variation in equity volatility and correlations over time. I study both 

market and idiosyncratic volatility, and country, industry and firm-level volatility 

and correlations. In particular, using a largely original Euro area dataset, I 

investigate long term trends and short run dynamics such as the dependence o f these 

moments on the sign o f return innovations. A related research question concerns 

how the second moment dynamics o f  large systems o f financial variables, such as 

portfolios with many assets, can best be modelled.

My overall aim is to study the stylized features o f the multivariate return distribution 

relevant in portfolio theory, asset pricing and risk management. Since financial 

economics is still very far from the full identification o f a structural model capable 

o f jointly describing all the moments o f the multivariate distribution o f assets 

returns, a reasonable intermediate aim is to estimate reduced form representations 

that are empirically successful. At a minimum, however, these representations 

should display the desirable property o f not being in conflict with the modem 

paradigm o f the multivariate distribution o f asset returns. Since the latter recognizes 

that returns first and second moments (mainly volatility and correlation) are not 

static, both conditionally and unconditionally, it is important to study their dynamics 

over time and to allow for asymmetry in the multivariate return distribution.
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1.5. Motivations

The investigation o f the asset pricing problem is motivated by its profound 

implications for capital budgeting, portfolio selection and portfolio management. 

There is ongoing debate on the ability o f  the CAPM to explain the cross-section o f 

average asset returns. In particular, there is puzzling evidence on the limited ability 

o f theoretically motivated risk factors to drive out the explanatory power o f firm 

characteristics such as size and book-to-market ratio, see Fama and French (1992, 

1993, 1995), momentum, as in Jagadeesh and Titman (1993), coskewness (i.e. 

systematic skewness), as in Harvey and Siddique (2000) and Dittmar (2002), and 

industry, as in Moskowitz and Grinblatt (1999) and Dittmar (2002). The evidence on 

the asymmetry o f the multivariate distribution o f asset returns suggests that, if  

investors’ preferences are not restricted to be defined only over the first two 

moments, expected returns might depend on higher order odd moments. This 

possibility motivates the study o f the explanatory power o f asset coskewness in the 

cross-section o f excess returns, as in Harvey and Siddique (2000), Dittmar (2002)

and Post, Levy and Van Vliet (2003, 2005). I focus on the cross-section o f
-1

portfolios formed sorting stocks according to the industry in which the issuing firm 

operates because this characteristic has been used less frequently in the extant 

empirical literature as a sorting criterion and it is known, see Dittmar (2002), for 

producing a very dispersed (and therefore challenging) cross-section o f average 

returns. This way I minimize a possible ‘data snooping’ bias (that might arise when 

fitting the cross-section o f more researched and therefore better known portfolios). I 

use industry portfolios based on CRSP stock data because the latter has become a 

benchmark dataset for the empirical literature that studies the cross-section o f 

average returns (perhaps because o f  the high quality o f the data, available in a 

format that facilitates scientific investigation).

The exploration o f the role o f the idiosyncratic component o f aggregate risk in the 

determination o f expected returns is, as suggested by Constantinides (2002), among

 ̂ 1 thank K. French for making this data publicly available for download.
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the most promising research avenues to extend the neo-classical rational asset 

pricing model based either on a representative agent or on the assumption o f 

complete capital markets. While there are previous contributions that use US data, 

e.g. Goyal and Santa Clara (2003), there is no previous study that examines this 

issue in Euro area stock markets. Therefore, in the empirical investigation o f the 

extent to which volatility, both systematic and idiosyncratic, predicts market return I 

use European stocks data.

The quest for a better understanding o f  the dynamic behaviour o f  systematic 

volatility, aggregate idiosyncratic volatility and equity correlations, the second major 

theme o f this thesis, is motivated by the relevance o f these variables for applied 

portfolio management, risk management and asset pricing. While systematic, 

market-wide volatility is most important to the holders o f well diversified portfolios, 

both total and idiosyncratic volatility are relevant for incompletely diversified 

investors. In particular, as remarked by CLMX (2001), the level o f  aggregate 

idiosyncratic risk (as measured by average firm and industry-level variance) is 

important in determining the number o f stocks required to achieve a relatively 

complete diversification whereas the level o f  aggregate asset correlation determines 

the extent to which portfolio managers can benefit from diversification. Knowledge 

o f both systematic and idiosyncratic volatility patterns and o f the correlation among 

assets is also relevant to the financial industry since they are important parameters 

for pricing contingent-claims derivative securities. The relative importance of 

diversifiable and non-diversifiable risk is also relevant for risk managers and 

regulators alike, as it is a required input o f market and credit risk “internal” models 

adopted by banks and other regulated intermediaries under the new Basel II Capital 

Accord"*. Also, since the level and dynamics o f  aggregate correlation, both in the 

short and in the long run, have obvious systemic implications, their knowledge is 

particularly important for the regulators o f  financial intermediaries and markets. It is 

therefore important to investigate whether the developments reported by CLMX 

(2001), mainly a long-run upward trend in firm-level volatility and declining

* S ee  on th is, for ex am p le, the C reditM etrix tech n ica l docu m en t distributed by JP M organ.
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correlations, are specific to United States markets or whether they obtain more 

globally. Thus, in studying volatility and correlation dynamics, I will mainly focus 

on European stocks. This is because, while the seminal contribution o f CLMX 

(2001) has sparked a burgeoning literature focussing on US data, very little is known 

on the behaviour o f idiosyncratic volatility and industry and firm-level correlations 

trends in the Euro Area.

The study o f  the behaviour over time o f correlations amongst European financial 

markets is especially important from an investment management perspective. For 

example, a growing body o f empirical evidence on the performance o f mutual and 

pension fund managers suggests that they often under-perform their benchmarks 

(Blake and Timmerman (1998), Wermers (2000), Baks, Metrick and Wachter 

(2001), and Coval and Moskowitz, (2001)). Instead o f engaging either in expensive 

but ineffective active portfolio management practices or in almost equally expensive 

attempts to fully replicate international stock market portfolios, the strategy o f 

buying the market index for each country might yield an effective and cost-efficient 

international diversification. This provides asset diversity within each country 

together with international diversification across political frontiers. The success o f 

this strategy, however, depends crucially on the magnitude o f the correlations among 

national markets relative to the correlation among the stocks included in the market 

index for each country. International correlations tend also to rise with the degree o f 

international equity market integration (Erb, Harvey and Viskanta (1994) and 

Longin and Solnik (1995)), which has gathered pace in Europe since the mid-1990s 

(Hardouvelis, Malliaropulos and Priestley (2000) and Fratzschler (2002))^. It is 

therefore o f  considerable interest to investigate the relative strengths o f the trends in 

correlations at the market index level as well as at the firm level in European equity 

markets, because the findings have relevance for the diversification properties o f 

passive and active international investment strategies.

 ̂ Fratzschler (2002 ) also notes that the euro-zone equity market has now surpassed the United States 
market as the m ost influential determinant o f  euro-zone country equity returns.
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1.6. Structure of the Thesis

The first part o f this thesis is devoted to the discussion o f the extant literature on 

asset pricing and volatility. This is done in Chapters 2 and 3, respectively. The 

second part presents original, largely empirical results on asset pricing and on 

volatility modelling. In particular, my novel contributions appear in Chapters 4 to 7 

and in Chapter 8 I discuss their implications for the asset pricing and investment 

management problem.

I first discuss, in Chapter 2, the modern view o f the multivariate distribution o f asset 

returns within the conceptual framework o f modem asset pricing theory. This 

provides the motivation for the discussion, in Chapter 3, o f the theoretical and 

empirical literature on second moments. Chapter 4 focuses on the cross-sectional 

dimension o f the asset pricing problem and, in particular, on whether coskewness 

helps explain the cross-section o f average returns. This Chapter is based on two 

papers, Poti (2005b and 2005c), presented at the Annual Meeting o f the Financial 

Management Association (New Orleans, 2004) and discussed at the Doctoral 

Colloquium o f the European Finance Association (Moscow, 2005). In Chapter 5, I 

study systematic and idiosyncratic volatilities and correlations o f Euro area stocks in 

a simple unconditional setting. This Chapter is based on two studies, Kearney and 

Poti (2003) and Kearney and Poti (2005b). The former was presented at the 

European Finance Association (EFA) Annual Meeting (Glasgow, 2003). The latter 

was presented at the European Financial Management Association (EFMA) Annual 

Meeting (Milan, 2005) and has been accepted for presentation at the Financial 

Management Association (FMA) Annual Meeting (Chicago, 2005). In Chapter 6, I 

model and estimate correlations in the Euro area in a conditional setting. This 

Chapter is based on a paper forthcoming in the Research in International Business 

and Finance, Kearney and Poti (2005a). Chapter 7 is devoted to the study o f the 

time series o f stock market returns and, in particular, o f  the relation between 

volatility o f discount factors and conditional return volatility. This Chapter draws 

heavily on a paper forthcoming in the Applied Financial Economics Letters, Poti
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(2005a). Chapter 8 summarizes the main findings, provides a discussion o f their 

implications, outlines directions for future research and draws together the 

conclusions. More details on the papers on which this thesis in based, together with 

sample econometric code (mainly written in RATS, but I will likely add code in 

other languages in the future) and data sets used for some o f the estimation 

procedures, is available on my website, www.valeriopoti.com. and on my personal 

page on the Social Science and Research Network website.

1.7. Main Findings and Contributions

This thesis contributes to the empirical asset pricing literature on both the cross-

section and time series o f  stock returns. It also contributes to the literature on the

dependence structure o f stock market returns and to the recent but rapidly growing 

literature on total and idiosyncratic risk. I now provide a detailed account o f the 

main findings and contributions o f each chapter.

In Chapter 4, I derive a novel beta-pricing representation o f Harvey and Siddique’s 

(2000) version o f the 3-moment conditional CAPM. Its main advantage is that both 

its beta coefficients and risk premia can be interpreted as parameters o f appropriate 

regression models. In an empirical application to US stocks sorted into 30 industry 

portfolios, I also add to the extant evidence that, while coskewness helps explain a 

substantial portion o f the cross section o f  average returns and the coskewness 

premium is o f the same order o f magnitude as the covariance premium, the 

estimated unconstrained 3-moment model implies a utility function that is not 

concave over the relevant wealth range. This confirms earlier results, based on 

different datasets and a different conditioning information set, reported by Dittmar 

(2002) and Post, Levy and VanVliet (2003).

In Chapter 5, I extend CLM X’s (2001) study to European equhy markets. To this 

end, I construct a unique and comprehensive firm and industry-level dataset o f stock 

returns and volatilities in the Euro area. I also derive in an alternative and more
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intuitive manner the main results underlying CLM X’s (2001) decomposition o f total 

risk into idiosyncratic and systematic risk and I develop a version o f this 

decomposition based on returns instead o f excess returns. Furthermore, I derive an 

original average correlation index that is computationally easy to construct and I 

discuss its properties. This average correlation index is very useful to study the 

aggregate dynamic behaviour o f the correlations between a large number o f assets. I 

find that European stocks have indeed become more volatile, and that idiosyncratic 

risk is the largest component o f this volatility. I also find that the potential benefit o f 

diversification strategies in Europe remains substantial and relatively stable over 

time. Because o f the larger idiosyncratic volatility o f  the typical stock, however, it 

now takes many more stocks to diversify it away. For example, the number o f stocks 

required for residual idiosyncratic volatility to be reduced to 5 percent in a portfolio 

o f European stocks has risen from 35 in 1974 to 166 in 2003. Stock correlations are 

on average low, i.e. their long run mean is about 20 percent, thus implying a 

correspondingly low explanatory power for the market model, i.e. about 4 percent. 

This is about half the explanatory power o f  the market model for the average US 

stock reported by CLMX (2001). CLMX (2001) find, however, that the explanatory 

power o f the market model is declining over time in the United States, while there is 

no evidence o f such a phenomenon in the Euro area. Market volatility forecasts both 

industry and firm-level volatility. This contrasts with CLMX (2001) who find that 

firm-level volatility predicts both market and industry-level volatility in the United 

States. These findings are o f interest for investors throughout the world who hold 

international equity portfolios and especially for European individual and 

institutional investors who are recently tending to hold greater proportions o f their 

portfolios in stocks^.

In Chapter 5, using Euro area data, I also confirm earlier findings based on US data, 

e.g. Whitelaw (1994) and Goyal and Santa Clara (2003), that the simple lagged

 ̂ The desire to supplement social security benefits and public pension provisions, shrinking because 
o f  a rapidly ageing population, contributes towards this shift in investm ent habits. See Guiso, 
H aliassos and Jappelli (2002) for an extensive review  o f  the empirical evidence on increasing stock 
market participation in Europe and the importance o f  its dem ographic determinants.
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market variance-retum relation is positive but statistically insignificant. However, I 

question Goyal and Santa Clara’s (2003) conclusion that the return on the market 

portfolio is positively related to the idiosyncratic component o f lagged total 

volatility. Instead, I find that when market volatility is also included in a long-run 

predictive regression, the relation between market return and average idiosyncratic 

volatility is negative. This is a striking confirmation, obtained using Euro area data, 

o f a similar finding recently reported by Guo and Savickas (2003) for a portfolio of 

the 500 largest US stocks. I show that this result depends on the circumstance that 

market and average idiosyncratic volatility jointly proxy for average correlation and 

thus, perhaps surprisingly, for a component o f  systematic risk.

In Chapter 6, I estimate the correlations o f  Euro-area market, industry and sector 

stock indices in a large-scale multivariate conditional setting, using extensions o f 

Engle’s (2002) Dynamic Conditional Correlation GARCH model. For comparison, I 

also apply the same estimation strategy to a sample o f Euro area stock with largest 

market capitalization. I do not find evidence o f a deterministic time trend either in 

individual stock and industry correlations, consistently with the findings in Chapter 

5, or in sector or country level equity correlations. The latter however dramatically 

increase in recent years due to a structural break shortly before the launch o f the 

Euro. These findings imply that, while industry and firm level diversification have 

retained their effectiveness, investment managers engaged in asset allocation in the 

Euro area should not rely any longer on country level diversification strategies. 

Moreover, the very high correlation between Euro area markets implies that a 

European-wide factor should largely replace country factors (and perhaps US 

factors) in factor models o f European stock returns. Finally, as reported mainly in 

Chapter 6 , 1 find weak evidence o f increasing correlations depending on past returns, 

but I confirm the presence o f a more general, yet unknown, form o f asymmetry in 

the dependence structure o f equity returns in the Euro area, at the firm, industry and 

country level.
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Chapter 7 contains original analytical results on the relation between discount factor 

volatility and conditional return volatility. This relation provides the amount o f 

discount factor volatility that rational asset pricing models must generate in order to 

explain conditional return volatility. In an empirical application to the US stock 

market, I find that it takes about 7 percent discount factor volatility to explain the 

conditional return volatility from 1871 to 2003, given about 4 percent dividend 

growth volatility.

1.8. Summary and Conclusions

In this Chapter, I first introduced some preliminary material on the distinction 

between conditional and unconditional moments and how it arises in the transition 

from the old to the new paradigm o f asset returns. I then specified the fundamental 

research questions o f this thesis and discussed the motivations that drive their 

investigation. In particular, I discussed the connection between the research 

questions and unresolved issues in asset pricing and second moment modelling and 

their relevance for applied portfolio and investment management. Finally, 1 outlined 

the structure o f the thesis and I summarized the main findings and their contribution 

to the extant literature.
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Chapter 2: The Asset Pricing Literature

2.1. Introduction

In this chapter, I review the literature on the distribution o f asset returns and on the 

closely related topic o f asset pricing. Rather than attempting to list all the countless 

contributions, my aim is to show how the discovery o f moment dynamics and their 

role in asset pricing unfolded over the transition from the old view o f asset returns, 

based on the random walk model and on the identity between conditional and 

unconditional moments, to the new paradigm that allows for time-varying 

conditional moments and returns predictability. I first show, however, how all asset 

pricing models can be derived as specializations o f a common analytical framework, 

the general stochastic discount factor model with possibly time-varying risk premia 

and returns predictability. I then discuss at more length selected specifications 

consistent with the modem view o f asset returns. In particular, I focus on 

specifications that allow for systematic skewness and idiosyncratic risk to play a role 

in asset pricing.

The Chapter is organized in seven main sections. The next two sections introduce 

the stochastic discount factor approach to asset pricing. In particular. Section 2.2 

focuses on the stochastic discount factor framework and its beta-pricing 

representation and Section 2.3 derives the general linear factor model from the 

stochastic discount factor representation o f the asset pricing problem. In Section 2.4 

and 2.5, I provide a brief account o f developments in the theory o f efficient markets 

and rational asset pricing, I introduce coskewness as a priced risk exposure, and I 

discuss the possible role o f idiosyncratic risk in asset pricing. Section 2.6 reviews 

the alternative behavioural approach to asset pricing and Section 2.7 discusses the 

dichotomy between absolute and relative pricing. The last section summarizes the 

chapter and draws together the conclusions.
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2.2. Stochastic Discount Factor Pricing

I begin the discussion o f the asset pricing problem imposing at first as little structure 

as possible. I do this by invoking a theorem credited to Harrison and Kreps (1979). 

This theorem says that, given free portfolio formation and the law o f one price, a 

stochastic process m,^\ that prices all assets exists. This process is called the 

stochastic discount factor (henceforth SDF) and satisfies the following condition for 

all payoffs x,^\ and payoff prices p,\

p, = EXm„,x,^,) (2.1)

Here, the expectation is taken conditional on the available information set. Under the 

additional assumption o f no arbitrage, as shown by Harrison and Kreps (1979) and 

popularized by Hansen and Richard (1987), m,^\ must be positive. Moreover, if  m,+ \ 

lies in the payoff space, then it is unique. Thus, in complete capital markets, the SDF 

is unique. We might denote this unique SDF as w,+ i*. Conversely, if  m,^\ is not 

restricted to lie in the payoff space, any process with the same projection m,^*  on 

the payoff space will satisfy (2.1) and price the payoffs. Thus, in an incomplete 

capital market, there is an infinite number o f  m,+ \ such that (2.1) holds for every 

priced payoff x,+ \. In other words, if  the set o f the assets being priced spans all 

possible payoffs, m,+ \ is unique. Instead, if  the priced assets are only a subset o f the 

universe o f assets, there is an infinite choice o f processes m,+ i that satisfy (2.1). 

These processes share the same projection on the priced payoff space. Trivially, any 

linear combination o f these processes prices the assets. Virtually all asset pricing 

models can be derived by defining what determines m ,.\.

2.2.1 Alternative Representations

Using the familiar statistical result that the expectation o f the product o f two random 

variables equals the product o f their expectations plus their covariance, the SDF 

model can be expressed in a more useful guise as follows:
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p,  = E,{m,+ \) E,(x,+ \) + Cov,{m,+ u x,+ i) (2 .2)

By definition, the price o f  any payoff constructed as the sum o f  one and the return 

on an asset, i.e. 1 + /?,,, must be equal to 1. Thus, settingp , =  \ \ n  (2.2):

1 = EXm,^,)EX\ + R„ , , )  + Cov[m,^„{\ + (2.3)

Therefore,

1 Cov, \m, . . , , , I )
\ + E , { R n , ^ ) ^ ---------------------- ^  ’ (2.4)£,(m,„) EM.^)

Notice that (2.1) must also apply to the asset with the conditionally risk-free rate o f  

return Rfj+\- Therefore, setting /», = 1 and x,+ i = 1 + Rfi>\ and noting that, by 

definition, Rfj+\ is known at time t, (2.1) implies £,(w ,^,)(l + ,) = 1 and therefore:

+ R f , =  -̂----  (2.5)

Using (2.5), (2.4) can be rewritten in terms o f  excess-retums^, defined as the 

difference between the asset return and the return on the risk free asset:

’ T h is relation  can  also  be derived  considering  that, since excess re tu rns are  the d ifference  betw een 
tw o  un it-p rice  payoffs (the p ay o ff 1 + /?/, .,  o f  asse t / and the p a y o ff  1 + . i o f  the risi< fi'ee asset)
th e ir p rice  m ust be zero  under the law  o f  one price. M ore fo rm ally , consider payoffs fo rm ed by 1 p lus 
a  rate o f  return, i.e. I + R,,^ |. In the term ino logy  o f  the SD F literature , these payoffs are ca lled  ‘gross 
re tu rn s’ w hereas R,,^ \ are called  ‘net re tu rn s’. T he price o f  g ross re tu rns is 1 by defin ition , as you 
m ust pay 1 unit o f  the num eraire  (say, a  p a rticu la r currency) to  pu rchase  them . T hus, since excess 
re tu rns can be seen as the d ifference betw een  tw o gross re turns, i.e. the g ross return  on a risky  asset 
and the gross re turn  on the risk  free asset, th e ir p rice  is zero . T herefo re , rep lac ing  x, i w ith  r/ , i, 
se tting  P i to zero  and so lv ing  fo r the expected  excess return  on asset / w e have the result.
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Etiru^i) = -------- — ------    (2 .6)

Using (2.5), the latter can be rew ritten as follows:

E,{ru+\) = - ( l  + /?^,,^,)Cov,(w,^,,r,,^,) (2.7)

An interesting im plication o f  (2.7) is that no strategy can offer a (discounted) Sharpe 

Ratio higher than the volatility o f  the stochastic d iscount factor. This is the Hansen 

and Jagannathan (1991) bound, and it follows from (2.7) because the correlation 

betw een any two variables is bounded above and below  by one, i.e.

Cov,(w,^,,r, ,^i) = Co7T,(w,^,,r, ,,,)o-,(/w,^,)(T,(r, ,^i) < |o-,(m,^,)cr,(r, ,^,)| and thus

(2 .8)

Dividing and m ultiplying the right hand side o f  (2.6) by the variance o f  the SDF 

yields the beta-pricing representation o f  the im plications o f  (2.1) for excess returns:

E ,{ru , ,) = , (2.9)

Here, ,, =  is a coefficient o f  the regression o f  the asset excess-
VarXm, ,̂)

return on the SDF. Using (2.5), the beta-pricing representation in (2.9) can be 

rew ritten as follows:

(2 . 10)
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2.2.2 Excess Returns and the Mean o f  the SDF

8For realistically low values of , we can approximate the right-hand side of 

(2.5) as follows:

Thus, for realistically low values of the risk free rate, the mean of the SDF is 

approximately equal to 1. Under this approximation, the mean of the SDF does not 

identify excess return means in (2.7) and (2.10). Using (2.11) in (2.7), then we might 

approximate expected excess returns as follows:

(2 .12)

Similarly, using (2.11) in (2.10), we might approximate the beta pricing 

representation of expected excess returns in the following way:

(2-13)

2.3. Factor Models

Equation (2.1) and its representations in (2.7) and (2.10), like their approximate 

counterparts in (2.12) and (2.13), represent very general asset pricing results. All 

conditional linear factors models can be derived as specializations of these equations 

by specifying m,̂ \ as a linear function of a number of factors /J+f.

(2-14)

* The historical average o f  the risk-free rate is about 6 percent per annum, see for example Cochrane 
(2 0 0 1 ).
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This is said to be a conditional linear factor model (LFM) because the parameters o f 

the SDF are allowed to be time-varying conditional on available information. Fixing 

the parameters o f the SDF yields instead the general unconditional LFM. The asset 

pricing implications o f any conditional and unconditional linear factor model can be 

represented as specifications o f the implications o f (2.1) and (2.14). Using the latter 

in (2.4), the no-arbitrage implications for the cross-section o f expected returns are:

as the vector o f  factor risk prices. This equation can be easily rewritten in beta- 

pricing form, thus giving the beta-pricing representation o f the asset pricing 

implication o f (2.1) and (2.14):

(2.15a)

Or,

(2.15b)

Here, can be interpreted as the quantity o f factor risk and =-^>,

(2.16)

where.

(2.17)

(2.18)
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Here, /?,, is a vector o f coefficients from the regression of asset i on the factors and

2, is a parameter vector. The former can be seen as the factor loadings and the latter 

can be seen as the risk premia or the price of the factors. When pricing excess 

returns, we can use the approximation in (2.11) and set

 ------= a, +b',EXf,^\) = 1 • Then we can apply (2.12) and (2.13) and rewrite the

covariance and beta-pricing relations in (2.15b) and (2.16) as follows:

Here, , is a vector of coefficients from the regression of asset / excess returns on 

the factors while all the other symbols are defined as before.

Letting z, represent a vector of variables that summarize the relevant conditioning 

information, we can write a, = at{z,) and bi = bi(z,) for conditional models. The 

simplest way to model conditional time-variation in the parameters of (2.14) is to 

specify them as a linear function of the set o f conditioning variable:

a, = a° + a ' z,

where.

(2 .21)

(2 .22)

(2.23)
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Here, a, is a scalar, h,, are A^x 1 vectors, z, is a A:x 1 vector o f conditioning 

variables, o ' is a A:x 1 vector and is an ^xA^ matrix. Using, (2.23) we can rewrite 

(2.14) as follows:

m , = a ' +  a ' z, + (6° + z ,, ) ' / +  1

(2.24)

= + a ' z, + b'  ̂ + b^ (Z^, (E) z ,)

Here, b^ is a [{k x Â ) x 1] vector obtained stacking the N  columns o f b ' , i.e

b~ = vec{b^) (2.25)

The specification in (2.24) and (2.25) can be seen as an unconditional model, i.e. a 

model with time-invariant parameters, in the new set o f factors

F, = f,/ + ] (2.26)

f,

For convenience, we can also rewrite (2.24) folding the unconditional mean o f these 

factors in the constant and write the SDF as a linear function o f a new set o f 

unconditionally de-meaned factors:
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Here,

m,=[a^+a^ E { z , ) + ) + ĥ  E(f, ,̂ O z , )] +

+ a''[z, - E { z ,  )] + ^ ° ' [ / , , , - £ ( z , )]

+ 6^'[/ ;„®z, - £ ( / ; „  ® z , ) ]

=  a + a ' z ,  + y;,, + C/,̂ , 0 z , )
t

= a+b^ F,

a = a ^ +  a^'Eiz,) + b^'E{f,^,) + b̂ 'E{_f, ,̂ ® z , )

F,=

z, - E { z , )

a
b°

b^

(2.27)

(2.28)

(2.29)

(2.30)

Since tlie parameters o f the factors in (2.27) are by defmition constant over time, the 

conditional and unconditional implications o f the model are the same. In particular, 

we can derive the unconditional implications without worrying about co-variation 

between the parameters o f the SDF and the factors. To this end, we may take the 

unconditional expectation o f (2.1) with the SDF specified as in (2.27). The 

covariance and beta-pricing representations o f the implication o f this unconditional 

expectation are the following:

. i) =-Ct)v(/;.„i,^;„)(l + / - , , y  s-C O T '(r,„„^;„y (2.31)

E(r,J=P:>. (2.32)

where,
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p. =  Var{F„,y C o^{F „„r,J

A =  - (1  +  R,^,)Var{F,.,y =  - F a r ( / .

(2.33)

(2.34)

2.4. Asset Pricing Paradigms and EMH

The efficient market hypothesis (henceforth, EMH), as formulated by Fama (1970, 

1976), requires that conditional future cash-flows expectations and conditional 

moments o f  the multivariate return distribution be formed using all the available 

relevant information^ and, ultimately, that they do not deviate in any systematic (i.e. 

exploitable) way from the unconditional ones'**. This implies that returns deviations 

from their possibly time-varying equilibrium conditional expectations follow  a fa ir  

game process (see, for a simple taxonomy, Copeland and Weston (1991)) with zero 

conditional and unconditional mean but with possibly time-varying higher order 

moments. On average, then, returns equal conditional expected returns or, 

equivalently, expected returns conditional on the available information set are

unbiased estimates" o f  actual future returns. The key difference between rational
• 12 asset pricing under the old and new paradigm is that conditional expected returns

and higher order moments o f  the returns deviations from their conditional means are

fixed in the former and possibly time-varying in the latter.

’ This is a definition o f maricet efficiency implied by Fama’s (1970) discussion and reported in Fama 
(1976).

Recall that, if the distribution of the relevant conditioning variables is known, unconditional 
moments can be derived fi'om the conditional ones. Therefore, if either asset cash-flows conditional 
expectations or conditional return moments are not formed using all the available relevant 
information, superior forecasts of asset prices could be formed by using conditioning variables that 
convey the relevant information neglected by market prices. These forecasts would be exploitable to 
earn above-average risk-adjusted returns. Clearly, this does not need to apply to conditional asset 
cash-flows expectations and return moments formed using subsets o f the available information set, 
such as the data available to the econometrician.
"  This condition can be formulated as follows: £(/■,.,) = - E{r,_, |Q)], where Q denotes the
conditioning information set.

The key difference is therefore that the former relies on a random walk whereas the latter in based 
on a fair game view of conditionally unexpected returns. Also recall that conditional and 
unconditional moments are the same only in the random walk case.
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The old paradigm implied the EMH, but the reverse is not true. In particular, within 

the new paradigm of asset returns, it is possible to recognize explanations for asset 

pricing phenomena based either on asset pricing models with investors that process 

information and decide upon it rationally, and thus consistently with the EMH, or on 

models that allow for some degree o f investors’ irrationality. I call the former 

rational asset pricing models and the latter behavioural asset pricing models.

2.5. Rational Asset Pricing Models

Rational asset pricing models can be interpreted as specifications o f a unified 

theoretical framework, the neoclassical rational economic model (Constantinides 

(2002)), that views expected excess returns as the reward demanded by risk averse, 

expected utility optimizing investors for bearing non diversifiable risk. These 

investors have unambiguously defined preferences over consumption. If we add the 

assumptions that investors’ expectations are rational and investors’ beliefs 

consistent, in the sense implied by Sargent’s (1993) discussion o f the rational 

expectation equilibrium, this framework implies the EMH. Versions o f this theory 

allow for market incompleteness, market imperfections, informational asymmetries, 

and learning. The theory also allows for differences among assets for liquidity, 

transaction costs, tax status, and other institutional factors.

2.5.1 Consumption Asset Pricing

For inter-temporal utility maximizing investors, /  depends on their impatience 

and on the marginal utility o f whatever they must give up in order to acquire 

additional units o f the payoff x,*|. To see this, suppose that investors extract utility 

from consumption, and that they have the following 2-period utility function:

(2.35)
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Here, c/ denotes investor 7 ’s consumption and P is the subjective discount factor

that represents the investors’ impatience'^, that is by how much, under any 

circumstance, any payoff is worth less if it is paid at a later date. Subjective discount 

factors should be always less than unity for impatient investors. Desirable properties 

of investors’ utility function, as argued by Arrow (1971), are positive and decreasing 

marginal utility of wealth and non-increasing absolute risk aversion. Positive 

marginal utility of wealth, or u' > 0, implies investors’ non satiation (NS), whereas

decreasing marginal utility, «"< 0, implies risk aversion (RA). Non increasing

d i li*/absolute risk aversion (NIARA),  ̂ < 0 , implies that risky assets are not
dc'

inferior goods, and as shown in Arditti (1967), it is a sufficient condition for «'" > 0 ■ 

Hence u'">0  implies NIARA and aversion to negative skewness. NIARA, for a 

utility maximizing, risk-averse individual, and hence with positive marginal utility 

and RA, is also related to prudence as defined by Kimball (1990). Included in the set 

of utility functions that display these desirable attributes are the logarithmic, power 

and negative exponential utility function. It should be noted that the popular 

quadratic utility function does not satisfy NIARA.

The investor in t must decide how much to consume and how much to invest in the 

asset that offers the pay-off x,  ̂]. Subject to his inter-temporal budget constraint, the 

more of the asset he purchases, the less his consumption today but the more he will 

be able to consume in the future. The problem of a rational investor, therefore, is to 

find the level of investment that maximizes his expected utility. Assuming that the 

utility function is concave, denoting by w '(c/) the marginal utility o f consumption

u' (c ’ )
and setting m \  = B  (2 .1) can be seen as the first order condition for the

 ̂+  1 •  t  /  I  \u (c /)

maximization o f the investor’s expected utility, i.e. the expectation of (2.35), given 

the price p, of the pay-off x,+1. In this setup, treating the subjective discount factor as

It has nothing to do with the CAPM  asset beta but I keep this notation because it is alm ost standard 
in the literature.

35



an inter-temporal constant, the SDF is proportional to marginal utility growth 

and (2.7) implies that investors are willing to pay more for assets that are expected to 

pay o ff handsomely when marginal utility o f  consumption is high.

The SDF, i.e. the process m,+ i that prices all pay-offs, depends in general on the 

circumstances (factors) that determine the extent to which investors’ aggregate 

marginal utility in t+ 1 is high relative to the previous period. The shape o f investors’ 

utility and the extent to which investors can freely form portfolios has also 

implications for the shape o f the SDF that prices the assets. For example, NS imply 

no-arbitrage and therefore a positive SDF. Furthermore, if  the utility function is 

concave, marginal utility is high when resources to purchase additional units o f 

consumption are scarce and therefore consumption is low. A payoff that would make 

additional resources available when these are needed the most would be particularly 

welcome and the investors would value it more (/ŵ +i is high). This implies a SDF 

decreasing in wealth. At a more technical level, the shape o f investors’ utility also 

has implications for how closely the SDF that prices all assets resembles the shape 

o f individual investors’ marginal utility growth. In other words, whether aggregation 

o f individual investors’ marginal utility growth results in a SDF defined over 

aggregate wealth with the same shape as the individual investors’ SDF depends, in 

general, on the shape o f utility. In empirical applications, the assumption that prices 

are set by a representative investor allows to bypass this issue (essentially, leaving it 

in the background for asset pricing theorists).

2.5.2 Representative Investor

Under the representative investor assumption, cj = c, and the SDF m,+ \ can be 

expressed in terms o f marginal utility o f  aggregate consumption:

(2.36)
u'{c, )
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The asset pricing implications o f the representative investor assumption and o f the 

assumption that capital markets are complete are the same. This is because, in 

complete capital markets, as in Lucas (1978), investors can exchange contingent 

claims on any future state o f the world. Full risk sharing and diversification are 

therefore optimal for all investors, who then hold portfolios with risky assets in 

identical proportions. In these circumstances, pricing assets with respect to 

individual investors’ consumption or with respect to aggregate consumption is 

equivalent because marginal utility growth is the same for all investors.

In a 2-period setting, investors must consume at the end o f the second period all their 

wealth. Thus, in the SDF in (2.36), we can substitute out the representative 

investor’s consumption with wealth. In a multi-period setting, consumption and 

wealth are equivalent only if  either returns are unpredictable, as in the old paradigm, 

or predictability has no effect on inter-temporal optimal consumption-investment 

and portfolio choices. Strictly, the latter condition requires the assumption o f 

logarithmic’'’ utility. The empirical literature, e.g. Jagannathan and Wang (1996) and 

Lettau and Ludvigson (2000), however, often assumes that the SDF pricing equation 

holds conditionally period by period even under other type o f utility functions. This 

corresponds to the assumption that predictability is at most a second order effect 

relative to the variability in consumption and wealth. Under these conditions, the 

inter-temporal marginal rate o f substitution in (2.36) can be expressed as a function 

o f aggregate wealth:

(2.37)
u'{W,)

The SDF o f a representative investor with preferences defined over wealth that 

display NS, RA and DIARA is positive, decreasing and concave in wealth.

''' A s explained in Cochrane (2005), for this type o f  utility function substitution effects (higher 
expected return im plies an higher opportunity cost o f  current consum ption and therefore tends to 
decrease it) and incom e effects (higher expected return im ply higher next period wealth and therefore 
tends to increase consum ption) exactly offset each other.
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2.5.3 CAPM

The CAPM is a special single factor model. In its original version, it is a static 

equilibrium model. Under investors’ NS, it can be derived either assuming a 

representative investor with quadratic utility, thus excluding preference for moments 

of the multivariate distribution of asset returns higher than the second, or allowing 

for preference for higher moments (as under a power utility function) but assuming 

that returns are multivariate normal, and that investors, rational and risk averse, can 

freely diversify and have access to the same information. The latter assumption, 

even when a subset of investors is imperfectly rational, can be replaced by the 

assumption that the most informed marginal investor is rational and can borrow and 

lend without limits at the risk-free rate (this, essentially, requires a frictionless 

capital market). Quadratic utility assures that the u" term in (A.5) in Appendix A is 

zero. Under a multivariate normal distribution, the covariance with the squared rate 

of return on investor’s wealth is zero (because of the symmetry of the normal 

distribution). In either case, the SDF depends linearly only on the return on the 

mean-variance efficient portfolio of risky assets, i.e. (2.14) becomes:

+ (2.38)

From (2.32), then, the expected excess return on any asset is proportional to the 

coefficient of the regression of the asset excess returns on the portfolio excess return 

and captures the asset systematic risk exposure. The proportionality coefficient, i.e. 

the risk-premium, is the market expected excess return. This is because, by 

construction, the regression coefficient Pm.m of the market excess return on itself 

equals I and therefore, from (2.32), Xm = E{rm.t+\).
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2.5.4 (C)CAPM

We might extend the CAPM to an inter-temporal setting, where returns are not i.i.d. 

and moments are allowed to be time-varying, by letting the CAPM hold 

conditionally, period by period. This is clearly an approximation, as a rational mean- 

variance investor would anticipate the possibility o f variation in the first moment o f 

the return distribution and thus would seek to hedge against adverse (negative) 

changes in expected returns, i.e. a demand for hedging against reinvestment risk 

would arise and a corresponding risk premium would enter the equilibrium expected 

return determination equation. Since in a two-period CAPM expected returns are 

proportional to expected market variance, the latter would show up as an additional 

risk factor with a positive risk price in the SDF o f the representative investor, as in 

Merton’s (1973) Inter-temporal CAPM (henceforth, ICAPM), i.e.

= -K,Cov,{r,„,^^,r,,^,)-b,,CovXz„^,r^„,)  (2.39)

Here is a state variable that describes the state o f the investment opportunity

set, i.e. it captures reinvestment risk. Merton (1980), however, points out that the 

hedging motive is likely not very important. Following M erton’s (1980) advice, 

Jagannathan and Wang (1996) set the price o f  reinvestment risk to zero and 

approximate the SDF as a linear function o f  the return on the market portfolio with 

time-varying parameters, i.e. = a, +b, . Such a SDF summarizes the asset

pricing implication o f the conditional CAPM, henceforth (C)CAPM. Alternatively, 

we could just treat this specification o f the SDF as a reduced form representation o f 

the true inter-temporal SDF. In any case, letting the SDF parameters depend linearly 

on the conditioning variable z,, as in (2.23), and setting f,+ \ = r„, ,+ \ in (2.14), we 

have:

= ao + a\z,  +  {ho + h\z,)r,„j+\

= flo + a\Zt + bor„,jn + b\z,r„,,,^\ (2.40)
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Using (2.40) in (2.20), the beta-pricing representation o f the conditional excess 

return pricing implications o f the (C)CAPM is the following:

(2.41)

Here, is a time-varying coefficient o f the regression o f  r,,, on Vm.t and is the 

conditional market risk premium, given by (2.22):

Also, since by definition = 1, we have from (2.41) that Xmj = E,{rmj+\). Hence, 

the conditional market risk premium is equal to the conditional market expected 

excess return. Since, as shown in Appendix A, = -R R A ,, the market risk 

premium in (2.42) can be rewritten as follows:

RRAi can be interpreted as the representative investor’s relative risk aversion 

parameter for reasons that become clear by examining the derivation o f the stylized 

risk-retum relation reported in B.5.

To derive the unconditional implications o f the conditional SDF model in (2.40), I 

apply (2.41) and take unconditional expectations o f both sides:

Here, /?-/, and are regression coefficients o f r, ,+ i on, respectively, z,, r„, ,+ \ 

and Equivalently, the SDF in (2.40) can be seen as a linear function o f  z,,

r„,,+ i and z,rmj+\- Hence, (2.44) can be derived applying (2.32) to (2.40) with the

(2.42)

(2.43)

(2.44)
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elements of F, in (2.26) given by z,, r„j+\ and z,r„,j+\. Notice that, if the parameters 

of the SDF are fixed, a, = ao = a and h, = ho = b, the preceding equations simplify to 

the unconditional CAPM (CAPM), i.e. m,+ \ = a + brmj+\, and E{rij+\) = Pmjh>-

2.5.5 Conditioning Variables

A critical consideration in estimating the (C)CAPM, or any conditional asset pricing 

model, is the choice of the conditioning variable z,. The conditioning variable should 

capture the time variation in the parameters of the SDF. There are two main 

theoretical reasons why the parameters of a SDF conditionally defined over market 

wealth might change over time.

One relates to non-market sources of risk and the impact of economy-wide shocks 

on the marginal utility of stock market wealth. From this perspective, we seek 

conditioning variables that proxy for the state of the economy and, in particular, for 

sources of systematic variation in non-market wealth, such as labor income shocks 

and real estate returns. These are labeled by Cochrane (2001) ‘distress risk’ factors 

or recession variables and should capture sources of systematic risk different from 

the stock market. During a recession unemployment is high, labor income is low and 

more volatile and property prices falter. If investors’ marginal utility of stock market 

wealth is higher under these circumstances than in good times, variables that capture 

the state of the economy should show up as priced risk factors alongside the stock 

market factor. This ultimately implies that investors’ utility is not defined only over 

stock market wealth but also over other forms of wealth. In turn, this implies that the 

stock market is not a good proxy for overall wealth. The recession state variables do 

not need to predict anything (either the stock market or the future state of the 

economy) but they should be highly correlated with the wider economy or particular 

(sizeable) portions of it unrelated to the stock market. In other words, they should 

represent good instruments for the state of portions of the economy unrelated to the 

stock market but relevant in determining investors’ marginal utility. High correlation 

implies that the conditioning variable should be either highly pro-cyclical or anti-
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cyclical relative to these portions of the economy. If they were pro-cyclical, they 

would command a positive risk premium. If they were anti-cyclical, they would 

command a negative risk premium (exposure to them would represent an insurance 

against a non-stock market source of systematic risk).

The other theoretical reason why the parameters of the SDF might change over time 

relates, in Merton’s (1973) ICAPM framework, to inter-temporal risk and to the 

impact of changes to the future investment opportunity set on marginal utility of 

wealth. Thus we seek conditioning variables that summarize the predictable 

evolution of the investment opportunity set and hence provide a summary measure 

of expected excess returns. These variables should, in other words, predict excess 

returns. In particular, in a world where only systematic risk matters to investors, the 

conditioning variable should help forecast market returns. The empirical literature 

has proposed a number of variables that help predict future returns. The most 

successful are the stochastically de-trended short term interest rate, employed among 

others by Scruggs (1998), the book to market value ratio, the dividend-price ratio, 

used by Campbell and Shiller (1988), and the observable proxy for the consumption- 

wealth ratio proposed by Lettau and Ludvigson (2001). Theoretical arguments that 

suggest that the consumption-wealth ratio and the dividend-price ratio should predict 

future returns are especially compelling.

To show that the consumption-aggregate wealth ratio summarizes agents’ 

expectations of future returns, Lettau and Ludvigson (2001), using a log-linear 

approximation to a representative investor’s inter-temporal budget constraint fV/+i = 

(1 + ^m,/+i)(^r - C,), express the log consumption-wealth ratio in terms of future 

returns to the market portfolio and future consumption growth. Because this 

approximation is based on the agent’s inter-temporal budget constraint, it holds both 

ex post and ex ante. Accordingly, the log consumption-wealth ratio may be 

expressed in terms of expected returns to the market portfolio and expected 

consumption growth as;
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00

7=1
(2.45)

Here, lower case letters denote logarithms o f (per capita) consumption and wealth 

and p^, is the steady-state ratio o f invested to total wealth. This essentially means

that, given the representative investor’s wealth, the amount o f consumption today 

depends on the amount he wishes to be able to afford to consume tomorrow and, 

therefore, on his expected future consumption. Under M uth’s (1961) rational 

expectations (henceforth RE), the above equation implies that, if  consumption 

growth is not too volatile (something that appears to be true empirically), the 

variation in the log consumption-wealth ratio must be driven by variation in 

expected returns. It therefore summarizes expectations o f future returns on the 

market portfolio. Intuitively, if  the consumption-wealth ratio is high, then the agent 

must be expecting either high returns on wealth in the future or low consumption 

growth rates (boosting in both cases current consumption). Since consumption 

growth rates are fairly stable, however, swings in the consumption-wealth ratio 

should be related to changing agents’ expectations about aggregate returns and, 

under RE, they should predict aggregate returns.

