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Abstract

Current-induced spin-transfer torque effects form an exciting branch in the field of spintronics
with a huge potential for applications. Magnetization dynamics phenomena like switching or GHz
frequency precession in spin valves, enhanced Gilbert damping, etc. are all generated by spin-
polarized currents in nano-scale structures. Also in a close proximity to technological applications
is the field of molecular spintronics where the quantum properties of molecules trapped in con-
strictions can be utilized to control spin-currents and even engineer spin logic-elements. In order
to investigate theoretically spin-transfer torque effects in atomic-scale conductors in this Thesis
we develop a combined microscopic description of the magnetization dynamics together with the
open-boundary’ quantum transport of the itinerant electrons.

Our method is based on the s — d model and the adiabatic spin approximation, in which the
localized d electrons are the source of localized spins and are treated as classical variables and
the s electrons are itinerant and carry the current. We take two approaches to the spin dynamics.
Firstly, we consider the typical Landauer ballistic transport set-up and investigate the effects of the
current on the activation barriers for quasi-static rotations of the local spins under current-carrying
conditions. We find that current can change the stability of the spin-state in the constriction and
favour a state with particular transport properties. In the case when there is an abrupt spin domain
wall (DW) inside the junction current may promote both pinning and de-pinning. We further
introduce structural degrees of freedom into this model and find that structural readjustments
induced by the current can have significant effects on the spin dynamics and be a source of pinning
for the DW in the constriction. Conversely, we find that the spin-dynamics has little or no effect
on the current-driven structural deformation.

The other approach is a time-dependent scheme for Ehrenfest spin-dynamics. Its development
and testing is in fact one of the main objectives of this work. We apply this method to investigate
dynamical effects in closed systems, where we address magnon spectra calculations, dynamical
indirect exchange coupling and generation of a spin-motive force by a precessing DW. We also
extend this method to an empirical open-boundary augmentation in order to treat spin-transfer
phenomena in the time-domain and to assess the adiabaticity of the mechanism driving the motion

of an atomic-scale DW.
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Chapter 1

Introduction

The discovery of the giant magnetoresistance effect (GMR) [9, 19] in the late eighties has since
been driving an unprecedented growth in the magnetic storage densities (particularly in the last
decade), surpassing that established by the Moore’s law [71] in the semiconductor industry. The
technology in the GMR-based hard-drive read-heads, stemming from the experimentally observed
very large magnetoresistance in certain magnetic multilayers, has found its way to the commercial-
scale production and thus to the every-day lives of people in record times. In recognition Peter
Griinberg and Albert Fert, the experimentalists who were first to observe GMR and recognize its
potential, were awarded the Nobel prize for Physics in 2007.

Together with its immediate technological applications the GMR, by demonstrating a way of
controlling the transport properties of the carriers (electrons) in acting upon their spin, has become
the triggering factor to a whole new scientific-research field, commonly known as spintronucs Lt
This new branch of magnetism, stimulated by the industry and by the rapid progress in the
ability to manipulate the magnetization on length-scales smaller than the spin-diffusion length,
rapidly spread away from its GMR root with branches like the spin transfer, spintronics with
semiconductors, molecular spintronics and single-electron spintronics [38].

The last two categories set a direction for development of spintronics into what is called
nanospintronics [92]. At this end there are the studies of electron transport in reduced dimensions.
The typical sample is a junction that consists of two electrodes (leads) attached to a nano-scale
object. In the case of molecular spintronics this object is a molecule, while in single-electron spin-
tronics it is a quantum dot ? separated from the leads by two tunnel barriers. The magnetism

can be carried either by the object, like in the case of the single-molecule magnets (SMM) [20],

IThe term comes from spin-transport electronics or spin-based electronics [129].
2Quantum dots are nanoscale solid-state systems (e.g. semiconducting islands of 102-10° atoms) where electrons

are spatially confined. They constitute an intermediate step from bulk material to single molecule.



1. INTRODUCTION

or by the leads. In any case, these systems display a variety of quantum effects (either due to
their internal spin-degrees of freedom as in the SSM case, or due to the quantum confinement they
create) and are even candidates for quantum-computing [129, 20]. A more immediate possibility in
molecular spintronics is, for instance, the utilization of organic molecules and nanotubes for spin-
transport devices at the nano-scale. These carbon-based structures preserve the spin-coherence
at distances longer than conventional metals and semiconductors and can be used as spin-valves
[116, 51]. Recent theoretical studies [33] have clearly demonstrated the importance of the non-
equilibrium quantum-transport effects, which determine the spin-valve properties of a range of
organic molecules.

Another promising area of spintronics is the so-called spin-transfer. In the mid nineties Slon-
czewski [93] and Berger [16] predicted the possibility of inducing spin-dynamics by means of a
spin-polarized current. This effectively was the prediction of the “inverse” GMR effect, i.e. the
possibility that a spin-polarized current could change the magnetic state of a device. The essential
idea is that a spin-polarized current -can transfer angular momentum to the magnetization of a
magnetic system, thus generating a torque. In the right conditions this current-induced torque
can balance or even surpass the magnetic Gilbert damping [12], thus creating new dynamical solu-
tions to the equations of motion for the magnetization. Magnetic switching, magnetic resonators
and enhanced Gilbert damping can all be generated by a spin-polarized current. Importantly the
current-induced torque depends on the local current density and not on the total current through
the sample. This allows for down-scaling the size and the power consumption and opens new
prospects for switching magnetic random access memories (MRAM) [36], which largely motivates
the growing interest for this area of research.

Theory and modeling of current-induced magnetic phenomena is largely based on solving the
Landau-Lifshitz-Gilbert equations with additional terms describing the current-induced torques.
At a more advanced level transport theory for diffusive transport is also introduced in the descrip-
tion, effectively creating a sort of Kirchkoff magneto-ciruitry theory [24]. A much less explored
area is that of atomistic simulations of magneto-dynamics. These however are expected to occupy
an increasingly important place in theoretical magnetism, since nanoscale and even monoatomic
one-dimensional [40] magnetic devices are already available and examples of atomic scale magnetic
phenomena, such as transport in magnetic point contacts [125] and ultra-thin domain walls 78],
have been already demonstrated.

To date there is a notable and important attempt towards the atomistic calculation of quan-

tities related to spin-dynamics. This is represented by the extension of density functional theory



(DFT) to time-dependent phenomena. Within this framework the theoretical foundation for time-
dependent DFT for spin-dynamics was laid several years ago [68, 27] and practical calculations
based on the adiabatic approximation have been rather successful in describing dynamical proper-
ties of magnetic transition metals, although in absence of an electron current [7, 6]. Currents were
introduced only recently and simulations for open systems, carried out by using non-equilibrium
transport theory combined with DFT, are now available [45].

Importantly, all the calculations to date, based on the atomistic evaluation of the spin-torque,
do not perform real molecular dynamics in the presence of evolving currents. In Ref. [15], for
instance, the torques acting on the free layer of a spin-valve are calculated, but the magnetisation
itself is not relaxed. Since the conducting state of a device can be seriously affected by its magnetic
configuration, particularly at the nanoscale, this is an important limitation for realistic magneto-
device simulations. Note that there are no fundamental obstacles to molecular dynamics involving
spins. Ultra-fast spin-switching in the pico-second range has been demonstrated, indicating that
the fastest time-scale of atomic spin-dynamics is indeed in (or below) the ps range [41]. Since the
typical time scale for electronic processes is in the fempto-second range, one needs between 103 to
10° time steps to evolve the electronic structure to times relevant for the spin-dynamics. This is
well in reach of state of the art time integration techniques.

This Thesis aims to present recent advances towards the development of a truly atomistic
time-dependent theory for spin-dynamics. The s-d tight-binding model including electrostatic
corrections at the Hartree level will be our underlining electronic structure theory and whenever
available we will make contact with other theoretical approaches. In particular we will be fo-
cussing on introducing the main theoretical concepts behind our approach and providing a range
of examples where such scheme offers insights well beyond what is achievable by standard static
theory. These include the investigation of the spin-wave dispersion in nanoscale magnets, spin-spin
correlation in non-magnetic nano-wires, current-induced domain wall motion, and distortion and
the generation of an electromotive force obtained by domain wall precession.

The Thesis is organized in the following way. It has five major chapters (apart from the
introductory Chapter 1 and the epilogue Chapter 7) and four Appendices. The chapters, as they
are ordered, form three logical kernels. Chapter 2 and 3 discuss the quasi-static approach to spin-
dynamics in atomic junctions. This is in a sense the preliminary stage of just probing the actual
dynamical spin behaviour but the quantum transport is based on a conceptually clear platform.
Chapter 5 and 6 introduce the actual time-dependent (TD) spin description. This atomistic spin-
dynamics method, suited for closed finite systems, is then further extended by an empirical TD

transport method in order to enable us to address spin-torque effects. Chapter 4 is about the

3



1. INTRODUCTION

methodological comparison of the static and the time-dependent approach to steady-state transport
and it describes the conditions for their equivalence.

Going in more details, in Chapter 2 we introduce the basic concepts of ballistic transport in
the spirit of the Landauer scattering theory [63, 64]. We then extend this picture to allow for
the fully-quantum description of the conduction by means of the non-equilibrium Green’s function
(NEGF) formalism. We achieve this by gradually introducing the non-equilibrium concepts into
the static quantum description, by firstly analyzing the case of a device coupled to a reservoir with
a certain chemical potential [33]. Then we add a second reservoir and follow the same path to
finally obtain the corresponding result for the non-equilibrium steady-state conductance. Once,
we have introduced all the concepts in an invariant form, we consider a particular implementation,
based on a two-spin tight-binding (TB) representation of the electronic structure, and sketch the
algorithm for self-consistent calculations of the conductance away from equilibrium.

In Chapter 3 we investigate the spin dynamics inside an atomic-scale magnetic point contact
(MPC) in current-carrying conditions, as sketched in Fig. 1.1. The leads are oppositely polarised
so that an abru'ptv DW is formed in the éohsﬁriétién,' where we consider a uniform chain of atoms

with localised spins, bridging over the two leads.

Figure 1.1: Scheme on the MPC described in Chapter 3.

We consider the steady-state non-equilibrium regime and describe the ballistic transport by
means of the (previously described) NEGF method. This is implemented in a two-band TB basis.
We describe the local spins as classical variables exchange-coupled to the expectation values of the
on-site itinerant spin densities and compute the current-induced torques by applying the generalized
to open boundaries Hellman-Feynman theorem [111]. We then study the spin-dynamics inside the
constriction in terms of quasi-static local-spin rotation and map-out the activation barrier for
thermally-activated DW migration. We discuss the symmetries, the stability pattern favoring

collinear or non-collinear spin states, as a function of the two exchange parameters, the effects

4



of the structural disorder and by calculating the work for a closed loop of spin-transitions we
address the problem of the conservativeness of current-induced forces in open systems. Finally we,
introduce the structural degrees of freedom within the same framework and study the interplay
of structural and magnetic properties under bias and its dependence on material parameters. We
identify a predominant direction in this magneto-mechanical interplay. Our calculations show
that minor structural readjustments have a great effect upon the spin-transfer torque, while the
spin-dynamics is practically not affecting the structure.

In Chapter 4 we depart slightly from our main objective of spin-dynamics. We take this
opportunity to introduce an empirical time-dependent (TD) approach to the steady-state transport,
inspired by the idea of mapping out the Landauer problem onto a finite (“micro-canonical”) one
(124]. We compare the steady-state conductance results obtained by the TD approach to those
obtained by the self-consistent NEGF method (static). Our model-system is that of an atomic
dimer weakly-coupled to leads attached to the plates of a capacitor [87]. For certain range of
parameters and above certain bias-voltages in this system, the static approach shows the occurrence
of multiple (three) different steady states but only one of them is observed in the TD simulation.
At the end of this Chapter we demonstrate analytically the conditions under which the empirical
TD approach is equivalent to the Landauer steady-state.

In Chapter 5 we introduce the concepts of the time-dependent quantum-classical (Ehrenfest)
approach to spin-dynamics. This scheme is then applied to a few test situations, with the aim of
reproducing results from static theories in certain limits but also for going beyond the accessible
facts. These cases include the calculation of the spin-wave spectra for a monoatomic chain of
spins, modelled by an s-d model and the temporal correlations of spin-impurities in non-magnetic
medium (finite monoatomic wire).

Chapter 6 has two Sections. In the first part we describe the current-induced DW motion
by implementing the TD method of steady-state transport from Chapter 4 and the Ehrenfest
spin dynamics from Chapter 5, in a common scheme, which is then applied to the 1D spin-chain
containing a DW (Fig. 1.2). We investigate the simulated DW motion with respect the well-
known adiabatic spin-torque contributions [66]. We compare the dynamics of two walls that differ
in width by factor of four and the thinner one of them is just a few lattice spacings thick. Non-
adiabatic effects are analyzed and qualitatively compared to the proposed micro-magnetic form of
the non-adiabatic torque [135].

In the second part of Chapter 6 we investigate the opposite in certain aspects effect. That is

1

the induction of a spin-motive force (SMF) ' upon the itinerant electrons by a precessing in an

IThis, in essence, is the spin-analogue the Faraday’s electromotive force.
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Figure 1.2: Scheme of the atomic-scale DW, investigated in Chapter 6. The blocks at the ends

represent current or voltage probes.

external magnetic field wall. Using our quantum-classical spin-dynamics scheme for a closed and
finite system, we reproduce numerically the result in Ref. [15] for the magnitude of the pure-SMF
(generated by the precessing local-spin texture) and extend it into a separate formulation, valid
for the s-d model description. We present an analytical argument for the classical origin of the
SMEF and support it with purely classical simulations.

‘This' thesis has four Appendices where certain concepts or methods are described -in- greater
detail.

In Appendix A we derive the surface Green’s function of a semi-infinite cubic lattice with a
finite cross-section.

In Appendix B we describe the most common mixing schemes in self-consistent electronic-
structure calculations and particularly the Pulay mixing scheme used in NEGF calculations in
Chapter 3.

Appendix C is about the concept and the description of current within a TB model of the
electronic structure. The expression for bond-current, used in Chapter 4 and Chapter 6 is derived.

In Appendix D we discuss the time-integrators used for solving second order differential equation
in Molecular Dynamics. We describe the leap-frog method, used in our spin-dynamics simulations
(Chapter 4, 5, 6) and its problems with dissipative forces. We describe the method used in Ref.

[22] to fix the divergencies and illustrate its effect with an example from Chapter 6.



Chapter 2

On the steady-state transport
theory

2.1 The Landauer formula

In the late 50-ties Landauer [63] studied theoretically the problem of residual resistivity in metals,
introducing a novel viewpoint in the transport theory. He considered the transport process as a
result of the incident current flowing into the specimen and thus the build-up of electric field as
a consequence of the electron flow through a structure of scattering centres. This viewpoint, as
opposed to the typical view of the electric field as a cause and the current as a response, basically
converted the problem of electrical conductance into a scattering problem, where the conductance
was related to the ease with which the carriers transmit through the conductor [52]. Landauer’s
approach proved to be of great practical importance as it allowed conductance to be calculated in
systems of mesoscopic dimensions where the carriers, being quantum objects, propagate coherently
within the specimen and where the interfaces with the current /voltage/ probes are key elements
of the circuit.

In his work on disordered one-dimensional lattices (4], Landauer derived (based on the diffusion

equation) the following expression for the conductance

“p T d 2T
Sl e*v ( n> _2e (211)

BT e e
where T is the transmission probability for an electron with an initial velocity v to pass through
the whole scattering array of length L, n is the electron density, u the chemical potential and
dn/dp = 2/hv for a one-dimensional Fermi gas [8]. In Eq. (2.1.1) an incoherent superposition of

states originating from two reservoirs at the two ends of the chain is assumed. These reservoirs

are the electronic equivalent of a radiative blackbody. They emit electrons (source) according to

7



2. ON THE STEADY-STATE TRANSPORT THEORY

their Fermi distribution (which is considered unaffected by the transport) and absorb all incident
electrons (drain), completely destroying their phases. The electronic temperature here is considered
Zero.

Eq. (2.1.1) can readily be generalized to higher dimension structures, having M transverse
modes, as § = M G,p. However, what is referred to as the Landauer formula in the literature is

_ 2Meé?

§ h

4 8 (2.1.2)

The difference between Eq. (2.1.1) and Eq. (2.1.2) comes from the fact that the former ', which
we now denote by Gg, is the conductance of the scattering sample itself subjected to a current
flow, while the latter is the conductance of the sample coupled to the reservoirs. That difference in
terms of resistance is exactly the resistance of the interfaces (or contacts), which are considered in
series to the sample resistance. Thus for a perfect (or ballistic) conductor 7" = 1 the conductance
Eq. (2.1.1) goes to infinity, or the resistance tends to zero, while Eq. (2.1.2) tends to the contact

resistance [32] . i
h

m‘. (2.1-'3/

Re= Gt =47 gt =

Left contact Right contact

My

J’L
|
| V=0 —u,) e>0
Figure 2.1: Scheme of the circuit used for derivation of the contact resistance (2.1.3).
For the derivation of the contact resistance (2.1.3), we consider a ballistic conductor as in

Ref. [32], connected to two reservoirs with chemical potentials pj, and pgr [L(R) designate the

left(right)-hand side of the specimen, see Fig. 2.1] and calculate the current through it for a given

1Eq. (2.1.1) is also known as the four-probe conductance [99], illustrating the actual physical conditions leading
to it as brought out in Ref. [37]. In four-probe conductance measurements fixed current can be fed through one pair
of leads, while the resulting voltage drop across the regions of the sample is measured by attaching a second pair of
leads to it once steady state is established. Ref. [37] has demonstrated that Eq. (2.1.1) represents the conductance

in this case under the assumption of a week coupling between the current-probes and the measuring reservoirs.



2.1 The Landauer formula

applied bias V = (uy, — ur)/e. ' The length L or the conductor is assumed such that L << [y in
order for it to be ballistic (/o is the mean free path). ? The contacts depicted in Fig. 2.1 (which
are in fact the Landauer reservoirs) are considered to be reflectionless, meaning that all incident
electrons from the conductor are fully absorbed and none are reflected back into the conductor.
This assumption allows to discriminate the right-going +k electrons in the conductor from the
left-going —k ones as they originate from different reservoirs, i.e. the left or the right reservoir
respectively. Thus each of these two sub-ensembles has the statistical properties of the reservoir,
from which it originates, so that there are two quasi-Fermi levels in the conductor (u;, for +k-states
and pp for —k-states) and the current is only carried by the right-going +k-states with energies
in the range from pg to ur.

A single transverse mode of the +k-states at energies F is occupied according to the Fermi
function f(E) = fo(E —ur) * of the left reservoir and carries a current (ev/L) f1, per longitudinal

+k-state, thus it carries through the conductor a current of
OF 9 1232
e e e
It= =% gfi (B = — fL(E = E)dE, 21
L;zm )= LB — T [ SulE) (2.1.4)

KR

where periodic boundary conditions are assumed in the transverse direction, so that » , —
2(forspin) x (L/2n) [dk. Finally, for M(E) = . 0(E — E;) (E; being the cut-off energy of the
i-th mode) transverse modes of the conductor open at energy E, the total current is

KL
b % M(E)f(E)dE — 26};’”

KR

Ji (1, — pg) for M(E) = const in [ug, i1 (2-1.5)

and thus the contact resistance (as the conductor is assumed ballistic) is

1 _ YV _ (L —pr) h  12.9kQ

Gil=c = =

= ~ 2.1..6
T el 2e2 M NIERE ( )

which is a result identical to Eq. (2.1.3). Apparently the contact resistance is related to the
mismatch of the conductivity of the contacts and the conductor, which is considered having a
very small transverse dimension W < W compared to the contacts dimension We. In the limit
W ~ W¢ the Ohmic resistance is restored. The power associated with the contact resistance is
dissipated in the contacts [32].

If the conductor were not ballistic, but had a finite transmission probability, a circuit as the

one in Fig. 2.2(a) would have measured a conductance according to the Landauer formula (2.1.2),

1Here and throughout this work we define the bias V := (u;, — pug)/e, which is a positive quantity when it is
driving the electrons from left to right, i.e. along the x-axis as depicted in Fig. 2.1.
2For the following semiclassical arguments it is also assumed that the phase relaxation length Aph is small in

order to neglect quantum interference effects.
3Here and throughout fo(E — u) = 1/ (1 +exp [(E — u)/kpT)]) is the Fermi distribution function.
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2. ON THE STEADY-STATE TRANSPORT THEORY

where M would have been the number of open modes in the leads [32]. Omitting the leads, the
conductance is still given by Eq. (2.1.2) only this time M refers to the number of modes in the

scatterer (see Fig. 2.2(b)).

M modes

R-contact L-contact R-contact
Scatterer

Figure 2.2: Typieal- circuits for -which the Landauer formula -[Eq.- (2.1:2)] applies: - (a) scatterer -
with average transmission probability 7' coupled to reflectionless reservoirs via ballistic leads with
M transverse modes; (b) scatterer with M open modes, coupled directly to reservoirs. Note that,
unlike the typical convention, we denote by I the electron flow and it is opposite to the conventional

direction of the current in these circuits.

The Landauer formula [Eq. (2.1.2)] can be generalized for the case of a finite temperature,
when the reservoirs are occupied according to a Fermi distribution function. The transport in this
case is no longer restricted to the bias window gz — pg but it also exists at a few kgT’s ! around
this energy range. The current is not only carried by states originating from the left reservoir but
inside the ballistic leads there are current-carrying states from both sources [see Fig. 2.3]. The net

balance of electron fluxes per unit energy in this case is [32]
i(B) = if ~if = Tik - T'if = = [M(EYT(E)f(E) ~ M'(E)T'(E)fa(E)] (2.1.7)
)

because the influxes from the reservoirs are simply i} (E) = (2¢/h)M f1.(E) and iz(E) = (2¢/h)M’ fr(E).
Finally, the total current can be written as

1= [T(B)11(B) - f(B)], (2.1.8)

where the definition T'(F) := M(E)T(FE) is used and it is assumed that 7'(E) = T"(E), which if

away from equilibrium implies the absence of inelastic scattering inside the two-terminal device

!Here T is for temperature and in this work it is always used together with the Boltzmann constant kg so there
is no context ambiguity with the transmission probability used in this section.

10



2.2 The non-equilibrium Green’s function (NEGF) method

[32]. Eq. (2.1.8) gives the current through the mesoscopic device, depicted in Fig. 2.3, as a
function of the local transmission properties of the scattering region and the Fermi function of
the contacts. The corresponding conductance I/V coincides with the Landauer formula (2.1.2) in
the limit of low temperatures and low biases V (linear response regime), where T'(E) is nearly a
constant inside the bias window.

Left contact Right contact

Scatterer ,istic
lead lead

ballistic

Mg

y n
L : | V=(,— i)/ e>0

X

Figure 2.3: Representative circuit at finite temperature.

In summary, the Landauer formula gives a prescription for calculating the current through
mesoscopic conductors and it all boils down to calculating the transmission probability for the
current-carrying states. The results, obtained in this section, apply to the transport of ballistic
but non-interacting carriers (the latter two are not mutually exclusive as the electron-electron
interactions are elastic they do not affect the momentum-relaxation path). In this approximation
the Pauli exclusion principle does not need to be accounted for, quantum interference effects are
neglected (by assuming that either L > Ay, or simply that the reservoirs are incoherent sources)
and the description is semiclassical. For quantum treatment of the mesoscopic transport problem

we consider in the next section the Non-Equilibrium Green’s Function (NEGF) method.

2.2 The NEGF method

2.2.1 Green’s functions in quantum mechanics

The Green’s functions are a conceptual tool for solving linear differential equations of the form
D(z)¥(z) = S(zx), where x is a generalized coordinate in real space, D(x) is a linear differential

operator and S(z) is an excitation. The solution can be expressed as a convolution of a Green’s

11



2. ON THE STEADY-STATE TRANSPORT THEORY

function G(x,x’) and the excitation function
U(z) = /G(I,l")S(m’)dI’, (2:2:1)
where the two-point function G(z,z’) satisfies the equation
D(z)G(z,z') = é(z — z') (2.2.2)

and d(z—2’) is a Dirac §-function. Thus the Green’s function represents the response of the system
at z to a point-like excitation at 2’ and when convoluted with the actual excitation it produces
the actual response of the system W(z). In the operator version of the equation above, G would
be inverse of the differential operator D, i.e. G = D! and ¥ = GS.

Green’s functions appear often in physics and engineering where linear differential equations are

involved. They are particularly popular in quantum scattering theory for solving the Schrodinger

equation (see for example Ref. [90]). The time-independent Schrodinger equation
s - ihV + eA
(EI - H)\Il =0, where in general the H_arr_lilt_onian SR T — % +U(r) (2.2.3)

and I is an identity operator, has a Green’s function

! 1

G(E) = (EI H) . (2.2.4)
In the N-dimensional eigenspace {¢;}~ , of the Hamiltonian G(E) is a diagonal matrix [G(E)] =
diag [1/(E — En)]nzl, where ¢, is an eigenenergy. Fourier transformed to the time domain this

Green’s function reads

+o00 o0
—iEt/h
[G(t)] = —lﬁ / ~iEY/R [Q(E)AE = Ldiag e

. 2.5
orh TR [220)

=00 n=1

The above integral is indefinite for real €,. As H is Hermitian and €, are indeed real, a small
infinitesimal imaginary component —i7 is added to the eigenenergies. The result for n > 0 is called
the retarded Green’s function. For n < 0 we obtain the advanced Green’s function but the latter
violates the causality principle and we abandon it as unphysical. The retarded Green’s function,
expressed in time or energy domain, is [33]

(G ()] = %G(t)e_"‘diag [e—iel-t/h]: = [C'(B)] = diag[1/(E —ent mV_, . (2.2.6)

Further in this work we shall drop the “r” index of G* = G and refer to it simply as “the
Green’s function”. In time domain [G(t)] satisfies the time-dependent Schrédinger equation with

an impulse source at t = 0

(m% 2 [H]) [G(t)] = [1]6(¢). (2.2.7)

12



2.2 The non-equilibrium Green’s function (NEGF) method

In energy domain the (retarded) Green’s function in operator form is expressed as

- Sl
G(E) = lim ((E+m)1 = H) : (2.2.8)

n—0+
Finding G (F) is equivalent to solving the time-independent Schrodinger equation (2.2.3) and fully
describing the closed conservative system it refers to. For example, the spectral function of the
system, which is defined as A(r,r’; E) = 27 ), ¢i(r)d (E — ¢;) ¢;(r") and its diagonal elements

represent the local density of states (LDOS) in the system
9 1
= : gt , 2.2.9
D(r,E) El |6:(X)[(E — 1) = o-Tr [A(E)] (2:2.9)

Q

can be expressed in an invariant (operator) form in terms of the Green’s function [33]
A(E) = 2n6(BI — H) =i [G(E) - GT(E)] . (2.2.10)

Other important quantities can be related to the spectral function. The density matrix of the
system in the eigenspace of H is p(r,r') = > i 19i(r)){(di(r)| f(ei), where f(e;) = fo(ei — p) is the
Fermi function for a given chemical potential x. The invariant expression for the density operator
is [33]

By (H—;J) . (2.2.11)
If the isolated system, we describe here, is very big and the eigenstates of its Hamiltonian are

nearly a continuum, the density operator can be related to the spectral function as

+o00
1
ple ) = o / A(r,v’; E)fo(E — p)dE. (2:2:12)
™
The integrant in Eq. (2.2.12) describes the actual number of electrons per unit energy and is called

correlation function G"(F) [33]. For a system in equilibrium (with a Fermi energy distribution)

the correlation function operator is defined as
G™(E) = A(E)fo(E — p) . (2.2.13)

Note that the latter is not necessarily the true expression for the correlation function if the system
is not in equilibrium.

The quantum transport problems often involve open heterogeneous systems or something more
like the Landauer setup (see e.g. Fig. 2.3), where a device (or scatterer, or channel) of mesoscopic
dimensions is coupled to two contacts (or leads, or reservoirs) of, say, microscopic dimensions,
connected to a battery, which maintains the latter at different chemical potentials. Once the circuit

is closed this system is no longer in equilibrium and cannot be broken into parts, each described
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2. ON THE STEADY-STATE TRANSPORT THEORY

separately by Eq. (2.2.3), as the particle number may vary locally. Often we are interested only
in the properties of the device and certain assumptions can be made about the contacts. In the
next section we shall demonstrate that a “separate” treatment of the device is indeed possible in
certain systems and in these cases a modification of Eq. (2.2.3) is needed to account for the open

boundary conditions.

2.2.2 Device attached to a contact

We consider a device that is somehow depleted of all the conduction electrons and then brought
in contact with a reservoir [33], the idea being to focus on the states that “spill-over” from the
contact. In principle the electrons in the contact (see Fig. 2.4(a)), if the latter is isolated, should
be described by Eq. (2.2.3) but we shall consider it as an open system where electron can hop in

and out. Phenomenologically, such an open system can be described by [33]

(B +in)r — Hg| |®R) = k) , (2:2.14)
where index R is used to denote that operators belong to the reservoir, 7 is an infinitesimal quantity,
related to the energy level broadening in the contact (or the rate of particle loss, due to the finite

life-time) and |Sg) is another phenomenological quantity describing the inflow or gain of particles

in the contact from external sources.

@) i Ho i), () Hpy+inly

Device
(Scatterer)

Device
(Scatterer)

Contact
(Reservoir)

Contact
(Reservoir)

Figure 2.4: (a) Mesoscopic device, fully depleted of electrons and a well separated reservoir of
electrons; (b) The device and the reservoir are brought in contact - electrons spill into the device,
developing a |1)) state.

If the device is then brought together with the contact, electrons will hop from the contact to

the device. Once a steady state is established, i.e. the electron density ceases to change locally
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2.2 The non-equilibrium Green’s function (NEGF) method

inside the device, a state |¢) develops in the device (see Fig. 2.4) and also the state of the contact
changes from |®g) to |Pr) + |x). If the strength of the contact interaction is described by 7, then

the whole system is described by

( (E+i77117_R — Hp EI_TLH > ( |¢Ri>1/;)L Ix) ) oo < |5(;%> > (2.2.15)

where H is the device Hamiltonian. The key assumption here is that the source and drain terms

(i.e. |Sg) and n) from Eq. (2.2.14), describing the isolated contact, have not changed when it has

been attached to the device. We recognise the Green’s function of the isolated contact
Gr(E) = [(E+in)Ig — Hg] ™' (2.2.16)

and express from (2.2.14) [Sg) = G' |®g). We can also eliminate |y) = Gg7' |[¢)) from (2.2.15)

and we are left with one equation for the device
[EI — H-X(E)]|v)=1S), (2.2.17)

where we have defined a new source term |S) = 7 |®g) (this time for the device connected to the
contact) and X(E) = 7 Gg(FE) 7' is the so-called self-energy . The Green’s function of the device
is then

G(E) = [((E +in)I — H — £(E)] ™! (2.2.18)

and thus wavefunction of the device is 1)) = G |S). The spectral function can be calculated from
Eq. (2.2.10).

Let us for a moment consider working in a localized in the real space representation, say, a
tight-binding representation [8]. Though Ggr(F) in Eq. (2.2.19) is the Green’s function of the
whole contact, when contracted with 7 the only part of the G z-matrix actually contributing to
the product would be the part that describes the surface area where the device is attached. In this
sense, practically even if the contact is enormous in size, the only relevant information about it for
the device is its surface Green’s function gr(E) (see Appendix A), which enters in the self-energy

(2.2.19), which can instead be written as
%(E) = Tgr(E)Tt. (2.2.19)

This makes the result in Eq. 2.2.18 practically usable as it only contains finite-dimensional matrices.
The only assumption it lays upon is that the contact (or reservoir) is big enough for its inflow-
outflow to not be affected by the device.

The self-energy, we defined here, is more than just a quantity that appears in the derivation.

It is a simplifying concept that allows us to mask the effect of various degrees of freedom in the
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2. ON THE STEADY-STATE TRANSPORT THEORY

composite system, such as the dimension of the contact, into a single term in the Schrodinger
equation of the device. Other abstract degrees of freedom can be the electron-electron or electron-

phonon interactions [32].

(a) Eh e (b) EA
" Yo
- ,
— &
e =
g
Device Contact Device Y Contact
(Scatterer) (Reservoir) st (Reservoir)

Figure 2.5: Level diagram of a one-level device which is (a) isolated or (b) coupled to a contact

with nearly continuous density of states.

To get some understanding of the effect of ¥ on the device we consider the simple case when
¥ does not depend on the energy. Then, its spectral function [see Eq. (2.2.10)] is

e 1 | £ i
e o (E — otz E-e- Wz) Ry AR

where we have redefined the eigenenergies of the device ¢’ = £ + Re(X) and v = 2Im(X). Thus the

effect of ¥ in Eq. (2.2.18) is that the local density of states on the device is shifted by Re(¥) and
broadened into a Lorentzian of width 2Im(Y) (see e.g. Fig. 2.5). In general the quantity used to

represent the broadening due to the self-energy is by definition
[(E)=i[Z(E) - ZN(E)] = T(E)=rAgr(E)r, (2.2.21)

where we have used the definition of ¥ in Eq. (2.2.19) and Ag(E) is the surface spectral function

of the reservoir
Ap(E) =i [gR s g;] . (2.2.22)
In matrix form T, the broadening matrix, is the anti-Hermitian part of the self-energy 3. Using
Eq. (2.2.18) and (2.2.21) we arrive at new expressions for the spectral function of the device

A=i[G-G' =GIG' =G'TG. (2.2.23)

To evaluate the current through the device’s interface, defined as I = 2e d((+|v))/dt (the factor

of 2 is for two degenerate spins), we look at the time-dependent version of Eq. (2.2.15)

(B (oo (). e
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2.2 The non-equilibrium Green’s function (NEGF) method

Since the Hamiltonian H = H' is Hermitian we obtain for the current
2e ; % ;
I=—[(®I7|®r) + (@& [¥)] = = [($I71x) + (X 7T [¥)] = Lin = Lous, (2.2.25)

where we have identified the two terms in square brackets as an inflow [;;,, and outflow I, current,

respectively. The latter can be rewritten
Iin = 2 ((S|G"|S) — (S| G|S)) = ZTx[|S) (S| A] = 2 [ Tx [rAr7A] fo(E — p)dE  (2.2.26)
Tow = % (0|7 (Gh - Gr) 1| ¥) = 2T [I9) (WIT] = 2 [ Tr TG"dE,  (22.27)

where we have used a few of the relations in this section and the fact that (a| M |b) = Tr[|b) (a| M]

for arbitrary vectors |a), |b) and matrix M. We can then write for the net interface current [33]

2e
7 = FP Tr [CAfo(E — u) — DG dE . (2.2.28)
Apparently in equilibrium there is no net current through the device-contact interface (lin = Iout)

because the correlation function is G™ = Afy [see Eq. (2.2.13)]. As we shall see in the next section
in order for the current to flow non-equilibrium conditions need to be introduced. The simplest non-
equilibrium situation will be a device coupled to two contacts (or reservoirs) at different chemical

potentials.

2.2.3 Device in a two-contact circuit

In this section we consider a device sandwiched between two contacts as described in Ref. [33].
The contacts will be of the type described in the previous section and will have fixed chemical
potentials p;, and pg respectively for the left and the right-hand side contact (see Fig. 2.6). When
isolated, the contacts obey the modified Schrodinger equation with source and dissipation terms

[see Eq. (2.2.14)]. The composite system of contacts + device is described by

(BE+in)I, —H, —7} 0 | + x) |SL)
. B TR ) o 0 ;. (2:2.29)
0 ~th  (E+in)Ig — Hg 1®r + X) Sk)

which under the assumption of the source terms |Sy.g) being unaffected by the coupling to the

device, results in an analogous equation to (2.2.17) describing solely the device
[EI - H-S(B)|l) = |S) , (2.2.30)

where |S) = 71 |®1) + 7r |Pr). The new self-energy ¥ is defined as the sum of the two self-energies

coming from the contacts

=X + 2R, (2231)

17



2. ON THE STEADY-STATE TRANSPORT THEORY

where the one-contact self-energies and Green’s functions are defined as in the previous section,
i.e.

: -1
Yur)(E) = TL(R)GuR)Tz(R), Grr) = [(E+im)ILr — Hur)] - (2.2.32)

ki

Left Contact Device Right Contact

Figure 2.6: Scheme of a device, sandwiched between two reservoirs with different chemical poten-

tials py and pg.

