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Static-Light-Light Baryons 
A Spectroscopic Study Using D istillation

Finnian  M e Elroy B .A .  (M od .)

We perform the first study of static-Hght-hght baryon spectroscopy 
using distillation on an N f  =  3 dynamical, anisotropic lattice with an 
anisotropy ^ =  3.5 . Baryon interpolating field operators that transform 
according to the irreducible representations of the symmetry group Of, 
of the rotationally invariant spatial lattice are constructed. Sinnilations 
are carried out at a single lattice spacing of Ug — 0.12fm. Simulations 
of both isospin-0 and isospin-1 static-light-light baryons are performed. 
The bare strange quark mass value is set at a^mo =  —0.0734. Two-point 
correlation functions are measured and fitted to with a single exponential. 
Ground state  masses are determined for each channel.



Summary

Over the last decade, hadron spectroscopy in lattice QCD has graduated from cal
culating single rows of the quark propagation matrix to calculating all elements of 
the quark propagation matrix - the so-called all-to-all propagator. On a spatially 
symmetric anisotropic lattice of spatial extent and temporal extent Nt the quark 
propagation matrix has rank 4 x 3 x N'^ x Nf, where 4 represents the number of 
components in a Dirac field and 3 represents the number of colours. Calculating 
all elements of this matrix requires 144 x x matrix inversions - a formidable 
task. The relatively new method of distillation enables access to all elements of the 
quark propagation matrix at a much more affordable cost. This project is the first 
study of distillation on the bottom baryon spectrum. Simulations are performed on 
an N f  = 3 dynamical, anisotropic lattice. The heavy quark is treated in the static 
limit of Heavy Quark Effective Theory (HQET). Baryon interpolating field operators 
tha t transform as irreducible representations of the spatial lattice symmetry group 
Oh are constructed. This includes both positive parity and negative parity operators. 
Two-point correlation functions are measured. A variational analysis is briefly tested. 
Ground state effective masses are determined by fitting the correlation function to 
a single exponential. Mass splittings are calculated. Only one experimentally de
termined mass splitting exists for comparison. That is the Sb, Ab splitting. Results 
for this splitting are compared with other lattice work. Results arc compared more 
generally with other lattice work.
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Chapter 1

Introduction

According to the Standard Model of particle physics, quarks emerge as a basic build

ing block of matter. Quarks interact via the strong interaction. The theory describing 

the strong force is Quantum Chromodynamics. The strong force l)ctween quarks in

creases with increasing distance. For this reason, quarks are not seen in isolation but 

are confined into bound states know’n as hadrons. There are six varieties of cjuark: 

up (u), down (d), charm (c), strange (s), top (t) and bottom (b). The u, d and s 

quarks are light in comparison to the c, t, and b quarks. The u, d and s cjuarks lie 

below the QCD scale A q c d  = 200MeV.

Quark Models |1| predict eight baryons containing one bottom quark. Their 

properties are given in Table 1.1. They can be described by total spin J, parity 

P, isospin I and the total spin of the light quark pair ,s/. The up or down quarks 

are denoted q, s denotes the strange quark and b denotes the bottom quark. For 

isodoublets and isotriplets the lower and lowest observed masses are quoted.

The \b  baryon was the first b-baryon to receive mass measurement (2, 3, 4]. Since 

2007 the masses of Eb, S^, Qi, and Ei, have been experimentally determined by the 

DO and CDF experiments at Fcrmilab [5, 6, 7, 8]. The bottom meson sector has been 

studied extensively in recent years, at the dedicated b-factories, BELLE and BaBar. 

Recent years have seen precise measurements of CKM matrix elements describing 

the flavour changing i>roeesses involving b-mesons. At Fermilab, orbitally excited 

Bi, B 2 , Bsi and B * 2  mesons have been observed. Heavy hadron b-physics research is

9



Baryon Q uark Content r I Si Experim ental Mass (Mev)

A6 qqb 1 +  
2 0 0 5,620.2(1.6)

qqb 1 +  
2 1 1 5,807.8(2.7)

qqb 3 +  
2 1 1 5,829.0(3.4)

i \ ssb 1 +  
2 0 1 6,071(40)

n i ssb 3 +  
2 0 1 Not M easured

“ b qsb 1 +  
2

1
2 0 5,790.5(2.7)

“ 6 qsb 1 +  
2

1
2 1 Not Measured

“ b qsb 3 +  
2

1
2 1 Not M easured

Table 1.1: Experim entally determ ined masses for bo ttom  baryons.

currently very rich w ith the PANDA experim ent, the LHCb, ATLAS and CMS likely 

to produce d a ta  relevant for m apping the b-hadron spectrum .

Lattice QCD provides an alternative arena for studying the hadron spectrum . Ab 

in itio  calculations of the mass spectrum  arc possible on the lattice. Spectroscopy 

results from lattice QCD are as numerous as those from experim ent. Both the  charm  

and bottom  meson sectors are rich research areas. Algorithmic improvem ents over the 

last few years have led to  highly excited sta te  mass determ inations for heavy quark 

mesons. Over the last decade hadron spectroscopy in lattice QCD has graduated from 

calculating single rows of the quark propagation m atrix  to  calculating all elements 

of the quark propagation m atrix  - the so-called all-to-all propagator. On a spatially 

sym m etric anisotropic lattice of spatial extent Nx and tem poral extent Nt the quark 

propagation m atrix  has rank 4 x 3 x x Nt, where 4 represents the  num ber of 

components in a Dirac field and 3 represents the num ber of colours. Calculating all 

elements of this m atrix  requires 144 x x N'^ m atrix  inversions - a formidable task. 

The relatively new m ethod of distillation enables access to  all elem ents of the quark 

propagation m atrix  a t a much more affordable cost. This project includes the use of 

distillation for the first tim e in static-light-light baryon spectroscopy on anisotropic 

lattices. The aim of th is project is to  determ ine the mass spectrum  of singly-bottom  

baryons. Mass splittings for previously unm easured states are calculated. In addition,

10



mass splittings tha t have previously been calculated on the lattice are measured for 

the first time using distillation. Baryons with the quark content of the A(, and the E{, 

are studied. All the experimentally determined mass splittings for the singly-bottom 

baryons have already been computed on the lattice [9, 10, 11, 12, 13, 14, 15]. These 

are in agreement with experiment.
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Chapter 2

Lattice Basics

2.1 QCD

In continuum  QCD, a quantum  field t) has an infinite num ber of degrees of 

freedom, labelled by the space-time coordinate as well as discrete indices for

colour and spin. Space-time can be discretizcd by introducing a hypercubic lattice of 

discrete points. The lattice sites are described by a four-vector x  with components

where is an integer, is the lattice spacing in the direction and L = Nf^a^ is 

the lattice extent in the direction. M omenta occur in discrete units 

27T7T-
where = - N ^ / 2  + I , - N ^ / 2  + 2 , N^/ 2.  (2.2)

The lattice introduces a m om entum  cut-off. The largest allowed momentum  is 7r/a 

and the lattice provides an ultra-violet regulator for QCD. The shortest wavelength in 

the direction is 2a^. W avelengths less than  twice the  lattice spacing are elim inated 

from the theory.

Integrals in the path-integral representation of QCD become finite-dimensional 

when a lattice is introduced. The vacuum expectation value of an operator (/’,

is given by

j[dxp][d^][dU]0{^p3-U)e~^ ,2 3)
J[d^p][d'4)][dU]e~^

12



where S  is the action,

.S'=  y  C{'tp{x),'iJ){x)JJ{x))d'^x, (2.4)

and C{'iIj{x ) , iI){x ) , U{ x )] is the Lagrangian density. The fields ij^{x) and U{x)  which 

describe quark and gluons respectively, will be introduced later in this chapter. A 

Wick rotation from Minkowski space to  Euchdean spacc has been performed. In 

Minkowski space, there is an oscillating phase factor In Euclidean space, the 

factor e~^ can be interpreted as a real weight allowing im portance sampling to  be 

used to  estim ate this integral.

2.2 Gauge Invariance

The continuum  QCD Lagrangian possesses an SU{3)  gauge invariance. Quarks and 

antiquarks ]:>ossess colour charge. There are three different colours - red, green and 

blue. The three different colour fields can be w ritten as a three-com ponent colunm 

vector as follows

i>2 

\ )
These fields transform  locally as follows

(2.5)

G{x)'i/j{x),

^ ) {x )G~\ x) ,

(2.6a)

(2.6b)

where

G{x) = exp [ia“(x )i“(x)]. (2.6c)

C{x)  is an element in the fundam ental representation of SU{3) ,  a°'{x) is an arbitrary  

function of x  and t"{x) are herm itian generators of SU{3).

The derivative d^ip{x) of a field ’>p{x) is defined as follows

df,ip{x) ^  hm - [4’{x + ea^) -  -^(a:)]-
€—̂ 0 C

(2.7)
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This derivative transfonns differently to 0(x) under the local transformations as 

shown below

d^xp{x) ->■ lim -[G (x  +  ea^)ip{x + ea^) -  G{x)'ip{x)] 7  ̂ G{x)d^ip{x). (2.8)
e->0 e

The covariant derivative D^"^(x) of a field ip{x) is defined as follows

D^'4){x) =  ^^^^p{x) -  igA^{x)4){x), (2.9)

where the vector field An{x) hes in the Lie algebra of SU{3). The vector field An(x) 

can be written as follows

=  ( 2 .10)
6 = 1

where A^{x) are real-valued functions and the are the 3x3 Gell-Mann matrices

given in the Appendix. The Gell-Mann matrices act as generators for the non-Abelian

group Sll{3).  The Gell-Mann matrices obey the commutation relations

8

[A“,A"] =  2^5^/„b,A ^ (2.11)
C=1

where fah,- are antisymmetric structure constants. D̂ %l;{x) follows the same transfor

mation law as 'i!){x). Under the local transformation of equations (2.6)

Dfj_ip{x) G{x)Df,ip{x). (2-12)

The lattice covariant derivative applied to a quark field is

V^'0(a:') =  -^\U^,{x)'lp{x + fi) -  t/^(x -  fi)'>p{x -  /}.)]• (2.13)

The link variables are parallel transporters between neighbouring latticc sites. They 

are the path-ordered product of the exponential of the vector field Af^{x) defined as 

follows

rx+ ii
[/^(x) =  7^exp[i / gQA^{y)dy], (2.14)

J  X

where go is the bare coupling constant and path-ordering denoted by V  involves

ordering the matrices with .4,,(x) to the right of and Af,{x -t- fi) to the left of the

14



product. The links arc elements of the fundam ental representation of the gauge 

group. They transform  under a gauge transform ation as follows

U^{x) ^  G{x )U^{x ) G \ x  + G{x ) e SU{3).  (2.15)

The path-ordered product of links along a path  P connecting site x and site y is called 

a Wilson line and is denoted M p(x, y). Under gauge transform ations the W ilson line 

transform s as follows

Wp{x , y )  G i x ) W p { x . y ) G \ y ) .  (2.16)

The trace of a Wilson line over a closed pa th  is called a W'ilson loop. The Wilson 

looj) is gauge invariant as shown below using the cyclic j>roperty of traces

Tr\Wp[x, x) \  —> Tr[(7(3’)iyp(3'. a")C7^(x)]

=  Tr[M^p(a:,3-)(:7^(T)G(x)]

=  Tr[M/p(x,T)]. (2.17)

2.3 Group Integration

The links J7^(x) can be w ritten as follows

(/^(x) =  (2.18)

where 4>̂ {x) is an element of the Lie-algebra of SU{2>). (p^{x) is w ritten  in term s of 

the generators T “ =  ^  of the group in the fundam ental representation as follows

8

cI>,{x ) = J 2 K { x )T^- (2.19)
a — I

The generators T “ satisfy

[ T \ T ^ ] = i J 2 f a b c T ^ ,  ( 2 .20 )
r

w ith the same structu re  constants fabc as in equation (2.11). The integration measure 

dU for the gauge fields in equation (2.3) m ust be gauge-invariant. The Haar measure

15



(Ill guarantees th a t gauge invariance is respected. The Haar nieaaure dlJ on a compact 

group G has the two defining properties of invariance and norm ahzation. Invariance 

can be sta ted  m athem atically as follows

/  f {U )d U  = f  f { W U ) d U  = f f { U W ) d U  for all IV £ G. (2.21)
Jg  J g  J g

Norm alization is given by

f  dU = 1. (2.22)
J g

In this study the compact group G  is SU{3).

2.4 Naive Fermions

The naive Euclidean lattice fermion action for a single flavour is

S f  =  (2.23)

where

= + (2.24)

a is the lattice spacing, is defined in equation (2.13) with U^{x) =  1 for free 

fermions and the sum over colour and Dirac indices is implicit. The two-point function 

is defined as follows

, ,  r -  r ss / ^ ? ^ ^ '0 a ( x ) ? ^ ( y ) e - ^ ^
=  r ,— 5--------- > (2-25)J D'4)D'4)e-^F 

where the integration m easure DipDyj  is given by

D'lIjD'ip =  n d^a iu )  n dip^{v). (2.26)
a ,u  (i.v

The two-point function m om entum  space representation is

i-TT/a (27t)  ̂ 77)2-h ^ ^ s m  (ap^J/n^

/w/a
(2.27)

■7t / u  (2 )̂
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where

Im — i y^„ 7„sin(a»u)/al
5(P) = 2, w V - (2-28)

Near =  0 or ±7r/a for /i G {0 .1 ,2 ,3} , sin(ap^) can be approxnnatcd by to 

0{a)'^. The propagator is then given by

S{p)  =  + 0{a^) .  (2.29)

The propagator has a pole at =  0. These poles exist a t sixteen regions in

the Brillonin zone —tt/q  < p^ < irla. One is near po — P\ = P2 — Pi = ^ which 

describes the Dirac particle. The other fifteen poles correspond to high m om entum  

excitations near =  0 or ±7r/a for // G {0 ,1 ,2 .3} . These fifteen excitations are 

known as doublers. They are lattice artefacts.

