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A bstract

C urrent-induced spin-transfer torque effects form an exciting branch in the  field of spintronics 

w ith a huge potential for applications. M agnetization dynam ics phenom ena like switching or GHz 

frecjuency precession in spin valves, enhanced G ilbert dam ping, etc. are all generated by spin- 

l)olarized currents in nano-scale structures. Also in a close proxim ity to  technological applications 

is th e  held of molecular spintronics where the quantum  properties of molecules trapped  in con­

strictions can be utilized to control spin-currents and even engineer spin logic-elements. In order 

to  investigate theoretically  spin-transfer torque effects in atoniic-scale conductors in this Thesis 

we develop a combined microscopic description of the  m agnetization dynam ics together w ith the 

open -boundary  quantum  tra n sp o rt of the itineran t e le c tro n s . ...................................................................

O ur method is based on the s — d model and the  adiabatic spin approxim ation, in which the 

localized d electrons arc the  source of localized spins and are trea ted  as classical variables and 

the s electrons are itinerant and carry the current. We take two a])])roaches to  the spin dynamics. 

Firstly, we consider the typical Landauer ballistic transport set-up and investigate the effects of the 

current on the activation barriers for quasi-static ro tations of the  local spins under current-carrying 

conditions. We find th a t current can c-hange the stability  of the spin-state in the constriction and 

favour a s ta te  w ith particular transpo rt properties. In the case when there is an ab rup t spin domain 

wall (DW) inside the junction current may prom ote both pinning and de-pinning. We further 

introduce structu ra l degrees of freedom into this model and find th a t struc tu ra l readjustm ents 

induced by the current can have significant effects on the  spin dynamics and be a source of pinning 

for the  DW in the  constriction. Conversely, we find th a t the spin-dynamics has little  or no effect 

on the current-driven structu ra l deformation.

The other ai)proach is a tim e-dependent scheme for Ehrenfest spin-dynamics. Its development 

and testing is in fact one of the main objectives of th is work. We aj)ply this m ethod to investigate 

dynam ical effects in closed systems, where we address magnon spectra calculations, dynam ical 

indirect exchange coupling and generation of a spin-motive force by a precessing DW^ We also 

extend th is m ethod to an empirical open-boundary augm entation in order to  tre a t spin-transfer 

phenom ena in the  tim e-dom ain and to  assess the adiabaticity  of the mechanism driving th e  motion 

of an atomic-scale DW'.
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Chapter 1

Introduction

T he discovery of the giant m agnetoresistance effect (GMR) [9, 19] in the  la te  eighties has since 

been driving an unprecedented growth in the  m agnetic storage densities (particularly  in the  last 

decade), surpassing th a t established by the  M oore’s law [71] in the  sem iconductor industry. The 

technology in the  GM R-based hard-drive read-heads, stem m ing from the experim entally observed 

very large m agnetoresistance in certain m agnetic nmltilayers, has found its way to  the commercial- 

scale production and thus to  the  every-day lives of people in record times. In recognition Peter 

G riinberg and A lbert Fert, the  experim entalists who were first to  observe GMR and recognize its 

potential, were awarded the  Nobel prize for Physics in 2007.

Together w ith its im m ediate technological ap[)lications the GM R, by dem onstrating  a  way of 

controlling the tran sp o rt properties of the carriers (electrons) in acting upon their spin, has become 

the  triggering factor to  a whole new scientific-research field, commonly known as spintronics 

This new branch of m agnetism , stim ulated  by the industry  and by the rapid progress in the  

ability  to  m anipulate th e  m agnetization on length-scales smaller th an  the  spin-diffusion length, 

rapidly spread away from its G M R root w ith branches like the spin transfer, spintronics w ith 

sem iconductors, molecular spintronics and single-electron spintronics [H8].

T he last two categories set a  direction for developm ent of spintronics into w hat is called 

nanospintronics [92]. A t this end there  are the studies of electron tran sp o rt in reduced dimensions. 

The typical sam ple is a  junction  th a t consists of two electrodes (leads) a ttached  to  a nano-scale 

object. In the  case of m olecular spintronics this object is a molecule, while in single-electron spin­

tronics it is a quantum  dot  ̂ separated  from the leads by two tunnel barriers. T he m agnetism  

can be carried either by the  object, like in the  case of the  single-molecule m agnets (SMM) [20],

'T h e  term  comes from sp in -tran sp o rt electronics or spin-based electronics [129],
^Q uantum  dots a re  nanoscale so lid -sta te  system s (e.g. sem iconducting islands of 10^-10® atom s) w here electrons 

are spatia lly  confined. T hey  co n stitu te  an in term ediate  step  from bulk m ateria l to  single molecule.

1



1. INTRO DUCTIO N

or by the leads. In any case, these system s display a variety of quantum  effects (either due to  

th e ir in ternal spin-degrees of freedom as in th e  SSM case, or due to the  quantum  confinement they 

create) and are even candidates for quantum -com puting [120, 20]. A more inunediate possibility in 

m olecular spintronics is, for instance, the  u tilization of organic molecules and nanotubes for spin- 

tran sp o rt devices a t the  nano-scale. These carbon-based structures preserve the spin-coherence 

a t distances longer th an  conventional m etals and semiconductors and can be used as spin-valves 

[IlG, 51], Recent theoretical studies [83] have clearly dem onstrated the im portance of the  non­

equilibrium  quan tum -transpo rt effects, which determ ine the spin-valve properties of a range of 

organic molecules.

A nother promising area of spintronics is the  so-called spin-transfer. In th e  mid nineties Slon- 

czewski [!);{] and Berger [Ki] predicted the  possibility of inducing spin-dynam ics by means of a 

spin-polarized current. T his effectively was the  prediction of the “inverse” GMR effect, i.e. the 

possibility th a t a spin-polarized current could change the magnetic s ta te  of a device. The essential 

i<lea is th a t a spin-polarized current can transfer angular m om entum  to the m agnetization of a 

m agnetic system , thus generating a torque. In the  right conditions th is current-induced torque 

can balance or even svu'pass the  m agnetic G ilbert clamping [12], thus creating new dynam ical solu­

tions to  the equations of m otion for the  m agnetization. Magnetic switching, m agnetic resonators 

and  enhanced G ilbert dam ping can all be generated by a spin-polarized current. Im portan tly  the 

current-induced torcjue depends on the  local curren t density and not on the to ta l current through 

th e  sample. This allows for down-scaling the size and the power consum ption and ojiens new 

prospects for switching m agnetic random  access memories (MRAM) [3(i], which largely m otivates 

the  growing in terest for th is area of research.

Theory and modeling of current-induced m agnetic phenomena is largely based on solving the 

Landau-Lifshitz-G ilbert equations w ith additional term s describing the  current-induced torques. 

At a more advanced level tran sp o rt theory  for diffusive transport is also introduced in the  descrip­

tion, effectively creating a sort of Kirchkoff m agneto-ciruitry theory  [24]. A much less explored 

a rea is th a t of atom istic sinuilations of m agneto-dynamics. These however are expected to  occupy 

an increasingly im portan t place in theoretical m agnetism , since nanoscale and even monoatom ic 

one-dim ensional [40] m agnetic devices are already available and exam ples of atom ic scale m agnetic 

phenom ena, such as tran sp o rt in m agnetic point contacts [125] and u ltra-th in  dom ain walls [78], 

have been already dem onstrated .

To da te  there is a notable and im portan t a tte m p t towards the  atom istic calculation of quan­

tities related to  spin-dynam ics. This is represented by the extension of density functional theory



(D FT) to  tim e-dependent phenom ena. W ithin this fram ework the  theoretical foundation for tim e- 

dependent D F T  for spin-dynam ics was laid several years ago [08, 27] and practical calculations 

based on the  adiabatic approxim ation have been ra ther successful in describing dynam ical p roper­

ties of m agnetic transition  m etals, although in absence of an electron current [7, 6]. C urren ts were 

introduced only recently and sim ulations for open system s, carried ou t by using non-equilibrium  

tran sp o rt theory  combined w ith D FT, are now available [45],

Im portantly , all the  calculations to  date, based on th e  atom istic evaluation of the  spin-torque, 

do not perform  real molecular dynam ics in the presence of evolving currents. In Ref. [45], for 

instance, th e  torques acting on th e  free layer of a spin-valve are calculated, but th e  m agnetisation 

itself is not relaxed. Since the  conducting s ta te  of a device can be seriously affected by its m agnetic 

configuration, particularly  a t th e  nanoscale, this is an im portan t lim itation for realistic m agneto- 

device sim ulations. Note th a t there  are no fundam ental obstacles to  molecular dynam ics involving 

spins. U ltra-fast spin-switching in the  pico-second range has been dem onstrated , indicating th a t 

the  fastest tim e-scale of atom ic spin-dynam ics is indeed in (or below) the ps range [41], Since the  

typical tim e scale for electronic processes is in the  fem[)to-second range, one needs between 10^ to  

10® tim e steps to  evolve the  electronic struc tu re  to  tim es relevant for the  spin-dynam ics. T his is 

well in reach of s ta te  of the  a rt tim e in tegration  techniques.

This Thesis aims to  [)resent recent advances towards the developm ent of a tru ly  atom istic 

tim e-dependent theory for spin-dynam ics. T he s - d  tight-binding model including electrostatic  

corrections a t the  H artree level will be our underlining electronic struc tu re  theory  and whenever 

available we will make contact w ith o ther theoretical approaches. In particu lar we will be fo­

cussing on introducing the m ain theoretical concepts behind our approach and providing a range 

of exam ples where such scheme offers insights well beyond w hat is achievable by standard  sta tic  

theory. These include the  investigation of the  spin-wave dispersion in nanoscale m agnets, spin-spiii 

correlation in non-m agnetic nano-wires, current-induced dom ain wall m otion, and distortion  and 

the generation of an electrom otive force obtained by dom ain wall precession.

T he Thesis is organized in th e  following way. It has five m ajor chapters (apart from the  

in troductory  C hap ter 1 and the  epilogue C hap ter 7) and four Appendices. T he chapters, as they  

are ordered, form th ree logical kernels. C hap ter 2 and 3 discuss the qua.si-static approach to  spin- 

dynam ics in atom ic junctions. This is in a sense the prelim inary stage of ju s t probing th e  ac tual 

dynam ical spin behaviour bu t the  quantum  transpo rt is based on a conceptually clear platform . 

C hap ter 5 and 6 introduce th e  actual tim e-dependent (TD) spin description. This atom istic  spin- 

dynam ics m ethod, suited for closed finite system s, is then further extended by an em pirical TD  

tran sp o rt m ethod  in order to  enable us to  address spin-torque effects. C hap ter 4 is ab o u t the

3



1. INTRODUCTION

metliodological comparison of the static and the time-dependent approach to steady-state transport 

and it describes the conditions for their equivalence.

Going in more details, in Chapter 2 we introduce the basic concepts of ballistic transport in 

the spirit of the Landauer scattering theory [G3, (>4]. We then extend this picture to allow for 

the fully-quantum description of the conduction by means of the non-equilibrium Green’s function 

(NEGF) formalism. We achieve this by gradually introducing the non-equilibrium concepts into 

the static quantum description, by firstly analyzing the case of a device coupled to  a reservoir with 

a certain chemical potential [33]. Then we add a second reservoir and follow the same path to 

finally obtain the corresponding result for the non-equilibrium steady-state conductance. Once, 

we have introduced all the concepts in an invariant form, we consider a particular implementation, 

based on a two-spin tight-binding (TB) representation of the electronic structure, and sketch the 

algorithm for self-consistent calculations of the conductance away from equilibrium.

In Chai)ter 3 we investigate the spin dynamics inside an atomic-scale magnetic point contact 

(MPC) in current-carrying conditions, as sketched in Fig. 1.1. The leads are oppositely polarised 

so tha t an abrupt DW is formed in the constriction, where we consider a uniform chain of atoms 

with localised spins, bridging over the two leads.

Figure 1.1: Scheme on the MPC described in Chapter 3.

We consider the steady-state non-equilibrium regime and describe the ballistic transport by 

means of the (previously described) NEGF method. This is implemented in a two-band TB basis. 

We describe the local spins as classical variables exchange-coupled to the expectation values of the 

on-site itinerant spin densities and compute the current-induced torques by applying the generalized 

to open boundaries Helhnan-Feynman theorem [111]. Ŵ e then study the spin-dynamics inside the 

constriction in term s of quasi-static local-spin rotation and map-out the activation barrier for 

thermally-activated DW migration. We discuss the symmetries, the stability pattern  favoring 

collinear or non-collinear spin states, as a function of the two exchange parameters, the effects



of the  s truc tu ra l disorder and by calculating the work for a closed loop of sp in-transitions we 

address the  problem of the  conservativeness of current-induced forces in open system s. Finally  we, 

introduce the  stru c tu ra l degrees of freedom w ithin the same framework and study  th e  interplay 

of struc tu ra l and m agnetic properties under bias and its dependence on m aterial param eters. We 

identify a predom inant direction in th is m agneto-m echanical interplay. O ur calculations show 

th a t m inor s truc tu ra l read justm ents have a great effect upon the  spin-transfer torque, while the  

spin-dynam ics is practically  not affecting the structure .

In C hapter 4 we d epart slightly from our m ain objective of spin-dynam ics. We take this 

opportun ity  to  introduce an em pirical tim e-dependent (TD) approach to  the  steady-sta te  tran sp o rt, 

inspired by the  idea of m apping ou t the  Landauer problem  onto a finite ( “m icro-canonical” ) one 

[124], We com pare the  steady-sta te  conductance results obtained by the  TD  approach to  those 

obtained by th e  self-consistent N E G F m ethod (static). O ur m odel-system  is th a t of an atom ic 

dim er weakly-coupled to  leads a ttached  to  the  plates of a capacitor [87], For certain  range of 

param eters and above certain  bias-voltages in th is system , the  sta tic  approach shows the  occurrence 

of m ultiple (three) different steady s ta te s  but only one of them  is observed in the  TD  sim ulation. 

At the  end of th is C hap ter we dem onstra te  analytically the  conditions under which the  em pirical 

TD approach is ec^uivalent to  th e  Landauer steady-state.

In C hapter 5 we introduce the  concepts of the tim e-dependent quantum -classical (Ehrenfest) 

approach to  spin-dynam ics. This scheme is then applied to  a few te s t situations, w ith the  aim  of 

reproducing results from sta tic  theories in certain  lim its bu t also for going beyond th e  accessible 

facts. These cases include the  calculation of the spin-wave spectra  for a m onoatom ic chain of 

spins, modelled by an s - d  model and th e  tem poral correlations of spin-irnpurities in non-m agnetic 

m edium  (finite m onoatom ic wire).

C hap ter 6 has two Sections. In the  first part we describe the  current-induced DW  m otion 

by im plem enting the  TD  m ethod of s teady-state  tran sp o rt from C hap ter 4 and th e  Ehrenfest 

spin dynam ics from C hap ter 5, in a common scheme, which is then  applied to  the ID  spin-chain 

containing a DW  (Fig. 1.2). We investigate the  sim ulated DW  ̂ m otion w ith respect the  well- 

known adiabatic  spin-torque contribu tions [6(i]. We com pare the  dynam ics of two walls th a t  differ 

in w idth by factor of four and th e  th inner one of them  is ju s t a few lattice  spacings thick. Non- 

ad iabatic  effects are  analyzed and qualitatively  com pared to  the  proposed m icro-m agnetic form of 

the  non-adiabatic torque [135].

In the  second p a rt of C hap ter 6 we investigate the  opposite in certa in  aspects effect. T h a t is 

th e  induction of a  spin-m otive force (SM F)  ̂ upon the itineran t electrons by a processing in an

'T his, in essence, is the spin-analogue the Faraday’s electromotive force.
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Figure 1.2: Scheme of the  atom ic-scale DW, investigated in C hap ter 6. The blocks at the ends 
represent current or voltage probes.

ex ternal m agnetic field wall. Using our quantum -classical spin-dynam ics scheme for a  closed and 

finite system , we reproduce num erically the result in R(;f. [15] for the  m agnitude of the  pure-SM F 

(generated by the  processing local-spin texture) and extend it into a separate fornuilation, valid 

for the  s - d  m odel description. We present an  analytical argum ent for the  classical origin of the 

SM F and support it w ith purely classical sinm lations.

T his-thesis has four Appendices where certain  concepts or m ethods are <lescribed in greater 

detail.

In  A ppendix A we derive the surface G reen’s function of a semi-infinite cubic lattice w ith a 

finite cross-section.

In A ppendix B we describe th e  most common mixing schemes in self-consistent electronic- 

s tru c tu re  calculations and particu larly  the Pulay mixing scheme used in N EG F calculations in 

C hap ter 3.

A ppendix C is abou t th e  concept and the  description of current w ithin a TB  model of the 

electronic structu re . The expression for bond-current, used in C hap ter 4 and C hap ter 6 is derived.

In A ppendix D we discuss the  tim e-integrators used for solving second order differential equation 

in M olecular Dynamics. We describe the  leap-frog m ethod, used in our spin-dynam ics sim ulations 

(C hap ter 4, 5, 6) and its problem s w ith dissipative forces. We describe the  m ethod used in Ref. 

[22] to  fix the  divergencies and illustra te  its effect w ith an exam ple from C hap ter 6.

6



Chapter 2

On the steady-state transport 
theory

2.1 T he Landauer formula

In the late 50-ties Landauer [(>3] studied theoretically the problem of residual resistivity in metals, 

introducing a novel viewpoint in the transport theory. He considered the transport jjrocess as a 

result of the incident current flowing into the specimen and thus the build-uj) of electric field as 

a consequence of the electron flow through a structure of scattering centres. This viewpoint, as 

opposed to the typical view of the electric field as a cause and the current as a response, basically 

converted the problem of electrical conductance into a scattering problem, where the conductance 

was related to the ease with which the carriers transmit through the conductor [■')2]. Landauer’s 

approach proved to be of great practical importance as it allowed conductance to be calculated in 

systems of mesoscopic dimensions where the carriers, being quantum objects, propagate coherently 

within the specimen and where the interfaces with the current /voltage/ probes are key elements 

of the circuit.

In his work on disordered one-dimensional lattices [64], Landauer derived (based on the diffusion 

equation) the following expression for the conductance

2 1 - T  \ d i i )  h 1 - T '   ̂ ^

where T  is the transmission probability for an electron with an initial velocity v to pass through 

the whole scattering array of length L, n is the electron density, fj, the chemical potential and 

dn/d^  = 2/hv  for a one-dimensional Fermi gas [8]. In Eq. (2.1.1) an incoherent superposition of 

states originating from two reservoirs at the two ends of the chain is assumed. These reservoirs 

are the electronic equivalent of a radiative blackbody. They emit electrons (source) according to

7



2. ON THE STEADY-STATE TR ANSPO RT THEORY

their Fermi distribution (whicti is considered unaffected by the transport) and absorb all incident 

electrons (drain), completely destroying their phases. The electronic tem perature here is considered 

zero.

Eq. (2.1.1) can readily be generalized to higher dimension structures, having M  transverse 

modes, as S =  A/Sid- However, what is referred to as the Landauer formula in the literature is

g =  ^ T .  (2.1.2)

The difference between Eq. (2.1.1) and Eq. (2.1.2) comes from the fact th a t the former \  which 

we now denote by Ss, is the conductance of the scattering sample itself subjected to a current 

flow, while the latter is the conductance of the sample coupled to the reservoirs. T hat difference in 

terms of resistance is exactly the resistance of the interfaces (or contacts), which are considered in 

series to the sample resistance. Thus for a perfect (or ballistic) conductor T  =  1 the conductance 

Eq. (2.1.1) goes to infinity, or the resistance tends to zero, while Eq. (2.1.2) tends to the contact

resistance . [ . i ' l ] ............................................................................................................................................................................................................

= = (2.1.3)

Left contact Right contact

ballistic conductor

cz=> electron flux

^  T  ^^  L ^

V =  ( j i , - j U R ) ^ e > 0

Figure 2.1: Scheme of the circuit used for derivation of the contact resistance (2.1.3).

For the derivation of the contact resistance (2.1.3), we consider a ballistic conductor as ir. 

Ref. [32], connected to two reservoirs with chemical potentials and /x/j [L{R) designate the 

left(right)-hand side of the specimen, see Fig. 2.1] and calculate the current through it for a giver.

'Eq. (2.1.1) is also known as the four-probe conductance [99], illustrating the actual physical conditions leading 
to it £is brought out in Ref. [37]. In four-probe conductance measurements fixed current can be fed through one pair 
of leads, while the resulting voltage drop across the regions of the sample is measured by attaching a second pair o: 
leads to it once steady state is established. Ref. [37] has demonstrated that Eq. (2.1.1) represents the conductance 
in this case under the assumption of a week coupling between the current-probes and the measuring reservoirs.



2.1 T h e  L an d au er  form ula

applied bias V  — ‘ The length L or the conductor is assumed such tha t L << Iq in

order for it to be ballistic (Ig is the mean free path).  ̂ The contacts depicted in Fig. 2.1 (which 

are in fact the Landauer reservoirs) are considered to be reflectionless, meaning th a t all incident 

electrons from the conductor are fully absorbed and none are reflected back into the conductor. 

This assumption allows to discriminate the right-going +k  electrons in the conductor from the 

left-going —k ones as they originate from different reservoirs, i.e. the left or the right reservoir 

respectively. Thus each of these two sub-ensembles has the statistical properties of the reservoir, 

from which it originates, so th a t there are two quasi-Fermi levels in the conductor (/x^ for +fc-states 

and fifi for —fc-states) and the current is only carried by the right-going -t-Zc-states with energies 

in the range from /x/j to / / / , .

A single transverse mode of the +/c-states at energies E  is occupied according to the Fermi 

function Jl {E) = fo{E — ^ i )  of the left reservoir and carries a current { e v / L ) f i  per longitudinal 

+fc-state, thus it carries through the conductor a current of

I *  =  =  ( 2 . 1 ,4 )

^  ^  M/I

where periodic boundary conditions are assumed in the transverse direction, so th a t — ► 

2(forspin) x (L/27t) j  dfc. Finally, for M{ E)  = 0(£' — Ei) (Z?, being the cut-off energy of the

i-th  mode) transverse modes of the conductor open at energy E,  the total current is

Op f  2eM
I  = —  I  M{ E ) f L { E ) d E  — > —^ ( m l  -  Mh) for M{E)  = const in [///?,ml] (2.1.5)

M/I

and thus the contact resistance (as the conductor is assumed balHstic) is

^ -1  h 12.9kfi
= 7 =  e l

which is a result identical to Eq. (2.1.3). Apparently the contact resistance is related to the 

mismatch of the conductivity of the contacts and the conductor, which is considered having a 

very small transverse dimension W  <C W c  compared to the contacts dimension Wc- In the limit

W  ss W c  the Ohmic resistance is restored. The power associated with the contact resistance is

dissipated in the contacts [82],

If the conductor were not ballistic, but had a finite transmission probability, a circuit as the 

one in Fig. 2.2(a) would have measured a conductance according to the Landauer formula (2.1.2),

^Here and th ro ughou t th is work we define th e  bias V  :=  which is a  positive q u an tity  when it is
d riv ing  th e  electrons from left to  right, i.e. along th e  x-axis as depicted in Fig. 2.1.

^For th e  following sem iclassical a rgum ents it is also assum ed th a t  th e  phase relaxation length Aph is sm all in 
o rder to  neglect q u an tu m  interference effects.

^H ere and th ro u g h o u t fo{E — /x) =  1 / (1 -H exp \(E — fJ,)/kgT]) is th e  Fermi d istribu tion  function.

9



2. O N  T H E  ST E A D Y -ST A T E  T R A N S P O R T  T H EO R Y

where M  would have been the number of open modes in tlie leads [32]. Omitting the leads, the 

conductance is still given by Eq. (2.1.2) only this time M  refers to the number of modes in the 

scatterer (see Fig. 2.2(b)).

R-contact

M m odes M m odes

L-contact
Scatterer

ballistic
lead

(b)

L-contact

M m odes

2e~
h

R-contact
; Scatterer /

A? IlH "”' r /
1

Î R

Figure 2.2-: Typical-circuits for which the Landauer formula [Eq. • (2.1.2)] applies: (a) scatterer 
with average transmission probability T coupled to reflectionless reservoirs via ballistic leads with 
M  transverse modes; (b) scatterer with M  open modes, coupled directly to reservoirs. Note that, 
unlike the typical convention, we denote by /  the electron flow and it is opposite to the conventional 
direction of the current in these circuits.

The Landauer formula [Eq. (2.1.2)] can be generalized for the case of a finite temperature, 

when the reservoirs are occupied according to a Fermi distribution function. The transport in this 

case is no longer restricted to the bias window — ///j but it also exists at a few k s T ’s ' around 

this energy range. The current is not only carried by states originating from the left reservoir but 

inside the ballistic leads there are current-carrying states from both sources [see Fig. 2.3]. The net 

balance of electron fluxes per unit energy in this case is [32]

i{E) = i t - i l =  T i l  -  T' in = f  \M{E)T{E)fL{E)  -  M ' {E)T'{E)f a{E)\ (2.1.7)

because the influxes from the reservoirs are simply ^^(E) =  {2e/h)MJi{E)  a n d i^ (£ ) =  {2e/h)M'  fft{E).  

Finally, the total current can be written as

I = ~  j T { E ) l h { E ) - M E ) ] ,  (2.1.8)

where the definition T{E) := M{E)T{E)  is used and it is assumed that T{E) = T'{E),  which if

away from equilibrium implies the absence of inelastic scattering inside the two-terminal device

'H e r e  T  is for te m p e ra tu re  a n d  in th is  w ork  it is a lw ays used  to g e th e r  w ith  th e  B o ltz m a n n  c o n s ta n t  fca so  th e r e  

is no c o n te x t a m b ig u ity  w ith  th e  tra n sm iss io n  p ro b a b ility  used  in th is  section .

10



2.2 T he non-equilibrium  G reen’s function  (N E G F ) m eth od

[32], Eq. (2.1.8) gives the current through the mesoscopic device, depicted in Fig. 2.3, as a 

function of the local transmission properties of the scattering region and the Fermi function of 

the contacts. The corresponding conductance I / V  coincides with the Landauer formula (2.1.2) in 

the limit of low temperatures and low biases V  (linear response regime), where T{E)  is nearly a 

constant inside the bias window.

Left contact Right contact
Scatterer banjstic

— I lead
b a llis tic

lead

Figure 2.3: Representative circuit at finite temperature.

In summary, the Landauer formula gives a prescription for calculating the current through 

mesoscopic conductors and it all boils down to calculating the transmission probability for the 

current-carrying states. The results, obtained in this section, apply to the transport of ballistic 

but non-interacting carriers (the latter two are not mutually exclusive as the electron-electron 

interactions are elastic they do not affect the momentum-relaxation path). In this approximation 

the Pauli exclusion principle does not need to be accounted for, quantum interference effects are 

neglected (by assuming that either L  3> Apt, or simply that the reservoirs are incoherent sources) 

and the description is semiclassical. For quantum treatment of the mesoscopic transport problem 

we consider in the next section the Non-Equilibrium Green’s Function (NEGF) method.

2.2 The NEGF method

2.2.1 G reen’s functions in quantum  mechanics

The Green’s functions are a conceptual tool for solving linear differential equations of the form 

D(x)'I'(a;) =  S{x),  where a; is a generalized coordinate in real space, D(a;) is a linear differential 

operator and S{x)  is an excitation. The solution can be expressed as a convolution of a Green’s

11



2. ON THE STEADY-STATE TR AN SPO RT THEORY

function G (x ,x ’) and the excitation  function

= j  G { x , x ' ) S { x ’) d x ' , (2.2.1)

where the two-point function G( x , x ' )  satisfies the equation

D { x ) G { x , x ' )  =  S { x - x ' )  (2.2.2)

and S { x ~ x ' )  is a Dirac 5-function. T iius th e G reen’s function represents the response o f the system

at z  to  a point-hke excitation  at x'  and w hen convoluted w ith the actual excitation  it produces

the actual response of the system  'I'(a:). In the operator version of the equation above, G  would

be inverse of the differential operator D,  i.e. G  =  D~^  and ^  =  GS.

G reen’s functions appear often in physics and engineering where linear differential equations are 

involved. T hey are particularly popular in quantum  scattering theory for solving the Schrodinger 

equation (see for exam ple Ref. [0 0 ]). T he tim e-independent Schrodinger equation

' '  I  “t~ c .A.
{ E l  — //) '! ' =  0, where in general the Ham iltonian is H  = ----------------- h Ui r )  (2.2.3)

................................................................................................................................................... 2 m ..............................................

and I  is an identity operator, has a G reen’s function

G { E )  =  (^EI ~  \  (2.2.4)

In the A'^-dimensional eigenspace {(pi}fLi  o f the Ham iltonian G { E )  is a diagonal m atrix [G(£')] =  

diag [ ! / ( £  — whe re  £„ is an eigenenergy. Fourier transformed to  the tim e domain this  

G reen’s function reads
N

(2.2.5)

+ 00 +0

-dE
E  -  Er.

The above integral is indefinite for real e„. As  H  is Hermitian and e„ are indeed real, a sm all 

infinitesim al im aginary com ponent —ir] is added to the eigenenergies. T he result for r; >  0 is called 

the retarded G reen’s function. For 77 <  0 we obtain  the advanced G reen’s function but the latter  

violates the causality principle and we abandon it as unphysical. The retarded  G reen’s function, 

expressed m tim e or energy dom ain, is [33]

[G^(i)l =  - ^ 0 ( i ) e - ’>Miag ^  [G^(E)] =  diag [ 1 / { E  -  . (2.2.6)
i l  L J n = l

Further in this work we shall drop the ‘‘r” index of C  =  G and refer to it sim ply as “the  

G reen’s function” . In tim e dom ain [G(f)] satisfies the tim e-dependent Schrodinger equation w ith  

an im pulse source at i  =  0

-  [ / / ] )  [G{t)] =  [/]5 (< ). (2.2.7)

12

N



2.2 T he non-equilibrium  G reen’s function (N E G F ) m eth od

In energy domain the (retarded) Green’s function in operator form is expressed as

G[E) = lim { {E + ir;)/ -  h Y \  (2.2.8)
7 7 — » o +  V  /

Finding G{E)  is equivalent to solving the time-independent Schrodinger equation (2.2.3) and fully 

describing the closed conservative system it refers to. For example, the spectral function  of the 

system, which is defined as A{r , r ' \ E)  =  {E — £i) (f)*{r') and its diagonal elements

represent the local density of states (LDOS) in the system

D[v,  E)  = J 2  \Mr) \ ^S{E -  Si) = [AiE)] , (2.2.9)
I

can be expressed in an invariant (operator) form in terms of the Green’s function [33]

A{E)  = 2i:5{Ei - H )  = i [g(£;) -  GHE)] . (2.2.10)

Other im portant quantities can be related to the spectral function. The density matrix of the 

system in the eigenspace of H  is p ( r ,r ')  =  J2i I0 i(r))(0 j(r ') |/(^ i) , where /(e^) =  /o(£, -  ^̂ ) is the 

Fermi function for a given chemical potential /x. The invariant expression for the density operator 

is [33]

p  =  f o [ H - f i i ) .  (2 .2 .11 )

If the isolated system, we describe here, is very big and the eigenstates of its Hamiltonian are 

nearly a continuum, the density operator can be related to the spectral function as

+ 0 0

p{r,  r') =  ^  y  ^ (r ,  r'; E ) M E  -  i i ) d E . (2.2.12)
—  0 0

The integrant in Eq. (2.2.12) describes the actual number of electrons per unit energy and is called 

correlation function G"{E)  [33], For a system in equilibrium (with a Fermi energy distribution) 

the correlation function operator is defined as

G"{E) = A { E ) f o { E - n ) .  (2.2.13)

Note th a t the latter is not necessarily the true expression for the correlation function if the system 

is not in equilibrium.

The quantum  transport problems often involve open heterogeneous systems or something more 

like the Landauer setup (see e.g. Fig. 2.3), where a device (or scatterer, or channel) of mesoscopic 

dimensions is coupled to two contacts (or leads, or reservoirs) of, say, microscopic dimensions, 

connected to  a battery, which maintains the latter at different chemical potentials. Once the circuit 

is closed this system is no longer in equilibrium and cannot be broken into parts, each described

13



2. ON THE STEADY-STATE TR AN SPO RT THEORY

separately by Eq. (2.2.3), as the particle number may vary locally. Often we are interested only 

in the properties of the device and certain assumptions can be made about the contacts. In the 

next section we shall dem onstrate tha t a “separate” treatm ent of the device is indeed possible in 

certain systems and in these cases a modification of Eq. (2.2.3) is needed to account for the open 

boundary conditions.

2.2.2 D evice attached to  a contact

We consider a device th a t is somehow depleted of all the conduction electrons and then brought 

in contact with a reservoir [33], the idea being to focus on the states th a t “spill-over” from the 

contact. In principle the electrons in the contact (see Fig. 2.4(a)), if the latter is isolated, should 

be described by Eq. (2.2.3) but we shall consider it as an open system where electron can hop in 

and out. Phenomenologically, such an open system can be described by [33]

[{E + i r j ) i R - H h\ \ ^ r ) = \Sh) , (2.2.14)

where index R  is used to denote tha t operators belong to the reservoir, r; is an infinitesimal quantity, 

related to the energy level broadening in the contact (or the rate of particle loss, due to the finite 

life-time) and \Sfi) is another phenomenological quantity describing the inflow or gain of particles 

in the contact from external sources.

(a)
H

H r +iril,

Device
(Scatterer)

Contact
(Reservoir)

(b)
H r R

^R +Z),M

Device Contact
(Scatterer) (Reservoir)

Figure 2.4: (a) Mesoscopic device, fully depleted of electrons and a well separated reservoir of 
electrons; (b) The device and the reservoir are brought in contact - electrons spill into the device, 
developing a ji/i) state.

If the device is then brought together with the contact, electrons will hop from the contact to 

the device. Once a steady state is established, i.e. the electron density ceases to change locally
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2.2 T h e non-equilibrium  G reen’s function  (N E G F ) m eth od

inside the device, a s ta te  |i/>) develops in the  device (see Fig. 2.4) and also th e  s ta te  of th e  contact 

changes from j$ /j) to  |$ k )  +  Ix)- If th e  streng th  of th e  contact interaction is described by r ,  then  

th e  whole system  is described by

{ E  +  i t ] ) I r  -  H r  - r t  \  f  | $ « )  +  \x) \  \ S r )
- T  E l  - H  J \  \rp) J  y  0 > (2.2.15)

w here H  is th e  device H am iltonian. T he key assum ption here is th a t the  source and  dra in  term s 

(i.e. \Sfi) and rj) from Eq. (2.2.14), describing the  isolated contact, have not changed when it has 

been a ttached  to  the device. We recognise the G reen’s function of the  isolated contact

G R { E )  = [{E + i i i ) I n - H R ] - ^  (2.2.16)

and express from (2.2.14) |5'/j) =  We can also elim inate |x) =  G r t  ̂ \ip) from (2 .2 .1-5)

and we are left w ith one equation  for th e  device

[ E I - H ~ i : { E ) ] \ ^ ) ^ \ S )  , (2.2.17)

where we have defined a new source term  \S) =  r  |<I>h) (this tim e for the  device connected to  the  

contact) and T,{E) = t G r {E)  is the  so-called self-energy . The G reen’s function of the  device 

is then

G{E)  = [{E + i r i ) I - H - i : { E ) r ' -  (2.2.18)

and thus wavefunction of the  device is \ip) = G \S ) .  The spectral function can be calculated  from 

Eq. (2.2.10).

Let us for a mom ent consider working in a localized in the  real space rej)resentation, say, a 

tight-binding representation [8]. Though G r { E )  in Eq. (2.2.19) is the  G reen’s function of the  

whole contact, when contracted  w ith t  the  only p art of the  G /j-m atrix  actually  con tribu ting  to  

th e  product would be the p a rt th a t  describes the  surface area where the device is a ttached . In th is 

sense, practically even if the  contact is enorm ous in size, the  only relevant inform ation ab o u t it for 

th e  device is its surface G reen’s function gR{E)  (see A ppendix A), which enters in th e  self-energy 

(2.2.19), which can instead be w ritten  as

i : {E)  = T g R { E ) T ^ . (2.2.19)

This makes the  result in Eq. 2.2.18 practically  usable as it only contains finite-dim ensional m atrices. 

T he only assum ption it lays upon is th a t  the contact (or reservoir) is big enough for its inflow- 

outflow to not be affected by th e  device.

T he self-energy, we defined here, is more th an  just a quan tity  th a t appears in the  derivation. 

It is a simplifying concept th a t  allows us to  mask the effect of various degrees of freedom in the
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2. ON THE STEADY-STATE TRAN SPO RT THEORY

com posite system , such as the  dimension of th e  contact, into a single term  in the Schrodinger 

equation of the device. O ther abstrac t degrees of freedom can be the  electron-electron or electron- 

phonon interactions [32].

Device
(Scatterer)

Contact
(Reservoir)

(b) E
f

Device  ̂
(Scatterer)

Contact
(Reservoir)

Figure 2.5: Level diagram  of a one-level device which is (a) isolated or (b) coupled to  a contact 
w ith nearly continuous density of states.

To get some understanding of the effect of E  on the  device we consider the simple case when 

E does not depend on the energy. Then, its spectral function [see Eq. (2.2.10)] is

-  D{ E)  -  ■ ( —  ^  =  - -  , (2.2.20)
27t  ̂ ( £ - e ')^ -h  (7 / 2)2 ’

where we have redefined the  eigenenergies of the device e' = e + R e(E) and 7 =  2Im (E). T hus the 

effect of E in Eq. (2.2.18) is th a t the local density of sta tes on the  device is shifted by R e(E ) and 

broadened into a Lorentzian of w idth 2Im (E) (see e.g. Fig. 2.-5). In general the quantity  used to 

represent the  broadening due to  the self-energy is by definition

r ( i ; )  =  i [E (i;) -  E t(£:)] t {E) = t A r {E)t \  (2 .2 .2 1 )

where we have used the definition of E in Eq. (2.2.19) and Afi{E)  is the  surface spectral function 

of the  reservoir

A.R{E) =  i  • ( 2 .2 .22 )

In m atrix  form F, the broadening m atrix , is the  anti-H erm itian p a rt of the  self-energy E. Using 

Eq. (2.2.18) and (2.2.21) we arrive a t new expressions for the  spectral function of the  device

A  = i [ G  - G ' ' ] =  G FG t =  G +FG . (2.2.23)

To evaluate the  current th rough  the  device’s interface, defined as /  =  2e d{{%l)\xj}))/ dt  (the factor 

of 2 is for two degenerate spins), we look a t the tim e-dependent version of Eq. (2.2.15)
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2.2 T he non-equilibrium  G reen’s function  (N E G F ) m ethod

Since the Hamiltonian H  = is Hermitian we obtain for the current

I  = I  [i^\ T |$ h ) +  (^-hI r t  1^)] -  I  [(t^l r  Ix) +  (xl W ]  = hn ~  /o u t, (2.2.25)

where we have identified the two terms in square brackets as an inflow I\n and outflow /out current,

respectively. The latter can be rewritten

7i„ =  If {{S\ Gt |5) -  (5| G \S)) = f  TV [|5) (5| yl] =  ^  /  TY [r^Rrt^] M E  -  , i)dE (2.2.26)

/out = i  (V' |r ( g +j -  G «) rt I V̂ ) =  f  lY [|^) {t/;| T] =  f  /  [FG''] d ^ , (2.2.27)

where we have used a few of the relations in this section and the fact th a t (a| M  |6) =  Tr [|6) (a| M] 

for arbitrary vectors |a), \b) and matrix M.  We can then write for the net interface current [83]

/  =  ^  J t t IFAfo{E  -  ^) -  TG"] d E . (2.2.28)

Apparently in equilibrium there is no net current through the device-contact interface (/,„ =  /out) 

because the correlation function is G" =  Afo  [see Eq. (2.2.13)]. As we shall see in the next section 

in order for the current to flow non-equilibrium conditions need to be introduced. The simplest non­

equilibrium situation will be a device coupled to two contacts (or reservoirs) at different chemical 

potentials.

2 .2 .3  D ev ice  in a tw o-con tact circuit

In this section we consider a device sandwiched between two contacts as described in Ref. [33], 

The contacts will be of the type described in the previous section and will have fixed chemical

potentials and ///j respectively for the left and the right-hand side contact (see Fig. 2.G). When

isolated, the contacts obey the modified Schrodinger equation with source and dissipation terms 

[see Eq. (2.2.14)]. The composite system of contacts +  device is described by

{E + itj) I [ ^ - H l - tI  0 \  /  \Sl ) \
- tl E I - H  - tr \iP) =  0 , (2.2.29)

0 - r j j  {E + -  H r  j  \  +  x) /  \  \Sr ) )

which under the assumption of the source terms \Si -r ) being unaffected by the coupling to the 

device, results in an analogous equation to (2.2.17) describing solely the device

[ E I - H -  E(E)] IV̂) =  |5) , (2.2.30)

where [S’) =  tl \ ^ l ) + tr [$/?). The new self-energy E is defined as the sum of the two self-energies 

coming from the contacts

E =  E l + E ^ ,  (2.2.31)
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2. ON THE STEADY-STATE TR AN SPO RT THEORY

where the one-contact self-energies and Green’s functions are defined as in the previous section, 

i.e.

