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Static-Light-Light Baryons
A Spectroscopic Study Using Distillation

Finnian Mc Elroy B.A. (Mod.)

We perform the first study of static-light-light baryon spectroscopy
using distillation on an Ny = 3 dynamical, anisotropic lattice with an
anisotropy £ = 3.5 . Baryon interpolating field operators that transform
according to the irreducible representations of the symmetry group Oy,
of the rotationally invariant spatial lattice are constructed. Simulations
are carried out at a single lattice spacing of as = 0.12fm. Simulations
of both isospin-0 and isospin-1 static-light-light baryons are performed.
The bare strange quark mass value is set at a;mg = —0.0734. Two-point
correlation functions are measured and fitted to with a single exponential.
Ground state masses are determined for each channel.



Summary

Over the last decade, hadron spectroscopy in lattice QCD has graduated from cal-
culating single rows of the quark propagation matrix to calculating all elements of
the quark propagation matrix - the so-called all-to-all propagator. On a spatially
symmetric anisotropic lattice of spatial extent N, and temporal extent N, the quark
propagation matrix has rank 4 x 3 x N2 x N;, where 4 represents the number of
components in a Dirac field and 3 represents the number of colours. Calculating
all elements of this matrix requires 144 x NS x N? matrix inversions - a formidable
task. The relatively new method of distillation enables access to all elements of the
quark propagation matrix at a much more affordable cost. This project is the first
study of distillation on the bottom baryon spectrum. Simulations are performed on
an Ny = 3 dynamical, anisotropic lattice. The heavy quark is treated in the static
limit of Heavy Quark Effective Theory (HQET). Baryon interpolating field operators
that transform as irreducible representations of the spatial lattice symmetry group
Oy, are constructed. This includes both positive parity and negative parity operators.
Two-point correlation functions are measured. A variational analysis is briefly tested.
Ground state effective masses are determined by fitting the correlation function to
a single exponential. Mass splittings are calculated. Only one experimentally de-
termined mass splitting exists for comparison. That is the ¥, A, splitting. Results
for this splitting are compared with other lattice work. Results are compared more

generally with other lattice work.
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Chapter 1

Introduction

According to the Standard Model of particle physics, quarks emerge as a basic build-
ing block of matter. Quarks interact via the strong interaction. The theory describing
the strong force is Quantum Chromodynamics. The strong force between quarks in-
creases with increasing distance. For this reason, quarks are not seen in isolation but
are confined into bound states known as hadrons. There are six varieties of quark:
up (u), down (d), charm (c), strange (s), top (t) and bottom (b). The u, d and s
quarks are light in comparison to the ¢, t, and b quarks. The u, d and s quarks lie
below the QCD scale Agep = 200MeV.

Quark Models [1] predict eight baryons containing one bottom quark. Their
properties are given in Table 1.1. They can be described by total spin J, parity
P, isospin I and the total spin of the light quark pair s;. The up or down quarks
are denoted q, s denotes the strange quark and b denotes the bottom quark. For
isodoublets and isotriplets the lower and lowest observed masses are quoted.

The Ay baryon was the first b-baryon to receive mass measurement [2, 3, 4]. Since
2007 the masses of ¥, 5, €, and =, have been experimentally determined by the
D0 and CDF experiments at Fermilab [5, 6, 7, 8]. The bottom meson sector has been
studied extensively in recent years, at the dedicated b-factories, BELLE and BaBar.
Recent years have seen precise measurements of CKM matrix elements describing
the flavour changing processes involving b-mesons. At Fermilab, orbitally excited

B, B3, B and B}, mesons have been observed. Heavy hadron b-physics research is



Baryon | Quark Content | J | 1 | s; | Experimental Mass (Mev)
A, qqb ™10 |0 |5620.2(1.6)

D5 qqb 1111 |5,807.8(2.7)

b3 qqb ST 111 |5,829.0(34)

o, ssb 110 |1 |6,071(40)

Q ssb %+ 0|1 | Not Measured

= qsb 11110 |5,790.5(2.7)

E; qsb %+ % 1 | Not Measured

= gsb -g—+ 5 | 1 | Not Measured

Table 1.1: Experimentally determined masses for bottom baryons.

currently very rich with the PANDA experiment, the LHCb, ATLAS and CMS likely
to produce data relevant for mapping the b-hadron spectrum.

Lattice QCD provides an alternative arena for studying the hadron spectrum. Ab
initio calculations of the mass spectrum are possible on the lattice. Spectroscopy
results from lattice QCD are as numerous as those from experiment. Both the charm
and bottom meson sectors are rich research areas. Algorithmic improvements over the
last few years have led to highly excited state mass determinations for heavy quark
mesons. Over the last decade hadron spectroscopy in lattice QCD has graduated from
calculating single rows of the quark propagation matrix to calculating all elements
of the quark propagation matrix - the so-called all-to-all propagator. On a spatially
symmetric anisotropic lattice of spatial extent N, and temporal extent N; the quark
propagation matrix has rank 4 x 3 x N2 x N;, where 4 represents the number of
components in a Dirac field and 3 represents the number of colours. Calculating all
elements of this matrix requires 144 x N¢ x N? matrix inversions - a formidable task.
The relatively new method of distillation enables access to all elements of the quark
propagation matrix at a much more affordable cost. This project includes the use of
distillation for the first time in static-light-light baryon spectroscopy on anisotropic
lattices. The aim of this project is to determine the mass spectrum of singly-bottom

baryons. Mass splittings for previously unmeasured states are calculated. In addition,

10



mass splittings that have previously been calculated on the lattice are measured for
the first time using distillation. Baryons with the quark content of the A, and the ¥,
are studied. All the experimentally determined mass splittings for the singly-bottom
baryons have already been computed on the lattice [9, 10, 11, 12, 13, 14, 15]. These

are in agreement with experiment.

il



Chapter 2

Lattice Basics

2L GEP

In continuum QCD, a quantum field ¢(Z,t) has an infinite number of degrees of
freedom, labelled by the space-time coordinate (7, t), as well as discrete indices for
colour and spin. Space-time can be discretized by introducing a hypercubic lattice of

discrete points. The lattice sites are described by a four-vector & with components

T Nty L =0, N~ (2.1)

o O . S . olf - il . = . . th . . - Lo .
where n, is an integer, a, is the lattice spacing in the p'* direction and L = N,a,, is

the lattice extent in the p direction. Momenta occur in discrete units

i 2y,
Nya,

By where  m, = ~Ny /2 £ 1,-No/2+2,..., Ny /2. (2.2)

The lattice introduces a momentum cut-off. The largest allowed momentum is 7/a
and the lattice provides an ultra-violet regulator for QCD. The shortest wavelength in
the p'" direction is 2a,,. Wavelengths less than twice the lattice spacing are eliminated
from the theory.

Integrals in the path-integral representation of QCD become finite-dimensional
when a lattice is introduced. The vacuum expectation value of an operator O(¢, ¢, U)
is given by

J[d][dB[dUIO(w, b U)e S
JTay][dg]ldv]e=s

(0) = (2.3)

bJ

12



where S is the action,

8 = /E(l/)(m),a(m).U(.r,))d4m, (2.4)

and L(¢(x),¥(z), U(x)) is the Lagrangian density. The fields (x) and U/(z) which
describe quark and gluons respectively, will be introduced later in this chapter. A
Wick rotation from Minkowski space to Euclidean space has been performed. In
Minkowski space, there is an oscillating phase factor €. In Euclidean space, the

S

factor e™” can be interpreted as a real weight allowing importance sampling to be

used to estimate this integral.

2.2 Gauge Invariance

The continuum QCD Lagrangian possesses an SU(3) gauge invariance. Quarks and
antiquarks possess colour charge. There are three different colours - red, green and
blue. The three different colour fields can be written as a three-component column
vector as follows
V1
=1 e |- (2.5)
V3

These fields transform locally as follows

P(z) — Gz)y(e), (2.6a)
P(z) = P(=)G (), (2.6b)

where
G(z) = exp [ia®(z)t*(z)]. (2.6¢)

G(z) is an element in the fundamental representation of SU(3), a*(x) is an arbitrary
function of r and t*(z) are hermitian generators of SU(3).

The derivative d,¢(x) of a field ¥(z) is defined as follows

0 ¥(z) = lim l[117(:1: + ea,) — Y(z)]. (2.7)

e—0 €

13



This derivative transforms differently to ¢(z) under the local transformations as

shown below

But(z) — im 2 [G(x + ea,)(x + ea,) — G(a)b(a)] # G@)Ib(a).  (28)

e—0 €

The covariant derivative D, (x) of a field ¢(z) is defined as follows
Di(z) = 0,.30(z) — wgd,(z)v(z), (2.9)

where the vector field A, () lies in the Lie algebra of SU(3). The vector field A,(z)

can be written as follows
8 , /\b
A= PHOES (2.10)
b=1

where A®(z) are real-valued functions and the A’ are the 3x3 Gell-Mann matrices
given in the Appendix. The Gell-Mann matrices act as generators for the non-Abelian

group SU(3). The Gell-Mann matrices obey the commutation relations

8
[/\u, /\b] =2 Z fabc/\(.- (211)
=1

where fu,. are antisymmetric structure constants. D,1(x) follows the same transfor-

mation law as 1)(z). Under the local transformation of equations (2.6)
Duth(z) = G@) D (). (212)

The lattice covariant derivative applied to a quark field is

V,b(e) = U} + ) - Ul(e ~ B(o - B, (2.13)

3 2a,
The link variables are parallel transporters between neighbouring lattice sites. They

are the path-ordered product of the exponential of the vector field A,(x) defined as

follows

T+
U (z) = Pexpli / 904, () dy]. (2.14)

where gg is the bare coupling constant and path-ordering denoted by P involves

ordering the matrices with A,(x) to the right of and A,(z + ji) to the left of the

14



product. The links are clements of the fundamental representation of the gauge

group. They transform under a gauge transformation as follows
Uu(x) = G(z)U,(x)G(z + auit), G(x) € SU(3). (2.15)

The path-ordered product of links along a path P connecting site x and site y is called
a Wilson line and is denoted Wp(z,y). Under gauge transformations the Wilson line

transforms as follows
W(z,y) = G@)Wp(z. y)G' (). (2.16)

The trace of a Wilson line over a closed path is called a Wilson loop. The Wilson

loop is gauge invariant as shown below using the cyclic property of traces

Te[Wp(z,z)] = TY[G(z)Wp(z,z)G'(z)]
= Tx[Wp(z, )G (x)G(z)]
= . 'Te[Wplz, z))-. (2:17)

2.3 Group Integration
The links U,(z) can be written as follows
U,(z) = e+, (2.18)

where ¢, () is an element of the Lie-algebra of SU(3). ¢,(x) is written in terms of

the generators T = ’\z—a of the group in the fundamental representation as follows

8
$ulm)— S daia. (2.19)
a=1
The generators T satisfy
ST = % T (2.20)

with the same structure constants f,. as in equation (2.11). The integration measure

dU for the gauge fields in equation (2.3) must be gauge-invariant. The Haar measure



dU guarantees that gauge invariance is respected. The Haar measure dU on a compact
group G has the two defining properties of invariance and normalization. Invariance

can be stated mathematically as follows
/f(U)dU = / f(WU)dU = / f(UW)AU  for all W € G. (2.21)
@ & G
Normalization is given by

/ dU = 1. (2.22)
G

In this study the compact group G is SU(3).

2.4 Naive Fermions
The naive Euclidean lattice fermion action for a single flavour is

—q Z V(x) My (y (2.23)
where

My, = Z%v +m]ds,, (2.24)

a is the lattice spacing, V, is defined in equation (2.13) with U,(z) = 1 for free
fermions and the sum over colour and Dirac indices is implicit. The two-point function

is defined as follows

J DY Do (a)Ps(y)e r

Ya(T)Ps(y)) = — : , 2.25
(Val@)Ps(®)) - (2.25)
where the integration measure DDy is given by
DYDY = [[ dda(w) [ ] ds(v). (2.26)
a,u B
The two-point function momentum space representation is
i m/a g4 =) sin(a a
(1%(17)1/),6(3/)) = / p4 [ Z Py# / ] d W(x_y))
B R T sin®(ap,,)/a?
m/a d4 ” )
— S A 2520
L s @hse (2.27)

16



where

[m —i Z# Vusin(ap,)/a
mi+ 3, sin®(ap,)/a®

Near p, = 0 or £7/a for p € {0.1,2,3}, sin(ap,) can be approximated by ap, to

S(p) =

(2.28)

O(a)?. The propagator is then given by

m =1, YuPu

Aq ==
(p) m?2 + p?

