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Summary

The purpose of this thesis is to argue that -point functions of holomorphic fields 

in rational conformal field theories can be calculated by methods from algebraic ge

ometry. We establish explicit formulae for the 2-point function of the Virasoro field 

on hyperelliptic Riemann surfaces of genus ^ > 1. A^-point functions for higher N  are 

obtained inductively, and we show that they have a nice graphical representation. We 

discuss the Virasoro 3-point function with application to the Virasoro (2,5) minimal 

model.

The formulae involve a finite number of parameters, notably the 0-point function 

and the Virasoro 1-point function, which depend on the moduli of the surface and 
can be calculated by differential equations. We propose an algebraic geometric ap

proach that applies to any hyperelliptic Riemann surface. Our discussion includes a 

demonstration of our methods to the case g = 1 ■
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Introduction

Quantum field theories are a major challenge for mathematicians. Apart from cases 

without interaction, the theories best understood at present are conformally invariant 

and do not contain massive particles. In dimension two, such conformal field theories 

(CFTs) are naturally defined on compact Riemann surfaces. This is the only case we 

will consider

In order to actually compute the functions occurring in CFTs (like N-point func

tions (01 .. .</>n ) of holomorphic fields, and more specifically the partition function 
(1 ) for = 0 , where 1 is the identity field), one has to study their behaviour under 

changes of the conformal structure. This is done conveniently by first considering 

arbitrary changes of the metric. Such a change of ( 0 i . . .  (Pn ) is described by the 

corresponding {N + l)-point function containing a copy of the Virasosoro field T. 

For this reason we shall investigate in Part I of this thesis the A^-point functions o f T 

(rather than of more general fields). These will then be available to our discussion of 

the metric dependence of N-point functions in Part II of the thesis.

The space of all possible conformal structures on the genus g surface is called 

the moduli space M g. Thus conformal quantum field theory is closely related to the 

study of functions on M g. For an important special class of CFTs (the rational ones) 

one obtains functions which are meromorphic on a compactification o f M g  or of a 

finite cover.

One also needs the following generalisation: Conformal structures occur as equiv

alence classes of metrics, with equivalent metrics being related by Weyl transforma

tions. The A^-point functions of a CFT do depend on the Weyl transformation, but 

only in a way which can be described by a universal automorphy factor.

For 5 = 1  this can be made explicit as follows. The Riemann surfaces can be 

described as quotients C /A , with a lattice A generated over Z by 1 and t  with t  e H"*". 

The upper half plane H"'" is the universal cover of A li, in other words its Teichmiiller 

space. One has M \  = SL(2,Z)  \ Meromorphic functions on finite covers of



A il are called (weakly) modular. They can be described as functions on H'*' which 

are invariant under a subgroup of 5 1X2, Z) of finite index. S L(2, Z) has therefore 

received the name full modular group.

Maps in S L(2, Z) preserve the standard lattice 1? together with its orientation and 

so descend to self-homeomorphisms of the torus. Inversely, every self-homeomorphism 

of the torus is isotopic to such a map. A modular function is a function on the space 

X of all lattices in C satisfying [38]

/ ( iA )  = / ( A ) ,  V A e X ,  a e C * .  (1)

X can be viewed as the space of all tori with a flat metric.

Conformal field theories on the torus provide many interesting modular functions, 

and modular forms. (The latter transform as f ( AA)  = for some k e Z  which

is specific to / ,  called the weight of / . )
Little work has been done so far on analogous functions for ^ > 1. The present 

thesis develops methods in this direction. The basic idea is that many of the relevant 
functions are algebraic. In order to proceed step by step, we will restrict our investi

gations to the locus o f hyperelliptic curves, though the metliods work in more general 
context as well.

We shall derive the ordinary differential equations that allow to compute the Vi- 

rasoro A^-point function on any hyperelliptic Riemann surface. For an important class 

of CFTs (the minimal models), the vector space of solutions is finite dimensional. It 

is shown that in the (2,5) minimal model, our approach reproduces the known result.
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Notations and conventions

For any k > 0  and any rational function R{x) of x with Laurent expansion

R(x) = ̂  Oix'
ieZ

for large |x|, we define the polynomial

[ / ? W U : = 2 ]a,-;c'. (2 )
i>k

Let := {z e C| 3(z) > 0} be the complex upper half plane. H"*" is acted upon by the 

fill] modular group Fi = S L(2, Z) with fundamental domain

r : = | z e H ^ | k l >  1, |5 l ( z ) |< ^ |  •

The operation of Fj on H'*' is not faithful whence we shall also consider the modular 

group Fi := F i/{± l2 ) = P SL{2,Z), (here I2 e G L(2,Z) is the identity matrix). We 
refer to S, T  as the generators of Fi (or of F i) given by the transformations

S \ -  \ I z

T  : z i-» z + 1 .

We shall use the convention [38]

1 1 1 ^  ^  1 
G u iz )  = 2 L ^ ^ 2  L  L i m z  + n^'^ ’

n^tO m*0 neZ ^ '

and define £'2* by G*(z) = ((.k)Ek(z) for ^(k) = X„>i so e.g.

G2 (z) = - £ 2 (z) , o
4

G4(z) = ,

71^

945

Let (q)n := n]t= i(l -  ^ )  be the ^-Pochhammer symbol. The Dedekind 77 function is 

7](z) := q'^(q)cc = [l  -  q + , q = .



vi

<1) and (7) (or A i,...)  are parameters of central importance to this exposition. 
For better readibility, they appear in bold print «1) and <T), or A i , . . . )  throughout.
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Part I

Virasoro correlation functions on 
hyperelliptic Riemann surfaces

1





Chapter 1

Introduction

Conformal Field Theories (CFTs) can be defined over arbitrary Rieraann surfaces. A 
theory is considered to be solved once all of its A^-point functions are known. We re
strict our consideration to meromorphic CFTs [14] which are defined by holomorphic 
fields, and a rather specific class of Riemann surfaces.

The case of the Riemann sphere Zo is easy, and for the torus Zi, one can use 
the standard tools of doubly periodic and modular functions ([41],[3] and more re
cently, e.g. [4],[29]). The case ^ > 1 is technically more demanding, however. Some 
progress has been made in the Vertex Operator Algebra (VOA) formalism by sewing 
surfaces of lower genus. There is no canonical way to do this and two different sewing 
procedures have been explored. Explicit formulae could be established for the genus 
two -point functions for the free bosonic Heisenberg VOA and its modules ([24], 
[25]), and for the free fermion vertex operator superalgebra [35].

Instead, quantum field theory on a compact Riemann surface of any genus can 
be approached differently using methods from algebraic geometry ([30], [34], [10]) 
and complex analysis. N-point functions of holomorphic fields are meromorphic 
functions. That is, they are determined by their poles. By compactness of these 
functions are rational.

The present paper establishes explicit formulae for the 2-point functions of the 
Virasoro field over hyperelliptic genus-^ Riemann surfaces Zg, where g > 1. A^-point 
functions for > 3 are obtained inductively from these, up to a finite number of 
parameters which in general cannot be determined by the methods presented in this 
paper In comparison, the formulae given by the work of Mason, Tuite, and Zuevsky 
determine all constants, but are given in terms of infinite series.

We show that the N-point functions can be written in terms of a list of oriented

3
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graphs. For g = 1 the result reduces to a formula which is very similar to eq. (3.19) 
in [19]. The method we used is essentially the one developed in [19] though it was 
found independently.

Although we deal with the Virasoro field, our method applies to more general 
holomorphic fields.

The material of the Chapters 2, 4, 5, and 6 is published in [22].



Chapter 2

The Virasoro OPE

In this chapter we define a global theory, a meromorphic conformal field theory on a 
Riemann surface, by glueing local data. For brevity, the global and the local theories 
will be treated on an equal footing. In order to consider the local data for them
selves, it suffices to consider the Riemann surface given by the open unit disc, with 
its standard coordinate.

2.1 The vector bundle of holomorphic fields

For any Riemann surface S (not necessarily compact), we assume that the holomor
phic fields of a meromorphic CFT on S form a vector bundle T  over 5 with a distin
guished trivialisation on every parametrized open set. More specifically, let ([/, z) be 
a chart on S : The holomorphic map

U ^  C

is called a coordinate on U, and U will be referred to as a coordinate patch. We 
postulate that (U, z) induces a trivialization

r\u ^ F x u ,

where F is the standard fiber of T .

Rem ark 1. An example is T  = 7” 5, the cotangent bundle o f S :  Any chart (U, z) on 
S defines a nowhere vanishing section dz in T*U and thus a trivialisation ofT*U. A 
different coordinate z' = f{z) on U defines a different trivialisation (given by dz')-

5
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In the present case, the fiber F  is the infinite dimensional complex vector space of 
holoraorphic fields. For U' c  [/, the trivialization corresponding to (U ',z) is induced 
by the one for (U,z)- For any coordinate patch U with coordinate z, elements of f \ u  
can be written as

ẑ(m) = (z*r*(̂ ox {«}),

with If e F, u e U. Abusing notations, we shall simply write ip(z) where we actu
ally mean <Pziu). (This will entail notations like (p(z) instead of (pt(u) etc.)- Thus an 
isomorphism between two coordinate patches on S induces an isomorphism between 
the corresponding fields. We postulate that the standard fiber F  has an ascending 
filtration.

Rem ark 2. It has been suggested to introduce the component o f Lq o f the Virasoro 
field at this stage as F is filtrated as a result o f the grading defined by the diagonali- 
sation o f Lq. As we shall see in the following section, however, Lq is defined in terms 
o f local coordinates while the filtration is postulated to be universal. Once everything 
is said and done, the two definitions are o f course equivalent.

As the base point m e S is varied, the filtration of the fibers Tu of T  gives rise to a 
totally ordered set of finite rank subvector bundles of T .  On P^, every such finite rank 
bundle admits a splitting into a direct sum of line bundles (Birkhofl^-Grothendieck 
theorem). For C c  P^, the degrees of the line bundles figuring in any such decom
position of finite rank subbundels of T  define a Z grading on the fiber F. Thus to 
every (nonzero) homogeneous element (p e F  there is associated the (holomoqjhic) 
dimension h{<p) o f (p. For quasi-primary (non-derivative) fields ip the degree of the 
corresponding line bundle is 2h{ip).

Rem ark 3. All holomorphic fields can be obtained from differentiating quasi-primary 
fields, which implies that the action o f Lq is encoded by the line bundle structure.

We shall assume that

h ( ^ ) > 0 ,  V ^ e F ,  (2.1)

so that
F  = 0  F{h),

heNo

where F(0) ^  C is spanned by the identity field 1, and we assume that for any
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h e  No, the dimension o f F(h) is finite. Since in a conformal field theory fields of  

finite dimension only are considered, it is sufficient to deal with finite sums.

It may be useful to compare our formalism to the approach by P. Goddard [14] 

where only the case g = 0 is discussed in detail. Goddard interprets F  as a dense 

subspace o f a space o f  states "H using the field-state correspondence. He works on 

C c  P^. In our notation this corresponds to the identity map id : {/ ^  C. Our 

field is Goddard’s V{i//,z)- We will not use the field-state correspondence and 

reserve the word state for something diflferent. Our notion o f state on a Riemann 

surface S is a map ( ) from products o f  fields <gi . . .  (gi i/̂ zn^Pn ) to

numbers ('!'> e  C, in analogy to the language o f operator algebra theory. We w ill not 

use the interpretation o f fields as operators, however, since the necessary ordering is 

unnatural for ^ > 1.

2.2 Meromorphic conformal field theories

Let Sg be a connected Riemann surface o f  genus g > 1 (when the genus is fixed, we 

shall refer to 5^ simply as S ). We don’t give a complete definition o f a meromorphic 

conformal field theory here, but the most important properties are as follows [28]:

1. For t = 1,2, let 5 , be a Riemann surface and let Tv be a rank r, vector bundle 

over S Let be the pullback bundle o f  Ti by the morphism pi : S \ x S  2 —* 

S i .  Let

T i  la T 2  :=  p \ T i  ® P IT 2

be the rank riK2 vector bundle whose fiber at (2 1 , 2 2 ) e  5 1 x  5a is ® ^”2 2̂ - 

We are now in position to define 7V-point functions for bosonic fields. Let T  be 

the vector bundle introduced in section 2.1. A state on S is a multilinear map

< ) :  ® , ( n  ^  C,

where S ,(!F ) denotes the set obtained by restricting the symmetric algebra 

S(T^) to fibers away from the partial diagonals

■= {(zi . . .  ,zat) € 5^1 Zi = Zj ,  for some / 1  j ] ,

for any N  e N. For ease o f  notations, when writing ® and s  we shall in the 

following actually mean the respective symmetrized product.



Locally, over any \ A n  such that {U,z) defines a chart on 5 , a state is
the data for any e N of an A^-linear holomorphic map

< ) :  ^  C

(Pn ( z n ) )

satisfying the following conditions:

(a) ( ) is compatible with the Operator Product Expansion (OPE). (The 

OPE is defined below in point 3, and the compatibility condition is ex

plained in point 4.)

(b) For = 1 € F(0), the identity field, we have

( l(z i)  ® (P2iz2) ® ® (Pn {Zn ) )  = (<P2(Z2) ® ® ( f iNiZN)) ■

Remark 4. In standard physics ’ notation the symbol fo r  the symmetric tensor 

product is omitted. We shall adopt this notation and write

( ‘P l i Z l ) - - - ( P N i Z N ) }

instead o f  {(fi{zi) ® ® ifiNiZN)) but keep in mind that each Zi lies in an in
dividual copy o f  U whence the (ptiZi) are elements in different copies o f  F  and 

multiplication is meaningless.

Since each <pi is defined over (/, we may view { ( p \ { z \ )  - - - t Pni zN))  as a function 
of (z i , .. . , z n )  e We call it the N-point function of the fields tp i , . . .,ipn/ 

over U .  For example, the zero-point function* (1 ) is a complex number.

Remark 5. One can make contact to the notion o f  N-point function used in 

[14] by considering states fo r  manifolds with boundary (see G. Segal’s axioms) 

[32].

2. Fields are understood by means of their //-point functions. A field ^  is zero if 

all A^-point functions involving 0 vanish. That is, for any N  e ~H, N  > 2, and 

any set {(p2 -, ■ ■ ■ <!>n\ of fields,

<0(Zl) 02(Z2) • • • 4>n {z n )} = 0 .

'henceforth denoted by (1)
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3. We assume the existence of an OPE on F, in particular for any m e Z of a 

linear degree m map

Nm '■ F  2) F  —* F  .

Nm has degree m if for any ip\,(p2 & F, Nm{tpi,tp2 ) has holomorphic dimension

m  +  h{tp\) +  h{ip2).

Note that the degree condition is void when is the zero field.

R em ark  6. For cp e F, the fam ily o f  induced linear maps Nm(.tp, ) : F  -* F  
indexed by m & Z  span a vertex operator algebra (VOA) (in particular a Lie 

algebra), with

Y{(p,z) =  ) t!"
m e Z

being the vertex operator associated with tp [11], In particular, Lq = N - 2 (T, ).

4. While fields and coordinates are local objects, states should contain global 
information. A state is said to be compatible with the OPE if for any e N, 

N  > 2 , and whenever . . . ,  are holomorphic fields over a coordinate patch 

U c  5 , the corresponding N-point function has a Laurent series expansion in 

Z \  about = Z2 given by

< ^ l(z i)^2 to ) - - - ipNiZN))

= Xi “  Z2)"'{Nmi.<P\, l̂){Z2) < ^ 3 fo ) • • • (Pn(Zn)),
m > m o

for some mo e Z. Symbolically we write

iPlCzl) (P2(Z2) X ■

m>mQ

This arrow defines the OPE of ipi,(p2 e 'Flu- We postulate that every OPE 
admits compatible states.

R em ark  7. Physicists write an equality here. Recall however that ® is under

stood on the l.h.s.

5. We have Nm{(p, 1) = 0 for ip e F  and m < 0. Define the derivative o f a field <p



10

by

d(f :=

Equivalently, d<p is defined by prescribing

{dip{z)>p2{z2) ■ ■ ■ <Pn ( z n ) )  ■= d z i i f i i z )  (fiizi) ■ ■ ■ ‘Pn ( z n ) )  ,

for all A^-point functions involving (p.

6. In conformal field theories, one demands the existence of a Virasoro field T  e 

F(2) which satisfies

whenever ^  is a holomorphic section 'm U  x  F.