, Gnf{) = [{E + -  Hnn)] . (2.2.32)

DeviceLeft Contact Right Contact

Figure 2.6: Scheme of a device, sandwiched between two reservoirs with different chemical poten­
tials /Xf, and fifj.

The Green’s function G of the device is supposed to generate a solution \̂ p) = G |S'), thus from 

Eq. (2.2.;?0)

G{E) = [ E I - H -  El {E) -  . (2.2.33)

Expressed through G, the density matrix of the device is

p = 2 m  {̂ 1 =  2G |5) (5| Gt = 2G (n. |$ l)  +  |$fl)) ( r |  ($/J + 4  G+, (2.2.34)

where the factor 2 stands for two degenerate spin populations and since the wavefunctions of the 

isolated contacts ( |$ l ) and !$«)) span separate spaces with no overlap, the inter-contact terms 

disappear. By applying Eq. (2.2.11) for the density matrices |$,\') (^A'l of the isolated contacts, 

we obtain [33]

p = ~  I  { [GTlG^] h  + [Gr^jGt] /ft) d E , (2.2.35)

where we have substituted the left(right) broadening matrix as defined

in Eq. (2.2.21) and all E  arguments are omitted for simplicity. The above expression (2.2.35) is

equivalent to the following equation for the correlation function [see Eq. (2.2.13) for the definition 

of G"]

G" = GE‘"G+, (2.2.36)
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where S '" =  F i f i  +  r r / r is the so called in-scattering fxmction. Eq. (2.2.36) is known as the 

kinetic equation and is the central equation in the NEGF theory [153]. It needs to be solved self- 

consistently together with Eq. (2.2.33) in order to determine the steady-state properties of the 

device out of equilibrium (i.e. for ^  ^fi).  Actually, Eq. (2.2.36) can be rewritten in the form

G" =  A l J l + A a f R  (2.2.37)

where by definition here ^ l(« )  =  G T are similar to the spectral function from the single 

contact in the previous section [see Eq. (2.2.22)], but not identical as here G is the Green’s function 

of the device and includes the full self-energy T, = [see Eq. (2.2.33)]. It is thus natural

to  define total spectral function

A = G [Fz, +  Th] G^ = A l + A r . (2.2.38)

If we are interested in the current through the interfaces and not in details of its spatial 

variation inside the device, the expression Eq. (2.2.25) from the previous section is still valid, the 

only difference being the notation for r  is becoming here for the left(right) interface. It can

be shown straightforwardly [33] that the interface inflows and outflows still have literally the same 

form as Eq. (2.2.28) with the diff’erence tha t F is replaced by F/,(/{), if we are talking about the 

left (right) interface. Thus the net current through the system, which is identical in magnitude 

to either interface current for the case of two contacts, and which we define as positive when it 

coincides with the direction of / l ,  i.e. I  = I i  = —I r  (see Fig. 2.6), is

/ = ^ y  { Tx[TLA] f L- ' Tx[TLG^\ )dE = - ‘̂-̂  J  {Tt[TrA] J r - T t [ T  rG^]) d E . (2.2.39)

W ith the help of Eq. (2.2.37) and (2.2.38) the above expression for the current can be rewritten 

in the form

1 = ^ 1  T{E)  [/^ (E ) -  fR{E)\ d E , (2.2.40)

which is identical to the one we discussed for the Landauer formalism at finite tem perature [see 

Eq. (2.1.8)]. Here we have obtained an expression for the transmission function T( E)  in term s of 

the Green’s function of the device and the broadening matrices

T  =  T V  [Fl A r ] =  T t [Tr A l ] =  T Y  [FlGFhG+] =  T t  [FflGF^Gt] . (2.2.41)

The above expression for the transmission function is a rather general result in the NEGF 

theory. It can accommodate arbitrary static potentials (as addition to the Hamiltonian) and even 

account for phase-breaking electron-eiectron or electron-phonon interactions (incorporated into the 

self-energies) [33]. In this work phase-breaking processes will be neglected inside the devicc, which
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will be much shorter than the mean free path for inelastic scattering of the conduction electrons 

in bulk. Nevertheless, mean-field electrostatic interactions will be taken into account. In this case 

the device Hamiltonian is an explicit function of the electronic density and the non-equilibrium 

steady-state transport problem needs to be solved self-consistently. A basis-invariant scheme of 

the algorithm is sketched in Fig. 2.7.

Self-consistency 
. Loop >

Calculate the surface GF 
Gi (E) & Gif(E) over a 

suitable energy grid {E}

Calculate the device GF: 

G{E,p)=[El-H{p)-1 . , (£ )-X  ,(£ ) ]

Integrate over E for the density: 

p = - [ G T , G y , + C r , G % ] d E

Ifp converged, calculate current: 

/  = ̂ jT r[r,G r«G ^](/,.-/« )d£

Calculate the self-energies: 

& the broadening matrices:

Figure 2.7: Scheme of a self-consistent NEGF algorithm.

The actual integration over the energy is not trivial as the Green’s function has poles on the 

real axis and the integral is in principle unbound. The integration method used in our simulations 

is discussed in Appendix A. Density mixing methods to accelerate convergence of the iterative 

self-consistent field (SCF) procedure are discussed in Appendix B. Typically, the non-interacting 

electron density po is used as an initial input.

2.3 T ight-b inding im plem entation  o f th e  N E G F m ethod

The built-in real-space partitioning in the NEGF method naturally suits best a localized basis 

representation of the electronic structure. In this work we adopt an empirical two-spin-band tight- 

binding (TB) model where the twos pin channels are treated quasi-independently  ̂ [96]. It is a 

good starting approximation for describing low-dimensional systems, which typically exhibit high 

level of localization. The TB model also keeps the computational efforts to a mininmm.

Our main objective is the interaction between the spin carried by the conduction electrons and 

the localized ionic spins under non-equilibrium but steady-state conditions. Before we introduce 

'T hey  only “feel” each other through the mean-field electrostatic term C/(p), where p =  + p | [see Eq. (2.:i.l)].
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any concrete spin-polarized atomistic structure, we look at the single band (spin-degenerate) tight- 

binding implementation of the NEGF method, described in an invariant form in the previous 

sections.

The systems we study have the typical layout depicted in Fig. 2.8. There is a central (elastic) 

scattering region “C” , which breaks the periodicity of otherwise perfectly homogeneous infinite 

conductor into two semi-infinite electrodes (leads) -  one on the left and one on the right of the 

centre, marked by “L” and “R” . Each semi-infinite lead is coupled smoothly at ‘"infinity” to a 

reservoir maintained at a constant electrochemical potential f-ii ^  fĴ R by a battery.

Figure 2.8: Scheme of the mesoscopic device investigated in this thesis.

Though the division of L-C-R is rather arbitrary, typically pieces of the leads thicker than  the 

electron screening length  ̂ are included in C to ensure smooth transition to bulk at its boundaries. 

W ith this partitioning it is assumed that there are no direct L-R terms in the Hamiltonian, L and 

R are connected only through C and the overlap of orbitals from the two leads is zero. We adopt 

a nearest-neighbour TB Hamiltonian, which projected onto a mesh of single-level atomic sites in 

C reads

{HcYij{p) =  [^0 ^ U{pi -  po)] hj + x K j ± i . (2-3.1)

where cr =  1,2 represents the two collinear spin bands, £q is the density-independent (but possibly

spin-dependent) part of the onsite energy, pi =  Yla onsite charge density and x is the

hopping integral. Included in He  is a meanfield potential U, depending on the excess onsite

electron density Ap, =  p i — po , where po is the free atom occupancy.

^The appropriate thickness of the leads’ slabs in the C region can be established numerically for a particular 
nonequilibrium property of interest -  the thickness can be gradually increased until that property (say the net 
current at a given voltage) does not change any further.
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N,xN,

ooX oo

(a)

r  ^efT ^

H r +

N x N

N . . X N

+

(b)

N x N N x N

For identica l and 
uniform  leads:

(d iagonal
m atrix)

Figure 2.9: Scheme of the projection of the full infinite Hamiltonian matrix H  onto an effective one 
which is composed of the Hamiltonian of the central scattering region H e  and the self-energy 

S  =  E/, +  Efl, sketched in panel (b). All nonzero elements are located in the shaded areas. The 
central block of H e  represents the quasi-one-dimensional sample and the outer blocks - the pieces 
of the leads included in the selfconsistent calculation. The black boxes with dimension N i  x N i  
(or N n  X Nn)  in H e  correspond to the interfaces with the bulk leads, while in H  they represent 
the interaction between the lead and the central region. N^ {Nr)  is the number of sites in the 
cross-sectional area of the left (right) lead, while N  is the total number of sites in the selfconsistent 
region.
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In view of Eq. (2.2.33) we define an effective Hamiltonian

H,^{E,p)  = Hcip) + 1:l {E) + 12r {E) = He + Hc l Gl {E)Hlc + Hc r Gr {E)Hrc , (2.3.2)

where G l {E)  =  [Eli, ~  {Gr{E)  =  [EIr — H r ]~^) is the surface Green’s functions of the

left (right) lead and HcL  = H\^q {Hc R = interaction between the central scattering

region and the left, (right) lead. Note that, though the Hamiltonians of the semi-infinite leads 

are infinite matrices, their surface Green’s functions have dimension N ^ r ) x  N i ( r ),  where N [ , ^ r ) 

designates the number of sites in the leads cross-section (see Appendix A for the derivation of 

surface GF of a cubic lattice lead).

The external bias, applied to the L-C-R system, acts as a rigid shift to the onsite energies of 

the leads

H i ^ H l  + V/2, H r ^ H r -  y / 2 , (2.3.3)

where V = — hr is the external bias voltage. This is effectively a boundary condition for the

C region, brought in by the surface GF’s of the leads whicli enter the self-energies. The GF of the 

central region, G c ,  is then (see Eq. (2.2..53))

Gc{E,p)  = [EIc -  H,i,{E,p)]-^ , (2.3.4)

where I c  is the identity matrix and the electron density matrix is given by the recursive expression 

/  [ G c { E , p ) T L { E ) G U E , p ) f L { E )  + G c { E , p ) T R { E ) G U E , p ) f R { E ) Y  d E , (2.3.5)

which is solved iteratively (see Fig. 2.7) starting with an initial guess for the density and

cycling until self-consistency is reached, i.e. on the n-th iteration < Sp,  where S p

is a preset tolerance for convergence. F.y =  i S x  — {X = L, R) are the broadening matrices 

[seeEq. (2.2.21)].

Practically, the density matrix from Eq. (2.3.5) is calculated separately in equilibrium (//^ = 

l̂ iR =  fio) and out of equilibrium contribution is added to it [23]. In equilibrium, the system is 

invariant to time reversal and G^  = G*. In this case the spectral function is simply A = — Im[G] 

[see Eq. (2.2.20)] and the density matrix is real and expressed as

{Peq}"(Mo) = - ^ I m  I  { G c { E ) r  M E  -  f^o)dE. (2.3.6)

The non-equilibrium contribution is due to the states in the “bias window” [ f i R, f iL]  (we consider 

the case > P-r)- We can take PeqUio = Pr) and then

{ ^ P l Y  = ^  /  [ G c T l Ĝ c Y  I h  -  fn ]  d E  (2.3.7)
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is the contribution of the states originating from tlie left lead. The full non-equilibrium density is 

finally

P =  +  { ^ P l Y  ■ (2.3.8)
(J

The integration in Eq. (2.3.G) is not trivial and has to be done in the complex plane as Gc (E )  

has got poles on the real axis. On the other hand, at finite tem perature the Fermi distribution 

has poles on the imaginary axis through //q (see Fig. 2.10). The so called M atsubara frequencies 

are located at z„ = fio + i{2n -I- l )wkBT  and the complex contour is chosen such tha t it encloses a 

certain number Np of these poles.

poles

Figure 2.10: fG F i The complex contour used for integrating the equilibrium density in Eq. (2.3.G).

The Green’s function Gc{E)  is, however, analytic away from the real axis. A computationally- 

friendly choice of the contour [23], which keeps away from the real axis, consists of a somewhat 

incomplete half circle C connected to a straight segment £ , parallel to the real axis. The circle 

drops to the real axis on the left at an energy E^o far bellow the poles of Gc{E)  and is closed by 

a line [Eoo + ir),oo + iij] th a t is infinitesimally close and parallel to the real axis. The equilibrium 

density m atrix (2.3.6) can be obtained through the residue theorem and the result is

{P ec ,} "  =  -

oo

Îm I {Gc{E)r ME -  l̂o) 

r
/ Gc{z)fo{z-iJ.o)+2TTikBTY^Gc{zn)

. r  n = l

(2.3.9)

where the integral over C -I- iL done numerically with a Gaussian quadrature.

Once self-consistency is established the net current through the system is calculated from Eq.
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(2.2.40), i.e.
ij'i.

/  = ^ ^  y  TV [Tl G F r G ^ Y  {Jl  -  J r ) d E . (2.3.10)
UK

In the following Chapter we shall elaborate further on the NEGF method and use it to study the 

current-induced torques on a magnetic domain wall, trapped in an atomistic-scale point contact.
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Chapter 3

M agnetic point contacts

3.1 Introduction

The intriguing properties of nano-scale magnetic structures arise from the close interplay between 

their magnetic texture and the spin-coherent electronic transport. Particularly exciting in this 

respect are the low-dimensional constrictions, consisting of a tiny number of magnetic (transition- 

metal) atoms, which have now become experimentally achievable [91], These magnetic point- 

contacts (MPC) show quantized conductance and significant magneto-resistance effects [30, 125], 

acting as some sort of quantum spin valves. This behaviour is determined by the spin-dependent 

transmission, which is ballistic, due to the truly atomistic dimensions. Nevertheless the elastic spin- 

scattering, in a similar fashion like the “electron-wind force” due to elastic momentum transfer from 

the electrons to the scattering centres (impurities) in the mesoscopic electromigration problems [!)•')], 

gives rise to “spin-transfer torque” (STT) as semi-classically derived by Slonczewski [!);5] for spin- 

valve trilayers. The STT effects have been found to introduce macroscopic magnetization dynamics 

in point-contact-like pillar structures [82, 118] or induced by a nonmagnetic (Cu) tip switching of 

adjacent magnetic layers in STM-like geometry [29]. Though in these STT experiments the point- 

contacts in question are still rather “bulky” (~  4 0 nm), in a genuine atomic-scale point-contact 

the STT could introduce microscopic spin-rearrangements and in turn manipulate its quantum 

spin-valve properties.

In this Chapter we investigate the ballistic STT-induced microscopic spin-rearrangements in­

side a magnetic point contact. Here we adopt a quasi-static approach to analyze the spin-dynamics 

under steady-state current-carrying conditions. Using the NEGF method, which we described in 

the previous Chapter, as a self-consistent transport core in our scheme, we map-out and exam­

ine the energy landscape for quasi-static thermally-activated transitions between stationary spin
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configurations. Our model MPC consists of a monoatomic spin chain, sandwiched between two 

oppositely polarized magnetic leads, creating an atomically abrupt DW in the constriction (as 

theoretically justified in Ref. [2(i]).

In the second part of this Chapter we develop further our model by adding to it parametrically 

(within the Born-Oppenheimer approximation) the mechanical degrees of freedom of the atoms 

in the junction. This allows us to investigate microscopically the non-equilibrium (steady-state) 

m agneto-structural interplay in MFCs and the combined effect these degrees of freedom have on the 

transport. Such information could, in principle, be relevant for understanding the dispersion in the 

conductance histograms [!)1, 117] obtained in transport measurements of magnetic break-junctions.

3.2 Spin dynam ics in point contacts

It is clear tha t the modeling of the ballistic atomic-scale ferromagnetic devices requires the com­

bined description of electronic transport and tha t of the spin dynamics at the atomic level. For this 

purpose we have developed a general scheme for evaluating spin-polarized currents and associated 

current-induced torques, which allows us to investigate the magnetization (spin) dynamics and 

the transport in magnetic point contacts under bias within a common framework. Our problem 

and our method mimic closely, in philosophy, the electromigration problem (thermally-activated 

current-driven structural rearrangement), where now the direction of the local spin (or magnetic 

moment) takes the place of the atomic positions as “the reaction coordinate” .

Although our scheme is general and is conceptually transferable to first-principles Hamiltonians 

(for instance, density functional theory), here we apply the method to a simple self-consistent tight- 

binding (TB) model. This has the benefit of being reasonably realistic in capturing the atomistic 

level quantum  effects, while keeping the computational overheads to a minimum.

3.2.1 Current-induced generalized forces

Before we describe our ajjproach to the spin dynamics in magnetic point contacts under current- 

carrying conditions, we need to introduce the current-induced forces, which are not trivial quantities 

in a non-equilibrium quantum system. Let us start from the Hellman-Feynman theorem (HFT) 

[39] which gives a very useful expression for computing the mechanical forces acting on the atomic 

nuclei (or the ionic cores) in molecular or solid state systems. It is based on the Bohn-Oppenheinier 

approximation (in which the nuclei are treated as classical particles) and it is valid (in its original 

formulation) only when the electronic subsystem is in one of its eigenstates. If U is the energy
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corresponding to a many-body (electrons) eigenstate i.e. |'I') =  |^ ) , and A is a collective

variable, which specifies the nuclear positions, then the force in the direction of A is

dU I dH
d \

(3.2.1)

The right-hand-side of Eq. (3.2.1) represents the conventional HFT. It is easily proven for
2  ̂square-integrable eigenstates (^'|'P) =  |'I'| of the Hermitian Hamiltonian H  of the system. Then

U = ( ' i  and by definition

F x  =  - H =  - -

1̂ 1
dH
dX

H H

= 0 in HFT (3.2.2)

where the underlined term in the parentheses vanishes under the above conditions and Eq. (3.2.1) 

is recovered. However, Eq. (3.2.2) is used as a definition of the force in more general situations. It 

is often called the generalized Hellman-Feynman theorem and the underlined term, which may not 

vanish, is the so called Pulay force (originally called by Pulay wavefunction force, as it is related 

to the gradient of the wavefunction) [79], In fact, the Pulay force can be viewed as a correction to 

the Hellman-Feynman force when incomplete basis sets arc used and the wavefunction is to some 

extent inaccurate (as always in practical calculations). It has been recognized that the error of 

the wavefunction enters the energy derivative [right-hand side of Eq. (3.2.1)] a t the second order 

in A, while it enters the Hellman-Feynman force at the first order and thus it is often numerically 

more advantageous to work with a medium quality wavefunction and Pulay forces than with a 

highly-accurate wavefunction and the HF force alone [79].

In the general time-dependent (TD) description of a closed quantum  system ' the force can be 

defined [123] through the expectation value of the momentum operator by the Ehrenfest theorem

F a =  -
d

dX
dH
dX

'I' ) + TD Pulay forces, (3.2.3)

where ^  in this case is the square-integrable time-dependent wave function of the system. In 

practical implementations where the exact eigenstate 'I' can not be exactly reproduced in an 

incomi)lete basis, again Pulay forces should be taken into account. This is not the case for the tight- 

binding description where the full eigen-space of the TB Hamiltonian is used. In the steady-state 

Landauer-type transport problem the square-integrability can be provided by a renormalization in

'T h is refers to the number of particles. The Hamiltonian can, in principle, have a parametric dependence on 
external degrees of freedom like the atomic positions in the BO approximation.
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terms of one-electron-energy-ceiitred wave packages [123, 121] and there are no other obstructions 

for applying the expression for the force in Eq. (3.2.3).

In fact the Landauer steady-state transport  ̂ has been found closer to the static picture than to 

the tinie-dependent one in Ref. [ I l l ,  100]. In this regime the charge density in the junction is static 

and it is the sum of the left and right-lead originating electrons so that their partial occupancies 

and total energy E  are constants of motion, if the structure remains stationery. This invariant 

to tal energy E  of the current-carrying system excludes the kinetic energy of any atomic motion 

and the energy dissipation in the reservoirs. Todorov et al [111] showed explicitly tha t infinitesimal 

changes in E,  the total particle numbers and Nfi  of the left and right-lead originating electrons, 

and the position Rr, of the n-th atomic core in the structure are related by

(\E = T d S  + fiLdNL + ^ l R d N R  -  F„ • dR„ , (3.2.4)

where S  = —k s  J2ie{"L'' “«”} [ / » “  f i)  “  /*)] entropy of the junction, T  is the

ambient-temperature. Thus the full force E„ acting on the /i-th atom and which includes both the 

force at equilibrium and the current-induced contribution is given by

F „ =  - ( V „ ^ ) s ,^ , ,^ „  , (3.2.5)

where V„ denotes the gradient with respect to the coordinates of the ?i-th atom while the remaining 

atoms are still. Though Eq. (3.2.5) looks very much like the HFT [see Eq. (3.2,1)], it is actually 

more general as it applies to a thermodynamically open system, carrying a steady state current as 

opposed to the thermodynamically closed system from the HFT. In fact, the same expression for 

the force can also be derived for a non-steady-state TD transport from a Lagrangian formulation 

of semi-classical electron-nuclear dynamics in Ref. [108]. There the whole derivation is axiomatic 

and the force is not introduced as an energy gradient.

In one of the following sections we shall introduce current-induced mechanical forces to our 

model of spin-polarized junctions. W hat has been rigorously demonstrated in the literature (cited 

above) is th a t a Hellman-Feynman-like theorem does apply for the Landauer-type transport prob­

lems, but it should be implemented cautiously in view of the non-negligible Pulay forces in certain 

situations. Our primary aim in the next section is to model the spin-dynamics in point contacts

'Here we also refer to our hypothetic system  cartooned in Fig. 2.G, which consists of an atom istic structure 
sandwiched between two semi-infinite leads. The leads, because of their dimension can play the role of Landauer 
reservoirs, maintaining stable electrochemical potentials { ^ l L  and i x r ) irrespective of what they are attached to. 
Then in an out-of-equilibrium situation, f x n ,  there are two statistically separable ensembles of electrons in
the junction - originating from each of the two leads and populated according to the Fermi function of that lead 

U l : f n ) -
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under bias. Tliere we take advantage of the analogy between the inert atomic cores and the local­

ized core-spins (in the spirit of the spin adiabatic approximation [7, (j]) and apply the generalized

sized metallic nanostructures is indeed a generalization of the combined quantum-classical dynami­

cal methods used in electromigration problems [112]. Here we treat the structural magnetic degrees

identified with the localized total angular momenta of the atomic cores which we hereafter refer to 

as local spins or simply spins. Note that our spin picture is absolutely transferable to the language 

of magnetic moments or magnetization as will become clear when we introduce the Hamiltonian. 

For this reason we sometimes refer to the set of local spins, represented by a set of classical vectors 

S =  {S;}, as spin state

Such classical description of the spins is appropriate when they are localized, i.e. arise from some 

deep orbital levels, such as in tlie case of rare earth ferromagnets, bu t it may appear questionable 

for magnetic transition metals (Fe, Co and Ni), where the (i-electrons responsible for the moment 

also take part in the conduction [(if)]. However, since the Coulomb energy is orders of magnitude 

larger than any energies connected with the electron flow, it is safe to assume th a t only the direction 

of the local spin is affected by the current but not its magnitude. This effectively is an adiabatic 

approximation, in the spirit of the Born-Oppenheirner approximation for the nuclear dynamics, 

where now the orientation of the local spins is a slow variable compared with the internal electron- 

electron interactions tha t determine their magnitude [7, G], The Hamiltonian for the combined 

conduction-electron -I- local spins system can be then written in general as

to the steady-state transport HFT from Eq. (3.2.3) to calculate the current-induced torques.

3.2.2 Scheme for m apping out spin activation barriers

Our scheme for studying current-induced dynamical effects of the spin (or magnetization) in atomic-

of freedom as classical variables and the conduction electrons as a quantum system. The former are

H  (S) — Hg -\- Kpin(S) , (3.2.6)

where we have isolated the “free” electron Hamiltonian from the term V'spin(S), describing all 

the spin interactions.

We may now write down the generalized forces (in this case, torques) conjugate to the classical 

variables S:

'W e sometimes refer to S as the m agnetic configuration of the system , if we envisage the adjoint to the spins 
local magnetic moments.
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where |'I') is the normalized state vector of the electronic system. Equation (3.2.7) has the appear­

ance of the usual Hellmann-Feynman theorem for stationary states [see Eq. (3.2.1)] but it is also 

valid in general dynamical situations, for systems driven arbitrarily far from equilibrium [123, 108]. 

Note that Pulay forces do not arise in our model as we are always working in the full eigenspace 

of the Hamiltonian.

The set of equations (3.2.6) and (3.2.7), combined with an appropriate method for calculating 

the non-equilibrium electron state vector ]^*), and therefore the current, is the basis for our method 

for describing the interplay between transport and magnetic properties. In this work, we seek to 

map out the activation energy barriers for magnetic rearrangements, in order to determine the 

preferential magnetic configurations of the system and to study transitions between them. We 

achieve that as follows. First, we seek the stable configurations. We evaluate the non-equilibrium 

state vector j^), in a one-electron picture, for a given initial local spin configuration by solving 

the scattering problem associated with the Hamiltonian H  Then, by using Eq. (3.2.7) the

torques for that configuration are calculated. Static iterative relaxation of the torques, which 

involves recalculating the self-consistent current-carrying electronic structure and the torques, is 

carried out as follows

§(n) =  S("“ i)-HaT("-^) , (3.2.8)

where and are respectively the spin configuration and the torques on the n-th itera­

tion. A positive value of a  guarantees that the T =  0 solution corresponds to a stable magnetic 

configuration S.

Once the stable magnetic configurations are found, we can calculate the activation energy 

barriers for thermally activated transitions between two different configurations Sinitiai and Sn„ai-  

We then choose one of the classical dynamical variables Sj as the reaction coordinate and rotate it 

from its initial value to its final value At every step on the way the torques acting on

all other spins are kept relaxed to zero. The work done by the classical degrees of freedom during 

this quasi-static transition is then obtained by integrating the torque on the reaction coordinate 

Sj  over the migration path. The work done over the full transition is

SfilUil

S i n i t i a i

The energy barrier profile, on the other hand, is given by

s.
= /  T , - d S , ,  (3.2.10)

S i n i t i a )
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w here Sj  = { S i(S j) , S 2 (S_,),. . . ,  S ^ ,. . . ,  S]\i{Sj)} is the  m agnetic configuration, for a given sj)in Sj  

(reaction coordinate), defined by the  condition =  0 for every i ^  j .

3.2 .3  T ight-b in d ing im p lem en tation

T he techniques described in the previous sections are general and can be applied to  a large class of 

H am iltonians. In th is work we focus our a tten tion  on a  simplified model, which contains th e  funda­

m ental ingredients for describing a current-carrying m agnetic point contact, but a t the sam e tim e 

does not present massive com putational overheads. T he s truc tu re  we investigate is sciiem atically 

represented in Fig. 3.1.

F igure 3.1: Schemes of the M FC w ith two different choices of the  polarization axis 2 : (a) transverse 
and (b) parallel to  the longitudinal direction. These choices determ ine w hether the  DW  in the 
constriction is a Bloch (a) or a Neel (b) type, which are, nonetheless, equivalent in our model.

I t  consists of two semi-infinite leads w ith a simple cubic la ttice  s truc tu re  and a 3 x 3-atom  

cross section connected through a linear chain of three atom s. Each atom  carries a local spin, 

arising from the deeply localized d-electrons and described w ith a classical vector Sj. T h e  two
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3. M AG NETIC PO INT CONTACTS

leads are fully bu t oppositely polarized w ith all spins in each lead pointing in the same direction 

and antiparallel to  the o ther lead. In contrast the th ree spins of the atom s in the  chain are allowed 

to  ro tate.

The current is carried by electrons belonging to  an s-band, which is described by means of 

a single-orbital (plus spin) TB  model. We neglect spin non-collinearity of the current-carrying 

electrons, assum ing th a t the  tim e needed to  cross the  constriction is considerably shorter th an  

the ir spin-relaxation time.

In our collinear-spin model a given m agnetic configuration of the chain S is thus described by 

th e  vector (p =  of th e  three angles (pi {i =  1 ,2 ,3 ), which the  three spins form w ith

respect to  th e  z-axis. This axis is also th e  quantization axis for the  conduction electrons and in our 

sim ulations is chosen to  be parallel to  the  spin-polarization of the left lead. W ith  th is choice of the 

z-axis (pi = 0 {(pi = 7t ) for a local spin of the  chain aligned parallel (antiparallel) to  the  spin of 

th e  left lead. However, as far as we neglect the m agneto-crystalline anisotropy in our model, there 

is no relation of the  2-axis to  a particu lar spatial direction. Hence the  two situations presented in 

Fig. 3.1 (a) and (b) where th e  z-axis is either transverse or longitudinal to  the leads, are txjuivalent 

in our spin-collinear model. This means th a t our model does not distinguish between Bloch and 

Neel walls.

For th e  sake of definiteness, we hereafter refer to  the  case depicted in Fig. 3.1 (a). The local 

spins of th e  chain are restricted  to  rotations only in the  x - z  plane and longitudinal com ponents 

are neglected (as in a Bloch wall).

W ith  th e  above assum ptions the  electron H am iltonian from Eq. (3.2.6) now reads

H(cP) =  ^  [(He),,. +  (Ves)r, (0 )] 4 c , a  +  V ss(0) , (3.2.11)
*

where c|^ and Cja are creation and annihilation operators for electrons w ith spin cr =  cr̂  =  ±1 a t 

the  atom ic sites i and j  respectively. T he m atrix  elem ents of the  “free” electron {)art are those of 

a  nearest-neighbour TB model

i^ e ) i j  =  [^0 +  Uq {pi — po)] Sij 4- > (3.2.12)

where £q is th e  on-site energy, ^  is the  hopping param eter, Uq is the  on-site Coulomb repulsion, 

Po is th e  reference on-site particle num ber corresponding to  the  neutral free atom  and pi =  p l  +  p^ 

is the full self-consistent num ber of electrons on the  i- th  site. The spin interaction potential V"spi„ 

from Eq. (3.2.G) is here separated  in two parts: V"es and Vss- The former contains the  interaction 

between conduction electrons and local spins

( V e s ) i j  =  =  -  (J ̂  COS (pi S i j , (3.2.13)
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3.2 Spin dynam ics in point con tacts

where J  > 0 is a ferromagnetic exchange energy parameter and a  = (0,0, <t) =  (0,0, ±1) is the 

normalized projection of the electron spin on the quantization axis z. As it stands, Eq. (3.2.13) 

describes a local Heisenberg-type interaction between the local classical spins and the spin-polarized 

current carrying s-electrons.

Finally, the term Vss parameterizes the interaction between the classical local spins. Here we 

assume again a Heisenberg nearest-neighbour spin-spin interaction

=  =  (3.2.14)
i,j i j

where J s  > 0 is the intersite exchange integral. We are working with the notion of dimensionless 

and normalized classical spins |Si| =  1 , i.e. their actual magnitude |Si| is incorporated in the 

definitions of J  and J 5 , which both have a dimension of energy. In summary our model is th a t 

of conduction electrons exchange-coupled to local spins, in tu rn  described by a Heisenberg-type 

energy. This is usually known as the s-d model [133].

The torque experienced by the z-th local spin in the chain is then obtained from equation (3.2.7) 

and reads

Ti = sin 4>i -  ^  [sin {(pi -  (pi-i)-i-sin {(pi+i -  0i)] , (3.2.15)

where dj =  p\ — p\ for i =  1, 2, 3 are expectation values the local itinerant-spin densities (polariza­

tions), and we have defined (/>o =  0 , ^ 4  =  tt since the magnetization of the two leads is considered 

pinned in an antiparallel alignment.

In our simple-cubic lattice model the surface Green’s function (at a general complex energy E)  

of the leads have an analytical form (see Appendix A). In reciprocal space, the surface GF of the 

left (right) lead reads

E  -  -  £(q) -  J( e  -  -  E ( q ) y  -
GLM{E,q)  = ------------------------------------------------------- -̂---------- , I m ( E ) > 0 ,  (3.2.16)

2x

where is the onsite energy in the left (right) lead and

£(q) =  - 2  Ixicos (  -  21*1 cos (  (3-2^17)

is the energy shift, as a function of the transverse wavevector (in appropriate units) q = [qx^Qy)

with Qx = 1, ■ ■., Nx, qz = 1 , . . . ,  A^ 2 for an {Nx x A^^)-atom simple-square lattice monoatomic slab

in a nearest-neighbor orthogonal Is TB model and the definition of the complex square-root is 

given in Ref. [107]. The expression of equation (3.2.IG) is then expanded over the real-space basis 

(see Appendix A) and used in the matrix equation for the self-energies as defined in Section 2.3.
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The leads are considered as typical Landauer-type contacts/reservoirs, i.e. their electronic 

properties are not affected by the coupling to the chain. The bias voltage, applied to the leads, 

is assumed only to shift rigidly their energy levels. Thus their chemical potentials starting from 

equilibrium = Hr = Ho with the applied voltage F  > 0 become =  /xq +  eV /̂2 and hr  =

jiQ — eV/2.  T hat is implemented as a rigid shift in the onsite energies of the L (R) part of the 

Hamiltonian, away from the junction (see Fig. 2.8; in our simulations, typically, we take 2-3 slabs 

from the leads in the C region)

— ► £o +  eV /̂2 and -  eV/2  (3.2.18)

and is felt in the selfconsistent region through the lead self-energies

^ l {E) = H c l G l {E)Hlc  , S f l(^ )  =  H c r G r {E)Hr c  , (3.2.19)

where in case of nearest-neighbour TB and uniform in cross section identical left and right lead 

H u j  = H gl  ■= H r c - =  Hc r  ^  xI l , w here,/l, is.an N.i x N i  identity niatrix, N i  being the number 

of atoms in the cross-sectional area of each lead (see Fig. 2.9).

The numerical algorithm we apply for investigating the activation barrier for a quasi-static spin 

flip in the constriction is sketched in Fig. 3.2. Details on the NEGF core are described in Fig. 2.7 

and technicalities on the energy integration and the SCF mixing scheme are described in Appendix 

A and B, respectively. We are using a Pulay’s mixing scheme with m =  4 (see Appendix B).

Initial input :
Which spin is rotated: e.g. Sj 
What is its final state: e.g. ^ Self-consistent 

NEGF core

Spin-Relaxation Loop
Calculate the 

torques:{7^,7^,7J}
Pick next position o f 
the rotating spin, e.g. ^

Relax other spins: 
e.g.

If other torques, 
e.g. T,=T, =  0

If final state reached, 
e.g. ^  =^2 END!

Store result, e.g. 7 ^ (^ )  & calculate current:

Figure 3.2; Algorithm for simulating quasi-static spin transitions in steady-state current-carrying 
conditions.
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3.2.4 Sim ulating domain wall m igration

Here we investigate the  spin-dynam ics of the  three-atom  chain, spanned inside the atom ic M PC 

as depicted in Fig. 3.1(a). For the anti-parallelly ahgned leads a Bloch type DW  is nucleated in 

the  chain. Having the external spins initially pinned to  the  polarization of the ir adjacent leads, we 

investigate the  DW  translation  achieved by quasi-statically ro ta ting  the m iddle spin.

T he TB param eters, used in the  calculations, are £q =  —3eV , x  =  —le V , po =  li  =  12eV, 

which provides for a metallic-like local charge neutrality. We consider the  values J  =  1 eV and 

J s  = 50 meV as a realistic choice for sim ulating bulk properties of m agnetic transition  m etals 

[85, 47, 72]. As we describe quasi-one dim ensional system s, where the exchange integrals can be 

quite different from bulk [78], we also investigate the  whole ranges 0 <  J  <  3 eV and 0 <  Jg  <  5 eV 

and identify three regions in the  J  — J$  param eter space where spin-dynam ics is qualitatively 

different.

We also consider departures from other sym m etry imposing conditions and param eters. For 

exam ple, we sim ulate spatially  inhomogeneous chain (sites th a t are not uni-distant, giving rise to 

non-uniform  hopping param eters) and also partially  filled band (po =  Po + Po ^  !)• Finally, we 

revisit the  problem  of w hether or not generalized forces away from equilibrium  are conservative, 

and dem onstrate  num erically th a t the  torques in the present system  under a curren t flow are not 

conservative.

3 .2 .4 .1  A c tiv a tio n  barriers

By perform ing num erical m inim ization of all the  torques, exerted on the spins in the  constriction, 

w ith various initial conditions, we have determ ined th a t all eight collinear arrangem ents, such 

as (0 ,0 ,0 ), (0 ,0 ,7 r ) ,  ( 0 , 7 r , 7 r ) ,  ( tt, 7t , 0 ) ,  etc, are stable (zero-torque) spin configurations (for the  

choice of model param eters specified above). Thus we usually s ta r t the  sim ulations from one 

of these states. The sta tes (0,0, tt) and (0 ,7 r , 7 r ) ,  which we designate by S i and S 2  respectively, 

are of particu lar in terest to  us as they correspond to  two positions of an ab ru p t DW  inside the  

constriction shifted (with respect to  each other) by one atom ic site. We investigate the  energy 

activations barrier for a transition  S i — ► S 2 , achieved by ro ta tin g  S 2 from 0  to  tt in the  x -z  

plane. This process, which we refer th roughout this C hap ter as D W  migration, is modelled as a 

quasi-static process. The ro tation  of S 2 is discretized and on each step  its neighbouring spins Si 

and S 3  are readjusted  so th a t they  experience no net torques.

Some of the  dynam ical characteristics of th is process of actual DW m igration for unbiased 

junction  as a function of the  reaction coordinate (f>2 are presented in Fig.3.3. Ŵ e see th a t during 

the  ro ta tion  of S 2 its adjacent spins 8 1 , 3  experience small tilts  from the collinear alignm ent and
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after a turning point fall back onto their initial directions [see F ig .8 .8 (a)]. The intersite exchange 

coupling is not strong enough to induce spin flips on the sites neighboring the site where the spin is 

rotated and even hypothetical values of J s  up to 0.4 eV  do not affect this picture [see later F ig .3.8 ]. 

This observation suggests that (within our parameter space) all com plex dynam ical processes of 

th e spins in the constriction can be decom posed into series of single-spin rotations. Because of the 

inherent centrosym m etric properties the spin-polarized contact (these are discussed in the next 

subsection) th e relaxed directions of the two adjacent spins S i and S 3 are related

03(02) = 7 T -  01 (7r-(/)2) (3.2.20)

and unless this inherent sym m etry is deliberately broken in our discussion we only look at 0 i.

-20

'O (c)'-
-60

cufc
3
U

<t>2

0.06
0.04
0.02

0.94
0..3

(b)-

- 0.1

- 0.2

-0.3'

Figure 3.3; Characteristic quantities in a typical calculation on the one-site DW  m igration in the 

contact as function of th e reaction coordinate 4>2'. (a) T he stable angular variables 0 i  and 03; (b) 

T he three on-site spin polarizations cr, =  pj — ; (c) Torque experienced and work performed by

th e rotating spin; (d) N et current at ^  =  0.5 V. The voltage in panels (a)-(c) is zero. J  =  leV , 

J s  =  50m eV.

The only non-zero torque in the system  during the quasi-static DW  m igration process is 

the torque acting upon the rotating spin [Fig.3.3 (c)]. This torque is com puted as a function o f 0 2  

at every point on the way, then interpolated and integrated according to Eq. (3.2.9) to  determine 

the effective energy barrier for the DW  migration

r<t>2
W{4>2) =  ~  T2 d 0 ^. (3.2.21)

Jo

Because o f the inherent sym m etries o f our m odel system  (see next subsection), the two states  

(0,0 ,  7t) and (0 , 7r, tt) are indistinguishable from th e transport perspective at any bias. Thus the
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calculated energy barrier between them  is sym m etric about <p2 =  7i'/2 and the total work W (tt)  

for the quasi-static process is zero [Fig. 3.8 (c)]. The activation energy for th is process in our TB  

param eterization is 54m eV .

T he conductance depends on the alignm ent of the spins and varies during th e DW  m igration  

process. At a finite bias voltage V  the net current I  shows a sym m etric bell-shaped dependence  

on 4>2 [see F ig.3.3(d)]. This resulting curve is very similar in shape to  the conductance of a 

three-term inal non-collinearly spin-polarized device, described in Ref. [25] from a sem i-classical 

perspective in the framework of the so-called m agneto-circuitry theory [24]. In our case for V  =  

0.5 V, the conductance varies from 1.76e^//i at the collinear states 4>2 =  0,7r to  a m axim um  of 

1.86e^//i, reached at 4>2 =  7r/2- T hat gives a relative variation of 5%, which is also in the order of 

m agnitude of the result in Ref. [25]. This interesting sim ilarity suggests a “topological” proxim ity  

between our m odel system  and m ulti-nodal m agnetic system s m odelled by the “m acrospin” ’ 

approxim ation, i.e. each of the localized (atom ic) spins in our m odel can instead represent the spin  

of one com ponent (described as a macrospin) in the m ulti-term inal device (circuit).