+ O(a?). (2.29)

The propagator has a pole at m? + p? = 0. These poles exist at sixteen regions in
the Brillouin zone —7/a < p, < m/a. One is near py = p; = p2 = p3 = 0 which
describes the Dirac particle. The other fifteen poles correspond to high momentum
excitations near p, = 0 or £7/a for p € {0,1,2.3}. These fifteen excitations are
known as doublers. They are lattice artefacts.

The naive Euclidean lattice fermion action is invariant under the transformation
(z) = ey(x), (2.30)
() = P(z)e ™. (2.31)

When the mass m = 0, this action has a chiral symmetry

¥(z) = (), (2.32)
P(z) = P(z)e”. (2.33)

2.5 Wilson Term

One solution to the doubling problem is to add a Wilson term to the naive fermion
action. At finite lattice spacing, the Wilson term raises the mass of the doublers to
the order of the inverse lattice spacing. This removes the effects of doubling. The

Wilson action is given below

S¥ =Sk - ;a(mmm(x), (2.34)
where
Bub(z) = [0z + )+ ¥(e ~ ) - 26(2)], (2.35)



and 7 is the Wilson parameter. For non-zero values of r, the doublers mass is in-

creased. This action can be expressed as follows
Zw YM™ (2, y)¥(y), (2.36)

where

3
a
MY (z,y) = (a*m + 4a37')53y " Z[(r - 7#)5,3,“;1 +(r+ 7“)53 e LA

H
This gives the same two-point function as in equation (2.27) when the mass m is

replaced with m(p) as follows
m(p) - m+ — Zblll (pua/2). (2.38)

The argument of the sine function has half the periodicity of the other sine functions
in the propagator. Near p, = 7/a, m(p) ~ m + % As a — 0 m(p) diverges.
This divergence lifts the masses of the fifteen doublers for fixed nonzero r to O(1/a).
At finite lattice spacing the doublers have a non-zero mass even for m = 0. The
Wilson term breaks chiral symmetry [16]. This induces an additive renormalization
to the quark mass. The quark mass is also multiplicatively renormalized. A fine-
tuning of the bare quark mass to its critical value is necessary in order to obtain a
vanishing renormalized quark mass. The additive mass renormalization can lead to
a negative value for the bare quark mass. The quark mass in this project is negative.
The Nielson-Ninomiya no-go theorem [17] precludes the possibility of constructing a
fermion action which respects locality, hermiticity, translational invariance, chirality

and remains undoubled.
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Chapter 3

Simulation Techniques

3.1 Lattice Actions

In this study we perform simulations on an Ny = 3 dynamical, anisotropic lattice. In
hadron spectroscopy, fine resolution is required when fitting to the effective masses
of two-point correlation functions of a creation operator @. Correlation functions
can be expanded as a series of exponential terms - an exponential term for each
state to which the operator O couples . The exponential associated with the ground
state decays slowest. Exponential terms associated with excited states decay faster.
Therefore on later timeslices the ground state has a greater relative contribution to
the value of the correlation function. This means that ground state masses must
be extracted at later timeslices. Correlation functions also become noisier on later
timeslices with signal-to-noise ratios typically degrading exponentially with time [19].
This permits only a narrow time window in which ground state mass extraction can
be well-accomplished. Anisotropic lattices with a finer lattice spacing in the temporal
direction provide a means of maximizing the amount of information obtainable from
correlation functions by allowing fitting over a greater number of timeslices. This is
especially important for a treatment of the static quark since the signal for the static
quark degrades into noise faster than for light quarks [20]. Errors of O(a;mg) in the
temporal direction relating to the heavy quark can be reduced by simulating on the

anisotropic lattice. Anisotropic lattices have been used with much success in hadron
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spectroscopy [21]. Decreasing the lattice spacing in only the temporal direction is
computationally less expensive than decreasing it in all four directions. Hypercubic
symmetry is broken by the anisotropic lattice. The anisotropic lattice introduces two
new parameters: the fermion and gluon anisotropies denoted s and &g, respectively.
These parameters are non-perturbatively tuned so that in the continuum limit full

Lorentz symmetry is restored.

3.1.1 Gauge Action

The gauge action is a Symanzik-improved action with tree-level tadpole-improved

coefficients [22]:

" A S St B
bG’[U] /quC{[?)ug Q"l‘(‘l) 12“2 er‘("l’)]
il
IS el W L -
+ 2l @) ~ Taam Our (@), (3.1)

where 3 = 2N /g%, g is the QCD coupling, N = 3 is the number of colours, 7, is
the bare gauge anisotropy, u, and u,; are the spatial and temporal tadpole factors,
Qc = > -(1/3)ReTr(1 — We), where Wi denotes the path-ordered product of link
variables along a closed contour C. The Symanzik improvement program applied to a
lattice action involves systematically including additional terms to the action in order
to accelerate the rate of convergence to the continuum limit [23]. Here improvement
is achieved by summing linear combinations of different plaquettes weighted with the
correct coefficients. The action has a leading discretization error of O(a?, a?, g%a?).
The action is designed for lattices with large anisotropies where a; < a,. It was first
used in glueball simulations [24]. The procedure for evaluating the tadpole factors is
discussed in a later section on tadpole improvement.
The various sums over plaquettes and rectangular loops are given below

Oel=5 5 %Re”ﬁ[l V(@)U (a+)U @+ YU )], (3.2)

® 13

Q=Y 3 %ReTr[l—Ul-(x)U,-(x-f—i)Uj(m+2i)Uf(x+2+j)Uf(:c+j)UjT(x)], (3.3)
T i#j
=Y %Rﬂm_Ut(m)Ui(Hi)U,T(x+i)UJ(x)], (3.4)

T
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D) = Z %RcTr[l-U,,(Jf)U,-,(I+?)U,(¢L‘+2?)UJ (z+i+) U] (z+0)Uf ()], (3.5)

T

where z is the lattice coordinate, 7, j are spatial indices, 7 and j are unit vectors in
the spatial directions, ¢ is a unit vector in the time direction and U,(z) is the parallel

transporter from site = to x + /i.

J 1> e
(a) Qsp(x) (b) Qarp(x)

Figure 3-1: Spatial and temporal plaquettes in the gauge action.

e
| SERRRNE, il o o
1 t
il i
(a) R, (x) (b) Qstr(z)

Figure 3-2: Spatial and temporal rectangular plaquettes in the gauge action.

3.1.2 Light-Quark Action

The covariant first- and second-order lattice derivatives V, and A, are defined by

application to a quark field () as follows

Vale) = s [Uaahb(e + i) - Ule = a)le — ), (3.6
Bub(@) = (U@l + ) + Ulle = (Yo =) - @) (3

w
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In this notation, U,(x) is the parallel transporter from x to « + i and U, I‘:(J: — ) is
the parallel transporter from z to  — fi.

The field tensor F),, is defined by

—1

Fuu(]/‘) — ﬁ[Quu(‘r) i QLU(I)]’ (38)
where @, () is defined as follows
Qul@) =3 U2}V, (z + WU + 2)U}(2)

+ Uy (2)Ul(z — b+ D)Ul(z — @)Uu(z — 1)

+ U;'E(‘L i [L)UE(J“ i [L - IA/)Uy(I G I»l = ’))U,,(.L = IA/)

+ Ul(z — 2)U,(x — D)V, (z + 1 — l))U;(:II)]. (3.9)
v v
A A
L. e A A A > |4 >
v - - - V < y
e S B T
. A A A > & >
A = - e v e y
(a) Quuv(x) (b) Q] ()

Figure 3-3: Anticlockwise and clockwise clover terms.

In the light quark sector an anisotropic clover fermion action is used [25]. It is

given by
SilU, ¥ = ddar Y P(x) (), (3.10)
where
Q = [mo + W, + v, W, — %(ctUS,F“ 4 Z 6, Fss,)], (3.18)
s<s’
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0w = (1/2)[v4, 7] and the r = 1 Wilson operator is given by

ay
W, =V~ TIV’A“' (3.12)

A 3 A
The following quantities with a hat arc all dimensionless; v = ad v, my = aymo, V, =

a,,V“.A,, = aiA“,F,“, = au0,F,, and I/i/“ — v,, - %'yﬂA,,,. The action can be
rewritten as follows
S[U, .0 = ()0, (3.13)

where
Oy el 4 S
=—1amg + U, — Vs
a; t t t g(] -

i el o )
- 5[(:t Z UtSFLS + z; Z Uss, Fss/]}' (314)

s<s
The ratio of the bare fermion anisotropy to the bare gauge anisotropy is denoted v.
Tuning of both quantities v, and v is not necessary. A rescaling of the fields requires
only one such quantity to be tuned to ensure the anisotropic lattice obeys relativity.
Setting v, = 1 and tuning v; is called v-tuning. Here, we employ vs-tuning where we
set vy, = 1. The clover coefficients are set to their tree-level tadpole-improved values

1 | SR |
., _— - —_— —_— .1
; (’_Q(V—*—f)ﬂtﬁf’ (315)

where @, and @; are the tadpole factors for the smeared fermion fields. The tadpole

CY=

Ril=

factors are explained further in equations (3.29) and (3.30). The anisotropy £ = as/a;
is set to equal 3.5. For a spatial lattice spacing of order 0.1fm an anisotropy of £ = 3.5
gives a temporal lattice spacing with the required fineness for hadron spectroscopy.
Three-dimensional stout-link smeared gauge fields [24] are used in the fermion action
with smearing weight p = 0.2 and n, = 10 iterations. The parameters p and n,
are explained in (3.61). The gauge anisotropy 7, and the fermion anisotropy ~; are

defined as follows

Yg = &o, V= %0‘ (316)
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The action can be reparameterized in terms of the bare gauge and fermion anisotropies

as follows
SEU V.Y = Y 9(x) 99, (3.17)
where

Al . 1 y
—— (o + Wi+ — YW,
Q T {rng + Wy + o

Lol o llgesd . el "
—=|l=(—=+ = Fis+ —— gl 3.18
2[2(’)’f i §)ﬂfﬂ,g ;Ut ts ¥r U‘j ; Oss' L'ss ]} ( )
At B = 1.5, the tadpole factors are
s —=10N1386 1 s =l 7= 0.9267, il = 1.

Critical values for vy and 7} are found by imposing the renormalization condi-
tions {&,,&;, M} = {3.5,3.5,0} in equations (3.42). Since the gauge and fermion

anisotropies show a mild quark mass dependence they are fixed at their critical val-

ues

v, =43, ;=34 (3.19)
The critical value of the input quark mass is my = —0.0854. Simulations are run
with an input quark mass 719 = —0.0743. Further details of tuning are given in [22].

The clover terms have the following values
c.=15889 o =090 (3.20)

All lattice parameters are summarized in Table 5.1.

3.1.3 Sheikholeslami-Wohlert Term

Symanzik’s improvement programme applied to ¢*-theory was successful in ensur-
ing all "off-shell" Green’s functions have a faster approach to the continuum limit
[23]. Luscher and Weisz proposed an improvement scheme for the case of pure Yang

Mills Theory that demands the improvement of all "on-shell" quantities i.e. low-lying
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energy states with small momentum relative to the cutoff [26]. Based on these ap-
proaches, Sheikholeslami and Wohlert designed O(a)- and O(a?)-improved fermion
actions. With off-shell improvement, all parameters in the improved action must be
fixed order-by-order in perturbation theory. For on-shell improvement, general lo-
cal covariant transformations known as isospectral transformations that preserve the
spectrum of low-lying observables are applied to the improved action. Upon apply-
ing such a transformation certain parameters appear explicitly free. The remaining
parameters must be fixed order-by-order in perturbation theory as in the off-shell
case.

A brief description of the Sheikholeslami and Wohlert approach is given here [27].
For O(a)-improvement, all operators of at most dimension five that are invariant un-
der discrete rotations, parity transformations and charge conjugation transformations

are considered. Four such linearly independent operators exist, they are as follows

elz) = wlzlhlz) -dim 3,
O1(z) = P(z)7,V,¢(z) - dim 4,

elz) = ﬂ)(x)[z A;zl - ?éﬁaﬂ,,P“,,]w(;E) —dim 5,
I

Os(z) = #@(T)UWPM,A/)(I) ~ dim 5, (3.21)
where
1 . ;
Pu = 71Ua@)Unle + U (@ + )V (2)

=R e S R )
+ U (2)Ul(z — o+ D)Ul(z — f)Uu(x — 1)

— Uu(@)Ul(z + o — 2)U}(z — 2)U, (z — D). (3.22)

Sheikholeslami and Wohlert applied an isospectral transformation to the action
comprising the above operators each with an arbitrary coefficient. They showed that
the coeflicient of the Oy operator is redundant. This operator with its associated
coefficient Csy can be added to the naive fermion action to give O(a)-improvement.

