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Summary

The purpose of this thesis is to argue that N-point functions of holomorphic fields
in rational conformal field theories can be calculated by methods from algebraic ge-
ometry. We establish explicit formulae for the 2-point function of the Virasoro field
on hyperelliptic Riemann surfaces of genus g > 1. N-point functions for higher N are
obtained inductively, and we show that they have a nice graphical representation. We
discuss the Virasoro 3-point function with application to the Virasoro (2, 5) minimal
model.

The formulae involve a finite number of parameters, notably the 0-point function
and the Virasoro 1-point function, which depend on the moduli of the surface and
can be calculated by differential equations. We propose an algebraic geometric ap-
proach that applies to any hyperelliptic Riemann surface. Our discussion includes a
demonstration of our methods to the case g = 1.
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Introduction

Quantum field theories are a major challenge for mathematicians. Apart from cases
without interaction, the theories best understood at present are conformally invariant
and do not contain massive particles. In dimension two, such conformal field theories
(CFTs) are naturally defined on compact Riemann surfaces. This is the only case we
will consider.

In order to actually compute the functions occurring in CFTs (like N-point func-
tions (@ ...¢n) of holomorphic fields, and more specifically the partition function
(1) for N = 0, where 1 is the identity field), one has to study their behaviour under
changes of the conformal structure. This is done conveniently by first considering
arbitrary changes of the metric. Such a change of (¢, ...¢y) is described by the
corresponding (N + 1)-point function containing a copy of the Virasosoro field T.
For this reason we shall investigate in Part I of this thesis the N-point functions of T
(rather than of more general fields). These will then be available to our discussion of

the metric dependence of N-point functions in Part II of the thesis.

The space of all possible conformal structures on the genus g surface is called
the moduli space M,. Thus conformal quantum field theory is closely related to the
study of functions on M,. For an important special class of CFTs (the rational ones)
one obtains functions which are meromorphic on a compactification of M, or of a
finite cover.

One also needs the following generalisation: Conformal structures occur as equiv-
alence classes of metrics, with equivalent metrics being related by Weyl transforma-
tions. The N-point functions of a CFT do depend on the Weyl transformation, but
only in a way which can be described by a universal automorphy factor.

For g = 1 this can be made explicit as follows. The Riemann surfaces can be
described as quotients C/A, with a lattice A generated over Z by 1 and 7 with 7 € H*.
The upper half plane H* is the universal cover of M, in other words its Teichmiiller
space. One has M; = SL(2,Z) \ H*. Meromorphic functions on finite covers of
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M are called (weakly) modular. They can be described as functions on H* which
are invariant under a subgroup of S L(2,Z) of finite index. §L(2,Z) has therefore
received the name full modular group.

Maps in S L(2, Z) preserve the standard lattice Z? together with its orientation and
so descend to self-homeomorphisms of the torus. Inversely, every self-homeomorphism
of the torus is isotopic to such a map. A modular function is a function on the space
L of all lattices in C satisfying [38]

FON = FOAY. VA el e, (1)

L can be viewed as the space of all tori with a flat metric.

Conformal field theories on the torus provide many interesting modular functions,
and modular forms. (The latter transform as f(1A) = A% f(A) for some k € Z which
is specific to f, called the weight of f.)

Little work has been done so far on analogous functions for g > 1. The present
thesis develops methods in this direction. The basic idea is that many of the relevant
functions are algebraic. In order to proceed step by step, we will restrict our investi-
gations to the locus of hyperelliptic curves, though the methods work in more general
context as well.

We shall derive the ordinary differential equations that allow to compute the Vi-
rasoro N-point function on any hyperelliptic Riemann surface. For an important class
of CFTs (the minimal models), the vector space of solutions is finite dimensional. It

is shown that in the (2, 5) minimal model, our approach reproduces the known result.
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Notations and conventions

For any k > 0 and any rational function R(x) of x with Laurent expansion

R(x) = Z a,~xi

i€eZ
for large |x|, we define the polynomial
ROk = ) aix'. ©)
i>k

Let H* := {z € C| 3(z) > 0} be the complex upper half plane. H* is acted upon by the
full modular group I'y = S L(2,Z) with fundamental domain

9L':={Z‘E]I-]I+

1
lzl > 1, |R@)| < 5} .

The operation of I'y on H* is not faithful whence we shall also consider the modular
group T = I'1/{xlx} = PSL(2,Z), (here I € GL(2,Z) is the identity matrix). We
refer to S, T as the generators of I'; (or of I—“l) given by the transformations

S:zm -1/z

T:z—z+1.

We shall use the convention [38]

Gau(2) = Z Z Z (mz + n)z"

m:O neZ
and define Eo; by Gi(z) = {(k)Ex(z) for {(k) = 51 n—l,;, soe.g.

22
G2(2) = —Ez(Z)

4
G4(2) = —E4(Z) 5

6
Ge(2) = Es(Z)

Let (@)n = [T, (1 - 4~) be the g-Pochhammer symbol. The Dedekind n function is

1 ]
N = q%(Qeo=q%(1-q+@+q +q +..), q=e
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(1) and (T') (or Ay,...) are parameters of central importance to this exposition.
For better readibility, they appear in bold print ((1) and (T), or Ay, ...) throughout.
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Chapter 1
Introduction

Conformal Field Theories (CFTs) can be defined over arbitrary Riemann surfaces. A
theory is considered to be solved once all of its N-point functions are known. We re-
strict our consideration to meromorphic CFTs [14] which are defined by holomorphic
fields, and a rather specific class of Riemann surfaces.

The case of the Riemann sphere Xy is easy, and for the torus X;, one can use
the standard tools of doubly periodic and modular functions ([41],[3] and more re-
cently, e.g. [4],[29]). The case g > 1 is technically more demanding, however. Some
progress has been made in the Vertex Operator Algebra (VOA) formalism by sewing
surfaces of lower genus. There is no canonical way to do this and two different sewing
procedures have been explored. Explicit formulae could be established for the genus
two N-point functions for the free bosonic Heisenberg VOA and its modules ([24],
[25]), and for the free fermion vertex operator superalgebra [35].

Instead, quantum field theory on a compact Riemann surface of any genus can
be approached differently using methods from algebraic geometry ([30], [34], [10])
and complex analysis. N-point functions of holomorphic fields are meromorphic
functions. That is, they are determined by their poles. By compactness of Z, these
functions are rational.

The present paper establishes explicit formulae for the 2-point functions of the
Virasoro field over hyperelliptic genus-g Riemann surfaces Xz, where g > 1. N-point
functions for N > 3 are obtained inductively from these, up to a finite number of
parameters which in general cannot be determined by the methods presented in this
paper. In comparison, the formulae given by the work of Mason, Tuite, and Zuevsky
determine all constants, but are given in terms of infinite series.

We show that the N-point functions can be written in terms of a list of oriented



graphs. For g = 1 the result reduces to a formula which is very similar to eq. (3.19)
in [19]. The method we used is essentially the one developed in [19] though it was
found independently.

Although we deal with the Virasoro field, our method applies to more general
holomorphic fields.

The material of the Chapters 2, 4, 5, and 6 is published in [22].



Chapter 2

The Virasoro OPE

In this chapter we define a global theory, a meromorphic conformal field theory on a
Riemann surface, by glueing local data. For brevity, the global and the local theories
will be treated on an equal footing. In order to consider the local data for them-
selves, it suffices to consider the Riemann surface given by the open unit disc, with

its standard coordinate.

2.1 The vector bundle of holomorphic fields

For any Riemann surface S (not necessarily compact), we assume that the holomor-
phic fields of a meromorphic CFT on § form a vector bundle # over S with a distin-
guished trivialisation on every parametrized open set. More specifically, let (U, z) be
a chart on S: The holomorphic map

4

U - C

is called a coordinate on U, and U will be referred to as a coordinate patch. We
postulate that (U, z) induces a trivialization

Tlu i.) XU

where F is the standard fiber of ¥ .

Remark 1. An example is F = T*S, the cotangent bundle of S : Any chart (U, z) on
S defines a nowhere vanishing section dz in T*U and thus a trivialisation of T*U. A

different coordinate 7/ = f(z) on U defines a different trivialisation (given by dz’).



In the present case, the fiber F is the infinite dimensional complex vector space of
holomorphic fields. For U’ C U, the trivialization corresponding to (U’, z) is induced
by the one for (U, z). For any coordinate patch U with coordinate z, elements of 7|y

can be written as

@ () = (") N x (u}),

with ¢ € F, u € U. Abusing notations, we shall simply write ¢(z) where we actu-
ally mean ¢,(u). (This will entail notations like $(Z2) instead of ¢;(u) etc.). Thus an
isomorphism between two coordinate patches on S induces an isomorphism between
the corresponding fields. We postulate that the standard fiber F' has an ascending
filtration.

Remark 2. It has been suggested to introduce the component of Ly of the Virasoro
field at this stage as F is filtrated as a result of the grading defined by the diagonali-
sation of Ly. As we shall see in the following section, however, Ly is defined in terms
of local coordinates while the filtration is postulated to be universal. Once everything

is said and done, the two definitions are of course equivalent.

As the base point u € § is varied, the filtration of the fibers F, of F gives rise to a
totally ordered set of finite rank subvector bundles of . On PL, every such finite rank
bundle admits a splitting into a direct sum of line bundles (Birkhoff-Grothendieck
theorem). For C C ]P"I:, the degrees of the line bundles figuring in any such decom-
position of finite rank subbundels of # define a Z grading on the fiber F. Thus to
every (nonzero) homogeneous element ¢ € F there is associated the (holomorphic)
dimension h(yp) of ¢. For quasi-primary (non-derivative) fields ¢ the degree of the
corresponding line bundle is 2A(¢p).

Remark 3. All holomorphic fields can be obtained from differentiating quasi-primary
fields, which implies that the action of Ly is encoded by the line bundle structure.

We shall assume that
h()20, VeeF, 2.1

so that

F= @ F(h),

heNp

where F(0) = C is spanned by the identity field 1, and we assume that for any



h € Ny, the dimension of F(h) is finite. Since in a conformal field theory fields of
finite dimension only are considered, it is sufficient to deal with finite sums.

It may be useful to compare our formalism to the approach by P. Goddard [14]
where only the case g = 0 is discussed in detail. Goddard interprets F as a dense
subspace of a space of states H using the field-state correspondence. He works on
Cc Pé. In our notation this corresponds to the identity map id : U — C. Our
field ¥;4(z) is Goddard’s V(¢¥, z). We will not use the field-state correspondence and
reserve the word state for something different. Our notion of state on a Riemann
surface S is a map ( ) from products of fields ¥ = ¥, (p1) ® ... ® ¥, (pn) to
numbers () € C, in analogy to the language of operator algebra theory. We will not
use the interpretation of fields as operators, however, since the necessary ordering is

unnatural for g > 1.

2.2 Meromorphic conformal field theories

Let S be a connected Riemann surface of genus g > 1 (when the genus is fixed, we
shall refer to S, simply as §). We don’t give a complete definition of a meromorphic

conformal field theory here, but the most important properties are as follows [28]:

1. Fori = 1,2, let S; be a Riemann surface and let #; be a rank r; vector bundle
over §;. Let p!F; be the pullback bundle of #; by the morphism p; : §1X§, —
S;. Let

F1RF2 := piF1 @ pF2

be the rank r17, vector bundle whose fiber at (z1,22) € S1 X S21s F1z, @ F2.z,-
We are now in position to define N-point functions for bosonic fields. Let ¥ be

the vector bundle introduced in section 2.1. A state on S is a multilinear map
( ) : 6*(?) -y C,

where G.(F) denotes the set obtained by restricting the symmetric algebra
S(F) to fibers away from the partial diagonals

Ay :={Gz1...,2v) € SNz = zj, forsomei # j},

for any N € N. For ease of notations, when writing ® and ® we shall in the
following actually mean the respective symmetrized product.



Locally, over any UY C SV \ Ay such that (U, z) defines a chart on S, a state is
the data for any N € N of an N-linear holomorphic map

ol el . o €

(p1,21) R ... B (N, 28) P (p1(21) ® ... ® pn(zn))

satisfying the following conditions:

(a) ( ) is compatible with the Operator Product Expansion (OPE). (The
OPE is defined below in point 3, and the compatibility condition is ex-
plained in point 4.)

(b) For ¢; = 1 € F(0), the identity field, we have

(1(z1) ® p2(22) ® ... @ n(zn)) = {P2(22) ® ... ® YN (2zN)) -

Remark 4. In standard physics’ notation the symbol for the symmetric tensor

product is omitted. We shall adopt this notation and write

(p1(21) - - - on(2N))

instead of {¢1(z1) ® ... ® on(zn)) but keep in mind that each z; lies in an in-
dividual copy of U whence the ¢;i(z;) are elements in different copies of F and

multiplication is meaningless.

Since each g; is defined over U, we may view (¢1(z21) - .. ¢n(zn)) as a function
of (z1,...,zy) € UN. We call it the N-point function of the fields ¢, ...,y

over U. For example, the zero-point function! (1) is a complex number.

Remark 5. One can make contact to the notion of N-point function used in
[14] by considering states for manifolds with boundary (see G. Segal’s axioms)
[32].

2. Fields are understood by means of their N-point functions. A field ¢ is zero if
all N-point functions involving ¢ vanish. That is, forany N € N, N > 2, and
any set {¢, ... ¢y} of fields,

(p(21) $2(22) ... dn(zN)) = 0.

'henceforth denoted by (1)



3. We assume the existence of an OPE on F, in particular for any m € Z of a

linear degree m map
Nn: FQ®F - F.
N,, has degree m if for any ¢y, ¢ € F, N, (¢1, ¢2) has holomorphic dimension

m + h(g1) + h(p2) .

Note that the degree condition is void when N,,(¢1, ¢2) is the zero field.

Remark 6. For ¢ € F, the family of induced linear maps Ny(p, ) : F — F
indexed by m € Z span a vertex operator algebra (VOA) (in particular a Lie
algebra), with

¥Y(@.2) = ) Nu(@,) 2"
meZ
being the vertex operator associated with ¢ [11]. In particular, Ly = N_»(T, ).

4. While fields and coordinates are local objects, states should contain global
information. A state is said to be compatible with the OPE if for any N € N,
N > 2, and whenever ¢y, . .., @y are holomorphic fields over a coordinate patch
U c S, the corresponding N-point function has a Laurent series expansion in
z1 about z; = 7 given by

(p1(21) @2(22) - .. N (2N))
= > @1 = 2" (N1, 92)(22) 93(23) - - o)),

m2myg

for some mg € Z. Symbolically we write

0121 92(22) P ), (21 = 2)" N1, 92)(@2) -
m2nyg

This arrow defines the OPE of ¢1,¢» € Fly. We postulate that every OPE

admits compatible states.

Remark 7. Physicists write an equality here. Recall however that ® is under-
stood on the L.h.s.

5. We have N,,(¢,1) = 0 for ¢ € F and m < 0. Define the derivative of a field ¢
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by
O0p := Ni(p,1).

Equivalently, d¢ is defined by prescribing

(00(2)p2(22) --. oN(zN)) = 00(2) P2(22) - .. N (zN))

for all N-point functions involving ¢.

6. In conformal field theories, one demands the existence of a Virasoro field T €
F(2) which satisfies

N_1(T, ) = g, 2.2)

whenever g is a holomorphic section in U X F.

In standard textbooks (e.g. [11]) the Virasoro algebra is required in addition to
eq. (2.2) and A(T) = 2. The latter is equivalent to the Virasoro OPE [20], which is
the specific arrow for the fields ¢; = ¢, = T in point 4. The Virasoro OPE actually
follows from the assumptions made in Section 2.1 and the properties 1-6 above:

Lemma 8. In local coordinates z and w, the Virasoro OPE has the form

T@T(w) - —=2 1+ (T@+ T+ Ow) + 0z - w),  (23)
E= W) (g—=wr

for some ¢ € C.