0.06
0.4

(c )  .

0.2, r,
0.04 >

D
6

—  i=20.02
V=OV 
V=\ V 
V = 2 V

- j  I- 0.2

-0.4
0..5
•,/7l(p:

Figure 3.4: Effect of the external bias on som e microscopic properties o f the contact as function  

of the reaction coordinate 4>2- (a) the zero-torque positions o i (pi (03 can be deduced from Eq. 

(3 .2.20)); (b) the on-site spin polarizations o'i =  p] — p^, i =  1 ,2 ,3 ; (c) the activation energy  

barrier.

Further, we look at the effect the external bias voltage V  (driving a spin-polarized current) has 

on th e m icroscopic dynam ic observables as a function of the reaction coordinate. We observe a 

current-induced suppression of the response of S i^  to  the rotation of S 2 [Fig.3.4(a)] and an increase 

in the absolute values of the onsite spin-polarizations (non-equilibrium  spin-density accum ulation)

'T h e  m acrospin model is based on th e  fact th a t  in m ost of its volum e th e  m agnetic m om ents in a  m agnetic 
dom ain [.50] are aligned in parallel to each o ther because of th e  exchange interaction . W ith  th is approxim ation  th e  
m agnetization  in com plex heterogenous m agnetic system  is often m apped onto series of m acrospins, representing  
th e  individual m ono-domains.
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[Fig.3.8(b)], As a result of the  increased m isalignm ents and onsite polarizations, the energy barrier 

height also increases w ith V  [Fig.3.4(c)] and the  pace is non-linear a t high biases. Increase of 

barrier height corresponds to  enhanced spatia l pinning of the  wall. A t any finite tem pera tu re, this 

phenom enon would m anifest itself as suppression, w ith increasing bias, of the  frequency of DW 

transitions back and forth between the two stable m agnetic configurations.

120
(a).

100'

o

2.0V
1.5V
l.OV
0.5V - 10;

<t>2

Figure 3.5: (a) The net current I , (b) its relative variation with respect to  Iq = I{(j>2 =  0) and (c) 
its polarization k j  =  (/^ — / | ) / ( / |  + 11 ) as functions of 02 a t different voltages V.

The profile of the  net current over the  reaction coordinate is sim ilarly bell-shaped as the  energy 

barrier. However, unlike the barrier, the  relative height of the current bell drops w ith the bias [see 

Fig.3.5(b)]. This correlates w ith the suj)pressed response of the  two adjacent spins [Fig. 3.4(a)]. 

A common tendency we find in our calculations is th a t the sm oother the angular spin d istribu tion  

in the junction  the  higher the  conductance, hence the bell shape and the  peak of the curren t a t 

02 =  7t/ 2. T he net current also becomes more spin-polarized [Fig.3.5(c)], though th a t tendency is 

not m onotonous w ith the  bias (clearly, in the  lim it of zero-bias the  Fermi level spin-polarization is 

0 for po =  li a t finite bias k/ is an integral quantity , th a t depends on the band-alignm ents of the 

two leads).

3.2.4.2 Inherent sym m etries

T his subsection is dedicated to  the  geom etrical and electronic sym m etries inherent to  our model 

system  (see Fig. 3.1). S tarting  w ith geometry, we introduce a ro tation  operation  by an angle 

7T abou t one of the  coordinate axes, say x,  as There are three such rotations th a t m ap the 

system  onto  itself, i.e. Jixt ^ y ,  as sketched in Fig. 3.(3(a), and the  resulting configurations are 

all equivalent to  the  initial one.

N ote th a t  the  direction of the external bias changes after two of these operations (IR  ̂ and  3?^). 

For exam ple, from we obtain  the following identity  relation between two spin-states in the
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constriction

{V; OOtt} =  { -V ; Otttt} . (3.2.22)

In th is case the  leads map perfectly on to  each other and the  only difference is the change of

th e  voltage direction. Eq. (3,2.22) is valid for purely geom etrical reasons and irrespective of the 

electronic struc tu re , as long as the  leads are identical and oppositely polarized. In particu lar, this 

m eans th a t  a t equilibrium  the (OOtt) and (Otttt) sta tes are identical from tran sp o rt viewpoint for 

any choice of electronic-structure model.

As far as the  electronic struc tu re  is concerned, the half-filled band (po =  1) of our simple cubic 

la ttice  in the orthogonal TB model brings in additional sym m etry. T h a t is the  perfect m atch of 

th e  electron and hole subbands in the leads upon spin inversion [see Fig. 3.G(b)]. Because of the 

two oppositely polarized leads (which set identical boundary conditions for electrons and holes) 

and the  identity  of the electron and hole descriptions of the  tran sp o rt problem  [8], we recognize

a  set of relations between spin states, cartooned in Fig. 3.6(c). At half band-filling we have th a t

instead of Eq. (3.2.22) a more extended one holds

{V'; ^  { -V ;  ^  {V; ^  { - I / ;  . (3.2.23)

This inherent sym m etry of our spin system  is the  reason for which the  energy barrier for transitions 

between these two spin sta tes is sym m etric a t any finite bias [see Fig. 3.4(c)]. T he above argum ent 

can be generalized to  longer spin-chains in the constriction [Fig. 3.6(c)].

Similar relations can be w ritten  for o ther couples of collinear s ta tes of the three spins in the 

chain. T here are in to ta l 2^ =  8 such states, which can be divided in four pairs

( O O t t )  <— > ( O t t t t ) ,  (000) <— > ( t t t t t t ) ,  ( t t O t t )  <— > ( O t t O ) ,  ( tt ttO )  <- - - - - > ( t t O O )  (3.2.24)

of equivalent (w ith respect to  tran sp o rt observables) sta tes a t any bias, obeying Eq. (3.2.23). These 

stronger relations are due to  the  electronic s truc tu re  sym m etry, induced by the  simple cubic lattice 

and the  (effectively) half-filled band (we actually  have two nearly half-filled spin-s])lit bands). We 

acknowledge their existence and in Section 3.2.6 we investigate how the results become different if 

th e  above sym m etries are broken.

3 .2 .4 .3  S p in -sta te stab ility  and D W  m igration  under bias

T he torcjues, defined in Eq. (3.2.15), depend explicitly on the  exchange param eters J ,  Js  and  the 

balance of these two coupling mechanisms is w hat determ ines the spin dynam ics in the  constriction. 

In th is  section we describe the  effect of the  intersite exchange coupling streng th  on the equilibrium  

(zero-bias) m agnetic properties of the  (0,0, tt)  — ► (0, T r , 7 r )  transition .
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Figure 3.6: (a) Equivalent configurations produced by rotations to  tt about the coordinate axes, 

originating in chain site # 2 .  T he leads are sketched in different colour to indicate the bias applied  

to the system  (blue for lead attached to  th e negative pole of the battery, red -  for the positive), 

(b) D ensity of states of an infinite uniform ly m agnetized lead w ith 3 x 3  atom s in cross section. 

Tight-binding param eters are the ones already specified, i.e. \  =  J  =  — le V . The Fermi level 
corresponding to  half-filled band (po =  1) is marked and th e spin-up electron (hole) subband  

DOS is highlighted in green (orange). For this particular po, if the m agnetization of the lead is 

reversed, the DOS of electrons and holes interchange, (c) A cartoon dem onstrating the valid ity of 

Eq. (3.2.23) for po =  1. T he shades of the leads m atch those of the subbands for the m ajority  

electrons or holes depicted in panel (b), while the shades of the sites correspond to  that of the  

lead their spin is parallel to. The identity signs refer to the transport properties. The first identity  

is because of the duality of the electron and hole description of the one-band transport problem , 

while the second is obtained by a rotation. Based on this Eq. (3.2.23) can be generalized to  n  -l-m  

local spins in th e point contact. Panel (d) represents a generalization o f Eq. (3.2.22).

42



3 .2  S p in  d y n a m ics in  p o in t c o n ta c ts

As Js  is increased the adjacent spins Si and S 3  understandably tend to respond stronger to the 

rotation of 8 2 - Starting at (0,0, tt), <pi initially increases ' rather linearly with <p2 and Si tilts away 

from the z-axis [Fig. 3.7(a)], This suggests tha t for small misalignments the J s  (linear in 4>\) is 

the leading term in Eq. (3.2.15) as the J-term , depending on the self-consistent onsite spin-density 

Si, is potentially higher order in 0 i. Indeed, during the early stages of the S 2 -rotation, Si is nearly 

constant before the turning point [Fig. 3.7(c)]. As 4>2 increases further, a turning point is reached 

and Si falls back on to the axis. From the turning point on the spin-density drifts continuously 

towards its final stable value at (0 , t t , t t ) (the spin-densities for the end collinear states clearly do 

not depend on J 5 ).
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Figure 3.7: Effect of the strength of the intersite coupling Js  on the equilibrium variables (a,b,c,d) 
and on the net current and its polarization at =  1 V (e,f).

The typical bell-shape of the current vs. (j>2 is broadened as J s  increases [Fig.3.7(d)[ due to 

the fact tha t stronger intersite exchange coupling tends to make the three spins in the constriction 

more continuously distributed in angle, which in turn increases the overall conductivity of the 

system for any (/>2 - Also the current is somewhat less spin-polarized in the case of stronger J 5  

[Fig.3.7(e)j.

Together with this rather minor effect on the macroscopic observables (e.g. the current) there 

is an interesting microscopic implication of the variation of Js  for the spin-dynamics. T hat is the 

fact th a t the energy barrier for the migration of the abrupt DW in the junction changes its profile

^FYom Eq. (.3.2.20) it is sufficient to  follow th e  response of S i .
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3. M AGNETIC PO INT CONTACTS

qualitatively or fully disappears. W ith  increasing J s ,  this transform s from a barrier to  a well [see 

Fig.3 .7(c)] thus making the colliiiear s ta te s  unstable and the more sym m etric and homogeneous 

one w ith 4>2 =  ti' / 2  stable.

By studying the activation energy for DW  m igration, we deduce a p a tte rn  of local-spin s ta ­

bility in the exchange-param eter space J - J s  (see Fig.3.8). Three d istinct regimes are recognized 

depending on th e  values of the  exchange param eters: (1) “m agnetostatic regime” associated w ith 

the  presence of 2 stable m agnetic sta tes, for which (j)2 =  ±7f/2; (2) “mixed regim e”: 4 stable 

configurations, 2 in each half-plane for which 0 <  02 <  tt/2  and tt/2  < 02 <  tt; (3) ‘current- 

driven regime”-. 8 stable configurations, nam ely all the collinear spin alignm ents (0 ,0 ,0 ), (7r,7T,7r), 

(0,0, tt), (0,7T, 7t), (7T,0,0), (7r,7r,0), (0 ,7r,0), (7t,0, tt) ^  Interestingly, the  three regions of stab ility  

in the  J - J s  space are separated  by parabolic borders. This correlates to  the  Feynm an-path notion 

th a t the  indirect in tersite  exchange coupling is in its leading contribution  a second-order process 

w ith respect to  the  onsite exchange and th e  factor in the  expression for the RKKY interaction 

(see for instance Ref. [(>7]).
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Figure 3.8: D iagram  showing the th ree regions, w ith 2, 4 and 8 stable m agnetic configurations 
respectively (see tex t), in a J - J s  cut of the  param eter space. The border lines between the three 
regimes are calculated from the  energetics of the  ( 0 , 0 , t t ) ^  ( 0 , t t , t t ) transition  (see inset and tex t). 
The blue dashed lines correspond to  voltages of 1 and the  red dash-dotted  ones -  to  2 V.

The exchange-param eter values th a t we previously considered as realistic (J  =  1 eV and J$ =  

50m eV) are well w ithin the  current-driven  region (marked w ith “8” in Fig.3.8). Obviously, the 

^The last case is also confirmed by full torque relaxations at various initial conditions.
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3 .2  S p in  d y n a m ics in  p o in t c o n ta c ts

correct values of tliese parameters in reduced dimensions are very system-dependent. Experimental 

results for .7$, for instance, in quasi-lD Fe magnetic strips show a significant reduction by almost 

an order of magnitude compared to bulk values [78]. This goes further in favour of the collinear 

stability or the presence of a barrier for the DW migration (see Fig.3.8). We continue using the 

foregoing values, noting that the DW energetics qualitatively remain the same for a range of values 

of Js in the region of tens of meV and J  > 0.5 eV.

The application of a bias, driving spin-polarized current, distorts the border lines between the 

three regions in Fig. 3.8 significantly. The border lines for different biases even cross each other. 

As moving up in Fig. 3.8 corresponds to lowering of the barrier, this means that the increase of the 

current flow (with increasing bias) can either increase or decrea^se the barrier. Indeed, in Fig.3.9 we 

demonstrate the effect of the bias on the DW migration energetics along two verticals of the J  — Jg 

parameter space separated by a crossing of the border lines, i.e. J  =  1 eV and J  =  2.5 eV. Three 

values of Js  are considered, one in each of the above regimes. As expected in one case the increase 

of bias increases the barrier (effectively pinning the wall), while in the other the bias suppresses 

the barrier (effectively depinning the wall). Our calculations show that the spin-transfer torque 

effect within our transport model can either increase of decrease the barrier for a DW migration, 

depending on the balance of exchange parameters which in practice are very system-dependent 

characteristics.
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Figure 3.9: The biased energy barriers for the transition (0,0, tt) (0,7r,7r) at different voltages 
V  =  0,1, 2 V, J  =  l.OeV (left) and J  = 2.5eV (right) and for three values of Js  (one in each of the 
ranges, discussed in the text): (a) Js = 12meV; (b) Js  = 0.25eV; (c) Js = 0.3eV; (d) Js = leV; 
(e) J s  =  2eV; (f) Js = 3eV.
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3.2.4.4 Current-voltage characteristics

The current-voltage characteristics of the system for all the different stable (collinear) alignments 

of the spins in the chain are presented in Fig. 3.10. All the I-V curves are symmetric about 

the origin and form four separate branches £is the eight possible stable magnetic states are 4 x 2  

degenerate. This is due, as mentioned earlier, to the spatial reflection and time-reversal symmetry 

of the atomic point contact.

The slopes of the I  — V  curves (differential conductances) at low bias are not directly propor­

tional to the number of abrupt DWs in the junction (including the leads interfaces), e.g. three 

DWs for (0 ,7T, 0) and (tt, 0,0), one for (0,0,0) and (0,0, tt) states. Clearly, the interfacial DWs have 

a different contribution to the overall conductance. For instance d l / d V (0,0, t t )  > d l / d V (0,0,0) at 

biases below 1 V. Interestingly, the (0,0, t t )  and the ( t t ,  0,0) states have the same low-bias slopes, 

regardless of the fact th a t the latter has two more interfacial walls (it could be tha t opposite in­

terfacial walls cancel their contribution as a result of the quantum interferences). The least steep 

curve, indeed,corresponds to the (0, t t ,  0) state^ having highest number of two walls in the chain and 

just one at the interface. W hat is more im portant, however, is tha t there is a very significant de­

pendence of the current on the magnetic state of the constriction, i.e. a magneto-resistance effect. 

The microscopic single-spin reversals, which distinguish the four I-V curves in Fig. (.'3.10), can 

result in massive current variations (of up to 50%) at a given bias. At a given finite tem perature 

this could result in a random telegraph noise in conductance measurements and such effects have 

been observed experimentally [118, 125].
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Figure 3.10: The current-voltage characteristics at all stable collinear alignments for the local 
spins in the chain. The inset represents the correspondent spin-polarization of the net current 
K/ =  ( / |  — / ^ ) / ( / |  -|- / | ) .  It is a non-monotonic function of the bias.
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3 .2 .4 .5  S u m m a ry  on  D W  m igra tion

In sum m ary, we have proposed a microscopic quantum -classical scheme for com puting the current- 

induced torques on the local m agnetization in M FCs under bias. This scheme, based on the 

adiabatic  spin approxim ation [7, (i] and the s — d model, has been applied to  study  the  S T T  effect 

in an  atom istic M FC, which consists of a m onoatom ic chain of th ree atom s, bridging over two semi­

infinite leads w ith opposite m agnetizations, so th a t a t least one m agnetic DW  is formed w ithin the 

junction. We have investigated the stability  under current-carrying conditions of various m agnetic 

configurations and the  effect the  flowing spin-polarized current has on the  energy-barrier for the 

m igration of the ab rup t DW. For an extensive range of echange param eters abou t the  realistic 

bulk values only the  collinear spin-states are stable. These, however, carry different (by up to 

50 %) net currents and the average activation barrier for transitions is about 65- 70 meV. This 

in tu rn  could be a source of a random  telegraph noise in current w ith significant am plitude as a 

result of the therm ally-activated spin rearrangem ents inside the constriction. Regarding the  DW' 

m igration, we have found th a t the  increase of the  bias can both  enhance and suppress th e  barrier 

(effectively pinning or de-pinning the  wall) depending on the balance of the  s — d and d — d exchange 

param eters.

3.2 .5  C yclic processes and conservativeness  

3 .2 .5 .1  A  sp ec ia l cy c lic  ex a m p le

Figure 3.11 represents the  work for series of one-spin rotations. The sequence of transitions is chosen 

such th a t it goes through each of the  8 stable m agnetic configurations once, and then  re tu rns to 

the initial s ta te . In equilibrium  (zero-bias) the depths of the wells in th is graph correspond to  the  

relative energies of our system  in various stable m agnetic sta tes w ith respect to  th e  initial one. 

Based on this, we can recognize ra ther unexpectedly the “anti-ferrom agnetic” (0, tt, 0) and (tt, 0, tt) 

alignm ents, which can be thought of as featuring three ab rup t DWs  ̂ and are the  least conducting 

sta tes [see Fig. (3.10)], as the  m ost stable among the collinear alignm ents a t equilibrium . ”

T he external bias has a non-trivial effect on the effective energy barriers for these single-spin 

transitions. The to ta l work for the  closed loop (starting  and ending a t the  same s ta te) cancels 

out for any bias. This, however, is not an indication of conservativeness of the  current-induced 

torques (3.2.7), bu t is ra ther an artefact of the  specific properties of th is particu lar closed path , 

which includes all the  sta tes and can be decomposed into two sub-loops going through identical

'Here domain wall (DW) is used in a very wide sense, allowing for notions like single-atom domain.
^This effect is a direct manifestation of the quantum nature of the transport involved. It resembles the effect 

of indirect (electron-mediated) RKKY exchange intereiction (see for instance Ref. [8]) and in this case is further 
complicated by the geometry of the system  which moulds the quantum interference pattern.
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(by symmetry, see section 3.2.4.2) states in opposite direction and thus their contributions to the 

total work cancel out.
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Figure 3.11: Work for consecutive transitions between the 8 stable magnetic configurations at 
different bias K =  0,1, 2 V.

There are in total 12 =  (5 x 2 + 2) transitions between non-identical pairs of stable collinear 

alignments based on single-spin rotation, out of which 5 +  2 = 7 are indeed different transitions from 

the point of view of the electron transport. The average activation barrier for these 7 transitions 

at ecjuilibrium is 71 meV with a variance of 36meV and it depends slightly on the bias: 65.6 nieV 

at 1 V and 68 meV at 2 V. These values for the activation barriers suggest switching frequencies, 

and hence random telegraph noise in the current, in the microwave range at room temperature.

3.2.5.2 Are spin torques conservative?

The question if, and under what conditions, forces under steady-state current are conservative 

remains an open fundamental problem in the theory of transport [122]. A thermodynamic formu­

lation of forces under non-equilibrium steady-state conditions, proposed in reference [ il l] ,  leads to 

the explicit identification of a thermodynamic potential for electromigration [100]. However, as a 

consequence of the infinite nature of open-boundary systems, this potential involves a conditionally 

convergent real-space summation. If the sequence of terms in this summation remains invariant 

along a given path in the configuration space of the system, then along tha t path, current-induced 

generalized forces are rigorously expressible as gradients of a scalar potential and are therefore 

conservative. The possibility remains open, however, tha t the order of terms in the conditionally 

convergent sum may change, as specific points, or manifolds, in configuration space are traversed
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[100]. This constitutes an effective breaiidown of the Born-Oppenheimer approximation, with the 

consequence th a t paths spanning such points are non-conservative [100].

We now carry out a numerical test to see whether or not the generalized forces (torques) in 

Eq. (3.2.L5) are conservative in the present current-carrying system. We chose suitable closed 

processes composed of single-spin rotations and calculate the total work as a sum of the works on 

the sub-processes, each calculated analogously to Eq. (3.2.21). Since the intersite exchange field 

is conservative, a non-zero total work for the cycle is suggestive of the non-conservativeness of the 

current-induced torques. As a sign of consistency with the former observation, we expect the total 

work to be a numerical zero at zero bias.

The work for a set of four consecutive one-spin rotations between collinear spin configurations, 

which form a closed-loop, is calculated at different voltages. The full work for three different loops 

as a function of the applied voltage is presented in Fig. 3.12. As expected the closed-loop work 

is zero at equilibrium. However it shows a significant variation with the bias for all three cyclic 

processes.
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Figure 3.12: Dependence of closed-loop work on the voltage for four different closed loops of 
one-spin rotations between collinear states, which are shown on the insets.

In order to resolve the numerical error we have performed a series of tests with different levels 

of accuracy. We recognise a few sources of numerical error: (1) The level of convergence of the 

density matrix 5p. (2) The fineness of the energy mesh for the contour integration in the complex 

plane 6E.  (3) The level of torque relaxation ST. (4) The angular mesh for the torque integration 

which results into the work. As the torque in the current-driven regime is a very smooth function of 

the reaction coordinate [see Fig.3.3(c)], we have found (4) insignificant for the value of the integral
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in Eq. (8 .2 .10). The effect of the rest o f the accuracy parameters on the fuli-loop work for the 

loop { tttttt — ttttO — OttO — Otttt — TTTTTr} [see Fig. 3.12] is summarized in Table 3.1. There we have 

presented the resulting closed-loop work for reduced accuracy levels with respect to the calculation  

shown in Fig. 3.12.

{5p,SE,5T) ,  % W 'o  V W ^ o . s v W ^ i . s v W 2 V

(100,100,100) 0.0001 -1.407 -7.454 0.601 19.81

(100,20,100) 0.0001 -1.290 -7.361 -0.036 19.79

(1,100,2) 0.0406 -1.300 -7.356 0.662 19.88

Table 3.1; The work (in m eV) for the loop { t t t t tt  —  t t t t O  —  O t t O  —  O t t t t  —  t t t t t t }  as function of the 

accuracy param eters (in relative units). The value of the bias V is given as subscript. Here the 

values o f the three tolerance param eters are relative to  our m ost accurate calculation (top line), 
presented in Fig. 3.12.

T he results in Table 3.1 dem onstrate that the observation of a nonzero work for a closed-loop  

sequence of transitions is not, ap crrpr-accuinulation effect as it is not substantially affected by 

variations o f 1 -2  orders of m agnitude about the chosen level o f accuracy. Thus we see that in 

the present case, along all the three selected closed paths, we have an explicit exam ple of non­

conservative generalized non-equilibrium  forces, em erging here as spin torques. In other words, 

the result shown above provides a numerical evidence that the current-induced torques are non­

conservative, at least in the section of th e configuration space spanned by the present calculations.

It should be noted that, for our m odel system , there is nothing special about the regime where 

we stud y th e closed loop transitions under bias. We are only facilitated by the fact that the  

collinear configurations are the stable ones and that one-spin transitions are indeed possible, so 

that closed loops are easy to construct and calculate the work as a sum of individual one-spin  

quasi-static rotations. Thus the result for the non-conservativeness of the spin torques, established  

num erically here, may in principle be transferable to  other open system s.

3.2.6 Breaking the sym m etries (electronic and structural)

C urrent-induced releixation o f the atom ic positions can break the inherent structural sym m etry  

in point contacts similar to  ours [112] and substantially weaken its overall stability. In order to  

investigate the effect o f sm all inhom ogeneities in the interatom ic spacings of the chain over the 

DW  m igration barrier, we em pirically map the displacem ent of the m iddle atom  ( # 2 )  from its  

centrosym m etric position onto a sm all variation of the hopping integrals between the atom ic site  

# 2  and its neighboring sites in the chain. To m im ic a sm all displacem ent to  the left we rescale the
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hoppings from site # 2  by 0 < 5 <C 1 such th a t

X12 =  X (1 + ^ ) , X23 =  X (1 - '^ ) -  (3.2.25)
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Figure 3.13: Effect of a variation in the  hopping param eters of the  three-atom  chain w ith 6  =  ±0.05 
(see Eq. (3.2.25)) on the  barriers for DW m igration by one site a t different bias voltages: (a) =  0;
(b) K =  1 V; (c) V =  2V.

As a  result from this action, a tilt in the effective energy barrier profile occurs (com pare 

Fig.3.13 w ith the uniform -structure results in Fig. 3.4). The to ta l work for the  (0 ,0 , tt) > (0,7r,7r) 

transition  is negative thus the internal energy of the  classical spins is increased. In th is case 

the  degeneracy of the  ( 0 , 0, t t ) and (0 , t t , t t ) s ta te  is lifted, as the  central reflection sym m etry, 

is no longer present. In fact, for S = 5%, representing a shift of the middle atom  to  th e  left, 

the  (0,7r,7r) configuration becomes energetically preferable. A lternatively, S — —5% favours the 

(0,0, 7t) s ta te . The dynam ical variables of the new inhomogeneous system  are now invariant upon 

the  transform ation  {6 , 4)2 } —> (tt ~  <p2 )} (see Fig.3.13).

T he atom istic properties and the  net current as a function of the  reaction coordinate 02 are 

presented in Fig. 3.14. The effective ferrom agnetic coupling between the  local spins is strengthened 

by the  enhanced electronic hopping and the  onsite spin-densities of all the  atom s shift alm ost 

rigidly as the  middle atom  is brought towards one or the  o ther of the  leads. The net current 

shows a significant asym m etry when compared to  the  previously observed sym m etric bell-shaped 

dependence on (p2 and the more stable configuration is always found to  be the  less conducting one 

[Fig.3 .14(d)]. At a given bias of I V  we observe a 4-5 % variation of the  net current between the 

initial and the  final spin state. Accordingly, the  I-V characteristics of the previously degenerate 

(0,0, t t )  and (0, t t , t t ) sta tes is split into two branches [Fig.3 .15(a)], whose difference increases ra ther
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linearly w ith voltage [Fig.3 .15(b)] and reaches about 10% for V  =  2 Y .  Thus we expect DW  

m igrations w ithin the constriction, in th e case of sm all deviations from a uniform geometry, to be 

accom panied by variations in the net current w ith  the signature of a random-telegraph noise.
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Figure 3.14: Effect of a S '= '± 5 %  asynim efry in the hopping integrals asym m etry on th e  atom istic 

variables during the DW  shift -  (a,b) <^13 (note that the sym m etry relation in th is case becom es 

0 3 (0 2 , (̂ ) =  7T — 01 (ti" — 0 2 , —(5)), (c) the on-site spin-polarization, and (d,e) the net current and its 

spin-polarization at V  =  1 V. The bias on (a,b,c) is K =  0 V.

The interplay between the current-induced relaxation of the m agnetic and m echanical degrees 

of freedom is studied in a m utually-consistent manner later in th is thesis. The sim ple test above is 

the m otivation for further analysis as it clearly shows that geom etrical asym m etries in the atom ic 

structures (which could be induced by the current [112]) affect qualitatively and quantitatively the  

activation barrier for DW  m igration. T he generated tilt creates energetically preferential spatial 

traps for th e DW  in which the system  is less conducting. Therm ally activated random hops of 

the DW' in the constriction could give rise to a random telegraph noise (with a linearly varying  

am plitude w ith  bias voltage) in th e conductance m easurem ents.

Yet another way to  break the inherent sym m etry of our m odel system  is to consider a band- 

filling ( p o )  which is different from th e special case of half-filled band w ith p o  =  I  considered in all 

previous calculations. This can be interpreted as mimicking the effect of som e spd-hybridization  

[101]. To clarify that idea, we have calculated the partial density o f spin-up and spin-down states in 

an “up”-spin-polarized (about an arbitrary polarization axis) infinite lead w ith the sam e structure 

as the leads in our system  (see Fig. 3.16) and marked the position of the Fermi level for band 

fillings Po from 0.7 to 1.3. W ith  this noninteger filling and the geom etrical properties o f the system
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Figure 3.15; (a) The I-V characteristics for the Si = {0,0, tt} and S2{0,7t, tt} states with (5 =  0 
and 5 = 5%. The two split I  — V  curves swap places upon changing the sign of 5. (b) The split of 
the I  — V  curves for the two spin states grows linearly with the bias.

(with uniform chain), discussed in Section 3.2.4.2 the new invariance transformation is

(po + Ap, I/, OOtt) =  (po -  Ap, V, Otttt) , (3.2.26)

where A p  is the variation of the band filling from 1.

Band filling p̂ : 
& Fermi level

m

B
Bw
o
(/)c0)
Q

- 2 -

sp irvup
spin-dow n-4-

•6 -4 •2 0 2 4 6
(eV)

Figure 3.16: Density of states of an infinite uniform lead with 3 x 3  atoms in the cross section. 
The tight-binding parameters are the same as those used in all previous calculations (x =  —IV  
and J  = —I eV).

We again look at the energy barrier for a DW shift inside the junction. At equilibrium the 

non-integer filling does not affect much the barrier profile [Fig. 3.17(a)], there is no tilt [that is a 

property of the structure at K =  0, see Eq. (3.2.22)] and the height is almost unaffected. However
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3. M AG NETIC PO INT CONTACTS

as voltage is introduced the barrier acquires a tilt and the above relation (3.2.2G) holds [Fig. 

3.17(b)]. T he tilt  appears to  increase w ith the band-filling deviation from 1. A lready a t po =  0.7 

the  second stab le  spin s ta te  tends to  d isappear (th a t indeed happens for further deviations, say 

a t around Pq =  0.5, not presented on the  graph). Again the  initial and the final spin sta te  carry 

different currents [Fig. 3.17(c)] and therm ally activated transitions could be detected through 

random  telegraph noise.

0.06
v=iv

c  0.04

0.7^ 0.02
0.9

-(b)

— 0.05

-0.05 .-IVV=1V pQ=0.7e/at

Figure 3.17: Effect of the  non-integer band filling po on DW -m igration barriers (a) a t equilibrium , 
(b) a t =  1 V and (c) on the  current variation w ith the  DW  m igration at V  =  1 V. Panel (d) 
shows th e  effect on the bias on the  barrier for po =  0.7.

Similar effect is also found w ith increasing the bias at a fixed band-filling [Fig. 3.17(d)]. The 

o ther position of the DW  in the constriction becomes energetically instable a t high biases and the 

DW  is effectively pinned. T he DW could then be m anipulated by changing the direction of the  

bias.

T he two m eans of sym m etry  braking considered in th is section have a common consequence 

and th a t is the  tilt in the  energy barrier for DW  m igration. In the s truc tu ra l asym m etry case the 

tilt occurs even and 0 V, while in bo th  cases it increases monotonously w ith the  bias. This opens 

the possibility for a bias controlled DW' m igration. In both  cases the  conductance of the system  is 

found to  vary w ith the  DW  position.
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3.3 Spin and structure interplay under bias

As we pointed out near the end of the previous Section, there have been studies [111] on current- 

induced embrittlement in similar but non-spin-polarized metallic point contacts, showing a sub­

stantial effect. We also demonstrated that, by empirically adjusting the hopping integrals in our 

model of MFC, a qualitative variation in the DW migration barriers under the current-flow can 

be obtained. In this Section we have unified the two aspects of the spin-polarized current flowing 

through an MFC in one common self-consistent framework. That has resulted in a scheme for a 

combined description of the two current-induced effects in the ballistic transport -  the “electron- 

wind” force due to the elastic momentum exchange and the STT effect due to the exchange of 

angular momentum.

Here we have extended our foregoing scheme of investigating spin-dynamics under steady-state 

current to include current-induced mechanical forces, which would allow us to study the interplay 

of the structural and the spin-rearrangenients. With such an extended model we are able to 

examine the energetics of spin-related dynamical processes, such as the abrupt-DW migration, as 

a function of the current-induced atomic displacements. Moreover, we can extract the effect of 

the spin-texture itself on the structural relaxation under the flowing current. Our main finding is 

that this interplay is strong only in one direction. While the atomic rearrangements can modify 

drastically the spin-dynamics of the MFC, the magnetic configuration has little effect on the atomic 

configuration.

The new aspect with respect to our earlier computational scheme is the introduction of the 

structural degrees of freedom. Similarly to the local spins, they are described as classical variables. 

The structural state 31 of the system is defined by a set of Cartesian coordinates 31 =  {R,}, 

where i enumerates the subset of atoms, considered as mechanically active (i.e. contributing to 

the dynamics). Again the spin state is defined as S =  {Sj } in the subset of spin-active atoms. The 

interplay between S and 31 is investigated by keeping one frozen and evolving the other.

We apply this method to the previously described MFC (see Fig. 3.1). For example, we address 

the question of how the particular spin-state in the constriction affects the structural relaxation at 

the steady state (Fig. 8.18(a)). Conversely, we study what the effect of the current-induced atomic 

displacements on the DW migration is (Fig. 3.18(b)). We also perform simultaneous structural 

relaxation with the qucisi-static DW migration and evaluate the variation of the current in this 

process.
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(Sfj - fixed 
Stress-Relaxation

Stress-Relaxation SFC-NEGF core

Spin-state Su is fixed 
Minimize forces {/^} -^ 0

SCF-NEGF core Spin-Rotation Process

/ ( O l  - fixed 
'  Torque-Relaxation '

SCF-NEGF core

Figure 3.18: Algorithms for investigating the spin-structural interplay; (a) The effect of the spin- 
state on the structure is studied by relaxing the structure at different fixed states So: (b) The reverse 
effect is studied by mapping out the activation barriers for spin rotation at a fixed structural state, 
which can be relaxed at different conditions (e.g. different So or b i^  voltage V ) iii the initialising 
stress-relaxation module.

3.3.1 Current-induced mechanical forces

We discussed previously that the mechanical forces acting on the atomic nuclei (or the ionic cores) in 

steady-state current-carrying conditions can be calculated from the generalized Helhuaii-Feynman 

theorem (HFT) [see Eq. (3.2.1)]. Both the thermodynamical approach [111] to the steady-state 

transport and the axiomatic description [108] of a closed time-dependent (TD) system of quantum 

electrons and classical nuclei lead to the same expression for the forces on the nuclei * as the 

expectation value of the gradient of the Hamiltonian with respect to the nuclear positions. We 

extend our previous Hamiltonian (see Eq. (3.2.6)) to account for the dynamics of the cores

£T(S,3i) =  //e(3i) +  ^pin (S) +  y„uci(3l), (3.3.1)

where Kspin contains all the spin interactions in the system and VJiuci is the inter-site repulsion. 

The purely electron part now bares an explicit dependence on the positions 31 of the atomic cores. 

We rewrite the above Hamiltonian in a tight binding representation

//(S,3l) = [(//e),, { )̂ + (Ks)r, (S)] 4c ,a  + V̂ ss(S) + Kucl(3i) . (3.3.2)

 ̂ We often use different terms to refer to the atomic sites in the system , e.g. nuclei, cores, atoms, ions, sites, 
etc. to emphasize a particular property of theirs. Here we use “nuclei” as it is closer to the idea of a clcissical 
dimensionless mass point.
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3 .3  S p in  and  stru c tu re  in terp la y  u n d er b ias

where the  S-dependent term s are the  same as the  ones used before [see Eq. (3.2.13) and (3.2.14)].

(^es)r,(S) = ■ SiSi j  =  C O S(piSij (3.3.3)

v^ss(S) =  -  Y  ~

Here the  conduction electrons are again assum ed spin-polarized abou t the 2-axis (cr =  ± 1 ), J , Jg  > 

0 are the  onsite and inter-site exchange couplings, |S i| =  1 and (f)i is the angle which the i-th  local 

spin in the  junction  forms w ith the quantization aocis.

T he purely electronic p a rt of the  H am iltonian reads

(//e ),j m  =  [£o +  IX,(31)] -  x { R , j )  (3.3.5)

where x i ^ i j )  is the  inter-site hopping integral, which now depends on the inter-site distance R i j  =

|R , — R jj and Ui is the  residual on-site m ean-held Coulomb poten tia l created by the excess charge

a t all o ther sites

= =  ( 3 . « )

where the  distance dependent factors are denoted by Uik (they decay Coulombically a t large 

distances and have an onsite streng th  of Uq), h  = e’̂ j- inso =  14.4 eVA. T he residual onsite charges 

are defined as A p i  =  Pu (Po)i, where is the  i-th  diagonal elem ent of the  electron density 

m atrix , corresponding to  spin cr and (po)i is the  charge-neutral num ber of itineran t electrons on 

the  z-th site.

T he inter-site distance dependences of the hopping integral \  and the  direct nucleus-nucleus pair 

repulsion Vnud are m aterial dependent. We assum e inverse power laws fitted to  elastic properties 

of bulk noble m etals in Ref. [101]

X { R v )  =  J  for (3.3.7)

V n u c m  =  ̂  5 ^(K ,ud )i,- = IE ( ^y  ■ (3.3.8)

In our calculations we have taken the  m aterial param eters of gold: e =  7.8680 meV, c =  139.07, 

Uf = 4.08 A, q = 4, p  =  11.

The m echanical forces acting upon the atom ic cores, which according to  the  generalized Hellman- 

Feynm an theorem  are the expectation value of the gradients of the  H am iltonian w ith respect to 

the  nuclear positions, are as in Ref. [108] given by

L
2 (V, (i /e ), j)  Re f ApjApjVj(7ij Vi(14iuci)i (3.3.9)

where =  V r , is the gradient w ith respect to  the position of the  i-th  site.
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3.3.2 How spin dynam ics is affecting the structure

We consider as mechanically active the five atoms in the constriction, i.e. the three included in the 

suspended chain plus one adjacent atom from each lead, as depicted in Fig. 3.1. These are relaxed 

at a given finite bias voltage V  for a fixed S. For symmetry reasons the atomic relaxation always 

results in displacements only along the longitudinal direction (y-axis) and we use y to denote the set 

of coordinates of the active sites. The conditions, in which the structure has undergone relaxation 

are specified as subscripts, i.e. yy^s designates a structure relaxed at a bias voltage V  and spin 

state S.

The initial geometry, denoted by yuni, is that of equidistant atoms with a nearest-neighbor 

distance of a =  2.5 A .  This is near to the equilibrium bond length of a periodic ID chain within 

our model [112]. However, such a bond length produces a compressive stress in the bulk leads, as 

a result of which the leftmost and rightmost atoms are j)ushed slightly out of the leads and the 

five-atom chain as a whole shrinks by about 2% at zero bias [see Fig. 3.20(a)].

f t y

Figure 3.19: Scheme of the magnetic point contact. The mechanically active atoms are depicted 
in red.

Firstly, we investigate how the spin state of the constriction affects its structural relaxation. We 

relax the active atomic sites in different spin configurations, e.g. Si =  (0,0, tt) and S2 =  (0,7r,7r), 

representing two possible spatial positions of the abrupt DW inside the constriction, but also in 

some intermediate states with 02 £ [0, t t ] and such that Ti^s = 0, denoted connnonly by S(0 2 )- 

The atomic displacements yv,S(4>2) ~ Vv.Si ,  produced during the DW migration, are monotoiiic 

functions of 02 [see Fig. 3.20(b), where V = IV]. They represent nearly rigid translations of the 

whole atomic chain in the direction of the electron flow. However, the overall DW-shift-induced
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3.3 Spin and structure interplay under bias

displacements Ay§ =  yv.S2 ~  yv,Si are very small and constitute about 3% of the displacements 

from the uniform structure Ai/uni =  2/0 .S1 2  “  Vuni, where t/o,Si,2 represents the structure relaxed 

at equilibrium {V  =  0) [Fig. 3.20(a)], The dependence of Ay§ on the bias (which is driving a 

spin-polarized current through the junction) is shown in Fig. 3.20(d). Apparently, independent of 

the bias, the rotating spin site (# 2 )  is always displaced by the same quantity during the transition. 

Looking at the external sites, the bias tends to contribute to a small relative shrinkage of the chain 

during the DW migration. This is indeed a very small effect, amounting to about 0.1% of the 

intersite distance a =  2.5 A .