Alternatively, the operator O3 with its associated coefficient Cgyy can be added to
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the Wilson fermion action to give O(a)-improvement. More recently, the anisotropic
clover-improved Wilson fermion action that is used in this project was obtained via
an isospectral transformation from the naive fermion action. This action is described
in work by Chen [28]. This improvement was carried out at the classical level. A
full quantum treatment gives the same results when renormalization of the gauge

coupling and the bare anisotropy is included.

v v
JXL n X n
(a) Anticlockwise plaquettes. (b) Clockwise plaquettes.

Figure 3-4: Anticlockwise and clockwise contributions to P, (z).

3.1.4 Static-Quark Action

The static-quark lattice action used in this work is given by

Sutat = a5 Y _ h(z)[h(z) — Ul (z — £)h(z — ). (3.23)

It was first proposed by Eichten and Hill in [29]. It has already been used successfully
in the study of static-light mesons [21]. In position space the static-quark propagator

from a space-time point (7, ) to a point (i, yo) is given by
G(Z,20; 9, %0) = O(y0 — 20)8(Z — §)Us(yo — 1, 9)....Us(x0, T) Py, (3.24)

where P, = (1/2)(1 + o) is a projection operator, © is the Heaviside step function
defined in the Appendix and £ is the unit vector in the time direction. The static quark
propagator is relatively straightforward to compute. One significant disadvantage of

the static quark propagator is that the signal degenerates into noise quite early.
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3.1.5 Sommer Scale

The Sommer scale [30] ro defined through the force F(r) between a static quark and
anti-quark separated by a distance r is given by r2F(ro) = 1.65. The static quark
potential is used to determine the Sommer parameter rq via

oV (r
r2—.Q|T:m =165 (3.25)

or
One method to extract the static potential V (7) between an infintely heavy quark
and anti-quark, separated by a distance r in a spatial direction, is to measure the

average value of the Wilson loop

(W(r,t)) = (Tr[Uk(g,0)Ux(§ + k,0)...Ux(¢ + 7k, 0)

(
Uo(§ + 7k, 0)Uo(§ + rk, 1)...Us(§ + Tk, t — 1)
UNG + rk, QUL (G + (r — Dk, t)...Ul (5, 1)
US(g.t — DU, 1)...U§ (4,0)])
= C(r)e V" & (excited states), (3.26)

where (..) denotes the average over space points y and spatial directions k and C (r)
is the overlap with the ground state [31]. The static potential V (r) is obtained by
taking ratios of Wilson loops. This method suffers excited state contamination. A
variational analysis of a five-by-five matrix Cj;(r, t) comprising operators with a better
overlap with the ground state was performed [25]. For these operators, the straight
path of gauge-links in the spatial direction is replaced with a sum of smeared paths.
These paths are rotationally invariant about the inter-source axis and pass through
the midpoint between the color sources. They may contain staples. Unsmeared
straight paths are used for propagation of the static source through time. A range of
space separations 7 spanning ry was used as well as a range of time separations .

The static potential is fit to the Cornell potential [32] given by
- . «
Viry=Vy— —+or, (3:27)
r

where « is the Coulomb coefficient, ¢ is the string tension and Vj is the lattice
self energy. Best-fit parameters for the parameters Vj, a and ¢ are determined to

calculate the Sommer scale in lattice units via ro/as = \/(1.65 — ) /0.
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3.2 Tadpole Improvement

Tadpole improvement [33] consists of removing the tadpole contributions to gauge
links. The lattice gauge link is defined via an expansion in its continuum analog

A, (z) as follows

(’ia#gA“(x))Q

= Jote (3.28)

U,(x) = €94 = 1 4 4a,gA,(z) +

" direction, g is the coupling and A,(z) is

where a, is the lattice spacing in the p
the gauge field. At first sight, it appears as though the higher order terms will be
sufficiently suppressed in powers of ag . However, the contraction of the A,’s pro-
duces ultraviolet divergences. These are known as tadpoles. These tadpoles are not
sufficiently suppressed by the remaining factors a and ¢g. In a smooth gauge, the
link operator can be factored into low momentum (infrared) modes and high momen-
tum (ultraviolet) modes. Substituting U, with U,/u removes the UV divergences
contained in the tadpole factor w.

Tadpole factors appear in both the gauge and fermion actions. In the gauge action,
the gauge links are unsmeared giving the two tadpole factors ug and u;, where the
subscripts s and t denote space and time, respectively. In the fermion action, the
gauge links are stout-smeared giving the two tadpole factors g and ;.

For large anisotropy £, small temporal lattice spacings that suppress the tadpoles
associated with gauge links in the time direction can be reached. In this case, tadpole
improvement is not necessary in the time direction and u; can be set equal to unity.

In this calculation, v, = u; = 1 and u, and %, are measured from the mean field value

of the spatial plaquette as follows

1 1

Ug = <§’I‘r(,/pla’q>17 (329)
1 =

B = (3Tt0hag)?, (3.30)

where Upqq is defined by any one of the four terms in equation (3.9). The perturbative

expansion of ug to one-loop order is given by

2
= g9°Cr :
Usg = 1— mks
=1-cYg? (3.31)
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U is the one-loop perturbative value of the tadpole factor [34].

where ¢
The smeared and unsmeared tadpole factors are parameterized as follows
3

1+ a,g™
= —_— 3.32
L Z 1 (i anQn, ( )

n=1
with ¢> = 6//3 and the constraint a; —b; = ¢!V, where ¢(!) is the one-loop perturbative
value of the tadpole factor. An interpolation over a range of values of g? was carried

out. The tadpole factors for this parameterization at § = 1.5 are as follows

us = 0.7336, U, = 0.9267. (3:33)

3.3 Tuning

3.3.1 Gauge Anisotropy

On an anisotropic lattice there are two static-quark potentials. These are denoted
Vi(r) and V,(7) and are called the "regular" and "sideways" potential, respectively.
In the sideways potential, the heavy quark and anti-quark propagate in one of the
spatial directions. In this calculation, the sideways potential is used to determine
the renormalized gauge anisotropy denoted £,. There are two types of sideways
potentials: one where the quarks are separated along a spatial direction and one
where the quarks are separated along a time direction. A comparison between these

two potentials can be used to determine ;. Solving for ¢, the equation
Vs(yas) = Vi(tay), (3.34)

for a given y, gives the renormalised anisotropy &,, via t = §y. In the asymptotic
limit of large x, the Wilson loop W, can be described in terms of the static quark

potential as follows

The potential V is a lattice potential and differs from the the continuum static-quark

potential V by a term Vj, where V; is the self energy of the heavy quarks [35]. The
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self-energy V4 is independent of x and y and depends only on the lattice spacing
as. Ratios of Wilson loops can be used to extract the continuum contribution to the
lattice potential [36].

The potentials can be extracted from the ratios of Wilson loops. The ratios below

were measured

e ouWe(zm)
Holz, 1) = W@+ 1y)’ (3.36)
A
Rty A, (3.37)

o V[/s,($ + ].,f)
For large x, Ry(x, y) asymptotically approaches exp[—asVs(yas)] and Ry (z,t) asymp-
totically approaches exp|—asVs(ta;)]. These methods are described in [37]. The

anisotropy £, was determined by minimizing

b (Balzu) — Bala, Lyl
il =l ARV T (AR (3.38)

T,y

where AR, and AR; are the statistical errors of R, and R.

3.3.2 Renormalization Conditions

The renormalized anisotropies £, and &; as well as the partially conserved axial cur-
rent (PCAC) quark mass M, are parameterized in terms of the bare gauge anisotropy
74, the bare fermion anisotropy v, and the bare quark mass mg. A linear parameter-

ization is given as follows

&0 0] = o T, + Gaty T+ iy, (3.39)
€:(g, 75, mM0) = bo + biyg + b2y + bsmy, (3.40)
Mi(vg,7f,M0) = o+ 17y + C27Yf + C3myg. (3.41)

This parameterization was obtained by simulating at fixed  and various values of
Yg,7f and mg. My and §; were measured on 123 x 32 volumes while & ¢ was measured

on 123 x 96 volumes.
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Critical values 7;.7} and mg as functions of input quark mass m, are found by

imposing the following renormalization conditions

&1 ¥pmp) = & (3.42a)
Er(vg:vpmp) = &, (3.42b)
Mi(vy,75:mg) = mg. (3.42c)

3.4 Heavy Quark Effective Theory

Two length scales emerge in the study of heavy-light-light baryons: a short-distance
scale determined by the Compton wavelength Ay ~ 1/m of the heavy quark and
a long-distance hadronic scale Rpeq ~ 1/Agep associated with the light degrees of

freedom. The mass scales for a heavy-light system are as follows
my, 5 AQCD < mg, (343)

where my, is the mass of the light quarks, Agep is the QCD scale and mg is the
heavy quark mass [38]. The Compton wavelength of the heavy quark is much smaller
than the hadronic scale for a heavy-light system. The length scales for heavy-light

systems on a lattice are as follows
1/mg < a < 1/Agep S 1/my,. (3.44)

It is not practical to construct lattices with amg < 1.

Typical momentum transfer in interactions between the heavy quark and the light
degrees of freedom is of the order of the QCD scale. A heavy quark bound inside a
hadron moves with the velocity v, of the hadron up to corrections of O(Agep/me).
Since Agep/mg < 1 this allows for a non-relativistic treatment of the heavy quark.
Heavy quark effective theory (HQET) provides such a non-relativistic framework in
which to treat the heavy quark. HQET separates the short-distance and long-distance
physics. The heavy degrees of freedom associated with short-distance physics are
identified in the generating functional and integrated out [39]. The heavy quark

action is expanded in a power series in 1/my,.
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The generating functional of the continuum QCD Green’s functions is given by

Z(n,m, ) = /[dQ][d@][dM expliS + iSy + 2’/ d*z(MQ + Qn+ ¢aN)], (3.45)

where ¢, denotes both the light quarks ¢ and the gluons A,. S, is the QCD action

with light quarks and the heavy quark action is given by

o — / d*'zQ(i ) — mg)Q. (3.46)

It should be noted that this calculation is performed in Minkowski space with the ten-
sor g"” given in the Appendix. The "upper" components ¢ and "lower" components

x of the heavy quark ) can be projected as follows
1
¢=351+9)Q, Yo = o, (3.47)
1l
x=51-9Q  px=-x. (3.48)
The transverse part Di of the covariant derivative D, is given by
Dj =0 “w,D 0", (3.49)

with g”“v,,Dj = 0. Interactions with the light degrees of freedom alter the heavy
quark velocity on the scale of Agep/mg. The heavy quark is nearly on-shell. HQET
is an approximation of QCD in the kinetic regime where the heavy quark field can
be parameterized in terms of a solution to the Dirac equation of a free particle with

velocity v. The heavy quark components are parameterized as follows
¢ =emelvaly  y = mvalp (3.50)
In terms of this parameterization, the heavy quark action is given by

Sy = [ diz[hyi(v- D)h, — H,{i(v- D) + 2mg}H,
hyil) Hy + Hyil) ). (3.51)

The small component fields H, appear in the action with a mass term of 2mg. A
mass contribution of mg arises from differentiating the field x in the reparamterized

action. The second mass contribution of m(, is the usual mass term in the action.
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The small component fields correspond to short-distance virtual processes. These
fields are integrated out in the action. The H, propagator is expanded in a power

series in 1/mg. The HQET action to order 1/mg is given by

o 1
S, = / dzli(v - D)y + Ky + M, + O(—), (3.52)
m
Q
where
)
K = hy D*(guy — vuv,) D hy, (3.53)
2mgq
M, = g hoo* Fhy. (3.54)
dmg

Both the "kinetic" term K, and the "Pauli" term A/, are order 1/mg terms. The
kinetic term describes the off-shell motion of the heavy quark. The Pauli term cor-
responds to the chromo-magnetic coupling of the heavy-quark with the gluon field.