O f course, the log consumption-aggregate wealth ratio is not observable because 

human capital is not observable. To overcome this obstacle, Lettau and Ludvigson 

(2001) construct a proxy based on observable quantities. Denote non-human or asset 

wealth by At and its log as a,. Also, assume that human capital H, is on average a 

constant multiple o f labor Y, income. Its logarithm then can be written as 

= k + y, + V , , where A: is a constant and v, is a mean zero stationary random

variable. Lettau and Ludvigson (2001) reformulate the bivariate cointegrating 

relation between c, and w, in the consumption-wealth ratio equation (c, and w, are 

both integrated but their linear combination on the right hand side is stationary) as a 

trivariate co-integrating relation involving the three observable variables log 

consumption c,, log nonhuman or asset wealth a,, and log labor earnings y,. Since c, 

and a, are both 1(1), such a reformulation is possible, by Engle and Granger (1987)
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representation theorem, under the condition that labor income is integrated and the 

rate of return to human capital is stationary. Aggregate wealth is fV, = A, + H, and

log aggregate wealth may be approximated as w, = coa, + (1 -  co)h, where co equals

the average share of nonhuman wealth in total wealth, — . The left-hand side of
W,

(2.45) may then be expressed as follows:

c, -  Wi = c, ~ cm, -  (1 -  co)h,

= c, -  coa, -  (1 -  co)(k + + v),

= c, -  CM, -  (1 -  co)y, -  (1 -  co)(k + v),

=  cay I -  (1  -  0})ki -  (1  -  oj)Vi

Here, cay, =c,  -  <ya, -  (1 -  is the difference between log consumption and a

weighted average of log asset wealth and log labor income. Solving (2.46) for cay, 

and using (2.45), we can write:

00

cay, = { \-(o )k  + E,Y.pi.{r„,,^^  -  )  +  (1 - «)v,
>=i

= const.+  )  +  (1 - «)v, (2.47)
j = i

Because all the variables on the right-hand side of the above equation are stationary, 

the model implies that cay, is stationary and hence that consumption, asset wealth, 

and labor income share a common stochastic trend (they are cointegrated), with (o 

and 1 -  (o parameters of this shared trend. If the cointegrating parameter co can be 

consistently estimated, cay, can be treated as observable. As long as the error term Vt 

on the right-hand side is not too variable, this equation also implies that cay, should 

be a good proxy for the unobservable quantities on the right hand side o f (2.47) and 

therefore for variation in the log consumption-aggregate wealth ratio and expected 

returns. An important issue in using the left-hand side of this equation as a
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conditioning variable is the estimation of the parameters in cay,. Lettau and 

Ludvigson (2001) discuss how the cointegrating parameter co can be estimated 

consistently. As suggested by Lettau and Ludvigson (2001), it is the cay, time-series 

constructed using the estimated oo parameter and the observed log consumption c,, 

log asset wealth a, and log labor earnings y, that can be employed as a scaling 

variable in a conditional asset pricing model.

The specification of the consumption-wealth ratio equation reported above is 

analogous to the linearized formula for the log dividend-price ratio (Campbell and 

Shiller (1988)), where consumption enters in place of dividends and wealth enters in 

place o f price:

p , - d , =  const. + £, I  p ) (2.48)
/ = i

Here, d, denotes log-dividends, r, denotes returns, and p can be seen as the steady 

state dividend yield. Because all the variables on the right-hand side of the above 

equation are stationary, the model implies that p, -  d, is stationary and hence that 

prices and dividends share a common stochastic trend (they are cointegrated), with 1 

and -1 parameters of their cointegrating relation. If the dividend-price ratio is high, 

investors must be expecting either high returns on the stock market portfolio in the 

future or low dividend growth rates. Since both consumption and dividends are not 

very volatile and their growth rates are relatively unpredictable, high wealth and 

high stock market prices relative to, respectively, consumption and dividends (but 

also relative to the book value and other metrics) must predict low future returns. 

The key difference between the consumption-wealth ratio and the dividend-price 

ratio is what is on the right-hand side: in the equation for the consumption-wealth 

ratio it is the return to the entire market portfolio and consumption growth, whereas 

in the dividend-price ratio equation it is the return to the stock market component of 

wealth and dividend growth.
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Lettau and Ludvigson (2001) and Guo and Savickas (2003) present evidence that 

cay, is a good predictor o f excess returns on aggregate stock market indices. 

Evidence that the price-dividend ratio is a good predictor o f returns is given, among 

others, by Campbell and Shiller (1988), Campbell (1991) and, more recently, 

Cochrane (1999, 2001). It is worth stressing that predictability is a long-horizon 

effect. The predictability o f 1 to 5 year returns using the dividend-price ratio as a 

forecasting regression variable is reported in Table 2.1, reproduced from Cochrane 

(1999). The dividend-price ratio predicts 17% o f the variation in 1 year returns and 

its explanatory power rises steadily as the horizon increases. It predicts up to 59% o f 

the variation in 5 year returns. Even though the explanatory power, R , o f the 

regression is inflated by an overlapping observations problem, the results at different 

horizons are reflections o f a single underlying phenomenon. Even a small short run 

predictive power or non zero contemporaneous correlation build up to yield 

substantial returns predictability at longer horizon if  the forecasting variable is 

persistent. For example, if  daily returns are very slightly predictable by a slow- 

moving (i.e., persistent) variable, that predictability adds up over long horizons. As 

argued by Cochrane (1999) in a very illuminating way, you can predict that the 

temperature in Chicago will rise about one-third o f a degree per day in spring. This 

forecast explains very little o f the day to day variation in temperature but, because 

temperature changes are persistent (within each season), it tracks almost all the rise
'y

in temperature from January to July. Thus, the R rises with horizon. Precisely, 

suppose that we forecast excess returns with a forecasting variable x:

= a  +6x,+e,,,

=  c  +  yCW, + +1

(2.49)

Even for small values o f short-horizon h and R in the first equation above, a large 

coefficient p  in the second equation implies that the long-horizon regression has a 

large regression coefficient b and a large R^. This regression has a powerful 

implication: stocks are in many ways like bonds. Any bond investor understands that 

a string o f good past returns that pushes the price up is bad news for subsequent
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returns. Many stock investors see a string o f good past returns and interpret this as a 

sign o f a bull market, concluding that future stock returns will be good as well. The 

regression reveals the opposite: a string o f good past returns which drives up stock 

prices is bad news for subsequent stock returns, as it is for bonds.

Table 2.1 
Returns Predictability

Horizon k b Standard Error R-

1 years -1.04 0.33 0.17

2 years -2.04 0.66 0.26

3 years -2.84 0.88 0.38

5 years -6.22 1.24 0.59

N o tes . T his table reports OLS regressions o f  excess-retu m s (value-w eighted  N Y S E  - 
Treasury bill rate) on value-w eighted  price/dividend ratio (reproduced from Cochrane 
(2 0 0 1 )):

f ( ^ ( k  =  a  + b(P, IDi )  + e,

r ,- ., !, denotes the klh year return. Standard errors use GM M  to correct for 
heteroskeda.sticity and error autocorrelation.

The co-integrating relation between consumption, asset wealth, and labor income 

and between consumption and dividends imply that asset prices are set according to 

the rational valuation formula (RVF), i.e. prices and wealth equal the present value 

o f  the rational expectation o f future cash flows, either consumption (real cash flows) 

or dividends, discounted at the equilibrium expected rate o f return. The RVF is the 

solution to a stochastic differential equation where prices equal the present value o f 

the rational expectation o f next period dividend or consumption flows and capital 

gains discounted at the equilibrium expected rate o f return. For this differential 

equation to have a determinate solution, a boundary condition that rules out bubbles 

must hold. Without this condition (equivalent to requiring that sooner or later any 

bubble bursts), any self-fulfilling expectation o f capital gains would imply a
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different yet legitimate solution. In turn, the lack o f this boundary condition would 

imply that the right hand side o f (2.47) and (2.48) contains a non-stationary bubble 

component (in addition to the stationary terms in the rate o f future returns and o f 

consumption or dividend growth) and the left hand side would be non-stationary.

The intimate relation between stationarity o f the left-hand side o f (2.47) and (2.48) 

and rational valuation has generated intense interest in tests o f the co-integrating 

relation between variables such as prices and dividends or consumption, asset wealth 

and labor income. While Lettau and Ludvigson (2001) find that consumption, asset 

wealth and labor income are co-integrated and a large body o f  evidence suggests that 

the dividend-price ratio is stationary, see for example Cochrane (1999, 2001), the 

evidence that prices and dividends are co-integrated is at best weaker. In particular, 

tests based on the Engle and Granger (1987) methodology find limited evidence o f 

cointegration between dividend and prices, see for example Campbell and Shiller 

(1987), Diba and Grossman (1988), Froot and Obstfeld (1991), Balke and Wohar 

(2001). Since prices are much more volatile than dividends, see for example 

Campbell and Shiller (1987, 1988), it is possible that these tests fail to detect 

cointegration because the parameters o f the cointegrating relation are time varying 

and, in particular, they display heteroskedastic variability characterized by clustering 

over time. Heteroskedastic time-variation in the parameters o f the cointegrating 

relation in turn might help explain heteroskedastic excess volatility o f prices over 

fundamentals. Harris, McCabe and Leyboume (2002) introduce a test for stochastic 

cointegration, where the parameters o f  the cointegrating relation are allowed to be 

time varying. This test encompasses the test for cointegration with fixed parameters 

o f the cointegrating relation, defined stationary cointegration. McCabe, Leyboume 

and Harris (2002) find mixed evidence in favour o f  stochastic cointegration between 

stock and dividends but this evidence is stronger than the evidence in favour o f 

stationary cointegration.
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2.5.6 The Role o f  Systematic Skewmess

Non normal return distributions cannot be entirely described by first and second 

moments. Unless investors display a special type o f preferences (quadratic), they 

care about higher moments. In particular, while NIARA rules out preference for 

negative portfolio skewness, decreasing absolute risk aversion (DARA) implies 

preference for positive skewness. As argued by Richter (1960), Levy (1969) and 

Kraus and Litzenberger (1976), an exact preference ordering for risky portfolios 

using the first three moments o f the portfolio return is possible, in general, only for 

an investor with a cubic utility function o f  wealth. Unfortunately, as shown by Levy 

(1969) and Tsiang (1972), this third degree polynomial utility function is unsuitable 

to model the preferences o f  a risk adverse investor. Duly restricted third order Taylor 

expansions o f admissible non-polynomial utility functions can be used instead. 

Under (NS, RA and) DARA and hence if  the investor has a preference for positive 

portfolio skewness, he should be willing to accept a somewhat lower expected return 

to hold assets with positive coskewness.

2.5.7 The3M -CAPM

Kraus and Litzenberger’s (1976) consider the optimal portfolio choice o f a 

representative investor that lives in a 1-period economy. His utility is defined over 

end o f period wealth W, i.e. u = u(W), and it is not restricted to any particular 

functional form. The only requirement is that it be continuous and three times 

continuously differentiable over the range o f  wealth. In this very simple 1-period 

setting, where the investor does not have to solve the usual optimal consumption- 

investment decision problem that arises in multi-period (2 or more periods) models, 

the Euler equation for the maximization o f his expected utility is:

= 0  (2.50)
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As shown in Appendix A, a third order Taylor expansion o f  a standardized utility 

function around the point Wq = E{W) =  1 yields:

Here, Oy = —w''(l) and 6 2 , = —w'^l) • In the second line o f  (2.51), I use excess 
2 6

returns instead o f  returns because, in this simple 1-period setting where the 

distinction between unconditional and conditional moments is irrelevant, the risk 

free rate is known with certainty (also conditionally) and, therefore, 

= Differentiating (2.51) once with respect to

wealth, marginal utility can be approximated as follows:

Using (2.52) in (2.50) yields Kraus and Litzenberger’s (1976) 3M-CAPM. 

Interpreting marginal utility w'(^,„,+i)  ̂ SDF, (2.50) can be seen as a version o f

(2.1) where x,+\ = r, and, because r, is an excess return, p,  =  0. In (2.52), the SDF is 

approximated as a linear function o f  the market excess return and its square and thus 

it can be seen as an instance o f  (2.14) with - £ ( r ,„ , )  and

/ 2 ,,+i = , a, = 1, b\j  = 2d\,  b 2 ., =  Zdj. Applying (2.6), and dropping

time-subscripts for notational simplicity, (2.50) and (2.52) imply:

Cov{u\r„,  I 6>), r, ] 

EWirJO)]

E \ { u ' { r j e ) - E { u \ r j e ) ) }  [r, - £ ( r , ) ]

E [ u ' { r j e ) ]
(2.53)
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Here, differentiating (2.52) once, \ 6 ) = 26  ̂ + 602fm ^rid, differentiating it

once more, \ 6 ) = 6 O2 . Finally, multiplying and dividing the first and second

term on the right-hand side o f  this equation by, respectively, £[r„, -  £(r„,)] and E[rm
3 • 15-  E{r,„)\ and re-arrangmg, we can write :

E { 0  = 5 , p , + 5 , y ,

Where,

_  - E [ u { r j e W [ r „ , - E { r j f  
’ E[u'{r  ̂ I 0 )]

- \E[u-{r, \emr ,~E( ,r , ) f  

'  E [ u \ r J O ) ]

E [ { r , -E { r , ) ) { r„ , -E {r„M  

E { r „ , - E { r j f

^ E[{r  ̂ -£ (r ,))(r„ , -£ (r ,„ ) ) - ]

Here, the coefficient <)'i is the beta premium and the coefficient 6 2  is the gamma 

premium. This is a beta-gamma representation o f  the implications o f  (2.50) and 

(2.52) for the cross-section o f  asset returns. It is different from the beta-pricing 

representations described in (2.20) because beta and gamma are not multiple 

regression coefficients. The assumption o f  greed implies E{u'{r^„ | 0)] > 0 and, under

RA, E { u \ r ^ \ 0 ) \ < Q . Thus, since -  £'(r„,)]" > 0 , the beta coefficient is

I also assume that the second derivative of the utility function does not depend on the interaction

between market and asset unexpected returns, Covjw"(/-„, | 6), -  £(^/)J/>;j -  £(/>;,)]} = 0, and that

the third derivative does not depend on the interaction between squared market unexpected returns

and asset unexpected returns Cov|<"'(a-^ | 0),\rj -  |. These are very useful and

reasonable simplifications that, intuitively, correspond to the requirement that absolute risk aversion 
and preference towards skewness do not depend on the relation between a single asset and the market 
portfolio or its square (rather, they should depend only on the latter, i.e. the market return and its 
square). Essentially, only changes in overall wealth and in its volatility should determine moves along 
the utility function and, therefore, changes in the point at which its derivatives are evaluated.
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pos i t iv e  for risk-averse, greedy investors. If the market portfoHo skew ness is 

negative (as it is often the case em pirically) and i f  there is a market reward for 

holding assets w ith  negative system atic asset coskew ness, the gam m a coefficien t 6 2  

is posi t ive .  This can also be seen by noting that, under the assum ption o f  greed and 

N IA R A , E [u \r ^  | 0 )] > 0 and | ?̂)] > 0 respectively. S ince em pirical market

portfolio skew ness is usually found to be negative, i . e . < 0 ,  then  

< ? 2  > 0 . W hile ^ '1  represents investors’ reward for system atic variance, i.e. for 

holding assets that increase the volatility  o f  the overall market portfolio, 6 2  

com pensates investors for system atic negative skew ness, i.e. for holding assets that 

decrease the skew ness o f  the overall market portfolio (that cause the distribution o f  

portfolio returns to be skew ed to the left).

2.5 .8  The 3 M -{ C )C A P M

W hile a llow ing utility to contain a cubic term in wealth, its parameters could be 

allow ed to be tim e varying. For exam ple, the elem ents o f  6  in (2 .53) could be 

specified  as a function o f  conditioning information. A  particularly interesting  

possib ility  is that they vary with the business cy c le  or that they are a function o f  

conditioning variables that represent investors’ expectations about future returns. 

T his w ould yield  a conditional version o f  Kraus and Litzenberger (1976) 3M - 

CA PM . F ollow ing a sim ilar approach, H arvey and Siddique (2000) propose a 

conditional asset pricing equation where expected asset ex cess returns are a function  

o f  their conditional covariance and coskew ness w ith the market portfolio and the 

prices o f  covariance and coskew ness risk also vary over time:

E,.](ru) = i ,  C ov ,(r ,,^ ,,m ,^ ,)

=  a , ,  Cov,(r^_,,,,r„,, , , )  +  6 . /  Cov,  ) (2 .59)

Where:

^ ^ ^ (r„̂  „ , )E,  (r„, ) -  SkeM’, (r„, )E,  (r ;  )

Var,{r ,„^,^, )Var ,{rl ,^, ) -[Skew,{r„ , j , , )f
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,  )E, (r; ) -  Skew, (r„, )E, (r , )

Var,{r„,^,)Var,{rl,^,)-[Skew,{r„,,^,)f

Here, the symbol Skew, (r„, ) = £ ' , { [ / ; „ -  E, )]^} represents the skewness o f

the market portfolio in / + 1  conditional on information available at time t, while the 

other sym bols (e.g. conditional expectation and variance operators) have the usual 

meaning. The pricing equation in (2.59) can be derived from (2.19) specifying the 

SDF w,+ i as a quadratic polynomial in the market excess return i with 

parameters a,, b\, and bit that are allowed to vary over time, 1 + /?̂ ,̂̂ , s i ,  and

therefore'^, a, +b',E,{f,^^) = 1 .

m,+ \ = a ,  + bi,rm,,+\ + 6 2 /'' ,̂,+, (2.60)

Interpreting m,+ \ in (2.60) as the SDF implied by a third order Taylor expansion o f  

the representative investor’s utility function, the pricing equation in (2.59) can be 

seen as the cross-sectional implication o f  a conditional version o f  the 3 moment 

CAPM (henceforth, 3M -(C)CAPM ). Under this model, if  investors like positive 

portfolio skewness, they should accept a negative risk premium to hold assets with 

positive coskewness because these assets contribute to increase the skewness o f  the 

overall market portfolio. The price o f  coskewness risk 2̂ ./, therefore, should be 

negative. It is worth at this point highlighting the difference with the 3-moment 

model derived by Kraus and Litzenberger (1976) where, if  market portfolio 

skewness is negative, poshive asset coskewness implies a negative gamma and a 

positive S2 . In other words, the specification o f  the systematic third moment 

premium used by Harvey and Siddique (2000) and by Kraus and Litzenberger 

(1976) are not equivalent.

Recall that, as show n in Section 2.2, in (2 .12), and 2 .3 , in (2 .1 9 ) and (2 .22), without this 
approxim ation and the resulting restriction on the relation between the intercept and the mean o f  the 
factors the risk free return w ould show  up in the equations for the risk prices.
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2.5 .9 Tests o f  the 3M-(C)CAPM

Harvey and Siddique (2000) test the 3M-CAPM on Centre for Research on Security 

Prices (CRSP) NYSE, AMEX and NASDAQ stock data over the period 1963-1993. 

They find that the 3M-CAPM significantly improves on a 2 moment CAPM 

specification. They report that coskewness helps explain the cross-section o f average 

excess-retums on 32 industry portfolios and 25 size and book-to-market value sorted 

portfolios. Moreover, they find that coskewness retains a significant explanatory 

power even after the inclusion o f factors related to size and book to market value 

that have been found by Fama and French (1992, 1993, 1995) to empirically explain 

a large portion o f the cross-sectional variation in average asset returns. In particular, 

they find that systematic skewness is important and commands on average a risk 

premium o f 3.6 percent per annum.

Dittmar (2002) specifies a conditional model by expressing the parameters o f a 

quadratic and cubic SDF as linear functions o f  a set o f conditioning variables. The 

quadratic SDF implies the 3M-(C)CAPM whereas the cubic SDF implies a 4 

moment CAPM where preference for co-kurtosis (the systematic fourth moment), is 

allowed. The conditioning variables include one lag o f the market excess-retum, o f 

the dividend yield, the spread o f the 3 M onth T-Bill over the 1 Month T-Bill rate and 

the 1 Month T-Bill rate itse lf He finds evidence o f  substantial non-linearity in the 

pricing kernel and that both the quadratic and cubic SDF fit well the cross-section o f 

US industry equity indices average returns over the period 1963-1995. After 

imposing the regularity conditions on the shape o f the utility functions that 

correspond to standard  risk aversion, i.e. positive marginal utility, RA and NIARA 

over all values o f wealth, the estimated gamma premium remains statistically and 

economically significant but it becomes much smaller, thus considerably reducing 

the ability o f  the estimated 3 and 4 moment conditional specifications to explain the 

cross-section o f average returns.
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Post, Levy and van Vliet (2003) criticise previous empirical tests o f the 3M-CAPM, 

such as Harvey and Siddique (2000), on the grounds that they fail to check whether 

the decreasing marginal risk-aversion requirement is satisfied by the estimated 

pricing model. Consistently with Dittmar (2002), they show that the gamma  

(standardised asset co-skewness) premium turns out very small when the appropriate 

regularity conditions (risk aversion) are imposed on the shape o f the investor utility 

function. In fact, fitting a cubic utility to data on the Fama and French (1995) market 

portfolio and on 10 size-ranked portfolios for the period 1963-2001, their estimated 

expected utility function does not satisfy the concavity requirement over the relevant 

wealth interval and thus the market portfolio is not guaranteed to be efficient for the 

representative investor. Moreover, they find that the market portfolio is likely to 

minimize the sample expected utility, rather than maximize it as predicted by the 

3M-CAPM.

2.5.10 3M-CAPMVS. (C)CAPM

Even though the (C)CAPM uses the assumption that investors have a quadratic 

utility function and its pricing kernel does not incorporate 3’̂‘* order terms, the 

unconditional implications o f both the 3M-CAPM and the (C)CAPM contain a 

premium for a cross third moment o f asset returns. The 3M-CAPM contains a

premium for the cross third moment between asset return and the square o f the
2 • *market return, i.e. a premium for Cov(r,,, )■ The (C)CAPM contains a cross third

moment between the asset return, the market return and a conditioning variable that 

influences marginal utility o f market wealth, i.e. a premium for Cov{r^i,z^_^r^i).

Equivalently, asset coskewness can be seen as the covariance between the asset 

return and market volatility'^, whereas in the (C)CAPM the expression 

Cov(r,,,z,_,r,„,) can be interpreted as the covariance between the asset return and

the sensitivity o f  the market return to the conditioning variable. In other words, in 

the 3M-CAPM investors are rewarded for holding assets that perform poorly at

”  More accurately, coskewness should be seen as the covariance with the realization o f  the market 
second moment.
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times o f high market volatiHty, whereas in the (C)CAPM they are rewarded for 

holding assets that do poorly when the return on the stock market portfolio is very 

reactive to the conditioning variable, and hence when it is very reactive to either 

returns on non market wealth or expected stock market returns. There are a number 

o f circumstances under which the (C)CAPM expression C o v ( r , , , ) could

proxy for asset coskewness and vice versa. This would be the case if  z,.\ was a good 

proxy for , and hence when the former forecasts the latter.

2.5.11 The Role o f  Idiosyncratic Income Risk

All the (rational) asset pricing models mentioned above predict that expected asset 

excess-retums can be explained on the basis o f their relation to one or more 

pervasive risk factors. As remarked by Chen, Roll and Ross (1986), financial theory 

has focussed on systematic influences as the likely sources o f risk, assuming the 

ability o f investors to hold diversified portfolios. The general conclusion is that a 

risk premium is required to compensate for the influence o f systematic economic 

news on the payoff o f a particular asset, but no extra reward can be earned by 

needlessly bearing diversifiable risk. Under this theoretical perspective, therefore, no 

priced risk premium should be related to the residual variance o f stock returns. The 

recent literature, however, has re-examined the relation between risk and return 

focussing on the role played by total risk, including idiosyncratic risk.

Models such as the CAPM based on complete capital markets are underpinned by 

the abstraction o f  the retired wealthy investor or, alternatively, by the assumption 

that investors live in a world where all sources o f income (including labour income) 

correspond to traded securities. Malkiel and Xu (2000) show that, under an extended 

version o f the CAPM, when some individuals are not fully diversified, nobody can 

hold the market portfolio and the relevant measure o f risk is a combination o f 

systematic and idiosyncratic variance. M erton (1987) develops a model o f capital 

market equilibrium with rational investors and limited information. In the model, 

investors only know about a subset o f the available securies and thus diversification
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is, in general, incomplete. Among the main predictions is that idiosyncratic risk has 

implications for both the cross-section o f asset expected returns and for the market 

expected return. M ore generally, i f  we allow for incomplete capital markets, we 

must recognise that investors’ utility might fluctuate as a result o f shocks that do not 

correspond only to the volatility o f their traded assets holdings. This can be 

modelled within a conditional asset pricing framework by either introducing factors 

or conditioning variables that correspond to sources o f variation o f marginal utility 

unrelated to the stock market.

Even in incomplete markets, however, the risk associated with uninsurable

idiosyncratic shocks matters for the pricing o f financial assets only if  these affect the

average investor. A classical example is represented by unemployment income

shocks. They are not insurable because o f moral hazard and asymmetric information

problems (a case o f  missing markets). This makes it impossible for investors to
18eliminate these risks through diversification . They also affect the average investor. 

Virtually everybody is exposed to the risk o f becoming unemployed. Investors might 

try to use traded financial assets to hedge this risk but, in doing so, they cannot take 

each others’ offsetting positions because everybody has an exposure o f the same 

sign. As a consequence, their hedging positions influence asset prices and expected 

returns. Therefore, while non-insurable shocks are by definition entirely non- 

diversifiable (because o f ‘missing m arkets’, both the average variance and average 

covariance are not diversifiable, rather than ju s t the latter as in the case o f insurable 

shocks), they must affect the average investor and thus, in a sense, they must be 

“systematic” in order to have asset pricing implications. If, however, idiosyncratic 

shocks are contemporaneously correlated with systematic stock market shocks, they 

can be quickly traded away by taking hedging positions in the stock market portfolio 

and covariance with the stock market portfolio would be again the only relevant risk 

exposure.

If  there w as no moral hazard and asym m etric information problem s, investors w ould pool these 
risks together alongside all other risks. Everybody w ould end up holding a small share o f  the market 
portfolio, including everybody e ls e ’s labour skills, and only the average covariance o f  labour incom e 
with the market portfolio w ould have to be borne by som ebody. The average idiosyncratic variance 
would be diversified away.
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Therefore, while a condition for sources o f non-insurable idiosyncratic risk to affect 

asset prices is that they affect the average investor, they should be uncorrelated with 

the stock market in order for this type o f risk to have asset pricing implications 

beyond those captured by exposure to the stock market alone. To reproduce these 

conditions, Constantinides and Duffie (1996) impose that, while idiosyncratic 

shocks are not correlated'^ with stock market returns and hence they cannot be either 

diversified or traded away, the distribution o f the former across individuals depends 

on the realization o f  the latter. A suitable non-linearity in the utility function then 

ensures that idiosyncratic marginal utility shocks are systematic and correlated with 

the market return even though idiosyncratic shocks are not correlated with the latter.

2.5.12 The Market Risk Premium in Integrated and Segmented Markets

To illustrate the effect o f the assumptions that markets are integrated and that 

investors are able to fully diversify, it is useful to compare the two limiting cases o f 

complete market integration and complete market segmentation. Preliminarily, let 

asset excess-returns be generated by the following model:

ru+\ = E,{ru+\) + s,j+\ (2.61)

Here, s  , ,+ i denotes a conditionally zero mean random residual. The aggregate 

market excess-retum equation can be obtained averaging (2.61) across all assets. 

With N  assets, the aggregate market portfolio excess-retum r„,,+i is the following:

(2.62)

I f  idiosyncratic and system atic stock market shocks are contem poraneously correlated covariance 
with the stock market portfolio w ould be the only relevant risk exposure.
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If  assets are priced in integrated markets, the aggregate expected risk-return equation 

impHed by the CAPM is (2.43) with constant a, and bf.

E,{r„,j+\)= RRA, Var,(r„,j^,) 

= R M , MKT, (2.63)

Here, MKT, = Var,{rm,i+i) denotes the conditional variance o f the market portfolio

relative risk aversion coefficient.

Assume now that assets are priced in segm ented  markets so that investors cannot 

diversify (i.e. each investor can hold only one asset). In this extreme situation, 

applying (B.13) from Appendix B, the expected risk-retum relation for each single 

asset resembles the risk-return relation for the market portfolio implied by (2.43) 

under an integrated capital market:

Here, RRA,, is the relative risk aversion coefficient o f investor i that holds asset /. 

With N  assets and using (2.62) and (2.64), the aggregate portfolio return i is the 

following:

Taking conditional expectations o f both sides o f (2.65) and assuming that relative 

risk aversion is constant in wealth, the aggregate risk-retum equation is:

conditional on information available at time t and RRA, = —— is the

= RRAi, Var,{r,j+i) (2.64)

(2.65)
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E, ) = I  w,,CRRA„Var, )
/ =  ]

= CRRA,Tw,,Var,(r,,^,)
i= \

= CRRA, ■ VAR,

( 2 .66 )

Here, CRRA,, is a constant relative risk aversion coefficient implied by an

N N
appropriate utility function, CRRA, ,CRRA„ and VAR, ,Var,{r, is

/=i ’ ,=i ’ ’

the average total conditional variance o f  asset returns. The second equality in (2.66) 

follows from the first one because relative risk aversion is by assumption constant in 

wealth and thus it is also independent o f the second moments o f wealth. Comparing 

(2.66) with (2.63) clarifies that, in segmented capital markets or, more generally, 

whenever investors do not hold fully diversified portfolios, the market risk premium 

depends on aggregate total risk, which in turn includes both systematic and 

idiosyncratic risk. In a more sophisticated setting, this is also one o f the main 

predictions o f M erton’s (1987) model with limited information and incomplete 

diversification.

French, Schwert and Stambaugh (1987) found evidence that, while actual volatility 

and actual returns are negatively correlated, the expected component o f the stock 

market excess return is positively related to the predictable stock market volatility. 

Both these results provide evidence o f a positive relation between the market risk 

premium and expected market volatility . Yet, many empirical studies fail to agree 

on the sign o f this relation. Estimates o f  the simple risk-return relation range from 

significant positive, such as in Harvey (1989), Turner, Startz and Nelson (1989), to 

significant negative, as in Campbell (1987), Glosten, Jagannathan and Runkle 

(1993). Whitelaw (1994) finds that the simple lagged market variance-retum relation 

is positive but statistically insignificant. Within M erton’s (1973) ICAPM, Scruggs

A positive relation between expected com ponents o f  marivet return and volatility im plies that, when 
expected volatility increases, it raises the expected market return and actual volatility. Higher 
expected returns lead to negative actual returns because prices fall. Hence, it im plies a negative  
relation between actual volatility and returns.
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(1998) specifies a conditional two-factor model o f  the market risk premium. In this 

model the market risk premium is a function o f the conditional market variance and 

the conditional covariance between market excess returns and a variable that 

describes the state o f the investment opportunities in the economy. The state variable 

chosen by Scruggs (1998) is the conditional excess return on long term US 

government bonds. Goyal and Santa-Clara (2001, 2003) provide puzzling evidence 

on the trade-off between risk and return on the US stock market. Using the CRSP 

database o f daily price data starting in July 1962, they compute monthly aggregate 

excess-retum and monthly average total excess-retum variance time series for a 

portfolio that includes all the stocks listed in the main US stock markets (AMEX, 

NYSE, NASDAQ). They find that there is a significant positive relation between 

excess-return on the market portfolio and lagged average total variance. Moreover, 

they find that market variance alone has little explanatory power for market returns. 

They conclude that there is a significant relation between risk and return, except that 

risk is measured as total risk, including idiosyncratic risk, rather than only 

systematic risk. Harvey (1996 and 2000) recognises the link between financial 

market integration and the relative importance o f  systematic and total volatility in 

driving aggregate returns. He finds that the return on little integrated emerging 

markets is more related to its own total variance than to the variance o f the world 

market portfolio relative to the developed countries markets.

2.6. Behavioural Models

The behavioural finance explanation o f the stylized features o f the distribution o f 

asset returns also belongs to the new paradigm. While it does not rule out time 

varying risk and risk premia, it allows for investors’ irrationality and market 

inefficiency. Under this approach, it is admissible that asset prices and expected 

returns are not the solution to a general equilibrium model with fully rational, risk 

averse economic agents and competitive financial markets. See, for a review, 

Barberis and Thaler (2003)). The literature on limits to arbitrage clarified that, in the 

presence o f noise trader risk, risk-averse market participants with short horizons
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(finitely lived) might not have the incentive to trade quickly as to exploit all 

available information even though financial markets are competitive and hence 

investors are price takers. This is the perspective advocated, among others, by 

DeLong, Shleifer, Summers and W aldmann (1990a and 1990b) and Shleifer and 

Vishny (1997). Noise trader risk is the risk that mispricing caused by the net demand 

o f irrational (and hence uninformed) noise traders might worsen in the short run 

before trades by rational (and hence informed) traders manage to correct it. The 

relevant notion o f  rationality is, in this context, the definition embedded in M uth’s 

(1961) rational expectafion hypothesis.

The behavioural perspective also allows for non standard utility functions where 

investors either do not have unambiguously defined preferences over consumption 

or they display risk seeking over certain portions o f the utility function domain. For 

example. Prospect Theory and Cumulative Prospect Theory, formulated by 

Kahneman and Tversky (1979) and Tversky and Kahneman (1992) respectively, 

imply framing and S-shaped utility functions defined over gains and losses instead 

o f over consumption and wealth as in the standard Expected Utility framework. In 

particular, these utility functions display risk aversion over gains and risk seeking 

over losses below a threshold. Behavioural Portfolio Theory, advocated by Shefrin 

and Statman (2002), predicts instead risk aversion over losses and risk seeking over 

gains and thus an inverse S-shaped utility function. These non standard utility 

functions rationalize evidence that investors, under certain circumstances, display 

risk seeking behaviour. Active stock traders appear to play negative-sum games and 

their behavior can sometimes be interpreted as ‘gam bling’ (see Statman (2002)). In 

addition, psychologists led by Kahneman and Tversky (1979) find experimental 

evidence for local risk seeking behavior. More specifically, Post and Levy (2002) 

argue that a number o f celebrated asset pricing anomalies, such as the low average 

yield on stocks with large capitalization, growth stocks and past winners, could be 

explained by risk aversion over losses and risk seeking over gains.
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Numerous contributions from the literature on non standard utility theory and 

behavioural asset pricing (see for a review Shefrin (2005)), thus, admit a non linear 

pricing kernel that implies non concavity o f the utility function over certain ranges 

o f wealth, and thus an increasing SDF and a violation o f RA. Friedman and Savage 

(1948) and M arkowitz (1952) argue that the willingness to purchase both insurance 

and lottery tickets implies that marginal utility is increasing over a range. See 

Hartley and Farrell (2002) and Post and Levy (2002) for a recent discussion. S- 

shaped utility functions, such as the function implied by Kahneman and Tversky’s 

(1979) prospect theory, do not satisfy either RA or NIARA. Inverse S-shaped utility 

functions, such as the specification implied by Shefrin and Statman’s (2002) 

behavioural portfolio theory, violate RA but satisfy NIARA at every point in the 

domain where the function is differentiable.

2.7. Absolute vs. Relative Pricing

Financial theory has extensively addressed the issue o f how to model the mean 

behaviour o f asset returns and link it to other variables. In particular, asset pricing 

models relate mean returns to higher moments. The latter are typically cross­

moments formed between the asset return and other variables. These variables can 

be either economic fundamentals and other non-asset variables, or returns on other 

assets such as the market portfolio. The first approach is known as absolute pricing, 

e.g. Lucas’ (1978) Consumption CAPM, whereas the second is known as relative 

pricing, e.g. the Sharpe (1964) and Lintner (1965) CAPM and especially the Asset 

Pricing Theory (APT), proposed by Ross (1976). The APT requires for its derivation 

less restrictive assumptions than the CAPM, such as that investors are greedy, that 

markets are frictionless (or, at least, that diversification is not too costly) and that the 

returns variance-covariance matrix has a well defined factor structure. The latter 

requirement guarantees that diversified portfolios can be closely replicated by 

portfolios that mimic the exposure to single factors. It does not, however, require 

market completeness (or, equivalently, the representative investor assumption). It 

provides a no-arbitrage pricing relation between diversified portfolios o f assets
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based on their sensitivity to a set o f pervasive risk factors and on the equilibrium risk 

premium for the exposure to each factor. Chen, Roll and Ross (1986) proxy for the 

factors using macro-economic variables deemed to drive the variation in stock 

returns. Within a multi-factor model for asset returns derived from the APT, 

Koutulas and Kryzanowski (1996) estimated conditional time-varying risk premia 

and conditional volatilities associated with each pervasive risk factor. They found 

that five pervasive risk factors, namely the lag o f  industrial production, the Canadian 

Index o f 10 Leading Indicators, the US Composite Index o f  12 leading Indicators, 

the exchange rate and the residual market factor, have priced risk premia, including 

the residual market factor.

For large and diversified portfolios, the implications o f the CAPM and o f the APT 

are the same when there is only one pervasive risk factor, the market portfolio. In 

this case, the expected excess return on the market portfolio would be the only risk 

premium priced in equilibrium for any diversified portfolio. Neither the CAPM nor 

the APT admit any risk premium related to idiosyncratic risk (exposure to asset- 

specific, non-pervasive risk factors), which is expected to be diversified away. It 

should be noted however that the CAPM, contrary to a popular misinterpretation, is 

not a special case o f the APT. The latter imposes an assumption, namely that the 

idiosyncratic residuals are uncorrelated, that the CAPM does not require. In the 

CAPM, idiosyncratic residuals are uncorrelated only on average (with capitalization 

weights). This is not an assumption, but an implication that follows by construction 

from the CAPM prediction that these residuals are the error terms o f the regression 

o f  a set o f asset excess returns on their own capitalization-weighted average, namely 

the market excess returns.

2.8. Summary and Conclusions

In this section I have summarized the important developments in asset pricing theory 

along with the transition from the old to the new paradigm o f asset returns, and I 

have shown how the various asset pricing models can be seen as specializations o f
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the general SDF model. I have thus reviewed a number o f specifications o f  this 

model. W henever possible, I highlighted the connections between the implications 

o f the various asset pricing models and interesting patterns in equity returns and 

their moments. I also discussed the role o f volatility in asset pricing theory and the 

assumptions implied by empirical tests o f the conditional risk-retum relation.

The SDF representation o f the asset pricing problem is surprisingly flexible, yet it 

allows explanations for the observed patterns in asset returns to be generated in a 

rigorous and testable manner. The only requirement is that the SDF be linear in the 

factors. Since this approach allows for considerable flexibility in specifying the 

functional form o f the SDF, it can capture non-linearity in the behaviour o f marginal 

utility and time variation in the parameters o f the utility function. It therefore serves 

as a useful framework to specify alternative asset pricing models that allow for a 

variety o f factors to be priced in the time series and cross section o f asset returns 

under alternative assumptions about the multivariate distribution o f asset returns, 

investors’ preferences and market completeness. All the asset pricing models 

estimated in Chapter 4, 5 and 7 can be seen as specializations o f a SDF model. 

Chapter 4 will explicitly derive a beta-pricing representation o f the 3M-CAPM from 

a quadratic SDF model. Chapter 5 will test whether aggregate idiosyncratic risk is 

priced in the time series o f aggregate returns and thus whether it is a candidate to 

enter the SDF equation as a factor. In Chapter 7, I will allow for heteroskedasticity 

and serial dependence in the second moments o f  the market return risk factor.
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Chapter 3: The Second Moments Literature

3.1. Introduction

A rich literature on the second m om ents (volatilities and correlations) o f  the 

em pirical distribution o f  asset returns both contributed to and was prom oted by the 

abandonm ent o f  the i.i.d. hypothesis. In th is section, I will review  a num ber o f  

contributions on em pirical m odels and m ethodologies for the estim ation o f  second 

m om ents o f  asset returns. In doing so, I will pay special attention to clarify the 

differences betw een conditional and unconditional estim ates.

I will first review , in Section 3.2, the literature on m arket-w ide volatility and the 

m ore recent contributions on individual stock volatility, idiosyncratic stock volatility 

and stock correlations. I will introduce, in Section 3.3, the variance decom position 

m ethodology proposed by Cam pbell, Lettau, M alkiel and Xu (2001), henceforth 

CLM X  (2001), because it provides a neat analytical fram ew ork to isolate the m ain 

com ponents o f  the variability  o f  the typical asset. I will then exam ine the m ain 

problem s that arise w hen m easuring variance com ponents w ithin a CA PM  

fram ew ork. In doing this, I will pay special attention to the instability o f  the beta 

coefficients in the m arket m odel. In Section 3.4, I will outline the distinction 

betw een unconditional and conditional second m om ents estim ation m ethodologies 

and I will introduce the literature on m ultivariate conditional second m om ents. I will 

then discuss at some length Engle’s (2002) and Engle and Sheppard’s (2001 and 

2002) dynam ic conditional correlation G A R C H  (D C C -G A R C H ) m odel because it 

provides a feasible w ay to estim ate the param eters that govern the dynam ics o f  large 

variance-covariance m atrices and, in particular, o f  the associated correlation process. 

In the final section, I will draw  together the m ain conclusions o f  the chapter.
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3.2. Second Moments

As a preliminary definitional matter, recall that variance and correlation are second 

moments centred around the mean, i.e. the first moment, o f a random variable. When 

the random variables under consideration are returns, volatility is their standard 

deviation, i.e. the square root o f variance and correlation is the covariance between 

returns standardised by their own volatility. These variables will generally be the 

focus o f the discussion that follows. Developments in financial time series 

econometrics have led to vast improvements in our understanding o f the behavior o f 

the second moments o f return distributions over time. Early contributions, such as 

the pioneering work o f Officer (1973) and Schwert (1989), popularized the notion 

that stock market volatility changes over time. It therefore became clear that the 

assumption that returns at different points in time were drawn from the same 

conditional distribution was too restrictive. This represented a lethal blow for the 

i.i.d. hypothesis. Once it became clear that asset volatility and, more generally, 

second moments, were time-varying, researchers became interested in whether and 

how they could be modelled.

3.2.1 Systematic vs. Idiosyncratic Volatility

A striking feature o f the extant literature on financial volatility is the overwhelming 

prevalence o f contributions on aggregate market risk. Partial surveys o f this 

enormous literature are given by Bollersev, Chou and Kroner (1992), Ghysel, 

Harvey and Renault (1996) and Campbell, Lo and MacKinlay (1997). Aggregate 

market volatility is relevant to any holder o f diversified portfolios and to any model 

o f asset returns developed under the general framework o f the Sharpe (1964) and 

Lintner’s (1965) CAPM. Under this theoretical perspective, firm volatility is 

interpreted as idiosyncratic risk that can be diversified away and that therefore 

deserves no attention. More recently, however, financial researchers have begun to 

re-examine the nature and the behaviour o f risk in equity markets, addressing both 

market risk and idiosyncratic risk and the closely related issue o f the correlation
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among asset returns. Recent evidence, provided by among others Barber and Odean 

(2000) and Benartzi and Thaler (2001), suggest that investors often hold 

undiversified portfolios, and even if  they are keen to diversify, they tend to hold a 

limited number o f assets to reduce transaction costs. Therefore their relevant 

measure o f risk, as shown by Malkiel and Xu (2000), may well be total risk. 

Barberis and Thaler (2003) provide a review o f this ‘insufficient diversification’ 

puzzle.

In this vein, CLMX (2001) analyse the long-term trends in both firm-level and 

market volatility in United States stock markets over the period from 1962 to 1997. 

Using daily data on all the stocks traded throughout the period on three US markets 

(AMEX, NASDAQ and the NYSE), they show that while market volatility has not 

exhibited any significant trend, a decline in overall market correlations has been 

accompanied by a parallel increase in average firm-level volatility. In explaining 

their findings, CLMX (2001) suggest that they might emanate from a number o f 

factors, such as the tendency for firms to access the stock market earlier in their 

development, the existence o f time varying betas, executive compensation schemes 

that reward greater stock volatility, and/or the tendency for large conglomerates to 

be broken into smaller, less diversified corporations. Whatever the cause, the 

findings o f CLMX (2001) have important implications for portfolio management 

because they impact significantly on the extent to which diversification can reduce 

idiosyncratic risk. A conventional rule o f  thumb, based on Bloomfield, Leftwich and 

Long (1977), suggests that a randomly chosen portfolio o f 20 stocks produces most 

o f the reduction in idiosyncratic risk that can be achieved through diversification. 