0..“)

V=0
- 0.5

atom ic site #

site #1 
site #2 
site

V=1 V

0.05

0 .04 ,
0.5

V (V)

Figure 3.20: Longitudinal displacements (in picometers) of the atoms in the chain: (a) from the 
uniform geometry at y = 0; (b) as function of the DW migration reaction-coordinate (j)2 V  =  \ 

V; (c,d) as function of the bias voltage V.  See text for details. Here J  =  1 eV, Jg =  50 meV.

The effect of the bias voltage on the structural relaxation at a fixed spin state, imprinted in the 

quantity Ayv' =  Vv,s —yo.s for the two stable collinear configurations S =  S i ,2 , is presented in Fig. 

3.20(c). The purely current-induced displacements are rather linear functions of V  (for V <  1 V) 

and promote a tendency toward dimerization. Below 0.5 V the magnitude of the maximal atomic 

displacement |A y v |/a  <  0.2% is comparable to the displacements Ay§.  Interestingly, the A y v  

are almost insensitive to the spin state S i,2 , which is a result of the weak bias-dependence of Ay§  

[see Fig. 3.20(d)]. Indeed, if we define A y y { S x )  =  yv.Sx 2/0,Sv for X  =  1,2  and impose that 

A y s { V )  =  yv,S2  ~  Vv.Si »  const(K) then

Ayv{S2)  -  Ayv(Si )  =  yv,S2 ~ yo,S2 ~ Vv,Si + Vo.Si =  Vs{V) -  ys{0 ) ~  0 , (3,3,10)
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This imphes th a t different spin sta tes bear alm ost indistinguishable structu ral variations in­

duced by the current. Also transitions between spin sta tes (representing a DW shift by one 

site) under bias have very little im pact on the s tru c tu re  (atomic displacem ents less th a t 0 .1% of 

the interatom ic distance a =  2.5 A). A part from S i ,2 and S (02) o ther spin states, having m ulti­

ple ab ru p t DWs [e.g. (7r , 0 , 7r) state], are found to  produce an effect very similar in m agnitude 

(A'i/s(] V ) /a  < 0.3%) on the  stru c tu ra l relaxation. This establishes th a t  the struc tu ra l properties 

of a m agnetic nano-device under bias are to  a large extent independent of the m agnetic state.

0.4

0.2

- 0.2 site #1 
site #2 
site #3

“  -0.4

2 31.5 2.5
J (eV)

Figure 3.21: J-induced  variation in the  longitudinal displacem ents of the chain atom s in the 
constriction.

For th e  sake of comprehensiveness, we include the  com puted J-dependence of the  equilibrium 

(V  = 0) s tru c tu ra l relaxation of the  chain a t § 1,2 (see Fig. 3.21). The observed left-to-right m irror 

sym m etry upon swapping S i <— ► S 2 reflects the  spatial sym m etry  of the system. The overall 

effect of the  exchange coupling J  on the  atom ic relaxation is linear up to  very large J ’s. The 

linear slopes, though, are ra ther small. Doubling J  brings a t m ost a 0.25 % variation in the  atom ic 

displacem ent. Once again this finding supports the  observation of th e  weak effect of the spin of 

the  m echanical properties of the structure .

3.3.3 How structural readjustm ents are affecting the spin dynamics

Here we address the  o ther aspect of the  interplay by looking a t how the  structu ra l relaxation 

affects th e  energy barrier for DW  m igration over one spin site, i.e. th e  transition  between two 

stable collinear spin sta tes S i — > S 2. This is again calculated by integrating  the torque T 2 over 

the reaction coordinate (p2 as S 2 is quasi-statically  ro tated  while the  o ther two active spins S i 3 

are constan tly  relaxed so th a t their associated torques are kept a t zero [see Eq. 3.2.21].

60



3.3 Spin and structure interplay under bias

We investigate these barriers in different structural states. Three such groups of structures are 

considered (i) the uniform structure yuni which is not relaxed and all atomic sites are equispaced, 

(ii) yo.cSi relaxed at equilibrium and S and (iii) yv.s,  relaxed at a bias V  and S, where typically 

S = S i,2 - We introduce subscript indices to indicate the structural state, thus Wv,§{V,(j)2 ) is the 

work as defined in Eq. (3.2.21) a function of the reaction coordinate 4>2 and describes the profile 

of the non-equilibrium DW migration barrier at a bias V for structure relaxed at V and S. For 

brevity in Fig. 3.22 (top panels) the latter quantity is designated simply by 

where S =  S i,2 - A key feature of all the profiles W  is the tilt of the barrier at any finite bias even 

for a uniform atomic arrangement. This tilt is attributed to the non-integer electron occupancy 

per site, used in these simulations (po =  0.7) as opposed to 1 e/atom used previousl,v (see Section 

3.2.4). In the latter case of a half-filled band the density of states of the simple cubic leads has the 

special property of being invariant with respect to reflection about the Fermi level and then the 

leading contributions to current-induced forces and torques are linear in the bias. This asymmetry 

manifests itself as a preferential spatial localization of the DW at a given bias V : under the jjresent 

bias V > 0 the Si =  (0 ,0 , t t ) configuration is stable, while the S2 =  (0, t t , t t ) is at most metastable. 

Hence, the DW can be driven back and forth in the constriction by an alternating current. This 

is an explicit example of a current-driven DW motion.

We now focus on the contribution of the atomic relaxation to the DW migration barrier profile. 

The bottom panels of Fig. 3.22 depict the difi^erences AW^ =  W  ~ Wq and AH'uni = W" — as 

functions of 02 at different bias voltages V,  where Wo,s{V,4>2) and W^uni( î02) are the barriers at 

the given voltage V  and atomic structure relaxed at =  0 and at a uniform (homogeneous and 

imrelaxed) structure respectively.

Thus we can isolate the effect of the current-induced atomic displacements [see Fig. 3.20(c)] on 

the DW migration barriers by looking at AH ô and those resulting on the full atomic relaxation, 

starting with the uniform structure and going to a steady state at voltage V  [see Fig. 3.20(a)], 

by looking at One observation is that AWq > 0 for any choice or parameters or bias,

which means that the current induced rearrangement systematically increases the barrier height. 

Quantitatively, this is a rather small effect -  the barrier height increase max(AlVo)/niax(iy) is up 

to 2% for J  > 1.5 eV. The actual atomic displacements though, which invoke it are also very small 

Ayv^/a < 0.4% [see Fig. 3.20(c), we have found that there is no significant J-induced effect to 

it].

However, the relaxation from the uniform arrangement, which shortens the interatomic distance 

in the chain by upto 4% [Fig. 3.20(a)], has an opposite efi'ect and reduces the barrier height 

approximately by max(AH^uni) /n iax(iy) w 25 — 30% (see Fig. 3.20) for J >  1.5eV. This is a
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J=leV J=1.5eV J=2eV

— V=OV 
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V=IV
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Figure 3.22: DW-niigratioii energy barriers at different biases V  for Jg =  50 meV and J  =  1 ,1.5, 2 
eV (panels from left to right). The solid (dashed) lines are for structure relaxed at S i [S2 ]. In the 
top panels W  =  Wv,&{V^ 02) is the work at the given bias V  and geometry relaxed also at V . The 
middle panels depict AW’o =  W  — Wq, where'TFq =  H'o,cs(V", </>2') is the'barrier'at the given'bias for 
structure relaxed at OV. In the bottom panels is AlFuni =  W  — H u,,,, where U u,,, =  W u„i(V", <;i>2 ) 
is the barrier at bias V  and uniform geometry.

rather sizeable effect for the spin dynamics and it is induced by such a little adjustment of the 

structure. In fact, this effect can further increase to about 200% for exchange parameters close 

to a separating curve in the spin-state stability diagram in Fig. 3.8.  ̂ Hence the spin dynamics 

in the contact is indeed strongly affected by the atomic configuration, especially in the region of 

parameters where the J  coupling mechanism starts competing with the direct exchange mechanism.

Finally, the effect of the structural relaxation upon the conductance of the system is found to be 

small (Fig. 3.23). The current is clearly insensitive to the DW migration within the constriction. 

The overall variation of the net current for the rotation of S 2 for fixed geometry, which is in itself 

a small quantity, is further substantially compensated by the structural rearrangement induced 

variation, i.e. the structure is found to respond to the spin flip by structural adjustment, which 

minimizes the conductance variation (see inset of Fig. 3.23). We have also found a decrease in 

conductance due to relaxation of the structure from the uniform geometry. This agrees qualitatively 

with the findings in Ref. [94], although the effect we observe is much smaller in magnitude.

'T h is occurs for instance when J  and J s  are such that the zero-bias DW migration work as function of the 
“reaction coordinate” (e.g. <̂2 ) changes from having two stable states with colinear local spins to only one stable 
state with <j>2 =  tt/2. For J s  =  50 meV and this parameterization this occurs for J  between 0.8 eV and 0.9 e'V (see 
Fig. 3,8).
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Figure 3.23: I-V  curves for a geometry relaxed at V. Solid (dashed) lines represent (0,0, tt) 
[(0,7T,7r)] state. Top inset: dependence of net current for K =  1 V on the DW-migration reaction 
coordinate 4>2, circles represent structure, relaxed at 4>2 [see Fig. 3.20(b)]. Bottom inset: A / = 
/ - / o / , .  ni, where /q (/uni) refer to relaxed at K =  0 (uniform) structure.

3.3.4 D ependence on material parameters

Here we extend the study of the magneto-mechanical interplay, which is based on material- 

dependent parameters fitted to cohesive properties of bulk Au, by considering other readily avail­

able [101] sets of empirical parameters suited for an orthogonal TB electronic structure model. 

These represent the bulk cohesion of other transition metals, namely Cu and Ag.

e (meV) as (A) P Q c Po a, A
Cu 12.61 3.61 9 3 112.4 0.5 2.3
Ag 2.550 4.09 12 3 401.2 0.7 2.6
Au 7.868 4.08 11 4 139.1 0.7 2.5

Table 3.2: The empirical TB parameters for noble metals from Ref. [101]

The atomic displacements A j / o  =  j / o . S i .2 “  2 /u n i  at equilibrium {V = 0) are depicted in the 

left-hand side panels of Fig. 3.24 for the three different parameterizations. They amount to a few 

percent of the bond lengths a (see Table 3.2). However, Ayo are at least an order of magnitude 

greater than  the displacements Ay§ = yv.§2 ~ VvSi > induced by the DW migration for V  up to 2V 

and any set of material parameters (see right-hand side panels of Fig. 3.24). This confirms th a t 

the structural properties of a magnetic nano-device under bias are to a large extent independent 

of the magnetic state and the particular choice of structure-related TB parameters.

The reverse interplay, i.e. the effect of the structural state on the DW migration barriers for all
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Figure 3.24; Displacements o f the atoms in  the chain from  the uniform  geometry a tV  =  0 (panels a, 
b, c) and as function o f the bias voltage V  (pands d, e, f)  for the thr'ee'differerit pararheterizatidns': 

Cu (top), Ag (m iddle), Au (bottom  panels). See text for details.

Cu Ag Au
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Figure 3.25: Top panels: W  =  Wv,s at bias V  — 0,0.5,1 V  and S =  S i (S =  S2) represented 

by solid (dashed) lines and T B  parameters for Cu, Ag, Au from left to  righ t panels. M iddle 

panels: AH^uni =  ^ v ,s  ~  ^^uni- Bottom  panels: the net current /y §  for F  =  1 V. Red dotted line 

corresponds to  S{<f>2 ) — {</>i,0 2 , 0 3 } j where 0 i ,3 are such th a t T 13 =  0.
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three mechanical parameterizations is demonstrated in Fig. 3.25. The top panels show the barrier 

profiles for IV = W\/,Si while the middle ones represent AM^uni = W  — where all

quantities are defined as in the previous section. We consider the relative variation of the barrier 

height, defined by max(AW^unj)/max(Wy), as a quantitative measure of the effect. The latter is 

about 30-50% for Cu and Ag and can reach 200% for Au, where the chosen values for the exchange 

parameters appear close to the critical for the stability of a collinear spin-state (see Fig. 3.22 and 

the footnote on tha t page). Thus the effect of a structural relaxation on the DW migration barrier 

is significant for all the parameterizations, while that of the spin-state S is practically negligible 

(see Fig. 3.24).

Finally, the effect of the DW-shift-induced structural variation on the net current /v '(S), de­

scribed by the ratio (/y.Sj — Iv.Si) /Iv,Si ,  is found to be very small (less than 1% for a bias of IV) 

for any choice of TB parameters (see bottom panels of Fig. 3.25).

Essentially, we have found no critical dependence of the interj)lay between the magnetic and 

mechanical relaxation on the choice of structural parameters describing the transition metal. The 

interplay between the structural relaxation and the mobility of the DW inside a magnetic point 

contact is only strong in one direction and the DW motion does not affect the structural dynamics 

nor the conductivity of the system.

3.3 .5  Sum m ary on th e  m agn eto-m ech anical interplay in M P C s

In conclusion we have developed a scheme to investigate the interplay between the magnetic and 

structural degrees of freedom of atomistic MPCs under current-carrying conditions. We have used 

it to calculate the effects of the structural relaxation (both in equilibrium and in the presence 

of current) on the migration barrier for an abrupt DW and, reversely, the effect of the magnetic 

configuration on the structural relaxation of the junction. Our main finding is tha t the interplay 

is predominantly in one direction, that is the structural relaxation strongly modifies the DW 

migration barrier, while spin state has little effect on the mechanical forces.

Other finding from our calculations is tha t the barrier typically shows a substantial asymme­

try, which increases with the external bias even for a spatially symmetric system. That opens 

the possibility of voltage-controlled DW motion in such systems. Further, the current-induced 

displacements from the relaxed at =  0 structure and are of the order of A y v  fa  < 0.7%, produce 

an additional tilt in the DW migration barrier and an increase in height by about 3%. This is small 

compared to the effect of the relaxation from the initial uniform atomic configuration at the given 

bias. The latter corresponds to structural distortion by Ayum/a < 4% but results in a dramatic 

effect on the barrier profile, reducing the barrier height by up to 2/3 or even making the alternative
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spill-state in the junction unstable, i.e. blocking fully the DW migration, for some exchange pa­

rameters. T hat is a manifestation of the strong non-linear dependence of spin-polarized transport 

properties on structural rearrangements. However, structure is practically not affected by the DW 

migration under bias. This is understandable in view of the fact tha t the mechanical forces depend 

on the total charge density of the current-carrying electrons, not on their spin polarization. In 

other words, as long as the conductance is not greatly affected by the spin state, so would be the 

underlying structure. An interesting observation has been the variation in the conductance as a 

result of the spin rotation is to a great extent compensated by the structural deformation (see Fig. 

3.23 and Fig. 3.25). This can be a possible mechanism for the experimentally observed in Ref. 

[117] independence of the conductance on the magnetic configuration in MFCs.
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Chapter 4

Tim e-dependent quantum  
transport

4.1 Introduction

The Landauer approach to electron transport, described and applied to spin-polarized atomic point 

contacts in the previous chapters, has been widely and successfully used to model the steady-state 

conduction properties of mesoscopic devices. This static scattering description has also contributed 

to the understanding of otherwise dynamic phenomena like local heating and electromigration. If 

the adiabatic [Born-Oppenheimer (BO)] approximation is subsumed, the combined dynamics of 

the heavy nuclei (or ionic cores) and itinerant electron gas can be course-grained in time as a 

sequence of quasi-static shifts of the inert cores, with each snapshot of the cores defining para­

metrically a steady-state electron conduction. In this way the static approach to  conduction gives 

an approximation to  the dynamical evolution on the time-scale of the inert degrees of freedom. 

Because of the open boundary conditions in a typical transport problem, departing from the BO 

approximation and the static approach is a rather challenging task. There exist true dynamical 

methods, where open boundary conditions are introduced and the electrons and ions are evolved 

simultaneously (Ehrenfest dynamics) and even beyond Ehrenfest, quantum corrections to ions are 

introduced in what is called correlated electron-ion dynamics (see for instance Ref. [70]). Actually, 

this level of sophistication appears essential for modelling effects like local heating.

For our purposes here we do not need to depart from the BO approximation, i.e. we shall 

be looking at a snapshot of all inert degrees of freedom. Even when these are eliminated the 

static approach does not recover all information about the non-equilibrium system. Instead it 

does produce a self-consistent steady-state, given some initial “guess”-state of the system. Such a
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procedure does not provide inforination about the rest of the  phase-space p o rtra it of the system 

ap art from the  self-consisteiitly determ ined steady state. I t does not im m ediately provide an answer 

to  w hether or not the s ta te  is unique. In fact, for non-hnear system s of in teracting electrons under 

constant control param eters there may as well be m ultiple steady  sta tes available [124]. '  It can be 

expected th a t when a b a tte ry  (pair of reservoirs w ith different chemical potentials) is connected to 

the  device, the  in teracting electrons originating from one reservoir, scattered  and collected in the 

o ther reservoir m ay establish different steady-sta tes for different initial electron d istributions in 

the  device. W ithou t the  notion of free-energy by which these sta tes can be discrim inated, only the 

real-tim e evolution of the  system  can provide an indication of which s ta te  will be realized under 

the  given circum stances.

In w hat follows we describe one model exam ple where m ultiple steady-states can be identified 

by the sta tic  approach. We also introduce a semi-empirical opon-boundary approach to  the time- 

dependent tran sp o rt and com pare the I  — V  characteristics calculated statically  and dynamically.

4.2 Transport m odel for a dim er in a chain

We consider an infinite m onoatom ic wire, described by orthogonal single-band tight-binding model 

[Fig. 4.1(a)]. T he chain has uniform nearest neighbour hopping integrals j3 except for a pair of 

atom s (which we refer to  as the  dim er), coupled to  the  chain w ith some different hopping param eter 

7 and between them selves w ith 5 which in general can have different values. W'e consider a half­

filled spinless band (0.5 e /a to m ) w ith all onsite energies set to  zero. Hence at equilibrium  the 

Fermi level is a t zero too {Ep  =  0). A bias voltage V  is then applied to th is system  by shifting the 

onsite energies of the left-hand side semi-infinite wire by e V j2  and the  right-hand side ones E r  

by —eV /2  [Fig. 4.1(b)], In order to  determ ine the  non-equilibrium  properties of th is system  we 

shall employ some results from the N E G F theory  described in C hapter 1. Because of the  extrem e 

sim plicity of th is  system  we can carry ou t a big portion of the N EG F algorithm  analytically.

Since our device consists of only two atom s, we work in 2 x 2 m atrix  representation. Firstly, 

let us in troduce the  re tarded  surface G F in the  energy dom ain of the two ( “L” , “R ” ) homogeneous

^Slightly departing from the main objective here we point to the fact that steady-state transport is a non­
equilibrium mode, though indeed a very special one for which a set of macroscopic parameters does not change in 
time. As this makes steady-states in some sense closer to the equilibrium states than the general non-equilibrium 
states, a thermodynamics theory of steady states is actually being developed at present [Glj. For the analogous 
to the Landauer problem where a device is coupled to two reservoirs with different temperatures a steady-state 
free energy thermodynamic potential has been recognized in the linear non-equilibrium regime of small heat flows. 
However, we cannot extend the results of that analysis to a general quantum-transport problem away from the linear 
response regime.
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® E n = - V / 2
1_ „

Figure 4.1: A schematic representation of the monoatomic chain with the dimer. Panel (a) ilhis- 
trates the assignment of hopping parameters, (b) is a cartoon of the model electrostatic arrange­
ment after the application of a bias voltage V to the two semi-infinite sides of the chain.

semi-infinite chains

n _ n
9 l (R)  — ff00(33) — 7 ^

where the convention for the sign is described in Appendix A. As a matter of convenience we 

also introduce g[,(n), the retarded surface GF of the leads, each extended to include one dimer 

atom at its end. In other words we connect the dimer atoms “1” and “2” to the “0” and “3” 

sites, respectively (see Fig. 4.1(a)) with hopping integrals 7 . The new surface GF gi  ̂ =  gn  and 

gfi = g2 2  can be determined from the Dyson’s equation (see Ai)pendix A). We use the result from 

E(}. (A.0.3), rewritten as

g i  =  g°n +  gR =  g °2 +  7 ^5225r 5 h  (4-2.2)

where ~  l/(-® “  - 1̂(2 )) are the “free”-atom Green’s functions of the dimer atoms. Hence

we obtain

9 l (R)  =   5 - 0 -• (4.2.3)
E  -  S i ( 2 )  -  l^g%n)

We then write the effective Hamiltonian of the “scattering region” (the dimer) as [see Eq. (2.3.2)]

H .,  =  ( E,  I
where represent the self-energies. From //eff fhe Green’s function [see Eq. (2.3.4)] can be
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determined 1

-1 ^ _________________ 1_________________  (  E - E 2 -  5
( E - E r -  j ^gl ) {E - E ^ -  -  5̂  \  S E -  E,  -

(4.2.6)

Here we notice th a t switching to gL(R)  [defined in Eq. (4.2.3)] simphfies the expression and we 

obtain instead

G =  ---- ^ )  . (4.2.7)
1 -  ^ g i g R  \  ^9 l 9 r  9 r  J

Hence the density of states =  ^ G T [see Eq. (2.2.3.5)] of the electrons originating

from the left (right) lead (which also play a role of the reservoirs), become

- I n i  [c/l] (  1 Sg*n

D „  =  J  }  (4 .2 .9)
n \ l  — 6“̂ gLgR\  V ^9l  S \g i \  J

where the star (*) indicates complex conjugation. Considering zero electronic tem perature of the

reservoirs, i.e. a step-function for the occupancy fh(R){E)-  =-^(-M!;(/?) — E) ,  the stfiadyrstate density ,

matrix of the system from Eq. (2.2.35) can be rewritten as

/O /'O  n e V / 2

D { E ) d E -  /  D R { E ) d E +  /  DL{E)dE  (4.2.10)
oo J - e V / 2  Jo

where D{E)  =  D l (E) + Dft{E) = —;^Im[G(£')] is the steady-state density of states For the 

steady-state current [see Eq. 2.3.10] we obtain

V / 2  V / 2

;  =  ^  =  , 4 2 .12 )
h J  h J  \ l -5'^gLgR\

- v / 2  - V !2

where we have used the fact tha t the broadening matrices F =  i(E£(/j) — = —2Im 

for the dimer read

_ /  2lm[gL\/\gL\  0 \  p _ / 0  0 \  M 9 n 'l
0 o j ’ ̂ ^ - [ 0  2 M 9 r ] / \ 9 r \  ) ■

Here we have also used the relation Im[<7°] =  Im[5L]/7^ |5l|-
^We use th e  fact th a t th e  inverse o f a 2 x  2 m atrix

a b \ 1 1
A = \  1 is =  — r -  . (4 .2 .5 )

c d  I det [A] \  —c a

^E quivalent forms of expressing p  are 

- e V / 2

p =  j  D { E ) d E +  D[ ^ { E ) < i E=  |  D { E ) A E  -  j  D n { E ) d E . (4 .2 .11)

e V / 2  e V / 2  e V / 2
r e V / 2

~ e V / 2
- e V / 2
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Now th a t we have derived the Landauer m achinery for the dim er in a chain, we in troduce the 

mean-field electron-electron interactions in the  form of an onsite repulsive potential U  so th a t

El  = 2 U{ p i i  -  po) and E 2 = 2U{p22  ~  Pa) ■ (4.2.14)

Because of the  perfect electron-hole sym m etry of the  system  we have p n  = 1 — P2 2 - Given po =  0.5 

we introd\ice n  as th e  charge a t dimer atom  1 and £ as its energy

Pii = n-, P22 = I — n  E{n) = Ei {n)  = —E 2 {n) = 2U(n — 1/2) .  (4.2.15)

T his dependence of E\  2 on n  makes Eq. (4.2.10) recursive in n

eV/2 - e V / 2
^  _J_ r l m[gL{E,n)]  d E  _  ^  f  Im [g/;(£ ',n )]  d E

|2 (4.2.16)
\l -  S‘̂ gL{E, n)gR{E, n) \  tt J  \1 -  S' ^gL{E,n)gR{E,n) \"

—  —  0 0

where

gL{ i i ) {E, n ) = E T ^ { n ) - ^ ^ g O { E )  ' {^.2.17)

Here 92,(R)(-^) defined in Eq. (4.2.1) and we assume ^

E l  = eV/ 2  and E r  = - e V /2 .  (4.2.18)

We then  look for a self-consistent solution of Eq. (4.2.IG) and this corresponds to  the Landauer 

steady-state . Interestingly, for th is system  the root of F (n) — n  is not unique for high enough V  

and  U.  In the following we investigate num erically the properties of F(?i) against the variation of 

m odel param eters.

O ur reference set of param eters for the  dim er in the chain is

/3 = -3 .8 8 e V , 7 =  5 =  - l e V  and U = 7 e V .  (4.2.19)

Figure 4.2(a) illustrates the  effect of the  variation of the  applied bias voltage on F (n). Above 

V =  3V  we see the  appearance of two new solutions of n  =  F (n ). Similarly, a t a given bias the  

m ultiple solutions appear only above certain  value of U  [Fig. 4.2(b)]. In th is case F (n ) s ta rts  

bending upward above n = 0.5, the point {0.5,F(0.5}} being common for all graphs as F(0.5) 

cannot be distinguished from the non-interacting case w ith [7 =  0. Hence, one of the  roots is

always below 0.5, corresponding to  a depletion of the first dim er atom , and the  o ther two are

'N o te  th a t  in our sim phfied model only th e  d im er atom s can be charged and th e  lead onsite  energies are 
considered constan t as implied in Eq. 4.2.18. T here  is som e arb itrariness in th e  choice of EL(fl) as =  Eft  =  0 
corresponds to  th e  infinite m etallic chain w ith perfect transm ission, while = —E r  =  eK /2  corresponds to  
perfectly  isolated leads with no transm issioti between them . However, we have established in calculations th a t  for 
th e  regim e of param eters we investigate th e  two extrem e values of produce very little  difference int th e  result
for th e  curren t. T h e  difference is negligibly sm all a t low bias and grows to  a t m ost 1-2% at  V  =  3V .
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above, corresponding to  an excess of charge. These la tte r sta tes both  correspond to  an electrical 

dipole w ith a negative pole facing the electron flow. Before we look a t the  I -V  characteristics for 

the m ultiple s teady-state  solutions we exam ine the  special “s tru c tu ra l” setup th a t predeterm ines 

this behaviour.

t /= 7 eV , varying V V=3.5V , varying U

¥{n) = n

0.6 0.6

—  7.0V
—  5.0V
—  3.5V
—  3.0V
—  2.0 V
—  O.OV

0.4 0.4
9eV

—  7eV  
4eV

—  2eV 
OeV

0.2 0.2

0.4 0.60.4 0.6
n n

Figure 4.2; F (n) from Eq. (4.2.16) for (a) different voltages and U = 7 eV  and (b) different U and 
V  = 3.5 V. Green lines correspond to  F(?i) =  n.

We find th e  m ultiple steady-states for th e  dim er in an arrangem ent where the dim er atom s are 

weakly coupled between themselves and to  the  chain com pared to  the  couplings in the  rest of the 

chain, i.e. <5 =  7  «  |/3  [see Fig. 4.1(a)]. D epending on the  ratio  of the  couplings 3?in/out =  l<̂l /  ItI 

(the subscript indicates th a t the ra tio  is between the  hopping integral 5 inside the  dim er and 

the outside hopping 7  to  the chain) we can distinguish two extrem es, namely, 3?in/out 1  

^in/out ^ 1 - In the  first case the  dimer atom s would behave like adsorbates to  the  two semi-infinite 

leads. W hen the bias is increased, each of th e  dim er atom s would charge so th a t its onsite energy is 

close to  the  quasi-Fermi level of its corresponding lead, i.e. E \  ~  eV /2  ~  —£'2 . Hence, an electrical 

dipole would form w ith a negative pole (excess of electrons) facing left lead (where the  electron 

stream  originates). This assembly would conduct by a mechanism akin to  the  scanning tunnelling 

microscope (STM ), i.e. by adsorbate-adsorbate tunnelling, m odulated by the convolution of the 

two surface density of sta tes (LDOS). In th e  ideal case of small U and 7  =  /?, a t voltages exceeding 

the w idth of the  two LDOSs, we expect the  charge* on the first dim er atom  to increase and the

 ̂Here and  th roughou t th e  tex t w hat we nam e charge is actually  th e  electron num ber excess.
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current to  drop and decrease to 0. Our calculated n{ V)  and I { V )  for the case of 7  =  10<5 =  1 eV  

and for U  — 7, presented in Fig. 4.3, indeed show this behaviour qualitatively. The fact that the  

calculated current drops before reaching the tota l bandwidth ( ~  15 eV) is due to  the high value of 

U  for which the charging of the dimer is suppressed and the fact that 7 , nonetheless being much 

bigger than 6, is also quite smaller than /3. Because of th is the STM -like transm ission is m odulated  

by th e broadened by 7  double resonance (merged bonding and antibonding states because of the  

sm all S) around the Fermi level.

We have also studied the other regime 3^in/out ^  by swapping the values of S and 7  (see 

Fig. 4.3). In th is case we anticipate that the dimer will behave as a m olecule, weakly coupled to  

th e leads. Because of the bigger split {2S =  2 eV ) between the bonding and antibonding sta tes we 

expect a gap in the transm ission at low biases. Once the bias window is w ide enough to  contain  

the two resonances we see an increase in current. Indeed that is w hat we see in th e calculated I - V  

and the dimer remains nearly perfectly neutral (Fig. 4.3).

- ( a )0.7

0.65

s;

0.55

0 .5'

0 2 3 4 65
V (V) V (V)

Figure 4.3: (a) Electron number at the first dimer atom  as a function of bias voltage and (b) net 

current through the system  for two extrem e regimes of coupling of the dimer to the chain. Here 

U =  7eV .

In the interm ediate regime of hoppings 3?in/out ~  1 the system  cannot be identified w ith either 

of the two extrem es described above. This is the case in which at high biases we find m ultiple 

steady-states (see Fig. 4.2), solutions to F (n ) =  n.  As a function of the bias, the three branches of 

solutions n { V )  are presented in Fig. 4.4(a) and the corresponding current [see Eq. (4.2.12)] I { V )
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at these states is in panel (b). Wliat we find is tha t the two of the solutions match qualitatively 

the two extreme-coupling cases described above. The solution with high current and low (and 

nearly constant) n is the resonant-transmission solution, similar to the case /out >  1- The 

lower-current and higher-n solution of the two tha t bifurcate around 3.26 V looks similar to the 

STM-like solution (3ii„/out ^  l)i with a potential at the first dimer site almost pinned to eV/2.

0.7 150

0.65

100
0.6

0.55

0.5

0.45

V (V) V (V)

Figure 4.4: (a) Electron number at the first dimer atom as a function of bias voltage and (b) net 
current through the system for two extreme regimes of coui)ling of the dimer to the chain. Here 
U =  7 eV. Colour code is chosen so as to demonstrate qualitative similarities with Fig. 4.3.

In the following section we shall introduce a time-dependent (TD) approach to such a transport 

problem and test it for this particular situation where the static approach suggests multiple steady- 

state solutions.

4.3 T im e-dependent open-boundary m ethod

The idea of this approach originates from Ref. [124], where the terms of mapping the conventional 

Landauer-type steady-state transport problem onto a finite microcanonical one are rigorously an­

alyzed. The latter is described as the long-lived (quasi-steady state) discharge of a macroscopic 

capacitor through the much smaller device, together forming an isolated system. It has been 

demonstrated [124] tha t the total current in the true interacting many-electron system is identical 

to the one-electron current, obtained from tinre-dependent density-functional theory (TDDFT) 

[84] as long as the system is finite. Thus the reduction of the conventional transport problem to
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a time-dependent one for a finite system looks like a promising way to go when concerned about 

time-dependent quantum transport.

Here we follow Ref. [87] and consider the finite system cartooned in Fig. 4.5. It consists of a 

capacitor (C), connected to a device (D) by a pair of leads. Initially (at t = 0) the capacitor is 

statically polarized, i.e. there is a static charge imbalance between its plates. Such can be achieved 

by the application of an electric field (voltage source) across the capacitor. At < > 0 this external 

source is removed over a short time interval and the system, which is no longer in a stationary 

state, is allowed to  evolve according to the Liouville equation of motion

dt
1

ih
(4.3.1)

Here, p =  p{t) is the reduced spinless one-particle electronic density matrix (DM) and H[p] is a 

generic effective one-electron Hamiltonian, such as th a t produced by TDDFT [84].

Source

Drain

Figure 4.5: Sketch of the partitioning of the system into a device (D) and a capacitor (C).

As we said earlier, if the discharge of such a capacitor in the circuit is long-enough, it could 

be described by the above Eq. (4.3.1) and provide a finite steady-state analogue to the Landauer 

transport. However the capacitor sizes needed to provide discharge times significantly exceeding 

the femptosecond range are unfeasible for atomistic simulations A solution is to continually 

feed electrons tha t have flown across back into the starting electrode. As this cannot be done in 

our quantum DM description of the electron gas, we choose to maintain the charge imbalance in 

the capacitor, and hence the current, through a driving source/drain like term in the equation of 

motion of the DM
dp
dt

1
ih

H\p],p\ - T { p -  po) ,

'F o r  instance, w rap-gate transis to rs of ~  100nm length have a  gate  tim e delay of ~  100fs [5 ;̂].
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where F is a real param eter and po is a specially prepared DM, which in real-space positional basis 

reads
P i j { t  = 0) for i , j  G C

Here p{t = 0) is the initial statically  polarized DM. Hence, the role of this new F-term  is to  dam p 

the  DM of the  capacitor plates (only) back tow ard th a t initially charged state. Physically, this 

achieves two objectives. F irst, it describes the  effect of connecting the  capacitor to  an external 

voltage source, which m aintains the  charge-im balance in the system . Second, as /3(0) is purely 

real, it dam ps the im aginary parts of p in the capacitor region and thus incorporates into the 

description of electrons a generic phase-breaking scattering m echanism inside the electrodes. For 

both  F too small and too  large the current is suppressed. In the  first case this is because of the 

inability to  m aintain the  instantaneous charge imbalance, while in the in second case because of 

“over-scattering” causing localization. For the  following sim ulations of a specific atom istic system  

a value of F =  4eV  has been used and found to  be able to  establish a steady-state  electron flow.

This scheme has been im plem ented w ithin an orthogonal tight-binding model w ith mean-field 

interactions

H  =  01 +  E  I*) + E  ’ (4.3.4)
i \  /

where =  2{pu — po) is the  to ta l particle im balance on site i w ith po =  0.5. The function of

interatom ic separation f i j  = k / ^ + k^ / V^ ,  w ith k =  e^/4ireo,  interpolates sm oothly between

onsite interactions w ith strength  U and the  bare Couloml) in teraction a t large se])aration. This

model may be viewed as the sim plest form of T D D F T  in the  adiabatic local density approxim ation

(ALDA) [134]. In the sim ulations below U = 7eV

As described in Eq. (4.3.3) the  source/d rain  term  is applied only to  the “source” and “d ra in”

plates of the  capacitor, i.e. Pij{t =  0) is set in such a way th a t the source and the  drain carry an

electron im balance by an applied (as a rigid shift to  the  onsite energies) external potential

h -t b / . n , r /  - e V i n i / 2 ,  for i , j  G Source mH,, = + for Drain ’eVini/2, for i , j  € Drain
/cGn.n. ^

where Xij is the  nearest-neighbour hopping integral between sites i and j ,  f v { t )  is a sm oothly 

decaying to  0 polynomial ram p over a few femptoseconds, included in order to  dam p the  charge 

oscillations which could be triggered from th e  ab ru p t removal of the initial bias.

T he model system  sim ulated is the  following. It consists of a two-dimensional (2D) capacitor 

w ith 15 X 20-atoni simple-cubic lattice p lates and two leads represented by two 15-atom long one­

dimensional (ID ) atom ic chains. The device is a dimer, coupled to  the  leads through a m ism atching

^This value of U  corresponds to the difference between the ionization energy and electron affinity of the gold 
atom.
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hopping integrals as described in the previous section. The hopping integrals are just as the one 

used there
r /3 =  —3.88eV, for i, j  6 C +  leads

=  —leV , for i € leads, j  G dimer . (4.3.6)
[ (5 =  — leV , for € dimer

After the removing of the external potential AV  ̂ (over a finite time interval), Eq. (4.3.2) is 

integrated numerically using the method described in Ref. [22]. The current flowing through the 

dimer as a function of time is shown in Fig. 4.6(a). This is in fact the bond current at the dimer, 

defined as the electron particle current [110, 109] between the two dimer sites

/ =  ^ Im [p i2 ] //2 i .  (4.3.7)

We observe tha t after some transient period the current finally settles at a steady state. The 

actual bias at this state A V  is calculated from the average onsite energy in each plate at the end 

of the simulation and is typically smaller than the initially applied bias Vjni [see Eq. (4.3.5)] due 

to the finite size of the capacitor. For small bias, the steady state is reached after a short rising 

transient of about 10 fs. For biases larger than about 4 V, the current first rises up to about 120//A 

and then gradually decreases to reach a much lower value of about 25/iA in the steady state.

150

G-O r  = 4  fsAV=3.23V .

100
<
zL \  \ A V = 4 A 2 \

A 1.62 V

400
t (fs) AV (V)

Figure 4.6: (a) Current as function of time from the integration of Eq. (4.3.2). The bias Al^ shown 
corresponds to the final steady state (see text for details), (b) Current-voltage curve obtained from 
the final values of the current and potential difference after a steady state has been reached, for 
two different values of the parameter F.

The I-V  characteristic obtained from the steady-state current and potential difference AV  ̂ is 

shown in Fig. 4.6(b). Up to about 4V  the curve matches what could be expected for a resonant
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transmission [see Fig. 4.4(b)]. However, we then see a sudden drop in the current and a heavily 

suppressed conduction at biases above 4.2 V. With the parameters used, the bandwidth of the 

2D plates is ~31eV and in the ID leads it is ~16eV. Therefore, the reason for the drop in the 

conductance cannot be that the bias is so high that the source and drain bands are completely 

mismatched. Also a variation in the value of F from 4 to 3fs“  ̂ has no significant effect on the I-V.

4.4 P\illy selfconsistent N E G F  results and com parison

Together with the semi-analytic static calculation we have also performed two full selfconsistent 

NEGF calculations in the spirit of the previous chapter - one with ID and another with 2D 

leads/reservoirs (see top panels in Fig. 4.7). The former case is closer to the semi-analytic treatment 

as serves as a test, while in the latter case we have used two 2D 15-atom across (same as the width 

of the capacitor plates) semi-infinite cubic-lattice structures as leads/reservoirs and the tight- 

binding Hamiltonian is the one from Eq. (4.3.4), i.e. with the additional rnean-field interactions 

considered in the TD approach. In order to seek for all the steady state solution we have developed 

an automated quasi-random initial DM feeding procedure. The “quasi” property stands for the 

fact that these matrices are true ground-state DMs for systems with randomized onsite potentials 

(between 0 and 5V) but same number of electrons. Thus for a given initial DM condition, the 

selfconsistent steady-state at a given bias is determined iteratively by the algorithm, cartooned in 

Fig. 2.7, over a region which includes layers from the leads. The results are then classified based 

on their value of the current. Interestingly, the results from both self-consistent calculations agree 

quantitatively with the semi-analytic method and pieces of all three branches are recovered.

Results from all three static calculations (including the semi-analytic one) are compared to 

the TD results (from the previous section, Fig. 4.G) in Fig. 4.7. We see that the different static 

solutions are in agreement about the existence of multiple steady states, while the dynamical 

method reproduces parts of two different static branches after a discontinuous jump at around 

3.2 V. The difference in n between the TD calculation and the semi-analytical static one at high 

bias are due to the screening provided by the intersite Coulomb terms in the TD case. This 

difference is clearly reduced when such interaction is introduced too in the self-consistent NEGF 

calculation in Fig. 4.7(c).

Our main observation is that the TD calculation naturally selects the low-current solution 

above a certain bias. The reason for this preference is the increasing instability, with increasing 

bias, of the high-current solution against spontaneous charge fluctuations in the dimer. If a small 

fluctuation in n pushes £ away from the spacial value needed for resonant transmission, this kills
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the resonance, the current drops and the system switches to an insulating (STM-hke) mode, with 

no recovery mechanism. This instabihty is also evidential from the corresponding self-consistent 

NEGF calculation where this high-voltage parts of the resonant solution have not been recovered 

despite the numerous attem pt with randomized DMs.
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Figure 4.7: Top three panels: Cartoons of the systems considered in the other panels. In all panels 
the framed region is calculated self-consistently. The bottom  triplets of graphs are organized as 
follows: spinless onsite occupancy (top panel) and onsite energy (middle panel) on dimer atom 
1 (facing the electron current), together with the total current (bottom panel), as a function of 
bias. Lines are the different Landauer steady state solutions: (a) Semi-analytical solution, (b) 
self-consistent ID solution with the parameters of the semi-analytical model, (c) full self-consistent 
solution with 2D electrodes and with the parameters of the time-dependent simulation (including 
intersite screening). Circles are solutions of the time-dependent calculation.
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4.5 U nderstanding the source/drain  equation of m otion

We have seen th a t  the ex tra  F -term  used in Eq. (4.3.2) helps to  establish in real tim e a steady- 

s ta te  in the  discharging capacitor. This effective dam ping term  in the equation of m otion for the 

one-electron density m atrix , which we identify as a flux-driving source/drain  term , is m eant to 

provide an approxim ate description of the  influence of the  environm ent on the piece of the system  

being the focus of the investigation (the device, or in our case the dim er in the  chain). In the  

following we discuss the  physical in terpretation  of the F -term  and the  conditions upon which the 

approxim ation it represents is based on.