The naive Euclidean lattice fermion action is invariant under the transform ation

V'(.t) —>■ e^^iplx), (2.30)

ip{x) —> ■i/’(a:)e“ *̂ . (2.31)

W hen the mass rti =  0, this action has a chiral synm ietry

^{x )  e‘®̂ V̂’(^), (2.32)

il>{x) —>• . (2.33)

2.5 W ilson Term

One solution to the doubling problem is to add a W ilson term  to the naive fermion 

action. At finite lattice spacing, the W ilson term  raises the mass of the doublers to 

the order of the inverse lattice spacing. This removes the effects of doubling. The 

W'ilson action is given below

5 ^ ' = S f -  ^  ^ ^ (x )A ^ V ^ (x ) , (2.34)
X . ( I

where

+ A) +  -  A) -  2V^(x)], (2.35)
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and r is the Wilson parameter. For non-zero values of r, the doublers mass is in

creased. This action can be expressed as follows

Sp {x,y)tp{y),  (2.36)

where

M^{ x,  y) =  (aSn +  -  y  Y^ii^ ~  +  (r +  (2-37)

This gives the same two-point function as in equation (2.27) when the mass rn is 

replaced with m{p)  as follows

2r .
m(p) —> m H----- E  sin^(p^a/2). (2.38)

The argument of the sine function has half the periodicity of the other sine functions 

in the propagator. Near =  7r/a, m(p) A s a - > 0  m{p) diverges.

This divergence lifts the masses of the fifteen doublers for fixed nonzero r to 0{ l / a ) .  

At finite lattice spacing the doublers have a non-zero mass even for m — 0. The 

Wilson term breaks chiral symmetry [16]. This induccs an additive renormalization 

to the quark mass. The quark mass is also multiplicatively renormalized. A fine- 

tuning of the bare quark mass to its critical value is necessary in order to obtain a 

vanishing renormalized quark mass. The additive mass renormalization can lead to 

a negative value for the bare quark mass. The quark mass in this project is negative. 

The Nielson-Ninomiya no-go theorem [17] precludes the possibility of constructing a 

fcrmion action which respects locality, hermiticity, translational invariance, chirality 

and remains undoubled.
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Chapter 3 

Simulation Techniques

3.1 Lattice Actions

In this study wc perform sinmlatious on an N f  = 3 dynamical, anisotropic lattice. In 

hadron spectroscopy, fine resolution is required when fitting to the effective masses 

of two-point correlation functions of a creation operator O. Correlation functions 

can be expanded as a series of exponential terms - an exponential term  for each 

state to which the operator O couples . The exponential associated with the ground 

state decays slowest. Exponential terms associated with excited states decay faster. 

Therefore on later timeslices the ground state has a greater relative contribution to 

the value of the correlation function. This means tha t ground state masses must 

be extracted at later timeslices. Correlation functions also become noisier on later 

timeslices with signal-to-noise ratios typically degrading exponentially with time [19], 

This permits only a narrow time window in which ground state mass extraction can 

be well-accomplished. Anisotropic lattices with a finer lattice spacing in the temporal 

direction provide a means of maximizing the amount of information obtainable from 

correlation functions by allowing fitting over a greater number of timeslices. This is 

especially im portant for a treatm ent of the static quark since the signal for the static 

quark degrades into noise faster than for light quarks [20]. Errors of 0{atmQ)  in the 

temporal direction relating to the heavy quark can be reduced by simulating on the 

anisotropic lattice. Anisotropic lattices have been used with nmch success in hadron
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spectroscopy [21], Dccrcasiiig the lattice spacing in only the temporal direction is 

computationally less expensive than decreasing it in all four directions. Hypercubic 

symmetry is broken by the anisotropic lattice. The anisotropic lattice introduces two 

new parameters; the fermion and gluon anisotropies denoted and respectively. 

These parameters are non-perturbatively timed so tha t in the continuum limit full 

Lorentz symmetry is restored.

3.1.1 G auge A ction

The gauge action is a Symanzik-improved action with tree-level tadpole-improved 

coefhcients |2 2 |:

where j3 = 2Nc/g^,  g is the QCD coupling, Nc  =  3 is the number of colours, 7  ̂ is 

the bare gauge anisotropy, Ug and Ut are the spatial and temporal tadpole factors, 

Q.C = X ]c(V 3)R cTr(l — Wc),  where Wc  denotes the path-ordered product of link

lattice action involves systematically including additional terms to the action in order 

to accelerate the rate of convergence to the continuum limit [23]. Here improvement 

is achieved by summing linear combinations of different plaquettes weighted with the

The action is designed for lattices with large anisotropies where <C a^. It was first 

used in glueball simulations [24]. The procedure for evaluating the tadpole factors is 

discussed in a later section on tadpole improvement.

The various sums over plaquettes and rectangular loops are given below

12u\u^
(3.1)

variables along a closed contour C. The Symanzik improvement program applied to a

correct coefhcients. The action has a leading discretization error of 0 («^ , 9 ^0 ^).

X  i > jX  i > i

^^dTx[l-Ut{x)U^{x+i)Uj{x+2i)Ul{x+i+j)Ul{x+j)U'^^{x)\,  (3.3)
IX

= EE ̂ RcTr[l-Ut{x)U^{x+i)U^{x+i)U^{x)],  (3.4)
X  i
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^ s t r  (̂') = EE ̂ R cT r[l- U^(x)U,{x+i)Ut(x+22)U j [ x+i + l )Uj{x+L )Ul{x)], (3.5)
O

X i

where x  is the lattice coordinate, i , j  are spatial indices, i and j  are unit vectors in 

the spatial directions,  ̂ is a unit vector in the time direction and U^{x) is the parallel 

transporter from site x  to x  +  /7„

- ► J ,  i > J -► 1
(a) ilsp (x) (b)

Figure 3-1: Si)atial and temporal jilaquettes in the gauge action.

-► 1

( r )  ( ^ )

Figure 3-2: Spatial and temporal rectangular plaquettes in the gauge action.

3.1.2 Light-Quark A ction

The covariant first- and second-order lattice derivatives and are defined by 

application to a quark field follows

=  ^[U^{x)'ip{x  -F A) -  Ulix -  fi)i>{x -  /})], (3.6)

^mV'(ĵ ) =  - [̂U ,̂{x)'^p{x +  fl) +  UUx -  fi)'ip{x -  A) -  2t/)(x)]. (3.7)
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In this notation, lJf,{x) is the parallel transporter from x to x +  fi and Uj {̂x -  fi) is 

the parallel transporter from x to x — fi.

The field tensor is defined by

where Qf,.u{x) is defined as follows

=^[U^{x)U^{x +  fi)Ul{x +  C')Ul{x)

+  U ^ [x )U l { x  -  ji +  C')Ul{x -  p.)U^{x -  /})

+ U l { x  -  i^)Ul{x -  jjL  -  i ' )u, , {x  -  [ l  -  v)U^{x  -  u )  

+  u l { x  -  C')U„{x -  u)U^{x +  fi -  C')Ul{x)].

(3.8)

(3.9)

(a) Q^^(x) (b) Ql^(x)

Figure 3-3; Anticlockwise and clockwise clover terms.

In the light quark sector an anisotropic clover fermion action is used [25]. It is 

given by

Sl.[U,tp,ip] = alat'Y^'ip{x)Qip{x), (3.10)

where

Q =  [mo +  t ' f V V f  - I -  UsWg -  y ( c , c r ^ , F ^ ‘  +  ^  ) ] , (3.11)
S < S
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=  (1/2)[7 /o  7i/] the r  =  1 W ilson operator is given by

U '';. =  V ,  -  (3.12)

The fo llow ing quantities w ith  a hat arc a ll dimcnsionless; 0  =  a.? V"; =  O(^o, =

a ,,V ,,.A ,, =  and H-',,. =  V ,, -  The action can be

rew ritten  as follows

S l \ U , ’i l j . ^]  =  ' Y^' i l ) (yx)Q^,  (3.13)
X

where

Q =— { “ ^^0 +  H .S'

at  Co ^

- +  (3.14)
® .s <  .s

The ra tio  o f the bare fe rn iion anisotropy to  the bare gauge anisotropy is denoted ly. 

Tuning o f bo th  ciuantities and i/, is not necessary. A  rescaling o f the fields recjuires 

only one such qu a n tity  to  be tuned to  ensure the anisotropic la ttice  obeys re la tiv ity . 

Setting =  1 and tun ing  Vt is called z^t'tuning. Here, we employ i/ j- tu n in g  where we 

set t't =  1. The clover coefficients are set to  the ir tree-level tadpole-im proved values

1 /  I x  1 . X
( ' I  =  7T +  7 ^ ;  0^-15

where Ug and Ut are the tadpole factors for the smeared ferm ion fields. The tadpole 

factors are explained fu rthe r in  equations (3.29) and (3.30). The anisotropy ^ =  a«/af

is set to  equal 3.5. For a spatia l la ttice  spacing of order 0.1 fm  an anisotropy o f ^ =  3.5

gives a tem pora l la ttice  spacing w ith  the required fineness for hadron spectroscopy. 

Three-dim ensional s to u t- lin k  smeared gauge fields [24] are used in the ferm ion action 

w ith  smearing weight p  =  0.2 and Up =  10 iterations. The parameters p and Up 

are explained in (3.61). The gauge anisotropy 7  ̂ and the ferm ion anisotropy 7/  are 

defined as follows

7« =  Co, 7/  =  - •  (3.16)
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The action can be rcparanicterized in terms of the bare gauge and ferniion anisotropies 

as follows

where

(3.17)

Q =~{utrho + IFt + -  y" VK 
u t  7 /  V

-  (3.18)
2 2 7 /  ? I f

,s< s

A t  f3 =  1.5, the tadpole factors are

Us =  0.7336, Ut  =  1, Us =  0.9267, Ut =  1.

Critical values for 7 * and 7  ̂ arc found by imposing the renormalization condi

tions =  {3 .5 ,3 .5 ,0 }  in equations (3.42). Since the gauge and ferniion

anisotropies show a mild quark mass dependence they are fixed at their critical val

ues

7 ;  =  4.3, 7 ;  =  3.4. (3.19)

The critical value of the input quark mass is ?ho =  —0.0854. Sim ulations are run 

with an input quark mass niQ =  —0.0743. Further details of tuning are given in [22]. 

The clover terms have the following values

c, =  1.589, ct  =  0.903. (3.20)

All lattice parameters are summarized in Table 5.1.

3.1.3 Sheikholeslam i-W ohlert Term

Sym anzik’s improvement programme applied to 0'*-thcory was successful in ensur

ing all "ofT-shell" Green’s functions have a faster approach to the continuum limit 

[23]. Luscher and Wcisz proposed an improvement scheme for the case of pure Yang 

Mills Theory that demands the improvement of all "on-shell" quantities i.e. low-lying
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energy states w ith small momentum  relative to the eutoff |26|. Based on these ap

proaches, Sheikholeslami and Wohlert designed 0{a) -  and 0(a^)-im proved fermion 

actions. W ith off-shell improvement, all param eters in the improved action m ust be 

fixed order-by-order in perturbation  theory. For on-shell improvement, general lo

cal covariant transform ations known as isospcctral transform ations th a t preserve the 

spectrum  of low-lying observables arc applied to  the  improved action. Upon apply

ing such a transform ation certain param eters appear explicitly free. The remaining 

param eters m ust be fixed order-by-order in pertu rbation  theory as in the off-shcll 

case.

A brief description of the Sheikholeslami and W ohlert approach is given here [27]. 

For C9(a)-improvement, all operators of at most dimension five th a t are invariant un

der discrete rotations, parity transform ations and charge conjugation transform ations 

are considered. Four such linearly independent ojjerators exist, they are as follows

Sheikholeslami and W ohlert applied an isospcctral transform ation to  the action

the coefficient of the O 2 operator is redundant. This operator w ith its associated 

coefficient C sw  can be added to  the naive fermion action to  give C>(a)-improvcmcnt. 

Alternatively, the  operator O3 wit h its associated coefficient ( \sw  can be added to

O q ( x ) =  - (hm 3,

Oi{x)  = ^ i!j{x ) - dim 4,

02{x)

1 _
O-six) = — iij{x)a^^P^„^p{x) - dim  5, (3.21)

where

P,w  =  -F  f i ) U l { x  +  C ' )U l {x )

-  U l { x  -  i> ) U l { x  -  /}  -  0 ) U i , { x  -  f i -  i>)U^{x -  j l )

+  U ^ { x ) U l { x  -  i i  +  i ' ) U l { x  -  f i ) U , , { x  -  fi)

-  U ^ { x ) U l { x  + f i -  i > ) U l { x  -  u ) U ^ { x  -  />)]. (3.22)

comprising the above operators each with an arb itra ry  coefficient. They showed th a t
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the Wilson fcrinion action to give C?(fl)-improvement. More recently, the anisotropic 

clovcr-improved Wilson fermion action that is used in this project was obtained via 

an isospectral transformation from the naive fermion action. This action is described 

in work by Chen [28]. This improvement was carried out at the classical level. A 

full quantum treatment gives the same results when renormalization of the gauge 

coupling and the bare anisotropy is included.

x»
Ai.

> 1̂

(a) Anticlockwise plaquettes. (b) Clockwise plaquettes.