In standard textbooks (e.g. [11]) the Virasoro algebra is required in addition to 

eq. (2.2) and h{T) = 2. The latter is equivalent to the Virasoro OPE [20], which is 

the specific arrow for the fields (p\ = (p2 = T in point 4. The Virasoro OPE actually 
follows from the assumptions made in Section 2.1 and the properties 1-6 above:

Lemma 8. In local coordinates z and w, the Virasoro OPE has the form

Proof, (e.g. [20]) By assumption (2.1), all holomorphic fields have non-negative di

mension, and h i j )  = 2. This yields the lowest order term, since F(0) is spanned 

by the identity field 1. Symmetry (point 1) implies the existence of a field Q, of 

dimension 2, and of a constant c e C, such that

(2 .2)

T(z)T(w) t-* .1 + - — 2 (r(z )  + T(w)) + <D(h') + 0 (z  -  w ) ,  (2.3)
(z -  w p  (z -  w Y

fo r  some c e C.

The constant c is called the central charge of the theory. Note that

(D = No{T, T ) -  —  .

T{z)T{w) 1-^

Thus N -\{T , T) = dQ, from which (considering dimensions) we conclude Q = T. □
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Example 1. A CFT containing the identity field  1, the Virasoro fie ld  T and which 

is closed under N ^ t ,  ■) fo r  m e l .  is said to be generated by T. A CFT is minimal 

i f  it has only finitely many non-isomorphic irreducible representations o f  the VOA 

(or the OPE). Minimal CFTs generated by T are called minimal models. They are 

parametrised by unordered pairs (/i, v) o f  natural numbers n ,v  > 1 gcd(/i, v) = 1. 

For the (ji,v) minimal model the number o f  such representations is (e.g., [3], [1])

2

For (^, v) = (2,3), one has F(0) = l.C , and F(n) = Ofor n > 0 (so that T = Oj. The 

(2,5) minimal model has tH’o irreducible representations, the vacuum representation 

M\ fo r  the lowest conformal weight (or holomorphic dimension) ^  = 0 ,  and 

another representation M 2 corresponding to the conformal weight K2 ~ ^  ([3],

table^ 8.1., p. 243). (For g = I, the 0-point functions are characters, and Ks fo r  
1 < 5 < (v — l) /2  «  the leading power in the small q-expansion o f  the character (1)^ 

in the (2, v) minimal model. We will use Ks to parametrise the characters in Chapter 

8.)

^Note that there is a typo in the value for the conformal weight o f <1)2 in [3].



'.'^5v. :. ': :::' v - ^ ; '  . .J . .■■./!^'.'-‘ ' : '^ , ,6 - ; \
I ..-̂  ■ '•■ - , - V i  V '  J*._ - -i. < A  **'-<S' ’-r^f-^- ■■ ■■■'' -
fj;,. ■ . , . J .  .̂ . . , - . . .

e ^-i* " '  ' 'x frW ’'- ‘ ■ ^ » '-



Chapter 3

Analytic calculation of the 
Virasoro A'̂ -point function for 
some genus 1 minimal models

Virasoro N-point functions on the torus can be determined using techniques from 

VOA theory [41]. In this chapter we illustrate a more elementary approach using the 
Weierstrass p-function.

3.1 The Virasoro A -̂point function in the (2,5) minimal mode!

We consider a conformal field theory (CFT) over the torus Zi = C /A  for A = Z. 1 +Z.t 

with the property that the space F(4) of the holomorphic fields of dimension = 4 is 

one dimensional. Thus for the field O of the OPE (2.3), we have

for some K  e C.  The model, in which (3.1) holds true, is referred to as the (2,5) 

minimal model. /T = 1 is such a theory, but our calculations will show that anyhow. 

For any N  > 1, the Virasoro A^-point function (T{z \ ) . . .  T(zn))  is an element of the

(3.1)

field

13
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where p  is the Weierstrass function associated to A,

and p '  =  d p id z  is its derivative, jc =  p (z |t )  and y  =  p ' ( z ,  |t ) are related by the 

equation ^  = 4(x^ -  3OG4X -  70G^),  where for k > 2, Gzk are the holomorphic 

Eisenstein series. For = 1, there actually exists a covering of Zi by coordinate 

neighbourhoods for which (T(z)} = (T) is constant. Comparison of the singularities 

in (3.2) and the OPE (2.3), and using that holomorphic functions on the torus are 

constant, yields

( T ( z ) T m  = ^ ( l ) p " i z \ T )  + 2(T )p(z|r) + C, (3.3)

where C oc (1 ) is constant in position. About z = 0,

P ( z \t ) = z~^ + 6 G 4 ^  + O ( z ' ) ,

so

(No{T, TKw)) = C + cGaH) = (0(w )> .

But in the (2,5) minimal model,

<0) = 0

by eq. (3.1), since (d^T) = d^(T) = 0. (O is referred to as the singular vector in Mi  

of the (2,5) minimal model.) We conclude that

C = - c(1)G4 . (3.4)

The Virasoro 2-point function in the (2,5) minimal model is completely determined

by the 0- and 1-point function. This result has been found previously by [7].

3.2 Higher A -̂point functions

It is worth mentioning that the method of matching the singularities of the Virasoro 

OPE with suitable derivatives of the Weierstrass p-function, as demonstrated for the 

2-point function in the preceding section, allows also to compute the N-point func-
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tions o f  the Virasoro field for higher N,  by recursion. For / /  = 3 we have 

(T { z )n w )T (u ) )

= 7 - ^ ^ < T >  + — - ^ 2  { (nz )T {u))  + (T(w)nu))] + <d)(w)r(M)) + 0 ( z  -  w).
(z -  w r  (z -  w Y

On the other hand, the general form o f the Virasoro 3-point function, considered as a 

function o f z, is

{T{z)T{w)T{u)) = (T)
(z -  w r

(z -  vv) * '

+ (Z -  + <T>p + <«>(w)r(M)))

+ 0 (z  -  w ) . (3.5)

Here and henceforth we denote by for  ̂ > 0 the function d^piw -  m|t), where

= p.  We have omitted the (z -  H’)“*-term which will drop out as the symmetry 

between z  and w  is restored. On the other hand, considering the singularities and the 

symmetries between z, w  and u yields the ansatz

( T ( z ) T i w m u ) )

= A {p"(z -  w |t) + p'' iz  -  u\t ) + p ' \ w  -  m|t)}

+ B [p(z -  w |t) + p{z -  u\t ) + p(w  -  m|t)}

+ C {p i z  -  w |t)p(z -  m|t ) + p{yv -  z |t)p (h ’ -  m|t ) + p(w -  z \t )p { u  -  w |t )}

+ b p { z -  w \t )p { z  -  u \t )p ( w  -  m|t )

+ E, A , B , C , D , E  e C .  (3.6)

By comparison with (3.5), we conclude

A = ^ ( T ) ,  B = 1 2 C ,  C = 2<T), D  = c{ l ) .

In the (2 ,5 ) minimal model, we have by eq. (3.4),

B = - 1 2 c<1)G4
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Moreover, by eq. (3.1),

(<D(w)r(«)> = I ^  -  ^\di{T{w)T{u))

so the coefficient of (z -  w)® reads

c cK  3K
— + {T)p + mw )T {u)}  = + — <T) p"  .

For the term of order zero, we obtain a cubic equation in p,

(3c -  3Kc) p^+ i  (5c + 40 -  IS/sT) (T) -  54c(l -  /T) G4  (1) s? + £  = 0,

where E = E + ( -9 c  -  60 + 36A:) G4  <T) + SAcKGe  (1).

The equation is satisfied i f f / f = l , c  = - ^ ,  and

78 1848
£  = - y G 4 ( T )  + — G s d ) .

In particular, {TTT)  yields 1-point functions of Nk(T,Ne(T,T)). More complicated 
fields are treated analogously.

3.3 The Virasoro A -̂point function in the (2,7) minimal model

Let us now consider a CFT on C /A  with the property that

ad^T+ /3No(No(T, T), T) + yNo(,T, d^T) + 6No(.dT, dT) = 0 , (3.7)

a,/3,y ,6  e C  not all zero.

(In the (2,7) minimal model, the second singular vector occurs at level 6 , cf. [3], p. 

243, subsequent to table 8.1.) From the Virasoro OPE follows

{T{z)T{0)} = ^{\)p"{z\T)  + 2{T)p{z\r) + C

= ^ < 1 )  + 4<T> + (C + cG4<1» + z2(12G4<T) + lOcGfi) + 0{z* ) , 
r  ẑ
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so

d j i n z m o ) )  =  +  2 ( T ) p " ( z \t )
12

= ^ ( 1 )  + ^ < T )  + 20cG6<1) + 24<T)G4 + 0{^ )

^  (Noid^T, T)(w)) = 24(T)G4 + lOcGed)  (3.8)

Since odd order derivatives of p  are odd,

d,d̂ {T{z)Tiw)) = -  diinzmw)}
=> {NoidT, 5r)(w)> = -  {Noi^T, T)(w)}

For (No(No{T, T), T)) we have by eq. (3.7) and the fact that (T) = const.,

(No(A^o(7’, T), T)) = ^ ^ ( N o ( T ,  ^ T ) } , providedy3 t  0 . (3.9)

The constant ^  can be determined independently and is thus assumed to be known. 
Also, the central charge of the (2,7) minimal model is known to be c = - y .  Com
parison of eq. (3.5) with eq. (3.6) yields

(O(w)r(M)) = -  2c{l)p^ + (c + SXT)*?^ + (24C + 60cG4<l))p + E

where
E = E - ( 9 c  + 60)G4<T) + U O cG ed).

So {<t>{w)T(u)) is known upon knowledge of (1), (T), C, and E. To determine E, it is 
sufficient to know {No(0, T)). By eq. (3.9),

{No(0, T)) = {No(No(T, T) -  ^-d^T, T))

= {No(No(T, T), T)) -  ^(Noid^T, T))

= ( ^  -  \ )  (Noid^T, T ) ) .

But (Noi^T, T)) is given by eq. (3.8). We conclude that in the (2,7) minimal model, 
the Virasoro 3-point function is determined by the 0-point, and the Virasoro 1 -point 
and 2-point function.
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Chapter 4

The Virasoro 1-point function in 
rational coordinates, 
for genus g > 1

4.1 Change to rational coordinates

Let Zi be a compact Riemann surface of genus ^ = 1. Such a manifold is biholomor- 
phic to the torus C /A  (with the induced complex structure), for the lattice A spanned 

over Z by 1 and some t  e H"'', unique up to an S L(2, Z) transformation. Here de

notes the upper complex half plane. We denote by z the local coordinate on Zi and by 

z \ , . . . , Z n  the corresponding variables of the N-point functions on Lj [3]. Recall that 

A^-point functions on I i  are elements of C (p(z i|t), p '(z i |t) ,  . . . ,  p(zat|t), p'(zjv|T)), 
where p  is the Weierstrass function associated to A, and p '  = dpjdz.  Instead of z we 

shall work with the pair of complex coordinates

x  =  p ( z | t ) ,  y  =  p \ z \ T ) .  (4.1)

We compactify the variety {(jc,y) G C^l = p(x)] with

p{x) = 4(x^ -  3OG4X -  lOGe)

by including the point x  = 00 (corresponding to z = 0 mod A), and view x as a 

holomorphic function on C /A  with values in P^. Thus y  defines a ramified double 

cover of P^.

A^-point functions can be expressed in terms of p(zi |t) , p \ z i  | t ) ,  . . . ,  p(za^It), p \ z n \ t ) .

19
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or equivalently as rational functions of xi, j i , . . . ,  XN,yN- The latter possibility gen
eralizes much more easily to higher genus. Instead, one can try to work with the 
Jacobian of the curve and the corresponding & functions. This would generalize to 
arbitrary curves, but it is unknown for which conformal field theories this is possible.

If ̂  > 1, one can write Ig as the quotient of by a Fuchsian group, but working 
with a corresponding local coordinate z becomes difficult (e.g. [8], and more recently 
[23]). We shall consider hyperelliptic Riemann surfaces l,g only, where ^ > 1. Such 
surfaces are defined by

where p is a polynomial in x  of degree « = 2^ + 1 (the case n = 2^ + 2 is equivalent 
and differs from the former by a rational transformation of C only). We assume p  
has no multiple zeros so that Sg is regular. Locally we will work with one complex 
coordinate, either x  or y. None of them is a function of the other on all of the affine

tion, the function x  is called a locally admissible coordinate on an open set U c'Lg 
if (U, x) defines a chart, and analogously for y. Thus x  is an admissible coordinate 
away from the ramification points (where p = 0), whereas y  is admissible away from 
the locus where p' = 0. Let us recapitulate the behaviour of T under coordinate 
transformations.

Definition 1. Given a holomorphic function f  (with non-vanishing first derivative 
f ) ,  we define the Schwarzian derivative o f f  by

The Schwarzian derivative 5 has the following well-known properties:

1. S (Af) = S ( /) , V /I e C, /  G D ( S ), the domain of S ( /  holomorphic with 

/ '  ^ 0).

2. Suppose /  : Pq is a linear fractional (Mobius) transformation.

Zg : /  = p{x). (4.2)

variety (4.2) (whence in particular we refrain from writing = p{x))- By defini-

where

Then /  e D (S ), and S ( /)  = 0.
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3. Let / ,  ̂  e D(S) be such that /  o g is defined and lies in £)(S). Then

S ( f o g )  = [ g f S ( f ) o g  + S(B).

Remark 9. Let p ,y  ^ £)(S) with = p{x). Then by the properties 1 and 3 o f the 
Schwarzian derivative.

Direct computation yields [13]

Lemma 10. Let T be the Virasoro field in the coordinate x. We consider a coordinate 
change x i-» such that Jc € !D{S), and set

Corollary 11. Let S g be a Riemann surface o f genus g >2 with a complex projective 
coordinate covering (i.e. a covering by coordinate patches whose respective local 
coordinates differ by a Mobius transformation only). Then for any state { ) on Sg,

The equation in the proof of Corollary 11 can be read as the cocycle condition 
on the 0-cochain {T(x)} (dx)^. For a general coordinate covering 'U of Sg, g > 2, 
(T(x)) (dx)^ will fail to define a 0-cocycle. According to eq. (4.4), however, its 1- 
coboundary is given by ■^<l)5(x)(j:)(i/j:)^ which by property 3 of the Schwarzian 
derivative satisfies the 1 -cocycle condition

S(y) = S i p ) + - (4.3)

f(x(x)) = /"(x) - -^S(Jc)(j:).1 . (4.4)

Then f  satisfies the OPE (2.3) in x. □

and for any local coordinate x in this class, {T(x)} (dx)^ defines a global section of 
(rSgf^.

This section is holomorphic by assumption.

Proof. By property 2 of the Schwarzian derivative, and by eq. (4.4),

m x ) )  { d x f  = ( f m  { d x f . □

Siyo x){z){dzf = S iy)(x(z))idxf + S (x)(z)(dzf
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A 0-cochain with this property is called a projective connection. Thus for any pro
jective connection C(z), the difference (T’(z)) (dz)^ -  C{z) defines a global holo- 
morphic section in ( 7 * 5 [ 1 6 ] ,

(<r(z» (d z f  -  ^  C(z)) e ('W, 0((T*S,)®2)) . (4.5)

Example 2. Let Sg be a Riemann surface o f arbitrary genus. Let T be defined by 
holomorphic fields o f massless free fermions on Sg. In this case, the projective con
nection -^C is known as the Bergman projective connection ([18],[9],[31]).

By the Riemann-Roch Theorem (e.g. [8]), the afiine linear space of projective 
connections has dimension

dime H ^ a r S g f ^ )  = 3 { g - I ) ,  (g> 2).  (4.6)

Remark 12. Eq. (4.6) is wrong for g = 0 and g = I. The difference from the 
correct result is the dimension o f the automorphism group o f the Riemann surface, 
(dimcS L(2,C) = 3 and dimc(C,+) = 1, respectively). For g > 2, this dimension is 
zero.

Example 3. Let Hi be a g  = 1 Riemann surface. Then T*I.i is trivial. When one uses 
local coordinates given by the affine structure on Zi [16], then (T{z)} is constant.

4.2 Calculation of the Virasoro 1-point function

Associate to the hyperelliptic surface Z its field of meromorphic functions K = 
C(a:, y). Then is a field extension of C of trancendence degree one, since y^ = p{x) 
where p is a polynomial in x  with coefficients in C. The two sheets (corresponding 
to the two signs of y) are exchanged by a Galois transformation.