The CLMX (2001) finding that average firm-level volatility has trended upwards in 

United States stock markets implies that a growing number o f stocks is needed to 

achieve any desired level o f diversification. On the other hand, the lower average 

correlation among the stock returns has increased the potential benefit from 

diversification because it implies a smaller contribution to portfolio risk o f the 

portion that cannot be diversified away.
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i. 2.2 Clustering

An empirical feature o f volatility and, more recently, correlation that has attracted 

considerable attention is that the time series o f their realizations tend to exhibit a 

clustering behaviour. There are periods o f  high volatility and high correlations and 

periods when asset returns tend to be more stable and less correlated. Therefore, 

returns series often display excess kurtosis relative to the multivariate normal 

distribution (see, for example. Gallant, Rossi and Tauchen (1992)). Mandelbrot 

(1963) first noticed this phenomenon and French, Schwert and Stambaugh (1987) 

and Schwert (1989) were among the first to systematically study the clustering 

behaviour o f stock market volatility series. It soon became clear that not only the 

multivariate distribution o f asset returns exhibits time varying second moments but, 

especially in high frequency series (monthly or higher), the magnitude o f their 

variation is related to how much they change in nearby periods. In other words, 

volatility and, more generally, the second moments o f asset returns display a slow- 

moving persistent behaviour. After a shock, they tend to mean revert to their long 

run average rather slowly. It therefore takes time for the effect o f each shock to die 

out. The literature on conditional heteroskedasticity models, initiated by Engle 

(1982), elegantly captures this behaviour. In these models, conditional second 

moments depend non-trivially on past states o f the world. This conditional 

heteroskedasticity implies leptokurtosis and therefore an underlying unconditional 

distribution with fatter tails than under the homoschedasticity hypothesis and the 

multivariate normal case.

3.2.3 Asymmetry

Schwert (1989) also noticed that stock market volatility tends to rise during market 

downturns and to fall during market upturns. The relation between individual stock 

returns and volatility exhibits a similar pattern (see, among others Cheung and Ng 

(1992)). Also, while volatility tends to increase after large returns o f both positive
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and negative sign because o f its persistence, it rises more following negative returns 

than following equally large positive returns. Thus, volatility is usually negatively 

correlated (again, especially in monthly or higher frequency data) with both 

contemporaneous and lagged returns. Campbell and Hentschel (1992) labelled the 

negative correlation between volatility and contemporaneous and lagged returns as 

contemporaneous and predictive asymmetry, respectively, perhaps because it implies 

that the distribution o f asset returns is skewed to the left.

Two explanations for this phenomenon are popular in the financial literature, the 

‘leverage effect’ and the ‘volatility feed back effect’. According to the leverage 

effect, a large negative return reduces the value o f the firm ’s equity and thus 

increases financial leverage, in turn rising equity return volatility (e.g. Black (1976) 

and Christie (1982)) for a given level o f asset volatility. More specifically, suppose 

that bad news regarding operating margins reduce the market value o f a firm ’s 

assets. The lower asset value must be matched by a decline in the liabilities’ value. 

However, the equity value declines more than the debt value because the latter is 

more senior. This increases leverage and thus the volatility o f  the return on equity. 

Empirically, this effect implies that future volatility is negatively correlated with 

current returns, and it might also generate contemporaneous negative correlation in 

low frequency data because o f time aggregation. Black (1976) realized, however, 

that the financial leverage effect alone is empirically insufficient to explain the size 

o f the observed asymmetry. This has also been documented by Christie (1982) and 

Schwert (1989). Alternatively, if  the market risk premium is an increasing function 

o f expected volatility, as implied by many asset pricing models with conditionally 

time varying moments (such as M erton’s (1973) ICAPM) and as suggested by the 

findings o f French, Schwert and Stambaugh’s (1987), large negative returns increase 

future volatility more than positive returns due to a volatility feedback effect (e.g. 

Campbell and Hentschel (1992)). According to this effect, the impact o f  negative 

news on volatility is larger than the effect o f positive ones because the former is 

compounded by the dependence o f the expected stock return on expected volatility 

whereas the latter is dampened. More specifically, both negative and positive news
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cause volatility and. because the latter is persistent, increase expected volatility. 

When the latter rises, however, the expected return also rises, the stock price drops 

and the realized return is negative. The latter amplifies the negative return initially 

produced by a piece o f bad news, and it dampens the positive return first induced by 

a piece o f good news. Empirically, this effect implies that future returns are 

positively correlated with current volatility, and future volatility is negatively 

correlated with current returns (however, time aggregation might also lead to 

contemporaneous negative correlation in low frequency data).

Bekaert and Wu (2000) provide a unified framework to examine which o f these 

competing explanations is best able to capture asymmetry in equity return volatility. 

Using data on stocks included in the Nikkei 225 index, they construct a proxy for the 

Japanese market portfolio and other portfolios with different leverage. They find that 

although volatility asymmetry is generally present and significant, its source differs 

across portfolios. More crucially, while it is important to include leverage ratios in 

the volatility dynamics, their economic effects are mostly dwarfed by the volatility 

feedback mechanism. They do not find significant asymmetries in conditional betas.

It has also been known for some time that equity return correlations tend to decline

in bull markets and to rise in bear markets (De Santis and Gerard (1997), Ang and

Bekaert (2002), and Longin and Solnik (2001)). In particular, Longin and Solnik

(2001) use extreme value theory to show that it is not volatility per se that affects 
21correlations , but rather the market trend (whether positive or negative returns 

prevail). Forbes and Rigobon (2002), however, warn against the danger o f over­

estimating the rise in correlations at times when the market in which one o f the 

assets is traded is unusually volatile. They show that the standard correlation 

coefficient computed using only large absolute returns is higher than the correlation

■' They test whether the correlation o f  the absolute value o f  returns in excess o f  a given  threshold go  
asym ptotically to zero as it should under the null o f  multivariate normality. They find that this is the 
case only for correlations am ongst large positive returns but not for correlations am ongst very 
negative returns. Therefore, returns are multivariate normal in the upper tail but depart from 
normality in the low er tail.
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coefficient computed using all the returns in the sample even when the correlation 

parameter of the underlying data generating process is the same. They argue that this 

bias is introduced by estimating correlations conditioning on large absolute 

deviations, and they show how to adjust the correlation coefficient estimate in order 

to alleviate the problem. Ang and Chen (2002) discuss the problem of conditioning 

bias introduced by estimating correlations conditional on high or low returns and on 

high or low volatility, and they propose a statistic to test the null of multivariate 

normality against the alternative of asymmetric correlations in downside and upside 

markets. Recent evidence, provided (among others) by Cappiello, Engle and 

Sheppard (2003), suggests that correlations display asymmetric reactions to past 

joint negative and positive returns. Similarly, Bekaert and Wu (2000) find that 

volatility feedback is enhanced by a phenomenon that they term covariance 

asymmetry, i.e. conditional covariances with the market increase significantly only 

following negative market news.

As noticed by Cappiello, Engle and Sheppard (2003), little theoretical framework is 

available to explain this evidence. Focusing on the asymmetric reaction of 

correlations to past returns innovations of the same sign (returns are either both 

positive or both negative), they propose a possible explanation using the notion that 

risk premia are time-varying. In particular, consider risk premia that vary as a 

function of time-varying conditional variances. Following negative news on two 

assets, both their volatilities are likely to increase due to either the leverage or the 

volatility-feed-back effect. If this increase in volatility feeds into volatility 

expectations, as would be justified by the persistence of volatility series and as 

explicitly modelled by the volatility feed-back effect of Campbell and Hentschel 

(1992), investors demand a higher expected return to hold the two assets, thus 

requiring their prices to drop further. This implies an increase in their correlation.
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3.2.4 Skewness

Asymmetry in the multivariate distribution o f stocks returns encompasses all the 

phenomena o f changing second moments depending on the sign o f either current or 

past realizations o f moments o f odd order. For example, rising volatility in a market 

downturn implies a stock return distribution skewed to the left, just like rising 

correlations following joint negative return realizations imply, ceteris paribus, a 

multivariate distribution skewed to the left.

From this perspective, a more general explanation for the observed asymmetry in the 

distribution o f individual stocks and portfolios o f  stocks is that variability and 

dependence in returns is higher and possibly non-linear for large negative returns. In 

other words, the degree o f variability o f asset returns and o f their co-dependence 

might be both an increasing function o f the absolute size (to explain volatility and 

correlation time-clustering) and a decreasing function o f the size o f asset returns. 

This function might be either linear or non-linear (Patton (2002)). In both cases, 

volatility and correlation would be linear approximations to the true function that 

describes the variability and co-dependence o f asset returns, locally-valid in a 

neighbourhood o f the current returns.

Patton (2002a) and Patton (2002b), among others, show that asymmetry in the 

dependence structure, and in particular in the dynamic behaviour o f  correlations, 

leads to nonzero asset coskewness and portfolio skewness. Depending on the 

composition o f the portfolio, this behaviour o f correlations might imply negative 

portfolio skewness even if  the skewness o f the individual assets is on average non­

negative or even positive. For example, the skewness o f a portfolio o f two assets is a 

function o f the skewness o f the individual assets, and two co-skewness terms. If the 

co-skewness terms are negative enough, they might more than offset positive 

skewness terms. In a portfolio with a large number o f assets, the skewness terms
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would be diversified away but not the co-skewness terms. If asset co-skewness is on 

average negative, portfolio skewness would be negative.

The magnitude o f both and is related to the

79amount o f asset coskewness . In particular, the larger the asset coskewness, the 

larger the two quantities Cov,(r„^,,rp,^,) and . This is true also for

portfolio skewness, i.e. for and . While the first

quantity, i.e. , has the most direct asset pricing implications and it is

therefore popular in the asset pricing literature, see for example the discussion o f  the 

3M-CAPM in Chapter 2, the second quantity, i.e. , has the most

intuitive implications for the shape o f the multivariate distribution o f asset returns. It

■■ Recall that asset coskewness with a portfolio is defined in this thesis as E,{e whereas

portfolio skewness is where and are conditionally zero mean return innovations

on asset i and a portfolio, respectively. To see why the larger coskewness, the larger Cov,(;;, ,̂,r „̂|)  ̂ we 

might rewrite the latter as follows;

Cov,  ) = E, ) -  E, (r„^, )£,  ) = E, ( +  E, + E, (/•/„, ) ] ) - £ ,  (r„,, )E,  )

= + £■, ('•„*, ) ^ L ,  + E, { i - L  ) + E, (/■„„ )E,  ( /- '„ ,)]  -  E, (/-„,, )£ , ( r ^ i )' / > / + !  ^  V ' ( 7 + l  / ‘ ' / J / + 1  ^  ‘ ' / / + 1  V '  / J / + 1  ’  ^ I  11+] V  /> < + !  f i  *^1  V ' » + l  f ^ l  p i + \  >

■■ E, ) + E, {r„̂ , )E, ) + £,  ( ) £ ,  ) + £,  {r„ ,̂ )£,  ) -  £,  (r„ ,̂ )£ , ]

 ̂E,(e„^,el,^,) + £ , )£ , ) = £ , ) + £, )<t  ̂,

Similarly, to show that the larger coskewness, the larger Cov,{r,,̂ ,r̂ ,̂ „ > we might rewrite the latter

as follows;

Cov, ) = £, /-p,,,) -  £, (/■„„ V+i )E, )

“  + ^,+|£f (/‘p,+i )] +

+ [£■, ('•„+! + E, (/■„,, )£ , )" + 2 £ , )£^,^,£, ) ] } - £ ,  )£ , (/-/„,)

= £, ) + E, )£, + 2£, )£, ) +

+ ('■,,+1 ) E,{s l , ^x)+E , ( / - „ , , ) £ , ) "  + 2 £ , ) £ , - £ , ) £ , ( r ; „, )

= ) + 2£ , )£■, ) + E, (r„^, )[o-J, + 3£, ( /- ,,„ )’ -  £ , )]

= £■, ) + 2£ , )£ , (/■;,„,)+£■, )[cr J,, + 3£, -  E, ) ’ ]

= E,{e„^,el,^,) + 2£, )£ , (/•,,,,) + IE , (r„^, )£,
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implies that adding assets with negative coskewness increases the average 

covariance in the left-hand tail o f the multivariate distribution o f assets returns. As a 

result, the left-hand tail o f the portfolio distribution becomes fatter relative to the 

right-hand tail. This is reflected in a portfolio distribution more skewed to the left.

Recent contributions have examined the distribution o f second moments, treated as 

observable variables, in order to depict a more accurate picture o f the multivariate 

distribution o f asset returns. For example, Andersen, Bollersev, Diebold and Ebens

(2001), study realized daily equity return volatilities and correlations obtained from 

high-frequency intraday transaction prices on individual stocks in the Dow Jones 

Industrial Average. They find that the unconditional distribution o f realized 

volatilities and correlations implies that the unconditional distributions o f realized 

variances and covariances are highly right-skewed. This in turn implies a left- 

skewed multivariate returns distribution .

Increasing volatilities during market downturns necessitates investing in a larger 

number o f stocks to diversify away the idiosyncratic volatility o f the typical stock to 

any desired extent, whereas increasing correlations reduce the effectiveness o f 

diversification strategies precisely at the time when portfolio managers are most 

reliant on them to reduce the overall risk o f their investments. Awareness o f  the 

asymmetric behaviour o f volatilities and correlations in bull and bear markets can 

thus lead portfolio managers to better define their asset allocation strategies. Risk 

managers can also use this information to specify more accurate Value at risk (VaR) 

models. In particular, incorporating asymmetric correlation behaviour in the 

generating stochastic process o f portfolio returns leads to VaR estimates consistent 

with asymmetric portfolio returns distributions. This represents a substantial 

improvement on simpler models that use a multivariate normal distribution^'*.

H owever, they confirm the known result that distributions o f  the returns scaled by realized standard 
deviations are approxim ately Gaussian, im plying that the multivariate distribution o f  conditionally  
standardized returns is sym metric.

An exhaustive review  o f  the main shortcom ings o f  the traditional V aR model is provided by Szego
(2002).
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i.2 .5  Contagion

To some extent and especially in an international setting, asymmetry and fat tails in 

the multivariate distribution o f returns can be seen as instances o f contagion. King 

and Wadhwani (1990) define the latter as a significant change in the return 

correlation across markets. Using daily data, they find support for the presence o f 

contagion between stock markets in the US, the United Kingdom and Japan in the 

aftermath o f the October 1987 US stock market crash. Lee and Kim (1993) also 

found evidence o f contagion. The average cross-market correlation between 12 

major international stock markets jum ps from 0.23 to 0.39 in the aftermath o f  the 

crash.

Baig and Goldfajn (1999) and Forbes and Rigobon (2002) refine the definition o f 

financial contagion as a significant increase in cross-market linkages after a shock to 

one country or group o f countries. Their definition emphasizes the possible 

emergence o f contagion after a major financial crisis hence they focus only on ‘"the 

crisis period”. Forbes and Rigobon (2002) further pointed out that tests o f contagion 

have to take into account the presence o f heteroskedasticity in stock returns. When 

returns are heteroskedastic, tests o f parameter stability based on con-elation 

coefficients are biased. Once this is taken into account and hence tests are adjusted 

for the presence o f heteroskedasticity, the presence o f mean contagion is rejected. 

Correcting for heteroskedasticity in stock returns, Forbes and Rigobon (2002) could 

not find a significant increase in stock return correlation across stock markets; they 

concluded there was no contagion but ongoing increased interdependence across 

markets. While the more influential contributions in the literature focused on 

correlation o f returns across stock markets and thus on spillovers in mean returns, 

there are also studies that analyzed spillovers o f  volatility across markets as a form 

o f financial contagion. Spillovers in mean returns amount to an increase o f return 

correlation at times o f financial crisis and thus conditional and unconditional excess 

skewness (relative to the multivariate normal distribution), whereas spillovers o f
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volatility imply an increase o f  volatility correlation and thus conditional excess 

kurtosis and unconditional excess skewness.

Both GARCH and VAR frameworks have been used to estimate the variance- 

covariance transmission mechanisms between countries. Engle, Ito, and Lin (1990) 

applied both GARCH and VAR models to test for spillovers in daily exchange rate 

volatility across Japanese and American foreign exchange markets. They found 

support for the hypothesis that there are intra-daily volatility spillovers from one 

foreign exchange market to the other, i.e. they find evidence in favor o f the “meteor 

shower” rather than the “heat waves” hypothesis. Using the GARCH framework, 

Hamao, Masulis and Ng (1990) analyze short-run price volatility spillovers across 

London, New York and Tokyo stock markets around the 1987 U.S. market crash. 

They find evidence o f price volatility spillovers from New York to London, from 

New York to Tokyo and from London to Tokyo but not in other directions. Edwards 

(2000), on the other hand, estimated a GARCH model o f interest rate volatility and 

found evidence in support o f  contagion effects from Mexico to Argentina but not to 

Chile. He interprets this result as an evidence o f the curtailing effect o f capital 

controls on volatility contagion in fixed income securities. Applying univariate and 

bivariate switching volatility models to weekly stock returns for a group o f Latin 

American countries, Edwards and Susmel (2001) find strong evidence o f volatility 

co-movements across countries, especially among the M ercosur countries, that they 

interpret as evidence o f contagion. In addition, they show that high-volatility 

episodes are, in general, short-lived, lasting from 2 to 12 weeks. Diebold and Yilmaz 

(2005), in a multivariate VAR framework, study spillovers in both mean return and 

volatility between 16 major International stock markets, including 12 emerging 

markets. They report that return spillovers display an upward trend, consistent with 

increasing interdependence and financial integration, but no contagion. They find 

however strong evidence o f contagion in volatility spillovers.
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3.3. Variance Decomposition

CLMX (2001) proposed a useful methodology to decompose the total variance o f 

the average stock into its market and idiosyncratic components. 1 begin by writing a 

simple linear model o f asset excess returns:

r,j =P,r̂ j + ^ , ,  +?7,., (3 -1)

Here, , is the excess return on the market portfolio o f N  assets, r . , is the excess

return on the asset i at time t, i = 1,...., N, is the coefficient o f the regression o f

r , , on , with no constant term, s .,  is a regression idiosyncratic residual. Finally,

is a market-adjusted excess return on the asset i computed according to the

second equality in (3.1). In this representation, returns on the assets included in the 

market portfolio m are the sum o f a linear function o f the return on the portfolio and 

o f an error term. Alternatively, they are written as the sum o f a portfolio component 

and o f a portfolio-adjusted component. Letting , denote the weight o f  asset i, we

can compute the weighted average o f the variance o f the returns on the N  assets in 

the market portfolio:

I  w,, Var(r, ,) = Var{r„,,) + 1  w,, Var{ri, ,) + 1  w,, 2Cov(r„,,,?/,,) (3.2)
(=1 ’ '  ’ / = !  ’ ’ ,=1 ’

From (3.1), 7 ,, = £•,, +r^,{p, - l ) .  Thus the weighted average o f the variance o f the 

returns becomes:

S  w,, Var(r^,)  = Far(r,„,)  + 1  , Var(rj,, ) + 2Var(r„,, )Z  w ,, (y5, -1 )  (3.3)
/=1 ’ ’ /=1 ’ /=1

Notice that each e„ and £/,, with / ^ j ,  are not in general independent. However, they are 
uncorreiated on average by construction.
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Recalling that the weighed average of the coefficients is equal to 1, the last term 

on the right collapses to zero, and we are left with the following portfolio variance 

decomposition:

VAR, = 'Lw,,Var{r,,)
/ = i  ’

N

/=1

= Va,ir,„,) + lD10, (3.4)

This decomposes the average excess return variance (VAR,) across all assets in the 

market portfolio into two components; the variance of the excess return on the 

market portfolio (MKT,) and an average idiosyncratic component (IDIO,). To explain 

what IDIO, represents, I rewrite it as follows:

N N N
S  W,,, VatiT], , ) =E w,, Vaiir, , -  r„„) = I  m', , Vaiip, r„, , + £, , -  r„„)
/ = ]  /=1 /= )

= [Far(f,,) + (/?, -1 )  ̂Vat{ )]
/=1

= iw,,Var(£„) + Vaiir„„)iw,, [(/?, -1)^]
/=1 /=]

= iw ,,  Var(£,,) + Va^r„„ )CSV(j3,) (3.5)
(=1

Here, CSV{p,) = i w , \ { p , - \ f ]  is the cross-sectional variance of >0,. As shown by
(= i

CLMX (2001), CSV {Pi) is relatively small and not very volatile. Therefore, IDIO, 

has the important property of being approximately equal to the average variance of 

the residuals from the regression of asset excess returns on the market portfolio. 

Since is the excess-retum on the market portfolio, the first equality in (3.1) is 

seen as an empirical version of the Sharpe (1964) and Lintner (1965) security market 

line (SML) and is the usual CAPM idiosyncratic residual. However, while (3.1)
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contains a term in the asset beta, betas do not appear in (3.4). This framework thus 

provides a CAPM-equivalent decomposition of average total variance into market 

variance and average idiosyncratic variance, with the considerable advantage that it 

bypasses the need to estimate possibly time-varying betas for each asset.

The same scheme continues to apply if we introduce further levels o f decomposition. 

CLMX (2001), decompose returns ry, on firm i that belongs to industry /  taken from 

the market portfolio m into industry and the firm-level components:

f , j j  + P i j . n / n u l  + ^ i j j

=  + Vijj

= +'7,., (3-6)

Where^^

1.1Here, s  is the residual of the regression (with no intercept) o f industry /  on the

market excess-retum and thus it is the component of the former orthogonal to the 

latter. Furthermore, ^ a n d  [3  ̂^ are regression coefficients, //y., is the firm-

level, industry-adjusted component of ry,, and rjjj is the industry-level, market 

adjusted component^* of Vj ,. The average total variance vari'”‘̂  of the n industries that 

belong to the market portfolio rn can be decomposed, using (3.4), into the portfolio 

variance Var{r„, ,) and an average industry level component IND,:

Also, since e,,, and , are orthogonal (by construction), =y5,y,/Pi,„,.
Notice that this is different fi-om , in (3.1), as the latter is a regression o f  asset / (instead o f  

industry /) return on the market return.
Notice that this is different from rfij in (3.1), as the latter is the market-adjusted component o f  asset 

/ return (instead o f  industry /  return).
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va//'' =Zw^,Fa/<r^,) 
. /= i

= Vaiir^,) + Ŷ w ̂ ,Var{ri
, /= l

= Varir^j) + IND, (3.7)

Similarly, the average total variance o f the k  firms that belong to industry j  can be 

decomposed, using (3.4), into the industry variance Var{rj,) and an average firm 

level component FIRMj/.

k
var̂ j

l= \

k
= Var{r^,) + Tw^,/aiiJi^j,)

/=1

= Vaiirp) + FIRMj,, (3.8)

Using (3.8) and averaging across industries, the average total variance o f the firms 

that belong to the portfolio m can be decomposed into the average total industry 

variance, var^^^, and an average firm-level component FIRM,.

var, = T ^ ’ijVar^j

n n k
= S  w ) + 1 1  w w  V a r i n -  ,)

7 = 1  , f = l / = l

= var"‘‘ + FIRM, (3.9)

In turn, using (3.7), the average total industry variance can be decomposed into the 

portfolio variance and the average industry level component IND, and thus (3.9) 

becomes:

var, = Var(r„,j) + IND, + FIRM, (3.10)
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The variance components thus constructed share the same properties o f the 

corresponding variance components derived from equation (3.4). The idiosyncratic 

industry and firm-level variance components, in particular, can be interpreted as the 

average variance o f the residuals from the multiple regressions o f stock returns on 

market returns and on residuals from the regression o f industry returns on market

n n k

returns, i.e. IND,  = , and FI RM,  =  ̂ . The upshot o f this
7=1 ’ ■ 7=1/=I

variance decomposition is that it provides an intuitively appealing interpretation of 

the nature o f average idiosyncratic risk. It can be seen as the volatility o f a 

diversified portfolio o f market and industry neutral relative-value trades.

3.4. Unconditional and Conditional Second Moments Estimates

There are two main approaches to the estimation o f the second moments o f  the 

distribution o f asset returns. The first approach, ascribed to Officer (1973) and 

M erton (1980), is based on unconditional estimation methodology. The second 

approach, initiated by the seminal paper o f Engle (1982), uses a conditional 

estimation methodology to model conditional heteroschedastic patterns.

3.4.1 Unconditional Estimates

The unconditional estimation approach treats the moments o f a distribution as an 

observable variables and it therefore uses unconditional sampling methodologies to 

construct volatility and correlation estimates. Consider the following model o f a 

multivariate stochastic process with possibly time-varying moments:

y, = H T + u ,  (3.11)

u, ~  7 V ( 0 , / / ^ )

Where:

H-i = D ;C ,D t

îr=E,Ay,)
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t = \ , 2 , ... p  sub-periods o f T

Here, is the time-varying mean o f yj ,  C j  is a symmetric correlation matrix with 

ones along the main diagonal, D t is the diagonal matrix o f standard deviations and Ut 

is the nx\  vector o f zero mean innovations, obtained by subtracting the means over 

the p  sub-periods in period T  from each one o f the n elements o f y, and stacking 

them. Multivariate normality is not strictly necessary but I assume it for ease o f 

exposition. I also assume that C 7 is positive-definite and D j  is positive semi-defmite, 

thus H t is positive semi-definite too.

In the unconditional estimation methodology, moments are treated as observable 

random variables and polynomials o f  returns are seen as their realizations. If the 

distribution o f  the moments is assumed to be stable, the corresponding polynomials 

can be interpreted as stationary processes. Thus, by some central limit theorem, their 

mean exists and it can be consistently estimated using the sample average o f their 

realizations. Asymptotically, it can be estimated to any desired degree o f accuracy 

by increasing the sample size.

In particular, within each period T, squared returns innovations, w,./, and innovations 

cross-products, Uj.iUj,, are seen as realizations drawn from given underlying 

distributions o f volatilities and correlations. A central limit theorem therefore applies 

and the elements o f D t and C j  can be estimated with greater and greater accuracy by 

drawing increasingly large samples o f squared returns and returns cross-products, 

respectively. In practice, the sample size used for the estimation o f volatilities and 

correlations over a particular period can be increased by sampling squared returns 

and returns cross-products at arbitrarily high frequencies (by increasing p).

Once estimates o f the elements o f the D t  and C7- matrices have been computed, the 

variance-covariance matrix is obtained by simply feeding them into Ht.  This 

procedure yields volatility, correlations, variances and covariances estimates for 

each period T. This is sometimes called the ‘rolling’ volatility and correlation
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estimator (see, for example, Engle and Mezrich (1996)). These estimates are then 

typically grouped into sequences o f non-overlapping, consecutive periods T  to form 

estimated second moments time series. Formally, dividing a period T  into p  sub­

periods the variance o f the zero-mean returns innovations u, is;

Since this approach treats the volatility and correlation processes as observable 

variables, inferences about their behavior over time can be made by studying their 

distribution. This approach has been recently applied by Andersen, Bollersev, 

Diebold and Ebens (2000) to the study o f  the behaviour over time o f volatility and 

correlation using high-frequency intraday return data. In this approach, it is also 

legitimate to study the distribution o f the volatility and correlation processes 

conditional on other variables. This amounts to drawing inferences about their 

behavior by fitting regression models to the constructed unconditional estimates. 

CLMX (2001) construct their market and idiosyncratic volatility series using an 

unconditional estimation approach. In particular, they compute market volatility and 

the individual stocks firm-level variances needed to construct average industry and 

firm-level variance as the sample sum of, respectively, daily squared returns and 

market adjusted returns over non-overlapping monthly periods. They then study the 

behaviour over time o f  the constructed series by testing for the presence o f unit 

roots, by fitting univariate models with a deterministic time trend and by including 

these variables in multivariate VAR systems.

Var{u,)j l = \ (3.12)
P

And for correlations between returns innovations w,,, and uj/.

P

c / = )

(3.13)
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This strategy can yield useful insights, and it has the additional advantage of 

simplicity. But it has three shortcomings. First, even though the sums of squares and 

cross-products are consistent estimators of the second moments of the return 

distributions at each point in time, there might be considerable bias in finite samples 

(especially in relatively small samples) since they are ad hoc representations of the 

volatility and correlation processes. In particular, all observations within the last p  

periods are given equal weight and observations older than p  periods are given zero 

weight. This gives rise to ‘shadows’ (spikes in the volatility and correlation 

estimates up to p  periods after major events) and there is no theoretical guidance as 

to how to choose p. The theory only says that p  should be chosen as high as possible 

to increase accuracy (to reduce the variance of the estimate according to the relevant 

central limit theorem), thus neglecting the importance of temporal aggregation 

issues. The latter arise from the circumstance that the parameters and their values 

that best describe the process might change depending on the frequency. An 

example is the different volatility implied at different horizons by the returns auto­

correlation structure, e.g. if auto-correlation is negative (positive), low frequency 

volatility is lower (higher) than high frequency volatility. Second, the aggregation of 

daily data into lower frequency monthly data leads to a potential small sample 

problem. Third, there is no guarantee that the estimated variance-covariance matrix 

turns out positive-definite.

Care should be taken when using the estimated second moment series as explanatory 

variables to avoid a possible ‘generated regressors’ problem. This is a special “error 

in variables” problem discussed by Pagan (1984) and Pagan and Ullah (1988). In 

employing volatility and correlation estimates as explanatory regression variables, 

this problem arises if there are reasons to believe that their variance is large. This 

would be the case if the sample size p  is small relative to the variance of the
9 Qunderlying sampled variable . Other important issues arise when employing

The variance o f  the estimated volatility and correlation series is, by the relevant central limit 
theorem, equal to the variance o f  the corresponding underlying variable divided by the sample size p. 
For example, the variance o f  the estimated volatility o f  asset / is Var{an)lp, where Far(cr,7) is the 
‘true’ variance o f  the variance process. Since Var{dii) is unlikely to be known a priori, its sample
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estimated second moment series as explanatory variables o f returns, as in tests o f 

M erton’s (1973, 1980) ICAPM that regress aggregate returns on lagged market 

variance. As discussed by Pagan (1984), the use o f lagged realized variance as a 

regressor in place o f the unobservable rational expectation o f the variance leads to 

consistent estimates o f the coefficient on the latter, under the assumption that 

unexpected returns (the residuals o f the regression model) are independently 

distributed. In this case, consistent standard errors should be computed using 

standard heteroskedasticity adjusted variance covariance matrix estimators, such as 

W hite’s (1980). If the residuals are serially correlated, standard errors should be 

corrected further, e.g. using the Newy-W est’s (1987) variance-covariance matrix 

estimator. Merton (1980) also shows that constructing the second moment series 

using overlapping returns generates contemporaneous correlation between the 

regressor and the regression residual. In the presence o f  serial correlation in the 

regression residual, this leads to inconsistent regression estimates.

3.4.2 Conditional Estimates

The second approach to the estimation o f  the moments o f the return distribution, 

initiated by the pioneering work o f Engle (1982), treats them as latent variables to be 

estimated conditional on the available information set. In the discussion that follows, 

I will focus on fully parametric specifications, where the statistical model o f the 

variables o f interest is completely known up to some parameters. They include 

Autoregressive Conditional Heteroskedasticity (ARCH) and Generalised 

Autoregressive Conditional Heteroskedasticity (GARCH) models. These models 

provide a specification for the dynamics o f  the conditional second moments o f the 

noise component o f a random variable time-series representation. They are the 

extension to second moments o f essentially analogous models used for the mean, 

such as the Autoregressive (AR) and Autoregressive Moving Average (ARMA) 

models (Box and Jenkins (1970)). For the discussion o f conditional second moment

estim ate could be used instead. A ssum ing that the estimated underlying volatility process is 
stationary, sam ple estim ates could be formed by com puting the sam ple variance o f  the volatility  
estim ates.
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models and estimation methodologies that follows, it is preliminarily useful to 

specify the conditional multivariate distribution o f  the vector o f random variables y/:

y, = + u,

u , | 3 , _ ,  ~ C D ( 0 , / / , )  (3.14)

Where,

H, = D,C,D,

Here, symbols retain their prior meanings but the time subscripts change. Also, 

importantly, I work with conditional instead o f unconditional moments. Briefly, w, is 

an nx\ vector o f zero mean innovations conditional on the information set available 

at time t-\ (3 ,_ ,), obtained by subtracting the conditional means from each o f the n

elements o f y, and stacking them. They follow a O distribution, not necessarily 

normal, with centred second moment matrix H,. Also, C, is the conditional 

correlation matrix and D, is the diagonal matrix o f conditional standard deviations. 

Again, both D, and C, and, as a consequence, H, are assumed to be positive definite. 

To further specify the conditional statistical model o f u,, 1 parameterize its moments 

as functions o f the finite dimensional vector Therefore we have u, = u, (i//). As 

before, the >>, vector could represent the returns on the assets that constitute a 

portfolio.

ARCH models were introduced by Engle (1982) and are now commonly used to 

describe and forecast changes in the volatility o f  financial time series. They are 

useful when we have reason to believe that the variance o f the error term varies over 

time as a function o f  how large the errors were in the past. Formally, the n x \ vector 

stochastic process u, follows a multivariate ARCH process if  the nxn  conditional 

variance-covariance matrix depends non-trivially on the past o f the process:

H, = E,.^{u,u' I 3 ,_ ,; y/) = Et-\{u,u' \ \ u,.\, u,.2 , u\, y/) (3.15)
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Notice that the u, innovations are clearly non independently distributed once we 

allow conditional second moments to depend on past realizations o f the process.
1 j ' \

Now define the standardized innovations as z, = H, u, (one o f the good reasons to 

require H, to be positive-definite is to be able to invert it). These will have zero mean 

and time-invariant unit variance and zero covariance, i.e. their variance-covariance 

matrix is the identity matrix /„. This observation is central to most o f the inference 

procedures based on ARCH-type models. Specification checks, in particular, are 

aimed at ascertaining whether the vector z,, computed using the estimated variance- 

covariance matrix, displays any residual time pattern in its second moments or any 

correlation between its elements.

Allowing for time-variation in conditional second moments implies excess-kurtosis 

in the unconditional distribution. In other words, it allows modelling the 

phenomenon o f fat tails observed in the distribution o f many financial and economic 

variables. To see this, consider for expositional simplicity the univariate case. If the 

distribution o f  z, is assumed to be time-invariant with finite fourth moment, the 

unconditional fourth moment o f u, can be written as the product between the 

unconditional fourth moment o f z, and the unconditional second moment o f the 

conditional volatility rate:

E{uf)  = £ (£ (z ,V | )) = £ (z /)£ (a /)  (3.16)

Then, since the square is a convex function o f a variable, it follows by Jensen’s 

inequality that the mean o f the square o f  c /  is greater than the square o f its mean. 

Therefore:

(3.17)

2  2  * •Finally, since by definition £ (w ,) = E {o , ), we can substitute and write:

£ (« /)  = E{z,^)E{af) > E(z /)E{u,^f  (3.18)
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Here the equality holds true only for constant conditional variance, see for example 

Bollersev, Engle and Nelson (1994). This means that time-variant conditional 

variance implies that the unconditional fourth moment o f m, is larger than the 

unconditional fourth moment o f z, scaled up by the appropriate measurement unit.

leptokurtic. In particular, even if  the conditional distribution o f the innovations is 

Gaussian, the unconditional distribution is non-Gaussian, with excess-kurtosis due to 

the mixture o f Gaussian densities with different volatilities.

The second moment parameters are usually estimated by maximum likelihood (ML). 

This involves finding the values ^  that maximize the likelihood function o f the 

sample o f T  realizations {yr-u yr-i, yT-2,,----y\] o f the multivariate process followed 

by y, under the null that u, follows the hypothesized ARCH-class process. In 

practice, the strictly monotone logarithmic transformation o f the likelihood function
•J A

is usually maximized. The log-likelihood o f the /th observation is :

Defining L j  as the log-likelihood o f the full sample o f T  observations, the estimation 

problem is then:

In the normally distributed case or under the auxiliary assumption that z, is i.i.d., the 

sample log-likelihood simplifies to:

■? 2
i.e. E{uf )  , and thus that the innovations have an unconditional distribution 

characterized by excess-kurtosis even if  the standardised innovations z /  are not

L i y n ¥ )  = ln / [ z ,{y/ )] -  0 .5 ln(| H , {(//) 1 ) (3.19)

(3.20)

T

(3.21)

The second term on the right is a Jacobian that arises in the transformation fi'om the standardized 
innovations to the observable y,.
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The normahty assumption is often made for the conditional distribution of>^,, w, and, 

therefore, the standardized innovations z,. Even though this assumption might appear 

implausible in many empirical applications, e.g. the estimation o f the dependence 

structure o f financial return data with non-normal distributional features such as 

thick tails and high skewness and kurtosis, it might be alternatively justified on 

quasi-maximum likelihood (QML) grounds, following Bollersev and Wooldridge 

(1992). If  the conditional mean and variance equation are specified correctly, the 

QML estimator obtained by maximizing a conditional normal likelihood function is 

Fisher-consistent, no matter what the true distribution o f the population from which 

the observations are drawn might be. Under appropriate regularity conditions, this is 

sufficient to establish consistency and asymptotic normality o f the parameters 

estimates, y/ (see, for a discussion, Bollersev, Engle and Nelson (1994)). Moreover, 

while using distributions other than the normal might yield more efficient estimates 

if  the distributional assumption is correct and the conditional model is correctly 

specified, it might end up sacrit'icing consistency when this is not the case, see 

Fiorentini, Sentana and Calzolari (2002) for a discussion. When non-normal 

distributions are assumed, moreover, theoretical results about the asymptotic 

distribution o f the estimators might not be readily available. The log-likelihood 

function under the multivariate normality assumption is:

1 will now describe a number o f  conditional second moment models belonging to the 

ARCH class. These are specifications o f  (3.13) that impose particular restrictions on 

the temporal dependency in the conditional mean and variance equations. I will

1 /  / T y ,  T y j

= " 2 ? “' “ Y ’̂ (2;r)--yln | //,(v^)
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mainly focus on the latter. I start from the univariate case, and then I generalize the 

discussion to multivariate models.

Univariate Models

Suppose that returns are described by the following regression model:

Rt = y o  + y \  xi, +. . . .+  y„  x„, + u, (3.23)

2 2Here, E,.\{u,) = 0 and E,.\{u, ) = <J, . Suppose further that we can then write a second 

equation relating the variance o f the error term to the amount o f volatility observed 

in past periods:

= ao + a\ Ut.^ +....+ ap u,.p  ̂ (3.24)

Here, there are two components o f the conditional variance o f u,, a constant term and 

previous periods news about volatility (squared residuals). In other words, the 

conditional variance is parameterized as an autoregressive distributed lag o f p  

squared innovations. The residual is thus heteroskedastic, conditional 

onU|,U|_^,...,U|_^. This model is known in the literature as ARCH(p), w herep  is the

number o f autoregressive terms in the conditional variance equation. This is the 

ARCH specification originally introduced by Engle (1982). The p + \  parameters 

aQ,a^,...,ap o f the conditional variance equation must be estimated along with the

parameters y o ,y \,—,y„ o f the conditional mean equation. The parameter estimates 

are the values ij/ that maximize the likelihood function o f the sample o f T 

realizations { R t- \ ,  R t-2, R t-3, .......-^i}-

Since (3.24) can be seen as a distributed lag model for cr/, we can replace many 

lagged values o f u, (the conditional residuals) by only one or two lagged values o f 

<T, (the conditional variance). In general, we could have any number o f ARCH terms
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and any number o f lagged values o f the conditional variance in the specification o f a 

GARCH model (Bollersev (1986)), although parsimony is generally recommended. 

In the conditional variance equation we could also include explanatory variables 

from the conditional mean equation. This is shown in the following general 

representation o f a GARCH(/?,g) model:

R, = yo + y \ x \ , +.... + y„x„, + e, (3.25)
2 2 2 2 2 a, = Gfo + a\u,.\ + .........+ UpUt.p + b\cr,.\ +........+ bg<r,.g + (pix,, (3.26)

Again, all the parameters in both the conditional mean equation and the conditional 

variance equation must be estimated simultaneously by ML or QML. In order to rule 

out negative variances, both sides o f  all the conditional variance equations should be 

non negative. In the GARCH(/?,^) model, (3.26) with = 0, the unconditional 

variance estimate is the following:

^0 
P  V

/=1 / = ]

(3.27)

This is the base-line level to which variance mean reverts in the long-run if  it 

follows a stationary process. A necessary condition for variance to be stationary,

p  '/

therefore, is th a tX « ,+ Z ^ , ^  1 • By a similar reasoning, the latter expression
1=1 /=]

represents the persistence o f the conditional variance estimates. While a non-

p  ‘I
explosive variance process requires X <3, the closer this expression is to

1=1 / = i

unity, the more persistent are the effects o f innovations on subsequent values o f the 

series.

Notice that the dynamic behaviour o f the conditional second moments, under any 

specification that belongs to the ARCH class, implies a temporal aggregation 

problem. If a GARCH model is correctly specified for one frequency o f  data, then it
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is in general m isspecified for data w ith any other tim e scale (Engle and Patton 

(2001)). In o ther words, the circum stance that the conditional variance o f  a process 

is generated by an A R CH -type m odel at a particular frequency does not im ply that 

the data at different frequencies be generated by the same m odel. The consequence 

is that param eters estim ates using data w ith different frequencies m ight imply 

different rates o f  decay o f  volatility innovations (see for exam ple K earney and 

Patton (2000)).

p  <i
C onstraining the + Z ^ ,  expression to sum to unity yields the integrated

(=1 / = i

GARCH(/?,g), or lG A R C H (p,^), specification. This constraint forces the conditional 

variance to act. in some respects, like a unit process. In particular, the one-step ahead 

forecast o f  the IG A R CH (1,1) variance depends only on the constant term  and the 

past value o f  conditional variance but, unlike a true unit root process, each 

realization o f  the series is a geom etrically decaying function o f  the current and past 

squared innovations. In this model unconditional variance is undefined. See N elson 

(1990) for a discussion. The IG A RCH (1,1) process, w ith ao in (3.26) constrained to 

be zero, yields the Exponential M oving A verage (EW M A ) representation o f  the 

variance process. Because o f  its com putational sim plicity, coupled with its ability to 

capture the high persistence o f  stock returns volatility, this representation is very 

popular in the financial industry (e.g. JP M organ’s R iskM etrics’’'''  ̂ approach).

Since understanding and predicting the tem poral dependence in the second order 

m om ents o f  asset returns is im portant for m any issues in financial econom etrics, a 

bew ildering fam ily o f  univariate G A RCH  m odels has proliferated. These m odels are 

extensions o f  the basic GARCH(/?,^) m odel in (3.25) and (3.26). These extensions 

address a num ber o f  im portant stylized em pirical regularities about volatilities such 

as leverage and asym m etric volatility effects, conditionally  fat tails and the 

possib ility  o f  regim e switches.
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Typically, as summarized by the leverage and feed-back volatility effects 

highlighted by Black (1976), and Christie (1982), Schwert (1989), Campbell and 

Hentschel (1992) and discussed in Section 3.2.3, negative innovations lead to larger 

volatility increases than positive innovations. In models that allow for this type of 

asymmetry, conditional volatility depends not only on the size, but also on the sign 

of the innovations. This can be achieved by either adding a new predetermined 

economic variable, e.g. firms’ financial leverage, to the variance equation or by 

modifying the autoregressive component of the process. A simple example of the 

latter approach is the model estimated by Glosten, Jagannathan and Runkle (1993). 

They add the product between the lagged squared innovation and an indicator 

variable to a standard GARCH(1,1) specification. The indicator variable takes the 

value 1 or 0 depending on whether past returns are, respectively, negative or 

positive. Their variance equation takes the following form:

Here, 7,_i = 1 if Ut.\ < 0 ,1,.\ = 0 otherwise. If the innovation u,.\ is negafive the effect

GARCH(1,1) case. Henceforth. I will denote this specificafion as GJR-GARCH. A 

more complex asymmetric GARCH process is the exponential GARCH (E- 

GARCH) model proposed by Nelson (1991). The E-GARCH variance process is 

formulated in terms of the strictly non decreasing logarithmic transformation of the 

conditional variance. This specification has the advantage that the volatility 

estimates are never negative, no matter the value of the parameters estimates. The 

conditional log-variance equation is:

2 2 2 2 cr, = c/o + a\u,.\ + aj (w,-i /,./) + (3.28)

2 2 2 on cr, is {a\ + <32)w,-i , otherwise the effect is a\u,.\ as in the symmetric

(3.29)
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If the standardized innovation is negative, the effect on the logarithm o f  the

conditional variance is a\ - aj,  otherw ise the effect is a\ + aa. Other specifications  

are possib le. Engle and N g  (1993) review  a number o f  alternative specifications and 

introduce the new s impact curve. This curve is derived conditioning on the 

information available at / - 2 in order to consider the effect o f  the shock wm on the 

conditional variance a, in isolation. D ifferent A R C H  and G ARCH  m odels can thus 

be compared by asking how  the conditional variance is affected by the latest 

information, the ‘n ew s’. This is particularly useful in order to v isualize how  the 

various specifications m odel asym m etries in the variance process. For exam ple, the 

new s impact curve o f  the G A R C H (1,1) m odel has the form erf ~  A +  where

^  + b̂ <7̂  (recall that is the unconditional variance). This curve is sym m etric

with respect to u,.\ =  0. Other G ARCH  m odels, such as the GJR-G ARCH  and the E- 

G ARCH , have asym m etric new s impact curves. See Engle and N g  (1993) and Ding, 

Granger and E ngle (1993) for exam ples and a discussion.