4.5.1 A  h euristic  derivation

We partition  th e  system  into a device (D) and an environm ental (E) com ponent. In this represen­

ta tio n  all m atrices have the block form

Hence, s ta rtin g  from the Liouville equation for the  propagation of the  one-particle density m atrix  

by a one-particle Ham iltonian,

the device to  th e  environm ent. We see th a t the  environm ent operates as a driving force on the

where we have assum ed th a t  the H am iltonian is real. This equation gives the  ra te  of charge 

injection into site  a  of the  device from the  environm ent. We consider a short-ranged H am iltonian 

which can be factorized by an energy param eter KT as Hap =  fiFVap for all a, (3 and Vaij is 

a dimensionless quan tity  carrying the angular dependencies of the hopping integrals. W ith  th is 

approxim ation Eq. (4.5.4) becomes

(4.5.1)

(4.5.2)

we ob tain  an equation of m otion for the  density m atrix  poD of  the  device region

(4.5.3)

where poE  =  P̂e d  { ^ d e  =  Ĥ e d ) the  p art of the density m atrix  (Ham iltonian) which links

device. Proceeding further, we choose a convention in which the  m atrix  index a  corresponds to 

the device region and (3 corresponds to  the  environm ent. Thus we obtain  for the diagonal (qq ) 

elem ent (density a t the  site a  of the  device) of the right-hand side (RHS) of Eq. (4.5.3)

{RHS}„„ = 2F ^ 14;3lm[p^„] . (4.5.5)
0
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4.5 A nalysis

When the system is in its initial state, p%£>, i.e. at the moment when the statically-charged 

environment is brought in contact with the device, the left-hand side of Eq. (4.5.3) is zero by 

construction in the regions close to the interface. Since in this initial state there is no net current 

from the environment into the device (any such current needs time to develop), the RHS must 

also be zero. Therefore, any net flow of charge from the environment into the device must be a 

consequence of deviations of the device density matrix from its initial value. We can combine these 

observations into a single ansatz, namely.

{RHS} = f —̂ {p d d —P%d ) near the interface M 5 fil
[ 0 away from the interface

4 .5 .2  R ela tion  to  th e  Landauer form alism

In the following we seek a relation between the damped equation of motion (4.3.2) and the static 

Landauer picture, described in Chapter 2. We find that indeed the steady-state of Eq. (4.3.2) 

could coincide with the Landauer steady-state, if the latter is subject to certain conditions which 

we identify and acknowledge.

We start from the Landauer picture of a lead-device-lead system, carrying a steady state current. 

As this has been described in detail in Chapter 1, we assume known all the concepts introduced 

there and repeat here only the results, needed for the derivation. Let H  be the Hamiltonian of 

the scattering region, composed of the device plus some finite section of each lead (longer than the 

electron screening length), then the Green’s function (GF) [see Eq. (2.2.33)] for that region is

- 1 - 1
G{E) =  \EI - H  -  E(£:)J =  \EI  -  / / e f f ( £ ’ ) J  ■ (4.5.7)

where = H + t{E),

t {E)  = t t { E )  + t n i E )  = V9l {E)V + VgR{E)V. (4.5.8)

Here V is the (real) Hamiltonian that couples the scattering region to the rest of the semi-infinite

leads, and gL(R){E) is the surface GF of the left (right) lead, interfacing the scattering region. 

The density matrix for the current-carrying system in the scattering region is [see Eq. (2.2.35)]

p — p + A/5 (4.5.9)

where

0 0

/ ,= j D i E ) 6 E = l  j  [G{E)tL{E)&{E) + G{E) t R{E)G\ E) \ AE  (4.5.10)
— OO — OO
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and

eV /2  0
A p = i  /  G { E ) f U E ) G \ E ) d E - ^  f  G( E) t j i ( E) GH- E)  d E .

0 '---------------   " - e V / 2  ' ---------------   ' (4.5.11)

Here, f L ( f l ) ^L(R)

Df^(E) D r {E)

=  —2Im | e |  are tiie broadening m atrices [see Eq. (2.2.21)],

D
2-k

G -  Gt] =  ^  ( c f i G t  +  G ff lG t )  = D L  +  b R (4.5.12)

is the  local density of sta tes [see Eqs. (2.2.9,2.2.10)] and we have assumed th a t E p  =  0 and T  =  0. 

We now consider

2 t, \ h , D l ] =  -  [//efT +  t G f z , G t

= -//effGfLG+ + Gf/^Gt -  E + E+) -  EGfz,G+ + Cf/^G+E 

=  - f z , G t + G f L - 2 7 r E I ) t +  27ri?iE t (4.5.13)

At th is point we make our principal approxim ation. We approxim ate the action of the self-energy 

on G Fs or density  of s ta te  operators w ith a m ultiplication to  a scalar and a projection. In o ther 

words if <7 is a G F or a density of sta tes operator, we assume

S.V9 =  > ^ a-9 =  7 a-<7*'' ’ for

which transla tes in term s of the  broadening operator as

VLq = 2 Im [7 l]  , t a q  = 2 Im [7 /;]

X  = L , R , (4.5.14)

(4.5.15)

where 7 ,y (for X  = L , R )  is an  energy-independent scalar and is the  projection of q to  the  

area where the  lead “X” couples to  the  scattering  region. This approxim ation physically describes 

a sm earing of the  atom istic struc tu re  and it neglects the  energy dependence of the  coupling to  

the  reservoirs. Also assum ed is a locality of the G F W ith  the above approxim ation Eq. 4.5.13 

becomes

H , D r

- i l m  [7Z,] (G t -  g ) '" '^  -  (72 -  + i lR  -  1 r )D '1

—2i  Im [7l] +  2i Ini [7 ^] + 2i Irn [7 ^]

2i Im  [7fl] -  2i Im [71,] ,

{R)

(4.5.16)

'This is not an extra restriction for the Landauer picture, in which all phase information is lost in the reservoirs. 
As long as there is a scattering mechanism in the semi-infinite leads with a small enough scattering time r, it would 
translate itself into a self-energy —ih/2T,  shifting the poles of the GF away from the real axis by that amount. As 
a result the GF would be spatially localized on the scale ~  vpT,  where v p  is the Fermi velocity.
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where we have used that = Dj^ + . We thus obtain

1
ih
1

ih H , D h

(4.5.17)

(4.5.18)

in which we have introduced two scalars F/,, F/j (without the hats, not to be confused with the 

broadening operators)
2 2 

F£, = - Im [7L] and Tr  = -lm['yn] ■

Hence, in this approximation, from Eqs. (4.5.17, 4.5.18) it follows that

1
ih

1
ih

H , D

However, the commutator

H,D:^

H , A p IS non-zero

=  0
1
ih H , p =  0 .

(4.5.19)

(4.5.20)

1
ih

e V !2

H,Ap] = j dE -
U

/ H , D h {E) dE
- e V j ' l

eV/2

/
eV/2

D^^\E)dE + Tn / D ^ ^ \E )  dE (4.5.21)

At this point we make our final approximation. The integrals in Eq. (4.5.21) represent the 

non-equilibrium charge density on each of the interfaces to the leads, imposed by the presence of 

the other lead. We approximate

eV/2

/
- e V / 2

eV/2

/
- eV/ 2

D ^ ^ \ E ) d E

d [ ^ \ e ) dE

pO(L) _  p( L)

_ -(R)^

(4.5.22)

(4.5.23)

where is the initial, statically polarized, non-current-carrying density matrix in Eq. (4.3.2). In 

other words, we have found a Landauer steady-state which satisfies

H, p (4.5.24)

which is also the steady-state solution of Eq. (4.3.2) with F =  F/, = F/;. This is what we aimed to 

show. Thus in our finite time-dependent driven transport the F-terms are applied at the “open”- 

boundaries of the system. A sensible value for F, in accordance with the above Landauer picture 

interpretation [see Eq. (4.5.19)], would be

F ~  2tt(3'^d/h, 
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where /3 is the systeni-environment hopjjing integral and d is a surface LDOS per atom. This 

estimation produces the same order of magnitude F as the ones used in Section 4.3.

4.6 Sum m ary and discussion

In this Chapter we have looked at a time-dependent treatm ent of the quantum transport problem in 

a finite system at the atomistic level. Instead of taking a huge capacitor to discharge as suggested in 

Ref. [124] as a prescription for swapping the Landauer system for a finite one, we have introduced 

a source/drain damping terms to maintain the charge imbalance of the capacitor and been able 

to achieve a steady state. We have demonstrated analytically that such approach could in fact 

lead to the correct steady-state of a slightly modified Landauer problem in which the connection 

to the reservoirs has no atomistic properties and no energy dependence. For the particular system 

of a loosely coupled dimer in a rnonoatomic chain with enforced local-charge neutrality, where the 

static approach results in a multiple steady-states, the TD calculation is able to self-select the most 

•stable solution, ThLs goes beyond the capabilities, of the static methods,, which in the absence of .a 

total energy criterion, say little about the relative stability of multiple solutions.

We underline tha t the aim of this Chapter has not been to find a rigorous TD description 

of the open-boundary system. One such description must unavoidably go beyond the ALDA 

platform and we mention two such methods, namely, the TDDFT-NEGF and the Master-equation 

approach [59]. We have also not aimed at correctly describing the weakly coupled dimer which is 

a particularly treacherous system for LDA-based potentials (lacking of the derivative discontinuity 

of the density functional) [113]. All we wanted to show is tha t for the same conditions (the same 

base electronic structure model), the time-dependent method is the one to recognise the physically 

feasible solution.
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Chapter 5

Atom istic spin dynamics - theory  
and tests

5.1 In trodu ction

W ith the progress of nanom agnetism , constantly  fuelled by the industrial dem and for increasing 

m agnetic storage density, nanoscale and even monoatom ic one-dimensional [40] m agnetic devices 

have become experim entally accessible and examples of atom ic scale m agnetic phenom ena, such 

as tran sp o rt in m agnetic point contacts [125] and u ltra-th in  dom ain walls [78], have been already 

dem onstrated . Theory and modeling of current-induced m agnetic phenom ena is still, however, 

largely based on solving the classical Landau-Lifshitz-G ilbert (LLG) equation [42] w ith additional 

term s describing the  current-induced torques. A t a more advanced level tran sp o rt theory for diffu­

sive tran sp o rt has been introduced into the description, effectively creating a sort of Kirchkoff 

m agneto-circuitry  theory  [24], A much less explored area is th a t of atom istic sim ulations of 

m agneto-dynam ics. These however are expected to  occupy an increasingly im portan t place in 

theoretical m agnetism  with the advance in the ability to m anipulate devices a t the  atom ic length 

and time-scales.

This chapter is devoted to  presenting a tru ly  atom istic tim e-dependent theory  for spin-dynam ics. 

T he s - d  tight-b inding model including electrostatic corrections a t th e  H artree level will be our un­

derlining electronic struc tu re  theory and we shall be focussing on in troducing the m ain theoretical 

concepts behind our approach. As an illustration, we shall provide a range of examples where 

such scheme offers insights beyond w hat is achievable by standard  sta tic  theory. These include the 

investigation of the  spin-wave dispersion in nanoscale m agnets and spin-si)in correlation in non­

m agnetic nano-wires. The next chapter will address the  application of the  approach, jiresented
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here, to investigate current-induced domain wall motion and distortion, and the generation of an 

electromotive force obtained by domain wall precession.

5.2 M odel H am iltonian

Throughout this chapter we shall always consider one-dimensional (ID) magnetic atomic wires 

and we will describe their electronic structure by means of the s-d model [133], where conduction 

electrons (s) are exchange-coupled to a number of classical spin Sj (d). When written in a tight- 

binding form, the electronic Hamiltonian reads

^  ^  • 0 , ( 0  , (5.2.1)
i , j ,a  i,ct,0

where (cf) is the creation (annihilation) operator for an electron with spin ± 1 /2  (o =  1,2) at 

the atomic site i and cr =  1/2(ct^, cr ,̂ cr^) is the electron spin operator, {o'” } being the set of Pauli 

matrices '.

The first term  in Eq. (5.2.1) is the spin- and time-independent tight-binding (TB) part, while 

the second describes the spin interaction with a time-dependent effective local field (t>i(t)i

(5.2.3)

Here £q is the onsite energy (identical for all sites), k = e^/47reo =  14.4eV A(or k =  0 for describing 

non-interacting electrons), \  is the hopping parameter, is the electron ^-factor and B (t) is the 

external magnetic field (in general time-dependent). The second term in brackets in Eq. (5.2.2) 

is a mean-field repulsive electrostatic potential with onsite strength U and a Coulombic decay at 

large intersite distances Rij. Finally = Qi — is the excess number of electrons on site i, 

being the ground state electron density distribution. The total number of electrons Ne in the 

system is a model parameter

=  (5.2.4)
i

where N  is the total number of sites and po the band-filling, i.e. the average number of electrons 

per site.

'F o r  a  righ t-handed  coord ina te  system  (for which X e®' =  is fulfilled for th e  basis vectors), th e  basis of th e  
Pauli m atrix  represen tation  reads

“ ‘ > • - (  '  °1 0  ( i 0 V 0 - 1
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In Eq. (5.2.8) Si{t) is the unit vector in the direction of the local spin at site i a t time t. 

{Si} are treated as classical variables, nonetheless exchange-coupled with strength J  >  0 to the 

conduction electrons according to a classical Hamiltonian

I i , j ' € n n [ i j  i

where

0 , ( i )  =  J (6 r ) J t )  +  ^ 5 B ( i )  (5.2.6)

is the effective field for the classical spins, analogous to O j. In Eq. (5.2.5) gs is the g-factor of 

Si which could be of mixed spin and orbital origin, Js  is the direct intersite exchange coupling 

param eter (only first nearest neighbours, nn[i], are considered), z (|z| =  1) is the unit vector and 

Jz the anisotropy constant along the easy z-axis. Note tha t the actual norm S  of the classical 

spins is incorporated in the definition of the exchange parameters. Unless stated otherwise, we 

consider S  = h. Appearing in Eq. (5.2.6) is also the expectation value of the electron spin at site i, 

(d)j (t) = 'fr \pii{t)o], where pn =  (i \p\ i) is the i-th diagonal element of the density matrix p in the 

real-space orthonormal basis {|i)} (in a tight-binding fashion, |i) represents one electron ,s-orbital 

a t site i) and the trace is over the spin coordinates. At t =  0 the density matrix is constructed as

p(0) =  ^ / f ( e n - ^ F ) | n ) { n |  (5.2.7)
n

where {e„, |?i)} is the set of eigenvalues and eigenvectors of He{i =  0), f p  is the Fermi distribution 

and the Fermi level E p  is determined, so th a t pa = (i| p |i) =  N^. In the case of interacting

electrons [k 0 in Eq. (5.2.3)] He{t = 0,p) is determined self-consistently.

The corresponding quantum and classical Liouville equations of motion for the two subsystems

are
n f ..s

P i
dp i 
dt h

(5.2.8)

where { , } represents the classical Poisson bracket and [ , ] the quantum mechanical commutator. 

In order to calculate the right-hand side of the classical Liouville equation we need the expression 

for the Poisson bracket of the classical spins. As the classical spins are essentially angular momenta 

they obey the same relation  ̂ as do the classical angular momenta [132], i.e.

, (5.2.9)

*The P oisson  bracket of tw o com ponents o f an angular m om entum  is =
^ l a b ^ j c a  ^ ^ C p b  _  p i  _  where we have used the  E instein  notation  for repeated indices,
th e  L evi-C iv ita  tensor contraction  identity e ’- a b ^ i c d  _  g a c ^ b d  _  g a d g b c  canonical variables Poisson brackets

} . N ote th a t upper indices for C artesian com ponents (here and throughout th is chapter) are o n ly  used
for aesth etic  reasons as lower indices have already been used for d esignating s ite  positions.
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where =  S, • e” is the n-th Cartesian projection ({e” }^_j =  {x ,y ,z}) of the spin on site 

^nmk jg Levi-Civita tensor and we assume summation over repeated indices (Einstein notation). 

Note tha t in Eq. (.5.2.9) we have factorized the spin magnitude S  in order to obtain an expression 

involving only components of the dimensionless spin unit-vector S^. We thus obtain the following 

term s in the classical equation of motion

(S „  S, • 0 , } ” =  { S ^ , S ^ } Q T  = (S, X 0 , ) ” (5.2.10)

^  J  s „  s ,  • ^  S f c  I  =  I  { 5 r , 5 r } 5 r  =  - |  E  x  s , ) "  ( 5 . 2 . 1 1 )
J  ^  A:Gnn[j] I A:Enn[t] A:Gnn(t]

^  {s„ (S;  ̂ i ) ' } “ =  | s ." 2 ’"*'' {S", sf'} =  = - |  (S. ■ » i)" (5 2.12)^   ^   ^
J

Hence we finally obtain the following equation of motion for the classical spin at site i

dS 1 ( s, x 0, + J s  ^  s, X S, +  2 J , (S, • z) (S, X z) I . (5.2.13)
j€m i[r]

The above equations for all classical spins in the system are integrated together with the quantum 

Liouville equation (5.2.8) for the conduction electrons to give the combined quantum-classical time 

evolution of the s-d system.

5.3 Test sim ulations

5.3 .1  Sp in-w ave d ispersion  in a s -d  m on oatom ic chain

Molecular dynamics (MD) simulations, based on empirical tight binding model and realistic 

interatomic potentials, provide a valuable tool for accessing the vibrational properties of con­

densed m atter systems, especially in situations where tem perature and pressure related effects are 

investigated [127, 55]. Phonon dispersion and density of states are calculated from the Fourier 

transform of the velocity-velocity correlation function, resulting from MD simulation [28]. The 

phonon spectral intensity [127] is simply

3(k,w) ~  [
n

where k and u) are the wave vector and the frequency of the phonon, R „(i) and v„(/:) are the 

position and velocity of the ?i-th atom at time t. Similar schemes are often used in the framework 

of time-dependent density functional theory [28] for calculating optical excitation of molecules.
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5.3 Test sim ulations

We extend this idea to calculating the spin wave (magnon^) spectra in our s-d spin systems, 

which, within the nearest-neighbour direct exchange approximation, are the spin analogue to the 

discrete harmonic chain. Similarly, our approach is based on the time evolution of the local spins 

as described in the previous section. Let us briefly introduce the spin wave approximation in 

a Heisenberg exchange-coupled ferromagnet by following Ashcroft and Mermin [8]. If |0) is the 

ground state of the spin system, where all spins are aligned along the same direction [say z, Fig. 

5.1], then the most elementary spin excitation corresponds to the state \n) = |5^ — 1) =  ^ 5̂ 8 “ |0) 

(normalized to unity, i.e. {n\n) = 1). Here S“ = is the lowering of the spin ladder

operators acting on the n-th site [8]

S± |5^) =  (S^ ± iS l )  |5^) =  V ( 5 t 5 ^ ) ( 5  +  1 ± 5 ^ )  ±  1) (5.3.2)

w'hich reduces the spin component at n from 5  to S — 1. This state is, however, not an eigenstate 

of the Heisenberg Hamiltonian

^ h  = J 2  -  R , r ,  )S„ • . (5.3.3)
n.m

T 5

Figure 5.1: Schematic representation of the ground state, |0), and an excited spin-wave state, |k), 
of a Heisenberg exchange-coupled monoatomic spin chain.

With the help of the following relation for the spin operators acting on the elementary excitation

|n)

S - s : k  = 25 |.„ ) and Si;. |„) =  {  , ^  _  ®  j " >  ;  "  ?  (5.3.4)

and the fact that S„ -Sm =  ̂ (S+S^ + S “ S + ) -t- we can express the action of the Heisenberg

Hamiltonian (5.3.3) on the |n) state as

W// \n) = Eo |?i) + 25 ^  Js(R „ -  Rrn) l\n) -  |m)] , (5.3.5)
m

^M agnons are  th e  bosonic quasi-particles corresponding to  th e  spin waves.
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where E q =  — Js(R„ — is the ground state energy (no spin-excitations) and the terms

of the order of 5 “ are neglected as the spin wave approximation assumes 5 ^ 1  (in the classical 

analogue that would correspond to small misalignments). Thus 3-Ch l̂ i) is a linear combination of 

states |n). Because of the translational invariance of J  a Bloch wave

^ n

where N  is the number of sites in the system, is an eigenstate of !Kfj with an eigenvalue Ek = 

(k \Kh \ k) corresponding to an excitation energy

£(k) = El, - E o  =  A S Y ,J s { R n )  sin^ Q k  • R„ j  . (5.3.7)
n ^  '

This represents the magnon dispersion relation for a hnite Heisenberg spin chain. If only 

nearest-neighbour exchange interaction is considered, i.e. Js(R) = /  0 only for |R| = a, then

Eq. (5.3.7) reduces to the familiar expression

............................................................ £(^) -  45Jssin^ ,................................................... (5.3.8)

where A' = |kj. As a test of our time-dependent scheme we will re])roduce this result with time- 

dependent dynamics by using the s-d model and setting the exchange coui)ling J  = 0.

We consider a uniformly polarized (ferromagnetic) mono-atomic chain with N  sites, in which 

at t = 0 the spin at site io  is tilted to a finite angle (e.g. <po =  t t / 6) with respect to the rest of the 

spins, i.e. at i = 0 the ferromagnetic chain is subjected to a spin excitation. We then integrate 

numerically the time-evolution of this system, described by Eq. (5.2.8), to obtain a two-dimensional 

array of values for each local spin Cartesian component as a function of position and time (see Fig. 

5.2) for a sequence of N t  discrete timesteps —► S^. These arrays undergo a two-

dimensional discrete Fourier transformation (dFT), resulting in an approximation of the system 

response spectrum in the (fc, £ ’)-domain. Out of the three orthogonal local spin components, 5^ 

and/or are more useful when transformed, since in the common limit of small excitations 

[small angles like in the conventional ferro-magnetic resonance (FMR)] the major spin component 

«  const and the variation is strictly transverse. Only one of the transverse components is 

normally sufficient, as the dominant precessional motion of the local spins implies a definite phase 

relation between the two, while the major one is insensitive to the precession phase. As an example, 

the dFT (as implemented in the mathematical software environment Maple'^^ 10 [1]) of Sfj yields 

the reciprocal image
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where I G [1,-/V] and m G [1, Â t]- This array is then mapped into the (fc, £^)-space by the change
( I — I )  ( I  —  N  1 ^ l ) 7 T

of variables I ^  k = jxr— ^  for 1 < / <  N i  and I ^  k = — . ^  ̂ — for I > N i  where( A ' i - l ) a  —  —  2 { N i - l ) a  2

Â i =  [A^/2] is the nearest integer greater than N/2,  and similarly m  ^  E  = for E  > 0,

where Tmax =  is the total time of the simulation and N t  ~  10® 3> N  (so th a t we have 

neglected corrections of the order of 1 in the denominator of the right-hand side). Thus obtained, 

the (/c, £')-space portrait of Sf{t )  (Fig. 5.2) exhibits a preferential and almost uniform population 

of modes obeying the correct dispersion relation, given by Eq. (5.3.8).

Figure 5.2: Example of how to extract the spin-wave dispersion from a time-dependent spin dy­
namics simulation: J  =  0, =  0, =  101. On the left-hand side we present the time and space
evolution of S f  along the chain {i = z/a),  with the grey-scale shade representing the magnitude 
of the Sf{t ) .  Note tha t the spin-excitation is em itted from one initially tilted spin at io = 51 
and then propagates from it and is reflected from the boundaries, forming a complex interference 
pattern. On the right-hand side panel we present the natural logarithm (for better contrast) of the 
absolute value of dFT  [5^] (fc, E’) as described by Eq. (5.3.9) and mapped into the (fc, £')-space. 
The brighter the region, the higher is the intensity.

This calculation of a Heisenberg spin-chain serves as an example of the applicability of the 

time-dependent spin-dynamics simulation, defined by Eqs. (5.2.8) and (5.2.13), in extracting the 

magnon spectrum for atomistic structures. We note tha t the form of the initial spin excitation 

is of crucial importance for this method to work and to produce a full portrait of the magnon 

dispersions in the reciprocal space. The excitation should contain enough energy to populate all 

the available spin-modes and should not bear restricting spatial symmetries. We now dem onstrate
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how an initial excitation with a certain spatial symmetry produces incomplete reciprocal-space 

portraits, i.e. it is unable to  populate same regions of the spin-wave spectrum. For the following 

spin-dynamics simulations we use parameter values Jg =  0.2 eV, Jz =  0, 0 < J  < 3eV. The 

hopping parameter is x =  1 eV and the band-filling is po =  1-75. '

Similarly to vibrational modes, the natural spin-wave modes of a one-dimensional system can 

be visualized as standing waves in a suspended wire. For a A^-atom wire of length L =  {N — l)a  

the natural modes have wavelengths A„ with an integer n  such th a t nXnl2 = L.  Hence their wave 

vectors are
27T riTT IITT

for n =  0 ,1 ,. , 7 V -  1, (5.3.10)
" A„ L { N - l ) a  

This accounts for — 2 nontrivial modes as the n =  0 mode represents the fully ahgned chain (not 

necessarily along z) and n = N  — 1 is the trivial spin-wave with one node at each site. Note that 

this mode labeling is valid for both fixed-fixed and loose-loose boundary conditions for the wire 

(corresponding to nodes or anti-nodes at both ends), the latter being the case of our spin-chain 

simulations.

—  m ode #1
—  m ode #2 

m ode #3
—  m ode #4
—  m ode #5
—  m ode #6
—  m ode #7
—  m ode #8

Figure 5.3: Standing wave modes in chains of 5, 10 and 11 sites. The black circle represents the 
site where the excitation is applied. The modes plotted in grey (solid lines) cannot be excited 
because they have a node at the exciting site.

'T h e se  values m im ic a  half-m etallic electronic structure (for the chains w ith  m ore than 20 atom s and ^  1 eV ) 
w ith a Fermi level >  0 .5 e V  above th e  fully occupied spin-up band and a  sp in  polarization |P (iJ /r ) | =  1. T h is 

prom otes th e  h ighest a tta in ab le  sp in  signal and it has been particularly chosen for sim ulations of current-driven  
D W  m otion  (see section  G.1.2) w here th e  pressure produced by th e  current scales linearly w ith  P .
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If the  initial excitation is in the form of a spin tilt a t one or more atom ic sites, there  are two 

reasons for which certain  modes cannot be excited. F irstly  they  m ay have nodes a t those particu lar 

sites, where the excitation is applied. Secondly they  may not comply w ith the  spatial sym m etry 

inherent to  the  excitation. Particularly , if the t = 0 spin excitation is applied only to  the  middle 

site of a chain w ith an odd num ber of sites then  nearly half the  spin modes cannot be excited as 

they  have a node a t th a t site. In this situation  only N m  = [N /2 \  modes are excited [see Fig. 5.3, 

where N m  =  2 for =  5 in (a) and N m  =  5 for =  11 in (c)]. If there are no nodes a t the  site 

of the excitation, all N m  = N  — 2 modes can in principle be excited [Fig. 5.3(b)].

N=5, /o=3
12.0 6

10.2

■22.4 0

A^=10,/o=5=5 N=N = \\,iQ = 6 N = 5 \ ,k = 2 6

22.7  0

-1 1 .7

24.2

-1 -0 .5  0  0 .5  1
k {nidi)
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-I -0 .5  0  0 .5  1
k (7i/a)

-I  -0 .5  0  0 .5  1
k (7 t /a )

N=5, /o=3 N= 10, io=5 ^  N=\\,  k=i
2.0 6 1.6 6

9 .8  0 10.4 0

N =51, io=26
■ 0.8

5.6

M 2

-1 -0 .5  0  0 .5  1
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-1 -0 .5  0  0 .5  1
k (7t/a)

-1 -0 .5  0  0 .5  1
k (it/a)

-1 -0 .5  0  0 .5  1
k ( ji/a )

Figure 5.4: C alculated m agnon spectra  for several short Heisenberg spin-hains either decoupled 
( J  =  0, upper panels) or exchange-coupled to  the electron gas ( J  =  1 eV, lower panels). T he grey 
scale bar to  the right of each contour plot corresponds to  the  value of In |dFT[5j^(t)]|. From left to 
right panels N  — 5 ,10 ,11 ,51  and the location of the t = 0 excitation is io =  3 ,5 , 6, 26, respectively.

These considerations are verified by th e  calculations presented in Fig. 5.4. Here the  num ber 

of excited spin modes (bright spots) for /c > 0 (and identically for fc < 0 due to  the  tim e-reversal 

sym m etry), subsequent to  the  applied excitation, agrees w ith the scheme pictured in Fig. 5.3. The 

top  panels of Fig. 5.4 represent classical Heisenberg chains non-in teracting w ith the  conducting 

electrons (./ =  0), while in th e  bottom  panels the  exchange in teraction  w ith the conduction elec­

trons is switched on ( J  =  1 eV) to  yield our full s-d model. As a result of the  s-d in teraction , the 

energy and the intensity  of the  excited m agnons are som ewhat altered. We observe a shift in the
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energies and some level-splitting but the overall spectral pattern remains the same (especially for 

the longer chains). One eye-catching difference is the less pronounced dark stripe at A: =  0, corre­

sponding to zero signal in the logarithmic scale. Despite the appearance, the offset tha t electrons 

produce at A; =  0 is actually very small (w of the bright spots intensity).

The most significant effect of the s-d exchange, which is independent of the particular type 

of excitation, is an energy blue shift by as much as 10% in the short-wavelength range. From 

simulations for 51-atom chain, where the dispersion is close to continuous, we can clearly extract 

a magnon dispersion relation oc sin^(fca/2). This maps onto a standard Heisenberg chain with an 

effective interatomic exchange coupling which is about 10% greater than the actual Jg. Hence, for 

this particular choice of parameters, the interaction with the conduction electrons effectively adds 

an extra positive contribution to the ferromagnetic spin-spin interaction, making it stronger.

In order to further investigate the interplay of the coupled dynamics of the electronic and local- 

spin subsystems we look at the time evolution of a longer spin chain {N = 101) after a transverse 

spin excitation at the io = 51 site for different values s-d exchange constant J.  The gray-scale 

plots of the In |dFT [ ]| of both Sf ( t )  and the latter defined as

< ( 0  ^  =  E  (5.3.11)
a , / 3

(with designating the second Pauli matrix), for 500 fs simulations are presented on Fig. 5.5 for 

three particular values of J . For the given band-filling pa =  1.75, these correspond to Fermi levels 

lying (a) inside both y-spin polarized bands (for J  =  0.05eV); (b) at the edge of the y-spin-up 

band and inside the y-spin-down (for J  =  0.5 eV) and (c) inside the y-spin-down band, while the 

up band is fully filled (for J  =  10 eV).

For all three regimes the Fourier transforms of the local spins are relatively featureless -  they all 

show the typical 4 sin'^(A:a/2) band with an effective direct exchange which increases when

J  gets bigger (Fig. 5.5, second row of panels). Interestingly, only the (b)-case (where the Fermi 

level is very close to the spin-up band-edge) shows some deviations from the classical dispersion 

[see Fig. 5.6 (a,b)], while the case of very big J  is again very close to the classical. The latter is 

attributed to  the increased spin-up localization for large J ,  where the electrons from the fully-filled 

band are so deeply bound tha t they behave as a classical complement to the local spin.

It is also interesting to look at the evolution of the electron (s) spins. The three spectra of 

the electronic transverse-spin density crf(i) (=  a^{zi , t ))  also show the very same magnon band 

from their corresponding local-spin spectra. Here, however, this band shows an increasing intensity 

with J . The presence of the classical spin-wave band in the electronic spectra is interpreted as a 

parametric excitation -  as the electrons tend to align to the local spins, they reproduce the local
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transverse-spin spacial d istribution a t any in stan t of tim e. In the  adiabatic lim it (large J )  the  

electrons are nearly in their ground sta te  for each local spin arrangem ent and indeed for these 

cases we observe an increase of the intensity  of the  local-spin band.
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Figure 5.5: Spin-wave spectra  in a 101-atom spin-chain for three values of the  s-d exchange stren g th  
J  =  0.05,0.5, lOeV (columns from left to  right). Top panels illustrate  the  y  spin-polarized DOS 
a t t =  0 when the spin on site Iq =  51 is tilted  to  t t / 6  in the  y — z  plane. M iddle panels represent 
the  classical spin waves spectra  and the  bottom  ones are for the  electrons. Here J s  =  0.2 eV.

A nother recognizable (though w ith very low intensity) feature in the  electronic spectra  is the  

shade of a 4x (=  20J 5 in our param eterization) wide band in the  two lower J  cases. T h is is 

apparen tly  the  signature of the nearest-neighbor tigh t binding dispersion £(fc) cx; 2xcos(A:a), w ith 

X  = I eV being the  hopping param eter. This s truc tu re  in the  electron spin-density spectrum  is 

very diffuse and it looks like a superposition of bands for the  different local spin configurations. 

This is supported  by the fact th a t its actual spread increases as J  becomes larger. However, for
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J  in the lialf-inetallic regime (fully filled up-band) the purely electronic excitations are suppressed 

due to the enhanced localization of the spin-up electrons. The actual magnon spectrum is still 

very similar in shape to  the Heisenberg one (J  =  0) and fits rather well to the expression given in 

Eq. (.'3.3.7) with an enhanced effective direct exchange ^  In this regime we also observe a second 

band ~ similar to the optical phonon bands

It is worth noting here that whatever signal is seen in the electron reciprocal-space portrait, 

this is due to excitations originating from the local spin subsystem as it is the only one excited at 

t =  0. This means th a t the local spins can exchange energy with the electron bath. In the next 

section we will prove tha t the energy can also be exchanged in the other direction, i.e. that our 

classical-quantum mixed Ehrenfest spin-dynamics is also able of describing energy transfer from 

the quantum  electrons to the classical local spins. We remark th a t this aspect may appear to 

be in contrast with the well-established fact tha t the Ehrenfest approximation suppresses thermal 

equilibration [104, 49). However, although microscopic thermal noise cannot be transferred from 

quantum to classical degrees of freedom in th e ’Ehrenfest dynarnicS, because of the mean-field 

description of the interaction between the two, temporal and spatial excitations at the level of the 

mean electron density can be cajjtured and transferred between the two subsystems. This is indeed 

the case here where the energy exchange is driven by the short wavelength spin-excitations.

Finally, by fitting our calculated local-spin dispersions for different values of J  (Js=const) to 

Eq. (5.3.7), we are able to determine the dependence of the effective intersite exchange on the 

s-d exchange [Fig. 5.6(c)]. We observe a monotonic increase of with J . For small J  (when 

neither of the two spin bands is fully occupied) the dependence is nonlinear (seemingly parabolic). 

As the system passes into the half-metallic regime, the dependence J|*^(J) slows down for large J  

and tends to saturation (not shown on this graph, for instance — 1 «  32% for J  =  10eV).

In simple terms we could interpret the increase and tendency to saturation of J ^ { J )  with electron 

localization for large J . T hat is, the local spins “dressed” with the localized spin-polarized electron 

cloud are effectively larger in magnitude, hence their direct coupling becomes stronger. The precise

‘ T h e  m odification o f th e  direct in ter-site  exchange, which w e find in the  presence o f th e  conduction  electrons, 
actu ally  has an osc illatory signature sim ilar to  tha t o f  th e  conventional R uderm an-K ittel-K asuya-Y osida (R K K Y )  
in teraction  (see Ref. [67] for the  ID  resu lt). We have observed th a t a different value o f the  band-filling (defining  
a different Fermi w ave-vector) could result instead in an anti-ferrom agnetic ind irect exchange, reducing J ' ^ . For 

in stance at half-filling ( le /a to m )  we obtain  a much lower i  Jg .
^N ote th a t th e  m iddle region of th is band appears folded dow n because o f  th e  sam pling rate we are using (our  

sam pling period A t =  0 .5 fs corresponds to  a m axim um  energy o f about 7rft/At =  4 .1 e V «  2 0 J s ) .
^T he p opu lation  of th e  optical m odes is su ggestive o f a  spontaneous “d im erization ” of the spin system . T h is  

ad ditional band can b e seen in our m agnon spectra  only for large J  >  2 e V  for w hich our system  is half-m etallic. 
Sim ilar effects have been found to  result from th e  R K K Y  interciction in K ondo spin  chains [130].
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Figure 5.G: C alculated uiagnon dispersion curves in a 101-atom chain w ith J s  =  0.2 eV (a-b) in 
each of the  th ree different regimes of exchange param eters considered in the  tex t. These are fitted 
to  the  analytic expression of Eq. (5.3.7) to  ex trac t an effective Heisenberg exchange In panel 
(c) is the  dependence of Jg^ on J  and the dashed line m arks the  transition  between m etallic and 
half-m etallic system.

in terp re ta tion  of th is effect has to  be along the lines of the  ID  RKKY interaction . Evidently 

presence of itineran t electrons is im portan t for the  dynam ics of the  localized spins.

5.3 .2  Spin im purities in a non-m agnetic  chain

U nderstanding the  m agnetization dynam ics in hybrid ferrom agnetic/norm al m etal s truc tu res 

is im portan t for applications and challenging for the theory. Two com plem entary non-local ef­

fects are now well-recognized [114] -  one is the so called spin pumping  and the  o ther is th e  spin 

transfer to rque effect, which we have already mentioned. The idea of the  spin-pum p is th a t  the  

tim e-dependent m agnetization em its (or pum ps) a non-equilibrium  spin-angular m om entum  into 

th e  adjacent non-m agnetic m aterials. If for instance there is another ferrom agnetic layer and the  

norm al m etal spacer is th inner th an  the spin-diffusion length, the  pum ped spin can excite m agne­

tization  dynam ics in the  second layer and effectively couple the  two layer. T his dynam ic coupling 

has been observed in FM R experim ents [46] and recognized as a novel form of collective behavior 

in m agnetic heterostructures generated through the spin pum ping.

As an  illustration of another spin-dynam ics aspect th a t can be addressed by tim e-dependent 

sim ulations, in this section we consider the  spin-pum p effect a t the  atom ic level. Here we in­

vestigate the  indirect (electron-m ediated) dynam ical coupling of two w ell-separated localized spin 

im purities Sjj and in a finite m etallic wire by analyzing the ir tem poral correlations. In fact, 

understanding the indirect exchange coupling of m agnetic im purities im planted in low-dimensional
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metallic structures could be im portant for engineering their response to applied magnetic fields. 

For instance, a sizable change in the conductance of a nanotube with the applied magnetic field 

is a strongly desired effect [51]. In a recent theoretical work [5(i] the static indirect exchange of 

magnetic moments sitting on metallic nanotubes has been found to strongly depend on their actual 

positions and be affected by quantum interference. Dynamical coupling in the presence of a charge 

and a spin current has been investigated in Ref. [7(i]. There a tendency for a steady-state, periodic 

motion of the spins has been found in the low-spin-current regime and a chaotic motion for high 

currents.

Here we consider the following dynamical situation for a closed quantum-classical spin system 

with no net currents. An excitation is produced at t = 0 only upon one of the two spins in the 

wire, say S^j, but it is then mediated by the itinerant electrons and detected in the dynamical 

response of second spin S^,. We anticipate that the latter response bears the signature of the 

electronic structure and depends on the size of the system, the location of the two spins and the 

local exchange coupling parameter J .  W ithout aiming for thoroughness we describe a few cases 

which capture some of the specifics of this problem. The calculation is fully in the spirit of the 

quantum-classical spin dynamics described in Section .5.2. The electron Hamiltonian is simplified 

by removing the electrostatic term from Eq. (5.2.2) (/t =  0) and the external magnetic field from 

Eq. (5.2.3). The actual system of equations now reads (in a matrix form)

dp;a/3
I q /3

(5.3.12)

=  -  Ixl <̂ a,3 (^*,J+1 +  • 6-}"^ (<5ij, -H (5.3.14)

dt h

^  ^  { S i,-J S ^  • (6-)^- 5 s / i s 5 i z } ,  f o r i = j i , j 2 ,  (5.3.13)

where (o')j is the expectation value of the spin density on the i-th site [see Eq. (5.3.11)], gs  =  2, 

Bi  is a magnetic field applied locally only to S  ̂ and

.0 /3 

I i j

is the electronic Hamiltonian matrix, coupling the conduction electron spin to the local one only 

at the two spin-impurity sites, j \  and j 2 -

As an example, we consider a monoatomic chain with =  31, intersite hopping x  =  1 eV and a 

band-filling of po =  1 (i-e- 1 e/atom ). The system is initialized with the spin at j i  tilted to a small 

angle in the x-z  plane (Z(Sj j ,z)f^o =  tt/30). A magnetic field is then applied 0 in order to

achieve a steady precession of Sjj ,  while Bj^ = 0. We thus call Sj, the “driven” spin, as opposed 

to the “free” spin Sj^, which is not coupled to the magnetic field. The exchange interaction to the 

conduction electrons is tuned through the J  > 0 parameter. In our first set of simulations, we set
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J  = X = l e V  and place the two spins at the end sites of the chain, i.e. j i  = 1 and j2 = N  = 31, 

as we are interested mainly in the transportation of the spin excitation between the two spins.