In the infinite mass limit, the HQET action is given by

S — / (14.17[ﬁ,,'/‘(n =D Yhy]- (3.55)

In this limit, the terms that describe the corrections to the heavy quark velocity
vanish and the heavy quark moves with the same velocity as the hadron. In the rest
frame of the hadron, i.e. where v, = (1,0,0,0) the heavy quark is static. This action
has an SU(2) spin symmetry associated with heavy quark spin conservation. The
static action contains no mass term and so the action possesses a flavour symmetry.
For N}, heavy quarks with the same velocity v, the HQET static action possesses an
SU(2Ny) spin-flavour symmetry [40]. The mass splitting between the lowest lying
J = 3/2 ¥} state and lowest lying J = 1/2 ¥, state, where J denotes total angular
momentum, is about ten percent of the mass of ¥,. In the static approximation
of HQET the masses of ¥ and ¥, become degenerate due to spin symmetry. In
the literature [41] this is taken as a possible indicator to suggest that the O(1/mg)

correction to the static approximation is at the ten percent level.
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3.5 Spectroscopy Methods

3.5.1 Correlators

The zero-momentum correlation function C(t) for a hadron interpolating operator
O(Z,t) is defined as follows

C(t) =) (0|0, t)0'(0,0)|0). (3.56)

T
Inserting a complete set of zero-momentum energy-cigenstates {|n)} of the Hamilto-

nian gives

1 .
di=3 o 1{0|O|n)|?e~Ent, (3.57)

n
In a finite-volume, the spectrum is discrete and the operator O(Z.t) has a non-zero
coupling to all states {|n)} that share its quantum numbers. Correlation functions
can be analysed to extract excited state energies. At large time separations ¢, the
correlation function is dominated by the contribution of its ground state. The effective

mass at time ¢ denoted m. () is defined as follows

M) = ln[C(j(lv) s (3.58)

(t+1)
At large times, mess(t) ~ Ep where the lowest mass state Fjy is called the ground

state.

3.5.2 Distillation

The basic quantity in the construction of correlation functions involving fermion fields

is the fermion propagator given by
=il 1 O —B -
My = 5 [ DYDBE T, e, (3.59)

where i, j label quark flavour, «, 3 label quark spin and M is the fermion matrix
appearing in the fermion action. Historically, access to a limited number of rows
of this high-dimensional matrix has been possible to give point-to-all propagators.

Here the propagator from a small number of sites on the lattice to all other sites is
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evaluated. Calculating a limited number of rows saves dramatically on computing
resources. More recently, all-to-all propagators have been utilised [42]. In this ap-
proach, a spectral sum of the physically important low-lying eigenmodes is formed
to estimate the propagator. Random noise is also used to estimate the propagator.
The spectral sum and random noise estimates of the propagator are combined in a
hybrid algorithm.

Traditionally, smearing has been used to expose at earlier timeslices the asymp-
totic behaviour of correlation functions. This is necessary since signal-to-noise ra-
tios diminish at larger time separations rendering large time information redundant.
Smearing acts as a filter and retains the long-range modes. For the purposes of ex-
tracting low-energy masses the short-range modes are deemed unwanted and referred
to as contamination. These short-range modes can be significantly removed by the
application of smearing to the quark field. Smearing consists of redefining the quark
fields in terms of a local distribution of quark fields. Jacobi smearing [43] involves
iteratively applying the lattice Laplacian to the quark fields. The lattice Laplacian

is defined as follows
3
V?u( = —60zy + Z Ortjy + U]T(-'” — J,1)0x—jy)- (3.60)

where the gauge fields U;(x, () have been constructed from gauge-covariant smeared
gauge fields. The Jacobi smearing operator is defined as follows

;s szU))"”w

Np

Tossll)= (1 (3.61)

where p is the smearing parameter and n, is the parameter denoting the number of
smearing hits. These two parameters are tuned to optimize excited state contamina-
tion reduction. The Jacobi smearing algorithm selects the lower eigenmodes of the
lattice Laplace operator. Contributions from higher eigenmodes are suppressed.

A smearing operator can be defined by a projection operator onto the space of
the first M eigenvectors of the gauge covariant lattice Laplace operator V2(¢). The
lattice Laplace operator has rank N = N, x N2 where N, is the number of colors

and N2 is the spatial volume of the lattice. The distillation operator [44] has rank



M << N. The distillation operator on timeslice t denoted [4(t) is given by

ZU ®1) : (3.62)

where v} is the k' eigenvector of V? calculated with background spatial gauge fields
at time ¢. Since the rank M << N, distillation is not prohibitively expensive and all
elements of the propagation matrix can be computed. A displaced static-light-light

baryon annihilation operator is given by
abcHa ajan b ¢
X¢ = €°Qp(CT)™* (D1 O wl,z’)al (DO wzt’)az ; (3.63)

where there is a contraction over color indices a, b and ¢ as well as a summation over
spin indices a; and as. @) denotes the heavy quark field, ); » denote the light quark
fields. CT is a spin matrix for the light quarks; its role will be explained in the next

chapter. D, 5 is a gauge-covariant displacement operator defined as follows
Dy s(z Z(‘ SP(x,9)0zy (3.64)

where P(z,y) is a gauge-covariant product of links connecting sites x and y, d,, is
a delta function and the coefficients C/ , are complex numbers. The static-light-light

correlation function is given by
Cos = {Xixt) (3.65)
te eabcedef(CF)alaz(C’I‘)BILaQ
a oy T CRPRT
(Qt/ (Dl'Ui'Ui '(/1>a1 4 ('Dg’uj.uj/(/)) by Q0 ('(/)vjluj'D2>ﬁ
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Wick’s theorem is used to factorize the correlation function into products of quark
propagators [45]. The horizontal brackets in equation (3.65) linking two quark fields
are contraction symbols. In brief, each contraction of two quark fields in equation
(3.65) results in a quark propagator. The minus sign arises due to the Grassmann
nature of quarks fields. Quark fields are Grassmann variables and are antisymmetric

under interchange as shown below
Y12 = —at)r. (3.66)

The static-light-light correlation function factorizes into the product of three terms

as follows
o _ pled) g (i4,¢) (”) (5,3) g, *(1,3,d) cd (l]r 1] Ud
(’(f’-f) o P(t’.r)q)t' Tw o (I) P(t t)q T (I) 7]
where
ijcoy abe 1\ @ b @
DY = ¥ (Pt (D) (CT), (3.68)
1 af
aie =W (M (3.69)

and P9 (¢’ t) is a Wilson line connecting the source at time ¢ with the sink at time
t'". The Wilson line is the heavy quark contribution to the correlation function. Both
® and 7 are square matrices of dimension 4. ® contains all the information on the
creation operator. 7 is known as the perambulator. 7 contains the information on
quark propagation. All elements of 7 can be computed at a reasonable computational

cost. Distillation has been utilised successfully in excited light meson spectroscopy

[46, 47].
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Chapter 4

Group Theory

4.1 Octahedral Group

The continuum Hamiltonian is invariant under rotations in SO(3). The Hamiltonian
of a spatially isotropic lattice is invariant under rotations of the cubic group O.
This group comprises the twenty four rotations that map a cube onto itself. In
the continuum it is possible to construct spatially extended baryon interpolating
field operators that belong to the (2L + 1) - dimensional irreducible representations
of SO(3), where L denotes orbital angular momentum. In the continuum L is a
well-defined quantity. On a spatially isotropic lattice, it is possible to construct
spatially extended baryon interpolating field operators that belong to the irreducible
representations of O. O has five conjugacy classes and therefore five single-valued
irreducible representations - see the Appendix. These irreducible representations are
labelled Ay, Ay, E, Ty and T5: they have dimensions 1, 1, 2, 3 and 3, respectively.
Unlike the continuum case, each irreducible representation does not coincide with
a distinct quantity L. A technique known as subduction can be used to infer the
continuum orbital angular momentum content of lattice baryon interpolating field
operators.

The direct product of the cubic group O with the two-element group {1.P},
consisting of the identity transformation 1 and the spatial inversion transformation

P, gives the Octahedral group denoted Op. All lattice operators naturally possess
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invariance under O. Since the Hamiltonian does not possess definite symmetry under
spatial inversion P, lattice operators are not guaranteed to possess any symmetry
under spatial inversion. Care must be taken to ensure that lattice operators possess
definite parity P. This can be achieved in a straightforward manner by considering
transformations under the larger group Op,. The octahedral group has 10 single-
valued irreducible representations denoted Ay, Ayy, A2g, Asu, Eg, Eu, Thg, Tiu, Tog
and Ty,: they have dimensions 1, 1, 1, 1, 2, 2, 3, 3, 3, and 3, respectively. The
subscript g denotes gerade or even under spatial inversion and u denotes ungerade
or odd under spatial inversion.

In this chapter, it will be shown how to construct lattice baryon interpolating field
operators that belong to irreducible representations of O,. The process of subduction
will be explained. These operators have fixed isospin [, fixed parity P and fixed spin

S.

4.1.1 Projections into Irreducible Representations

In HQET the heavy quark is static. This quark does not contribute to the group
theory except to define the origin of the baryon interpolating field operator. The
positions of the light quarks are taken as being relative to the position of the heavy
quark. Rotations under O are considered as rotations about the heavy quark point.
Spatial inversion is considered as reflection through the heavy quark point. A general
baryon interpolating field operator, that is to say, an operator with zero, one or both
light quarks displaced from the origin can be described by the diquark consisting of
its two light quarks. A schematic representation of a spatially extended diquark with
one light quark at position 7}, the other light quark at position 75 and the heavy

quark at the origin is given in Figure 4-1.
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. Heavy

O Light

Figure 4-1: Spatially extended diquark.

Each transformation in O}, is assigned a number ranging from 1 to 48. One diquark
is selected and denoted e;. Transformation ¢ applied to diquark e¢; produces diquark
e; where 7 varies from 1 to 48. If no transformation in Oy, leaves this diquark invariant,
a set of 48 diquarks - each with a distinct spatial orientation - is formed. In this case,
e, can be specified by a 48-d vector with one in the i position and zeroes clsewhere.
Each transformation ¢ beginning with transformation 1 is applied in sequence to
diquark e, to produce a permutation of the 48 quantities e;. This process is repeated
for diquark e3 and so on. In this manner, a 48-d reducible representation M of Oy, is
formed. The diquarks act as basis vectors while the representative matrices are given
by the permutation matrices.

The multiplicity of the irreducible representation r for the reducible representation

M is given by
1
o 2 anxzxﬁ[, (4.1)
k

where there are n; elements in class k, x} is the character of the irreducible repre-
sentation r for class k, Y2’ is the character of the representation M for class k and g
is the order of Oy [21]. The definition of the character of a group element within a
representation of the group is given in the Appendix. The rotation angles associated
with the conjugacy classes are given in Table 4.1. The character table for O, is given

in Table 4.2 [18].
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Table 4.2: Character table for Oy,.

An application of equation (4.1) shows that the decomposition of the 48-dimensional
reducible representation of (), into irreducible representations of (), contains each ir-
reducible representation of Oy with the multiplicity for the irreducible representation
being given by the dimension of the irreducible representation.

The following projection operator
Pr =7 X"(g9)M(g). (4.2)
9

projects a basis vector for representation M into the irreducible representation g

where x#(g) is the character of an irreducible representation matrix for element ¢ in

@ h-
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4.1.2 Subduced Representation

The method of subduction is used to uncover the continuum orbital angular mo-
mentum content of operators belonging to spatial irreducible representations of Oy.
A formal definition of subduction is given in the Appendix. A subduced represen-
tation of Oy, labelled by continuum spin L, is formed by selecting the irreducible
representative matrices of SO(3) x {1, P} that correspond to the 48 elements of O
C SO(3) x {1, P}. This representation is in general reducible. There is a two-to-one
homomorphism from SU(2) to the continuum Hamiltonian symmetry group SO(3).

The traces of SU(2) matrices for spin L and rotation angle 6 are given by
p _ sin[(L +1/2)6]
X6 = T in[9/2]

The multiplicity of an irreducible representation r of Oy for the subduced repre-

(4.3)

sentation of Oy with continuum spin label L is given by
1
my, = EZWXZX;%, (4.4)
k

where there are ny elements in class £, xj, is the character of irreducible representation
r for class k, xF is the character of the subduced representation with continuum spin
L for class k and g is the order of the group [48|.

The decomposition of the subduced representation of O, with continuum spin L
into the irreducible representations of Oy, for spins from L = 0 to L = 5, is given in

Table 4.3.