One further extension  o f  the basic G A RC H (p,^) m odel is represented by G ARCH  in 

mean (G A R C H -M ) specifications originally proposed by Engle, L ilien and Robins

(1987). Consistent with the predictions o f  popular asset pricing m odels such as 

M erton’s (1973) ICAPM , G A RCH -M  m odels a llow  for the conditional variance in 

(3 .26) to enter the mean o f  the process in (3 .25). B ecause they exp licitly  m odel the 

conditional risk-return relationship, G A R C H -M  specifications can be used to 

account for asym m etries in the distributions o f  financial returns introduced by the 

volafility feed-back effect (Cam pbell and H entschel (1992)). For exam ple, Chou

(1988) estim ates a G A RCH -M  m odel o f  returns at various frequencies (from w eek ly  

to annual) over the period 1962-1985. The estim ated excess-retum  m ean equation is 

(3 .23) with x i, =  a, and yj =  73 ••••= =  0. The estim ated variance equation is (3 .26)  

with p  =  q =  \ .  He finds plausible point estim ates o f  the ‘relative risk aversion’ 

parameter y\ but the latter is only m arginally statistically significant for m ost returns 

horizon. Attanasio and W adhwani (1990) use a G A R C H -M  specification  to m odel 

the tim e-varying U S stock-m arket ex cess return over the period 1953-1988. They
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then test whether, against the EMH, either the dividend-price ratio (or dividend 

yield), a short term interest rate or both predict unexpected stock market excess 

returns. Their estimated market price o f  risk is both uncomfortably large from a 

theoretical point o f view (under power utility, it implies an implausibly high risk 

aversion) and only marginally significant. Moreover, the short rate does appear to 

predict conditionally unexpected excess returns. This, however, might be 

rationalized under M erton’s (1973) ICAPM by interpreting the short rate as a 

variable that proxies for the state o f the investment opportunity set (Scruggs (1998)).

Another possibility is to estimate the GARCH model assuming standardized 

Student-t distributed conditional innovations as in Bollersev (1987). As the degrees 

o f freedom go to infinity, this distribution approaches the standard normal. While the 

ability to capture the second moment dynamics o f unconditional distributions with 

fatter tails than under the normality assumption is typical o f all the models that 

belong to the ARCH family, Student-t distributed conditional innovations allow for 

fatter tails o f the conditional distribution. More specifically, while the standard 

GARCH model in (3.26) with normally distributed conditional innovations displays 

by (3.16) unconditional excess-kurtosis, it also displays excess-kurtosis in the 

conditional distribution o f  the innovations if  these are Student-t distributed. 

Obviously, the latter specification allows for larger excess-kurtosis in the 

unconditional distribution. This specification is particularly useful for modelling 

returns on assets that experience large gains or large losses relatively often (more 

often than under a normal distribution), such as some stocks traded in emerging 

markets, certain emerging stock markets indices and, among non-equity variables, 

foreign exchange rate returns.

Although ARCH and GARCH type models estimated assuming a t-distribution for 

the conditional innovations can account for fat tails, such specifications will 

typically predict too much volatility persistence in the presence o f a regime switch. 

Switching ARCH/GARCH models were first proposed by Hamilton and Susmel 

(1994) to let persistence in volatility depend not only on the size o f past residuals

96



and conditional variance but also on the number and characteristics o f regimes or 

states. The transition between different volatility states is governed by a Markov 

process. This mechanism is designed to capture two stylized facts that conventional 

generalized autoregressive conditional heteroskedasticity models find hard to 

reconcile, namely that conditional volatility can increase substantially in a short 

amount o f time at the onset o f a turbulent period while its rate o f mean reversion 

appears to vary positively and nonlinearly with its level. In other words, stock- 

market volatility does not remain persistently two to three times above its normal 

level the same way it persists at a level that is just 30-40 percent above normal. 

Dueker (1997) allows the student-t degrees-of-freedom parameter to switch 

according to a Markov process such that the conditional variance and kurtosis are 

subject to discrete shifts and he finds that the half life o f  the most leptokurtic state is 

relatively short. One implication is that expected market volatility reverts to near­

normal levels fairly quickly following a spike. Edwards and Susmel (2000) 

estimated both GARCH(1,1) and SWARCH (1,1) models^' o f weekly interest rates 

for Argentina, Brazil, Chile, Hong Kong and Mexico from 1994 to 1999 allowing 

for three different volatility states (low-medium-high). The estimated parameters 

imply an explosive volatility process in the case o f the GARCH(1,1) models but not 

in the case o f the SWARCH(1,1) models.

One way to test for ARCH-type effects is to estimate an A RCH -type model o f the 

second moment process and then perform significance t-tests or F-tests (typically for 

the null hypothesis that either some or all the parameters o f the model are not 

significantly different from zero). This amounts to checking on the fit o f the 

estimated model. An estimated GARCH model, however, should account for all the 

dynamic aspects o f the mean and variance process. The estimated conditional 

residuals should be uncorrelated and should not display conditional 

heteroskedatisticy in their second moments. Thus, the specification o f  the model can

u
be tested by first forming the standardised conditional innovations asz, = — . If 

They also estim ate bivariate versions, for two countries at a time, o f  these m odels.
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there is any residual serial correlation in z, the model for the mean is not correctly 

specified. On the other hand, the presence o f patterns in the square o f  z, suggests the 

presence o f residual heteroskedatisticy and, hence, that the model for the variance is 

not correctly specified. One way to test for patterns o f  a linear nature in the volatility 

o f the conditional standardised residuals is to use the Ljiung-Box Q statistic (see 

Enders (2004)) o f  their square. To check on the presence o f residual patterns o f a 

possibly non linear nature one could use Ram sey’s RESET test or Brock, Dechert, 

Scheinkman (1996) BDS test on the squares o f the conditional standardized 

residuals.

One way to test for leverage effects or for asymmetric reaction o f volatility to news 

is to estimate a GJR-GARCH or an EGARCH model and then perform a t-test for 

the null hypothesis that 0 2  = 0 in (3.28) and (3.29). However, there is a specific 

diagnostic test to determine whether there is a residual leverage effect not captured 

by the estimated conditional variance model. This test requires, after estimating the 

selected ARCH or GARCH specification, to construct the standardised conditional 

innovations z,. Then, to test for residual leverage effects, the following regression 

should be preliminarly estimated:

-  ^0 +<^2^(-2 + ........ + ^k^i-k (3.30)

Here, c, is a i.i.d. regression error term. If  there are no residual leverage effects, the 

squared standardized errors should be uncorrelated with lags o f the standardized 

errors. Thus the null hypothesis that there are no residual leverage effects is 

that<^o = (5, = .......= = 0 . Under the appropriate regularity conditions, this can be

tested using a standard F-test. This is sometimes known as a ‘size bias’ test. Engle 

and Ng (1993) proposed another procedure that can be used as a misspecification 

test for GARCH models under the null o f  no residual asymmetry in the response o f 

second moments to innovations o f different signs. They suggest to test whether the 

estimated squared residuals can be predicted using the indicator variable /,_i that
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takes value 1 if  the lagged innovation is negative and zero otherwise. This is known 

as the ‘sign bias’ test. This is based on the estimation o f  the following regression:

(3.31)

Under the null o f  the test, there are no residual asymmetric effects in the errors o f  

the model. If a M est indicates that is significantly different from zero, the sign o f  

the current period shock is helpful in predicting next period conditional variance and 

the null is rejected. This test can be extended to determine whether the effects o f  

positive and negative innovations also depend on their size:

This is known as the ‘negative size bias’ test. Under the null o f  the test, the size o f  

the innovation does not influence whether the response o f  volatility is asymmetric or 

not. These tests can be generalized further. In particular, Engle and N g (1993) 

propose a joint test for sign and size bias. This requires that the following regression 

be estimated:

In this equation, (1 - /,) takes by construction value 1 when the lagged innovation is 

positive and zero otherwise. Significance o f  suggests the presence o f  sign bias, 

the significance o f  S2 and J 3 suggest the presence o f  negative and positive size 

bias, respectively.

M ultivariate M odels

Financial volatilities are not only time-varying, but they also move together across 

assets and markets (Bollersev, Engle and N elson (1994)). Given a set o f  assets (e.g.

(3.32)

(3.33)
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a portfolio), estimating their conditional second moment process using univariate 

ARCH type models imposes the restrictions that the individual asset variances do 

not depend on anything but their own lagged squared return innovations and their 

own lag. In particular, individual asset variances are not allowed to depend on 

lagged squared innovations o f the return on other assets, on the cross-products o f the 

latter, or on other variances and other correlations. Recognizing the possibility o f co­

movements in a multivariate modelling framework leads to obvious gains in 

efficiency and, therefore, it leads to more reliable empirical representations than 

working with separate univariate models. If  time variation in co-movements displays 

persistence and clustering like the time variation in volatilities, multivariate 

generalizations o f the ARCH type class o f models are obvious candidates to model 

them (Bollerslev, Chou and Kroner (1992), Bollersev, Engle and Nelson (1994)).

The development o f multivariate ARCH type models opens the door to better 

decision making tools in various financial applications such as asset pricing models, 

portfolio selection, option pricing and Value-at-Risk estimation. As noticed by Engle 

and Kroner (1995), the extension o f univariate conditional second moment models to 

the multivariate case is conceptually analogous to the extension o f ARMA models o f 

the mean to vector ARMA ones. Like univariate specifications, they can be 

estimated with either normal (again, in a ML or QML setting) or non-normal 

distributions. The rationale for using a parametric leptokurtic distribution such as the 

Student-t distribution in a multivariate context is that one may be interested in the 

probability o f joint occurrence o f  several extreme events, which is regularly 

underestimated by the multivariate normal distribution, especially in larger 

dimensions (Fiorentini, Sentana and Calzolari (2002)).

The estimation o f  multivariate second moments models, however, presents special 

computational difficulties. If  more than just a few variables are jointly modelled, the 

number o f their inter-relationships and, therefore, o f  free parameters to be 

simultaneously estimated can be very large. For example, a full unrestricted n- 

variable generalization o f a GARCH (1,1) model, the so called Vec representation
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(see for a review, Bollersev, Engle and Nelson (1994)) and Engle and Kroner 

(1995)), requires the estimation o f r? equations and thus o f 0{n^) parameters. Even 

though many o f  these parameters appear in redundant equations (for example, by 

symmetry o f the variance covariance matrix, there are two identical covariance 

equations for each pair o f variables), there are still n{n + l)/2 equations to be 

simultaneously estimated once the system is purged o f the redundant ones. Formally, 

the Vec(p,q) representation, purged o f the redundant equations, is the following:

h , = h  + t A , T ] , _ , + i B X ,  (3.34)
j=] j= \

Where:

h, = vech{Hi )

r], =vech{UiU'i)

Here, vechi) is the operator that stacks the elements in the lower triangular portion of 

an nxn matrix into an n(n+\)/2 vector, Aj and Bj are conformable parameter matrices 

and h is a n{n+\)/2 parameter vector. The Vec representation is considerably 

general. All variances and covariances are a function o f their own lags, o f their own 

lagged squared innovation and innovation cross-products, o f the lags on the other 

variances and covariances and o f the other lagged squared innovation and innovation 

cross-products. However, this representation is also computationally very 

demanding because free parameters to be simultaneously estimated are attached to 

each right-hand side variable. To hasten the estimation procedure by reducing the 

number o f parameters to be estimated, the elements o f h could be set equal to the 

corresponding elements o f the sample estimate o f the unconditional variance- 

covariance matrix. This technique is called ‘variance targeting’ and its usefulness is 

directly related to the assumption that the conditional second moments are a 

stationary process that mean-revert to a long-run mean given by the elements o f  h . 

The unconditional variance-covariance estimate o f H  is the following:
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Vech{H) = /,

(3.35)

This is the base-line level to which the conditional variance-covariance matrix 

mean-reverts in the long-run if  its elements follow a stationary process. A necessary 

condition for this is that the term in brackets has non-zero determinant and, 

therefore, that it is invertible. The necessary and sufficient condition for H, to be 

stationary (covariance-stationary) is that the eigenvalues o f 0  are all less than one in 

modulus.

An alternative specification, the BEKK model introduced by Engle and Kroner 

(1995), imposes positive-definiteness o f the estimated conditional variance- 

covariance matrices. Formally, the BEKK(/?,^,A^ model is defined as follows:

Here, all the matrices are nxn  and G is upper triangular. As proven by Engle and 

Kroner (1995), the BEKK(/?,^,A^ model is a special case o f  the Vec representation. 

They provide a number o f propositions that specify the conditions under which the 

BEKK(p,g,A;) model achieves full generality and it is therefore equivalent to a Vec 

representation. The vectorized expressions for the unconditional variance-covariance 

estimate H  are the following:

(3.36)

Vech{H) = -  n ) - ' vecKG'G) (3.38)
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As usual, this is the base-line level to which the conditional variance-covariance 

matrix mean-reverts in the long-run if it follows a stationary process. The condition 

for it to be stationary (covariance-stationary) is, as before, that the eigenvalues of O 

are all less then one in modulus. Adopting a “variance targeting” approach, the G'G 

matrix could be set equal to the positive definite sample estimate of the 

unconditional variance-covariance matrix times the quantity - n ) .

A somewhat more parsimonious but less general representation that requires the 

estimation of 0{n ) parameters is the BEKK(p,g,l) that imposes K = \. This 

specification, however, still requires the simultaneous estimation of a large number 

of parameters if more than just a few variables are being jointly modeled. In 

particular, in a first-order model with p  = 1 and ^ = 1, there are n{n+\) free 

parameters o f the second moment equations to be simultaneously estimated if 

variance targeting is employed. The number of parameters, therefore, still grows 

with the square of the number of variables. For a portfolio that includes 42 stocks, as 

in the empirical study presented in Chapter 6, this would require the estimation of
' I 'y

1806 parameters for the auto-regressive and lagged conditional terms of the 

second-moment equations. Diagonal GARCH models (see for example Bollersev, 

Engle and Wooldridge (1988)) are a special case of BEKK(/7,^,1) with A\ and B\ 

diagonal matrices that greatly economize on the number o f parameters to be 

simultaneously estimated at the price of imposing a somewhat arbitrary restriction 

(i.e., all the cross-moments on the right-hand side of the same equation have the 

same coefficient).

When the number of variables and, therefore, parameters to be simultaneously 

estimated is high relative to the number o f observations, the econometrician is 

typically left with few degrees of freedom in inferring the parameters values from 

the data. This makes inference procedure unreliable. The likelihood function is said 

to become ‘flat’ (its gradient is close to zero throughout the parameter space rather 

than just in the neighborhood of the optimum). Researchers have responded to this

For example, with the number o f  assets n = 42, the number o f  parameters is 2[n{n-\)/2+n\  = 1,806.
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difficulty in three ways. First, they have restricted the order o f their multivariate 

GARCH specifications to no more than a few variables. Second, they have imposed 

restrictions on the correlation structure. Bollerslev (1990) proposes a class o f 

multivariate GARCH (MVGARCH) models in which the conditional correlations 

are constant and thus the conditional covariances are proportional to the product o f 

the corresponding conditional standard deviations. This restriction highly reduces 

the number o f unknown parameters and thus simplifies estimation. It also guarantees 

positive-definiteness o f the estimated variance-covariance matrices (if the 

unconditional correlation matrix is positive definite). This class o f multivariate 

GARCH models is known as constant conditional correlation (CCC) GARCH. For 

example, in his multivariate GARCH analysis o f European exchange rate volatility 

transmission, Bollerslev (1990) assumed constant conditional correlations to reduce 

the number o f matrix inversions from 10,323 to 31 in estimating 30 parameters from 

333 observations on 10 exchange rate returns. This approach has been commonly 

used in multivariate GARCH models o f stock market volatility transmission (see, for 

example, Karolyi (1995), Koutmos and Booth (1995), Koutmos (1996), and 

Theodossiou, Kahya, Koutmos and Christofi (1997)). Although a computationally 

efficient solution, the assumption o f constant correlations is becoming increasingly 

untenable, as further evidence emerges on the issue, see for example De Santis and 

Gerard (1997), Ang and Bekaert (2002) and Longin and Solnik (2001).

More recently, a third  solution has been proposed to more efficiently model the 

time-series behaviour o f large correlation matrices. This work includes Alexander’s 

(2001, 2002) orthogonal GARCH (0-G ARCH ) model and the Dynamic Conditional 

Correlation GARCH (DCC-GARCH) model o f  Engle (2001) and Engle and 

Sheppard (2002). This family o f models may be a useful way to describe the 

evolution over time o f the correlation matrix o f large systems. Orthogonal models 

are a special class o f factor models. The latter models are based on the assumption 

that the data can be described as a linear transformation o f a set o f  uncorrelated 

components. Orthogonal models require further that the linear transformation be 

represented by an orthogonal matrix. The latter is computed from the eigenvectors o f
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the data. The factors are chosen to be the principal components o f  the data or a 

subset o f them (typically those with the highest explanatory power o f  the variation in 

the data, i.e. the highest coefficient o f determination R ) and modelled as univariate 

zero mean ARCH type processes. The variances and the covariances o f the assets are 

derived from the variances o f the factors and the orthogonal linear transformation 

matrix. No idiosyncratic, non-factor related second moments need to be modelled 

because they are assumed not to influence the hypothesized multivariate conditional 

second moment process. If only the principal components o f the system with the 

highest explanatory power are selected as factors, this leads to neglecting a large 

amount o f non-systematic, temporary ‘noise’ in the data and, as a consequence, 

correlation estimates are usually more stable than with other more general methods.

While this approach has the advantage o f simplicity and o f generating stable 

correlation matrices, it has the drawback that the linear transformation used to 

orthogonalize the data and the parameters o f  the factor variance process are not 

estimated conditioning on the same information set (typically, the linear 

transfonnation matrix is computed orthogonalizing an unconditional variance- 

covariance matrix). This leads to an obvious loss o f efficiency if the underlying 

factor structure is time-varying. Also, the generated variance-covariance matrices 

are not positive definite (they are positive semi definite). This might represent a 

problem in certain financial applications that require inversions o f the variance- 

covariance matrix, such as portfolio optimization. Moreover this approach is best 

suited to model the variation in highly correlated systems such as domestic equity 

portfolios. These are systems where a few principal components explain most o f the 

variation. Alexander (2001) reports encouraging estimation results for equity returns 

and exchange rates volatility and correlation estimates. However, Morillo and 

Pohlman (2002), using daily and weekly data on the 24 largest international stock 

market indices included in the MSCI World Index, find that 0-G A RCH  variance- 

covariance matrix estimates do not improve on a simple EWMA univariate 

estimator.
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Engle and Sheppard (2001) and Engle’s (2002) DCC-GARCH model can be seen as 

a dynamic generalization of the CCC-GARCH. It allows for conditional time 

variations of the correlation matrix but imposes the restriction that the dynamics of 

all its elements are governed by common parameters. Moreover, the dynamics of the 

variance of each of the n variables being modelled do not interact with the dynamics 

of their correlations. These restrictions reduce dramatically the number of 

parameters to be estimated and ensure positive definiteness of the conditional 

correlation and variance-covariance matrices. The DCC-GARCH model has the 

additional advantage that it can be estimated using a two-stage procedure that helps 

further reduce the computational difficulties typical of multivariate GARCH models. 

In the first stage, univariate GARCH models are estimated for each asset, and the 

standard deviations estimates thus obtained are used to standardize the return 

innovations. In the second stage, a simple (usually scalar) specification is used to 

model the time-varying correlation matrix, which is obtained using the standardized 

residuals from the first stage. Engle and Sheppard (2001) show that this two-stage 

procedure yields consistent maximum likelihood parameter estimates. The 

inefficiency in the two-stage estimation process can be taken into account by 

modifying the asymptotic covariance of the correlation estimation parameters.

The DCC-GARCH model opens the door to more flexible variance-covariance 

matrices in the variance part. Since the conditional variances (together with the 

conditional means) can be estimated using univariate models, one can easily extend 

the DCC-GARCH by using more complex GARCH-type structures for the n 

univariate variance processes. Moreover, since the DCC-GARCH model, at least in 

the DCC(1,1) case, can be seen as a scalar BEKK( 1,1,1) model for the standardized 

conditional innovations squares and cross-products, it also facilitates the 

specifications of richer dynamics of conditional correlations.
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3.4.3 DCC-GARCH

In Chapter 6, I will use the DCC-MVGARCH model to estimate the conditional 

variance-covariance matrix of a large number of stocks and equity and bond indices. 

Therefore, it is now appropriate to provide a more exhaustive description of this 

model. I begin by rewriting, using (3.14) and (3.22), the multivariate log-likelihood 

of the observations on u,\

Z, = -0 .5 X k lo g (2 ;r)  + lo g ( |/ / ,  |) + w '//, 'w,
!= \

= -0 .5 l[ /7 lo g (2 ;r)  + log(| D,C,D, |) +
r = l

= -0 .5X [« log (2 ;r) + 21og(|D , |) + log(|C , \) + £;C ~'s, 
1=]

(3.39)

Two components can vary in this likelihood function. The first part contains only 

tenns in D, and the second part contains only terms in C,. Engle and Sheppard 

(2001) propose maximising L in two steps to overcome the well-known 

computational problems of MVGARCH models. They first maximise L with respect 

to the parameters that govern the process of D,. This can be done by estimating 

univariate models of the returns on each stock nested within a univariate GARCH 

model of their conditional variance. One simple specification for the GARCH 

process followed by D, is the following.

= ~ D { \ - A - B )  + ^ (w ,.,< ,)  + (3.40)

Here, D , A and B are nxn diagonal non-negative coefficient matrices that yield

consistent, time-varying, estimates of D,. The matrix D is the long-run, baseline 

level to which the conditional volatilities mean-revert. To hasten the estimation 

procedure, D can be set equal to the unconditional standard deviation matrix over
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the sample (but in this case, the resulting conditional correlation matrix estimate is 

not guaranteed to be positive-definite). Engle and Sheppard (2001) suggest then 

maximising the second part of the likelihood function over the parameters of the 

process of C,, conditional on the estimated D,. This entails standardising u, by the 

estimated D, to obtain an nx\ vector of standardized return innovations D~'u,. The 

maximum likelihood estimates of the parameters of the process of C, that maximise 

the second part of (3.39) can then be found by estimating a multivariate model of 

D “'w, nested within a multivariate scalar GARCH model o f its conditional second
-JO

moment matrix . Ensuring positive-definiteness o f this estimator is relatively easy 

to achieve as it simply requires, for the univariate pait, using the same restrictions as 

univariate GARCH models and, for the multivariate part, using the standard 

quadratic form to allow for the estimation of the conditional correlation process 

without the need to impose lower bounds on its parameters. This is tantamount to 

treating the DCC model as a scalar BEKK model.

One simple specification for the GARCH process followed by C, is the following:

C, = C(1 -  a  -  /?) + as,_,s]_, + (3.41)

Here, a  and [5 are non-negative scalar matrices (all the elements on the main 

diagonal are equal) '̂* and C is a nxn matrix with all the elements along the main

Notice that, in general, the conditional variance-covariance matrix o f  the first step estimates 
o f p r o c e s s  is governed by the same parameters. In particular, defining as the

first step volatility estimates from (3.40), c,' = E, , ( D , i s  the conditional variance-covariance

matrix o f  the standardized innovations first step estimates. Engle (2002) proves that, when C, is 
governed by the appropriate process and in particular when the latter can be described as a 
multivariate scalar GARCH model, c ’ >s governed by a process that has the same parameters as the

process that governs C,. Engle (2002) also proves that, given consistent estimates o f  c,’ , consistent 

estimates o f  C, can be retrieved as c, = d iag{C 'y 'C '  d iag{C 'y '  > where diag{C'y' >s the matrix with 

the elements along the main diagonal equal to the main diagonal o f  c,’ ' and the off-diagonal 

elements equal to zero. See Engle (2002) for details.
Since a  and /? are scalar matrices, to minimise the proliferation o f  symbols, 1 will denote the 

elements on their main diagonal with the same symbol as the matrices themselves.
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diagonal equal to 1. The matrix C is the long-run, baseline level to which the 

conditional correlations mean-revert. Again, to hasten the estimation procedure, C 

can be set equal to the unconditional correlation matrix over the sample (but in this 

case the resulting conditional correlation matrix estimate is not guaranteed to be 

positive-definite). Obviously, more general specifications are possible. One such 

specification is the model proposed by Cappiello, Engle and Sheppard’s (2003) that 

allow for asymmetric responses to past innovations of different sign and for a 

structural break date in the mean of the correlation process:

H, = D,C,£),

Where:

d I  =  ~ b \ \ - A - B )  +  A{u,_,u]_,) + B D , J

C, = C { \ - a - P )  -Se+as,_^s' ,_,  + pc,.x+6 (3.42)

Here, the elements of the nxn matrix S,.\ are the outer-products of 2 vectors that 

contain only negative return innovations, S  is the unconditional correlation matrix 

of the negative return innovations^^, ^ is  the coefficient of the matrix S,.\ - Notice that 

when the coefficient 6 is not constrained to be zero, the correlation process can be 

asymmetric. A symmetric DCC model gives higher tail dependence for both upper 

and lower tails o f the multiperiod joint density. An asymmetric DCC gives higher 

tail dependence in the lower tail of the multi-period density. To complete the 

notation, the unconditional correlation matrix to which the correlation process is 

forced to mean-revert, C , takes the value Q\ \i  t < t  and Q2 t > r, where r  

represents a selected structural break date and Q\ and Qi are the sample average of

before and after the date r, respectively. Similarly, S  takes the value N\ if

t < z  and the value Ni if  / >r, where N\ and Nj are the sample average o f S,.\ before 

and after r, respectively.

I estimate this using the sam ple average o f  the negative return innovation cross-products.
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Since the 2-step estimation procedure yields consistent but inefficient maximum 

likelihood parameter estimates, a modification o f the asymptotic covariance o f  the 

correlation estimation parameters is needed in order to obtain consistent standard 

errors o f the parameter estimates. These depend on the cross-partial derivatives o f 

the second stage likelihood with respect to the first and second stage parameters in 

addition to the typical Bollerslev and Wooldridge (1992) robust standard errors. This 

modification, however, is unlikely to be quantitatively very important.

In a recent application o f the DCC-GARCH model to global equity and bond 

markets, Cappiello, Engle and Sheppard (2003) examine the correlation dynamics 

between equity markets in 21 countries and bond markets in 13 countries, using 

weekly data over the period from January 1987 to February 2001. These researchers 

show that the assumption o f constant correlations can be dismissed in virtually all 

cases, and they proceed to model the time variation in the correlations while 

demonstrating the existence o f strong persistence over time. Moreover, they find 

evidence that correlations react asymmetrically to joint return innovations o f positive 

or negative sign.

3.4.4 DCC-GARCH Extensions

Using the DCC-GARCH specification renders the estimation o f large variance- 

covariance matrices feasible since the number o f parameters to be simultaneously 

estimated is considerably lower than in the case o f more general multivariate 

specification and because the DCC-GARCH model can be estimated consistently in 

two stages. However, it is precisely when the number o f assets to be jointly 

modelled is large that the restriction o f common dynamics in the correlations is 

likely to be most unappealing. For example, as shown in Engle and Sheppard (2001), 

the DCC model leads to sub-optimal portfolio selection when the number o f assets is 

large (typically above 20) because o f the restriction that the asset-specific 

conditional correlations all follow the same dynamic structure. Hence, intuitively, 

when one considers many returns, one would want to allow for asset-specific
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dynamics. Hafner and Franses (2003) generalize the DCC model by allowing one o f 

the correlation parameters to vary across the assets. They label this specification 

generalized dynamic conditional correlation (GDCC) model. They estimate this 

model with daily data on 18 German stock returns, which are all included in the 

DAX, and for 25 UK stock returns in the FTSE. They find evidence that the GDCC 

model improves on both the CCC and the DCC specification. Billio, Caporin and 

Gobbo (2003) apply the restriction that correlations follow the same dynamics 

within groups o f  assets but allow for a richer behaviour o f  the correlations between 

groups. They call this specification block DCC (BDCC). Using data on Italian stocks 

from various industries, they estimate the variance-covariance matrix using a CCC, a 

DCC and a BDCC model. They use these estimates to form conditional minimum- 

variance portfolios. They show that the portfolios with, respectively, the highest and 

the lowest ex post variances are those selected using, respectively, the BDCC and 

the CCC conditional variance-covariance matrix estimates. The drawback o f these 

generalizations, Hafner and Franses’ (2003) GDCC and Billio, Caporin and Gobbo’s 

(2003) BDCC, is that convergence becomes rather slow. Moreover, while it is 

relatively straightforward to extend the DCC model to allow for leverage effects in 

the correlation process, such extension would be more difficult in the GDCC and 

BDCC case.

3.4.5 Financial Applications

One o f the main applications o f second moment models and estimation techniques is 

the generation o f  forecasts for financial risk and portfolio management. Forecasts o f 

asset volatilities and correlations, in particular, are required inputs for the estimation 

o f portfolio Value at Risk (VaR), for portfolio optimization and for the construction 

o f optimal hedge ratios. The VaR with significance level a  corresponds to the a-th 

left quantile o f the conditional distribution o f portfolio returns (assuming that this 

has finite variance) over a given horizon (usually 10 days). The right quantile 

represents the VaR o f a short position. In spite o f its shortcomings, see Szego (2002) 

for a discussion, VaR is a widely used synthetic statistic for summarizing the level
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o f estimated risk exposure entailed by holding a portfolio. It was developed with the 

key contribution o f the investment bank JP Morgan and it forms part o f its 

RiskMetrics™  risk measurement methodology. This method is also used by 

financial regulatory authorities to set minimum capital requirement standards to 

protect the stability o f the regulated financial intermediaries from market risk.

In a multivariate setting, the correlation matrix should be positive definite in order to 

ensure that correlations lie between -1 and 1 and that every sub-portfolio o f assets 

under consideration has a correlation that lies between -1 and 1 with any other sub­

portfolio. Imposing the further requirement that volatilities are non-negative ensures 

that the variance-covariance matrix is positive semi-definite. This is a desirable 

property o f the estimated second moment variance-covariance matrices o f asset 

returns as it ensures that the variance o f every variable and o f every combination o f 

the variables is always non-negative. This rules out the possibility that investors can 

enjoy ‘free-lunches’ by forming risk-free positive-expected return arbitrage 

portfolios. To see this, assume instead that the variance-covariance matrix is not 

positive semi-definite. Therefore, there is some non-zero linear combination o f 

assets (portfolios) with non positive variance. This represents an arbitrage 

opportunity whether it offers a positive, a negative or no expected return. If this 

combination o f assets has positive expected return, it represents an arbitrage 

opportunity because the investor could expect to earn a positive return while being 

exposed to non positive variance (‘negative variance’ should not bother him). If the 

expected return is negative, it suffices to short sell the combination o f assets to be in 

the same position as before, enjoying a positive expected return with non positive 

variance. If the expected return is zero, the investor can add (to the negative- 

variance combination o f assets) portfolios with positive expected return and 

variance, up to the point where the overall variance is zero. At that point, the overall 

expected return will be by construction positive. Positive definiteness o f the 

variance-covariance matrix is more restrictive and it ensures that the second moment 

matrix is invertible, thus making it possible to use it further in econometric (such as
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a weighting matrix in weighted least squares regressions) and financial (notably in 

asset pricing and portfolio optimization algorithms) applications.

Because o f its clustering behaviour, asset and especially stock price volatility

typically exhibits high persistence (Engle and Patton (2001)), especially at relatively 

high frequencies (such as with weekly, daily and higher frequency data). It is 

therefore a natural candidate to be modelled using conditional autoregressive 

specifications such as ARCH and GARCH models. However, direct evidence on the 

extent to which ARCH type models display additional forecasting power relative to 

simpler unconditional alternatives is mixed. Akgiray (1989) finds that the forecast o f 

US stock market volatility provided by a GARCH specification outperforms those 

formed using simpler ARCH, EWMA and unconditional estimates. Pagan and 

Schwert (1990) compare GARCH, EGARCH, a Markov switching regime model 

and three non parametric models for forecasting monthly US stock return volatility 

and they find that the conditional parametric specifications perform best (especially 

the EGARCH) but forecasting ability is nonetheless poor. Franses and van Diik

(1996) find that non-linear and asymmetric specifications, such as the GJR

asymmetric model, are unable to outperform simpler linear GARCH specifications 

in forecasting the weekly volatility o f various European stock market indices. This 

result is interesting because it casts doubt on the importance o f the asymmetric 

component in the second moment process o f European stock market indices, at least 

at the weekly frequency^^. There is evidence, however, that the asymmetric response 

to return innovations might be more important outside Europe. See, for example, the 

results reported by Brailsford and Staff (1996) on the better predictive ability o f the 

GJR-GARCH for the Australian stock market volatility relative to models that do
' I ' j

not allow for an asymmetric news impact curve .

Kearney and Poti (2003) report further (in sam ple) evidence on the w eakness o f  the linear 
asym metric response o f  European stock market index correlations to negative and positive  
innovations. I w ill discuss this in the empirical part o f  this thesis.

See also the in sam ple results reported by Cappiello, Engle and Sheppard (2003) for 21 
international stock market indices (including 9 European markets).
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One o f the advantages o f univariate models is their ease o f estimation relative to 

more complex multivariate specifications. Univariate EWMA and GARCH models 

are therefore routinely used in the financial industry to estimate the VaR o f 

portfolios o f assets over a given time horizon (see, for example, Bauwens, Laurent 

and Rombouts (2003)). The conditional distribution o f the portfolio return, under the 

assumption o f conditional multivariate normality, can be deduced from the estimated 

first and second moments. With a portfolio o f many assets, however, the univariate 

model o f the portfolio second moment must be re-estimated every time portfolio 

weights change. This can be a serious drawback if  the portfolio contains large 

positions in financial instruments with non linear payoffs, with payoffs that depend 

on the correlation structure o f asset returns and instruments that require time 

consuming numerical procedures for their pricing. This problem does not arise, or it 

is considerably milder, if  estimates o f the full variance-covariance matrix are 

available. The estimated multivariate distribution can be directly used to compute 

the portfolio variance and hence VaR for any set o f asset weights. This is one o f the 

advantages o f a multivariate model.

Multivariate models however have the drawback o f being computationally very 

intensive. As a consequence, a number o f industry applications entailing large scale 

conditional variance-covariance matrices estimates rely on diagonal specifications. 

For example, in JP M organ’s RiskMetrics’̂ '  ̂ procedure, each element o f the 

conditional variance-covariance matrix is estimated, using exponential smoothing, as 

a univariate EWMA and, as such, this approach corresponds to a diagonal 

IGARCH(1,1) model in which all o f the intercepts in the conditional variance- 

covariance matrix are fixed at zero. Moreover, all the elements along the main 

diagonal o f the Ai  and Bi matrices take identical values, a and b respectively, 

with/) = 1- a .  Thus, this model imposes on the diagonal IGARCH(1,1) model a 

scalar restriction. The use o f the same smoothing parameter {b = 0.94 in the latest 

release o f the RiskMetrics^''^ technical document) facilitates the implementation and 

guarantees that the estimated conditional variance-covariance matrices are positive 

definite. Nonetheless, when viewed as a data generating process as opposed to a
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“filter”, the RiskMetrics™  procedure is formally degenerate (Nelson (1990)). 

Alternatively, in the spirit o f orthogonal factor models such as the 0-G A RCH , many 

financial institutions adopt the simplifying assumption that most o f the variation o f 

asset returns is generated by a limited number o f common factors whereas the 

residual variation is attributable to purely idiosyncratic (and, hence, negligible) 

sources o f variability. As CLMX (2001) and Kearney and Poti (2005b) show for the 

United States and the Euro area, respectively, this can be in many circumstances a 

somewhat heroic assumption, as the idiosyncratic portion is the main component o f 

total volatility and the number o f assets needed to diversify it away is large and 

tends to increase at times o f market distress (I will present and discuss empirical 

evidence on these phenomena in Chapter 7). In the case o f multi-country portfolios 

o f equities, bonds or currencies, the assumption that returns are generated by a 

limited number o f common factors is usually applied within each country (maybe 

with the United States or a World index as a common global factor). If estimates o f 

international correlations are available, a multi-country variance-covariance matrix 

can then be constructed. This practice highlights the importance o f modelling 

country correlations, and it also explains the wealth o f empirical contributions in this 

area.

Engle and Sheppard (2001) use the DCC-GARCH model to estimate the conditional 

variance-covariance matrix o f up to 100 assets represented by S&P Sector Indices 

and Dow Jones Industrial Average stocks and conduct specification tests using the 

JP M organ’s RiskMetrics’̂ '̂  industry standard EWMA as a benchmark. They 

examine the performance o f the model using three criteria: the standard deviation o f 

portfolios where asset returns are standardized by the estimated portfolio conditional 

variance-covariance matrix (under the null o f the DCC-GARCH these portfolios 

have unit variance), accuracy o f VaR estimates with a pre-selected confidence level 

(evaluated against the actual frequency o f losses in excess o f the estimated VaR 

threshold) and relafive forecasting performance with respect to JP M organ’s 

RiskMetrics^'^ industry benchmark. They show that the DCC-GARCH estimator 

combines a strong performance in capturing important empirical features o f the
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conditional variances and covariances with ease o f  implementation. Morillo and 

Pohlman (2002) estimate the variance-covariance matrix o f daily and weekly returns 

on the 24 largest international stock market indices included in the MSCI World 

Index using sample unconditional estimators and various conditional models. They 

use their variance-covariance matrix estimates in a portfolio optimization exercise, 

and report that the optimal portfolio based on DCC-GARCH estimates dominates 

the optimal portfolios based on all the other estimates. On the other hand, O- 

GARCH and CC-GARCH do not compare favourably with estimates produced by 

the simple univariate EWMA model.

Another application o f models that provide estimates o f the variance-covariance 

matrix o f asset returns is the computation o f the optimal hedge ratio. This is used to 

hedge portfolios o f assets by taking an offsetting position in only one (or a few, in 

order to keep transaction costs low) liquid financial instruments, typically a futures 

contract. This is calculated as the ratio o f future contracts to be sold to minimize the 

variance o f the return on the overall portfolio, given pre-existing holdings. Under the 

appropriate assumptions (see Bauwens, Laurent and Rombouts (2003)), it is a 

function o f the regression coefficient o f the pre-existing portfolio against the hedge 

or, equivalently, o f the conditional covariance between the hedge and the pre­

existing portfolio and o f  the variance o f the hedge. Brooks, Henry and Persand 

(2002) suggest, using daily hedging, that a static hedge ratio computed using simple 

OLS regression estimates reduces the variance o f the portfolio by 90 percent 

whereas using conditional time-varying BEKK-GARCH(1,1) estimates further 

improves this ratio by a mere 2 percent. Adding asymmetry effects provides no 

further improvement. Sephton (1993), however, finds that portfolio variance is 

minimized in sample using a time-varying optimal hedge ratio formed on the basis 

o f conditional second moments estimates. Bera, Garcia and Roh (1997) find this to 

be the case also out o f sample, especially for a VEC specification. However, the 

trading costs that it is necessary to incur in order to construct a time-varying optimal 

hedge may be substantially higher relative to a hedge strategy based on a static 

hedge ratio. Lien, Tse and Tsui (2002) find that, because o f trading costs, a static
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hedge strategy based on unconditional second moments estimates can be more 

profitable, for the same level of variance, than a strategy that uses a time-varying 

conditionally optimal hedge.

3.5. Summary and Conclusion

Little theory is available to explain movements in, and especially, co-movements in 

volatility and higher moments. Their description is still the realm of reduced-form 

statistical models. In this Chapter, I have shown that these reduced form statistical 

representations can be estimated using either unconditional or conditional 

methodologies. I then discussed their relative merits and drawbacks and reviewed 

their main financial applications.

Unconditional estimation methodologies have the appealing feature of simplicity. 

This makes them useful tools for the study of the behaviour over time of second 

moments of asset returns when working with large sets of the latter, such as in 

applications to large portfolios of stocks. However, traditional unconditional 

procedures, such as that employed by CLMX (2001) based on computing volatilities 

and correlations first and then fitting regression models to study their time-series 

behaviour, do suffer from limitations. One of these problems is that, because of an 

ad hoc specification of the second moment process, this approach under-utilizes the 

available information. The resulting volatility and correlation estimates are therefore 

likely to be inefficient, and to exhibit an unsatisfactory performance in forecasting 

applications. The second problem arises because of the aggregation of data at a 

given frequency into lower frequency variance and correlation estimates. This leads 

to a potential small sample problem.

Parametric conditional estimation largely overcomes these problems while 

presenting its own limitations in terms of computational difficulties and model 

identification. These techniques appear most suited to relatively smaller scale 

applications, with a relatively small number o f variables to be jointly modelled. A
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partial exception is represented by the DCC-MVGARCH model. This specification 

restricts the dynamic behaviour o f the correlation matrix, and it rules out interactions

o f the latter with variances. However, it substantially reduces the computational
•2 0

burden while it allows modelling the dynamics o f both volatilities and correlations .

Having now completed the literature review section o f  the thesis, in subsequent 

chapters I will study applications to novel data sets o f some o f the methodologies 

presented thus far. In doing so, I will extend and modify the extant methodologies 

whenever appropriate. In Chapter 4, I will use an autoregressive specification o f the 

return process with conditional heteroskedasticity to estimate the amount o f discount 

factor volatility required to explain the estimated conditional volatility o f o f  the S&P 

Composite Index over the period 1871-2003. In Chapter 5, I will derive the beta- 

pricing representation o f the 3M-CAPM, I will estimate it using US industry index 

data and test whether the parameter estimates satisfy NS, RA and NIARA. In 

Chapter 6, after extending the DCC-MVGARCH model by allowing for a 

deterministic time trend, I will apply it to test for asymmetric reactions to news o f 

different sign and for structural breaks in the conditional correlations o f Euro-area 

equity indices and Government bonds. In Chapter 7, 1 will apply CLM X’s (2001) 

variance decomposition methodology to a unique dataset o f the volatilities and 

correlations o f all the stocks traded in the countries o f  the Euro-area since 1974 and I 

will extend this methodology by introducing the notion o f  average correlation. I will 

discuss the properties o f the latter and its relation to CLM X’s (2001) variance 

components, and I will show how to construct an average correlation time series.

However, given currently available computing power, it is not yet an easy task to apply the DCC- 
MVGARCH model to study the second moment dynamics o f  very large sets o f  assets. For example, 
using a Pentium 4 processor 2.40 GHz with 256 MB o f Ram, 1 found that it takes roughly an hour, 3 
and 5 hours to estimate a DCC-MVGARCH(I,1) specification with, respectively, 20, 30 and 42 
assets. Above a threshold o f  approximately 50 assets, computing times increase exponentially and 
convergence becomes difficult to achieve with specifications that include asymmetry in the 
conditional correlation process.
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Chapter 4: The Cross-Section of Stock Returns

4.1. Introduction

As shown by Harvey and Siddique (2000) and Dittmar (2002), there is extensive 

evidence that US stocks exhibit systematic coskewness. In this Chapter, I will study 

the cross section of average excess returns on industry-sorted portfolios o f US stocks 

and I will test whether, as predicted by the 3M-CAPM, there is a non-zero market 

price for systematic coskewness. A non-zero market price for systematic asset 

coskewness implies that investors are rewarded for holding assets that become more 

(less) volatile and correlated with their overall portfolio during market downturns 

(upturns). In checking this, I will focus on the unconditional implications of both 

conditional beta pricing models and conditional beta and gamma pricing models, or 

equivalently on stochastic discount factor models under quadratic and cubic 

approximation of investors’ utility functions with possibly time varying shape.

In these models, while conditional betas and gammas, and in general the conditional 

moments and cross moments depend on the conditioning information set, 

conditional risk premia also change as a function of the parameters of the utility 

function, and hence of the conditioning information on which they depend. I will 

allow, however, only for time-variation in risk premia induced by variation in the 

shape of the utility function while I will not model variation in beta and gamma 

coefficients. This choice is motivated by the fact that realized betas (and gammas) 

display very little persistence even though their constituent realized volatilities and 

covariances are persistent. As a consequence, as argued by Andersen, Bollerslev, 

Diebold and Wu (2004), allowing for time-varying betas may do more harm than 

good and lead to spurious estimation results. This Chapter is based on two papers, 

Poti (2005b and 2005c), presented at the Annual Meeting of the Financial
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Management Association (New Orleans, 2004) and discussed at the Doctoral 

Colloquium o f the European Finance Association (Moscow, 2005).