The constant c is called the central charge of the theory. Note that

*T
(D=N0(T,T)—T .
Proof. (e.g. [20]) By assumption (2.1), all holomorphic fields have non-negative di-
mension, and A(T) = 2. This yields the lowest order term, since F(0) is spanned
by the identity field 1. Symmetry (point 1) implies the existence of a field Q, of

dimension 2, and of a constant ¢ € C, such that
£.1 Q(z) + Q(w)
T ()T (w) —>—2= +

(DT (w) Gon? CoWR
i .1 2Qw)  0Q(w)
G=ny Q-wE Gew)

+ 0(1)

H+ O

Thus N_i(T, T) = 09, from which (considering dimensions) we conclude Q = 7. O
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Example 1. A CFT containing the identity field 1, the Virasoro field T and which
is closed under Ny(.,.) for m € Z is said to be generated by T. A CFT is minimal
if it has only finitely many non-isomorphic irreducible representations of the VOA
(or the OPE). Minimal CFTs generated by T are called minimal models. They are
parametrised by unordered pairs (i, v) of natural numbers p,v > 1 s.t. gcd(u,v) = 1.

For the (i, v) minimal model the number of such representations is (e.g., [3], [1])

(- D= 1)
> '
For (u,v) = (2,3), one has F(0) = 1.C, and F(n) = 0 forn > 0 (so that T =0). The
(2,5) minimal model has two irreducible representations, the vacuum representation
M, for the lowest conformal weight (or holomorphic dimension) k; — % = 0, and
another representation M, corresponding to the conformal weight k, — -é% = —% ([3],
table® 8.1., p. 243). (For g = 1, the O-point functions are characters, and g for
1 < s £ (v —1)/2 is the leading power in the small g-expansion of the character (1)

in the (2,v) minimal model. We will use kg to parametrise the characters in Chapter

8.)

2Note that there is a typo in the value for the conformal weight A4, ; of (1), in [3].






Chapter 3

Analytic calculation of the
Virasoro N-point function for
some genus 1 minimal models

Virasoro N-point functions on the torus can be determined using techniques from
VOA theory [41]. In this chapter we illustrate a more elementary approach using the
Weierstrass g-function.

3.1 The Virasoro N-point function in the (2, 5) minimal model

We consider a conformal field theory (CFT) over the torus Z; = C/AforA = Z.1+Z.T
with the property that the space F(4) of the holomorphic fields of dimension & = 4 is
one dimensional. Thus for the field ® of the OPE (2.3), we have

|
(D:(E_E) &r, 3.1)

for some K € C. The model, in which (3.1) holds true, is referred to as the (2, 5)
minimal model. X = 1 is such a theory, but our calculations will show that anyhow.
For any N > 1, the Virasoro N-point function (7(z;) ... T(zy)) is an element of the
field

Clp(zilr), @' @), ..., p(anlr), 9’ znlT))

13
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where g is the Weierstrass function associated to A,

1 ’ 1 1
PR = Z_2 e ; {(Z —m —nt)? ke (m+ n‘r)z} ’ (3-2)

and o’ = 0p/0z is its derivative. x = p(z|r) and y = ¢’(z,|r) are related by the
equation y2 = 4(x> - 30G4x — 70Gg), where for k > 2, Gy are the holomorphic
Eisenstein series. For N = 1, there actually exists a covering of Z; by coordinate
neighbourhoods for which (7'(z)) = (T) is constant. Comparison of the singularities
in (3.2) and the OPE (2.3), and using that holomorphic functions on the torus are

constant, yields
(TTO) = %(l)p"(zlf) + 2Te(zr) + C, (3.3)
where C « (1) is constant in position. About z = 0,
9(2t) = 7% + 6Ga? + 0(z*)

SO
(No(T, TY(w)) = C + cG(1) = (D(w)) .

But in the (2, 5) minimal model,
(®)=0

by eq. (3.1), since (8°T) = 3*(T) = 0. (® is referred to as the singular vector in M;
of the (2, 5) minimal model.) We conclude that

C=-c(1)Gy. (3.4)

The Virasoro 2-point function in the (2,5) minimal model is completely determined

by the 0- and 1-point function. This result has been found previously by [7].

3.2 Higher N-point functions

It is worth mentioning that the method of matching the singularities of the Virasoro
OPE with suitable derivatives of the Weierstrass g-function, as demonstrated for the
2-point function in the preceding section, allows also to compute the N-point func-
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tions of the Virasoro field for higher N, by recursion. For N = 3 we have

(T()T(W)T (u))
" c/2
S @-w)

(T) + (T@T W)y + {TW)T ()} + (PW)T (u)) + O(z — w).

(z—w)?

On the other hand, the general form of the Virasoro 3-point function, considered as a
function of z, is

cl2
(z-w)*

1 c b
o {g(l)g) + 4(T)p +2C}

(T(RDTW)T(w)) = (T)

1
A {-}
+ 2= w)° {2 (WP + (Dhp + @WT W)}

+0@-w). (3.5)

Here and henceforth we denote by 9® for k > 0 the function #*p(w — u|t), where
9 = 9. We have omitted the (z — w)~!-term which will drop out as the symmetry
between z and w is restored. On the other hand, considering the singularities and the
symmetries between z, w and u yields the ansatz

(T(@TW)T (1))
=A{p"(z-wlt) + 9" (z - ult) + 9" (w — ulr)}
+ B {p(z — wit) + 9(z — ult) + p(w — ul7)}
+ C {9p(z — win)p(z — ult) + p(w — ZT)p(w — ult) + P(u — zIT)P(u - wir)}
+ D p(z - wit)p(z = ult)p(w - ulr)
+E, A, B,C,D,EcC. (3.6)

By comparison with (3.5), we conclude

c

A=
12

(T), B=12C, C=2T), D=cQ).
In the (2, 5) minimal model, we have by eq. (3.4),

B=-12c(1)Gy4 .
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Moreover, by eq. (3.1),

3K
(©W)T (u)) = (1—0 o 5)339<T(W)T(u))

so the coefficient of (z — w)? reads
c cKi 3K
£ (o™ B A L
3 4< 0+ (THp + (DW)T () 20 ™ + 5 (T
For the term of order zero, we obtain a cubic equation in g,

1
(3c - 3Kc) 9+ 3 (5¢ +40 - 18K) (T) 9? - 54c(1 - K) G4 (1) p + E = 0,

where E = E + (-9¢ — 60 + 36K) G4(T) + 84cK Gg (1).

The equation is satisfied iff K = 1, ¢ = —-232-, and

- 7 184
E=—-FSG4(T)+—85—8G6(1).

In particular, (T7T) yields 1-point functions of Ni(T, N¢(T,T)). More complicated
fields are treated analogously.

3.3 The Virasoro N-point function in the (2, 7) minimal model

Let us now consider a CFT on C/A with the property that

ad'T + BNo(No(T, T), T) + yNo(T, & T) + 6No(dT,T) = 0, (3-7)

a,,v,6 € Cnot all zero.

(In the (2, 7) minimal model, the second singular vector occurs at level 6, cf. [3], p.
243, subsequent to table 8.1.) From the Virasoro OPE follows

(TQTO)) = gam"(zh) + 2THp(lr) + C

E ;ﬁm + ;25<T> +(C + cGa(1) + Z2(12G4(T) + 10cGe) + OZ"),
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SO

AT ()T (0)) = lc—2<1>g><‘”(z|r> + AT (2l7)

e, 12
S 2
= (No(8T, T)(w)) = 24(T)G4 + 20cGg(1) (3.8)

(1) + —(T) + 20cG¢(1) + 24(T)G4 + O(z%)

Since odd order derivatives of g are odd,

8. 0,AT@T(w)) = — T @)T(wW))
= (No(@T,dT)(w)) = — (No(&T, T)(w))
For (No(No(T, T), T)) we have by eq. (3.7) and the fact that (T) = const.,

i
(No(No(T, T), T)y = X

(No(T,&T))y, provided # 0. (3.9)

The constant %‘5 can be determined independently and is thus assumed to be known.
Also, the central charge of the (2,7) minimal model is known to be ¢ = —%. Com-

parison of eq. (3.5) with eq. (3.6) yields
(DWW T W) = - 2c(1)> + (c + 8XTHp? + (24C + 60cG4(1))p + E

where
E = E — (9¢ + 60)G4(T) + 140cGe(1) .

So (®(w)T (1)) is known upon knowledge of (1), (T), C, and E. To determine E, it is
sufficient to know (No(®, T)). By eq. (3.9),

1
(No(®@, T)) = (No(No(T, T) - 532 T,T))

1
= (No(No(T, T, T)) = 5(No(@T, T))
-6 1
=(—— - =) (No(3°T, T)) .
(=5~ = 3) M@T.T)

But (No(8T, T)) is given by eq. (3.8). We conclude that in the (2, 7) minimal model,
the Virasoro 3-point function is determined by the 0-point, and the Virasoro 1-point
and 2-point function.
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Chapter 4

The Virasoro 1-point function in
rational coordinates,
for genus g > 1

4.1 Change to rational coordinates

Let £; be a compact Riemann surface of genus g = 1. Such a manifold is biholomor-
phic to the torus C/A (with the induced complex structure), for the lattice A spanned
over Z by 1 and some 7 € H*, unique up to an S L(2, Z) transformation. Here H* de-
notes the upper complex half plane. We denote by z the local coordinate on X1 and by
21, .- -,2x the corresponding variables of the N-point functions on Z; [3]. Recall that
N-point functions on X; are elements of C(p(z1|r), 9'(z1l7), ..., 9(znlT), 9’ (2NIT)),
where @ is the Weierstrass function associated to A, and g’ = dg/0z. Instead of z we

shall work with the pair of complex coordinates
x=gp@n), y=¢'@h). 4.1
We compactify the variety {(x,y) € C? y2 = p(x)} with
p(x) = 4(x> = 30G4x — 70Gg)

by including the point x = oo (corresponding to z = 0 mod A), and view x as a
holomorphic function on C/A with values in ]P’}:. Thus y defines a ramified double
cover of IP’KI:.

N-point functions can be expressed in terms of p(z;|7), 9’(z117), - . ., P(znIT), ' (zNlT),

19
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or equivalently as rational functions of x1,y1, ..., xy, yv. The latter possibility gen-
eralizes much more easily to higher genus. Instead, one can try to work with the
Jacobian of the curve and the corresponding ¢ functions. This would generalize to
arbitrary curves, but it is unknown for which conformal field theories this is possible.

If g > 1, one can write I, as the quotient of H* by a Fuchsian group, but working
with a corresponding local coordinate z becomes difficult (e.g. [8], and more recently
[23]). We shall consider hyperelliptic Riemann surfaces X, only, where g > 1. Such
surfaces are defined by

T: ¥ = p), (4.2)

where p is a polynomial in x of degree n = 2g + 1 (the case n = 2g + 2 is equivalent
and differs from the former by a rational transformation of C only). We assume p
has no multiple zeros so that X is regular. Locally we will work with one complex
coordinate, either x or y. None of them is a function of the other on all of the affine
variety (4.2) (whence in particular we refrain from writing y(x)2 = p(x)). By defini-
tion, the function x is called a locally admissible coordinate on an open set U C X,
if (U, x) defines a chart, and analogously for y. Thus x is an admissible coordinate
away from the ramification points (where p = 0), whereas y is admissible away from
the locus where p’ = 0. Let us recapitulate the behaviour of 7 under coordinate

transformations.

Definition 1. Given a holomorphic function f (with non-vanishing first derivative
f’), we define the Schwarzian derivative of f by

7 g
N T

S(f):=

The Schwarzian derivative S has the following well-known properties:

1. S(Af) = S(f), VA1 € C, f € D(S), the domain of S (f holomorphic with
e £0)

2. Suppose f : ]P’(l: - ]P"I: is a linear fractional (M&bius) transformation,

az+b
cz+d

f:z0 f@= , Where (a Z] e SL22,C).
C

Then f € D(S), and S(f) = 0.
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3. Let f,g € D(S) be such that f o g is defined and lies in D(S ). Then
S(fog)=[g’S(Nog+Sw-

Remark 9. Let p,y € D(S) with y*> = p(x). Then by the properties 1 and 3 of the

Schwarzian derivative,

) 3]
S(v)—S(p)+8 p] ) (4.3)

Direct computation yields [13]

Lemma 10. Let T be the Virasoro field in the coordinate x. We consider a coordinate
change x — X(x) such that X € D(S), and set

s
T(3(x)) [d—i] =T(x)- IC—ZS(J%)(x).]l ) (4.4)

Then T satisfies the OPE (2.3) in X. O

Corollary 11. Let S, be a Riemann surface of genus g > 2 with a complex projective
coordinate covering (i.e. a covering by coordinate patches whose respective local
coordinates differ by a Mobius transformation only). Then for any state () on Sg,
and for any local coordinate x in this class, (T (x)) (dx)? defines a global section of
T8 %
and for any local coordinate x in this class, (T (x)) (dx)?> defines a global section of
@5,
Proof. By property 2 of the Schwarzian derivative, and by eq. (4.4),

(T(x)) (dx)? = (T(R)) (d%)* . o

The equation in the proof of Corollary 11 can be read as the cocycle condition
on the 0-cochain (7'(x)) (dx)?. For a general coordinate covering U of S, g > 2,
(T (x)) (dx)* will fail to define a 0-cocycle. According to eq. (4.4), however, its 1-
coboundary is given by TCE(I)S (R)(x)(dx)* which by property 3 of the Schwarzian
derivative satisfies the 1-cocycle condition

S(y 0 x)(2)(d2)* = S Y)(x(2))(dx)* + S (x)(2)(dz)? .
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A 0O-cochain with this property is called a projective connection. Thus for any pro-
jective connection 15 C(z), the difference (7(z)) (dz)? - 15 C(z) defines a global holo-
morphic section in (7*S4)®? [16],

(@) @ - 5 co) € H(U,0Ts ™) . .5)

Example 2. Let S; be a Riemann surface of arbitrary genus. Let T be defined by
holomorphic fields of massless free fermions on S ;. In this case, the projective con-

nection I—CZC is known as the Bergman projective connection ([18],[9],[31]).

By the Riemann-Roch Theorem (e.g. [8]), the affine linear space of projective

connections has dimension
dime H(T*Sg)®*%) =3(g-1), (g22). (4.6)

Remark 12. Eq. (4.6) is wrong for g = 0 and g = 1. The difference from the
correct result is the dimension of the automorphism group of the Riemann surface,
(dimcS L(2,C) = 3 and dimc(C, +) = 1, respectively). For g > 2, this dimension is

zero.

Example 3. Let X be a g = 1 Riemann surface. Then T*Z is trivial. When one uses

local coordinates given by the affine structure on X1 [16], then (T (z)) is constant.

4.2 Calculation of the Virasoro 1-point function

Associate to the hyperelliptic surface X its field of meromorphic functions K =
C(x,y). Then K is a field extension of C of trancendence degree one, since y2 =1p(ix)
where p is a polynomial in x with coefficients in C. The two sheets (corresponding
to the two signs of y) are exchanged by a Galois transformation.

In what follows, we set

n

p(x) = Z age™ ™,

k=0

where n = 2g + 1, or n = 2g + 2. For convenience of application, we shall treat both

cases separately throughout this section, though they are of course equivalent.

Theorem 1. (On the Virasoro 1-point function)
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For g 2 1, let Z¢ be the genus g hyperelliptic Riemann surface
£ ¥y =p),

where p is a polynomial with deg p = n.

1. Asx — oo,

(T(x)) ~x7*, for even n,

(T(x)) = 3—02 21y + 073,  forodd n.