A

A1y @ Ay,

TEN AT

E, @ E, © Ty ® Tou

A As, &, 8 Ly T 1o,

Ay @A E,OE, Ty & T @ Ty ® T2y
Eq@E,; ®T1y @ T1y © Ty Tho @ T2y @ T

Bit s GO G o S

Table 4.3: The subduction of SO(3) x {1, P} to the irreducible representation A of
Oy, for integer L.
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A continuum operator that couples to a state with definite angular momentum
L decomposes with an identifiable pattern into different irreducible representations
of Oy, when it is restricted to the lattice. If a state appears across the same pattern
of irreducible representations it can be assigned the continuum angular momentum
label L. An operator from any of these irreducible representations must couple with a
non-vanishing coefficient to a continuum state denoted by L. Operators transforming
according to a given irreducible representation couple to a tower of states. The tower

of states for ecach irreducible representation is given in Table 4.4.

Ay, | 0,4,6..
A | 0,4,6..
Az, | 3,6..

Az, | 3,6..

E, |2,4,5.
E, |2,4,5.
T (1,845,
Y| 18400
Tho [28.45 .
B D3 e

Table 4.4: Allowed values of L for each irreducible representation of Oy,.

4.2 Pauli Exclusion Principle

The Pauli Exclusion Principle requires all baryon interpolating field operators to be
antisymmetric under interchange of its indistinguishable particles - namely its two
light degrees of freedom. Each light quark has a colour index, a flavour index, a spin
index as well as a spatial coordinate. Before considering symmetries under Oy, an
elemental baryon interpolating field operator with appropriate colour, flavour, spin
and spatial symmetry must be designed, see the quark model section of [4]. There
is a total of four ways in which to combine the light degrees of freedom to attain an

overall antisymmetry. In cach case colour contraction of the heavy quark with the
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two light degrees of freedom is taken at the heavy quark point. Antisymmetrization
in colour space is achieved with the Levi-Civita tensor. This produces a colour-
singlet quantity. The different symmetry combinations are given in Table 4.5 where

A denotes an antisymmetric channel and S denotes a symmetric channel.

Colour | Flavour | Spin | Space
A A A S
A A 5 A
A S S S
A S A A

Table 4.5: Symmetries allowed by the Pauli Exclusion Principle.

4.2.1 Flavour

The light quarks come in two different flavours - up (u) and down (d). Strange
quarks are not simulated in this project. Isospin zero baryon interpolating field
operators correspond to the antisymmetric flavor-space channel. Isospin one baryon
interpolating field operators correspond to the symmetric flavor-space channel. The

results are summarized in Table 4.6.

L=0 %(ud— du)
il uu,%(ud—f—du),dd

Table 4.6: Flavour symmetries.

4.2.2 Displacement

In order to maintain gauge invariance, path-dependent gauge links are used to dis-
place the light quarks. In the general case each light quark has a distinct spatial

displacement from the heavy quark point. The combined symmetries are explicit in
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the most general elemental field operator given below

B(@) = {e™Q"(D)l} )P(F D*CasTisla, (B P )"
e Q(2)\gf, (5) P(F, B CasTslaf, (5)P(Z, 2)]°}
+{eQ (D)}, (2) P(Z, )" CasTslal, () P(F, D]
e Q)5 (2) P(Z, )] CasTsslaly () P(F, D))}, (4.5)

where f; denotes the flavour of light quark one, o denotes the spin of light quark one,
P(y,7) is the path-dependent gauge link (with two suppressed colour indices) that

abc

displaces a quark from point ' to point v, ¢ is the Levi-Civita tensor with explicit

colour indices, ' is the charge conjugation matrix and I" is a combination of gamma
matrices. The combination of + signs as well as spin matrix ' is chosen to satisfy

the Pauli Exclusion Principle.

4.2.3 Spin

The four Euclidean gamma matrices satisfy the anticommutation relation below
B T =20 xliu (Dirac algebra), (4.6)

where p € [0,1,2,3]. This identity is basis-independent. There is an additional

matrix ['s. It satisfies the following basis-independent identities

([s)® = ILixa, (4.7)
(Ts)! = Ts, (4.8)
b =0, (4.9)

where 14,4 is the 4-dimensional identity matrix.

In Euclidean space I's is defined as follows
I's = il\Z['1 o3, (4.10)

In HQET, the heavy quark spin decouples. The two spin-1/2 light quarks combine
to form either an S = 0 or an S = 1 baryon interpolating field operator. The choice

of gamma matrix determines the spin.
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The charge conjugation matrix C' satisfies the following representation-independent
identities

IR =i p € {0,1,2,3}, (4.11)

GRS~ L (4.12)

The basis used in this work is the Dirac basis. In the Dirac basis the charge conju-

gation matrix has the following definition
@ =iy (4.13)

The definition of the Euclidean metric tensor §** and the representation of the gamma

matrices are given in the Appendix.

4.2.4 Spin Irreducible Representation

Each element g € Oy, can be assigned a matrix R(g) such that
Hijle: = 3e (4.14)

where ¢, is a unit vector in the i** direction and i, j € {1,2,3}. The set of matrices

R(g) has the following property

R(g192) = R(g1)R(g2), (4.15)

for g1, go € Oy, thus providing a matrix representation for Op,. The characters of these
matrices show that this representation is a T}, irreducible representation of Op. The
T}, irreducible representation of O, is called the vector representation of O,. The set
of matrices {I'sI'1, sy, 53} also forms a basis for a T}, irreducible representation
of Op. The set {I'1,T'5.I's} transform as a T, irreducible representation of O,.
Any element of {I,I'y,T's,[oI's} can be used to construct an S = 0 operator which
transforms as either an A, or Ay, irreducible representation of Oy,. The results are

summarized in Table 4.7.
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Spin | Parity | Symmetry
CTy 0 — S
CTs,CT oI5 0 + A
C 0 - A
CT4,CT, CT' 1 e S
CT'sI', CTsI'9, CT'5Is 1 - A
CToI'1T'5, CToI'oI's, CToI'ss | 1 - S

Table 4.7: Properties of gamma matrices.

4.3 Parity

In 4-dimensional Euclidean space the parity transformation denoted by P, maps

(t,7) — (t,—Z). For a quantum field (¢, Z) the parity transformation is as follows
¥(z) > ¥'(z) = S(P)Y(Pa). (4.16)
where S(P) is a unitary operator. The transformation of a diquark is as follows

a7 ()Casl's02(2) = [S(P)3ar (Py)Casl's[S (P48 (P2)
= @ (PY)[S(P)|3CasT 35S (P)5e5(P2)
= ¢ (t, —H)[S(P)3CasTss[S(P)]pa5 (¢, —2)

where Ay, = [S(P)]§Casl 5s[S(P)]5.

There are two contributions to parity. The parity contribution due to the configu-
ration of spatial coordinates is called smearing parity. The other contribution to par-
ity is from the spin matrix. In any basis [CT| has definite parity of +1, i.e. A = £[CT],
where I' € {I,Ty,ToI's, 'y, [a, 3, Ts'1, sy, I'sy, Tl T, Tolals, TpI'sT's }. For an
operator to have well-defined total parity it must also have well-defined smearing

parity i.e. smearing parity of +1.

47



The two transformations below have smearing parities of +1 and —1, respectively,

g5 (¢, 9)[CTlasgs(t, 2) + 65 (¢, —H)[CT]asas (¢, —2)
= [g5(t, —P)Aasad(t, —2) + ¢f (1, §)Aasas (¢, 2)]
= (+Dgf (& DAasa3 (1, 2) + 4 (t, —§)Aasda (t, —2)]
= (+1)(0)[g¥(t. D [CTases (1, 2) + g (t, —)[CTasg5(t, —2)],  (4.18)

g5 (¢, 9)[CTlas 3 (t, 2) — gf(t, =) [CTasts(t, —2)
= [gf(t, —DAas3(t, —2) — 97 (¢, D Aasts(t, 7)]
= (=)}t D Aas®(t, 2) — o5 (t, ) Aasty (t, —2)]
= (-1)(0[g}E DICTasas (t, 2) — g7 (¢, —P)[CTlasgp(t, —2)],  (4.19)

where p is the parity due to the spin matrix CT'.

These two cases are summarized in the following equation

¢; (8, DICTasar(t, 2) + (P)af (¢, —)[CTasaa (t, —2)
= (P)(Paf (t, 9)[CTasaa(t, 2) + (P)af (t, —9)[CTasaa(t, —2)].  (4.20)

where p = %1 is the smearing parity and p is the parity due to the spin matrix. The

overall parity is the product of smearing parity and spin matrix parity.

4.4 Tensor Product of Spin and Spatial Irreducible
Representations

Spin angular momentum and orbital angular momentum are combined by taking the
tensor product of the irreducible representation of Oy, associated with spin with the
irreducible representation of O) associated with spatial displacement. The identity
representation is the A, irreducible representation. The tensor product of the Ay,
irreducible representation with an irreducible representation DD produces the irre-
ducible representation corresponding to D with the opposite parity. In general the
tensor product of two irreducible representations produces a reducible representa-

tion. The decomposition and projection into irreducible representations is given by
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the methods explained earlier. The coefficients used in the projection are Clebsch-
Gordan coefficients. All possible tensor products and their decompositions are given

in Table A-1 and Table A-2 in the Appendix.
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Chapter 5

Results

5.1 Results

All the techniques used in this work have been described in previous chapters. In
this chapter, a summary will be presented of key results. The chapter begins with
a section on eigenvector testing. The next section is a study on non-local baryon
interpolating field operators. This is followed by a section on the quark model. This
is followed by a section on effective mass fittings. Following this, there is a section
on mass splittings. The next section shows a comparison of results with experiment.
This is followed by a summary of, and comparison with, contemporary lattice work on
the b-hadron spectrum. The chapter concludes with a brief discussion of systematic
errors. To begin, the list of lattice parameters used in this work is presented in Table
5.1.

In this chapter L denotes the orbital angular momentum of the diquark, .S denotes
the total spin of the diquark, J denotes the total angular momentum of the diquark,
I denotes the isospin of the diquark and P denotes the parity under spatial inversion
of the diquark. In the static limit of HQET the static (bottom) quark does not
contribute to the orbital angular momentum, the spin, the isospin or the parity of
the baryon interpolating field operator. For this reason the quantum numbers and

group irrep label of the baryon operator and diquark operator are interchangeable.
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Parameter Value
B 1.5
Volume 123 x 96
Number of Configurations 49
Ny 3
aymo —0.0734
Qg 0.12fm
2 3.5
g 4.3
¢ 3.4
Us 0.7336
uy 1
Ty 0.9267
Uy 1
e; 1.589
¢ 0.903
p 0.14
Mp 2

Table 5.1: Summary of all lattice parameters.

The lattice dimensions and the number of Ny = 3 dynamical gauge configurations
are given. The bare up quark mass a;my is given. The ratio of spatial to temporal
lattice spacings £ as well as the anisotropies 7, s fixed during tuning are shown.
The unsmeared spatial and temporal tadpole factors in the gauge sector are given,
denoted ug and w4, respectively. The smeared tadpole factors in the fermion sector
denoted s and w; are given. The choice of stout-link smearing parameters in the
gauge action denoted p and n, are presented. The values of the tree-level tadpole

improved coefficients ¢, and ¢; are shown.
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5.2 Eigenvector Tests

Previous work on distillation [44] has studied the dependence of 2-point correlator
data on the number of eigenvectors of the Laplace operator utilized in the distillation
procedure. In that work, single exponentials were fitted to correlators and effective
mass plots were analysed. These plots show that excited state contamination as well
as noise are sensitive to the number of eigenvectors used in the distillation process.
In this work, a study was conducted on the dependence of the quality of data on
the number of eigenvectors. The results from this study are given in Figures 5-1
and 5-2. Throughout this chapter, the effective mass plots presented are for fits of a

single-exponential to a 2-point correlation function.
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Figure 5-1: Eigenvector test for an (L=1,5S=0,J =1, I =0, P = —) state with

a T, operator.