In what follows, we set

n

p{x) = ̂  akx!'~' ,̂ 
fc=0

where n = 2^ + 1, or n = 2^ + 2. For convenience of application, we shall treat both 
cases separately throughout this section, though they are of course equivalent.

Theorem 1. (On the Virasoro l-point function)



For g > 1, let Hg be the genus g hyperelUptic Riemann surface

I : /  = P(x) ,

where p is a polynomial with deg p = n.

1. As X —» oo.

(T(x)} ~ x~^ , for even n ,

(T(x)) = ^  x~^{l) + 0(x~^), for odd n .

2. We have

c [p'\^ 1pinx)) = <1) + T0(;c,y), (4.7)
32 p  4

where is a polynomial in x and y. More specifically, we have the Galois
splitting

&{x,y) = (4.8)

Here 0̂ *̂  is a polynomial in x o f degree n -  2 with the following property:

(a) I f  n is even, = 0-

(b) Ifn  is odd, [© '̂  ̂+ |  («^ ~ ~

©^  ̂ is a polynomial in x  o f degree j  -  4 if  n is even, resp. ^  -  3 i f  n is odd, 
provided g > 3 .

Proof 1. For x -* oo, we perform the coordinate change x  i-» Jc(x) := By 
property 2 of the Schwarzian derivative, S (Jc) = 0 identically, and

i 2

T(x) = T(x)
dx
dx

where If « is even, then Jc is an admissible coordinate, so (f(x)}
is holomorphic in x. If n is odd, then we may take 5̂ := as coordinate. 
^  and according to eq. (4.4) and eq. (4.3),



24

where (f(y)} is holomorphic in y.

2. {T{x)} is a meromorphic function of x  and y  over C, whence rational in either 
coordinate. Thus upon multiplication by some suitable polynomial Q if nec
essary, we are dealing with an element in C[a:, j] , the ring of polynomials in x 
and y. Since y^ = p{x), C[j:,y] is a module over C[x] spanned by 1 and y, so 
we may assume Q e C[x]. We conclude that the quotient field of C[x,y] is a 
vector space over the field of rational functions in x  alone, spanned by 1 and y. 
In particular, we have a Galois-splitting

{T{x)) -  (r(x))[‘l +y(r(;c))M .

(T(x)} is 0(1) in X iff this holds for its Galois-even and its Galois-odd part 
individually, as there can’t be cancellations between these. We obtain a Galois 
splitting for ( f(y)}  by applying a rational transformation to {T(x)}. From (4.4) 
and (4.3) follows

P<r(;c))t‘l + i  0[ll(;c),
32 p(x) 4 

p{T(x))^^ @^\x),

where ©t*' and are rational functions of x. We have

l0 [i]
4

= p(r(x))[‘i -  + ^ < i)p 5(p ).
32 p 4 12

The l.h.s. is 0(1) in X for finite x  and away from p = 0 (so wherever x is an 
admissible coordinate) while the r.h.s. is holomorphic in y(x) for finite x  and 
away from p' = 0 (so wherever y  is an admissible coordinate). The r.h.s. does 
not actually depend on y  but is a function of x  alone. Since the loci p = 0 and 
/?' = 0 do nowhere coincide, we conclude that ©t*' is an entire function on C. 
It remains to check that ©t*' has a pole of the correct order at x = oo. We have

 ̂ = n^aQxT~^ + n(n -  + 0(x”“^). (4.10)
P

(a) If n is even, then ^(^(x))^^^ = 0{x"~^) as x —» oo, by part 1. By eqs (4.7)
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and (4.10), 0^^^(x) has degree « -  2 in x. Moreover,

0[*^(a:)

= -  ^ (n^aoJ^~^ + n(n -  2)aix"“ )̂ (1) + 0(x^~^).
8 '

(b) If n is odd, then /7(7’(jc))t*' = + 0{j("~^) as x  —» oo, by eq.
(4.9). Thus has degree n -  2 in x. Moreover, by eq. (4.7) and eq.
(4.10),

0^‘’(Jc) = ~  (n^ -  l)a o ^ -2 (l>  + 0(jc"-^).

Likewise, we have

jy@^^\x) = ypinx})^^ =

the l.h.s. is 0(1) in jc wherever j: is an admissible coordinate while the r.h.s. 
is holomorphic in y wherever j  is an admissible coordinate. Since y is a holo- 
morphic function in x  and in y  away from p = 0 and away from p' = 0, 
resfjectively, this is also true for

^ p & ^ \ x )  = p \ T { x ))^^  = ^ p [ p ' f { f ( y ) ) ^ l

Now the r.h.s. does no more depend on y but is a function of x  alone, so the 
above argument applies to show that /70^' =: P  is an entire function and thus 
a polynomial in x. We have p\P:

-  = y® ^\x) = y [ p ' ] 2 ( f  ( y ) ) M

is holomorphic in y  about p = 0. Since P is a polynomial in x, and p  has no 
multiple zeros, we must actually have = p  divides P. This proves that 0^^' 
is a polynomial in x. The statement about the degree follows from part 1.

□

Remark 13. The main purpose o f Theorem 1 is to introduce the polynomial 0 . Part 
o f the results actually follow from classical formulae fo r  the projective connection.



For instance, fo r  n even and g > 3, we have [8]

2 g -2  g - 3

p(T(x)} ( d x f  = — p C(x) + (1) ^  aiJ^{dxf + y (l) ^  /3jx^(dx)^
1=0 ;= 0

for constants in the notations o f (4.5). Here the projective connection
Z is given by

p C{x) = - [p'\' l 2

axdxf,
< n -4

and

2 g -2  S -3

[0['](;c)]^_^ = 4(1) Y j = 4(1) .
1=0 ;= 0

Eq. (4.9) (for odd n) follows from the formula for C(x) on p. 20 in [9],



Chapter 5

The Virasoro 2-point function

5.1 Calculation of the 2-point function, for genus g > 1

We first need to introduce some notation. For the polynomial 0  = 0 ^ +  v0t>’l defined 

by eqs (4.7) and (4.8) of Theorem 1, we set

n -2

0 [ ‘l = Aox"-^  + 2  A* oc (1 ).
* = i

Recall that Aq is known constant multiple of (1). In contrast, for 1 < k < n -  2, 
the proportionality factor in Ajt oc (1 ) , though constant in position, is a yet unknown

function of the moduli of the surface. Thus ( 1) and the define « — 1 parameters of

the theory which we shall focus on in Part II. (The parameters appear in bold print for 
better readiblity of the formulae.) For g < 2 ,  0 ^  is absent so there are no additional 

parameters in this case.

It will be convenient to replace 0^^'(x) =: - |n (A :) for which we introduce even 

polynomials and 11̂ ''̂  such that

n(.r) =: n[*'(A:) + A;nt^'(x). (5.1)

Likewise, there are even polynomials and such that

p{x) = pf*'(x) + xp^^\x).  (5.2)

27
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Lem m a 14. For any even polynom ial q o f  x, we have

q{xi)+q(x2 ) + 0{{xi -  x z f )

= 2q{ y/xix2) + (xi -  ^ >

and

Xiq{xi)+x2q(x2)  + 0 ((a ; i  -  X2f )

=  (ĵ l + 2̂) |? ( y/xiX2) + (xi -  + q ''i .

Note that the polynomials q  and q" in -\/xiX2 are are actually polynomials in 

j:iX2.

Proof Direct computation. The calculation can be shortened by using

=  (1 +e ) x ,

X2 = {\ -  e)x,

where |e| «: 1. □

Abusing notations, for j  = 1,2,  we shall write p j = p (x j)  and & j = @(xj ,yj )  

etc. For k > 0, w e  denote by X2)]>it the polynomial in j: = defined by eq. 

(2), with X 2  held fixed, and let [/?(ai , X 2 ) Y ^  be the polynomial for the opposite choice 

x = X2 (xi fixed).

Theorem 2. (The Virasoro 2-point function)
For g > I, let Hg be the hyperelliptic Riemann surface

2  : = p{x),

where p  is a polynomial, deg p  = n odd. Let

{ T { x x ) T { x 2 ) ) c ■ -  { \ ) - \ T { x , ) T { x 2 ) )  -  { \ ) - ^ { T { x , ) ) { T { X 2 ) )

be the connected 2-point function o f  the Virasoro field. We have 

1.

{ T{ x i ) T{ x2) ) c P\ P2  = 0 ( ,x r f \ (5.3)
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2. For |x i|, |x2 | small,

{T {x i )T {X 2) ) c  P l P l  = 0 (l) |;c ,= ;c2  -

where R {x \ , ^2 ) is a rational function o f x \ , x  ̂a n d y \ , y i, and 0 (  1 )|jt, =X2 denotes 

terms that are regular on the diagonal x \ = X2 and polynom ial in , X2  and

3. The rational function is given by 

R(.X\,X2) = - ( 1 )
4 (j:i -  X2 )*

C ( p ^ ^ \ y / X i X 2 )  1 pW( VX1X2)\

32 (j:i -  X2)'̂

c
+ - (X i  +  X2)

U l -  X2)  ̂ 2 (xi -  X2>2

1 P 1 & 2  + P2©1 
"^8 (j:i -  X2)^

c yxix2) 1 nW(V^ixi)\
3 2 >'i > '2   ̂ _  ^^^2 +  2 (x i -  X2)2 )  ■

Here and p̂ ^̂  and  0 *̂1 and Ô ''̂  are the even polynom ials introduced in 

(5.2) and in (5.1), respectively.
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4. For R {x\, X2) thus defined, the connected Virasoro 2-point function reads

{\ ){T{xx)T{x2))c P xPi

= R{x\,X 2 ) + P{x\,X 2 , y \ ,y 2 )

1 r t S n l r ,  1 n l f t S r i
“  gJl^l-^1 ^2 ^̂ 2 “  g3'2<3lX, x  ̂ w ,

1 n S / t l r - ]  1 n l n 3 r i
2 2 ^  2 1

^ /I 5  ̂_i_ ̂  r 1 ^  ̂_i_  ̂  ̂  ̂ r 1
-̂ 2 2 1 2 1

1 r t 5 / j 3 r i  1 « 3 n 5 r i
T6 * Y5^2‘̂ 2-*i •'̂ 2 1 ’

where

P { x \ , x 2 , y \ , y 2 )  (5-4)

=  P '̂ \̂xuX2) + y\P^'^{xi,x2) + y2P^^\x\,x2) + yiy2P^''^\x\,x2).

Here pI*', pty»^l and fo r i  = 1,2, P^'^ are polynomials in j:i and X2 with

deg, = n -  3 =  deg, P^^^, fo r  j  ^  i , 

deg, = - ~ 2 ~  “  3 ~ ■

fdeg, denotes the degree in X j ) .  Moreover, pt*l, pb'^'^J andyxP^'^^ + y 2 P ^ ^  are 

symmetric under flipping  1 2. These four polynomials are specific to the

state.

Proof Direct computation (cf. Appendix). O

In the following, let [T(j:i )T (x2)]reg.+<7’(- î ))c{T(-»:2))c-1 with {T{x))c = (1)"* {T{x)) 
be the regular part of the OPE on the hyperelliptic Riemann surface L,

T{X\)T{X2)  P\P2  l-» ■ ^ f ( . X \ , X 2 f . l  + ^ f ( . X l , X 2 ) ( ^ l  + ^ 2 )

+ [r(xi)r(x2)]reg. P IP 2 + {T(Xi))c(T{X2)}cPlP2-'^ ■ (5.5)
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Here f { x i ,X 2 ) := , and

c [ p '^
■&{x) := T{x) p  -  — -------.1

32 p
(5.6)

satisfies {d{x)) = j  @{x,y). ■&{x) is holomorphic about p  = 0 since by eqs (4.3) and

5.2 Application to the (2, 5) minimal model, in the case

of two fields ipi, ip2 , where [yi(.»:i),i^2(-*2)]reguiar is the regular part of the OPE of 
(f\, (p2 - For tpi = tp2 = T and the OPE (2.3), {No(T, T)(x)) can be determined from 

Theorem 2.4. To illustrate our formalism, we provide a short proof of the following 

well-known result ([1], Sect. 3):

Lemma 15. The condition No(T, T) oc di^T implies c = - ^  and

Proof. The statement is local, so we may assume w.l.o.g. ^  = 1. In this case.

by Theorem l.(2b). Using Corollary 11 and the transformation rule (4.4) for x  = 

P ( z |t ), we find

(4.4),

where S (p) is regular at p  = 0.

n = 5

In Section 2 we introduced the so-called normal ordered product

N o (.<PU‘P 2 ) ( X 2 )  = lim W \ { X i ) i p 2 { X 2 ) \I reg u la r

NQ{J,T){x) = ^ d ^ T { x ) . (5.7)

0[il(x) = - 4 c x ( l )  + A i, = 0,
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where by (4.7), (T) = Direct computation shows that

(No{T,TXx)} = a^{nx)}

iff a  = -^ and c = - y .  Since by assumption the two underlying fields are propor
tional, the claim follows. □

The aim of this section is to determine at least some of the constants in the Vi- 
rasoro 2-point function in the (2,5) minimal model for g = 2. We will restrict our 
considerations to the case when n is odd. (Better knowledge about 0̂ *̂  when n is 
even doesn’t actually provide more information, it just leads to longer equations.) In 
the first case to consider, namely n = 5, all Galois-odd terms are absent. Restricting 
to the Galois-even terms, condition (5.7) reads as follows:

Lemma 16. In the (2,5) minimal model for g > \ ,  we have

Note that the equation makes good sense since the l.h.s. is regular at x = 0. For 
instance, (11^ '̂)' is an odd polynomial of x, so its quotient by x  is regular.

+ 5(pW)'
))

p^^\x,x) p^'y^\x,x)
^  p

Proof. Direct computation. □

Example 4. When n = 5,
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Thus we have 5 complex degrees o f  freedom. One o f  them is the constant^ (1), and 

according e. (4.6), at most 3 o f  them are given by (T{x)) (or by A j, A 2 , A 3 j. Set

=  B 2 2  x ] x l

+ B2_\{.^X2 +  JCiX^)

+ + ^ 1,1 X \ X 2

+ fil(xi + X2)

+ Bq ,

Bq, B i,B i j  oc (1) are constant in position, fo r  i , j  = 1,2. The additional constraint 

(5.7) provides knowledge o f

jc) —B2,2 ^  2^2,1 ^  + (2^2 + Bi \)x^  + 2B\ x  + Bq

only, so we are left with one unknown. As we shall argue in Section 6.2, it should be 

possible to fix  the remaining constant using (5.7), once the Virasoro 3-point function  
is taken into account.

' Recall, however, that (1) and A i, A2 , A3 are functions of the moduli on the surface S2 -
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Chapter 6

The Virasoro A'̂ -point function

N  point functions for > 3 can be estabhshed from the correlation functions for 

N  = 2,3, using symmetry arguments. Thus finding a routine to compute the N-point 
functions for all > 2 goes with encoding their constituents graphically. For the 

Virasoro field the graphical description has been formulated by [19] for the genera 

^ = 0 and g = 1, for which Zhu’s recursion formulae were available [41]. Essentially 
the same inductive arguments prove our recursion formula for the Virasoro N  point 

function for hyperelliptic Riemann surfaces of arbitrary genus.

6.1 Graph representation of the Virasoro A -̂point function 
for  ̂ > 1

For g > 1, let Zg be the genus g hyperelliptic Riemann surface

I  : /  ^  p(x),

where p is a polynomial, deg p  = n, with n = 2g + I, or n = 2g + 2. Let be the 

bundle of holomorphic fields introduced in Section 2. For N e N and j  = 

abusing notations, we shall write p j  = p(x j) and = &(xj), where §  is the field 

defined by eq. (5.6).

Theorem  3. Let S ( .r i , .. .,X{,/), N  e be the set o f  oriented graphs with vertices 

x i , . . . ,  X]\i, (not necessarily connected), subject to the following condition:

V i = 1 , . . . ,  , Xj has at most one ingoing and at most one outgoing line,

and if{Xi, xj) is an oriented line connecting x, and x j then i ^  j.