Figure 3-4: Anticlockwise and clockwise contributions to

3.1.4 Static-Q uark A ction

The static-quark latticc action used in this work is given by

S s ta t  =  o-l'Y^h{x)[h{x) -  u l { x  -  i )h{x  -  f)]. (3.23)

It was first proposed by Eichten and Hill in [29]. It has already been used successfully 

in the study of static-light mesons [21], In position space the static-quark propagator 

from a space-time point (x. .tq) to a point (y, vyo) is given by

G (f ,  Xo; y,  yo) =  ©(yo -  (yo -  i, y)----Ut{xo, x)P+,  (3.24)

where P+ =  (1/2)(1 - I -  7 0 )  is a projection operator, © is the Heaviside step function 

defined in the Appendix and t  is the unit vector in the time direction. The static quark 

propagator is relatively straightforward to compute. One significant disadvantage of 

the static quark propagator is that the signal degenerates into noise quite early.
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3.1 .5  Som m er Scale

The Sommer scale |30j Tq defined through the force F{r)  between a static  quark and 

anti-quark separated by a distance r  is given by rgF (ro) =  1.65. The s ta tic  quark 

potential is used to determ ine the Sommer param eter tq via

, d V ( r )
=  1.65. (3.25)

One m ethod to  extract the sta tic  potential V (r) between an infintely heavy quark 

and anti-quark, separated by a distance r  in a spatial direction, is to  m easure the 

average value of the Wilson loop

( H( r , / ) )  =  { T T [ U k { y A m i y  + k , 0) . . I JUy  + r k O )

^ ^ ( / 7  +  +  '  f ' ' -1 ~  i )

lJl{y + rk , i )Ul {y  + (r -  l )k ,  l.)...Ul{y, I)

U^ i y J  ~l )U^{y, l ) . . . l J^{yA))])

= -f (excited states), (3.26)

where (..) denotes the average over space points y and spatial directions k  and C (r) 

is the overlap with the ground sta te  [31|. The sta tic  potential V{r)  is obtained by 

taking ratios of Wilson loops. This m ethod suffers excited sta te  contam ination. A 

variational analysis of a five-by-five m atrix  Cij{r, t) comprising operators w ith a be tter 

overlap with the ground sta te  was performed [25]. For these operators, the straight 

pa th  of gauge-links in the spatial direction is replaced w ith a sum of smeared paths. 

These paths arc rotationally invariant about the inter-source axis and pass through 

the m idpoint between the color sources. They may contain staples. Unsmearcd 

straight paths are used for propagation of the s ta tic  source through time. A range of 

space separations r spanning tq was used as well as a range of tim e separations t. 

The sta tic  potential is fit to the Cornell potential [32] given by

V{r)  = V a - - +  ar,  (3.27)
r

where a  is the Coulomb coefficient, a  is the string tension and Vq is the lattice 

self energy. Best-fit param eters for the param eters Vo, a  and a  are determ ined to

calculate the Sommer scale in lattice units via ro /a , =  •y/(1-65 — oi) I ct.
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3.2 Tadpole Improvement

Tadpole improvement [33] consists of removing the tadpole contributions to  gauge 

links. The lattice gauge link is defined via an expansion in its continuum  analog 

A^{x)  as follows

U^{x) = = 1 +  l a M ^ i x )  + ^   ̂ ^  ̂ 28)

where is the lattice spacing in the direction, g is the coupling and A^{x)  is 

the gauge field. At first sight, it appears as though the higher order term s will be 

sufficiently suppressed in powers of ag . However, the contraction of the ^ ^ ’s pro

duces ultraviolet divergences. These are known as tadpoles. These tadpoles are not 

sufficiently suppressed by the rem aining factors a and g. In a sm ooth gauge, the 

link operator can be factored into low m om entum  (infrared) modes and high momen

tum  (ultraviolet) modes. Substitu ting with U^/u  removes the UV divergences 

contained in the tadpole factor w.

Tadpole factors appear in both  the gauge and fermion actions. In the gauge action, 

the gauge links are unsmeared giving the  two tadpole factors Ug and Uf, where the 

subscripts s and t denote space and time, respectively. In the fermion action, the 

gauge links arc stout-sm eared giving the two tadpole factors and Ui.

For large anisotropy small tem poral lattice spacings th a t suppress the tadpoles 

associated w ith gauge links in the tim e direction can be reached. In this case, tadpole 

improvement is not necessary in the tim e direction and Ut can be set equal to  unity. 

In this calculation, =  1 and w* and Ug are m easured from the mean field value

of the spatial plaquette  as follows

y/, =  (^Tr(/p(„,)5, (3.29)

Us = (^T rt/p /ag)s (3.30)

where UpUq is defined by any one of the four term s in equation (3.9). The perturbative 

expansion of Us to  one-loop order is given by



where is the one-loop perturbative value of the tadpole factor [34].

The smeared and unsmeared tadpole factors arc param eterized as follows

U =  Y   --------------------------------------------------------------------------- 3.32
S  1 +

with =  6 //i and the constraint ai — bi — where is the one-loop perturbative 

value of the tadpole factor. An interpolation over a range of values of was carried 

out. The tadpole factors for this param eterization at /3 =  1.5 are as follows

u ,  =  0.7336, Us =  0.9267. (3.33)

3.3 Tuning

3.3.1 G auge A nisotropy

On an anisotropic lattice there are two static-quark potentials. These are denoted 

Vt{ f)  and Ks('0 and called the "regular" and "sideways" potential, respectively. 

In the sideways potential, the heavy quark and anti-quark propagate in one of the 

spatial directions. In this calculation, the sideways potential is used to  determ ine 

the renormalized gauge anisotropy denoted There are two types of sideways 

potentials: one where the quarks are separated along a spatial direction and one 

where the quarks are separated along a tim e direction. A comparison between these 

two potentials can be used to  determ ine ^g. Solving for t , the equation

V si yas )  =  Vs i ta t ) ,  (3.34)

for a given y, gives the renormaliscd anisotropy via / =  In the asym ptotic 

lim it of large x, the Wilson loop can be described in term s of the sta tic  quark 

potential as follows

W s s { x , y )  ~  exp[-xasV ;(ya^)]. (3.35)

T he potential Vg is a lattice potential and differs from the the continuum  static-quark

potential V by a term  Vq, where Vq is the self energy of the heavy quarks |35]. The
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self-energy Vq is independent of x  and y  and depends only on the lattice spacing  

ttg. Ratios of W ilson loops can be used to extract the continuum contribution to  the  

lattice potential [36].

The potentials can be extracted from the ratios of W ilson loops. T he ratios below  

were measured

D  I \  s s i ^ j  y )  / r j

Wst{x +  i , t y   ̂  ̂ ^
For large x, Rss{x.  y) asym ptotically approaches exp[—a5 \4 (?/as)] and Rst{x,  t) asym p

totically approaches exp[—asFs(tof)]. These m ethods are described in [37]. The

anisotropy was determined by minimizing

^  (AB,F + (Afi,)^ '
x , y  V /  V /

where A/?s and A/?( are the statistical errors of Rss and Rgt.

3.3.2 R enorm alization Conditions

The renormalized anisotropies and as well as the partially conserved axial cur

rent (PCAC) quark mass Alt arc parameterized in terms of the bare gauge anisotropy 

7 g, the bare fermion anisotropy 7 /  and the bare quark mass m.Q. A linear parameter

ization is given as follows

7 / ,  "^o) =  «o +  +  «27/  +  (3.39)

0 (7s, 7/ ,  "Jo) =  &o +  +  627/ +  hrriQ, (3.40)

^ h h g , l f , m o )  =  Co+Ci^g +  C2'Jf +C3mo-  (3.41)

This parameterization was obtained by sim ulating at fixed /3 and various values of 

7 p, 7 /  and mo- i\/( and were measured on 12  ̂ x 32 volumes while was measured 

on 12  ̂ X 96 volumes.
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Critical values 7g-7} and as functions of input quark mass ni.^ are found by 

imposing the following renorm alization conditions

=  e, (3.42a)

= (3.42b)

Mth;.. =  m q . (3.42c)

3.4 Heavy Quark Effective Theory

Two length scales emerge in the study of heavy-light-light baryons; a short-distance 

scale determ ined by the Com pton wavelength X q  ~  l / i n . Q  of the heavy quark and 

a long-distance hadronic scale Rhad ~  1/^QCd associated with the light degrees of 

freedom. The mass scales for a heavy-light system are as follows

m t  <  A q c d  <  w q , (3.43)

where mi^ is the mass of the light quarks, A - q c d  is th« QCD scale and rnq is the 

heavy quark mass 138]. The Com pton wavelength of the  heavy quark is nmch smaller 

than  the hadronic scale for a heavy-light system. The length scales for heavy-light 

system s on a  lattice are as follows

ci 1 / A q c d  ^  (3 -4 4 )

It is not practical to construct lattices with am q <  1.

Typical m om entum  transfer in interactions between the heavy quark and the light 

degrees of freedom is of the order of the QCD scale. A heavy quark bound inside a 

hadron moves w ith the velocity of the hadron up to  corrections of 0 (A q c 'd /^ q ) -  

Since A q cd /'> t^q  1 tbis allows for a non-relativistic trea tm ent of the  heavy quark. 

Heavy quark effective theory (HQET) provides such a non-relativistic framework in 

which to trea t the heavy quark. HQET separates the short-distance and long-distance 

physics. The heavy degrees of freedom associated w ith short-distance physics are 

identified in the generating functional and integrated out [39|. The heavy quark 

action is expanded in a power series in 1 / m g .
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The generating functional of the continuum  QCD Green’s functions is given by

Z{T},rj,X)) = J  [dQ][dQ][d(f)x]cxp[iS + i S \  + i J  d‘̂ x{fjQ + Qrj + (f)xX)], (3.45)

where <l)x denotes both  the light quarks q and the gluons Af,. 5^ is the  QCD action

with light quarks and the heavy quark action is given by

^  ~  J  — 'mQ)Q- (3.46)

It should be noted th a t this calculation is performed in Minkowski space with the  ten 

sor g^“' given in the Appendix. The "upper" components (j) and "lower" components 

X  of the heavy quark Q  can be projected as follows

</>=^(l  +  '/')Q- H  = (3.47)

X =  ^ ( 1 - / ' ) Q >  f X  = - X -  (3.48)

The transverse part of the covariant derivative is given })y

-  v^v„Dpg''P, (3.49)

with =  0. Interactions with the light degrees of freedom alter the heavy

quark velocity on the scale of AqcD/fnQ-  The heavy quark is nearly on-shell. HQ ET 

is an api)roximation of QCD in the kinetic regime where the heavy quark field can

be param eterized in term s of a solution to  the Dirac equation of a free particle with

velocity v. The heavy quark components are param eterized as follows

(j) = X =  (3.50)

In term s of this param eterization, the heavy quark action is given by

.s; =  J  d ^ x [ T i , , i { t >  ■ D ) K .  -  77„{/:(t- ■ D )  +  2 T „ Q } H r

+ h r i 0 ^ l h , + J I , i 0 ^ h , ] .  (3.51)

The small component fields Hy appear in the action with a mass term  of 2mQ.  A 

mass contribution of rng arises from differentiating the field x  hi the reparam terized 

action. The second mass contribution of m g is the usual mass term  in the action.
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The small component fields correspond to short-distance virtual processes. These 

fields are integrated out in the action. The propagator is expanded in a power 

series in 1 /m g. The HQ ET action to order 1 /m g  is given by

.S, =  [  d ^ x [ K i { v  D ) K  + + M ,  + 0 { \ ) ] ,  (3.52)

where

h\. = -  v^,v^)D''h„. (3.53)
2riiQ

M,. = (3.54)
i j l l Q

Both the "kinetic" term  A„ and the "Pauli" term  M„  are order l / n i Q  term s. The 

kinetic term  describes the off-shell m otion of the heavy quark. The Pauli term  cor

responds to  the chromo-magnetic coupling of the heavy-quark with the gluon field. 

In the infinite majss limit, the HQET action is given by

= J  (i:^x[li„i{v ■ (3.55)

In this limit, the term s th a t describe the corrections to  the heavy quark velocity 

vanish and the heavy cjuark moves with the same velocity as the hadron. In the rest 

frame of the hadron, i.e. where = (1, 0, 0,0) the heavy quark is static. This action

has an SU{2)  spin sym m etry associated with heavy quark spin conservation. The

static  action contains no mass term  and so the action possesses a flavour symmetry. 

For Nh heavy quarks with the same velocity v, the H Q ET static  action possesses an 

SU{2Nh)  spin-flavour sym m etry |40|. The mass splitting  between the lowest lying 

J  =  3 /2  sta te  and lowest lying ,7 =  1/2 sta te , where J  denotes to ta l angular 

m omentum , is about ten percent of the mass of Sfc. In the sta tic  approxim ation 

of H Q ET the masses of and become degenerate due to  spin symmetry. In 

the literature [41] this is taken as a possible indicator to  suggest th a t the 0 ( l / m g )  

correction to  the static  approxim ation is a t the ten percent level.
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3.5 Spectroscopy Methods

3.5.1 Correlators

The zerom omentum correlation function C{t) for a hadron interpolating operator 

0{x,  t) is defined as follows

C{t) = ^(0 |C >(f,^)C »t(0,0)|0), (3.56)
X

Inserting a complete set of zero-momentum encrgy-eigenstates {|n)} of the Hamilto

nian gives

n

In a finite-volume, the spectrum is discrete and the operator 0{x .  t) has a non-zero 

coupling to all states {|n)} tha t share its quantum numbers. Correlation functions 

can be analysed to extract excited state energies. At large time separations t, the

correlation function is dominated by the contribution of its ground state. The effective

mass at time t denoted rrigff(t) is defined as follows

rn,ff{t) = (3.58)

At large times, meff{t)  ~  E q where the lowest mass state E q is called the ground 

state.

3.5.2 D istillation

The basic quantity in the construction of correlation functions involving fermion fields 

is the fermion propagator given by

[M-^]“f (x ,y )  = DV'I^V^#(x)^^(y)e-^^^, (3.59)

where i, j  label quark flavour, a. (3 label quark spin and M  is the fermion matrix 

appearing in the fermion action. Historically, access to a limited number of rows 

of this high-dimcnsional matrix has been possible to give point-to-all propagators. 