In the next section, I derive the beta pricing representation o f the 3-Moment 

conditional CAPM, henceforth 3M-(C)CAPM, formulated by Harvey and Siddique 

(2000). This derivation is, to my knowledge, novel. In Section 4.3, I present my 

dataset. In Section 4 .4 ,1 specify empirical versions o f my beta pricing representation 

o f the 2-moment (C)CAPM, henceforth 2M-(C)CAPM, and the 3M-CAPM. Within 

a 2-pass procedure, I estimate, in the first step, beta coefficients and, in the second 

step, the associated risk premia. I then check whether the estimated models satisfy 

the non satiation (NS), risk aversion (RA) and non increasing absolute risk aversion 

(NIARA) requirements. In Section 4.5, I discuss the consequences o f a non concave 

utility function for the existence o f a 3M-CAPM equilibrium and the implications o f 

my 3M-CAPM parameter estimates. In Section 4 .6 ,1 contrast the 2M -(C)CAPM  and 

the 3M-CAPM by estimating the correlation between their beta coefficients 

estimated over a rolling 30-month period. In Section 4.7, I estimate by GMM in a 

conditional setting the alternative beta-gamma representation o f the 3M-CAPM 

proposed by Kraus and Litzenberger (1976). This way, I directly impose the NS, RA 

and NIARA requirements. In the final section, I summarize my findings and present 

my conclusions.

4.2. The 3M-(C)CAPM Beta Pricing Representation

Using (2.20) to (2.22) and (2.60), I rewrite the conditional asset pricing equation in 

(2.59) as follows:

E lru .x )  = P'A , (4.1)

Where:

.  _  Cov, , r„, ,,i )Var, ( r j ) -  Skew, (r„, )Cov, (r, )

VarXr„„,)VarXrl„,)-[SkewXr,,,,,)f
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.  _  Co^\ War, ) -  Skew, (r„ )Cov, ,r„, )

Var, (r„ ,,, )Far, ( r j , , , ) -  [5fevi; )]^

X, = - Var,{f,^^)b,

Var,{r„,,J Cov,(r„,

Equation (4.1) is a beta-pricing representation o f Harvey and Siddique’s (2000) 

conditional 3M-CAPM, or 3M-(C)CAPM. The factor loadings, the parameters [in,, 

and Pi2j, are functions o f the market variance, its skewness and the covariance and 

coskewness o f  the asset i with the market. They are both risk measures and 

coefficients o f the regression o f the asset excess-retum on the market excess return 

and its square. From this point o f view, they are analogous to the CAPM beta 

coefficient. The elements o f  the X, vector are the corresponding risk premia. Under 

RA, A\, should be positive to compensate investor for systematic covariance, 

whereas under NIARA X21 should be non-positive. In particular, under DIARA, Xit 

should be negative because investors should be willing to accept a lower average 

return to hold assets with positive coskewness.

Under the rational expectation assumption (RE), equation (4.1) is a testable 

restriction that the 3M-CAPM imposes on the cross section o f expected (average) 

asset returns. The upshot o f  this formulation relative to the specification proposed by 

Harvey and Siddique (2000) is that I can test the unconditional implications o f the 

conditional 3M-CAPM for the cross section o f asset returns using a simple two pass 

estimation procedure, by regressing asset excess returns on the factors to obtain the 

factor loadings and the average excess returns on the estimated factor loadings to 

obtain the risk premia.
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4.3. Data

I use the 30 Fama and French (1995) US industry portfolios, constructed using the 

stocks listed on the NYSE, NASDAQ and AMEX included in the Centre for 

Research on Security Prices (CRSP) database, as proxies for the investable universe 

of risky assets. As argued by Dittmar (2002), these industry portfolios represent a 

challenge for asset pricing models because they display considerable cross-sectional 

variation. As a proxy for the market portfolio of risky assets I use the market 

capitalization-weighted portfolio formed using the stocks included in the industry 

indices. I also use monthly and quarterly returns on 1-month and 3-month US 

Government Treasury Bills as proxy for the risk free rate. Finally, I use cay,, the 

quarterly consumption-wealth ratio per capita estimates produced by Lettau and 

Ludvigson (2001), as a conditioning variable. This choice is motivated by the ability 

of cay, to forecast future aggregate returns as reported by Lettau and Ludvigson 

(2001). The sample period is 1963-2002.

4.4. Beta-Pricing Empirical Specification

While Harvey and Siddique’s (2000) 3M-CAPM implies the conditional stochastic 

discount factor model in (2.60), they estimate it without allowing for time variation 

in the parameters of the investor’s marginal utility. Therefore, Harvey and Siddique 

(2000) effectively estimate an unconditional rather than a conditional 3M-CAPM, 

even though they do allow for time variation in betas. To formulate an empirical 

specification o f the 3M-(C)C APM beta-pricing representation in (4.1) that allows for 

time variation in the parameters of the investor’s marginal utility, I let the a, and b, 

parameters of the stochastic discount factor vary as a linear function of the 

conditioning information provided by the variable z,, a = a^ + a^z,, b\ , = b\^ + b \z ,,

bi., = b2 + b iz ,. Treating the vector ,/;.] = [z, as the

factors, this implies the following beta-pricing representation:

r, -  a + [iaX-i + yff,4i4 + PaXf, + + PaX-j + e. (4.2)
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Here, r, is the sam ple average o f  Vj, and the elem ents o f  the X vector are the cross- 

sectional param eter estim ates o f  average excess returns on the corresponding 

elem ents o f  the P  vector. The latter are the param eter estim ates o f  the follow ing tim e 

series regressions;

f j  I ~  Pii ^!-\ ^  Pa ^  ml PiS ^ t- \ ^m t ^  Pi6 f  ml Pil ^  ml (4-3)

I allow  for an intercept in (4.2) and (4.3). A  m odel that is fully successful at 

explaining the cross section o f  excess returns should have a  = 0. U sing cay, as the 

conditioning variable, I set z, = cay, in (4.3). The m odel in (4.2) and (4.3) can be 

estim ated by a 2-pass procedure that involves tim e series and cross-sectional 

regressions.

In the first pass, I estim ate in a m axim um  likelihood setting the system  o f  tim e-series 

regressions equations in (4.3) for the industries in my sam ple. I do not im pose any 

constraint on the contem poraneous covariance o f  the residuals nor on their variance. 

1 do correct, however, the variance and covariance m atrix  o f  the estim ates for 

possible error autocorrelation and heteroskedasticity. The 3M -CA PM  and 2M - 

(C)CA PM  beta coefficients are reported in Table 4.1. They are the estim ated P ,4  and 

Pi(,, and Pa, Pi4 and P ,5 respectively w hen all other beta coefficients are restricted to 

be zero. The 2M -C A PM  and 3M -(C)CA PM  beta coefficients are not reported to 

save space.

In the second pass o f  the estim ation procedure, I then use m y estim ated beta 

coefficients as the regressors o f  average industry excess returns in a cross-sectional 

regression based on (4.2). The second pass estim ation results are reported in Panel A 

o f  Table 4.2. The coefficient o f  determ ination o f  the unrestricted 3M -(C)CA PM  

is surprisingly high, slightly above 31 percent (17 percent adjusted), for a m odel that 

does not include am ong the regressors portfolios returns that m im ic additional 

partially ad-hoc factors such as size and the book to m arket ratio. The conditional
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m odel how ever does not greatly im prove on the unconditional 3M -CA PM . The 

o f  the latter is slightly lower, alm ost 28 percent, but it is larger once we adjust for 

the degrees o f  freedom  (22 percent). All the coefficient estim ates o f  the 

unconditional 3M -CA PM  are statistically significant. The (C)CA PM  perform s 

considerably w orse than the 3M -(C)CA PM  and the unconditional 3M -CAPM . Its 

is ju st 7.5 percent (the adjusted one is m arginally negative) and none o f  the 

coefficients estim ates, w ith the exception o f  the intercept, are statistically different 

from  zero at conventional significance levels. In Figure 4.1, I plot actual versus 

explained average industry portfolio returns. For som e industries, such as Smoke, 

Books, Steel, U tilities, the m odel is o ff  by m ore than 0.5 percent per quarter 

(roughly 2 percent per year). O ther industries, how ever, such as Gam es, 

Constructions, A utos, CaiTy, M ines, Telecom , Paper and W holesale, are priced in a 

rem arkably accurate m anner. These results provide evidence that system atic asset 

coskew ness does help explain the cross-section o f  average returns. Even explicitly 

allow ing for conditional tim e-variation in the shape o f  the utility function does not 

drive out its cross-sectional explanatory power.

Both the 3M -CA PM  and the 3M -(C)CA PM  estim ates, how ever, im ply a non 

concave shape o f  the utility function, that is incom patible w ith the risk aversion 

requirem ent. This can be seen by solving the risk prem ia equations in (4.1) for the 

param eters o f  w ,, i :

h, = - VarXf , , , ) -^  X, (4.4)

I report in Figure 4.2 the stochastic discount factor m,+i im plied by the 2M -C CA PM , 

the 3M -C A PM  and the 3M -(C)CA PM  param eter estim ates. These are locally 

consistent in all three cases w ith investors’ non-satiation and preference for 

skewness. How ever, only the 2M -(C)CA PM  stochastic discount factor displays risk 

aversion for every value taken by the m arket excess return over the sample. Both the 

3M -CA PM  and the 3M -(C)CA PM  param eter estim ates im ply risk aversion only 

over excess returns below  1.5 percent. A bove this threshold, the shape o f  the
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estimated stochastic discount factor impHes risk seeking. In other words, these 

estimates imply an inverse S-shaped utility function.
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Table 4.1
3M-CAPM and (C)CAPM Regression Estimates

Portfolio 
Food

Beer

Smoke

Games

Books

Hshid

CIths

HIth

Chems

Txtls

Cnstr

Steel

FabPr

ElcEq

Autos

Carry

Mines

Coal

Oil

Util

Telcm

Servs

BusEq

Paper

Trans

WhIsI

Rtail

Meals

Fin

Other

0.9127
[23.00]
0.9015
[17.36] 
0.739 
[ 9 .43] 
1.3525 
[19.11] 
1.1958
[24.81] 
1.041

[25.63] 
1.2632
[18.85] 
1.0209
[20.63] 
0.9678
[24.78] 
1.1138
[16.78] 
1.1981 
[33.15] 
0.9495 
[16.71] 
1.1475
[27.81] 
1.1347 
[23.45] 
1.0398 
[17.04] 
1.1798
[18.81] 
0.8484 
[10.65] 
0.9636 
[11.09] 
0.7283
[13.18] 
0.6114 
[ 14.35] 
0.7135 
[15.82] 
1.2758 
[22 .94] 
1.1804 
[23 .24] 
0.9854
[27 .18] 
1.1667
[24 .56] 
1.2018
[26 .37] 
1.142

[23.85] 
1.4072 
[20.96] 
1.0869
[34.56] 
1.1318 
[27.67]

-0.2592 
[ - 1.05] 
0.095 

[ 0.29] 
0.3566 
[ 0.73] 
-0.0566 
[ - 0 .13] 
-0.0398 
[ - 0 .13] 
-0.2812 
[ - 1.11] 
0.0282 
[ 0.07] 
-0.3191 
[ - 1.03] 
0.078 

[ 0.32] 
0.0788 
[ 0.19] 
0.1443 
[ 0.64] 
0.3355 
[ 0 .95] 
-0.0744 
[ -0 .29] 
-0.0199 
[ -0 .07] 
0.351 

[ 0 .92] 
-0.3035 
[ -0 .78] 
0.6626 
[ 1 33] 
0.4109 
[ 0 .76] 
0.1914 
[ 0 .56] 
-0.0072 
[ -0 .03] 
0.2758 
[ 0.98] 
0.2336 
[ 0.67] 
0.192 

[ 0 .61] 
-0.0373 
[ - 0 .16] 
-0.2128 
[ -0 .72] 
-0.0448 
[ - 0 .16] 
0.1406 
[ 0.47] 
-0.0707 
[ - 0 .17] 
-0.229 
[ - 1.17] 
-0.4124

0.7163 
[ 2 .33] 
-0.4512 
[ - 1.12] 
0.9272 
[ 1.54] 
0.0435 
[ 0.08] 
-0.4161 
[ - 1.11] 
0.2325 
[ 0 .73] 
0.1613 
[ 0 .31] 
-0.3385 
[ -0 .88] 
-0.004 
[ - 0 .01] 
-0.1176 
[ - 0 .23] 
-0.4087 
[ - 1.45] 
-0.7223 
[ - 1.65] 
-0.2149 
[ -0 .67] 
0.0087 
[ 0 .02 ] 
-0.296 
[ -0 .62] 
0.6857 
[ 1.40] 
-0.4745 
[ -0 .76] 
0.1942 
[ 0.29] 
0.5048 
[ 1.17] 
0.5194 
[ 1.57] 
-0.2389 
[ -0 .68 ] 
-0.4588 
[ - 1.06] 
-0.7322 
[ - 1.85] 
-0.3134 
[ - 1 .11 ] 
0.0819 
[ 0 .22 ] 
-0.6947 
[ - 1.98] 
-0.618 
[ - 1.66] 
-0.5342 
[ - 1.02] 
0.2066 
[ 0 .84] 
0.279

[ 0-87]

0.8843 
[ 21.28] 
0.9186 
[ 16.89] 
0.6909 
[ 8.47] 
1.3543 
[ 18.25] 
1.2157 
[ 23.93] 
1.0335 
[ 24.04] 
1.2575 
[ 17,71] 
1.0359 
[ 19.88] 
0.9636 
[ 23.68] 
1.1143 
[ 15.93] 
1.2161 
[ 31.94] 
0.9746 
[ 16.43] 
1.1587 
[ 26.57] 
1.1355 
[ 22 .20] 
1.0501 
[ 16.22] 
1.151 

[ 17.39] 
0.8648 
[ 10.20] 
0.9488 
[ 10.34] 
0.7061 
[ 12.09] 
0.5866 
[ 13.16] 
0.7203 
[ 15.09] 
1.2967 

[ 22 . 10] 
1.2098 
[ 22 .66] 
0.9989 
[ 26.08] 
1.1625 
[ 23.11] 
1.2348 
[ 25.99] 
1.1674 
[ 23.15] 
1.4322 
[ 20.19] 
1.0799 
[ 32.37] 
1.1226 
[ 25.85]

-3.4764 
[ - 1.06] 
6.7762 
[ 1.58] 
12.1417 
[ 1.89] 
- 1.9563 
[ -0 .33] 
-2.2736 
[ -0 .57] 
-0.4501 
[ - 0 .13] 
-2.6635 
[ -0 .48] 
5.8596 
[ 1.43] 
8.0694 
[ 2 .52] 
7.8246 
[ 1.42] 
- 1.4462 
[ -0 .48] 
10.7442 
[ 2 .30] 
-2.0503 
[ -0 .60] 
-3.4563 
[ -0 .86 ] 
0.0861 
[ 0 .02] 
-0.3157 
[ -0 .06] 
1.7157 
[ 0 .26] 
9.3328 
[ 1.29] 

- 2.0122  
[ -0 .44] 
4.0633 
[ 1.16] 
4.2731 
[ 1.14] 
-3.3338 
[ -0 .72] 
2.881 

[ 0 .69] 
1.4261 
[ 0 .47] 
2.7965 
[ 0 .71] 
-3.9501 
[ - 1.06] 
1.6503 
[ 0 .42] 
-1.5632 
[ -0 .28] 
-2.0016 
[ -0 .76] 
0.2948 
[ 0 .09]

Notes. This table reports the parameters estimates and significance t- 
statistics for the time series regression models based on the 3M -CAPM  
and on the (C)CAPIVI. All the symbols are defined as in the text.



Table 4.2
3M-CAPM, CCAPM and 3M-CCAPM

Panel A 
(3S-LS Regression Estimates)

a ^3 A, 5 R-
{Adj. R-)

3M- 1.06% -.07% .80% -.01% - . 54% .003% 31.17%
CCAPM [019] [.714] [.069] [.091] [.000] [.009] (16.83% )

3M- 1.06% .89% - . 50% 27.87%
CAPM [.013] [.023] [.000] (22.52% )

CCAPM 1.22% .30% .72% .00% 7.49%
[.010] [.233] [.105] [.581] (-3.18%)

Panel B
(GMM Estimates)

Model Constr. Estimal. DF TJ 04 0,- 06 <5,
(%) (%)

3M- GMM 28 32.48 -1.26 -7.66 6.95 -1.3
CAPM [.255] [.000] [.000]

3M- RA + GMM 28 51.90 -1.08 .000 5.26 0.0
CAPM NIARA j.003] [.000]

3M- GMM 26 34.34 -1.08 -33.01 -8.28 114.8 9.99 -4.0
CCAPM [,126] [.000] [321] [.000] [.322]

3M- RA + GMM 26 60.55 -1.14 -106.9 0.00 277.0 5.43 0.0
CCAPM NIARA [.000] [.000] [.000] [.000] [.013]

l\'otes. Panel A o f  this table reports measures o f fit (R^ and adjusted R^) for the model that nests 
both the 3M -CAPM  and the CCAPM , for the 3M -CAPM  and for the CCAPM . Panel B reports 
the GMM estim ation results for various set o f  orthogonality conditions that correspond to the 3M- 
CAPM (top two rows) and to the 3M -CCAPM  that nests both the 3M -CAPM  and the CCAPM  
(lower two rows). D F  denotes degrees o f  freedom (num ber o f  orthogonality conditions in excess 
o f  the num ber o f  param eters to be estimated). The expression TJ is T  (the sample size) times 
H ansen’s (1982) J  statistic and it is distributed as a Chi-Squared with degrees o f  freedom equal to 
the num ber o f  over-identifying restrictions {DF). All the other variables are defined as in the text. 
The risk prem ia S are annualised. Significance levels o f  t-statistics appear in brackets. The sample 
period is 1963-2002.
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Figure 4,1

Actual vs. Explained Average Excess Returns 
3M-(C)APM

Panel A

3 .5%  1

3 .0%  -

2 . 5%  -
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1. 5%  -

1 .0 %  -
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Panel B
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- 4%  - 

- 6%  -

Notes. The darker line in Panel A plots the quarterly actual and explained (by the 3M- 
(C)CAPM) average excess return for the industry portfolios reported along the 
horizontal axis. The estimation used a 2-step procedure with system OLS estimates for 
the first step. Panel B plots the annualized unexpected returns sorted in ascending 
order. The sample period is 1963-2002.

128



Figure 4.2 

Estimated SDF

4.50

4.00 \

3.50

3.00 -
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2.00 •

1.50

1.00 -

0.50 -

n nn * • ' . » ^
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-----3M-CCAPIVI SD F----------- SIVV-CAPM S D F ...............2M-CCAPM SDF

Notes. This Figure plots the estimated stochastic discount factor for the 3M -C C A PM , 
the 3M -CAPM  and the 2M -CCAPM  against excess returns on the proxy for the wealth 
portfolio, i.e. the value-weighted portfolio o f  CRSP stocks. The values taken by the 
SDF are should be read o ff the vertical axis whereas the The estimation used a 2-pass 
procedure. The sample period is 1963-2002.

4.5. Concavity of the Utility Function and the 3M-CAPM

As acknowledged by Post, Levy and Van Vliet (2003), concavity of the utility 

function is not a law of nature. There is evidence that investors display local risk 

seeking behaviour (Kahneman and Tversky (1979), Statman (2002)) and there are 

numerous non-standard theories that allow for alternative assumptions about the 

shape of the utility function, see Shefrin (2005) for a review. In particular, Shefrin 

and Statman (2002) Behavioural Portfolio Theory predicts risk aversion over losses
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and risk seeking over gains and thus an inverse S-shaped utility function. This shape 

is also advocated by Post and Levy (2002).

If we accept some risk seeking over gains and an inverse S-shaped utility function, 

with risk aversion for losses and risk seeking for gains, my beta pricing 

representation o f the 3M-(C)CAPM is surprisingly successful at explaining the cross 

section of industry returns (once we take into account that it does not include any ad 

hoc factor), with a coefficient of determination in the region of 30 percent. Thus, 

Markowitz (1952) type utility functions, that capture investors’ twin desire for 

downside protection in bear markets and upside potential in bull markets, can 

explain a large portion of the cross-section of stock returns.

If the utility function is non-concave, however, it is not guaranteed that the market 

portfolio is efficient. This is because, in a constrained optimization problem, a 

stationary point is guaranteed to represent a maximum only when the objective 

function is quasi-concave but only a concave utility function can guarantee that 

expected utility is quasi-concave. The reason for this is the mathematical fact that 

the sum of concave functions is guaranteed to be quasi-concave”*** whereas the sum 

of quasi-concave functions is not guaranteed to be quasi-concave. Lacking the quasi­

concavity requirement, the parameters of the stochastic discount factor that satisfy 

the first order conditions 0 = £,[^,^1(6*)̂  are not guaranteed to represent the

constrained maximum of the expected utility function. Thus, there is no guarantee 

that orthogonality conditions such as (2.1) and (2.50) represent first order conditions 

for the maximization of a utility function. Similarly, there is no guarantee that the 

stochastic discount factor parameters are such that the market portfolio maximizes 

expected utility, even though the first order conditions 0 = ,^,) are satisfied.

A similar conclusion was reached by Post, Levy and Van Vliet (2003), but they 

erroneously argue that a stationary point is guaranteed to represent a maximum only 

for concave (rather than quasi-concave) expected utility functions.

This is not the case for concave functions. The sum o f  concave functions is guaranteed to be 
concave. This is w hy the concavity o f  utility guarantees the concavity o f  the expected utility function.
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4.6. The 3M-CAPM vs. the (C)CAPM

As discussed in Section 2.5.10, some o f the empirical features o f asset excess returns 

predicted by the 3M-CAPM coskewness premium can in principle be explained by a 

conditional asset pricing model with time-varying risk aversion, if  the square o f the 

market return and hence its second moments proxy for the state o f the wider 

economy (e.g. distress and recessions).

How could one 'check' on this? As a first check, I compute the cross-sectional 

correlation between the 2M-CCAPM yS/s coefficients, estimated setting y5,6 and Pn 
equal to zero, and the 3M-CAPM Pi(, coefficients, estimated setting y5,3, and y5,7 

equal to zero. Their linear cross-sectional correlation coefficient is 0.38. The positive 

value o f the correlation coefficients agrees with the intuition that the /? ,5  and the y5,6 

capture a similar type o f exposure and that asset co-skewness, therefore, ‘picks up’ 

the cyclical changes in the CAPM beta that occur as we move from expansion to 

recession.

Next, I redo the analysis with a 30-month rolling window. Visual inspection o f 

Figure 4.3 provides further hints on the relation between the / ? ,5  and the /?/6 

coefficients. Panel A o f this Figure plots their cross-sectional 30-month rolling 

correlation against NBER (National Bureau for Economic Research) recessions 

while Panel B plots their cross-sectional 30-month rolling correlation against 30- 

month rolling market returns. While, from Panel A, this correlation is high at the 

beginning and low at the end o f 3 out o f 6 reported recessions, it is Panel B that 

provides the most suggestive clues. With the exception o f the period 1959-1972, the 

plots o f the cross-sectional correlation and o f  the market returns series seem to share 

the same ‘trend’ (with some sort o f lag structure and a lot o f  noise) in the 3 (roughly) 

decades 1972-1982, 1982-1992, 1993-1999. This suggests that, while volatility 

exposure (captured by coskewness and thus yff,6) is almost the same as conditional 

beta exposure (i.e. the sensitivity o f asset betas to the state o f the economy captured
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by Pis) at the peak of bull markets, at the bottom of a bear market they are almost 

unrelated. Since adding coskewness increases the explanatory power of the cross- 

section of average industry returns more than adding the conditioning variable, the 

former likely captures features about investors’ attitude towards risky assets in the 

middle of a market downturn that the latter misses.
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Figure 4.3
Gamma Coefficients vs. Return Sensitivities

Panel A 
Cross-sectional Correlation Time Series vs. NBER Recessions
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Notes. The darker line in this figure plots the 30-quarter (7 years and 6 months) rolling cross- 
sectional correlation between the 2M-(C)CAPM coefficients (multiplied by a factor 10 to 
facilitate visual comparison) and the 3M-CAPM coefficients y?,6. The former are the 
sensitivities of industry excess returns to the product o f the market excess-return and the 
conditioning variable (the lagged consumption-wealth ratio) whereas the latter are the 
coskewness coefficients. In Panel A the shaded areas represent NBER recessions. In Panel B 
the jagged line represents the rolling time series o f 30-quarter returns on the market portfolio.
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4.7. GMM Estimates with RA and NIARA

To im pose the R A  and N IA R A  conditions, I generalize the beta-gam m a 

representation o f  the 3M -C A PM  proposed by Kraus and L itzenberger (1976) by 

allow ing for conditional tim e variation in the param eters o f  the SDF, and I estim ate 

it by GM M . In the conditional version o f  the Kraus and L itzenberger (1976) 3- 

M CA PM , henceforth  3M -(C )C A PM , I account for tim e-variation in the param eters 

o f  the utility function by letting them  depend in a linear fashion on a conditioning 

variable z that represents the available inform ation set:

6 \  =  ^4 +  6 s z

92 = e(,+ d jz  (4.5)

For convenience, 1 reproduce the Kraus and L itzenberger’s (1976) beta-gam m a 

representation o f  the 3M -C A PM  already introduced in (2.54):

+ S ,r ,

W here,

Pi

y,

E { u \ r „ ,  I 0 ) ]

£ [ ( r , - £ ( r , ) ) ( r „ , - £ ( r j ) ]

E { r , „ - E { r j f

E [ { r ^ - E { r , ) \ r „ - E { r j f ]

E K - E { r j f

Plugging (4.5) into (2.54), I then recover the conditional risk prem ia and S2 from  

the conditional utility function param eters as follows:
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_  - E [ u \ r „ , \ 9 ) ] E [ r „ , - E { r j f  
' E [ u \ r ^  I 0 ) ]

-  [20,  + 2 0 , £ ( z )  + 60,£( r„, ) + 66,E(zr„,  ) ]£ [(r,„ -  E{r,„ )]  ̂

1 + 29,E{r„,) + 26 ,E{zr ,„) +  W , E { r l ) + W , E { z r l )

^ _ - 0 . 5 E { u ’\ r j e m r , „ - E { r j f  

' E[u\r„, I 0)]

(4.7)
1 + 26,E{r„,) + 29 ,E{zr ,„) + W , E { r l ) + 30,£(zr„;)

The above equations give the unconditional asset pricing implications in terms o f  the 

two risk factors, the market excess return and its square, o f  a conditional 

specification o f  the 3M -CAPM  Euler equations in (2.50). Under non satiation, 

marginal utility must always be positive. Therefore the denominator o f  (4.7) is 

always positive. Since variance is always positive, risk aversion (RA) and hence 

^  I  ^) -  0 imply ()'i > 0. Similarly, since the skewness o f  the market portfolio 

is empirically found to be negative, preference for skewness and hence NIARA and 

w'"(r„, I 6*) > 0 imply a positive S2, i.e. S2 > 0. RA in turn implies:

A cubic utility function cannot be concave over its entire domain, thus the condition 

in (4.8) should hold only over the sample values o f  and z. This condition is in 

general difficult to impose. However, when NIARA holds:

In this case, a sufficient condition for (4.8) and thus for RA to hold over the sample 

values o f  and z  is the following:

M"(r,„) = 204 + 205 z  +  6 {Of, + 6 j z )  r,„ < 0 (4.8)

u ' \ r j  = 6(06 + 07z ) > 0 (4.9)

2 O4 + 20$ z  + 6 [0(, + 0-; Max{z)] Max{rm) < 0 (4.10)
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Here, the operator Max{) denotes the sample maximum o f  the argument and (4.9) 

and (4.10) together are sufficient conditions for RA to hold over the relevant portion 

o f  the representative investor’s utility function domain. Finally, the following 

condition adapted from Post, Levy and van Vliet (2003) constraints the market 

premium to be the sum o f  the beta and gamma premium:

■S'kC';,) r \ w  = £■[( 1 + 16arm + 20$zr„, + WerJ + 36>7zr^ )r̂ Jw  

= £(r„,) + 2dAE{r^^) + 29s E { z W )  + 3^6 E{r^^) + W i E { z \ J )  = 0 (4.11)

Here, vt' represents the vector o f  value-weights (which can be in principle time- 

varying). In the empirical applications, I replace the unconditional expectations in 

(4.5) to (4.11) by the corresponding sample moments and 1 estimate them by GMM. 

Imposing (2.26) on the excess-retums on the 30 Fama and French (1995) US 

industry portfolios and the CRSP market portfolio and using (4.5) yields a system o f  

30 orthogonality conditions. I estimate both the unconditional and the conditional 

model. The unconditional model imposes on the conditional one the restriction that, 

in (4.5), ^5 = 0 and 07 = 0. I implement the GMM methodology by estimating this 

system o f  orthogonality conditions with the constraint in (4.11), with and without the 

constraints in (4.9) and (4.10), by multivariate non-linear system least squares. I then 

construct first stage GMM standard errors with the identity matrix used as the 

weighting matrix for the orthogonality conditions. I use the identity matrix instead o f  

Hansen’s (1982) optimal weighting matrix because I place more importance on 

robustness than on efficiency. As discussed by Cochrane (2001), the optimal 

weighting matrix places more importance on moment conditions that are more 

precisely estimated and thus on the industry indices with less volatile pricing errors. 

The identity matrix instead places the same weight on all moment conditions and 

thus on all industries. Since in my study the pricing errors on all the industries are 

equally important, the identity is a preferable choice. An important difference 

between the two pass regression and GMM is that the latter, in the unconstrained
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estimation, forces the intercept to take a zero value. The 2-pass regression is 

therefore a more robust estimation procedure.

The empirical results are reported in Panel B o f Table 4.2. Here, the coefficient d'l is 

the beta premium and the coefficient S2 is the gamma premium. As explained in 

Section 2.6.1, these are the coefficients a beta-gamma representation o f the 

implications o f (2.50) for the cross-section o f asset returns. These estimates are 

different from the estimates o f the beta-pricing representation presented in Panel A 

o f Table 4.2. It is worth recalling that the assumption o f greed implies 

E[n'(r^, I  0)] > 0 and RA implies E[u"(r^ | 0)] < 0 . Thus, since £[r„, -  > 0 ,

the beta premium is positive for risk-averse, greedy investors, i.e. in (2.54)

<5, = —  ̂ > 0 . If the market portfolio skewness is negative
EW{r„, I 6>)]

(as it is often empirically the case), E{r„̂  -  £'(r„,)]  ̂ ^ 0 . Also, under the assumption 

o f NIARA, 10)] > 0 . As a consequence, the gamma premium

- i / r [ « " ( r ,  I «)]£[/•.-£(/■.))>
5̂  -  —  -------------------------------------- is positive for greedy investors with decreasing

E[u'(r„, I 0)]

absolute risk aversion. Thus, while the beta premia under the beta-pricing and beta- 

gamma representations, /I4 and S\ respectively, have the same sign, the coskewness 

X(, and gamma premia S2 have opposite sign.

When I impose the RA and NIARA constraints, the gamma premium becomes close 

to zero and both the conditional and the unconditional model are rejected at the 0.3 

percent significance level by Hansen’s (1982) J  test. This confirms the result 

reported by Dittmar (2002) and by Post, Levy and van Vliet (2003). It is interesting 

to note, however, that it is the NIARA restriction that is binding {9(, = 0), whereas 

the RA constraint is slack in a neighbourhood o f the stationary point (the proxy for 

the market portfolio). In other words, the only way to allow for a non-zero gamma 

premium is to allow for a negative third derivative o f utility, i.e. w”( „̂,) < 0. This, 

however, implies from (4.7) a negative gamma premium, skewness aversion instead
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of skewness preference and an S-shaped utility function. It would also be interesting 

to impose NS and NIARA without imposing RA to replicate the results of the 2-pass 

regression. This is virtually impossible, however, as it is very difficult to impose NS 

without first imposing RA and imposing the latter without first imposing NIARA.

4.8. Summary and Conclusions

In this Chapter, I have derived the beta-pricing representation of Harvey and 

Siddique’s (2000) specification of the 3M-CAPM. Relative to Harvey and Siddique 

(2000), the main innovation of this study is an explicitly conditional empirical 

specification of the stochastic discount factor and the derivation of the beta-pricing 

representation of their model. My beta pricing representation of Harvey and 

Siddique (2000) 3M-CCAPM is also different from the Kraus and Litzenberger 

(1976) beta-gamma representation since their beta and gamma are not regression 

coefficients.

From an empirical point of view, I have updated the evidence provided by Harvey 

and Siddique (2000) and by Dittmar (2002) on the ability o f the coskewness and 

gamma premia to explain the cross-section of US industry returns. My sample spans 

almost 40 years from 1963 to 2002, whereas the sample period of the studies of 

Harvey and Siddique (2000) and Dittmar (2002) stops, respectively, in 1993 and 

1995. I have also employed Lettau and Ludvigson’s (2001) consumption-wealth 

ratio, cay,, as a conditioning variable to model time variation in the parameters o f the 

utility function. While there is considerable evidence that this variable can predict 

long horizon returns and thus proxy for time variation in the shape of the utility 

function, no study to date had previously used it as a conditioning variable in a 3 

moment asset pricing model. In particular, it had not been used by Dittmar (2002).

I found that, while the 3M-CAPM is rejected when risk aversion and non increasing 

absolute risk aversion are imposed, its factor loadings are surprisingly successful at 

explaining the cross section of industry returns, with a coefficient of determination
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between 20 and 30 percent. These values are high for a model that does not include 

among the regressors portfolios returns that mimic additional and partially ad-hoc 

factors such as size and the book to market ratio. Thus, while the beta pricing 

representation o f a quadratic market factor model like (4.1) is unlikely the empirical 

specification o f the 3M-CAPM, it does captures a substantial portion o f the cross 

sectional variation o f returns. It can therefore be interpreted as a statistical 

representation o f asset return, but its theoretical motivation remains to be 

established. In other words, a quadratic specification that allows for both systematic 

asset covariance and coskewness to explain the cross section o f returns should be 

seen as a relatively successful reduced form representation o f a yet unknown 

theoretical asset pricing model.

In this reduced form representation, first moments (mean stock excess returns) are 

related to systematic second moment realizations (squared market returns). In 

particular, stocks that display high coskewness with the stock market and thus a high 

correlation with market volatility display lower average returns. Conversely, stocks 

with negative coskewness and thus with low correlation with market volatility 

display higher average returns. More specifically, for a given level o f covariance 

with the stock market, stocks with low coskewness offer higher average returns than 

stocks with high coskewness.
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Chapter 5: European Equity Returns Second Moments

5.1. Introduction

In this Chapter, 1 extend the study o f Campbell, Lettau, Malkiel and Xu (2001), 

henceforth CLMX (2001), to the European equity market. In particular, I analyse the 

behaviour over the period 1974-2004 o f systematic and aggregate firm and industry- 

level volatility and correlation o f the 3515 stocks listed on the markets o f the current 

members o f the EMU"*'. I focus on relatively low frequency time variation in second 

moments because it is more relevant from a strategic asset allocation perspective 

than high frequency (e.g. daily) movements. Thus I work with semi-annual 

volatilities and correlations estimates constructed from weekly returns. I study both 

their long-term trends and the shorter run relationships that link these series to each 

other and to aggregate returns. My aim is to extend the literature by applying CLMX 

(2001) methodology to a new dataset.

This Chapter is based on two studies, Kearney and Poti (2003) and Kearney and Poti 

(2005b). These have been presented at the European Finance Association (EFA) 

Annual Meeting (Glasgow, 2003), at the European Financial Management 

Association (EFMA) Annual Meeting (Milan, 2005) and Kearney and Poti (2005b) 

has been accepted for presentation at the Financial Management Association (FMA) 

Annual Meeting (Chicago, 2005).

I begin by introducing, in the next Section, a decomposition o f average stock 

variance into systematic and idiosyncratic components. This is similar to CLM X’s 

(2001) decomposition but it is based on returns instead o f excess returns and I derive

In this study 1 neglect the country level, traditionally prominent in the literature on volatility in 
European markets, see for exam ple Baele (2002), and I focus instead on the firm, industry and 
aggregate level o f  the EMU stock market as a w hole. This choice is motivated by the considerable 
evidence on a substantial degree o f  equity market integration, which has gathered pace in Europe 
since the m id-1990s (H ardouvelis, M alliaropulos and Priestley (2000 ) and Fratzschler (2002)). 
Moreover, fo llow ing the introduction o f  the Euro, equity markets o f  the countries that have adopted  
the new currency have becom e alm ost perfectly correlated, as reported by Cappiello, Engle and 
Sheppard (2003 ) and by Kearney and Poti (2003 , 2005a).
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it following an alternative, more intuitive approach. In Section 5.3, I then describe 

my data set and construct my variance and correlation series. In Section 5.4, I 

examine their long-run behaviour. In Section 5.5, I compare them to analogous 

series constructed from United States data. In Section 5.6, I discuss possible 

explanations for the observed long-run trends in individual stocks volatilities and 

correlations. Then, in Section 5 .7 ,1 study the lead-lag relations between the variance 

series and their ability to predict aggregate returns. In the final Section, I summarise 

the main findings and present some concluding remarks.

5.2. Variance Decomposition

Denote by the return on asset i included in portfolio P. It can be decomposed into 

the conditionally risk free rate, Rjj, a portfolio-related component and an asset- 

specific component:

+  P i . p . ,

Here, Rpj is the return on the portfolio P, Pip is a regression coefficient and w/,, is an 

idiosyncratic regression residual**^. The unconditional variance o f the asset can also 

be decomposed into a systematic and an idiosyncratic component:

Var{R, , ) = (1 -  Var(R,  , ) + P l V a r { R ^ , ) + Var{u, ,) (5.2)

Averaging across the assets, the variance o f the typical asset can also be 

approximately decomposed into a systematic and an idiosyncratic component:

N otice that idiosyncratic residuals are not assum ed to be uncorrelated across all pair o f  firms and 
industries (our reference m odel is the CAPM , not the APT). They are, how ever, orthogonal on 
average. In other words, since they are regressions residuals o f  m odels that include the same set o f  
regressors, their average correlation is by construction zero.
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Avg^'ar{R , ,)] =  Avg[{\ -  P, p f  Var{Rj , ) ]+  Avg[p^pVar(Rp , ) ] +  Avg[Var(u , ,)]
(5.3)

= ^vg[(l -  y a r ( R f , ) + Avg(p^^ Y ar{R p , ) + Avg\Var{u, , )]

Here, the operator Avg{-) denotes a weighted average across all the assets included 

in the portfolio. Using an elementary statistical result, and assuming that the cross- 

sectional variation o f the beta coefficients, CSv[/3- is not too high'̂ ,̂ Avg[j3^p)

and ^vg[(l -  y5,^)  ̂] in (5.3) can be conveniently approximated as follows:

Mfi,.,'U^'gK)+csr{pJ=i + csv{fiJ^ 1

-  P . J V  ^ ' * 0  -  A  ,,)F  + CSV(\ -  p , J  = CSF(1 - / ) , . )  = 0

Using (5.4), the decomposition o f the variance o f the typical asset in (5.3) collapses 

into the sum of the portfolio variance and o f the average idiosyncratic variance:

Avg[Var{R,,)]=Var{Rp,) + Avg[Var{u,,)\ (5.5)

Turning to a larger scale analysis, the returns on the industry indices and on the 

individual stocks in the market portfolio are described in equations (5.6) and (5.7).

+ Pj.m ~ ^f.i) + (5-6)

^ i j j  =  +  P i J . m  ( . ^ m j  ~  R f j  )  +  P , J J ^  J J  ^  ^ J J

Here, Rjj is the industry j  return, is the return on firm / in industry j ,  R^j is the 

return on the market portfolio, Pj,m, P,j.m and jiijj, are regression coefficients and ê ,,

At least in the value w eighted case, large stocks w ill likely have betas close to 1, i.e. betas c lose  to 
their cross-sectional average. This means that the cross-sectional variation o f  betas in the market 
capitalization w eighted (value-w eighted) case must be low. U sing United States data, CLM X (2001) 
show  that the cross-sectional variance o f  beta coefficients is relatively small for large portfolios o f  
stocks. They also demonstrate that the cross-sectional variance o f  beta coefficients is typically not 
very volatile over tim e and thus, in time series analysis, it can be safely ignored.
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and Cijj are, respectively, industry and firm-level idiosyncratic regression residuals'*''. 

Letting ^ , ,  (5.7) can be rewritten as follows:

= ^ f j  + Ay.m ~  ^  t ) + ^, j j  (5-8)

By construction, ey,,, and ej,, are orthogonal, , is orthogonal to R„,,i and thus it 

is an idiosyncratic regression residual, so (5.8) decomposes returns into a pure 

market component and a pure idiosyncratic component and (5.7) decomposes the 

latter into pure industry and firm level components'*^.

Based on this model of returns and on (5.5), total stock variance can be decomposed 

into a systematic and an idiosyncratic component,

VAR, = MKT; + IDiq (5.9)

where,

>1 /=i

MKT = Va,{R,„) = j^
7=1 /=! 7=1 i=\

IDiq^tw,Xw,^yar{u„,)
7 = 1  '  /= 1  ■ ■

Here, k denotes the maximum number of stocks in each of the n industries, Wjj the 

weight o f industry /  in portfolio m, and , the weight of stock i in industry j ,  VAR, is 

the weighted average total stock variance, MKT, is the variance of the market 

portfolio and IDIO, is the average idiosyncratic variance. Intuitively, VAR, can be 

interpreted as the variance of the typical stock, and IDIO, as the variance borne by

N otice that idiosyncratic residuals are not assum ed to be uncorrelated across all pair o f  firms and 
industries (our reference m odel is the CAPM , not the A PT). They are, how ever, orthogonal on 
average. In other words, since they are regressions residuals o f  m odels that include the same set o f  
regressors, their average correlation is by construction zero.

M oreover, letting p ,i  „, = and substituting from (7 .6) into (7 .7), /?y, =  R p  + - R j,,) + e ,̂,.
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the arbitrageur that holds a long position in the typical stock and a short position in 

the market portfolio.

Since this framework can be applied to any portfolio, we can apply it to decompose 

the variance o f the typical industry into its market and idiosyncratic components as 

follows:

= MKT, + im ,  (5.10)

where,

V A K “ = 't« „ V a K R „ )
. /= !

IND,=tw,,Varis„)
7=1

Here, VAR]"‘̂  is average total industry variance and IND, is the industry level

average idiosyncratic variance. Intuitively, the former can be seen as the variance of 

the typical industry and the latter as the variance born by the typical arbitrageur that 

holds a market neutral long-short position in an industry index. The idiosyncratic 

portion o f average total variance can then be further decomposed into its industry 

and firm level components:

I  DIO, = IND, +  FIRM, (5.11)

where.

FIRAi = ID iq -IN D ,

= 1 - . .
7=1 i=]

J = ]  /=1

The last approximate equality follows from the application o f  (5.5) to Uij,, in (5.8). 

FIRM, is the firm-level average idiosyncratic variance. Intuitively, it can be
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interpreted as the variance borne by the typical arbitrageur that holds a long position 

in the typical stock and a short position in the industry to which it belongs.

Since Wy,, can be seen as a CAPM idiosyncratic residual, (5.9) and (5.11) provide a 

CAPM-equivalent decomposition‘ŝ  o f average total variance into market variance 

and average idiosyncratic variance and its industry and firm components with the 

considerable advantage that it bypasses the need to estimate possibly time-varying 

betas. This variance decomposition is very similar to the decomposition proposed by 

CLMX (2001), but it is based on returns instead o f  excess returns and therefore it 

does not require the identification o f the risk free rate. This represents a considerable 

advantage when it is unclear which rate constitutes the appropriate proxy for the 

risk-free return. Such a situation typically occurs when working with European 

returns in the pre-Euro period. Moreover, my derivation o f the variance 

decomposition is complementary to the strategy followed by CLMX (2001) in that it 

sheds light on different intuitions about the relation between the systematic and 

idiosyncratic components o f the volatility o f the typical asset. It is also easier to 

generalize to any portfolio o f assets and orthogonal portions thereof

Furthermore, define the average volatility o f the stocks included in the market

n k I-------------------
portfolio as VOL, = ,, 11%/ / ) ■ Assuming that the market portfolio is well

7 = 1  '  /= 1

diversified, the average stock correlation can be obtained as the ratio o f the market 

variance to the square o f the average stock volatility:

CORR, = (5.12)
v o l ;

As discussed by CLMX (2001), this is an approximate decomposition. In particular, IDIO, is only 
approximately equal to the average variance o f  the CAPM idiosyncratic residuals. CLMX (2001), 
however, show that their difference is negligible if the cross-sectional variance o f  the beta 
coefficients is not too volatile.
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Here, CORR, is the level o f correlation that, if  assumed to hold for all pairs o f 

stocks, would give the same market volatility as the full correlation matrix. In a

similar way, defining = 'ZWj,JVar(R^,) as the average industry volatility, we
/= i

can also construct a measure o f average correlation for a diversified portfolio o f 

industries as follows:

CORR (5.13)
VOL"'‘‘

Equations (5.12) and (5.13) are based on a general and intuitively appealing resuh 

that, as proven in Appendix D, applies to any well diversified portfolio and that can 

therefore be used to simplify the construction o f the average correlation time series 

o f  a large number o f assets. This can be particularly useful for risk managers and 

derivatives traders. It also has the interesting analytical implication that the variance 

o f  a diversified portfolio can be modelled in either a univariate or a simple bivariate 

setting by studying the process followed by its average correlation, its average 

volatility, and their interaction. In Appendix E, to illustrate the usefulness o f (5.12) 

and (5.13), I outline a dynamic trading strategy based on average correlation.

