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Summary

In this work, we present first results from dynamical siiimlations of the chirally rotated 

Schrodiiiger functional (SF) in lattice QCD. More specifically, we discuss the deter­

m ination of renorm alization constants of quark-bilinears, and show evidence for the 

expected aiitom atic 0 (o )  improvement of these determ inations. After a short intro­

duction on the topics of non-perturbative renormalization and improvement in lattice 

field theorj'. we recall the technical advantages of renorm alization schemes based on 

the SF. We then m otivate and discuss the lattice regularization of the SF with chirally 

ro tated  boundary conditions, and present details and tests on the  simulation algo­

rithm . Finallj'. we comment on the results and on future possible applications of the 

method.
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1
Introduction

The S tandard  Model (SM) of particle pliysics gives a unified theoretical descrijjtion of 

all known phenomena governed by the strong, weak, and electromagnctic interactions. 

Extraordinarily  accurate predictions have been confirmed so far for an incredibly wide 

range of experiments, and tip to  the highest energies reachable in current accelerators. 

The discovery of a possibly fvuidamental scalar field made at CERI^ in Ju ly  2012, 

might even corroborate the most debated sector of the SM. The generation of the 

fermion and gauge boson masses through the Higgs-mechanism. pro\'ides indeed an 

elegant and accurate description of the present experim ental evidence. The SM then 

passes another crucial test, and this makes it more difficult to predict what is beyond.

A way to capture the physics beyond the SM consists in exploring higher and 

higher energy- scales, where new degrees of freedom might become active and manifest 

explicitly in the  dynamics. On the  other hand, the existence of as yet undetected high- 

energj- excitations might be imveiled a t low-energy through their effects as virtual 

particles. To this end, however, unprecedented precision is needed in both theoretical 

and experim ental determ inations.

In this respect, the strongly interacting sector of the SM plays a crucial role. Indeed, 

a t energies much below the mass of the H'-bosons, the  SM can be accurately described 

by a theory of strongly coupled quarks and gluons and some effective electro-weak 

in teractions.' As a result, precise SM predictions require first of all control on the 

strong interaction contributions, which are in general the dom inant ones and most 

difficult to treat.

^We recommend (Donoghue, Golowicli and Holstein, 1994) for an introduction to  the effective 
low-energy descriptions of the SM. A discussion in the context of lattice field theory techniques can 

then be found in (Lellonch, 2011).
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The aim of our work is to develop techniques in the context of lattice field theory 

which can lead to  precise theoretical determ inations of strong interaction contributions. 

In order to  introduce our study in more detail, we s ta rt in the next section w ith a brief 

review of the theory of the strong interactions, namely. Q uantum  Chromo Dynamics 

(QCD)," This simply serves us to  fix some of the notation, and recall some basic 

concepts needed in the following. Later, we introduce the lattice formulation of QCD 

and thus coiitcxtualize our study. W’e then conclude w ith an outline of this work.

1.1 Quantum Chromo Dynamics

QCD is a  quantum  field theorj' characterized by a gauge invariance under the color 

group SU(3)c- It is defined in term s of a gluon field A^,, and quark and anti-quark 

fields and y,'. The la tter are taken to  be a column and row vector of length N[, 

respectively, where Ni  corresponds to  the  number of quark flavours f  = u,d,  s, c. b, t. 

considered. For reasons th a t will become clear shortly, tlie theory is set-up in Euclidean 

space-time.

The dynamics of QCD is determ ined by the action,

5[.4, = S g [A] + (1.1)

where S c  is the action for the gluon field, while 5p is the action for the quark fields. 

The action for the gluon field is given by,

5 g [A] =  - ^ / d - ‘artr{F ,,,(:r)F ^ ,(x)}, (1.2)

where is the field strength  tensor defined by (cf. (A.23)),

= d^,A^{x) -  d^Af^{x) -t- \A^{x),  yl,.(.T)], (1.3)

and is the (bare) gauge coupling of the theory.

The action for the quark fields instead is defined as,

Sp[A,ip,ip] = J  d ‘̂ xrp{x){ip + Mo)ip{x),  (1.4)

^For an introduction ple?ise see e.g. (Ellis, Stirling and W ebber, 1996; Aitcliison and Hey, 2004).
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where If) is the massless Dirac operator, ip =  and Mq is a N{ x Ni diagonal

matrix which diagonal elements are the (bare) quark masses, iuq, of the quark flavours 

/ .  The Euclidean Dirac matrices, 7^, are collected in Appendix A.2.

Given the classical action and field content of the theory, its formal quantization 

is specified by the Euclidean partition function,

Z  =  (1.5)

where the integration meaisures are given by,

[DA] = <î 4°(x), [vii}]=n n =n n (i-g)
x ,/ i .a  /  x . A , a  f  x .A .a

We refer the reader to Appendix A.l for the index definitions.

The quantum mechanical expectation value of a generic product of loccil fields. 

O =  0[A,ip,iP], is then obtained from the Euclidean correlation functions,^

(C>) =  ^  J[VA][Vip][V7>] 0[A.ip,^]  e-si-4-V’.^l. ( 1 .7 )

Apart from the aforementioned gauge invariance and manifest S0(4) global invariance, 

the theory posses a series of exact discrete symmetries, namely: parity, charge conju­

gation. and Euclidean time-reflection (see Appendix A.6). In addition, there are some 

approximate continuous global s>'mmetries which are described by the chiral-flavour 

group SU(A^f)L X SU(A’f)/;, where L  and B  stand for the left- and right-handed chiral 

components of the quark fields.'^ ®

The cliiral-fiaA’our symmetries will lie studied in more detail in the next chapter. 

Here we just want to note that if the quark masses m l  are all degenerate, then the

rigorous discussion on the reconstruction of quantum  m echanical expectation  values from  

Euclidean correlation functions can be found in (Liischer, 1977; OsterwaJder and Seiler. 1978), where 

the lattice formulation of Q C D  is em ployed.

“*Just for com pleteness, we recall that the  L (left) and R  (right) handed chiral com ponents o f the  

quark fields ilr and ip  are defined as; 4 ’r  =  P r V -  U ’l  —  P l '<P̂  V r  —  ' P P l ' find V'l =  ^ ’ P r ' where the  

projectors P r  and Pî  are given in A ppendix .A..2.

®In the follow ing we will not discuss the exact U ( l)  vector sym m etry associated w ith the baryon  

number conservation, nor the anom alous U ( l )  axial sym m etry (see e.g. (A itchlson find Hey, 2004)).
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iiia-ss matrix AIq is proportional to the identity, and the action (1.4) is invariant under 

the flavour (or vector) transformations,

P i x )  —>• V’ (s’) =  ’̂>(x)e“ ^  , 

where a ° , n =  1 , . . . ,  —1, are real constants, and T “ are algebra elements of SU(.Vf)

(see Appendix A.3). In the ease where the quark masses are all zero, the action (1.4) 

is also invariant under the chiral (or axial) transformations,

i/>(3-) —>■ tI’Ux ) =  V){x).

ti’{x)  —> Ip [x)  =  M>{x)e " ,

where 7 5  is defined in Appendix A .2. In the next chapter, we will show how these 

syiiunetries of the QCD action are in fact synmietries of the whole quantum theory.

Given these observations, it might come as a surprise that the plethora of strong 

interactions phenomena can be described by such an apparently simple theory with 

relatively few parameters and extended symmetrj- properties. The dynamics of QCD, 

however, is highly non-trivial and a solution of the theory is generally difficult to 

ol^tain. In fact, at high-energies the (renormalized) QCD coupling becomes smaller 

and smaller as the energy of the considered process increases. This is the jjroperty 

of asyrn.ptotic f r eed o m  (Gross and Wilczck, 1973; Politzer. 1973). In this regime, the 

strong interactions can be described in terms of nearly free quarks and gluons, and 

accurate determinations can be obtained through a perturbative approximation of the 

QCD path-integral. On the other hand, at intermediate and low energies the strong 

coupling is not small, and a perturbative treatment of the strong interactions is not 

\'alid anymore. A non-perturbative solution of the theory is then gencralh' needed in 

order to obtain meaningful predictions.

1.2 Lattice QCD

The lattice formulation of QCD is so far the only known method to obtain a non- 

perturbative solution of the theory (Wilson, 1974).*' Starting from the Euclidean path- 

integral (1.7), the lattice formulation is defined by introducing a space-time lattice and

®For an introduction to  la ttice field theory we suggest (Mont\"ay and M iinster, 1997: Rothe, 2012).



Lattice QCD 5

discretizing the fields and the action. The finite lattice spacing effectively works like 

a momentum cutoff th a t eliminates all energy frequencies of the theory above ~  a~'^, 

where a is the lattice spacing. The lattice hence provides a non-perturbative regulator, 

which makes the theory finite and m athem atically well-defined.