The Green’s function G of the device is supposed to generate a solution [1)) = G |S), thus from
Eq. (2.2.30)
G = Bl - H— 5 (BB . (2.2.33)

Expressed through G, the density matrix of the device is
p=219) (9] = 2G|5) (S| G' = 2G (. |21} + 7o 1)) (7} (Be] + 7h(@rl) G, (22.34)

where the factor 2 stands for two degenerate spin populations and since the wavefunctions of the
isolated contacts (|®) and |®r)) span separate spaces with no overlap, the inter-contact terms
disappear. By applying Eq. (2.2.11) for the density matrices |®x) (® x| of the isolated contacts,
we obtain [33]

p= %/([GFLGT] fL+ [GTRG'] fr) dE, (2.2.35)

where we have substituted the left(right) broadening matrix 'y, gy = TL(R)AL(R)Tz(R) as defined
in Eq. (2.2.21) and all E arguments are omitted for simplicity. The above expression (2.2.35) is
equivalent to the following equation for the correlation function [see Eq. (2.2.13) for the definition
of G"]

GY = GRngr, (2.2.36)
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2.2 The non-equilibrium Green’s function (NEGF) method

where X" = 'y f;, + Trfr is the so called in-scattering function. Eq. (2.2.36) is known as the
kinetic equation and is the central equation in the NEGF theory [33]. It needs to be solved self-
consistently together with Eq. (2.2.33) in order to determine the steady-state properties of the

device out of equilibrium (i.e. for u;, # pgr). Actually, Eq. (2.2.36) can be rewritten in the form
G" =ALfL+ ARrfr (222:37)

where by definition here Ay z) = GT'r R)GJr are similar to the spectral function from the single

of the device and includes the full self-energy ¥ = ¥, + X [see Eq. (2.2.33)]. It is thus natural

to define total spectral function
A=G[l'L +Tg|6" = Ar + Ap. (2.2.38)

If we are interested in the current through the interfaces and not in details of its spatial
variation inside the device, the expression Eq. (2.2.25) from the previous section is still valid, the
only difference being the notation for 7 is becoming here 7,z for the left(right) interface. It can

be shown straightforwardly [33] that the interface inflows and outflows still have literally the same

left (right) interface. Thus the net current through the system, which is identical in magnitude
to either interface current for the case of two contacts, and which we define as positive when it
coincides with the direction of I, i.e. I = I} = —Ig (see Fig. 2.6), is

g 2}_:” / (Tx [T 4] f — Tr [[LGP])dE = _3}1‘3 (Tr[CrA] fr — Tr[CRGM)dE.  (2.2.39)
With the help of Eq. (2.2.37) and (2.2.38) the above expression for the current can be rewritten
in the form

= % [T(8) 1(B) - fa(E)dE, (2:2.40)

which is identical to the one we discussed for the Landauer formalism at finite temperature [see

I

Eq. (2.1.8)]. Here we have obtained an expression for the transmission function T(E) in terms of

the Green’s function of the device and the broadening matrices
T =Tr[[LAg] = Tr[TrAL) = Tr [[LGTrG'] = Tr [[rGT'LG"] . (2.2.41)

The above expression for the transmission function is a rather general result in the NEGF
theory. It can accommodate arbitrary static potentials (as addition to the Hamiltonian) and even
account for phase-breaking electron-electron or electron-phonon interactions (incorporated into the

self-energies) [33]. In this work phase-breaking processes will be neglected inside the device, which
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2. ON THE STEADY-STATE TRANSPORT THEORY

will be much shorter than the mean free path for inelastic scattering of the conduction electrons
in bulk. Nevertheless, mean-field electrostatic interactions will be taken into account. In this case
the device Hamiltonian is an explicit function of the electronic density and the non-equilibrium
steady-state transport problem needs to be solved self-consistently. A basis-invariant scheme of

the algorithm is sketched in Fig. 2.7.

Calculate the surface GF Caloulate the device GF:
G,(E) & G(E) over a alculate the device GF: ¥
suitable energy grid {E} G(E,p)=[EI- H(p)-X ,(E)-X z(E)]

‘

Calculate the self-energies:

EI.,R(E) = Z'G,"R(E)l'f

& the broadening matrices:
L w(E)= i[zl,,k _Z;‘R]

Integrate over E for the density:

p=—[ar,¢'1,+ar,G'f, J4E

’//

If p converged, calculate current: .

1=% [T, 6T, G |(f, - £) dE

Figure 2.7: Scheme of a self-consistent NEGF algorithm.

The actual integration over the energy is not trivial as the Green’s function has poles on the
real axis and the integral is in principle unbound. The integration method used in our simulations
is discussed in Appendix A. Density mixing methods to accelerate convergence of the iterative
self-consistent field (SCF) procedure are discussed in Appendix B. Typically, the non-interacting

electron density po is used as an initial input.

2.3 Tight-binding implementation of the NEGF method

The built-in real-space partitioning in the NEGF method naturally suits best a localized basis
representation of the electronic structure. In this work we adopt an empirical two-spin-band tight-
binding (TB) model where the twos pin channels are treated quasi-independently ' [96]. It is a
good starting approximation for describing low-dimensional systems, which typically exhibit high
level of localization. The TB model also keeps the computational efforts to a minimum.

Our main objective is the interaction between the spin carried by the conduction electrons and

the localized ionic spins under non-equilibrium but steady-state conditions. Before we introduce

IThey only “feel” each other through the mean-field electrostatic term U(p), where p = p; +p| [see Eq. (2.3.1)].
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any concrete spin-polarized atomistic structure, we look at the single band (spin-degenerate) tight-
binding implementation of the NEGF method, described in an invariant form in the previous
sections.

The systems we study have the typical layout depicted in Fig. 2.8. There is a central (elastic)
scattering region “C”, which breaks the periodicity of otherwise perfectly homogeneous infinite
conductor into two semi-infinite electrodes (leads) — one on the left and one on the right of the
centre, marked by “L” and “R”. Each semi-infinite lead is coupled smoothly at “infinity” to a

reservoir maintained at a constant electrochemical potential py, # ugr by a battery.

Figure 2.8: Scheme of the mesoscopic device investigated in this thesis.

Though the division of L-C-R is rather arbitrary, typically pieces of the leads thicker than the
electron screening length ! are included in C to ensure smooth transition to bulk at its boundaries.
With this partitioning it is assumed that there are no direct L-R terms in the Hamiltonian, L and
R are connected only through C and the overlap of orbitals from the two leads is zero. We adopt
a nearest-neighbour TB Hamiltonian, which projected onto a mesh of single-level atomic sites in

C reads

(He)ii(p) = (€5 + U(pi — po)] 6ij + X0 jx1, (2.3.1)

where o = 1, 2 represents the two collinear spin bands, £F is the density-independent (but possibly
spin-dependent) part of the onsite energy, p; = > p” is the onsite charge density and x is the
hopping integral. Included in He is a meanfield potential U, depending on the excess onsite

electron density Ap; = p; — po, where pg is the free atom occupancy.

IThe appropriate thickness of the leads’ slabs in the C region can be established numerically for a particular
nonequilibrium property of interest — the thickness can be gradually increased until that property (say the net
current at a given voltage) does not change any further.
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2. ON THE STEADY-STATE TRANSPORT THEORY

For identical and A . e . 28 o (diagonal |
i uniform leads: - B D S matrix) |

Figure 2.9: Scheme of the projection of the full infinite Hamiltonian matrix H onto an effective one
H.g, which is composed of the Hamiltonian of the central scattering region Hc and the self-energy
¥ = ¥ + YR, sketched in panel (b). All nonzero elements are located in the shaded areas. The
central block of H¢ represents the quasi-one-dimensional sample and the outer blocks — the pieces
of the leads included in the selfconsistent calculation. The black boxes with dimension Nj x Np,
(or Ng x Ng) in H¢ correspond to the interfaces with the bulk leads, while in H they represent
the interaction between the lead and the central region. Ny (Npg) is the number of sites in the
cross-sectional area of the left (right) lead, while IV is the total number of sites in the selfconsistent

region.
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2.3 Tight-binding implementation of the NEGF method

In view of Eq. (2.2.33) we define an effective Hamiltonian
Heg(E,p) = Hc(p) + 2L(E)+ Xr(E) = Hec + HorLGL(E)Hrc + HorGr(E)Hpe, (2.3.2)

where G (E) = [EIL, — Hy]”' (Ggr(E) = [EIr — Hg)™') is the surface Green’s functions of the
left (right) lead and Ho L = Hzc (HcR = H}%C) is the interaction between the central scattering
region and the left (right) lead. Note that, though the Hamiltonians of the semi-infinite leads
are infinite matrices, their surface Green’s functions have dimension Ny gy X Np(g), where N (g)
designates the number of sites in the leads cross-section (see Appendix A for the derivation of
surface GF of a cubic lattice lead).
The external bias, applied to the L-C-R system, acts as a rigid shift to the onsite energies of
the leads
H;, — Hp +V/2, Hp - Hr-V/2, (2.3.3)

where V' = uj — pg is the external bias voltage. This is effectively a boundary condition for the
C region, brought in by the surface GF’s of the leads which enter the self-energies. The GF of the

central region, G¢, is then (see Eq. (2.2.33))
Gc(E,p) = |Elc — Heg(E,p)] ", (2.3.4)
where I is the identity matrix and the electron density matrix is given by the recursive expression

p= 5 3 [ [GolBATLEIGHE. ) fu(E) + Go(E, ATR(EYCL(E. ) fr(E)] B, (235

which is solved iteratively (see Fig. 2.7) starting with an initial guess for the density p(°) and
cycling until self-consistency is reached, i.e. on the n-th iteration Hp(") - p(""l)H < dp, where dp
is a preset tolerance for convergence. I'x =i [EX - ZT\»] (X = L, R) are the broadening matrices
[see Eq. (2.2.21)].

Practically, the density matrix from Eq. (2.3.5) is calculated separately in equilibrium (u; =
pr = po) and out of equilibrium contribution is added to it [23]. In equilibrium, the system is
invariant to time reversal and G = G*. In this case the spectral function is simply A = —Im|[G]

[see Eq. (2.2.20)] and the density matrix is real and expressed as

{ea)” (1) = =3I [ {Ge(B)Y" folE ~ poldE. (2.3.6)

The non-equilibrium contribution is due to the states in the “bias window” [ug, 1] (we consider

the case pur, > pr). We can take peq(po = pr) and then
o 1 +1°
{ApL}” = == {GCFLGC} [fL — fr]dE (23.7)
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2. ON THE STEADY-STATE TRANSPORT THEORY

is the contribution of the states originating from the left lead. The full non-equilibrium density is

finally

p= {pealpir)}’ +{ApL}" . (2.3.8)

The integration in Eq. (2.3.6) is not trivial and has to be done in the complex plane as G¢(E)
has got poles on the real axis. On the other hand, at finite temperature the Fermi distribution
has poles on the imaginary axis through pg (see Fig. 2.10). The so called Matsubara frequencies
are located at z, = po +i(2n + 1)7kgT and the complex contour is chosen such that it encloses a

certain number N, of these poles.

«

Matsubara poles :
¥ z,=Mp+i(2n+ DrmkgT

Figure 2.10: {GEF7 The complex contour used for integrating the equilibrium density in Eq. (2.3.6).

The Green’s function G (FE) is, however, analytic away from the real axis. A computationally-
friendly choice of the contour [23], which keeps away from the real axis, consists of a somewhat
incomplete half circle € connected to a straight segment L, parallel to the real axis. The circle
drops to the real axis on the left at an energy E, far bellow the poles of G¢(FE) and is closed by
a line [E + in, 00 + in] that is infinitesimally close and parallel to the real axis. The equilibrium

density matrix (2.3.6) can be obtained through the residue theorem and the result is

(poa)” = —5rIm [ {Ge(B) folE - o)
Ex
1 s :
= é;lm / Gc(z)f()(z —[Lo) +27TikBTz:ch(Zn) 5 (239)
o n=

where the integral over € + £ done numerically with a Gaussian quadrature.

Once self-consistency is established the net current through the system is calculated from Eq.
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2.3 Tight-binding implementation of the NEGF method

(2.2.40), i.e.

L %Z/Tr [CLGTRG]” (f — fr)dE. !
SoLR

In the following Chapter we shall elaborate further on the NEGF method and use it to study the

current-induced torques on a magnetic domain wall, trapped in an atomistic-scale point contact.
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Chapter 3

Magnetic point contacts

3.1 Introduction

The intriguing properties of nano-scale magnetic structures arise from the close interplay between
their magnetic texture and the spin-coherent electronic transport. Particularly exciting in this
respect are the low-dimensional constrictions, consisting of a tiny number of magnetic (transition-
metal) atoms, which have now become experimentally achievable [01]. These magnetic point-
contacts (MPC) show quantized conductance and significant magneto-resistance effects [30, 125],
acting as some sort of quantum spin valves. This behaviour is determined by the spin-dependent
transmission, which is ballistic, due to the truly atomistic dimensions. Nevertheless the elastic spin-
scattering, in a similar fashion like the “electron-wind force” due to elastic momentum transfer from
the electrons to the scattering centres (impurities) in the mesoscopic electromigration problems [95],
gives rise to “spin-transfer torque” (STT) as semi-classically derived by Slonczewski [93] for spin-
valve trilayers. The STT effects have been found to introduce macroscopic magnetization dynamics
in point-contact-like pillar structures [82, 118] or induced by a nonmagnetic (Cu) tip switching of
adjacent magnetic layers in STM-like geometry [29]. Though in these STT experiments the point-
contacts in question are still rather “bulky” (~ 40nm), in a genuine atomic-scale point-contact
the STT could introduce microscopic spin-rearrangements and in turn manipulate its quantum
spin-valve properties.

In this Chapter we investigate the ballistic STT-induced microscopic spin-rearrangements in-
side a magnetic point contact. Here we adopt a quasi-static approach to analyze the spin-dynamics
under steady-state current-carrying conditions. Using the NEGF method, which we described in
the previous Chapter, as a self-consistent transport core in our scheme, we map-out and exam-

ine the energy landscape for quasi-static thermally-activated transitions between stationary spin
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3. MAGNETIC POINT CONTACTS

configurations. Our model MPC consists of a monoatomic spin chain, sandwiched between two
oppositely polarized magnetic leads, creating an atomically abrupt DW in the constriction (as
theoretically justified in Ref. [20]).

In the second part of this Chapter we develop further our model by adding to it parametrically
(within the Born-Oppenheimer approximation) the mechanical degrees of freedom of the atoms
in the junction. This allows us to investigate microscopically the non-equilibrium (steady-state)
magneto-structural interplay in MPCs and the combined effect these degrees of freedom have on the
transport. Such information could, in principle, be relevant for understanding the dispersion in the

conductance histograms [)1, 117] obtained in transport measurements of magnetic break-junctions.

3.2 Spin dynamics in point contacts

It is clear that the modeling of the ballistic atomic-scale ferromagnetic devices requires the com-
bined description of electronic transport and that of the spin dynamics at the atomic level. For this
purpose we have developed a general scheme for evaluating spin-polarized currents and associated
current-induced torques, which allows us to investigate the magnetization (spin) dynamics and
the transport in magnetic point contacts under bias within a common framework. Our problem
and our method mimic closely, in philosophy, the electromigration problem (thermally-activated
current-driven structural rearrangement), where now the direction of the local spin (or magnetic
moment) takes the place of the atomic positions as “the reaction coordinate”.

Although our scheme is general and is conceptually transferable to first-principles Hamiltonians
(for instance, density functional theory), here we apply the method to a simple self-consistent tight-
binding (TB) model. This has the benefit of being reasonably realistic in capturing the atomistic

level quantum effects, while keeping the computational overheads to a minimum.

3.2.1 Current-induced generalized forces

Before we describe our approach to the spin dynamics in magnetic point contacts under current-
carrying conditions, we need to introduce the current-induced forces, which are not trivial quantities
in a non-equilibrium quantum system. Let us start from the Hellman-Feynman theorem (HEFT)
[39] which gives a very useful expression for computing the mechanical forces acting on the atomic
nuclei (or the ionic cores) in molecular or solid state systems. It is based on the Bohn-Oppenheimer
approximation (in which the nuclei are treated as classical particles) and it is valid (in its original

formulation) only when the electronic subsystem is in one of its eigenstates. If U is the energy
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3.2 Spin dynamics in point contacts

corresponding to a many-body (electrons) eigenstate |¥), i.e. H W) = U |¥), and A is a collective

variable, which specifies the nuclear positions, then the force in the direction of A is

F,\E—a—U:—<\IJ L

E)) £

q/> / (T|) . (3.2.1)

The right-hand-side of Eq. (3.2.1) represents the conventional HFT. It is easily proven for
square-integrable eigenstates (¥|W) = |¥|* of the Hermitian Hamiltonian H of the system. Then
U= <\Il ’H’ \II> /|®|? and by definition

1% - 1 oH
B \IJ}H\I/ B L s
- | |* O < l > o[ < 15))

q’>+r£r <%|H’w>+<ﬂf1}%>/ ,

=UZ (¥|¥) =0in HFT (3.2.2)

where the underlined term in the parentheses vanishes under the above conditions and Eq. (3.2.1)
is recovered. However, Eq. (3.2.2) is used as a definition of the force in more general situations. It
is often called the generalized Hellman-Feynman theorem and the underlined term, which may not
vanish, is the so called Pulay force (originally called by Pulay wavefunction force, as it is related
to the gradient of the wavefunction) [79]. In fact, the Pulay force can be viewed as a correction to
the Hellman-Feynman force when incomplete basis sets are used and the wavefunction is to some
extent inaccurate (as always in practical calculations). It has been recognized that the error of
the wavefunction enters the energy derivative [right-hand side of Eq. (3.2.1)] at the second order
in A, while it enters the Hellman-Feynman force at the first order and thus it is often numerically
more advantageous to work with a medium quality wavefunction and Pulay forces than with a
highly-accurate wavefunction and the HF force alone [79)].

In the general time-dependent (TD) description of a closed quantum system ! the force can be

defined [123] through the expectation value of the momentum operator by the Ehrenfest theorem

1. d 0
F = -W@laM = <\1/

where U in this case is the square-integrable time-dependent wave function of the system. In

ot
O\

\Il> + TD Pulay forces, (3:2:3)

practical implementations where the exact eigenstate ¥ can not be exactly reproduced in an
incomplete basis, again Pulay forces should be taken into account. This is not the case for the tight-
binding description where the full eigen-space of the TB Hamiltonian is used. In the steady-state

Landauer-type transport problem the square-integrability can be provided by a renormalization in

I'This refers to the number of particles. The Hamiltonian can, in principle, have a parametric dependence on

external degrees of freedom like the atomic positions in the BO approximation.
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3. MAGNETIC POINT CONTACTS

terms of one-electron-energy-centred wave packages [123, 121] and there are no other obstructions
for applying the expression for the force in Eq. (3.2.3).

In fact the Landauer steady-state transport ' has been found closer to the static picture than to
the time-dependent one in Ref. [111, 100]. In this regime the charge density in the junction is static
and it is the sum of the left and right-lead originating electrons so that their partial occupancies
and total energy E are constants of motion, if the structure remains stationery. This invariant
total energy E of the current-carrying system excludes the kinetic energy of any atomic motion
and the energy dissipation in the reservoirs. Todorov et al [111] showed explicitly that infinitesimal
changes in E, the total particle numbers N, and Ny of the left and right-lead originating electrons,

and the position R,, of the n-th atomic core in the structure are related by
dE =TdS + purdNp + urdNg — F,, - dR,,, (3.2.4)

where S = —kp Zie{"L"."R”} [filn fi + (1 — fi)In (1 — f;)] is the entropy of the junction, 71" is the

- ambient temperature. Thus.the full force F,, acting on the n-th atom and which includes both the

force at equilibrium and the current-induced contribution is given by
B.=— (vnE)S‘N,,,N,, ] (3:2:5)

where V,, denotes the gradient with respect to the coordinates of the n-th atom while the remaining
atoms are still. Though Eq. (3.2.5) looks very much like the HFT [see Eq. (3.2.1)], it is actually
more general as it applies to a thermodynamically open system, carrying a steady state current as
opposed to the thermodynamically closed system from the HFT. In fact, the same expression for
the force can also be derived for a non-steady-state TD transport from a Lagrangian formulation
of semi-classical electron-nuclear dynamics in Ref. [108]. There the whole derivation is axiomatic
and the force is not introduced as an energy gradient.

In one of the following sections we shall introduce current-induced mechanical forces to our
model of spin-polarized junctions. What has been rigorously demonstrated in the literature (cited
above) is that a Hellman-Feynman-like theorem does apply for the Landauer-type transport prob-
lems, but it should be implemented cautiously in view of the non-negligible Pulay forces in certain

situations. Our primary aim in the next section is to model the spin-dynamics in point contacts

!Here we also refer to our hypothetic system cartooned in Fig. 2.6, which consists of an atomistic structure
sandwiched between two semi-infinite leads. The leads, because of their dimension can play the role of Landauer
reservoirs, maintaining stable electrochemical potentials (7, and pug) irrespective of what they are attached to.
Then in an out-of-equilibrium situation, p; # pg, there are two statistically separable ensembles of electrons in
the junction - originating from each of the two leads and populated according to the Fermi function of that lead

(frs JR):
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3.2 Spin dynamics in point contacts

under bias. There we take advantage of the analogy between the inert atomic cores and the local-
ized core-spins (in the spirit of the spin adiabatic approximation [7, 6]) and apply the generalized

to the steady-state transport HF'T from Eq. (3.2.3) to calculate the current-induced torques.

3.2.2 Scheme for mapping out spin activation barriers

Our scheme for studying current-induced dynamical effects of the spin (or magnetization) in atomic-
sized metallic nanostructures is indeed a generalization of the combined quantum-classical dynami-
cal methods used in electromigration problems [112]. Here we treat the structural magnetic degrees
of freedom as classical variables and the conduction electrons as a quantum system. The former are
identified with the localized total angular momenta of the atomic cores which we hereafter refer to
as local spins or simply spins. Note that our spin picture is absolutely transferable to the language
of magnetic moments or magnetization as will become clear when we introduce the Hamiltonian.
For this reason we sometimes refer to the set of local spins, represented by a set of classical vectors
8 = {S,}, as spin state '.

Such classical description of the spins is appropriate when they are localized, i.e. arise from some
deep orbital levels, such as in the case of rare earth ferromagnets, but it may appear questionable
for magnetic transition metals (Fe, Co and Ni), where the d-electrons responsible for the moment
also take part in the conduction [69]. However, since the Coulomb energy is orders of magnitude
larger than any energies connected with the electron flow, it is safe to assume that only the direction
of the local spin is affected by the current but not its magnitude. This effectively is an adiabatic
approximation, in the spirit of the Born-Oppenheimer approximation for the nuclear dynamics,
where now the orientation of the local spins is a slow variable compared with the internal electron-
electron interactions that determine their magnitude [7, 6]. The Hamiltonian for the combined

conduction-electron + local spins system can be then written in general as
H (S) = H. + Vspin(s) 5 (326)

where we have isolated the “free” electron Hamiltonian H, from the term Vguin(8), describing all
the spin interactions.
We may now write down the generalized forces (in this case, torques) conjugate to the classical

variables 8:

r- - (3] 228)a), a2

I'We sometimes refer to 8 as the magnetic configuration of the system, if we envisage the adjoint to the spins

local magnetic moments.
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3. MAGNETIC POINT CONTACTS

where |U) is the normalized state vector of the electronic system. Equation (3.2.7) has the appear-
ance of the usual Hellmann-Feynman theorem for stationary states [see Eq. (3.2.1)] but it is also
valid in general dynamical situations, for systems driven arbitrarily far from equilibrium [123, 108].
Note that Pulay forces do not arise in our model as we are always working in the full eigenspace
of the Hamiltonian.

The set of equations (3.2.6) and (3.2.7), combined with an appropriate method for calculating
the non-equilibrium electron state vector |¥), and therefore the current, is the basis for our method
for describing the interplay between transport and magnetic properties. In this work, we seek to
map out the activation energy barriers for magnetic rearrangements, in order to determine the
preferential magnetic configurations of the system and to study transitions between them. We
achieve that as follows. First, we seek the stable configurations. We evaluate the non-equilibrium
state vector |¥), in a one-electron picture, for a given initial local spin configuration 89 by solving
the scattering problem associated with the Hamiltonian H (8(0)>. Then, by using Eq. (3.2.7) the
torques for that configuration are calculated. Static iterative relaxation of the torques, which
i.nv‘ol\'/es- récajcﬁlafiné ﬁhe-, sélf;co;lsist{%xlt' cilrr-en‘t-éar'ryi-ng‘ electronic structure and the 'tofqﬁesl, is
carried out as follows

g — gn-1) 4 pn-1) . (3.2.8)

where 8™ and T~ Y are respectively the spin configuration and the torques on the n-th itera-
tion. A positive value of a guarantees that the T = 0 solution corresponds to a stable magnetic
configuration 8.

Once the stable magnetic configurations are found, we can calculate the activation energy
barriers for thermally activated transitions between two different configurations Sinma| and Sgnal-
We then choose one of the classical dynamical variables S; as the reaction coordinate and rotate it
from its initial value Sij"i“a' to its final value S?"al. At every step on the way the torques acting on
all other spins are kept relaxed to zero. The work done by the classical degrees of freedom during
this quasi-static transition is then obtained by integrating the torque on the reaction coordinate
S; over the migration path. The work done over the full transition is

Stinal
W=—-—— / i td S (3.2.9)
Sinitial

The energy barrier profile, on the other hand, is given by

SJ
1
W) =15 / T; - dS;., (3.2.10)

Sinitial
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3.2 Spin dynamics in point contacts

where 8; = {S1(S;),S2(S;),...,S;,...,S~n(S,)} is the magnetic configuration, for a given spin S;

(reaction coordinate), defined by the condition T; = 0 for every i # j.

3.2.3 Tight-binding implementation

The techniques described in the previous sections are general and can be applied to a large class of
Hamiltonians. In this work we focus our attention on a simplified model, which contains the funda-
mental ingredients for describing a current-carrying magnetic point contact, but at the same time
does not present massive computational overheads. The structure we investigate is schematically

represented in Fig. 3.1.

(b)

Figure 3.1: Schemes of the MPC with two different choices of the polarization axis z: (a) transverse
and (b) parallel to the longitudinal direction. These choices determine whether the DW in the

constriction is a Bloch (a) or a Neel (b) type, which are, nonetheless, equivalent in our model.

It consists of two semi-infinite leads with a simple cubic lattice structure and a 3 x 3-atom
cross section connected through a linear chain of three atoms. Each atom carries a local spin,

arising from the deeply localized d-electrons and described with a classical vector S;. The two
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3. MAGNETIC POINT CONTACTS

leads are fully but oppositely polarized with all spins in each lead pointing in the same direction
and antiparallel to the other lead. In contrast the three spins of the atoms in the chain are allowed
to rotate.

The current is carried by electrons belonging to an s-band, which is described by means of
a single-orbital (plus spin) TB model. We neglect spin non-collinearity of the current-carrying
electrons, assuming that the time needed to cross the constriction is considerably shorter than
their spin-relaxation time.

In our collinear-spin model a given magnetic configuration of the chain 8 is thus described by
the vector ¢ = (¢, P2, ¢3) of the three angles ¢; (i = 1,2,3), which the three spins form with
respect to the z-axis. This axis is also the quantization axis for the conduction electrons and in our
simulations is chosen to be parallel to the spin-polarization of the left lead. With this choice of the
z-axis ¢; = 0 (¢; = m) for a local spin S; of the chain aligned parallel (antiparallel) to the spin of
the left lead. However, as far as we neglect the magneto-crystalline anisotropy in our model, there
is no relation of the z-axis to a particular spatial direction. Hence the two situations presented in
Flg 31 (a) and (b) where the z-axis is either transverse or longitudinal to the leads, are equivalent
in our spin-collinear model. This means that our model does not distinguish between Bloch and
Neel walls.

For the sake of definiteness, we hereafter refer to the case depicted in Fig. 3.1 (a). The local
spins of the chain are restricted to rotations only in the z-z plane and longitudinal components
are neglected (as in a Bloch wall).

With the above assumptions the electron Hamiltonian from Eq. (3.2.6) now reads

H($) = > [(He)y; + (Ves)]; ()] clcio + Ves(9), (3.2.11)

i,J,0
where c;‘o and ¢, are creation and annihilation operators for electrons with spin o = o, = £1 at
the atomic sites i and j respectively. The matrix elements of the “free” electron part are those of

a nearest-neighbour TB model
(He);; = [€0 + Uo (pi — po) 6ij + X 541, (3.2.12)

where & is the on-site energy, x is the hopping parameter, Uy is the on-site Coulomb repulsion,
po is the reference on-site particle number corresponding to the neutral free atom and p; = p(T) + p(l)
is the full self-consistent number of electrons on the i-th site. The spin interaction potential Vipi,
from Eq. (3.2.6) is here separated in two parts: Vg and Vsg. The former contains the interaction
between conduction electrons and local spins

o J i
(‘/es)ij = —5‘7 -8iij = -05 cos ¢; 05 (3:2.13)
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3.2 Spin dynamics in point contacts

where J > 0 is a ferromagnetic exchange energy parameter and o = (0,0,0) = (0,0,+1) is the
normalized projection of the electron spin on the quantization axis z. As it stands, Eq. (3.2.13)
describes a local Heisenberg-type interaction between the local classical spins and the spin-polarized
current carrying s-electrons.

Finally, the term Vgg parameterizes the interaction between the classical local spins. Here we

assume again a Heisenberg nearest-neighbour spin-spin interaction

J
Vss=—72:sz"sj :—75 > cos (¢ — ), (3.2.14)

1,7 ,J
where Jg > 0 is the intersite exchange integral. We are working with the notion of dimensionless
and normalized classical spins |S;| = 1, i.e. their actual magnitude |S;| is incorporated in the
definitions of J and Jg, which both have a dimension of energy. In summary our model is that
of conduction electrons exchange-coupled to local spins, in turn described by a Heisenberg-type
energy. This is usually known as the s-d model [133].
The torque experienced by the i-th local spin in the chain is then obtained from equation (3.2.7)

and reads

J J .
T = —5 0 sin ¢; — —;— [sin (@i — pi—1) + sin (di+1 — ¢i)] , (3.2.15)

where o; = pg - pf for i = 1,2,3 are expectation values the local itinerant-spin densities (polariza-
tions), and we have defined ¢y = 0, ¢4 = 7 since the magnetization of the two leads is considered
pinned in an antiparallel alignment.

In our simple-cubic lattice model the surface Green’s function (at a general complex energy FE')
of the leads have an analytical form (see Appendix A). In reciprocal space, the surface GF of the

left (right) lead reads

E—eﬁﬂ—sm)—v%E—sﬁR—smﬂ2—4v

Grr(E,q) = % , Im(E) >0, (3.2.16)
where 85 # is the onsite energy in the left (right) lead and
qaT q:T
& = —2 -2 3217
(@) = =2 cos { 22 ) ~ 2 xdoos (725 (32.17)

is the energy shift, as a function of the transverse wavevector (in appropriate units) q = (¢z, qy)
with g, =1,...,Nz, ¢ = 1,..., N, for an (N, x N,)-atom simple-square lattice monoatomic slab
in a nearest-neighbor orthogonal 1s TB model and the definition of the complex square-root is
given in Ref. [107]. The expression of equation (3.2.16) is then expanded over the real-space basis

(see Appendix A) and used in the matrix equation for the self-energies as defined in Section 2.3.
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The leads are considered as typical Landauer-type contacts/reservoirs, i.e. their electronic
properties are not affected by the coupling to the chain. The bias voltage, applied to the leads,
is assumed only to shift rigidly their energy levels. Thus their chemical potentials starting from
equilibrium p;, = pgr = po with the applied voltage V' > 0 become puy, = po + eV/2 and pp =
to — €V/2. That is implemented as a rigid shift in the onsite energies of the L (R) part of the
Hamiltonian, away from the junction (see Fig. 2.8; in our simulations, typically, we take 2-3 slabs

from the leads in the C region)
EF — &l +eV/2 and EF — EF —eV/2 (3.2.18)
and is felt in the selfconsistent region through the lead self-energies
Y(F)=HcGr(E)Hc, Yr(E) = HorGr(E)Hgc , (3.2.19)

where in case of nearest-neighbour TB and uniform in cross section identical left and right lead
Hpc = Hep =.Hre.= Her = xIL, where I is.an Ny, x N, identity matrix, Ny, being the number
of atoms in the cross-sectional area of each lead (see Fig. 2.9).

The numerical algorithm we apply for investigating the activation barrier for a quasi-static spin
flip in the constriction is sketched in Fig. 3.2. Details on the NEGF core are described in Fig. 2.7
and technicalities on the energy integration and the SCF mixing scheme are described in Appendix

A and B, respectively. We are using a Pulay’s mixing scheme with m = 4 (see Appendix B).

Initial input : {¢.6,4:}.p
Which spin is rotated: e.g. S,
What is its final state: e.g. g,

Spin-Relaxation Loop
Calculate the

torques: {7, 7,.7;} \ Relax other spins:
Pick next position of j eg. 4,+al; >,

the rotating spin, e.g. @,
If other torques,
eg =T =0 \

Store result, e.g. 7, (@,) & calculate current:

If final state reached,

e.g ¢,=@, = END! IZ%%ZJ‘TF[F,_GFRG*]U(f,.—/}J dE

Figure 3.2: Algorithm for simulating quasi-static spin transitions in steady-state current-carrying

conditions.
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3.2 Spin dynamics in point contacts

3.2.4 Simulating domain wall migration

Here we investigate the spin-dynamics of the three-atom chain, spanned inside the atomic MPC
as depicted in Fig. 3.1(a). For the anti-parallelly aligned leads a Bloch type DW is nucleated in
the chain. Having the external spins initially pinned to the polarization of their adjacent leads, we
investigate the DW translation achieved by quasi-statically rotating the middle spin.

The TB parameters, used in the calculations, are £g = —3eV, x = —1eV, pg =1, Uy = 12€V,
which provides for a metallic-like local charge neutrality. We consider the values J = 1eV and
Js = 50meV as a realistic choice for simulating bulk properties of magnetic transition metals
[85, 47, 72]. As we describe quasi-one dimensional systems, where the exchange integrals can be
quite different from bulk [78], we also investigate the whole ranges 0 < J < 3eVand 0 < Jg < 5eV
and identify three regions in the J — Jg parameter space where spin-dynamics is qualitatively
different.

We also consider departures from other symmetry imposing conditions and parameters. For
example, we simulate spatially inhomogeneous chain (sites that are not uni-distant, giving rise to
non-uniform hopping parameters) and also partially filled band (py = pg) + p(l) # 1). Finally, we
revisit the problem of whether or not generalized forces away from equilibrium are conservative,
and demonstrate numerically that the torques in the present system under a current flow are not

conservative.

3.2.4.1 Activation barriers

By performing numerical minimization of all the torques, exerted on the spins in the constriction,
with various initial conditions, we have determined that all eight collinear arrangements, such
as (0,0,0), (0,0,7), (0,7, 7), (m,m0), ete, are stable (zero-torque) spin configurations (for the
choice of model parameters specified above). Thus we usually start the simulations from one
of these states. The states (0,0,7) and (0,7, ), which we designate by 8; and 8, respectively,
are of particular interest to us as they correspond to two positions of an abrupt DW inside the
constriction shifted (with respect to each other) by one atomic site. We investigate the energy
activations barrier for a transition 8§ — 8, achieved by rotating Ss from 0 to 7 in the z-z
plane. This process, which we refer throughout this Chapter as DW migration, is modelled as a
quasi-static process. The rotation of S, is discretized and on each step its neighbouring spins S;
and S3 are readjusted so that they experience no net torques.

Some of the dynamical characteristics of this process of actual DW migration for unbiased
junction as a function of the reaction coordinate ¢ are presented in Fig.3.3. We see that during

the rotation of S, its adjacent spins S; 3 experience small tilts from the collinear alignment and
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3. MAGNETIC POINT CONTACTS

after a turning point fall back onto their initial directions [see Fig.3.3(a)]. The intersite exchange
coupling is not strong enough to induce spin flips on the sites neighboring the site where the spin is
rotated and even hypothetical values of Jg up to 0.4eV do not affect this picture [see later Fig.3.8].
This observation suggests that (within our parameter space) all complex dynamical processes of
the spins in the constriction can be decomposed into series of single-spin rotations. Because of the
inherent centrosymmetric properties the spin-polarized contact (these are discussed in the next

subsection) the relaxed directions of the two adjacent spins S; and S3 are related

P3(¢2) =7 — d1(m — ¢2) (3.2.20)
and unless this inherent symmetry is deliberately broken in our discussion we only look at ¢;.
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Figure 3.3: Characteristic quantities in a typical calculation on the one-site DW migration in the
contact as function of the reaction coordinate ¢o: (a) The stable angular variables ¢; and ¢3; (b)
The three on-site spin polarizations o; = plT - p%; (c¢) Torque experienced and work performed by
the rotating spin; (d) Net current at V' = 0.5 V. The voltage in panels (a)-(c) is zero. J = 1leV,
Js = 50meV.

The only non-zero torque in the system during the quasi-static DW migration process is T,
the torque acting upon the rotating spin [Fig.3.3 (c¢)]. This torque is computed as a function of ¢
at every point on the way, then interpolated and integrated according to Eq. (3.2.9) to determine

the effective energy barrier for the DW migration

b2
W(g2) = —/0 Ty dgs . (8:2.21)

Because of the inherent symmetries of our model system (see next subsection), the two states

(0,0,7) and (0,7, 7) are indistinguishable from the transport perspective at any bias. Thus the
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3.2 Spin dynamics in point contacts

calculated energy barrier between them is symmetric about ¢» = 7/2 and the total work W ()
for the quasi-static process is zero [Fig. 3.3 (c¢)]. The activation energy for this process in our TB
parameterization is 54 meV.