Here the propagator from a small number of sites on the lattice to all other sites is
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evaluated. Calculating a lim ited number of rows saves dram atically on com puting 

resources. More recently, all-to-all propagators have been utilised [42]. In this ap

proach, a spectral sum of the physically im portan t low-lying eigenmodes is formed 

to estim ate the propagator. Random  noise is also used to  estim ate the propagator. 

The spectral sum and random  noise estim ates of the propagator arc combined in a 

hybrid algorithm.

Traditionally, smearing has been used to  expose a t earlier timeslices the asym p

totic  behaviour of correlation functions. This is necessary since signal-to-noise ra

tios diminish a t larger tim e separations rendering large tim e information redundant. 

Smearing acts as a filter and retains the long-range modes. For the purposes of ex

tracting  low-energy masses the short-range modes are deemed unwanted and referred 

to  as contam ination. These short-range modes can be significantly removed by the 

application of smearing to the quark field. Smearing consists of redefining the quark 

fields in term s of a local distribution of cjuark fields. Jacobi smearing |43] involves 

iteratively applying the lattice Laplacian to the  quark fields. The lattice Laplacian 

is defined as follows

j = i

where the gauge fields Uj{x, i )  have been constructed from gauge-covariant smeared 

gauge fields. The Jacobi smearing operator is defined as follows

where p is the smearing param eter and rip is the param eter denoting the num ber of 

smearing hits. These two param eters are tuned to  optim ize excited sta te  contam ina

tion reduction. The Jacobi smearing algorithm  selects the lower eigenmodes of the 

lattice Laplace operator. Contributions from higher eigenmodes are suppressed.

A smearing operator can be defined by a projection operator onto the space of 

the first M  eigenvectors of the gauge covariant lattice Laplace operator V^(/-). The 

lattice Laplace operator has rank N  = Nc x  where Nc is the num ber of colors 

and is the spatial volume of the lattice. The distillation operator [44] has rank

3

t)6.^+j,y -f u]{x -  j ,  (3.60)

(3.61)
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A/ <<  N. The distillation operator on timeslice t denoted □(/(/) is given by
M

=  (3-62)
fc=l

where is the k"  ̂ eigenvector of calculated with background spatial gauge fields 

at time t. Since the rank M  «  N,  distillation is not prohibitively expensive and all 

elements of the propagation matrix can be computed. A displaced static-light-light 

baryon annihilation operator is given by

X? =  (I>, □  (V^ □  . (3 63)

where there is a contraction over color indices a, h and c as well as a summation over 

spin indices rvi and a^. Q denotes the heavy quark field, ■i/'i,2 denote the light quark 

fields. 6T  is a spin matrix for the light quarks; its role will be explained in the next 

chapter. T>i 2 is a gauge-covariant displacement operator defined as follow's

^̂ 1,2 (3;) =  y)^x.y (3.64)
i

where V{x,y)  is a gauge-covariant product of links connecting sites x  and y, 6x,y is 

a delta function and the coefficients 2 complex numbers. The static-light-light 

correlation function is given by

C t',  =  i x P x f }  (3.65)

_ ^a6c^de/^^'<p^aia2^(^''p^/3i/S2

I- - - - - - - - - - - - - - - - 1 I- - - - - - - - - - - - - - - - 1



Wick’s theorem is used to factorize the correlation function into products of quark 

propagators [45]. The horizontal brackets in equation (3.65) linking two quark fields 

are contraction symbols. In brief, each contraction of two quark fields in equation 

(3.65) results in a quark propagator. The minus sign arises due to the Grassmann 

nature of quarks fields. Quark fields are Grassmann variables and are antisymmetric 

under interchange as shown below

M 2 = - M l -  (3.66)

The static-light-light correlation function factorizes into the product of three terms 

as follows

r  , _  ( i , i )  ( jj)  J »(ij,ri) p c d  (tj) (j.i) ,T « ( i j . d )  /"Q

where

^ y c a / 3  ^  ^abc  ( C ^ ) “ ^  ( 3 . 6 8 )

=  v;| (3.69)

and , <) is a Wilson line connecting the source at time t with the sink at time

i!. The Wilson line is the heavy quark contribution to the correlation function. Both 

and r  are square matrices of dimension AM. contains all the information on the 

creation operator, r  is known as the perambulator, r  contains the information on 

quark propagation. All elements of r  can be computed at a reasonable computational 

cost. Distillation has been utilised successfully in excited light meson spectroscopy 

|46, 47|.
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Chapter 4 

Group Theory

4.1 Octahedral Group

The continuum Hamiltonian is invariant under rotations in 50(3). The Hamiltonian 

of a spatially isotropic lattice is invariant under rotations of the cubic group O. 

This group comprises the twenty four rotations that map a cube onto itself. In 

the continuum it is possible to construct spatially extended baryon interpolating 

field operators that belong to the [2L + 1) - dimensional irreducible representations 

of 50(3), where L denotes orbital angular momentum. In the continuum L is a 

well-defined quantity. On a spatially isotropic lattice, it is possible to construct 

spatially extended baryon interj)olating field o])erators that belong to the irreducible 

representations of O. O has five conjugacy classes and therefore five single-valued 

irreducible representations - see the Appendix. These irreducible representations are 

labelled A\, A 2 , E,  Tj and T2 : they have dimensions 1, 1, 2, 3 and 3, respectively. 

Unlike the continuum case, each irreducible representation does not coincide with 

a distinct quantity L. A technique known as subduction can be used to infer the 

continuum orbital angular momentum content of lattice baryon interpolating field 

operators.

The direct product of the cubic group O with the two-element group [ t . V] ,  

consisting of the identity transformation 1 and the spatial inversion transformation 

V,  gives the Octahedral group denoted Oh- All lattice operators naturally possess
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iiivariancc under (). Since the Hamiltonian does not possess definite synnnetry under 

spatial inversion V,  latticc operators arc not guaranteed to possess any symmetry 

uiider spatial inversion. Care must be taken to ensure tha t lattice operators possess 

definite parity P.  This can be achieved in a straightforward manner by considering 

transformations under the larger group Oh- The octahedral group has 10 single

valued irreducible representations denoted Aig, A 2 g, A 2U, Eg, Tig, T\u, T2g 

and T2u- they have dimensions 1, 1, 1, 1, 2, 2, 3, 3, 3, and 3, respectively. The 

subscript g denotes gcrade or even under spatial inversion and u denotes imgcrade 

or odd under spatial inversion.

In this chapter, it will be shown how to construct lattice baryon interpolating field 

operators that belong to irreducible representations of O*. The process of subduction 

will be explained. These operators have fixed isospin 1, fixed parity P  and fixed spin 

.S'.

4.1.1 Projections into Irreducible R epresentations

In HQET the heavy quark is static. This quark does not contribute to the group 

theory except to define the origin of the baryon interpolating field operator. The 

positions of the light quarks are taken as being relative to the position of the heavy 

quark. Rotations under O are considered as rotations about the heavy quark point. 

Spatial inversion is considered as reflection through the heavy cjuark point. A general 

baryon interpolating field operator, that is to say, an operator with zero, one or both 

light quarks displaced from the origin can be described by the diquark consisting of 

its two light quarks. A schematic representation of a spatially extended diquark with 

one light quark at position ri, the other light quark at position r2 and the heavy 

quark at the origin is given in Figure 4-1.
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^  Heavy

O  Light

Figure 4-1: Spatially extended diquark.

Each transform ation in Oh is assigned a num ber ranging from 1 to 48. One diquark 

is selected and denoted Cj. Transform ation i applied to  diquark e\ produces diquark 

gj where i varies from 1  to 48. If no transform ation in Oh leaves this diquark invariant, 

a set of 48 diquarks - each with a distinct spatial orientation - is formed. In this case, 

gj can be specified by a 48-d vector with one in the position and zeroes elsewhere. 

Each transform ation i beginning with transform ation 1 is applied in sequence to  

d iquark 6 2  to produce a pernm tation of the 48 quantities e .̂ This process is repeated 

for diquark 6 3  and so on. In this m anner, a 48-d reducible representation M of Oh is 

formed. The diquarks act as basis vectors while the representative m atrices arc given 

by the perm utation matrices.

The m ultiplicity of the irreducible representation r for the reducible representation 

M is given by

m" =  (4.1)
3 k

where there are elements in class A:, is the character of the irreducible repre

sentation r for class k, Xk^ is the character of the representation M  for class k  and g 

is the  order of Oh [21]. The definition of the character of a group element w ithin a 

representation of the group is given in the Appendix. The ro tation  angles associated 

w ith the conjugacy classes arc given in Table 4.1. The character table for Oh is given 

in Table 4.2 [18].
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C 'l C 2 C 3 C 4 C 5 Ce 6 7 C s C '9 C i o

0 2n 7T 7T jr n 2jr 7T 7T 7T
3 2 4 2 3 2 4 2

Tabic 4.1; Rotation angles in conjugacy classes of Oh-

Cl C2 C3 C4 C5 Co C7 Cg Cg Cio

Alg 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 -1 -1 -] -1 -1

^2n 1 1 1 -1 -1 1 1 1 -1 -1

■̂ 2u 1 1 1 -1 -1 -1 -1 -1 1 1

Eg 2 - 1 2 0 2 - 1 2 0 0

2 - 1 2 0 0 - 2 1 - 2 0

Tia 3 0 - 1 1 - 1 3 0 - 1 1 - 1

T\u 3 0 - 1 1 - 1 - 3 0 1 - 1 1

n . 3 0 - 1 - 1 1 3 0 1 —1 1

T2u 3 0 - 1 - 1 1 - 3 0 1 1 - 1

Table 4.2; Character table for O/i.

An application of equation (4.1) shows that the decomposition of the 48-dimensional 

reducible representation of O/, into irreducible representations of contains each ir

reducible representation of Oh  with the multiplicity for the irreducible representation 

being given by the dimension of the irreducible representation.

The following projection operator

=  Y . x ' ^ { g ) M { g ) . .  (4.2)
a

projects a basis vector for representation M  into the irreducible representation n  

where x ^ i d )  is the character of an irreducible representation matrix for clement g  in

Oh-
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4.1.2 Subduced Representation

The m ethod of subduction is used to  uncover the continuum  orbital angular mo

m entum  content of operators belonging to  spatial irreducible representations of Oh- 

A formal definition of subduction is given in the Appendix. A subduced represen

tation  of Ok, labelled by continuum  spin L, is formed by selecting the irreducible 

representative m atrices of x { t , V }  th a t correspond to  the 48 elements of Oh

C 5 0 (3 )  X { ij 'P } . This representation is in general reducible. There is a two-to-one 

homomorphism from SU{2)  to  the continuum  H am iltonian sym m etry group S0{?>). 

The traces of SU{2)  m atrices for spin L and rotation angle 9 arc given by

^  s i i . [ (L  +  1 /2 ) 0 |

sin|9/2] • '  ^

The m ultiplicity of an irreducible representation r  of O/, for the subduced repre

sentation of Oh w ith continuum  spin label L is given by

1 r Lrur =
9

(4.4)

where there are elements in class k, x l  is the character of irreducible representation

r  for class k, Xk the character of the subduccd representation w ith continuum  spin

L for class k and g is the  order of the group [48].

The decomposition of the subduced representation of Oh w ith continuum  spin L 

into the irreducible representations of Oh, for spins from L =  0 to  L =  5, is given in 

Table 4.3.

L

0

1

2

3

4

5

A

■Alg © Alu

Is

Eg ® i?„
lu

© A2u © T\g ® Tl,j © T2g © T2u 

A-lg © (B Eg ®  E u  © Tig © Tl„ © T2g © T2u

Eg © Eu Is Itl Is 2s '2u

Table 4.3: The subduction of 5 0 (3 )  x { 1 ,P }  to  the irreducible representation A of 

Oh for integer L.
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A roiitiiiuuin operator th a t couples to a s ta te  w ith definite angular nionientiun 

L decomposes with an identifiable j^attern into different irreducible representations 

of O h  when it is rcstrictcd to  the lattice. If a s ta te  appears across the same pattern  

of irreducible representations it can be assigned the  continuum  angular m om entum  

label L .  An operator from any of these irreducible representations m ust couple with a 

non-vanishing coefficient to a continuum sta te  denoted by L. O perators transform ing 

according to  a given irreducible representation couple to  a tower of states. The tower 

of sta tes for each irreducible representation is given in Table 4.4.

0,4,6. .

-4iu 0,4,6. .

A2g 3,6..

■'̂ 2u 3,6..

2,4,5..

Eu 2,4,5..

T i, 1,3, 4,5..

Tiu 1,3,4,5. .

T2y 2,3, 4,5..

T2u 2,3, 4,5..

Table 4.4: Allowed values of L for each irreducible representation of Oh-

4.2 Pauli Exclusion Principle

The Pauli Exclusion Principle requires all baryon interpolating field operators to  be 

antisym m etric under interchange of its indistinguishable particles - namely its two 

light degrees of freedom. Each light quark has a colour index, a flavour index, a spin 

index as well as a spatial coordinate. Before considering sym m etries under O h ,  an 

elemental baryon interpolating field operator w ith appropriate colour, flavour, spin 

and spatial sym m etry m ust be designed, see the  quark model section of [4). There 

is a to ta l of four ways in which to  combine the light degrees of freedom to a tta in  an 

overall antisymm etry. In each case colour contraction of the heavy quark with the
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two light degrees of freedom is taken at the heavy quark point. Antisynnnetrization 

in colour space is achieved with the Levi-Civita tensor. This produces a colour- 

singlet quantity. The different symmetry combinations are given in Table 4.5 w'here 

A denotes an antisymmetric channel and S denotes a symmetric channel.