Nowadays, essentially all quantitative results in lattice QCD are obtained through 

numerical simulations. Considering a finite space-time volume, the theory has a finite 

number of degrees of freedom and numerical m ethods can be applied to  solve it. Due 

to  the extensive number of degrees of freedom, Monte Carlo (MC) m ethods are iLsed 

to  estim ate the discretized path-integrals: representative gauge field configurations are 

generated stochastically, and the expectation values of generic observables are com­

puted as ensemble averages." For the given lattice param eters lattice QCD gives exact 

answers within the statistical micertaiiities. Physical results are then expected to  be 

obtained once the infrared and ultraviolet cutoffs have lieen removed or, ecjuivalently, 

the infinite volume and continuum limits have been taken.

The effects of a finite physical vohnne ai'e generally easier to handle. For example 

if one considers particle masses, general field theoretical considerations show th a t in 

a theorj- w ith a mass gap the corrections due to  the finite volume are exponentially 

suppressed with the system size, where the exponential decay ra te  is given bj- the 

mass gap itself. In QCD, this means th a t finite volume hadron masses differ w.r.t. 

their infinite volume counterparts by corrections of where is the pion

mass and L  is the finite size of the system.* Similar conclusions can be drawn for many 

other quantities of interest.

In practice, another infrared cutoff than  the volume needs to be handled in lattice 

simulations. This is given by the quark masses. W ithout entering too much into the 

details, the prolilem can be tracked down to the difficultly of inverting the lattice Dirac 

operator numerically for relatively light quark masses. This com putation is required for 

example in the generation of the field ensembles through MC simulations, as well as in 

the evaluation of fermionic correlation functions. The quark masses in fact provide an

~We will d iscuss the current sim ulations algorithm s for lattice Q C D  in Chapter 4.

*W e refer to  (Liischer, 1986a; Liischer, 19866) for th e  details on th e  derivation and conditions 

under which th is result holds. A shorter introduction can be found in (Liischer. 1988).
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infrared cutoff for the Dirac spectrum, and the numerical computation of the inverse 

operator clearly suffers from the removal of this cutoff. Here we just want to mention 

that significant improvement has been achieved in this respect, and relatively small 

if not physical quark masses can now be simulated. In addition, the tools developed 

in the context of chiral perturbation theory can help in extrapolating lattice results 

at unphysical quark masses to their physical values.® The problem of determining our 

observables at the physical quark masses is then generally under control.

More delicate is the issue of taking the continuum limit. In numerical sinnilations 

tliis is done by simulating the theory at different values of the lattice spacing a. and 

then extrapolate the results for o —> 0. This procedure, however, is very demanding 

in terms of computational effort. The cost of current simulations indeed scales as a~^ 

towards the continuum limit, if the physical volume is kept fixed and for comparable 

statistical precision (Schaefer. 2012). This means that in practice the lattice spacing 

can be varied only bj’ a modest factor. Considering that, as we shall sec. lattice observ­

ables can differ from their continuum values by corrections of 0 (a), it is not obvious 

that reliable and precise extrapolations can be performed. A theoretical understanding 

of the approach to the continuum limit of lattice observables is ccrtainly needed, as 

well as techniques to control and eventually accelerate the convergence.

Related to the problem of taking the continuum limit there is the problem of the 

renormalization of the theory. As we remove the cutoff, the bare lattice correlation 

functions will develop divergences that need to be cancelled by the usual parameter 

and field renormalization. In this respect, note that renormalization is an ultraviolet 

phenomenon with relevant energj’ scales of 0(o~^). Since the continuum limit of lattice 

QCD is expected to be reached bj  ̂ tuning the bare coupling go 0,^° one is tempted 

to conclude that the renormalization of the theory can be performed pertiu’batively 

in terms of the bfixe c o u p l i n g .B a r e  lattice perturliation theory, however, is known

®For an introduction to chiral perturbation theory and its apphcations to lattice QCD see 

e.g. (Sharpe, 2006; Golterman. 2009).

'̂’From iisymptotic freedom we exp(xt 5o(a) iog(oX^cDT' •^QCD some hjidronic scale.

^'We ignore for the moment the case of power-divergences where a perturbative treatment is not 

even possible a priori. We will return to this Issue in the next chapter.
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to  be poorly convergent (Parisi, 1980; Lepage and Mackenzie, 1993). Even though the 

situation  can be improved, it is still difficult to  estim ate the system atic errors one is 

introducing w ith this approximation. In fact, the crucial question is whether one is in a 

regime of lattice spacings fine enough for this approach to  be reliable a t all. In present 

sinuilations this is generally difficult to  achieve since the lattice spacing a can not be 

taken much smaller than  the relevant physical scales of the observ'ables considered, 

as otherwise the com putation becomes too expensive. In conclusion, in order not to 

introduce uncontrolled approxim ations in renormalized lattice observables, the renor­

m alization has to  be performed non-pertiirbativcly! As any other non-perturbative 

determ ination, the renormalization has then to  deal with the system atic effects we 

discussed, namely, finite-volume effects, discretization effects, and quark-mass effects. 

I t is the aim of this work to  develop methods for the non-perturbative renormalization 

of lattice QCD where all these system atic effects are under control.

Given these general considerations, the details of the  renormalization w'ill depend 

on the specific lattice regularization employed. Note th a t in lattice QCD there is cjuite 

some freedom in choosing the regularization. At least in perturbation theory and for 

some classes of actions, it has then  been proven th a t the specific choice does not m atter 

once the continuum limit is taken (Reisz, 1989; Reisz and Rothe. 2000). This property 

is referred to  as the universality of the continuum limit, and it is assumed to be valid 

also at the non-perturbative level. In this work we consider the original fornmlation of 

lattice QCD as proposed by W ilson (Wilson. 1974). This discretization is theoretically 

robust, practically simple, and relatively cheap to simulate. All these nice properties 

make this alternative a concrete possibility to obtain precise and solid determ inations.

The well-knowTi drawback of \ \ ’ilson's formulation is the explicit breaking of chiral 

symmetry a t finite lattice spacing. Since chiral symmetry is a fundam ental property 

of QCD this might be a source of concern. The effect of the breaking, however, is 

theoretically well-understood, and the correct chiral sym m etry relations are recovered 

in the continuum limit after a proper renormalization of the theory (K arsten and Smit, 

1981; Bochicchio et. a i. 1985; Testa, 1998). On the other hand, as discu.ssed in detail 

in the next, chapter, the absence of this symmetry a t finite lattice spacing implies tha t
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the renormalization of the theory is more complicated, and the leading discretization 

effects are of 0(o). Ideas are then needed in order to obtain precise continmim limit 

extrapolations of renormalized lattice observables using this regularization.

In this respect, we just want to mention that chiral symmetry is a delicate issue 

on the lattice (Nielsen and Ninomiya, 1981a; NieLsen and Ninomiya. 1981 h; Nielson 

and Ninomiya, 1981c). In fact, lattice formulations that preserve (a lattice version of) 

chiral symmetr\' do e x i s t . a n d  have been recently exploited for large scale simulations 

(see (Chiu. 2013)). On the other hand, even though major progress has been achieved 

in simulating chiral lattice fermions, these formulations are still very demanding from 

the computational point of view, and are not yet fea.sible for most computations. 

For this reason Wilson fermions remain a popular choice especially when jjrecision is 

required.

1.3 Outline

In this work we study non-perturbative renormalization schemes based on the chirally 

rotated Schrodinger functional (SF) of QCD (Sint, 2006; Sint. 2011). Renormalization 

schemes based on the SF (Liischer. Narayanan, Weisz and Wolff. 1992; Sint, 1994) have 

proven to be powerful tools in solving non-perturbative renormalization problems in 

lattice QCD. For the case of Wilson-quarks, we argue that the chirally rotated version 

of the SF is a valuable and interesting alternative to be considered. The aim is to 

improve our control on discretization effects, and offer novel approaches for the renor­

malization of operators that might be complicated by the absence of chiral symmetry. 

In order to motivate and introduce these renormalization schemes, as well as present 

the results of our investigation, several tools and concepts need to be discussed first. 

A general outline of this work is then the following:

C h a p te r  2 We start by introducing the standard Wilson formulation of lattice QCD. 

In particular, we focus on the consequences of chiral synmietry breaking on the 

renormalization of the theory. Secondly, we analyze the approach to the continuum

^^Some original references on chiral lattice fermions are (Kaplan, 1992; Karayanan and Neuberger, 

1995; Neuberger, 1998; Liischer, 19986). For an introduction instead we recommend (Liischer, 2000; 

Kaplan, 2009).
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limit of renormalized lattice observables tlirough Symaiizik’s effective continuum 

theory. After a short introduction on the latter, we stvidy how the leading 0 (a )  

discretization effects of W ilson fermions can be system atically removed from our 

ohservaliles. Next, the general difficulties of performing non-perturbative renor­

malization on the lattice are discussed in detail. As we shall see, the requirements 

of controlled finite-volume effects and discretization effects put severe constraints 

on the determ ination of scale-dependent renorm alization factors and param eters 

from lattice QCD. In this respect, we present how finite-volume renormalization 

schemes in combination with finite-size scaling techniques provide a general and 

elegant solution to the  problem.