35
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Given a state ( ) onH, there is a multilinear map

( ) ,  : ^,{T) ^  C ,

normalised such that (1);- = (1), with the following properties:

1. For all k k > 2, and any ip2, . . . ,  e {1, T}, w  have

( 1  ^ 2 f o )  • • • m{Zk))r =  {^{.Z2) ■ ■ ■ miZk))r ■

2. For a//  ̂e  N, ( ^ i . . .  •&k)r is a polynom ial in x i , . . . , x k  and y \ , . . . , y k .

3. We have

{T{ x i ) . . . T ( x n )) P I . . . P N  = ^  F ( f ) ,  (6.1)
reS (jT i,...,;cA ^ )

where fo r  F e  5 ( x i , . . . ,  xi^),

n  ®  ®  T{xe)pe\  .
(j:,\jry)eT^ '  ( ^ ( A s ^ E s Y  ^

Here fo r  any oriented edge (xf, xj)  e F,

An , Ef  ̂ c  { 1 , . . . ,  N} are the subsets

Ayv '={i  P  j  such that (xi ,xj )  e  F } ,

En '=[ j  |3 i such that (Xi,Xj) e  F } .

U and  n  are the set theoretic union and intersection, respectively, and  ( . . . ) '’ 

denotes the complement w  { 1 , . . . ,  N}.

Note that ( )r is not a state (it is not compatible with the OPE).

Proof. We use induction on N. By multilinearity o f ( )r and eq. (5.6), F(F) for 

F e  S ( x i , . . . ,  xyv) is determined by ( r ( x i ) . . .  T{xk))r,  for k < N.

Suppose ( T { x i ) . . .  T{xk))r,  for ife < has the required properties for k < N.  We 

define

{ n x i ) . . . n x N ) ) r
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by (6.1) and show first that ( T { x \ ) . . .  T(xN))r is regular as two positions coincide. 

In other words, let FoCjci, . . . ,  Xf )̂ e  5 ( x i , . . . ,  x /̂) be the graph whose vertices are 

all isolated. Then Er?tro reproduces the correct singular part o f the Virasoro 

N-point function as prescribed by the OPE (5.5) on Z.

For = 1, Fo(x) is the only graph, and

(T(x))  p  = F(ro(x))  = {T(x))rP . (6.2)

For N  = 2, the admissible graphs form a closed loop, a single line segment (with 

two possible orientations), and two isolated points. Thus by eq. (6.1),

{T(xi )TiX2 ))rPlP2 = (T{Xi)T(X2)) P\ P2 ~ ~  + <?2>r ,

where f n  := f { x \ , X 2 )- According to the OPE (5.5), {T{xi )T{x2))rP\P2 is regular on 

the diagonal jci = X2 -

In order to prove regularity o f ( T ( x i ) . . .  T{xs))rP\  . . .  pat on all partial diagonals 

for N  > 2, ii suffices to show that the coefficients o f  the singularities are correct. 

Suppose the graph representation for the i-point function o f the Virasoro field is 

correct for 2 <  ̂ < -  1. For 1 < i < N,  set 5̂ '̂  := S(x ,, . . . , x ^ )  and Fg' ;=

Fo(x,, . . . ,  x n). For 1 < /, j  < N,  i j ,  define

S(,7) :={F e  {xi ,xj ) , (xj ,xi )  e  F } ,

:={F G 5^ '̂! {Xi,Xj) e  r , ( x j , x i )  i  F } ,

 ̂ (xi ,xj ) , (xj ,xi )  i  F } .

5^*' decomposes as

5 = S(i2) U S (1,2) U 5(2,1) U S(i),(2).

Since 5(i2) ^ 5^^', the equality

2  n r )  = ^  f^2 (T(Xi)  . . . nXN) )  P 3 . . . P N  
reS„2)

holds by the induction hypothesis. By the symmetrization argument following eq.
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(A.2), it remains to show that

^  /T(r) = ^  i&lTiXi) . . . TiXN)} P 3 . . . P N  + 0({xi  -  X2)“ ‘) ,
r£5i>i\S(i2)

which under the induction hypothesis on 5̂ ^̂ ' and 5^^^ we reformulate as

J ] F ( ^ - ‘(r)) + F (^ - ‘(r))
r&s[2i

V i2
f n
2 resra PeSl31

+ 0{{xi -  X2) *) .

Here (p, tp are the invertible maps

5(1,2) ^  S 2̂]̂

 ̂ 5 (2,1) ->

given by contracting the link (a:i,X2 ) resp. (x2 , j:i) into the point X2 -, and leaving the 

graph unchanged otherwise. Let 5(2) c  5^ '̂ be the subset o f graphs containing X2 as 

an isolated point, and let : 5  (2 ) —» 5  be the isomorphism given by omitting the 

vertex X2 from the graph. Now for F e  5(2), the graph representation yields

m2

2 1 , ' ^  32 P2

while for r  € 5  \  5 (2 ),

^■(YCrwj + o a ^ c ,- x 2 ) - ‘) .

F(^o-‘(r)) + F (^ - '(D )  = ^  F (D  + 0 ((j:i -  j:2)“*) •

It remains to show part 2. It is sufficient to show that . ■&k)r fox \ < k  < N  is 

regular at p \  = 0. We use induction. From eqs (5.6) and (6.2) follows {d)r = {&) = 

^ 0 , which is a polynomial in x  and y. Now suppose ( ^ i . . .  ^k)r  is regular at p i  = 0,
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fork  < N ~  I. For I e  f* ((2 ,. . . ,  N}),  the powerset o f ( 2 , ,  N},  we have by eq. (5.6),

E n(
MU i(=i V

= <T(X,) . . . n x ^ ) ) r P l  . . . p N ~  ^  ^  ^
' ] 2      (  ^ r n ' l 2 ^

+ terms regular at p i = 0

c [p'
=  ( T ( x i ) . . . T ( X N ) ) r P l  . . . P N  -  ^ — ^ ( T i X 2 ) . . . T ( , X N ) ) r P 2 - - - P N

32 P i

+ terms regular at p i = 0 .

Here we have, using the graph representation,

( T i x i ) . . . T ( x N ) ) r P i  ■■■ Pn  = ( T { x i ) .  . . T ( x n ) ) P i . .  . PN -  ^  F ( n

resi'i\r{,”

> 2 (

-  ’ ( n X 2 )  . . . T(Xn )}P2 . . . P N -  Y j

resra\rj,̂ i
32 p ,

+ terms regular at /?i = 0 

c [ p \ f
-  { T ( X 2 ) . .  . T ( X N ) ) r P 2  - P N32  P i

+ terms regular at = 0 .

We explain the second identity. Consider the augmentation map a : 5  \  —»

^ [1]  ̂ pHl defined by adjoining the isolated vertex jci to the graph. We have

c [p' f
F(a(F)) = —̂ F(F) + {terms regular at p i = 0 } .

32  P i

Indeed, all terms in F(a(F)) that involve are /:-point functions with k < N,  since 

end points o f  edges are not labelled, and so are regular at p i = 0 by assumption. We 

conclude that (^i  ■ '&N}r is regular at pi  = 0.

Since the proof is by recursion, it should generalise easily to more general Rie- 

mann surfaces.

We illustrate the theorem for the case N  = 3. Recall that the connected 1-point.
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2-point and 3-point functions are given by 

(<p{x))c =(irH<p{x)},

{ ( P \ ( x i ) ( p 2 { x 2 ) ) c  = < i r H ( P \ ( x \ ) ( p 2 ( X 2 ) )  -  (<P2(X2) }  ,

and

((Pl(Xl)<p2(X2)(p3(X3))c = ( i y H ‘Pl(.Xl)tp2(.X2)lfi3(.X3)}

-  (1)”  ̂{{(pi{xi)tp2 (x2 )) ((Piixi)} + cyclic}

-  (1)"^(v)i(j:i)> {(f2(X2)} (<P3(X3)) .

Example 5. When deg p  = n is odd,

{ T ( , X x) T ( , X 2 ) T { X 3 ) ) c P X P 2 P 3  =  0 { x ^ f ^ ) .

In the region where x i , x 2 , x j  are finite, the connected Virasoro 3-point fiinction is 

given by

( T ( X i ) T ( X i ) T ( X 3 ) ) c P l P 2 P ? ,  =  0 ( l)U ,^ 2 .: t3  .
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where is the rational function

R ^^\X ., ^2, .3 ) 6 4 \ X i - X 2 /  \ X I - X i f  \ X 2 - X 2 j

6 4 \ x i  -  X 2 l  \ x i  -  X i l

4 f — f ( —6 4 \ x i  -  X 2 l  \j:2 -  X i )

64 \ x \  -  x - i j  \X2 -  X I  j

+ <l>“ ‘ ([r (X 2 )7 ’(X3)]„^ >P2P3) 

+  2 (ar\[T(Xi)TiX2)]reg.)piP2^ \ A) 1 I

+ <ir‘([7(x2)r(X3)]„̂ .)p2P3)
2

+ \  ( ( i r ' ( [ n X l ) T { X 2 ) ] r e g . )  P X P l

+ { \ ) - \ [ T { x x ) n X i ) ] r e g . )  P l P i ) .

Here fo r  i, j  e {1,2,3}, is defined by (5.5). By part 2 in the Proof o f

Theorem 2, ( T(xi)T (xj)\ ) pip j is a polynomial in Xi, x j andyi,y j.

Moreover, the 0 (l)U i^ 2 rt3 term is a polynomial in X\,X2 , x^ a n d >’i,> ’2,>’3- Indeed, 

{T{x\)T{x2 )T{x-i))c is regular at p \ = 0 because

i n X i m X 2 ) T i x s ) ) c  = { l ) - ^ ( T ( X i ) T i X 2 ) T { X i ) )  -  { i r ^ ( T { x i ) )  < r(X 2) r ( X 3)>

-  (l)-‘ m X i)T {X 2 ))c  (T(Xi)) + (T(X3mXi ) )c  (nX2))]  .

6.2 Application to the (2,5) minimal model, forn = 5

We consider the (2,5) minimal model on a genus g = 2 hyperelliptic Riemann surface

I  : /  ^  p(x).

There are exactly 2* = 4 parameters, given by (1> and (T{x)) (or A i, A 2 , A 3 ). As we 

shall argue now, we expect that all other constants in the Virasoro 2-point and 3-point
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function are determ ined.

W.l.o.g. n  =  5 .  In this case the 2-point function in the (2 ,5 ) minimal model 

has been determ ined previously, up to one constant, cf. Example 4. In the 3-point 

function, there is only one polynom ial / ’t^ '(x i,x 2 ,x 3 ), o f  degree « -  3 in each o f 

x i , x 2 , a:3 , free to choose. Set

p t* '(x i,x 2 ,x 3 ) = 8 2 ,2 ,2

+® 2.2,l(^^-^3 + ^ X 2 X ^  +

7 2
+ B 2 , \ , \ { X y X 2 X j ,  +  X 1 JC2 X3  +  X \ X 2 X ^ )

+  S2,2,o(x^x| +

+ ® 2 , l , o ( ^ ^ 2  +  ^ ^ 3  +  X \ ) ^  +  X { X ^  +  J^X 3  +  X 2 J^ )

+ ^ 1 ,1 , 1  X1 X2 X3  

+fi2.0,o(-T? + x | + xf) + fil,l,o(XiX2  + X1 X3  + X2 X3 )

+^1,0,0(^1 + X2  + X3 )

+ f io ,o ,o ,

where oc (1) for i , j , k  e {1,2} and k  < j  <  i  are constant in position. The 

constraint eq. (5.7) provides the knowledge o f

pt*'(X 2 ,X 2 ,X3 ) = 8 2 ,2 .2

+ 8 2 ,2 . \ { x \ x 2, + 2 X2 X3 )

+252,1,1X2X3 +  ( ^ 2,1,1 +  2 S 2,2,o)X2X3 +  B2,2,0X2 

+ 2 5 2 ,1 ,o ( -^  +  X2X^) +  (^1,1,1 +  2 ^2 ,1 ,0 )

+ ' ^ 8 \ , \ , q X 2 X J i + (Si,i,o + 2fi2,0,o)-*7 + ®2,0,0^

+5i,0,0(2x2 + X3 )

+ So,0 ,0 .

(obtained in the lim it as xi - *  X2 ) ,  and thus o f all 10 coefficients. So given (1) and 

(r(x)> , the Virasoro 3-point function is uniquely determined.

Since ([ 7 ’(x i ) r ( x 2 )]reg.) P \ P 2  obtained from  (5.5) is ju st the 0 (l)U,=;c2  

connected 2-point function given by eq. (A.5), the rem aining unknown constant in 

the 2-point function is determ ined using Exam ple 5.
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Thus in Part I o f the thesis we have formulated a set o f necessary conditions on 

any CFT on a hyperelliptic Riemann surface. We shall not investigate the question 

about existence, which requires different methods.
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Appendix A

A.l Proof of Theorem 2 (Section 5.1)

1. We have

{T{Xi)T{,X2))  P\P2

= [{T{,Xx)T{X2))  PIP2]„_2 + [ {T{X x)T{X2))  P \P 2 ]^ „ -3 ,

where according to (4.9),

[ ( r U O r t e ) )  PlP2]n-2  = ^ a o x ^ ~ ^ { T { x 2)) P2

= {\)-^[{T{xx)){T{X2))pxP2]n-2^

so

{T{X\)T(^X2)) P \P2  -  {V )~^{T ( ,X \ ) ){T iX2 ))p \P2

= [(7’(X i)r(X 2))/7lP2]^-3 -  (1)”* [{T( .Xi )){TiX2) )p\P2]<n-3 ■

This shows (5.3).

2. The proof is constructive. We build up a candidate and correct it subsequently 
so as to

• match the singularities prescribed by the OPE,

• behave at infinity according to (5.3),

• be holomorphic in the appropriate coordinates away from the diagonal. E 
is covered by the coordinate patches {p t  0}, {p' ^ 0} and < e}.

General outline: The 2-point function is meromorphic on S whence rational.

45
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So once the singularities are fixed it is clear that we are left with the addition 

o f polynomials as the only degree o f freedom. The key ingredient is the use o f  

the rational function

/ (x i ,x 2 )  , (A .l)
\ x i  -  X2 I

which has a double pole at x \  = x j  as ^ 0, and is regular for

close to ( X2 , —y i ) -

For finite and fixed but generic X2 , and for the function /  defined by eq. (A .l), 

we have

1 /•/ v2 c \.P2  ̂ 1
- f { x u X 2 ) = - ---------- a  ■ ^71^ 7---------- -7 + -  a:2) ) .

32 p i p 2  (xi -  X2 T  16 p ^ i x i  -  X 2 Y

Moreover,

] : - ^ f i x i , X 2 )  = — — ^  + 0((a:i -  j;2 r ')  ■ (A.2)
4 P \ P 2  P l { x \  -  X2 Y

Thus

[ p ' f  [p ;i

P i  P2p\(,X\ -  X2>2 ^P\P2

We conclude that

-  j / ( ^ i ,^ 2 ) f — + — 1 | + 0 ( 1 ) ,  (A.3)
4 I PI P2 ) '

where 0 (1 )  includes all terms regular at = X2 - Now by eq. (A.2),

inxx)) + {nx2)) 1 , ,  Jinx,)) , {nx2))\,
 ; T5 = - 7 f { x u X 2 ) \ ---------- + -------------  + 0 ( 1 ) .  (A.4)

(Xi -  X2)^  4 \  P2 P \  1

From eqs (A .3) and (A.4) we obtain

c /2  <r(j:i)> + (7(^:2))
r(l> '

( x i  -  X2)"^ ( j : i  -  X2)2

—  \^<l}f(xux2)^ + 1^/(xi,X2)(0i + 02)1 + 0(1),
P i P 2 \ 3 2  16

02)j
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by eq. (4.7) Thus in the region where and X2 are finite, we have

{ l } ( n x i m x 2 ) ) c  P i P 2  = R ^ ° \ x i , X 2 )  + (A.5)

where

JC2) := ■^ f { x \ , X 2 f { l )  + X2 ){&\ + ©2 ) ■ (A.6)

Note that the 0(1)1^,=^2 terms are restricted to polynomials in X\,X2 an d y i,y 2 - 

This simplification is due to the use of the connected 2-point function (the 

coefficient of any positive power of f ( x \ , x 2 ) in (T(x\ )T{x2 ) P 1P2 is regular 

at p  = 0, so all singularities in at p  = 0 drop out when (7’(xi)7’(x2)c P 1P2 is 
considered.)