Colour Flavour Spin Space

A A A S

A A S A

A S S S

A S A A

Table 4.5: Symmetries allowed by the Pauli Exclusion Principle.

4.2.1 Flavour

The light quarks come in two different flavours - up (u) and down (d). Strange 

quarks are not simulated in this project. Isospin zero baryon interpolating field 

operators correspond to the antisymmetric flavor-space channel. Isospin one baryon 

interpolating field operators corres])ond to the symmetric flavor-space channel. The 

results are summarized in Table 4.6.

1 = 0 -^{ud  — du)

I  =  1 uu, -^{ud + du),dd

Table 4.6; Flavour symmetries.

4.2.2 D isplacem ent

In order to maintain gauge invariance, path-dependent gauge hnks are used to dis

place the light quarks. In the general case each light quark has a distinct spatial 

displacement from the heavy quark point. The combined symmetries are explicit in
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the most general elemental field operator given below

±{e“'"'(5“(x)[9" i^P{z, x)fCa0T0s[q ĵ {̂y)P{y, x)Y 

± e “'"̂ Q“(f)[<7';^(f)P(2 , x)]'’Ca0Tps[qj^{^P{y,  (4.5)

where f i  denotes the flavour of light quark one, a  denotes the spin of light quark one, 

P{y,  x) is the path-dependent gauge link (with two suppressed colour indices) that 

displaces a quark from point x  to point y, is the Lcvi-Civita tensor with exj)licit 

colour indices, C  is the charge conjugation matrix and F is a combination of gannna 

matrices. The combination of ±  signs as well as spin matrix F is chosen to satisfy  

the Pauli Exclusion Principle.

4.2.3 Spin

The four Euclidean gannna matrices satisfy the anticonm iutation relation below

{F^,Fi,} =  2 (5̂ ^x/4x4 (Dirac algebra), (4.6)

where ji G [0 ,1 ,2 .3 ]. This identity is basis-independent. There is an additional 

matrix F5 . It satisfies the following basis-independent identities

(F s)' =  / 4X4 , (4.7)

=  Fs, (4.8)

{ r 5 ,F^} =  0, (4.9)

where / 4X4 is the 4-dimensional identity matrix.

In Euclidean space F5 is defined as follows

F5 =  ?FoFiF2F3 . (4.10)

In HQET, the heavy quark spin decouples. The two sp in-1/2  light quarks combine 

to form either an S' =  0 or an 5  =  1 baryon interpolating field operator. The choice 

of gamm a matrix determines the spin.
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The charge conjugation m atrix  C  satisfies the following representation-independent 

identities

c v ^ c - ^  =  - r ^ ,  {0 ,1 ,2 ,3} , (4.11)

C T sC -^ =  r [ .  (4.12)

The basis used in this work is the Dirac basis. In the Dirac basis the charge conju

gation m atrix  has the following definition

c =  ? r 2 ro. (4.13)

The definition of the Euclidean metric tensor 8^'' and the representation of the gam m a 

m atrices arc given in the Appendix.

4.2.4 Spin Irreducible R epresentation

Each element g E Oh can be assigned a m atrix  R{g)  such tha t

R{g)e, = ±6j,  (4.14)

where e, is a unit vector in the direction and i , j  G {1,2.3}. The set of m atrices 

R{g) has the following property

R{gi92) = R{9 i )R{92), (4.15)

for g i ,g 2 S Oh, thus providing a m atrix  representation for Oh- The characters of these 

m atrices show th a t this representation is a Tit, irreducible representation of Oh- The 

Tiu irreducible representation of O/, is called the vector representation of Oh- The set 

of m atrices { rsF i, r 5 F 2 , FsFs} also forms a basis for a Ti„ irreducible representation 

of Oh- The set { F j,F 2 .F 3 } transform  as a Tig irreducible representation of Oh- 

Any element of { I,F o ,F 5 ,FoF 5 } can be used to construct an 5  =  0 operator which 

transform s as either an Aig or irreducible representation of Oh- The results are 

summ arized in Table 4.7.
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Spin Parity Symmetry

CTo 0 - S

CFs.CFoFs 0 + A

C 0 - A

CFi,CT2,rF3 1 + S

CT5Fi ,6T 5F2,6T 5F3 1 - A

CToF i F 5.C F oF2F5,CFoF3F5 1 - S

Table 4.7: Properties of gamm a matrices.

4.3 Parity

In 4-dimensional Euclidean space the parity transformation denoted by P , maps 

( t , x)  —> (/,, —x).  For a cjuantuni field ij){f,x) the parity transformation is a« follows

ip{x) —> '0 (x) =  S{'P)'ip{Vx).  (4-16)

where S'('P) is a unitary operator. The transformation of a diquark is as follows

q\'{y)CapT0sq^{z) ^  [S{V)]tqHVy)C^0T0s[S{V)]l4{Vz)

= q^{ry)[s{r)]tc^pT0s[siv)YXA'Pz)
=  q^{t, - ^ [ S { V m C , s T 0s [ S { V ) ] y , { t ,  - z )

=  q^, { t , - y )A, , q^^{ t , -^ .  (4.17)

where =  [5(7^)]^C«^r^45(P)]^.

There are two contributions to parity. The parity contribution due to the configu

ration of spatial coordinates is called smearing parity. The other contribution to par

ity is from the spin matrix. In any basis [CF] has definite parity of ± 1 , i.e. A =  ±[C F],

where F € { / , F o , F o F 5 , F i , F 2 , F 3 , F 5 F i . F 5 F 2 , F 5 F 3 .FoFiF 5 ,FoF 2 F 5 ,FoF 3 F 5 }. For an 

operator to have well-defined total parity it nmst also have well-defined smearing 

parity i.e. smearing parity of ± 1 .
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The two transform ations below have smearing parities of +1 and —1, respectively,

qi(t,f)[cr]asqi{t, ^ + gi(t, -^lcr]asq2(t 

^  1̂ 1 (i, +  g^(f, ^Acsg2(t,

=  (+1)1̂ 1 -iI)Aasqi{t, -^]

=  (+ i) (p ) [< /r (L y )[6 T ]„ ,y 2 '(^ -1  +  (4.18)

-  9r(^, - ^ [ C T ] a s q i { t , - z )

[<?f (^ . -f)Aasqi{t, -  qt{t, fiKsqiit,

=  { - '^) {p) [qi { t - y) [CT]a, sq2 { t , ^  -  q U i ^ ~ y ) [ C ^ ] a S q U t ^ - ^ ] ,  (4.19)

where p is the parity  due to  the spin m atrix  6T .

These two cases arc sum m arized in the following equation

q^{t, y ) [ c r ]^sq 2 { i ,  ^  +  (p)q?(f; - ^ i c r ] c , s q 2 ( t ,

->■ ( p ) ( p ) l q i ( i , ^ l c r ] a 6 q2 (i,  ^  +  (p) q i ( i ,  - ^ i c r ] a s g 2 (i, (4 .20)

where p = ±1  is the smearing parity  and p is the parity  due to  the spin m atrix. The

overall parity  is the product of smearing parity  and spin m atrix  parity.

4.4 Tensor Product of Spin and Spatial Irreducible 

Representations

Spin angular m om entum  and orbital angular m om entum  are combined by taking the 

tensor product of the irreducible representation of Oh associated with spin w ith the 

irreducible representation of Oh associated with spatial displacement. T he identity 

representation is the Aig irreducible representation. The tensor product of the Aiu 

irreducible representation w ith an irreducible representation D  produces the irre

ducible representation corresponding to  D  with the opposite parity. In general the 

tensor product of two irreducible representations produces a reducible representa

tion. The decomposition and projection into irreducible representations is given by
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the m ethods explained earlier. The coefficients used in the projection are Clebsch- 

Gordan coefficients. All possible tensor products and their decompositions are given 

in Table A-1 and Table A-2 in the Appendix.
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Chapter 5

Results

5.1 Results

All the techniques used in this work have been described in previous chapters. In 

this chapter, a sunnnary will be presented of key results. The chapter begins with 

a section on eigenvector testing. The next section is a study on non-local baryon 

interpolating field oi)erators. This is followed by a section on the cjuark model. This 

is followed by a section on effective mass fittings. Follow'ing this, there is a section 

on mass splittings. The next section shows a comparison of results with experiment. 

This is followed by a summary of, and comparison with, contemporary lattice work on 

the b-hadron spectrum. The chapter concludes with a brief discussion of systematic 

errors. To begin, the list of lattice parameters used in this work is presented in Table 

5 . 1.

In this chapter L denotes the orbital angular momentum of the diquark, S  denotes 

the total spin of the diquark, J  denotes the total angular momentum of the diquark, 

I  denotes the isospin of the diquark and P  denotes the parity under spatial inversion 

of the diquark. In the static limit of HQET the static (bottom) quark does not 

contribute to the orbital angular momentum, the spin, the isospin or the parity of 

the baryon interpolating field operator. For this reason the quantum numbers and 

group irrep label of the baryon operator and diquark operator are interchangeable.
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Param eter Value

.3 1.5

Volume 12^ X 96

Number of Configurations 49

N f 3

afTno -0 .0734

(Zg 0.12fm

3.5

'yg 4.3

3.4

Us 0,7336

I I I 1

Us 0.9267

u, 1

Cs 1.589

Ct 0.903

P 0.14

2

Table 5.1: Sum mary of all lattice param eters.

The lattice dimensions and the num ber of N j  =  3 dynamical gauge configurations 

are given. The bare up quark mass a^mo is given. The ratio of spatial to tem poral 

lattice spacings ^ as well as the anisotropies -jgj fixed during tuning are shown. 

The unsmeared spatial and tem poral tadpole factors in the gauge sector are given, 

denoted Us and Ut, respectively. The smeared tadpole factors in the fermion sector 

denoted Ug and Ut are given. The choice of stout-link smearing param eters in the 

gauge action denoted p and are presented. The values of the tree-level tadpole 

improved coefficients Cg and c# are shown.
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5.2 Eigenvector Tests

Previous work on distillation [44] has studied the dependence of 2-point correlator 

d a ta  on the num ber of eigenvectors of the Laplace operator utilized in the distillation 

procedure. In th a t work, single exponentials w'ere fitted to  correlators and effective 

mass plots were analysed. These plots show th a t excited s ta te  contam ination as well 

as noise are sensitive to  the num ber of eigenvectors used in the distillation process. 

In this work, a study  was conducted on the dependence of the quality of d a ta  on 

the num ber of eigenvectors. The results from this study are given in Figures 5-1 

and 5-2. Throughout this chapter, the effective mass plots presented are for fits of a 

single-exponential to  a 2-point correlation function.
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Figure 5-1: Eigenvector test for an (L =  1, 5  =  0, J  =  1, /  =  0, P  =  —) sta te  with 

a Ti operator.

Figure 5-1 has two m ain features. Firstly, it dem onstrates th a t the value of the
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effective mass for a particular timeslice decreases as the number of eigenvectors is 

increased from 4 to 12. This is seen for each of the 4 timeslices. Secondly, it demon

strates tha t the error in the effective mass decreases as the number of eigenvectors is 

increased from 4 to 12. This is observed for cach of the 4 timeslices. In Figure 5-2, a 

plateau in the effective mass first begins to appear around timeslice / =  11 for both 

Ngy = 12 and N^v =  24. The effective mass plot for Nev = 12 begins to show definite 

signs of noise at timeslice t — 16. Whereas the effective mass plot for Nĝ . = 24 

begins to show definite signs of noise at timeslice / =  21. Thus increasing the num

ber of eigenvectors from 12 to 24 improves the statistical error by allowing fitting 

over a wider time window. All data points for the Âev =  12 data are higher than 

the corresponding data points for the = 24 data up to and including timeslice 

t = 15.

0.8

ev
N =24

ev0.7-B

0)

" l i n -  * ()- -

. ()±t)0.5

0.4

0.3,
t/a,t

Figure 5-2: Eigenvector test for an (Z, =  0, 5  =  0, J  =  0, /  =  1, F  =  —) state with 

an Ai operator.

The data in Figure 5-1 was obtained using an earlier version of CHROMA |22] on 

a data set of 99 configurations. The data in Figure 5-2 was obtained using the most 

current version of CHROIMA. The number of configurations used is 49.
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5.3 Non-Local Operators

One-link, two-link and three-link operators were tested with 12 eigenvectors. Spin-0 

operators for each of the five irreducible representations of O were tested. Both 1 = 0 

and /  =  1 as well as F  =  - I -  and P = — operators were tested. In each case, it was 

seen tha t the effective mass plots were identical within an individual irrep. That is to 

say, no variation in excited state contamination was seen in moving from the simplest 

realization of an irrep operator to an operator with a slighlty larger radius. Figure 5-3 

is one such example. This suggested tha t further study of the dependence of excited 

state contamination on the spatial configuration of the diquark was nccessary. C- 

code was written to construct Ai operators with both light quarks displaced from 

the origin and from each other. Operators with a radius of less than 8 spatial lattice 

imits were constructed. A sample of more than 250 operators were tested. This 

examination used 4 eigenvectors and 5 configurations. Again, very little variation 

in excited state contamination was seen. These results are summarized in Figure 

5-4 which displays an arbitrary sample of 6 of these operators with inclusion of the 

corresponding single-site operator for direct comparison. All results presented in this 

chapter for irreps with dimension greater than 1 were obtained by fitting a single 

exponential to the row-averaged correlator for the irrej). Results obtained by fitting 

a single exponential to an individual row of an irrep arc given in the Appendix.