C h a p te r  3 \\% introduce the Schrodinger functional (SF) of QCD as a practical tool 

to define non-perturbative finite-volume renorm alization schemes. Through its 

formal continuum definition we motivate this choice, and present its nice features. 

Secondly, we discuss the standard lattice formulation of the SF, paying particular 

atten tion  to  the renorm alization and 0(o)-im provem ent of the theory. This will 

lead us to introduce an alternative regulai'ization of the SF based on the chiralh' 

ro tated  Schrodinger hm ctional (,\SF). The connection with the standard  SF is 

discussed, and the lattice regularization, renormalization, and 0(a)-im provem ent 

of the X'SF arc presented in detail. The crucial property of the novel fornmlation 

is th a t, differently from the standard  SF regularization, the 0(a)-im provem ent 

of the theory is (almost) autom atic. As we shall see, the \S F  thus does not only 

provide an interesting test of universality foj- the SF. but also alternative methods 

for the renom ialization of operators where 0 (o ) cutoff effects are autom atically 

absent.

C h a p te r  4 We shortlj^ review the general algorithmic strategies for simulating lattice 

QCD. We then present the details of the algorithms th a t we have implemented 

to  sim ulate the xSF. Finally, some consistency checlcs are discussed in order to 

support the correctness of our implementation.

C h a p te r  5 We present results from dynamical sinmlations of A"f =  2 0(a)-im proved 

Wilson-fermions with chirally ro ta ted  boundary conditions. More precisely, we
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consider tlie renormalization of several quark-bilinears including the non-singlet 

axial and vector currents, and pseudo-scalar density. After a short presentation of 

the set-up, we discuss how the expected universality between the X'SF and SF can 

lie exploited to define renormalization conditions for these operators. The results 

are then compared with previous SF determinatioas, and their automatic 0(o) 

improvement is demonstrated. We conclude the chapter with a detailed analysis 

of the robustness of our simulations.



2
Non-perturbative renormalization

In this chapter we want to review some of the basic concepts of non-perturbative 

renorm alization in the context of lattice field theory. As said, the aim of this work is to 

study a set-up for the non-perturbative renorm alization of operators and fundam ental 

param eters wliei'e all system atic effects ai’e under control. The concepts th a t will be 

presented here are the building blocks for introducing and motiv'ating our set-up in 

the next chapter. Through the next sections we will also fix some of the notation, and 

define several quantities which are central for our analyze later on.

More precisely, we start in the  next section with a presentation of the standard  

Wilson formulation of lattice QCD (Wilson. 1974). In particular, wo are interested in 

m iderstanding the additional renormalization originating from the expMcit breaking of 

chiral sym m etry by the regularization. To this scope, the W ard identities of the theorj' 

will he studied in detail. Secondly, we introduce Symanzik’s effective theory. This 

powerftil tool allows us to  systematically study and eventually improve the approach 

to  the continuum  limit of renormalized lattice observables. conclude discussing the 

general problems in performing non-perturbative renorm alization on the lattice, and 

present how finite-volume renormalization schemes and finite-size scaling tcchnicjues 

provide an elegant solution.

Note th a t most of the m aterial presented in this chapter is by now standard wisdom 

in lattice field theory. The author then recommends the references th a t will be provided 

for a more detailed an complete discussion.
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2.1 Wilson fermions and chiral symmetry

2 .1 .1  T h e W ilson  form u lation  o f  la tt ic e  Q C D

In the standard Wilson formulation of lattice QCD, the quark and anti-ciuark fields 

y:>{x) and i{>{x) live on the sites x  of the lattice and carry color, flavor and Dirac indices 

as in the continuum. We assume and ip to be isospiii doublets of mass-degenerate 

light quarks since this will be the case of most interest for us. Tlie gauge field instead 

is represented through a field of SU(3) matrices Uf^{x) associated with the links of the

lattice (x ,x  +  afi), where // =  0....... 3, labels the four space-time directions, and fi is

the unit vector in the direction fi. The index =  0 is conventionally associated with 

the time direction, while the indices k = 1,2. 3, are associated with the spatial ones. If 

not specified otherwise, we consider the theory to lie defined on a hyper-cubic lattice 

with lattice spacing a. and infinite extent in all directions.

The dynamics of theory is determined by the action.

S[U. 1[>] =  5g [U] +  5 f [U. V;. J’]. (2 .1 )

where Sq is the Wilson (or plaquette) gauge action, and Sp the Wilson quark action. 

The gauge action S q is defined by,

1 ^
ô[U] =  ^  E  E  (2.2)

where go is the bare gauge coupling of the theory, and P;,j/(:r) is the plaquette field: 

P^u{x) = Uft{x)U^{x -1- afi)Uf,{x + aC')~'^U^{x)~K

In order to define the fermionic action Sp. we introduce the Wilson Dirac operator,

=  I  E  (2-3)
/ ‘

where the lattice covariant derivatives V,, and V* are defined in Appendix A.4. The 

second term in curly brackets is the Wilson term. This is included in order to avoid the 

well-known doubling problem on the lattice (see e.g. (Montvay and Miinster, 1997)). 

As we shall see shortly, however, it is source of other concerns.
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The action for the quark fields Sp is then defined by,

+ mo)'ip{x), (2.4)
X

where itiq is the bare qiiark-inass of the degenerate qiiark-doublet.

Given the definitions (2.2) and (2.4), it is easj^ to  show th a t the  lattice action (2.1) 

shares all the discrete symmetries of the continuum QCD action (1.1), viz., parity, 

charge conjugation, and Euclidean time reflection (see Appendix A.6).^ This, however, 

is not true for the continuous global symmetries. The S0(4) sj^nmietry of contiimum 

QCD is unavoidably broken down to the discrete hyper-cubic group H(4). Moreover, 

not all internal symmetries are preserved, as we now show.

The non-singlet vector (flavoiu') transform ations (1.8) can be analogoush' defined 

on the lattice, and for N{ = 2 Wilson-quarks read,

U’{x) V>'{x) =
(2.5)

ip{x) iL̂ {x) =  %L'{x)e 2 .

where t " , a = 1 .2 ,3 , are Pauli m atrices acting on the isospin indices of the quark 

fields (cf. Appendix A.3), and q “. are some real param eters. The gauge action (2.2) 

is trivially invariant imder any fermionic transform ation, and docs not need to  be 

discussed. It is then im m ediate to  conclude th a t the \ \ ’ilson quark action (2.4) is 

invariant under the transform ations (2.5) since the bare quark masses are degenerate. 

Vector symmetry is thus preserved by the W ilson action.

Secondly, we consider the non-singlet axial (chiral) transform ations (1.9). which 

for N;  =  2 W ilson-quarks are given by,

i/;(3-) v ' {x )  =  e“ ^ ^ ^ ^ i’(x),
(2.6)

'd'(x) —> ij) {x) =  ,

where are some real param eters. In this case, even if the bare quark mass itiq is zero, 

the presence of the W ilson term  makes the Wilson action not invariant

^The la ttice action (2.1) satisfies the property o f reflection positiv ity  (Luscher, 1977). T h is is a 

fundam ental property for the quantum  mechanic<il interpretation of the theory, which includes the 

existence of a Hilbert space o f  sta tes for th e  theory, and a positive self-adjoint H am iltonian operator.
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under the axial transformations (2.6). The Wilson term thus explicitly breaks chiral 

symmetry, which is not a symmetry of the Wilson action.

Chiral symmetry is a fundamental aspect of the low-energy dynamics of QCD. 

The explicit breaking of this symmetrj" by the regularization might then be a source 

of concern. In order to better understand this issue, in the next two subsections we 

investigate the breaking of chiral symmetry through the Ward identities of the theory. 

Dealing with a quantum field theorj', we need to extend our analyze from the simple 

action to the correlation functions of the theorj' in order to fully capture the effects 

of the breaking. As we shall see, cliiral symmetry is restored in the continuum limit if 

the lattice theory is properly renormalized (Karsten and Smit. 1981; Bochicchio et ai,  

1985; Liischer, Sint, Sommer and Wittig, 1997i); Testa, 1998). In fact, the requirement 

of chiral symmetry restoration in the continuum limit can be used as a condition to 

fix this renormalization.

2 .1 .2  C hiral W ard id en titie s

In this subsection we want to study the \^'ard identities (WIs) of the theory, and 

specifically those related to chiral symmetry. The idea is first to discuss these relations 

in the formal continuum theory.^ In the next subsection we will then repeat their 

derivation in the lattice theory with \^"ilson ferniious. This will allow us to better 

understand the consequences of the breaking of chiral symmetry by the regularization 

on the renormalization of the tlieory. Note that we will skip most of the technical 

details, and basically summarize the main results. We thus recommend the original 

references that will be given for a more complete discussion. For an introduction instead 

we suggest (Sommer. 1997; Liischer, 1998a; Vladikas, 2011).