The conductance depends on the alignment of the spins and varies during the DW migration
process. At a finite bias voltage V' the net current I shows a symmetric bell-shaped dependence
on ¢y [see Fig.3.3(d)]. This resulting curve is very similar in shape to the conductance of a
three-terminal non-collinearly spin-polarized device, described in Ref. [25] from a semi-classical
perspective in the framework of the so-called magneto-circuitry theory [24]. In our case for V =
0.5V, the conductance varies from 1.7662/h at the collinear states ¢o = 0,7 to a maximum of
1.86€2/h, reached at ¢y = 7/2. That gives a relative variation of 5%, which is also in the order of
magnitude of the result in Ref. [25]. This interesting similarity suggests a “topological” proximity
between our model system and multi-nodal magnetic systems modelled by the “macrospin” '
approximation, i.e. each of the localized (atomic) spins in our model can instead represent the spin

of one component (described as a macrospin) in the multi-terminal device (circuit).
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Figure 3.4: Effect of the external bias on some microscopic properties of the contact as function
of the reaction coordinate ¢,: (a) the zero-torque positions of ¢; (¢3 can be deduced from Eq.
(3.2.20)); (b) the on-site spin polarizations o; = pf - pll, 1 = 1,2,3; (c) the activation energy
barrier.

Further, we look at the effect the external bias voltage V' (driving a spin-polarized current) has
on the microscopic dynamic observables as a function of the reaction coordinate. We observe a
current-induced suppression of the response of S; 3 to the rotation of S, [Fig.3.4(a)] and an increase

in the absolute values of the onsite spin-polarizations (non-equilibrium spin-density accumulation)

IThe macrospin model is based on the fact that in most of its volume the magnetic moments in a magnetic
domain [50] are aligned in parallel to each other because of the exchange interaction. With this approximation the
magnetization in complex heterogenous magnetic system is often mapped onto series of macrospins, representing
the individual mono-domains.
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3. MAGNETIC POINT CONTACTS

[Fig.3.3(b)]. As a result of the increased misalignments and onsite polarizations, the energy barrier
height also increases with V' [Fig.3.4(c)] and the pace is non-linear at high biases. Increase of
barrier height corresponds to enhanced spatial pinning of the wall. At any finite temperature, this
phenomenon would manifest itself as suppression, with increasing bias, of the frequency of DW

transitions back and forth between the two stable magnetic configurations.
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Figure 3.5: (a) The net current I, (b) its relative variation with respect to Iy = I(¢2 = 0) and (c)
its polarization k; = (Iy — I})/(I1 + I}) as functions of ¢o at different voltages V. [E R T

The profile of the net current over the reaction coordinate is similarly bell-shaped as the energy
barrier. However, unlike the barrier, the relative height of the current bell drops with the bias [see
Fig.3.5(b)]. This correlates with the suppressed response of the two adjacent spins [Fig. 3.4(a)].
A common tendency we find in our calculations is that the smoother the angular spin distribution
in the junction the higher the conductance, hence the bell shape and the peak of the current at
¢2 = /2. The net current also becomes more spin-polarized [Fig.3.5(c)], though that tendency is
not monotonous with the bias (clearly, in the limit of zero-bias the Fermi level spin-polarization is
0 for pp = 1, at finite bias x; is an integral quantity, that depends on the band-alignments of the

two leads).

3.2.4.2 Inherent symmetries

This subsection is dedicated to the geometrical and electronic symmetries inherent to our model
system (see Fig. 3.1). Starting with geometry, we introduce a rotation operation by an angle
7 about one of the coordinate axes, say x, as R,. There are three such rotations that map the
system onto itself, i.e. Ry, Ry, R, as sketched in Fig. 3.6(a), and the resulting configurations are
all equivalent to the initial one.

Note that the direction of the external bias changes after two of these operations (R, and R,).

For example, from R, we obtain the following identity relation between two spin-states in the
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constriction

{V; 007} ={-V; Onr} . (3:2.22)

In this case the leads map perfectly on to each other and the only difference is the change of

electronic structure, as long as the leads are identical and oppositely polarized. In particular, this
means that at equilibrium the (007) and (On7) states are identical from transport viewpoint for
any choice of electronic-structure model.

As far as the electronic structure is concerned, the half-filled band (py = 1) of our simple cubic
lattice in the orthogonal TB model brings in additional symmetry. That is the perfect match of
the electron and hole subbands in the leads upon spin inversion [see Fig. 3.6(b)]. Because of the
two oppositely polarized leads (which set identical boundary conditions for electrons and holes)
and the identity of the electron and hole descriptions of the transport problem [8], we recognize
a set of relations between spin states, cartooned in Fig. 3.6(c). At half band-filling we have that

instead of Eq. (3.2.22) a more extended one holds

{Vi0oms, o ={-V;0mn}, _, ={V.Orr] . = {~V; 005} (3:2:23)

PO po=1 °

This inherent symmetry of our spin system is the reason for which the energy barrier for transitions
between these two spin states is symmetric at any finite bias [see Fig. 3.4(c)]. The above argument
can be generalized to longer spin-chains in the constriction [Fig. 3.6(c)].

Similar relations can be written for other couples of collinear states of the three spins in the

chain. There are in total 2° = 8 such states, which can be divided in four pairs
(007) «— (07rm), (000) «— (mwm), (wOmw) e (0m0), (7w7w0) «— (7w00) (3.2.24)

of equivalent (with respect to transport observables) states at any bias, obeying Eq. (3.2.23). These
stronger relations are due to the electronic structure symmetry, induced by the simple cubic lattice
and the (effectively) half-filled band (we actually have two nearly half-filled spin-split bands). We
acknowledge their existence and in Section 3.2.6 we investigate how the results become different if

the above symmetries are broken.

3.2.4.3 Spin-state stability and DW migration under bias

The torques, defined in Eq. (3.2.15), depend explicitly on the exchange parameters J, Jg and the
balance of these two coupling mechanisms is what determines the spin dynamics in the constriction.
In this section we describe the effect of the intersite exchange coupling strength on the equilibrium

(zero-bias) magnetic properties of the (0,0,7) — (0,7, 7) transition.
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Figure 3.6: (a) Equivalent configurations produced by rotations to m about the coordinate axes,
originating in chain site #2. The leads are sketched in different colour to indicate the bias applied
to the system (blue for lead attached to the negative pole of the battery, red — for the positive).
(b) Density of states of an infinite uniformly magnetized lead with 3 x 3 atoms in cross section.
Tight-binding parameters are the ones already specified, i.e. x = J = —1eV. The Fermi level
corresponding to half-filled band (pp = 1) is marked and the spin-up electron (hole) subband
DOS is highlighted in green (orange). For this particular py, if the magnetization of the lead is
reversed, the DOS of electrons and holes interchange. (c¢) A cartoon demonstrating the validity of
Eq. (3.2.23) for pg = 1. The shades of the leads match those of the subbands for the majority
electrons or holes depicted in panel (b), while the shades of the sites correspond to that of the
lead their spin is parallel to. The identity signs refer to the transport properties. The first identity
is because of the duality of the electron and hole description of the one-band transport problem,
while the second is obtained by a rotation. Based on this Eq. (3.2.23) can be generalized to n +m
local spins in the point contact. Panel (d) represents a generalization of Eq. (3.2.22).
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3.2 Spin dynamics in point contacts

As Jg is increased the adjacent spins S; and S3 understandably tend to respond stronger to the
rotation of Sy. Starting at (0,0, ), ¢; initially increases ! rather linearly with ¢, and S tilts away
from the z-axis [Fig. 3.7(a)]. This suggests that for small misalignments the Jg (linear in ¢y) is
the leading term in Eq. (3.2.15) as the J-term, depending on the self-consistent onsite spin-density
s1, is potentially higher order in ¢;. Indeed, during the early stages of the Sa-rotation, s; is nearly
constant before the turning point [Fig. 3.7(c)]. As ¢2 increases further, a turning point is reached
and S; falls back on to the axis. From the turning point on the spin-density drifts continuously
towards its final stable value at (0,7, 7) (the spin-densities for the end collinear states clearly do

not depend on Jg).

—JS (meV) T T

02_H4OO L (a)—. &
| w=250 <
B - e 100 i 18
= - £
B

Figure 3.7: Effect of the strength of the intersite coupling Js on the equilibrium variables (a,b,c,d)
and on the net current and its polarization at V =1V (e,f).

The typical bell-shape of the current vs. ¢ is broadened as Jg increases [Fig.3.7(d)] due to
the fact that stronger intersite exchange coupling tends to make the three spins in the constriction
more continuously distributed in angle, which in turn increases the overall conductivity of the
system for any ¢,. Also the current is somewhat less spin-polarized in the case of stronger Jg
[Fig.3.7(e)].

Together with this rather minor effect on the macroscopic observables (e.g. the current) there
is an interesting microscopic implication of the variation of Jg for the spin-dynamics. That is the

fact that the energy barrier for the migration of the abrupt DW in the junction changes its profile

TFrom Eq. (3.2.20) it is sufficient to follow the response of S;.
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qualitatively or fully disappears. With increasing .Js, this transforms from a barrier to a well [see
Fig.3.7(c)] thus making the collinear states unstable and the more symmetric and homogeneous
one with ¢y = 7/2 stable.

By studying the activation energy for DW migration, we deduce a pattern of local-spin sta-
bility in the exchange-parameter space J-Jg (see Fig.3.8). Three distinct regimes are recognized
depending on the values of the exchange parameters: (1) “magnetostatic regime” associated with
the presence of 2 stable magnetic states, for which ¢o = +7/2; (2) “mized regime”: 4 stable
configurations, 2 in each half-plane for which 0 < ¢o < 7/2 and 7/2 < ¢o < m; (3) ‘current-
driven regime”: 8 stable configurations, namely all the collinear spin alignments (0,0, 0), (7,7, ),
(0,0, ), (0,7, ), (m,0,0), (r,,0), (0,7,0), (7,0,7) '. Interestingly, the three regions of stability
in the J-Jg space are separated by parabolic borders. This correlates to the Feynman-path notion
that the indirect intersite exchange coupling is in its leading contribution a second-order process
with respect to the onsite exchange and the J? factor in the expression for the RKKY interaction

(see for instance Ref. [67]).
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Figure 3.8: Diagram showing the three regions, with 2, 4 and 8 stable magnetic configurations
respectively (see text), in a J-Jg cut of the parameter space. The border lines between the three
regimes are calculated from the energetics of the (0,0, 7) — (0,7, 7) transition (see inset and text).

The blue dashed lines correspond to voltages of 1 and the red dash-dotted ones — to 2 V.

The exchange-parameter values that we previously considered as realistic (J = 1eV and Jg =

50meV) are well within the current-driven region (marked with “8” in Fig.3.8). Obviously, the

IThe last case is also confirmed by full torque relaxations at various initial conditions.
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correct values of these parameters in reduced dimensions are very system-dependent. Experimental
results for Jg, for instance, in quasi-1D Fe magnetic strips show a significant reduction by almost
an order of magnitude compared to bulk values [78]. This goes further in favour of the collinear
stability or the presence of a barrier for the DW migration (see Fig.3.8). We continue using the
foregoing values, noting that the DW energetics qualitatively remain the same for a range of values
of Jg in the region of tens of meV and J 2 0.5eV.

The application of a bias, driving spin-polarized current, distorts the border lines between the
three regions in Fig. 3.8 significantly. The border lines for different biases even cross each other.
As moving up in Fig. 3.8 corresponds to lowering of the barrier, this means that the increase of the
current flow (with increasing bias) can either increase or decrease the barrier. Indeed, in Fig.3.9 we
demonstrate the effect of the bias on the DW migration energetics along two verticals of the J —Jg
parameter space separated by a crossing of the border lines, i.e. J =1 eV and J = 2.5 eV. Three
values of Jg are considered, one in each of the above regimes. As expected in one case the increase
of bias increases the barrier (effectively pinning the wall), while in the other the bias suppresses
the barrier (effectively depinning the wall). Our calculations show that the spin-transfer torque
effect within our transport model can either increase of decrease the barrier for a DW migration,

depending on the balance of exchange parameters which in practice are very system-dependent

characteristics.
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Figure 3.9: The biased energy barriers for the transition (0,0,7) — (0,7, 7) at different voltages
V=0,1,2V, J = 1.0eV (left) and J = 2.5eV (right) and for three values of Jg (one in each of the
ranges, discussed in the text): (a) Jg = 12meV; (b) Js = 0.25eV; (¢) Jg = 0.3eV; (d) Js = 1eV;
(e) Js =2¢eV; (f) Js = 3€V.
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3.2.4.4 Current-voltage characteristics

The current-voltage characteristics of the system for all the different stable (collinear) alignments
of the spins in the chain are presented in Fig. 3.10. All the I-V curves are symmetric about
the origin and form four separate branches as the eight possible stable magnetic states are 4 x 2
degenerate. This is due, as mentioned earlier, to the spatial reflection and time-reversal symmetry
of the atomic point contact.

The slopes of the I — V' curves (differential conductances) at low bias are not directly propor-
tional to the number of abrupt DWs in the junction (including the leads interfaces), e.g. three
DWs for (0,7,0) and (7,0, 0), one for (0,0,0) and (0,0, ) states. Clearly, the interfacial DWs have
a different contribution to the overall conductance. For instance dI/dV(0,0,7) > dI/dV(0,0,0) at
biases below 1 V. Interestingly, the (0,0, 7) and the (7,0,0) states have the same low-bias slopes,
regardless of the fact that the latter has two more interfacial walls (it could be that opposite in-
terfacial walls cancel their contribution as a result of the quantum interferences). The least steep
curve indeed corresponds to the (0,7, 0) state, having highest number of two walls in the chain and
just one at the interface. What is more important, however, is that there is a very significant de-
pendence of the current on the magnetic state of the constriction, i.e. a magneto-resistance effect.
The microscopic single-spin reversals, which distinguish the four I-V curves in Fig. (3.10), can
result in massive current variations (of up to 50%) at a given bias. At a given finite temperature
this could result in a random telegraph noise in conductance measurements and such effects have

been observed experimentally [118, 125].
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Figure 3.10: The current-voltage characteristics at all stable collinear alignments for the local

spins in the chain. The inset represents the correspondent spin-polarization of the net current

kr = (It — I})/(I1 + I}). It is a non-monotonic function of the bias.
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3.2.4.5 Summary on DW migration

In summary, we have proposed a microscopic quantum-classical scheme for computing the current-
induced torques on the local magnetization in MPCs under bias. This scheme, based on the
adiabatic spin approximation |7, 6] and the s — d model, has been applied to study the STT effect
in an atomistic MPC, which consists of a monoatomic chain of three atoms, bridging over two semi-
infinite leads with opposite magnetizations, so that at least one magnetic DW is formed within the
junction. We have investigated the stability under current-carrying conditions of various magnetic
configurations and the effect the flowing spin-polarized current has on the energy-barrier for the
migration of the abrupt DW. For an extensive range of echange parameters about the realistic
bulk values only the collinear spin-states are stable. These, however, carry different (by up to
50 %) net currents and the average activation barrier for transitions is about 65-70meV. This
in turn could be a source of a random telegraph noise in current with significant amplitude as a
result of the thermally-activated spin rearrangements inside the constriction. Regarding the DW
migration, we have found that the increase of the bias can both enhance and suppress the barrier
(effectively pinning or de-pinning the wall) depending on the balance of the s —d and d —d exchange

parameters.

3.2.5 Cyclic processes and conservativeness

3.2.5.1 A special cyclic example

Figure 3.11 represents the work for series of one-spin rotations. The sequence of transitions is chosen
such that it goes through each of the 8 stable magnetic configurations once, and then returns to
the initial state. In equilibrium (zero-bias) the depths of the wells in this graph correspond to the
relative energies of our system in various stable magnetic states with respect to the initial one.
Based on this, we can recognize rather unexpectedly the “anti-ferromagnetic” (0, 7,0) and (7,0, 7)
alignments, which can be thought of as featuring three abrupt DWs ! and are the least conducting
states [see Fig. (3.10)], as the most stable among the collinear alignments at equilibrium. *

The external bias has a non-trivial effect on the effective energy barriers for these single-spin
transitions. The total work for the closed loop (starting and ending at the same state) cancels
out for any bias. This, however, is not an indication of conservativeness of the current-induced
torques (3.2.7), but is rather an artefact of the specific properties of this particular closed path,

which includes all the states and can be decomposed into two sub-loops going through identical

!Here domain wall (DW) is used in a very wide sense, allowing for notions like single-atom domain.
2This effect is a direct manifestation of the quantum nature of the transport involved. It resembles the effect

of indirect (electron-mediated) RKKY exchange interaction (see for instance Ref. [3]) and in this case is further
complicated by the geometry of the system which moulds the quantum interference pattern.
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(by symmetry, see section 3.2.4.2) states in opposite direction and thus their contributions to the

total work cancel out.
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Figure 3.11: Work for consecutive transitions between the 8 stable magnetic configurations at
different bias V = 0,1,2V..

There are in total 12 = (5 x 2 + 2) transitions between non-identical pairs of stable collinear
alignments based on single-spin rotation, out of which 542 = 7 are indeed different transitions from
the point of view of the electron transport. The average activation barrier for these 7 transitions
at equilibrium is 71 meV with a variance of 36 meV and it depends slightly on the bias: 65.6 meV
at 1V and 68 meV at 2V. These values for the activation barriers suggest switching frequencies,

and hence random telegraph noise in the current, in the microwave range at room temperature.

3.2.5.2 Are spin torques conservative?

The question if, and under what conditions, forces under steady-state current are conservative
remains an open fundamental problem in the theory of transport [122]. A thermodynamic formu-
lation of forces under non-equilibrium steady-state conditions, proposed in reference [111], leads to
the explicit identification of a thermodynamic potential for electromigration [100]. However, as a
consequence of the infinite nature of open-boundary systems, this potential involves a conditionally
convergent real-space summation. If the sequence of terms in this summation remains invariant
along a given path in the configuration space of the system, then along that path, current-induced
generalized forces are rigorously expressible as gradients of a scalar potential and are therefore
conservative. The possibility remains open, however, that the order of terms in the conditionally

convergent sum may change, as specific points, or manifolds, in configuration space are traversed

48



3.2 Spin dynamics in point contacts

[100]. This constitutes an effective breakdown of the Born-Oppenheimer approximation, with the
consequence that paths spanning such points are non-conservative [100].

We now carry out a numerical test to see whether or not the generalized forces (torques) in
Eq. (3.2.15) are conservative in the present current-carrying system. We chose suitable closed
processes composed of single-spin rotations and calculate the total work as a sum of the works on
the sub-processes, each calculated analogously to Eq. (3.2.21). Since the intersite exchange field
is conservative, a non-zero total work for the cycle is suggestive of the non-conservativeness of the
current-induced torques. As a sign of consistency with the former observation, we expect the total
work to be a numerical zero at zero bias.

The work for a set of four consecutive one-spin rotations between collinear spin configurations,
which form a closed-loop, is calculated at different voltages. The full work for three different loops
as a function of the applied voltage is presented in Fig. 3.12. As expected the closed-loop work
is zero at equilibrium. However it shows a significant variation with the bias for all three cyclic

processes.
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Figure 3.12: Dependence of closed-loop work on the voltage for four different closed loops of

one-spin rotations between collinear states, which are shown on the insets.

In order to resolve the numerical error we have performed a series of tests with different levels
of accuracy. We recognise a few sources of numerical error: (1) The level of convergence of the
density matrix dp. (2) The fineness of the energy mesh for the contour integration in the complex
plane dE. (3) The level of torque relaxation 07'. (4) The angular mesh for the torque integration
which results into the work. As the torque in the current-driven regime is a very smooth function of

the reaction coordinate [see Fig.3.3(c)], we have found (4) insignificant for the value of the integral
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3. MAGNETIC POINT CONTACTS

in Eq. (3.2.10). The effect of the rest of the accuracy parameters on the full-loop work for the
loop {mnm — 7m0 — 00 — O — wrw} [see Fig. 3.12] is summarized in Table 3.1. There we have
presented the resulting closed-loop work for reduced accuracy levels with respect to the calculation

shown in Fig. 3.12.

(0p0ET), % | Wov Wosv Wiy Wisy Way
(100,100,100) | 0.0001 -1.407 -7.454 0.601 19.81
(100,20,100) 0.0001 -1.290 -7.361 -0.036 19.79

(1,100,2) 0.0406 -1.300 -7.356 0.662 19.88

Table 3.1: The work (in meV) for the loop {m7nm — 770 — 070 — Onm — 7w} as function of the
accuracy parameters (in relative units). The value of the bias V is given as subscript. Here the
values of the three tolerance parameters are relative to our most accurate calculation (top line),

presented in Fig. 3.12.

The results in Table 3.1 demonstrate that the observation of a nonzero work for a closed-loop
sequence of transitions is not an error-accumulation effect as it is not substantially affected by
variations of 1-2 orders of magnitude about the chosen level of accuracy. Thus we see that in
the present case, along all the three selected closed paths, we have an explicit example of non-
conservative generalized non-equilibrium forces, emerging here as spin torques. In other words,
the result shown above provides a numerical evidence that the current-induced torques are non-
conservative, at least in the section of the configuration space spanned by the present calculations.

It should be noted that, for our model system, there is nothing special about the regime where
we study the closed loop transitions under bias. We are only facilitated by the fact that the
collinear configurations are the stable ones and that one-spin transitions are indeed possible, so
that closed loops are easy to construct and calculate the work as a sum of individual one-spin
quasi-static rotations. Thus the result for the non-conservativeness of the spin torques, established

numerically here, may in principle be transferable to other open systems.

3.2.6 Breaking the symmetries (electronic and structural)

Current-induced relaxation of the atomic positions can break the inherent structural symmetry
in point contacts similar to ours [112]| and substantially weaken its overall stability. In order to
investigate the effect of small inhomogeneities in the interatomic spacings of the chain over the
DW migration barrier, we empirically map the displacement of the middle atom (#2) from its
centrosymmetric position onto a small variation of the hopping integrals between the atomic site

#2 and its neighboring sites in the chain. To mimic a small displacement to the left we rescale the

50



3.2 Spin dynamics in point contacts

hoppings from site #2 by 0 < § < 1 such that
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Figure 3.13: Effect of a variation in the hopping parameters of the three-atom chain with § = £+0.05
(see Eq. (3.2.25)) on the barriers for DW migration by one site at different bias voltages: (a) V' = 0;
(b) V= 1V i(e) Vi =2V.

As a result from this action, a tilt in the effective energy barrier profile occurs (compare
Fig.3.13 with the uniform-structure results in Fig. 3.4). The total work for the (0,0,7) — (0,7, 7)
transition is negative thus the internal energy of the classical spins is increased. In this case
the degeneracy of the (0,0,7) and (0,7, 7) state is lifted, as the central reflection symmetry,
is no longer present. In fact, for § = 5%, representing a shift of the middle atom to the left,
the (0,7, 7) configuration becomes energetically preferable. Alternatively, § = —5% favours the
(0,0, 7) state. The dynamical variables of the new inhomogeneous system are now invariant upon
the transformation {4, 2} — {9, (r — ¢2)} (see Fig.3.13).

The atomistic properties and the net current as a function of the reaction coordinate ¢, are
presented in Fig. 3.14. The effective ferromagnetic coupling between the local spins is strengthened
by the enhanced electronic hopping and the onsite spin-densities of all the atoms shift almost
rigidly as the middle atom is brought towards one or the other of the leads. The net current
shows a significant asymmetry when compared to the previously observed symmetric bell-shaped
dependence on ¢4 and the more stable configuration is always found to be the less conducting one
[Fig.3.14(d)]. At a given bias of 1V we observe a 4-5 % variation of the net current between the
initial and the final spin state. Accordingly, the I-V characteristics of the previously degenerate

(0,0,7) and (0, 7, ) states is split into two branches [Fig.3.15(a)], whose difference increases rather
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3. MAGNETIC POINT CONTACTS

linearly with voltage [Fig.3.15(b)] and reaches about 10% for V' = 2V. Thus we expect DW
migrations within the constriction, in the case of small deviations from a uniform geometry, to be

accompanied by variations in the net current with the signature of a random-telegraph noise.

L

0.5
¢_,/7t

Figure 3.14: Effect of a § = +5% asymmetry in the hopping integrals asymmetry on the atomistic
variables during the DW shift — (a,b) ¢ 3 (note that the symmetry relation in this case becomes
¢3(p2,0) = 7™ — ¢p1(m — P2, —0)), (¢) the on-site spin-polarization, and (d,e) the net current and its
spin-polarization at V' = 1V. The bias on (a,b,c) is V. =0V.

The interplay between the current-induced relaxation of the magnetic and mechanical degrees
of freedom is studied in a mutually-consistent manner later in this thesis. The simple test above is
the motivation for further analysis as it clearly shows that geometrical asymmetries in the atomic
structures (which could be induced by the current [112]) affect qualitatively and quantitatively the
activation barrier for DW migration. The generated tilt creates energetically preferential spatial
traps for the DW in which the system is less conducting. Thermally activated random hops of
the DW in the constriction could give rise to a random telegraph noise (with a linearly varying
amplitude with bias voltage) in the conductance measurements.

Yet another way to break the inherent symmetry of our model system is to consider a band-
filling (po) which is different from the special case of half-filled band with py = 1 considered in all
previous calculations. This can be interpreted as mimicking the effect of some spd-hybridization
[101]. To clarify that idea, we have calculated the partial density of spin-up and spin-down states in
an “up”-spin-polarized (about an arbitrary polarization axis) infinite lead with the same structure
as the leads in our system (see Fig. 3.16) and marked the position of the Fermi level for band

fillings po from 0.7 to 1.3. With this noninteger filling and the geometrical properties of the system
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Figure 3.15: (a) The I-V characteristics for the 8; = {0,0,7} and 82{0, 7,7} states with § = 0
and § = 5%. The two split I — V curves swap places upon changing the sign of §. (b) The split of
the I —V curves for the two spin states grows linearly with the bias.

(with uniform chain), discussed in Section 3.2.4.2 the new invariance transformation is
(po + Ap, V,00m) = (po — Ap, V,0n7), (3.2.26)

where Ap is the variation of the band filling from 1.

0.8 1.0
Bandfiling p; | 0.9 11
& Fermi level © ‘\\ e

4

2
1.3
F o

Density of states (arb. u.)

o

Figure 3.16: Density of states of an infinite uniform lead with 3 x 3 atoms in the cross section.
The tight-binding parameters are the same as those used in all previous calculations (y = =1V
and J = —1eV).

We again look at the energy barrier for a DW shift inside the junction. At equilibrium the
non-integer filling does not affect much the barrier profile [Fig. 3.17(a)], there is no tilt [that is a

property of the structure at V' = 0, see Eq. (3.2.22)] and the height is almost unaffected. However
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as voltage is introduced the barrier acquires a tilt and the above relation (3.2.26) holds [Fig.
3.17(b)]. The tilt appears to increase with the band-filling deviation from 1. Already at py = 0.7
the second stable spin state tends to disappear (that indeed happens for further deviations, say
at around py = 0.5, not presented on the graph). Again the initial and the final spin state carry
different currents [Fig. 3.17(c)] and thermally activated transitions could be detected through

random telegraph noise.
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Figure 3.17: Effect of the non-integer band filling pg on DW-migration barriers (a) at equilibrium,
(b) at V=1V and (c¢) on the current variation with the DW migration at V' = 1V. Panel (d)
shows the effect on the bias on the barrier for py = 0.7.

Similar effect is also found with increasing the bias at a fixed band-filling [Fig. 3.17(d)]. The
other position of the DW in the constriction becomes energetically instable at high biases and the
DW is effectively pinned. The DW could then be manipulated by changing the direction of the

bias.

The two means of symmetry braking considered in this section have a common consequence
and that is the tilt in the energy barrier for DW migration. In the structural asymmetry case the
tilt occurs even and 0V, while in both cases it increases monotonously with the bias. This opens
the possibility for a bias controlled DW migration. In both cases the conductance of the system is

found to vary with the DW position.
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3.3 Spin and structure interplay under bias

As we pointed out near the end of the previous Section, there have been studies [111] on current-
induced embrittlement in similar but non-spin-polarized metallic point contacts, showing a sub-
stantial effect. We also demonstrated that, by empirically adjusting the hopping integrals in our
model of MPC, a qualitative variation in the DW migration barriers under the current-flow can
be obtained. In this Section we have unified the two aspects of the spin-polarized current flowing
through an MPC in one common self-consistent framework. That has resulted in a scheme for a
combined description of the two current-induced effects in the ballistic transport — the “electron-
wind” force due to the elastic momentum exchange and the STT effect due to the exchange of
angular momentum.

Here we have extended our foregoing scheme of investigating spin-dynamics under steady-state
current to include current-induced mechanical forces, which would allow us to study the interplay
of the structural and the spin-rearrangements. With such an extended model we are able to
examine the energetics of spin-related dynamical processes, such as the abrupt-DW migration, as
a function of the current-induced atomic displacements. Moreover, we can extract the effect of
the spin-texture itself on the structural relaxation under the flowing current. Our main finding is
that this interplay is strong only in one direction. While the atomic rearrangements can modify
drastically the spin-dynamics of the MPC, the magnetic configuration has little effect on the atomic
configuration.

The new aspect with respect to our earlier computational scheme is the introduction of the
structural degrees of freedom. Similarly to the local spins, they are described as classical variables.
The structural state R of the system is defined by a set of Cartesian coordinates R = {R;},
where ¢ enumerates the subset of atoms, considered as mechanically active (i.e. contributing to
the dynamics). Again the spin state is defined as 8 = {S;} in the subset of spin-active atoms. The
interplay between 8 and R is investigated by keeping one frozen and evolving the other.

We apply this method to the previously described MPC (see Fig. 3.1). For example, we address
the question of how the particular spin-state in the constriction affects the structural relaxation at
the steady state (Fig. 3.18(a)). Conversely, we study what the effect of the current-induced atomic
displacements on the DW migration is (Fig. 3.18(b)). We also perform simultaneous structural
relaxation with the quasi-static DW migration and evaluate the variation of the current in this

process.
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(a) |

($—9)
Spin-Rotation Process

Figure 3.18: Algorithms for investigating the spin-structural interplay: (a) The effect of the spin-
state on the structure is studied by relaxing the structure at different fixed states 8¢; (b) The reverse
effect is studied by mapping out the activation barriers for spin rotation at a fixed structural state,
which can be relaxed at different conditions {e.g. different 8 or bias voltage V) in the initialising -

stress-relaxation module.

3.3.1 Current-induced mechanical forces

We discussed previously that the mechanical forces acting on the atomic nuclei (or the ionic cores) in
steady-state current-carrying conditions can be calculated from the generalized Hellman-Feynman
theorem (HFT) [see Eq. (3.2.1)]. Both the thermodynamical approach [111] to the steady-state
transport and the axiomatic description [108] of a closed time-dependent (TD) system of quantum

I as the

electrons and classical nuclei lead to the same expression for the forces on the nuclei
expectation value of the gradient of the Hamiltonian with respect to the nuclear positions. We

extend our previous Hamiltonian (see Eq. (3.2.6)) to account for the dynamics of the cores
H (87 :R) = He(:R) i Vspin(s) i Vnucl(:R) , (3.3.1)

where Vi,in contains all the spin interactions in the system and Vi, is the inter-site repulsion.
The purely electron part now bares an explicit dependence on the positions R of the atomic cores.
We rewrite the above Hamiltonian in a tight binding representation

HER) =Y [(He)ij (R) + (Ves)?, (3)] dlhe R S VS R (3.3.2)

2,7,0

1 We often use different terms to refer to the atomic sites in the system, e.g. nuclei, cores, atoms, ions, sites,
etc. to emphasize a particular property of theirs. Here we use “nuclei” as it is closer to the idea of a classical
dimensionless mass point.
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where the 8-dependent terms are the same as the ones used before [see Eq. (3.2.13) and (3.2.14)].

(Ves)i;(8) = —%a 83055 = _gUCOSQSiéij (3.303)
Js Js
Vss(8) = e Z Si-S; = & Z cos (¢i — ¢5), (3.3.4)

1,J#1 1,JF#1
Here the conduction electrons are again assumed spin-polarized about the z-axis (¢ = £1), J, Jg >
0 are the onsite and inter-site exchange couplings, |S;| = 1 and ¢, is the angle which the i-th local
spin in the junction forms with the quantization axis.

The purely electronic part of the Hamiltonian reads
(He)i; (R) = [€o + Ui(R)] 6ij — x(Rij) (3.3.5)

where x(R;;) is the inter-site hopping integral, which now depends on the inter-site distance R;; =
[R; — R,;| and U; is the residual on-site mean-field Coulomb potential created by the excess charge

at all other sites

() = DTl i = 57, e “A”‘ (3.3.6)

where the distance dependent factors are denoted by Uik (they decay Coulombically at large
distances and have an onsite strength of Uy), k = €?/4mey = 14.4eVA. The residual onsite charges
are defined as Ap; = Y p% — (po)i, where p; is the i-th diagonal element of the electron density
matrix, corresponding to spin o and (pg); is the charge-neutral number of itinerant electrons on
the i-th site.

The inter-site distance dependences of the hopping integral x and the direct nucleus-nucleus pair
repulsion Vj,1 are material dependent. We assume inverse power laws fitted to elastic properties

of bulk noble metals in Ref. [101]

q
X(Rij) = %(;f) for j # i (3.3.7)
ij
1. € af 4
Voa®) = 53 ks = £ 2 (22) - (339

i,j#i i,j#

In our calculations we have taken the material parameters of gold: € = 7.8680 meV, ¢ = 139.07,
ay =4.084, g=4,p=11.

The mechanical forces acting upon the atomic cores, which according to the generalized Hellman-

Feynman theorem are the expectation value of the gradients of the Hamiltonian with respect to

the nuclear positions, are as in Ref. [108] given by

Fi = —Z {2 (vi(He)ij)Re

J#i

Z p%] F ApiApjleij ar vi(vnucl)ij] s (33())
z J
where V,; = VR, is the gradient with respect to the position of the i-th site.
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3.3.2 How spin dynamics is affecting the structure

We consider as mechanically active the five atoms in the constriction, i.e. the three included in the
suspended chain plus one adjacent atom from each lead, as depicted in Fig. 3.1. These are relaxed
at a given finite bias voltage V for a fixed 8. For symmetry reasons the atomic relaxation always
results in displacements only along the longitudinal direction (y-axis) and we use y to denote the set
of coordinates of the active sites. The conditions, in which the structure has undergone relaxation
are specified as subscripts, i.e. yys designates a structure relaxed at a bias voltage V' and spin
state 8.

The initial geometry, denoted by yuni, is that of equidistant atoms with a nearest-neighbor
distance of @ = 2.5A. This is near to the equilibrium bond length of a periodic 1D chain within
our model [112]. However, such a bond length produces a compressive stress in the bulk leads, as
a result of which the leftmost and rightmost atoms are pushed slightly out of the leads and the

five-atom chain as a whole shrinks by about 2% at zero bias [see Fig. 3.20(a)].

Figure 3.19: Scheme of the magnetic point contact. The mechanically active atoms are depicted

in red.

Firstly, we investigate how the spin state of the constriction affects its structural relaxation. We
relax the active atomic sites in different spin configurations, e.g. 8; = (0,0,7) and 85 = (0,7, 7),
representing two possible spatial positions of the abrupt DW inside the constriction, but also in
some intermediate states with ¢o € [0, 7] and ¢4 3 such that T 3 = 0, denoted commonly by 8(¢2).

The atomic displacements yy,s(4,) — yv,s,, produced during the DW migration, are monotonic
functions of ¢ [see Fig. 3.20(b), where V' = 1V]. They represent nearly rigid translations of the

whole atomic chain in the direction of the electron flow. However, the overall DW-shift-induced
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displacements Ays = yy.s, — yv.s, are very small and constitute about 3% of the displacements
from the uniform structure Ayuni = ¥0,8, ., — Yuni, Where yo s, , represents the structure relaxed
at equilibrium (V' = 0) [Fig. 3.20(a)]. The dependence of Ays on the bias (which is driving a
spin-polarized current through the junction) is shown in Fig. 3.20(d). Apparently, independent of
the bias, the rotating spin site (#2) is always displaced by the same quantity during the transition.
Looking at the external sites, the bias tends to contribute to a small relative shrinkage of the chain

during the DW migration. This is indeed a very small effect, amounting to about 0.1% of the

intersite distance a = 2.5 A.
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Figure 3.20: Longitudinal displacements (in picometers) of the atoms in the chain: (a) from the
uniform geometry at V' = 0; (b) as function of the DW migration reaction-coordinate ¢, at V' =1
V; (c,d) as function of the bias voltage V. See text for details. Here J =1 eV, Jg = 50 meV.

The effect of the bias voltage on the structural relaxation at a fixed spin state, imprinted in the
quantity Ayy = yy.s —yo.s for the two stable collinear configurations 8 = 8 5, is presented in Fig.
3.20(c). The purely current-induced displacements are rather linear functions of V' (for V< 1V)
and promote a tendency toward dimerization. Below 0.5V the magnitude of the maximal atomic
displacement |Ayy|/a < 0.2% is comparable to the displacements Ays. Interestingly, the Ayy
are almost insensitive to the spin state 8; o, which is a result of the weak bias-dependence of Ayg
[see Fig. 3.20(d)]. Indeed, if we define Ayy(8x) = yv.s, — Yo.sy for X = 1,2 and impose that
Ays(V) = yv.s, — Yv.s, =~ const(V) then

Ayy(82) — Ayv(81) = yv.s, — Y0,8, — Yv,s, + Yo,s, = ys(V) —ys(0) = 0. (3.3.10)
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This implies that different spin states bear almost indistinguishable structural variations in-
duced by the current. Also transitions between spin states (representing a DW shift by one
site) under bias have very little impact on the structure (atomic displacements less that 0.1% of
the interatomic distance a = 2.5 A). Apart from 8,5 and 8(¢,) other spin states, having multi-
ple abrupt DWs [e.g. (7,0, ) state], are found to produce an effect very similar in magnitude
(Ays(1V)/a < 0.3%) on the structural relaxation. This establishes that the structural properties

of a magnetic nano-device under bias are to a large extent independent of the magnetic state.
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Figure 3.21: J-induced variation in the longitudinal displacements of the chain atoms in the
constriction.