Figure 5-1 has two main features. Firstly, it demonstrates that the value of the
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effective mass for a particular timeslice decreases as the number of eigenvectors is
increased from 4 to 12. This is seen for each of the 4 timeslices. Secondly, it demon-
strates that the error in the effective mass decreases as the number of eigenvectors is
increased from 4 to 12. This is observed for each of the 4 timeslices. In Figure 5-2, a
plateau in the effective mass first begins to appear around timeslice { = 11 for both
Ne, = 12 and N, = 24. The effective mass plot for N, = 12 begins to show definite
signs of noise at timeslice ¢ = 16. Whereas the effective mass plot for N, = 24
begins to show definite signs of noise at timeslice ¢ = 21. Thus increasing the num-
ber of eigenvectors from 12 to 24 improves the statistical error by allowing fitting
over a wider time window. All data points for the N., = 12 data are higher than

the corresponding data points for the N., = 24 data up to and including timeslice

t =15,
0.8 T T T ¥ T T 1
| @ oNev_ 12
DN :24
0.7r2@ £y =
Be
@
%0.6 E@mm =
i ®ongpd d
zﬁ mﬂ:mmﬁ%é é 10
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04+ |5
L
I S O 1 ; 1 X [
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t/a

Figure 5-2: Eigenvector test for an (L =0,5=0, J =0, I =1, P = —) state with

an A; operator.

The data in Figure 5-1 was obtained using an earlier version of CHROMA [22] on
a data set of 99 configurations. The data in Figure 5-2 was obtained using the most

current version of CHROMA. The number of configurations used is 49.
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5.3 Non-Local Operators

One-link, two-link and three-link operators were tested with 12 eigenvectors. Spin-0
operators for each of the five irreducible representations of O were tested. Both I =0
and I =1 as well as P = + and P = — operators were tested. In each case, it was
seen that the effective mass plots were identical within an individual irrep. That is to
say, no variation in excited state contamination was seen in moving from the simplest
realization of an irrep operator to an operator with a slighlty larger radius. Figure 5-3
is one such example. This suggested that further study of the dependence of excited
state contamination on the spatial configuration of the diquark was necessary. C-
code was written to construct A; operators with both light quarks displaced from
the origin and from each other. Operators with a radius of less than 8 spatial lattice
units were constructed. A sample of more than 250 operators were tested. This
examination used 4 eigenvectors and 5 configurations. Again, very little variation
in excited state contamination was seen. These results are summarized in Figure
5-4 which displays an arbitrary sample of 6 of these operators with inclusion of the
corresponding single-site operator for direct comparison. All results presented in this
chapter for irreps with dimension greater than 1 were obtained by fitting a single
exponential to the row-averaged correlator for the irrep. Results obtained by fitting
a single exponential to an individual row of an irrep are given in the Appendix.

A small number of correlation matrices up to dimension 5 were constructed for
A; and T operators. Again both parities and both isospins were tested. These
simulations were run with 24 eigenvectors and on 49 configurations. A variational
analysis was performed [49, 50] . The results of one such test are plotted in Figure

5-5. No excitations were observed.
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Figure 5-4: Sample of different (A;, I = 0, P = —) operator results.

Operator | Quark 1 (x, y, z) coordinates | Quark 2 (x, y, z) coordinates
Operator 1 (=7,-3,0) 8
Operator 2 (—6,0.0) (2,000
Operator 3 (—4,-2,-5) (48]
Operator 4 (-1,-5,3) (19,9
Operator 5 (-1,-5,-3) (2. 12
Single Site (0,0,0) (0,0,0)

Table 5.2: List of displacement operators.
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Figure 5-5: Variational analysis results for a 4 x 4 correlation matrix optimized on
timeslices (o = 0,1, = 1, 2) for one-link, two-link and three-link isospin-1 operators

in the Ay, irreducible representation of Oy.

5.4 Quark Model

The up quark denoted u is an isospin-1/2 particle with isospin projection I, = +1/2.
The down quark denoted d is an isospin-1/2 particle with isospin projection I, =

—1/2. The A} particle has isospin I = 0 with quark content udb, where b denotes a

o7



bottom quark. The quark model [4] gives the lowest AJ particle the quantum numbers
J =1/2 and P = +, where J and P denote total angular momentum and parity,
respectively. ), £ and ¥, belong to the isospin-1 triplet (uud, udb, ddb). In the
quark model the lowest ¥, particle has the quantum numbers J = 1/2 and P = +.
The masses of both A, and ¥, have been measured experimentally (2, 6]. The %, -
Ay splitting has already been measured in lattice QCD. In this project, the operators
that couple to the lowest lying A, and ¥, particles are designed according to the

symmetries of the "good" and "bad" diquarks in [51].

5.5 Effective Mass Fittings

The effective mass plot for each operator was individually inspected. In each case, a
minimum value for the lower fit timeslice parameter ¢, was chosen. This was taken
to be the timeslice value at which the effective mass begins to plateau. A maximum
value for the higher fit timeslice parameter t; was taken. This was chosen to be
the timeslice beyond which fitting would be meaningless due to noise. Ground state
effective mass fittings were performed for all pairs (g, ¢;) that lie within these limits.
The fits with the better values of x7 , ; were selected. For each operator, these results
are collated in a detailed figure which contains three subplots. The first subplot shows
the effective mass. The second subplot shows the better ground state effective mass

fits. The third subplot shows the corresponding set of x3 7. values.

5.5.1 A; Results

Four states are studied in this section. A single-site operator is defined as an operator
with all three quarks living on the same lattice site. Both single-site and one-link
operators were used to simulate an operator that couples to A,. There was only a very
slight difference in the quality of the data between these two operators. The one-link
operator was selected as the A, canditate for the calculation of mass splittings. The
following five pages each contains a figure containing effective mass results as well as

a brief description of the operator underneath.
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60



s T =9, 1.=18)
0.7+ — | [Oot=10,t=18
O(t,=11,1,=18
| © 4 IA@=9.t,=17)
i e 1(t,=10, t,=17
= 06 o O | fot,=11,1,=17
< D(1,=9, t,=16)
S . -10.t =
r ST 0] gp]0) [(t,=10, t,=16
B @ééé O(t,=11,t,=16
0.8 T o9, ,=15)
| 1 | AL 1 1 | 1 | 1 A(t0=10.t|:15
0 5 10 15 20 <I(6=2:,=14)
t/a (t,=10, t,=14
5 0.54 — : ~
PRI RPE R E L ki ¥
T §2TETYRTOETS
E 0:53— —
E - =
0.52
2.8
24— 4 7=
2ol ORR A &
=6 P N y
i i o o

Figure 5-8:0lrrepids: L =0, S =0, J=0. I =0 P = —.

This operator is constructed with the spin matrix C'. It is a single-site operator.
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This operator is constructed with the spin matrix CTy. It is a non-local operator.
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5.5.2 Spin-1 Results

This section contains results for the masses of four states. Three of these states have
been measured by contemporary lattice calculations. One of these states is the lowest
lying ¥, state. The results for the 77, I = 0 and P = + operator are the first results
for the J =1, I =0 and P = + state.
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These are the row-averaged results for operators that are constructed with the

spin matrices CT';, CTy and CT'3. These results are the first results for this state.
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These are the row-averaged results for operators that are constructed with the

spin matrices CT'5I';, CT5I'y and CT'5I'3. These are single-site operators.
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lowest lying Y, state. The mass of ¥ has been experimentally determined.
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These are the row-averaged results for operators that are constructed with the

spin matrices CToI'1T'5, CToI'sI's and CTzI'3I's. These are single-site operators.
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5.5.3 FE Results

All the operators in this section are non-local. All the results in this section are the
first results for J = 2 static-light-light baryons. The masses of four newly determined

states are given in this section.
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These are the row-averaged results for operators that are constructed with the

spin matrix CT's.
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These are the row-averaged results for operators that are constructed with the

spin matrix C.
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These are the row-averaged results for operators that are constructed with the

spin matrix CT's.
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These are the row-averaged results for operators that are constructed with the

spin matrix CT.
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5.5.4 Fitting Method

For each operator in Figures 5-6 to 5-18 inclusive, it is necessary to select one "best
fit". Two criteria were used to select a best fit. The first criterion is that the fitted
effective mass must be one of the lowest fitted effected masses for that operator. This
criterion eliminates effective masses that include excited state contamination. The
second criterion is to chose from the shortlist of good fits, the one with the widest
time range. In each case, once the first criterion is met only two to three candidates
remain for the best fit. In order to maximize statistics, the one with the wider or
widest time range is chosen. Bootstrapping with 100 bootstrap samples is used to
estimate the statisical error. Fitting details for the ground state effective masses are
given in Table 5.3. There is a wide range in precision ranging from the one percent
level to the six percent level. The range of the fit windows vary considerably from

three timeslices in length to nine timeslices in length.

State (L, S, J, I, P) | Operator | Fit Range | x3, ;. agm | Precision (%)
(0,0,0,0,+) A | (13,200 | 1.16 | 0.405(3) 1
(0,0,0.0, ) Al (10,18) | 1.33| 0.53(3) 6
(0,1,1,0, +) Toh o @iag 103 | osin) 2
@ =) T, | (12,19) | 0.71 | 0.534(5) 1
(2,0,2,0,+) E| (13,15 0.38| 0.60(2) 3
(2,0,2,0, -) E| @215 | 187 061(1) 2
(0,0,0,1,+) Al @115 | 1.35]0571(7) 1
(0,0.0,1,—) Al (13,17 | 0.89 | 0.532(5) 1
L 08 1 S Tl fas,avn 089 0409E) 1
lii— T, | (13,19) | 0.92 | 0.534(5) 1
(2,0,2,1,+) E| (11,14)| 1.17]0.594(7) 1
@1 E| (1317 164| 05902 3

Table 5.3: Ground state fitting details for all states including \3 7. and fitting range

(to,tl).
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5.6 Mass Splittings

All results presented thusfar have been in lattice units. In order to reconnect with the
units of particle physics such as GeV an experimentally determined input is required.
The mass of the Q baryon [7] is used as experimental input to set the scale of the
temporal lattice spacing in the units of particle physics [25]. The lattice measurement
of 2 was aymgq = 0.353. Taking the experimentally determined €2 mass of 1.672GeV
gives an inverse lattice spacing of a; ' = 4.74GeV. In this project, there is a self energy
correction present in all mass calculations. This correction is the same for all states.
This means that only mass differences can successfully be measured. In the literature,
mass splittings are typically quoted between pairs of states that differ in only one
quantum number. This quantum number is usually either total angular momentum,
isospin or parity. Results are presented in a similar fashion in this project except
that total angular momentum is replaced by a group irrep label. Mass splittings are
presented in Tables 5.4, 5.5 and 5.6.

In Table 5.4, mass splittings between states of different isospin are given. The
pair of operators involved in the calculation of the mass splittings share the same
orbital angular momentum L, spin S, parity P and total angular momentum J. All
mass splittings are taken between pairs of operators belonging to the same irreducible

representation of O.

States (L, S, J, I. P) | Splitting m(MeV) | Precision (%)
(0,0,0,1,+) — (0,0,0,0, +) 784(25) | 3
(0,0,0,0,~) — (0,0,0,1, ) 23(15) | 65
NG e S T 10(6) | 60
0 S 869(42) | 5
(2,0,2,0,-) — (2,0,2,1, =) 104(87) | 84
(2,0,2,0,+) — (2,0,2,1,+) 71(58) | 82

Table 5.4: Mass splittings between states with the same parity P and total angular

momentum J but different isospin .
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In Table 5.5, mass splittings between states of different parity are presented.
The pair of operators involved in these calculations share the same orbital angular
momentum L, spin S, total angular momentum J and isospin /. All mass splittings
are taken from pairs of operators belonging to the same irreducible representation of

0

States (L, S, J, I, P) | Splitting m(MeV) | Precision (%)
(0,0,0,0,~) — (0,0,0,0, +) 610(22) | 4
00,01 )= 00,0, 1 186(29) | 16
s L B 370(33) | 9
0 ol o e 500(14) | 3
(2,0,2,0,—) — (2,0,2,0,+) 68(54) | 79
©0,2.0, ) = (20,2 ) 70(60) | 86

Table 5.5: Mass splittings between states with the same isospin [ and total angular

momentum J but different parity P.

In Table 5.6, mass splittings between pairs of operators belonging to different
irreducible representations of O are presented. For a given splitting, the pair of

operators share the same isospin / and parity P.

States (L, S, J, I, P) | Splitting m(MeV) | Precision (%)
(0,1,1,0,+) — (0,0,0,0, +) 979(42) | 4
(2,0,2,0,+) — (0,0,0,0, +) 941(79) | 8
N e S 18(13) | 72
(2,0,2,0,-) — (0,0,0,0, ) 351(63) | 18
@01 o) 0, m 674(29) | 4
(2,0:2, 1,5 )= (0,0, 0, 1053 112(32) | 29
R e T 14(9) | 64
(2.0,2.0 -7 (0,0,0,1.-) 269(82) | 30

Table 5.6: Mass splittings between irreducible representations of O.
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5.7 Comparison with Experiment

Experimentally, the masses of A}, &, ¥, &, &7, Z and Q, have all been
determined [5, 6, 7, 8]. The experimentally determined masses of the baryons relevant
to this project are given in Table 5.7. None of the quantum numbers shown have

been measured. They are quark model predictions.