A small number of correlation matrices up to dimension 5 were constructed for 

Ai and Ti operators. Again both parities and both isospins were tested. These 

simulations were run with 24 eigenvectors and on 49 configurations. A variational 

analysis was performed |49, 50) . The results of one such test are plotted in Figure 

5-5. No excitations were observed.
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Figure 5-3; Comparison between one-link, two-link and three-link data for an (L =  0, 

5  =  0, J  =  0, /  =  0, P  =  —) state.
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Figure 5-4: Sample of different (.4i, /  =  0, P  =  —) operator results.

Operator Quark 1 (x, y, z) coordinates Quark 2 (x, y, z) coordinates

Operator 1 1 1 CO o (7,1,1)

Operator 2 ( -6 ,0 ,0 ) (2,0,0)

Operator 3 ( - 4 , - 2 , - 5 ) (1,4,3)

Operator 4 ( - 1 , - 5 , 3 ) (1,5,3)

Operator 5 ( - 1 , - 5 , - 3 ) (2,1,2)

Single Site (0,0,0) (0,0,0)

Table 5.2: List of displacement operators.

O Operator 1 
□ Operator 2 
O Operator 3 
A Operator 4 
<1 Operator 5 
V Single Site

I
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Figure 5-5: Variational analysis results for a 4 x 4 correlation m atrix  optimized on 

timeslices (^o =  0 , =  1,2) for one-link, two-link and three-link isospin-1 operators 

in the Ai^ irreducible representation of O/,.

5.4 Quark M odel

The up quark denoted u is an isospin-1/2 particle with isospin projection / j  =  -1-1/2. 

The down quark denoted d is an isospin-1/2 particle with isospin projection =  

— 1/2. The particlc has isospin 7 =  0 with quark contcnt udb, where b denotes a
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bottom  quark. The quark model [4] gives the  lowest A° particle the quantum  numbers 

J  =  1/2 and P  =  +,  where J  and P  denote to ta l angular m om entum  and parity, 

respectively. and belong to  the isospin-1 trip let {uud, udb. ddb). In the

quark model the  lowest S(, particle has the quantum  numbers J  =  1/2 and P  =  +.  

The masses of bo th  Ai, and S/, have been m easured experim entally [2, 6]. The E(, - 

Aft splitting has already been m easured in lattice QCD. In this project, the operators 

th a t couple to the lowest lying A(, and particles are designed according to  the 

symm etries of the "good" and "bad" diquarks in [51].

5.5 Effective Mass Fittings

The effective mass plot for each operator was individually inspected. In each case, a 

minimum value for the lower fit timeslice param eter to was chosen. This was taken 

to be the timeslice value a t which the effective mass l)egins to ])lateau. A maximum 

value for the higher fit timeslice param eter ti was taken. This was chosen to be 

the timeslice beyond which fitting would be meaningless due to  noise. Ground state  

effective mass fittings were performed for all pairs (to, t i)  th a t lie within these limits. 

The fits with the better values of Xdo f  were selected. For each operator, these results 

are collated in a detailed figure which contains three subplots. The first subplot shows 

the effective mass. The second subplot shows the b e tte r ground sta te  effective mass 

fits. The th ird  subplot shows the corresponding set of Xdoj  values.

5.5.1 A i Results

Four states are studied in this section. A single-site operator is defined as an operator 

with all three quarks living on the same lattice site. Both single-site and one-link 

operators were used to  sim ulate an operator th a t couples to  A .̂ There was only a very 

slight difference in the quality of the d a ta  between these two operators. The one-link 

operator was selected as the A(, canditate  for the calculation of mass sphttings. The 

following five pages each contains a figure containing effective mass results as well as 

a brief description of the operator underneath.
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Figure 5-6: Irrcp Ai:  L =  0, 5  =  0, J  =  0, /  =  0, P  =  +.

This operator is constructed with the spin m atrix  C T 5 . It is a single-site operator. 

It couples to  the lowest lying Af, state. The mass of Af, has been experimentally 

determ ined.
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Figure 5-7: Irrep Ai .  L =  0, 5  =  0, J  =  0, /  =  0, P  =  + .

This operator is constructed w ith the spin m atrix  CTsFo. It is a non-local opera

tor. It couples to  the lowest lying A ; ,  sta te . The mass of A f ,  has been experimentally 

determined.
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This operator is constructed with the spin matrix C.  It is a single-sitc operator.
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Figure 5-9: Irrep Ai: L = 0, S  = 0, J  = 0, I  = 1, P  = +.

This operator is constructed with the spin matrix CFsFo. It is a non-local oper

ator.
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This operator is constructed with the spin matrix C T q. It is a non-local operator.
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5.5.2 Spin-1 Results

This section contains results for the masses of four states. Three of these states have 

been m easured by contem porary lattice calculations. One of these states is the lowest 

lying S(, state . The results for the Ti, 1 = 0 and F  =  +  operator are the first results 

for the J  =  1, /  =  0 and P  = + state.
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Figure 5-11: Irrep Ti'. L =  0, S  =  1, ,/ =  1, /  =  0, F  =  +.

These are the row-averaged results for operators th a t are constructed with the 

spin m atrices C r i , C r 2 and C T 3 . These results are the first results for this state.
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Figure 5-12: Irrcp Ti. L =  0, 5  =  1, J  =  1, /  =  0, P  =  —.

These are the row-averaged results for operators that are constructed with the 

spin matrices C F 5 F i , C F 5 F 2  and C F 5 F3 . These are single-site operators.
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Figure 5-13; Irrep Ti; L = 0, S  = 1, J  =  1, I  =  1, P  =  +.

These are the row-averaged results for operators that arc constructed with the  

spin matrices C T i, C P 2 and CPs. These are singlc-site operators. They couple to the  

lowest lying S j state. The mass of has been experim entally determined.
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Figure 5-14: Irrcp Ti .  L =  0, S' =  1, J  =  1, /  =  1, P  =  —.

These arc the row-averaged results for operators th a t are constructed with the 

spin m atrices C T oF irs , C r o r 2 r 5  and C ToFsrs. These are single-site operators.
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5.5.3 E  Results

All the operators in this section arc non-local. All the results in this section are the 

first results for J  =  2 static-light-light baryons. The masses of four newly determined 

states arc given in this section.
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These arc the row-averaged results for operators that are constructed with the 

spin matrix CT^.
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These are the row-avcraged results for operators that are constructed with the 

spin matrix C.
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These are the row-averaged results for operators that arc constructed with the 

spin matrix CT5 .
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These are the row-averaged results for operators that are constructed with the 

spin matrix C Fq.
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5.5.4 Fitting Method

For each operator in Figures 5-6 to 5-18 inclusive, it is necessary to select one "best 

fit". Two criteria were used to select a best fit. The first criterion is tha t the fitted 

effective mass must be one of the lowest fitted effected masses for that operator. This 

criterion eliminates effective masses tha t include excited state contamination. The 

second criterion is to chose from the shortlist of good fits, the one with the widest 

time range. In each case, once the first criterion is met only two to three candidates 

remain for the best fit. In order to maximize statistics, the one with the wider or 

widest time range is chosen. Bootstrapping with 100 bootstrap samples is used to 

estimate the statisical error. Fitting details for the ground state effective masses are 

given in Table 5.3. There is a wide range in precision ranging from the one percent 

level to the six percent level. The range of the fit windows vary considerably from 

three timeslices in length to nine timeslices in length.

State (L, S, J, I,  P) Operator Fit Range atrn Precision (%)

(0,0 ,0 ,0 , -h) ^1 (13,20) 1.16 0.405(3) 1

(0,0, 0 ,0 , - ) (10,18) 1.33 0.53(3) 6

(0 ,1 ,1 ,0 ,+ ) Ti (11,14) 1.23 0.61(1) 2

(0 ,1 ,1 .0 ,- ) Ti (12,19) 0.71 0.534(5) 1

(2 ,0 ,2 ,0 ,+ ) E (13,15) 0.38 0.60(2) 3

(2 ,0 ,2 ,0 ,- ) E (12,15) 1.87 0.61(1) 2

(0 ,0 ,0 ,1 ,+ ) ^1 (11,15) 1.35 0.571(7) 1

(0 ,0 ,0 ,1 ,- ) ^1 (13,17) 0.89 0.532(5) 1

(0 ,1 ,1 ,1 ,+ ) Ti (13,17) 0.89 0.429(3) 1

(0 ,1 ,1 ,1 ,- ) Ti (13,19) 0.92 0.534(5) 1

(2 ,0 ,2 ,1 ,+ ) E (11,14) 1.17 0.594(7) 1

(2 ,0 ,2 ,1 ,- ) E (13,17) 1.64 0.59(2) 3

Table 5.3: Ground state fitting details

(^0, î)-

or all states including o /  fitting range
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5.6 Mass Splittings

All results presented thusfar have been in lattice units. In order to reconnect with the 

units of particle physics such as GeV an experimentally determined input is required. 

The mass of the baryon [7] is used as experimental input to set the scale of the 

temporal lattice spacing in the units of particle physics [25|. The latticc measurement 

of Q was (ifniQ = 0.353. Taking the experimentally determined mass of 1.672GcV 

gives an inverse lattice spacing of = 4.74GcV. In this project, there is a self energy 

correction present in all mass calculations. This correction is the same for all states. 

This means that only mass differences can successfully be measured. In the literature, 

mass si)littings are tyi)ically (juoted between i>airs of states that differ in only one 

quantuni number. This quantum number is usually either total angular momentum, 

isospin or parity. Results are presented in a similar fashion in this project except 

tha t total angular momentum is replaced by a group irrej) label. Mass splittings are 

presented in Tables 5.4, 5.5 and 5.6.

In Table 5.4, mass splittings between states of different isospin are given. The 

pair of operators involved in the calculation of the mass splittings share the same 

orbital angular momentum L, spin S,  parity P  and total angular momentum J. All 

mass splittings are taken between pairs of operators belonging to the same irreducible 

representation of O.

States {L , S , J , 1 . P) Splitting m(MeV) Precision (%)

( 0 , 0 , 0 , 1 , + ) - ( 0 , 0 , 0 . 0 , + ) 784(25) 3

( 0 , 0 , 0 , 0 , - ) - ( 0 , 0 , 0 , l . - ) 23(15) 65

( 0 , l , l , l , - ) - ( 0 , 1 , 1 , 0 . - ) 10(6) 60

( 0 , l , l , 0 , + ) - ( 0 , l , L l , + ) 869(42) 5

( 2 , 0 , 2 , 0 , - ) - ( 2 , 0 , 2 , L - ) 104(87) 84

( 2 . 0 , 2 , 0 , + ) - ( 2 , 0 , 2 . 1 , + ) 71(58) 82

Tabic 5.4: Mass splittings between states with the same parity P  and total angular 

momentum J  but different isos])in /.
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Ill Table 5.5, mass splittings between states of different parity are presented. 

The pair of operators involved in these calculations share the same orbital angular 

momentum L, spin S,  to tal angular momentum J  and isospin / .  All mass splittings 

are taken from pairs of operators belonging to the same irreducible representation of 

( ) .

States (L, S. J, 1, P) Splitting m(MeV) Precision (%)

( 0 , 0 , 0 , 0 , - ) - ( 0 , 0 , 0 , 0 , + ) 610(22) 4

( 0 , 0 , 0 , 1 , + ) - ( 0 , 0 , 0 , 1 , - ) 186(29) 16

( 0 , 1 , 1 , 0 , + ) - ( 0 , 1 , 1 , 0 , - ) 370(33) 9

( 0 , 1 , 1 , 1 , - ) - ( 0 , 1 , 1 , 1 , + ) 500(14) 3

( 2 , 0 , 2 , 0 , - ) - ( 2 , 0 , 2 , 0 , + ) 68(54) 79

( 2 , 0 , 2 , l , + ) - ( 2 , 0 , 2 , l , - ) 70(60) 86

Table 5.5: Mass splittings between states with the same isospin /  and total angular 

momentum J  but different parity P.

In Table 5.6, mass splittings between pairs of operators belonging to different 

irreducible representations of O are presented. For a given splitting, the pair of 

operators share the same isospin / and parity [ \

States (L, S, J, / ,  P) Splitting m(MeV) Precision (%)

( 0 , 1 , 1 , 0 , + ) - ( 0 , 0 , 0 , 0 , + ) 979(42) 4

( 2 , 0 , 2 , 0 , + ) - ( 0 , 0 , 0 . 0 , + ) 941(79) 8

( 0 , 0 , 0 , 0 , - ) - ( 0 , l , l , 0 . - ) 18(13) 72

( 2 , 0 , 2 , 0 , - ) - ( 0 , 0 , 0 , 0 , - ) 351(63) 18

( 0 , 0 , 0 , 1 , + ) - ( 0 , 1 , 1 , 1 , + ) 674(29) 4

( 2 , 0 , 2 , 1 , + ) - ( 0 , 0 , 0 , 1 , + ) 112(32) 29

( 0 , 1 , 1 , 1 , - ) - ( 0 , 0 , 0 , 1 , - ) 14(9) 64

( 2 , 0 , 2 , 1 , - ) - ( 0 , 0 , 0 , 1 , - ) 269(82) 30

Table 5.6: Mass splittings between irreducible representations of O.
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5.7 Comparison with Experiment

Experimentally, the masses of A°, S,7, E p ,  E!,7 and h^^e all been

determined [5, 6, 7, 8]. The experimentally determined masses of the baryons relevant 

to this project are given in Table 5.7. None of the quantum numbers shown have 

been measured. They are quark model predictions.

State Mass (GeV) i{jn Quark Content

A? 5,620.2 ±  1.6 o(r) udb

sr 5,807.8 ±  2.7 ur) uub

5,815.2 ±  2.0 i(i^) ddh

5, 829.0 ± 3 .4 1 ( f ) uub

^ b 5,836.4 ±  2.8 1 ( f ) ddh

Table 5.7: Experimentally determined bottom  baryon masses.