As introduced, in Euclidean space-time the expectation value of any product of 

local fields O is given in terms of the fimctional integral (cf. (1.7)),

{0) = ^ J [ V A ] [ D i l ’][Dv] 0[-4. V;,^] (2.7)

^For a  more rigorous derivation instead of the formaJ continuum  theory one could consider a 

chirally preserving lattice form ulation. The bare lattice correlation functions would then respect W Is 

analogous to  th e  formal continuum  ones (Hasenfratz, 1998; Kikukawa and Yamada, 1999). Since, 

however, we did not present chiral lattice  fermions in detail, we will procc»ed less rigorously.
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In o rder to  ob ta in  W Is. we sim ply consider su itab le  changes of variables in th e  func­

tional in tegral, of the  form,

(2 .8 )

Specifically, we consider infin itesim al local versions of th e  flavour and  chiral tran sfo r­

m ations (2.5) and  (2.6), w hich are given by.

y;{x),  6vtp{x)  =  - i y j { x )

ipix),  Sj i^{x)  =  i i ’(x) Q A (2 - )y 7 5

(2.9)

( 2 . 10 )

w here civ.,4 (x) are sm ooth  functions th a t  vanish ou tside som e bounded  region of space­

tim e we will denote by R.

Since th e  Pauli m atrices are traceless. the in teg ration  m easure in (2.7) is triv ia lly  

invarian t un d er these transfo rm ations, an d  we th en  conclude th a t.

{ 0  5 x S )  =  { 5 x 0 ) , ( 2 . 1 1 )

w here 6 x S  and  5 x 0 .  w ith  A’ =  V', A.  are the infinitesim al varia tions of the  continuum  

ac tion  5  and  observable O  corresponding to  th e  transfo rm ations (2.9) and (2.10). 

respectively. By considering different transfo rm ations, observables O,  and  functions 

o,v(-c)- niany useful rela tions am ong correla tion  functions can  be ob ta ined . T hese are 

collectivcly referred to  as \M s. T he relations th a t follow from  the  local chiral-fiavour 

transfo rm ations we are considering are ju s t a special case th a t  goes under the  nam e 

of chiral-fiavour WIs  (or axial-vector ^^"Ls).

We first consider the  vector W Is th a t  derive from the  vector transfo rm ations (2.9). 

In th is  case, the  varia tion  of th e  action  (1.1) is given by.'^

5 v S  =  - i  [  d ‘̂ x a v {x ) d ^ , V °{ x ) ,  
J R

(2 . 12 )

'^Noto that the derivation of this result involves a partial integration. Hence, if as in Chapter 3 

one considers the case of compact space-time manifolds with boundaries, it is important that a\/(a;) 

smoothly g o ^  to zero outside some bounded domain R  that does not contain the boundaries, as 

otherwise additional terms might arise. If this condition is met, then the result holds regardless of 

the boundary conditions for the fields.
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where we defined the non-singlet local vector current as,

F “(a:) =  (2.13)

Given this result, it is now convenient to decompose the product of local fields O  aii 

O =  Oint Oexti where Oint and C*(,xt are products of fields localized in the interior

and exterior of R, respectively. Using the general relation (2.11), we then immediately

obtain the vector WIs,

[  d ^ xQ ? .(T )(a^ i/ ; (x )O i„ tax t)  =  i((<5r O in t ) a x t ) .  (2.14)
J  Ft

If we consider the fields in the product O  to  be localized outside the region /?, i.e.. 

Oint. =  1 and O  =  Oext, the variation ^vOint vani.shes, and so the r.h.s. of (2.14). 

Since the resulting equation is valid for any choice of /?, we can choosc /? to be a 

single space-time point a-, and thus conclude tha t,

(a ,v ;“( a - ) a x t ) = 0 .  (2.15)

Note th a t in the more general case of non-degenerate quark-masses, the abo\'e relation 

is modified, and reads,

(S ,l-(.7-)O cxt) =  if""''<5mo(5''(a-) Oext), (2.16)

where SniQ is the mass difference between the two light quarks, and S"{x)  is the 

non-siiiglct scalar-density,

5 “ (2-) =  •0 (x )y t''(T ). (2.17)

This is the partially conserved vector current (PCVC) relation, and V°{x)  is generally 

referred to  as the PCVC. The relations (2.15) and (2.1C) are the Euchdcan versions 

of the corresponding operator relations in Minkowski space-time. Different fields C>ext 

then correspond to  different m atrix  elements of the operator relation.

Mo\’ing to  the case of the axial transform ations (2.10), the variation of the action 

(1.1) is now given by,

6a S  = - i  f  d ‘̂ XQ‘X{ x ) { d ^ , Al { x ) - 2 m. o P^{ x ) ) ,  (2.18)
J  Ft
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where we mtrocluced the noii-smglet local axial current A°{x) ,

—Al(x) = ^(x)—7^75V;(a;), (2.19)

and the non-singlet pseudo-scalar density P°{x),

(2 .20)

Using again the general relation (2.11), we can derive the o.xial WIs,

JR
f  d̂ a-Q“ (a-)(a,„4“(T)Oi,.taxt) = i((<5.iOmt)axt)

-f-2?71o [  d '^X -Q ^(T )(P“ (.-t)Ointe>ext)-

( 2 .21 )

Jr

Analogously to  the vector case (2.16), if we consider a product of fields O  localized 

outside the region R,  and take R  to  be a single space-time point x,  the expression 

(2.21) reduces to the familiar partially conser^^ed axial current (PCAC) relation,

The local axial current is thus conserved only for vanishing quark-masses.

The above relations liave been formally obtained in the continuum theory. However, 

analogous relations can be derived among the corresponding bare correlation functions 

in a regidarization th a t preserves chiral-flavour synunetry. This said, it is possible to 

show th a t, in general, (partially) conserved currents do not need anj- renorm alization 

(see e.g. (Colhns. 1986; Vladikas, 2011)).^ ® Hence, if we define the renormalized vector 

and axial currents.

we conclude th a t Z 4 =  Z\- = 1. Using standard  arguments, tlie finiteness of the  axial 

current implies through (2.22) th a t the product of the bare quark mass rriQ and the 

pseudo-scalar density P “ (x) is also finite (see e.g. (Testa. 1998)). Consequently, the

The vector current in QED for exam ple requires renorm alization (Collins, M anohar and W ise, 2006).

ization of QCD. a detailed proof can be found in (Hasenfratz, 1998; Kikulaiwa and  Yam ada, 1999).

(a .̂4“(.r)axt) = 2mo(P"(T)a-x,). ( 2 .22 )

(2.23)

^If the  conserved current is associated with a gauge sym m etry, this conclusion is not always true.

•'^For th e  specific case of tlie axial and vector currents, and a chirally preser\'’ing lattice  regular-
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bare quark mass niQ renormalizes multiplicatively and inversely proportional to the 

pseudo-scalar density,

(P fi)“ =  Z p P “ , m.R =  Zn,mo =  (2.24)

Analogously, the finites of the vector current implies through (2.16) that the quark- 

mass difference and the scalar-density renormalize with inverse renormalization factors 

(see e.g. (Vladikas, 2011)),

(5’fi)“ =  Z s S '‘ , SiriR =  Zsm^riiQ = Zg^Snin- (2.25)

From the above equations, one is tempted to conclude also that Zp  =  Zg- In fact, 

using the more general chiral \^^Is (2.21) one can show that operators in the same 

chiral multiplet renormalize with the same multiplicative factor (see e.g. (Bochicchio 

et ai,  1985)). The same can he shown for operators in the same flavour multiplet using 

the WIs (2.14) instead.®

2.1 .3  L attice  Warci id en titie s

After the discussion of the chiral-flavour WIs in the continuum, in this subsection we 

want to study how the relations (2.15) and (2.22) get modified on the lattice with 

Wilson fermions.

On the lattice the generic expectation value for a product of fields. O =  0\U, i p ,  t;]. 

is given by the lattice path-integral,

(O) =  ^  j[VU][Vil’][Vp] (2.20)

where 5  is the Wilson action (2.1), while the partition function Z  is defined by the 

normalization condition (1) =  1. The integration measures instead are given by.

[vu]= n  m  = n  m =  n  (2.2?)
T.fi.a x ,A ,a x.A .a

where dU is the Haar-nieasure over the group SU(3), while dtjj and dv> are differentials 

of the Grassniann algebra (Montvay and Miinster, 1997).

OTwo or m ore  o p e ra to rs  a re  said  to  be in th e  sam e ch iral (flavour) m u ltip le t if th e y  tran sfo rm  

in to  each o th e r u n d er th e  ch ira l (flavour) tra n sfo rm a tio n s  (2.6) (or (2 .5 )). T h e  o p e ra to rs  P “ and 

for exam ple  a re  in th e  sam e chiraJ m u ltip le t. T h e  co rre sp o n d in g  o p e ra to rs  w ith  a  diflFerent index a  

in s tea d  belong  to  th e  sam e flavour m u ltip le t.
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Starting  from this definition, one can derive W Is for the lattice theorj' in complete 

analog}' w ith the continuum case already discussed. As a results, one finds essen­

tially the same equations, but with additional contributions to  Sv ,a S  which come 

from the variation of the  Wilson term  imder the local chiral-flavour transform ations 

(2.9) and (2.10). More precisely, considering the case of the PCA C relation (2.22), one 

obtains (Bochicchio e t aL, 1985),

=  2m „(P '> (x )ax t) +  a (X “(a:)Oext), (2.28)

whore d *  is the backwai’d lattice derivative (A .17), and A'“ is a dimension 5 operator. 