5.3. EMU Data and Variable Construction

I use market, industry and firm-level weekly returns and semi-annual capitalization 

data from Datastream International Ltd. for the period December 1974 to March 

2004. By using weekly returns I overcome the problem o f asynchronous trading 

across the EMU stock markets. Firm level data comprises the total returns and 

market capitalisation for the 3,515 stocks listed over the period 1974-2004 on the 

equity markets o f Austria, Belgium, Denmark, France, Germany, Greece, Ireland, 

Italy, Luxembourg, the Netherlands, Norway and Spain. These are the countries that 

had adopted the Euro as o f March 2004. The industry level data is obtained from 

Datastream International Ltd. Level 4 fixed history industry indices for the Euro
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area equity market‘d’. The market data comprises total returns on the Datastream  

International L td  fixed history‘s* index for the overall Euro area stock market"*^.

Similarly to CLMX (2001), I employ unconditional estimators o f variances based on 

sums (or averages) o f return innovations squares and cross-products. This choice is 

motivated by the large number o f stocks in my sample that renders multivariate 

conditional estimation methodologies unfeasible. Also, since I focus on low 

frequency estimates, conditional serial dependence in second moments is unlikely to 

be important. The implicit assumption o f  the unconditional estimation methodology 

is that the variance o f a process is observable, and as pointed out by Merton (1980), 

it can be estimated to any desired degree o f accuracy by sampling the squared 

deviations o f the process realisations from their means at sufficiently high 

frequency. I therefore define variance over a period T  o f length p  as the average o f 

the squared deviations o f returns (or their components) 7?/, t = 1 , . . . . ,  p , from their

mean R t . In all computations I apply the convention that each year comprises 52 

weeks and each semester comprises 26 weeks. Therefore, to compute my semi­

annual variance o f weekly returns, I set p  equal to 26. Formally:

V ar{R ,), = f { R , - R r f  (5.14)
r = l

Using (5.14), I first construct variance series using non-overlapping semi-annual 

periods for the individual stocks Var{Rjj t)r,  for the individual industries Var{Rj , )t

Datastream Level 4  Industry Indices classify Euro area stocks into 35 industries (Panel A in Table 
7.1), thus providing enough cross-sectional variation to be able to discriminate industry-specific 
variation from sources o f  variation com m on to all the stocks (e.g . the market).

The choice o f  using fixed history indices is necessary to ensure consistency with my average 
variance com putation m ethodology and with the procedure fo llow ed  by CLM X (2001).

1 constructed a value-w eighted index o f  all the stocks included in our dataset for the shorter period 
I sem ester 1997 -  1 sem ester 2004  and found that its correlation with the Datastream Euro area 
market index is alm ost perfect (96 .8  percent) over this period and over various sub-periods. Thus, 
given  the availability o f  the excellent proxy represented by the Datastream Euro area market index  
(that represents at least 75% o f  the capitalization o f  the Euro area equity market), I felt that it was not 
necessary to construct the value-w eighted index o f  all the stocks for the entire 1974-2004 sample 
period, a com putationally very intensive task that w ould have likely lead to errors.
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and for the market portfolio Var{Rm.,)T- I then set M K T j  equal to the latter, compute 

the average total variance time series, VARj, and using (5.9) I construct the average 

idiosyncratic variance series, IDlOr, as the difference between VARt and M KT t. 

Turning to the decomposition o f average idiosyncratic variance into its industry and 

firm level components, I use (5.10) to construct IN D j  by subtracting M K T j  from 

VAR''"^t and, using (5.11), I derive F IR M jhy  subtracting INDt from IDlOj.  Finally, 

applying (5.12) and (5.13) and using the constructed market, stock and industry 

variance series, I compute the average correlation among the stocks and industries.

This gives 61 non overlapping semi-annual variance and correlation data points (7’ =

1, 2 ,..... 61) computed from the weekly returns data. The variance series are

annualized by multiplying by 2 to minimise rounding errors and to display the 

results in a more intuitive form. While I construct both equally-weighted and value- 

weighted series, I focus mostly on the latter^* .̂ The constructed series and the 

notation employed are summarized in Panel B o f Table 5.1. The decomposhion o f 

the value-weighted average total stock variance series into its market and 

idiosyncratic components is reported in Panel A o f Figure 5.1, Panel B plots the ratio 

o f firm to industry variance and Panel C reports average stock and industry 

correlations.

Inspection o f Figure 5.1 reveals that total, idiosyncratic and market variance start off 

relatively low and tend to rise towards the end o f  the period. However, this tendency 

is more pronounced for idiosyncratic variance and its firm-level component. 

Idiosyncratic variance is the largest component o f average total variance and average 

stock correlation is usually well below 50 percent with the noticeable exception o f 

the 1974 oil crisis and the 1987 stock market crash. The potential benefit to 

diversification strategies is therefore substantial. These developments are broadly in 

line with those reported by CLMX (2001) for United States stocks.

E qually-w eighted series are available upon request.
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Table 5.1 
Data and Variables Definitions

Panel A

Industries  -  D atastream  L evel 4

1 Mining 19 Retail, General
2 Oil & Gas 20 Leisure & Hotels
3 Chemicals 21 Media, Entertainment
4 Cons.. & Bldg. Mat. 22 Support Services
5 Forestry & Paper 23 Transport
6 Steel &Oth. Metals 24 Food & Drug Retailers
7 Aerospace, Defence 25 Telecom Services
8 Diversified Industrials 26 Electricity
9 Electric Equipment 27 Other Utilities
10 Eng.&Machinery 28 Inf Tech. Hardw.
11 Auto & Parts 29 Software & Comp. Serv.
12 H’HId GDS&Textls 30 Banks
13 Beverages 31 Insurance
14 Food PrDr./PrCr. 32 Life Assurance
15 Health 33 Investment Cos.
16 Per.Care&HshId 34 Real Estate
17 Pharm. & Biotech 35 Spc. & Other Finance
18 Tobacco

Panel B

V ariables

I Weekly return on industry j
2 R-i.jT Weekly return on stock i from industry j
2 RinT Weekly return on the stock market portfolio
3 V A R t Average total variance o f stock returns
4 MKTt Annualised semi-annual variance of R„,j
5 IDIOt VARt -  MKTt

6 VARt'"'' Average total variance o f industry returns
7 INDt VARt'"‘‘-  MKTt

6 FIRMt VARt -  VARt'"**

Notes. Panel A o f this table reports the industries included in the 
sample based on the Datastream Level 4 classification. Panel B 
summarizes the main variables. The market portfolio is the 
Datastream index for the Euro area. All returns are total returns 
(they include accrued dividends). All indices are “fixed history” 
(they are not recalculated following modifications to the index 
composition).
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Figure 5.1 
Variance and Correlations Scries
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Note. Panel A plots the decomposition o f the total variance o f the typical 
Euro area stock into its systematic and idiosyncratic components. Panel 
B plots the ratio o f firm to industry variance. Panel C plots the average 
correlation amongst the 3515 EMU stocks. among the US
stocks included in CLMX (2001) sample, CORR^’̂ , and amongst the 35 
Datastream Level 4 EMU industry indices, CORR“"̂. The sample period 
is 1974 -  2004 for the EMU series and 1974 -  1997 for the US series. 
All series are value-weighted.



5.4, Time Series Behavior of Unconditional Second Moments

I begin my formal time series analysis by providing descriptive correlations and 

autocorrelations and by testing for the presence o f  long run trends. I then examine 

the short run interactions between my decomposed variance series. Table 5.2 

presents descriptive correlations o f  the market variance, the average idiosyncratic 

variance and the average correlation series with each other’s lags and with lags o f 

industry and firm volatility, average correlation, the market excess-retum and Gross 

Domestic Product (GDP) growth. The low persistence o f the market variance and 

correlation series is due to their construction from relatively low frequency (weekly) 

returns and to the semi-annual sampling period and it suggests that they are unlikely 

to contain a unit root. This is also the case for the more persistent average 

idiosyncratic variance and its industry and firm-level components^'. I therefore treat 

the constructed variance and correlation series as stationary and work in levels 

without differencing. All series display a negative correlation with stock market 

returns. They are also positively correlated with GDP growth and hence pro-cyclical.

Long Run Trends

To test for the presence o f a deterministic time trend I estimate a dynamic model that
52includes among the regressors a constant and a lag o f the dependent variable . I 

then conduct a Wald-type test o f the restriction that the deterministic time trend 

coefficient is zero. The results are reported in Table 5.3. The trend coefficient is 

significant in both the average idiosyncratic variance, ID IO t, and the market

W hile they are more auto-correlated, they appear far from containing a unit root. To double check  
on whether the series are stationary, how ever, I a lso conduct D ickey-Fuller and augm ented D ickey- 
Fuller tests and I analyse the spectral density function o f  the series. These results are available upon 
request.

1 include am ong the regressors only one lag o f  the regressand because, from Table 7.2, higher order 
auto-correlations do not appear to be important. To check that the estimated residuals from this m odel 
are serially independent 1 use the Durbin’s h statistic because, in the presence o f  a lagged value o f  the 
dependent variable am ong the regressors, the D W  test is biased towards acceptance o f  the null o f  no 
autocorrelation. 1 use the generalised version o f  Durbin’s h-test, developed by Godfrey and Breusch, 
based on a general Lagrange Multiplier test. Even though this procedure can detect higher order serial 
correlation, 1 test only the null o f  no first-order residual autocorrelation.
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variance, M K T t series. These trends explain a substantial portion o f the rise in these 

series over time. After 5 years, for example, the projected increase in market 

variance, MKTj,  and in idiosyncratic variance, IDlOj,  is 0.56 percent and 1.0 

percent respectively. These values correspond to increases in market volatility and 

idiosyncratic volatility o f the typical stock o f about 5.5 and 10 percent respectively. 

Since the time trend is statistically insignificant for average industry-level 

idiosyncratic variance, INDj,  but highly significant for firm-level idiosyncratic 

variance, FIRMj,  the surge in idiosyncratic variance, IDIOj,  is attributable mostly to 

an upward trend in firm-level volatilities. The upward trend in idiosyncratic and 

firm-level variance is similar in magnitude to the upward trend in the corresponding 

United States series studied by CLMX (2001). Market volatility, however, is not 

trended upwards in the CLMX (2001) sample.

The long run mean o f average stock correlations, CORRt, is close to 20 percent. The 

typical coefficient o f determination R and hence the explanatory power o f the 

market model, with zero intercept, is therefore rather low at about 4 percent 

(calculated as the square o f 20 percent). The trend coefficient o f average stock 

correlations, CORRp, is not statistically significant. This is not surprising, given that 

both market variance, MKTj,  and idiosyncratic variance, IDIOj,  are trended upwards 

by similar magnitudes. A consequence o f this finding is that, in the long run, the 

explanatory power o f  the market portfolio is relatively stable. CLMX (2001) results 

imply instead a downward trend in average stock correlation and in the explanatory 

power o f the market portfolio in the United States.
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Table 5.2 
Descriptive Correlations

q MKTt., IDIOt . , IN D r . , FIRM-r.,, CORR/.,, G D P ; . ,

MKTr 1 0.22 0.32 0.14 0.38 0.10 0.04 -0.05
0 1 0.74 0.55 0.70 0.61 -0.52 0.14

-1 0.22 0.35 0.19 0.39 -0.06 -0.08 -0.08
-2 0.24 0.35 0.23 0.35 0.08 -0.11 0.27
-3 0.18 0.50 0.50 0.36 -0.12 0.10 0.10

IDIOj 1 0.35 0.62 0.45 0.59 -0.01 -0.19 0.01
0 0.74 1 0.81 0.88 0.08 -0.35 0.16

-1 0.32 0.62 0.45 0.59 -0.14 -0.10 0.12
-2 0.23 0.54 0.37 0.53 -0.11 0.03 0.29
-3 0.34 0.60 0.49 0.53 -0.03 -0.02 0.18

CORRr 1 -0.06 -0.14 -0.19 -0.07 0.18 0.19 0.03
0 0.61 0.08 0.07 0.06 1 -0.30 0.20

-1 0.10 -0.01 -0.06 0.04 0.18 -0.01 -0.15
-2 0.08 -0.03 -0.08 0.01 0.23 -0.03 0.14
-3 0.00 0.12 0.20 0.03 0.00 0.33 0.01

Note. This table reports descriptive coirelations o f  the variables reported in the first column with 
leads q o f  the variables reported at the top o f  the other columns. No series is linearly de-trended. 
The proxy for the risk fi-ee rate is the semi-annual average o f  the I Month Euro-M ark. GDP  is the 
GDP growth rate. The sample period is 1974-2004
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Table 5.3 
Long Run Trends

y-T a
{t-stat.)

S
(t-stat.)

P
{t-stat.)

h-stat.
{sign.)

Wald-stat.
{sign.)

IDIO t 1.16 0.10 35.86 0.52 9.55
(1.29) (3.09) (2.80) (.470) (.003)

FIRM t -0.40 0.11 12.79 2.30 24.81
(0.88) (4.98) (0.93) (.130) (.000)

INDr 1.1 .01 50.00 1.47 0.79
(1.88) (.89) (4.34) (.220) (.375)

M KT, 0.35 .056 5.91 0.35 7.99
(0.53) (2.83) (0.44) (.550) (.006)

VAR, 1.67 0.17 21.32 0.33 11.66
(1.15) (3.41) (1.60) (.560) (.001)

CO RR t 20.50 -0.04 16.98 2.37 0.37
(4.98) (0.60) (1.30) (.120) (.540)

Notes. This tables reports estimates o f  the param eters o f  the model o f  the 
variance and correlation series with a determ inistic tim e trend. All the 
variables are defined as in the text. All the series are semi-annual (annualised). 
D W  denotes the Durbin-W atson statistics o f  the static model. The point 
estimates o f  the a, S, and p  parameters are m ultiplied by 100 to improve 
legibility. The rightm ost colum ns report the D urbin’s /7-statistic o f  the null 
that the residuals are not first-order autocorrelated and the W ald statistic (in 
both cases with the associated significance levels) o f  the restriction that <5 is 
equal to zero. All the W ald and t-test statistics, standard errors and 
significance levels have been com puted using a Newy-W est adjusted 
variance-covariance matrix with Parzen weights to correct for error 
heteroskedasticity and autocorrelation. The sample period is 1974-2004. The 
estim ated model is the following («•/ denotes an error term):

y r =  a + 6T + Pyj . \  + uj
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Short Run Dynamics

There is a potentially rich set o f short run dynamic interactions between the variance 

components. Following the general-to-specific methodology (see, inter alia, Mizon 

(1995) and Kearney (2000)) 1 first specify a vector autoregression (VAR) model o f 

the relation between overall market variance, MKT,, industry variance, IND,, and 

idiosyncratic firm variance, FIRM,.

A ( L ) y , = u ,  (5.15)

with

A{L)  = I ^ - A , L - A ^ L ^  - ..................... ,

E{Uj)  = Q, E(UjU' , )  = 'E, E ( u , u ' = 0,  fovT  ^  S , E{y j Ui )  = 0

and

[MKT, IND^ F l R M r /

This is a reduced form VAR representation in which y-,. is the vector o f variables, I3 

is a (3 X 3) identity m a t r i x , a r e  (3x3)  coefficient matrices, w, is a (3x1) vector o f

white noise disturbance terms, and I''denotes the lag operator (for 

example, = _y7._,̂ ). This model allows us to examine the full range o f 

interaction between the variables in the y^. vector, i.e. the overall market variance, 

M KTt, the industry variance, IND t, and the idiosyncratic firm variance, FIRM j. A 

convenient feature o f the VAR representation in (5.15) is that it can be estimated by 

ordinary least squares, which yields consistent and asymptotically efficient estimates 

o f  the A^ matrices because the right-hand-side variables are predetermined and are 

the same in each equation o f the model.

The first step in the estimation process is to decide on the appropriate lag length 

( Q) .  The Akaike Information Criterion (AIC) suggests the inclusion o f  3 lags, and 

the Swartz Bayesian Criterion (SBC) suggests 1 lag. Since a Likelihood-Ratio test
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(LR) indicates that increasing the lag length from  1 to 3 produces a significant
CO

im provem ent in the overall m odel fit, I include 3 lags o f  each variable {Q  = 3). 

This lag length selection tests are reported in Panel A o f  Table 5.4. I next perform  

block-exogeneity  tests on the M KTt, IND t and FIRMt series to determ ine w hether 

lags o f  one variable G ranger-cause any o f  the others. I f  all lags o f  one variable can 

be excluded from  the equations o f  the other two variables, we can m odel the latter 

using a 2-variable VAR. I test these restrictions using a likelihood ratio (LR) 

statistic, m odified by S im s's  (1980) m ultip lier correction to im prove the small 

sam ple properties o f  the test. This test statistic is distributed as chi-squared w ith 

degrees o f  freedom  equal to the num ber o f  lags excluded from  each equation in the 

restricted system . Panel B o f  Table 5.4 presents the results. The only block 

exogenous variable is FIRMp'^. M oreover, from  Panel C o f  the Table, M K Tj  

G ranger-causes IN D j  w hereas the latter G ranger-causes both M KT t and FlRMp.

Since the lags o f  both M K T j  and IN D j  cannot be excluded from  the equations o f  the 

other two variables, we m ust model the system  as a trivariate VAR. To identify the 

structural m odel from the estim ated reduced form , 1 im pose the restrictions that 

IND]  does not have contem poraneous effects on M K T t, and FIRMt does not have 

contem poraneous effects on M KTt and IND t. The structural m odel is therefore 

w ritten as follows.

■  MKT, ■

=  ro+Z
■ MKT,. ■ ^  M K T  ,T

IND, IND,. + ^  IN D ,T

FIRM,
q= \

FIRM., _ ^ F I R M  , r  _

Here, Fq is a vector o f  constants and B and Tq are, respectively, the contem poraneous 

and lagged structural coefficient m atrices. The elem ents along the m ain diagonal o f 

B are equal to 1. D enoting by I  a C holesky low er triangular m atrix such that

M oreover, a Likelihood Ratio test does not reject the restriction that the lag length is one instead o f  
tw o (the Chi-squared statistics is 7.83 with significance level 0 .550).

The significance level o f  MKT;  is only slightly higher than the 5 percent level.

156



S = LL' and by D  the diagonal matrix of the structural errors standard deviations 

(the elements along the main diagonal of L), 1 impose the restriction that 

Z)/) = 5  'S ( 5 - ') 's 5 '' 'L Z '( 5 ‘') ' .  It follows that D = L andB = LD ~\ With 

estimates of 2 in hand from the residuals of the reduced form model in (5.15), I 

solve for B and obtain the following point estimates of its elements:

1 0 0 

B =  -.451 1 0
-.436 - .1 1 9  1

(5.17)

The elements o f B suggest that there is a positive contemporaneous influence of 

M K T t  on both I N D j  and FlRMp, and of I N D t  on FlRMr. Table 5.5 reports the 

corresponding variance decomposition of the Euro area market variance and average 

industry and firm level variance series. A large portion of the variance of IN D t  and 

FIRM/-, over 30 percent one period ahead, is explained by variation in M K T t,  

whereas only 5.7 percent of the latter is explained by variation in I N D t  after 3 

periods and none by FIRMr. Interestingly, the impulse-response functions, reported 

in Figure 5.2, show that the most intense interactions take place with a three period 

lag (corresponding to 18 months).

Comparing my findings to those reported by CLMX (2001), it emerges that both 

systematic and industry level variance play a more important role in Europe than in 

the United States whereas firm volatility is more important in the United States. 

This suggests that their role in forecasting exercises, which might be relevant in 

pricing applications and asset allocation decisions as suggested by, inter alia, Goyal 

and Santa Clara’s (2003) work, is different depending on whether the stocks are 

drawn from a European rather than a United States sample.
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Table 5.4
Short Run Volatility Components Dynamics 

Reduced Form Model

Panel A 
(Lag-length Selection)

Lass AIC SBC LR p-value
1 -23.702 -23.243*
2 -23.558 -22.755 10.785 0.290
3 -23.900* -22.753 35.122 0.000
4 -23.777 22.286 11.861 0.221
5 -23.674 -21.839 12.852 0.169
6 -23.586 -21.406 13.591 0.137

Panel B
(Block-exogeneity Tests)

Variable ln\IvR\ ln\SR\ Chi- Sig.
Squ.(6)

MKTt -16.751 -16.525 11.730 0.068
I N D t -16.693 -16.350 17.847 0.006
FIRMt -16 .458 -16.315 7.431 0.282

Panel C 
(Granger Causality Tests)

Dep.
Variable

Lags F-Statistic Sig.

M K T t M K T t . , 1.713 0.176
I N D t . , 7.176 0.000
F IR M t- , 0.130 0.941

IN D t M K T t-, 2.822 0.048
INDT-q 8.812 0.000
FIR M T -q 1.596 0.202

F IR M t M K T t . , 0.120 0.947
I N D t-c 3.947 0.013
F IR M t-h 1.188 0.324

Notes. Panel A o f this table reports, for the trivariate VAR system of 
M K T t, INDj and FIRM j the AlC, the SBC and the Likelihood Ratio (LR) 
test statistics. The latter is constructed as the change in the likelihood 
function each time the lag length is incremented. The p-value refers to the 
LR statistic. Panel B reports the log-determinants o f the unrestricted 

and restricted VAR systems where the variable specified in
the left-most column is restricted to be block-exogenous. The Chi-Squared 
statistic is computed as (T - c )(/«|2/(| - lri\Ei\\ where T=  61 and c is Sims’ 
(1980) multiplier correction. Panel C reports Granger-causality tests o f the 
null that all the lags o f a variable can be excluded from the equation o f the 
dependent variable. All the variables are linearly de-trended. The sample 
period is 1974-2004.



Table 5.5
Short Run Volatility Components Dynamics 

Structural Model

Series St. EiTor Step M K T t IN D t FIR M t

M K T j 1,95 1 100.0 0.0 0.0
2 99.3 0.2 0.4
3 93.6 5.7 0.6

IN D t 1.96 1 40.3 59.6 0.0
2 32.9 65.8 1.1
3 29.3 67.1 3.4

FIR M t 2.02 1 37.5 1.1 61.2
2 37.5 1.1 61.2
3 37.5 2.2 60.2

iWotes. This table reports, for Ihe trivariate VAR system o f MKT-r, IND^ and 
FlRMy, the percentage of the variance o f the series reported in the first column 
explained by the series reported at the top o f cach row. The variance 
decomposition imposes the restriction that INDj has no contemporaneous 
effect on M KTj and FIRM j has no contemporaneous effect on MKTj and on 
INDj. All the variables are linearly de-trended. The sample period is 1974- 
2004.



Figure 5.2
Short Run Volatilitj’ Components Dynamics 

Structural Model
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Notes. This figure reports, for the trivariate VAR system o f MKT, IND and FIRM, 
impulse response functions under the restriction that IND has no contemporaneous effect 
on MK T and FIRM has no contemporaneous effect on MKT and on IND. All the variables 
are linearly de-trended. The sample period is 1974-2004.
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5.5. US vs. EMU Series

In order to examine more closely the extent to which my constructed EMU variance 

and correlation series share similar features to those displayed by the series used by 

CLMX (2001) for US markets, I construct comparable albeit shorter variance and 

correlation series from CLMX (2001) data^^. To do so, I simply aggregate at a semi­

annual frequency the monthly CLMX (2001) market, industry and firm-level 

variance series constructed from weekly returns from 1974 to 1997 and I then 

multiply the results by a factor o f two to annualise^^. The average idiosyncratic 

variance series is computed, according to (5.11), as the sum of the average industry 

and firm-level variance series. Since average total stock variance FAR, and the 

square o f  average total volatility VOL are likely very similar, I use the former 

instead o f  the latter in (5.12) to construct an approximate average stock correlation 

series, not available in the CLMX (2001) study. I obtain 48 non overlapping semi­

annual value-weighted variance and coirelation data points (T  = 1, 2 ,....., 48)

computed from weekly returns data. Panel B o f Figure 5.1 reports the ratio o f firm to 

industry variance and Panel C plots the average stock correlation. A striking 

difference between the US and EMU series is the relative importance o f industry and 

firm level volatility over time. In the US, firm-level volatility becomes the largest 

component o f idiosyncratic volatility much earlier than in the EMU markets. In the 

latter, industry level volatility is still the largest component o f idiosyncratic volatility 

for much o f the 70s and 80s, as shown by Panel B o f Figure 5.1.

5.6. What Might Explain Volatility and Trends?

CLMX (2001) and Wei and Zhang (2003), among others, suggest a number o f 

circumstances that could explain the rise o f idiosyncratic volatilities. The first 

obvious explanations is the tendency of conglomerates to break up into more 

specialized businesses, interpreted as a shift from internal to external capital

I thank CLMX (2001) for kindly making their constructed variance series available.
Notice, however, that M K T j  constructed from CLMX (2001) data is the variance o f the market 

portfolio excess-return.
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markets. Dennis and Strickland (2005) provide direct empirical evidence that 

increasing firm focus on specialized business is a significant determinant o f the 

secular rise in firm-level volatility. The tendency to issue stocks at an earlier stage o f 

the company life-cycle and Changes in executive compensation schemes that result 

in cash-tlow volatility could also contribute to explain this phenomenon. These 

explanations could also account for why most o f the increase has occurred in firm 

level rather than industry level volatilities. The argument that firm-level volatilities 

have increased because o f the tendency towards less diversified conglomerates, 

however, applies less well to Euro area than to US stocks because it also implies a 

decrease in average correlations. Leverage is also an unlikely candidate to explain 

the rise in stock volatilities because, as a result o f a secular tendency towards the 

disintermediation o f financial transactions, it has declined over time both in the US 

and in the Euro area. Dennis and Strickland (2005), noting that there is an increase 

in idiosyncratic volatility following both positive and negative returns, also ruled out 

leverage as a possible cause for the increase in idiosyncratic volatility in US data. 

Brown and Kapadia (2005) suggest that the increase o f idiosyncratic volatility can 

be explained by new listing by riskier companies or, more specifically, by a riskier 

sub-sample o f the economy becoming publicly traded. They find that this 

phenomenon accounts for most o f the rise o f idiosyncratic volatility in the US. 

Examining this possibility using Euro area data is a useful extension o f the present 

work that I leave for future research.

Under a more behavioural perspective, divergence between institutional and 

individual investors’ sentiment, coupled with the increasing institutionalization o f 

equity ownership and possible herding o f mutual fund managers, could explain more 

trading and more volatile individual stock prices. For example, Xu and Malkiel 

(2003) and Dennis and Strickland (2005) find evidence o f  a positive relation 

between US idiosyncratic volatility and institutionalization o f  the ownership o f US 

stocks. Morck, Yeung and Yu (2000) and, more recently, Li and Myers (2005), 

suggest a negative relation between the explanatory power o f the market model and 

factors such as the degree o f investor protection and the transparency o f the agency
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relationships between insider managers and outsider investors. From this 

perspective, the finding o f  a low average correlation and hence o f a low market R is 

consistent with the generally good level o f investor protection and transparency in 

Euro area stock markets.

A further possibility is that the rise o f  idiosyncratic volatility from the end o f the 

1990s to the first years o f  the present decade might be a one-off episode rather than 

the result o f a long-run trend. For example, a recent study by Brandt, Brav and 

Graham (2005) argues that the rise o f idiosyncratic volatility in the United States 

during the same period is related to a speculative episode and that it can be 

explained on the basis o f excess-trading by individual investors. Visual inspection o f 

Panel A o f Figure 5.3, however, suggests that, while idiosyncratic volatility reverted 

in the second semester o f  2003 and the first semester o f 2004 to pre-1997 lows, it 

did increase steadily over the sample period. More generally, the spike in 

idiosyncratic volatility towards the end o f the sample period rises the possibility o f a 

regime switch. In principle, this behaviour could be modelled within a switching 

ARCH/GARCH specification, allowing for different volatility regimes as in 

Edwards and Susmel (2000) and a time trend. This would yield efficient estimates o f 

the time trend coefficient but, as it would require the simultaneous estimation o f the 

mean and variance equations for all the 3515 stocks in my sample, it would be 

computationally unfeasible. A possible, albeit less efficient, alternative would be to 

allow for a regime switch directly in the mean o f the unconditional volatility 

estimates used in this Chapter, e.g. the estimates based on (5.14). 1 leave this 

interesting development for future research.

Turning to the components o f idiosyncratic volatility, the reason why industry level 

volatility is much larger than idiosyncratic volatility for much o f the 70s and 80s, as 

shown by Panel B o f Figure 5.1, is the limited cross-sectional dispersion within 

industries due to the small number o f  listed stocks. Unlike in the more mature 

United States markets, European industry indices initially comprised a small number 

o f stocks with quite similar firms. As shown in Panel B o f Figure 5.3, in 1974 the
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number o f  stocks in the average industry index was less than 10, rising to about 30 

by the end o f the 1980s and since then it has grown steadily. In 2004 there were 

about 80 stocks in the average Euro area industry index. This also explains why, as 

reported in Panel C o f Figure 5.1, the average correlation amongst Euro area 

industries is initially very similar to the average correlation amongst Euro area 

stocks, but the former increased relative to the latter from the mid 1980s.
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Figure 5.3 

Diversification in Industry Indices
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Note. Panel A o f this Figure plots the average idiosyncratic variance 
of EMU stocks. Panel B plots the number o f listed stocks in the 
average EMU industry. The sample period is 1974-2004.
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5.7. Second vs. Other Moments

Having studied the relation between the market and idiosyncratic variance 

components, I now focus on the relation between these series, aggregate correlation 

and market returns. In particular, I examine how their dynamics explain the 

asymmetry in the distribution of aggregate returns and the nature and strength of the 

risk-retum trade-off. To this end, I employ again the VAR methodology. I first 

search for reduced form VAR models that best capture the interaction between the 

series and then I identify the underlying structural relations imposing simple 

restrictions on the structure of the residuals variance-covariance matrix dictated by 

economic theory and intuition. The reduced form models are systems of equations of 

the following form:

y-r = 4) + i  4/ + T̂ (5-18)
V=1

Here, y-j. denotes the vector of variables under consideration, is a vector of 

constants, are coefficient matrices and u, is a vector of error terms. The structural 

form models are defined as follows:

By, (5.19)
'/= !

Here, B and are structural coefficient matrices, Fq is a vector of constants.

S i denotes the vector o f structural errors, assumed to be uncorrelated with each other 

on a contemporaneous basis. All the vectors and matrices in (5.18) and (5.19) are 

conformable according to the rules of matrix algebra.
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Aggregate Second Moments and Systematic Skewness

To capture how the asymmetry o f the multivariate distribution o f Euro area stock 

returns arises from the dynamic interaction o f aggregate first and second moments, I 

specify y-y as follows:

The system o f equations defined by (5.18) and (5.20) is a trivariate VAR reduced 

form model o f average stock correlation, total stock variance and the market return. 

Both the AIC and SBC, reported in Panel A o f Table 5.6, suggest to include only 

one lag. Hence, I set Q =\. The reduced form coefficient estimates A\, the impact 

multipliers, are reported in Panel B o f the Table.

To identify the contemporaneous and lagged relations between the variables, I 

impose a triangular Cholesky decomposition o f the variance-covariance matrix o f 

the reduced form residuals and I experiment with various orderings o f the variables. 

In Panel C o f Table 5.6 I report the structural coefficients for the orderings R ^ t 

CORRr VARt, R„t VARt CORRt and CORRr VARj R ^ t- The latter is

the only one not to imply the implausible prediction that volatilities and correlations 

move systematically in opposite directions. It is also consistent with the 

circumstance that, in the estimated reduced form model given by (5.18) and (5.20), 

the coefficient o f determination R o f the R ^ t  and o f  the VARt equations is 8.48 and 

8.08 percent (3.58 and 3.15 percent adjusting for the degrees o f  freedom) 

respectively, whereas it is just 3.47 percent (almost zero adjusted) for CORRt, 

suggesting that variation in average correlation drives variation in the market return 

and in the volatility o f the typical stock and not the other way around. The structural 

coefficients suggest a rich contemporaneous interaction between the variables, 

whereas the only noticeable lagged interaction, computed solving^, = 5“'r, fo rP ,, is 

the effect o f  average correlation on future returns.

(5.20)
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To better gauge the relative importance o f  the lagged and contemporaneous relations 

between first and second moments, I regress in Table 5.7 my constructed variance 

and correlation series on contemporaneous and lagged values o f the market return. 

At this (relatively low) frequency, there is no evidence that past negative returns lead 

to higher volatility for the average stock or to stronger average correlation among 

the stocks as implied, at lower frequencies (daily or weekly), by models o f 

asymmetric conditional volatility and correlations such as the DCC-GARCH model 

employed by Cappiello, Engels and Sheppard (2003). Thus, there is no direct 

evidence o f ‘contagion’ across stocks in the Euro area. This does not mean, 

however, that phenomena o f contagion, as defined for example by King and 

Wadhwani (1990), do not take place in the Euro area. These phenomena, while 

widespread and possibly intense, might well be short lived and therefore they might 

be difficult to detect in semi-annual data. There is, however, clear evidence that 

higher volatilities are associated on average with low values o f market returns, and 

that in these circumstances, average correlation also tends to be high (negative 

contemporaneous relationship of, respectively, average variance and correlation with 

market returns). On the basis o f (5.12), this explains why market variance tends to 

be high when market returns are low (negative contemporaneous relationship o f 

market variance with market returns). It therefore explains why the distribution o f 

market returns is skewed to the left^^.

The skew ness o f  the distribution o f  total w eek ly  returns on the EMU Datastream equity index over 
the period 1974-1997 and 1974-2004 reported by Kearney and Poti (2003) is, respectively, -0 .47 and 
-0 ,64  (significantly different from zero at, respectively, the 7% and the 13% level).
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Table 5.6 
Second Moments vs. Market Return 

(VAR)

Panel A 
(Lag-length Selection)

Lags AIC SBC
1 -15.1832* -14.7244*
2 -15.0096 -14.2066
3 -14.9957 -13.8485
4 -15.0665 -13.5752

Panel B  
(Reduced Form C oeffic ien ts)

A i -

0.196 0.358* -0.208 
0.040 0.167 0.112
0.013 -0.116 0.322*

P ane!C  
(S tructural C oefficients)

O rdering R,„; —>■ C()RR; —>- VARf.
1 0 0 0.196 0.358 -0.208

B = 0.310 1 0 r, = 0.101 0.278 0.047
0.149 0.179 1 0.035 -0.093 0.270

O rdering R,„r —> VAR f  —> C ORRf'.
1 0 0 0.196 -0.208 0.358

B = 0.205 1 0 r, = 0.081 0.069 0.241
0.175 0.655 1 0.020 0.211 -0.164

O rdering CORRj—  ̂ VARj R,mT-

1 0 0 0.167 0.112 0.040
B = -0.252 1 0 r, = -0.159 0.294 0.002

0.270 0.844 1 0.304 0.093 0.218

Notes. Panel A of this table reports, for the trivariate VAR system 
of Rmx, CORRt and VARj, the AIC and the SBC. The sample 
period is 1974-2004. Panel B and Panel C report, respectively, the 
point estimates o f the coefficients o f the reduced form VAR (the 
symbol * denotes significance at the 5 percent level) and the 
structural coefficients corresponding to various orderings o f the 
variables.
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Table 5.7 
Second Moments vs. Market Return 

(Univariate Regressions)

y  =  const. +  +  regr. residual

X Coeff.
Estimates
[t-stat.]

Adj. ê

M K T t Rm,T-l -0.01
[-0.41]

-0.01

Rm.T -0.10
[-2.88]

0.29

V A R t R m .T -l -0.03
[-0.56]

-0.01

R in .I -0.21
[-2.92]

0.23

IDIO t ^^in.T-1 -0.02
[-0.69]

-0.01

Rm.r -0.11 
[-2.69]

0.15

C O R R t R m .T -l -0.02
[-0.25]

-0.01

Rth.T -0.25
[-2.49]

0.09

Notes. This table reports regressions o f  the variance and 
correlation series on contem poraneous and lagged 
market returns over the period 1974-2004. The reported 
t-statistics (in squared brackets) are adjusted for 
heteroskedasticity and auto-correlation and regressions 
always include a constant. All variables are de-trended 
and all regressions include a constant.
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Predictive Relations

To study the risk-return relation, I specify as follows:

y ,= [ M K T ,  IDIO, (5.21)

Equations (5.18) and (5.21) define a reduced form VAR model o f market variance, 

idiosyncratic variance and market return, i.e. of M K T t,  I D I O j  and R„,t. Both the AIC 

and the SBC, reported in Panel A of Table 5.8, suggest the inclusion of only one lag. 

I therefore estimate the reduced form VAR in (5.18) and (5.21) with Q = \. Jo  

identify the structural risk-retum relation, I impose a set of restrictions on the 

estimated reduced form VAR in a manner that is consistent with the market model of 

stock returns. In particular, I use a Cholesky decomposition of the VAR variance- 

covariance matrix that rules out contemporaneous effects o f IDIOj  on MKTj  and of 

the market return on both variance series (this corresponds to the ordering M K T t  

ID IO t Rmi)- In Figure 5.4, I plot the impulse response functions to visualize the 

impact of shocks to M K T t  and ID IO t  implied by this set o f restrictions.

A shock to M K T t has a large contemporaneous positive effect on ID IO t and an even 

larger but negative effect on While the effect on ID IO t fades quickly away, the 

lagged effect on the market return is marginally significant and of opposite sign 

(positive). Higher market variance, therefore, initially causes a drop in prices, but 

this effect turns positive the following period. This is consistent with the findings of 

a positive relation between market risk and expected return reported by Turner, 

Startz and Nelson (1989) and Harvey (1989).

A shock to ID IO t has no initial impact on M K T t (because of the restriction implied 

by the ordering of the variables). An increase o f idiosyncratic volatility, ID IO t, 

keeping market variance, M K T t, constant, implies by (5.9) an increase in average 

total variance, VARt, and average total volatility, VOLt. Thus it implies by (5.12) a
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drop in average correlation. It also has a marginally significant positive effect on 

R„,r- In the following period, there is a marginally significant positive effect on 

M K T t and a substantial negative effect on RmT^\- This set o f interaction implies a 

positive relation between average correlation and expected returns. Since market 

volatility is, by (5.12), proportional to average correlation, this is consistent with a 

positive relation between a systematic risk and expected return.

In Panel B o f Table 5.8, I report predictive regressions o f the market return using a 

constant and lagged variance series as regressors. Both market variance and average 

idiosyncratic variance predict market returns, but the relation with lagged market 

variance is positive while the relation with lagged idiosyncratic variance is negative. 

This is consistent with the preceding VAR analysis and with the impulse response 

functions in Figure 5.4. The relation between market returns and average 

idiosyncratic variance, however, is statistically significant at a conventional level in 

the 1974-2004 period, but not in the 1974-1997 period. Interestingly, this also 

obtains in the United States markets as reported by Guo and Savickas (2003). The 

significance levels o f the reported t-statistics are confirmed by a simple bootstrap
58experiment .

Details on this bootstrapping experim ent and the relevant RATS code are available upon request. 
The latter w ill also be available soon on my w ebsite, w w w .valeriopoti.com . The bootstrapping 
m ethodology is due to Efron (1979).

172



Table 5.8 
Predicting the M arket Return

Panel A
(VAR of MKT r, IDIOj and Rmi - Lag-length Selection)

Lags AIC SBC
1 -19.298* -18.839*
2 -19.137 -18.334
3 -19.165 -18.018
4 -19.209 -17.718
5 -19.206 -17.370
6 -19.047 -16.867

Panel B
(Market Return Predictive Regressions)

RmT =  const. + Pmkt M KT t-x + PidioJD 10t-\+ ut

Restriction Pmkt Pinio A dj. R-

PiD/O =  0

1974-1997
0.96 0.02

oII

(1 .97)
-0.03 0.00

(-0 .06) 
1.59 -0.78 0.03

oII

(2 .02) (-1 .15)

1974-2004
0.42 0.01

Pm k t~  0
(0.62)

-0 .69 0.04
(-2 .28) 

1.95 -1.55 0.12
(2 .67) (-3 .83 )

Notes. Panel A reports, for the trivariate VAR system o f M KTj, IDIOj and Rmx, 
the AIC and the SBC. MKTj, IDIOj are linearly de-trended. Panel B reports 
coefficients estimates and coefficient o f determination o f predictive regressions 
o f Euro area market returns. In brackets are t-statistics adjusted for 
heteroskedasticity and auto-correlation and regressions always include a 
constant. The sample period is 1974-2004
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Figure 5.4
Impulse Responses of Variance Series and Market Return to Volatility Shocks
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Notes. This figure plots the impulse response functions o f the MKT^,  I D I O f  and R„,j- series to shocks to 
MKTy and IDlOy. The variance series are linearly detrended. The model is estimated under the restriction 
that IDI Of  has no contemporaneous effect on M K T j  and R f  has no contemporaneous effect on MK Tr  and 
IDIO],  The symbols retain the usual meaning as in the text. The sample period is 1974-2004. The 95% 
confidence bands are constructed using a Montecarlo integration procedure.
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5.8. Summary and Conclusions

In this Chapter I studied both systematic and idiosyncratic volatility in the stock 

markets o f the Euro area. I employed a variance decomposition methodology similar 

to the approach proposed by CLMX (2001) and I derived the approximate relation 

between market volatility, idiosyncratic volatility and average correlation. I applied 

this analytical framework to construct market variance, idiosyncratic variance (and 

its industry and firm components) and correlation series. I also constructed, for 

comparative purposes, analogous US variance and correlation series from CLMX 

(2001) data. Like in most empirical papers, my approach has been mainly 

descriptive, based on the application o f econometric methods to infer the salient 

features o f my constructed variance and correlation time series.

Regarding long term trends, my main findings are ihdLi, firs t, the variance o f both the 

average European stock and o f the Euro area market portfolio has increased over 

time and that a large portion o f this increase is explained by a long-run trend. 

European stocks, therefore, have indeed become more volatile. One consequence o f 

the increase o f average idiosyncratic risk is that it takes increasingly more stocks to 

fully capture the benefit o f diversification. Second, value-weighted average stock 

correlation is relatively stable as it tends to mean revert quickly to a (roughly) 20 

percent long run mean after a shock. Third, idiosyncratic volatility accounts for the 

main portion o f  the variance o f the typical stock. The potential benefits to 

diversification strategies are, therefore, substantial. Regarding short run dynamics, 

EMU variance series are best forecast by market variance, whereas US variance 

series are best forecast by idiosyncratic variance. Market and average idiosyncratic 

variance, as already documented by Goyal and Santa Clara (2003) and by Guo 

(2003) using US data, predict market-wide returns. In the final Chapter, I will 

discuss the implications o f my findings for portfolio management and financial 

theory.
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Chapter 6: Correlations of European Equity Returns

6.1. Introduction

This Chapter is based on a paper forthcoming in the review Research in International 

Business and Finance, Kearney and Poti (2005a). I investigate the correlation trends 

and dynamics in the equity markets o f the European Monetary Union (henceforth, 

EMU) to ascertain how the scope for country and industry level diversification has 

changed over the period 1993-2002 and to infer the dynamics that drive its change 

over time. This is o f interest to portfolio managers who invest in European equity 

markets. It is also o f interest to regulators because the level and common dynamics 

o f  correlations have implications for the stability o f  the financial system. Moreover, 

modelling correlation dynamics is important in understanding a crucial source o f 

asymmetry in the multivariate distribution o f stock returns. From this perspective, 

while Chapter 4 studied the asset pricing implication o f distributional asymmetries 

under the 3M-CAPM, one o f the aims o f this Chapter is to quantify the asymmetry 

in the multivariate return distribution generated by equity correlation dynamics.

In particular, I study the correlation between EMU country and industry indices over 

various sample periods. For comparison, I also study the correlation amongst a 

sample o f individual EMU stocks. To estimate conditional correlation dynamics, I 

use the recently developed DCC-MV GARCH model o f Engle (2001) and Engle and 

Sheppard (2002). I specify this model to facilitate testing for non-stationarity, 

structural breaks and asymmetric dynamics in the correlation process. I also extend 

the DCC-MV GARCH model to include a deterministic time trend. My application 

o f  the DCC-MV GARCH model demonstrates how this specification effectively 

overcomes the dimensionality problems that often occur when modelling stock 

returns variance-covariance matrices.