2. We have

_clPP 1
PTC) = 52D + 02 ), (@.7)

where ®(x, y) is a polynomial in x and y. More specifically, we have the Galois
splitting

O(x,y) = 0M(x) + yoL(x). (4.8)

Here ®Y is a polynomial in x of degree n — 2 with the following property:
(a) Ifn is even, [G)[” i %L;L]z(l)] =0
>n—4
(b) Ifnisodd, [OM +§(n?=1)aexX1)| _ =0.
©Y is a polynomial in x of degree % — 4 if n is even, resp. 5+ — 3 if n is odd,
2 S0p
provided g > 3.

Proof. 1. For x — oo, we perform the coordinate change x — X(x) := % By
property 2 of the Schwarzian derivative, S (%) = 0 identically, and

2
T(x) = T(fc)[d"] ,

dx

=12 =
where [%] = x~4. If n is even, then ¥ is an admissible coordinate, so (T(%))
is holomorphic in ¥. If n is odd, then we may take y := VZ as coordinate.
% = —%x‘l's, and according to eq. (4.4) and eq. (4.3),

oy L8 F ) _1_ S\ ue3
T(x)= 35 x +4T(y)x . (4.9)
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where (T'(3)) is holomorphic in .

. (T (x)) is a meromorphic function of x and y over C, whence rational in either
coordinate. Thus upon multiplication by some suitable polynomial Q if nec-
essary, we are dealing with an element in C[x, y], the ring of polynomials in x
and y. Since y2 = p(x), C[x,y] is a module over C[x] spanned by 1 and y, so
we may assume Q € C[x]. We conclude that the quotient field of C[x, y] is a
vector space over the field of rational functions in x alone, spanned by 1 and y.
In particular, we have a Galois-splitting

(T(x)) = (TENHY + y (T(x))P.

(T(x)) is O(1) in x iff this holds for its Galois-even and its Galois-odd part
individually, as there can’t be cancellations between these. We obtain a Galois
splitting for (T(y)) by applying a rational transformation to (7'(x)). From (4.4)
and (4.3) follows

PEP 1

=) + -0,

[ _
PTG =55 = S

1
P(T@)P! =7 0V(x),
where ®[!] and ®0! are rational functions of x. We have

1
1 o
4®
(p'1?

e 1 LT | g (R ., £
= (T = (D) = rild (T(y) + 5 (LPS ().

The Lh.s. is O(1) in x for finite x and away from p = 0 (so wherever x is an
admissible coordinate) while the r.h.s. is holomorphic in y(x) for finite x and
away from p’ = 0 (so wherever y is an admissible coordinate). The r.h.s. does
not actually depend on y but is a function of x alone. Since the loci p = 0 and
p’ = 0 do nowhere coincide, we conclude that ®(!] is an entire function on C.
It remains to check that ®) has a pole of the correct order at x = co. We have

[”—I;]Z = nagxX 2 + n(n - 2)a1 " + O(x" ). (4.10)

(a) If niseven, then p(T(x))m = 0(x"*asx - oo, by part 1. By eqs (4.7)
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and (4.10), ®(x) has degree n — 2 in x. Moreover,

@[ll(x)
= - £ ("a0y"™ + nn - D) (1) + 0",

(b) If nis odd, then p(T (X)) = Sagx"2(1) + O(X"3) as x — oo, by eq.
(4.9). Thus O has degree n — 2 in x. Moreover, by eq. (4.7) and eq.
(4.10),

el = —% (n? = 1) a0 %1y + O("3).
Likewise, we have

1 1
Zy@%) = y(T ()P = Z[p'lzymy»m;

the Lh.s. is O(1) in x wherever x is an admissible coordinate while the r.h.s.
is holomorphic in y wherever y is an admissible coordinate. Since y is a holo-
morphic function in x and in y away from p = 0 and away from p’ = 0,

respectively, this is also true for

1 1
ZPGM(x) = pXT ()P = Zp[p’12<m»[y‘.

Now the r.h.s. does no more depend on y but is a function of x alone, so the
above argument applies to show that p@P! =: P is an entire function and thus
a polynomial in x. We have p|P:

P
- = YO (x) = y[p YT )Y

is holomorphic in y about p = 0. Since P is a polynomial in x, and p has no
multiple zeros, we must actually have y* = p divides P. This proves that @]
is a polynomial in x. The statement about the degree follows from part 1.

O

Remark 13. The main purpose of Theorem 1 is to introduce the polynomial ®. Part

of the results actually follow from classical formulae for the projective connection.
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For instance, for n even and g > 3, we have [8]

2g-2

P(T() (@’ = =pClx) + (1) Z @i (dx)? + y(DZﬂ,xJ(dx)

Jj=0

for constants a;,Bj, in the notations of (4.5). Here the projective connection {5C on

X is given by

3T [P'P

pC@ =3 [ ld ] )y,
p <n-4

and

2g-2 g-3

[eMw)]_,_, =4 Dad, @V =41) ) g
i=0 Jj=0

Eq. (4.9) (for odd n) follows from the formula for C(x) on p. 20 in [9].



Chapter 5

The Virasoro 2-point function

5.1 Calculation of the 2-point function, for genus g > 1

We first need to introduce some notation. For the polynomial ® = O +y®D defined
by eqs (4.7) and (4.8) of Theorem 1, we set

n-2
Ol = Au 2+ ) A, A (D).
k=1

Recall that Ag is known constant multiple of (1). In contrast, for 1 < k < n -2,
the proportionality factor in A; o (1), though constant in position, is a yet unknown
function of the moduli of the surface. Thus (1) and the A define n — 1 parameters of
the theory which we shall focus on in Part II. (The parameters appear in bold print for
better readiblity of the formulae.) For g < 2, ®D] is absent so there are no additional
parameters in this case.

It will be convenient to replace ell(x) =: —§H(x) for which we introduce even

polynomials IT(!! and IT*! such that
II(x) =: M (x) + X119 (x). (5.1)
Likewise, there are even polynomials p!!! and p*! such that

p(x) = pl(x) + xpH (). (5.2)

27
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Lemma 14. For any even polynomial q of x, we have

q(x1)+q(x2) + O((x1 = x2)*)

= 2g(Nx) + (x1 - X2)2% (q(— T,

i gl Vxlm)) ;

and

x19(x1)+x2g(x2) + O((x1 — x2)*)

1(3q'(«/ )
= (11 + 12) {q( VER) + (1 - 1)’ (Mxi +q( «/_xxm)} :

X1X2

Note that the polynomials ¢ and ¢” in +/xjx; are are actually polynomials in

x1X2.
Proof. Direct computation. The calculation can be shortened by using
x1={+¢e)x,
ne=(l-9ox
where |¢| < 1. O

Abusing notations, for j = 1,2, we shall write p; = p(x;) and ®; = O(x},y;)
etc. For k > 0, we denote by [R(x1, x2)]>« the polynomial in x = x; defined by eq.
(2), with x5 held fixed, and let [R(x], x2)]>* be the polynomial for the opposite choice
x = xp (x1 fixed).

Theorem 2. (The Virasoro 2-point function)
For g > 1, let Z; be the hyperelliptic Riemann surface

Z: ¥ =p),
where p is a polynomial, deg p = n odd. Let
(TEDT(x2))e = (1Y T (x)T(x2)) = (DT (x1)KT (x2))

be the connected 2-point function of the Virasoro field. We have

ik

(Tx)T(x2))e p1p2 = O 7). (5.3)
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2. For |xi|,|x2| small,
(T(x)T(x2))e p1p2 = (1Y'R(x1, x2) + O (1) |y =x, »

where R(x1, x2) is a rational function of x1, xp and y1, y2, and O(1)|, =, denotes

terms that are regular on the diagonal x| = x, and polynomial in x1, x, and

Y1, y2-

3. The rational function is given by

e P1p2
R(x1,x2) = 4(1)——( .
<1>(P[”( Vx1x2) _(x b )P["]( Vxlxz))
4y1y2 x1-xt 200 T (- x)
< p1P2
( >(x1 - J62)2
(MY (yx1x2) L (pMy(yx1x2)
< Vaix 3 VEx
i 32y1y2( )[ Bt = 5P + 2(x1 + x2) R
1102 + p2@,;
8 (x1 - x)?
L0 + 1,00 (1’[ ‘D) | 1 PHIVEIE) */mz))
"3 (y1®2 o ) (x1 — x2)? 2(x1 g (x5 - 30
c PNy (Varxm) 1 (PM)"(Yx1x2)
+ 3—2}’1)’2(1>( T 2(Jfl + xz)w)
o (”“’(m e )H[”<m)
s WO R AR T TR

Here p!Y and p™*' and IV and TI™) are the even polynomials introduced in
(5.2) and in (5.1), respectively.
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4. For R(x1,x3) thus defined, the connected Virasoro 2-point function reads

AXT (xT(x2))c p1P2

= R(x1, x2) + P(x1, x2,¥1,y2)
1 C
- 5% (420, + 23720y - a<1>(n2 ~ Dad o222
1 n
" gylale
1 n

2|
=——y140X
16y10 1

1 AL S
—§y2a1x1’ ’x; ’2@[1)’]
< 1
1 3=1nDl

x2 ®2 = 1_6
3 peSata ] 3 gl g3
—T-éylaoxf ng IG?I—Eyzaoxf 7x27 7@?]

1 a3 n-3 1 I )
- Eylale7 ng 205)'] - 1—6}’202153 7x; 7@?] X

St 1
S imolb]
xy “0;

3-1 3-3 01
y2a0%; ‘x5 O]

where

P(x1,x2,y1,y2) 5.4)
= PN(xy, xp) + y1 PP (xy, x0) + y2 PPN (xy, x0) + y1y2 PP (xy, xp) .

Here P, PO'Y2) and for i = 1,2, PY) are polynomials in x| and x, with

deg,-P“] =n -3 = deg; pLil S fort £l

-1

(deg; denotes the degree in x;). Moreover, P pOal gpd ylPD"] + sz[yZ] are
symmetric under flipping 1 & 2. These four polynomials are specific to the

state.
Proof. Direct computation (cf. Appendix). O
In the following, let [T(x1)T(xg)]reg.+(T(x1))C<T(x2))c.ll with (T(x)). = (1)"NT(x))
be the regular part of the OPE on the hyperelliptic Riemann surface Z,
c 1
T(x))T(x2) p1p2 ~ 3—2f(x1,X2)2-]1 + 2/, x2) (B + %)

+ [T(x))T(x2))eg. P1P2 + {T(x1))AT(x2))cp1P2. 1. (5.5)
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(2=2)”, and

X1—Xx2

Here f(x1,x2) :

LA i
32

Hx):=Tx)p- 1 (5.6)

satisfies (}(x))
4.4),

I

41 O(x,y). ¥(x) is holomorphic about p = 0 since by eqgs (4.3) and

4 C
)= T3E (19 - P S(P)-]l) A

where S (p) is regular at p = 0.

5.2 Application to the (2, 5) minimal model, in the case

n=>5
In Section 2 we introduced the so-called normal ordered product
No(e1, 2)(x2) = lim [e1(x1)¢2(x2) ] egutar

of two fields ¢1, @2, where [¢1(x1), (,02(x2)]l.egular is the regular part of the OPE of
1, 2. For ¢; = ¢p = T and the OPE (2.3), (No(T, T)(x)) can be determined from
Theorem 2.4. To illustrate our formalism, we provide a short proof of the following
well-known result ([1], Sect. 3):

Lemma 15. The condition No(T, T) < 3*T implies ¢ = —% and

No(T, T)(x) = 1% FPT(x). (5.7)

Proof. The statement is local, so we may assume w.l.0.g. g = 1. In this case,
OM(x) = ~dex(1y +A;, @D =0,

by Theorem 1.(2b). Using Corollary 11 and the transformation rule (4.4) for x =
9(z|r), we find

712 T
T = 5o m - e+ 22,
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where by (4.7), (T) = %}. Direct computation shows that
(No(T, T)(x)) = @ 8*(T(x))

iff @ = 13—0 and ¢ = —— . Since by assumption the two underlying fields are propor-

tional, the claim follows. ]

The aim of this section is to determine at least some of the constants in the Vi-
rasoro 2-point function in the (2, 5) minimal model for g = 2. We will restrict our
considerations to the case when 7 is odd. (Better knowledge about ®!!! when # is
even doesn’t actually provide more information, it just leads to longer equations.) In
the first case to consider, namely n = 5, all Galois-odd terms are absent. Restricting

to the Galois-even terms, condition (5.7) reads as follows:
Lemma 16. In the (2,5) minimal model for g > 1, we have

[P” ]2 Tc / /// c p_(A_).

—<> ——<>p et
8 e O - i
+20p® 80 2(® IS
<1> ((@[1])2 (@D'])2)
p
1 1 g
[1]
-+ 20079 - §A0a0 p2
1 ’ x]\7
& 2 .C32 E ((H[ll) o x(H[ ]) )
1 { (Y’ i (1 y
_ﬁ_< >( 3) _ 5(%_(17[,‘])) 2x((Px) +5(p [])))
p[l](x, x) 7 P[)’l)’z](x, x)
p? pE

Note that the equation makes good sense since the L.h.s. is regular at x = 0. For
instance, (IT!1Y" is an odd polynomial of x, so its quotient by x is regular.

Proof. Direct computation. O

Example 4. Whenn =5,

deg P(x,x) =4, POVI(x,x)=0
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Thus we have 5 complex degrees of freedom. One of them is the constant' (1), and
according e. (4.6), at most 3 of them are given by (T(x)) (or by A1, A», Az). Set

PY(xy, x0) = By X%xg
+ B1 (¥ %2 + x133)
+ Bz(xf - x%) + B11 x1x2
+ Bi(x1 + x2)

+Bo,

Bo, By, Bi j o« (1) are constant in position, for i, j = 1,2. The additional constraint

(5.7) provides knowledge of
P(x,x) =Bys x* +2By1 x° + (2B> + B1.1) x> + 2By x + By

only, so we are left with one unknown. As we shall argue in Section 6.2, it should be
possible to fix the remaining constant using (5.7), once the Virasoro 3-point function

is taken into account.

'Recall, however, that (1) and A, A,, A; are functions of the moduli on the surface Z,.






Chapter 6

The Virasoro N-point function

N point functions for N > 3 can be established from the correlation functions for
N = 2,3, using symmetry arguments. Thus finding a routine to compute the N-point
functions for all N > 2 goes with encoding their constituents graphically. For the
Virasoro field the graphical description has been formulated by [19] for the genera
g = 0and g = 1, for which Zhu’s recursion formulae were available [41]. Essentially
the same inductive arguments prove our recursion formula for the Virasoro N point
function for hyperelliptic Riemann surfaces of arbitrary genus.

6.1 Graph representation of the Virasoro N-point function
forg>1

For g > 1, let Z, be the genus g hyperelliptic Riemann surface
Z: »=p),

where p is a polynomial, deg p = n, withn = 2g + 1, orn = 2g + 2. Let ¥ be the
bundle of holomorphic fields introduced in Section 2. For N e Nand j = 1,...,N,
abusing notations, we shall write p; = p(x;) and #; = 9#(x;), where & is the field
defined by eq. (5.6).

Theorem 3. Let S(xy,...,xn), N € N, be the set of oriented graphs with vertices

X1,. .., XN, (not necessarily connected), subject to the following condition:

Vi=1,...,N, x; has at most one ingoing and at most one outgoing line,

and if (x;, xj) is an oriented line connecting x; and x;j then i # j.
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Given a state () on Z, there is a multilinear map
< )r : 6*(7:) - C 5

normalised such that (1), = (1), with the following properties:

1. Forallke N, k > 2, and any ¢, ...,¢r € {1, T}, we have
(1 @2(22) - - - przi))r = p2(22) - - - Pr(z))r -

2. Forallk e N, (& ...%), is a polynomial in x1,...,x; and yy, . .., Vk.

3. We have

T@)... TG p1...py= ), FD),

where forT € S (xi,...,xN),

ot (g)maaps N (% f(xi,xj))< Q) v Q) Teope

(xix;)el keANNEN® (e(ANUEN)©

Here for any oriented edge (x;, x;) € T,

2
Yityj
H=xpf

S(xi, xj) ¢=(
An,En C{1,..., N} are the subsets

Ay :={i|3 j such that (x;,x;) € T},

Ey :={j|3 i such that (x;,x;) €T} .
U and N are the set theoretic union and intersection, respectively, and
denotes the complement in {1,...,N}.