Its exphcit form can be easily worked out (see e.g. (Vladikas, 2011)).^

Naively, one might conclude th a t the corresponding term  contributes only at 0 (a ) , 

and then simply vanishes when a —>■ 0. However, in order to understand what happens 

to (2.28) when the continuum limit is taken, one first needs to consider the renor­

malization of the operator A'°, as this conclusion might not be correct. On the lattice 

indeed the operator X °  can mix under renorm alization with operators of lower or equal 

dimension, and same quantum  numbers (Testa, 1998). The mixing with operators of 

equal dimension involves coefficients th a t only diverge logarithmically with a. These 

contributions are thus suppressed in the continuum limit b}’ the explicit factor of a in 

(2.28). The mixing with lower dimensional operators instead, is given by coefficients 

which are inverse powers of the lattice spacing multiplied by finite functions of the bare 

coupling i.e. renormalization scale-independent (Testa. 1998). The inverse powers of 

the lattice spacing can tlms cancel the explicit factor a in (2.28) and generate finite, 

if not divergent, contributions. The key observation however is th a t the operator A " 

only mixes with lower dimensional operators th a t are already present in (2.28), since 

all the operators w ith the legitim ate quantum  mnnbers are there. The effect of the 

renorm alization of A “ can thus be recast into a renormalization of the fields in the 

WIs. In fact, one can show th a t this renorm alization is all w hat is needed to  make the

^W e n o te  th a t  in th e  la ttic e  P C A C  re la tio n  th e  se p a ra tio n  betw een  th e  la ttic e  reg u la riza tio n  of 

an d  th e  d efin ition  of th e  o p e ra to r  A '“ is n o t un ique. In  (2.28) for exam ple  we consider th e  local 

de fin ition  o f th e  ax ia l cu rre n t (2 .19). T h e  form  of X °  th u s  differs from  th e  one  o f th e  given reference 

w here  th e  p o in t-sp lit ax ia l cu rre n t is considered  (V ladikas, 2011). I t is how ever easy  to  convert 

betw een  th e  tw'o defin itions.
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PCAC relation finite (Testa. 1998). The resulting renormalized lattice PCAC relation 

then reads,^

(0 ,( ^ f l ) ; ( a ; ) a x t )  =  2m fl((Pfi)“ ( x ) a x t)  +  0 (a ) . (2.29)

where the 0 (o ) term s denote contributions th a t vanish (up to  logarithms) linearly with 

a in the continuum  limit i.e. discretization effects. As before, the renormalized axial 

current is defined as =  Z a A"^. However, since the conservation of the current

is now spoiled by discretization effect, we expect Z a ^  1- In fact, the renormalization 

constant Z a  is a finite function of the  bare coupling go (Testa. 1998),*  ̂ which only goes 

to  1 in the continuum  limit, i.e., ZAigo)  1. The correctly normalized continuum 

^^Ts (2.22) are then recovered for a — 0. Secondly, we note th a t the bare quark mass 

Too is not protected by an additive renormalization, hence; mpt =  Zm(7?io —W>), where 

Zni = Zp^ ,  and m{amo. go) =  v\'ith c(go,arno) a regular function of amo

and go (Testa, 1998). In practice, it is thus convenient to  introduce the (bare) PCAC 

mass,
_  (Sf,A°(x)0(.xt)  

rr>PCAC -  2 ( p a ( : r ) 0 , , x , )  ' ^

which renormalizes multiplicatively. and inversely proportional to the pseudo-scalar

density, i.e.,

{ P r T  = Z p P “. iriR = Zp^  ZAmpcAC-  (2-31)

We stress th a t different choices of Ooxt or flavour index a in (2.30) will give definitions 

for nipcAC th a t differ by 0 (a )  effects (cf. (2.29)). Only in the continuum limit all these 

definitions ai'e expected to coincide.

An analogous discussion as for the PCAC relation can now be done for the  PCVC 

relation (2.15). In this case, one obtains the lattice vector W Is (see (Vladikas, 2011)),

( a ;T /“ ( x ) a x t )  =  a ( y “ ( x ) a x t ) ,  (2.32)

where the expression for the dimension 5 operator Y°  can again be easily worked out.

*Note th a t we su b stitu ted  the  backward lattice derivative d* w'ith 9^ defined in (A .16) since the 

two coincide up to  0 (a )  term s.

^This is true  if a  m ass-independent renorm alization scheme is chosen for Z a , as otherwise one

also has a  finite arno dependence (Testa, 1998). The im portan t point, however, is th a t a  dependence

on a renorm alization scale is excluded by general considerations.
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Considering the renorinahzation of the above relation, vve note that the only lower 

dimensional operator that Y“ mixes with is given by A finite renormahzed

expression is then given by,

0 ^(F fl)“ (x )a x t)  =  0 (a ), (2.33)

where up to 0(o) terms we replaced 5* by d ,̂ and where we defined the renormalized

local vector current as before, i.e., (V/j)“ =  ZyV^. Similarly to the axial case, the

renormalization factor Zv is a finite function of the bare coupling, and in general, 

Zv {Qq) i=- 1- The main difference w.r.t. the axial case, however, is that in this case 

the operator Y° can be written as the divergence of a dimension 4 operator A°, i.e., 

Y° =  — Usi ng (2.32) one can then define a conserved lattice vector current V° 

which satisfies,

(0 ;i> (o - )a x t)= O , (2.34)

where.

V;“(:r) = V;“(x )+ a A “(̂ -)
_

+ «A) + + ^ ) U l { x ) Y P i ^ )  ■

(2.35)

The conservation of this lattice current in the bare theory allows one to show that the 

corresponding renormalization factor is given by Zy =  1 (see e.g. (Vladikas. 2011)). 

The conserved current thus does not need renormalization, as expected. In addition, 

the difference between the matrix elements of (1/?)“ and are jMirely discretization 

effects (cf. (2.33) and (2.34)). Since, V ,̂ we then conclude that, Zy^go)
and the continuum vector \Ms (2.15) are recovered in both cases.

Before concluding we want to mention that by investigating more general lattice 

WLs (cf. (2.21)). one can infer other important consequences of the explicit breaking of 

chiral symmetry' by Wilson's regularization. In particular, one can show that the over­

all multiplicative renormalization factors of operators that belong to the same chiral

‘̂̂ Note th a t  in the  expression (2.34) one can either use cJ* or df^ since th e  conserved vector current 

is tim e independent.
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im iltiplet generally differ by finite functions of the bare coupling (Testa, 1998). This 

means th a t for example {ZpfZs){go)  1, where this function only approaches 1 for 

go —> 0. Note also th a t the renorm alization of the  individual operators is in general 

complicated by the mixing w ith operators of different chirality. The mixing pattern  is 

in fact only restricted by parity  and flavour sym m etry (Bochicchio et ai .  1985). This 

additional renormalization can be particulai'ly difficult for more complicated opera­

tors as for example many interesting four-quark operators responsible for electro-weak 

hadronic transitions (Donini et ai .  1995).

To sununai'ize the results of this subsection, first of all we have seen that by properly 

(re)normalizing the local axial and vector currents we recover, up to cutoff effects, the 

continuum WI. In particular, in the CEise of the vector current we found a conserved 

lattice definition th a t does not need renormalization, and respect continmmi-like ^^Ts. 

Secondly, the PCAC relation suggested us a valid definition for a renormalized quark 

mass through (2.31). This allows us to  defiiie the chiral point where the quark-masses 

are zero by simply requiring rripcAC =  0- Note however th a t a t zero cjuark-mass the 

renormalized axial current is onlj' conserved up to discretization effects. Moreover, the 

critical value of the  bare quark-m ass mo  for which m pcAC  =  0 is implicitly defined 

by the equation: mcraigo) = go)i and it is then a function of go- Finally, as

mentioned above, we commented on the fact that operators in the same chiral multiplet 

do not renormalize with the same m ultiplicative factors, but a finite rescaling is needed.

To conclude, since Z y  and Z a  go to  1 in the contiimum limit, one might ask the 

question whether these finite renorm alization factors are needed a t all. The answer is 

th a t, as we have seen, properly normalized m atrix  elements of the local axial or vector 

current differ from their continuum limit by powers of the lattice spacing. On the other 

hand, om itting Z a  (or Z y )  implies th a t the same bare m atrix  elements will converge 

to  their continuum lim its as power series in go (Bochicchio et ai ,  1985), which is only 

logarithmic in the lattice spacing. This convergence is much slower than any power 

of a, and reliable continuum extrapolations of unrenormalized bare m atrix  elements 

can be very difficult if only a few lattice spacings are available over a limited range.