As explained in Chapter 4, static-light-light baryon interpolating field operators 

arc labelled by the irreducible representation of Oh to which the diquark belongs. The 

procedure for comparing these operator results with Particle D ata Group (PDG) data 

is twofold. Firstly, the irrep label of the diquark nmst be translated into a continuum 

diquark angular momentum value. Secondly, the heavy quark spin which docs not 

contribute in the static limit of HQET must be reintroduced. In the continuum limit, 

a static-light-light baryon interpolating field operator in the A\ irrep of Oh couples 

to a state with zero diquark total angular momentum. Reintroducing the heavy 

quark spin gives a J  =  |  state. In the continuum limit, a static-light-light baryon 

interpolating field operator in the T\ irrep of Oh couples to a state with unit diquark 

total angular momentum. Reintroducing the heavy quark spin could give a state 

with J  =  i  or J  =  I . Experimentally, there is a splitting on the order of 20MeV 

between these states.

On the lattice, it is possible to calculatc the mass splitting between S;, and A(,. 

Such a measurement in this project gives

m(E,, -  A,,) =  110(6)MeV. (5.1)
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The experim ental result for this splitting is 191(4)MeV. Results for the operator th a t 

couples to  Ab are given in Figure 5-7. Results for the operator th a t couples to  E;, 

are given in Figure 5-13. The sta tistical precision in the determ ination of the A;, 

effective mass is one percent. The fit window includes d a ta  from eight timeslices. 

The statistical precision in the determ ination of the Ef, effective mass is also one 

percent. The fit window includes d a ta  from five timeslices. System atic errors are 

discussed in a later section.

5.8 Contemporary Results

There are a variety of ways of studying heavy hadron physics. O utside of latticc QCD, 

theoretical work includes the quark model, the QCD sum rules and the combined 

heavy quark and 1/A^c expansions. W ithin lattice QCD different collaborations have 

been studying the b-hadron spectrum  using different approaches.

Non-relativistic quantum  chromodynamics (NRQCD) [52] is used for bottom  

quark sim ulations in [9]. Actions are com puted by CP-PACS and JLQCD [53. 54]. 

The gauge action is an Iwasaki action and the fermion action is a clover improved 

action. Results are obtained at a single lattice spacing. Eight different ensembles 

arc used corresponding to two different strange quark masses and four different light 

quark masses. Simulations are performed at three values of the heavy quark bare mass 

allowing for an interpolation to the physical bottom  mass value. E xtrapolations are 

m ade for up/dow n quarks and interpolations are m ade to the physical strange quark 

mass. The m easured value in this setup for the Ef, — Ab sp litting  is 154(26)MeV.

Another group [10] uses NRQCD to  sim ulate the b quark. Sea and valence quarks 

are trea ted  with the dom ain wall fermion action ]55]. The gauge action is an Iwasaki 

gauge action ]56, 57]. The gauge ensembles used are generated by the RBC and 

UKQCD collaborations ]58]. All calculations are performed at a single lattice spacing. 

Spin splittings arc calculated. The E,* — Sb spHtting is m easured to  be 25(25)MeV.

One group sim ulates the  b quark w ith an improved clover heavy quark action 

with the  Fermilab in terpretation  [59]. They use MILC lattice gauge configurations 

with 2-1-1 dynamical sea quark flavors [GO]. An improved staggered fermion action is
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used for the  ligh t quarks [60]. F ine (n ^  0.09fin), coarse (a «  0.12fm) and m cdium - 

coarsc (a «  0.15fm) la ttices are used. Mass differences are calculated from  the ra tio  

o f propagators. E xtrapo la tions to  the chira l lim it  arc made using the fu ll Q C D  data 

points. The mass differences Eh — A^, HJ, — and fl(, — E!;, agree well w ith  the PDG 

data. A ll results are p lo tted  in  [11, 12[. Possible sources o f error in  these calculations 

include a constant mass sh ift due to  the heavy quark or the hyper-fine s tructu re  o f 

the singly heavy baryon.

The Bern-Graz-Regcnsburg BGR co llaboration [13[ simulates the b quark w ith  

a s ta tic  quark action. D ynam ica l N f  =  2 ensembles arc used. The gauge action is 

a one-loop im proved Luscher-Weisz action for bo th  the sea and the valence quarks. 

C h ira lly  im proved ferniions are used for the ligh t quarks. The signal-to-noisc ra tio  of 

long distance correlations is greatly  enhanced by im plem enting the so-called domain- 

decon ijjos ition  im provem ent [Gl[. Both  baryon mass differences and baryon-meson 

mass differences are calculated. Extra ])o la tions to and in te rpo la tions to

are perform ed by p lo ttin g  mass differences against m^. F in ite -a  dynam ical mass 

differences agree w ith  experim ental values. Some calculations o f the 1 / m q  k ine tic  

corrections are also carried out. The measured value in  th is  setup for the — Af, 

s p litt in g  is 200(27)MeV.

A no ther group [14] simulates the b quark w ith  a s ta tic  quark action. Ensembles 

o f 2 - I -  1 flavor la ttices are used. These are generated by the R BC  and U K Q C D  col

laborations using Iwasaki gauge actions. D om ain wall propagators arc computed for 

the lig h t and strange quarks using various d ifferent p a rtia lly  quenched quark masses. 

The s ta tic  lim it  o f H Q E T  is taken for the bo ttom  quark. In  th is  l im it  the =  1/2+ 

states (Ef,, E j, fife) and the =  3 /2+  states become degenerate. Simple

linear, quadratic  and cubic fits  to  give the d iira l extra])o lations. Mass differences 

are ca lcu la tcd at a single la ttic c  spacing. The measured value in  th is  setup for the 

Sfe — Ab sp litt in g  is 190(130)MeV.

Yet another group [15[ simulates the b quark w ith  a s ta tic  quark action. The 

gauge action used is a one-loop tadpole improved gauge action generated by the 

M IL C  collaboration. The ferm ion action fo r the sea quarks is the asqtad im proved
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Kogut-Susskind action. Domain-wall fcrmions arc used for the light valence quarks. 

Chiral extrapolations to  the light quark mass are made by fitting d a ta  to  m^. The 

strange quark mass value is already near the physical point, this can be accounted 

for by a system atic error. Mass splittings are calculated. The m easured value in this 

setup for the E;, — A;, sphtting  is 274(25).

The European Twisted Mass Collaboration takes the static  limit of HQ ET to 

sim ulate the b quark [41]. A HYP2 [62, 63, 64] static  action is used for the  b quark. 

N f  =  2 flavour ETM C gauge fields are used. The gauge action is tree-level symanzik 

improved. The ferniion action is a W ilson tw isted mass action. Light quarks with the 

same mass as the sea quarks are used for a range of pion masses. E xtrapolation to 

the physical point is taken. Masses are determ ined a t a single lattice spacing. This 

group presents the first results for negative parity states. Results agree with quark 

model predictions. Mass predictions from three ditt'erent quark models [65, 6G, 67[ 

are given in Table 5.8. A comparison of the results from this project w ith the  ETM C 

results is given in Table 5.9. The ETM C mass splittings are given in Table 5.10. The 

corresponding splittings m easured in this project are given in Table 5.11

It is worth noting th a t in Table 5.8 particles are labelled by their to ta l angular 

m om entum  J . In the static  limit of H Q ET the static  quark does not contribute to 

to tal angular momentum.

nn m(McV)[65] m(MeV)[66] m(MeV)[67]

o(D 5622 5585 5624

0 ( f ) 6189 6145 6246

o(r) 5930 5912 5890

0(f) 5947 5920 5890

i(r) 5805 5795 5789

1(f) 5834 5805 5844

i(r) 6108 6070 6039

i(D 6076 6070 6039

Table 5.8: Various quark model mass splittings.
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lun (Trinlat)a(m Precision (%) (ETM C)atm Precision (%)

0(0+) 0.405(3) 1 0.1889(85) 5

O(O-) 0.534(4) 1 0.5612(318) 6

O (l-) 0.534(5) 1 0.3727(175) 5

l(O-) 0.532(6) 1 0.3519(440) 13

1(1+) 0.429(3) 1 0.2629(84) 3

l ( l - ) 0.534(5) 1 0.4376(162) 4

Table 5.9; Comparison between Trinlat and ETMC data.

State 1 /(J^ ),S ta te  2 /( J ^ ) Mass difference MeV Precision (%)

O(O-), 0(0+) 1069(161) 15

o(o-) ,  o ( i - ) 818(194) 24

O (l-), 0(0+) 251(123) 49

l(O-), 1(1+) 294(182) 62

i ( i - ) ,  i (o- ) 132(197) 149

l ( l - ) ,  1(1 + ) 426(99) 23

1(1+), 0(0+) 181(60) 33

Tabic 5.10: ETMC mass splittings.
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State 1 /(J^),S ta te  2 I{J^) Mass difference MeV Precision (%)

O(O-), 0(0+) 610(22) 4

O(O-), O(l-) 18(13) 72

O(l-), 0(0+) 609(21) 3

l(O-), 1(1+) 488(17) 3

l( l - ) ,  l(O-) 14(9) 64

l( l - ) ,  1(1+) 500(14) 3

1(1+), 0(0+) 110(5) 5

Table 5.11: Trinlat mass splittings.

The mass splitting between the baryon and the A(, baryon has been measured 

by all of the lattice groups working on heavy baryons. The results from this project 

compare well with these results. A direct comparison is given in Table 5.12. Results 

by Meinel as well as results by Gottlieb and Na agree with experiment. Their results 

appear in plots in [10, 11, 12).

Group m (Sfe -  Afe)(MeV) Precision (%)

This project 110(5) 5

Detmold, Lin, Wingate 190(130)68 77

Lin, Cohen, Mathur, Orginos 274(25) 9

BGR 200(27) 14

Lewis and Woloshyn 154(26)17 20

ETMC 181(60) 33

PDG 191(4) 2

Table 5.12: Comparison of different S t—Af, lattice mass splitting calculations.

In summary, high precision calculations of ground state masses have been per

formed. The statistical precision in mass fittings is typically at the one percent level 

and at most is at the six percent level. The ordering of states calculated in this 

project is in agreement with contemporary latticc work, quark models and exper-
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inicnt. The calculation of the — Ai, splitting is 80McV lower than experiment. 

Systematic errors of 0(100)McV appear in mass splittings. Negative parity states 

have been calculated as w'ell as the first J  =  2 mass splittings.

5.9 System atic Errors

Many sources of systematic error appear in this work including finite-volume ef

fects, simulating at unphysical light quark masses, taking the static approximation 

of HQET and discretization effects. Simulations were run at a single lattice spacing 

and for a single quark mass. Therefore it is not possible to study the continuum limit 

behaviour, the dependence on the light-quark mass or possible finite-volume effects. 

A detailed study of the errors is beyond the scope of this project. Instead a brief 

description is given here.

The scaling behaviour for the cuiisotropic clover fermion action is 0{a)^.  Tuning 

removes possible 0{a)  errors. There is a leading discretization error in the Symanzik- 

imjjroved gauge action with tree-level tadpole improved coefficients of 0{a ‘l, a f , g^al) 

[25]. According to HQET, the leading error to the static approximation is 0 ( l /m g )  

where niQ is the mass of the heavy quark. The statistical error in the number of gauge 

configurations scales as where N  is the number of configurations. Sinmlations 

were run on 49 configurations of gauge fields. The statistical precision of results in 

this project is high.

An understanding of the systematic errors involved in this project is possible by 

drawing a comparison with work done by the Hadron Spectrum Collaboration |22] 

which has performed hadron spcctroscopy using the same lattices as this project. 

Recent work on charmonium [68] assigns an approximate scale of 40MeV to the 

Icading-order 0{as)  correction to the fermion action arising from using the tree-level 

tadpole-improved value for r,. However, a full study of the discretisation effects 

by using a non-perturbatively determined value of Cg was not conducted. A volume 

dependence study of light meson spectroscopy showed no significant change in results 

between 16  ̂ x 128 and 20^ x 128 lattices [69]. A study of the light quark mass 

dependence of light meson spectroscopy results on quark masses down to pion masses
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~  400MeV was also conductcd. Only a mild dcpendcnce of results on the quark mass 

was observed. Experimentally the SjJ — Ef, splitting has been measured at 21MeV. 

These J  =  3/2 and J  = 1/2 states become degenerate in the static limit of HQET. 

For this reason the 0{l/mQ) correction is expected to be relatively small [41].

In summary, it is worth emphasising that a detailed analysis of systematic errors 

is beyond the scope of this project. Reference has been made to the most relevant 

contemporary lattice work in an attempt to quantify the systematic errors. This 

approach has its drawbacks insofar as systematic studies of all the sources of error 

incurred in this project do not exist.
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Chapter 6 

Concluding Remarks

The focus of this j^roject was a complete exam ination of the use of distillation on 

an anisotroj)ic lattice in the static limit of HQET. To th is end, a knowledge was 

rec|uired of how' to construct the most general non-local baryon interpolating field 

operator transform ing as an irreducible representation of Oh- The m easured quantity  

from sinnilations was the static-light-light correlation function. A small num ber of 

correlation m atrices were also measured and analysed.

The first step in examining the si>ectrum of static-light-light baryons is the ('on- 

struction of non-local baryon interpolating field operators, as discussed in C hapter 4. 

This is the first tim e th a t the techniques for constructing spatially extended hadron 

operators have been applied to static-light-light baryons. Non-local operators were 

constructed, and correlation functions between a source operator a t timeslice t and 

a sink operator a t timeslice t + dt were measured. In order to  improve statistics, 

averaging over all source timeslices t was taken. Single exponentials were fitted to 

these correlation functions. Ground sta te  effective masses were obtained. The ef

fective mass plot typically shows three regions. The first region is characterized by 

excited sta te  contam ination. The second region shows a plateau. The th ird  region is 

characterized by noise. The divide between these three regions can be quite blurred. 