The degree requirement (5.3) yields the upmost specification of eq. (A.5), be
cause some terms appearing in

are absent in eq. (A.5) and so determine some o f the polynomials in the con

nected 2-point function (which in the following we shall refer to as correc

tion terms). To keep formulae short, we shall go over to the rational function 

/?(jci,jc2) introduced in part 3 of Theorem 2, since it has milder divergencies 

for |jc| large than ^2) does. Thus we show now that

where the “polynomial” part is a sum of polynomials in x \ , x 2 and in >'i,y2 - 
Indeed, we have the following identities:

R^^\xi,x:
3Z. ( j : i  — X 2 ) ‘ 

, C P i  + P 2
+ ;

j:2) = Rixi ,X2 ) + polynomials. (A.7)

(Pi -  P i f  ^  P'iP'2

(x i  -  X2)^ ( j : i -  X2)2
+ polynomial.
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Lemma 14 yields

C P\ +P2
oyi3'2<l>-8 (a:i -  xtY'
c c p W ( V ^ )

= y » < '>

i^CnW vr3c
+ 7T3'i>'2(-«i + -^aXl)64 (j:i -  X2)^

C ,,, V- l̂-^2)
+7T>'iy2<l)— ----------^32 (xi -  X2)2

+ ^ y i y i i x i  + X2){1)— -----------
64 (;ci -  X2K

+polynomial. (A.8)

Likewise,

1
zy iy i- ,  ^8 (xi -  X2Y

c /n['i(VFr3^D 1, n W ( V ^ ) \
'  - 3 2 « «  ( l i r T S F  "  2 < '' "

+ polynomial. (A.9)

Let r, 5 be polynomials in the only one variable x. Then we have

riJ i + r2S2 _ ns2 + r2Si
(Xi -  X2)2 (Xi -  X2)^

Thus

1 Pl@l + P2&2 _ 1 Pl®2 + P2®1
8 (xi -  X2)2 8 (xi -  X2)2

(A. 10) generalises to terms including yt as

polynomial. (A. 10)

+ polynomial. (A. 11)

y\r\ + y2r2 _ y\r2 + y^n  ^  pi -  p i  n  -  r2 1
(^1 -  Ĵ 2> (-*̂1 -  ^2) XI -X2 X I -  X2 yi + y2
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Thus

1 P i  + ' ^ y i y i  +  P 2 ,  ^[y] ,

Cvi®^' + J 2® 5̂ ') + polynom ial,

and Lem m a 14 yields

1 P l +  P 2  (  „[j] , „tv]\

i(y,0M.„0M)x
/ p t ‘] ( V x I ^ )  1 pW ( V-^1^2)

^  I (^1 -  Xl)'^ + 2 (xi -  X2)2

+ polynom ial. (A .12)

This proves eq. (A.7). Note that this result implies that in the finite region, 

/?(a:i,a:2 ) has the correct singularities. It rem ains to correct its behaviour for 

large |a-|.

3. We first subtract all terms from  R  which are o f  non-adm issible order in x i. 

These depend polynom ially on X2 because this is true for [ (̂xi -  with

^ e  N, ^ e  Z, (xi large), and may depend on y 2 - The result may still be degree 

violating in X2 - Thus the corrected rational function reads

=R -  m>n-3 -  + [[^]>„-3]^"~' -

Since the subtractions could be done in a different order, the procedure only 

works due to

• (A. 13)

The connected 2-point function is thus determ ined up to addition o f  a polyno

mial P ( x i , X2 , y i , J 2 ) o f  the form  (5.4) w hich is specific to the state. The degree 

and sym m etry requirem ents for P i x \ , X 2 , y i , y 2 )  are inmiediate.

For clarity, we first list the term s contained in - [ / ? ] > „ _ 3  resp. [/?]>^_3 :
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From (A.8),

3c
-

-

from (A.9),

from (A. 11),

and from (A. 12),

(a:i -  X2)'̂  

(/7W)"( yjxix2)
>5-3

(xi -  X2)2

n W (  y jX \ X2)

>S-3

(^1 -  xi)^ >5-3

-  02 P\
(•^1 -  ^ i9 - >«-3

p l'l(  V^Ixi)

> f-3

1

[y]

16

(-^1 -  X2)^

p̂ '‘H^^XlX2) 
(j:1 -  JC2>2

p W ( V ^ )

X I -

(Xl -  X2)2

>5-3

>5-3

Now we give the full explicit expression for

-[R ]>n-3-[R r"~ ^  + m > n -3 r ~ ^

(A .14)and (A.15) yield

— yiy2(« -  ^xl  ̂ = -->'iy2AoXj^ ^xj ’ ,

which cancels against the term we obtain from (A . 16). For odd n, A q =  

l)ao(l)> so (A.17) yields

- i f lo  (x î~^02 + -  l)ao-^“^-^“ -̂

(A. 14) 

(A.15)

(A. 16) 

(A.17)

(A. 18) 

(A.19) 

(A.20)
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(A. 18) yields

(A. 19) yields

(A .20) yields

Since all terms are symmetric w.r.t. interchange o f  x \  and X2 , eq. (A. 13) has been 

verified. This com pletes the p ro o f

A.2 Behaviour of the Virasoro 2-point function under de
generation of the surface in the case g = 1

As m entioned by the author in the viva, the form ula for the Virasoro 2-point function 

is consistent w.r.t. the degeneration o f the Riem ann surface Zg.

Suppose X, X '  are tw o diflFerent ramification points o f  any hyperelliptic Riemamn 

surface Hg. A  linear fractional transform ation on sending X ' —* X  results in 

a hyperelliptic R iem ann surface since in the lim it, X  = X '  will no more be a 

ram ification point. Indeed, while on Ig  a path betw een X  and X '  w ill change the 

sheet, in the lim it, w inding around X ' = X  w ill trace a path on one single sheet.

We checked consistency for Zi : = p(x)  with deg p  = 3. The Virasoro 1- and

1 n S n l r i  1 n I n J r 1

1 / j 3 / l l r ,  1 r t l n 3 r ,

—yiao-j:, j:2 ^2 + 75>’2«o î 2̂ '='1

-^2 2 ^y2^0^i ^2 1 ’

1 n 5 n 3 r ,  1 n 3 n 5 r ,

j ^ y i ^ 2 ^ i  ^ 2  2 2 1 2 1
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2-point functions on Ei are given by

32 Ap

{ T ( x , ) T { x 2 ) )  = 7 (1 ) -  ^
4 (xi -  X 2 f

C P 'lP 'l _  £^J^_ P \ X 2  +  P l X l

32 ( a : i -  X2)^ p ip 2  2 ( j : i  -  X2)^ p ip 2

, 1 * P I + P 2+ “ Al ------------ T-------
8 (xi -  X2VPI P2

C P I + P 2
oyi3'2(i>-

(xi -  X 2 ^ p i p 2
C / , ,  X i+j;2 1 1

-  z(l)>'i>'27---------- 5̂-------- + 7Aiyi>'2
2 (j:i -  X2)'^P\P2 4 (j:i -  X 2 ^ P i P 2

x i x 2  A l (j:i + X2)
+ 2c<l)

PlP2  2 PIP2  P lP 2

+ { 1 ) - \ T { X I ) ) { T { X 2 ) ) ,

respectively, where oc (1) is specific to the state. Denote by (7’(j:i)7’(a:2))xi,;̂ 2.Ĵ 3 
the 2-point function on the torus

I i  : /  = f lo ( ; c - X i ) ( x -X 2 ) ( ; c - X 3 ) ,

(ao € C). A linear fractional transformation on sends X3 —» 00. Since

\IX2 -  X3 1 XI -  X2 1 (xi -  X 2f '  3̂ -»«> .
r \  t r  r t /■ -wr ^  ^ ^  »Vjci -  X 3 2 x i  -  X 3 8 (xi -

we have

Îim̂ (r(xi)r(x2))x,j.,.x3 = J(l>x;,x'

+ ^  _  x [ )  ^  (x'l -  X '))((x ' -  x;> ^ (x' -  X'

' ^ ( 4  -  x;)(x ' -  x p  ^ ( x ; - x ; x x ; - X ' ) '  

^ ( x ; - x ; x x ; - x p  ^ ( 4 - x ; x x ' - x ' )
+  - ( l ) x ' j f  —

8 (x'j

c2 /  1 1 \" /  1 1
+ (l)r,,x4 177^ - ^  + ̂ (32)2 \  (j,' _ x ; ) (x; -  X ') /  \ (x' -  x ; ) (x' -  x ' )
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Here {\)x\,x '2 the 0-point function on the Riemann sphere

i;,: y'2 = flo(^'-x;xy-x'),

in terms of new local coordinates x ',y '. Assuming XJ = 0 for simplicity, the coordi
nate transformation is given by

x \x )  = X2
X 2 - X ^ x - X i
X2 - Xi x - Xi '

(in particular Xj = X2 ). To check our result, we perform another linear fractional 
transformation on P^,

/ / /  / \

sending X2 —> 00. The 2-point function on the resulting surface Lq : y " ^  = c iq x " , 

with 0-point function (l)o and Virasoro 2-point function (r" (x ")7 ’"(xp)o , reads

1

/ I .  1 1
+ (32)2<

The arguments of the proof of Theorem 1 and 2 show that this is the correct formula.

lim lim i n x O n x 2))x,,x2jc, = {T '\x[’)T”ix-))o .
A2 —> 00 A3 —> 00

Thus we have shown that our formulae for the 1- and 2-point function on the torus Zi 
behave correctly under degeneration of Zi to the sphere Zq-



ih .



Part II

Dependence on moduli
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Chapter 7

Introduction

I I  := ( z e CI  \ q \ < z < \ ] l { z - q z ] ,  

where q = and t  e H"''. Li is a torus. A character on Zi is given by

{ Ih ,  = 2  .
f j

{i f j ]j  basis o f  F

Here F  is the fiber of the bundle of holomorphic fields T 'm  a rational CFT on Z i, as 

discussed in Part I of the thesis. By the fact that Part I lists necessary conditions for 

a CFT on a hyperelliptic Riemann surface, ( l ) i ,  is in particular a 0-point function 

(1) in the sense of Part I. On the other hand, ( l ) i ,  is known to be a modular function 

of T ([27], [41]). A modular function on a discrete subgroup F of Fi = 5L (2 ,Z ) is 

a F-invariant meromorphic function /  : H'*' —> C with at most exponential growth 

towards the boundary [38]. For N  > 1, the principal conguence subgroup is the group 

r(N)  such that the short sequence

is exact, where is map given by reduction modulo N. A function that is modular on 

r(N)  is said to be o f  level N. Let be the N-th root of unity with cyclotomic

field Q(^n )- Let Fn be the field of modular functions /  o f level N  which have a 

Fourier expansion

1 ^  Fi -^ S L ( 2 ,Z /N Z )  1

(7.1)

57



58

with Un G Q(^at), Vn. The Ramanujan continued fraction

(7.2)

which converges for t e H'*', is an element (and actually a generator) of F$ [2]. r is 
algebraic over Fi which is generated over Q by the modular j-function.

j  is associated to the elliptic curve with the affine equation

a function of the respective modulus only (the quotient t  = for the lattice
A = ’L.oj\ + 'L.iiii), or rather its orbit under Fi (since we are free to change the 
basis {(o\, 012) for A). In terms of the modulus, a modular form o f weight 2k on f  is a 
holomorphic function g : H'*' —» C with subexponential growth towards the boundary 
[38] such that g{r) is F-invariant [33]. A modular form on Fi allows a Fourier 
expansion of the form (7.1) with no ^ 0.

Another way to approach modular functions is in terms of the differential equa
tions they satisfy. The derivative of a modular function is a modular form of weight 
two, and higher derivatives give rise to quasi-modular forms, which we shall also deal 
with though they are not themselves of primary interest to us.

Geometrically, the conformal structure on the surface

is determined by the quadrupel (Xj, X2, X3, 00) of its ramification points, and we can 
change this structure by varying the position of X \ ,X 2 ,X'i infinitesimally. In this 
picture, the boundary of the moduli space is approached by letting two ramification 
points in the quadrupel run together [13].

When changing positions we may keep track of the branch points to obtain a 
simply connected space [6 ]. Thus a third way to describe modularity of the characters 
is by means of a subgroup of the braid group B3 of 3 strands. The latter is the universal

' As mentioned earlier, a modular form of weight 2k transforms as f(AA ) = for any /I € C".

I ,  : -  g2 X -  gT,, with g\ -  21 g\ t  0 .

Here gk for k = 2,3 are (specific) modular forms of weight 2k}  so that j  is indeed

I i  : = A { x - X x ) { x - X 2 ) { x - X i ) ,  x e ,
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central extension of the quotient group Fi = r i /{ ± l2}, so that we come full circle.

Suppose S] = C /A  where A = (Z.l + Z.//?) with yS G R. Thus the fundamental 

domain is a rectangle in the a:') plane with length Aj:̂  = 1 and width Ax  ̂ = /?. 
The dependence of (I)!;  on the modulus follows from the identity

(D s , = tr« -" ^ , H =  ^  T^dx^,

where is a real component of the Virasoro field.^ As mentioned above, we may 

regard (l)i;, as the 0-point function (1) w.r.t. a state ( ) on S i. Note that the same 

argument applies to //-point functions for N > 0.

Stretching yS i-> (1 + e)p changes the Euclidean metric G^y (/i, v = 0,1) according
to

(ds)  ̂ i - »  {ds)  ̂+ 2e(dx^)  ̂+ 0 {^) .

Thus dGi \  = 2 ^ ,  and

d{ l )  = = -  ^  ( / p

= -  J J ( T^) dx ‘̂ dx  ̂ . (7.3)

The fact that f  (T^^)dx^ does not depend on x* follows from the conservation law 

=  0 :

=  ^ d i ( T ^ ) d x °  = -  ^do(T^°)  dx° = 0 ,

using Stokes’ Theorem.

We argue that on 5 * x  Spf(2}r) (' '̂^ere is the circle of perimeter yS), states
(in the sense of Part I of this thesis) are thermal states on the VOA.

When g > 1, equation (7.3) generalises to

d{ l )  = - j J J dGf,y <7^’') V g dx^ A dx^ . (7.4)

^Any dynamical quantum field theory has an energy-momentum tensor Tf,y s.t. Tf,ydxf‘dx'' defines a 
quadratic diff'erential, by which we mean in particular that it transforms homogeneously under coordi
nate changes. For coordinates z = + ix^ and z = xP -  ix^, we have [1]

Ta  = (̂̂ 00 -  2iTio -  Til) .

For the relation with the Virasoro field T(z) discussed in Part I, cf. Section 9.1 below.
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Here G := | det G^v|, and dvoh  = ' ^ d x ^  A dx^ is the volume form which is invariant 
under base change.^ The normalisation is in agreement with eq. (7.3) (see also [3], 
eq. (5.140) on p. 139).

Methods that make use of the flat metric do not carry over to surfaces of higher 
genus. We may choose a specific metric of prescribed constant curvature to obtain 
mathematically correct but cumbersome formulae. Alternatively, we consider quo
tients of N-point functions over (1) only (as done in [7]) so that the dependence on 
the specific metric drops out. Yet we suggest to use a singular metric that is adapted 
to the specific problem.

^The change to complex coordinates is a more intricate, however: We have d)iP A dx^ = iG^ dz A dz 
with Gjj = 5, as can be seen by setting z = + ix '.



Chapter 8

Differential equations for 
characters in (2, v)-minimal 
models

8.1 Review of the diflFerential equation for the characters of 
the (2,5) minimal model

The character ( 1) of any CFT on the torus Zi solves the ODE [7]

^ { l )  = ^ . i { T { z ) ) d z = ^ . { T ) .  (8. 1)
dr  2m J  2m

Here the contour integral is along the real period, and § d z =  1 - (T), while constant 

in position, is a modular form of weight two in the modulus. The Virasoro field 

generates the variation of the conformal structure [7], In the (2,5) minimal model, 

we find by eqs (3.3) and (3.4) in Part I,

d r* 22
2 m — (T) = d)(T(H>)T(z)} dz = -4(T)G 2 + . (8.2)

Here G2 is the quasimodular Eisenstein series of weight 2, which enters the equation 

by means of the identity

f  p(z -  w |t ) dz = -2G2(t ).
J o
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In terms of the Serre derivative

 ̂ d e
• — ----------------- E7 92m dT 6 ^

(8.3)

the first order ODEs (8.1) and (8.2) combine to give the second order ODE ([26], and 
recently [21])

1)2 o D o (l) =
11

3 ^ £ 4 < 1 ) .