Note that ( ), is not a state (it is not compatible with the OPE).
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(6.1)

Jis

r

o

Proof. We use induction on N. By multilinearity of ( ), and eq. (5.6), F(I') for

I' e S(x1,...,xy)is determined by (T (x;) ... T(xg)),, for k < N.

Suppose (T(x1)...T(xk)),, for k < N has the required properties for k < N. We

define
(T(x1)...T(xn))r
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by (6.1) and show first that (T(x1)...T(xy)), is regular as two positions coincide.
In other words, let I'o(xy,...,xy) € S(x1,...,xy) be the graph whose vertices are
all isolated. Then X r,r, F(I') reproduces the correct singular part of the Virasoro
N-point function as prescribed by the OPE (5.5) on X.

For N = 1, I'p(x) is the only graph, and

(T(x)) p = F(To(x)) = (T(x))p - (6.2)

For N = 2, the admissible graphs form a closed loop, a single line segment (with

two possible orientations), and two isolated points. Thus by eq. (6.1),

1
(Tx)T(2))ep1p2 = (T)T(x2)) P1p2 — o= F2(L)y = = fia(B1 + D),
32 4

where fi2 := f(x1, x2). According to the OPE (5.5), (T (x1)T (x2)),p1p2 is regular on
the diagonal x; = x;.

In order to prove regularity of (T (x;)...T(xn)),p1 - .. py on all partial diagonals
for N > 2, it suffices to show that the coefficients of the singularities are correct.
Suppose the graph representation for the k-point function of the Virasoro field is
correct for2 < k < N-1. For1 <i < N, set St := §(x;,...,xn) and l"([)"] =
Fo(x;,...,xn). Forl <i,j< N, i+ j,define

Sap =(T € SM (i, x)), (xj, ) €T},
Sap = € SN (x;,x;) €T, (xj, x) ¢ T},
Saxj =T € S| (x;, x;), (xj, %) € T} .

S decomposes as
W =SaUSazyUSanUSaw.
Since S (12) = S, the equality

D FO) = 55 fy (TGxa)... TG p3-.. pw
IreSa

holds by the induction hypothesis. By the symmetrization argument following eq.
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(A.2), it remains to show that

> FO =2 0,700 Tan ps. oy + 0 - 07,
FGS[l]\S(lz)

which under the induction hypothesis on §?! and S 3!, we reformulate as

D Fe™' @)+ F@™'(D)
Tes

= & Z FE) - iﬂ Z F(I") +O0((x1 —x )_1)
2 32 p2 i
Ies 2l I’es 3

Here ¢, @ are the invertible maps

@ S(I,Z) =) 5[2],
@ 5(2,1) - 5[2],

given by contracting the link (xj, x2) resp. (x3, x1) into the point x;, and leaving the
graph unchanged otherwise. Let S (5)  S[?! be the subset of graphs containing x, as
an isolated point, and let y : Sy — SB! be the isomorphism given by omitting the
vertex x; from the graph. Now for I € S ), the graph representation yields

Fe ') + F@ (D))
c [Pé]2

_ f ment !
il (F(F) 32 py F(X(F))]+0((X1 x2)7),

while for T € S\ S,),

fiz

F ')+ F@ i) = = FD + 0 - x)™.

It remains to show part 2. It is sufficient to show that (3 ... %), for 1 <k < N is
regular at p; = 0. We use induction. From eqs (5.6) and (6.2) follows (#), = (3) =
%@, which is a polynomial in x and y. Now suppose (1 ...3%), is regular at p; = 0,



39

fork < N-1.Forl € P({2,..., N}), the powerset of {2, ..., N}, we have by eq. (5.6),

i n(iﬂy@ﬂ.)
1eP((2....N}) i€l 32 pi "

..... Jel©

@... 9N =(T(x1)...Txn))rp1 - - -

+ terms regular at p; = 0

TG
= (T(x1)...TGN)sP1 .. PN - 3%’;—‘1<T(x2> . TON)WD2... PN

+ terms regular at p; = 0.

Here we have, using the graph representation,
(T(x1)... TGP - py = (Tx1) .. TGNDp1-..pv = D, F(D)
restiri!

_i[P'l]2
B2 P1

(T@)...TGw)p2...pv= ), F(D)
resnri!
+ terms regular at p; =0
c [p}P
= >——(T(x)...TN)P2 - - PN
32 p

+ terms regular at p; = 0.

We explain the second identity. Consider the augmentation map a : S \ l-.gz] -
sty I"([)” defined by adjoining the isolated vertex x; to the graph. We have
12
F(a(l')) = iﬂF(F) + {terms regular at p; = 0} .
32 pi
Indeed, all terms in F(a(I')) that involve #; are k-point functions with k£ < N, since
end points of edges are not labelled, and so are regular at p; = 0 by assumption. We
conclude that (31 ...9y), is regular at p; = 0.
=]

Since the proof is by recursion, it should generalise easily to more general Rie-
mann surfaces.

We illustrate the theorem for the case N = 3. Recall that the connected 1-point,
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2-point and 3-point functions are given by

(@()e =1y He(x)),
(1(x1)@2(x2))e =(1) N1 (x1)2(x2)) — (1) "2 p1(x1)) (@2(x2)) ,

and

(@1(x1)@2(x2)@3(x3))e = (1) Hp1(x1)2(x2)3(x3))
= (1)72 {{p1 (x1)a(x2)) {pa(x3)) + cyclic}
= (1) @1 (x1)) {@a(x2)) {@3(x3)) -

Example 5. When deg p = n is odd,
(T(x1)T (x2)T(x3))c p1pap3 = O(X1 7).

In the region where x1, x5, x3 are finite, the connected Virasoro 3-point function is

given by

(T(x))T(x1))T(x3)ep1p2p3 = RO(x1, 2, x3) + Oy, yxs »



where RO is the rational function
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2
y1+y3

+
R(O)(xl,xz,xs)- (y1 L
X1 — X3

yit+y2

2 9
¥+ Y3
X1 — X3 X3 — X3

()10, + ©3)

X1 — X2

X1 — X3
2

X1 — X2

y1t+y3

(1)@, + 83)

2 )2
bl +ys)
|

X2 — X3

%l

ol

ol

4

X1 =

4

X2 =

Here for i, j € {1,2,3}, [T(xi)T(xf)]reg

X1 — X3

)
6]
(y1+y2) Y2 +y3
s

1 2
e (L)x)::) (<l>_1([T(xl)T(xZ)]reg.)plpz

1 2
B (&ii_z) ((1)—1([T(XI)T(X2)]reg.) pip2

2
( ) (1)71(0 + ©,)
X2 — X3

) (T @xDT(x3))yeg dP1P3

+ ()" NT (02T (x3)),eg YP2P3)

+ (1) NT ()T (x3))reg.) P2P3)

+ (1) NT@)T(x3))reg.) P1P3)-

is defined by (5.5). By part 2 in the Proof of

Theorem 2, ([T(xi)T(x]')]reg ) pipj is a polynomial in x;, xj and y;, y;.

Moreover, the O(1)|y, x,.x; term is a polynomial in x1, X2, x3 and y1,y2, y3. Indeed,

(T (x1)T (x2)T (x3)). is regular at p;

= 0 because

(T)T )T (x3))e = (T (x)T (22T (x3)) = (1) XT(x1)) (T (x2)T (x3))

-t

(T (x)T(x2))e (T (x3)) + (T (x3)T (x1))c (T (x2))}

6.2 Application to the (2,5) minimal model, for » = 5

We consider the (2, 5) minimal model on a genus g = 2 hyperelliptic Riemann surface

2

¥y = p(x).

There are exactly 28 = 4 parameters, given by (1) and (T'(x)) (or A, A, A3). As we
shall argue now, we expect that all other constants in the Virasoro 2-point and 3-point
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function are determined.

Wlo.g. n = 5. In this case the 2-point function in the (2,5) minimal model
has been determined previously, up to one constant, cf. Example 4. In the 3-point
function, there is only one polynomial PMN(xq, x5, x3), of degree n — 3 in each of

X1, X2, x3, free to choose. Set

PU(x1, xp, x3) =Bp22 X305
+Bz,2,1(x%x%x3 + x%szg + X1X%x§)
+Bz‘1_1(x%x2x3 + x1x§x3 + x1x2x§)
+ Bo20(xx; + X125 + 253)
+Bz_1‘0(x%x2 + x%x3 - xlx% - xlxg + x%x3 + xzxg)
+ Bi,1,1 X1%2x3
+B2,00(x7 + x5 + x3) + By 10(x1x2 + X1 X3 + X2x3)
+B10,0(x1 + x2 + x3)

+Bo,0 ,

where B, j; o (1) for i, jk € {1,2} and k < j < i are constant in position. The

constraint eq. (5.7) provides the knowledge of

P (x5, xp, x3) =By x‘éx%
+Bz,2,1(x‘2‘x3 -+ ngxg)
+282,1,1x;x3 + (B211 + ZBz,z_o)xgx% + Bz,z,ox;
+2B5,10(x3 + X233) + (B1,1.1 + 2B2,10) X33
+2B11,0x2%3 + (B1.1,0 + 2B20,0)%5 + B2.00%3
+B1,00(2x2 + x3)

+Bo,0,0,

(obtained in the limit as x; — x»), and thus of all 10 coefficients. So given (1) and
(T (x)), the Virasoro 3-point function is uniquely determined.

Since ([T (x1)T (x2)]reg.) P1P2 Obtained from (5.5) is just the O(1)|y,=x, part in the
connected 2-point function given by eq. (A.5), the remaining unknown constant in
the 2-point function is determined using Example 5.
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Thus in Part I of the thesis we have formulated a set of necessary conditions on
any CFT on a hyperelliptic Riemann surface. We shall not investigate the question

about existence, which requires different methods.
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Appendix A

A.1 Proof of Theorem 2 (Section 5.1)

1. We have

(T(x1)T(x2)) p1p2
= (T(x))T(x2)) p1p2],—2 + (T (x1)T(x2)) p1P2)<p-3 »

where according to (4.9),

(TG)T(2)) pipal,_s = %am"‘%r(n» P>

= () (T)XT(x2)) prp2l,s »
s0
(T(x1)T(x2)) p1p2 = ()T (x)XT (x2))p1p2
= [(T(x1)T(x2)) p1P2leyz — (D (T DXT (x2))P1P2)<po3 -
This shows (5.3).

2. The proof is constructive. We build up a candidate and correct it subsequently
SO as to

e match the singularities prescribed by the OPE,
e behave at infinity according to (5.3),

e be holomorphic in the appropriate coordinates away from the diagonal. =
is covered by the coordinate patches {p # 0}, {p” # 0} and {|x7!| < €}.

General outline: The 2-point function is meromorphic on £ whence rational.
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So once the singularities are fixed it is clear that we are left with the addition
of polynomials as the only degree of freedom. The key ingredient is the use of
the rational function

(A.1)

f(x1,x2) = (yl +y2) g

X1 — X2

which has a double pole at x; = x; as y; = y» # 0, and is regular for (x;,y;)
close to (x2, —y2).

For finite and fixed but generic x5, and for the function f defined by eq. (A.1),

we have
c c/2 ¢  [H)P o
3—2p—f( 1,x) = ra——" +Ep§(x1—x2)2 +0((x1 = x2)7).
Moreover,
1 =
Zp_f( 1,%2) = - i O((x1 = x2)7") . (A2)
Thus
[ )8 1l . [l
2 . oo (pl L ]f(xl x2) + O((x1 - x2)7").
p3(x1—x2)? 8pip2\ p1 P2
We conclude that
1 L 2
i p1p2<1>{ fx1,x2)

D) 2
[pll [p2] ]}+0(1) (A3)

= —f( X1, % 2)(

where O(1) includes all terms regular at x; = x,. Now by eq. (A.2),

(T&E)+ <T§x2)) . lf(XI’xz)((T(M)) i <T(xz)>) +0q). (A4)
(x1 — x) 4 P2 pi
From eqs (A.3) and (A.4) we obtain

G/2 @+ (T (x1)) + (T (x2))
(x1 = x2)* (x1 = x2)?

1
=i (—(1)f(x1,x2) + —f(xl,xz)(®1 + ®2)) +0(1),
P1p2
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by eq. (4.7) Thus in the region where x; and x, are finite, we have

AXT(x)T(x2))e p1p2 = RO(x1,x2) + O (1) |y =y (A.5)

where

1
RO(xy, x3) := fif(xl,m)za) + e fELm@1+0). (A6

Note that the O(1)ly,=x, terms are restricted to polynomials in x1, x and y1, y>.
This simplification is due to the use of the connected 2-point function (the
coefficient of any positive power of f(x1,x2) in (T(x1)T(x3) p1p> is regular
at p = 0, so all singularities in at p = 0 drop out when (T'(x1)T (x2). p1p2 is

considered.)

The degree requirement (5.3) yields the upmost specification of eq. (A.S), be-
cause some terms appearing in

c o 2
RO(x;, x9) = 3—2<1>%
P1t+p2 < P1p2
x1=x) 4 (x1-m)
1 p1+2y1y2 + p2 (11 1
T (e + el ])
& 1 pi+2yiym+p2
16 (x1 —x)?

C
— 1
T 8ny2< )

(ney" + .03

are absent in eq. (A.5) and so determine some of the polynomials in the con-
nected 2-point function (which in the following we shall refer to as correc-
tion terms). To keep formulae short, we shall go over to the rational function
R(x1, xp) introduced in part 3 of Theorem 2, since it has milder divergencies
for |x| large than RO(x;, x») does. Thus we show now that

RO(x1, x5) = R(x1, x2) + polynomials, (A7)

where the “polynomial” part is a sum of polynomials in xj, x» and in yi, y>.
Indeed, we have the following identities:
(p1-p)? PP

= + pol ial.
Gi~nr . Greay. o
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Lemma 14 yields

+ D2
8Y1y2( >( o
(1] [x]
c P vyxaixm) c P (Vx1x2)
= - b A o
re s e i ( poe + gyl + nX1) e
e (p“l)'( NEED)
+—=y1y(l) m =
32 (x1 — x2)
1 [x]y7
3c m([’ Y (Vx1x2)
- 1
taela s mhl) g
c <1>(p[”)"(«/—m 2)
T
c Py’ (Vaix2)
* EZ}’1Y2(X1 + x)1) T
+polynomial. (A.8)
Likewise,
1 @[1] + @[1]
_YI)’Z_‘_—(xl i
" (H“l(wl—xz‘) o )H[*l(«/m;))
TRCgE R 2 Y P
+ polynomial. (A.9)

Let r, s be polynomials in the only one variable x. Then we have

181+ msn risa +ms
(=222  (x1-x2)?

+ polynomial . (A.10)

Thus

1p1©1 +p2@; _ 1p102 + 26,
B (m=mF 8 (xi-HF

+ polynomial. (A.11)

(A.10) generalises to terms including y; as

yirtyats Yzt propernic—n 1
x1-x)P (@-xP xx-mxu-xny+ym




49

Thus

1 p1+2ny: +p>
16 (x1 = x2)?
_1 pi+2yiy»+po

16 (x1 - x)?