State | Mass (GeV) | I(J¥) | Quark Content
A} |5,6202+1.6 | 0(") | udb
S5 5,807.8 2.7 | 1(37) | wub
Sy |5,815.2+20( 1(37) | ddb
ot 5,820.0+34 | 137) | wub
¥~ |5,836.4+28 | 1(27) | ddb

Table 5.7: Experimentally determined bottom baryon masses.

As explained in Chapter 4, static-light-light baryon interpolating field operators
are labelled by the irreducible representation of Oy, to which the diquark belongs. The
procedure for comparing these operator results with Particle Data Group (PDG) data
is twofold. Firstly, the irrep label of the diquark must be translated into a continuum
diquark angular momentum value. Secondly, the heavy quark spin which does not
contribute in the static limit of HQET must be reintroduced. In the continuum limit,
a static-light-light baryon interpolating field operator in the A; irrep of Oy couples
to a state with zero diquark total angular momentum. Reintroducing the heavy
quark spin gives a J = % state. In the continuum limit, a static-light-light baryon
interpolating field operator in the T} irrep of O, couples to a state with unit diquark
total angular momentum. Reintroducing the heavy quark spin could give a state
with J = % or J = % . Experimentally, there is a splitting on the order of 20MeV
between these states.

On the lattice, it is possible to calculate the mass splitting between ¥, and Ay,

Such a measurement in this project gives

m(E, — A,) = 110(6)MeV. (5.1)



The experimental result for this splitting is 191(4)MeV. Results for the operator that
couples to A, are given in Figure 5-7. Results for the operator that couples to ¥,
are given in Figure 5-13. The statistical precision in the determination of the A,
cffective mass is one percent. The fit window includes data from eight timeslices.
The statistical precision in the determination of the X, effective mass is also one
percent. The fit window includes data from five timeslices. Systematic errors are

discussed in a later section.

5.8 Contemporary Results

There are a variety of ways of studying heavy hadron physics. Outside of lattice QCD,
theoretical work includes the quark model, the QCD sum rules and the combined
heavy quark and 1/N¢ expansions. Within lattice QCD different collaborations have
been studying the b-hadron spectrum using different approaches.

Non-relativistic quantum chromodynamics (NRQCD) [52] is used for bottom
quark simulations in [9]. Actions are computed by CP-PACS and JLQCD (53, 54].
The gauge action is an Iwasaki action and the fermion action is a clover improved
action. Results are obtained at a single lattice spacing. Eight different ensembles
are used corresponding to two different strange quark masses and four different light
quark masses. Simulations are performed at three values of the heavy quark bare mass
allowing for an interpolation to the physical bottom mass value. Extrapolations are
made for up/down quarks and interpolations are made to the physical strange quark
mass. The measured value in this setup for the ¥, — A, splitting is 154(26)MeV.

Another group [10] uses NRQCD to simulate the b quark. Sea and valence quarks
are treated with the domain wall fermion action [55]. The gauge action is an Iwasaki
gauge action [56, 57]. The gauge ensembles used are generated by the RBC and
UKQCD collaborations [58]. All calculations are performed at a single lattice spacing.
Spin splittings are calculated. The ¥ — ¥ splitting is measured to be 25(25)MeV.

One group simulates the b quark with an improved clover heavy quark action
with the Fermilab interpretation [59]. They use MILC lattice gauge configurations

with 2+ 1 dynamical sea quark flavors [60]. An improved staggered fermion action is
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used for the light quarks [60]. Fine (a =~ 0.09fm), coarse (a ~ 0.12fm) and medium-
coarse (a ~ 0.15fm) lattices are used. Mass differences are calculated from the ratio
of propagators. Extrapolations to the chiral limit are made using the full QCD data
points. The mass differences =, — Ay, E;, — Y and Qp — E;, agree well with the PDG
data. All results are plotted in [11, 12]. Possible sources of error in these calculations
include a constant mass shift due to the heavy quark or the hyper-fine structure of
the singly heavy baryon.

The Bern-Graz-Regensburg BGR collaboration [13] simulates the b quark with
a static quark action. Dynamical Ny = 2 ensembles are used. The gauge action is
a one-loop improved Luscher-Weisz action for both the sea and the valence quarks.
Chirally improved fermions are used for the light quarks. The signal-to-noise ratio of
long distance correlations is greatly enhanced by implementing the so-called domain-
decomposition improvement [61]. Both baryon mass differences and baryon-meson

mass differences are calculated. Extrapolations to m, /s and interpolations to mj

2

are performed by plotting mass differences against mz. Finite-a dynamical mass
differences agree with experimental values. Some calculations of the 1/mg kinetic
corrections are also carried out. The measured value in this setup for the ¥, — A,
splitting is 200(27)MeV.

Another group [14] simulates the b quark with a static quark action. Ensembles
of 2 + 1 flavor lattices are used. These are generated by the RBC and UKQCD col-
laborations using Iwasaki gauge actions. Domain wall propagators are computed for
the light and strange quarks using various different partially quenched quark masses.
The static limit of HQET is taken for the bottom quark. In this limit the J¥ = 1/2F
states (X, E;,, ;) and the J* = 3/2* states (T}, E;)*, ;) become degenerate. Simple
linear, quadratic and cubic fits to m?2 give the chiral extrapolations. Mass differences
are calculated at a single lattice spacing. The measured value in this setup for the
¥y — A, splitting is 190(130)MeV.

Yet another group [15] simulates the b quark with a static quark action. The
gauge action used is a one-loop tadpole improved gauge action generated by the

MILC collaboration. The fermion action for the sea quarks is the asqtad improved
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Kogut-Susskind action. Domain-wall fermions are used for the light valence quarks.
Chiral extrapolations to the light quark mass are made by fitting data to m2. The
strange quark mass value is already near the physical point, this can be accounted
for by a systematic error. Mass splittings are calculated. The measured value in this
setup for the X, — A, splitting is 274(25).

The European Twisted Mass Collaboration takes the static limit of HQET to
simulate the b quark [41]. A HYP2 [62, 63, 64] static action is used for the b quark.
Ny = 2 flavour ETMC gauge fields are used. The gauge action is tree-level symanzik
improved. The fermion action is a Wilson twisted mass action. Light quarks with the
same mass as the sea quarks are used for a range of pion masses. Extrapolation to
the physical point is taken. Masses are determined at a single lattice spacing. This
group presents the first results for negative parity states. Results agree with quark
model predictions. Mass predictions from three different quark models |65, 66, 67|
are given in Table 5.8. A comparison of the results from this project with the ETMC
results is given in Table 5.9. The ETMC mass splittings are given in Table 5.10. The
corresponding splittings measured in this project are given in Table 5.11

It is worth noting that in Table 5.8 particles are labelled by their total angular
momentum J. In the static limit of HQET the static quark does not contribute to

total angular momentum.

I(JP) | m(MeV)[65] | m(MeV)[66] | m(McV)[67]
02" 5622 5585 5624
0 6189 6145 6246
0(27) 5930 5912 5890
0¢2") 5947 5920 5890
137 5805 5795 5789
1(2) 5834 5805 5844
1(37) 6108 6070 6039
1(37) 6076 6070 6039

Table 5.8: Various quark model mass splittings.
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(Trinlat)a;m | Precision (%) | (ETMC)a;m | Precision (%)
0.405(3) 1] 0.1889(85) | 5
0.534(4) 1] 0.5612(318) | 6
0.534(5) 1| 0.3727(175) | 5
0.532(6) 1| 0.3519(440) | 13
0.429(3) 1] 0.2629(84) | 3
0.534(5) 1| 0.4376(162) | 4

Precision (%)

)

0(07), 0(0) 1069(161) | 15
0(0-), 0(17) 818(194) | 24
0(17), 0(0+) 251(123) | 49
o HaE 294(182) | 62
e T () 132(197) | 149
L) 0t 426(99) | 23
1(1+), 0(0%) 181(60) | 33

Table 5.10: ETMC mass splittings.
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State 1 I(J¥),State 2 I(J¥) | Mass difference MeV | Precision (%)
0(0-), 0(0*) 610(22) | 4
0(0-), 0(1) 18(13) | 72
0(1-), 0(0") 609(21) | 3
1(0-), 1(1+) 488(17) | 3
1(1-), 1(0-) 14(9) | 64
(1), 11+) 500(14) | 3
1(1+), 0(0) 110(5) | 5

Table 5.11: Trinlat mass splittings.

The mass splitting between the ¥, baryon and the A, baryon has been measured

by all of the lattice groups working on heavy baryons. The results from this project

compare well with these results. A direct comparison is given in Table 5.12. Results

by Meinel as well as results by Gottlicb and Na agree with experiment. Their results

appear in plots in [10, 11, 12].

Group | m (X, — Ay)(MeV) | Precision (%)
This project L85 )5
Detmold, Lin, Wingate 190(130)68 | 77
Lin, Cohen, Mathur, Orginos 274(25) | 9
BGR 200(27) | 14
Lewis and Woloshyn 154(26)17 | 20
ETMC 181(60) | 33
PDG 191(4) | 2

Table 5.12: Comparison of different ¥,—A; lattice mass splitting calculations.

In summary, high precision calculations of ground state masses have been per-

formed. The statistical precision in mass fittings is typically at the one percent level

and at most is at the six percent level.

The ordering of states calculated in this

project is in agreement with contemporary lattice work, quark models and exper-
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iment. The calculation of the ¥, — A, splitting is 80MeV lower than experiment.
Systematic errors of O(100)MeV appear in mass splittings. Negative parity states

have been calculated as well as the first J = 2 mass splittings.

5.9 Systematic Errors

Many sources of systematic error appear in this work including finite-volume ef-
fects, simulating at unphysical light quark masses, taking the static approximation
of HQET and discretization effects. Simulations were run at a single lattice spacing
and for a single quark mass. Therefore it is not possible to study the continuum limit
behaviour, the dependence on the light-quark mass or possible finite-volume effects.
A detailed study of the errors is beyond the scope of this project. Instead a brief
description is given here.

The scaling behaviour for the anisotropic clover fermion action is O(a)?. Tuning
removes possible O(a) errors. There is a leading discretization error in the Symanzik-
improved gauge action with tree-level tadpole improved coefficients of O(al, a?, g%a?)
[25]. According to HQET, the leading error to the static approximation is O(1/mg)
where mg is the mass of the heavy quark. The statistical error in the number of gauge
configurations scales as ﬁ, where N is the number of configurations. Simulations
were run on 49 configurations of gauge fields. The statistical precision of results in
this project is high.

An understanding of the systematic errors involved in this project is possible by
drawing a comparison with work done by the Hadron Spectrum Collaboration [22]
which has performed hadron spectroscopy using the same lattices as this project.
Recent work on charmonium [68] assigns an approximate scale of 40MeV to the
leading-order O(a;) correction to the fermion action arising from using the tree-level
tadpole-improved value for c¢,. However, a full study of the discretisation effects
by using a non-perturbatively determined value of ¢; was not conducted. A volume
dependence study of light meson spectroscopy showed no significant change in results
between 16% x 128 and 20° x 128 lattices [69]. A study of the light quark mass

dependence of light meson spectroscopy results on quark masses down to pion masses
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~ 400MeV was also conducted. Only a mild dependence of results on the quark mass
was observed. Experimentally the ¥} — ¥, splitting has been measured at 21MeV.
These J = 3/2 and J = 1/2 states become degenerate in the static limit of HQET.
For this reason the O(1/mg) correction is expected to be relatively small [41].

In summary, it is worth emphasising that a detailed analysis of systematic errors
is beyond the scope of this project. Reference has been made to the most relevant
contemporary lattice work in an attempt to quantify the systematic errors. This
approach has its drawbacks insofar as systematic studies of all the sources of error

incurred in this project do not exist.
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Chapter 6

Concluding Remarks

The focus of this project was a complete examination of the use of distillation on
an anisotropic lattice in the static limit of HQET. To this end, a knowledge was
required of how to construct the most general non-local baryon interpolating field
operator transforming as an irreducible representation of O;,. The measured quantity
from simulations was the static-light-light correlation function. A small number of
correlation matrices were also measured and analysed.