For the sake of comprehensiveness, we include the computed J-dependence of the equilibrium
(V = 0) structural relaxation of the chain at 8; » (see Fig. 3.21). The observed left-to-right mirror
symmetry upon swapping 8; «— 8, reflects the spatial symmetry of the system. The overall
effect of the exchange coupling J on the atomic relaxation is linear up to very large J’s. The
linear slopes, though, are rather small. Doubling J brings at most a 0.25 % variation in the atomic
displacement. Once again this finding supports the observation of the weak effect of the spin of

the mechanical properties of the structure.

3.3.3 How structural readjustments are affecting the spin dynamics

Here we address the other aspect of the interplay by looking at how the structural relaxation
affects the energy barrier for DW migration over one spin site, i.e. the transition between two
stable collinear spin states 8; — 8,. This is again calculated by integrating the torque 75 over
the reaction coordinate ¢ as S, is quasi-statically rotated while the other two active spins S 3

are constantly relaxed so that their associated torques are kept at zero [see Eq. 3.2.21].
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We investigate these barriers in different structural states. Three such groups of structures are
considered (i) the uniform structure y,,; which is not relaxed and all atomic sites are equispaced,
(ii) yo.s, relaxed at equilibrium and 8 and (iii) yy s, relaxed at a bias V' and 8, where typically
8 = 8,.2. We introduce subscript indices to indicate the structural state, thus Wy s(V, ¢2) is the
work as defined in Eq. (3.2.21) a function of the reaction coordinate ¢, and describes the profile
of the non-equilibrium DW migration barrier at a bias V for structure relaxed at V and 8. For
brevity in Fig. 3.22 (top panels) the latter quantity is designated simply by W = Wy s(V, ¢2),
where 8 = 8; 5. A key feature of all the profiles W is the tilt of the barrier at any finite bias even
for a uniform atomic arrangement. This tilt is attributed to the non-integer electron occupancy
per site, used in these simulations (py = 0.7) as opposed to 1 e/atom used previously (see Section
3.2.4). In the latter case of a half-filled band the density of states of the simple cubic leads has the
special property of being invariant with respect to reflection about the Fermi level and then the
leading contributions to current-induced forces and torques are linear in the bias. This asymmetry
manifests itself as a preferential spatial localization of the DW at a given bias V: under the present
bias V' > 0 the 8; = (0,0, 7) configuration is stable, while the 85 = (0,7, ) is at most metastable.
Hence, the DW can be driven back and forth in the constriction by an alternating current. This
is an explicit example of a current-driven DW motion.

We now focus on the contribution of the atomic relaxation to the DW migration barrier profile.
The bottom panels of Fig. 3.22 depict the differences AWy = W — Wy and AWyni = W — Wiy as
functions of ¢- at different bias voltages V', where Wy g(V, ¢2) and Wi (V, ¢2) are the barriers at
the given voltage V' and atomic structure relaxed at V' = 0 and at a uniform (homogeneous and
unrelaxed) structure respectively.

Thus we can isolate the effect of the current-induced atomic displacements [see Fig. 3.20(c)] on
the DW migration barriers by looking at AW} and those resulting on the full atomic relaxation,
starting with the uniform structure and going to a steady state at voltage V [see Fig. 3.20(a)],
by looking at AW,,;. One observation is that AW, > 0 for any choice or parameters or bias,
which means that the current induced rearrangement systematically increases the barrier height.
Quantitatively, this is a rather small effect — the barrier height increase max(AWp)/max(W) is up
to 2% for J > 1.5eV. The actual atomic displacements though, which invoke it are also very small
~ Ayy/a < 0.4% [see Fig. 3.20(c), we have found that there is no significant J-induced effect to
it].

However, the relaxation from the uniform arrangement, which shortens the interatomic distance
in the chain by upto 4% [Fig. 3.20(a)], has an opposite effect and reduces the barrier height

approximately by max (AWy,i) /max(W) =~ 25 — 30% (see Fig. 3.20) for J > 1.5eV. This is a
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Figure 3.22: DW-migration energy barriers at different biases V' for Jg = 50 meV and J =1,1.5,2
eV (panels from left to right). The solid (dashed) lines are for structure relaxed at 8; [82]. In the
top panels W = Wy g(V, ¢2) is the work at the given bias V' and geometry relaxed also at V. The
middle panels depict AW, = W — Wy, whére Wy = Wy s(V, ¢2) is the barrier-at the given bias for
structure relaxed at 0 V. In the bottom panels is AW, = W — Wi, where Wi = Wini(V, ¢2)

is the barrier at bias V' and uniform geometry.

rather sizeable effect for the spin dynamics and it is induced by such a little adjustment of the
structure. In fact, this effect can further increase to about 200 % for exchange parameters close

I Hence the spin dynamics

to a separating curve in the spin-state stability diagram in Fig. 3.8.
in the contact is indeed strongly affected by the atomic configuration, especially in the region of
parameters where the J coupling mechanism starts competing with the direct exchange mechanism.

Finally, the effect of the structural relaxation upon the conductance of the system is found to be
small (Fig. 3.23). The current is clearly insensitive to the DW migration within the constriction.
The overall variation of the net current for the rotation of 8y for fixed geometry, which is in itself
a small quantity, is further substantially compensated by the structural rearrangement induced
variation, i.e. the structure is found to respond to the spin flip by structural adjustment, which
minimizes the conductance variation (see inset of Fig. 3.23). We have also found a decrease in

conductance due to relaxation of the structure from the uniform geometry. This agrees qualitatively

with the findings in Ref. [94], although the effect we observe is much smaller in magnitude.

!This occurs for instance when J and Jg are such that the zero-bias DW migration work as function of the
“reaction coordinate” (e.g. ¢2) changes from having two stable states with colinear local spins to only one stable
state with ¢2 = 7/2. For Jg = 50 meV and this parameterization this occurs for J between 0.8 eV and 0.9 eV (see
Fig. 3.8).
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Figure 3.23: I-V curves for a geometry relaxed at V. Solid (dashed) lines represent (0,0, )
(0,7, )] state. Top inset: dependence of net current for V=1 V on the DW-migration reaction
coordinate ¢o, circles represent structure, relaxed at ¢, [see Fig. 3.20(b)]. Bottom inset: Al =
I — Iy uni, where Iy (Iyp;) refer to relaxed at V' = 0 (uniform) structure.

3.3.4 Dependence on material parameters

Here we extend the study of the magneto-mechanical interplay, which is based on material-
dependent parameters fitted to cohesive properties of bulk Au, by considering other readily avail-
able [101] sets of empirical parameters suited for an orthogonal TB electronic structure model.

These represent the bulk cohesion of other transition metals, namely Cu and Ag.

€ (meV) ar (A) P q ¢ P0 a, A
Cu 12.61 3.61 9 3 1124 0.5 2.3
Ag 2.550 4.09 12 3 401.2 0.7 2.6
Au 7.868 4.08 11 4 139.1 0.7 2.5

Table 3.2: The empirical TB parameters for noble metals from Ref. [101]

The atomic displacements Ay = 0.8, , — Yuni at equilibrium (V' = 0) are depicted in the
left-hand side panels of Fig. 3.24 for the three different parameterizations. They amount to a few
percent of the bond lengths a (see Table 3.2). However, Ayg are at least an order of magnitude
greater than the displacements Ays = yy.s, — yv.s,, induced by the DW migration for V' up to 2V
and any set of material parameters (see right-hand side panels of Fig. 3.24). This confirms that
the structural properties of a magnetic nano-device under bias are to a large extent independent
of the magnetic state and the particular choice of structure-related TB parameters.

The reverse interplay, i.e. the effect of the structural state on the DW migration barriers for all
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Figure 3.24: Displacements of the atoms in the chain from the uniform geometry at V' = 0 (panels a,
b, ¢) and as function of the bias voltage V' (panels d, e, f) for the three differerit parameterizations:
Cu (top), Ag (middle), Au (bottom panels). See text for details.
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Figure 3.25: Top panels: W = Wy g at bias V = 0,0.5,1 V and 8 = 8; (8 = 82) represented
by solid (dashed) lines and TB parameters for Cu, Ag, Au from left to right panels. Middle
panels: AW, ni = Wy.s — Wyni. Bottom panels: the net current Iy g for V =1 V. Red dotted line
corresponds to 8(¢2) = {¢1, P2, p3}, where ¢y 3 are such that 77 3 = 0.
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3.3 Spin and structure interplay under bias

three mechanical parameterizations is demonstrated in Fig. 3.25. The top panels show the barrier
profiles for W = Wy s, ,(V, ¢2), while the middle ones represent AW,n,i = W — Wi, where all
quantities are defined as in the previous section. We consider the relative variation of the barrier
height, defined by max(AW,,;)/max(Wy ), as a quantitative measure of the effect. The latter is
about 30-50% for Cu and Ag and can reach 200% for Au, where the chosen values for the exchange
parameters appear close to the critical for the stability of a collinear spin-state (see Fig. 3.22 and
the footnote on that page). Thus the effect of a structural relaxation on the DW migration barrier
is significant for all the parameterizations, while that of the spin-state 8 is practically negligible
(see Fig. 3.24).

Finally, the effect of the DW-shift-induced structural variation on the net current Iy (8), de-
scribed by the ratio (Ivs, — Iv.s,) /Iv.s,, is found to be very small (less than 1% for a bias of 1V)
for any choice of TB parameters (see bottom panels of Fig. 3.25).

Essentially, we have found no critical dependence of the interplay between the magnetic and
mechanical relaxation on the choice of structural parameters describing the transition metal. The
interplay between the structural relaxation and the mobility of the DW inside a magnetic point
contact is only strong in one direction and the DW motion does not affect the structural dynamics

nor the conductivity of the system.

3.3.5 Summary on the magneto-mechanical interplay in MPCs

In conclusion we have developed a scheme to investigate the interplay between the magnetic and
structural degrees of freedom of atomistic MPCs under current-carrying conditions. We have used
it to calculate the effects of the structural relaxation (both in equilibrium and in the presence
of current) on the migration barrier for an abrupt DW and, reversely, the effect of the magnetic
configuration on the structural relaxation of the junction. Our main finding is that the interplay
is predominantly in one direction, that is the structural relaxation strongly modifies the DW
migration barrier, while spin state has little effect on the mechanical forces.

Other finding from our calculations is that the barrier typically shows a substantial asymme-
try, which increases with the external bias even for a spatially symmetric system. That opens
the possibility of voltage-controlled DW motion in such systems. Further, the current-induced
displacements from the relaxed at V' = 0 structure and are of the order of Ayy /a < 0.7%, produce
an additional tilt in the DW migration barrier and an increase in height by about 3%. This is small
compared to the effect of the relaxation from the initial uniform atomic configuration at the given
bias. The latter corresponds to structural distortion by Ayyni/a < 4% but results in a dramatic

effect on the barrier profile, reducing the barrier height by up to 2/3 or even making the alternative
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spin-state in the junction unstable, i.e. blocking fully the DW migration, for some exchange pa-
rameters. That is a manifestation of the strong non-linear dependence of spin-polarized transport
properties on structural rearrangements. However, structure is practically not affected by the DW
migration under bias. This is understandable in view of the fact that the mechanical forces depend
on the total charge density of the current-carrying electrons, not on their spin polarization. In
other words, as long as the conductance is not greatly affected by the spin state, so would be the
underlying structure. An interesting observation has been the variation in the conductance as a
result of the spin rotation is to a great extent compensated by the structural deformation (see Fig.
3.23 and Fig. 3.25). This can be a possible mechanism for the experimentally observed in Ref.

[117] independence of the conductance on the magnetic configuration in MPCs.
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Chapter 4

Time-dependent quantum

transport

4.1 Introduction

The Landauer approach to electron transport, described and applied to spin-polarized atomic point
contacts in the previous chapters, has been widely and successfully used to model the steady-state
conduction properties of mesoscopic devices. This static scattering description has also contributed
to the understanding of otherwise dynamic phenomena like local heating and electromigration. If
the adiabatic [Born-Oppenheimer (BO)| approximation is subsumed, the combined dynamics of
the heavy nuclei (or ionic cores) and itinerant electron gas can be course-grained in time as a
sequence of quasi-static shifts of the inert cores, with each snapshot of the cores defining para-
metrically a steady-state electron conduction. In this way the static approach to conduction gives
an approximation to the dynamical evolution on the time-scale of the inert degrees of freedom.
Because of the open boundary conditions in a typical transport problem, departing from the BO
approximation and the static approach is a rather challenging task. There exist true dynamical
methods, where open boundary conditions are introduced and the electrons and ions are evolved
simultaneously (Ehrenfest dynamics) and even beyond Ehrenfest, quantum corrections to ions are
introduced in what is called correlated electron-ion dynamics (see for instance Ref. [70]). Actually,
this level of sophistication appears essential for modelling effects like local heating.

For our purposes here we do not need to depart from the BO approximation, i.e. we shall
be looking at a snapshot of all inert degrees of freedom. Even when these are eliminated the
static approach does not recover all information about the non-equilibrium system. Instead it

does produce a self-consistent steady-state, given some initial “guess”-state of the system. Such a
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4. TIME-DEPENDENT (TD) QUANTUM TRANSPORT

procedure does not provide information about the rest of the phase-space portrait of the system
apart from the self-consistently determined steady state. It does not immediately provide an answer
to whether or not the state is unique. In fact, for non-linear systems of interacting electrons under
constant control parameters there may as well be multiple steady states available [124]. ! It can be
expected that when a battery (pair of reservoirs with different chemical potentials) is connected to
the device, the interacting electrons originating from one reservoir, scattered and collected in the
other reservoir may establish different steady-states for different initial electron distributions in
the device. Without the notion of free-energy by which these states can be discriminated, only the
real-time evolution of the system can provide an indication of which state will be realized under
the given circumstances.

In what follows we describe one model example where multiple steady-states can be identified
by the static approach. We also introduce a semi-empirical open-boundary approach to the time-

dependent transport and compare the I — V characteristics calculated statically and dynamically.

4.2 Transport model for a dimer in a chain

We consider an infinite monoatomic wire, described by orthogonal single-band tight-binding model
[Fig. 4.1(a)]. The chain has uniform nearest neighbour hopping integrals 3 except for a pair of
atoms (which we refer to as the dimer), coupled to the chain with some different hopping parameter
v and between themselves with ¢ which in general can have different values. We consider a half-
filled spinless band (0.5e¢/atom) with all onsite energies set to zero. Hence at equilibrium the
Fermi level is at zero too (Er = 0). A bias voltage V' is then applied to this system by shifting the
onsite energies of the left-hand side semi-infinite wire E, by eV//2 and the right-hand side ones Er
by —eV/2 [Fig. 4.1(b)]. In order to determine the non-equilibrium properties of this system we
shall employ some results from the NEGF theory described in Chapter 1. Because of the extreme
simplicity of this system we can carry out a big portion of the NEGF algorithm analytically.
Since our device consists of only two atoms, we work in 2 X 2 matrix representation. Firstly,

let us introduce the retarded surface GF in the energy domain of the two (“L”,“R”) homogeneous

ISlightly departing from the main objective here we point to the fact that steady-state transport is a non-
equilibrium mode, though indeed a very special one for which a set of macroscopic parameters does not change in
time. As this makes steady-states in some sense closer to the equilibrium states than the general non-equilibrium
states, a thermodynamics theory of steady states is actually being developed at present [G1]. For the analogous
to the Landauer problem where a device is coupled to two reservoirs with different temperatures a steady-state
free energy thermodynamic potential has been recognized in the linear non-equilibrium regime of small heat flows.
However, we cannot extend the results of that analysis to a general quantum-transport problem away from the linear
response regime.
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Figure 4.1: A schematic representation of the monoatomic chain with the dimer. Panel (a) illus-
trates the assignment of hopping parameters, (b) is a cartoon of the model electrostatic arrange-

ment after the application of a bias voltage V' to the two semi-infinite sides of the chain.

semi-infinite chains

E - Eyry £ /(E — ELg))* - 46°
QOL(R) = 980(33) = 2532 (4.2:1)

where the convention for the sign is described in Appendix A. As a matter of convenience we
also introduce gy, (g, the retarded surface GF of the leads, each extended to include one dimer
atom at its end. In other words we connect the dimer atoms “1” and “2” to the “0” and “3”
sites, respectively (see Fig. 4.1(a)) with hopping integrals 7. The new surface GF g, = ¢11 and
gr = g22 can be determined from the Dyson’s equation (see Appendix A). We use the result from

Eq. (A.0.3), rewritten as

gL =93 +7290h 9091,  9r = 99 +71%99,9%9r (4.2.2)

where 9?1(22) = 1/(E — Ej(2)) are the “free”-atom Green’s functions of the dimer atoms. Hence

we obtain

1

JL(R) = . (4.2.3)
5 e El(2) = 7292(3)

¢

We then write the effective Hamiltonian of the “scattering region” (the dimer) as [see Eq. (2.3.2)]

_{ E1+7% 6
Hcff = < 5 E2 +72g([)? (424)

where wzgg(R) represent the self-energies. From Heg the Green’s function [see Eq. (2.3.4)] can be
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determined !

= 1 E — Ey — %49 0
G=|El'- Hal' = = R
[ of] (F - E; — 72g2)(E — Es — 7299{) — 62 < 0 E-E, -~}
(4.2.6)

Here we notice that switching to gr(g) [defined in Eq. (4.2.3)] simplifies the expression and we

obtain instead

o Ametn Sl N (4.2.7)
1—-06%g.9r \ 09L9rR YR
Hence the density of states Dpp) = %GFL(R)G“ [see Eq. (2.2.35)] of the electrons originating

from the left (right) lead (which also play a role of the reservoirs), become

. 5a*
s I—“‘Z[QL]_Q ( 51 o ) (4.2.8)
|1 — 62gL9R| 9RrR |9R|
—Im [gg] ( 1 g7 )
D = 2 D 429
% |l — (52ng3|2 bgr 62 |.(}L|2 ( )

where the star (*) indicates complex conjugation. Considering zero electronic temperature of the
reservoirs, i.e. a step-funetion for the oceupancy fr gy (E) = 0(pr(ry —FE), the steady-state density .

matrix of the system from Eq. (2.2.35) can be rewritten as
0 0 ev/2
p= / D(E)dE — Dg(E)dE +/ Dy (E)dE (4.2.10)
—o00 —eV/2 0

where D(E) = Di(E) + Dr(E) = —1Im [G(E)] is the steady-state density of states ?. For the

steady-state current [see Eq. 2.3.10] we obtain

v/2 v/2
2 2e . o I Ii
T / Tt [[L.GT RG] dE = —"452/ Imlgi)mlgr] ypp. (4.2.12)
h h 11— 6%gL9r]
-V/2 -V/2
where we have used the fact that the broadening matrices I', gy = (X1 (g) ——ZTL(R)) = —2Im [Sg))

for the dimer read

oI 0 0 0
458 ( m[gzél/Ing g ) e < L ) , (4.2.13)

Here we have also used the relation Im[¢?] = Im[g.]/7% |gL|.

I'We use the fact that the inverse of a 2 x 2 matrix

A:(a b) is A-lz_l—( % _b), (4.2.5)
¢, d det[A] \ —c a

2Equivalent forms of expressing p are
—eV/2 eV/2 eV/2 eV/2
o= / D(E)dE + / Dy (E)dE = / D(E)dE - / Dr(E)dE. (4. 2.1:1)
: K. :

—eV/2
—00 —-eV/2
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Now that we have derived the Landauer machinery for the dimer in a chain, we introduce the

mean-field electron-electron interactions in the form of an onsite repulsive potential U so that
E1 = 2U(p11 i po) and E2 = 2U(p22 = p()) 5 (4214)

Because of the perfect electron-hole symmetry of the system we have p;; = 1— pog. Given py = 0.5

we introduce n as the charge at dimer atom 1 and € as its energy
pu1=mn, pr=1l-n = &(n) = Ey(n) = —E3(n) =2U(n —1/2). (4.2.15)

This dependence of E; 5 on n makes Eq. (4.2.10) recursive in n

eV/2 —eV/2
e By 1 / Im [g.,(E,n)] dE . 1 / Im [gr(E,n)] dE ~. (4216)
™ J [1-82g(E,n)gr(E,n)l* T J |1 = d%gL(E,n)gr(E,n)|
where
1

Eon) = . 4217
gL(R)( 7”) E = E(n) ik '\(2(]0<E) ( )

Here gg(R)(E) are defined in Eq. (4.2.1) and we assume '
Ep =eV/2 and Erp=—¢€V/2. (4.2.18)

We then look for a self-consistent solution of Eq. (4.2.16) and this corresponds to the Landauer
steady-state. Interestingly, for this system the root of F(n) — n is not unique for high enough V'
and U. In the following we investigate numerically the properties of F(n) against the variation of
model parameters.

Our reference set of parameters for the dimer in the chain is
B=-388eV, y=06=-1eV and U =7TeV. (4.2.19)

Figure 4.2(a) illustrates the effect of the variation of the applied bias voltage on F(n). Above
V = 3V we see the appearance of two new solutions of n = F(n). Similarly, at a given bias the
multiple solutions appear only above certain value of U [Fig. 4.2(b)]. In this case F(n) starts
bending upward above n = 0.5, the point {0.5,F(0.5)} being common for all graphs as F(0.5)
cannot be distinguished from the non-interacting case with U = 0. Hence, one of the roots is

always below 0.5, corresponding to a depletion of the first dimer atom, and the other two are

INote that in our simplified model only the dimer atoms can be charged and the lead onsite energies are
considered constant as implied in Eq. 4.2.18. There is some arbitrariness in the choice of Fy (g as Ef, = Er =0
corresponds to the infinite metallic chain with perfect transmission, while £, = —FEgr = eV/2 corresponds to
perfectly isolated leads with no transmission between them. However, we have established in calculations that for
the regime of parameters we investigate the two extreme values of Ey,r) produce very little difference int the result
for the current. The difference is negligibly small at low bias and grows to at most 1-2% at V = 3V.
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above, corresponding to an excess of charge. These latter states both correspond to an electrical
dipole with a negative pole facing the electron flow. Before we look at the I-V characteristics for
the multiple steady-state solutions we examine the special “structural” setup that predetermines

this behaviour.

U=7eV, varying V V=3.5V, varying U
l_ T T T T T ] T | T
i (a) (b) 1
0.8 0.8 F(n)=n
= 05 —0.6
i V. 1
0.4f |— 70V —0.4
== 9.0V
R el ) ST 1
A =—=11810V. 4|
o g L 0.2
-+ |— 00V
1 l 1 L i 1 1 l l;
(2).2 0.4 0.6 0.8 (8).2 0.4 0.6 0.8
n n

Figure 4.2: F(n) from Eq. (4.2.16) for (a) different voltages and U = 7eV and (b) different U and
V = 3.5 V. Green lines correspond to F(n) = n.

We find the multiple steady-states for the dimer in an arrangement where the dimer atoms are
weakly coupled between themselves and to the chain compared to the couplings in the rest of the
chain, ie. 6 =y = %ﬂ [see Fig. 4.1(a)]. Depending on the ratio of the couplings Ri, /out = [0] / |7
(the subscript indicates that the ratio is between the hopping integral ¢ inside the dimer and
the outside hopping v to the chain) we can distinguish two extremes, namely, R;,/ou < 1 and
Rin/out > 1. In the first case the dimer atoms would behave like adsorbates to the two semi-infinite
leads. When the bias is increased, each of the dimer atoms would charge so that its onsite energy is
close to the quasi-Fermi level of its corresponding lead, i.e. £y ~ eV/2 ~ —FE5. Hence, an electrical
dipole would form with a negative pole (excess of electrons) facing left lead (where the electron
stream originates). This assembly would conduct by a mechanism akin to the scanning tunnelling
microscope (STM), i.e. by adsorbate-adsorbate tunnelling, modulated by the convolution of the
two surface density of states (LDOS). In the ideal case of small U and v = /3, at voltages exceeding

the width of the two LDOSs, we expect the charge' on the first dimer atom to increase and the

"Here and throughout the text what we name charge is actually the electron number excess.
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current to drop and decrease to 0. Our calculated n(V') and I(V) for the case of v = 106 = 1eV
and for U = 7, presented in Fig. 4.3, indeed show this behaviour qualitatively. The fact that the
calculated current drops before reaching the total bandwidth (~ 15eV) is due to the high value of
U for which the charging of the dimer is suppressed and the fact that 7, nonetheless being much
bigger than 4, is also quite smaller than 3. Because of this the STM-like transmission is modulated
by the broadened by v double resonance (merged bonding and antibonding states because of the
small §) around the Fermi level.

We have also studied the other regime Ri, /o, > 1, by swapping the values of 6 and v (see
Fig. 4.3). In this case we anticipate that the dimer will behave as a molecule, weakly coupled to
the leads. Because of the bigger split (20 = 2eV) between the bonding and antibonding states we
expect a gap in the transmission at low biases. Once the bias window is wide enough to contain
the two resonances we see an increase in current. Indeed that is what we see in the calculated I-V

and the dimer remains nearly perfectly neutral (Fig. 4.3).

oo y=100=-1eV
0.65 |m—= d=10y=-1eV

0.55

V (V) i)

Figure 4.3: (a) Electron number at the first dimer atom as a function of bias voltage and (b) net
current through the system for two extreme regimes of coupling of the dimer to the chain. Here
U="7eV.

In the intermediate regime of hoppings Rj,/out = 1 the system cannot be identified with either
of the two extremes described above. This is the case in which at high biases we find multiple
steady-states (see Fig. 4.2), solutions to F(n) = n. As a function of the bias, the three branches of

solutions n(V') are presented in Fig. 4.4(a) and the corresponding current [see Eq. (4.2.12)] I(V)
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at these states is in panel (b). What we find is that the two of the solutions match qualitatively
the two extreme-coupling cases described above. The solution with high current and low (and
nearly constant) n is the resonant-transmission solution, similar to the case Ri,/oue > 1. The
lower-current and higher-n solution of the two that bifurcate around 3.26 V looks similar to the

STM-like solution (R;, /ou¢ < 1), with a potential at the first dimer site almost pinned to eV/2.
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Figure 4.4: (a) Electron number at the first dimer atom as a function of bias voltage and (b) net
current through the system for two extreme regimes of coupling of the dimer to the chain. Here

U = 7eV. Colour code is chosen so as to demonstrate qualitative similarities with Fig. 4.3.

In the following section we shall introduce a time-dependent (TD) approach to such a transport
problem and test it for this particular situation where the static approach suggests multiple steady-

state solutions.

4.3 Time-dependent open-boundary method

The idea of this approach originates from Ref. [124], where the terms of mapping the conventional
Landauer-type steady-state transport problem onto a finite microcanonical one are rigorously an-
alyzed. The latter is described as the long-lived (quasi-steady state) discharge of a macroscopic
capacitor through the much smaller device, together forming an isolated system. It has been
demonstrated [124] that the total current in the true interacting many-electron system is identical
to the one-electron current, obtained from time-dependent density-functional theory (TDDFT)

[84] as long as the system is finite. Thus the reduction of the conventional transport problem to
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4.3 Empirical TD method

a time-dependent one for a finite system looks like a promising way to go when concerned about
time-dependent quantum transport.

Here we follow Ref. [87] and consider the finite system cartooned in Fig. 4.5. It consists of a
capacitor (C), connected to a device (D) by a pair of leads. Initially (at ¢ = 0) the capacitor is
statically polarized, i.e. there is a static charge imbalance between its plates. Such can be achieved
by the application of an electric field (voltage source) across the capacitor. At t > 0 this external
source is removed over a short time interval and the system, which is no longer in a stationary
state, is allowed to evolve according to the Liouville equation of motion

%:%ﬂmmﬂ. (4.3.1)
Here, p = p(t) is the reduced spinless one-particle electronic density matrix (DM) and H[p] is a

generic effective one-electron Hamiltonian, such as that produced by TDDFT [34].

FHr+++++++
Drain

Figure 4.5: Sketch of the partitioning of the system into a device (D) and a capacitor (C).

As we said earlier, if the discharge of such a capacitor in the circuit is long-enough, it could
be described by the above Eq. (4.3.1) and provide a finite steady-state analogue to the Landauer
transport. However the capacitor sizes needed to provide discharge times significantly exceeding
the femptosecond range are unfeasible for atomistic simulations '. A solution is to continually
feed electrons that have flown across back into the starting electrode. As this cannot be done in
our quantum DM description of the electron gas, we choose to maintain the charge imbalance in
the capacitor, and hence the current, through a driving source/drain like term in the equation of

motion of the DM
dp

L = = [E11.4] - (5~ o) (43.2)

!For instance, wrap-gate transistors of ~ 100 nm length have a gate time delay of ~ 100 fs [55].

75



4. TIME-DEPENDENT (TD) QUANTUM TRANSPORT

where I is a real parameter and pg is a specially prepared DM, which in real-space positional basis

reads

" Mot =0) fori,jeC )
{po};; (t) = { piilt) otherwise ’ M)

Here p(t = 0) is the initial statically polarized DM. Hence, the role of this new I'-term is to damp
the DM of the capacitor plates (only) back toward that initially charged state. Physically, this
achieves two objectives. First, it describes the effect of connecting the capacitor to an external
voltage source, which maintains the charge-imbalance in the system. Second, as p(0) is purely
real, it damps the imaginary parts of p in the capacitor region and thus incorporates into the
description of electrons a generic phase-breaking scattering mechanism inside the electrodes. For
both I' too small and too large the current is suppressed. In the first case this is because of the
inability to maintain the instantaneous charge imbalance, while in the in second case — because of
“over-scattering” causing localization. For the following simulations of a specific atomistic system
a value of ' = 4eV has been used and found to be able to establish a steady-state electron flow.

This scheme has been implemented within an orthogonal tight-binding model with mean-field

H=Y |i)HG? G+ 1) (Ubai+ ) _ fisAg; | (il (4.3.4)
i#] i j#i

where Ag; = 2(pii — po) is the total particle imbalance on site ¢ with pg = 0.5. The function of
interatomic separation f;; = x/ R?j + k2/U2, with k = e?/4meg, interpolates smoothly between
onsite interactions with strength U and the bare Coulomb interaction at large separation. This
model may be viewed as the simplest form of TDDFT in the adiabatic local density approximation
(ALDA) [134]. In the simulations below U = 7eV '

As described in Eq. (4.3.3) the source/drain term is applied only to the “source” and “drain”
plates of the capacitor, i.e. p;;(t = 0) is set in such a way that the source and the drain carry an
electron imbalance by an applied (as a rigid shift to the onsite energies) external potential Viy;

{ —eVini/2, for i,j € Source

eVini/2, for i,j € Drain ' (4.3.5)

HEP() = —xij ) Sige+ fr ()8
k€n.n.

where y;; is the nearest-neighbour hopping integral between sites i and j, fy(t) is a smoothly
decaying to 0 polynomial ramp over a few femptoseconds, included in order to damp the charge
oscillations which could be triggered from the abrupt removal of the initial bias.

The model system simulated is the following. It consists of a two-dimensional (2D) capacitor
with 15 x 20-atom simple-cubic lattice plates and two leads represented by two 15-atom long one-

dimensional (1D) atomic chains. The device is a dimer, coupled to the leads through a mismatching

IThis value of U corresponds to the difference between the ionization energy and electron affinity of the gold

atom.
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hopping integrals as described in the previous section. The hopping integrals are just as the one

used there
B = -3.88eV, for i, 5 € C + leads
Ny =y — —1eV, for i € leads, j € dimer . (4.3.6)
= —1leV, for 7, j € dimer

After the removing of the external potential AV (over a finite time interval), Eq. (4.3.2) is
integrated numerically using the method described in Ref. [22]. The current flowing through the
dimer as a function of time is shown in Fig. 4.6(a). This is in fact the bond current at the dimer,

defined as the electron particle current [110, 109] between the two dimer sites
2e
= WIIH [,DIQ] HQI 3 (437)

We observe that after some transient period the current finally settles at a steady state. The
actual bias at this state AV is calculated from the average onsite energy in each plate at the end
of the simulation and is typically smaller than the initially applied bias Viy; [see Eq. (4.3.5)] due
to the finite size of the capacitor. For small bias, the steady state is reached after a short rising
transient of about 10 fs. For biases larger than about 4 V, the current first rises up to about 120 pA

and then gradually decreases to reach a much lower value of about 25 A in the steady state.
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Figure 4.6: (a) Current as function of time from the integration of Eq. (4.3.2). The bias AV shown
corresponds to the final steady state (see text for details). (b) Current-voltage curve obtained from
the final values of the current and potential difference after a steady state has been reached, for

two different values of the parameter I'.

The I-V characteristic obtained from the steady-state current and potential difference AV is

shown in Fig. 4.6(b). Up to about 4V the curve matches what could be expected for a resonant
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transmission [see Fig. 4.4(b)]. However, we then see a sudden drop in the current and a heavily
suppressed conduction at biases above 4.2 V. With the parameters used, the bandwidth of the
2D plates is ~31eV and in the 1D leads it is ~16eV. Therefore, the reason for the drop in the
conductance cannot be that the bias is so high that the source and drain bands are completely

mismatched. Also a variation in the value of I" from 4 to 3fs~! has no significant effect on the I-V.

4.4 Fully selfconsistent NEGF results and comparison

Together with the semi-analytic static calculation we have also performed two full selfconsistent
NEGF calculations in the spirit of the previous chapter - one with 1D and another with 2D
leads/reservoirs (see top panels in Fig. 4.7). The former case is closer to the semi-analytic treatment
as serves as a test, while in the latter case we have used two 2D 15-atom across (same as the width
of the capacitor plates) semi-infinite cubic-lattice structures as leads/reservoirs and the tight-
binding Hamiltonian is the one from Eq. (4.3.4), i.e. with the additional mean-field interactions
considered in the TD approach. In order to seek for all the steady state solution we have developed
an automated quasi-random initial DM feeding procedure. The “quasi” property stands for the
fact that these matrices are true ground-state DMs for systems with randomized onsite potentials
(between 0 and 5V) but same number of electrons. Thus for a given initial DM condition, the
selfconsistent steady-state at a given bias is determined iteratively by the algorithm, cartooned in
Fig. 2.7, over a region which includes layers from the leads. The results are then classified based
on their value of the current. Interestingly, the results from both self-consistent calculations agree
quantitatively with the semi-analytic method and pieces of all three branches are recovered.

Results from all three static calculations (including the semi-analytic one) are compared to
the TD results (from the previous section, Fig. 4.6) in Fig. 4.7. We see that the different static
solutions are in agreement about the existence of multiple steady states, while the dynamical
method reproduces parts of two different static branches after a discontinuous jump at around
3.2 V. The difference in n between the TD calculation and the semi-analytical static one at high
bias are due to the screening provided by the intersite Coulomb terms in the TD case. This
difference is clearly reduced when such interaction is introduced too in the self-consistent NEGF
calculation in Fig. 4.7(c).

Our main observation is that the TD calculation naturally selects the low-current solution
above a certain bias. The reason for this preference is the increasing instability, with increasing
bias, of the high-current solution against spontaneous charge fluctuations in the dimer. If a small

fluctuation in n pushes € away from the spacial value needed for resonant transmission, this kills
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the resonance, the current drops and the system switches to an insulating (STM-like) mode, with
no recovery mechanism. This instability is also evidential from the corresponding self-consistent
NEGF calculation where this high-voltage parts of the resonant solution have not been recovered

despite the numerous attempt with randomized DMs.
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Figure 4.7: Top three panels: Cartoons of the systems considered in the other panels. In all panels
the framed region is calculated self-consistently. The bottom triplets of graphs are organized as
follows: spinless onsite occupancy (top panel) and onsite energy (middle panel) on dimer atom
1 (facing the electron current), together with the total current (bottom panel), as a function of
bias. Lines are the different Landauer steady state solutions: (a) Semi-analytical solution, (b)
self-consistent 1D solution with the parameters of the semi-analytical model, (¢) full self-consistent
solution with 2D electrodes and with the parameters of the time-dependent simulation (including

intersite screening). Circles are solutions of the time-dependent calculation.
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4.5 Understanding the source/drain equation of motion

We have seen that the extra I'-term used in Eq. (4.3.2) helps to establish in real time a steady-
state in the discharging capacitor. This effective damping term in the equation of motion for the
one-electron density matrix, which we identify as a flux-driving source/drain term, is meant to
provide an approximate description of the influence of the environment on the piece of the system
being the focus of the investigation (the device, or in our case the dimer in the chain). In the
following we discuss the physical interpretation of the I'-term and the conditions upon which the

approximation it represents is based on.