^^VVe rem ind  th a t  clo.se to  th e  co n tin u u m  lim it, gg{a) ~
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Through these examples, we can appreciate the importance of non-perturbative 

renormalization. For example, if we had Z a only at 1-loop order in perturbation theory, 

a perturbatively renormalized matrix element of the axial current would converge to 

its continuum limit with 0(<yo) corrections. As said, however, any power of the bare 

coupling is much slower than any positive power of the lattice spacing o as a —> 0. 

Secondly, we want to note that there are cases where a perturbative treatment of the 

renormalization would fail altogether. The renormalization of the bare quark-mass, and 

more generally of any power-divergence, is an example where the renormalization can 

only be performed non-perturbatively. In fact, in order to identify the chiral point, one 

could think of detemiining the value of the critical mass rjicrit(5o) using a perturbative 

estimate for the function c(go.amo) in m.  If, however, such function is known only up 

to 0(^0) corrections, this would lead to uncancelled O ( ^ )  divergences in the PCAC 

mass for example. \\'hile this is perfectly fine in perturbation theory, it is certainly 

not in a non-perturbative determination.

As a last remark we want to mention that, once the correct WLs have been shown 

to be recovered in the continuum limit through a proper renormalization of the theory, 

one can actually tviru the tables and impose the validity of a set of WIs at finite lattice 

spacing in order to determine the necessary’ renormalization constants (Bochicchio 

et ai, 1985; Maiani and Martinelh. 1986; Martinelli et ai,  1993; Liischer, Sint, Sommer 

and \M ttig. 1997i»). It is important to note at this point that in principle any relation 

among correlation functions which is dictated by chiral symmetry can be used to fix 

tliis renormalization. We will explore these ideas in detail in Chapter 5.

2.2 Symanzik’s effective theory and O(a)-improvement

As seen in the previous section, renormalized lattice observables computed with Wilson 

fermions generally suffer from 0 (a ) discretization effects (cf. (2.29)). Since long ago, 

these effects are known to he rather large in the range of lattice spacings considered 

in current simulations (.see e.g. (Jansen, et ai,  1996)). This can make contiimum limit 

extrapolations difficult, and ultimatelj' not very precise. In order to better control 

these extrapolations and eventually devise strategies to accelerate the convergence, 

a theoretical understanding of how renormalized lattice observables approach their
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continuum limit is then needed. As we present in the next subsection, a quantita­

tive analysis can be obtained through Symanzik’s effective theory, which will lead ns 

to  introduce Symanzik’s improvement progranm ie for lattice field theory (Symanzik, 

19816; Symanzik, 1983a; Symanzik, 19836). The presentation will follow closely the 

one of (LiLscher, Sint, Sommer and Weisz, 1996). For a more in troductory discussion 

we recommend (Liischer, 1998a; Weisz, 2010).

2 .2 .1  S y m sm zik ’s e ffe c t iv e  th e o r y

Despite being difficult to prove rigorously, the idea of Symanzik is in principle simple.^' 

I t  is well-known th a t the effect of as yet unknown high-energy degrees of freedom 

can be described at low-energy by adding higher-dimensional interaction term s to 

the original Lagrangian. The new Lagrangian so constructed defines an effective low- 

energy description for the underlying more fundam ental theory. A similar situation 

occurs in lattice QCD. In purely formal term s, we can regard the momentmn cutoff 

an a scale of new physics, and our lattice theory as the fundam ental theory ilefined 

a t this scale. The associated low-energj’ effective theory is then  a continuum theory 

with action,

■S'eff =  Sq +  a S i  +  0 ^ 8 2  4- . . . ,  ( 2 .3 6 )

where S q denotes the continuum QCD action, while the S^’s, A' >  1, contain higher- 

order terms. More precisely, these contributions are of the form,

Sfc =  y 'd ‘‘x A .(x ) , (2.37)

where the Lagrangians Cf^{x) are Hnear combinations of local composite operators 

of dimension 4 +  Among the list of all possible such fields, only those th a t are 

invariant under the symmetries of the lattice theory need to be considered.

^^The existence o f Sym anzik's effective theory is only conjectured (W eisz, 2010). However, it is 

supported by low-order perturbative calculations, and non-perturbative num erical results.

^^The dim ension counting eventually includes (non-negative) powers o f th e  quark m ass which may 

m ultiply som e of the fields.

^'^We remind that for N f  =  2 (m ass-degenerate) W^ilson ferm ions these  are: gauge inv'ariance, 

U ( l)  X SU (2) vector sym m etry, and all exact discrete sym m etries of the la ttice  action including  

space-tim e sym m etries (cf. Section 2.1.1).
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In addition to the effective action, we need an effective description for the lattice 

operators. In a lattice correlation function, indeed, cutoff effects do not only originate 

from the action bu t also from the local composite operators inserted. For simplicity, 

in the following we consider a generic local gauge invariant lattice field (b{x), which 

renormalizes only multiplicatively, i.e., {d>ft){x) =  Ẑ cf>{a:). In the effective theory the 

renormalized lattice field (pji is then represented through an effective field,

4 > c n { x )  =  ( f ) Q{x )  +  a0 i  (x) +  +  . . . ,  (2.38)

where <i>o{x) is the corresponding continuum  field, while the fields (l)k{x), k > 1, are 

lineal' combinations of local fields of dimension +  k, where is the engineering 

dimension of (p{x). Analogously to  the  case of the  effective action, only local fields with 

the appropriate dimensioiLs and sym m etry properties enter in the  combination <i)k{x).

Given the effective action and fields, we have to discuss how lattice correlation 

fimctions are actually described by the effective theory. In the  following, we restrict 

ourselves to on-shell correlation functions. These are all position space correlation 

functions of local composite operators at non-zero physical distance. The reason for this 

terminology’ is th a t all on-shell quantities in QCD, as for example hadron masses, or 

m atrix elements of local operators between particle states, can be extracted from these 

correlation functions. This i-estriction is hcnce not severe, and meets most practical 

purposes.^’’ To simplify the discussion, we also restrict to  analyze the leading 0 (a )  

effects. Terms proportional to  higher-powers of the lattice spacing are anyhow expected 

to be suppressed if the lattice spacing is fine enough.

As an example of correlation fimction we consider the connected n-point Green 

function of the operator 0 (t ) introduced above. The generalization to  more general 

correlation fimctions involving several types of fields is straightforward. Specifically, 

since we want to study the approach to the continuum limit of this observable, the 

properly renormalized quantity  needs to  be considered. In this case, this is given by,

(G ' f i )„ ( . r i , . . . , 2-„) =  {{(1>r ) { x i ) ■ ■ ■ { g>r ) { x „ ) ) ^ .  (2.39)

^^N ote th a t  if th is  assu m p tio n  is not m ad e , ad d itio n a l cu to ff effects can  arise  w hen th e  com posite  

fields in th e  co rre la tio n  fim ctions a re  b ro u g h t a t  co incid ing  sp ace-tim e  p o in ts . T hese  effects a re  specific 

o f th e  co rre la tio n  fu n c tio n  considered , an d  a re  n o t ta k e n  in to  accoun t by th e  effective a c tio n  an d  fields.
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where (• • ■ )c refers to  the connected part of the Green function. Note th a t we assume 

the space-time points x i , . . .  ,X n , to  be a t a non-zero physical distance from eacli others.

In the effective theory, the lattice correlation fmiction (2.39) is then represented 

through the asym ptotic expansion (see e.g. (Liisclier, 1998a)),

(G fl)n (x i x„) =  (</>o(a'i) • ■ • fli>u(x„))“ "̂

- a  J  d ‘̂ y{(f>o{x:)---6o{xrt)Ci{y)Y°'"-

n
+  a X^(®o(a:i) • • ■ 4>i{xi,) ■ ■ ■ c)o(a:„)>c°“* +  O(a^),

A : = l

where the expectation values (• • • )“ "* are taken w .r.t. the  continuum action The 

second term  on the r.h.s. of the equation is given by the 0 (a )  contribtition of the 

effective action, here considered as an operator insertion in the correction function. 

Due to the integral over y. this insertion can possibly generate contact term s when y 

coincides with the points x^.  In principle, one should then analyze the potential diver­

gences that arise from the operator product expansion of the operators involved, and 

provide proper renormalization prescriptions for the non-integrable singularities th a t 

survive. These contact terms, however, can always be reabsorbed into a redefinition of 

the operator ®i(x), which contains all the  fields w ith the correct sym m etry properties 

and dimensions. This, as we shall see, is all we need to  know in practice.

To conclude we want to  comment on a couple of technical points regarding (2.40). 

F irst of all, the a dependence of lattice correlation functions is not only expressed 

by the explicit factors of a in (2.40). It is clear th a t, while the general form of the 

basis fields in Ci{y)  and <pi{x) is only d ictated by the field content and symmetries 

of the lattice theory, the coefficients th a t multiply them  cleai'ly depend on the details 

of the latter. Consecjuently, even though the  basis elements in C\{y)  and 4>\{x) are 

independent of a, the  coefficients th a t multiply them  are in general fiuictions of the 

lattice spacing. In fact, in perturbation  theory, they are calculable polynomials in 

In(ffl) (Liischer, 1998a).