The first step in examining the spectrum of static-light-light baryons is the con-
struction of non-local baryon interpolating field operators, as discussed in Chapter 4.
This is the first time that the techniques for constructing spatially extended hadron
operators have been applied to static-light-light baryons. Non-local operators were
constructed, and correlation functions between a source operator at timeslice ¢ and
a sink operator at timeslice ¢ + dt were measured. In order to improve statistics,
averaging over all source timeslices ¢ was taken. Single exponentials were fitted to
these correlation functions. Ground state effective masses were obtained. The ef-
fective mass plot typically shows three regions. The first region is characterized by
excited state contamination. The second region shows a plateau. The third region is
characterized by noise. The divide between these three regions can be quite blurred.
Tests were conducted to establish how the effective mass depends on the number of
eigenvectors N,,.. It was established that increasing the number of eigenvectors from

between 4 and 24 shows a dramatic reduction in excited state contamination as well
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as a reduction in noise.

Once the eigenvector dependence was understood, studies of some low dimensional
(ngim < 6) correlation functions were performed. Operators belonging to the same ir-
reducible representation of Oy, but with different light quark field displacements were
utilized. To begin, one-link, two-link and three-link operators were used to construct
correlation matrices. The variational analysis of the correlation matrices showed two
interesting results. Firstly, no excited states were found. Secondly, diagonalization
of the correlation matrices gave the same ground state effective mass as any of the
effective masses obtained from self-correlators. In a successful variational analysis
optimized correlators are constructed. The optimized correlator for the ground state
would give a better determination of the ground state mass than would the input cor-
relators. Further variational analysis was performed using operators with the light
quarks displaced from the static quark by ever increasing distance. Again the results
were the same. This prompted the study of various elaborate operators.

Detailed studies were conducted on the dependence of the profile of the effective
mass plot (obtained from single exponential fits to the correlator) with the diquark
displacement vectors. C'-code was written to construct different spatial configurations
of diquarks with both light quarks displaced from the static quark, from each other
and less than eight lattice units in radius. A sample of more than 250 such diquarks
were tested on a data set of 5 configurations and with N,, = 4. The operators in ques-
tion belonged to the A; irreducible representation of O,. Both isospin-0 and isospin-1
sectors were tested as well as both parities. No variation in the effective mass profile
was observed. It was concluded that finding static-light-light baryon interpolating
field operators suitable for variational analysis and optimization is challenging.

Determining the low-lying ground state static-light-light spectrum subsequently
became the sole focus of the project. Ground state fittings to 12 different operators
were carried out and ground state masses, which include a constant self-energy cor-
rection, were determined with reasonable success. Mass splittings were calculated.
The range in precision between results is from the one percent level to the six percent

level. Some of the results obtained in this project do not yet have a lattice counter-
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part. The ETMC has measured a subset of the masses and mass splittings that lic
within the scope of this project. Their results are in agreement with quark models.
Some ETMC mass splittings differ in magnitude from the results presented here.

Experimentally, only one mass splitting is a suitable candidate for comparison: the
3 - Ay mass splitting. This splitting has been calculated by various lattice groups by
treating the heavy quark in various lattice setups - NRQCD, HQET, clover fermions
with the Fermilab interpretation. The lattice results from different collaborations are
all of the same order of magnitude. Precision varies across collaborations. The ¥ -
Ay splitting extracted in this project is smaller than the experimental result.

In summary, some high precision measurements have been performed. In general
the A; and the T} operators give a better signal than the E operators. The use of
distillation on an anisotropic lattice in the static limit of HQET produces results with
a high level of statistical precision. Mass predictions for the four J = 2 states have
been made. Quantifying systematic errors has been beyond the scope of this project.
Comparing results with contemporay work suggests large systematic errors arise.
There are two obvious candidates for further work in this arca. The first would be to
simulate at a different lattice spacing in an attempt to study discretization effects.

The second would be to include O(1/mg) corrections to the static approximation of

HQET.
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Appendix

Mathematical Definitions
The commutator of two matrices A and B is denoted [A, B] and is defined as

[A,B] = AB — BA. (A-1)
The Heaviside step function denoted © is given by

0 ifz<0;
O(x) = (A-2)
Ll ae== (0

The Levi-Civita tensor denoted ¢ is defined by

0 if any two labels are the same;
W 1 if a, b, ¢ is an even permutation of 1, 2, 3; (A-3)
—1 if a, b, ¢ is an odd permutation of 1, 2, 3.
There are three even permutations of 123. They are 123, 312 and 231. There are three
odd permutations of 123. They are 213, 132 and 321. An even(odd) permutation of
123 is obtained by an even(odd) number of interchanges of two of the elements in the
ordered list 123.

The trace of a matrix A denoted Tr[A] is the sum of the diagonal elements of A. For

example, the trace of the following 2 x 2 matrix

a b
B = (A-4)
c d

is given by Tr|B]=a + d.

The real part of the trace of a complex matrix B is denoted ReTr|[B].

Representation Theory

This section begins with formal definitions needed to explain the group theory.
Definition: An element 7T of a group G is conjugate to S € ( if there exists X € G
such that

T 5" (A-5)
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From this definition it follows that S is also conjugate to T i.e. S = X 'T(X 1)~

Corollary:If S is conjugate to T and R is conjugate to 1" then R and S are both

conjugate.
B XTX ! (A-6)
and
R=YTY™! (A-7)
imply
B2V B F =X 5y ) =0 s a . (A-8)

Definition: A conjugacy class of a group G is a set of mutually conjugate elements
of GG,
Definition: A mapping [ of a group (G; onto a group (5 is said to be homomorphic

if it has the property
f(S)F(T) = F(ST) (A-9)

for all S, T € G;.

Definition: The inverse of an n x n matrix A is the n x n matrix A~! such that
AA™ = A7TA=1], (A-10)

where the n x n identity matrix [ is the matrix with ones on the diagonal and zeroes
elsewhere.
Definition: An n xn matrix that does not possess an inverse is said to be singular.
Definition: An n xn matrix that does possess an inverse is said to be non-singular.
Definition: Given a group of non-singular n x n matrices I'(T") with matrix multi-
plication as the group operation, if there exists a homomorphic mapping of a group GG
onto this group of matrices then the group of matrices is said to form an n-dimensional
representation of G.
Definition: Let I' be an n-dimensional representation of a group GG. The character

of T' € GG in the representation I' is denoted x(7') and is given by

=T = Zrmﬁ. (A-11)
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Theorem: Given a representation I' of a group (7, all elements in the same conju-
gacy class have the same character in the representation I [18].

Theorem: Given an n-dimensional representation I' of a group G and an n x n
matrix P there exists an n-dimensional representation I defined via a similarity
transformation with the representation I'. For each T € G the matrix I'(T) is

defined by

I'(T) = P'I(T)P. (A-12)
The representations I'" and T are called equivalent.

Definition: A reducible n-dimensional representation I' of a group G is a repre-
sentation that is equivalent to a representation I where the matrices I'(T') are of

the form

e R T "
0 [y (T)

for each T' € G, where I'y1(T").'12(T"), T'22(T") and the zero matrix 0 have dimensions
81 X S1, 81 X So, Sg X Sg and sp X s1, respectively. s; > 1 and s, > 1. s; and sy take
the same values for all T' € G.

Definition: An irreducible representation of a group G is a representation that is
not reducible.

Theorem: For a finite group G the number of inequivalent single-valued irreducible
representations is equal to the number of conjugacy classes of G [18].

Definition: Given a representation I'(G) = {I'(g); 9 € G} of a group G and a
subgroup H = {h} of G, the subduced representation of I'(g) onto H denoted as
[4(H) (or [[(G) | H]) is defined by restricting I to H and is given by

TY(H) = {T(h); h € H}. (A-14)
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Cubic Group

X

\

L
Q!
:

b»/” g a 9

Figure A-1: Conjugacy classes of O.

(', denotes a proper rotation through 27 /n in the right-hand screw sense about the
axis Op. C; contains the identity operator E. C, contains the eight rotations Cl,,
ik, Giag, CS_/,I, Cays (73;,1, Cs; and Cg. Ca, (73_/}, C:;Yl and (73_(;l denote rotations of
—27/3 in the right-hand screw sense about the axes Oa, O3, O~ and O, respectively.
Cs contains the three rotations Cy,, (5, and C,. C4 contains the six rotations Cy,,
il Cay: C;yl, G ad O O C4_yl and C.' denote rotations through —27/4 in
the right-hand screw sense about the axes Ox, Oy and Oz, respectively. Cs contains
the six rotations Cy,, Cap, Coc, Coq, Ce and Chyy.

On = O x {1, P} has ten conjugacy classes. The spatial inversion operator P
applied to C, Cs, C3, Cy4 and Cj give the conjugacy classes Cg, C7, Cg, Cy and Ci,

respectively. Details of O and O), are given in [18].
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Tensor in Minkowski Space

The tensor ¢" with p,v € {0,1,2,3} is defined as follows

1) 0 0
0 -1 0 0
g= (A-15)
0O 0 -1 0
0110 0 -1
Gamma Matrices
The Euclidean metric tensor 6#” with p,v € {0, 1,2, 3} is defined as follows
1R 0) (@)
(RO B ()
i (A-16)
OASORSIRE()
(RO (N

The Dirac basis is given below.

IR0 2 ORSS0)
QS 18 () () op O
F() = = 5 (A—17)
0 0 -1 O 0 —op
00, ey
10
where o9 = ) (A-18)
0 1
()Rt () S () T
() () S ) 5
s . , (A-19)
=1l (1) () -0, 0
-1 0 0 0
(Ot
where 0, = (A-20)
1Le(0)



0 0 % 0 0
I—‘2: —
D080 —09
- 0 0 O
0 —
where g9 =
720
0, =0 w0
0 0 0 -1 0
3= =
— NN 0 ) —03
(T | S () B ()
6 0
where o3 =
0 —1
000410
001
Fs = '/FOF1F2F3 = =
1L 0 0)
0SS =00
0 0 0 -1
; () 08 L0,
C =ivy =
0 -1 0 O
T iR ()
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Representation Matrices of O,

RiE) =4 (e, 0 by (A-27)

| § S |

Ri0ei=1 1.0 8 1. (A-28)
e
D R

Rie =0 =4 (A-29)
ol 1
e

R(Cp)=] -1 0 0 |, (A-30)
R
e

RO = o =1} (A-31)
|
e N |

RiCel=4 =10/ 0 I (A-32)
06 il
s el

oy En R T g (A-33)
L )0

92



R(Cs5)=1]1 100

(=,
—
o

RICH ) = 0 B 1

—
o
=)

R(Cyx)=]0 -1 0

R(Cyy) = R

R(Cy:)=1 0 -1 0

—
o
o

Bl =4 00 —1

5 A
N
B ) =G
0 —=1/10
¢ O
R(Cyy) = 0 10
=1 D

(A-34)

(A-35)

(A-36)

(A-37)

(A-38)

(A-39)

(A-40)

(A-41)



g 10
RO =) =100
L |

s ) ¢
RiCwp)=1110 0
6 8 =1

%19

R(Cgb): -1 0 0
B ) -~

6 0 1

Rl =110
L0 b
e i e

R(C2q) = D =l ot
el 0170

=1 00

Bl 0.+ 0wl
@] 0
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(A-43)

(A-44)

(A-46)

(A-47)

(A-48)

(A-49)



BlCy=1 .0 o =11]; (A-50)
Q=
o R

BFy=1- 0 ~—1 g ] (A-51)
SR e |

Gell-Mann Matrices

The eight Gell-Mann matrices are given below.

R0

R e (A-53)

@i i
I [ (A-55)
100

00 —i
B 005 (A-56)

| RSN ()
As=l 0 =T 0 s (A-54)
()35 () R ()
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e =

)\7:

/\8:

Sl

000

i T R (A-57)
ORS 1810
OO0
as e 2E (A-58)
0= a0
SN ()
0 T y (A-59)
0 0 -2

Irreducible Representations of Oy,

Tensor Product

Irreducible Representation

A1g ® Agg Aig
Ay ® Ay Ay
Aig ® Ay A
A1y ® Agg Ay
Aig® B, 2,
A1y ®iEy Eq
Ay ® By E,
AR E, By
Ay, 4
A, ® T, i
Aig ® Thy Ty
Al T

Table A-1: List of spin-0 operators.
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Tensor Product | Irreducible Representation
Ty ® Ay Ty,
T, ® Ay, T,
Ty ® Az Ty
Ty, ® Ay (0

Table A-2: List of spin-1 operators.
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Results for S =1
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