4.5.1 A heuristic derivation

We partition the system into a device (D) and an environmental (E) component. In this represen-

DD DE =
' < ED, 'EE ) - (4.5.1)

Hence, starting from the Liouville equation for the propagation of the one-particle density matrix

tation all matrices have the block form

by a one-particle Hamiltonian,

A
o H»“}:O 4.5.2
ot ih [ it e
we obtain an equation of motion for the density matrix ppp of the device region
ap 1l (Ea P s M 5 ~
i i [HDDaPDD} = — (HDEPED > PDEHED) : (4.5.3)
ot ih ih

where ppp = p“ED (H'DE = HfED) is the part of the density matrix (Hamiltonian) which links
the device to the environment. We see that the environment operates as a driving force on the
device. Proceeding further, we choose a convention in which the matrix index « corresponds to
the device region and 3 corresponds to the environment. Thus we obtain for the diagonal (a«)

element (density at the site « of the device) of the right-hand side (RHS) of Eq. (4.5.3)
1 2
{RHS},, = = > (Happpa — papHpa) = E > Haplm[pga] , (4.5.4)
B B

where we have assumed that the Hamiltonian is real. This equation gives the rate of charge
injection into site « of the device from the environment. We consider a short-ranged Hamiltonian
which can be factorized by an energy parameter hl' as Hyg = hI'Vup for all o, § and Vg is
a dimensionless quantity carrying the angular dependencies of the hopping integrals. With this
approximation Eq. (4.5.4) becomes

{RHS},, = 2I') _ VapIm [pga] - (4.5.5)
B
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When the system is in its initial state, p%,, i.e. at the moment when the statically-charged
environment is brought in contact with the device, the left-hand side of Eq. (4.5.3) is zero by
construction in the regions close to the interface. Since in this initial state there is no net current
from the environment into the device (any such current needs time to develop), the RHS must
also be zero. Therefore, any net flow of charge from the environment into the device must be a
consequence of deviations of the device density matrix from its initial value. We can combine these

observations into a single ansatz, namely,

[ —T(ppp — p%p) near the interface
5t = { 0 away from the interface )

4.5.2 Relation to the Landauer formalism

In the following we seek a relation between the damped equation of motion (4.3.2) and the static
Landauer picture, described in Chapter 2. We find that indeed the steady-state of Eq. (4.3.2)
could coincide with the Landauer steady-state, if the latter is subject to certain conditions which
we identify and acknowledge.

We start from the Landauer picture of a lead-device-lead system, carrying a steady state current.
As this has been described in detail in Chapter 1, we assume known all the concepts introduced
there and repeat here only the results, needed for the derivation. Let H be the Hamiltonian of
the scattering region, composed of the device plus some finite section of each lead (longer than the

electron screening length), then the Green’s function (GF) [see Eq. (2.2.33)] for that region is

G(E) = |Bf - ~ >3(E)] g4 [Ef — Her(E) £l (4.5.7)
where Heq(E) = H + S(E),
S(E) =3SL(E)+E2r(E) = ViL(E)V + Vr(E)V. (4.5.8)

Here V is the (real) Hamiltonian that couples the scattering region to the rest of the semi-infinite
leads, and gy, (r)(E) is the surface GF of the left (right) lead, interfacing the scattering region.

The density matrix for the current-carrying system in the scattering region is [see Eq. (2.2.35)]

p=p+Ap (4.5.9)
where
0 0
= | D(E)dE = % / [é(E)fL(E)G‘f(E) " C(E)fR(E)G*(E)} dE (4.5.10)



4. TIME-DEPENDENT (TD) QUANTUM TRANSPORT

and
eV/2 e b 3 0 R 2 N
Ap=ig= [P GENLBG(E) dE~ o | g(E)FR(E)G*(EZ dE. (45.11)
0 ~ —eV/2 ~~ P
DL(E) Dr(E)

Here, f‘L(R) =4 [21,(12) - ZAIL(R)] = —2Im {E} are the broadening matrices [see Eq. (2.2.21)],
Ao bla Al 1 fan At an oAt P o f i
i [G i ] e (GFLG LT HG ) ) (4.5.12)
2m 2
is the local density of states [see Egs. (2.2.9,2.2.10)] and we have assumed that Ep = 0 and T = 0.

We now consider

o [ﬁ,m] = _[zizef,m,émcf]

~H gGT' LGt + GT Gt (Hjﬁ o 2*) — $GT' G + GT LGS
= I G'+ Gy~ 208Dy + 27D, 5 (4.5.13)
At this point we make our principal approximation. We approximate the action of the self-energy

on GFs or density of state operators with a multiplication to a scalar and a projection. In other

words if ¢ is a GF or a density of states operator, we assume
Sxd=1%d%), Shi=vx¢X® for X =L,R, (4.5.14)
which translates in terms of the broadening operator as
I'rg=2Imy]¢P, Tr§=2Im[yg]¢® (4.5.15)

where vx (for X = L, R) is an energy-independent scalar and ¢X) is the projection of ¢ to the
area where the lead “X” couples to the scattering region. This approximation physically describes
a smearing of the atomistic structure and it neglects the energy dependence of the coupling to
the reservoirs. Also assumed is a locality of the GF !. With the above approximation Eq. 4.5.13

becomes
e 1 A s e e
[H,DL] = (rLGT -GPL) 8D DSt
1 - 2\ () * - * -
= ——Im)(6'-6) " - (i - WD + (i — 7RI DY
= —2iIm[yy] D™ + 2iIm [y;) DY + 2iIm [yg] DS

= 2iIm[yg] D{® — 2ilm [y,] DY, (4.5.16)

IThis is not an extra restriction for the Landauer picture, in which all phase information is lost in the reservoirs.
As long as there is a scattering mechanism in the semi-infinite leads with a small enough scattering time 7, it would
translate itself into a self-energy —ih/27, shifting the poles of the GF away from the real axis by that amount. As
a result the GF would be spatially localized on the scale ~ vp7, where vp is the Fermi velocity.
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where we have used that DX = DzL) - Dg“). We thus obtain
T g .
- [8,0:] = TeD{P -1.DP (4.5.17)
i
T : g
- [H,DR} = pyHE e popiR (4.5.18)
1

in which we have introduced two scalars I'y, I'r (without the hats, not to be confused with the
broadening operators)

2 2
[p=Imfy] and Tgr=Imlys]. (4.5.19)

Hence, in this approximation, from Eqs. (4.5.17, 4.5.18) it follows that

I 10 s s 18 ]
ih[H‘D] z‘h[H’DL}ﬂﬁ[H’DR] = ih[H’p} 4 (a20)
However, the commutator [H, Af)} is non-zero
eV/2 0
i [H Ap} - / [H,DL(E)J dE — / [H DR(E)] dE
ih U i
0 —eV/2
eV/2 eV/2
o ﬁ ~ (L) A (R) ,
= Iy / Dy’ (E)dE + T'g / D;7(E)dE (4.5.21)
—eV/2 —eV/2

At this point we make our final approximation. The integrals in Eq. (4.5.21) represent the
non-equilibrium charge density on each of the interfaces to the leads, imposed by the presence of

the other lead. We approximate

eV/2
/ DEYAE ~ B — pD) (4.5.22)
—eV/2
eV/2
/ PEE)AE =~ _(ﬁom)_ﬁ(m), (4.5.23)
—eV/2

where p° is the initial, statically polarized, non-current-carrying density matrix in Eq. (4.3.2). In

other words, we have found a Landauer steady-state which satisfies
e
0= — [H,ﬁ} =Ty (p%5) — pE)) — T (§°P - p®) | (4.5.24)
i

which is also the steady-state solution of Eq. (4.3.2) with I' = I'y, = I'g. This is what we aimed to
show. Thus in our finite time-dependent driven transport the [-terms are applied at the “open”-
boundaries of the system. A sensible value for I, in accordance with the above Landauer picture

interpretation [see Eq. (4.5.19)], would be
I ~ 2n3%d/h, (4.5.25)
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where [ is the system-environment hopping integral and d is a surface LDOS per atom. This

estimation produces the same order of magnitude I' as the ones used in Section 4.3.

4.6 Summary and discussion

In this Chapter we have looked at a time-dependent treatment of the quantum transport problem in
a finite system at the atomistic level. Instead of taking a huge capacitor to discharge as suggested in
Ref. [124] as a prescription for swapping the Landauer system for a finite one, we have introduced
a source/drain damping terms to maintain the charge imbalance of the capacitor and been able
to achieve a steady state. We have demonstrated analytically that such approach could in fact
lead to the correct steady-state of a slightly modified Landauer problem in which the connection
to the reservoirs has no atomistic properties and no energy dependence. For the particular system
of a loosely coupled dimer in a monoatomic chain with enforced local-charge neutrality, where the
static approach results in a multiple steady-states, the T'D calculation is able to self-select the most
stable solution. This goes beyond the capabilities. of the static methods, which in the absence of a
total energy criterion, say little about the relative stability of multiple solutions.

We underline that the aim of this Chapter has not been to find a rigorous TD description
of the open-boundary system. One such description must unavoidably go beyond the ALDA
platform and we mention two such methods, namely, the TDDFT-NEGF and the Master-equation
approach [59]. We have also not aimed at correctly describing the weakly coupled dimer which is
a particularly treacherous system for LDA-based potentials (lacking of the derivative discontinuity
of the density functional) [113]. All we wanted to show is that for the same conditions (the same
base electronic structure model), the time-dependent method is the one to recognise the physically

feasible solution.
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Chapter 5

Atomistic spin dynamics - theory

and tests

5.1 Introduction

With the progress of nanomagnetism, constantly fuelled by the industrial demand for increasing
magnetic storage density, nanoscale and even monoatomic one-dimensional [40] magnetic devices
have become experimentally accessible and examples of atomic scale magnetic phenomena, such
as transport in magnetic point contacts [125] and ultra-thin domain walls [78], have been already
demonstrated. Theory and modeling of current-induced magnetic phenomena is still, however,
largely based on solving the classical Landau-Lifshitz-Gilbert (LLG) equation [12] with additional
terms describing the current-induced torques. At a more advanced level transport theory for diffu-
sive transport has been introduced into the description, effectively creating a sort of Kirchkoff
magneto-circuitry theory [24]. A much less explored area is that of atomistic simulations of
magneto-dynamics. These however are expected to occupy an increasingly important place in
theoretical magnetism with the advance in the ability to manipulate devices at the atomic length
and time-scales.

This chapter is devoted to presenting a truly atomistic time-dependent theory for spin-dynamics.
The s-d tight-binding model including electrostatic corrections at the Hartree level will be our un-
derlining electronic structure theory and we shall be focussing on introducing the main theoretical
concepts behind our approach. As an illustration, we shall provide a range of examples where
such scheme offers insights beyond what is achievable by standard static theory. These include the
investigation of the spin-wave dispersion in nanoscale magnets and spin-spin correlation in non-

magnetic nano-wires. The next chapter will address the application of the approach, presented
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here, to investigate current-induced domain wall motion and distortion, and the generation of an

electromotive force obtained by domain wall precession.

5.2 Model Hamiltonian

Throughout this chapter we shall always consider one-dimensional (1D) magnetic atomic wires
and we will describe their electronic structure by means of the s-d model [133], where conduction
electrons (s) are exchange-coupled to a number of classical spin S; (d). When written in a tight-

binding form, the electronic Hamiltonian reads

H.(t) = Z HEBC?fC? - M 6ap P Dy(t), (5.2.1)
B

1,7, 1,0,

where (:;"T (¢&) is the creation (annihilation) operator for an electron with spin £1/2 (a = 1,2) at

the atomic site ¢ and o = 1/2(6%,6Y,57) is the electron spin operator, {7"} being the set of Pauli
matrices ',
The first term in Eq. (5.2.1) is the spin- and time-independent tight-binding (TB) part, while

the second describes the spin interaction with a time-dependent effective local field ®;(t),

Aq N .
1 et s 5.2.2
i ( 0 . R?n L (h/U)z J X0i4,5+1 ( )
®;(t) = JSi(t) + gennB(2) . (5.2.3)

Here & is the onsite energy (identical for all sites), k = €?/4meq = 14.4eV A(or k = 0 for describing
non-interacting electrons), y is the hopping parameter, g. is the electron g-factor and B(t) is the
external magnetic field (in general time-dependent). The second term in brackets in Eq. (5.2.2)
is a mean-field repulsive electrostatic potential with onsite strength U and a Coulombic decay at
large intersite distances R;;. Finally Aq; = ¢; — qio) is the excess number of electrons on site 1,
ql(-o) being the ground state electron density distribution. The total number of electrons N, in the

system is a model parameter

Ne=Yq"=Np (5.2.4)

where N is the total number of sites and py the band-filling, i.e. the average number of electrons

per site.

'For a right-handed coordinate system (for which e® x e¥ = e is fulfilled for the basis vectors), the basis of the
Pauli matrix representation reads

&,:01 &y:O—i‘&z:lO.
0 ok e () O
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5.2 Model Hamiltonian

In Eq. (5.2.3) S;(t) is the unit vector in the direction of the local spin at site i at time t¢.
{S;} are treated as classical variables, nonetheless exchange-coupled with strength J > 0 to the
conduction electrons according to a classical Hamiltonian

1 s
Hs(t) = =) Si(t) - @i(t) = 5Js Y Si(t)-S;(t) — J: ) (Si(t) -2)" , (5.2.5)
i ,jEnn(i] g

where

@,(t) = J(6), (t) + 95;;5 SB(t) (5.2.6)
is the effective field for the classical spins, analogous to ®,. In Eq. (5.2.5) gs is the g-factor of
S; which could be of mixed spin and orbital origin, Jg is the direct intersite exchange coupling
parameter (only first nearest neighbours, nnli], are considered), z (|z| = 1) is the unit vector and
J. the anisotropy constant along the easy z-axis. Note that the actual norm S of the classical
spins is incorporated in the definition of the exchange parameters. Unless stated otherwise, we
consider S = h. Appearing in Eq. (5.2.6) is also the expectation value of the electron spin at site 1,
(0), (t) = Tr [pi;(t)o], where p;; = (i|p|1) is the i-th diagonal element of the density matrix p in the
real-space orthonormal basis {|i)} (in a tight-binding fashion, |i) represents one electron s-orbital

at site i) and the trace is over the spin coordinates. At t = 0 the density matrix is constructed as

p(0) =" fr(en — Er)In) (n] (5.2.7)

where {e,,|n)} is the set of eigenvalues and eigenvectors of H(t = 0), fr is the Fermi distribution
and the Fermi level Er is determined, so that >, p;; = >, (i| p|i) = Ne. In the case of interacting
electrons [k # 0 in Eq. (5.2.3)] H.(t = 0, ) is determined self-consistently.
The corresponding quantum and classical Liouville equations of motion for the two subsystems
are
@ L [ - ] ’ ds;

= - 0 — T . .2.
dt 3 vae dt {S’MHS} 3 (5 8)

where { , } represents the classical Poisson bracket and [ , | the quantum mechanical commutator.
In order to calculate the right-hand side of the classical Liouville equation we need the expression
for the Poisson bracket of the classical spins. As the classical spins are essentially angular momenta

they obey the same relation ' as do the classical angular momenta [132], i.e.

1
(ST, 87} = gsnmks{f, (5.2.9)

!The Poisson bracket of two components of an angular momentum is {L L7} = {etabgapb eicdgepd} =
giabgica (xcpb — szc) = 2'p? — 27p' = YKLk where we have used the Einstein notation for repeated indices,
the Levi-Civita tensor contraction identity 2@bgicd = gacgbd _ sadgbe and the canonical variables Poisson brackets
{z*,p?} = 6". Note that upper indices for Cartesian components (here and throughout this chapter) are only used
for aesthetic reasons as lower indices have already been used for designating site positions.
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where S* = S, - €" is the n-th Cartesian projection ({é"}i:l = {x,y,2}) of the spin on site i,
"™k is the Levi-Civita tensor and we assume summation over repeated indices (Einstein notation).
Note that in Eq. (5.2.9) we have factorized the spin magnitude S in order to obtain an expression
involving only components of the dimensionless spin unit-vector S;. We thus obtain the following

terms in the classical equation of motion

n A 1 i
{8:,8;-©,}" = {ST, 510 = %enmksj(a;n = -5 (8 x ©) (5.2.10)
2 n m m-. 2 n
Z S;, S; - Z.sk =3 Z, {S7,57)Sp = -3 Z, (S; x Sk) (5.2.11)
J kéenn(j] kenn(i] kenn(i]
3 {s- (S; - 2)2}” _ 2 gmum {58 — 2 gmomkonkigl _ 2 (S - 2)(S; x 2)" (5.2.12)
5 v ) & i TNy S 7 7 e

Hence we finally obtain the following equation of motion for the classical spin at site i

dS;0 1 ; 3 sy
T il Oty JS';[-] S;x8;+2J,(S;-2)(Six2)] . (5.2.13)
S U D S T o vl e Jar o e de B 1 K il

The above equations for all classical spins in the system are integrated together with the quantum
Liouville equation (5.2.8) for the conduction electrons to give the combined quantum-classical time

evolution of the s-d system.

5.3 Test simulations

5.3.1 Spin-wave dispersion in a s-d monoatomic chain

Molecular dynamics (MD) simulations, based on empirical tight binding model and realistic
interatomic potentials, provide a valuable tool for accessing the vibrational properties of con-
densed matter systems, especially in situations where temperature and pressure related effects are
investigated [127, 55]. Phonon dispersion and density of states are calculated from the Fourier
transform of the velocity-velocity correlation function, resulting from MD simulation [28]. The

phonon spectral intensity [127] is simply

Ik,w) ~ /dtei“’tZe’ik'R”(t)

where k and w are the wave vector and the frequency of the phonon, R, (t) and v,(t) are the

(5.3.1)

viu(t) - vo(0) ‘
v, (0) - vo(0) |’

position and velocity of the n-th atom at time ¢. Similar schemes are often used in the framework

of time-dependent density functional theory [28] for calculating optical excitation of molecules.

88



5.3 Test simulations

We extend this idea to calculating the spin wave (magnon') spectra in our s-d spin systems,
which, within the nearest-neighbour direct exchange approximation, are the spin analogue to the
discrete harmonic chain. Similarly, our approach is based on the time evolution of the local spins
as described in the previous section. Let us briefly introduce the spin wave approximation in
a Heisenberg exchange-coupled ferromagnet by following Ashcroft and Mermin [%]. If |0) is the
ground state of the spin system, where all spins are aligned along the same direction [say z, Fig.
5.1], then the most elementary spin excitation corresponds to the state [n) = |SZ — 1) = \/%ES; |0)
(normalized to unity, i.e. (n|n) = 1). Here S; = SE — iSY is the lowering of the spin ladder

operators acting on the n-th site [8]

SE|5z) = (ST +i8Y)[S5) = (S F SH)(S + L £ 53) IS £1) (5.3.2)

which reduces the S* spin component at n from S to S—1. This state is, however, not an eigenstate

of the Heisenberg Hamiltonian

Hug = Z JS(Rn = R/m)sn S . (533)

Figure 5.1: Schematic representation of the ground state, |0), and an excited spin-wave state, |k),

of a Heisenberg exchange-coupled monoatomic spin chain.

With the help of the following relation for the spin operators acting on the elementary excitation

n)
Sln), n#m
(S=1)n), n=m

and the fact that S,,-S,, = 3 (S/}S;,, + S, S},) +SZSZ, we can express the action of the Heisenberg

S..S;! |n} =28 |m) and’ 85 al = { (5.3.4)

Hamiltonian (5.3.3) on the |n) state as

Hy |n) = Eo[n) + 25 _ Js(Rn — Rm) [In) — |m)] , (5.3.5)

! Magnons are the bosonic quasi-particles corresponding to the spin waves.
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where By = — %" Js(R,, —R,,)S? is the ground state energy (no spin-excitations) and the terms
of the order of S are neglected as the spin wave approximation assumes S > 1 (in the classical
analogue that would correspond to small misalignments). Thus Hy |n) is a linear combination of

states [n). Because of the translational invariance of J a Bloch wave

k) = % e inin (5.3.6)

where N is the number of sites in the system, is an eigenstate of Hy with an eigenvalue Ey =

(k |H | k) corresponding to an excitation energy
1
&) = Ey — Ey = 452 Js(Ry) sin? <§k : R") . (5.3.7)

This represents the magnon dispersion relation for a finite Heisenberg spin chain. If only
nearest-neighbour exchange interaction is considered, i.e. Jg(R) = Jg # 0 only for |R| = a, then

Eq. (5.3.7) reduces to the familiar expression
. o (ka
g(k) = 4S5Jgsin 2 MR RSN (5.3_8) :

where k = |k|. As a test of our time-dependent scheme we will reproduce this result with time-
dependent dynamics by using the s-d model and setting the exchange coupling J = 0.

We consider a uniformly polarized (ferromagnetic) mono-atomic chain with N sites, in which
at t = 0 the spin at site i is tilted to a finite angle (e.g. ¢9 = 7/6) with respect to the rest of the
spins, i.e. at t = 0 the ferromagnetic chain is subjected to a spin excitation. We then integrate
numerically the time-evolution of this system, described by Eq. (5.2.8), to obtain a two-dimensional
array of values for each local spin Cartesian component as a function of position and time (see Fig.
5.2) for a sequence of Ny discrete timesteps {t; };vz’l : Si(tj) — Sij. These arrays undergo a two-
dimensional discrete Fourier transformation (dFT), resulting in an approximation of the system
response spectrum in the (k, F')-domain. Out of the three orthogonal local spin components, S*
and/or SY are more useful when transformed, since in the common limit of small excitations
[small angles like in the conventional ferro-magnetic resonance (FMR)] the major spin component
S% = const and the variation is strictly transverse. Only one of the transverse components is
normally sufficient, as the dominant precessional motion of the local spins implies a definite phase
relation between the two, while the major one is insensitive to the precession phase. As an example,
the dFT (as implemented in the mathematical software environment Maple™ 10 [1]) of Sfj yields

the reciprocal image

N Nr )
AR se s ZZ o= FG-1)(-1) ,~ ¥z G-1)(m~ ISzyj’ (5.3.9)
\/NN =10=1
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where [ € [1, N] and m € [1, Np|. This array is then mapped into the (k, E)-space by the change
(I-Np+)m

ofvariableslﬂk:U(\,l;—l);;aforlﬁlfl\/% andl—»k:—(T;W forl>N% where

Ny = [N/2] is the nearest integer greater than N/2, and similarly m — E = ('"thll"'i for E > 0,
where Tihax = tn, is the total time of the simulation and Np ~ 102 > N (so that we have
neglected corrections of the order of 1 in the denominator of the right-hand side). Thus obtained,
the (k, E)-space portrait of SY(t) (Fig. 5.2) exhibits a preferential and almost uniform population

of modes obeying the correct dispersion relation, given by Eq. (5.3.8).

500

In(|dFT(S™)))

k( T/q)

Figure 5.2: Example of how to extract the spin-wave dispersion from a time-dependent spin dy-
namics simulation: J =0, J, = 0, N = 101. On the left-hand side we present the time and space
evolution of SY along the chain (i = z/a), with the grey-scale shade representing the magnitude
of the SY(t). Note that the spin-excitation is emitted from one initially tilted spin at iop = 51
and then propagates from it and is reflected from the boundaries, forming a complex interference
pattern. On the right-hand side panel we present the natural logarithm (for better contrast) of the
absolute value of dFT [SY] (k, E) as described by Eq. (5.3.9) and mapped into the (k, E)-space.
The brighter the region, the higher is the intensity.

This calculation of a Heisenberg spin-chain serves as an example of the applicability of the
time-dependent spin-dynamics simulation, defined by Egs. (5.2.8) and (5.2.13), in extracting the
magnon spectrum for atomistic structures. We note that the form of the initial spin excitation
is of crucial importance for this method to work and to produce a full portrait of the magnon
dispersions in the reciprocal space. The excitation should contain enough energy to populate all

the available spin-modes and should not bear restricting spatial symmetries. We now demonstrate
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how an initial excitation with a certain spatial symmetry produces incomplete reciprocal-space
portraits, i.e. it is unable to populate same regions of the spin-wave spectrum. For the following
spin-dynamics simulations we use parameter values Jg = 0.2eV, J, = 0, 0 < J < 3eV. The
hopping parameter is y = 1eV and the band-filling is po = 1.75.

Similarly to vibrational modes, the natural spin-wave modes of a one-dimensional system can
be visualized as standing waves in a suspended wire. For a N-atom wire of length L = (N — 1)a
the natural modes have wavelengths \,, with an integer n such that n\,, /2 = L. Hence their wave

vectors are

2 nmw nm
kpn=—=—=——fi =0, 1. N =1, 5:3.10
R e Rt (el

This accounts for N — 2 nontrivial modes as the n = 0 mode represents the fully aligned chain (not
necessarily along z) and n = N — 1 is the trivial spin-wave with one node at each site. Note that
this mode labeling is valid for both fixed-fixed and loose-loose boundary conditions for the wire
(corresponding to nodes or anti-nodes at both ends), the latter being the case of our spin-chain

simulations.

mode #1
mode #2
mode #3
mode #4
mode #5
mode #6
mode #7
mode #8

Figure 5.3: Standing wave modes in chains of 5, 10 and 11 sites. The black circle represents the
site where the excitation is applied. The modes plotted in grey (solid lines) cannot be excited
because they have a node at the exciting site.

!These values mimic a half-metallic electronic structure (for the chains with more than 20 atoms and J 2 1eV)
with a Fermi level 2 0.5eV above the fully occupied spin-up band and a spin polarization |P(Eg)| = 1. This
promotes the highest attainable spin signal and it has been particularly chosen for simulations of current-driven
DW motion (see section 6.1.2) where the pressure produced by the current scales linearly with P.
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If the initial excitation is in the form of a spin tilt at one or more atomic sites, there are two
reasons for which certain modes cannot be excited. Firstly they may have nodes at those particular
sites, where the excitation is applied. Secondly they may not comply with the spatial symmetry
inherent to the excitation. Particularly, if the ¢ = 0 spin excitation is applied only to the middle
site of a chain with an odd number of sites then nearly half the spin modes cannot be excited as
they have a node at that site. In this situation only Ny, = [N/2] modes are excited [see Fig. 5.3,
where Ny =2 for N =5 in (a) and Ny =5 for N = 11 in (c)]. If there are no nodes at the site

of the excitation, all Ny; = N — 2 modes can in principle be excited [Fig. 5.3(b)].

Ji=0
N=5.i3 N=10, iy=5 ==Y A1] i=6 Wsi06

E/Jg

o

E/Jg

0
I =05 0 05

K- R G By e

Figure 5.4: Calculated magnon spectra for several short Heisenberg spin-hains either decoupled

(J = 0, upper panels) or exchange-coupled to the electron gas (J = 1eV, lower panels). The grey
scale bar to the right of each contour plot corresponds to the value of In |[dFT[SY(¢)]|. From left to
right panels N = 5,10, 11,51 and the location of the ¢t = 0 excitation is ig = 3,5, 6, 26, respectively.

These considerations are verified by the calculations presented in Fig. 5.4. Here the number
of excited spin modes (bright spots) for £ > 0 (and identically for £ < 0 due to the time-reversal
symmetry), subsequent to the applied excitation, agrees with the scheme pictured in Fig. 5.3. The
top panels of Fig. 5.4 represent classical Heisenberg chains non-interacting with the conducting
electrons (J = 0), while in the bottom panels the exchange interaction with the conduction elec-
trons is switched on (J = 1eV) to yield our full s-d model. As a result of the s-d interaction, the

energy and the intensity of the excited magnons are somewhat altered. We observe a shift in the
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energies and some level-splitting but the overall spectral pattern remains the same (especially for
the longer chains). One eye-catching difference is the less pronounced dark stripe at & = 0, corre-
sponding to zero signal in the logarithmic scale. Despite the appearance, the offset that electrons
produce at k = 0 is actually very small (=~ 1075 of the bright spots intensity).

The most significant effect of the s-d exchange, which is independent of the particular type
of excitation, is an energy blue shift by as much as 10% in the short-wavelength range. From
simulations for 51-atom chain, where the dispersion is close to continuous, we can clearly extract
a magnon dispersion relation  sin?(ka/2). This maps onto a standard Heisenberg chain with an
effective interatomic exchange coupling which is about 10% greater than the actual Jg. Hence, for
this particular choice of parameters, the interaction with the conduction electrons effectively adds
an extra positive contribution to the ferromagnetic spin-spin interaction, making it stronger.

In order to further investigate the interplay of the coupled dynamics of the electronic and local-
spin subsystems we look at the time evolution of a longer spin chain (N = 101) after a transverse
spin excitation at the i = 51 site for different values s-d exchange constant J. The gray-scale
plots of the In [dFT[ ]| of both S¥(t) and o?(t), the latter defined as

aV() = (@), () =3 %{ay}"" e (1) (5.3.11)
a,B
(with 6¥ designating the second Pauli matrix), for 500 fs simulations are presented on Fig. 5.5 for
three particular values of J. For the given band-filling pg = 1.75, these correspond to Fermi levels
lying (a) inside both y-spin polarized bands (for J = 0.05eV); (b) at the edge of the y-spin-up
band and inside the y-spin-down (for J = 0.5eV) and (c¢) inside the y-spin-down band, while the
up band is fully filled (for J = 10eV).

For all three regimes the Fourier transforms of the local spins are relatively featureless — they all
show the typical 4J¢T sin?(ka/2) band with an effective direct exchange J&T which increases when
J gets bigger (Fig. 5.5, second row of panels). Interestingly, only the (b)-case (where the Fermi
level is very close to the spin-up band-edge) shows some deviations from the classical dispersion
[see Fig. 5.6 (a,b)], while the case of very big J is again very close to the classical. The latter is
attributed to the increased spin-up localization for large J, where the electrons from the fully-filled
band are so deeply bound that they behave as a classical complement to the local spin.

It is also interesting to look at the evolution of the electron (s) spins. The three spectra of
the electronic transverse-spin density o?(t) (= 0¥(z;,t)) also show the very same magnon band
from their corresponding local-spin spectra. Here, however, this band shows an increasing intensity
with J. The presence of the classical spin-wave band in the electronic spectra is interpreted as a

parametric excitation — as the electrons tend to align to the local spins, they reproduce the local
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transverse-spin spacial distribution at any instant of time. In the adiabatic limit (large J) the

electrons are nearly in their ground state for each local spin arrangement and indeed for these

cases we observe an increase of the intensity of the local-spin band.
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Figure 5.5: Spin-wave spectra in a 101-atom spin-chain for three values of the s-d exchange strength
J = 0.05,0.5,10eV (columns from left to right). Top panels illustrate the y spin-polarized DOS

at t = 0 when the spin on site ig = 51 is tilted to 7/6 in the y — z plane. Middle panels represent
the classical spin waves spectra and the bottom ones are for the electrons. Here Jg = 0.2€V.

Another recognizable (though with very low intensity) feature in the electronic spectra is the
shade of a 4y (= 20Jg in our parameterization) wide band in the two lower J cases. This is
apparently the signature of the nearest-neighbor tight binding dispersion & (k) o 2y cos(ka), with
X = 1eV being the hopping parameter. This structure in the electron spin-density spectrum is
very diffuse and it looks like a superposition of bands for the different local spin configurations.

This is supported by the fact that its actual spread increases as J becomes larger. However, for
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J in the half-metallic regime (fully filled up-band) the purely electronic excitations are suppressed
due to the enhanced localization of the spin-up electrons. The actual magnon spectrum is still
very similar in shape to the Heisenberg one (J = 0) and fits rather well to the expression given in
Eq. (5.3.7) with an enhanced effective direct exchange '. In this regime we also observe a second
band ? similar to the optical phonon bands *.

It is worth noting here that whatever signal is seen in the electron reciprocal-space portrait,
this is due to excitations originating from the local spin subsystem as it is the only one excited at
t = 0. This means that the local spins can exchange energy with the electron bath. In the next
section we will prove that the energy can also be exchanged in the other direction, i.e. that our
classical-quantum mixed Ehrenfest spin-dynamics is also able of describing energy transfer from
the quantum electrons to the classical local spins. We remark that this aspect may appear to
be in contrast with the well-established fact that the Ehrenfest approximation suppresses thermal
equilibration [104, 49]. However, although microscopic thermal noise cannot be transferred from
‘quantum to classical ‘degrees of freedom in the Ehrénfest dynamics, because of the mean-field -
description of the interaction between the two, temporal and spatial excitations at the level of the
mean electron density can be captured and transferred between the two subsystems. This is indeed
the case here where the energy exchange is driven by the short wavelength spin-excitations.

Finally, by fitting our calculated local-spin dispersions for different values of J (Jg=const) to
Eq. (5.3.7), we are able to determine the dependence of the effective intersite exchange JET on the
s-d exchange [Fig. 5.6(c)]. We observe a monotonic increase of J&T with J. For small J (when
neither of the two spin bands is fully occupied) the dependence is nonlinear (seemingly parabolic).
As the system passes into the half-metallic regime, the dependence Jgﬁ(J ) slows down for large J
and tends to saturation (not shown on this graph, for instance J&T/Jg — 12 32% for J = 10eV).
In simple terms we could interpret the increase and tendency to saturation of J&T(J) with electron
localization for large J. That is, the local spins “dressed” with the localized spin-polarized electron

cloud are effectively larger in magnitude, hence their direct coupling becomes stronger. The precise

!The modification of the direct inter-site exchange, which we find in the presence of the conduction electrons,
actually has an oscillatory signature similar to that of the conventional Ruderman-Kittel-Kasuya-Yosida (RKKY)
interaction (see Ref. [67] for the 1D result). We have observed that a different value of the band-filling (defining
a different Fermi wave-vector) could result instead in an anti-ferromagnetic indirect exchange, reducing Jgﬂ. For

instance at half-filling (1e/atom) we obtain a much lower Jgﬂ ~ %Js.
2Note that the middle region of this band appears folded down because of the sampling rate we are using (our

sampling period At = 0.5 fs corresponds to a maximum energy of about 7h/At = 4.1eV~ 20Jg).

3The population of the optical modes is suggestive of a spontaneous “dimerization” of the spin system. This
additional band can be seen in our magnon spectra only for large J > 2eV for which our system is half-metallic.
Similar effects have been found to result from the RKKY interaction in Kondo spin chains [130].
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Figure 5.6: Calculated magnon dispersion curves in a 101-atom chain with Jg = 0.2eV (a-b) in
each of the three different regimes of exchange parameters considered in the text. These are fitted
to the analytic expression of Eq. (5.3.7) to extract an effective Heisenberg exchange Jgﬁ. In panel
(c) is the dependence of JET on J and the dashed line marks the transition between metallic and

half-metallic system.

interpretation of this effect has to be along the lines of the 1D RKKY interaction. Evidently

presence of itinerant electrons is important for the dynamics of the localized spins.

5.3.2 Spin impurities in a non-magnetic chain

Understanding the magnetization dynamics in hybrid ferromagnetic/normal metal structures
is important for applications and challenging for the theory. Two complementary non-local ef-
fects are now well-recognized [114] — one is the so called spin pumping and the other is the spin
transfer torque effect, which we have already mentioned. The idea of the spin-pump is that the
time-dependent magnetization emits (or pumps) a non-equilibrium spin-angular momentum into
the adjacent non-magnetic materials. If for instance there is another ferromagnetic layer and the
normal metal spacer is thinner than the spin-diffusion length, the pumped spin can excite magne-
tization dynamics in the second layer and effectively couple the two layer. This dynamic coupling
has been observed in FMR experiments [46] and recognized as a novel form of collective behavior
in magnetic heterostructures generated through the spin pumping.

As an illustration of another spin-dynamics aspect that can be addressed by time-dependent
simulations, in this section we consider the spin-pump effect at the atomic level. Here we in-
vestigate the indirect (electron-mediated) dynamical coupling of two well-separated localized spin
impurities S;, and S;, in a finite metallic wire by analyzing their temporal correlations. In fact,

understanding the indirect exchange coupling of magnetic impurities implanted in low-dimensional
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metallic structures could be important for engineering their response to applied magnetic fields.
For instance, a sizable change in the conductance of a nanotube with the applied magnetic field
is a strongly desired effect [51]. In a recent theoretical work [56] the static indirect exchange of
magnetic moments sitting on metallic nanotubes has been found to strongly depend on their actual
positions and be affected by quantum interference. Dynamical coupling in the presence of a charge
and a spin current has been investigated in Ref. [76]. There a tendency for a steady-state, periodic
motion of the spins has been found in the low-spin-current regime and a chaotic motion for high
currents.

Here we consider the following dynamical situation for a closed quantum-classical spin system
with no net currents. An excitation is produced at t = 0 only upon one of the two spins in the
wire, say S; , but it is then mediated by the itinerant electrons and detected in the dynamical
response of second spin S;,. We anticipate that the latter response bears the signature of the
electronic structure and depends on the size of the system, the location of the two spins and the

local exchange coupling parameter J. Without aiming for thoroughness we describe a few cases
| whlch (“apture some of the specifics of this problem. The calculation is fully in the spirit of the
quantum-classical spin dynamics described in Section 5.2. The electron Hamiltonian is simplified
by removing the electrostatic term from Eq. (5.2.2) (k = 0) and the external magnetic field from

Eq. (5.2.3). The actual system of equations now reads (in a matrix form)

dpgf i, 5190
dt; - [p’ e]i]_ 7 (5.3.12)
ds; 1 . X R
dtz = {Si,—JS; - (6), — gsupB;2},  fori=j1,j2, (5.3.13)

where (7),

is the expectation value of the spin density on the i-th site [see Eq. (5.3.11)], gs = 2,
B; is a magnetic field applied locally only to S; and

A af A Q
{He}., = — |X| 8ap (i1 + 85 j—1) — T {Si - 6}°° (bi5, + ij) (5.3.14)

1)

is the electronic Hamiltonian matrix, coupling the conduction electron spin to the local one only
at the two spin-impurity sites, j; and js.