The two solutions are the well-known Rogers-Ramanujan partition functions [3] 

( l ) l  = ^  = g ^ ( l + g ^  + q ^ + q U q ^  + 2q^ + ...) ,

n>0

( 1>2 = q - ^ J ^ f -  = q - ^ ( l + q  + q̂  + q^+ 2q  ̂ + 2q̂  + 3 ®̂ + . . . )  .
n>0 {q)n

{q = e ^ '  ’’) which are named after the famous Rogers-Ramanujan identities

n=±2 mod 5 n=±l mod 5

Mnemotechnically, the distribution of indices seems somewhat unfortunate. In gen
eral, however, the characters of the (2, v) minimal model, of which there are

M =
-  1

(8.4)

(v odd) many, are ordered by their conformal weight, which is the lowest for the 
respective vacuum character ( l) i ,  having weight zero.

The Rogers-Ramanujan identity for ( l) i provides the generating function for 
the partition which to a given holomorphic dimension h > 0 returns the number of 
linearly independent holomorphic fields present in the (2,5) minimal model. Recall 
that this number is subject to the constraint d^T oc Nq(T, T), eq. (3.1) in Part I.

h 0 1 2 3 4 5 6
basis of F{h) 1 T dT d^T d^T

No(T,d^T)
dim F{h) 1 0 1 1 1 1 2

Holomorphic fie ds of dimension h in the (2,5) minimal model

There is a similar combinatorical interpretation for the second Rogers-Ramanujan



63

identity. It involves non-holomorphic fields, however, which we disregard in this 
thesis.

8.2 Review the algebraic equation for the characters of the 
(2,5) minimal model

Besides the analytic approach, there is an algebraic approach to the characters. This 
is due to the fact that ( l) i ,  (1 )2 , rather than being modular on the full modular group, 
are modular on a subgroup of F i; For the generators S , T  of Fi we have [2]

H D l = 4'6o“ (1)i , 7’<1)2=^60“ ‘<1>2,

while under the operation of S, ( l) i , (1)2 transform into linear combinations of one 
another [2],

2jr/ ( l ) i \  J _ [  s in f  - s i n f j / ( l ) i \
1(1)2/ V s [ s i n ^  s in f  ^1(1)2/5 5

However, ( l ) i , ( l )2  are modular under a subgroup of Fi of finite index. Its fun
damental domain is therefore a finite union of copies of the fundamental domain 

of Fi in C. More specifically, if the subgroup is F with index [Fi : F], and if 
7 1 , - y[T| :D €  Fi are the coset representatives so that Fi = Fyi U . . .  U Fy[r, ;r]. then 
we have

T r = 7 i T  u ... u y[T, .r]T . (8.5)

[15]. Thus (l) i  and (1)2 define meromorphic functions on a finite covering of the 
moduli space M \  = Fi \  H"'' and are algebraic. We can write [2]

05 2 ^5 1
( l) l = ^  , (1)2 = ,

where the functions on the r.h.s. are specific theta functions (e.g. [3])

6(T) = Y,fin), m - c T \  q = e^ '\
neZ

The characters’ common denominator is the Dedekind rj function. Using the Poisson 
transformation formula, one finds that 77,^ 5 .1, 0 5 ,2  are all modular forms of weight 5
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([38], Propos. 9, p. 25). For the quotient ( l ) i / ( l )2 and t  e H"'', we find [2],

where r(r)  is the Ramanujan continued fraction introduced in eq. (7.2). (Here (n/5) = 

1, - 1 ,0  for n = ±1, ±2 ,0  (mod 5), respectively, is the Legendre symbol.)

r(r) is modular on F(5) with index [Fi ; F(5)] = 120 [16]. The quotient F(5) \  H"'' 

can be compactified and made into a Riemann surface, which is referred to as the 

modular curve

Here H* := H''" U Q U joo} is the extended complex upper half plane. L(5) has genus 

zero and the symmetry of an icosahedron. The rotation group of the sphere leaving 

an inscribed icosahedron invariant is As, the alternating group of order 60. By means 

of a stereographic projection, the notion of edge center, face center and vertex are 

induced on the extended complex plane [5]. They are acted upon by the icosahedral 

group Geo c: PS 1X2, C). The face centers and finite vertices define the simple roots 

of two monic polynomials F(z) and V(z) of degree 20 and 11, respectively, which 

transform in such a way under Geo that

is invariant. It turns out that J(r(T))  for t  e H'*' is F(l)-invariant, and in fact that 

= j i j ) .  Thus r ( j )  satisfies

f \ z) -  j (T)VHz)  = 0

(for the same value of t ), which is equivalent to r^(r) solving the icosahedral equation

(X^ -  228X^ + 494X^ + 228X + 1)  ̂ + j{T)X{X^ + 1IX -  1)  ̂ = 0 .

This is actually the minimal polynomial of over Q(y), so that Q(r) defines a func

tion field extension of degree 60 over Q(y).

This construction which goes back to F. Klein, doesn’t make use of a metric. In 

order to determine the centroid of a face (or of the image of its projection onto the 

sphere) only the conformal structure on is required. Indeed, the centroid of a 

regular polygone is its center of rotations, thus a fixed point under an operation of

1(5) = F(5) \ H* .
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Aut(S^) = SL (2,C ).

8.3 Higher order modular ODEs

Sorting out the algebraic equations to describe the characters o f  the (2, v) minimal 

model becomes tedious for v > 5. In contrast, the Serre derivative is a managable 

tool for encoding them in a compact way [26]. Since the characters are algebraic, the 

corresponding differential equations can not be solved numerically only, but actually 

analytically. We are interested in the fact that the coefficient o f  the respective highest 

order derivative can be normalised to one and all other coefficients are holomorphic 

in the modulus.

To the (2, v) minimal model, where v > 3 is odd, we associate [3]

•  the number M = ^  introduced in eq. (8.4), which counts the characters,

•  the sequence

Xs =  ( 8 .6 )
8v 24

which parametrises the characters o f the (2, v) minimal model,

•  the rank r =

The character corresponding to Ks is

n'An+B'n

< l ) j  =  fA ,B .s  ■■= y  ,

where

A = C(Tr)~^ e  B € Q'',

C  being a Cartan matrix. The tadpole diagram o f Tr is obtained from the diagram o f  

A2r by folding according to its Z2 symmetry.

It turns out that (1)^ satisfies an Mth order ODE [26]. Given M  differentiable 

functions / i , . . . ,  /m  there always exists an ODE having these as solutions. Consider
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the Wronskian determinant

( f  . . .  D ^ /1

1=0

,/m

Here for m > 1,

X)" := X)2(m-l)  O • • • o 1)2 o X>0

is the order m differential operator which maps a modular function into a modular 
form of weight 2m. (X)* is the first order Serre differential operator introduced in eq. 
(8.3).) For m = 0 we set = 1.

Whenever /  equals one of the /  , \  <  i <  M ,  the determinant is zero, so we obtain 
an ODE in /  whose coefficients are Wronskian minors containing / i , . . . ,  /m and their 
derivatives only. These are modular when the / i , . . .  , / a /  and their derivatives are or 
when under modular transformation, they transform into linear combinations of one 
another (as the characters do).

Lemma 17. Let 3 < v < 13, v odd. The characters o f the (2, v) minimal model satisfy

(8.7)

where is the differential operator

M - 2

(8 .8)
m - O

Qi2 := aoE \2 + .

Here A = is the modular discriminant function, Eik is the holomorphic Eisenstein
series o f weight 2k, and the nonzero numbers am and are given by the table
below:
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(2,v) (2,3) (2,5) (2,7) (2,9) (2,11) (2,13)
M 1 2 3 4 5 6

xm 0 1
60

1
42

1
36

1
33

5
156

ai4 1 1 1 1 1 1

o m - 2
11 5-7

42^
2-3-13 

36^
11-53

2^337
7-13-67

156^

0!M -3
517
4 ? "

23-53
~ W

3-511-59
23.333

23-13-17-193
1563

« A f-4
3-11-23

36^
11-6151
24,334

5-11-13-89-127
156‘<

0!M -5
2‘‘-17-29

335
23-3-5 13-31-2437 

1565

O'AY-6
5'*-7^-23-31-67

156^

(cusp)
“ m -6

5^-7-11-23^-167
2J.3i.134.691

The nonzero coefficients in the order M  differential operator in the (2, v) minimal 
model. Km is displayed to explain the standard denominators of the (and mark

deviations from them).

Remark 18. The prime 691 displayed in the denominator o f  suggests that

Bernoulli numbers are involved in the computations. This is an artefact o f  the choice 

o f  basis, however. Using the identity [38J

£ i2 = g ^ (441£ | + 250 £ |),

we can write

^  , icusp) * 5 2  . 7 ■ 23 /53  • 1069 ^ 3  , 6047 ^ 2^

Only the specific values of the coefficients in eq. (8.7) seem to be new. Rather 

than setting up a closed formula for a ^ ,  we shall outline the algorithm to determine 

these numbers, and leave the actual computation as an easy numerical exercise.

Proof. (Sketch) We first show that the highest order coefficient of the ODE can
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be normalised to one. For every Ks in the list (8.6) and for 0 < m < M -  1, we have

+ Oiq)). (8.9)

Since the Ks are all different, we know that

WM ~ n , q close to zero ,
S

where wm is the coefficient of in the Wronskian. By construction, wm has no 
pole at finite t .  The number of zeros can be calculated using Cauchy’s Theorem [38]: 
Since has weight 2m, we find

A f - l

weight Wm = 2 ^  (  = M{M -  1).
^=0

The order of vanishing ordp(vvA/) of wm at a point P  e F \ H'*' depends only on 
the orbit FP [38]. Denote by ordoo(H'Af) the order of vanishing of wm at oo (i.e. the 
smallest integer n > 0 such that ^  0 in the Fourier expansion for wm)- By eq. 
(8.5) for the fundamental domain of the finite index subgroup F of Fi, all orders of 
vanishing for F differ from those for Fi by the same factor. Thus ([38], Propos. 2 on 
p. 9) generalises to subgroups F c  Fi and to

Z 1 M ( M - l )  „ „
— ord/>(wAf) = --------  , (8.10)

where np is the order of the stabiliser. Since

^  ^  M ( M - l )
Orda,(WM) = 2 ^ K s = -----------  ’

i = l

we have ord/>(wAf) = 0 for P  e F \ H^. Thus we can divide by wm to yield

2 a M l ) ;  = 0

for i = 1 , . . . ,  M and the modular forms ai = ^ .J  '  ■> ‘ WM

By (8.9), is a power series of order > k, in q. The coefficient of is a
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monic degree M  polynomial in Ks, and we have

M
=q' ' Y] i K-Xs ) ,  (8 .11)

y= l

since by assumption (1)*  ̂ e  kerD^^-’'* for i  (Here [D̂ '̂''̂ ]o denotes the

cut-off o f the differential operator at power zero in q.)  For 2 <  ̂ < 5, the 

space o f modular forms o f weight 2k  is spanned by the Eisenstein series E 2k, while 

for  ̂ = 6, the space is two dimensional and spanned by £ 1 2  and A. However, only 

the Eisenstein series have a constant term, so that actually all coefficients a „  are 

determined by eq. (8.11). Note that vanishing o f  qtm-i (the coefficient o f  in 
/)(2 ,v)) implies the equality

M  A/ , .

i=i ( = i

Indeed, the l.h.s. o f  eq. (8.12) equals the coefficient o f in the polynomial

in eq. (8.11), while the r.h.s. equals the coefficient o f  * in

where for 0 < i < M -  1,

M-i- l  .

^=0

Equality (8.12) thus states that (with leading term /c^“ *) does not con

tribute, and so is equivalent to = 0 .

Q,(cusp) determined by considering the next highest order for some

character. (Since modular transformations permute the characters only and have no 

effect on it is sufficient to do the computation for the vacuum character <l)i =
^■(l+0(^2)))_ □

The external examiner has pointed out that the leading coefficient can also be read 

directly from the equation for the singular vector (Lemma 4.3 in [36]).
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8.4 Generalisation to other minimal models

For ip, v) e 7?, the (//, v)-minimal model has

( v - l ) ( ^ - l )
M = -------5-------

different characters. The set of all characters is parametrised by [3]

Due to periodicity of the conformal weights Kr,s + ^  (which we shall not go into 

here) this listing makes us count every character twice. The characters are modular 

functions on some finite index subgroup F of Ti satisfying an order M  differential 

equation, and it remains to verify that the latter has highest order coefficient 

We have

where the factor of 1 /2  in fi'ont of the sum has been inserted to prevent the double 
counting mentioned above. As before, we conclude that has no zeros in H"*' and 

with the

Corollary 19. The characters o f  the (jx, v) minimal model satisfy an order M differ

ential equation

M { M -  1) 
12

=  0 ,

where is a differential operator o f  the form

M - 2

m=0 £22(M-/n)

where summation is over modular forms Q2(M-m) o f  weight 2(M  -  m).



Chapter 9

A new variation formula

The present chapter relies on joint work with W. Nahm; Sect. 9.2 is based on his 

ideas.

9.1 The variation formula in the literature

Formula (7.4) describes the effect on (1) of a change dGf^v in the metric. It gener

alises to the variation of N-point functions ((^i(j:i). . -tpNixN)} as follows: Suppose 
the metric is changed on an open subset /? c  S of the surface 5 . Then

^  JJ'(dG^y)(T^' ' (f i i(xi). . .(fi jv(xjv))dvol2,  (9.1)

where dvolz = V g  dx° A dx^ ([37], eq. (12.2.2) on p. 360; see also eq. (11) in [7 ])\ 
provided that

Xi i  R , for / = 1 , . . . ,  N  . (9.2)

Note that in order for the formula to be well-defined, T^vdx^dx^ must be quadratic 

differential on 5 , i.e. one which transforms homogeneously under coordinate changes. 

The antiholomorphic contribution in eq. (9.1) is omitted. It is of course of the same 

form as the holomorphic one, up to complex conjugation.

Due to invariance of N-point functions under diffeomorphisms, satisfies the

'Note that both references introduce the Virasoro field with the opposite sign. Our sign convention 
follows e.g. [3], cf. eq. (5.148) on p. 140.
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conservation law

= d J \  + G^d{T^, (9.3)

where V is the covariant derivative of the Levi-Civit^ connection on S w.r.t. the metric 
Gfiv Here we have used that transforms like a scalar [12], whence 
Moreover, V^G^’' = 0, and ^zTzz = [12], which is true since takes values in
a holomorphic line bundle.

A Weyl transformation G^v '^G ^v  changes the metric only within the re
spective conformal class. (In any chart (f/, j:) on 5 , such transformation is given by 
Gfiy(x) i-> h(x)Gfiv(x) with h{x) ^ 0 on all of U.) The effect of a Weyl transformation 
on N-point functions is described by the trace of T (eq. (3) on p. 310 in [7]), which 
equals

([3], eq. (5.144) on page 140, which is actually true for the underlying fields). Here 
1 is the identity field, and K is the scalar curvature of the Levi-Civit^ connection for 
V on 5. The non-vanishing of the trace (9.4) is referred to as the (race or conformal 
anomaly.

Since is a multiple of the unit field, the restriction (9.2) is unnecessary. Thus 
under a Weyl transformation G^y i-» 'WG^y, all N-point functions change by the 
same factor Z (equal to (1», given by

While transforms as a two-form, it is not holomorphic. We will now redefine 
the Virasoro field to obtain a holomorphic field, but which as a result of the conformal 
anomaly, does not transform homogeneously in general.

Lemma 20. [7J Suppose S has scalar curvature K = const. Let

(9.4)

n d 'W d v o h

(9.5)

(with the analogous equation fo r  T(z)), where
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Here log is the Christoffel symbol. W? have

d-Jiz) = 0 .

Proof. Direct computation shows that

ẑ̂ zz ~ ~2^zz  •

From the conservation law eq. (9.3) follows 

d-J^= - G ^ d J \

□

Thus for constant sectional curvature, T(z) is a holomorphic quadratic diflFeren-
tial.

Remark 21. defines a projective connection: Under a holomorphic coordinate 
change, z w such that w € D ( S ),

tyvw ( d w f  = t ^  {dz f  -  5 ( h -)(z ).1 {dz f  ,

where S (w) is the Schwarzian derivative, t^  is known as the Miura transform o f the 
affine connection given by the differentials T^zzdz-

T{z) is the holomorphic field introduced in Part I.^

9.2 A new variation formula

Let S be a Riemann surface. We introduce

7 : one-dimensional smooth submanifold of S , topologically isomorphic to 5

R : a tubular neighbourhood of y in 5 ,

A : a vector field which conserves the metric on S and is holomorphic on R .