Typical time evolutions of various spin quantities are shown in Fig. 5.7. We start our analysis 

by comparing the field-driven dynamics of Si in the presence of the electron gas only (orange 

curves) to th a t obtained when also the second spin is present. When the driven spin is decoupled 

from the electrons (J  =  0) it simply performs a uniform steady precession at the Larmor frequency 

o ; l  =  We use B i  =  1000T, which corresponds to W l  =  0.028fs“ ^  in order to obtain a

large enough number of oscillations for the time of the simulation to provide a reasonable resolution 

for our spectral analysis. In this regime the local spin precession period («  35 fs) is compatible 

with the times for the electron passage along the chain.
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Figure 5.7: Time evolution of spin components: (a) x-component of the driven spin with (green 
curve) and without (orange curve) interaction to the electron gas when the free spin is absent (no 
spin at site J 2 ); (b,c) x- and z-components of the two spins for J  =  leV ; (d) the electron spin 
polarization (with respect to the quantization axis 2 , i.e. a f  = (p“ — P i f ) f 2 )  at the spin sites. 
Blue and red solid curves represent site 1 and site A'' =  31, respectively, while the grey underlying 
curves represent the j i  = 1 site when there is no spin at j 2 -

When J  ^  0 and the free spin is present in the system, the latter starts to oscillate after a 

small time-delay. The small drift in Sf; since the start of the simulation is due to the evolution of 

the small transverse electron density present on the site since the moment t = 0 when Si is tilted.
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At around t = 10fs we find a step in <7̂  [see Fig. 5.7(d)] and that is when the excited by Si 

arrives at the iV-th site. Because of the finite group velocity of the conduction electrons, the spin- 

polarized wave-packet takes a time T  ~  L / v p  { v f  is the Fermi velocity) to propagate from Si to 

S/v. The free spin also starts precessing about the z-axis but with a smaller transverse amp.itude 

Sff  (dashed curves). Neither of the two spins performs a pure precession. The 2 -components Sf  

and 5 ^  oscillate too, with similar rates and opposite phases. Such a pattern is present aso in 

the evolution of the electron spin densities on the two magnetic sites. This is a manifestation of 

two restrictions acting on the system: (i) the conservation of the 2-coinponent (along the external 

field) of the total spin and (ii) the spin-adiabaticity, i.e. the tendency of the electron spin to follow 

the direction of the local spins. The latter property is ensured by the strength of the s-d exchange, 

which in these simulation is J  =  1 eV. *

We investigate how the electron gas mediates the interaction between the two spins by varying 

the s-d exchange J . In order to quantify the temporal correlations between the two spins, ve use 

•the following normalized. spinTspin.correlation f u n c t io n .........................................................................

The right-hand side panels of Fig. 5.8 represent the square of the above quantity as a function 

of the time delay A t  for a wide range of values of J . All results show a similar high-rate oscil.atory 

decay pattern as A< increases. Apparently the maximum of , At )  is in the very early

stages, compared to the whole length of the simulation. This demonstrates the very quick (~ 10 fs 

for 30 atoms) transfer of angular momentum carried by the itinerant electrons. As the electron 

ticking rates (the inverse of the time to propagate forth and back between the two spins) are 

comparable to the precession rate of the driven spin and both are rather high, we find a very rapidly 

oscillating correlation function. In order to roughly estimate the maximum correlation amplitude 

(which is very close to the origin) we fit these results to a decaying exponent C q exp( —A < / t ) and 

the results for Cq(J) are presented in Fig. 5.9. The constant Cq C^[t  w 0) is a measure of 

the level of correlation and reaches its highest value for J  in the range between 1.5 eV and 4 eV. 

For smaller J  there is little energy transfer between the local spin and the electron gas and for 

very large J  the majority (minority) electrons are too localized (delocalized)  ̂ to convey the spin 

information, hence the correlation is suppressed in both cases.

^This value of J  is typically large enough to provide for good spin-transport adiabaticity in such systems, as 
will become evident in the next Chapter on current-induced domain wall motion.

^In connection with this last point one should note that the larger J, the deeper (shallower) the potential 
associated with the on-site spin-interaction for majority (minority) conduction electrons [see equation (5.2.3)].
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Figure 5.8; Investigation of the correlation between two classical spins (one driven and one free) 
a t the ends of a metallic chain {j\ = 1, j 2 =  as a function of the s-d exchange strength J  for a 

=  31 atom chain (pairs of panels to the left) and as function of for J  =  1 eV (pairs of panels 
to  the right). Each case is represented by a pair of plots: one plot for the time-correlation function 

[see Eq. (5.3.15)] (black) fitted to an exponential trend Coe” '^*/’’ (orange curve) and another 
plot for the spectra of Sf{t )  (blue), Sfj{t)  (red curve) and again 5'f(i) but for the case when the 
free spin is absent from the chain (green curve).
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In order to analyze the dynamical behaviour of the coupled system we look at the discrete 

Fourier transforms of the transverse x-components of the two spins. We compare the case when 

they are both present at the two ends of the chain with tha t obtained when Si is the only localized 

spin in the chain (Fig. 5.8, left-hand side panels). We observe tha t as J  increases the spectrum 

of 5 f  evolves from having one low-frequency peak and a higher-amplitude peak slightly above the 

Larmor frequency (wl =  0.028fs“ )̂ for .7 =  0.5 eV, through two equal-amplitude peaks on each 

side of (jOi  for J  < 1.5eV, and then saturates to a single peak somewhat below wl- The other spin 

Sfj  shares the same modes for J  < 10 eV, although the amplitudes are different.

Qualitatively similar is also the evolution of the spectrum of 5 f when the second spin is absent 

(green curves) and this becomes identical to tha t of the two spins for extremely large values of 

the s-d couplings J . In general there is always some red-shift of the natural modes of the field- 

driven spin-system as J  is increased. Finally, for extremely large J  the two spins are completely 

decoupled as the conducting minority-spin electrons are expelled from the spin-sites. As a result 

S i, “dressed” with its localized spin-up electrons (hence larger in magnitude), precesses at a rate 

lower than while S^v is practically still (note that in our model dynamical simulation there is 

no Zeeman split in the electron gas).

W ithout aiming to analyse all the natural modes of the combined system of itinerant electrons 

and classical spins (an impractical task given the high number of degrees of freedom and the non- 

linearity of the dynamical response), we investigate numerically the dependence of the frequencies 

of the major modes on geometrical factors. For instance in the right-hand-side of Fig. 5.8 we 

illustrate the effect of the separation on the dynamical correlation between the spins situated at 

the two ends of the wire by varying its length (L =  Na)  for a fixed J  =  1 eV. In general as N  

increases the precessional spectrum of 5 f  becomes richer. All natural modes show a tendency to 

red-shift as the chain becomes longer. This correlates with the increased electron ticking time (the 

tim e for an electron round trip). The modes also gain amplitude as they fall in the vicinity of 

As a result the spectrum of the field-driven spin condenses about wl- The “free”-spin spec­

trum  shows the same modes although they appear much more evenly populated. Evidently, the 

temporal correlations between the spins start off being rather high at very small separations, peak 

at around 40 atoms and decrease in amplitude as the chain length increases (see also Fig. 5.9). 

Above A'' =  50 we find a slower decrease of the correlation amplitude. We have approximated with 

a power law oc L" [linear on the log-log scale in Fig. 5.9 (b)] and obtained a  «  —0.38. Despite 

the crudeness of the way a  is extracted from the time-correlations, it suggests a rather long-range 

indirect exchange coupling between the spins in the wire. This observation comes in agreement to 

recent theoretical findings [31] of an enhanced range of the dynamical indirect exchange coupling
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between adsorbed magnetic moments in metallic nanotubes, compared to the static version of it, 

suggesting tha t |q | could be smaller than 1.

Atomic Spacings, N  Atomic Spacings, N
100 150 200 100 200

0.4

o
•a § 0.2

Q .  <L> 

< 8

Slope = -0.38

(b)-

0.01

7 ( e V )  y (eV)

Figure 5.9: The amplitude of the computed time-correlation functions (see Fig. 5.8) as a function 
of J  (bottom axis) or number of atoms N  separating the two spins (upper axis, the distance is 
L = Na)  in linear (a) and logarithmic scale (b). The tail of the dependence on distance is fitted 
to  a power law decay ~  L“ , where a  =  —0.38.

Since the finite atomic chain acts as an electron-wave resonator, the correlations between the 

two spin impurities can be amplified or suj)pressed depending on the to tal length of the chain 

and the position of the site at which they are located. We have determined numerically tha t in 

an even-sited chain the field-driven spin can transfer spin excitation to the electron gas mainly 

locally, as illustrated in Fig. 5.10(a,b). In this case the standard deviation of the transverse spin 

distribution, which is a measure of the spin-density oscillation in the chain, peaks only at the site 

containing the spin impurity. The spectrum of Sj{ t )  of the driven spin shows a single peak at the 

Larmor frequency for both even or odd j  [Fig. 5.10(c)]. In order for the precessing spin to be 

able to transfer effectively spin excitation to the electron gas in the rest of the chain, this has to 

have an odd number of sites and the spin has to be at an odd-site location as illustrated in Fig. 

5.10(e)]. The difference can be seen clearly from the spectrum [Fig. 5.10(f)], where two peaks, 

corresponding to combined modes of the coupled spin-system, replace the peak at wl .

Similar parity rules apply for the position of the second ( “free”) spin. In the case of odd chains 

(apparently more “susceptible” to localized spin-excitations) the temporal correlation and the mere 

amplitude of the excitation transferred between the two spins are substantially higher if the spins 

are both in odd positions (see Fig. 5.11). This can also be seen from the spectra of and Sj^.
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Figure 5.10: Sim ulations of a single m agnetic-field driven spin in 30 and 31-atoni chains (left- 

and rightrhand side.panels,,respectively). (a,.d) The ?:-coinppnent of the onsite electron spin density  
at t =  0 and (b,e) its standard deviation for the tim e of the sim ulation vs. the site position. (c,f) 

The absolute value of the Fourier transform o f for j i  =  9 (blue) and j i  =  10 (red curves). The  

position of uii^ is marked w ith  a black dashed line.
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Figure 5.11: Sim ulations of two spins S (j ,= 9 ) ( “driven”), S_,2 = i 4 , i 5  ( “free” ) in a 31-atom  chain. 

(a,e) Standard deviations A go ( )̂] vs position i , (b ,f) ^-com ponents of the two local spins 

and (c,g) tim e-correlation functions [see Eq. (5.3.15)] between those vs tim e, (d,h) absolute value 

o f the discrete Fourier transforms of the data  in panels (b,f) w ith  marked position of uji^.
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Further calculations (not presented here) have shown th a t typically the spin correlations do 

not depend as much on the positions of the two spins in the chain as they depend on the distance 

between them  and the parity of the position j \  of the driven spin. These seemingly peculiar 

odd-even effects originate from the fact that our electronic band structure is tha t of half-filling (1 

e/atom ) and the electronic tem perature is low. We note tha t the electronic tem perature actually 

enters our model with the Fermi distribution used for constructing the ground-state density matrix. 

In all calculations presented so far we have used some low electronic tem perature T  — 50 K. 

The spatial distribution of a spatially abrupt spin (or charge) excitation is rather corrugated at 

half band-filling because of the absence of modes with small enough wavelengths in the occupied 

spectrum. The Friedel-like fringes of spin density around the driven spin can be seen, for example, 

in Fig. 5.10(d).
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Figure 5.12: Effects on the spin dynamics of a single filed-driven spin placed at position j i  = 9 
in a 31-atom chain as a function of the band-filling, po, and the electron tem perature (left- and 
right-hand side panels, respectively). The quantities plotted are the same as those represented in 
Fig. 5.10.

The rough spin-density texture is smeared as tem perature is increased or a different from po =  1 

band-filling is considered. As an illustration of this effect, the case of a single driven spin in the 

31-atom chain is repeated for different T  and po, and the results are presented in Fig. 5.12. As 

the tem perature is increased to introduce a Fermi level smearing k s T  w 0.43 eV comparable to  the 

bandwidth (4eV), the interference pattern occurring in the spatial distribution of the transverse
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Figure 5.13: Trajectories of the expectation value of the transverse onsite spin-polarizations erf (i) 
in a 31-atom chain with 1.9 e/atoni and two spin-impurities S ĵ (magnetic field-driven) and Sj  ̂
( “free”), for j \  =  9 and (a) no second spin; (b) j 2 =  14; (c) j 2 =  15. The bottom plots represent 
the initial spatial distribution a f { t  =  0) (black lower curve) and its temporal standard deviation 
(grey curve).

electron spin is no longer present. As more modes are allowed to contribute at higher T, the 

electron localization is better defined spatially and the local spin spectra reduce to a single peak 

at WL =  0.028 f s - i .

The effect of changing the band-filling (e.g. by charging or discharging system) is in many ways 

similar to that of the temperature. Values of po which are symmetric with respect to 1 e/atom  

produce the same spin-density pattern because of the electron-hole symmetry. We observe that 

intermediate band-fillings 1.3 <  po <  1-7 quite resemble the high T  case -  electron spin excitation  

is localized and precession of the local spin is almost unaffected. For higher band-fillings, because 

of the big wavelengths at the Fermi level, a variety of resonant phenomena can occur. Figure 5.13 

depicts some curious results of simulations of a driven and a free spin in electron gas with Fermi 

level close to the band edge (po =  1-9). The real-space and time evolution of the transverse spin 

density reminds us to a “tsunami” effect. The long-wavelength (hole-like) spin-density excitations 

build up on the free spin, causing it to shake with an enormous (compared to the initial tilt of the 

driven spin) amplitude at some instances of time. As there is no dissipation in our system these 

are regularly recurring events.
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5.3.3 Summary

In the  foregoing chapter we have presented an approach for investigating the spin dynam ics a t 

th e  atom ic scale. This is based on the  adiabatic  approxim ation for spin (the analogue of the 

B orn-O ppenheim er approxim ation in la ttice  dynam ics), according to  which the  spin degrees of 

freedom can be separated  into slow and fast variables and the dynam ics -  described by equations 

of m otion of the local spins and a standard  single-particle spin-polarized equation for the itineran t 

spin-carriers [6], Such separation is m otivated by th e  significant m ism atch of the  relevant energy- 

scales for the  inter-atom ic exchange (<  100 meV) on one hand and the in tra-atom ic exchange and 

conduction band-w idths, on the  other. Hence in m any m agnetic system s the  spin dynam ics can be 

m apped onto an Ehrenfest dynamics. This, in the  sam e spirit of the standard  M olecular Dynam ics 

sim ulations, can be used to explore various dynam ical properties of complex spin systems.

As an illustration  of the  m ethod’s functionality, we have described an exam ple in which m agnon 

spectra  can be com puted and the  indirect exchange interaction determ ined. As a second exam ple 

we have presented a study  on the  dynam ical correlations between spins in a m etallic wire. We have 

dem onstrated  the  microscopical mechanism of electron-m ediated angular m om entum  transfer and 

investigated the scaling of the  tem poral correlations w ith the s -d  exchange streng th  and th e  size 

of the system . We have dem onstrated the  im portance of geometry, which determ ines the cjuantum 

interference p a tte rn s  and the ability of the  itineran t electrons to  convey spin excitation. For the 

studied case of a finite monoatom ic chain and half band-filling we have observed odd-even effects 

of the  position of the  oscillating spin, consisting of the  lack of susceptibility of the  electron gas to 

spin excitation  a t a lternating  sites. This effect is reduced by introducing a therm al sm earing to 

th e  electronic stru c tu re  or by charging/discharging the whole system.
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C hapter 6

D ynam ics of a spin domain wall 
coupled to  itinerant electrons

6.1 C urrent-induced dom ain wall m otion

The prospect of manipulating the magnetization texture of a device with a spin-polarized current 

is a t the heart of a whole area in the field of spin electronics which takes the name of spin trans­

fer  torque (STT). This unifying notion originates from the work of Slonczewski [93], who made 

a pioneering theoretical prediction of current-induced magnetization dynamics in single-domain 

magnetic multilayers for the current perpendicular to the plane (CPP) geometry. Having a spin 

valve ' in mind, the main idea is that the transversely spin-polarized electron fiux generated by 

the first magnetic layer (polarizer) produces a torque upon the magnetization of the second layer 

(analyzer), effectively transferring spin between the two. A steady precession of the analyzer mag­

netization is predicted at a constant current, strong enough to dominate the Larmor precession 

about the Oersted field, and a repetitive magnetization switching is expected under a pulsed cur­

rent. These phenomena can be detected through the magnetoresistance effect and both switching 

[54, 44] and precession [82, 62] have been observed experimentally in spin valve structures. More 

recently time-resolved ultrafast x-ray images [2] have been able to peek into the very process of 

magnetization reversal due to STT. The huge interest in the spin torque phenomena is constantly 

fuelled by industry as the miniaturization of magnetic storage devices progresses and new spin- 

torque based magnetic random access memory (MRAM) devices are about to become commercially 

available.

'T he spin valve is a heterogeneous magnetic device consisting of two or more layers o f conducting magnetic 
material. The essential functional part of it is the GMR trilayer, which consist of a magnetically hard material 
(pinned layer or polarizer) and a magnetically soft material (free layer or analyzer), separated by a conducting 
spacer layer.
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Another founding contribution to the spin transfer torque theory was made even earlier. In the 

70’s Berger [14], by looking at the low-field magnetoresistance of some ferromagnets, noticed that 

“electrons crossing a (domain) wall apply a torque to it, which tends to cant the wall spins” . This 

is again a spin-torque phenomenon similar to Slonczewski’s one for the single-domain dynamics 

in spin valves. In fact, the spin torque occurs in any non-uniform magnetization pattern tha t is 

traversed by a spin-polarized current. In the case of the smoothly changing direction pattern of 

a magnetic domain wall (DW), the spin-transfer torque is converted to pressure, which pushes 

the wall in the direction of the electron flow (we shall explain this effect later in this Section) 

and this effect has been confirmed experimentally (for recent works see Refs. [43, 115, 57, ()2|). 

The current-induced translation of the whole magnetic structure is particularly interesting from 

information storage point of view because the adjacent domains could represent binary bits. This 

is essentially the idea behind the widely-known proposal of magnetic racetrack memory device [77], 

where the sequences of magnetic domains are pushed along the device by pulsed spin-polarized 

currents.

Theoretical work is typically based on either semiclassical theory [114] or on the s-d model, 

where the local magnetization M(<, z) is continuously varied only along the direction (say, along 

z) of the current flow. The problem is usually addressed in a micromagnetic fashion by solving the 

Landau-Lifshitz-Gilbert (LLG) equation for the magnetization with additional spin torque terms 

describing the effect of the electron flux. For one-dimensional DWs Zhang and Li [135] have derived 

two current-induced spin-torque contributions, by starting from the s-d model and integrating out 

the electronic degrees of freedom in a linear response approximation. Their working assumption 

is tha t of a slowly varying magnetization direction. The length scale is set by their intrinsic spin- 

relaxation mechanism so tha t in the adiabatic limit, which they consider, the width of the wall is 

much bigger than  the spin-flip length. The two current-induced torques, which Zhang and Li (ZL) 

derive are

The so-called adiabatic torque, Tadiabi is analogous to the Slonczewski STT in spin valves. It 

is due to the fact th a t the electron spin tends to align to the local magnetic field as it passes 

adiabatically through regions of spatially varying magnetization and this torque is produced as a 

result of angular momentum conservation. For |M (z)| =  const (only the direction of the magneti-

the electric current density, P  the spin polarization and M  = |M |. The other torque Tnonad [Eq.
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(6.1.2)] is perpendicular to Tadiab and is described as a non-adiabatic torque. In otiier theoretical 

works this torque is known as the /3-torque and its microscopic origin is still controversial [108].

^  Electron flow  
AŜ  =vl - T <  0

DW shift

Figure 6.1: Illustration of the angular momentum transfer mechanism behind the adiabatic contri­
bution to the current-induced DW motion. An incoming electron flips its spin direction by passing 
across a DW. Such a spin rotation is compensated by an equal an opposite change of the total 
local spin, which generates a DW motion.

A simple mechanism for understanding the origin of the adiabatic torque in a ID Neel wall 

is illustrated in Fig. 6.1 (see for example Ref. An electron entering from the left-hand

side with spin-up and following the wall magnetization adiabatically, eventually flips its spin on 

exit, i.e. A5g = 2s = h. If all non-conservative spin relaxation mechanisms are neglected (for 

example electron scattering with impurities having a strong spin-orbit coupling) [120] then all 

of the angular momentum variation must be absorbed by the local magnetization. In the case 

envisaged in Fig. 6.1, the angular momentum gained by the DW for a single adiabatic electron 

crossing is A 5dw  =  —A5g > 0 which corresponds to the DW shifting to the right (i.e. in the 

direction of the electron flow). Alternatively, one can think of the effective field th a t the adiabatic 

spin-rotation creates [120], which is transverse to the plane of the wall and produces a torque in 

tha t plane.

In contrast, the origin and the effect of the non-adiabatic torque in Eq. (6.1.2)  ̂ is not as 

easy to cartoon. It is introduced by Zhang and Li [13.5] as a result of the non-conservative spin- 

flip processes during the electron crossing of the DW. These are modelled by a phenomenological 

spin-relaxation term  in the equation of motion of the electon spin density. Although for transition 

metal ferromagnets c j / b j  w 10^^ the role of the nonadiabatic term is claimed to be crucial

for sustaining the motion of the wall. According to Zhang and Li, the nonadiabatic term acts 

as a nonuniform time-dependent magnetic field with just the right distribution to sustain the

'T his, also called /9-term, is sometimes considered as adiabatic. For instance in Ref. [lOG]) T„onad appears as 
part of the adiabatic torque as it also arises from the first order term in the gradient expansion of the STT. W hat 
they call non-adiabatic torques are the higher order terms in this expansion.
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steady m otion. More recently the Zhang and Li’s picture was questioned by Stiles et al. [131] 

and calculations based on the Stoner model dem onstrated  th a t the  prefactor cj  associated to  the 

non-adiabatic torque is actually  non-local and it is not necessarily associated w ith an intrinsic 

mechanism for spin-relaxation [17].

The other extrem e approxim ation (contrary to  the adiabatic one) th a t can still be addressed 

analytically is th a t  of th e  very th in  wall w ith a w idth w  much sm aller th an  the  Fermi wavelength, 

i. e. k p w  <C 1. In this case the STT effect vanishes, th e  wall can be described as a quasi-particle 

and the  current-induced pressure is due to  the  linear m om entum  transfer of the  backscattering 

conduction electrons [102, 35].

In order to  investigate the spin transfer torques in the range of DW w idths com parable w ith 

the Fermi wavelength (a few atom ic spacings wide), we have developed an open-boundary spin 

dynam ics sim ulation, which is described in the following section.

6.1.1 C om p u tation a l m eth od  and sta tic  properties

W ithin  our atom istic s-d model sim ulations of the  spin dynam ics we trea t the  electrons quantum - 

m echanically and  in tegrate  the  set of Liouville equations for the  discrete classical spins. This reads 

(as in Eq. •'5.2.8 bu t w ithout the  external m agnetic field)

f  = 1 (S. X B.) . (6.1.3)

where

Bi =  J  {(t )̂  +  J s  ^  Sj +  2 (Sj ■ z) z (6.1.4)
j=i±l

is the effective local m agnetic field a t site i. Thus the classical spins are locally exchange-coupled

to  the  instan taneous expectation  value of the electronic spin (cr). and this coupling produces all the

contributions to  the  STT . In o ther words, there is no need for additional em pirical current-induced 

torques in our LLG-like equation (6.1.3) as the  effective field term  accounts for all the  adiabatic 

and nonadiabatic  torques originating from the  electron flow in our model.

In order to  sim ulate the  DW  dynam ics under bias a t the atom ic level, we have used the semi- 

em pirical m ethod  of sustain ing an electron flux in a finite system  from C hapter 4. In th is m ethod, 

designed for E hrenfest-type dynam ical sim ulations [87], the  atom istic system  is partitioned into 

three subregions: two external regions, acting as a source (S) and a drain (D), coupled to  a central 

region, w here th e  atom istic device to  be studied under bias is located (see Fig. 6.2). A modified 

Liouville equation  is used to  describe the electronic dynam ics
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where F is a real parameter and po is a “tailor-made” density matrix such th a t

By this definition the source/drain term proportional to F is applied only to the S and D regions. 

If the initial density matrix Pij{t = 0) is set in such a way tha t the source and the drain carry 

an electron number imbalance, this will be maintained during the time evolution of the electron 

density with a relaxation time of 1 /F , and it will produce a steady current flow through the system. 

Such a source/drain polarized density matrix in our simulations is constructed from the eigenstates 

of the Hamiltonian with an applied external potential 2/SV

where Hij{p, t )  is the s-d exchange tight-binding Hamiltonian as in Eq. (5.2.2) and f v{ i )  is a 

smoothly decaying to 0 polynomial ramp. This is designed to vanish in a few tens of time-steps 

and it has been introduced for damping the charge oscillations th a t might originate from an abrupt 

removal of the initial bias. There is no external magnetic field and the hopping integral is x =  1 eV. 

In order to mimic a half-metallic electronic structure, we have chosen a band filling of 1.75, for 

which the Fermi level lies about 0.5 eV above the band edge of the fully-occupied spin-up band.

Source DW Drain

Figure 6.2: Scheme of the electron transport calculations through a mono-atomic wire containing 
a DW. The source and drain are introduced in the equation of motion as a phenomenological term 
tha t maintains charge imbalance at the edges of the wire [see Eq. (6.1.5)].

Ideally the source/drain term in Eq. (6.1.5) produces a constant carrier imbalance between the 

two ends of the wire therefore simulating an open system. Moreover, since po is purely real it 

also provides for a phase-breaking mechanism in the source. This phenomenological method has 

been proven able to produce, under certain conditions described in Chapter 4, a current-carrying

113



6. DY NA M IC S OF A SPIN DO M AIN WALL COUPLED TO ITINERA NT  
ELECTRONS

state equivalent to the Landauer steady-state [70]. A major problem with the method remains the 

correct definition of the applied bias as the system is finite and there are no real electron reservoirs 

(as those thermodynamically defined in the Landauer picture). However, if one is not interested in 

the precise I -V  characteristics of the system but only in the effect of the current, and if the current 

does not alter significantly the resistance of the device, then tuning the value of F could promote 

dynamically a steady-current state. Such is the case with the current-induced DW motion studied 

here where we are able to achieve a steady current for F =  2fs“ ^

We have then carried out atomistic simulations of DW motion in such an open-boundary one­

dimensional atomic wire under a bias. The wire is 200 atoms long and the DW is set in the middle. 

In the initial state (before the bias is applied) the DW and the electrons are relaxed self-consistently 

so th a t all torques in the system vanish within a certain tolerance (typically lO'^^eV/rad). For an 

infinite Heisenberg spin chain with a longitudinal anisotropy Jz /  0 (but J  =  0, i.e. no coupling to 

the electron gas) the DW' ground state is known. This is a planar (Neel) DW with a longitudinal 

•si>in d i s t r i b u t i o n =  5-cos 0 ;̂ ,• w h ere ..........................................................................................................

, =  2 arctan , Z i -  Z oexp ( 6 . 1.8)

Here zq is the centre of the DW and Zyj is the DW width at approximately 89% of its transverse- 

profile height [see Fig. G.3(a)]. In the anisotropic Heisenberg model this is related to the direct 

exchange and the anisotropy parameters [11]

2w =  a \ J J s / ‘̂ Jz ■ (6.1.9)

We reproduce numerically this result for our finite spin-chain and investigate the effect of 

the exchange coupling to the itinerant electrons J . After initialising the DW in the x-z  plane, 

we perform a damped dynamical spin relaxation [by adding a Landau-Lifshitz damping term 

—a S j  X ( S i  X B i )  to Eq. (6.1.3)] until all torques in the system are below the given threshold. 

The relaxed DW is still planar as can be seen in Fig. 6.3(a), where in the DW centre 5q «  1. 

By fitting the (i) profile to the angular distribution in Eq. (6.1.8) we calculate z^  for different 

values of Jz and J  ^  0. By comparing with Eq. (6.1.9) we extract an effective direct exchange 

param eter and find that, for our choice of parameters, the exchange with the electrons acts 

towards increasing [see Fig. 6.3(c)], For J  =  1 eV this contribution is nearly as big as our 

model direct exchange J$ = 20meV. Similar result was obtained also in Section .5.3.1 from the 

previous C hapter by studying the magnon spectra [see for example Fig. 5.6].

If one keeps the anisotropy constant Jz and number of electrons (band-filling po =  1-75 e/atom ) 

fixed, as J  is increased the DW width z^, tends to saturate [see Fig. 6.3(b)]. The dip near the
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e f fFit: c^^=2.18f/
y=sin(2*ian‘‘(e'^^))

(eV) (m eV ) ( m e V )

42.2
23.0
19.7-20 -10

L  ( b )

0..5 2.5
J  (eV) (meV)

Figure 6.3; Characteristic dimensions of the DW in equihbriurn as a function of J  and J^- (a) 
Typical transverse-spin profile of a relaxed DW and a fit to the exact expression for an infinite 
Heisenberg spin chain with longitudinal anisotropy [see Eq. (6.1.8)]. (b) Dependence of the DW 
width Zv, on the s-d exchange J . (c) Dependences of z^, on the anisotropy constant for J  =  0 
(Heisenberg chain, blue curve), Jg = Q (red) and J  ^  0 Js  ^  0 (black), all fitted to the 
expression Eq. (6.1.9). Values of the effective direct exchange, Jg^ , are listed in the table.
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Figure 6.4: Spin-projected density of states (pDOS) for the conduction electrons in a 200-atom 
wire, containing a relaxed DW in x  — z plane with no bias applied. Top panels: the three spin 
projections of the DOS for J  =  1 eV. The Fermi level is a t 0 eV. Bottom panels: a zoom around 
the Fermi level of the spin-projected DOS for J  ranging from 0 to 1 eV.
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beginning of the Zyj{J) curve corresponds to  a J-value for which th e Fermi level is at the spin- 

up band edge. A bove this value the system  is a half-m etal with only ininority-spin electrons at 

the Fermi level. For our finite chain w ith a DW  in the m iddle, th e local spin along 2  is fully 

com pensated and thus the cr^-projected DOS (pDO S) are identical for the two spin-species (see 

Fig. 6.4). However, the transition to half-m etalicity at J  =  0 .5 eV  can be seen in the a^-pDO S  

as th e wall lies in the x- z  plane. As the spin-split increases the transverse spin-up presence at the 

Fermi level goes through a peak and drops. For the critical value J  =  0.5 eV  for which the Fermi 

level is closest to  the edge o f the spin-up band for a uniform ly-polarized ID  spin-chain (not shown  

in th is figure), we find that the planar DW  is no longer possible and the relaxed DW  develops 

a sm all tw ist out of the x- z  plane, which m anifests itself in the non-negligible and asym m etric 

o-2'-pDOS.

We sum m arise that for the half-m etallic regime, which we are interested in, the DW' thickness 

varies very little w ith J , for the range of values between 1 and 3 e V  and for =  5m eV . In this 

regim e «  2 ^  3a and the wall profile starts to deviate from th e classical Heisenberg m odel 

result in Eq. (6.1.9) but is still not too far from it. These wall thicknesses are indeed com parable 

to  the Fermi wavelength in our model. A rough estim ation of th e latter can be m ade from the 

(j^-]iDOS (see top panel o f Fig. 6.4, J  =  le V ) ,  where we clearly distinguish  two ID  nearest- 

neighbour T B  bands and the Fermi level sp lits the spin-down band as 7:1 from the bottom  up. 

This determ ines that k p a  =  arccos ((iJc — E p ) / 2 x )  ~  arccos(—3 /4 )  w 2.42 which corresponds to  

Xp =  2Trlkp w  2.6a. Thus our m odel param eters indeed provide for w alls in the interm ediate 

thickness range which is not directly accessible to  analytical description.

6 .1 .2  D om ain  w all m otion

W hen the DW  is relaxed self-consistently in the presence of the itinerant electrons, a finite bias 

voltage is applied to  two 10-atom -long segm ents at each end (S and D) of the wire by shifting  

their onsite energies according to  Eq. (6 .1 .7). Then th e quantum -classical system  of equations of 

m otion [Equations (6.1.3) and (6.1.5)] is integrated numerically. T ypical real-space and real-tim e 

contour plots o f the dynam ical observables are illustrated in Fig. 6.5. N ote that the DW" is our 

sim ulations is m oving opposite to  the electron flux which does not contradict to  the illustration in 

Fig. 6.1 since the carriers in our half-m etallic wire are down-spin polarized, i.e. their spins point 

in th e opposite direction to  that of th e local spin.

T h e current in our m odel is described in term s of the bond currents Inm as discussed in 

A ppendix C and in Ref. [109]. T h is is the electron current between two sites n and to, i.e.
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Figure 6.5: Self-consistently relaxed initial configuration of (a) local spin and (d) electron charge 
{p^ + — Po) and spin (p^ — p^) density configuration of a 200-atom chain containing a DW. Space
and time evolutions: (b,c) Sx,z components of the local spins, (g,h) charge and spin bond currents 
[see Eq. (6.1.10,(i.1.11)] and relative variation with respect to the initial state of (e) the onsite 
density (Ap =  p{t) — p{t = 0)), and (f) spin-density (Act =  a{t)  — a{t  = 0)).
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J 2 m ^ n  =  { p } n n  right-hand side representing the ra te  of change of the on-site oc­

cupation. Following Todorov [109], we can define two partia l bond currents for the  two spin 

species w ith respect to  the  z axis

=  . ( 6. 1. 10)

where cr =T, J. and there  is no sum m ation over repeating indices. In our nearest-neighbour model 

these currents are non-zero only for m  =  n  ±  1. We denote the  to ta l particle current and the 

2-polarized spin curren t through the  bond ( ;i ,n  -I- 1) as

+  ^ n ,n + l  ^n'‘ ~  ^ n ,n + \  ~  ^ n ,n + \  ’ (6 . 1 .1 1 )

These two quantities as functions of tim e and the  atom ic position are shown in figure (i.-'j (g,h), for 

an initially applied bias voltage of =  1 V and J  =  1 eV. The contour plots illustrate how the 

steady-sta te  is established when the  charge-imbalances from the  two ends propagate to  the centre 

of the chain [see also the  charge and spin density plots in panels (c,d) and their variations in panels 

(e,f)]. Since the  steady-state  current flow is not established instantaneously it takes a finite tim e 

before the DW  s ta rts  to  move. However, once the  charge current is steady, it tu rn s out not to 

be affected by the  DW' m otion [the local spin com ponents are depicted in panels (a,b)]. Because 

of the  half-m etallic electronic struc tu re  w ith a m inority band a t the  Fermi level, /^  =  0 on the 

left-hand side of the DW, where the  local spin is up, and /^  =  0 to  the right-hand side. Thus the 

spin and the charge currents are the  same on the right-hand side of the  wall ( /„  =  l \  =  and 

have opposite signs on the o ther side ( /„  =  =  —/^ ‘ ).

We first investigate the  evolution of the spin in our open-boundary system. The mere fact th a t 

the  DW is m oving m eans th a t our fictitious b a tte ry  acts also as a spin sink in the  system  since 

a spin-dissipation m echanism can only be provided by the  itineran t electrons through the  open 

boundaries. As seen in the  sim ulation of Fig. 6.6, the variation of the electron spin-density in the 

steady-sta te  regim e (w ith respect to  the  d istribution  a t i =  0) is significant only inside the region 

swept by the  m oving wall [see 6.5 (f)]. In th a t region the on-site spin-polarization changes sign 

following th e  new local spin direction and if non-adiabatic torques are present a transverse spin 

could be dynam ically accum ulated. We calculate the to ta l spin along the  x direction as a function 

of tim e
N  N

=  +  (6 . 1 .12 ) 
1=1 i = \

This consists of an  electronic and a local spin contribution  (Fig. 6.6). Initially only the electron 

spin decreases in tim e until the  DW  is reached by the electron flux (the classical spin is constant
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while th e  wall is static). W hen the steady-sta te  tran sp o rt is established, the  wall moves uniformly 

and decreases linearly w ith nearly eight tim es (8.067) the  slope of {t)- The ratio

of the spin loss rates of electrons and local spins for adiabatic  ro ta tion  is fixed by the  band filling. 

Since po =  1.75, there  is an average on-site spin density of 0.25Sf  /2  (in the  uniform regions away 

from th e  wall). A local spin flip costs 2 S f  and it is accom panied by an electron spin loss of 

0.255j^. Hence this produces the  8:1 ratio. T he ratio  th a t we find in th is sim ulation is 8.067 which 

differs from the  expected 8 by only 0.8%. This gives an estim ation of the  m agnitude of electron 

transverse-spin accum ulation due to  non-adiabatic effects.

slope=-0.00,‘i38fs'

slope=-0.0434 fs'- 1 0

slop5= -0.0488 fs'

-20
—  electrons 
■ -  loc. spins
—  total S* for moving DW 

total S'(l)-S'(t=0) fixed DW 
(in the left half of chain)

-25

ICO 120
-30,

100 200 300 400 500
t (fs)

Figure 6.6: T im e evolution of the to ta l spin-com ponent in a 200-atom  chain, projected over 
th e  electronic (dashed curve) and the  local spins (dot-dashed curve) contributions. T he applied 
bias a t i =  0 is 0.1 V and the  DW is initially in the  centre of the  chain (^o =  100.5a). T he do tted  
curve represents a test system , where an identical DW is initially prepared a t zq =  150.5a and  is 
kept fixed for the  whole sim ulation. This curve has actually  been rigidly shifted by =  0) to
allow for a comparison.

If th e  DW  is pinned (the local spins are affixed and not included in the  dynam ics), however, 

we find no net variation of the  spin in the  chain for the  steady  current flow (dotted curve in Fig. 

6.6). T his dem onstrates th a t we have a spin-flipping b a tte ry  and practically  no spin accum ulation 

- an electron entering the  chain from the left-hand side as a  spin-down flips a t the  wall and leaves 

th e  wire as a spin-up a t the  right-hand side boundary  bu t th en  another electron w ith a spin-down 

enters the  wire from the o ther side. Net spin accum ulation is not found in the system  if the  wall 

is fixed.

We define the  current a t the  wall / qw as the  spatially-averaged bond current in a region
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of Zdw =  {^0 ±20zw } around the centre of the wall (which contains all, say A^dw, sites with 

substantial transverse spins) and then averaged over the steady-state time of the simulation and 

the corresponding DW velocity, Vbw, for that period as

 ̂ A^dw ^ ' r  ^ 7 '

= ^uwiNr-No + l) ^  ^  = ^r-iV oTT ^
n = l  m=A^() m  =  N{_)

where Nq is some time step after the steady-state transport is established and i’d w (0  is the 

momentary DW velocity, obtained by a numerical differentiation of the wall position Za{ t ) ,  which 

is defined through the equation S ^ { z q ) =  0 and S^{z)  is an interpolation of the set {[zj, ■

We then examine how / qw and Vbw depend on the choice of model parameters A F , J, (see 

Fig. G.7). Our reference set of parameters is

A1/ =  0.1V,  J = l e V ,  J ^ = 5 m e V ,  J s = 2 0 m e V .  (6.1.14)

As the only notion of distance in our model is the lattice spacing a, we define our current density 

at the DW as jd w  =  / d w /o?'- For the reference case above and a typical value a =  2 A our current 

density is about 8f.iA/AA^ =  20 x 10® A/cm^. This value is more than an order of magnitude 

bigger than the highest current densities used by [(i(i] (j =  1.5 x 10® A/cm'-^). Our reference DW  

velocity is about 4 .3km /s, which is also nearly an order of magnitude higher than their maximal 

velocity (0.6km /s). Thus the characteristics of the DW motion in our simulations agree (roughly) 

with those expected to originate from the adiabatic torque.

By varying the initialising bias voltage 0 <  A V  <  0.15 V we find a perfectly linear correlation 

between Vow and /d w  [Fig. 6.7(b)] with a slope of around 2.725 a/(ps./zA), i.e. 2.725 x 10̂ ® a/C . 