As an example, we consider a monoatomic chain with N = 31, intersite hopping x = 1 eV and a
band-filling of py = 1 (i.e. 1 e/atom). The system is initialized with the spin at j; tilted to a small
angle in the z-z plane (Z(S;,,2);=0 = 7/30). A magnetic field is then applied B;, # 0 in order to
achieve a steady precession of S; , while B;, = 0. We thus call S;, the “driven” spin, as opposed
to the “free” spin S;,, which is not coupled to the magnetic field. The exchange interaction to the

conduction electrons is tuned through the J > 0 parameter. In our first set of simulations, we set
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J = x = 1eV and place the two spins at the end sites of the chain, i.e. j; =1 and jo = N = 31,
as we are interested mainly in the transportation of the spin excitation between the two spins.
Typical time evolutions of various spin quantities are shown in Fig. 5.7. We start our analysis
by comparing the field-driven dynamics of S; in the presence of the electron gas only (orange
curves) to that obtained when also the second spin is present. When the driven spin is decoupled
from the electrons (J = 0) it simply performs a uniform steady precession at the Larmor frequency
wr, = (2up/h)B;. We use B; = 1000 T, which corresponds to wy, = 0.028 fs~!, in order to obtain a
large enough number of oscillations for the time of the simulation to provide a reasonable resolution
for our spectral analysis. In this regime the local spin precession period (= 35fs) is compatible

with the times for the electron passage along the chain.

Figure 5.7: Time evolution of spin components: (a) z-component of the driven spin with (green
curve) and without (orange curve) interaction to the electron gas when the free spin is absent (no
spin at site j2); (b,c) z- and z-components of the two spins for J = 1eV; (d) the electron spin
polarization (with respect to the quantization axis z, i.e. 07 = (pl! — p?2)/2) at the spin sites.
Blue and red solid curves represent site 1 and site N = 31, respectively, while the grey underlying

curves represent the j; = 1 site when there is no spin at js.

When J # 0 and the free spin Sy is present in the system, the latter starts to oscillate after a
small time-delay. The small drift in S¥; since the start of the simulation is due to the evolution of

the small transverse electron density present on the site since the moment t = 0 when S; is tilted.
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At around t = 10fs we find a step in o} [see Fig. 5.7(d)| and that is when the excited by S;
arrives at the N-th site. Because of the finite group velocity of the conduction electrons, the spin-
polarized wave-packet takes a time 7'~ L/vp (vp is the Fermi velocity) to propagate from S; to
Sn. The free spin also starts precessing about the z-axis but with a smaller transverse amplitude
S% (dashed curves). Neither of the two spins performs a pure precession. The z-components S}
and S%; oscillate too, with similar rates and opposite phases. Such a pattern is present aso in
the evolution of the electron spin densities on the two magnetic sites. This is a manifestation of
two restrictions acting on the system: (i) the conservation of the z-component (along the external
field) of the total spin and (ii) the spin-adiabaticity, i.e. the tendency of the electron spin to follow
the direction of the local spins. The latter property is ensured by the strength of the s-d exchange,
which in these simulation is J = 1eV. !

We investigate how the electron gas mediates the interaction between the two spins by verying
the s-d exchange J. In order to quantify the temporal correlations between the two spins, we use

the following normalized. spin-spin correlation function

1
J(S§(t))2dt [(SK (1))

C (S, SN, At) = 2dt/S{(t)va(t+At)dt. (5.3.15)

The right-hand side panels of Fig. 5.8 represent the square of the above quantity as a function
of the time delay At for a wide range of values of J. All results show a similar high-rate oscilatory
decay pattern as At increases. Apparently the maximum of C%(S¥,S%,At) is in the very early
stages, compared to the whole length of the simulation. This demonstrates the very quick (~ 10fs
for 30 atoms) transfer of angular momentum carried by the itinerant electrons. As the electron
ticking rates (the inverse of the time to propagate forth and back between the two spins) are
comparable to the precession rate of the driven spin and both are rather high, we find a very rapidly
oscillating correlation function. In order to roughly estimate the maximum correlation amplitude
(which is very close to the origin) we fit these results to a decaying exponent Cyexp(—At/7) and
the results for Cy(J) are presented in Fig. 5.9. The constant Cy ~ C?(t ~ 0) is a measire of
the level of correlation and reaches its highest value for J in the range between 1.5 eV and 4 eV.
For smaller J there is little energy transfer between the local spin and the electron gas and for
very large J the majority (minority) electrons are too localized (delocalized) ? to convey the spin

information, hence the correlation is suppressed in both cases.

IThis value of J is typically large enough to provide for good spin-transport adiabaticity in such systems, as
will become evident in the next Chapter on current-induced domain wall motion.

2In connection with this last point one should note that the larger J, the deeper (shallower) the potential
associated with the on-site spin-interaction for majority (minority) conduction electrons [see equation (5.2.2)].
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Figure 5.8: Investigation of the correlation between two classical spins (one driven and one free)
at the ends of a metallic chain (j; = 1, jo = N) as a function of the s-d exchange strength .J for a
N = 31 atom chain (pairs of panels to the left) and as function of N for J = 1eV (pairs of panels
to the right). Each case is represented by a pair of plots: one plot for the time-correlation function
C? [see Eq. (5.3.15)] (black) fitted to an exponential trend Coe=2*/7 (orange curve) and another

plot for the spectra of ST(t) (blue), S (t) (red curve) and again ST (t) but for the case when the
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In order to analyze the dynamical behaviour of the coupled system we look at the discrete
Fourier transforms of the transverse z-components of the two spins. We compare the case when
they are both present at the two ends of the chain with that obtained when S; is the only localized
spin in the chain (Fig. 5.8, left-hand side panels). We observe that as J increases the spectrum
of ST evolves from having one low-frequency peak and a higher-amplitude peak slightly above the
Larmor frequency (wy, = 0.028fs~ 1) for J = 0.5 eV, through two equal-amplitude peaks on each
side of wy, for J < 1.5eV, and then saturates to a single peak somewhat below wy. The other spin

% shares the same modes for J < 10eV, although the amplitudes are different.

Qualitatively similar is also the evolution of the spectrum of ST when the second spin is absent
(green curves) and this becomes identical to that of the two spins for extremely large values of
the s-d couplings J. In general there is always some red-shift of the natural modes of the field-
driven spin-system as J is increased. Finally, for extremely large J the two spins are completely
decoupled as the conducting minority-spin electrons are expelled from the spin-sites. As a result
Si, “dressed” with its localized spin-up electrons (hence larger in magnitude), precesses at a rate
lower than wy, while Sy is practically still (note that in our model dynamical simulation there is
no Zeeman split in the electron gas).

Without aiming to analyse all the natural modes of the combined system of itinerant electrons
and classical spins (an impractical task given the high number of degrees of freedom and the non-
linearity of the dynamical response), we investigate numerically the dependence of the frequencies
of the major modes on geometrical factors. For instance in the right-hand-side of Fig. 5.8 we
illustrate the effect of the separation on the dynamical correlation between the spins situated at
the two ends of the wire by varying its length (L = Na) for a fixed J = 1eV. In general as N
increases the precessional spectrum of ST becomes richer. All natural modes show a tendency to
red-shift as the chain becomes longer. This correlates with the increased electron ticking time (the
time for an electron round trip). The modes also gain amplitude as they fall in the vicinity of
wr,. As a result the spectrum of the field-driven spin condenses about wy,. The “free”-spin spec-
trum shows the same modes although they appear much more evenly populated. Evidently, the
temporal correlations between the spins start off being rather high at very small separations, peak
at around 40 atoms and decrease in amplitude as the chain length increases (see also Fig. 5.9).
Above N = 50 we find a slower decrease of the correlation amplitude. We have approximated with
a power law oc L® [linear on the log-log scale in Fig. 5.9 (b)] and obtained a ~ —0.38. Despite
the crudeness of the way « is extracted from the time-correlations, it suggests a rather long-range
indirect exchange coupling between the spins in the wire. This observation comes in agreement to

recent theoretical findings [31] of an enhanced range of the dynamical indirect exchange coupling
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between adsorbed magnetic moments in metallic nanotubes, compared to the static version of it,

suggesting that |a| could be smaller than 1.
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Figure 5.9: The amplitude of the computed time-correlation functions (see Fig. 5.8) as a function

of J (bottom axis) or number of atoms N separating the two spins (upper axis, the distance is
L = Na) in linear (a) and logarithmic scale (b). The tail of the dependence on distance is fitted

to a power law decay ~ L%, where a = —0.38.

Since the finite atomic chain acts as an electron-wave resonator, the correlations between the
two spin impurities can be amplified or suppressed depending on the total length of the chain
and the position of the site at which they are located. We have determined numerically that in
an even-sited chain the field-driven spin can transfer spin excitation to the electron gas mainly
locally, as illustrated in Fig. 5.10(a,b). In this case the standard deviation of the transverse spin
distribution, which is a measure of the spin-density oscillation in the chain, peaks only at the site
containing the spin impurity. The spectrum of S7(t) of the driven spin shows a single peak at the
Larmor frequency for both even or odd j [Fig. 5.10(c)]. In order for the precessing spin to be
able to transfer effectively spin excitation to the electron gas in the rest of the chain, this has to
have an odd number of sites and the spin has to be at an odd-site location as illustrated in Fig.
5.10(e)]. The difference can be seen clearly from the spectrum [Fig. 5.10(f)], where two peaks,
corresponding to combined modes of the coupled spin-system, replace the peak at wy, .

Similar parity rules apply for the position of the second (“free”) spin. In the case of odd chains
(apparently more “susceptible” to localized spin-excitations) the temporal correlation and the mere
amplitude of the excitation transferred between the two spins are substantially higher if the spins

are both in odd positions (see Fig. 5.11). This can also be seen from the spectra of ST and S7,.
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Figure 5.10: Simulations of a single magnetic-field driven spin S;, in 30 and 31-atom chains (left-

.and right-hand side panels, respectively). (a,d) The z-component of the onsite electron spin density
at t = 0 and (b,e) its standard deviation for the time of the simulation vs. the site position. (c,f)
The absolute value of the Fourier transform of S7, for j; =9 (blue) and j; = 10 (red curves). The

position of wy, is marked with a black dashed line.
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Figure 5.11: Simulations of two spins S(; —g) (“driven”

)s Sjo=14,15 (“free”) in a 31-atom chain.

(a,e) Standard deviations Agp [(6%), (t)] vs position 4, (b,f) z-components of the two local spins
and (c,g) time-correlation functions [see Eq. (5.3.15)] between those vs time, (d,h) absolute value

of the discrete Fourier transforms of the data in panels (b,f) with marked position of wr,.
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Further calculations (not presented here) have shown that typically the spin correlations do
not depend as much on the positions of the two spins in the chain as they depend on the distance
between them and the parity of the position j; of the driven spin. These seemingly peculiar
odd-even effects originate from the fact that our electronic band structure is that of half-filling (1
e/atom) and the electronic temperature is low. We note that the electronic temperature actually
enters our model with the Fermi distribution used for constructing the ground-state density matrix.
In all calculations presented so far we have used some low electronic temperature 7' = 50 K.
The spatial distribution of a spatially abrupt spin (or charge) excitation is rather corrugated at
half band-filling because of the absence of modes with small enough wavelengths in the occupied
spectrum. The Friedel-like fringes of spin density around the driven spin can be seen, for example,

in Fig. 5.10(d).
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Figure 5.12: Effects on the spin dynamics of a single filed-driven spin placed at position j; = 9
in a 31-atom chain as a function of the band-filling, py, and the electron temperature (left- and
right-hand side panels, respectively). The quantities plotted are the same as those represented in
Fig. 5.10.

The rough spin-density texture is smeared as temperature is increased or a different from pg = 1
band-filling is considered. As an illustration of this effect, the case of a single driven spin in the
31-atom chain is repeated for different 7" and pp, and the results are presented in Fig. 5.12. As
the temperature is increased to introduce a Fermi level smearing kg7 ~ 0.43 eV comparable to the

bandwidth (4eV), the interference pattern occurring in the spatial distribution of the transverse
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Figure 5.13: Trajectories of the expectation value of the transverse onsite spin-polarizations o (t)
in a 3l-atom chain with 1.9 e/atom and two spin-impurities S;, (magnetic field-driven) and S;,
(“free”), for ji = 9 and (a) no second spin; (b) j2 = 14; (c) j2 = 15. The bottom plots represent
the initial spatial distribution of(t = 0) (black lower curve) and its temporal standard deviation .
(grey curve).

electron spin is no longer present. As more modes are allowed to contribute at higher 7', the
electron localization is better defined spatially and the local spin spectra reduce to a single peak

at wr, = 0.028fs~ 1.

The effect of changing the band-filling (e.g. by charging or discharging system) is in many ways
similar to that of the temperature. Values of pp which are symmetric with respect to 1e/atom
produce the same spin-density pattern because of the electron-hole symmetry. We observe that
intermediate band-fillings 1.3 < pg < 1.7 quite resemble the high 7" case — electron spin excitation
is localized and precession of the local spin is almost unaffected. For higher band-fillings, because
of the big wavelengths at the Fermi level, a variety of resonant phenomena can occur. Figure 5.13
depicts some curious results of simulations of a driven and a free spin in electron gas with Fermi
level close to the band edge (pg = 1.9). The real-space and time evolution of the transverse spin
density reminds us to a “tsunami” effect. The long-wavelength (hole-like) spin-density excitations
build up on the free spin, causing it to shake with an enormous (compared to the initial tilt of the
driven spin) amplitude at some instances of time. As there is no dissipation in our system these

are regularly recurring events.
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5.3.3 Summary

In the foregoing chapter we have presented an approach for investigating the spin dynamics at
the atomic scale. This is based on the adiabatic approximation for spin (the analogue of the
Born-Oppenheimer approximation in lattice dynamics), according to which the spin degrees of
freedom can be separated into slow and fast variables and the dynamics — described by equations
of motion of the local spins and a standard single-particle spin-polarized equation for the itinerant
spin-carriers [6]. Such separation is motivated by the significant mismatch of the relevant energy-
scales for the inter-atomic exchange (< 100 meV) on one hand and the intra-atomic exchange and
conduction band-widths, on the other. Hence in many magnetic systems the spin dynamics can be
mapped onto an Ehrenfest dynamics. This, in the same spirit of the standard Molecular Dynamics
simulations, can be used to explore various dynamical properties of complex spin systems.

As an illustration of the method’s functionality, we have described an example in which magnon
spectra can be computed and the indirect exchange interaction determined. As a second example
we have presented a study on the dynamical correlations between spins in a metallic wire. We have
demonstrated the microscopical mechanism of electron-mediated angular momentum transfer and
investigated the scaling of the temporal correlations with the s-d exchange strength and the size
of the system. We have demonstrated the importance of geometry, which determines the quantum
interference patterns and the ability of the itinerant electrons to convey spin excitation. For the
studied case of a finite monoatomic chain and half band-filling we have observed odd-even effects
of the position of the oscillating spin, consisting of the lack of susceptibility of the electron gas to
spin excitation at alternating sites. This effect is reduced by introducing a thermal smearing to

the electronic structure or by charging/discharging the whole system.
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Chapter 6

Dynamics of a spin domain wall

coupled to itinerant electrons

6.1 Current-induced domain wall motion

The prospect of manipulating the magnetization texture of a device with a spin-polarized current
is at the heart of a whole area in the field of spin electronics which takes the name of spin trans-
fer torque (STT). This unifying notion originates from the work of Slonczewski [93], who made
a pioneering theoretical prediction of current-induced magnetization dynamics in single-domain
magnetic multilayers for the current perpendicular to the plane (CPP) geometry. Having a spin
valve ! in mind, the main idea is that the transversely spin-polarized electron flux generated by
the first magnetic layer (polarizer) produces a torque upon the magnetization of the second layer
(analyzer), effectively transferring spin between the two. A steady precession of the analyzer mag-
netization is predicted at a constant current, strong enough to dominate the Larmor precession
about the Oersted field, and a repetitive magnetization switching is expected under a pulsed cur-
rent. These phenomena can be detected through the magnetoresistance effect and both switching
[54, 44] and precession [82, 62] have been observed experimentally in spin valve structures. More
recently time-resolved ultrafast x-ray images [2] have been able to peek into the very process of
magnetization reversal due to STT. The huge interest in the spin torque phenomena is constantly
fuelled by industry as the miniaturization of magnetic storage devices progresses and new spin-
torque based magnetic random access memory (MRAM) devices are about to become commercially

available.

IThe spin valve is a heterogeneous magnetic device consisting of two or more layers of conducting magnetic
material. The essential functional part of it is the GMR trilayer, which consist of a magnetically hard material
(pinned layer or polarizer) and a magnetically soft material (free layer or analyzer), separated by a conducting
spacer layer.
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Another founding contribution to the spin transfer torque theory was made even earlier. In the
70’s Berger [14], by looking at the low-field magnetoresistance of some ferromagnets, noticed that
“electrons crossing a (domain) wall apply a torque to it, which tends to cant the wall spins”. This
is again a spin-torque phenomenon similar to Slonczewski’s one for the single-domain dynamics
in spin valves. In fact, the spin torque occurs in any non-uniform magnetization pattern that is
traversed by a spin-polarized current. In the case of the smoothly changing direction pattern of
a magnetic domain wall (DW), the spin-transfer torque is converted to pressure, which pushes
the wall in the direction of the electron flow (we shall explain this effect later in this Section)
and this effect has been confirmed experimentally (for recent works see Refs. [43, 115, 57, 62]).
The current-induced translation of the whole magnetic structure is particularly interesting from
information storage point of view because the adjacent domains could represent binary bits. This
is essentially the idea behind the widely-known proposal of magnetic racetrack memory device [77],
where the sequences of magnetic domains are pushed along the device by pulsed spin-polarized
currents.

" Theoretical work is 'typic'ally based on either semiclassical theory [114] or on the s-d model,
where the local magnetization M(t, z) is continuously varied only along the direction (say, along
z) of the current flow. The problem is usually addressed in a micromagnetic fashion by solving the
Landau-Lifshitz-Gilbert (LLG) equation for the magnetization with additional spin torque terms
describing the effect of the electron flux. For one-dimensional DWs Zhang and Li [135] have derived
two current-induced spin-torque contributions, by starting from the s-d model and integrating out
the electronic degrees of freedom in a linear response approximation. Their working assumption
is that of a slowly varying magnetization direction. The length scale is set by their intrinsic spin-
relaxation mechanism so that in the adiabatic limit, which they consider, the width of the wall is

much bigger than the spin-flip length. The two current-induced torques, which Zhang and Li (ZL)

derive are
by oM
Tadiab = —M-Q‘M X <M x 32—) ) (6.1.1)
(& oM
Tnonad _F‘;M X ‘b—z‘ . (612)

The so-called adiabatic torque, T,qiap, is analogous to the Slonczewski STT in spin valves. It
is due to the fact that the electron spin tends to align to the local magnetic field as it passes
adiabatically through regions of spatially varying magnetization and this torque is produced as a
result of angular momentum conservation. For [M(z)| = const (only the direction of the magneti-
zation varies) this can be rewritten [66] as —bJ%—I\Z’I, where by definition b; = Pjeug/eM, j. being

the electric current density, P the spin polarization and M = |M]|. The other torque Tyonad [Eq.
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(6.1.2)] is perpendicular to Tagiab and is described as a non-adiabatic torque. In other theoretical

works this torque is known as the S-torque and its microscopic origin is still controversial [103].

Electron flow
AS, =l -T<0

PP F I P YRV

xL AS :—ASe>0=
z DW shift

© <@

Figure 6.1: Illustration of the angular momentum transfer mechanism behind the adiabatic contri-
bution to the current-induced DW motion. An incoming electron flips its spin direction by passing
across a DW. Such a spin rotation is compensated by an equal an opposite change of the total

local spin, which generates a DW motion.

A simple mechanism for understanding the origin of the adiabatic torque in a 1D Néel wall
is illustrated in Fig. 6.1 (see for example Ref. [98]). An electron entering from the left-hand
side with spin-up and following the wall magnetization adiabatically, eventually flips its spin on
exit, i.e. AS. = 2s = h. If all non-conservative spin relaxation mechanisms are neglected (for
example electron scattering with impurities having a strong spin-orbit coupling) [120] then all
of the angular momentum variation must be absorbed by the local magnetization. In the case
envisaged in Fig. 6.1, the angular momentum gained by the DW for a single adiabatic electron
crossing is ASpw = —AS. > 0 which corresponds to the DW shifting to the right (i.e. in the
direction of the electron flow). Alternatively, one can think of the effective field that the adiabatic
spin-rotation creates [120], which is transverse to the plane of the wall and produces a torque in
that plane.

' is not as

In contrast, the origin and the effect of the non-adiabatic torque in Eq. (6.1.2)
easy to cartoon. It is introduced by Zhang and Li [135] as a result of the non-conservative spin-
flip processes during the electron crossing of the DW. These are modelled by a phenomenological
spin-relaxation term in the equation of motion of the electon spin density. Although for transition
metal ferromagnets c; /by &~ 102 [135], the role of the nonadiabatic term is claimed to be crucial

for sustaining the motion of the wall. According to Zhang and Li, the nonadiabatic term acts

as a nonuniform time-dependent magnetic field with just the right distribution to sustain the

IThis, also called 3-term, is sometimes considered as adiabatic. For instance in Ref. [106]) Tyonad appears as
part of the adiabatic torque as it also arises from the first order term in the gradient expansion of the STT. What
they call non-adiabatic torques are the higher order terms in this expansion.
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steady motion. More recently the Zhang and Li’s picture was questioned by Stiles et al. [131]
and calculations based on the Stoner model demonstrated that the prefactor c¢; associated to the
non-adiabatic torque is actually non-local and it is not necessarily associated with an intrinsic
mechanism for spin-relaxation [17].

The other extreme approximation (contrary to the adiabatic one) that can still be addressed
analytically is that of the very thin wall with a width w much smaller than the Fermi wavelength,
i. e. kpw < 1. In this case the STT effect vanishes, the wall can be described as a quasi-particle
and the current-induced pressure is due to the linear momentum transfer of the backscattering
conduction electrons [102, 35].

In order to investigate the spin transfer torques in the range of DW widths comparable with
the Fermi wavelength (a few atomic spacings wide), we have developed an open-boundary spin

dynamics simulation, which is described in the following section.
6.1.1 Computational method and static properties
Within our atomistic s-d model simulations of the spin dynamics we treat the electrons quantum-

mechanically and integrate the set of Liouville equations for the discrete classical spins. This reads

(as in Eq. 5.2.8 but without the external magnetic field)

ds; 1
— ==(S; b= 6.1:3
3 = 5 8ixBi) (6.1.3)
where
B;=J{o),+Js > S;+2J,(S; %)% (6.1.4)
j=i+1

is the effective local magnetic field at site i. Thus the classical spins are locally exchange-coupled
to the instantaneous expectation value of the electronic spin (o), and this coupling produces all the
contributions to the STT. In other words, there is no need for additional empirical current-induced
torques in our LLG-like equation (6.1.3) as the effective field term accounts for all the adiabatic
and nonadiabatic torques originating from the electron flow in our model.

In order to simulate the DW dynamics under bias at the atomic level, we have used the semi-
empirical method of sustaining an electron flux in a finite system from Chapter 4. In this method,
designed for Ehrenfest-type dynamical simulations [87], the atomistic system is partitioned into
three subregions: two external regions, acting as a source (S) and a drain (D), coupled to a central
region, where the atomistic device to be studied under bias is located (see Fig. 6.2). A modified

Liouville equation is used to describe the electronic dynamics

% = [6.Bv] T bo), (6.1.5)
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where I is a real parameter and pg is a “tailor-made” density matrix such that
p P Y

e [ pijt=0) fori,jeS,D
{pO}ij (t) = { pij(t) Othoraite . (616)

By this definition the source/drain term proportional to I' is applied only to the S and D regions.
If the initial density matrix p;;(t = 0) is set in such a way that the source and the drain carry
an electron number imbalance, this will be maintained during the time evolution of the electron
density with a relaxation time of 1/T", and it will produce a steady current flow through the system.
Such a source/drain polarized density matrix in our simulations is constructed from the eigenstates

of the Hamiltonian with an applied external potential 2AV

(), Go=meo+{ VRO Gijep o 61
where H;;(p,t) is the s-d exchange tight-binding Hamiltonian as in Eq. (5.2.2) and fy(t) is a
smoothly decaying to 0 polynomial ramp. This is designed to vanish in a few tens of time-steps
and it has been introduced for damping the charge oscillations that might originate from an abrupt
removal of the initial bias. There is no external magnetic field and the hopping integral is y = 1eV.
In order to mimic a half-metallic electronic structure, we have chosen a band filling of 1.75, for

which the Fermi level lies about 0.5eV above the band edge of the fully-occupied spin-up band.

L

Source DW Drain

Figure 6.2: Scheme of the electron transport calculations through a mono-atomic wire containing
a DW. The source and drain are introduced in the equation of motion as a phenomenological term
that maintains charge imbalance at the edges of the wire [see Eq. (6.1.5)].

Ideally the source/drain term in Eq. (6.1.5) produces a constant carrier imbalance between the
two ends of the wire therefore simulating an open system. Moreover, since po is purely real it
also provides for a phase-breaking mechanism in the source. This phenomenological method has

been proven able to produce, under certain conditions described in Chapter 4, a current-carrying
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state equivalent to the Landauer steady-state [70]. A major problem with the method remains the
correct definition of the applied bias as the system is finite and there are no real electron reservoirs
(as those thermodynamically defined in the Landauer picture). However, if one is not interested in
the precise I-V characteristics of the system but only in the effect of the current, and if the current
does not alter significantly the resistance of the device, then tuning the value of I' could promote
dynamically a steady-current state. Such is the case with the current-induced DW motion studied
here where we are able to achieve a steady current for I' = 2fs~ 1.

We have then carried out atomistic simulations of DW motion in such an open-boundary one-
dimensional atomic wire under a bias. The wire is 200 atoms long and the DW is set in the middle.
In the initial state (before the bias is applied) the DW and the electrons are relaxed self-consistently
so that all torques in the system vanish within a certain tolerance (typically 10~7eV /rad). For an
infinite Heisenberg spin chain with a longitudinal anisotropy J, # 0 (but J = 0, i.e. no coupling to
the electron gas) the DW ground state is known. This is a planar (Neel) DW with a longitudinal
spin distribution-S? = S cos ., - where -

0., = 2arctan [exp <;1 j ZO>] : (6.1.8)

“w

Here zj is the centre of the DW and z,, is the DW width at approximately 89% of its transverse-
profile height [see Fig. 6.3(a)]. In the anisotropic Heisenberg model this is related to the direct

exchange and the anisotropy parameters [11]

Zo = /g 25 (6.1.9)

We reproduce numerically this result for our finite spin-chain and investigate the effect of
the exchange coupling to the itinerant electrons J. After initialising the DW in the z-z plane,
we perform a damped dynamical spin relaxation [by adding a Landau-Lifshitz damping term
—aS; x (S; x Bj) to Eq. (6.1.3)] until all torques in the system are below the given threshold.
The relaxed DW is still planar as can be seen in Fig. 6.3(a), where in the DW centre S§ ~ 1
By fitting the ST (i) profile to the angular distribution in Eq. (6.1.8) we calculate z,, for different
values of J, and J # 0. By comparing with Eq. (6.1.9) we extract an effective direct exchange
parameter Jgﬁ and find that, for our choice of parameters, the exchange with the electrons acts
towards increasing J&! [see Fig. 6.3(c)]. For J = 1eV this contribution is nearly as big as our
model direct exchange Jg = 20meV. Similar result was obtained also in Section 5.3.1 from the
previous Chapter by studying the magnon spectra [see for example Fig. 5.6].

If one keeps the anisotropy constant J, and number of electrons (band-filling py = 1.75 ¢/atom)

fixed, as J is increased the DW width z,, tends to saturate [see Fig. 6.3(b)]. The dip near the
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Figure 6.3: Characteristic dimensions of the DW in equilibrium as a function of J and J,. (a)
Typical transverse-spin profile of a relaxed DW and a fit to the exact expression for an infinite
Heisenberg spin chain with longitudinal anisotropy [see Eq. (6.1.8)]. (b) Dependence of the DW
width z,, on the s-d exchange J. (c) Dependences of z, on the anisotropy constant .J, for J = 0
(Heisenberg chain, blue curve), Jg = 0 (red) and J # 0 & Jg # 0 (black), all fitted to the
expression Eq. (6.1.9). Values of the effective direct exchange, J&T, are listed in the table.
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Figure 6.4: Spin-projected density of states (pDOS) for the conduction electrons in a 200-atom
wire, containing a relaxed DW in z — z plane with no bias applied. Top panels: the three spin
projections of the DOS for J = 1eV. The Fermi level is at 0 eV. Bottom panels: a zoom around
the Fermi level of the spin-projected DOS for J ranging from 0 to 1eV.
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beginning of the zy(J) curve corresponds to a J-value for which the Fermi level is at the spin-
up band edge. Above this value the system is a half-metal with only minority-spin electrons at
the Fermi level. For our finite chain with a DW in the middle, the local spin along z is fully
compensated and thus the o*-projected DOS (pDOS) are identical for the two spin-species (see
Fig. 6.4). However, the transition to half-metalicity at J = 0.5eV can be seen in the ¢®-pDOS
as the wall lies in the z-z plane. As the spin-split increases the transverse spin-up presence at the
Fermi level goes through a peak and drops. For the critical value J = 0.5eV for which the Fermi
level is closest to the edge of the spin-up band for a uniformly-polarized 1D spin-chain (not shown
in this figure), we find that the planar DW is no longer possible and the relaxed DW develops
a small twist out of the z-z plane, which manifests itself in the non-negligible and asymmetric
o¥-pDOS.

We summarise that for the half-metallic regime, which we are interested in, the DW thickness
varies very little with J, for the range of values between 1 and 3eV and for J, = 5meV. In this
regime z, ~ 2 + 3a and the wall profile starts to deviate from the classical Heisenberg model
result in Eq. (6.1.9) but is still not too far from it. These wall thicknesses are indeed comparable
to the Fermi wavelength in our model. A rough estimation of the latter can be made from the
o®-pDOS (see top panel of Fig. 6.4, J = 1eV), where we clearly distinguish two 1D nearest-
neighbour TB bands and the Fermi level splits the spin-down band as 7:1 from the bottom up.
This determines that kpa = arccos ((E. — Er)/2x) = arccos(—3/4) ~ 2.42 which corresponds to
Ap = 27/kp ~ 2.6a. Thus our model parameters indeed provide for walls in the intermediate

thickness range which is not directly accessible to analytical description.

6.1.2 Domain wall motion

When the DW is relaxed self-consistently in the presence of the itinerant electrons, a finite bias
voltage is applied to two 10-atom-long segments at each end (S and D) of the wire by shifting
their onsite energies according to Eq. (6.1.7). Then the quantum-classical system of equations of
motion [Equations (6.1.3) and (6.1.5)] is integrated numerically. Typical real-space and real-time
contour plots of the dynamical observables are illustrated in Fig. 6.5. Note that the DW is our
simulations is moving opposite to the electron flux which does not contradict to the illustration in
Fig. 6.1 since the carriers in our half-metallic wire are down-spin polarized, i.e. their spins point
in the opposite direction to that of the local spin.

The current in our model is described in terms of the bond currents I,,, as discussed in

Appendix C and in Ref.[109]. This is the electron current between two sites n and m, i.e.
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Figure 6.5: Self-consistently relaxed initial configuration of (a) local spin and (d) electron charge
(p" + p' — po) and spin (p! — p!) density configuration of a 200-atom chain containing a DW. Space
and time evolutions: (b,c) S; . components of the local spins, (g,h) charge and spin bond currents
[see Eq. (6.1.10,6.1.11)] and relative variation with respect to the initial state of (e) the onsite
density (Ap = p(t) — p(t = 0)), and (f) spin-density (Ao = o(t) — o(t = 0)).
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>mzn Inm = {p},,, with the right-hand side representing the rate of change of the on-site oc-
cupation. Following Todorov [109], we can define two partial bond currents for the two spin
species with respect to the z axis

2
I, = =Im g5

HUU
nm h

mHrm]
m="nml >

(6.1.10)

where ¢ =7, | and there is no summation over repeating indices. In our nearest-neighbour model
these currents are non-zero only for m = n + 1. We denote the total particle current and the

z-polarized spin current through the bond (n,n + 1) as

n

o AT L ERIRRE . R LU L L (6.1.11)

These two quantities as functions of time and the atomic position are shown in figure 6.5 (g,h), for
an initially applied bias voltage of AV =1V and J = 1eV. The contour plots illustrate how the
steady-state is established when the charge-imbalances from the two ends propagate to the centre
“of the chain [sée also the ch'ar'ge‘anrd épi'n density plots in panels (c,d) and their variations in panels
(e,f)]. Since the steady-state current flow is not established instantaneously it takes a finite time
before the DW starts to move. However, once the charge current is steady, it turns out not to
be affected by the DW motion [the local spin components are depicted in panels (a,b)]. Because
of the half-metallic electronic structure with a minority band at the Fermi level, I| = 0 on the
left-hand side of the DW, where the local spin is up, and I} = 0 to the right-hand side. Thus the
spin and the charge currents are the same on the right-hand side of the wall (I, = I = IZ*) and
have opposite signs on the other side (I, = I} = —13=).

We first investigate the evolution of the spin in our open-boundary system. The mere fact that
the DW is moving means that our fictitious battery acts also as a spin sink in the system since
a spin-dissipation mechanism can only be provided by the itinerant electrons through the open
boundaries. As seen in the simulation of Fig. 6.6, the variation of the electron spin-density in the
steady-state regime (with respect to the distribution at ¢ = 0) is significant only inside the region
swept by the moving wall [see 6.5 (f)]. In that region the on-site spin-polarization changes sign
following the new local spin direction and if non-adiabatic torques are present a transverse spin
could be dynamically accumulated. We calculate the total spin along the z direction as a function

of time
N

N
Sew=D e+ _SF. (6.1.12)
=1

i=1
This consists of an electronic and a local spin contribution (Fig. 6.6). Initially only the electron

spin decreases in time until the DW is reached by the electron flux (the classical spin is constant
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6.1 Current-induced domain wall motion

while the wall is static). When the steady-state transport is established, the wall moves uniformly
and ), S? decreases linearly with nearly eight times (8.067) the slope of »". (0%), (t). The ratio
of the spin loss rates of electrons and local spins for adiabatic rotation is fixed by the band filling.
Since pg = 1.75, there is an average on-site spin density of 0.2557/2 (in the uniform regions away
from the wall). A local spin flip costs 257 and it is accompanied by an electron spin loss of
0.25S57. Hence this produces the 8:1 ratio. The ratio that we find in this simulation is 8.067 which
differs from the expected 8 by only 0.8%. This gives an estimation of the magnitude of electron

transverse-spin accumulation due to non-adiabatic effects.
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Figure 6.6: Time evolution of the total S{; spin-component in a 200-atom chain, projected over
the electronic (dashed curve) and the local spins (dot-dashed curve) contributions. The applied
bias at t = 0 is 0.1 V and the DW is initially in the centre of the chain (z9 = 100.5a). The dotted
curve represents a test system, where an identical DW is initially prepared at zy = 150.5a and is
kept fixed for the whole simulation. This curve has actually been rigidly shifted by Sg,(t = 0) to

allow for a comparison.

If the DW is pinned (the local spins are affixed and not included in the dynamics), however,
we find no net variation of the spin in the chain for the steady current flow (dotted curve in Fig.
6.6). This demonstrates that we have a spin-flipping battery and practically no spin accumulation
— an electron entering the chain from the left-hand side as a spin-down flips at the wall and leaves
the wire as a spin-up at the right-hand side boundary but then another electron with a spin-down
enters the wire from the other side. Net spin accumulation is not found in the system if the wall
is fixed.

We define the current at the wall Ipw as the spatially-averaged bond current in a region
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of Zpw = {z0 £20zy} around the centre of the wall (which contains all, say Npw, sites with
substantial transverse spins) and then averaged over the steady-state time of the simulation and

the corresponding DW velocity, Vpw, for that period as

Npw Nr 1 Np
i Ln(tm Vow = vpw (tm) (6.1.13
e Nl)w(NT = No 1) Z:I mXI:VU ) o e ] mg};“ pw (tm) )

where Ny is some time step after the steady-state transport is established and vpw(t) is the
momentary DW velocity, obtained by a numerical differentiation of the wall position zo(t), which
is defined through the equation S*(z9) = 0 and S*(z) is an interpolation of the set {[2;, S7]}, co_ -
We then examine how Ipw and Vpw depend on the choice of model parameters AV, J, J, (see

Fig. 6.7). Our reference set of parameters is
AV =01V, J=1eV, J,=5meV, Jg=20meV. (6.1.14)

As the only notion of distance in our model is the lattice spacing a, we define our current density
at the DW as ij o 'IDW /azl. For the feféréncé case above and a t;\/pi(:zil value @ = 2 A our current
density is about 8 uA/4A% = 20 x 10° A/ecm?. This value is more than an order of magnitude
bigger than the highest current densities used by [66] (j = 1.5 x 10® A/em?). Our reference DW
velocity is about 4.3 km/s, which is also nearly an order of magnitude higher than their maximal
velocity (0.6 km/s). Thus the characteristics of the DW motion in our simulations agree (roughly)

with those expected to originate from the adiabatic torque.