^Our notations differ from those used in [7]. Thus the standard field T(z) in [7] equals in our 
exposition, and the field T(z) in [7] equals --^T(z)  here.
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We think of A = ct(z)-§  ̂ e TR as an infinitesimal coordinate transformation

where |e| «: 1. We suppose or = 1.

Theorem 4. Suppose S has scalar curvature K = 0. Let <p be a holomorphic field on 
S. The effect o f the transformation (9.6) with a  = I on ((p(w)) is

In particular, as w is not enclosed by y, {(fiw)) doesn’t change.

Proof. By property (9.7), the position of tp is not contained in a small tubular neigh
bourhood R of y. Let

be the decomposition in connected parts left and right of y  (we assume y  has positive 
orientation). Let W c  5 be an open set s.t.

W r \ y  = (b, W\ J R  = S .

We let F  : /? —» [0,1 ] be a smooth function s.t.

F  = 1 on 7?ieft n W ,

F = 0 on /?right n  W .

Let e be so small that z e = 5 \  W implies exp(eF)(z) e R. Define a new metric 
manifold (S^,G^) by

z

= z + ea(z) , (9.6)

provided that

w does not lie on the curve y  . (9.7)

R \ y  — ^left LI bright

5^liv := 5|iv

G^(z) \dz?- := G^(exp(eF)(z)) \d exp(£F)(z)p , z e .
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We have

dG^yT^'^ = d G ^ T ^  + antiholomorphic contributions + Weyl terms ,

where we disregard the antiholomorphic contributions and the Weyl terms are 
absent since by assumption “R = 0. Alternatively, we can describe the change in the 
metric by the map

since (G^)* = (G^) * for ^ e Z. Here

(T^,p)dz = iA((Tzz^)(dz)^)

is the holomorphic 1-form given by the contraction of the holomorpic vector field 
A = ^  with the quadratic differential {T^ tp) (dz)^, which is holomorphic on R. By 
Stokes’ Theorem,

\dz?' \dz + fidz\^ = dzdz + fidzdz + . . .  ,

where
= ediF + 0{€^)

is the Beltrami differential. Thus

dG^ = 2G^dfi{z,z).

Eq. (9.1) yields
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Here Wr = Nr C\ dW  and Wl = NiC\ dW  are the left and right boundary, respectively, 

of W in R. We conclude that

^ ^ le = o  = - i  (£  (7’zz ¥>) dz = - i  (m T’zz (fi) dz , 
ae  JvVi Jy

by holomorphicity on /?ieft U 7 . □

Remark 22. The construction is independent o f  F. When F  approaches the discon

tinuous Junction defined by

IF  = 1 on R ie f , ,

=  0 o n  R  right

we obtain a description of(S^,G ^^) by cutting along y  and pasting back after a trans

formation by exp(e) on the left.

There is a way to check the result of Theorem 4: Let ^  be a holomorphic field 

whose position lies in a sufficiently small open set f/ c  5 with boundary dU  = y. 

We can use a translationally invariant metric in U and coiresponding coordinates z, z- 

Then

= ^ T ( z )

in eq. (9.5). For A = we have

{A(f{w). . . } = (£(T(z)(p(w) . . . ) d z ,  (9.8)
27T/ JTy

This can be seen in two ways.

1. Eq. (9.8) follows from the residue theorem for the OPE of T{z)®^p{w). Indeed, 

the Laurent coefficient of the first order pole at z = w is N-\{T,(p)(yv) = dw^, 

which is holomorphic.

2. Alternatively, by Theorem 4,

de
{ip{w + £ ) . . . )  = ^  (£(T(zM w) . . . } d z .

ZTTl J y

The two approaches are compatible!
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9.3 Discussion of the metric

Let I,g be the genus g  hyperelliptic Riemann surface

^g-  / = P ( x ) ,  d e g p  = n = 2g + I .

Recall that x  which varies over the Riemann sphere, defines a complex coordinate 

on Zg, outside the ramification points where we must change to the y  coordinate. 

does not allow for a constant curvature metric but we shall define a metric on P^ 

which is flat almost everywhere.

Suppose we consider a genus one surface with n = 3. By means o f the iso

morphism P^ “  C U {oo}, we may identify the branch points o f S i with points 

X i , X 2, X i  e  C and X4 = {00}, respectively.

Let 0 »  1, but finite, such that in the flat metric o f  C,

The metric on Zi is obtained by lifting.

Lem m a 23. In the disc  |z| < 6, the metric is flat, while in the area |z| > 9, it is o f  

Fubini-Study type o f  Gauss curvature TC = 4e.

Proof. Forp = with

|X i |< 6i, / =  1 , 2 , 3 .

We define IX4I := 00. For e > 0, define a metric

(ds(,e)f  = 2 G ^ { e ) d z ® d z (9.9)

on by

Gz'z'(e) := — (1 + z z )   ̂ for |z'| > ^ 6 ,

we have [12 ]

<R = p  logp ) = e (l + z'z'f{?>d^di' log(I + z ' z ' f )  = 8 e ,

and n  = 2*7C. □



78

Definition 2. Let 1, be a genus g = I Riemann surface with conformal structure 

defined by the position o f  the ramification points with finite relative distance

on P^. Let G^{€) be the metric defined by eq. (9.9). We define (l)(Xi|3 fo be the 

zero-point function on (Z, G^(6)).

By eq. (9.4) and the fact that on any surface, H = 2'TC,

Tzz = ,2An

where 1 is the identity field. So according to eq. (7.4) we have for the 2-sphere Sg of 

radius 6,

i/log<l),;f_,3^ , g ^  JJ^Jd logG ^2(e))'K dvo l2  .

Since G(e) = (Gzj(e))^, for |z| > 0, the two-dimensional volume form is 

dvol2 = G^{€) d z / \ d z =  — -
2 (1 + er'̂ Y 

Now

< i lo g ( l ) |; f  g =  <i/|z)<0 +  <^/|z|>0 , 

where for^g ;= e ^ ,  the integrals yield

dl\z\<e = -  t T  d(.e)

dl\z\>e =

12 ' ( 1 + ^ 2)3 ’

JleP>e2 ( 1 2 4

So for |£»o| «  1,

^ s(i+0(eo))z exp (9.10)

where Z  € C is an integration constant.

Variation of e rescales the metric within the conformal class defined by the branch 

points. In the limit as e \  0,

G^i := lim G^(e) = ^  for k| < oo , (9.11)
e \ 0  Z
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(and is undefined for |z| = oo). Thus becomes an everywhere flat surface except 

for the point at infinity, which is a singularity for the metric.

Definition 3. Let l-x be a genus g = I Riemann surface with conformal structure 

defined by the position o f  the ramification points with finite relative distance

on P^. Let be the metric on Z defined by eq. (9.11). We define the zero-point 

function on (Li,Gjz) by

( l ) , y . i 3  := lim a.
p o \ 0

Thus (l)(;fj)3  ̂ = Z. We shall also write ( l ) s i n g .  to emphasise distinction from the 

0-point function on the flat torus ( Z i ,  which we denote by ( l ) f la t -

Remark 24. The reason fo r  introducing e and performing lim x̂ ô the fa c t that the 

logarithm o f the Weyl factor 'W  is not defined fo r  surfaces with a singular metric and 

infinite volume. We have

= d X o g ' W ,
W flat

SO  'W  is determined only up to a multiplicative constant, which is infinite fo r  e = 0.

Our method is available for any surface l,g : y^ = p(x)  with deg p  = n >3.  When 

n is odd, the point at infinity is a non-distinguished element in the set of ramification 

points on I.g. We shall distribute the curvature of Eg evenly over these. Using the 

Gauss-Bonnet theorem, the total curvature is recovered as

I dvoh  = Inx i Xg)  = 4;r(l -  ^) = 8;r -  2n{2g + 2 ).

We interpret 8;r as the contribution to the curvature from the g = 0 double covering 

and - I n  from any branch point.

The method is now available for arbitrary genus ^ > 1 hyperelliptic Riemann 

surfaces and will in the following be checked against the case g = I.

9.4 The main theorem

We now get to an algebraic description of the effect on an N-point function as the 

position of the ramification points of the surface is changed.

Theorem 5. Let Hg be the hyperelliptic Riemann surface

■ y ^ = P ( x ) ,  n = degp  = 2 g + l .



80

with roots Xj. We equip the underlying l,g with the singular metric which is equal 

to
\dz'̂  onP^\{Xi

{ )sing be a state on with the singular metric. We define a deformation o f the 

conformal structure by

^j = dXj fo r j = l , . . . , n .

Let {Uj ,  z) be a chart on Hg containing Xj but no field position. We have

d{ip. .  .)«•„«  =  E  ^  ■ ■ ■ W  - ( 9 - 1 2 )

where j j  is a closed path around Xj in Uj.

Proof. On the chart {U,z), we have ^  T(z) = in eq. (9.5), outside the points 

which project onto one of the Xy for j  = on P^. Moreover, y  does not pick
up any curvature for whatever path y  we choose. Since

formula (9.12) follows fi-om Theorem 4. □



Chapter 10

Application to the case g = I

10.1 Algebraic approach

Let El be the genus 1 Riemann surface

Zi : /  = p ( x ) , degp  = n = 3,

with ramification points X1.X 2 .X3 . Throughout this section, we shall assume that

3

=  ( 10 . 1)
1=1

We introduce some notation: Let m (X i,^ i,. . . ,  X„,^„) be a monomial. We denote by

the sum over all distinct monomials m(Xo^i),^(r(i),. . . , Xain),^<r(n))< where cr is a per

mutation of ( 1 , . . E.g.  eq. (10.1) reads Xi = 0, and

3

M  = ^ X , X j  , = X1X2 + X1X3 + X2X3 ,
1

><j

(for n = 3). For any state ( )  on Zi, the Virasoro 1-point function on Z is given by 
Theorem 1 o f Part I,

c \p '\^  0 (x )
<7’( x ) ) = - ^ < 1 )  + ^ ,  (10.2)

32 Ap

81
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where 0 (x )  = 0t*'(;c) in the notations o f  Part I (the polynomial 0^^ is absent),

0 (j:) = -cflo^(l) + Ai , (10.3)

where oq is the leading coefficient o f p,  and A i oc (1) is constant in x. The connected 

Virasoro 2-point function for the state ( )  on Zi is given by Theorem 2 in Part I. Here 

we note that

P(xi ,X2,y\ , y2)  = pf*'(A:i,j»:2) (10.4)

is constant in position, but depends on (1) and A j. For the 1-forms = dXj  ( j  = 

1, 2 ,3 )  we introduce the matrices

'a:i 2̂ X3' X2 X3'

II0in

1 1 1 > = 1 1 1

.^1 2̂ 3̂ . 2̂:>̂2 3̂X3.

and the 3 X 3 Vandermonde matrix

'1

V3 : = 1 X 2

.1 X 3
v 2
^ 3 /

For later use, we note that

d e t v 3 =  n
l<i<;<3

= ( X i - X 2 ) ( X 2 - X 3 ) ( X 3 - X i ) ,  

det E3 0  ^1

detV3 ( X i - X 2 ) ( X 3 - X i )
det H3.1  ______ ^1^1_______

detV3 “ ( X i - X 2 ) ( X 3 - X i )

We let

:= (det V3)2 .

It shall be convenient to work with the 1 -form

. det “3,1

+ cyc l i c , 

+ cyclic .

uj ;= -3 -
detV3

(10.5)

( 10.6)

(10.7)



A simple calculation using eq. (10.1) shows that

ddet V3 = -  3XiidXi)(X2 -  X3 ) + cyclic = -3  det E^i ,

so that

w = ^^/logA"’' (10.8)

= ^ cyclic. (10.9)
A i  -  X2

Lemma 25. Let Zi : = p{x), where

P = 4(x - X i )(x - X 2 X x - X ^ ) ,

where we assume (10.1) to hold. Define a deformation o f Hi by

^j = dXj ,  ;■= 1,2,3.

In terms o f the modulus t  and the scaling parameter A (the inverse length) o f the real 
period, we have

(jj = m E2 dr — 6 —  . 
A

Proof By assumption (10.1), we can write

p{x) = 4(jc  ̂ + ax + b ) ,

where on the one hand,

a = X ^ ,  b = -XiX2X3.
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so

= ( 10. 12)

We expand the fraction defining id in eq. (10.7) by detV3 and show that for a,b  

introduced above, we have

= da + 9 b d b . (10.13)

We now establish eq. (10.13) under the additional assumption that ^ oc X. In this 

case both sides of eq. (10.13) are proportional to with the same proportionality 

factor: On the l.h.s..

1
Z

det H31 det V3 oc -  det 1 ^ 2 =

.1 Xi X f J
On the r.h.s..

da = ^ 1X2 a  2 X1X2 = 2a ,

d b =  -  ^ 1X2X3 oc - 3 X1X2X3 = 3 /7 .

From this and eq. (10.10) follows eq. (10.13). Using (10.11), (10.12), and

Ef. E l
354^4 = - y  , = - y  (10.14)

([38], Proposition 15, p. 49), where '^2C is the Serre derivative (8.3), we find

OT OT 3

For the A derivative, we use the description of cj by eq. (10.8). From eq. (10.12) 

follows

The last two equations prove the lemma under the assumption ^  oc X. For the general

case we refer to Appendix B. 1. □

Under variation of the ramification points, the modulus changes according to
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Lemma 26. Under the conditions o f  Lemma 25, we have

-) det E 3 0
d T =  - i n X ^   ̂ ■ (10.15)

det V3

Proof. We first show that for

p(x) = 4(x^ + ax + b ) ,

we have

det(H3_o V3 ) = 9b da -  6a db . (10.16)

Indeed, if we set

Vi=l
_ 1

then the condition ( 1 0 .1 ) continues to hold, and both sides of eq. (10.16) are propor
tional to with the same proportionality factor: On the l.h.s..

Ti Xf £1

since

'^1 ^2 3̂ Xj X̂ ^A3 '^0 ^0 ^0'
det X2 X3 oc det X2 X3 -  det X, X2 X3

. 1 1 1 , . 1 1 1 > .1 1 1>

where for the present choice of the latter determinant is zero. On the r.h.s., by the 

fact that = 0 ,

1 t::;- 2afo = 3Xf = - - X , X . . - - ,
= -  3X2^2 -  6 b ,

X^X2 = XiX2(Xi + X 2) = - 3 b  ,
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so

d a =  -  oc = - X l  = - 3 b ,

d b =  -  cc -XjX2X3 + = b T i+  ^oa = ^oa = a,2

From this and eq. (10.10) follows eq. (10.16). Now by eqs (10.11), (10.12), and 
(10.14),

9 b — a - 6 a  — b = 2ni (9 b 1 ) 4 0  - 6 a  Dgfc) = —r .
OT 0T nA^

The partial derivatives are actually ordinary derivatives since from eqs (10.11) fol
lows

9 b - a - 6 a — b = 0.  
dA dA

Factoring out d r  in eq. (10.16) and dividing both sides by A ^^^ i- in A ^)  yields the 
claimed formula. The general case (with the assumption oc X? -  |  X^ omitted) is 
proved in Appendix B.2. □

Theorem 6. Let
S i  ; = 4x? +  02X +  0 3  .

Wfe equip the underlying with the singular metric defined in Section 9.3. Let ( }smg 
be a state on Hi w.r.t. this metric. Define a defijrmation ofL \ by

^ j  = d X j ,  y =  1 , 2 , 3 .

Let cu be the corresponding I-form

-detHs.i
“ ' - ’ diTvT

We have the following system of linear differential equations

(<^+ ^  <^){i)sing. =  ~  g(Al)j,„g. , (1 0 .1 7 )

c — 8  det H3 0
(d  + (Ai)„„^. = Csing. - j — ^  ’
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where for from eq. (10.4),

Csing. '■= -  J — ( l) i in g .  ■

In particular, in the (2 ,5)-minimal model,

r  -ii/n^sing. -  -

In general, Csing. is ^ function of (l>sing. and (Ai)sing.. Note that the occurrence 
of a term ~ (Ai)|j,g in the definition of Csing. is an artefact of our presentation since 

has been defined by means of the connected Virasoro 2-point function.

Rem ark 27. In contrast to the ODE (8.1) fo r  the zero-point function on (Zi, \dz?'),
the corresponding differential equation (10.17) for w.r.t the singular metric
comes with a covariant derivative. Denote by

i^l)f lal  ~  » (AOfmg, = . ®jing.(1  )fing.

the parameters w.r.t. the fiat and the singular metric, respectively. By eqs (8.1), 
(10.17) and (10.15),

Using eq. (10.8), we obtain

d h in g .^  (Dfia, , (10.18)

with proportionality factor equal to exp | f  (^sing. In particular,
(l)nn«. is not a modular function. This is due to the non-vanishing o f the scalar 
curvature in the Weyl factor 'W  (cf. Remark 24).