We compare this result to the expected maximal (or if the one that corresponds to zero spin 

damping) DW velocity V"ad =  —bj  =  —Pj ^B/ eMg  in the adiabatic limit  ̂ [6G, 98]). In the 

expression for V"ad, P  is the spin polarization of the current, j  is its density and Mg is the saturation

'T h e  fac t, p o in te d  o u t by [66], t h a t  th e  fac to r b j  in th e  a d ia b a tic  to rq u e  in Eq. 6.1.1 rep re sen ts  th e  D W  

veloc ity  can  b e  u n d e rs to o d  from  th e  follow ing a rg u m en t. L et us co n sider o u r ID  D W  m ad e  of d isc re te  c lassical 
sp in s  from  th e  m ov ing  (c lassical) re fe ren ce  fram e  of an  e lec tro n  from  th e  flux. T h e re  th e  re s tin g  e lec tron  sp in  s 

is ex p erien c in g  a  passin g -b y  a t  a  c o n s ta n t ve loc ity  V dw  p la n a r  sp in-w all. If th e  sp in  is a lign ing  in s ta n ta n e o u s ly  

to  th e  sp in  of th e  w all th e n  it  w ill b e  ro ta t in g  w ith  an  a n g u la r  velocity  lJs =  6z =  V 'd w V j6z ( 2s +  V dw ^): w here  
Zs is th e  p o s itio n  of th e  sp in , $z is th e  w all a n g u la r  d is tr ib u tio n  w ith  resp ec t to  z  (e.g. E q . (6 .1 .8)). Such  a  
r o ta tio n  cou ld  effective ly  b e  p ro d u c e d  b y  a  to rq u e  \Te\ =  su>s — s V d w V z 0z ( 2s +  V o w t )  a n d  by th e  second N ew ton  
law  such  a  to rq u e  b u t in o p p o s ite  d ire c tio n  m u st b e  a c tin g  on  th e  w all. In  th e  fram e of th e  w all th e  to rq u e  on 
th e  w all a t  lo ca tio n  Zi is sim ila rly  T j ^ w i z i )  =  s V g V z ^ z i ^ i ) -  W e go back  to  th e  la b o ra to ry  refe rence fram e. A s 

th e  sp in  co n se rv a tio n  ho lds (see F ig . 6 .1 ), if th e  sp in  s  p asses th e  D W  o f d isc re te  sp in s  {S ,}  for tim e  A t th e n  
A s  =  —2s V e A t/2„  =  —A 5  =  —2 S V £ , w ^ t / a ,  w here z„  is th e  w hole len g th  of sp a tia l v a r ia tio n  of sp in  in th e  

w all [not th e  sa m e  q u a n tity  as in E q. (6 .1 .8)], a n d  th e re fo re  th e  veloc ities of th e  sp in  a n d  th e  wall a re  re la te d  

as V e /V b w  =  S z w / s a  so th a t  in th e  a d ia b a tic  lim it z „  ^  a  an d  m oreover if S' »  s (c lassical local sp ins) th e n  

Ve 2 > V bw  ^■nd Ve ~  Ve- W e o b ta in  for th e  to rq u e  d u e  to  one e lec tro n  To\ /v{zi )  =  V o 'w S{ zv t / a ) ' ^ zOz {z i ) ,  w hich  is 
indeed  p ro p o rtio n a l to  th e  w all velocity.
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m agnetization  in the system . These quantities translate to  our one-dim ensional system  as j  —> 

/d w /q ^ , P  =  —1 (half-m etal) and Mg 2^bSs/cl^  where 5* =  1 - I -  (2 — p o)/2  =  1.125 (in 

units o f h and po =  1.75) is the total onsite spin (localized plus conduction band). Hence we 

obtain  approxim ately V"ad//DW ~  a / e S s  =  2.743 x 10̂ ® a /C . This value is different from our 

calculated slope [Fig. 6.7(b)] by less than 1%. This spectacular agreement suggests that the  

main diving torque for the DW  m otion we sim ulate is indeed adiabatic. Because of the different 

dim ensionality  of the system s we are com paring, we cannot say accurately w hat is the contribution  

o f the non-adiabatic torques in our sim ulations but apparently they are sm all com pared to  the  

driving adiabatic torque which was also suggested by the level o f spin accum ulation.
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Figure 6.7: D ependences of the average stead y-state current /d w  and the corresponding average 

DW  velocity  on bias (J  =  1 eV , =  5m eV ) or on J , and for fixed =  0.1 V. Same 

sym bols correspond to  same calculation. In particular, the variation of the argum ents z^, (DW  

w idth) in panels (d,h) and /d w  hi (g) are generated by changing th e anisotropy in (c). Arrows 

are pointing to  calculations w ith  the reference set of param eters (6 .1 .14).

N ext we exam ine the dependence of the current and the DW  velocity  on the param eters in our 

model. We vary J  (or J^) w ith respect to the reference sta te (6 .1 .14). Dependences of both current 

and velocity  on J  [Fig. 6 .7(b ,f)] show som e peculiarity around the critical J  o f the transition to  

halfm etalicity -  a dip and a plateau, respectively. In the half-m etallic regime, however, th ey  both  

saturate. T h at is where our reference sta te is. The change of the anisotropy w ith  respect to the  

reference sta te affects the w idth of the wall z ,̂ [see Fig. 6.3 (c)]. B oth /d w  and V^dw appear rather 

insensitive to  the variations of z^ . We observe an overall change in V d̂w of less than 5% and less
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than 2% in /d w  for a nearly fivefold increase in the DW thickness [Fig. 6.7(d,h)]. The fact that 

^Dw(-^Dw), obtained by the variation of the anisotropy, is almost linear [panel (g)] suggests that 

the main effect of the different Jz is on the conductance of the chain. We find that thinner walls are 

more resistive and because of the decreased current move slower. Though the overall variation in 

the conductance is small, the drop for thin walls is relatively steep and suggests non-adiabaticity, 

i.e. the inability of the conduction electron spins to follow the local spin direction while traversing 

the wall [119]. The adiabaticity is controlled by the s-d exchange parameter J.  In our reference 

case ( J  =  1 eV) corresponds to a half-metallic state and we find th a t /dw  and Vdw are quite 

insensitive to a further increasing J  (enhancing the adiabaticity) for a fixed anisotropy (i.e. DW 

width) [panel (b,f)], meaning that we our reference state is already close to the adiabatic. Again, 

what we see is a very little difference in the conductance for the range of wall widths we are working 

with (varying by a factor of 5). Both Vbw and /dw  show a tendency to saturation with the DW 

thickness and our reference state is on the verge of the saturation thickness, where the transport

is a d ia b a t ic . .......................................................................................................................................................

We now take a closer look at the details of the time evolution of walls with different thicknesses. 

In particular, we compare our reference case [Eq. (6.1.14), relaxed width is Zw =  2.2a] to a more 

tfian 4 times thicker wall with =  9.1a obtained for Jz =  0.25 meV. Here the overall length 

of the chain is increased (from 200 to 300 atoms) to allow for longer-lasting simulations and all 

remaining parameters (apart from anisotropy and voltage) are as in the reference case. The real 

space evolutions of the local spins in the two cases are presented in Fig. G.8 where the initially 

applied bias is A V  =  0.2 V. The length of our simulations is still limited by the accumulation of 

numerical error during the time integration but we can safely reach times of about 2 ps (8 x 10  ̂

timesteps) during which the DWs appear to  be moving rather uniformly. In both cases we see a 

very pronounced spin-wave pattern developing in time and the onset of deformations in the shape 

of the thicker wall in the initial stages of the dynamics (see Fig. 6.8). Interestingly, spin-waves 

develop at a much earlier stage in time for the thin wall than for the thick one. This indicates 

th a t the current-induced torques on the wall clearly depend on its width. There are qualitative 

differences even for the small range of widths investigated here. The thicker wall firstly deforms 

[see Fig. G.8 (f)] by wriggling out of plane until some critical point which is the onset of the 

spin waves. This suggests th a t indeed non-adiabatic effects (like the spin waves) arise from the 

increased curvatures in the local spin texture [17],

Another non-adiabatic effect we find is th a t thin walls (zw < 3a) show a tendency to precess 

rigidly about the z-axis. This is illustrated in Fig. 6.9(e) where the time evolution of the of the 

classical spins in the middle of the domain wall is fitted to cos{ujt). We find tha t the precession rate
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(a) 2 (a) (b)  ̂ (a)

Figure 6.8: Real space and time evolution of two DWs of different width. The left-hand side pair 
of panels describe a thin DW {z^ = 2.2a obtained with Jz = 5 meV), while the right-hand side are 
for a thick one (zw = 9.1a obtained with = 0.25 meV). Panels (a,b) represent Sf{t) and (c,d) 
represent the temporal variation of in the vicinity of the wall (we define AS f  = 
for i  e [—30, 30]). The magnitude of these quantities is specified by individual grey-scale bars. The 
bottom panels (e,f) depict the DWs at 0.75 ps. The initially applied bias is AV — 0.2 V and the 
solid black lines in the panels (c) and (d) mark the exact DW centre Zo{ t ) .
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Figure 6.9: Time evolution of (a,b) the position of the DW’s centre zq along the wire, (c,d) the 
average velocity Vow, (e,f) the transverse local spin component at zq, (g,h) the total transverse 
spin in the system +  ^ f )  (*ih) the variation of the number of itinerant
electrons with respect to the equilibrium. All the quantities are plotted for two different bias 
voltages, 0.1 V and 0.2 V. The left- and right-hand side panels represent thin and thick DW, 
respectively. Note tha t zq is defined such th a t =  0, where S^{z)  is an interpolation of {5?} 
with the classical DW-profile function (equation 6.1.8). is also the interpolation of { S f } .  The 
fluctuations in (c), (d), (e), (f), (g) and (h) correlate to the spin wave patterns in Fig. 6.8.
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u! scales almost linearly with the applied bias voltage. In contrast thick walls develop slight out- 

of-plane deformation with the spins in the centre remaining in the x-z plane [Fig. 6.9(f)]. Apart 

from that, both types of walls move rather uniformly in time, with very similar velocities. One 

could speculate that the thin wall decelerates slightly although the timeframe of our simulations 

does not allow us to conclude whether or not the actual average DW velocity changes in time in 

the long time limit.

Evidently, both the DW velocity and the angular velocity of precession are characterized by 

large fluctuations. These are clearly correlated as the oscillation in the velocity match those of 

the transverse spin in the DW centre (see Fig. 6.9). They also both correlate with the spin-wave 

pattern illustrated in Fig. (6.8). Hence, we attribute variations in both the DW velocity and 

precession angular velocity to spin-wave emission. Importantly, in our computational scheme spin- 

waves are absorbed at the wire boundary. Therefore spin-wave emission provides a mechanism for 

spin relaxation. This will be further discussed in the next section.

(a)

Thin DW
z^=2.2a

A r = o . i v
AC=0,2V

- 0 . 1 2

- 0 .3 2

(b)

Thick DW

AI'  = 0.1V 
A ) ' = 0.2V

- 0.6

(c) Average DW  
velocity Vs. average 
current for the two 

different walls
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50

J  40- 
S  30̂
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0 10
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Figure 6.10; Trajectories in spin-space of the non-equilibrium itinerant spin accumulation defined 
as ASne(0 = Sne(^) “  Sne(O) where Sne(i) [Eq. (6.1.15)] is the total non-equilibrium itinerant 
spin at time t for the thin (a) and for the thick wall (b) at two values of the initial bias voltage 
A V  =  0.1 V and 0.2 V. These are the same simulations as those in Fig. 6.9. The origin corresponds 
to the tip of the spin vector at t = 0. In panel (c) are the extracted plots of the averaged over the 
whole simulation DW velocity versus the averaged current at the wall.
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We also find a small eiectron-num ber and transverse spin-density accum ulation which scales 

w ith the  bias and is more pronounced for the th inner wall [Fig. 6.9 (g,h,i,j)]. In order to  isolate 

this effect we calculate the tra jec to ry  of the  non-equilibrium  spin in the system  which is defined as

Sne = ^ S , - 8 ^ ( o - ) ,  (6.1.15)
i i

and plotted in Fig. 6.10 is actually  the tim e variation of this quantity  A Sne(0 =  ^ne{t) — Sne(O). 

The factor of 8 before the to ta l electronic spin in Eq. (6.1.15) is due to  the  equilibrium  ratio  of the 

onsite spin m agnitudes - local spin h and itineran t spin-density h/8  for a band-filling of 1.75e/atom . 

Thus ASne(0 represents the  accum ulated non-equilibrium  itineran t spin during the simulation. 

We find th a t after the  initial, mainly longitudinal (along z), spin d isruption until the  steady sta te  

is established, AS„e(f) falls into a precession very much confined to  the  x-y  plane. Hence the 

accum ulated spin during the current-induced DW' m otion is prim arily transverse and it scales w ith 

the bias. W^ith respect to  th is observation th e  two walls are very much alike. The difference is 

mainly in the  am plitude of precession of ASne(^) about the y-axis which is perpendicular to  the 

plane of the  wall and we find higher am plitude oscillations for the thirm er (and expectedly more 

non-adiabatic) wall.

In Fig. 6.10(c) are the  plots of the  averaged DW  velocity Vbw against the  average current / dw 

a t the wall during the whole sim ulation for each of the  two walls. We again find a confirm ation for 

the higher level of sp in-transport non-adiabaticity  for the  th in  wall gis it is slower for nearly the 

same value of the  current, which suggests a reduced efficiency of the ST T  mechanism. The relative 

difference in the  slopes is about 8%.

6.1.3 Com parison w ith LLG equations

In this section we com pare our combined quantum -classical sim ulations w ith the  analytical 

predictions of Zhang and Li [135]. We recall th a t the Zhang and Li theory  is derived from the  s-d 

model by in tegrating  out the electronic degrees of freedom, intrinsically coupled to  a spin-relaxation 

bath, in th e  linear response lim it. T he resulting m agnetization dynam ics is then driven by two 

current-induced torques, one originating from the adiabatic  dynam ics and one originating from 

the non-adiabatic spin-relaxation effects. T he Landau-Lifshitz-G ilbert (LLG) type of equation of 

m otion derived by Zhang and Li [135] reads

^  i I Js ^  Si X Sj -h 2Jz (Sj • z) (Sj X z) I + b j ^  + cjS i  x ^  -haSj x ^  , (6.1.16) 
V  J 6 n n [ i ]  /  ^

where the last th ree torques are respectively the adiabatic term , the  non-adiabatic one and the

phenomenological G ilbert spin-dam ping term . We have then  carried out numerical sinm lations of
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Figure 6.11: Results from simulations of a DW in a 400-atom spin chain modelled by Eq. (6.1.16) 
for different values of bj,  c j  and a,  listed in the table. Plots from left to right represent the time 
evolution of the DW velocity (scaled by bj),  out-of-plane (y) local spin component at the DW 
centre and relative DW width.
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Figure 6.12: Local spins evolutions in the colour-framed cases in Fig. 6.11 above. Magnitude 
is colour-coded (purple to red). The actual values at the DW can be deduced from Fig. 6.11.
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the  equation (G.l.lG) investigating the torque-scaling constants bj,  c j  and a  over a ra ther broad 

range. O ur sim ulations are in some sense sim ilar to  those carried out by [89]. The results of 

those sim ulations are sum m arized in Fig. G .ll. As reference values for the various param eters we 

consider 6 j =  5 km /s, Cj = 10~^bj  [GG] and a  =  0.1. T he value of bj  is actually chosen to  reproduce 

sim ilar velocities as the  ones from our reference quantum -classical sim ulation [Eq. (G.1.14)] where 

Vbw ~  20a/psw  5 k m /s for a = 2.sA.

Bearing in mind th a t our sim ulations effectively inspect only the short time-scale region (up 

to  4 ps) and th a t a thorough analysis is difficult, we can still conclude th a t the  adiabatic torque 

is indeed th e  one driving the  DW m otion, a t least a t the beginning of its development. This is 

dem onstrated  by the fact th a t whenever bj =  0 the  DW  does not move. Such a dynamics is in 

agreem ent w ith the  quantum -classical sim ulations and w ith our previous observation th a t even for 

small DW thicknesses the  electron spin-evolution is to  a  great extent adiabatic. The role of the 

non-adiabatic torque of Zhang and Li’s form is instead more complicated. In general it drives the  

DW' precession (see in figure 6.11). Moreover for ra ther large values of e j  it generates DW'

deform ation and spin waves emission [see the  (0 ,10 ,0 ) case in Fig. G.12(c), where spin waves are 

excited in th e  second half of the  simulation]. A sim ilar effect is produced by the spin-dam ping 

term  and indeed we observe situations w here th e  dam ping and the non-adiabatic torque produce 

opposite dynam ical evolution [see the (1 ,10 ,1 ) case, where the DW precession is massively reduced, 

com pared to  the (1 ,10 ,0 ) and (1 ,0 ,1 ) cases where it evolves in different directions].

6 .1 .4  Sum m ary on current-ind uced  D W  m otion

We have investigated the  current-induced DW m otion w ithin an tim e-dependent atom istic model, 

which in fewest words can be described as an open-boundary quantum -classical spin-dynamics. In 

this model the  to ta l spin is locally conserved throughou t the  system, apart from the boundaries, 

where phase-breaking and spin-relaxation takes place. As there is no explicit spin-relaxation mech­

anism in th e  interior, th e  only source of non-adiabaticity  a t the  wall (or misalignment between the 

local and th e  itineran t spin) thus comes from th e  dynam ically evolving spin-texture. As predicted 

by a few au thors [17, 12G, 131] non-adiabatic torques can arise from the  mere ’’sharpness” (see Ref. 

[131]) of the  wall, determ ined by non-negligible second gradients in the  spin angular d istribution, 

'rhese  effects decay w ith the  w idth of the  wall and the different models predict different powers in 

the  inverse power law of th is decay ranging from -1 to  -5 [17] or even an exponential decay [131].

T he advantage of our sim ulations is th a t they  are based on fully quantum  description of the 

itineran t electrons, there  are no assum ptions for the spin density distribution , no linear-response 

ai)proxim ation and the  sta rtin g  tex tu re  of the  wall is self-consistently relaxed. The disadvantage is
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the computational cost and for this reason we restrict ourselves to systems of reduced dimensions 

with at most ~500 atoms and simulation times of a few picoseconds. For these times it is hard to 

extract information on the long-term behavior but we can semi-quantitatively analyze the processes 

th a t occur at the beginning of the current-induced dynamics. The spatial-scale we cover allows us 

to look at the medium-width walls which are too narrow to be treated in the adiabatic (diffusive) 

regime, but still not exactly point-like objects to be treated as such from a scattering viewpoint. 

We consider a range of DW widths between a few and a few tens of atomic spacings.

The results of comparing the current-induced dynamics of two walls th a t vary in size by a 

factor of four clearly demonstrate the presence of the non-adiabatic spin-transfer torques. Our 

aim has not been to make quantitative predictions but more to compare relative quantities for the 

two cases (our thinner wall is actually only a few atomic spacings wide, i.e. on the verge of being 

point-like object) and focus on the microscopic mechanism and the evolution of the non-adiabatic 

torque. Our main findings are that

• in both cases DW velocity scales linearly with current up to very high currents (~  5 x 

10 '‘*A/m^ for typical interatomic distances of 2A). The slopes are in fact very close to the 

one predicted if only the STT adiabatic torque was present [G(i] (though this is only an 

estimation which relies on the scalability of current-density to reduced dimension). However 

the slope of Vbw(-^Dw) for the “thicker” wall is systematically higher by about 8%, indicating 

the better efficiency of the STT effect. This is, however, a very small variation, given the 

difference in the thicknesses of the walls.

• non-adiabatic torque generates spin waves, which is in agreement with the predicted oscil­

latory spatial dependence of that torque [131]. These occur much sooner for the “thinner” 

wall. There appears to be a critical point in the dynamics of the “thicker” wall after which 

the spin waves start to develop. During the pre-spin-waves dynamic the “thicker” wall is 

deformed by the STT.

• we can extract directly the non-equilibrium itinerant spin-density accumulation and map 

its trajectory. We have found that in both cases this is predominantly transverse. This 

quantity seems to precess about an axis nearly parallel to the chain with an increasing in 

time amplitude. In fact this amplitude scales with the magnitude of the current and is higher 

for the “thinner” wall.

Finally, we point out that further analysis is needed for the law of decay of the non-adiabatic 

torques with the increase of the thickness of the wall to  be extracted or for a functional dependance
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of Tnonad OH the local Spill texture to be deduced. It has been suggested [lOG] th a t higher-order 

torques in the gradient expansion of the local magnetization can be those responsible for the 

deformation of the wall and the Zhang and Li torque is just the first order in this expansion. 

Though we only observe the non-adiabatic effects related to the abruptness of the wall, we find 

that, at least in the short-timescale range (~4ps), the non-adiabatic torques upon the wall on the 

verge of the atomic-scale abruptness have a minor effect on its average velocity. They, however, 

cause DW precession, deformation and spin-wave generation.

6.2 Spin m otive force 

6.2.1 B ackground and con cep ts

In the previous sections we have investigated how an electric current can afi:ect tlie magnetiza­

tion landscape of a magnetic nano-object. Here we explore the opposite effect, namely whether or 

not a driven magnetization dynamics can generate an electrical signal. Such an effect has been re­

cently j)redicted by Barnes and Maekawa [12], who have proposed a generalization of Faraday’s law 

to account for a non-conservative force of spin origin. This arises in systems with time-dependent 

order parameters as a result of Berry phase (BP) accunmlation [18]. As an example they have 

considered a DW, formed in a finite ferromagnetic wire and precessing about a static co-axial ex­

ternal magnetic field, i.e. a magnetic system similar to those investigated in the previous sections. 

They demonstrated tha t in the adiabatic limit a constant potential shift A0 is generated between 

the two ends of the wire. This is directly proportional to the angular frequency of precession of 

the wall w,

Acf> =  - u j .  (6.2.1)
e

Moreover, if the ferromagnet is described by the Stoner mechanism A 0 exactly cancels the potential 

produced by the Zeeman interaction. Such a potential, described as a spin-motive force (SMF), 

has been recognized previously in the context of the Aharonov-Casher [8(i, 75] and Stern’s [97] 

effects. These are all manifestations of BP related phenomena, where holonomies arise as a result 

of a parallel transport of some kind [4]. The latter does not need to be a quantum effect, another 

example being the classical Foucault pendulum [128].

In what follows we first dem onstrate computationally the result of Eq. (6.2.1) through time- 

dependent quantum-classical simulations of an finite atomic wire incorporating a precessing DW. 

Then we also present an analytical classical argument for the driving mechanism of the SMF in this 

system. Our approach has the benefit of being “Berry-phase-free” in the sense tha t it does not need
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to call for a Berry phase argument to explain the SMF and demonstrates the Newtonian nature 

of the conversion of the magnetic response of electronic spins into an electrostatic voltage drop. 

This is further illustrated with classical dynamical simulations for a system of classical magnetic 

dipoles in a rotating magnetic field mimicing the DW. In addition we show th a t if one abandons the 

Stoner model and accounts for a non-spin component of the magnetic moments forming the DW, 

the cancellation between the SMF and the Zeeman potential predicted by Barnes and Maekawa is 

incomplete. This leaves behind a non-zero net SMF, which can be experimentally measured.

Our simulations are also in this case based on the quantiun-classical scheme and the s-d model 

both presented in section 5.2, and we use the Hamiltonian of equations (5.2.1) and (5.2.5). The 

parameters used for the simulations here are x =  eV, po = 1.75, U = 7 eV, J  =  1 eV, 

Jz =  0.5 meV, gs = 2, a = R, j+i  =  2.5 A .  Note tha t here we consider interacting electrons and 

t /  ^  0, which facilitates the definition of the intrinsic Coulombic potential in the system. N  = 400 

atoms so tha t the chain is much longer than the typical width of the relaxed DW (about 10 atomic 

sjiacings). The values of x, J  and p(o) are chosen such as to produce a halfmetallic system with a 

completely filled spin-up band, which lies about 0.5 V below the Fermi level.

Figure 6.13: Different prospect views of the DW formed by the local spin {Sj} in the middle of a 
monoatomic chain. An external magnetic field, apphed along the wire, induces a clockwise rotation 
of the DW about the z-axis.

The time-dependent simulations proceed as following. Initially the set of classical spins 

is prepared in a DW arrangement (see Fig. 6.13) and relaxed self-consistently in the electronic 

environment. At time f. = 0 the external magnetic field B =  B z  is switched on along the wire 

and a new initial electronic state is self-consistently determined for The system is then
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propagated according to Eqs. (5.2.8).

The electrostatic potentials Vl(R)i developing away from the DW on the left(right)-hand-side 

of the chain, are computed as the spatial (over two identical sets L(R) of N y  atoms at each wire 

end) and temporal (over the evolution time T) averages of the onsite potential, i.e.

V»n, { T} ^l / ( TNv)  Z I / . f + l V ' (“ 2̂)
ieL(R)o n = l  V -̂ *71 +  j

where N  is the total number of atoms and Ag„ is the excess electron charge on the n-th site. 

We investigate the stationary voltage drop Al^caic =  [^l(?") — H i(^)] that builds up across the 

system at the late stages T  of the simulation. In the limit of local charge neutrality {U —> oo) this

potential build-up corresponds to the negative image of the energy landscape in the system. We

anticipate two contributions to the overall potential drop

A V  = A(j> — geHBB/e, (6.2.3)

where the first term is due to the proposed non-conservative SMF from Eq. (6.2.1), while the 

second is due to the Zeeman split. In order to extract the effect of the SMF itself in the first set 

of simulations we have considered ge = 0, so that only the first term in Eq. (6.2.3) remains.

6.2.2 Quantum -classical sim ulations

In Fig. 6.14 are the calculated time evolutions of some representative dynamical quantities. The 

DW' in these simulations, driven by some large magnetic field, undergoes a steady-rate clockwise 

rotation (precession) with an angular frequency ut about the direction of the field [see Fig. 6.14(a)] 

and oscillates gently about a center zq, slightly displaced to the left [see Fig. 6.14(b)]. Note tha t 

the wall does not propagate, since there is no net current or dissipation in the system. The steady 

rotation generates a SMF manifested in a potential drop with small oscillations th a t correlate with 

those of the DW centre (since the projection of the total spin in the system on the direction of 

the field is conserved) and which has an asymptotic time-averaged value AV"caic [see Fig. 6.14(c)], 

The dependence AV'caic(‘̂ )7 obtained by sweeping the external field between 20T and SOOT, is 

linear [see Fig. 6.15(a)] with a slope /icaic =  0.606eVfs w 0.92 h. Note th a t the extremely large 

magnetic fields employed in our simulation are only instrumental and facilitate a fast DW precession 

and therefore a higher SMF generation. This is necessary to guarantee that our time-dependent 

simulations do not run over long times, and therefore become numerically unstable. Importantly, 

our system remains adiabatic even at such large rotation frequencies (we elaborate on this later in 

this section).
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Figure 6.14: Time evolution of some dynamical variables at B  =  100 T and for = 0: (a) 
and Sy local spin components at the DW center Zq, showing the clockwise rotation of the DW 
about the z-axis. The angular frequency lj of the DW precession is extracted by fitting Sx(T) to 
cos(wT); (b) longitudinal displacement of the DW center z q ', ( c )  averaged potentials V\ ,̂ K r  and 
^Vca\c (see text).
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Figure 6.15; Calculated SMF as a function of the DW precession and dependence of the slope 
over the Coulomb parameter U for Qe = 0 and gs = 2. (a) The calculated stationary A V  depends 
linearly on uj with a slope ftcalc ~  0.92/i for realistic values of the parameters J  and U; (b) /icaic 
tends to saturate at the exact value of h with increasing U.
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The deviation of /icaic from the exact h [from Eq. (6.2.1)] is studied with respect to the two 

main assumptions which allow to identify the analjd;ic result in Eq. (G.2.1) with our calculated 

potential drop |AV^alc| from Eq. (6.2.2): (i) the adiabaticity and (ii) the local charge neutrality, 

which is exact only for U ^  oo. The first criterion is controlled by the value of J  as in the limit

J  —>• 00 the system is perfectly adiabatic. In our previous analysis on the adiabaticity of the

strength J  =  1 eV provides a predominantly adiabatic regime for walls of similar dimensions. Here 

we have tested tha t increasing J  ten times results in less than 1% improvement in ftcaic/^i- This 

ratio, however, is found to be sensitive to U and it asymptotically tends to 1 as f/ is increased 

[see Fig. 6.15(b)]. This result demonstrates the generation of SMF with magnitude given by Eq. 

(6.2.1), originating from the precession of the wall, in DWs at the atomic scale and is, in some 

sense, another confirmation of the adiabaticity of our model systems.

In reality, however, the effect of the applied magnetic field on the electrons cannot be switched 

off. We, therefore, return to Eq. (6.2.3) and rewrite it in the form

Here u>s =  g s ^ s B / h  is the Larnior frequency of the local spins. The actual angular frequency of 

precession of the DW u> differs slightly from u>s due to the exchange interaction with the conduction

such th a t w =  g^ i i sB /h .  We have then verified Eq. (6.2.4) numerically by varying the value of gs

wall (Fig. 6.16c). It is equivalent to gs =  5s ~  ^ only when §e = gs  = 2. In any other case the

rotation. First manifestation of such effect was observed in Section 5.3.1, where we have shown an 

increase of the spin-wave dispersion band-width as a function of the exchange parameter J  (see 

Fig. 5.6). Finally we have again obtained a value of ftcaic ~  0.92 h, identical to the previous finding 

in the case ge = 0 for the same choice of J  and U .

Apparently, the voltage drop across the system fully disappears when gs  = 9s = 9ei a-s derived 

in Ref. [12] for the Stoner model. However, in s-d systems, where might as well carry some 

orbital component, this is not the case and the SMF manifests itself as a measurable quantity. 

This could be used to determine the effective (^-factor of the localized spins. In particular if the 

DW precession is blocked, the measured drop would be just equal to the Zeeman split, i.e. a 

measurement could determine if the wall is precessing or not. In the remaining part of the Chapter 

we discuss whether or not the mechanism for the SMF is expected also for a classical system.

current-induced DW motion (previous section) we found tha t the typical value of the s-d exchange

(6.2.4)

electrons. In order to account for this effect, we have introduced in Eq. (6.2.4) an effective g^

(see Fig. 6.16). The effective value g^ is determined by the calculated precession frequency of the

conduction electrons act either as a friction {g  ̂ < gs) or as a driving force {gg > gs) to the DW
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Figure 6.16: C om putational dem onstration  of Eq. (6.2.4) for ge — and a set of values gs =  0.5-i-3. 
Panel (a) shows the  linear dependence of the  sta tionary  poten tia l drop A ltaic  on th e  angular 
precession frequency to; (b) is used to  determ ine the  effective g-factors g^ and they  are com pared 
to  the input values gs in (c). Note th a t g^ = gs for gs = ge =  2. Panel (d) dem onstrates the 
validity of Eq. (6.2.4).

6 .2 .3  P u rely  classical sim ulations

Instead of quantum  electrons (as in the  previous section) we now consider non-interacting 

classical particles w ith an intrinsic angular m om entum  s ( |s | = s = h/2)  and w ith the  electron 

m ass mg. These are trapped  in a one-dimensional box, im m ersed in a m agnetic field of the form

h{z , t )  = b{cos{f t ) sm{6z) ,  s in{f t )sin{9z) ,  cos{9z)) (6.2.5)

Here 9^ = 9{z)  is chosen such as to  mimic a continuous DW  stru c tu re  ^  ro ta ting  rigidly w ith an 

angular frequency / .  In th is classical problem /  is analogous to  u  from the quantum  sim ulation, 

though /  >  0 corresponds to  an anticlockwise ro tation abou t the longitudinal axis. T he classical 

H am iltonian of the  spin-particles (or classical m agnetic dipoles) in the field b  is analogous to  th a t 

of the  quantum  electrons in teracting w ith local spins {Sj},

^Hiciass =  --------7 S - b ( 2 , t ) ,  (6.2.6)
Irrie

'T h e  energy-m inim ising angular d istribution  of a planar D W  in one-dim ensional an isotropic H eisenberg spin  

m odel is 6z  =  0{z) =  2 arctan  (ex p ({2 — 2 o )/z w )) . w here 20 is the  position  of the  wall and 2w is its w idth.
^N ote th a t such m agnetic field is irrotational, i.e. it cannot be derived as a curl o f a  vector potentia l. T h is m eans  

th a t, str ictly  speaking, our predictions are not experim entally  verifiable. In th is  case b  is sim ply  instrum ental, used  
to  m ap our quantum  sim ulations onto  classical ones.
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where 7  is the coupling strength (replacing J  of the quantum case) and p is the canonical momentum 

of the particles. Then Hamilton’s equations of motion [3] are

lUeZ = ■ S/zh{z,t), s = 7 s x b ( 2 ,^), (6.2.7)

where V 2 = {d/dz)s.t-

We consider the limit of large 7 6 , in which the dynamics of the spin-particle becomes adiabatic, 

in the sense that s remains closely aligned with b and its precession about b is by far the fastest 

motion in the system. However, in order for s to follow h{z,t), there must always be some 

residual misalignment [15] between the two. This is necessary in order to generate those torques, 

which, when averaged over the quick precession of s, enable s to keep up with b(z,i). This small 

misalignment, marked by the angle (p in Fig. 6.17, is also the origin of the effective Newtonian 

force on the spin-particle that manifests itself as SMF.

The cartoon in Fig. 6.17 depicts s and b at some instance of the particle’s migration and helps us 

to. calculate .the forces .acting on the classical dipoles.. This is achieved by, differentiating .the relation 

between the angles at the bottom vertex of the tetrahedron cos a  =  cos ip cos 6 — sin sin 0 cos/3 

under the condition = ,ssin(psin/3 =  const (which corresponds to keeping s and t fixed). In 

the adiabatic limit ^  0 , we obtain

Vzi/J =  — cos (/?) . (6 .2 .8 )

Figure 6.17: A snapshot of spin-particle’s passage through the DW'-like region of h{z,t).

From Eq. (6.2.7) the longitudinal force and the torque T = |T| = -ys^b are related by

Fz = - 7 |s||b | sin((/?)V2</5 = - T V = T 2 ^ zS , (6.2.9)
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6.2 Spin m otive force

w here Eq. (6.2.8) has been apphed and the  full to rque T  decomposed into two orthogonal torques 

w ith  m agnitudes T\ = T sin/3 and T 2  = T cos/? (see the  inset of Fig. 6.17).

In the  ad iabatic  regim e (s^ <C s), we average the  two com ponents of the  torque over the fast 

precession of s abou t b . These averaged torques Ti and m ust be driving the  two separate 

m otions of the  spin as the  particle crosses the  region of th e  ro ta ting  m agnetic field. A ro tation  in 

the  b-z plane enables s to  keep up w ith the spatial variation of b , and another ro tation  in a plane 

perpendicular to  the  2 -axis which makes s follow the  anticlockwise precession of b , and thus

T i ^ i s z V z O ,  T2 w —|s X f | =  —s / s i n 0 .  (6.2.10)

If one applies Eq. (6.2.9), the averaged linear force upon the spin-particle in the ro tating

m agnetic field can be w ritten  as Fz = T 2 S/ =  s / s i n  {9)V^0 and therefore the  work done by the

ro ta tin g  DW-like field (or the SMF) on the spin-particle for one traversal (left to  right) is

zn  X

=  J  Kdz  = - s f  I  S i n ( 0 ) d 0  =  - 2 s f ,  ( 6 . 2 . 1 1 )

Z L  0

where zl.r are the  leftm ost and the rightm ost position of the  spin-particle on the  wire far from 

the  region of spatia l variation of the  field. This result has been derived w ith the single assum ption 

of adiabaticity. T he ad iabatic  condition is s and for it to  hold it is necessary th a t the  two

com ponents of ŝ p averaged over the rapid precession, sim ultaneously satisfy the  la tte r, i.e.

= T i / j b  = svVzO /^ b  s , (6.2.12)

= T'2 / 7 6  =  s /c o s  (0 ) / 7 & <  s .

Thus, considering th e  m axim um  atta inab le  values of the right-hand sides and since m a x (V 2 0 ) =  

l/zw , th e  necessary conditions for adiabaticity  are

1 A w < / l , / < / l  ( 6 .2 .1 3 )

where is the  tim e it takes for the  spin-particle to  cross the  region, where the  m agnetic field b  

changes spatially  over the  w idth and / l  =  'fb is its Larm or precession frequency about b.

In order to  mimic th e  typical s trength  of the  exchange in teractions (~  1 eV) in our classical 

sim ulations, we have used 7  =  2^ ig /h  and b =  10^ T. We have sim ulated an ensemble of =  700 

noninteracting  spin-particles, confined in a 400 A-long atom ic wire. The particles s ta r t a t random  

positions w ithin two regions near both  wire ends and w ith velocities identical in m agnitude (i>o =  

8  A) bu t random  in sign. T he DW-like region has = 5 Awhich is sim ilar to  the Zwi fitted  to the 

relaxed DW  profile in the  quantum  sim ulation (in un its of atom ic spacing) and the  typical passage
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Figure 6.18: The spatial particle imbalance A N / N  and the potential energy difference A H ' as 
a function of the angular frequency /  of rotation of the DW-like field. The insets represent the 
change of the velocity and the longitudinal component of the spin of a particle for one left-to-right 
(solid) and one right-to-left (dashed line) traversal of the wire for /  =  0 .2fs~ '.

time is iw ~  1 -^-2fs. We have used frequencies | / |  < 0.2 fs^ '. Since our / l =  7^ =  17.6fs“ \  these 

parameters well satisfy the adiabatic conditions of Eq. (6.2.13).

We have integrated numerically Eqs. (6.2.7) and found a stationary difference in the number 

of particles to the left and to the right of the DW-like region, A Alcaic =  -^R — -^L, developing in 

time and depending linearly on the frequency /  of rotation of the field (see Fig. 6.18). By energy 

conservation, AA^calc converts to a potential energy shift

AH^caic =  2irieVgANci,ic/N (6.2.14)

and the latter is a manifestation of the SMF work — derived in Eq. (6.2.11). Eq. (6.2.14),

relating of particle imbalance to SMF, is only valid if the particles have enough initial kinetic

energy to traverse the wall from both sides, which, from one of the sides, means climbing the SMF 

ramp. Thus the requirement

m.eV^/2 > 2 s f  (6.2.15)

sets a lower limit on the initial velocity of the spin-particles in our simulations, for a given / .

W ithin the adiabatic regime the dependence of AWcaic on /  is found to be linear with a slope 

of (0.643 ±  0.012) eV.fs (see the right-hand side scale of Fig. 6.18) and agrees with the analytical 

prediction of 2s =  ft =  0.658eV.fs in Eq. (6.2.11).
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Figure 6.19: Plots of the SMF as a function of the DW rotation frequency in units of the Larmor 
precession frequency of the itinerant spins about the local field. We present the case of dynamics 
away from the adiabatic regime for both the quantum [panel (a)] and the classical [panel (b)j 
simulations. Dashed pale lines in both panels correspond to a slope of 1.

The directions of the SMF observed in the quantum and the classical simulations agree with 

the one set by Eq. (6.2.11), i.e. the SMF is opposite to the direction of the angular velocity of the 

DW rotation if the itinerant spins are aligned parallel to the local field. Note tha t with the choice 

of the band structure in our quantum simulations the effect is carried by the down-spin, so that 

for all other parameters being equal the sign of the SMF is opposite to tha t of the classical model. 

In general, the direction and magnitude of the voltage drop is found to scale with the Fermi level 

spin-polarization ri = {D^ — D i ) / {D i  + Di),  being the spin-up(down) density of states at

the Fermi level, and w as V l ^ r  =  —T]fuv/e,  where w >  0 corresponds to an anticlockwise rotation 

of the DW (spin) about the 2-axis. For the half-metallic case studied here t] = —I.

A further similarity between the quantum and the classical simulations, pointing to the classical 

origin of the “quantum ” SMF, is tha t the quantum effect relies strongly on the adiabatic conditions 

set by Eq. (6.2.13). As illustrated by Fig. 6.19(a) the effect dies out completely above the Larmor 

precession frequency toi, = J / h  of the exchange coupled spins for any choice of band filling. The 

threshold in the classical case below f\^ [see Fig. 6.19(b)] is an artefact of the classical model and 

occurs at /  =  /c =  {nxev\l2)jh as determined by Eq. (6.2.1-')). Once again, the classical result is 

the same in magnitude SMF A(/> =  hw/e,  where the h factor comes from the magnitude s of the 

intrinsic angular momenta, adopted to represent the electron spin, i.e. 2s =  h.
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6.2.4 Sum m ary on the spin-m otive force

In the forgoing Section we have dem onstrated  com putationally  the presence of a spin-motive force 

in a quantum -classical system w ith a spatially  and tem porally  dependent order param eter and our 

calculated SM F has alm ost the  sam e m agnitude as the one described by Barnes and Maekawa [12], 

In fact, th e  small deviations from the  expected hoj are a mesisure of the  level of m etallicity and 

sp in -transport ad iabaticity  of the  system. In addition, we have considered the more general case 

of an order param eter of mixed spin and orbital character in which case a m easurable voltage drop 

across th e  system  could indicate the presence of the  SMF.