(yIGEy] + }’2('35/])
105" +y,0P) + polynomial,

and Lemma 14 yields

1 pi+p
16 (x1 — x2)?
1

= (y1®[2y] + y2®[1‘v]) X

8
){wkﬁﬁa I ﬁW¢E@)

(105" +1:07") =

(x1 = x2)? hpt R (x1 = x2)?

+ polynomial. (A.12)

This proves eq. (A.7). Note that this result implies that in the finite region,
R(x1, x2) has the correct singularities. It remains to correct its behaviour for
large |x|.

3. We first subtract all terms from R which are of non-admissible order in x;.
These depend polynomially on x, because this is true for [(xl - xz)‘[Lk with
t €N, k € Z, (x1 large), and may depend on y>. The result may still be degree
violating in x,. Thus the corrected rational function reads

R - [Rl>n_3 - [R = [Rlop_s]™"
=R = [Rlsp-3 — [RP"3 + [[Rlyps]™ .

Since the subtractions could be done in a different order, the procedure only
works due to

[[R1-3]""> = [[R1>"] (A.13)

>n-3"

The connected 2-point function is thus determined up to addition of a polyno-
mial P(x1, x2, y1, y2) of the form (5.4) which is specific to the state. The degree

and symmetry requirements for P(xy, x, y1, y2) are immediate.

For clarity, we first list the terms contained in — [R]s,_3 resp. —y; [R]>§_3:



From (A.8),

3
o g‘%yl)’z [n(l)

= é}’l}’z [x1(1>

from (A.9),

from (A.11),

and from (A.12),

(x1 — x2)?

ﬁmwmﬂ¢H@]
>3-3

(P’ (Vx1x2)

(X< x2)2 ]>’2'»—3

’

c [ 1 VX1x2)
x| —

12
64 (x1 v x2)2 >§_3

1 p1 ]
Bl I ;
8 ? [(xl e x2)2 >n-3

1 oD Pm( VX1X2)

B Lo - mF g
1 [x]
ol [xlp (Vx1x2)] ’
>3-3

’

16 (1 - w20
L Y1202 [P[x]( Vxle)}
16 fl@m-m Ly

Now we give the full explicit expression for

= [Rlsus —BF™? + [[R]:nesl™ .

(A.14) and (A.15) yield

c 3 g g N 3-3 3-3
aylyz(n - Daox; “x, =_§.YI)’2AOX1 X,

?
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(A.14)

(A.15)

(A.16)

(A.17)

(A.18)

(A.19)

(A.20)

which cancels against the term we obtain from (A.16). Forodd n, Ag = —g(nz—
Dap(1), so (A.17) yields

1

8

(x111—2®2 + x§_2®1) - &(n2 - l)ag.lel_zxg_z.



51

(A.18) yields

%y”’le x) %Gg]+%y201x3 i ’i'@?]
(A.19) yields:
%ymoxi‘l’_fxg‘%@[zy] & 1i6.\’2aox?_%xz§_%®?] :
%ylaox’f—i"; %G)%v] # %haoxl%%x;_%@[lyl )
(A.20) yields:
. §-3 3+igmr , 1 844 8-3 b
T A 0; + 1gr200% X% e}

Since all terms are symmetric w.r.t. interchange of x; and x», eq. (A.13) has been
verified. This completes the proof.

A.2 Behaviour of the Virasoro 2-point function under de-

generation of the surface in the case g = 1

As mentioned by the author in the viva, the formula for the Virasoro 2-point function
is consistent w.r.t. the degeneration of the Riemann surface Z,.

Suppose X, X’ are two different ramification points of any hyperelliptic Riemamn
surface Z;. A linear fractional transformation on IP}: sending X’ — X results in
a hyperelliptic Riemann surface Z,_;, since in the limit, X = X" will no more be a
ramification point. Indeed, while on I, a path between X and X’ will change the
sheet, in the limit, winding around X’ = X will trace a path on one single sheet.

We checked consistency for £; : y* = p(x) with deg p = 3. The Virasoro 1- and
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2-point functions on X; are given by

A —4cx + A
<T<x>>=312[’;2] et

1
(x1 = x2)*
€ Pip) s £ il T pal
32" ' -mPpip2 2 (x1-x2)?pip2
1 -
LTS é?z
8 (x1 —x)p1p2
C pP1+Dp2
+ =y1y2(l)——————
8 (x1 = x2)*p1p2
X1+ X2 1 1

—_—+ =AYy ————
(x1 = x2)’p1p2 4 (x1 = x2)’p1p2

X1X2 i A1 (x1 = xz) i P[I]
pip2 2 pip2 pPip2
+ (1) UT)XT (x2))

(T(x)T(x2)) = §<1>

C
i
2( W1y2

+ 2¢(1)

respectively, where P o« (1) is specific to the state. Denote by (T (x1)T (x2))x, x,.X;
the 2-point function on the torus

i ¥ =ao(x - X1)x - X2)(x - X3),

(ag € C). A linear fractional transformation on IP’}: sends X3 — oo. Since

x2 — X3 1x1-x 1(x-x)P X3 — o0
A = e s+, 1,
X1 - X3 2x1-X3 8(x-X3)
we have
lim (T(e)T(x2)) £ty :
X X = - ’  —
e 1 2)7X1,X2.X3 2 X|.X;, (x,l _x,2)4

1

+c<1>1(1+1)(1+
32 P\ - X)) K - X\ - X)) (- X3)

1 [V -XDEG =X O - X - )
+

(o4
-_— l 7y
+gxx =

2

+<1>C(1+1)2(1+1
EEP\E X WD) X)) X

1

~N JE - - Jos - X0 - %)

-

)
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Here (1)x x; is the O-point function on the Riemann sphere
b 34 y? = ap(x’ - XN - X3),

in terms of new local coordinates x, y’. Assuming X = 0 for simplicity, the coordi-

nate transformation is given by

X-X3x-X
X = X T2t
X-X1x-X3

(in particular X3 = X3). To check our result, we perform another linear fractional
transformation on P,

xl

"y
X \X)=
(") -1

2

sending X, — oo. The 2-point function on the resulting surface X : y”’~ = apx”,

with 0-point function (1) and Virasoro 2-point function (7" (x])T"(x7))o, reads

1 . c a 1
Zagr NG T an =0z oy
(o =)t 3277 - Xy Py

l ’xlll 'xél
+
’ "4
le —xé) ,’x’z' ,/x’l’

. . c
lim i (T()T ) = 700

Xz-)oo

% §<1>o :

& 1. 1
LA e B T
¢ (32)2< >0 x11/2 x;lZ

The arguments of the proof of Theorem 1 and 2 show that this is the correct formula,

lim X31i§1m<T(x1)T(J62))x.,xz,x3 =(T"(x)T" (5o -

X; > 0

Thus we have shown that our formulae for the 1- and 2-point function on the torus Z;

behave correctly under degeneration of X; to the sphere Zg.
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Part 11

Dependence on moduli
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Chapter 7

Introduction

T :={zeCllgl <z < 1}/{z~ qz},

where ¢ = ¢”™ 7 and 7 € H*. £, is a torus. A character on X is given by

W= " 0 g

®j
{/} basis of F

Here F is the fiber of the bundle of holomorphic fields ¥ in a rational CFT on X, as
discussed in Part I of the thesis. By the fact that Part I lists necessary conditions for
a CFT on a hyperelliptic Riemann surface, (1)x, is in particular a O-point function
(1) in the sense of Part I. On the other hand, (1), is known to be a modular function
of T ([27], [41]). A modular function on a discrete subgroup I' of I'} = SL(2,Z) is
a -invariant meromorphic function f : H* — C with at most exponential growth
towards the boundary [38]. For N > 1, the principal conguence subgroup is the group
['(N) such that the short sequence

1 = DNy = T; =S LS. ZNZy 1

is exact, where 7y is map given by reduction modulo N. A function that is modular on
['(N) is said to be of level N. Let {y = ¢% be the N-th root of unity with cyclotomic
field Q({nv). Let Fy be the field of modular functions f of level N which have a

Fourier expansion

f@= ) agh, g=em", (7.1)

n2-—ng

57
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with a, € Q({n), Yn. The Ramanujan continued fraction

() = ql/5 (7.2)

1
1 _QT
+1+-ﬂ:

which converges for T € H*, is an element (and actually a generator) of Fs [2]. 7 is

algebraic over F; which is generated over Q by the modular j-function,

3

: 8>
j(T) = IZBﬁ .
& _2783

J is associated to the elliptic curve with the affine equation
Tt Y =4r -gx-g3, with g5 -27g;#0.

Here g for k = 2,3 are (specific) modular forms of weight 2k,! so that j is indeed
a function of the respective modulus only (the quotient 7 = w,/w; for the lattice
A = Z.wy + Z.wy), or rather its orbit under I'; (since we are free to change the
basis (w1, w2) for A). In terms of the modulus, a modular form of weight 2k on I’ is a
holomorphic function g : H* — C with subexponential growth towards the boundary
[38] such that g(7) (dt)* is I'-invariant [33]. A modular form on I'; allows a Fourier
expansion of the form (7.1) with ng > 0.

Another way to approach modular functions is in terms of the differential equa-
tions they satisfy. The derivative of a modular function is a modular form of weight
two, and higher derivatives give rise to quasi-modular forms, which we shall also deal
with though they are not themselves of primary interest to us.

Geometrically, the conformal structure on the surface
Tty =4(x-X)x-X)(x-X3), xePg,

is determined by the quadrupel (X1, X», X3, o) of its ramification points, and we can
change this structure by varying the position of Xj, X», X3 infinitesimally. In this
picture, the boundary of the moduli space is approached by letting two ramification
points in the quadrupel run together [13].

When changing positions we may keep track of the branch points to obtain a
simply connected space [6]. Thus a third way to describe modularity of the characters
is by means of a subgroup of the braid group B3 of 3 strands. The latter is the universal

! As mentioned earlier, a modular form of weight 2k transforms as f(1A) = 27* f(A) forany 1 € C".
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central extension of the quotient group Fl = I'1/{z],}, so that we come full circle.

Suppose £; = C/A where A = (Z.1 + Z.iB) with 8 € R. Thus the fundamental
domain is a rectangle in the (x%, x') plane with length Ax® = 1 and width Ax! = B.
The dependence of (1)z, on the modulus i3 follows from the identity

Ly, =tre™™®, H= f T®4x°,

where T% is a real component of the Virasoro field.> As mentioned above, we may
regard (1)s, as the O-point function (1) w.r.t. a state ( ) on Z;. Note that the same
argument applies to N-point functions for N > 0.
Stretching B — (1 + €)B changes the Euclidean metric G,y (4, v = 0, 1) according
to
(ds)* — (ds)* +2e(dx")> + O(%) .

Thus dG, = 2%

d
ﬁ,and

d(1) = —tr(HdB e 1) = - 5% (f(TOO)de) B

- "Gz_“ f f (T%dx0dx" . (13)

The fact that f (T%%dx° does not depend on x! follows from the conservation law
0,TH = 0:

d—‘; 56<T°°> dx’ = 5661<T°°> dx® = - 5660<T‘°> dx’ =0,

using Stokes’ Theorem.
We argue thaton S! x § ;3 J2n) (where S /li /o) is the circle of perimeter ), states
(in the sense of Part I of this thesis) are thermal states on the VOA.

When g > 1, equation (7.3) generalises to

ail) = - % ffdG‘" (T*y VG dx® A dx' . (7.4

2Any dynamical quantum field theory has an energy-momentum tensor T}, s.t. T,,,dx*dx” defines a
quadratic differential, by which we mean in particular that it transforms homogeneously under coordi-
nate changes. For coordinates z = x° + ix' and 7 = x° — ix', we have [1]

1 .
T, = Z(Too -2iTyo = Tn).

For the relation with the Virasoro field 7'(z) discussed in Part I, cf. Section 9.1 below.
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Here G := | det G|, and dvol, = VG dx® Adx! is the volume form which is invariant
under base change.3 The normalisation is in agreement with eq. (7.3) (see also [3],
eq. (5.140) on p. 139).

Methods that make use of the flat metric do not carry over to surfaces of higher
genus. We may choose a specific metric of prescribed constant curvature to obtain
mathematically correct but cumbersome formulae. Alternatively, we consider quo-
tients of N-point functions over (1) only (as done in [7]) so that the dependence on
the specific metric drops out. Yet we suggest to use a singular metric that is adapted
to the specific problem.

3The change to complex coordinates is a more intricate, however: We have dx° A dx' = iG; dz A dZ
with G; = 1, as can be seen by setting z = x” + ix'.



Chapter 8

Differential equations for
characters in (2, v)-minimal
models

8.1 Review of the differential equation for the characters of
the (2, 5) minimal model

The character (1) of any CFT on the torus X; solves the ODE [7]
d 1 1
—(1)=— Q(T(2))dz = —(T). 8.1
d‘r( ) i §< (2))dz 2m.< ) (8.1)

Here the contour integral is along the real period, and § dz = 1. (T), while constant
in position, is a modular form of weight two in the modulus. The Virasoro field
generates the variation of the conformal structure [7]. In the (2,5) minimal model,
we find by eqs (3.3) and (3.4) in Part I,

27ridiT<T> = S&T(w)T(z)) dz = -KT)G, + 25—2G4<1> . (8.2)

Here G is the quasimodular Eisenstein series of weight 2, which enters the equation

by means of the identity

1
f 9z — wit) dz = -2G>(7).
0

61
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In terms of the Serre derivative

. d ¢
Dy = ey gEz : (8.3)

the first order ODEs (8.1) and (8.2) combine to give the second order ODE ([26], and
recently [21])

11
Dy 0D(1) = 3600 E41).

The two solutions are the well-known Rogers-Ramanujan partition functions [3]

+n 1
1= qwzq" qF6 +q2+q3+q4+q5+2q6+...),
n>0()n

1), = qmz() l+q+@+q@ +2¢" +2¢° +3¢5 + .. )

n=0
(g = €*™7) which are named after the famous Rogers-Ramanujan identities
11 A 1 -
g®M= [] a-a", e®an= [] a-a7"
n=+2 mod 5 n=+1 mod 5

Mnemotechnically, the distribution of indices seems somewhat unfortunate. In gen-
eral, however, the characters of the (2, v) minimal model, of which there are

v—-1

M=
2

(8.4)

(v odd) many, are ordered by their conformal weight, which is the lowest for the
respective vacuum character (1), having weight zero.

The Rogers-Ramanujan identity for q‘%lli (1) provides the generating function for
the partition which to a given holomorphic dimension /# > 0 returns the number of
linearly independent holomorphic fields present in the (2,5) minimal model. Recall
that this number is subject to the constraint T o« No(T,T), eq. (3.1) in Part I.

h o 0 [ T 5 6
basisof F(h) |1 | - | T | 8T | 6°T | 6°T | *T

No(T,8°T)
dim F(h) BEAFEEERR 1 2

Holomorphic fields of dimension # in the (2, 5) minimal model

There is a similar combinatorical interpretation for the second Rogers-Ramanujan
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identity. It involves non-holomorphic fields, however, which we disregard in this

thesis.