In Section 6.2, I describe my dataset. In Section 6.3, I preliminarily model 

correlations in an unconditional setting and I test for the presence o f either a
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stochastic or a deterministic time trend. I then model conditional correlations using 

the DCC-MV GARCH model and its extensions. Section 6.4 summarizes the main 

findings and draws together the conclusions.

6.2. Data and Summary Statistics

All the data is expressed in Euro. The country level data is taken fi-om Bloomberg 

and consists o f  daily returns fi'om 1993 to 2002 on the 5 national stock market 

indices with the heaviest capitalisation in the euro-zone at the end o f my sample 

period, ie, the D A X  (Frankfurt Stock Exchange), the CAC40 (Paris Stock Exchange), 

the M1B30 (Milan Stock Exchange), the A M X  (Amsterdam Stock Exchange) and the 

IBEX  (Madrid Stock Exchange). These series start on 31 December 1991 (except for 

the MIB30, which starts a year later). The EurostoxxSO is the leading European stock 

market index, and the futures contract on this index is one o f the most liquid in the 

world. It commenced on 31 December 1991 with a base value o f 1000, and it 

comprises 50 stocks from the companies with the heaviest capitalisation in the euro­

zone countries. From these, I select the 42 stocks with a continuous return history 

from 1993 to 2001 and I obtain from Bloomberg returns for the same time period. 

They are all traded in one o f the 5 stock markets included in the country level 

sample. Because the stock indices are rebalanced to reflect the capitalization o f the 

constituent stocks and because 1 only select the 42 stocks with a continuous return 

history over the entire sample period, there is a potential survivorship bias in both 

my market index and stock samples. The bias, however, is likely not very important 

as the sample period under consideration is not very long (intuitively, most o f the 

stocks included in the indices and in the stock sample would survive anyway).

Table 6.1 provides the usual set o f summary statistics for the returns on the 5 market 

indices and the individual stocks included in the EurostoxxSO index at the end o f the 

19 September 2001 reshuffle^^. The summary statistics reported are returns sample 

means, variances, skewness, kurtosis, the Jarque-Bera  statistics to test for normality.

The excluded stocks are also listed in Table 1 and indicated by ‘* ’s.
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Only the significance levels o f the skewness statistics are reported to save space. The 

kurtosis and the Jarque-Bera statistics are statistically significant for all stocks in the 

sample. Thus, as expected, returns exhibit significant departures from normality in 

most cases. Noticeably, index returns always display negative skewness, whereas the 

sign o f the latter is mixed across individual stocks. Table 6.2 reports the market 

sector (following the classification adopted by Bloomberg) o f  the individual stocks 

and highlights the stocks that are dropped from the sample due to the lack o f a 

continuous return history over the entire sample period.

From Estoxx L td  I take daily and weekly total return EMU market sectors indices 

from 1987 to 2004. From Datastream International Ltd., I take weekly total return 

data from 1987 to 2004 on the 35 Level 4 fixed history EMU industry indices^®. 

These represent at least 75% of the market capitalisation o f  the relevant industry. 

Sectors and industries are listed in Table 6.3. I also use Datastream 5 Year 

Government bond clean price indices for Germany, France, Spain, Italy and the 

Netherlands for the period 1987-2004.

“  From Datastream 1 also take daily and w eek ly  total return on the country indices used by C appiello, 
Engle and Sheppard (2003) with a v iew  to replicating their results.
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Table 6.1
Summary Statistics for Stock and Market Index Returns

Mt'an JB
Panel A : Market Indices

DAX 12.33 34.10 -0.44 0.000 3.72 1564
CAC40 10.37 19.75 -0.15 0.001 1.88 389
MIB30 13.66 23.56 -0.07 0.188 2.08 417
AEX 13,84 18.10 -0.39 0.000 4.38 2121
IBEX 12.23 20.43 -0.28 0.000 2.82 881
EUROSTOXXSO 13.23 18.03 -0.29 0.000 3.65 1462

Panel B: Individual Slocks
ABN AMRO 19.10 27.57 -0.17 0.001 4.47 2104
AEGON 32.39 28.33 0.20 0.001 4.19 1848
AHOLD 22.72 25.84 0.26 0.000 2.83 865
AIR LIQUIDE 13.28 27.75 0.24 0.000 2.14 485
ALCATEL 7.68 44.33 -0.97 0.000 17.27 30517
ALLIANZ 16.46 30.45 0.13 0.009 6.76 4398
AVENTIS 21.74 32.79 0.47 0.000 4.56 1957
N.A. 19.58 31.34 -0.12 0.013 3.04 938
BCO BILBAO VIZ. ARGENTARIA 26.41 30.21 O.IO 0.040 6.88 4696
BASF 17.87 27.39 0.36 0.000 4.37 1885
BAYER 15.36 26.79 -0.28 0.000 7.21 5031
BAYER. HYPO & VEREINSBANK 12.25 33.02 0.35 0.000 5.31 2755
BNP 10.83 35.28 0.33 0.000 3.21 889
BCO SANTANDER CENTRAL HISP 20.74 32.21 -0.46 0.000 7.29 5346
CARREFOUR SUPERMARCHE 20.93 29.28 0.02 0.623 2.98 896
DAIMLERCHRYSLER -7.40 34.46 -0.01 0.868 1.74 96
N.A. 6.93 26.12 0.06 0.205 3.38 1153
DEUTSCHE BANK R 12.36 30.98 0.20 0.000 6.62 4228
DEUTSCHE TELEKOM 12.67 46.80 0.30 0.000 1.43 125
E.ON 15.66 26.46 0.22 0.000 3.28 I05I
ENDESA 19.88 25.79 0.07 0.141 2.36 553
ENEL -6.00 28.02 -0.10 0.335 2.15 101
ENl 19.59 28.55 0.13 0.039 1.33 113
FORI IS B 22.06 26.22 O.IO 0.038 3.64 1343
FRANCE TELECOM 19.12 52.42 0.63 0.000 3.33 537
ASSICURAZIONl GENERALI 14.11 26.36 0.17 0.001 2.1 1 462
ING GROEP 27.16 28.55 -0.48 0.000 8.22 7153
L'OREAL 26.45 32.67 O.IO 0.054 1.85 350
N.A. 11.31 33.50 0.40 0.000 4.11 1771
MUENCHENER RUECKVER R 29.12 40.74 -1.72 0.000 31.38 59805
NOKIA 92.62 49.62 -0.08 0.105 5.12 2624
PHILIPS ELECTRONICS 36.53 42.34 -0.18 0.000 3.92 1615
PINAULT PRINTEMPS REDOUTE 25.22 31.22 0.04 0.456 3.03 923
REPSOL YPF 16.54 24.85 0.63 0.000 6.29 4088
ROYAL DUTCH PETROLEUM 16.09 23.35 0.09 0.075 2.79 815
RWE 12.60 27.43 0.48 0.000 5.17 2659
SAINT GOBAIN 30.13 32.67 0.18 0.000 1.95 397
SAN PAOLO IMI 12.53 33.73 0.34 0.000 2.21 524
SIEMENS 16.96 32.02 0.27 0.000 6.54 4407
N.A. 16.00 32.75 0.07 0.152 3.12 983
SOC GENERALE A 13.94 30.62 0.08 0.127 2.30 539
SUEZ 12.31 26.83 0.37 0.000 2.86 855
TELECOM ITALIA 30.41 35.53 -0.26 0.000 5.23 2791
TELEFONICA 26.81 31.70 0.08 0.091 1.77 314
TIM 33.65 37.28 0.23 0.000 0.76 51
TOTAL FINA ELF 17.61 30.21 -0.03 0.527 1.59 256
UNICREDITO ITALIANO 17.85 37.28 0.76 0.000 4.33 2121
UNILEVER NV 15.45 23.98 0.31 0.000 6.45 4382
N.A. 10.23 30.21 0.18 0.000 2.74 770
VOLKSWAGEN 15.34 31.90 0.07 0.161 3.86 1532

Notes. The table reports summar>' statistics for the five largest EMU stock market indices, for 
the EurostoxxSO and for the stocks included in the latter on 23 November 2001. The sample 
period is 1993-2001. Mean and standard deviations are in percentage on a 1-year basis. JB  
denotes the Jarque-Bera statistics. The reported significance levels refer to skewness. The 
Kurtosis and the JB  statistics are different from zero at the 0.1 percent level for all stocks in the 
sample.
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Table 6.2
Stocks Included in the EurostoxxSO Index

C o m p an y B lo o m b erg  T ic k e r M a rk e t S ec to r W eig h ts
1 ABN AMRO AABA NA BAK 1.59%
2 AEGON AGN NA INN 1.55%
3 AHOLD AHLN NA NCG 1.87%
4 AIR LIQUIDE Al FP CHE 0.89%
5 ALCATEL CGE FP THE 1.02%
6 ALLIANZ ALThe V GY INN 2.49%
7 ASSICURAZIONI GENERALI G IM INN 2.15%
8 AVENTIS AVE FP HCA 3.48%
9 AXA UAP N.A. INN 2.00%
10 BASF BAS GY CHE 1.26%
II BAYER BAY GY CHE 1.40%
12 BAYERISCHE HYPO & VEREINSBANK HVM GY BAK 0.75%
13 BCO BILBAO VIZCAYA ARGENTARIA BBV A SM BAK 2.39%
14 BCG SANTANDER CENTRAL HISP SAN SM BAK 2.46%
15 BNP* B N PFP BAK 2.37%
16 CARREFOUR SUPERMARCHE CA FP RET 1.97%
17 DAIMLERCHRYSLER* D C X G Y ATO 1.86%
18 DEUTSCHE BANK R DBK GY BAK 2.13%
19 DEUTSCHE TEl.EKOM* DTE GY TEL 2.64%
20 E.ON EO A G Y UTS 2.39%
21 ENDESA ELESM UTS 1.14%
22 ENEL* EN ELIM UTS 0.83%
23 ENI* ENI IM ENG 2.22%
24 FORTIS B FORB BB FSV 0.98%
25 FRANCE TELECOM* FTE FP TEL 1.06%
26 GROUPE DANONE N.A. FOB 1.47%
27 ING GROEP IN G A N A FSV 2.95%
28 L'OREAL OR FP NCG 1.52%
29 LVMH MOET HENNESSY N.A. CGS 0.55%
30 MUENCHENER RUECKVER R* MUV2 GY INN 1.70%
31 NOKIA N O K IV  FH THE 5.63%
32 PHILIPS ELECTRONICS PHIA NA CGS 1.75%
33 PINAULT PRINTEMPS REDOUTE PPFP RET 0.49%
34 REPSOL YPF REP SM ENG 1.02%
35 ROYAL DUTCH PETROLEUM RDA NA ENG 7.63%
36 RWE RWE GY UTS 0.98%
37 SAINT GOBAIN SAN FP CNS 0.81%
38 SAN PAOLO IMI SPl IM BAK 0.70%
39 SANOFlSYNTHELABO N.A. HCA 1.81%
40 SIEMENS SIEG Y THE 2.34%
41 SOC GENERALE A SG O FP BAK 1.46%
42 SUEZ SZE FP UTS 2.39%
43 TELECOM ITALIA TI IM TEL 1.19%
44 TELEFONICA TEF SM TEL 3.24%
45 TIM* TIM IM TEL 1.22%
46 TOTAL FINA ELF F P F P ENG 7.31%
47 UNICREDITO ITALIANO UC IM BAK 0.84%
48 UNILEVER NV U N A N A FOB 2.49%
49 VIVENDI UNIVERSAL N.A. MDI 3.07%
50 VOLKSWAGEN VOW GY ATO 0.54%

Note. This table reports the stocks included in the EurostoxxSO and their capitalization 
weights as o f  the September 2001 reshuffle. Asterisks indicate that the series has been 
dropped from the sample. Descriptors for the market sectors are as follows (Stoxx’s 
Industry Codes): BAK (Banks), ATO (Auto), INN (Insurance), TEL (Telecom), NCG 
((Non-Cyclical Goods and Services), UTS (Utilities), CHE (Chemical), ENG (Energy), 
THE (Technology), FSV (Financials), HCA (Health Care), FOB (Food & Beverages), RET 
(Retailer), CGS (Cyclical Goods and Services), CNS (Construction), MDI (Media).
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Table 6.3 
Sector and Industry Indices

Panel A  
(estoxx  EMU Sectors)

1 Basic M ater. (S X B S C R ) II Basic M ater. (S X B S C T )
2 Cyclic. G oods (SX C Y C R  ) 12 Cyclic. G oods (S X C Y C T )

3 N on Cyclical G oods (SX N C Y R  ) 13 N on Cyclical G oods (SX N C Y T )

4 Energy (SX EN ER  ) 14 Energy (SX EN ET )

5 Financial Services (SX FIN R  ) 15 Financial Services (SX FIN T )

6 Health care (S E H C R R ) 16 Health care (S E H C R T )

7 Industrial G oods (SX ID U R ) 17 Industrial G oods (S X ID U T )

8 Technology (SX TEC R  ) 18 Technology (SX TEC T )

9 Telecom  (SETLSR ) 19 Telecom  (S E T L S T )

10 Utility (SELITIR ) 20 U tilities (SEUTIT)

Panel B 
{L evel 4 D atastream  EMU Industries)

1 Aerospace & Defence (A ER SP) 19 Leisure & H otels (LESUR)

2 Autom obiles & Parts (AU TM B) 20 Life Ass. (LIFEA)

3 Banks (BA N K S) 21 M edia & Entertainm ent (M EDIA )

4 Beverages (B EV ES) 22 M ining (M N IN G )

5 Chem icals (CH M CL) 23 O il& G a s (O IL G S )

6 C onstruction & B uilding M aterials (CN SBM ) 24 Personal C are &  H ousehold Products (PERSH )

7 Diversified Industrials (D IV IN ) 25 Pharm aceuticals & Biotechnology (PH ARM )

8 Electricity (ELECT) 26 Real Estate (RLEST)

9 Electronic & Electrical Equipm ent (ELTNC) 27 Retailers, General (RTAIL)

10 Engineering & M achinery (ENGEN) 28 Softw are & C om puter Services (SFTC S)

11 Food & Drug R etailers (FD RET) 29 Speciality & O ther Finance (SPFIN )

12 Food Producers & Processors (FOODS) 30 Steel &  O ther M etals (STLO M )

13 Forestry & Paper (FSTPA) 31 Support Services (SU PSV )

14 Health (HLTHC) 32 Telecom  Services (TELCM )

15 H ousehold G oods & Textiles (HH OLD) 33 Tobacco (TO BA C)

16 Inform ation Technology H ardw are (INFOH) 34 Transport (TR N SP)

17 Insurance (IN SU R ) 35 U tilities, O ther (UTILO )

18 Investm ent C om panies (IN V SC )

Notes. The table reports the sector (Panel A) and industry (Panel B) indices used in this study.
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6.3. EMU Country and Stock Correlations

I first construct unconditional estimates o f EMU country and stock correlations 

based on (3.13). To do this, I compute the cross products o f the standardised daily 

log-retum R„ deviations from their sample means and sum them to obtain correlation 

measures for each pair o f stocks / and /  over non-overlapping monthly periods:

Here, using the convention that each month is made up o f 21 trading days, I 

s e tp  = 21. I then average correlations across market indices and stocks to construct 

their equally-weighted average correlation series.

Here, n is either the number o f market indices or o f stocks, i.e. n = 5 for the country-

average correlation series contains 105 monthly observations from 1993 to 2002 and 

are plotted in Figure 6.1. Thus, T =  1, 2, ...., 105. The monthly average correlation 

amongst the indices shows a strong tendency to rise over time. The average stock 

correlation series instead does not display any obvious trend but rather it oscillates 

around a fairly stable long run mean o f about 20 percent.

t{R
C.

4Var(R„\VMR,,,)r
(6 . 1)

C()RRt = (6 .2)

level market index sample and n = 42 for the individual stock sample. The resulting
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Figure 6.1

Average Market Index and Stock Correlations
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Note. This figure plots the unconditional estim ates o f  the average
correlation between the 5 largest stock m arket indices in the Euro area
and the average correlation between 42 stocks included in the
EiirostoxxSO  Index over the sample period 1993-2002.
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6.3.1 Unit Root Tests

To test for the presence o f a stochastic time trend, I conduct Dickey-Fuller (DP) and 

augmented Dickey-Fuller {ADF) tests allowing for up to 12 lags. As pointed out by 

Pesaran and Pesaran (1997), however, there is a size-power trade-off depending on 

the order o f augmentation, and 1 consequently rely on the results provided by the 

tests performed at the lower orders o f augmentation. The null o f the D F  and A D F  

test is //q  : p  = 1, w ith the estimate o f p  being obtained from the fo llow ing equations;

y j  = a ^ + p  + u-,. (6.3)
/=1

P
yj. = a ^ +  p  Ajy_, + 5  T + û . (6.4)

/= !

Here, y r  is the variable under consideration, p  is the order o f augmentation

(P -1 )
{ p  = Otor the D F  and /> > Ifo r  the A D F  test), the test statistic is ------------, where

p  is the estimate o f p , cr^ is its standard error and t is a time trend. Table 6.4 (Panel

A) presents the results, reporting for brevity only the first 2 orders o f augmentation. 

The D F  and A D F  tests reject the null o f a unit root at the 5 percent level o f 

significance in the average stock correlation series but not the null o f a unit-root in 

the market index correlation series w ith 2 orders o f augmentation and no 

deterministic time trend. However, using an / ’-test and the appropriate non-standard 

asymptotic distribution (Hamilton (1994)), I can reject at the 1 percent level the jo in t 

hypothesis that the deterministic time trend is equal to zero and the autocorrelation 

coefficient p  is equal to unity. Moreover, by the Cauchy-Schwartz inequality, 

correlation is a bounded variable and therefore most like ly stationary^'. 1 therefore

To formally check on this, one could repeat the unit-root tests using a transformation to
1 , 1 + C

unboundedness (Fisher transformation). Formally, this transformation is defined by z = — ln (  ) ,
2 1 - c

where c is the correlation coefficient between two variables X and Y. I f  the distribution o f these 
variables is bivariate normal and their correlation is C , then z is appoximately normally distributed
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conclude that both correlation series are stationary, and in particular, that market 

index correlation is trend-stationary.

w ith  m ean  — ln( )  and standard  deviation  , , w here N  is the sam ple size. T he inverse
2 \ - c

o f  th is  transporm ation  is z  = ■ I leave the exam ina tion  o f  the F isher transfo rm ation  o f  the

estim ated  correlation  coeffic ien ts for future research .
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Table 6.4 
Unconditional Correlations

Panel A
(U nit Root Tests on A ggregate C orrelations)

CV DF ADFl ADF2 F-Test

Intercept, no trend 
Intercept and linear trend

Intercept, no trend 
Intercept and linear trend

Country Indices 
-2.89 -4.95 -4.10 -2.67 
-3.45 -7.62 -7.46 -5.57 

Individual Stocks 
-2.89 -5.68 -4.07 -3.30 
-3.45 -5.65 -4.04 -3.28

620.01
(0.000)

Static
Model

P a n e lB
(Specification  and W ald-T ype Tests) 

Dynamic 
Model

DW-stat. a(% )
(r-stat.)

S {%) P h-stat. 
(^stat.) (?-stat.) (sign.)

Wald-St at. 
(sign.)

1.41

0.96

38.40
(7.09)

16,66
(4.07)

Country Indices 
0.194 0.29 5.08 
(5.24) (3.04) (0.020) 

Individual Stocks 
-0.008 0.51 2.60 
(0.22) (5.95) (0.100)

27.40
(0.000)

0.05
(0.820)

Notes. Panel A of this Tables reports Dickey-Fuller {DF) tests and augmented 
Dickey-Fuller (ADFl and ADF2, the numbers denoting the order of 
augmentation) tests for the presence o f  unit roots in the average country and stock 
unconditional correlations series. CV  denotes the critical value at the 5 percent 
level. All variables are defined in the text. F-lest denotes critical value and 
significance level (in brackets) o f the test statistic under the null that the trend 
coefficient is zero and the series contains a unit root. Panel B reports estimates of 
the parameters of the model of the average country and stock correlations series 
with a deterministic time trend. DIV denotes the Durbin-Watson statistics o f the 
static model. All other columns report estimated coefficient and t-statistics for the 
dynamic model. The rightmost columns report the Durbin’s /?-statistic o f the null 
that the dynamic model residuals are not first-order autocorrelated and the Wald 
statistic (in both cases with the associated significance levels) o f the restriction 
that S is equal to zero. All the Wald-Test statistics, standard errors and 
significance levels have been computed using a Newy-West adjusted variance- 
covariance matrix with Parzen weights to correct for heteroskedasticity and 
autocorrelation. All variables are defined in the text. The sample period is 1993- 
2002 .

Static Model'.
y j  — o- +ST + Uj

Dynamic Model'. 
y j  = a + Pyr.\ + ST + iij
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6.3.2 Wald-Type Tests

To check on the possible presence o f a deterministic time-trend, I conduct Wald- 

type tests o f the restriction that the former does not help explain the variation in 

correlations. 1 first estimate a static model that includes among the regressors a 

deterministic time-trend coefficient but no lagged value o f the dependent variable:

yj- = OL +ST + u j  (6.5)

Since the Durbin-W atson (DW)  statistic suggests that the residuals in (6.5) are auto­

correlated, I estimate the following dynamic model to mitigate the error serial 

correlation problem:

yT = « + P yj-\ + ^T + e j  (6 -6)

I then conduct Wald-type tests o f the restriction that the deterministic time trend 

coefticient is zero using Newy-W est adjusted variance-covariance matrices to 

correct for heteroskedasticity and residual error autocorrelation. Table 6.4 (Panel B) 

presents the results. The time trend coefficient is large and significant only for

average market index correlation. It explains an increase in the latter o f about 2.5

percent per year. However, using Durbin’s statistic, I can only marginally (at the 

10 percent level) reject the null that the residuals o f  average market index correlation 

from (6.5) are serially independent. The parameter estimates must therefore be 

treated with caution because, when lags o f the dependent variable appear on the right 

hand side among the regressors, ordinary least squares (OLS) estimates are 

inconsistent in the presence o f serially correlated errors.

In the presence o f  lagged values o f  the dependent variables the DW  test is biased toward acceptance 
o f the null o f  no error auto-correlation. I therefore test for serial correlation o f  the error terms using 
Durbin’s (1970) /7-test. I use the generalised version o f  this test, developed by Godfrey and Breusch, 
based on a general Lagrange Multiplier test. Even though this procedure can detect higher order 
serial correlation, I only test the null o f  no first-order residual autocorrelation.
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6.J.3 DCC-MVGARCH

Thus far I have appHed an unconditional estimation methodology. This strategy has 

yielded useful insights but it has the main shortcoming that, while the average o f 

squares and cross-products are consistent estimators o f the second moments o f the 

return distributions, they might be biased in small samples since they are ad hoc 

representations o f the volatility and correlation processes. Moreover, the aggregation 

o f  daily data into lower frequency monthly data leads to a potentially accentuated 

small sample problem. It is, therefore, o f considerable interest to apply the recently 

developed DCC-MVGARCH model o f Engle (2001) and Engle and Sheppard 

(2002). This provides a useful way to describe the evolution over time o f the second 

moments o f large systems. In particular, I use the specification o f the asymmetric 

DCC-MVGARCH (ADCC-MVGARCH) proposed by Cappiello, Engle and 

Sheppard (2003) in (3.42) and extend it to include a deterministic time trend:

Here, the symbols retain their prior meaning, t is the mid point o f the sample period 

(the unconditional sample average o f the values taken by the time trend variable), /  

is a conformable identity matrix and &rrend is the deterministic time-trend coefficient. 

To see why the inclusion o f the deterministic time trend requires this modification o f 

the correlation equation, consider for simplicity, but without loss o f generality, the 

univariate case o f a GARCH(1,1) with deterministic time trend, 

•£',_i( ,̂^) = «o ^/-i ^(renJ ■ Using the law o f iterated expectations,

its unconditional variance is:

C t=  C { \ - a -  P)  - S O  - t  {i f  -  + as,_^£',_

+ pC,.i+ e  5’,̂ , + I (//' -  /) (6.7)

(6 .8)
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Therefore, solving for the unconditional variance, we have that E {s )̂ =
\ - a -  p

and = \e  {£^){\-a -  ( 3 ) - .  The specification in (6.7) is a generalization 

to the multivariate case of this result.

Table 6.5 presents my ADCC-MVGARCH model estimates using daily data on the 

5 market indices. I first estimate a simple symmetric specification of (6.7) with a 

deterministic time trend but no structural break. I label this specification Model 1. 

The estimated deterministic time trend coefficient turns out to be statistically 

significant but very small. Since it is economically negligible, 1 drop it from all 

subsequent specifications. I therefore estimate Model 2, which imposes on Model 1 

the additional restriction that the time trend coefficient is zero.

Considering the apparent rise in average market index correlation that is visible in 

Figure 6.1, together with the lack of evidence of a significant deterministic time 

trend, I then test for the presence of either a stochastic trend (the correlation process 

is not stationary) or a structural break. To check the stationarity of the correlation 

process, 1 test the restriction that the news and persistence parameters a and [i sum to 

unity. The relevant LR test statistic and the associated significance level are 

reported at the bottom of Table 6.5 (Model 2 against Model 3). I reject the 

restriction that the parameters of the correlation process sum to unity and I conclude, 

therefore, that the correlation process is stationary.
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Table 6.5 
Conditional Country' Correlation

Panel A

M odel Restriction Coefficient Coefficient
estimate

T-Ratio p-value

1 Q, = Q2 Q i 2 .799
0 = 0 a .010 4.50 .000

P .982 180.97 .000

^TrenJ .000 2.03 .041

2 Q, = Q2 Q u .799
0 = 0 a .010 4.55 .000

^Trenti ~  ^ P .985 223.82 .000

3 Q j = Q2 Q,2 .799
0 = 0 a .007 12.72 .000

^Trcnd ~  ^ P .993 1807.09 .000
a  + P =  \

4 0 = 0 Qi .611

^Tn’nd ~ 0 Q2 .908
a .002 8.30 .000

P .970 589.68 .000

5 ^Trend ~ 0 Q i .611
Q2 .908
a .002 3.90 .000

P .590 74.31 .000
0 .090 7.69 .000

P anel B

Unrestricted ln(\Eiin\) Restricted ln(\Eif\) LR Statistic Significance Restriction
M odel___________________ M odel______________________________ Level________ Rejection
2 -5.0689 3 -5.0798 33.19 .000 Ves
4 -5.0665 2 -5.0689 25.15 .020 Yes
5 -5.0654 4 -5.0665 2.53 .112 No

LR = -T[ln(|ZuR|)-ln(|ER|)]~x'(/)
7 =  num ber o f  observations (2,297)

Zi/^ = covariance matrix o f  the residuals o f  the unrestricted model 
2/; = covariance matrix o f  the residuals o f  the restricted model 

________________ ^ ( 7 )  = Chi-Squared distributions with I degree o f  fi-eedom_________________

Notes. Panel A o f  this Table reports coefficients, /-statistics and p-values for various 
specifications o f  the ADCC-M VGARCH model o f  conditional correlations am ongst the 5 
largest Euro-zone m arket indices over the period 1993-2002. Panel B  reports Likelihood Ratio 
{LR)  test statistics and their significance level.
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A structural break in the market index correlation process might, however, explain 

both the strong persistence of the series and its sharp increase over the sample 

period. A structural break in EMU interest rates correlations due to monetary policy 

convergence is a likely cause of a structural break in correlations at the stock market 

index level, as suggested for example by the study of Hardouvelis, Malliaropulos 

and Priestley (2000) and Cappiello, Engle and Sheppard (2003). The plot of the 

likelihood of an ADCC-GARCH model of the Government bond index returns as a 

function of 30 successive structural break dates, as reported in Figure 6.2, peaks at 

the beginning (January) of 1998. The hypothesis that this might be the structural 

break date is intuitively appealing since it is roughly 12 months before the official 

introduction of the Euro and thus it accounts for the likely possibility that financial 

markets might have started to discount it in the equity price formation mechanism 

somewhat in advance.

Therefore, I finally settled on the beginning of January 1998, as this date maximises 

the likelihood of a ADCC-GARCH model of the bond index returns, it almost 

exactly splits the sample period in half and allows for the possibility that the 

correlations amongst euro-zone stock returns might have been affected by increased 

financial integration prior to the introduction of the new currency. Using the usual 

LR test statistic, reported at the bottom of Table 6.5, I therefore test Model 4 that 

allows for a structural break in 1998 against Model 2, the restricted model with no 

structural break. I can reject this restriction at the 0.020 significance level. 

Moreover, once I allow for the structural break, the restriction that the asymmetric 

component coefficient 6 is equal to zero (Model 5 against Model 4) cannot be 

rejected at the 5 percent level. The coefficient 6 is only marginally significant. Its 

size however is non negligible from an economic point of view. In particular, its 

point estimate is 45 times as large as the news reaction parameter a.
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Figure 6.2 

EMU Government Bond Yields 

Rolling Structural Break Dates Log-Likelihoods

Panel A
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Note. Panel A plots the likelihood o f  an ADCC-GARCH model o f  the bond index 
returns as a function o f  30 successive structural break dates. Panel B reports the Chi- 
Squared statistic o f  the corresponding LR test. This statistic is significant at the 5% 
level with 550 degrees o f  freedom (571 weekly observations from 20 June 1991 to 10
January 2002 less 17 restrictions) for structural break dates from 1994 to 2000. The
restricted model in the LR test is the model with no structural break date.
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Since the estimate o f the asymmetry parameter 6 is not very rehable due to the large 

sampling error, I conclude that the aggregate correlation between the 5 Euro-zone 

stock market indices and the EurostoxxSO index is best modelled as a symmetric 

DCC-GARCH process with a structural break in its mean . Figure 6.3 plots the 

market index average conditional correlation estimated with the symmetric Model 5, 

allowing for a structural break in January 1998.

Figure 6.3 

DCC-MVGARCH Country Correlation

90%

80% -
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30% t   - -  - : , - -  = -  .  r —

1993 1994 1995 1996 1997 1998 1999 2000 2001

Notes. This figure plots the daily average conditional correlation am ongst 
the 5 euro-zone market indices in our sample over the period 1993-2002, 
estim ated with the symm etric D CC-M V GARCH(1,1) model with a 
structural break in January 1998.

I also estim ated each model with the EurostoxxSO  index, and over the longer sample period 1992- 
2002, excluding the MIB30 index (because its series starts a year later). 1 obtained very sim ilar 
results in all cases, and these are not reported here for expositional clarity.

193



Turning to the correlation patterns at a more disaggregated level, the estimation 

results for selected specifications o f the DCC-MVGARCH model with the 20 stoxx 

market sector indices and the 35 Datastream industry indices are reported in Table 

6.6. The estimated asymmetric reaction coefficient ^ is  relatively small in the case o f 

the industry indices. For the market sector indices, instead, its point estimate is 

relatively large and its /-statistic is highly significant. However, the restriction that 

the symmetric model imposes on the asymmetric one cannot be rejected on the basis 

o f a LR test (Model 1 vs. Model 2). In the case o f  the 42 individual stocks, as shown 

in Table 6.7, the estimated 0 is  very small and the restriction that it is equal to zero 

(Model 1 against Model cannot be rejected at any conventional significance 

level. At the disaggregate industry and stock level, therefore, the type o f asymmetric 

reaction to jo in t past good and bad news modelled using (6.7) is not the salient 

feature o f the process followed by conditional correlations. At the sector level, 

however, it appears to be relatively more important.

The time series o f the estimated symmetric average conditional industry, sector and 

stock return correlation is plotted in Figure 6.4. The plot for the asymmetric case, 

not reported, is very similar. Interestingly, visual inspection reveals that industry and 

market sector average correlations are much more stable (less volatile) than the 42 

stocks average correlation. The stock portfolios with the most stable correlation 

structure are those that correspond to the Datastream classification into 35 industries, 

followed by the estoxx classification into 18 market sectors.

1 do not report estimates with a determ inistic tim e trend because the estimation procedure did not 
converge.
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Table 6.6
Conditional Sector and Industry Correlations

P anel A
M odel Restriction Coefficient Coefficient estimate T-Ratio p-value

stoxx M arket Sectors
1 Qi = Q2 a .107 9.71 .000

^I'ratd  ~ 0 P .703 5.65 .000
e .122 5.92 .000

2 Qi = Q2 a .091 17.14 .000

^Trend ~  ^ P .988 456.49 .000
0  = 0 0 .000

Level 4 Datastream Industries
3 Q, = Q2 a .007 9.29 ,000

^'f'rcnd “  ^ P .919 55.04 ,000
0 .003 1.74 .080

___________________________________P an el B__________________________________
U nrestricted ln(\Eun\) Restricted ln(\Zn\) LR Significance Restriction
M odel___________________ M odel__________________ Statistic Level_________ Rejection

I -14.9903 2 -14.9908 0.4562 0.499 No

LR = -Tln(|ZuR|)-ln(iZR|) ~ r(<?)
T =  num ber o f  observations (2,289)

El,It = covariance matrix o f  the residuals o f  the unrestricted model 
Elf = covariance matrix o f  the residuals o f  the restricted model 

= Chi-Squared distributions with q  degrees o f  freedom 
q = number o f  restrictions (g = I )

Notes. Panel A o f  this Table reports the coefficients, /-statistics and /^-values for the ADCC- 
M VGARCH model o f  conditional correlations am ongst am ong 20 stoxx  market sector 
indices and am ong 35 Level 4 industry Datastream indices for the period 1987-2004 
estim ated with weekly data. Variables and their coefficients are defined in the text. Panel B 
reports Likelihood Ratio {LR) test statistics and their significance level.
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Table 6.7

ADCC-MVGARCH 42 EurostoxxSO Stocks

Panel A

Model Restriction Coefficient Coefficient
estimate

T-Ratio p-value

1 Q, = Q2 a .002 16.51 .000
^I'renJ ~ ^ P .989 1222.29 .000
9 = 0

2 Q i = Q2 a .002 15.06 .000
^Trend ”  ^ P .989 1214.20 .000

e .001 1.55 .121

Panel B

Unrestricted ln(\Ziii(\) Restricted ln(\Zi(\) LR Significance Restriction
Model__________________ Model________________ Statistic Level_______ Rejection

2 -13.6466 1 -13.6474 1.7486 .186 No

LR = T ln(|ZuRl)-ln(|SR|) ~ yjiq)
T=  number of observations (2,289)

= covariance matrix o f the residuals of the unrestricted model 
Z); = covariance matrix o f the residuals o f the restricted model 
;Ciq) = Chi-Squared distributions with q degrees of freedom 

q = number of restrictions (̂ 7 = 1)

Notes. Panel A o f this Table reports the coefficients, /-statistics and p-values for the 
ADCC-MVGARCH model of conditional correlations amongst 42 stocks included in the 
EurostoxxSO index over the sample period 1993- 2002. The data frequency is daily. 
Variables and their coefficients are defined in the text. Panel B reports Likelihood Ratio 
{LR) test statistics and their significance level.
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Figure 6.4

DCC-MVGARCH Industry, Market Sector and Stock Correlations

Panel A: Industry' and Sector C orrelations
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Notes. Panel A of this figure plots the weekly average conditional 
correlation amongst the 35 Level 4 Datastream industry indices and 
amongst the 18 estoxx Market Sector indices for the EMU stock market 
over the period 1987-2004, estimated with the symmetric DCC- 
MVGARCH(1,1) model. Panel B plots the daily average conditional 
correlation amongst 42 individual stocks included in the EurostoxxSO 
index over the period 1993-2002, estimated with the symmetric DCC- 
MVGARCH(1,1).
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As a specification check, I apply the Engle and Ng (1993) test in a multivariate 

setting. Originally, this test was designed as a diagnostic check for univariate 

volatility models and its aim is to examine whether there is residual predictability in 

squared standardised conditional errors using some variables observed in the past 

which are not included in the volatility model. Since multivariate variance- 

covariance models provide estimates of all the ingredients that are needed to 

compute the conditional portfolio volatility if asset weights are known, I can use my 

first and second step MV-ADCC and MV-DCC GARCH conditional volatility and 

correlation estimates to compute the conditional volatility and the conditional 

standardized residuals of an equally weighted portfolio. I can then apply the Engle 

and Ng (1993) test to the returns on the latter.

In particular, I apply the specification described in (3.33) that combines the sign bias 

test (that uses as regressors dummy variables /  that take value 1 or 0 depending on 

whether the lagged residual is negative or positive) and the negative and positive 

size bias test (that use, respectively, lagged negative and positive standardised 

residuals as regressors, z,_f and z,.\ '). As reported in Table 6.8, I can reject in every 

case the null of non-predictability of the squared standardised conditional residuals. 

As expected, the significance of the z,.|* term in (3.33) is unaffected by whether the 

0 asymmetry coefficient in (6.7) is restricted to be equal to zero. The asymmetric 

specification of the DCC model of country level indices, w ith0 0 in (6.7), renders 

z,.\ insignificant. The latter however remains significant in the case of sector and 

industry indices.

In spite of conflicting evidence provided by the LR tests of the ADCC-MVGARCH 

against the DCC-MVGARCH, therefore, asymmetric influences of past innovations 

are nonetheless important. This suggests that, especially for sector and industry 

correlations, the ADCC-GARCH specification is unsuccessful at fully capturing the 

sources of the asymmetry in the data, which is probably of a non-linear nature and 

perhaps related to phenomena of contagion. I leave the difficult quest for a better 

specification for future research. The circumstance that the conditional correlation at
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the market, industry and firm level appears to follows an asymmetric process o f  a 

different (yet unknown) type from the one modelled by the ADCC-GARCH 

specification is a noteworthy feature of my findings.

This result, as far as market indices are concerned, lies in partial contrast to those 

reported by Cappiello, Engle and Sheppard (2003). However, 1 am able to replicate 

their results with the same set o f market indices, frequency and data period^^. The 

difference between their results and mine, therefore, might be due to the different 

composition o f the sample as correlations amongst EMU market indices appear to 

display a lower tendency to increase following joint past negative returns than those 

amongst markets outside the EMU. Another important issue is the different data 

frequency. Cappiello, Engle and Sheppard (2003) use only weekly data whereas I 

use both daily and weekly data and for the former the importance o f the asymmetric 

correlation component is always lower.

T hese results are not reported for brevity and because they exactly match results already published  
by Cappiello, Engle and Sheppard (2003) but they are available upon request.
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Table 6.8

Diagnostic Tests

Model r
[sig.] [sig ] [sig-]

Chi-squared(3)
[sig ]

DCC .068
Country Indices -  Daily 

-.123 -.142 29.64
[•394] [.039] [.058] [.000]

ADCC .099 -.076 -.169 20.42
[.396] [.297] [.048] [.000]

DCC -.209
Market Sector Indices -  W eekly 

-.567 -.102 37.60
[.124] [.000] [.472] [.000]

ADCC -.217 -.570 -.107 37.75
[.110] [.000] [.452] [.000]

ADCC -.068
Industry Indices W eekly 

-.325 -.077 11.46
[.631] [.004] [.640] [.009]

l^otes. This Table reports the coefficients and values for a m ultivariate application o f  the Engle 
and N g (1993) test. Variables and their coefficients are defined in the text.
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6.4, Summary and Conclusions

The purpose o f this Chapter is to contribute to the Hterature on the correlation 

dynamics in European equity markets. My main focus has been on the country level, 

but for comparison I also examined the behaviour o f the correlations between the 

market sectors, between the industries and amongst a sample o f large capitalization 

stocks. 1 applied both symmetric and asymmetric versions o f the DCC-MVGARCH 

model o f Engle (2001) and Engle and Sheppard (2002) and I extended them to allow 

for a deterministic time trend in the correlation process.

I confirm the dramatic correlation surge at the market index level reported by many 

previous contributions (such as the studies o f  Hardouvelis, Malliaropulos and 

Priestley (2000), Fratzschler (2002) and Capiello, Engle and Sheppard (2003)). A 

structural break in the mean o f average country-level correlation shortly before the 

introduction o f the Euro accounts for both the strong persistence o f its time series 

and its significant rise over the sample period. The structural break occurs somewhat 

in temporal proximity to the so called Asian crisis. I leave however for future 

research the investigation o f the intriguing issues o f  how to disentangle the effects o f 

the latter from the effect o f the introduction o f  the Euro and o f the extent to which 

the two effects might have interacted.

I do not find any evidence that the correlations among the sectors, the industries and 

the individual stocks have trended either up-wards or downwards over the sample 

period. In fact, they generally decrease around the period o f  the introduction o f the 

Euro.

Thus, while the scope for country level diversification in EMU equity markets is 

become considerably more limited over time, the potential benefits from sector, 

industry and stock level diversification strategies are still substantial. In particular, 

they were unaffected by the process o f  monetary convergence culminated in the 

introduction o f the Euro in 1998 and by the process o f financial integration in the
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EMU. The result regarding individual stock correlations is especially significant 

because the 42 stocks in my sample are heavily capitalized and they are traded in 

very liquid markets with low bid-ask spread. Brokerage fees to trade these stocks are 

also usually very low. Since their average correlation oscillates between 27 and 36 

percent, these stocks offer the opportunity to achieve substantial diversification 

benefits incurring relatively low transaction costs.

Applying a multivariate generalization o f the Engle and Ng (1993) specification test, 

1 also find that the conditional correlation response to past positive and negative 

returns innovations in the EMU equity markets, while asymmetric, is not fully 

captured by the linear specification o f the ADCC model. The tendency to rise 

following past negative returns is especially pronounced in sector indices and 

country level correlations. This asymmetric behaviour o f correlations conditional on 

the sign o f return realizations, coupled with a similar behaviour o f volatilities, 

implies negative skewness o f the multivariate distribution o f the stocks and the 

indices under consideration and, in general, negative coskewness with a portfolio 

formed by the same stocks or indices. An investor that displays DIARA would seek 

to form portfolios that, for a given level o f expected return and variance, display 

correlations that increase as little as possible following negative return realizations.
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Chapter 7: The Time Series of Stock Market Returns

7.1. Introduction

In this Chapter, I discuss the equihbrium relation between first and second moments 

o f the time series o f stock market returns and I present a number o f simple, yet novel 

analytical results on the relation between asset price determination, the equity 

premium and volatility. This Chapter is based on a paper forthcoming in the Applied 

Financial Economics Letters, Poti (2005a). In the next section, I compare and 

contrast the insights provided by the asset pricing and second moments literature 

reviewed in Chapter 2 and 3, respectively. In Section 7.3, using Cam pbell’s (1991) 

unexpected return decomposition and the near unpredictability o f dividend growth, I 

derive a simple relation that links the volatility o f expected returns to conditional 

asset price volatility, and hence to the volatility o f unexpected returns. In Section 

7.4, I report the results o f the application o f this analytical framework to data on the 

S&P composite index for the period 1871-2003. Section 7.5 draws together the 

conclusions.

7.2. Discount Factor and Conditional Return Volatility

According to the efficient market hypothesis (EMH) o f Fama (1970), the difference 

between realised and expected asset returns depends only on changes to the available 

infomiation set. For the EMH to hold, and if  expected returns are constant as implied 

by the strict random walk model o f asset prices, volatility should be caused solely by 

shocks to the available information set about expected asset cash flows. 

Alternatively, if  we allow variation in expected returns, and for example we let the 

parameters o f the SDF change over time, then realised volatility depends on shocks 

to the expected cash flow stream, on shocks to the expected rate o f return, and on the 

covariance between the two types o f shocks.
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There are thus two sources o f ex-post return volatility in an EMH framework. 

Changes to the expected cash-flow stream are the first volatility source. The second 

volatility source is given by changes in expected returns. Since dividends are not 

very volatile, the bulk o f stock market volatility must be explained by volatility o f 

the discount factor (the expected return). In other words, postulating high expected 

return volatility is one way to rationalise the perplexing empirical evidence that asset 

return volatility is much larger than the volatility o f the dividend stream (one version 

o f the so called ‘volatility puzzle’ formulated by Shiller (1981) and Campbell and 

Shiller (1988)). Asset pricing models provide a theoretical specification for volatility 

in discount rates.

A large body o f  literature has refined numerous models and techniques for 

estimating time-varying conditional asset price volatility, see for a review 

Bollerslev, Engle and Nelson (1994) or Chapter 3 o f this thesis. Another large body 

o f literature, initiated by Shiller’s (1981) seminal contribution on excess stock 

market volatility, has investigated at length the relation between asset price volatility 

and the volatility o f expected fundamentals in order to check whether the former is 

explained by the latter as predicted by the rational valuation formula (RVF) under 

M uth’s (1961) rational expectation hypothesis (RE). Unfortunately, however, few 

studies, among these is the seminal paper o f  Campbell and Hentschel (1992), have 

made use o f the sophisticated econometric tools developed to estimate conditional 

time varying volatilities to infer the implications o f the RVF for discount rates 

volatility.