^ Îii the following we can imagine the effective theory to be regularized on a space-time lattice 
wdtli a very fine lattice spacing £ a. The fields in C\. 4><i imd 4>\, are then renormalized ones.
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Secondly, the  basis of operators in C\{y)  and </>i(x) can in general be reduced using 

the field equations of motion (Liischer. 1998o). In principle, the field equations are only 

valid in correlation functions up to  contact t e r m s .T h e s e  again can arise when y gets 

close to  one of the points x*. in (2.40). As discussed, however, these contact term s 

simply am ount to  a redefinition of the field The la tte r thus depends on exactly

which basis of operators has been considered for the effective action. W hen the field 

equations are used to simplify ©i instead, no contact term s can arise since all points 

are kept a t physical distance.

2 .2 .2  Sym cinzik’s im p rovem en t program m e

S jinanzik’s effective theory provides an effective description of our lattice theory when 

the cutoff scale is well above the relevant energj' scales of the observables we are 

considering. In particular, the  form and nature of the discretization effects is made 

explicit in term s of irrelevant operators contributing to the effective action and fields. 

This suggests the idea tha t one can try  to  modify- the original lattice theory in such 

a way th a t the corresponding effective theory is free from such contributions. The 

way this is realized in practice is w hat is referred to  as the  Sym anzik's improvement 

programme (Symanzik. 1981i; Symanzik, 1983a: Symanzik, 19836). which aims at 

systematically removing cutoff effects order by order in the lattice spacing. The general 

idea of this strategy goes as follows.

One sta rts  by adding to the lattice action and fields, lattice representatives of the 

irrelevant operators in Si and &i. As long as the lattice symmetries are respected, 

the specific discretization does not really m atter and will only affect higher-orders in 

a. At this point, the crucial observation is tha t by adjusting the  coefficients of these 

operators one is able to  modify the size of the corresponding 0 (c )  contributions in the

^'T he relations between the  ba-sis fields in C i { y )  or d>i{x) can be easily derived at tree-level, 

nsing the classical field equatioiis. In principle, however, th e  renorm alization and m ixing of the basis 

operators should be taken into accoim t when deriving these relations. T he sim ple relations determ ined  

at tree level are then replaced in general by more com plicated equations involving more basis fields, 

and w ith  coefficients that depend on the coupling and th e  cliosen renorm alization conditions. On the  

other hand, the only inform ation that is used in practice is that, given a fixed nuinber of constrains, 

som e of the basis fields can be expressed in term s of th e  others (Liischer, 1998a).
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effective theory. The coefficients can then he fixed by imposing suitable improvement 

conditions. These are obtained by considering some combinations of lattice observables 

which are pure lattice artifacts, and are hence expected to vanish in the continuum 

limit. In general, a given com bination is chosen such th a t the contribution of a specific 

irrelevant operator is isolated. The corresponding coefficient is then determ ined as a 

function of the lattice spacing by simply requiring the given combination to  v'anish. 

Once the lattice action and fields have been improved, any renormalized on-shell lattice 

correlation function of these fields is then expected to  he free of 0 (« ) discretization 

effects. In fact, Symanzik’s improvement program m e can l'>e seen as an extension of 

the renorm alization of the theory at the  level of irrelevant operators. Of course, the 

modification of the theory so obtained does not alter the continuum limit of the theoi’y, 

since the la tter is only redefined at the cutoff level.

In perturbation  theory, improvement coefficients can be easily obtained from any 

(renormalized) lattice observable by comi)aring it with its continuum limit. This is 

particularly  simple at tree-level, where one simply compares the lattice action and 

fields with their contimumi counterparts. The improvement coefficients so determ ined 

are universal, and independent from the obscr\'able considered. On the other hand, in 

a non-perturbative determ ination taking the continuum limit is generally demanding. 

It is then convenient to define improvement conditions based on symmetries which 

are broken by the discretization, but are expected to  be recovered in the continuum 

limit. In this respect, note th a t improvement coefficients determined through non- 

perturbative simulations suffer in general from 0( a)  ambiguities. This means th a t 

different improvement conditions will give coefficients tha t differ by 0 (n ) effects. These 

ambiguities, however, arc consistent with 0(a)  improvement since they only affect 

improved lattice observables at O(a^).

Given these considerations, one may ask whether a perturbative estim ate of the 

improvement coefficients is good in practice. Note tha t, in the case of improvement 

the situation is more relaxed than  for the renorm alization of marginal or relev"ant 

operators. Even if the  com putation of the improvement coefficients is not accurate,

^*R efiection p o sitiv ity  how ever m igh t be com prom ised  (L uscher an d  W eisz, 1985a; P arisi, 1985).
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no systematic effects are introduced in the results if these are extrapolated to the 

continuum limit. The answer to the above question then very much depends ou the 

specific observable, and irrelevant operator considered. The effect of the latter has thus 

to be studied in some detail (e.g. by varying its coefficient in simulations), in order 

to conclude if a perturbative estimate of the corresponding improvement coefficient is 

satisfactory.

To conclude, one has to keep in mind that as any effective theory Symanzik's theor}' 

is only an asymptotic concept. This means that it is not known a priori the range of 

lattice spacings at which this description really sets in. It could well be that current 

simulations are far very far from its regime of applicability. In practice, however, 

Symanzik’s effective theory provides a ver>’ robust and effective description.

2 .2 .3  0 ( a )  im p rovem en t o f  W ilson  ferm ions

Having introduced the general principles of Symanzik’s effective theory and associated 

improvement prograiimie, in this subsection we consider its application to \\'ilsou's 

formulation. Specifically, we consider the case of (two) massless fermions. As we will 

motivate in the next section, this is the set-up wc are most interested in. In addition, 

when restricting to zero quark-masses, the improvement programme is simplified, since 

one does not need to consider any reparamctrization of the bare lattice theory.

As seen, the first ingredient of Symanzik’s effective theory is given by the effective 

action (2.36). In the massless case, this starts with the massless continuum QCD action

The terms that appear in the 0(a) correction, S\, must then be integrals over local 

couiposite fields of dimension 5 that respect all symmetries of the massless lattice 

action. In fact, there are only two terms that can contribute to S\, these are given by 

(see e.g. (Liischer, 1998a)),

refer to  (Liischer, S int, Somrner and W eisz, 1996) for a detailed  discussion about this point.

20w e remind that in order to  define W ilson's theory in the  m assless lim it, one has to tune the bare 

quark m asses to  their critical value e.g. by requiring the PC A C  m?kss to  v'tmish (cf. Section 2.1.3).

(cf. (1.1)),2»

(2.41)
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S i =  Cl j  +  c‘2 j  d ‘̂ xy;{x)D^D^,il!{x), (2.42)

where Ci,C2 are some given coefficients, and is defined in Appendix A .2."^ F irst of 

all, note tha t both terms in  S’l exphcitly break chiral symmetry. These contril^utions 

are hence present because of the explicit breaking of chiral sj^mmetry by Wilson's 

regiilarization.“  ̂ Secondly, note th a t the two operators can be reduced to a single 

operator by using the field equations of motion (Liischer, 1998a). In  the following we 

then choose to consider the operator proportional to c i, as it  is conventionallj^ done 

in the literature,

Ha\’ing the form of the effective action, the second step is to introduce lattice 

representatives of the corresponding 0 (a ) contributions to the original lattice action. 

Specifically, the improved W ilson-action can be defined as (see e.g. (Liischer. 1998a)),

Sj =  S +  a ^ ' ^ c ^ ^ ( g o ) i ’{x ) \a^ ,^F ^^ i ’ {x). (2.43)
X

where S is the standard W ilson action (2.1), and is a lattice regularization of 

the continuum field strength tensor A  possible definition for F^^̂  is given by the 

clover discretization specified in (A .26). The additional term  hi (2.43) is known as the 

Sheikholeslami-Wohlert (SW) term  (Sheikholeslami and \\'oh lert, 1985). As discussed 

in the previous subsection, the corresponding coefficient Cŝ ,̂{go) needs to be tuned 

according to some improvement condition in  order to  remove the corresponding 0 (a ) 

discretization effects from lattice observables.

The value of Csw((/o) is easily obtained at tree-level in perturbation theory, and is 

given by CgS =  1 (Sheikholeslami and Wohlert, 1985). In fact, the coefficient has also 

been computed in pertiu ’bation theory to the 1-loop order (Wohlert, 1987; Liischer 

and Weisz. 1996). As mentioned at the beginning of the section, however, the 0 (o ) 

discretization effects o f W^ilson fei'mions are generally large at the lattice spacings 

considered in current simulations. In particular, a perturbative estimate of turns

pu re ly  g luon ic  te rm s are present. Indeed, in  the  pu re  gauge the o ry  the  lead ing  d isc re tiza tio n  

effects are expected to  be o f O (u ^ ) (L iisch er and W eisz, 19856).