Proof (of the Theorem)
Notations: All state-dependent objects are understood to refer to the singular metric 
on Zi.

For j  = 1,2,3, let j j  be a closed path enclosing Xj e and no other zero of p.
X  does not define a coordinate close to Xj, however y  does. On the ramified covering, 
a closed path has to wind around Xj by an angle of An. We shall be working with the 
X coordinate, and mark the double circulation along y j  in by a symbolic 2 x  yj
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under the integral. Thus for y = 1 we have

( T(x ) )dx  = 2 Um (x -  Xi)(T(x))
2xyi —»Xi

1 /  c(l) c(l )  0(Xi)
8 \Xi -  X2 Xi -  X3 ( Xi  -  X2XX1 -  X3)  
1 c ( - 2X i  + X 2  + X 3 X I }  -  A q X i  -  Ai 
8 (X 1-X2XX3-X1)

U '  '  8 / ( X 1 - X 2 X X 3 - X 1 )

1 A i  X2 +  X3

8 (Xi -  X2KX3 - X i )  8 ' ' (Xi -  Z2)(X3 -  )

So

det H3.1 _ 1 det £ 3 ,0  

det V3 8  * det V3

^ i(^2 + X3) \

using eqs (10.5) and (10.6). When (10.1) is imposed and Aq = -4 c ( l)  is used, we 
obtain the differential equation (10.17) for (1). When (T(x)} is varied by changing 
all ramifications points Xi ,X2, X3 simultaneously, we must require the position x not 
to lie on or be enclosed by any of the corresponding three curves 7 1 , 7 2  and 7 3 . Then 
we have

d ( r ( x ) }  =  2  ( i  ^  <T(x ')T (x )} d x j  dXj

= Z  ^  (7’(/)r(x )> , dx' dXj + (irHnx)) d{i).

Here (T{x)} is given by formula (10.2). For (T{x)T{x'))c, we use Theorem 2 in Part 
I. The terms oc yy'  (with y'^ = p(x')) do not contribute: As Xj  e is wound around 
twice along the closed curve yj, the square root /  changes sign after one tour, so the
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corresponding terms cancel. Thus for y = 1 we have, using eq. (10.3) for 0 (x ') ,

(T (x ')T (x )),d x ' (10.19)
ZTTl J2xy ,

j c  (1) c p '(x ')p '( l)  I p (x ')0  + p 0 (x ')
= 2 lim (x - A i ) - -----------r + r r ------------------------+ r ^ ----------

*4 (x' -  x)'* 32 (x' -  x)^p(x')p 8 (x' -  x)^p(x')p

ao x '0  + x 0 (x ')  x 'x ( l)  I
p(x')p 8 p(x')p  8 p(x')p

(1) p ' , 1 0 (X i)

1 6 (X i-jc )2  p  4(Xi-;c)V(^i)
2P[*] ao ^lAi ao ^(^ i)

^ p'{Xx)p  4 p'{X^)p  4 p'{X^)p

( 10.20)

Multiplying the first term on the r.h.s. o f  eq. (10.20) by and adding the correspond

ing terms as j  takes the values 2 ,3  yields

i < , ) £ : ( _ £ ! _ ^ + c y d i c ' l = i < i y ( ^ ^ f  .
16' ' p  I  32 \ p  I

The cyclic symmetrisation o f the remaining four terms on the r.h.s. o f  eq. (10.20) 

gives d  < /log(l). We deduce the differential equation for A i. Firstly,

d0(,x) = 4 p d l ^ ]  + 0  —  .
\^PI  P

By the above, using p \ X \ )  = -ao(X i -  X2){Xj, -  X i) with «o = 4,

"'■‘' ( I )  = -  J

rn  d c t JUi 0 d e t 1 
_ 2 p [ i ] ^ ^ + A i — ^  + 0 (;c )d lo g (l> . ( 1 0 .2 1 )

det V3 det V3

Secondly, using partial fraction decomposition,

0(x )  1 0 (X i)
p  ( x - X i )  4 ( X i - X 2 ) ( X 3 - X i )

Solving for 0  and using that

+ cyclic.
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yields

0 „ ^ £  = £ f -------------- cyclic) V - f e - .  (10.22)
^ ’ p A\ { x- X^) { X, - X2) { X^- X, )   ̂ j ^ ^ ( x - X j )

Note that three terms in the sum on the r.h.s. of eq. (10.22) are equal but opposite to 
the first term on the r.h.s. of eq. (10.21). Since = 0, we have for the remaining sum

0 (Xi) V
\

(X -  X ,)(X i -  X2 ) ( X^  -  X i) ^  (j: -  X j )  ^

/ 0(Xi)(^2X3+^X2) , ( ^ i0 (Zi)
\  ( Xi  -  X 2X X 3 -  X i )

where the second term on the r.h.s. is equal but opposite to the one before last on the 
r.h.s. of eq. (10.21). For the first term we have (of. Appendix B.3)

0 (-yi)(^2.y3 + ^3-^2) _  2 detH 3,o detSa,!
(Xi -  X2 XX3 - X i ) ' ^  ~ 3 det V3 ‘ det Vs

Using 0(Xi) = -4cATi(l) + Ai, we conclude that

= -  A, ^  + i - 2P>" ^log<l>.det V3 3 det V3

Plugging in eq. (10.17) yields the claimed formula. To determine the constant in the 
(2,5)-minimal model, we write

p = 4j[  ̂+ (3ix  ̂+ Q2 X + a-i .

By Lemma 16 in Part I, using c = we find

p[i] = _ I L a \{ \ )  + A a .A , + — a2{\) -  - < 1 ) - 'a 2  .
/ i f v n  1 '  '  o r \  * * i n n  '  i a '  '  1

The formulation of the differential equations using determinants relies on the per
mutation symmetry of the equations’ constituent parts. This symmetry will continue 
to be present as the number of ramification points increases. With the genus, how
ever, also the degree of the polynomial 0  will grow and give rise to additional terms 
having no lower genus counterpart (cf. Section 10.3).



10.2 Comparison with the analytic approach, for the ( 2 , 5 )  

minimal model

We provide a rough check that the system of linear differential equations obtained 

from Theorem 6 for the (2,5) minimal model is consistent with the system discussed 

in Section 8.1. By formula (10.18), we have

(1) = , Ai = , (10.23)

for some functions / ,  g  of t , with f , g  oc ( 1)^. We have [38]

A® = Y ] { X i  -  X j f  2Aq^ + 0{q^)  ,
><j

and so close to the boundary of the moduli space where Xi  w X 2 , we have

( X i - X 2 ) ~ ^  (10.24)

As before, we shall work with assumption (10.1). Since in this region only the differ

ence X\  -  X 2 matters, we may w.l.o.g. suppose that

X 2 = const.

(^ 2  = 0)- In view of (10.24) on the one hand, and the series expansion of the Rogers- 

Ramanujan partition functions (1)^ on the other, we have to show that

/ ~ ( X i - X 2 ) - ^ ,  or f ~ ( X i - X 2 ) ^ .  (10.25)

Eq. (10.23) yields

d ( l )  = ,

using eq. (10.8), and a similar equation is obtained for d A \ .  So by Theorem 6,
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Since /  ~ (Xi -  X2Y  for some a  € R,

(10.27)

On the r.h.s. of eq. (10.26), we have by the assumption (10.1),

det Es.o 
detVs (Xi -  X2)(-3X2) ( - 3X2)

U)

since X\  «  X 2, and we have omitted the regular terms. Eq. (10.26) thus yields

which by eq. (10.27) and « 2  IIX^  reduces to the quadratic equation

 ̂ y  900

and is solved by or = and This yields (10.25), so the check works.

10.3 Outlook: Generalisation to higher genus

For l-g \y^  = p{x) with deg /? = n > 3, we have from eq. (4.8) in Theorem 1 of Part I,

0 (a:, j )  = ©t*'(x) + y©M(A:), deg©t*'(.x:) = n -  2 .

does not contribute to the contour integral as = y  is a holomorphic differen

tial on Ig.  As stated in the viva, the author has established a preliminary formulation 

of the differential equations for ( l ) s i n g .  and ( 7 ’( x ) ) s i n g  for the case n = 5 (g = 2). 

In the following, all state-dependent objects are understood to refer to the singular 

metric on X2. In the present case, 0^^' is absent, so

g ^  2 4 x 2a f  .

Now we use the differential equation for g.

24X2a{d -  - o ) ) f

1 + P i.\^  + A2X + A3

p
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where Ao is known in term s o f  ( 1) by Theorem  1 o f Part I, w hile A i , A 2 , A 3 are 

parameters o f  the theory, in addition to ( 1). Eq. (10.9) is adapted to  n = 5 as

0)
j=i i^s

The differential equation for (1> now reads

detE sj detH5,3_*:^
Ao . . .  +

det Vs Z (
A.-

*=1 det Vs

where Vs is the 5 x  5 Vandermonde matrix and

“ 5,* : =

x \ y 3A3 XI ^

x \ y2A3

X2 y 3A3 ^ 4 X5

1 1 1 1 1

^iX\ 6 ^ 3 ' ŝXi

The derivation o f  the differential equation for (7’(jc))sing has been based on the con

nected Virasoro 2-point function (com puted in Theorem  2 o f Part I) which resulted in 

a non-linear differential equation. An im proved form ulation reestablishing linearity, 

and the individual equations for the param eters A, (i = 1 ,2 ,3 ), were not com pleted 

by the time o f the viva.

Future work w ill deal with a variation form ula for the Virasoro A^-point function 

for arbitrary g  and > 1.
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Appendix B

B.l Completion of the Proof of Lemma 25 (Section 10.1)

It remains to show eq. (10.13) for general deformations = dXi, assuming that 
Xi = 0, eq. (10.1). We have

a = j ^ ,  d a = d (X i^ )

=  ^ 1 X 2  +  ^ 1 X 3  +  6 X 1  +  ^ 2 X 3  +  6 X 1  +  6 X 2  =  M  

b =  -X 1X 2X 3 , d b =  -  d (X iX 2X3)

=  -  ^ 1 X 2 X 3  -  6 X 1 X 3  -  6 X 1 X 2  =  .

Let a,/3 e Q. On the one hand, since Xi = 0, we have

( ^ f  = X f ^  + 2X iX 2X 3-^ = ^ ^ ,  (B.l)

so
aa^ d a  +pbdb  = a  XjX^ ■ + /3X 1X2 X3 ■ ^ 1X2 X3 .

On the other hand.

'̂ 1X1 6X2 6X3' 1 Xi
detS3 1 det V3 = det Xi X2 X3 1 X2

. 1 1 1 . .1 X3

1̂X1 ^iX f
= det 0

. 3 0

= 3 ( x ^  ^iXj  -  . ^iX3) + ^ Xf f  ■ ^iXi .

95
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Here

( x f ) '  = 4 ( x ^ x ^ f  = 4 ^  (by eq. (B. 1))

1^ 1= - ! ^ ,  (B .2)

^ i X 2 =

= -  ^iXi(X2 + X3)  + cyclic = • Ti + (B-3)

X^  = X i ( X2  + X s f  + cyclic = X i X ^  + 6X1X2X3 = 3X1X2X3 , (B .4)

since

X iX | = -  XiX2(Xi + X3) -  X i X2( X2  + X3)  + cyclic = -6X1X2X3 -  X p ^  = -3X1X2X3 . 

M oreover,

= ^ i X i ( X 2  + X j f  + cyclic = ^ iX iX | + 2X1X2X3 • = ^ i X i X l

X2 = + ^ i X ^ X 2 X j  + -  Xi(X2 + X3) + cyclic = -2  X ^ , (B .5)

M  • ^ i X i X j  = (X1X2 + X1X3 + X 2 X 3 m X i X j  + ^ i X i X j  + cyclic) 

= x j x j  ■ ^1X2 + X ^X | • ^1X3 + cyclic 

+ X1X2 • ^ iX iX | + X1X3 • ^ iX iX | + cyclic 

+ X2X3 • (^iX iX f + ^iX iX f) + cyclic 

= ^  - l ^  + X i  X2X3 • + X1X2X3 ■ ^

by eq. (B .3) and

= -  ^iX2(Xi + X3) -  ^i(X i + X2)X3 + cyclic
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We conclude that

det H3.1 det V3 = 9X1X2X3 • + 6 ^  •

= 9X 1X 2X 3-11^ + 2 x 2 4 . 1 ^ ,

and so or = 2, yS = 9, as required.

B.2 Completion of the Proof of Lemma 26 (Section 10.1)

It remains to show eq. (10.16) for general deformations = /̂X,, assuming that 
Xi" = 0,eq. (10.1).

We use the expressions for a, b, da, db listed at the beginning of Appendix B. 1. 
Let a,/? e Q. On the one hand.

a a d b + p b d a =  - 0X1X2-  ^1X2X3 -  y3 X1X2X3 ■ ^1X2

= -  { a +^ )  X1X2X3 • ^1X2 -  ^ iXjXl  + ^1X2X2X32 + ^ i X l a  ^ i X j X l . 

On the other hand.

'^1 6 6 1 Xi
det H3,o det V3 = det Xi X2 X3 1 ^2 X2

. 1 1 1. .1 X3 Xj)

= det
0 ^iXi  ______
0 ^iXjXl  + ^iXfX2X2 + ^1X|X2 x j

3 0 y 2
=  3 ( x 3 . ^ i X i - X 2 . ^ i X 2 )

Eqs (B.4), (B.2), (B.5) and (B.3) from Appendix B.l yield

det H3,o det V3 = 3 (-3X1X2X3 - J ^  + 2 X ^  • 

= 3 ( - 3X,X2X3 -11̂  + 2 1̂X2X32 + 2X1X2X3 • m )

= - 3 X iX 2 X 3 - ? ^  + 6 ^ i:>^X2.

We conclude that a  = -6 , a  + yS = 3, soyS = 9. This completes the proof.
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B.3 Completion of the proof of Theorem 6 (Section 10.1)

It remains to show that

0 ( X i )(^2 X 3 + 6 ^ 2 )  2 ,,,detH3.o detH3,i-----------------------------+ cychc =  caoil)------------ 2A i---------- .
(X i-X 2 )(A :3 -X i)   ̂ 3 detV3 det V3

We have

^ 2 X 3  + ^ 3 X 2  = i^2  + ^3)(X 2 +  X 3) -  (^2X2 +  ^3X3)

= ^ l X l - i h X 2 + ^3X3)

= 2^1X1- ^ ,X i .

It follows that

0 ( X l ) ( ^ 2 X 3 + ^ 3 ^ 2 )  8 c ( 1 > ^ , X 2 - 2 A i ^ i X i

(Xi -  X2XX3 -  X i) ^ (Xi -  X2XX3 -  X ,) ^ ’

since ^1X1 is symmetric and both

1
(Xi -  X2XX3 -  Xi) 

(Xi -  X2KX3 -  Xi)

+ cyclic = 0 , (B.6)

+ cyclic = 0 . (B.7)

Now

we claim that

X? = -  Xi(X2 + X3) = - f  + ^2X3; (B.8)

^1X2X3 fl2 detH3,o
+ cyclic = — —-------- . (B.9)

( X i - X 2 )(X3 - X i )   ̂ 6 detV3

Indeed, since ^1X2X3 + cyclic = ^1X2X3 is symmetric, we have by eq. (B.6),

^ 1 X 2 X 3  , .  ^ 2 X 3 X 1 + 6 X 1 X 2
+ cyclic = -  —-----  —  + cyclic .

(Xi -  X2)(X3 -  X i ) •' (Xi -  X2)(X3 -  X ,)
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Since f  i = 0, we have

6 X 3 X 1  +  ^ 3 X 1 X 2  

(Xi -  X2KX3 -  Xi) .  oychc = + cyclic) .  f  .  cyclic)
I w - X i X X j - X i )  I \ ( X , - X 2 X X 3 - X 1 )  I

 WWfj—  \
4 detV3 \ ( X i - X 2 ) ( X 3 - X i )  /

(Xi -  X2XX3 -  X i) ^  ‘‘'J ’

using symmetry of ^ 1X 1 and eq. (B.7) again. From eq. (B.8) follows eq. (B.9), and 

the proof of Theorem 6 is complete.
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