By varying the initialising bias voltage 0 < AV < 0.15V we find a perfectly linear correlation
between Vpw and Ipw [Fig. 6.7(b)] with a slope of around 2.725a/(ps.pA), i.e. 2.725 x 108 g/C.
We compare this result to the expected maximal (or if the one that corresponds to zero spin
damping) DW velocity Viag = —by = —Pjup/eM, in the adiabatic limit ' [66, 98]). In the

expression for V,q, P is the spin polarization of the current, j is its density and M is the saturation

IThe fact, pointed out by [66], that the factor b; in the adiabatic torque in Eq. 6.1.1 represents the DW
velocity V,q can be understood from the following argument. Let us consider our 1D DW made of discrete classical
spins from the moving (classical) reference frame of an electron from the flux. There the resting electron spin s
is experiencing a passing-by at a constant velocity \7DW planar spin-wall. If the spin is aligning instantaneously
to the spin of the wall then it will be rotating with an angular velocity ws = 6, = VDWVZBZ(ZS = \7Dwt), where
zs is the position of the spin, 6, is the wall angular distribution with respect to z (e.g. Eq. (6.1.8)). Such a
rotation could effectively be produced by a torque |T¢| = sws = SVDW V.0,(zs + \7Dwt) and by the second Newton
law such a torque but in opposite direction must be acting on the wall. In the frame of the wall the torque on
the wall at location z; is similarly Tpw (z;) = sVeVZGZ(zi). We go back to the laboratory reference frame. As
the spin conservation holds (see Fig. 6.1), if the spin s passes the DW of discrete spins {S;} for time At then
As = —25VeAt/zyw = —AS = —2SVpwAt/a, where z, is the whole length of spatial variation of spin in the
wall [not the same quantity as in Eq. (6.1.8)], and therefore the velocities of the spin and the wall are related
as Ve /Vpw = Szw/sa so that in the adiabatic limit zw > a and moreover if S > s (classical local spins) then
Ve > Vpw and ‘75 ~ V.. We obtain for the torque due to one electron Tpw (z;) = Vpw S(2w/a)V:0:(2;), which is
indeed proportional to the wall velocity.
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6.1 Current-induced domain wall motion

magnetization in the system. These quantities translate to our one-dimensional system as j —
Ipw/a?, P = -1 (half-metal) and M, — 2upS,/a® where S, = 1+ (2 — pp)/2 = 1.125 (in
units of h and py = 1.75) is the total onsite spin (localized plus conduction band). Hence we
obtain approximately V,q/Ipw =~ a/eSs = 2.743 x 10'8a/C. This value is different from our
calculated slope [Fig. 6.7(b)] by less than 1%. This spectacular agreement suggests that the
main diving torque for the DW motion we simulate is indeed adiabatic. Because of the different
dimensionality of the systems we are comparing, we cannot say accurately what is the contribution
of the non-adiabatic torques in our simulations but apparently they are small compared to the

driving adiabatic torque which was also suggested by the level of spin accumulation.
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Figure 6.7: Dependences of the average steady-state current Ipw and the corresponding average
DW velocity on bias AV (J =1eV, J, = 5meV) or on J, J, and z,, for fixed AV = 0.1 V. Same
symbols correspond to same calculation. In particular, the variation of the arguments z, (DW
width) in panels (d,h) and Ipw in (g) are generated by changing the anisotropy J, in (c). Arrows

are pointing to calculations with the reference set of parameters (6.1.14).

Next we examine the dependence of the current and the DW velocity on the parameters in our
model. We vary J (or J,) with respect to the reference state (6.1.14). Dependences of both current
and velocity on J [Fig. 6.7(b,f)] show some peculiarity around the critical J of the transition to
halfmetalicity — a dip and a plateau, respectively. In the half-metallic regime, however, they both
saturate. That is where our reference state is. The change of the anisotropy .J, with respect to the
reference state affects the width of the wall zy, [see Fig. 6.3 (c¢)]. Both Ipw and Vpw appear rather

insensitive to the variations of z,. We observe an overall change in Vpw of less than 5% and less
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than 2% in Ipw for a nearly fivefold increase in the DW thickness [Fig. 6.7(d,h)]. The fact that
Vbw (Ipw ), obtained by the variation of the anisotropy, is almost linear [panel (g)] suggests that
the main effect of the different J, is on the conductance of the chain. We find that thinner walls are
more resistive and because of the decreased current move slower. Though the overall variation in
the conductance is small, the drop for thin walls is relatively steep and suggests non-adiabaticity,
i.e. the inability of the conduction electron spins to follow the local spin direction while traversing
the wall [119]. The adiabaticity is controlled by the s-d exchange parameter J. In our reference
case (J = 1eV) corresponds to a half-metallic state and we find that Ipw and Vpw are quite
insensitive to a further increasing J (enhancing the adiabaticity) for a fixed anisotropy (i.e. DW
width) [panel (b,f)], meaning that we our reference state is already close to the adiabatic. Again,
what we see is a very little difference in the conductance for the range of wall widths we are working
with (varying by a factor of 5). Both Vpw and Ipw show a tendency to saturation with the DW
thickness and our reference state is on the verge of the saturation thickness, where the transport
-is-adiabatic:

We now take a closer look at the details of the time evolution of walls with different thicknesses.
In particular, we compare our reference case [Eq. (6.1.14), relaxed width is z,, = 2.2a] to a more
than 4 times thicker wall with zy, = 9.1a obtained for J, = 0.25meV. Here the overall length
of the chain is increased (from 200 to 300 atoms) to allow for longer-lasting simulations and all
remaining parameters (apart from anisotropy and voltage) are as in the reference case. The real
space evolutions of the local spins in the two cases are presented in Fig. 6.8 where the initially
applied bias is AV = 0.2 V. The length of our simulations is still limited by the accumulation of
numerical error during the time integration but we can safely reach times of about 2 ps (8 x 10°
timesteps) during which the DWs appear to be moving rather uniformly. In both cases we see a
very pronounced spin-wave pattern developing in time and the onset of deformations in the shape
of the thicker wall in the initial stages of the dynamics (see Fig. 6.8). Interestingly, spin-waves
develop at a much earlier stage in time for the thin wall than for the thick one. This indicates
that the current-induced torques on the wall clearly depend on its width. There are qualitative
differences even for the small range of widths investigated here. The thicker wall firstly deforms
[see Fig. 6.8 (f)] by wriggling out of plane until some critical point which is the onset of the
spin waves. This suggests that indeed non-adiabatic effects (like the spin waves) arise from the
increased curvatures in the local spin texture [17].

Another non-adiabatic effect we find is that thin walls (2, < 3a) show a tendency to precess
rigidly about the z-axis. This is illustrated in Fig. 6.9(e) where the time evolution of the S* of the

classical spins in the middle of the domain wall is fitted to cos(wt). We find that the precession rate
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(©) y i_ (d) LR i_

Figure 6.8: Real space and time evolution of two DWs of different width. The left-hand side pair
of panels describe a thin DW (z,, = 2.2a obtained with J, = 5meV), while the right-hand side are
for a thick one (zy = 9.1a obtained with J, = 0.25meV). Panels (a,b) represent S7(t) and (c,d)
represent the temporal variation of S¥ in the vicinity of the wall (we define ASY = Sf”(t)“. _SZ,(O)H
for i € [—30,30]). The magnitude of these quantities is specified by individual grey-scale bars. The
bottom panels (e,f) depict the DWs at 0.75 ps. The initially applied bias is AV = 0.2V and the
solid black lines in the panels (¢) and (d) mark the exact DW centre zo(t).
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J,=5meV, z =2.2a J,=0.25meV, z,=9.1a

T H T " T y T

Tt | TR T H T
' '

2

0

(=)
II'III

~ . 0.999cos(0.114) |« /4]
0.92 =~ é 0._9981C08:(().2IOI)§

4_ T f T . T v T i
th 3F(@): :
S 7 % 2
o : :
~2 1L i
Ley R s
0 :
3 :
2
'10 L N "0 a5 1 T )
t (ps) t (ps)

Figure 6.9: Time evolution of (a,b) the position of the DW’s centre z; along the wire, (c,d) the
average velocity Vpw, (e,f) the transverse local spin component S* at zg, (g,h) the total transverse
spin in the system SY | = > .((¢¥); + SY) and (i,h) the variation of the number of itinerant
electrons N, with respect to the equilibrium. All the quantities are plotted for two different bias
voltages, 0.1 V and 0.2 V. The left- and right-hand side panels represent thin and thick DW,
respectively. Note that zg is defined such that SZ = 0, where S*(z) is an interpolation of {S7}

with the classical DW-profile function (equation 6.1.8). SZ is also the interpolation of {S}}. The
fluctuations in (c), (d), (e), (f), (g) and (h) correlate to the spin wave patterns in Fig. 6.8.
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6.1 Current-induced domain wall motion

w scales almost linearly with the applied bias voltage. In contrast thick walls develop slight out-
of-plane deformation with the spins in the centre remaining in the z-z plane [Fig. 6.9(f)]. Apart
from that, both types of walls move rather uniformly in time, with very similar velocities. One
could speculate that the thin wall decelerates slightly although the timeframe of our simulations
does not allow us to conclude whether or not the actual average DW velocity changes in time in
the long time limit.

Evidently, both the DW velocity and the angular velocity of precession are characterized by
large fluctuations. These are clearly correlated as the oscillation in the velocity match those of
the transverse spin in the DW centre (see Fig. 6.9). They also both correlate with the spin-wave
pattern illustrated in Fig. (6.8). Hence, we attribute variations in both the DW velocity and
precession angular velocity to spin-wave emission. Importantly, in our computational scheme spin-
waves are absorbed at the wire boundary. Therefore spin-wave emission provides a mechanism for

spin relaxation. This will be further discussed in the next section.
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Figure 6.10: Trajectories in spin-space of the non-equilibrium itinerant spin accumulation defined
as ASpe(t) = Sne(t) — Sne(0) where Spe(t) [Eq. (6.1.15)] is the total non-equilibrium itinerant
spin at time ¢ for the thin (a) and for the thick wall (b) at two values of the initial bias voltage
AV = 0.1V and 0.2 V. These are the same simulations as those in Fig. 6.9. The origin corresponds
to the tip of the spin vector at ¢t = 0. In panel (c) are the extracted plots of the averaged over the

whole simulation DW velocity versus the averaged current at the wall.
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We also find a small electron-number and transverse spin-density accumulation which scales
with the bias and is more pronounced for the thinner wall [Fig. 6.9 (g,h,i,j)]. In order to isolate

this effect we calculate the trajectory of the non-equilibrium spin in the system which is defined as

Spe=) S¢—8) (o} (6.1.15)

and plotted in Fig. 6.10 is actually the time variation of this quantity AS,c(t) = Spe(t) — Spe(0).
The factor of 8 before the total electronic spin in Eq. (6.1.15) is due to the equilibrium ratio of the
onsite spin magnitudes — local spin h and itinerant spin-density £/8 for a band-filling of 1.75¢/atom.
Thus AS,e(t) represents the accumulated non-equilibrium itinerant spin during the simulation.
We find that after the initial, mainly longitudinal (along z), spin disruption until the steady state
is established, AS,.(t) falls into a precession very much confined to the z-y plane. Hence the
accumulated spin during the current-induced DW motion is primarily transverse and it scales with
the bias. With respect to this observation the two walls are very much alike. The difference is
mainly in the amplitude of precession of AS,.(t) about the y-axis which is perpendicular to the
plane of the wall and we find higher amplitude oscillations for the thinner (and expectedly more
non-adiabatic) wall.

In Fig. 6.10(c) are the plots of the averaged DW velocity Vpw against the average current Inpw
at the wall during the whole simulation for each of the two walls. We again find a confirmation for
the higher level of spin-transport non-adiabaticity for the thin wall as it is slower for nearly the
same value of the current, which suggests a reduced efficiency of the STT mechanism. The relative

difference in the slopes is about 8%.

6.1.3 Comparison with LLG equations

In this section we compare our combined quantum-classical simulations with the analytical
predictions of Zhang and Li [135]. We recall that the Zhang and Li theory is derived from the s-d
model by integrating out the electronic degrees of freedom, intrinsically coupled to a spin-relaxation
bath, in the linear response limit. The resulting magnetization dynamics is then driven by two
current-induced torques, one originating from the adiabatic dynamics and one originating from
the non-adiabatic spin-relaxation effects. The Landau-Lifshitz-Gilbert (LLG) type of equation of
motion derived by Zhang and Li [135] reads

dSi 1l % 7
5 :ﬁ JSZ SiXSj+2Jz(Si‘z)(sixz) +by

S, 0S; JS;
oY +CJSi X E +081 X E A (6116)

Jj€nnli]
where the last three torques are respectively the adiabatic term, the non-adiabatic one and the

phenomenological Gilbert spin-damping term. We have then carried out numerical simulations of
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Figure 6.11: Results from simulations of a DW in a 400-atom spin chain modelled by Eq. (6.1.16)
for different values of b, ¢; and «, listed in the table. Plots from left to right represent the time
evolution of the DW velocity (scaled by b;), out-of-plane (y) local spin component at the DW
centre and relative DW width.
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Figure 6.12: Local spins SY evolutions in the colour-framed cases in Fig. 6.11 above. Magnitude
is colour-coded (purple to red). The actual values at the DW can be deduced from Fig. 6.11.
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the equation (6.1.16) investigating the torque-scaling constants by, ¢; and « over a rather broad
range. Our simulations are in some sense similar to those carried out by [89]. The results of
those simulations are summarized in Fig. 6.11. As reference values for the various parameters we
consider by = 5km/s, ¢; = 10_2bj (66] and o« = 0.1. The value of b is actually chosen to reproduce
similar velocities as the ones from our reference quantum-classical simulation [Eq. (6.1.14)] where
Vbw =~ 20a/ps~ 5 km/s for a = 2.5A.

Bearing in mind that our simulations effectively inspect only the short time-scale region (up
to 4 ps) and that a thorough analysis is difficult, we can still conclude that the adiabatic torque
is indeed the one driving the DW motion, at least at the beginning of its development. This is
demonstrated by the fact that whenever b; = 0 the DW does not move. Such a dynamics is in
agreement with the quantum-classical simulations and with our previous observation that even for
small DW thicknesses the electron spin-evolution is to a great extent adiabatic. The role of the
non-adiabatic torque of Zhang and Li’s form is instead more complicated. In general it drives the
-DW-precession (see SY (t)-in-figure 6.11). Moreover for rather large values of ¢; it generates DW .
deformation and spin waves emission [see the (0, 10,0) case in Fig. 6.12(c), where spin waves are
excited in the second half of the simulation|. A similar effect is produced by the spin-damping
term and indeed we observe situations where the damping and the non-adiabatic torque produce
opposite dynamical evolution [see the (1,10, 1) case, where the DW precession is massively reduced,

compared to the (1,10,0) and (1,0,1) cases where it evolves in different directions].

6.1.4 Summary on current-induced DW motion

We have investigated the current-induced DW motion within an time-dependent atomistic model,
which in fewest words can be described as an open-boundary quantum-classical spin-dynamics. In
this model the total spin is locally conserved throughout the system, apart from the boundaries,
where phase-breaking and spin-relaxation takes place. As there is no explicit spin-relaxation mech-
anism in the interior, the only source of non-adiabaticity at the wall (or misalignment between the
local and the itinerant spin) thus comes from the dynamically evolving spin-texture. As predicted
by a few authors [17, 126, 131] non-adiabatic torques can arise from the mere "sharpness” (see Ref.
[131]) of the wall, determined by non-negligible second gradients in the spin angular distribution.
These effects decay with the width of the wall and the different models predict different powers in
the inverse power law of this decay ranging from -1 to -5 [17] or even an exponential decay [131].

The advantage of our simulations is that they are based on fully quantum description of the
itinerant electrons, there are no assumptions for the spin density distribution, no linear-response

approximation and the starting texture of the wall is self-consistently relaxed. The disadvantage is
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6.1 Current-induced domain wall motion

the computational cost and for this reason we restrict ourselves to systems of reduced dimensions
with at most ~500 atoms and simulation times of a few picoseconds. For these times it is hard to
extract information on the long-term behavior but we can semi-quantitatively analyze the processes
that occur at the beginning of the current-induced dynamics. The spatial-scale we cover allows us
to look at the medium-width walls which are too narrow to be treated in the adiabatic (diffusive)
regime, but still not exactly point-like objects to be treated as such from a scattering viewpoint.
We consider a range of DW widths between a few and a few tens of atomic spacings.

The results of comparing the current-induced dynamics of two walls that vary in size by a
factor of four clearly demonstrate the presence of the non-adiabatic spin-transfer torques. Our
aim has not been to make quantitative predictions but more to compare relative quantities for the
two cases (our thinner wall is actually only a few atomic spacings wide, i.e. on the verge of being
point-like object) and focus on the microscopic mechanism and the evolution of the non-adiabatic

torque. Our main findings are that

e in both cases DW velocity scales linearly with current up to very high currents (~ 5 X
10" A /m? for typical interatomic distances of 2A). The slopes are in fact very close to the
one predicted if only the STT adiabatic torque was present [66] (though this is only an
estimation which relies on the scalability of current-density to reduced dimension). However
the slope of Vphw (Ipw) for the “thicker” wall is systematically higher by about 8%, indicating
the better efficiency of the STT effect. This is, however, a very small variation, given the

difference in the thicknesses of the walls.

e non-adiabatic torque generates spin waves, which is in agreement with the predicted oscil-
latory spatial dependence of that torque [131]. These occur much sooner for the “thinner”
wall. There appears to be a critical point in the dynamics of the “thicker” wall after which
the spin waves start to develop. During the pre-spin-waves dynamic the “thicker” wall is

deformed by the STT.

e we can extract directly the non-equilibrium itinerant spin-density accumulation and map
its trajectory. We have found that in both cases this is predominantly transverse. This
quantity seems to precess about an axis nearly parallel to the chain with an increasing in
time amplitude. In fact this amplitude scales with the magnitude of the current and is higher

for the “thinner” wall.

Finally, we point out that further analysis is needed for the law of decay of the non-adiabatic

torques with the increase of the thickness of the wall to be extracted or for a functional dependance
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of Thonaa on the local spin texture to be deduced. It has been suggested [106] that higher-order
torques in the gradient expansion of the local magnetization can be those responsible for the
deformation of the wall and the Zhang and Li torque is just the first order in this expansion.
Though we only observe the non-adiabatic effects related to the abruptness of the wall, we find
that, at least in the short-timescale range (~4 ps), the non-adiabatic torques upon the wall on the
verge of the atomic-scale abruptness have a minor effect on its average velocity. They, however,

cause DW precession, deformation and spin-wave generation.

6.2 Spin motive force

6.2.1 Background and concepts

In the previous sections we have investigated how an electric current can affect the magnetiza-
“tion landscape of a magnetic nano-object. Here we explore the opposite effect, namely whether or
not a driven magnetization dynamics can generate an electrical signal. Such an effect has been re-
cently predicted by Barnes and Maekawa [12], who have proposed a generalization of Faraday’s law
to account for a non-conservative force of spin origin. This arises in systems with time-dependent
order parameters as a result of Berry phase (BP) accumulation [18]. As an example they have
considered a DW, formed in a finite ferromagnetic wire and precessing about a static co-axial ex-
ternal magnetic field, i.e. a magnetic system similar to those investigated in the previous sections.
They demonstrated that in the adiabatic limit a constant potential shift A¢ is generated between
the two ends of the wire. This is directly proportional to the angular frequency of precession of

the wall w,

A¢ = gw. (6.2.1)

Moreover, if the ferromagnet is described by the Stoner mechanism A¢ exactly cancels the potential
produced by the Zeeman interaction. Such a potential, described as a spin-motive force (SMF),
has been recognized previously in the context of the Aharonov-Casher [36, 75] and Stern’s [97]
effects. These are all manifestations of BP related phenomena, where holonomies arise as a result
of a parallel transport of some kind [4]. The latter does not need to be a quantum effect, another
example being the classical Foucault pendulum [128].

In what follows we first demonstrate computationally the result of Eq. (6.2.1) through time-
dependent quantum-classical simulations of an finite atomic wire incorporating a precessing DW.
Then we also present an analytical classical argument for the driving mechanism of the SMF in this

system. Our approach has the benefit of being “Berry-phase-free” in the sense that it does not need
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to call for a Berry phase argument to explain the SMF and demonstrates the Newtonian nature
of the conversion of the magnetic response of electronic spins into an electrostatic voltage drop.
This is further illustrated with classical dynamical simulations for a system of classical magnetic
dipoles in a rotating magnetic field mimicing the DW. In addition we show that if one abandons the
Stoner model and accounts for a non-spin component of the magnetic moments forming the DW,
the cancellation between the SMF and the Zeeman potential predicted by Barnes and Maekawa is
incomplete. This leaves behind a non-zero net SMF, which can be experimentally measured.

Our simulations are also in this case based on the quantum-classical scheme and the s-d model
both presented in section 5.2, and we use the Hamiltonian of equations (5.2.1) and (5.2.5). The
parameters used for the simulations here are y = —1 eV, pp = 1.75, U = 7 eV, J = 1 eV,
Js = 0:5 meV, gsi=2,'a = R; iy = 2.5 A. Note that here we consider interacting electrons and
U # 0, which facilitates the definition of the intrinsic Coulombic potential in the system. N = 400
atoms so that the chain is much longer than the typical width of the relaxed DW (about 10 atomic
spacings). The values of x, J and p(g are chosen such as to produce a halfmetallic system with a

completely filled spin-up band, which lies about 0.5V below the Fermi level.

X

Figure 6.13: Different prospect views of the DW formed by the local spin {S;} in the middle of a
monoatomic chain. An external magnetic field, applied along the wire, induces a clockwise rotation
of the DW about the z-axis.

The time-dependent simulations proceed as following. Initially the set of classical spins {S;}(®)
is prepared in a DW arrangement (see Fig. 6.13) and relaxed self-consistently in the electronic
environment. At time t = 0 the external magnetic field B = Bz is switched on along the wire

and a new initial electronic state is self-consistently determined for {S;}(?). The system is then
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propagated according to Egs. (5.2.8).
The electrostatic potentials Vi,g), developing away from the DW on the left(right)-hand-side
of the chain, are computed as the spatial (over two identical sets L(R) of Ny atoms at each wire

end) and temporal (over the evolution time T') averages of the onsite potential, i.e.

”Aq" (6.2.2)

Vi (T) = 1/ (TNY) /dtz

1€JL
where N is the total number of atoms and Ag, is the excess electron charge on the n-th site.
We investigate the stationary voltage drop AV caie = [VL(T) — Vr(T')] that builds up across the
system at the late stages T of the simulation. In the limit of local charge neutrality (U — oo) this
potential build-up corresponds to the negative image of the energy landscape in the system. We

anticipate two contributions to the overall potential drop
AV = A¢ — gepusBle, (6.2.3)

where the first term is due to the proposed non-conservative SMF from Eq. (6.2.1), while the
second is due to the Zeeman split. In order to extract the effect of the SMF itself in the first set

of simulations we have considered g. = 0, so that only the first term in Eq. (6.2.3) remains.

6.2.2 Quantum-classical simulations

In Fig. 6.14 are the calculated time evolutions of some representative dynamical quantities. The
DW in these simulations, driven by some large magnetic field, undergoes a steady-rate clockwise
rotation (precession) with an angular frequency w about the direction of the field [see Fig. 6.14(a)]
and oscillates gently about a center zg, slightly displaced to the left [see Fig. 6.14(b)]. Note that
the wall does not propagate, since there is no net current or dissipation in the system. The steady
rotation generates a SMF manifested in a potential drop with small oscillations that correlate with
those of the DW centre (since the projection of the total spin in the system on the direction of
the field is conserved) and which has an asymptotic time-averaged value AV, [see Fig. 6.14(c)].
The dependence AV, c(w), obtained by sweeping the external field between 20T and 500 T, is
linear [see Fig. 6.15(a)] with a slope heae = 0.606€eV fs = 0.92h. Note that the extremely large
magnetic fields employed in our simulation are only instrumental and facilitate a fast DW precession
and therefore a higher SMF generation. This is necessary to guarantee that our time-dependent
simulations do not run over long times, and therefore become numerically unstable. Importantly,
our system remains adiabatic even at such large rotation frequencies (we elaborate on this later in

this section).
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Figure 6.14: Time evolution of some dynamical variables at B = 100T and for g. = 0: (a) S,
and S, local spin components at the DW center z,, showing the clockwise rotation of the DW
about the z-axis. The angular frequency w of the DW precession is extracted by fitting S;(7') to
cos (wT'); (b) longitudinal displacement of the DW center zp; (c) averaged potentials Vi, Vg and
AVl (see text).
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Figure 6.15: Calculated SMF as a function of the DW precession and dependence of the slope
over the Coulomb parameter U for g. = 0 and gs = 2. (a) The calculated stationary AV depends
linearly on w with a slope hicale = 0.92h for realistic values of the parameters J and U; (b) hcalc

tends to saturate at the exact value of h with increasing U.
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The deviation of hcale from the exact i [from Eq. (6.2.1)] is studied with respect to the two
main assumptions which allow to identify the analytic result in Eq. (6.2.1) with our calculated
potential drop |AVialc| from Eq. (6.2.2): (i) the adiabaticity and (ii) the local charge neutrality,
which is exact only for U — oo. The first criterion is controlled by the value of J as in the limit
J — oo the system is perfectly adiabatic. In our previous analysis on the adiabaticity of the
current-induced DW motion (previous section) we found that the typical value of the s-d exchange
strength J = 1eV provides a predominantly adiabatic regime for walls of similar dimensions. Here
we have tested that increasing J ten times results in less than 1% improvement in ficyc/h. This
ratio, however, is found to be sensitive to U and it asymptotically tends to 1 as U is increased
[see Fig. 6.15(b)]. This result demonstrates the generation of SMF with magnitude given by Eq.
(6.2.1), originating from the precession of the wall, in DWs at the atomic scale and is, in some
sense, another confirmation of the adiabaticity of our model systems.

In reality, however, the effect of the applied magnetic field on the electrons cannot be switched
off.: We, therefore; return to Eq. (6.2.3) and rewrite it in the form

O L (1 & q-) L (6.2.4)

e gse 95/ e

Here ws = gsupB/h is the Larmor frequency of the local spins. The actual angular frequency of
precession of the DW w differs slightly from ws due to the exchange interaction with the conduction
electrons. In order to account for this effect, we have introduced in Eq. (6.2.4) an effective g
such that w = g&upB/h. We have then verified Eq. (6.2.4) numerically by varying the value of gg
(see Fig. 6.16). The effective value g§ is determined by the calculated precession frequency of the
wall (Fig. 6.16¢). It is equivalent to gs = g§ = 2 only when g. = gs = 2. In any other case the
conduction electrons act either as a friction (g. < gs) or as a driving force (g > gs) to the DW
rotation. First manifestation of such effect was observed in Section 5.3.1, where we have shown an
increase of the spin-wave dispersion band-width as a function of the exchange parameter J (see
Fig. 5.6). Finally we have again obtained a value of hcac & 0.92 h, identical to the previous finding
in the case g, = 0 for the same choice of J and U.

Apparently, the voltage drop across the system fully disappears when gs = g = g., as derived
in Ref. [12] for the Stoner model. However, in s-d systems, where g might as well carry some
orbital component, this is not the case and the SMF manifests itself as a measurable quantity.
This could be used to determine the effective g-factor of the localized spins. In particular if the
DW precession is blocked, the measured drop would be just equal to the Zeeman split, i.e. a
measurement could determine if the wall is precessing or not. In the remaining part of the Chapter

we discuss whether or not the mechanism for the SMF is expected also for a classical system.
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Figure 6.16: Computational demonstration of Eq. (6.2.4) for g. = 2 and a set of values gs = 0.5-+3.
Panel (a) shows the linear dependence of the stationary potential drop AVi,. on the angular
precession frequency w; (b) is used to determine the effective g-factors g& and they are compared
to the input values gs in (c). Note that g5 = gs for g5 = g = 2. Panel (d) demonstrates the
validity of Eq. (6.2.4).

6.2.3 Purely classical simulations

Instead of quantum electrons (as in the previous section) we now consider non-interacting
classical particles with an intrinsic angular momentum s (|s| = s = h/2) and with the electron

mass m.. These are trapped in a one-dimensional box, immersed in a magnetic field of the form
b(z,t) = b(cos(ft)sin(6.), sin(ft)sin(f,), cos(f.)) (6.2.5)

Here 6, = 6(z) is chosen such as to mimic a continuous DW structure !, , rotating rigidly with an
angular frequency f. In this classical problem f is analogous to w from the quantum simulation,
though f > 0 corresponds to an anticlockwise rotation about the longitudinal axis. The classical
Hamiltonian of the spin-particles (or classical magnetic dipoles) in the field b is analogous to that
of the quantum electrons interacting with local spins {S;},

2

2Me

D'(class = Y St b(z7 t) y (626)

!The energy-minimising angular distribution of a planar DW in one-dimensional anisotropic Heisenberg spin
model is 0, = 0(z) = 2arctan (exp((z — z0)/zw)), where zg is the position of the wall and z, is its width.

2Note that such magnetic field is irrotational, i.e. it cannot be derived as a curl of a vector potential. This means
that, strictly speaking, our predictions are not experimentally verifiable. In this case b is simply instrumental, used
to map our quantum simulations onto classical ones.
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where v is the coupling strength (replacing J of the quantum case) and p is the canonical momentum

of the particles. Then Hamilton’s equations of motion [3] are
meZ =vs-V,b(z,t), $§=19sx b(z,t), (6.2.7)

where V, = (0/02)s¢-

We consider the limit of large b, in which the dynamics of the spin-particle becomes adiabatic,
in the sense that s remains closely aligned with b and its precession about b is by far the fastest
motion in the system. However, in order for s to follow b(z,t), there must always be some
residual misalignment [15] between the two. This is necessary in order to generate those torques,
which, when averaged over the quick precession of s, enable s to keep up with b(z,¢). This small
misalignment, marked by the angle ¢ in Fig. 6.17, is also the origin of the effective Newtonian
force on the spin-particle that manifests itself as SMF.

The cartoon in Fig. 6.17 depicts s and b at some instance of the particle’s migration and helps us

.to calculate the forces acting on the classical dipoles. This is achieved by differentiating the relation .
between the angles at the bottom vertex of the tetrahedron cosa = cos ¢ cosf — singsinf cos 3
under the condition s, = ssingsing = const (which corresponds to keeping s and ¢ fixed). In

the adiabatic limit ¢ — 0, we obtain

V.p = —cos(B) V.0. (6.2.8)

Figure 6.17: A snapshot of spin-particle’s passage through the DW-like region of b(z,t).

From Eq. (6.2.7) the longitudinal force F, and the torque 7' = |T| = vs,,b are related by
F, = —v|s||b|sin(¢)V,p = =TV, =15V ,0, (6.2.9)
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where Eq. (6.2.8) has been applied and the full torque 7" decomposed into two orthogonal torques
with magnitudes 77 = T'sin # and T = T cos 3 (see the inset of Fig. 6.17).

In the adiabatic regime (s, < s), we average the two components of the torque over the fast
precession of s about b. These averaged torques T; and 75 must be driving the two separate
motions of the spin as the particle crosses the region of the rotating magnetic field. A rotation in
the b-z plane enables s to keep up with the spatial variation of b, and another rotation in a plane

perpendicular to the z-axis which makes s follow the anticlockwise precession of b, and thus
Ty ~83V,0, Thm—|sxf|=—sfsind. (6.2.10)

If one applies Eq. (6.2.9), the averaged linear force upon the spin-particle in the rotating
magnetic field can be written as F, = T3V .6 = sf sin (0)V .6 and therefore the work done by the
rotating DW-like field (or the SMF) on the spin-particle for one traversal (left to right) is

ZR s
Wi r — /F—zdz = —3f/sin(9)d9 = -2sf, (6.2.11)
0

zL
where zp, g are the leftmost and the rightmost position of the spin-particle on the wire far from
the region of spatial variation of the field. This result has been derived with the single assumption
of adiabaticity. The adiabatic condition is s, < s and for it to hold it is necessary that the two

components of s, averaged over the rapid precession, simultaneously satisfy the latter, i.e.

Ti/vb=svV,0/yb < s, (6.2.12)

»
A}
I

3020 = Ta/yb=sfcos(6)/yb<s.

Thus, considering the maximum attainable values of the right-hand sides and since max (V.0) =

1/zy, the necessary conditions for adiabaticity are
tw< fL, €A (6.2.13)

where ty, is the time it takes for the spin-particle to cross the region, where the magnetic field b
changes spatially over the width zy, and f;, = b is its Larmor precession frequency about b.

In order to mimic the typical strength of the exchange interactions (~ 1eV) in our classical
simulations, we have used v = 2up/h and b = 10° T. We have simulated an ensemble of N = 700
noninteracting spin-particles, confined in a 400 A-long atomic wire. The particles start at random
positions within two regions near both wire ends and with velocities identical in magnitude (vy =
8 A) but random in sign. The DW-like region has z, = 5 Awhich is similar to the z,, fitted to the

relaxed DW profile in the quantum simulation (in units of atomic spacing) and the typical passage
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Figure 6.18: The spatial particle imbalance AN/N and the potential energy difference AW as
a function of the angular frequency f of rotation of the DW-like field. The insets represent the
change of the velocity and the longitudinal component of the spin of a particle for one left-to-right
(solid) and one right-to-left (dashed line) traversal of the wire for f = 0.2fs™".

time is ty, ~ 1 + 2fs. We have used frequencies |f| < 0.2fs~'. Since our fi, = vb = 17.6fs™ ', these
parameters well satisfy the adiabatic conditions of Eq. (6.2.13).

We have integrated numerically Egs. (6.2.7) and found a stationary difference in the number
of particles to the left and to the right of the DW-like region, ANcae. = Nr — Ny, developing in
time and depending linearly on the frequency f of rotation of the field (see Fig. 6.18). By energy

conservation, AN¢,. converts to a potential energy shift
AWesic — 2'1716U(2,ANC310/N (6.2.14)

and the latter is a manifestation of the SMF work —Wp,_ g, derived in Eq. (6.2.11). Eq. (6.2.14),
relating of particle imbalance to SMF, is only valid if the particles have enough initial kinetic
energy to traverse the wall from both sides, which, from one of the sides, means climbing the SMF

ramp. Thus the requirement

meva /2 > 2sf (6.2.15)

sets a lower limit on the initial velocity of the spin-particles in our simulations, for a given f.

Within the adiabatic regime the dependence of AW, on f is found to be linear with a slope
of (0.643 + 0.012) eV.fs (see the right-hand side scale of Fig. 6.18) and agrees with the analytical
prediction of 2s = h = 0.658 eV .fs in Eq. (6.2.11).
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6.2 Spin motive force
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Figure 6.19: Plots of the SMF as a function of the DW rotation frequency in units of the Larmor
precession frequency of the itinerant spins about the local field. We present the case of dynamics
away from the adiabatic regime for both the quantum [panel (a)] and the classical [panel (b)]

simulations. Dashed pale lines in both panels correspond to a slope of 1.

The directions of the SMF observed in the quantum and the classical simulations agree with
the one set by Eq. (6.2.11), i.e. the SMF is opposite to the direction of the angular velocity of the
DW rotation if the itinerant spins are aligned parallel to the local field. Note that with the choice
of the band structure in our quantum simulations the effect is carried by the down-spin, so that
for all other parameters being equal the sign of the SMF is opposite to that of the classical model.
In general, the direction and magnitude of the voltage drop is found to scale with the Fermi level
spin-polarization n = (D — D|)/(D1 + D)), being D;(|y the spin-up(down) density of states at
the Fermi level, and w as Vi, g = —nhw/e, where w > 0 corresponds to an anticlockwise rotation
of the DW (spin) about the z-axis. For the half-metallic case studied here n = —1.

A further similarity between the quantum and the classical simulations, pointing to the classical
origin of the “quantum” SMF, is that the quantum effect relies strongly on the adiabatic conditions
set by Eq. (6.2.13). As illustrated by Fig. 6.19(a) the effect dies out completely above the Larmor
precession frequency wy, = J/h of the exchange coupled spins for any choice of band filling. The
threshold in the classical case below fi, [see Fig. 6.19(b)] is an artefact of the classical model and
occurs at f = f. = (m.v3/2)/h as determined by Eq. (6.2.15). Once again, the classical result is
the same in magnitude SMF A¢ = hw/e, where the h factor comes from the magnitude s of the

intrinsic angular momenta, adopted to represent the electron spin, i.e. 2s = h.
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6. DYNAMICS OF A SPIN DOMAIN WALL COUPLED TO ITINERANT
ELECTRONS

6.2.4 Summary on the spin-motive force

In the forgoing Section we have demonstrated computationally the presence of a spin-motive force
in a quantum-classical system with a spatially and temporally dependent order parameter and our
calculated SMF has almost the same magnitude as the one described by Barnes and Maekawa [12].
In fact, the small deviations from the expected hw are a measure of the level of metallicity and
spin-transport adiabaticity of the system. In addition, we have considered the more general case
of an order parameter of mixed spin and orbital character in which case a measurable voltage drop
across the system could indicate the presence of the SMF.

We have also presented a classical argument for the mechanism of the SMF in the adiabatic
regime and specified the necessary conditions for the so-important adiabaticity. The latter analysis
is supported by purely classical simulations of particles with intrinsic angular momentum in a
magnetic field with the spatial and temporal properties of the order parameter in the quantum
case. The result is the same in magnitude SMF A¢ = fw/e, where the h factor comes from
“the magnitudé s of the intrinsic angular momenta, consideréd to représent the électron spin; i.e. -

25 —1h.