8.2 Review the algebraic equation for the characters of the
(2, 5) minimal model

Besides the analytic approach, there is an algebraic approach to the characters. This
is due to the fact that (1)1, (1)7, rather than being modular on the full modular group,

are modular on a subgroup of I';: For the generators S, T of I'} we have [2]

T() = Leo A1, T{1) = Leo~ (1)2,

while under the operation of S, (1), (1), transform into linear combinations of one

another [2],
S(<1>1) i i(sin% —sin %]((1)1).
(I2)  V5l\sinZ  sinZ )1
However, (1), (1), are modular under a subgroup of I'; of finite index. Its fun-
damental domain is therefore a finite union of copies of the fundamental domain
F of I'1 in C. More specifically, if the subgroup is I' with index [I'; : I'], and if

Y1,...,¥m, 1] € ['1 are the coset representatives so that 'y = I'y; U... Uy, ., then
we have

Fr=mFu. . Uyproa¥F . (8.5)

[15]. Thus (1); and (1), define meromorphic functions on a finite covering of the

moduli space M; = I'; \ H" and are algebraic. We can write [2]
052 65,1
(Iy=—, (lp=—,
n n
where the functions 7, 851, 65> on the r.h.s. are specific theta functions (e.g. [3])

or)y=) f), foy~q", gq=&".
nezZ

The characters’ common denominator is the Dedekind 7 function. Using the Poisson

transformation formula, one finds that 7, 8s 1, 85 » are all modular forms of weight %



([38], Propos. 9, p. 25). For the quotient (1);/(1); and T € H*, we find [2],

W1 _ 62

282 _ AT ® = o,
T = qu P = r(r)

where r(7) is the Ramanujan continued fraction introduced in eq. (7.2). (Here (n/5) =
1,-1,0 for n = +1, +£2,0 (mod 5), respectively, is the Legendre symbol.)

r(t) is modular on ['(5) with index [['; : ['(5)] = 120 [16]. The quotient ['(5) \ H*
can be compactified and made into a Riemann surface, which is referred to as the
modular curve

I5)=T(B)\H" .

Here H* := H* U Q U {0} is the extended complex upper half plane. Z(5) has genus
zero and the symmetry of an icosahedron. The rotation group of the sphere leaving
an inscribed icosahedron invariant is As, the alternating group of order 60. By means
of a stereographic projection, the notion of edge center, face center and vertex are
induced on the extended complex plane [5]. They are acted upon by the icosahedral
group Ggo C PS L(2,C). The face centers and finite vertices define the simple roots
of two monic polynomials F(z) and V(z) of degree 20 and 11, respectively, which

transform in such a way under Gg that

F(2)
V3(2)

J(2) =

is invariant. It turns out that J(r(t)) for r € H* is I'(1)-invariant, and in fact that
J(r(1)) = j(t). Thus r(r) satisfies

F() - jmV’@ =0
(for the same value of 1), which is equivalent to (1) solving the icosahedral equation
(X' - 228%° + 494%% + 228X + 1)° + XX + 11X - 1)° =0.

This is actually the minimal polynomial of r over Q( J), so that Q(r) defines a func-
tion field extension of degree 60 over Q(}).

This construction which goes back to F. Klein, doesn’t make use of a metric. In
order to determine the centroid of a face (or of the image of its projection onto the
sphere) only the conformal structure on S is required. Indeed, the centroid of a

regular polygone is its center of rotations, thus a fixed point under an operation of
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Aut(S?) = SL(2,C).

8.3 Higher order modular ODEs

Sorting out the algebraic equations to describe the characters of the (2, v) minimal
model becomes tedious for v > 5. In contrast, the Serre derivative is a managable
tool for encoding them in a compact way [26]. Since the characters are algebraic, the
corresponding differential equations can not be solved numerically only, but actually
analytically. We are interested in the fact that the coefficient of the respective highest
order derivative can be normalised to one and all other coefficients are holomorphic
in the modulus.
To the (2, v) minimal model, where v > 3 is odd, we associate [3]

e the number M = "—51- introduced in eq. (8.4), which counts the characters,

e the sequence

(v=2s% 1
Tt ST S ]
8y 24’ ° (5.0)

Ks
which parametrises the characters of the (2, v) minimal model,
e therank r = %3
The character corresponding to «; is

n'An+B'n

(1)s = fA.B,s = q’(I q—
ne%))’ (@n

’

where
A=C(T,)'eQ™, BeQ,

C being a Cartan matrix. The tadpole diagram of T, is obtained from the diagram of
A», by folding according to its Z, symmetry.
It turns out that (1) satisfies an Mth order ODE [26]. Given M differentiable

functions fi, ..., fu there always exists an ODE having these as solutions. Consider
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the Wronskian determinant

T SRR o
M
e A8
i i=0

55 v 7 R+ e,
Here form > 1,
D" 1= Dym-1)0 -0 D0 D

is the order m differential operator which maps a modular function into a modular
form of weight 2m. (Dy is the first order Serre differential operator introduced in eq.
(8.3).) Form = 0 we set D° = 1.

Whenever f equals one of the f;, 1 < i < M, the determinant is zero, so we obtain
an ODE in f whose coefficients are Wronskian minors containing fi, .. ., fy and their
derivatives only. These are modular when the fi, ..., fir and their derivatives are or
when under modular transformation, they transform into linear combinations of one

another (as the characters do).

Lemma 17. Let 3 < v < 13, v odd. The characters of the (2, v) minimal model satisfy
D=0, (8.7)

where D®) is the differential operator

M-2
D(Z,V) = DM_’_ Z Z QZ(M—M)DM (88)
m=0 Qay-m)
QO M-m) = CmErM-m) » 2<M-m<5,

Qo :=agEp + agwsP)A J

Here A = ** is the modular discriminant function, Ey is the holomorphic Eisenstein

(cusp)
0

series of weight 2k, and the nonzero numbers a,, and « are given by the table

below:
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@,v) 2.3 1@ @D @29 2,11) (2,13)

M 1 2 3 4 5 6
1 1 1 1 _ 5
Ku 0 % | "B | "% -3 756
ay 1 1 1 1 1 1
" T e saE L 0303 0 | 1553 _7-13:67
M-2 607 422 362 21332 1562
X 517 23.53 3-5-11-59 23.13-17-193
M-3 s 363 23.333 1567
B 31123 | _11:6151 | _5-11.13-89-127
M-4 36 24.333 1564
24.17.29 23.3.5.13.31.2437
aM-5 333 156°
54.72.23.31-67
axm-6 = 1566
a(cusp) 52.7.11-232.167
M=6 235-32.134-691

The nonzero coefficients in the order M differential operator in the (2, v) minimal
model. «y is displayed to explain the standard denominators of the «,, (and mark
deviations from them).

Remark 18. The prime 691 displayed in the denominator of a;;'fg) suggests that

Bernoulli numbers are involved in the computations. This is an artefact of the choice

of basis, however. Using the identity [38]

-l 1 3 2
E12— 691(441E4+250E6),

we can write

2 7 :
QOEIZ + af]cusp)A a §& 03 (53 1069Ei o 6047 Eg) !

a7 38186\ - 2P 3

Only the specific values of the coefficients in eq. (8.7) seem to be new. Rather
than setting up a closed formula for a,,, we shall outline the algorithm to determine

these numbers, and leave the actual computation as an easy numerical exercise.

Proof. (Sketch) We first show that the highest order coefficient @y, of the ODE can
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be normalised to one. For every «; in the list (8.6) and for 0 <m < M — 1, we have
D(1)s xx g(1 + O(q)) - (8.9)

Since the «; are all different, we know that

WM ~ l—lq“’ , gclose to zero,
s

where wy, is the coefficient of D in the Wronskian. By construction, wys has no
pole at finite 7. The number of zeros can be calculated using Cauchy’s Theorem [38]:
Since ©™(1) has weight 2m, we find

M-1
weightwy =2 )" €= MM -1).

=0
The order of vanishing ordp(wy) of wy, at a point P € ' \ H* depends only on
the orbit I'P [38]. Denote by ord.(wy) the order of vanishing of wy, at oo (i.e. the
smallest integer n > O such that a, # O in the Fourier expansion for wy). By eq.
(8.5) for the fundamental domain of the finite index subgroup I of I';, all orders of
vanishing for I” differ from those for I'| by the same factor. Thus ([38], Propos. 2 on
p- 9) generalises to subgroups I' € I'; and to

1 MM -1
ordos (W) + Z L nastigre e = 0) (8.10)
np 12
Pel\H*
where np is the order of the stabiliser. Since
M
MM -1)
orde(Wp) = sz = (—12—— .

s=1

we have ordp(wy) = 0 for P € ' \ H*. Thus we can divide by wy, to yield

D @K1 =0

for j = 1,..., M and the modular forms &; = ﬁf;

By (8.9), D@M(1), is a power series of order > «; in g. The coefficient of g* is a
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monic degree M polynomial in «;, and we have

M
(D*og = ¢ | [ -0, @®.11)
s=1

since by assumption (1),, € ker D@ for s = 1,...M. (Here [D?*"]y denotes the
cut-off of the differential operator D" at power zero in ¢q.) For 2 < k < 5, the
space of modular forms of weight 2k is spanned by the Eisenstein series Ey;, while
for k = 6, the space is two dimensional and spanned by Ej, and A. However, only
the Eisenstein series have a constant term, so that actually all coefficients «@,, are
determined by eq. (8.11). Note that vanishing of @y (the coefficient of DM-1 jn
D@y implies the equality

M M 1w
—ZKFZ—. (8.12)

s=1 ¢=1

Indeed, the Lh.s. of eq. (8.12) equals the coefficient of k¥*~! in the polynomial

q——x [D(Z.v) ]qu

in eq. (8.11), while the r.h.s. equals the coefficient of ¥¥~! in

g [DMog~,
where for0 <i<M -1,
M-i-1 ‘,
—K DM_i = Loyl
T ];! k=2

Equality (8.12) thus states that g™ [DM-1]og" (with leading term «M-1) does not con-
tribute, and so is equivalent to @y = 0.

ag:usP) is determined by considering the next highest order [DZ")(1)],41 for some
character. (Since modular transformations permute the characters only and have no
effect on D@, it is sufficient to do the computation for the vacuum character (1); =

g (1 + 0(g*)). o

The external examiner has pointed out that the leading coefficient can also be read

directly from the equation for the singular vector (Lemma 4.3 in [36]).
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8.4 Generalisation to other minimal models
For (u,v) € Z2, the (1, v)-minimal model has

_v-De-1

M
2

different characters. The set of all characters is parametrised by [3]

i us)t 1

s Le<in< SRR < isi< v =il
4uv 24 i ol

Kr,s
Due to periodicity of the conformal weights ;s + 57 (which we shall not go into
here) this listing makes us count every character twice. The characters are modular
functions on some finite index subgroup I' of I'; satisfying an order M differential
equation, and it remains to verify that the latter has highest order coefficient ay = 1.
We have
_MM-1)

1
orde(Wpy) = = Z Kr,s 12

1<r<u-1;1<s<v-1

where the factor of 1/2 in front of the sum has been inserted to prevent the double
counting mentioned above. As before, we conclude that wy, has no zeros in H* and
with the

Corollary 19. The characters of the (u, v) minimal model satisfy an order M differ-

ential equation
945 =0,

where D™ is a differential operator of the form

M=2
DO = DM 4 Z Z Qo(m-m D"

m=0 Qz( M-m)

where summation is over modular forms Qaym-m) of weight 2(M — m).



Chapter 9

A new variation formula

The present chapter relies on joint work with W. Nahm; Sect. 9.2 is based on his

ideas.

9.1 The variation formula in the literature

Formula (7.4) describes the effect on (1) of a change dG, in the metric. It gener-
alises to the variation of N-point functions (¢1(x1)...¢@n(xn)) as follows: Suppose
the metric is changed on an open subset R C S of the surface S. Then

1
dpr(x1)...onON) = = 5 ffs(dev) (T 1(x1) ... on(xn)) dvoly,  (9.1)

where dvol, = VG dx° A dx! ([37], eq. (12.2.2) on p. 360; see also eq. (11) in d b
provided that

Xi ¢ R, fori =1, 0. N 9.2)

Note that in order for the formula to be well-defined, 7 ,,dx'dx” must be quadratic
differential on S, i.e. one which transforms homogeneously under coordinate changes.
The antiholomorphic contribution in eq. (9.1) is omitted. It is of course of the same
form as the holomorphic one, up to complex conjugation.

Due to invariance of N-point functions under diffeomorphisms, 7, satisfies the

Note that both references introduce the Virasoro field with the opposite sign. Our sign convention
follows e.g. [3], cf. eq. (5.148) on p. 140.

71
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conservation law

Q=N T, =T + Vsl
=9,T% + GZ9;T, 9.3)

where V is the covariant derivative of the Levi-Civita connection on § w.r.t. the metric
G,v- Here we have used that 7%, transforms like a scalar [12], whence V. T, = 9,T%,.
Moreover, V,G*” = 0, and V;T,, = ;T [12], which is true since T, takes values in
a holomorphic line bundle.

A Weyl transformation G,, — ‘WG, changes the metric only within the re-
spective conformal class. (In any chart (U, x) on §, such transformation is given by
Guy(x) = h(x)Gy(x) with A(x) # 0 on all of U.) The effect of a Weyl transformation
on N-point functions is described by the trace of T (eq. (3) on p. 310 in [7]), which
equals

T/ =T7+T# =2T;7 = ;Tn R1, (9.4)

([3], eq. (5.144) on page 140, which is actually true for the underlying fields). Here
1 is the identity field, and R is the scalar curvature of the Levi-Civita connection for
V on §. The non-vanishing of the trace (9.4) is referred to as the trace or conformal
anomaly.

Since T,/ is a multiple of the unit field, the restriction (9.2) is unnecessary. Thus
under a Weyl transformation G,, — ‘WG,,, all N-point functions change by the
same factor Z (equal to (1)), given by

&
dlogZ = —EffRdevolz.

While T, transforms as a two-form, it is not holomorphic. We will now redefine
the Virasoro field to obtain a holomorphic field, but which as a result of the conformal

anomaly, does not transform homogeneously in general.

Lemma 20. [7] Suppose S has scalar curvature R = const. Let

c

mtzz ’ (95)

1
ﬂT(z) =T —

(with the analogous equation for T(Z)), where

1
ty = (azrzu - E(rza)z) 1.
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Here I'*,;, = 0,log G is the Christoffel symbol. We have
65T(z) =0.
Proof. Direct computation shows that
1
05l = _'2'622 62(72]1) :
From the conservation law eq. (9.3) follows

aszz = = Gzi aszz

c c
= _4871'622 0. (VG R.1) = Y Ozt .
m]

Thus for constant sectional curvature, 7'(z) is a holomorphic quadratic differen-
tial.

Remark 21. 1., defines a projective connection: Under a holomorphic coordinate

change, 7z — w such that w € D(S),
tw (@AWY =t (d2)* - S(W)(2).1 (dz)’,

where S (w) is the Schwarzian derivative. t, is known as the Miura transform of the

affine connection given by the differentials I'*;;dz.

T (z) is the holomorphic field introduced in Part | s

9.2 A new variation formula

Let S be a Riemann surface. We introduce

y: one-dimensional smooth submanifold of § , topologically isomorphic to S,
R : atubular neighbourhood of yin S ,

A : avector field which conserves the metric on S and is holomorphic on R .

20ur notations differ from those used in [7]. Thus the standard field 7'(z) in [7] equals -7, in our
exposition, and the field 7(z) in [7] equals —2‘7T(z) here.
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We think of A = a(z)% € TR as an infinitesimal coordinate transformation

z P w@-= (1 - ea(z)a%)z

=z+ea(z), (9.6)

where |€| < 1. We suppose @ = 1.

Theorem 4. Suppose S has scalar curvature R = 0. Let ¢ be a holomorphic field on
S. The effect of the transformation (9.6) with @ = 1 on {(¢(w)) is

d .
2| oon =i 5§<Tu e,

provided that
w does not lie on the curvey . 9.7)

In particular, as w is not enclosed by 7y, (¢(w)) doesn’t change.

Proof. By property (9.7), the position of ¢ is not contained in a small tubular neigh-
bourhood R of y. Let
R\ v = Rieft U Rright

be the decomposition in connected parts left and right of y (we assume y has positive

orientation). Let W C S be an open set s.t.
Wny=0, WUR=S.
Welet F : R — [0, 1] be a smooth function s.t.

F=1 on ReggNW,
F=0 on RigunNW.