We have also presented a classical argum ent for the  mechanism of the  SMF in the adiabatic 

regime and specified the  necessary conditions for the  so-im portant adiabaticity. The la tter analysis 

is supported  by purely classical sim ulations of particles w ith intrinsic angular m om entum  in a 

m agnetic field w ith the spatial and tem poral properties of the order param eter in the  quantum  

case. T he result is the  same in m agnitude SMF A(p =  hujje, where the h  factor comes from 

the  inagriitude s of the intrinsic angular m om enta,'considered to represeiit the  electron spin; i.e. 

2s =  h.
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C hapter 7 

Conclusion

The aim of this I ’hesis has been to develop a description of spin-dynamics at the atomic level and 

address spin-torque related phenomena in mesoscopic systems under current-carrying conditions. 

The phenomenology investigated here, stands at the borderline between the typical molecular spin- 

tronics problem of quantum transport in low-dimensional molecular junctions [83] and th a t of the 

current-induced spin-torque effect, for instance, in magnetization-switching spin-valves. Our spin- 

dynamics scheme in itself is based on the spin-analogy of the Born-Oppenheimer approximation 

[7, ()] and is very close in spirit to the electromigration problem in mesoscopic systems [95].

In Chapters 2 and 3 we focussed on the quasi-static approach to the spin-dynamics in a 

Landauer-type ballistic junction, where the two leads have opposite spin polarization and they 

are connected by a monoatomic spin-chain. We used a two-band collinear-spin TB model for the 

electronic structure and quasi-statically mapped out the activation barriers for thermally-activated 

DW migrations. We found a small, but non-linearly scaling with the bias, current-induced increase 

of the barrier heights. Typical barrier heights were of the order of 50 meV. We found a significant 

spin-filtering effect in the form of a strong dependence of the conductance on the microscopic spin 

arrangement inside the constriction and concluded th a t thermally activated spin-flips in the junc­

tion may lead to random telegraph noise in the conductance measurements. We also investigated 

the effect of band-hybridization and disorder and found tha t in both cases at any finite bias the 

activation barriers are asymmetric, promoting a pinning of the wall. The problem of the conser­

vativeness of the current-induced torques was addressed numerically and the answer was negative, 

meaning th a t quasi-static spin-torcjues actually perform work for closed-loop spin-transitions on the 

expense of the battery. Finally, we introduced mechanical forces in the same framework and found 

tha t the magneto-mechanical interplay on the atomic scale is much stronger in one direction, being 

that structural rearrangements affect the spin-dynamics but not the converse. We attributed the 

relative insensitiveness of the atomic structure with respect to  microscopical spin-rearrangements
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to the fact th a t interatomic forces depend on the total charge density of the current-carrying 

electrons, not on their spin polarization.

In Chapter 4 we made a comparison between an empirical TD model of steady-state ballistic 

transport on an augmented finite system and the self-consistent NEGF description of the cor­

responding full-scale Landauer problem. We applied it to a model system, featuring multiple 

steady-states, degenerate in the static approach and found tha t the time-dependent method is able 

to self-select the energetically-preferable one. We also demonstrated that under certain assump­

tions about the binding of the device to the “oi)en-bouridary” capacitor and in the limit of “large” 

capacitor this empirical TD approach is identical to the Landauer steady-state.

In the last two Chapters (5 and 6) we presented and discussed the theoretical foundations of 

fully non-collinear time-dependent spin-dynamics simulations for both open and closed systems. 

Tliis was also based on the adiabatic spin-approximation and constituted an Ehrenfest MD for spin. 

In particular we approached a range of phenomena including the calculation of spin-wave spectra, 

dynaniical indirect.exclmnge,of,localized spin in metallic medium.and fimilly the current-induced 

domain wall (DW^) motion and spin-motive force generation. W'e demonstrated how spin-dynamics 

can provide unique insights into the device behaviour, beyond what is possible with steady-state 

quasi-static approaches for the type of systems in focus. For instance, this can be used to investigate 

non-adiabatic (in terms of the local alignment of the itinerant spin to the localized spin) effects in 

the case of very narrow (a few lattice spacings) magnetic DWs. Other dynamical effect, accessible to 

the TD simulations, was the demonstrated generation of a spin-motive force by the precessing DW'. 

This was further analyzed from a classical perspective and relevant parallels were demonstrated.

Although our calculations have been carried out in the framework of the self-consistent tight- 

binding method (including mean-held Hartree interactions), these are conceptually extendable 

to more general first-principles approaches such as the time-dependent density functional theory 

(TDDFT). A development in this direction would be the natural extension of the work presented 

in this Thesis and this is the objective of on-going consideration. We envision tha t these methods 

may soon become an invaluable tool for investigating spin-dynamics in nano- and atomic-scale 

devices.

142



A ppendix A

Surface G reen’s function for a

sem i-infinite cubic lattice w ith a

finite cross-section

All transport-relevant information about a perfectly periodic semi-infinite lead with a finite cross- 

section is in its surface Green’s function G (a more formally-correct term for this object would be 

surface Greenian operator). The latter, when projected on a grid of atomic orbitals in a tight- 

binding (TB) fashion (see Appendix C for details on TB), is a matrix G —> {Gy} =  {G (R ,,R j)}  

of two-point stationery Green’s functions (GFs), {G(R,, R j)} , as defined in Eq. (2.2.2) but for R; 

and R j representing atomic sites on the surface. Here we derive the analytic expression (3.2.16) 

for the surface Green’s function m atrix of a cubic-lattice semi-infinite lead within a single-orbital 

nearest-neighbour tight binding model. This derivation follows the derivation in Ref. [110, 107] 

and is based on the Dyson equation for the Greenian operator

G = G° + G °V G  (A.0.1)

which describes the relation between the “unperturbed” Green’s function G^ = E i - H °
- 1

and

the '‘perturbed” one G = E l  -  H°  - V , where is the unperturbed Hamiltonian, V  is the

perturbing potential  ̂ and we have omitted the E  dependence for brevity.

'N o te  th a t  V  need not be sm all for th e  Dyson equation  to  hold. E quation  (.\.0 .1 ) can be ob ta ined  easily by 

su b s titu tin g  th e  ^EI — //°j =  |g ° |  in to  th e  expression for G.
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A. SURFACE G REEN’S FUNCTIO N FOR A SEM I-INFINITE CUBIC LATTICE 
W ITH  A FINITE CROSS-SECTION

We firstly look at the simplest example -  the surface  ̂ Green’s function of a semi-infinite linear 

chain. Let the sites in the chain be numbered starting from the end with number “1” as depicted 

in Fig. A. 1(a). We can write the Dyson equation only for the cluster of the two end atoms “1” 

and “0” before and after they are connected [see Fig. A. 1(b)] as if (only for this argument) “1” is 

not connected to the rest of the chain

^00 Goi \  _  f  Goo <̂ 01 ^ -I- 1̂ *̂ 00 <̂ 01 W  ® ^ 1 f  1 (A 0 2)
Gio Gn J  y  G% Ĝ n J  \ G %  G ° ,  J  \  x ^  J  \  Gio G„

where x < 0 is the intersite hopping and the subscript 0 is for the Green’s functions before the two 

atom cluster is coupled. It follows that

Goo =  Gqo +  xGqoG io , Gio =  xGnGoo ■ (A.0.3)

(a)

Site:

^ -.0 ^ 0  
V y  ̂ 1 1 ^ 0 0

-a - -a- a a
|3> |2) |1> |0)

............q  ^ ^  ^ ^  a
Site: |3) |2) |l> |0>

(c)

Layer;

N ,

Figure A.l: fAppl Schemes of semi-infinite cubic lattice structures: (a) and (b) represent an atomic 

chain before and after the end atom “0” is attached. In panel (c) is a 3D structure with finite 

cross-section and layers numbered similarly to the ID chain.

If we bring back the rest of the chain into the discussion, as it extends to infinity, obviously 

attaching the atom “0” to it would not change its end Green’s function and therefore Goo =  Gi j .

^Since it is a ID case, it is probably more appropriate to talk about “end” Green’s function instead of a surface 

one. Also we always consider the retarded (causal) Green’s function.



Hence we obtain a quadratic equation for the surface Green’s function of the chain in terms of the 

free atom ’s retarded Green’s function Gqo and the hopping x

Goo =  Goo + (Goo)^ , where Gqo =  hm 1 / (S '-  £q +  (A.0.4)
r;—>0+

as we consider a single level a t some energy £q. The solution of Eq. (A.0.4) is

( g - £ o ) ±
2x'

with the following convention for the sign in front of the square root

— , for \E — £q| 2 IxI (   r jr ^  p  9 Ivl
+  , for |£  -  £o| > 2 Ixl and E  -  £o < 0 <=> \ ’ ^  J   ̂^  , (A.0.6)
-  , for \E -  £o| >  2 Ixl and E  -  £o > 0 I +  , for £  < £o -  2 |xl

which are based on the requirements ' tha t Im [Goo] < 0 and tha t Goo Gqq for x 0 [110, 107]

+
£ q £-o + 2 | |̂ E

Figure A.2: A cartoon of the sign convention in Eq. (A.O.G).

We now use this result for the chain [Eq. (A.0.-5)] to derive the surface Green’s finiction of a 

three-dimensional (3D) cubic-lattice semi-infinite lead [see Fig. A. 1(c)]. Since there is an analogy 

between the periodically repeating atomic sites of the chain and the transverse layers of the lead, 

we only need to unfold the 2D degrees of freedom within each layer of x atoms. Let us 

denote the single orbital on the site located at n  =  {nx,riz) on the i-th layer in isolation by | / ,n).  

Going into 2D momentum space, we have eigenmodes with wavevectors q  =  {qx,Qz), such

tha t [107]

H I
n j .  =  l  r i z  —  \

'T h e  physically relevant choice between these two solutions is described in Ref. [110], If the expression under 

the square root is negative then the minus sign is taken as this provides for Im [Goo] < 0 (electron number density 

is proportional to  —Im(Goo)). If the expression under the root is positive the sign is determined by the condition 

Goo —* Ggg =  l/(-E  — £o) for x —> 0. To take the latter limit we rewrite Eq. (A.0.10) as

[ E- E. O? - \ { E - e . o ?  - AX^]  2 2
Goo(E.a)  =  F-------------------1 ^  ----------------------------------  . (A.0.7)

2x2 [i? -  £o) =F v/TB -  £o)2 -  4x^] E  -  Eo ^  y j ( E  -  E^)'^ -  E - £ o ^ \ E - E o \

Now it is apparent tha t in the limit x 0 the relevant solution is the one with the minus for E  — Eq > 0 [in Eq. 

(.A.0.10)1 and plus for E  — £o < 0. This convention for the sign is illustrated in Fig. A.2.
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and eigenenergies

£ 9  = £(q) = - 2  Ixl cos (  ̂j  -  2 Ixl cos ) • (A.0.9)

Then, within a nearest-neighbour tight binding model (homogeneous in all directions) for a 

particular transverse mode q we define Gw{E,  q) =  q G I', q ^  Analogously to the chain’s end 

GF [see Eq. (A.0.5)], the surface GF of the lead for a given transverse mode q is thus

E - E , ±  £,)2 -  4x2
G o o ( £ , q )  =  Goo(-B, £0 =  £ ,)  = ---------  ̂ ^

and the relevant sign rule is as in Eq. (A.0.6) but with £q swapped for £,.

Finally, we convert the surface Green’s function back to real-space basis, using Eq. (A.0.8)

9mn{E) = Goo(£';m,n) =  (0, m|0, q) Goo(£', q) (0,q|0,n) = (A.0.11)

= S ,» .>  (% S f) »in (% S f) ( ^ a r )  ™ (?53T)Goo(£.q).

where m  and n represent two sites on the lead’s surface and Goo(£'. q) is given by Eq. (A.0.10). In 

this form the surface GF matrix gmn is used in constructing the self-energies of the cubic-latticed 

leads for the transport calculations in Chapter 3.
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A ppendix  B

M ixing schemes in self-consistent 

calculations

All density  functional theory (D FT) [48] based electronic s truc tu re  calculations involve a self- 

consistent solution of some set of coupled non-linear integro-differential equations. The Kohn- 

Sham equations [GO], solved in D FT, are formally a set of one-electron Schrodinger equations th a t 

depend non-linearly on the full electronic density p  through th e  effective poten tia l V f̂r[p]- T he sum 

of all K ohn-Sham  wavefunctions squared is equal to  p, which completes the  system  of equations. 

T his leads, in general, to  a recursive expression for p

p ^ F { p ) ,  (B .0 .1)

which can be rew ritten  as

P in  Pout (Pin) i (B .0 .2)

where p\„ (pout) is the  input (ou tput) density and Eq. (B .0 .2 )  gives the  convergence condition ' for 

an iterative solution of Eq. (B .0 .1 ) .  In any num erical im plem entation convergence can be defined 

as a g radual m inim ization of the distance between p\„ and Pout in th e  p space, e.g. [•').'}]

1 / 2
■^[PiniPout] llPout Pinll (Pout PiniPout Pin) ) (B .0 .3)

*Iti fact p  and Uefr are equally good to be used as convergence criteria, since both the charge and the potetitial 

are equivalent when they are treated on the same footing, except that the total energy may not converge as quickly 

when Veff is used as a criterion [53],
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B. M IXING  SCHEMES IN SELF-CONSISTENT CALCULATIONS

where 11 11 designates the norm in the hnear vector space p G D  ̂ and ( , ) is the scalar product.

The problem of solving Eq. (B.0.2) is still essentially a problem of solving a system of non­

linear equations as it can be taken in the form p — F{p) =  0. In electronic structure problems 

during the iterative numerical solutions, however, increasing in amplitude charge oscillations may 

arise and cause the divergence of the algorithm. Here we describe a few methods of damping 

those oscillations, purposely developed for self-consistent field (SCF) calculations. In fact such 

calculations do not only concern DFT. The Pulay method [80, 81], for example, has been developed 

for Hartee-Fock calculations. SCF calculations are encountered in this work whenever electron 

interactions (within mean-field approximation) are taken into account (both in the steady-state 

transport and in the time-dependent simulations).

B . l  Sim ple mixing

Wo start with- the simplest approach to damping those-charge-oscillations -in-SGF- iterative -pro- - 

cedures. This is to take on the n-th iteration a linear combination of the input and the output 

densities, i.e.

=  (1 -  a)p^^  + , (B.1.1)

where typically the mixing parameter a  G [0,1]. Convergence is usually achieved with a suitable 

choice of a.  Smaller values of a  are associated with better stability, though, for very small a  < 

0.04, which are required for more complex systems (e.g. 3d impurities in noble metals [34]), 

the convergence may proceed extremely slow. Ranges of applicability for a  in various situations 

are studied in Ref. [34]. More sophisticated mixing schemes, using optimized on-the-fly mixing 

parameters, can accelerate the convergence and reach solutions where the simple mixing fails.

In the following subsection we discuss the Anderson’s mixing scheme. In this method the con­

vergence acceleration is achieved on the expense of memory storage, as the dynamic optimization 

of the mixing is based on (some sort of) extrapolation over a set of old input and output densities. 

The dimension of tha t memory space, i.e. the number m  of old iterations taken into consideration, 

may vary. Often in the literature the Anderson’s scheme is called the two-step memory (m =  2) 

version of the scheme [53], though in Anderson’s original work [5] the method is introduced for 

an arbitrary memory size. The Pulay’s scheme is independently derived and identical in concept 

but introduced in a more implementation-friendly manner for m > 2. We shall follow the trends

^For example, if p is the density matrix in a single band tight binding model, B  is the space of N  y. N  matrices, 

where N  is the number of atomic sites. Often one works with only the actual charge density (the diagonal elements 

of the density m atrix) and then D  is the space of vectors of size N.
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B .2  A n d e r so n ’s m ix in g

and call the  two-step version A nderson’s, while the  ?n-step version - P u lay’s m ixing scheme. The 

reason for considering them  separately is th a t th e  tw o-step version nicely clarifies the  concept of 

th e  m ethod. Moreover we use th a t  particu lar (A nderson’s) mixing scheme in th e  in itialization  of 

th e  density  m atrix  for our tim e-dependent sim ulations, while we use the more com plex m -m em ory 

(m  =  4) P u lay ’s version in our steady-state  transpo rt.

B .2 A nderson’s m ixing

In the Anderson scheme [5] linear com binations of inpu t and ou tp u t densities from two (or more) 

iterations are used in order to  determ ine an optim ized input and o u tp u t Pout densities for the 

next iteration

(B.2.1) 

(B .2.2)

where is an iteration-dependent m ixing param eter.

Let us define 5p^^^ =  and 5p^  ̂ The m ethod is based on the

w ith  respect to  to  determ ine the  optim alm inim ization of the  least-squares deviation 

mixing coefficient. By definition

6p
(n)

Sp
(n)

+ ( / ? ' " ’ )  I +  2  ( l .

(B.2.3)

From the m inim ization

6p
(n)

This optim al is used to  construct and as in Eq. (B.2.1). T he new guess for the  

next iteration  is then  m ade in a simple mixing step w ith an em pirical mixing p aram eter a  € [0,1]

a \-^n) , --{n)-  a)p.^ +  . (B.2.5)

T hat last step is indeed necessary as it brings some o u tp u t com ponents into th e  new guess so 

th a t Pin does not rem ain trapped  in the  space of the  old input densities.
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B. M IXING SCHEMES IN SELF-CONSISTENT CALCULATIONS

B .3 P u la y ’s m ixing

The Pulay m ethod has been originally proposed for geom etry optim ization calculations [80, 81]. 

It is also called Residual Metric M inim ization (RM M ) m ethod [21] and gives a straightforward  

prescription to  the numerical im plem entation of the generalized to  m -step  m emory Anderson’s 

scheme. Here the residual  from the ?i-th iteration (n >  m)  is an m -dim ensional vector. The  

optim ized input and output densities are again a linear com bination, th is tim e, o f the previous 7n 

inputs
m m

, (B.3.1)--{n)

2 = 1

where Ci =  I. T he residual  from the n -th  iteration is again defined as and

thus the residual associated w ith is again a linear com bination of residuals '

- i  +  l) (B .3.2)
i=l

' (n)
The requirement that Sp api)roxim ates the zero vector in the mean-square sense leads to  the 

following system  of in -t- 1 linear equations for the coefficients Cj

(  Bxx

B m l  

\

B i2 B\rn -1  \
B22 B2m -1

Bm2 ■ Bmm -1
-1 . -1 0 y

/  Cl \
C2

/ 0 \ 
0

0
V  - 1  /

(B .3.3)

where Bj
(n)

1+ 1) j+1)^ and A is a Lagrange m ultiplier, the value of which yields
I
. Solving Eq. (B .3.3) provides the optim ized As the final new guess cannot be m adeSp

only of inputs, it is again a m ixture of the optim al densities from Eq. (B .3.1)

^(n+l) =  (1 _  , (B .3.4)

where a  is an em pirical constant in [0,1]. Again the value of a  can substantially affect the  

convergence rate and its choice depends on the physical system  described.

For n <  m  either sim ple m ixing steps can be taken or for n >  2 Pulay steps (as described  

above) w ith  increasing m'  =  n  until m ' =  rn. T ypically m  ~  5 is considered sufficient [21]. In our 

sim ulations m  — 4.

' i t  is assumed that we are close enough to self consistency for variations of the densities and their associated  

residuals to be linearly related.
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A ppendix  C

Tight-binding description of 

electrical current flow

In the  discrete representation of the  tigh t binding (TB) approxim ation the definition of an integral 

quan tity  like the  electron current requires some ex tra  atten tion . Here we justify  the  expressions 

for the  bond current used in C hap ter 4 and 6.

T he TB m ethod is based on the assum ption th a t the atom s are relatively far away from each 

o ther, so th a t  the  overlap of the  wave functions of the  electrons in neighbouring atom s is small 

[10]. Hence th e  wave function of an electron w ith wavevector k  moving in the  crystal la ttice  can 

be approxim ated w ith a linear com bination of localised orbitals (LCAO)

V'ka(r) =  (rjiAka) =  -  R „ ) , (C.0.1)
n

where we introduce the  notation |<̂ Tia) for the  localised atomic-like orbital a t site R „ , such th a t 

0 n /a ( r  — R.) =  (r|0na)- Everywhere ot indicates the  type of the atom ic orb ital (a  is a collective 

quantum  num ber a. =  { n , l , m} ) .  T he foregoing TB sta te  Eq. (C.0.1) satisfies the  Bloch condition 

i/’k a (r  +  R ) =  *^i/»ka(r) (see for instance Ref. [8]). Here we follow Ref. [109] and consider a

general electron sta te  as a superposition of Bloch waves (C.0.1) or in fact localised orbitals \ (pna)

IV̂ ) ~  ^   ̂ j^ka) ~  ^   ̂^na \^na) i (C.0.2)
krt n a

where 4>na are the expansion coefficients. In doing so we may drift away from th e  initial assum ption 

th a t {]i?!>na)} are the actual atom ic orbitals. It is even advisable not to  use the  tru e  atom ic wave 

functions as in this case Bardeen and Van Vleck [10] have found a factor of th ree difference between
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C. TIG H T-BINDING  DESCR IPTIO N OF ELECTRICAL CURRENT FLOW

the  two equivalent form ulations of the current, e.g. the  x-com ponent of the  current, carried by an 

electron in sta te  \ ipka) (see for instance Ref. [73], pp. 92-93)

/'■' =  d’-- (Ĉ 0 3)

where is an exact eigenenergy of the Schrodinger equation (SE) with the periodic potential 

K (r) of the  lattice

-A 'I'ka +  V^(r)^'ka =  (C.0.5)

and is an exact eigenstate for which undoubtedly [10]. However, Eq. (C.O.l) is

an approxim ation for which ^  'I'ka only in the  lim it of very distan t atom s. In any case, the 

correctness of the TB approxim ation in Eq. (C.O.l) depends on the choice of the  localised orbitals

{[<? noc^  J • I f  tl lG S G  c llG  h y c i r O ^ G l l “ l l k o  £ l tO I l l i c  ^ V d V C fu ilC t lO n S , I.G . ^ n c k (r) ~  e Ref. [ID] has

shown th a t for these and th a t ra tio  of 1:3 is found to  persist even when both  currents

api^roach 0 in the  lim it of large interatom ic distance. It has, however, been dem onstrated  th a t

for local orbitals {</>kQ} corresponding to  the screened (by the o ther valence electrons) 

atom ic potential C/(r) which decays w ith d istance much more rapidly than  l / r  (exponentially) and 

imposes an asym ptotic dependence of 0 „ a (r)  ~  [10].

W ith  this in m ind, we go back to  Eq. (C.0.2) and avoid associating {[^na)} w ith real atomic 

orbitals. Instead we th ink  of these as a discrete com putational grid of localised basis functions. 

For convenience here we consider a  grid {\(f>na)} which coincides w ith the atom ic lattice. The full 

H am iltonian (as well as any one-electron T B  operator) can be represented as

H =  Y .  \4> n a  } ^ n a m 0  {4^Tnl3\ • (C.0.6)
n , a y m , f 3

This m atrix  is H erm itian, i.e. H n a m f i  =  -f^m/3na’ could depend in a self-consistent m anner on 

the  instan taneous electron density in the  system  as it does, for instance, in Eq. (4.3.4).

We assum e th a t  our basis is orthogonal

(^nal^m/s) “  ^nm^a/5 ■ (C.0.7)

We continue following Ref. [109]. A general tim e-dependent (TD) one-electron s ta te  can be 

expressed in the  o rthonorm al positional basis as

l'V̂ (O) =  \ K a )  ■ (C.0.8)
n ,O L

152



This is a solution of the TD SE, which in a matrix form reads

nam = ih^nai t)  ■ (C.0.9)
n a

We define a projection operator to each site n  as

Pn = Y. \ ^n a){cpna\ ,  (C-O.IO)
a

and | A i |  make a closed set = 1 with 1 being the identity operator. A projection of the

general TD electron state from Eq. (C.0.8) on site n  is thus defined as

P„{t) ^  m ) \ P n  m ) )  = Y . ^ n a i t ) ^ n a { t )  (G.0.11)
a

and th a t represents the TD occupancy on tha t site. The rate of change of Pn{t) is described by its

equation of motion P„(i) =  (</>(OI Ai, 10(0)- The current operator is hence identified with

g -  J_
—  ■ 2- ih P n ,  { ^ n H P m  ~ P m H P n )  =  ’ (C.0.12)

m^n m^n

where we have used the closure relation for |A i |  and extracted the operators

1 / . , , . . , \ 1 ^T ='■'mn — —  (^PnHPm -  PmHPn^  =  ^  X ]  {Hnam0 \4> na ) (0 m /3 1  ^ m 0  na |0 m /3 )  {4̂  net I ) ,  (C.0.13)

a,(3

which naturally represent the flow of electrons from a site m  to  site n. This intersite operator drnn 

describes all the flux occurring between the two sites and is also called “bond current” . The total 

current operator for a system of the Landauer type (see C hapter 2, e.g. Fig. 2.8) is then defined 

with respect to an open surface S  which splits the system in two parts a t the device region

%  = Y .  ^  {Pr H P l -  Pl H P r ) =  ^  [pR, ^ ] = - ^  [Pl , h ] (C.0.14)
n G L 
m 6

where L  (R)  designates the region to the left (right) of S,  the new projection operators occurring 

are defined as Pl{R) = 12neL{R) ancl they obey the following relations [109]

Pl Pr  = Pr Pl = 0,  PI(r ) = Pl (R) and =  1. (C.0.15)

We note th a t the total current operator 3s  through surface S,  contains bond-current contributions 

only from the bonds tha t are cut by S.

As an illustration of the bond and the total current concepts we consider a ID chain in a  single 

band (q =  /?) nearest-neighbour TB model

Hnm = Hnama = |  ’ foj. m  =  n  ±  1 ' (C.0.16)
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C. TIG H T-BIN D IN G  DESCRIPTIO N OF ELECTRICAL CURRENT FLOW

In this case, there are two bond currents associated with each site n, as described in Ref. [88]

^n±i,n ~  TT {^n,n±l  |^n±l) (0n| -^n±l,n \^n) i (C.0.17)in

describing the inflow from the two neighbouring sites n i l .  The net current at n  is tlius given 

by On = 3n-i,n  +  3n+i,n- For instance, if |V'(t)) is a normahsed Bloch state in A'^-atom long chain 

(with N  —> g o )

\ M t ) )  = ^  |^„) , (C.0.18)
^  n

where a is the interatomic distance and =  £q ~  2x cos {ka) then the bond currents are

I n ± \ , n  =  e  ^  — 5 in (5 m ,n ± l )
m,l

=  (C.0.19)al\ i\  a

where e is the electron charge, Vk = =  2xsiri(A:a) is the group velocity of the Bloch state.

Therefore, in this case of a pure Bloch state, the net current at n is exactly zero, i.e.

I n  = I n  + l . n  + I n - l , n  = 0 . (C.0.20)

This is because of the exact balance of left- and right-going currents. For this reason the total

current for the bond (n ,n  + 1) (as well as any other bond inside the chain) is also zero. In

analogy to Eq. (C.0.14) we can associate a surface S  cutting through tha t bond and the fact that

Is  =  In,n+i +  I n + i , n  =  0  directly follows from Eq. (C.0.17). The individual bond currents / n ± i , n ,  

however, are not zero as they are proportional to Vk- This illustrates the concept of conductance 

associated with a quantum channel, which we introduced in Chapter 2 and which is a finite quantity 

even if there is no net current.

Going back to the generalised formulation in Ref. [109] and Eqs. (C.0.13) and (C.0.14), we 

define the actual bond- and total currents as expectation values of the corresponding operators ^

Inm = eTr 3nmp and I s  = eTr 3sp , (C.0.21)

where [as in Eq. (2.2.35)]

p = I  D i { E ) h { E ) d E  + j  b R [ E ) f R { E ) A E  (C.0.22)

is the density m atrix (in general, nonequilibrium) of the system and Di^n) are the partial densities 

of states associated with the left- (right-) travelling states [see for instance Eq. (4.2.8)]. The

'T h is  is in fact w hat we did in th e  foregoing ID  exam ple in Eq. (C.0.19).
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analogue of Eq. (C.0.20) for the general Landauer problem is referred to as the zero-current 

theorem in Refs. [110, 109]

Tr .. ^   ̂{^m0na^nocTn0 ^nam0^?n0na) 0 (C.0.23)ih a.0

as long as there exists an onsite unitary transformation of the TB basis in which the Hamiltonian 

H  and the density of states operator D = D{E)  = Di { E )  + Dfi{E)  are symmetric matrices in 

the transformed basis, i.e. Hnamis =  Hmpna and Dnamff =  Dm0na- This assumption is plausible 

in the absence of magnetic fields [109]. The result (C.0.28) applies also to 3„rn- Based on tha t 

zero-current theorem, stating tha t the filled states outside the bias window do not contribute to 

the net current, both the bond and the fact th a t Eq. (C.0.22) can be rewritten as

p = j  D{E) f„{E)  d E  + j  Dr.{E) [ f UE)  -  fniE)]  d E , (C.0.24)

the total current through a surface I s  can be expressed as

Inm(S) = e J  I f UE)  -  fniE)]  Tr [3nn.(S)DL{E)] d E . (C.0.25)

This {expression for I s  is shown to be equivalent to the NEGF expression in Eq. (2.3.10) for 

arbitrary open surface S  in Ref. [109].

The expression for the local current which we used in Chapters 4 and 6 [see Eq. (4.3.7)] are 

derived directly from Eq. (C.0.21) for the case of a real symmetric Hamiltonian and a Hermitian 

density matrix

J  _  pTY
■* n.m. —  o  X 1 ^nmP  ̂^mQnoc î Pnocm(3 Pm0na) — [Pnm] • (C.0.26)

a/3
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A ppendix  D

Tim e integrators

There exist plenty of numerical algorithms for integrating ordinary differential equations (ODE) 

(see for instance Ref. [105, fir)]) and they all have one thing in common - they map the continuous 

differential equation onto one or more difference equations. For instance, in molecular dynamics 

(MD) the system of equations of motion of the particles needs to be integrated over time, given the 

initial conditions. The time-stepping algorithms, also called time integrators, used in MD, produce 

discretised (at equi-spaced points in time) approximations to the trajectories of the particles. How 

good this approximation is compared to the actual trajectory can be assessed by the following list 

of criteria  ̂ [13, 105]

• accuracy, i.e. to which power of the time step the numerical trajectory will deviate from 

the exact one after one integration step. Here, together with the inherent accuracy of the 

integrator scheme, a contribution to error accumulation has also the finite precision of the 

floating-point computation. The round-off errors, however, are typically assumed to be much 

smaller than the ones due to the algorithm [G5],

• stability, which refers to the long-term asymptotic dynamics of the method, when applied to 

a linear ODE such as the harmonic oscillator. A numerical integrator is asymptotically stable 

if the growth of the solution for a linear model problem is asymptotically bounded [65].

• energy conservation (if the system is conservative), measured by two quantities: the drift, i.e. 

the steady deviation of the energy from its initial value along the trajectory and the noise, 

describing the fructuations on top of the drift. The drift is the more undesirable of the two, 

as it can drive an otherwise microcanonical MD simulation out of equilibrium.

'N ot necessarily independent from each other.
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D. TIME INTEGRATORS

• time reversibility has to be incorporated in the integrator if it is present in the equations of 

motion.

• symplecticity \  which refers to whether or not the phase space geometry of the actual con­

tinuum dynamics is preserved by the integrator. This is, in a sense, the strongest of the 

symmetry-preserving criteria. Symplectic integrators preserve the phase space volume (a 

property inherent to continuum Hamiltonian systems by the Liouville theorem), but sym­

plecticity is independent of time-reversibility (the latter also depends on the mere structure 

of the Hamiltonian, which could otherwise be symplectic). It is, though, related to stability 

and to  energy (and other first integrals) conservation. It is known th a t symplectic integrators 

preserve exactly the discrete version of the total energy [105] at least for linear systems (for 

non-linear the drift is exponentially decaying with the decrease of the time step [O')]).

Here we discuss the simplest integrator tha t has all the nice symmetry-preserving qualities and 

, for this reasori is widely used in MD sim ulatiQns,....................................................................................

D ,1 T he Leapfrog Verlet integrator

The Verlet algorithm is a two-step method, belonging to the Runge-Kutta family, for integrating 

second order differential equations of the form

X  = F  [a:(t), t] . (D.1.1)

It can be derived [105] by adding the Taylor expansions for the coordinate x  (working in ID for 

simplicity) at  ̂ =  ±A^ about t = 0

A+2
x{A t)  = x(0) +  Ati:(0) H— ^ F [x (0 ) ,0 ]H — ^ x ( O ) - I -©(At'*) (D.1.2)

A ^ 2  A f S

x ( —At )  = x(0) — Ati(O) H— ^ F [ x ( 0 ) ,0 ] ----- ^ x ( O ) - I -O(At^) (D.1.3)

^This comes from  th e  te rm  sym plectic map  which is a  m ap in th e  phase space of th e  system  which preserves the  

structure m a trix  J  of a  H am ilton ian  system

z =  J V ^ H (z ) , (D .O.l)

where z is a  2d-dim ensional vector in th e  phase space. In th e  canonic phase-space, for instance, th e  s tru c tu re  m atrix  

has th e  form

J  =  I  °  I  , (D .0.2)
- Id  0

where is a  d X d iden tity  m atrix . All flow m aps [right-hand side of Eq. (D.O.l)] of canonical H am iltonian system s 

are necessarily sym plectic  [65].
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D .l  T he Leapfrog Verlet integrator

leading to

x{At)  = 2x{0) — x{ — At)  +  A t ^ F  [x(0), 0] +  0{At'^) (D .l.4)

which we rewrite in terms of indexed time-step values =  x{nAt)  as

Xn+i = 2x„ -  Xn-i  +  At'^F [x„, uAt] + O i A f ^ ) . (D.l.5)

Thus we need the last two values, Xn and Xn-i ,  to be able to produce the next one Xn+i (hence, 

two-step method). This is what is most often referred to as the leapfrog method as it only involves 

coordinates [(>5].The O(Ai^) term means that the deviation of the exact solution from the numerical 

one in a single timestep is smaller than where a „  are finite and nonvanishing for Ai ^  0

numbers. However the error accumulates when integrated over a certain time interval T  ^  A t  and 

the global error for the method is actually O(At^) [105]. Introducing the velocities at half-steps, 

the velocity-Verlet flavour of the method follows the equations

=  V n -  ^ F [ X n , n A t ]

Xn+l  =  Xn + AtVn_^_l (D.l.6)
A t

Vn+\ = -  — F [x „ 4, i,(n -h  1)A<]

Of course, this is just one formulation and other (equivalent) combinations of x  and v at half-steps

could be used depending on whether or not one is interested in velocities and coordinates at the

same timesteps. One such formulation is the so called 3-level leapfrog method [74]

Xn-\-l —  X 7 2 —1 “ 1“  ‘2Vf iAt

Vn + \ = V n - \ + ‘2 . F [ X n , r i A t \ A t .  (D.l.7)

Here one can very clearly see tha t the leapfrog method is time-reversible, i.e. invariant against 

the substitutions A t  —A t  and x„+i «-► x„_ i. It is also symplectic [65] which, together with its 

simplicity, makes it a good choice for MD simulations. There is, however, one well-known situation 

when this algorithm becomes unstable. That is the case with velocity-dependent forces, which 

could arise, for instance, if the particle is moving in a magnetic field or if there is a dissipative 

force. Such a situation is inherently non-time-invertible and for this reason the time-invertible

integrator is not behaving adequately. There is, however, a rather simple fix [74] and we discuss

this in the following section.
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D .2 Problem  w ith non-conservative system s

Here we follow reference [74]. The reason for the instability lies in the fact that, as formulated in 

Eq. (D.1.7), the 3-level leapfrog method links directly the coordinates and velocities at only even 

timesteps or only odd timesteps. It also requires the initial conditions at two timesteps {xo,Vo) 

and (xi,Vi). Thus it appears tha t the numerical algorithm hzis twice as many degrees of freedom 

as the actual physical system. Eq. (D.1.7) can be summarised as

Zn + 2 ~  2F l] t (D.2.1)

where z =  (x,v)  is a vector in the phase space and F  =  (v ,F)  is a generalised force. It is easy to 

see that Eq. (D.2.1) can be separated into two subsystems -  one even a  and one odd b, discretised 

at 2At

&2n+2 =  a 2„ +  2F  [a2n+l ,  2̂n + l] (D.2.2)

t>2n+3 =  b2n+l +  2F [b2„ + 2, i2n + 2 ] • (D.2.3)

If z =  (x, 'i>) is a sohition of Ecj. (D.2.1), it is also a solution of the augmented difference system 

(D.2.2, D.2.3). This is, therefore, the physical solution of the problem for which z = a  = b. Other 

(unphysical) solutions for which a  ^  b  can arise as valid solutions of the Eqs. (D.2.2) and (D.2.3) 

th a t cannot be distinguished from the physical ones. We can define a measure of the unphysical 

variation w

a =  z + w , b =  z —w . (D.2.4)

Hence, a parasitic solution z in finite difference form would be

z„ =  z„ +  ( - l ) " w „  , (D.2.5)

i.e. it would contain both physical z„ and unphysical w „ modes. These by themselves are solutions 

of

2z =  F  [z — w, ]̂ +  F  [z + w, i] =  F  [z, t] +  O(w^) (D.2.6)

2w =  F  [z — w, <] — F  [z +  w ,t] =  D F  [z, f] • w +  O (w ^), (D.2.7)

where we have expanded the system in powers of w and D F  is the matrix of partial derivatives 

dFi/dZj .  It is now becoming apparent how velocity-dependent forces (for which D F  ^  0) could 

give rise to an amplification of the parasitic modes w. Such amplifications are exponential and 

inevitably lead to numerical catastrophies. If a constraint w  =  0 is adjoint to Eq. (D.2.6) it
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D .3 In te g ra tin g  th e  d a m p e d  L iouville  eq u a tio n

is, in principle, maintained by Eq. (D.2.7), but in numerical implementations imperfect initial 

conditions and round-off errors inevitably introduce nonzero w, leading to a divergency.

Tfie only way to cure this instability is to keep reiniposing w  =  0 during the integration. 

Various methods exist, which suppress the unphysical split to odd and even degrees of freedom 

[74]. W hat we have used in Chapters 4 and 6 is the cure suggested in Ref. [22].

D .3 Integrating the dam ped Liouville equation

As a reminder, in Chapters 4 and 6 we integrate a modified Liouville equation, which includes a 

dissipative F-term

■ p = ^ [ H \ p \ , p ] ^ T { p - p ° ) ,  (D.3.1)

where /5° is a specially designed electrically polarised density matrix [see Eq. (4.3.3)]. This is a first 

order differential equation hence we employ the first-order version of the leapfrog method above. 

Analogously to Eq. (D.2.1) the algorithm is contained in

Sn+2 =  2n +  2F  [^n+li ^n+l] i (D.3.2)

where in our simulations ^ =  pij and F  =  {1 / ih)[H, p]ij.

Apparently, all the above discussion can be repeated for this case of doubly reduced phase- 

space and the odd-even problems would, just in the same way, show up at the end. In order to 

decorrelate the odd-even bifurcation we perform a simple Euler step once every ~500 timesteps 

(typically A^ =  0.005 fs)

■̂ n+2 — 1 (D.3.3)

The effect of this “Euler-fix“ is demonstrated on Fig. (D .l). This is a simulation of a current- 

induced DW motion in a 200-atom chain. While the onsite charge without the fix diverges at only 

47 fs, the one with the fix is perfectly stable for as long as the simulation goes (some 500fs). We 

have tested the “fixed” integrator against conservation of the total spin in the system (for a pinned 

DW^ see Fig. 6.6) and found its performance satisfactory with a relative variation below 10“ '* for 

the 500 fs-simulation.
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Number of timesteps
9240 9280 9320 9360 9400

solution with the "Euler-fix

Q- -5e-06

solution without the "Euler-fix
-le-05

46 46.2 46.4 46.6 46.8 47
t (fs)

Figure D .l: Time evolution of one onsite electron density (spin-up polarised component) in a 200- 

atom current-carrying wire with a DW (one of the calculations described in Fig. G.5; for all these 

spin-up band is fully filled with 1 e/atom  and F =  3eV), with and without the “Euler fix” . If 

the uninterrupted leapfrog is used an odd-even timestep instability develops and the calculation 

diverges. Instead, with one simple Euler step at every 500 it is very stable and may run to the 

picosecond range (> 10^ timesteps).
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