140



Chapter 7

Conclusion

The aim of this Thesis has been to develop a description of spin-dynamics at the atomic level and
address spin-torque related phenomena in mesoscopic systems under current-carrying conditions.
The phenomenology investigated here, stands at the borderline between the typical molecular spin-
tronics problem of quantum transport in low-dimensional molecular junctions [33] and that of the
current-induced spin-torque effect, for instance, in magnetization-switching spin-valves. Our spin-
dynamics scheme in itself is based on the spin-analogy of the Born-Oppenheimer approximation
[7, 6] and is very close in spirit to the electromigration problem in mesoscopic systems [95].

In Chapters 2 and 3 we focussed on the quasi-static approach to the spin-dynamics in a
Landauer-type ballistic junction, where the two leads have opposite spin polarization and they
are connected by a monoatomic spin-chain. We used a two-band collinear-spin TB model for the
electronic structure and quasi-statically mapped out the activation barriers for thermally-activated
DW migrations. We found a small, but non-linearly scaling with the bias, current-induced increase
of the barrier heights. Typical barrier heights were of the order of 50 meV. We found a significant
spin-filtering effect in the form of a strong dependence of the conductance on the microscopic spin
arrangement inside the constriction and concluded that thermally activated spin-flips in the junc-
tion may lead to random telegraph noise in the conductance measurements. We also investigated
the effect of band-hybridization and disorder and found that in both cases at any finite bias the
activation barriers are asymmetric, promoting a pinning of the wall. The problem of the conser-
vativeness of the current-induced torques was addressed numerically and the answer was negative,
meaning that quasi-static spin-torques actually perform work for closed-loop spin-transitions on the
expense of the battery. Finally, we introduced mechanical forces in the same framework and found
that the magneto-mechanical interplay on the atomic scale is much stronger in one direction, being
that structural rearrangements affect the spin-dynamics but not the converse. We attributed the

relative insensitiveness of the atomic structure with respect to microscopical spin-rearrangements

141



7. CONCLUSION

to the fact that interatomic forces depend on the total charge density of the current-carrying
electrons, not on their spin polarization.

In Chapter 4 we made a comparison between an empirical TD model of steady-state ballistic
transport on an augmented finite system and the self-consistent NEGF description of the cor-
responding full-scale Landauer problem. We applied it to a model system, featuring multiple
steady-states, degenerate in the static approach and found that the time-dependent method is able
to self-select the energetically-preferable one. We also demonstrated that under certain assump-
tions about the binding of the device to the “open-boundary” capacitor and in the limit of “large”
capacitor this empirical TD approach is identical to the Landauer steady-state.

In the last two Chapters (5 and 6) we presented and discussed the theoretical foundations of
fully non-collinear time-dependent spin-dynamics simulations for both open and closed systems.
This was also based on the adiabatic spin-approximation and constituted an Ehrenfest MD for spin.
In particular we approached a range of phenomena including the calculation of spin-wave spectra,

. dynamical indirect exchange of localized spin in metallic medium and finally the current-induced .
domain wall (DW) motion and spin-motive force generation. We demonstrated how spin-dynamics
can provide unique insights into the device behaviour, beyond what is possible with steady-state
quasi-static approaches for the type of systems in focus. For instance, this can be used to investigate
non-adiabatic (in terms of the local alignment of the itinerant spin to the localized spin) effects in
the case of very narrow (a few lattice spacings) magnetic DWs. Other dynamical effect, accessible to
the T'D simulations, was the demonstrated generation of a spin-motive force by the precessing DW.
This was further analyzed from a classical perspective and relevant parallels were demonstrated.

Although our calculations have been carried out in the framework of the self-consistent tight-
binding method (including mean-field Hartree interactions), these are conceptually extendable
to more general first-principles approaches such as the time-dependent density functional theory
(TDDFET). A development in this direction would be the natural extension of the work presented
in this Thesis and this is the objective of on-going consideration. We envision that these methods
may soon become an invaluable tool for investigating spin-dynamics in nano- and atomic-scale

devices.
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Appendix A

Surface Green’s function for a
semi-infinite cubic lattice with a

finite cross-section

All transport-relevant information about a perfectly periodic semi-infinite lead with a finite cross-
section is in its surface Green’s function G (a more formally-correct term for this object would be
surface Greenian operator). The latter, when projected on a grid of atomic orbitals in a tight-

binding (TB) fashion (see Appendix C for details on TB), is a matrix G — {G;;} = {G(Ri,R;)}

and R, representing atomic sites on the surface. Here we derive the analytic expression (3.2.16)
for the surface Green’s function matrix of a cubic-lattice semi-infinite lead within a single-orbital
nearest-neighbour tight binding model. This derivation follows the derivation in Ref. [110, 107]

and is based on the Dyson equation for the Greenian operator
€ TG veE (A.0.1)

A . =il
which describes the relation between the “unperturbed” Green’s function G° = {EI - Ho] and

the “perturbed” one G = [EI — HO - V] , where H is the unperturbed Hamiltonian, V is the

perturbing potential ! and we have omitted the E dependence for brevity.

INote that V need not be small for the Dyson equation to hold. Equation (A.0.1) can be obtained easily by

- A1 —1 "
substituting the [F}I - Ho] = { 70] into the expression for G.
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A. SURFACE GREEN’S FUNCTION FOR A SEMI-INFINITE CUBIC LATTICE
WITH A FINITE CROSS-SECTION

We firstly look at the simplest example — the surface ! Green’s function of a semi-infinite linear
chain. Let the sites in the chain be numbered starting from the end with number “1” as depicted
in Fig. A.1(a). We can write the Dyson equation only for the cluster of the two end atoms “1”
and “0” before and after they are connected [see Fig. A.1(b)| as if (only for this argument) “1” is

not connected to the rest of the chain

Goo Goi1 \ _ [ Goo G n Go Gy b % Goo Gox (A.0.2)
Gio Gu Gy G Gy GY X 0 G Gu )’ o

where y < 0 is the intersite hopping and the subscript 0 is for the Green’s functions before the two

atom cluster is coupled. It follows that

Goo = GgO e XcgoGIO 5 G = XG(I)IG()(). (A03)

Figure A.1: fAppl Schemes of semi-infinite cubic lattice structures: (a) and (b) represent an atomic
chain before and after the end atom “0” is attached. In panel (c) is a 3D structure with finite

cross-section and layers numbered similarly to the 1D chain.

If we bring back the rest of the chain into the discussion, as it extends to infinity, obviously

attaching the atom “0” to it would not change its end Green’s function and therefore Goo = GY,.

ISince it is a 1D case, it is probably more appropriate to talk about “end” Green’s function instead of a surface

one. Also we always consider the retarded (causal) Green’s function.
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Hence we obtain a quadratic equation for the surface Green’s function of the chain in terms of the

free atom’s retarded Green’s function G, and the hopping x
Goo = G + x°C (Guo)® , where GO = lim 1/(E — & +in) (A.0.4)
7]—)

as we consider a single level at some energy £y. The solution of Eq. (A.0.4) is

(E—&) £ V(E - &) —4x*

Goo(E, &) = - (A.0.5)
2x
with the following convention for the sign in front of the square root
—, for |[E—&p| < 2|x|
- ¥ —, for E > &y — 2 |x|
+, for |[E—E&p| >2|x| and E— &y <0 <:>{ G < Ey T (A.0.6)

—, for |[E— &y >2|x|] and E— &, >0

which are based on the requirements ! that Im [Gpo] < 0 and that Goo — G80 for x — 0 [110, 107]

&2 & £ +2Jy| E

Figure A.2: A cartoon of the sign convention in Eq. (A.0.6).

We now use this result for the chain [Eq. (A.0.5)] to derive the surface Green’s function of a
three-dimensional (3D) cubic-lattice semi-infinite lead [see Fig. A.1(c)]. Since there is an analogy
between the periodically repeating atomic sites of the chain and the transverse layers of the lead,
we only need to unfold the 2D degrees of freedom within each layer of N, x N, atoms. Let us
denote the single orbital on the site located at n = (n;,n.) on the [-th layer in isolation by |/, n).

Going into 2D momentum space, we have N, N, eigenmodes with wavevectors q = (¢, q.), such

that [107]
2 2 Lo Gznzm™ \ . [ gn.T
l,aq) = \/NI m 1\/Nz = HIXZ:I ngl sin (W) sin <Nz . 1) li,n) , (A.0.8)
IThe physically relevant choice between these two solutions is described in Ref. [110]. If the expression under

the square root is negative then the minus sign is taken as this provides for Im [Gg] < 0 (electron number density
is proportional to —Im(Gpg)). If the expression under the root is positive the sign is determined by the condition

Goo — Gy = 1/(E — &) for x — 0. To take the latter limit we rewrite Eq. (A.0.10) as

i [E - &)? - [(E - &0)* - 4x°?] 9 "
700 ,q) = o — .
2x2 [E—80)$,/(E—£0)2—4x2] E-&FVE-E)-HF E-ETFI|E-E&|

(A.0.7)

Now it is apparent that in the limit x — O the relevant solution is the one with the minus for E — & > 0 [in Eq.

(A.0.10)] and plus for E — &y < 0. This convention for the sign is illustrated in Fig. A.2.
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A. SURFACE GREEN’S FUNCTION FOR A SEMI-INFINITE CUBIC LATTICE
WITH A FINITE CROSS-SECTION

and eigenenergies

qzT q.m
= = — J - . A.0.9
€= &(a) = 2lxloos (52 ) - 2ixloos (527 ) (A09)

Then, within a nearest-neighbour tight binding model (homogeneous in all directions) for a

particular transverse mode q we define Gy (E,q) = <l, q ’G e q>. Analogously to the chain’s end

GF [see Eq. (A.0.5)], the surface GF of the lead for a given transverse mode ¢ is thus

E—&,+\/(E—E&;)2—4x2
GOO(E‘ q) = GOO(E, 80 — gq) — q ( q) )

(A.0.10)

and the relevant sign rule is as in Eq. (A.0.6) but with €, swapped for &,.

Finally, we convert the surface Green’s function back to real-space basis, using Eq. (A.0.8)
gmn(E) = Goo(E; m,n) = ¥, (0,m|0,q) Goo(E, a) (0, ql0, n) = (A.0.11)
= /ey e i (37 ) sin (%257 sin (32265 sim (3255 ) Gool B, ).

“where m and n r'ep'reéen'r, two sites on the lead’s surface and Gvugv(E’, q) is givén Aby.E(ll. ‘(A‘.().'l()j. In

this form the surface GF matrix g¢,,, is used in constructing the self-energies of the cubic-latticed

leads for the transport calculations in Chapter 3.
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Appendix B

Mixing schemes in self-consistent

calculations

All density functional theory (DFT) [45] based electronic structure calculations involve a self-
consistent solution of some set of coupled non-linear integro-differential equations. The Kohn-
Sham equations [60], solved in DFT, are formally a set of one-electron Schrédinger equations that
depend non-linearly on the full electronic density p through the effective potential Veg[p]. The sum
of all Kohn-Sham wavefunctions squared is equal to p, which completes the system of equations.

This leads, in general, to a recursive expression for p
p=F(p), (B.0.1)

which can be rewritten as

Pin = Pout (pin) , (B-O.Q)

where pin (pout) is the input (output) density and Eq. (B.0.2) gives the convergence condition ! for
an iterative solution of Eq. (B.0.1). In any numerical implementation convergence can be defined

as a gradual minimization of the distance between p;,, and poyt in the p space, e.g. [53]

D [pinapoud = ||pout i pinH = (pout — Pins Pout — pin)1/2 s (BO3)

UIn fact p and V.g are equally good to be used as convergence criteria, since both the charge and the potential
are equivalent when they are treated on the same footing, except that the total energy may not converge as quickly

when Vg is used as a criterion [53].
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B. MIXING SCHEMES IN SELF-CONSISTENT CALCULATIONS

where || || designates the norm in the linear vector space p € D ! and (, ) is the scalar product.

The problem of solving Eq. (B.0.2) is still essentially a problem of solving a system of non-
linear equations as it can be taken in the form p — F(p) = 0. In electronic structure problems
during the iterative numerical solutions, however, increasing in amplitude charge oscillations may
arise and cause the divergence of the algorithm. Here we describe a few methods of damping
those oscillations, purposely developed for self-consistent field (SCF) calculations. In fact such
calculations do not only concern DFT. The Pulay method [0, 81], for example, has been developed
for Hartee-Fock calculations. SCF calculations are encountered in this work whenever electron
interactions (within mean-field approximation) are taken into account (both in the steady-state

transport and in the time-dependent simulations).

B.1 Simple mixing

-We start-with- the simplest approach to damping those charge- oscillations in-SCF- iterative pro- -
cedures. This is to take on the n-th iteration a linear combination of the input and the output
densities, i.e.

pnt) = (1-a)ply +apiu » (B.1.1)
where typically the mixing parameter a € [0, 1]. Convergence is usually achieved with a suitable
choice of a. Smaller values of a are associated with better stability, though, for very small a <
0.04, which are required for more complex systems (e.g. 3d impurities in noble metals [34]),
the convergence may proceed extremely slow. Ranges of applicability for a in various situations
are studied in Ref. [34]. More sophisticated mixing schemes, using optimized on-the-fly mixing
parameters, can accelerate the convergence and reach solutions where the simple mixing fails.

In the following subsection we discuss the Anderson’s mixing scheme. In this method the con-
vergence acceleration is achieved on the expense of memory storage, as the dynamic optimization
of the mixing is based on (some sort of) extrapolation over a set of old input and output densities.
The dimension of that memory space, i.e. the number m of old iterations taken into consideration,
may vary. Often in the literature the Anderson’s scheme is called the two-step memory (m = 2)
version of the scheme [53], though in Anderson’s original work [5] the method is introduced for
an arbitrary memory size. The Pulay’s scheme is independently derived and identical in concept

but introduced in a more implementation-friendly manner for m > 2. We shall follow the trends

IFor example, if p is the density matrix in a single band tight binding model, D is the space of N x N matrices,
where N is the number of atomic sites. Often one works with only the actual charge density (the diagonal elements

of the density matrix) and then D is the space of vectors of size N.
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B.2 Anderson’s mixing

and call the two-step version Anderson’s, while the m-step version — Pulay’s mixing scheme. The
reason for considering them separately is that the two-step version nicely clarifies the concept of
the method. Moreover we use that particular (Anderson’s) mixing scheme in the initialization of
the density matrix for our time-dependent simulations, while we use the more complex m-memory

(m = 4) Pulay’s version in our steady-state transport.

B.2 Anderson’s mixing

In the Anderson scheme [5] linear combinations of input and output densities from two (or more)
iterations are used in order to determine an optimized input p;, and output p,, densities for the

next iteration

A = (1-8™) o™ + g™y (B.2.1)

ﬁfﬂ = (1 o ﬁm)) pgut =+ G n)P(oran ) (B.2.2)

where 3(") is an iteration-dependent mixing parameter.

=~ (n) :
Let us define 5p™ = pl") — pm and op = Bl = ,Z)f:) The method is based on the
z
o o oL SR = (n) A 5 :
minimization of the least-squares deviation ||dp " with respect to 3 to determine the optimal

mixing coefficient. By definition

(n)

i1 = () o (oo 2 (-3 (e 00)
(B-2.3)
From the minimization
) il P B (6 (n=1) 55 _§ (n~1))
L 1| s e g — _ pH(sp(m ﬁ 5p(n_ﬁH2 (B.2.4)

This optimal 3™ is used to construct ﬁf:) and ﬁoﬁl as in Eq. (B.2.1). The new guess for the

next iteration is then made in a simple mixing step with an empirical mixing parameter a € [0, 1]
+1
p":l ) =(1- a)p - O‘Pouc (B.2.5)

That last step is indeed necessary as it brings some output components into the new guess so

that pi, does not remain trapped in the space of the old input densities.
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B. MIXING SCHEMES IN SELF-CONSISTENT CALCULATIONS

B.3 Pulay’s mixing

The Pulay method has been originally proposed for geometry optimization calculations [0, 81].
It is also called Residual Metric Minimization (RMM) method [21] and gives a straightforward
prescription to the numerical implementation of the generalized to m-step memory Anderson’s
scheme. Here the residual 6p'™ from the n-th iteration (n > m) is an m-dimensional vector. The
optimized input and output densities are again a linear combination, this time, of the previous m

inputs

L 1) 1)
Z CIpl(nl 1+ ’ pout Z‘lpo?n = 9 (B31)

i=1
where 3" | ¢; = 1. The residual from the n-th iteration is again defined as §p(™) = ) pi(:) and

thus the residual associated with ,bf:) is again a linear combination of residuals !
) m
n .
= E c;0pm D) (B.3.2)

: =) 1 :
The requirement that dp = approximates the zero vector in the mean-square sense leads to the

following system of m + 1 linear equations for the coefficients ¢;

Bii #Bjo " St Bmebi—1 c1 0
B2] 322 e Bgm -1 C2 0
f ey : : s o ; , (B.3.3)
Bml Bm2 s e Bmm =1 Cm 0
-1 -1 ... =1 0 A -1
where B;; = (6p("_i+l),6p(”_j+”) and A is a Lagrange multiplier, the value of which yields

2

<5~p(n) . Solving Eq. (B.3.3) provides the optimized bf:) As the final new guess cannot be made

only of inputs, it is again a mixture of the optimal densities from Eq. (B.3.1)

o = (1 - a)p +apll, (B.3.4)

where « is an empirical constant in [0,1]. Again the value of a can substantially affect the
convergence rate and its choice depends on the physical system described.

For n < m either simple mixing steps can be taken or for n > 2 Pulay steps (as described
above) with increasing m’ = n until m’ = m. Typically m ~ 5 is considered sufficient [21]. In our

simulations m = 4.

It is assumed that we are close enough to self consistency for variations of the densities and their associated

residuals to be linearly related.



Appendix C

Tight-binding description of

electrical current flow

In the discrete representation of the tight binding (TB) approximation the definition of an integral
quantity like the electron current requires some extra attention. Here we justify the expressions
for the bond current used in Chapter 4 and 6.

The TB method is based on the assumption that the atoms are relatively far away from each
other, so that the overlap of the wave functions of the electrons in neighbouring atoms is small
[10]. Hence the wave function of an electron with wavevector k moving in the crystal lattice can

be approximated with a linear combination of localised orbitals (LCAO)
Yialt) = (gliha) =) e*Fdalr FR,) (C.0.1)

where we introduce the notation |¢,4) for the localised atomic-like orbital at site R,,, such that
?n/a(r = R) = (r|¢na). Everywhere a indicates the type of the atomic orbital (a is a collective
quantum number o = {n,l,m}). The foregoing TB state Eq. (C.0.1) satisfies the Bloch condition
Vka(r + R) = e®Ryy (1) (see for instance Ref. [8]). Here we follow Ref. [109] and consider a

general electron state as a superposition of Bloch waves (C.0.1) or in fact localised orbitals [¢,q)
[Y) = Z‘-l)ka Id’ka) = Z Vna [Pna) (C.0.2)
ko no

where ¢,,, are the expansion coefficients. In doing so we may drift away from the initial assumption
that {|¢na)} are the actual atomic orbitals. It is even advisable not to use the true atomic wave

functions as in this case Bardeen and Van Vleck [10] have found a factor of three difference between
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C. TIGHT-BINDING DESCRIPTION OF ELECTRICAL CURRENT FLOW

the two equivalent formulations of the current, e.g. the r-component of the current, carried by an

electron in state |1k,) (see for instance Ref. [73], pp. 92-93)

00 ol d el O s ke OV, \ 3 C03
I evg i / ((ﬂka o l/)ka—aI arr (C.0.3)
@ _%gfk, (C.0.4)

where Ej is an exact eigenenergy of the Schrodinger equation (SE) with the periodic potential
V(r) of the lattice
h?

= mA‘I’ka + V(r)¥ka = ExVxka (C.0.5)

and Wy, is an exact eigenstate for which undoubtedly Y =12 [10]. However, Eq. (C.0.1) is
an approximation for which ¢y, — Wy, only in the limit of very distant atoms. In any case, the
correctness of the TB approximation in Eq. (C.0.1) depends on the choice of the localised orbitals
{|¢na)}. If these are hydrogen-like atomic wavefunctions, i.e. @na(r) ~ e~ 7/™ Ref. [10] has
“shown that for these 1" = %'I,([Q) and that ratio of 1:3 is found to persist even when both currents
approach 0 in the limit of large interatomic distance. It has, however, been demonstrated that
0 =12 for local orbitals {dka} corresponding to the screened (by the other valence electrons)
atomic potential U(r) which decays with distance much more rapidly than 1/r (exponentially) and
imposes an asymptotic dependence of ¢, (r) ~ e~"/7 /r [10].
With this in mind, we go back to Eq. (C.0.2) and avoid associating {|¢,q)} with real atomic
orbitals. Instead we think of these as a discrete computational grid of localised basis functions.
For convenience here we consider a grid {|¢,)} which coincides with the atomic lattice. The full

Hamiltonian (as well as any one-electron TB operator) can be represented as

H= Z |¢na) Hnams (dmal - (C.0.6)

n,a,m,3

This matrix is Hermitian, i.e. Hyampg = H and could depend in a self-consistent manner on

mpBna’

the instantaneous electron density in the system as it does, for instance, in Eq. (4.3.4).

We assume that our basis is orthogonal

<¢na|¢mﬁ) = 6nm5aﬁ . (C.O.?)

We continue following Ref. [109]. A general time-dependent (TD) one-electron state can be

expressed in the orthonormal positional basis as
W}(t» = ana(t) |¢na> . (COS)
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This is a solution of the TD SE, which in a matrix form reads
Z Hnamﬁwmﬁ(t) 5 ihwna(t) . (C'O'g)
noa

We define a projection operator to each site n as

Pn = Z |¢na> <¢na| ’ (COIO)

and {Pn} make a closed set ) P, = 1 with 1 being the identity operator. A projection of the
general TD electron state from Eq. (C.0.8) on site n is thus defined as

Po(t) = (¢(t)| Pal6(t) Zuma VYnalt (C.0.11)

and that represents the TD occupancy on that site. The rate of change of P, (t) is described by its
equation of motion P, (t) = % (p(t)] [Pn, H} |¢(t)). The current operator is hence identified with

o= =[] = 2 3 (PaltBn— BalBa) = 3 G, (C.0.12)
m#n m#n

where we have used the closure relation for {Pn} and extracted the operators

1 g~ - o SN 1
jmn = E (PnHPm = PmHPn) = E Z (Hnamﬁ |¢na> <¢mﬁ| - Hm[ina t¢1n/3> <¢na|) ] (C013)
’ -

which naturally represent the flow of electrons from a site m to site n. This intersite operator L
describes all the flux occurring between the two sites and is also called “bond current”. The total
current operator for a system of the Landauer type (see Chapter 2, e.g. Fig. 2.8) is then defined
with respect to an open surface S which splits the system in two parts at the device region
- - 1o (e A IoE~ s =
fs = Iin = — (PrEPyL — PLHPR) = — [Pr, H| = —— [P0, A] C.0.14
S Z mn ik R L 5 R ih R T L ( )
n €L
m€E R

where L (R) designates the region to the left (right) of S, the new projection operators occurring

are defined as PL(R) = Y neL(R) P, and they obey the following relations [109)]
PLPR = pRPL = O, PL(R) PL(R) and PL + PR = i 5 (C.0.15)

We note that the total current operator js through surface S, contains bond-current contributions
only from the bonds that are cut by S.
As an illustration of the bond and the total current concepts we consider a 1D chain in a single

band (a = ) nearest-neighbour TB model

&y, form=n

Hpm = Hnama = { -x, form=n+l (L)
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C. TIGHT-BINDING DESCRIPTION OF ELECTRICAL CURRENT FLOW

In this case, there are two bond currents associated with each site n, as described in Ref. [85]

A 1
A — 7 (Hnnt1 |Pnt1) (dn] — Hat1n |Pn) (Dnt1]) (C.0.17)

describing the inflow from the two neighbouring sites n + 1. The net current at n is thus given
by I = Jn-1n + Jns1.n. For instance, if |1(t)) is a normalised Bloch state in N-atom long chain

(with N — o0)

1 : ;
Vx(t)) = ﬁe"E“/" > e g,) (C.0.18)

where a is the interatomic distance and Ey = £y — 2 cos (ka) then the bond currents are

1 =€ N e ¢ ik(m—1)a
Lttn = e(s®Inernlbe®)) = 35 > Guntidmn = Sindmnzr) e* D
m,l
2ex e
B s = F—k C.0.19
Se N sin (ka) q:Nav;\ ( )

where e is the electron charge, vy = +2E& — 2y sin (ka) is the group velocity of the Bloch state.
S g R ok g y

Therefore, in this case of a pure Bloch state, the net current at n is exactly zero, i.e.
In = In+1,n s In—l,n =0. (COQO)

This is because of the exact balance of left- and right-going currents. For this reason the total
current for the bond (n,n + 1) (as well as any other bond inside the chain) is also zero. In
analogy to Eq. (C.0.14) we can associate a surface S cutting through that bond and the fact that
Is = I nt1 + Iny1.n = 0 directly follows from Eq. (C.0.17). The individual bond currents I, +1,n,
however, are not zero as they are proportional to vx. This illustrates the concept of conductance
associated with a quantum channel, which we introduced in Chapter 2 and which is a finite quantity
even if there is no net current.

Going back to the generalised formulation in Ref. [109] and Egs. (C.0.13) and (C.0.14), we

define the actual bond- and total currents as expectation values of the corresponding operators !
Ty [jnm;s] anils - Iy =Ty [jg,a] ; (C.0.21)
where [as in Eq. (2.2.35)]
p= [ Du(BVL(EYIE + [ Da(E)fa(E)dE (C0.22)

is the density matrix (in general, nonequilibrium) of the system and Dy (g) are the partial densities

of states associated with the left- (right-) travelling states [see for instance Eq. (4.2.8)]. The

IThis is in fact what we did in the foregoing 1D example in Eq. (C.0.19).
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analogue of Eq. (C.0.20) for the general Landauer problem is referred to as the zero-current

theorem in Refs. [110, 109]
S 1
Tr [Jan(E)] = E Z (HmﬁnaDnamﬁ i HnamﬂDmﬁna) = (0023)
a,B

as long as there exists an onsite unitary transformation of the TB basis in which the Hamiltonian
H and the density of states operator D = D(E) = Dy (E) + Dg(E) are symmetric matrices in
the transformed basis, i.e. ﬁnamﬁ = ﬁmgna and f)namg — l~)mgna. This assumption is plausible
in the absence of magnetic fields [109]. The result (C.0.23) applies also to J,,. Based on that
zero-current theorem, stating that the filled states outside the bias window do not contribute to

the net current, both the bond I,,, and the fact that Eq. (C.0.22) can be rewritten as

o= [ DEVREIE+ [ DLE)u(E) - Fn(E)] dE. (C.0.24)

the total current through a surface Is can be expressed as

Tums) = ¢ [ (f1(B) = fo(E) Tt [Jamis) Du(B)] 4E. (C.0.25)

This expression for Ig is shown to be equivalent to the NEGF expression in Eq. (2.3.10) for
arbitrary open surface S in Ref. [109].

The expression for the local current which we used in Chapters 4 and 6 [see Eq. (4.3.7)] are
derived directly from Eq. (C.0.21) for the case of a real symmetric Hamiltonian and a Hermitian

density matrix

e 2e
I = €Tx [jnmp:| = E Z HmBna (pnamB — pmﬁna) — gHmnIm [an] . (C026)
af
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Appendix D

Time integrators

There exist plenty of numerical algorithms for integrating ordinary differential equations (ODE)
(see for instance Ref. [105, 65]) and they all have one thing in common - they map the continuous
differential equation onto one or more difference equations. For instance, in molecular dynamics
(MD) the system of equations of motion of the particles needs to be integrated over time, given the
initial conditions. The time-stepping algorithms, also called time integrators, used in MD, produce
discretised (at equi-spaced points in time) approximations to the trajectories of the particles. How
good this approximation is compared to the actual trajectory can be assessed by the following list

of criteria ! [13, 105

e accuracy, i.e. to which power of the time step the numerical trajectory will deviate from
the exact one after one integration step. Here, together with the inherent accuracy of the
integrator scheme, a contribution to error accumulation has also the finite precision of the
floating-point computation. The round-off errors, however, are typically assumed to be much

smaller than the ones due to the algorithm [65].

e stability, which refers to the long-term asymptotic dynamics of the method, when applied to
a linear ODE such as the harmonic oscillator. A numerical integrator is asymptotically stable

if the growth of the solution for a linear model problem is asymptotically bounded [65].

e energy conservation (if the system is conservative), measured by two quantities: the drift, i.e.
the steady deviation of the energy from its initial value along the trajectory and the noise,
describing the fructuations on top of the drift. The drift is the more undesirable of the two,

as it can drive an otherwise microcanonical MD simulation out of equilibrium.

INot necessarily independent from each other.
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D. TIME INTEGRATORS

e time reversibility has to be incorporated in the integrator if it is present in the equations of

motion.

o symplecticity ', which refers to whether or not the phase space geometry of the actual con-
tinuum dynamics is preserved by the integrator. This is, in a sense, the strongest of the
symmetry-preserving criteria. Symplectic integrators preserve the phase space volume (a
property inherent to continuum Hamiltonian systems by the Liouville theorem), but sym-
plecticity is independent of time-reversibility (the latter also depends on the mere structure
of the Hamiltonian, which could otherwise be symplectic). It is, though, related to stability
and to energy (and other first integrals) conservation. It is known that symplectic integrators
preserve exactly the discrete version of the total energy [105] at least for linear systems (for

non-linear the drift is exponentially decaying with the decrease of the time step [65]).

Here we discuss the simplest integrator that has all the nice symmetry-preserving qualities and

_for this reason is widely used in MD simulations.

D.1 The Leapfrog Verlet integrator

The Verlet algorithm is a two-step method, belonging to the Runge-Kutta family, for integrating

second order differential equations of the form
#=Fz(t),t]. (D.1.1)

It can be derived [105] by adding the Taylor expansions for the coordinate = (working in 1D for

simplicity) at t = +At about t = 0

z(At) = z(0) + Atz(0) + %t—?F [z(0),0] + ATt3atr(0) + 0(AtY) (D:1-2)
) A#? At i /1
z(=At) = z(0) — Atz(0) + TF [(0),0] — —6—1(0) + O(At?) (D:1.3)

IThis comes from the term symplectic map which is a map in the phase space of the system which preserves the
structure matriz J of a Hamiltonian system

% =JV.H(z), (D.0.1)

where z is a 2d-dimensional vector in the phase space. In the canonic phase-space, for instance, the structure matrix

TR
i o (D.0.2)
Ll

where I is a d x d identity matrix. All low maps [right-hand side of Eq. (D.0.1)] of canonical Hamiltonian systems

has the form

are necessarily symplectic [65].
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D.1 The Leapfrog Verlet integrator

leading to

z(At) = 22(0) — z(—At) + AL2F [2(0), 0] + O(At?) (D.1.4)

which we rewrite in terms of indexed time-step values z,, = z(nAt) as
Tnt1 = 2Tn — Tn_1 + AL*F [Tn, nAt] + o(AtY). (D.1.5)

Thus we need the last two values, z,, and x,,_1, to be able to produce the next one z,; (hence,
two-step method). This is what is most often referred to as the leapfrog method as it only involves
coordinates [65].The O(At*) term means that the deviation of the exact solution from the numerical
one in a single timestep is smaller than a, At*, where a,, are finite and nonvanishing for At — 0
numbers. However the error accumulates when integrated over a certain time interval 7" > At and
the global error for the method is actually O(At?) [105]. Introducing the velocities at half-steps,

the velocity-Verlet flavour of the method follows the equations

At
Upti = Un-— TF (2, nAt]
T = et Atvm_% (D.1.6)
At
Untl = Upyl — 717’ [Trnt1, (n+ 1)AE

Of course, this is just one formulation and other (equivalent) combinations of  and v at half-steps
could be used depending on whether or not one is interested in velocities and coordinates at the

same timesteps. One such formulation is the so called 3-level leapfrog method [74]

Thd L= TR 2un A

Ungl . = Un—i F2F [z, wAL At. (D.1.7)

Here one can very clearly see that the leapfrog method is time-reversible, i.e. invariant against
the substitutions At <> —At and z,41 < T,—1. It is also symplectic [65] which, together with its
simplicity, makes it a good choice for MD simulations. There is, however, one well-known situation
when this algorithm becomes unstable. That is the case with velocity-dependent forces, which
could arise, for instance, if the particle is moving in a magnetic field or if there is a dissipative
force. Such a situation is inherently non-time-invertible and for this reason the time-invertible
integrator is not behaving adequately. There is, however, a rather simple fix [74] and we discuss

this in the following section.
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D. TIME INTEGRATORS

D.2 Problem with non-conservative systems

Here we follow reference [74]. The reason for the instability lies in the fact that, as formulated in
Eq. (D.1.7), the 3-level leapfrog method links directly the coordinates and velocities at only even
timesteps or only odd timesteps. It also requires the initial conditions at two timesteps (xg,vg)
and (x;,v;). Thus it appears that the numerical algorithm has twice as many degrees of freedom

as the actual physical system. Eq. (D.1.7) can be summarised as
Zp4+2 = 2p + 2F [zn+1atn+l] At ) (D21)

where z = (z,v) is a vector in the phase space and F = (v, F') is a generalised force. It is easy to
see that Eq. (D.2.1) can be separated into two subsystems — one even a and one odd b, discretised

at 2At
agp42 = ag, +2F [32n+1« t2n+1] At (D22)
bonyzs = bopyr + 2F [ban o, tango] At. (D.2.3)
If z = (x,v) is a solution of Eq. (D.2.1), it is also a solution of the augmented difference system

(unphysical) solutions for which a # b can arise as valid solutions of the Eqs. (D.2.2) and (D.2.3)
that cannot be distinguished from the physical ones. We can define a measure of the unphysical
variation w

a=z+w, b=z-w. (D.2.4)

Hence, a parasitic solution z in finite difference form would be
B = 2+ (—1)" W, (D.25)

i.e. it would contain both physical z,, and unphysical w,, modes. These by themselves are solutions

of

2% = Flz—w,t]|+F[z+w,t =F[zt + 0(w?) (D.2.6)

oW = F[z—w,t]— F[z+w,t] =DF|[z,t]-w+ O(w?), (D.2.7)

where we have expanded the system in powers of w and DF is the matrix of partial derivatives
OF;/0z;. It is now becoming apparent how velocity-dependent forces (for which DF # 0) could
give rise to an amplification of the parasitic modes w. Such amplifications are exponential and

inevitably lead to numerical catastrophies. If a constraint w = 0 is adjoint to Eq. (D.2.6) it
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D.3 Integrating the damped Liouville equation

is, in principle, maintained by Eq. (D.2.7), but in numerical implementations imperfect initial
conditions and round-off errors inevitably introduce nonzero w, leading to a divergency.

The only way to cure this instability is to keep reimposing w = 0 during the integration.
Various methods exist, which suppress the unphysical split to odd and even degrees of freedom

[74]. What we have used in Chapters 4 and 6 is the cure suggested in Ref. [22].

D.3 Integrating the damped Liouville equation

As a reminder, in Chapters 4 and 6 we integrate a modified Liouville equation, which includes a
dissipative I'-term

b= = (A4, A~ Do~ 1), (D3.1)

where p° is a specially designed electrically polarised density matrix [see Eq. (4.3.3)]. This is a first
order differential equation hence we employ the first-order version of the leapfrog method above.

Analogously to Eq. (D.2.1) the algorithm is contained in
Zn+2 = Zn + 2F [271+1.tn+1] At = (D32)

where in our simulations z = p;; and F = (1/ih)[l:1,,b]ij.

Apparently, all the above discussion can be repeated for this case of doubly reduced phase-
space and the odd-even problems would, just in the same way, show up at the end. In order to
decorrelate the odd-even bifurcation we perform a simple Euler step once every ~500 timesteps
(typically At = 0.005 fs)

Znt2 = Znt1 + F [Zn1, tng 1] At (D-3.3)

The effect of this “Euler-fix“ is demonstrated on Fig. (D.1). This is a simulation of a current-
induced DW motion in a 200-atom chain. While the onsite charge without the fix diverges at only
47fs, the one with the fix is perfectly stable for as long as the simulation goes (some 500 fs). We
have tested the “fixed” integrator against conservation of the total spin in the system (for a pinned
DW, see Fig. 6.6) and found its performance satisfactory with a relative variation below 104 for

the 500 fs-simulation.
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Number of timesteps

3 3
56-096200 | 92|40 : 92|80 : 9 I20 ' 9 '60 i 9400
f solution with the "Euler-fix" |
0
=
Q. -S5e-06-
solution without the "Euler-fix"
-le-05F -1
Al I . I . I . | A
46 46.2 46.4 46.6 46.8 47
t({s)

Figure D.1: Time evolution of one onsite electron density (spin-up polarised component) in a 200-
atom current-carrying wire with a DW (one of the calculations described in Fig. 6.5; for all these
spin-up band is fully filled with 1 e/atom and I' = 3eV), with and without the “Euler fix”. If
the uninterrupted leapfrog is used an odd-even timestep instability develops and the calculation
diverges. Instead, with one simple Euler step at every 500 it is very stable and may run to the

picosecond range (> 10° timesteps).
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