Let € be so small that z € W = § \ W implies exp(eF)(z) € R. Define a new metric
manifold (S ¢, G3;) by

S€lw :=Slw
G5(2) ldzl* := G z(exp(eF)2)) ld exp(eF)@)I*, z€ W°.
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We have
4G ;T = dG=T% + antiholomorphic contributions + Weyl terms ,

where we disregard the antiholomorphic contributions ~ 73z, and the Weyl terms are
absent since by assumption R = 0. Alternatively, we can describe the change in the

metric by the map
\dzP? > |dz + pdzP = dedz + pdzdz + ...

where
u = ed;F + O(€?)

is the Beltrami differential. Thus
dGz—z = 2GzZ d/.l(Z, Z)-

Eq. (9.1) yields

d{p) a lff 0G .y -
T le=0 = 2 )Js Be le=o (T*” @) dvol,

: s _
. f f 26 BED| 0 (GHUT o 0) G dz A dz
2 S 86

=i ff((’)zF)(Tago)dZ/\dz,
R

since (GZ)* = (Gz)* for k € Z. Here

(T @) dz = ta((To, @) (d2)?)

is the holomorphic 1-form given by the contraction of the holomorpic vector field
A= a% with the quadratic differential (T, ¢) (dz)?, which is holomorphic on R. By
Stokes’ Theorem,

wlgo =i ff 0; (F (T, ¢)) dZAdz
de R

—7i é F(Tzzga)dz+ifﬁ F (T, ¢)dz
Wr Wi

= -1 § F(T,p)dz.
WL
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Here Wg = NpNOW and Wy = N, N @W are the left and right boundary, respectively,
of W in R. We conclude that

() : )
EEl) =i 56 (T, @) dz = i S&Tzz ) dz,
df WL %

by holomorphicity on Ryef U y. m]

Remark 22. The construction is independent of F. When F approaches the discon-
tinuous function defined by

Ha=:1 on R ,
B =0 on  Ryight

we obtain a description of (S, G7;) by cutting along 'y and pasting back after a trans-
formation by exp(€) on the left.

There is a way to check the result of Theorem 4: Let ¢ be a holomorphic field
whose position lies in a sufficiently small open set U c S with boundary oU = 7.
We can use a translationaily invariant metric in U and corresponding coordinates z, Z.
Then

1
= -2—”T(z)
in eq. (9.5). For A = Hd;, we have
1
Agw). ) = 5 S&T(z)w(w). )z, 9.8)
xi J

This can be seen in two ways.

1. Eq. (9.8) follows from the residue theorem for the OPE of T'(z) ® ¢(w). Indeed,
the Laurent coefficient of the first order pole at z = w is N_1(T, p)(w) = 9y,

which is holomorphic.

2. Alternatively, by Theorem 4,

1
di (W +€)..)=— §<T(z)<p(W) <o T -
€le 2ri J,

The two approaches are compatible!
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9.3 Discussion of the metric

Let Z, be the genus g hyperelliptic Riemann surface

&y ¥ = p(x), degp=n=2g+1.

Recall that x which varies over the Riemann sphere, defines a complex coordinate
on Z,, outside the ramification points where we must change to the y coordinate. Pé
does not allow for a constant curvature metric but we shall define a metric on Pé
which is flat almost everywhere.

Suppose we consider a genus one surface with n = 3. By means of the iso-
morphism ]P’é = C U {oo}, we may identify the branch points of X; with points
X1,X5,X3 € Cand X4 = {oo}, respectively.

Let 8 > 1, but finite, such that in the flat metric of C,

|Xili< @, ' i="132.3"
We define |X34| := oo. For € > 0, define a metric
(ds(€))? = 2G z(€) dz ® dz 9.9)
on P}: by

1+ e#?)2 for |71 <4,
26,5(6) = ( ) |2|
(1 + ez2)2 for |z1>86.

The metric on X, is obtained by lifting.

Lemma 23. In the disc |z| < 6, the metric is flat, while in the area |z| > 6, it is of
Fubini-Study type of Gauss curvature K = 4e.

Proof. For p = 2G> (€) with
Gyz(e) = i(l +77)2 for |7|2 Veb,
we have [12]
R = p~1(~40,0; 1ogp) = €(1 + 27)* (80,0 log(1 + 27 )*) = 8¢,

and R = 2K. a
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Definition 2. Let X be a genus g = 1 Riemann surface with conformal structure
defined by the position of the ramification points {X,-}?=1 with finite relative distance
on ]P(l:. Let G;(€) be the metric defined by eq. (9.9). We define (1), X2, .0 10 be the

zero-point function on (Z, G ;(€)).

By eq. (9.4) and the fact that on any surface, R = 2K,

€

27 5m

GzK.1,
where 1 is the identity field. So according to eq. (7.4) we have for the 2-sphere S g of

radius 6,
c
dlog(Di, o= 757 || (108Gl K s
Since G(e) = (ng(e))z, for |z| > 6, the two-dimensional volume form is

1 nd(¥)
dvoly = Gz(€)dz AN d7 = ——————— .
Yo i)z A a2 2 (1 + er?)?
Now
dlog(Dyys g = dlig<s + dlig>0 »

where for gg := €6, the integrals yield

2

c6? 9
dlich= = e dleo—=——
l21<6 2 (e) a +Q(2])3 2

0> d?)

c
dly>e = — — (d1 ==
lz1>6 12 (dloge) oftoa 1+ %)

'ECZ (dloge) (1+ 0@ad)) .

So for |og| < 1,

4
c (o

1 = ¢ H(1+0EY) 7 LA a0 9.10
{ )[X;I?zl,eﬂ € e e as 9(2))3 (9.10)

where Z € C is an integration constant.
Variation of € rescales the metric within the conformal class defined by the branch

points. In the limit as € \, 0,
1

G5 = !l\I'I(l) Gz(e) = 3 for |zl < oo, 9.11)
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(and is undefined for |z| = o0). Thus ]P(l: becomes an everywhere flat surface except
for the point at infinity, which is a singularity for the metric.

Definition 3. Let ;| be a genus g = 1 Riemann surface with conformal structure
defined by the position of the ramification points {X,-}?= | With finite relative distance
on IP}C. Let G be the metric on T defined by eq. (9.11). We define the zero-point
function on (X1, Gz) by

ey 5 (1+0(ep))
<1>{Xi‘?=\ : F}JTO € Y (1>{x,.|§=l.e,6'

Thus ¢ 1){,(‘,}3_l = Z. We shall also write (1)sing. to emphasise distinction from the
0-point function on the flat torus (X, |dz|?), which we denote by (1)fa-

Remark 24. The reason for introducing € and performing lime\ g is the fact that the
logarithm of the Weyl factor ‘W is not defined for surfaces with a singular metric and

infinite volume. We have

( 1 )sin 8.
Q! )ﬂal

so ‘W is determined only up to a multiplicative constant, which is infinite for € = 0.

dlog =dlogW,

Our method is available for any surface X : y? = p(x) with deg p = n > 3. When
n is odd, the point at infinity is a non-distinguished element in the set of ramification
points on . We shall distribute the curvature of X, evenly over these. Using the
Gauss-Bonnet theorem, the total curvature is recovered as

f K dvoly = 2n x(Zg) = 4n(1 — g) = 81 - 2n(2g + 2) .
28

We interpret 8 as the contribution to the curvature from the g = 0 double covering
and —2x from any branch point.
The method is now available for arbitrary genus g > 1 hyperelliptic Riemann

surfaces and will in the following be checked against the case g = 1.

9.4 The main theorem

We now get to an algebraic description of the effect on an N-point function as the
position of the ramification points of the surface is changed.

Theorem 5. Let I, be the hyperelliptic Riemann surface

g y2=p(x), n=degp=2g+1,
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with roots X ;. We equip the IP(I: underlying L, with the singular metric which is equal

to
ldz>  on P\ (X1 ..., X}

Let { )sing be a state on T, with the singular metric. We define a deformation of the

conformal structure by
(j=dX; for j=1,...,n.

Let (Uj,z) be a chart on Z; containing X; but no field position. We have

al !
dp.. -):ing = Z (— (T@e- - ->sing dZ] §j s 9.12)

j=1 2mi Yi

where y; is a closed path around X in U.

Proof. On the chart (U, z), we have ﬁ T(z) = T, in eq. (9.5), outside the points
which project onto one of the Xj for j = 1,...,non IP‘I:. Moreover, y does not pick

up any curvature for whatever path y we choose. Since
AP
d(1>sing. = ;fia_xi<l)sing. ’

formula (9.12) follows from Theorem 4. O



Chapter 10

Application to the case g = 1

10.1 Algebraic approach

Let Z; be the genus 1 Riemann surface
241188 _v2=p(x), degp=n=3,

with ramification points X}, X».X3. Throughout this section, we shall assume that

Zx,-:o. (10.1)

i=1

We introduce some notation: Let m(X1, &1, ..., X,,£,) be a monomial. We denote by

m(X1, &1, .- -, X, &n)

the sum over all distinct monomials m(Xy(1), £5(1), - - - » Xo(n)» E(n))» Where o is a per-
mutation of (1, ...,n}. E.g. eq. (10.1) reads X; =0, and

3
XiX; = ) XiX;,=XiXa + X1X3 + XoX3
i,j=1
i<j
(for n = 3). For any state ( ) on Zj, the Virasoro 1-point function on X is given by
Theorem 1 of Part I,

e [p'F O(x)
n R (1)+?, (10.2)

(T(x)) =

81
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where @(x) = ®!l(x) in the notations of Part I (the polynomial O] is absent),
B(x) = —cagx(1) + Ay, (10.3)

where qg is the leading coefficient of p, and A o« (1) is constant in x. The connected
Virasoro 2-point function for the state () on X is given by Theorem 2 in Part I. Here

we note that
P(x1,x2,y1,y2) = P (xy, x2) (10.4)

is constant in position, but depends on (1) and A,. For the 1-forms &; = dX; (j =
1,2, 3) we introduce the matrices

X1 X2 X5 AL X X3
Zso=|1 1 1], Z=| 1 1 =S
0o e &EX1 &£Xy 6X3

and the 3 x 3 Vandermonde matrix
1

V3 =11 Xz X%
1

For later use, we note that

detvi= [] &x;-xp

1<i<j<3
= (X1 - X2)(X2 - X3)(X3 - X1),
det=3 &1 ;
= + cyclic, 10.5)
Vs B X6 -Xp) (
detZs3 &1Xq :
— = + cyclic . (10.6)
2 T2 6 O O i
We let
AQ = (det V3)*.
It shall be convenient to work with the 1-form
det=
= Al (10.7)

7 det Vi



83

A simple calculation using eq. (10.1) shows that

ddetV; = = 3X1(dX1)(Xs — X3) + cyclic = =3det =3,

so that
. ©
w= EdlogA (10.8)
_&i—& .
"X, - X, + cyclic . (10.9)

Lemma 25. Let 3 : y* = p(x), where
p=4(x - X1)(x - Xp)(x - X3),
where we assume (10.1) to hold. Define a deformation of | by
&=dX;, j=1,2,3.

In terms of the modulus T and the scaling parameter A (the inverse length) of the real

period, we have
0)=7IiE2dT—-6Q.
P
Proof. By assumption (10.1), we can write

p(x) = 4(Jc3 +ax+b),

where on the one hand,

and [33]

AV 4P -7 (10.10)

e e b=—1%E;, (10.11)
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SO

(0) 4r'2 12,3 2
A =—2-7—/l (Ey —Eg). (10.12)

We expand the fraction defining w in eq. (10.7) by det V3 and show that for a,b

introduced above, we have
det(Z3,V3) = 24> da +9b db . (10.13)

We now establish eq. (10.13) under the additional assumption that £ o« X. In this
case both sides of eq. (10.13) are proportional to A?, with the same proportionality
factor: On the L.h.s.,

2
e X X

detZs ilg=x detVz oc —det[1 X, X3[ =-A©.
1 X3 X2

On the r.h.s.,

da =&1Xy < 2X1Xp = 2a,
db = - £ X5X3 o« =3X1X,X3 =3b.

From this and eq. (10.10) follows eq. (10.13). Using (10.11), (10.12), and

E E2
DyEg = —-33 ,  DgEs = -7“ (10.14)

([38], Proposition 15, p. 49), where Dy, is the Serre derivative (8.3), we find

0 d in
S Mg o A0 0)
2a°—a+9b—>b 3E2A A

For the A derivative, we use the description of w by eq. (10.8). From eq. (10.12)

follows
0 12

—logAQ = —.
m 7
The last two equations prove the lemma under the assumption ¢ « X. For the general

case we refer to Appendix B.1. m]

Under variation of the ramification points, the modulus changes according to



Lemma 26. Under the conditions of Lemma 25, we have

det=39
detVs -

dr = —inA®
Proof. We first show that for
p(x) = 4(x* +ax+b),
we have
det(Z30V3) =9b da — 6a db .

Indeed, if we set

3
1 li=
. 2 - ] 2| B )
§1°CX,' o, §0-—3(i§=lx,']—3xl

85

(10.15)

(10.16)

then the condition (10.1) continues to hold, and both sides of eq. (10.16) are propor-

tional to A, with the same proportionality factor: On the Lh.s.,

& EX| &%
det 23 0l;—y2_¢, det V3 o det X, X% X_f
s

since

68 B X x X

det|X; X, Xz|ocdet|X; X, Xz|-—det|X;

e | 155 |

where for the present choice of £, the latter determinant is zero. On the r.h.s., by the

fact that X; = 0,

1= 2 — 2a
§0=§Xf=-—X1X2=——

3 3’

X3 = —3X2X, - 6b,
X2X> = X1 Xo(X1 + X2) = -3b,
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SO

da= -FX| « -X3 +&X; = -X3 = -3b,

o AL ORI i 2
db = - £1X,X3 < —X?XoX3 + £0X1 X2 = bX + foa = £oa = " & .

From this and eq. (10.10) follows eq. (10.16). Now by eqgs (10.11), (10.12), and
(10.14),

9b£—a—6a%b=2m’(9bSD4a—6aiDGb)= #A(O).

The partial derivatives are actually ordinary derivatives since from eqs (10.11) fol-

lows

0 0
6
9b6/la a(')/lb ()2

Factoring out dt in eq. (10.16) and dividing both sides by A®/(-izA?) yields the
claimed formula. The general case (with the assumption &; « Xi2 - % X% omitted) is

proved in Appendix B.2. o

Theorem 6. Let
DI y2 =4x3+azx+a3.

We equip the underlying IP‘(l: with the singular metric defined in Section 9.3. Let ( )sing

be a state on 1 w.r.t. this metric. Define a deformation of 1 by
&r=dX;, j=12,3.

Let w be the corresponding 1-form

det =31
det V3 g

We have the following system of linear differential equations

det_.30
d+ _w)<1>smg = ( l)smg det Vs ’ (10.17)
det._30

d+ _w) (Al)smg & Csmg det V3 4
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where for PY from eq. (10.4),

| 2ca
Cuing, = = 2P — 2130 (ADng, — 5 (Whng -

In particular, in the (2, 5)-minimal model,

11
Csing. = ﬁ(l)sing.GZ .

In general, Cying. is a function of (1)ing. and (Aj)sing. . Note that the occurrence
of a term ~ (Al)zing. in the definition of Cgjng. is an artefact of our presentation since
P has been defined by means of the connected Virasoro 2-point function.