7.3. The Model

Consider Cam pbell’s (1991) unexpected return decomposition implied by the RVF 

with time varying expected dividends and returns:

\ j=0  ;=l
(7.1)

/
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Here, r, denotes continuously compounded rates o f return, p  =
\ + D ! P

, D and P are

dividend and price at a an arbitrary point (e.g., taking the typical values over a 

sample of US equity data for the last 50 years, p = 0.96), d,^j is the log-dividend paid 

in t+j and r,+j is the rate of return between t+j-\ and /+/.

While dividends tend to grow over time, dividend growth appears to be nearly 

unpredictable. I therefore model (log) dividends as a random walk with a possibly 

non-zero deterministic drift and (log) dividend growth as a trend-stationary process 

with independently and identically distributed (i.i.d.) random residuals, i.e. 

«̂ ,+i = ^/+ <̂, + ,̂+1 and Ad,^\ = d + e,^\. Empirical evidence shows instead that

returns are to some extent predictable and heteroskedastic. Therefore, 1 model 

returns as a possibly mean reverting^^ persistent process, i.e. r,+ i = a + jir, + e,+ \. 

Here, e,+ i are serially uncorrelated but possibly heteroskedastic residuals. See, for a 

review of the empirical evidence and a discussion, Cochrane (2001) or Section 1.3. 

On the basis o f these assumptions about the data generating process of dividend 

growth and returns, (7.1) can be rewritten as follows^^:

^  Som etim es, the term mean-reversion is used to refer to the behaviour o f  variables with negative 
autocorrelation whereas persistence is used where autocorrelation is positive. My use o f  the term 
“mean reversion” encom passes both.

From (7 .1), he first term e, o f  (7 .2), is the d ifference betw een the expectations o f  the ‘discounted’ 
dividend stream conditional on information available at t and t - \ .  C learly, the tw o streams differ only  
by the amount represented by the dividend innovation in t, i.e.

Finally, recognising that the term in bracket is a pow er series in pfi  tim es the return in t + 1 gives the 
expression in the second line:

Turning to the second term in the first line o f  (7 .2), it can be rewritten as follow s;

D ividing and m ultiplying the right-hand side by p\
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r , -E,_, {r , )  = e, - ( E , - E , J y n ' r

(7.2)

Taking the unconditional expectation o f the square o f  both sides o f  (7.2), the 

conditional return volatility o f  conditionally unexpected returns can be approximated 

as follows:

This approximation neglects both the second moment o f e, and its cross-moment 

with ( £ , - £ , _ , ) / ; because dividends are not very volatile and do not forecast 

returns. Solving (7.3) for the unconditional second moment o f discount rates and

Equation (7.4) relates the amount o f discount factor volatility to unconditional 

volatility o f conditional unexpected returns, under the assumption that dividend 

growth is not very volatile and does not forecast returns.

The assumption that dividend volatility is negligible is a limiting case that it is useful 

to consider in order to focus on the relation between the volatility o f returns and 

discount factors. This somewhat extreme assumption, however, is unpalatable from 

an empirical point o f view. Thus, squaring both sides o f (7.2), taking their

(7.3)

using the shorthand notation for the unconditional variance o f conditional 

residuals:

(7.4)

= cr -------;----
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unconditional expectations, allowing for dividend volatility but still assuming that 

dividends do not forecast returns, we can write:

(7.5)

Solving (7.5) for the discount factor volatility yields another relation between 

unconditional discount factor volatility and the unconditional volatility o f 

conditional unexpected returns, under the assumption that dividend growth does not 

forecast returns:

(7.6) is to clarify how much variability we need in discount rates (or expected rates 

o f return) under alternative assumptions about the magnitude o f  dividend growth 

volatility, and the unconditional volatility o f unexpected returns, given returns 

predictability, unpredictable dividend growth, and knowledge o f the typical 

dividend-price ratio. This result provides a useful criterion by which competing asset 

pricing models can be evaluated. If the asset pricing model under consideration does 

not produce variability o f discount rates o f the required magnitude, it can be 

discarded on grounds that it will not manage to explain observed conditional stock 

volatility. This criterion can also be used to evaluate competing reduced form 

econometric specifications. If a particular specification does not produce the 

required variability o f discount rates, given estimated conditional return volatility or 

the estimated unconditional volatility o f  unexpected returns, it cannot be considered 

the reduced form o f an admissible (under the RVF) asset pricing model. Cochrane 

(2001, 2005), provides an alternative yet fully equivalent representafion o f (7.6),

(7.6)

denotes dividend growth volatility. The upshot o f (7.4) and
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derived from a VAR model of a latent expected return variable, returns, and 

unpredictable dividend growth. The latent expected return variable is assumed 

persistent for identification purposes. In Cochrane’s (2001, 2005) representation, the 

volatility of expected returns, i.e. the right-hand side of (7.6), is given by the 

dividend-price ratio volatility times a function of the amount of predictability in the 

latent expected return variable. Relative to the representation derived by Cochrane 

(2001, 2005), (7.6) is more straightforward in that it relates the volatility of expected 

returns to familiar quantities such as return and dividend volatility and the 

persistence o f returns.

The return persistence parameter will need to be estimated or calibrated to fit the 

data. If = 1, discount rate volatility must be zero. However, since typically p  < \ , 

this would imply that P > 1 and, therefore, that returns are explosive. With = 0 

and neglecting dividend volatility, the required unconditional variability of discount 

rates is larger than the unconditional volatility of returns. In general, neglecting 

dividend volatility, the required variability of discount rates is lower than the 

volatility of returns when 0 < /y < 1, i.e. some persistence in returns and thus 

predictability help explain unexpected return volatility. In particular, when returns 

are so persistent that they follow a random walk, i.e. P = \, very little discount rates 

variability is enough to account for the volatility o f returns.

7.4. Empirical Application

The unconditional variance of conditional residuals in (7.4) can be estimated by a 

traditional ARCH or GARCH model, see for example Engle (1982) and Bollersev 

(1986), as it is simply the value to which the conditional variance of returns 

converges in the long run. A GARCH-M model, such as the specification proposed 

by Engle, Lilien and Robins (1987), would also provide estimates of the time 

varying conditional trade-off between expected return and risk. To be more specific, 

consider the following GARCH-M model of returns:
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E,_,{r,m = g[cjUe\e] (7.7)

Here, a non-zero derivative of g  with respect to the first element of its argument 

allows the conditional mean to be an explicit function of conditional variance 

cr,̂ _i = £',_,(£•/(6*)), Ei{6) = r, - £ ’,_,(r, (6)) is a discrete time stochastic error process 

with conditional mean and variance parametrized by the finite dimensional vector

0 Q R"', 00 denotes the true value of the parameter vector. In (7.7), the

conditional mean o f the residuals is E,.i{e,{0o)) = 0 but their conditional variance
2 2£,_i(f, (6*o)) = (7,-1 is allowed to be time varying. The unconditional variance of the

2  2conditional residuals is £(e, (^o)) = a .

A possible empirical specification of (7.7) is represented by a GARCH(1,1)-M 

model with a mean equation that includes, in addition to the conditional variance 

term, a constant and one lag of the stock market return:

2 2 2 (7.8)
cr, =  +  «4cr,_ |

1 estimate conditional annualized volatilities of the S&P Composite Index^* over the 

period 1871-2003 using a GARCH(1,1) specification with a first-order 

autoregressive model for the conditional mean. I therefore estimate (7.8) with the 

restriction that a/ = 0. The ARCH specification allows for more efficient estimates 

of the parameters of (7.8), including the crucial persistence parameter [i, but the 

usual trade-off between efficiency and robustness applies. The point estimate of /? is

cc
about 0.35 and the unconditional volatility estimate, given by cr = ------   , is

1 -  -  ^4

about 14 percent.

1 thank Professor Robert Shiller for making this data available on his w ebsite, and for helpful 
discussion.
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With [i = 0.35 and this estimate of a, the annualized volatility of monthly discount 

rates implied by (7.4) is just above 10 percent. Thus, neglecting dividend growth 

volatility, we need volatility in expected returns as large as 10 percent to explain the 

conditional return volatility over the period 1871-2003. The conditional stock 

market volatilities estimates from (7.8) and the implied discount factor variability 

bound are plotted in Figure 7.1.

Dividend growth volatility in the 1871-2003 period is about 4 percent per annum. 

Since dividend growth is assumed to be i.i.d., its conditional and unconditional 

volatility are the same. Using (7.6), the discount rate volatility bound is about 7.1 

percent with P = 0.35, cr̂  = 14 percent and 4 percent dividend growth volatility. 

Thus, taking this dividend growth volatility into account, we need a lower discount 

factor volatility to explain conditional return volatility.

The calculated values for the discount rate variability bound can be used to evaluate 

the empirical performance of competing asset pricing models. Sharpe (1964) and 

Lintner’s (1965) static CAPM is very easily discarded, as it implies an obvious 

violation of the variability bound from below, even taking dividend growth volatility 

into account. A GARCH-M, broadly along the lines of Merton’s (1973) inter­

temporal CAPM (ICAPM) but with no state variable to proxy for changes in the 

future opportunity set, produces a yearly volatility of the discount rate of 6.15 

percent, as shown in Figure 7.1. This is computed as the sample annualized volatility 

of conditional mean returns estimated using (7.8) with = 0 but without the 

restriction that a\ = 0. The estimated variability o f discount rates is still too low to 

satisfy the bound. It is much lower than the 10 percent bound under the assumption 

that dividend growth is negligible and just below the 7.1 percent bound that 

corresponds to 4 percent dividend growth volatility. Other models that price assets 

on the basis of their covariance with little volatile fundamental economic variables, 

such as aggregate consumption as in Lucas’ (1978) Consumption CAPM, will 

struggle even more to reach the bound from below, unless we allow for additional 

sources of conditional discount factor volatility.
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The estimated lower bound on the volatility o f expected returns has interesting 

implications for the quasi-concavity o f the expected utility implied by the SDF 

estimates reported in Table 4.2 (in Chapter 4). The unrestricted estimates imply a 

convex SDF, convex marginal utility, and an S-shaped utility function. The flexus o f 

marginal utility occurs at a level o f quarterly excess return o f around 2.5 percent, or 

10 percent annualized. Assuming a 6 percent risk free rate, this corresponds to a 16 

percent annual return. Thus, returns above this threshold are in the risk seeking 

region. To assess how likely these returns are, it is useful to construct a confidence 

interval around the mean return, about 12 percent in sample (about 8 percent real 

excess return plus 6 percent nominal risk free rate). Given my estimated 7.1 percent 

expected return volatility lower bound, the sampling error o f the mean, with a 

sample o f over 100 annual observations, is at least about 0.71 = 7.1/10. This means 

that a 2-tailed 2-standard deviation interval for the mean return is {12 -  1.42 percent, 

12 + 1.42 percent}, i.e. about {10.8, 13.2 percent}. As return annual volatility is 

about 14 percent, the 16 percent annual return threshold o f the risk seeking region is 

within 1 standard deviation from either the lower or upper end o f the confidence 

interval for the mean. This back-of-the-envelope calculation suggests that returns in 

the risk seeking region cannot be considered low probability events. The implication 

for the analysis in Chapter 4 is that it is unlikely that expected utility be quasi­

concave.
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Figure 7.1:

Conditional Return Volatility vs. Discount Factor Variability
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Notes. This figure plots the conditional volatility o f the S&P Composite Index 
(dotted line) estimated using a G AR C H (l.l) with a first-order autoregressive mean 
equation, the unconditional volatility o f expected returns (solid thin line) estimated 
using a GARCH(I.1)-M. and the implied unconditional discount factor volatility 
bound neglecting dividend volatility (solid thick line). The implied unconditional 
discount factor volatility bound taking dividend volatility into account is not 
reported for visual clarity (it would be represented by a line above the solid thin 
line but very close to the latter). A ll volatility and variability measures are 
annualized. I assume that p =  0.96 (that corresponds to a dividend yield o f 4%, the 
typical value found in the data). The stock market data for the period 1871-2003 
used in the estimation was provided by Shiller (2001) on his web site.
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7.5. Summary and Conclusion

In this Chapter, I have derived the relation between the unconditional volatility o f 

conditionally unexpected and expected returns, given conditional return volatility, 

near unpredictability o f stock dividends, the typical dividend-price ratio, and return 

persistence. This result can be used to place a bound on the volatility o f conditional 

expected returns that, under the RVF, any econometric model must produce to be the 

empirical specification o f an admissible asset pricing model. 1 discussed how the 

expected return conditional volatility bound can be used to evaluate the empirical 

admissibility o f  Sharpe (1964) and Lintner’s (1965) static Capital Asset Pricing 

Model (CAPM), o f a GARCH-M based on M erton’s (1973) CAPM and o f Lucas’ 

(1978) CCAPM. A useful extension o f this work would be the evaluation o f a larger 

set o f competing theoretical and econometric specifications.

One limitation o f the derivation is that returns can only mean revert to a constant 

long run level. This is implied by the proposed autoregressive specification o f the 

return process. A useful extension would be the multivariate generalization o f (7.6) 

and, in particular, the derivation o f the relation between conditional return volatility, 

conditional dividend volatility and unconditional expected return volatility when the 

latter are driven by a persistent, slow moving state variable. This would amount to a 

relatively simple generalization o f the vector autoregressive model (VAR) presented 

by Cochrane (2001) to explain return predictability. To render this model able to 

generate conditional return volatility, it suffices to allow for heteroskedasticity in the 

process followed by the errors o f the dividend growth and/or o f the state variable. In 

particular, their second moments should be made depend, in a non trivial fashion, on 

the past o f the processes themselves. Campbell and Hentschel (1992) already did 

this for the dividend process. I leave these developments for further research.
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Chapter 8: Implications, Limitations and Future Work

8.1. Introduction

In this Chapter I summarize my main findings and I discuss their implications for 

asset pricing and investment management. I then point to the limitations o f the 

thesis. Finally, I point to directions for future research. I start, in the next Section, by 

reviewing the main findings reported in this thesis and the important analytical 

results. Section 8.3 discusses their implications. In Section 8.4, I discuss certain 

epistemological issues that arise in connection with a number o f tests discussed in 

this thesis. In Section 8.5, I then outline the main limitation o f this study, I suggest 

possible extensions and I highlight opportunities for future research. The final 

Section presents some final remarks and draws together the main conclusions.

8.2. The Main Findings Restated

My thesis contributes to depict a representation o f  the multivariate distribution o f 

stock returns where the relations between moments and their dynamics are important 

in explaining both the time series behaviour o f stock returns and their cross-sectional 

differences. Chapter 4 expanded the extant evidence that coskewness helps explain 

the cross section o f US returns. In particular, the unconditional pricing implications 

o f a conditional stochastic discount factor model quadratic in the stock market 

excess return explain about 30 percent o f the cross-section o f the average returns on 

30 US industry indices. I interpreted this finding as evidence that the correlation 

with systematic second moments realizations (the squared market returns) helps 

explain the differences in first moments (expected returns) across stocks. However, I 

also confirmed that, as reported by Dittmar (2002) and Post, Levy and van Vliet 

(2003), the estimated stochastic discount factor violates the concavity requirement. 

This renders problematic its interpretation as the stochastic discount factor implied 

by the 3M-CAPM. I showed that a conditional specification that uses Lettau and 

Ludvigson’s (2001) proxy for the consumption-wealth ratio suffers from this
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problem too. Chapter 5 added to the extant evidence that there is a positive relation 

between aggregate returns and systematic risk for the broad EMU equity market. I 

confirmed that market and average idiosyncratic variance, as already documented by 

Goyal and Santa Clara (2003) and by Guo (2003) using US data, predict market- 

wide returns. I demonstrated, however, that the sign o f the relation between market 

variance, idiosyncratic variance and market returns implies that average correlation 

predicts market returns and thus that there is a positive relation between a 

component o f systematic risk and aggregate returns. Chapter 7 clarified that it takes 

a substantial volatility o f  discount factors (conditional first moments) to explain 

second moments o f unexpected returns. In particular, the discount factor volatility 

must be about 7 percent per annum to explain the volatility o f  conditionally 

unexpected returns on the US stock market over the period 1871-2003.

My thesis also highlighted the many relations between second moments and the 

extent to which the stylized empirical features o f the dynamic behaviour o f 

systematic and idiosyncratic volatility and correlations in US equity markets are to 

be found also in EMU equity markets. To summarize the behaviour o f the 

correlations between a large number o f  stocks, I introduced a synthetic average 

correlation measure. This corresponds to the level o f correlation that, if  assumed to 

hold for all the assets in a portfolio, would yield the same portfolio volatility as the 

full correlation matrix. To facilitate the construction o f the average correlation time 

series, I showed that the latter can be approximated as the ratio o f market to squared 

average total volatility. I then studied the average correlation time series to infer the 

salient features o f  the common dynamics o f stock correlations.

As reported in Chapter 6, there has been a surge in the correlations between EMU 

markets. For the main EMU stock markets, this is often close to 100 percent. This 

confirms the findings reported by many previous contributions (such as Hardouvelis, 

Malliaropulos and Priestley (2000), Fratzschler (2002), Capiello, Engle and 

Sheppard (2003)). Using the DCC-MVGARCH model o f  Engle (2001) and Engle 

and Shephard (2002), I find that this dramatic surge, in spite o f the significant degree
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o f persistence o f  conditional correlations, does not imply a non stationary long-run 

behaviour but it is explained instead by a once o ff structural break shortly before the 

introduction o f  the Euro. This confirms the results reported by Cappiello, Engle and 

Sheppard (2003) and is consistent with the rise in volatility spillovers noticed by 

Baele (2002). In contrast to this, however, there appears to be no structural break in 

the conditional correlation process at the firm and industry level, as shown in 

Chapter 5 and 6. The value-weighted average stock correlation is a fast moving 

series that tends to mean revert quickly to a 20 percent long-run mean after a shock.

This relatively low mean o f average stock correlation implies a correspondingly low
2 2 explanatory power, or R , o f the market model. The R o f  the market model for the

average stock implied by this level o f average correlation is about 4 percent, thus

roughly half the value reported by CLMX (2001) for US stocks. I find strong

evidence o f asymmetry in the conditional correlation response to past return

innovations o f different sign and in general o f asymmetry in the multivariate

distribution o f asset returns. I also find, however, that the type o f asymmetry

captured by the ADCC-GARCH models is not the most important source o f

asymmetry in the distribution o f asset returns, likely o f a non-linear nature.

The variance o f  both the average European stock and o f the EMU market portfolio 

has substantially increased over time and a large portion o f this increase is explained 

by a long-run trend. Market volatility and the idiosyncratic volatility o f  the typical 

stock tend to increase by about 7.5 and 10 percent, respectively, every 10 years. 

European stocks, therefore, have indeed become more volatile. Idiosyncratic 

volatility accounts for the main portion o f  the variance o f the typical stock. EMU 

variance series are best forecast by market variance, whereas US variance series are 

best forecast by average idiosyncratic variance.

8.3. Implications

There are two main sets o f implications o f  my findings. The firs t relates to asset 

pricing. The second  relates to the consequences for portfolio management o f the rise
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in average idiosyncratic volatility, o f the dynamics o f average correlation and o f the 

coskewness. I will now discuss these implications in turn.

Asset Pricing Implications

The beta-pricing representation in (4.1) o f the 3M-CAPM, estimated using the 30 

Fama and French US Industry portfolios and the CRSP index as a proxy for the 

market portfolio, implies a ‘coskewness puzzle’. The puzzle arises because, while 

the X\t and l i t  parameter estimates fit the cross section o f  industry returns relatively 

well, they imply risk seeking over gains and thus a non-concave utility function. A 

similar puzzle arises from the estimates o f the beta-gamma representation in (2.54), 

even allowing for conditional time-variation in the shape o f  the utility function. 

Given the parameters o f the SDF implied by these estimates, the market portfolio is 

not necessarily efficient for the representative investor. In turn, if  the market 

portfolio is inefficient, the 3M-CAPM does not hold.

Pending the investigation into the theoretical explanation o f these findings, the 

interesting question is then whether we should price assets based on expected returns 

that reflect a coskewness premium and, in particular, the large coskewness premium 

Xj, implied by the unrestricted quadratic SDF specification. It is clear that, as long as 

we do not have an equilibrium asset pricing model that can account for this large 

coskewness premium, we cannot strictly consider coskewness a risk measure. 

However, since Pi\j and l^a.t are the factor loadings o f  a multifactor model that 

explains the cross-section o f industry returns relatively well, we might draw pricing 

implications for other assets based on no-arbitrage arguments.

Thus, in the spirit o f statistical multifactor models, we might price assets that are 

spanned by the industry portfolios using the unrestricted estimates o f A,. In 

particular, in order to avoid extending the asset pricing implications o f the 

unrestricted estimate o f (4.1) to variation o f stocks returns not spanned by the market 

excess return and its square, we should price only stocks that are spanned by those
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industries that are priced accurately, such as Games, Constructions, Autos, Carry, 

Mines, Telecom, Paper and Wholesale. We might also add more factors to increase 

the portion o f the stock variation explained by the multifactor model. We might 

further assume, as in Ross’ (1976) APT, that the residual variation is o f an 

idiosyncratic nature and thus use the multifactor model to price diversified portfolios 

o f stocks. Yet, to apply this multifactor model to non diversified portfolios and thus 

to the constituent assets we would have to rule out the possibility that the price o f the 

idiosyncratic residuals is high. One way to achieve this result is to rule out ‘good 

deals’ by bounding the volatility o f the SDF, as suggested by Cochrane and Saa- 

Requejo (2000) and Cochrane (2001)^^.

Investment Strategy Implications

A conventional rule o f thumb, based on Bloomfield, Leftwich and Long (1977), 

suggests that a randomly chosen portfolio o f 20 stocks produces most o f the 

reduction in idiosyncratic risk that can be achieved through diversification. 

However, as discussed by CLMX (2001), the higher the average idiosyncratic 

variance, the larger the number o f stocks needed to achieve a relatively complete 

diversificafion, given a random portfolio selection strategy. In Panel A o f Figure 8.1, 

I report the residual portfolio idiosyncratic volatility as a function o f the number o f 

stocks included in equally-weighed portfolios formed by drawing randomly from my 

stock sample for various levels o f average idiosyncratic risk at different points in 

time. To reduce idiosyncratic volatility to 5.0 percent it took 166 stocks in 2003, 43 

stocks in 1989 but just 35 stocks in 1974. It is worth noticing that most o f the 

increase has taken place in the second half o f the sample period. CLMX (2001)’s 

findings are similar. They report that a residual portfolio idiosyncratic volatility as 

low as 5 percent required 50 US stocks in the period 1986-1997 whereas it would

I explored this possibility in a recent working paper o f  m ine, Poti (2005c), that is available for 
download from the Social Science Research Network w ebsite (details on its web address are in the 
Bibliography). Please note, however, that the section that contains the im plementation o f  this 
approach is still preliminary and incom plete.
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have taken only roughly 20 stocks in the period 1974-1985’'’. Panel B o f Figure 8.1 

illustrates the combined effect o f changes in average idiosyncratic variance and 

average correlation on the extent to which random diversification strategies can 

reduce the fraction o f an equally-weighted portfolio variance represented by 

diversifiable idiosyncratic variance.

The higher the correlation among stock returns, the lower the potential benefit from 

diversification. Thus, overall, my results on the correlation dynamics in EMU 

markets suggest that fund managers should think through the full ramifications of 

seeking cost-effective diversification in the Euro-zone area by adopting the passive 

strategy o f investing in market indices rather than a selection o f stocks from the 

whole supra-national market. In particular, because o f  the rise in correlations among 

national stock markets indices, the stochastic components o f the latter are now 

expected to behave almost identically (with conditional correlations being close to 

100 percent). This suggests that there is little expected benefit from strategies that 

diversify across Euro-zone market indices, although diversification across stocks 

remains useful. In particular, the very low level o f average correlation in the equally- 

weighted case suggests that diversification can be an important source of 

improvement in the portfolio risk-return ratio (even though the full benefit in terms 

o f variance reduction will not be available to the average investor since average 

correlation in the value-weighted case is substantially higher).

While awareness o f the degree o f predictability o f asset returns leads to a better 

assessment o f  the level o f risk at different investment horizons, an understanding of 

the role o f the non-diversifiable component o f the moments o f odd order, primarily 

asset co-skewness and portfolio skewness, makes it possible to better address the 

investment decision from a strategic point o f view. From this perspective, the 

investor is faced not only with the mean-variance trade-off, but also with the choice 

between portfolios that tend to perform better or worse as aggregate correlations and

™ It would also have taken about the sam e number o f  stocks in the earlier 1962-1973 period.
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average volatilities increase and, therefore, as the overall market portfolio becomes 

riskier.

8.4. Epistemological Note

Any empirical specification of theoretical asset pricing models that derives the 

conditioning information set from the time-series o f ex post excess-retums relies on 

the assumption that the latter contain sufficient information to infer the estimated 

risk-return relation. This problem, mutatis mutandis, is similar to the one highlighted 

by Roll (1977) with regard to tests of the CAPM. In particular. Roll’s critique points 

out that any test of the CAPM is a joint test of the theoretical model and of the 

efficiency of the market portfolio, hi an inter-temporal framework, whenever the 

conditional risk-return relation is estimated using ex-post returns as the conditioning 

information set, this leads to joint tests of the theoretical asset pricing model and the 

auxiliary assumption that the infonnation set observable by the econometrician is 

sufficient to infer the true return data generating process. Hansen and Richard (1987) 

argue a similar point. The implication of this line o f reasoning is that empirical tests 

of the risk-return relationship must be taken with caution and inferences should be 

frequently checked against new evidence that expand the information set available to 

the econometrician (e.g. to check, for example, that the model parameters estimates 

are not biased by a small sample problem related to high impact-low probability 

events, the so called peso problem).
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Figure 8.1
Random Diversification and Idiosyncratic V^olatility

Panel A
(Residual Portfolio Idiosyncratic Volatility vs. N um ber o f  Stocks) 
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PanelB
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Notes. This figure reports various m easures o f  the benefit o f 
diversification strategies as a function o f  the num ber o f  stocks included 
in equally-weighted portfolios formed by random ly drawing from my 
stock sample at different points in time with varying levels o f  average 
idiosyncratic variance.
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8.5. Limitations o f the Analysis and Future W ork

Predictability and time varying risk premia likely reflects a premium for holding 

macroeconomic risk associated with the business cycle and for holding assets that do 

poorly in times o f high volatility and financial distress. Therefore, they seem to be 

closely related to the issue o f asymmetry and thick tails in the multivariate return 

distribution and hence to asset coskewness. The exploration o f the link between 

aggregate idiosyncratic risk, higher moments and asymmetries o f the multivariate 

distribution o f asset returns opens fascinating yet challenging possibilities for future 

research. For example, further research might suitably expand the set o f conditioning 

variables to better model variation in the utility function parameters and might use a 

more meaningful proxy for the market portfolio o f  all risky assets. This, beside 

improving the fit o f the model, might lead to a 3M-(C)CAPM specification with 

parameter estimates that do not violate RA and NIARA. Moreover, since I find that 

average idiosyncratic volatility is persistent and predicts aggregate market returns, it 

could be used as a scaling variable to proxy for background risk. Including average 

idiosyncratic variance amongst the set o f conditioning variables used in a (C)CAPM 

empirical specification could be particularly useful because it is more readily 

available and it can be estimated with less delay than Lettau and Ludvigson’s (2001) 

consumption-wealth ratio. This would bring together my research on aggregate 

idiosyncratic risk and on conditional asset pricing with higher moments. I leave 

these developments, however, for future research.

Turning to the ‘coskewness puzzle’, its solution requires a theory that predicts a 

stochastic discount factor quadratic in the market return without implying that the 

market portfolio is efficient. We might appeal to Harrison and Krepp’s (1979) 

theorem to motivate the stochastic discount factor representation o f the asset pricing 

problem without requiring that the market portfolio maximizes investors’ expected 

utility. Recall that this theorem states that, given free portfolio formation and under 

the law o f one price, there exists an m,^\ such that, for every payoff x  i+\, p , = 

Ei{mi^ \X,^]). This approach, however, rises the problem o f motivating why (2.60)
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specifies m ,  as a function o f  the m arket excess return and its square. A hem atively , 

we m ight specify individual utility functions that exhibit D IA R A  and then determ ine 

equilibrium  prices w ithout im posing restrictive assum ptions such as investors’ 

hom ogeneity and m arket com pleteness or the equivalent representative investor 

assum ption. The interesting question then becom es why the m arket return and its 

square should be good proxies for aggregate m arginal utility growth even though the 

m arket portfolio is not necessarily efficient for the representative investor. I leave 

the investigation o f  these issues for further research.

The exploration o f  asset pricing fram ew orks that explicitly take uninsurable 

idiosyncratic risk, non-sym m etric return distributions and tim e varying risk prem ia 

into account opens fascinating possibilities for the form ulation o f  richer portfolio 

and investm ent advice than the standard, traditional recom m endation to hold the 

m arket portfolio im plied by the static CA PM  under the com plete capital m arket 

assum ption. For exam ple, as sum m arized by Cochrane (1999), there are strategies 

that result in high average returns w ithout large betas, i.e. w ith no strong tendency 

for the stra tegy’s returns to m ove up and dow n w ith the m arket as a whole. The 

returns on these strategies cannot be rationalized on the basis o f  the traditional 

CA PM . The investigation o f  whether these abnorm al returns can be explained by 

m odels that include the squared m arket return and aggregate idiosyncratic volatility 

as additional factors w ould be a useful extension o f  this thesis.

Turning to the dynam ic behaviour o f  second m om ents, m y study o f  aggregate, 

industry and firm  level volatility and correlation in EM U m arkets could be extended 

in several directions. For exam ple, while the inform ation carried by low frequency 

series is im portant in m any asset allocation problem s, high frequency series are also 

im portant in trading and risk m anagem ent applications m ore focussed on the short 

run behaviour o f  stock returns. Thus, a useful extension o f  the study o f  EM U 

volatilities and correlations w ould be to construct higher frequency series from  daily 

or even intraday returns. Care should be taken then to overcom e the problem s 

associated w ith asynchronous trading in the various European m arkets. A lso, it
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would be useful to construct the average industry-level variance series directly from 

stock returns, instead o f  using Datastream industry indices. Further investigating the 

role o f idiosyncratic volatility in asset pricing, with special regards to whether it 

helps explain the cross-section o f asset returns, would be another fruitful area for 

future research.

8.6. Final Comments and Conclusion

This Chapter reviewed and summarized the main findings reported by this thesis and 

their implications for investment management and theoretical asset pricing. The 

unifying theme o f  this thesis is the close relation between volatility and asset pricing, 

both from a time series and from a cross-sectional perspective. In the cross-section 

o f  average returns, assets with negative coskewness, and therefore with exposure to 

volatility risk, command a risk premium on top o f the reward for market risk. This 

relation, as shown in Chapter 4, is empirically strong and bears puzzling 

implications for the shape o f  the stochastic discount factor, and thus for the 

possibility that prices are set by a representative investor. A deeper understanding o f 

the relation between financial volatility, in its widest sense, and asset pricing 

contributes to the formulation o f a richer investment advice and more meaningful 

policy recommendations. From this perspective and in a context o f imperfect (albeit 

relatively well functioning) and incomplete financial markets, the reduced form 

statistical representations o f volatilities and correlations studied in Chapter 5, 6 and 

7 are useful because they provide a better picture o f the salient features o f the 

multivariate distribution o f asset returns. Thus, in portfolio diversification, portfolio 

optimization and risk management applications, they help control the relation 

between first and higher moments o f investors’ portfolios. In the time series o f asset 

and aggregate returns, variation in volatility drives variation in risk premia. The 

literature on this relation has been discussed in Chapter 2, while original analytical 

results on the relation between idiosyncratic volatility, aggregate correlation and 

aggregate return, and between unconditional second moments and the time variation
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of conditional first and second moments were presented in Chapter 5 and 7, 

respectively.



8.6.1 Appendix A: Third Order Utility Expansion

Consider the local variation in a utility function defined over wealth, 

given by a third order Taylor expansion:

du{W) = u \W )dW  + \u '(W )dW ^ + \ u ”{W)dW^

Thus,

u \W ) = s  u{W)  + \u"{W )dW  + \ u ”\W )dW ^

In discrete time, the local variation of utility is:

+ju"(fV,)AfV,l, + ju"’(fV,)AfV,l 

The corresponding third order expansion o f utility is:

+1

= u{W, ) + u'(W,)AW,^, +\u''(W,)AW,l, + \u'"(W,)AW,l,

AW . AW^ . AIV^
= u{W,) + u'(W, )W, + \u"{W,)W,^ + lu " ' ( W , ) W ,^ - ^

= u{lV, ) + u'(W,)W,R,^,+^u\W,)W,^Rf^, + \ u' \W ,)W ;r I ,

And marginal utility growth is:

u \ W , J  ^  u'(W,) + u"(W,)AW,^, +ju"'(W,)AfV,l, 
u'(W,) u'{W,)

u\W,) 2 u\W,)

, \ u '\W,) AW,
= 1 + — W  ^  +  W‘

u'(W,) ' W, 2 u'{W,) ' W"-

u'{W,) 2 u\W,)

u = u{W, ) ,

(A .l)

(A.2)

(A.3)

^ A .4 )

(A.5)
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W - W  AfV
Here, -  ■ Then, the first order condifions (2.1) for the

IV, W,

maximization o f expected utility imply, by identification with (2.8), a, = 1,

^  ^  ]_u (W,) 2 quantity RRA, = in the
'' u'{W,) ' 2 u’(W,) ' ^ ^ ’ u

parameter is the Pratt-Arrow relative risk aversion coefficient, e.g. Pratt (1964). 

Therefore, , = - R R A , . The additional parameter bj, is related to the notion o f

u^'iW)
absolute prudence, defined by Kimball (1990) a s  prudence

(positive bj,) gives rise to preference for portfolio skewness and for a precautionary 

saving motive in the face o f future uncertainty.

Since utility functions are equivalent up to a linear transformation, we might let 

u(JV,) = 0 and w '(^,) = 1 • This standardization is often very useful when working

with utility functions in that it simplifies their manipulation. From (A.4), the third 

order Taylor expansion o f this standardized utility function around an initial level o f 

wealth f V = l  is therefore:

2 6 (A.6)

= ̂ , + 1 + 6*1̂ ,+ 1 +

Here, = —w"(l) and 0, ■ Marginal utility and marginal utility growth
2 “ 6

then become:

= 1 + = 1 + 20,R,^, + 30,R^ ,̂ (A.7)
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u'(W,) +  1 (A.8)

Letting W, -  E, {W^) = \ yields an expansion around the sample average o f wealth 

or, equivalently, around the sample average o f the return on wealth:

2

+ 6', 'W,^,-E,{W,)

L ^ r m L E , { W , )  \E^.{W,) '

Marginal utility and marginal utility growth can be derived as above.

(A.9)
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8.6.2 Appendix B: The Pratt-Arrow Risk Premium

In this Appendix, I provide a derivation o f the equilibrium relation between expected 

variance and expected return. Define the simple gamble (an actuarially neutral 

gamble) as follows:

Z~0(O, (t/ )  (B.l)

With:

Z = a random number (the gamble)
2 2 <P(0, cr- ) = a probability distribution with zero mean and cr̂  variance.

I then assume that investors’ utility is a function of wealth (fV) only:

u = ii{W) (B.2)

Now we can define the condition for the investor to accept the gamble according to 

the following equation:

E[u{W + Z)]^u[W+E{Z)-n{W,Z)]  (B.3)

In equation (B.3) the expression 7i{W, Z) represents the risk premium that makes the 

investor indifferent between accepting the actuarially neutral gamble (Z) and not 

accepting. It is assumed to be a function solely o f wealth and of the gamble itself 

Now, using equation (B. 1), we can substitute out E(Z) and write:

E[u(W+Z)] = u[W-n(W,Z)]  (B.4)

Writing out the Taylor expansion o f the left-hand side and right-hand side of 

equation (B.4):
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E[u{W+  Z)] = E[u{W) + Z  w,„ + 0.5 w,™ +• • •] (B.5)

u [ W - 7z{W, Z)] = u(fV) - nuw ■ ^  ^ “'■•••• (B.6)

Here, the terms and are the first and second total derivatives o f the utiHty 

function. Now, equating and simpHfying we get;

The above expression is analogous to the Pratt-Arrow absolute risk-aversion

{ARA) coefficient. Therefore, using equation (B.8) we can write:

n = ^ c r } A R A  (B.9)

Denoting hy R = {W + Z  -  n -  W)/W= (Z + ;t) /W the return on the gamble given the 

risk premium, we can write:

(B.7)

If we further assume the ,emr -  ,o be negligible, we can solve for ;r, ,l,e rislc

premium:

(B.8)

o-/ = E{Z^) = E{ [R - E {R ) f }  = Var{R) (B.IO)

Therefore, using (B.IO) in (B.9) we can write:
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n  = Var{R) A M

Then,

- E{R) = ^  ^  Var{R)ARA (B.12)

= ^  RRA Var{R^) (B.13)

Where:

RRA = ARA W = - W

7T
Here, the quantity —  denotes negative expected return that the investor is willing to 

W

accept to remove the risk o f an otherwise actuarially neutral gamble. The coefficient 

RRA in equation (B.13) denotes relative risk aversion. As long as the ‘local shape’ o f 

the utility function does not change, it should be constant against changes in wealth. 

Equation (B.13) displays a linear relation between risk and expected excess-return 

that is valid only locally since the relation has been derived on the basis o f a second 

order Taylor expansion o f a potentially non-linear equation.
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8.6.3 Appendix C: Portfolio Diversification

Let E, ) = (J^, = Var{R^ represent the variance o f the return on an asset i and 

,,^1) = crh  = Cov{Rj, Rj) represent the covariance between the returns on z

and /. Neglect possible conditional time variation and multi-period considerations. 

Consider the variance o f portfolio returns:

Var(R^) = i  (C .l)
/=1 7=1

Here Rp indicates portfolio returns, N  is the number o f assets in the portfolio, vt̂ , is 

the “zth” asset weight and cTy is the covariance between the “ /th” and “yth” asset 

returns, R, and R/ respectively. The first derivative o f Var{Rp) with respect to “w ” 

represents the contribution o f the “zth” asset to portfolio risk:

dVar{R ) , n

(C.2)
dw>, 7=1

Here, the first term 2w,<7u represents the asset-specific (firm-level in an equity

N
portfolio) or idiosyncratic variance contribution and the second term, 2XWyCTy , is

the covariance contribution. Suppose that our portfolio strategy consists o f a random 

selection o f N  equally weighted assets. Then Wi = \ /N  V i. As the number o f assets N

N
increases, the firm-level variance contribution term tends to zero while in the

7= 1

second term, the covariance contribution, tends to unity. Therefore, denoting by

_ N

(Ty = Z  Wy cr,y the average covariance o f  asset i with the other assets, we can write:
7=1

dVar(R^)  
l i m   --------= lim

N —̂ +cc O W  iV^-*-oo

^  ̂ N ^
2w,o-,;

7=1 y
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\

= lim 2X>i',cr,^ (C.3)

The above equation shows that diversification asymptotically eliminates the 

idiosyncratic, asset-specific variance but not the average covariance contribution to 

portfolio variance o f the constituent assets. This result also obtains in the more 

general case o f a well diversified portfolio with non equal weights, as the latter 

become on average smaller and smaller as the number o f assets increases. The only 

risk component left in the portfolio is the covariance risk (systematic or un- 

diversifiable risk), which is the systematic fraction o f the total variance o f the 

average asset. Therefore we can rewrite the variance o f a highly diversified portfolio 

as average covariance:

To sum up, using results from Markowitz (1959) mean-variance portfolio theory, I 

have described two main components o f total variance: idiosyncratic variance and 

systematic variance. 1 have also shown that the former can be diversified away. The 

smaller the idiosyncratic variance term, the quicker it will converge to zero as N  

increases and vt’, decreases. Therefore, the smaller the idiosyncratic variance o f the 

typical asset, the smaller the number o f assets needed to achieve a relatively 

complete diversification, given a random portfolio selection strategy. On the other 

hand, the higher the covariance among stock returns, the higher the covariance 

between the typical stock and the portfolio, i.e. the higher the typical and the 

lower the benefit from diversification because this last term cannot be diversified 

away. Therefore, the extent to which aggregate portfolio risk can be reduced by 

diversification is related to the importance o f the average covariance term. These 

well known results have both portfolio management and equilibrium asset pricing 

implications.

N N NN

(C.4)
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Moments of odd order capture the degree of asymmetry of a distribution. The main 

third order moment is skewness. PortfoHo skewness Skew^ , = E, ) contains

both asset skewness Skew^, = and coskewness Coske\i>.^, =

terms^'. In a portfoHo with a large number of assets, the skewness terms are 

diversified away but not the coskewness terms. The latter represents the non- 

diversifiable portion of asset skewness. Assets with positive coskewness increase 

(make more positive) portfolio skewness. Intuitively, assets with positive skewness 

display positive covariance between their return and the portfolio variance. Thus, 

adding these assets increases the average covariance between asset returns and 

portfolio variance and renders the portfolio distribution more skewed to the right.

Recall that the terms e,,, and are zero-mean innovations. Thus, just like variance is defined as a 
centered second moment and covariance as a centered cross-second moment, skewness is defined as a 
centered third moments and coskewness as centered cross-third moments
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8.6.4 Appendix D: Average Correlation

Proposition; the average correlation between the stocks o f a well diversified 

portfolio can be approximated by the ratio o f  portfolio variance to the square o f the 

average volatility o f the constituent stocks.

Here, Rpj denotes the return on portfolio P, R, , is the return on the /th asset, N  is the 

number o f  assets included in the portfolio, cr^, = Var(R^) is the portfolio variance,

erf I = Var{Ri,) is the variance o f asset /, , is the correlation between asset i and j ,

CORR, is the average asset correlation, i.e. the level o f  correlation that, if  assumed to 

hold for all pairs o f assets, would give the same portfolio volatility as the full 

correlation matrix.

For ease o f algebraic manipulation and to facilitate intuition, it is convenient to

2 ^ 2 2define the variance that the portfolio would exhibit if all the

assets were independently distributed and j ,w   ̂  ̂ ^, as. the portfolio

variance if  all the assets were perfectly correlated. Then we can rewrite (D .l) as 

follows:

Proof:

N N

i  + CORR, Z  t ,  w,., W;,,a , ,(7
(D .l)

+ CORR, (( (D.2)

Finally, solving (D.2) for CORR,,
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CORK. =
I 2 _  2

p e r f . l  i n d j  (D 3)

N  ^  P J

Krf.,

The last step in (D.3) holds asymptotically because for a well diversified

I N  _  "portfolio (T„,y,, ------- >0 . Define cr, = as the average total volatility o f the
/ = i

assets included in the portfolio. Then, since the variance o f a portfolio o f perfectly 

correlated assets is equal to the square o f the average volatility o f the constituent 

assets, ! ~  (D.3) can be rewritten as follows:

N Systematic Variance
L U K K ,  >^r^ = 7--------------------------------- ^  (U.4)

cr, (Average Total Volatility)

The expression in (D.4) thus provides an asymptotically valid measure o f average 

stock correlation that applies to well diversified portfolios. It is also very similar to 

an estimator o f average correlation used by RiskMetrics'^'^ and discussed by Finger 

(2000).
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8.6.5 Appendix E: A Simple Dynamic Strategy Based on Average Correlation

As an example o f an innovative trading strategy based on exposure to the time- 

varying level o f aggregate correlation, suppose that a derivatives trader uses the 

methodology proposed for estimating the average correlation o f  a large set o f assets 

and plots its time series as in Figure 7.1. After visually inspecting the series, he 

concludes that, since average correlation is close to an all time low and value- 

weighted correlation is also below its historical average (but it seems to be picking 

up), it would be desirable to take a position that gained from an average correlation 

increase. Is it possible to construct such a position using commonly traded financial 

instruments? It turns out that it is possible and it is also relatively easy. Implied 

average con'elation can be traded by trading options on a basket against a basket o f 

options. To buy implied average correlation, e.g. on the EurostoxxSO index, the 

investor should buy an ‘at the money’ option on the index and sell ‘at the money’ 

options on the single stocks proportionally to the weights o f the latter in the index. 

This position can be replicated by delta-hedging its mirror image (this way the 

investor can trade implied vs. realized average correlation). This is useful to hedge 

large portfolios o f derivatives priced on the basis o f given levels o f implied average 

correlations. Risk premia for this trading activity are likely to be high, at least at the 

beginning, as the market for correlation risk is relatively untapped (trading it would 

make the market more complete). Estimating the risk premium that would accrue to 

a market maker that initiated such a trading activity would be a challenging research 

possibility.
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