Tests were conducted to  establish how the effective mass depends on the number of 

eigenvectors It was established th a t increasing the num ber of eigenvectors from 

between 4 and 24 shows a dram atic reduction in cxcited s ta te  contam ination as well
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as a reduction in noise.

Once the eigenvector dependence was understood, studies of some low dimensional 

{i^dim < 6) correlation functions were performed. Operators belonging to the same ir

reducible representation of Oh, but w'ith different light quark field displacements were 

utilized. To begin, one-link, two-link and three-link operators were used to construct 

correlation matrices. The variational analysis of the correlation matrices showed two 

interesting results. Firstly, no excited states were found. Secondly, diagonalization 

of the correlation matrices gave the same ground state effective mass as any of the 

effective masses obtained from self-correlators. In a successful variational analysis 

optimized correlators are constructed. The optimized correlator for the ground state 

would give a better determination of the ground state mass than would the input cor

relators. Further variational analysis was performed using operators with the light 

quarks disj^laced from the static quark by ever increasing distance. Again the results 

were the same. This prompted the study of various elaborate operators.

Detailed studies were conducted on the dependence of the profile of the effective 

mass plot (obtained from single exponential fits to the correlator) with the diquark 

displacement vectors. 6'-code was written to construct different spatial configurations 

of diquarks with both light quarks displaced from the static quark, from each other 

and less than eight lattice units in radius. A sample of more than 250 such diquarks 

were tested on a data set of 5 configurations and with N^y = 4. The operators in ques

tion belonged to the Ai irreducible representation of Of,- Both isospin-0 and isospin-1 

sectors were tested as well as both parities. No variation in the effective mass profile 

was observed. It was concluded tha t finding static-light-light baryon interpolating 

field operators suitable for variational analysis and optimization is challenging.

Determining the low-lying ground state static-light-light spectrum subsequently 

became the sole focus of the project. Ground state fittings to 12 different operators 

were carried out and ground state masses, which include a constant self-energy cor

rection, were determined with reasonable success. Mass splittings were calculated. 

The range in precision between results is from the one percent level to the six percent 

level. Some of the results obtained in this project do not yet have a lattice counter-
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part. The ETMC has measured a subset of the masses and mass splittings that lie 

within the scope of this project. Their results are in agreement with quark models. 

Some ETMC mass splittings differ in magnitude from the results presented here.

Experimentally, only one mass sphtting is a suitable candidate for comparison: the 

S/, - A/, mass splitting. This splitting has been calculated by various lattice groups by 

treating the heavy quark in various lattice setups - NRQCD, HQET, clover fermions 

with the Fermilab interpretation. The lattice results from different collaborations are 

all of the same order of magnitude. Precision varies across collaborations. The S{, - 

A(, splitting extracted in this project is smaller than the experimental result.

In summary, some high precision measurements have been performed. In general 

the Ai and the Tj operators give a better signal than the E  operators. The use of 

distillation on an anisotropic lattice in the static limit of HQET jnoduces results with 

a high level of statistical precision. Mass predictions for the four ,7 = 2 states have 

been made. Quantifying systematic errors has been beyond the scope of this project. 

Comparing results with conteniporay work suggests large systematic errors arise. 

There are two obvious candidates for further work in this area. The first would be to 

sinnilate at a different lattic'e spacing in an attem})t to study discretization effects. 

The second would be to include 0 ( l/m g )  corrections to the static approximation of 

HQET.
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Appendix

M athematical Definitions

The commutator of two matrices A and B  is denoted [A, B] and is defined as

[A,B] = A B - B A .  (A-1)

The Heaviside step function denoted 0  is given by 

f 0 if X < 0;
©(x) =  (A-2)

1 if a" > 0.

The Lcvi-Civita tensor denoted is defined by

0 if any two labels arc the same;

1 if a, b, c is an even permutation of 1, 2, 3; (A-3) 

— 1 if a, b, c is an odd permutation of 1, 2, 3.

There are three even permutations of 123. They arc 123, 312 and 231. There arc three 

odd permutations of 123. They arc 213, 132 and 321. An even(odd) permutation of 

123 is obtained by an cvcn(odd) number of interchanges of two of the elements in the 

ordered list 123.

The trace of a matrix A denoted Tr[yl) is the sum of the diagonal elements of A.  For 

example, the trace of the following 2 x 2  matrix

is given by Tr|fi]= a +  c?.

The real part of the trace of a complex matrix B  is denoted RcTr[fi). 

Representation Theory

This section begins with formal definitions needed to explain the group theory.

Definition: An element T of a group C is conjugate to S  € C if there exists X  E O 

such that

T  = X S X ~ \  (A-5)
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From this definition it follows that S  is also conjugate to T  i.e. S = .

Corollary:If S  is conjugate to T and R  is conjugate to T  then R  and S  arc both 

conjugate.

S  =  X T X~^  (A-6)

and

R = Y T Y - ^  (A-7)

imply

H = =  (y X -i)5 (A 'y -i)  =  (y A '- i)5 (y A - i) -^  (A-S)

Defiuition: A conjugacy class of a group G is a set of mutually conjugate elements 

of G.

Definition: A mapping /  of a group Gi onto a group C 2 is said to be homomorphic 

if it has the i)roperty

= /(.ST) (A-9)

for all S , T  e Gi .

Definition: The inverse of an n x matrix A is the n x n matrix A~^ such that

AA-^ = A-^A = I, (A-10)

where the n x n identity matrix /  is the matrix with ones on the diagonal and zeroes 

elsewhere.

Definition: An n x n matrix that docs not possess an inverse is said to be singular. 

Definition: An n x n  matrix that does possess an inverse is said to be non-singular. 

Definition; Given a group of non-singular n x n  matrices T{T) with matrix multi

plication as the group operation, if there exists a homomorphic mapping of a group G 

onto this group of matrices then the group of matrices is said to form an n-dimensional 

representation of G.

Definition: Let F be an n-dimcnsional representation of a group G. The character 

of T e G in the representation F is denoted x(T) and is given by
n

x (r )  = Tr[F(T)] =  5 ] r ( T ) „ .  (A-11)
i=l
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Theorem: Given a representation F of a group C, all elements in the same conju- 

gacy class have the same character in the representation F [18].

Theorem; Given an n-dimensional representation F of a group G and an n x n

Definition: A reducible n-dimensional representation F of a group G is a repre-

for each T  ^  G, where rii(T ).F i2 (T ), ^ 2 2 {T) and the zero matrix 0 have dimensions 

Si  X s i ,  S i  X S2,  S2 X S2  and S2 x  s i ,  respectively. Si  >  1 and S2 >  1- S i  and S2 take 

the same values for all T  & G.

Definition: An irreducible representation of a grouj) G is a representation that is 

not reducible.

Theorem: For a finite group G the number of inequivalent single-valued irreducible 

representations is equal to the number of conjugacy classes of G [18).

Definition: Given a representation F(G) =  {F(y); (; € (Tj } of a group G and a

subgroup H = {h}  of G, the subduced representation of F((ji) onto H  denoted as

T^{H)  (or [F(G) |  H]) is defined by restricting T to H  and is given by

matrix P  there exists an n-dimensional representation F defined via a similarity 

transformation with the representation F. For each T  £ G the matrix F (T) is 

defined by

r'(T) =  P-^V{T)P. (A-12)

The representations F' and F are called equivalent.

sentation tha t is equivalent to a representation F' where the matrices F (T) are of 

the form

(A-14)
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Cubic Group

b

Y

Figure A-1: Conjugacy classes of O.

C'np denotes a proper ro tation through 27r/n  in the right-hand screw sense about the 

axis Op. Cl contains the identity operator E. C2 contains the eight rotations C-ia, 

C3“ \  C'iiu C3J, Css and and Cg"/ denote rotations of

- 2t:jj) in the right-hand screw sense about the axes Oa, Op,  O7 and OS, respectively. 

C3 contains the three rotations 62X, C2y and C2z- C4 contains the six ro tations C4X, 

C^y, C^y , C42 and C^y and denote rotations through — 27t /4  in

the right-hand screw sense about the axes Ox, Oy  and Oz,  respectively. C5 contains 

the six rotations C’sa, C2b, C2C, C2d, C2e and C2/.

Oh = O X {1 , V }  has ten conjugacy classes. The spatial inversion operator V  

applied to  C\, C2, C 3 , C 4  and C 5  give the conjugacy classes Cg, C 7 , Cg, Cg and Cio, 

respectively. Details of O and Oh are given in [18].
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Tensor in M inkowski Space

The tensor with u £ {0,1, 2. 3} is defined as follows

0 - 1 0  0 

0 0 - 1 0  

0 0 0 -1

(A-15)

G am m a M atrices

The Euclidean metric tensor 6^'' with n ,u  ^  {0,1, 2, 3} is defined as follows

/ 1 0  0 0 

0 1 0  0 

0 0 1 0  

0 0 0 1

The Dirac basis is given below.

/

Tn =

1 0  0 0

0 1 0  0

0 0 - 1 0  

0 0 0 -1

CTo 0 

0 - ( T o

(A-16)

(A-17)

where ctq =
1 0 

0 1
(A-18)

T i  =

 ̂ 0 0 1  ̂
0 0 1 0  

0 - 1 0 0  

- 1 0  0 0

0 u \  

- (T i  0
(A-19)

where Oi =
0 1 

1 0
(A-20)
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T2 =

( 0 0 0 - V  ^

0 0 z 0

0 z 0 0

- i  0 0 0

0  (72

- 0-2 0
(A-21)

where 0 2  —

0 -I
1 0

(A-22)

0 0 1 0

0 0 0 -1

-1 0 0 0

0 1 0 0

0 (73

- ( 7 3  0

(A-23)

where (73 =
1 0

0 -1
(A-24)

r, = /rorir2r3 =

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

0 1

1 0
(A-25)

C  =  *7270 =

0 0 0 - 1

0 0 1 0

0 - 1 0 0

1 0 0 0

(A-26)
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R epresentation M atrices o f O/,

H{E) = 0 1 0 

0 0 1

(A-27)

where E  denotes the identity element,

RiCsa) =
0 0 - 1  

1 0 0

0 -1  0

(A-28)

0 1 0

0 0 - 1

- 1 0  0

(A-29)

mc-sp) =
0 0 1 

- 1 0  0 

0 - 1 0

(A-30)

0 - 1 0  

0 0 - 1  

1 0 0

(A-31)

0 0 - 1  

- 1 0  0 

0 1 0

(A-32)

\

0 - 1 0  

0 0 1 

- 1 0  0
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0 0 1 ^
R{C3s) = 1 0 0 

0 1 0

^ 0 1 0  

0 0 1 

y 1 0 0

R{C2.)  =

^ 1 0  0  ̂
0 - 1 0  

0 0 - 1

(A-34)

(A-35)

(A-36)

-1  0 0 ^
R{C2y) =

V
0 1 0 

0 0 - 1

(A-37)

R{C2.)  =

- 1 0  0 

0 - 1 0  

0 0 1

(A-38)

/? (Q .) =

^ 1 0  0 ^  

0 0 - 1  

0 1 0

(A-39)

R{C7J) =
 ̂ 1 0 0  ̂

0 0 1 

0 - 1 0

(A-40)

R{C,y) =

^ 0 0 1 ^  

0 1 0 

y - 1  0 0

(A-41)
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R{C^y) =

0 0 - 1  ^
0 1 0 

1 0 0

(A-42)

V
1 0 0 

0 0 1

IUC7I) =

/

^ 0 1 0 ^  

- 1 0  0 

0 0 1

(A-43)

(A-44)

R{C2a] = 1 0 0 

0 0 - 1

(A-45)

R{C2t) =
0 - 1 0  

- 1 0  0 

0 0 - 1

(A-46)

R{C2c) =

R{C2d) =

R{C2e) =

0 0 l \

0 -1 0

1 0

0 0 - 1

0 - 1 0

-1 0 0

0 0 ^

0 0 1

0 1 V

(A-47)

(A-48)

(A-49)
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R{C2f) =
^ - 1 0  0  ̂

0 0 - 1  

0 - 1 0

(A-50)

R{P) =

' ^ - 1 0  0  ̂
0 - 1 0  

0 0 - 1

(A-51)

G ell-M ann M atrices

The eight Gell-Mann matrices arc given below.

 ̂ 0 1 o \

A] — 1 0 0 (A-52)

0 0 /

 ̂ 0 —i 0 ^

A2 = i 0 0 (A-53)

0 Oy

0 0 ^

A3 = 0 - 1 0 (A-54)

v O 0 s

 ̂ 0 0 l \

A4 = 0 0 0 (A-55)

V I 0 0 /

 ̂ 0 0 .  ̂—t

-^5 = 0 0 0 (A-56)

V '' 0 0  y
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Afi — (A-57)

A? — (A-58)

^ 1 0  0 ^
A s  — 0 1 0

0 0 - 2

(A-59)

Irreducible R epresentations o f Of,

Tensor Product Irreducible Representation

A l g  Q O  A l g A i f j

^  -'̂ lu A l g

A l g  < S )  A l - ^ A l u

A l u  A l g A l u

A l g  ( g )  E g E ,

A l u  <8> E u E ,

A l g  <8>  E u E u

A l u  ( 8 )  E g E u

A l g  ( 8 >  T i g T i ,

A l u  * 8 >  T i u T i ,

A l g  ®  T l u T l u

A l u  ®  T i g T l u

Tabic A-1: List of spin-0 operators.
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Tensor Product Irrcduciblc Representation

Tig 0  Alg Ti,

Tiu ® Aiu Ti,

Tig 0  A\u Tiu

Tiu 0  Alg Tiu

Tabic A-2; List of spin-1 operators.
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Results for 5 = 1
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Figure A-2: Irrcp Ti row 1: L = 0, S  = 1, J  — 1, I  = 0, P  — +.
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