Remark 27. In contrast to the ODE (8.1) for the zero-point function (1), on (Z1, ldz|?),
the corresponding differential equation (10.17) for (1)sing w.r.t the singular metric

comes with a covariant derivative. Denote by

(Al)ﬂat = 4<T)ﬂat = Q'ﬂat(l)ﬂat 5 (Al)_\'ing. =t asing.<1>sing.

the parameters w.r.t. the flat and the singular metric, respectively. By eqs (8.1),
(10.17) and (10.15),
<1)sing. Cc 1

dl 5 iy
o VTR i

(as,-,,g. = aﬂ,,,) dr .
Using eq. (10.8), we obtain
Lsing. &< (AD) & ()i , (10.18)

with proportionality factor equal to exp{m f (as,-,,g. - arﬂa,) d‘r}. In particular,
(D)sing. is not a modular function. This is due to the non-vanishing of the scalar
curvature R in the Weyl factor ‘W (cf. Remark 24).

Proof. (of the Theorem)
Notations: All state-dependent objects are understood to refer to the singular metric
onX;.

For j = 1,2,3, let y; be a closed path enclosing X; € ]P’(l: and no other zero of p.
x does not define a coordinate close to X;, however y does. On the ramified covering,
a closed path has to wind around X by an angle of 4x. We shall be working with the
x coordinate, and mark the double circulation along y; in IP’%: by a symbolic 2 X y;
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under the integral. Thus for j = 1 we have

— ¢ T dx=2 Jim (- XiXTC)

2mi. 2xy1
ks l( (1) 2 (1) 2 0(X;) )
B\X1-X2 X1-X3 (X1 —-Xo) (X1 —-X3)
o 1c(-2X; + X5 + X3)(1) — AgX; — A
"8 X1 - X2)(X3 - X))
a _(£<1> i @) X (1)
4 8 ) (X1 - X2)(X3 - Xy)
1 A1 . £<1) X + X3

C8X-X)X3-X)) 8 (X1 -Xo)(Xz-X1)
So

3
_ 1 o c Ag) det 231 1 det E30
4L).5 ;(m Séxy,.mx» dx) 20 (4<1> g ) TR Lo
&1 (X2 + X3)
(X1 = X2)(X3 - X1)

- %(1)( +cyclic) ?

using eqs (10.5) and (10.6). When (10.1) is imposed and Ag = —4c(1) is used, we
obtain the differential equation (10.17) for (1). When (T'(x)) is varied by changing
all ramifications points Xj, X», X3 simultaneously, we must require the position x not
to lie on or be enclosed by any of the corresponding three curves 7y, y2 and y3. Then

we have

3
1
AT(x) = ) (5;5{2; (T(x')T(x))dx') dX;
X‘yl'

=1

- 2ri

3
1
. Z(i). Sé TN dx'] dX; + (1T () d().
XYj

Here (T'(x)) is given by formula (10.2). For (T(x)T (x"))., we use Theorem 2 in Part
I. The terms « yy’ (with y’> = p(x’)) do not contribute: As X j € IP’(I: is wound around

twice along the closed curve v, the square root y’ changes sign after one tour, so the
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corresponding terms cancel. Thus for j = 1 we have, using eq. (10.3) for ®(x’),
@

) (T(X)T (%)) dx’ (10.19)
2ni Joxy,
e pPehpi) | 1p()e + pe)
4(x -x* 32 -xPp(x)p 8 (¥ - x)’p(x)p
N pll B @x’@ + xO(x") 5 @x'x(l)}
p(x)p 8  pX)p 8 p(x)p
c M pPL1 6X)
16(X; —x? p  4(X;-x%p' (X))
. 2P ag X1A1 ag ¥O(X))
pPXp 4 pX)dp 4 pX)p’

=2 lim (x' - X))

x' =X

(10.20)

Multiplying the first term on the r.h.s. of eq. (10.20) by £; and adding the correspond-
ing terms as j takes the values 2, 3 yields

< P (—f cveiic) = Snya(Z)
16<1>p ((x—X1)2 +cyc11c) = 32(1)d(p) .

The cyclic symmetrisation of the remaining four terms on the r.h.s. of eq. (10.20)

gives d (%fz) - %’;‘l dlog(1). We deduce the differential equation for A;. Firstly,
® d
do(x) = 4pd(—) +022
4p p

By the above, using p'(Xl) = —ag(X; - X»)(X3 — X1) with gg = 4,

e\ p, 1 £0(X;) .
B d(4,,) "3 (<x—xl>2 00~ X0 =30 + eyelic)

+x( £10(X1)

Xy = X2)(X3 - X1)
_oplll det =3 + det =23

+ cyclic)

O(x) dlog(l). 10.21
det V3 ! det \%! reeoel s
Secondly, using partial fraction decomposition,
1 X
1 ) + cyclic.

P =X WX - X K1)

Solving for ® and using that
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yields

dp p( OX1) : ) ik
0@ == 1 ; 10.22
D% " ilemm - - T ;(x—x,) e

Note that three terms in the sum on the r.h.s. of eq. (10.22) are equal but opposite to
the first term on the rh.s. of eq. (10.21). Since & = 0, we have for the remaining sum

p o) i + cyclic
4| (x = X1)(X; — X2)(X3 — X1) o (x=X;)
_ _[OX1)(&2X3 + £3X7) W] £10(X1) :
T ( R A T e Chc) X ( X - X)X - Xp) Cyd":) ’

where the second term on the r.h.s. is equal but opposite to the one before last on the
r.h.s. of eq. (10.21). For the first term we have (cf. Appendix B.3)

_O(X1)(£2X3 + £3X3)

. li 2 (1>det 230 det =34
cycuc = - —=ca _—
D=0 X 2 .

3 det V3 Vdetvs -

Using ©(X;) = —4cX (1) + A1, we conclude that

2cay det =3

detEl] [
b R 3 W Gey,

det V3

dA; = - A + A dlog(1).

Plugging in eq. (10.17) yields the claimed formula. To determine the constant in the

(2, 5)-minimal model, we write

p=4x3+a1x2+a2x+a3.

By Lemma 16 in Part I, using ¢ = —252, we find

77 2 143 1
B4 | IS AT ot f g Lo ==k 142
P 400a1(1> + 2Oa1A1 + 1Ooaz(l) 16(1) Af.

]

The formulation of the differential equations using determinants relies on the per-
mutation symmetry of the equations’ constituent parts. This symmetry will continue
to be present as the number of ramification points increases. With the genus, how-
ever, also the degree of the polynomial ® will grow and give rise to additional terms

having no lower genus counterpart (cf. Section 10.3).
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10.2 Comparison with the analytic approach, for the (2,5)
minimal model

We provide a rough check that the system of linear differential equations obtained
from Theorem 6 for the (2, 5) minimal model is consistent with the system discussed
in Section 8.1. By formula (10.18), we have

y=a0"Ff, A =A0THg, (10.23)
for some functions f, g of 7, with f, g o (1),. We have [38]

AO =[x - X, ~ 1 = g - 244" + O(8") ,

i<j
and so close to the boundary of the moduli space where X; ~ X5, we have
(X) - X3) ~ g1 = &7 (10.24)

As before, we shall work with assumption (10.1). Since in this region only the differ-

ence X1 — X» matters, we may w.l.o.g. suppose that
X» = const.

(&2 = 0). In view of (10.24) on the one hand, and the series expansion of the Rogers-

Ramanujan partition functions (1), on the other, we have to show that
FrG-X)B, or f~(i-X)¥. (10.25)
Eq. (10.23) yields
d(1y = A0 B gf _ 5% FAOE

using eq. (10.8), and a similar equation is obtained for dA;. So by Theorem 6,

1, det =30
88 det V3 i

1 151 det=5
d-~w)g = — S
(@= 328 = 155%f e

df = (10.26)
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Since f ~ (X1 — X»)® for some @ € R,

&1a

dfs
f X1 -X»

7. (10.27)

On the r.h.s. of eq. (10.26), we have by the assumption (10.1),

&1 w

detZ3g &1 X
(X1 - X2)(-3X2) (-3X3)

detVa & -X%)X-X)

+ cyclic ~

since X; = X3, and we have omitted the regular terms. Eq. (10.26) thus yields
g = 24Xsaf .

Now we use the differential equation for g,

1 1 w
4 APk, sl P e
24Xz0(d - 30)f ~ 55 far 3

which by eq. (10.27) and a; ~ —12X§ reduces to the quadratic equation

and is solved by @ = —45 and 45. This yields (10.25), so the check works.

10.3 Outlook: Generalisation to higher genus

For X, : y? = p(x) with deg p = n > 3, we have from eq. (4.8) in Theorem 1 of Part I,
O(x,y) = ®[1](x) - y@b’](x) , deg ®[ll(x) =n-2.

D does not contribute to the contour integral as y% is a holomorphic differen-

= dx
iy
tial on Z;. As stated in the viva, the author has established a preliminary formulation
of the differential equations for (1)ing. and (7'(x))sing for the case n = 5 (g = 2).
In the following, all state-dependent objects are understood to refer to the singular
metric on Z,. In the present case, @D is absent, so

c [p')? 1 Agx® + A1x? + Apx + Az

(T(x)) = 570) + 7 o :
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where Ag is known in terms of (1) by Theorem 1 of Part I, while A, A>, A3 are
parameters of the theory, in addition to (1). Eq. (10.9) is adaptedton = 5 as

n

The differential equation for (1) now reads
det= =53 det =534
1 = >
( )” [ * det Vs ; “Tdetvs

where Vs is the S X 5 Vandermonde matrix and

3 3 3 3 3
X X ‘s - R
2 2 2 2 2
Xl X2 X3 X4 XS
Bspi=| X1 X X} X3 Xs|, k=0,..,3.
1 1 1 1 1
EX] 6X5 &HXY £X ésXE

The derivation of the differential equation for (7'(x))sing has been based on the con-
nected Virasoro 2-point function (computed in Theorem 2 of Part I) which resulted in
a non-linear differential equation. An improved formulation reestablishing linearity,
and the individual equations for the parameters A; (i = 1,2, 3), were not completed
by the time of the viva.

Future work will deal with a variation formula for the Virasoro N-point function

for arbitrary g and N > 1.






Appendix B

B.1 Completion of the Proof of Lemma 25 (Section 10.1)

It remains to show eq. (10.13) for general deformations &; =

X, =0, eq. (10.1). We have

a=X1Xp,

b=-X1X5X3,

da = d(X,X3)

X;, assuming that

=61 X0 + 61 X3 + EX1 +EHX3 + 63X + 6 Xy = 61X
db = - d(X1X>2X3)

= =61 XoX3 - 6£X1X3 - 65X X = -6 X:X3 .

Let @, € Q. On the one hand, since X_1 = (0, we have

SO

aa’da +pbdb = a X2X3 -

On the other hand,

X1 X2)? = X2X2 + 2X1XX3 - X1 = X2X2,

&1Xh

det =3 ; det V3 = det| X,

1

&1Xh
=det] O

3

Y ST =D
- 3(X§ EX-XC -.fle) a (xf) 5 78

&£HXo 6X3
X X
1 1
6Xp &6X)
X x_f
R

95

&1 X + BX1 X0 X3 - 61 X2X5 .

(B.1)
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Here

=

(xl) = 4(X%;)" = 4 XX (by eg. (B.1))

&1X1 = -6Xa, (B.2)
and

£X2 = -EX1X;
= - &6 X1(X2 + X3) + cyclic = -X1X; - a +&1X2X3 = £1X2X3 (B.3)

X_‘;’ =X1(Xz + X3)2 + cyclic = X1X§ +6X1X2X3 = 3X1X2X3, (B.4)

since

X1X2 = - X1Xo(X1 + X3) - X1 Xo(Xz + X3) + cyclic = -6X1X2X3 — X2Xs = -3X1X2X;3 .

Moreover,

£1X; = £ X1(Xz + X3)* + cyclic = £ X1X2 + 2X1 X2 X - &1 = £ X1X3

X2 = £ XC0K3 + 6XCXX2 + £X - Xi(Xa + X3) + cyclic = -2 X1X;,  (B.S)
and

XXz - (X012 = (X1 Xs + X1 X3 + XoXa)E1 X1 X2 + £1 X1 X2 + cyclic)
= X2X3 - £1X, + X2 X3 - £1X3 + cyclic
+X1X2 - 61X1X5 + X1 X3 - £1X1 X3 + cyclic
+ XoX3 - (E1X1X5 + £1X1X3) + cyclic
= X2X2 -5, + X1 XoXs - E1X1 Xs + Xi XoXs - £1XC

=X{X}-&Xs,

by eq. (B.3) and

E1X5 = - &1X2(X1 + X3) - £1(X1 + X2)X3 + cyclic
= =& X1X2 =26 X0X3 = £1X0X3 .
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We conclude that

det 231 det V3 = 9X1XoX3 - £1X,X3 + 6X1 X5 - £1X1X5 — 4X2X5 - £1 X,
=9X1X2X3 - £1X0X3 + 2X3X3 - 61Xz,

and so @ = 2,8 =9, as required.

B.2 Compietion of the Proof of Lemma 26 (Section 10.1)

It remains to show eq. (10.16) for general deformations & = dX;, assuming that
X1 =0, eq. (10.1).
We use the expressions for a, b, da, db listed at the beginning of Appendix B.1.
Let @,8 € Q. On the one hand,

aadb +,Bbda = - (IX1X2 . §1X2X3 -—ﬂ X1X2X3 . §1X2

= — (@ +B) XiXoXs - E1%s - £1X2XC + £ X2XX2 + £ K30 6, XC2X2 .
On the other hand,
s & &\l X X2

detZjodetVs = det| X; X, X3|[1 X, X?
A TS LV

0 &1Xy fgf ) &
= det|0 G+ A X |=3(% EX-X-aX).
3 0 X

Egs (B.4), (B.2), (B.5) and (B.3) from Appendix B.1 yield

detZ3gdet V3 =3 (-3X,X,X3 - X3 + 2 X1 X; - £1X2X3)
=3(-3X0XXs - B + 26000, + 2 X0Xs - E1 X

= - 3X1X,X3 - £1 X + 6 £, X3X3 .

We conclude that @ = -6, @ + 8 = 3, so 8 = 9. This completes the proof.
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B.3 Completion of the proof of Theorem 6 (Section 10.1)

It remains to show that

_OX)(6X3 + £3X7) detZ3o , detE3;

2
+ cyclic = — =ca(1)

(X1 - X2)(X3 - X1) 3 det Vs Vdetv; -

We have

& X3 + &3Xp = (&2 + &)X + X3) — (E£2X2 + £3X3)
=&1X1 - (£2X3 + 63X3)
=26X) - £1X] -

It follows that

O(X1)(£2X3 + £3X2) . 8y &1XF - 2A44.X,
= yclic =

+cC = + cyclic ,
G- TS A S A

since ¢£1X; is symmetric and both

1

X1 - X5)(X3 - X1)
X

X1 - X2)(X5 — X1)

+ cyclic =0,

+cyclic=0.
Now

Xf = = X1(Xz + X3) = —% +X0X3

we claim that

£1X2X3 . _aydetEsp
+ cyclic = —

(X1 = X2)(X3 - X1) 6 detVs ~

Indeed, since &1 X2X3 + cyclic = £1X,X3 is symmetric, we have by eq. (B.6),

£1X5X3 Wi £X3X) + £X,1 X5
(X1 = X2)(X3 - X1) X1 - X2)(X3 - X1)

+ cyclic .

(B.6)

(B.7)

(B.8)

(B.9)
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Since & = 0, we have

_ 6 X3X) + £X1X
(X1 — X2)(X3 - X1)

&1(X3X) + X1X3)
(X1 = Xz)(X3 == Xl)
" fz_%det Z30 N ( &61X2X3

4 detVz \(Xi-X2)(X3-X1)
( &1 X3
G - X)X - X))

(&3 X3 + £2X7)X,
(X1 - X2)(X3 - Xy)

+ cyclic = ( + cyclic) + ( + cyclic)

+ cyclic)

+ cyclic] -

using symmetry of £1X; and eq. (B.7) again. From eq. (B.8) follows eq. (B.9), and
the proof of Theorem 6 is complete.
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