■ ^L a ttice  re gu la riza tions th a t preserve c h ira l s ym m e try  do n o t posses any 0 ( a )  d isc re tiza tio n  effects 

(see e.g. (N iedennayer, 1999)).
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out to he not verj' effective in most cases. This led to devise a strategy for the non- 

perturbative determination of c^w This determination has been obtained through the 

Schrodinger functional of QCD, introduced in the next chapter. The corresponding 

improvement condition is based on the restoration of the PCAC relation (2.29) up to 

0(a*) corrections. We refer to the original references for the details of this compu­

tation (Liischer, Sint, Sommer and Weisz, 1996; Liischer, Sint, Sommer, Weisz and 

Wolff, 1997a; Jansen and Sonnner, 1998), and to (Liischer, 1998a; Sonmier. 1997) for 

an introduction.

Through the 0(n) improvement of the lattice action, one obtains that spectral 

quantities like for example particle masses, approach their continuum hmit with O(o^) 

corrections (Liischer and Weisz. 1985fc).'̂ '* As discussed in Section 2.2, however, in 

order to achieve full 0(a) improvement of generic on-shell correlation functions, one 

needs to improve the corresponding fields as well, hi the following we present the 0(a) 

improved definitions for the quark-bilinear fields introduced in Section 2.1.2. These in 

fact will be needed for our discussion in Chapter 5. We remind that, similarly to the 

improvement of the action, in order to improve the fields one first needs to identifS' 

the 0(a) contributions to the corresponding effective operators. In tliis case, these are 

given by operators of dimension 4 with the same symmetry’ transformations as the 

lattice operator considered. Again, one can use the equations of motion to reduce the 

immber of terms that appear. Finally, given the continuum basis of counterterms so 

obtained, one adds lattice representatives to the original lattice fields with arbitrary 

coefficients. The latter need then to be fixed by requiring the absence of 0(a) lattice 

artifacts in some on-shell correlation fmictions of the improved fields.

Starting from the local axial current (2.19), one can show that after using the 

equations of motion, its 0(a) improvement can be obtained in the chiral limit by 

considering the operator (see e.g. (Liischer, 1998a)),

{ A , ) l ^ A l  +  a cA 9 i,)d ,P \. (2.44)

where, we remind, is defined by (A.16), and P" is the pseudo-scalar density (2.20). 

The coefficient c,4 (ffo) chosen in order to achieve the 0(a) improvement of correlation

^'^Spectral qiiaiititie^s indeed  do n o t d ep en d  on th e  in te rp o la tin g  fields em ployed for th e ir  ex trac tio n .
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functions of the local axial current. This coefficient has been computed for example 

using the Schrodinger functional, and enforcing tlie restoration of chiral symmetry 

through the PCAC relation (2.29). This allowed its determination first in perturbation 

theory (Liischcr and Weisz. 1996), and later also non-perturbatively (Liischer, Sint, 

Sommer, Weisz and Wolff, 1997a: Della Morte, Hoffmann and Sonnner, 2005c).

Considering the local vector current (2.13), an 0(a) improved definition is given 

by (see e.g. (Sint and Weisz. 1997)).

In the case of the point-spht discretization of the vector current (2.35), one can take the 

same 0 (a ) comiterterm as for the local one. The corresponding improvement coefficient 

though will change i.e. cv'(<;o) For completeness, we mention that the value

of cv{gu) is known to 1-loop order in perturbation theory (Sint and Weisz. 1997). 

A non-perturbative determination instead has only been attem pted in the ciuenched 

approximation (Guagnelli and Sommer, 1998).

Differently from the axial and vector currents, the pseudo-scalar and scalar densities 

do not have anj' operator of dimension 4 that can contribute to their S\'manzik's 

effective expansion. Consecjuently. they fire already 0(a) improved, i.e.,

Finally, the 0 (a ) counterterm to the tensor operator (2.46) is given in terms of the 

local vector current as (see e.g. (Sint and Weisz, 1998)),

(2.45)

where the tensor operator T°^{x) is defined as.

(2,46)

(P/)“ = P“, (5j)“ = S“. (2.47)

(?/)“.  = T;, + aor{go){d,V: - (2.48)

where criga) is only known to 1-loop order in perturbation theory.
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2 .2 .4  A u to m a tic  0 ( a )  im p r o v e m e n t o f  m aissless W ils o n  ferm io n s

To conclude tliis section on the 0 (a )  improvement of W ilson fermions. we want to 

present the somehow surprising feature that massless W ilson fermions in a finite phys­

ical volum e are autom atically 0 (a )  improved. This means that the 0 ( c )  counterterms 

to the effective action and operators are not needed to  olitain 0 (a) improved definitions 

of physically interesting observables (Frezzotti and Rossi. 2004).^'* Even though this is 

not the physical regime one is generally interested in, this fact had been overlooked for 

more than 20 years! It is crucial, however, for our study. Indeed, as we will m otivate 

in the next section, this is the regime where we want to perform the renormalization 

of the theory. Before presenting the argument, we note that since we aie considering 

a finite space-tirne volume, some V>oundary conditions for the fields need to be chosen. 

In the following we will assume (some sort of) periodic boundary conditions for all 

fields. We anticipate, however, that the argimient is not insensitive to the boundary 

conditions imposed.

In order to start presenting the argument, let us consider a generic lattice oliservable 

O  given by a finite product of rnultiplicatively renormalized local fields at non-zero 

physical distances. The corresponding Sj'inanzik’s expansion (2.40) is then given by.

(O ) ,  =  (C 9 o )r‘ -  o ( 5 i O o ) r '  +  a{60o)T"^ +  0(a.-).  (2.49)

where O q is the continimin (renonnalized) field corresponding to the renormalized 

lattice operator O.  while 6 0 q is a shorthand notation for the a.ssociated 0 (o )  operator 

counterterrn. The argument now relies on the following observations.

First of all, the continuum massless QCD action So of (2.41) is chirally s\'mmetric. 

In particular, if we consider the discrete 7 5 -traiisformation.

V ; 7 5 ^ ' ,  V’ 7 5 ,  (2.50)

the action So is invariant under this transformation. The counterterrn action S i in 

(2.42) instead changes sign.

proof of th is result has been com pleted by several au thors in later works (Aoki and Bar, 

2006; Sliindler, 2006; Sint. 2006; Frezzotti. M artinelli. Pap inu tto  and  Rossi, 2006).
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Secondly, if one considery the transformation (2.50) as a change of variables in the 

functional integral, it is possible to show that the transformation is non-anomalous 

and leaves the fimctional integral measure invariant, at least for an even number of 

quark-flavors (Sint, 2 0 1 1 ). The transformation properties of a given expectation value 

(C>o)c“"‘ under the transformation (2.50), are then dictated by those of the operator 

Oo considered. In particular, since the 7 5 -transforrnation squares to the identity, any 

composite field Oo can be decomposed into parts which are even, or odd,

under this transformation, where we define.

^cven _2 i^ ^even^ qoAA . (2.51)

Note that, this mapping can be carried over to the lattice even though there the 7 5 - 

transformation is not a symmetry. Also on the lattice we can then talk about 7 5 -even 

and odd fields O. similarly defined as in (2.51). In particular, once this decomposition 

is considered, the corresponding 0 (a) counterterms of a 7 5 -even ob.servable, 

can be show'n to be 7 5 -odd, and \'ice versa interchanging even with odd (Frezzotti and 

Rossi. 2004; Aoki and Biii', 2006). Given these observations we conclude that,

=  -(S iO "'™ )™ "' =  0.

= 0. (2.52)

In turn, this means that for 7 5 -cven lattice observables, we have (cf. (2.49)).

+  0(a.2). (2.53)

7 o-even observables are then automatically 0 (a ) improved. This does not mean that 

0 (a) effects are absent from the theory, but rather that these effects are confined in 

correlation functions of 7 5 -odd observables, for w’hich we have,

0{a^),  (2..54)

wdiere we used the fact that; =  0. Note that the corrections

in (2.54) are of order rather than a^. In fact, the mechanism of automatic 0(a)

improvement more generally implies that lattice effects in 7 5 -even (7 5 -odd) correlation
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functions only come with even (odd) powers of the lattice spacing (Frezzotti and Rossi, 

2004; Aoki and Bax, 2006). In conclusion, the main result is that we can get rid of the 

0 (a) effects in our lattice observables by projecting them on their even components. 

The odd components do not an>^vay contribute in the continuum limit, and only 

contain the leading discretization effects.

To conclude, as discussed in Section 2.1.3, the chiral limit of \Mlson fermious can 

be identified through the condition rripcAC =  0. In the unimproved lattice theory, 

however, this condition can be satisfied only within the intrinsic 0 (a) ambiguities in 

the determination of mpcAC- One may then ask whether this 0 (a) ambiguity in the 

definition of the chiral point can invalidate the result here presented, for which we 

require the (juark-miisscs to be zero. In fact, it can be show that the 0 (a) ambiguity 

in the determination of the critical line Tricntigo) only affects 75-even obser\-ables at 

O(a^). The reason is that this ambiguity can l)e effectively described by an 0(a)  mass- 

counterterm in the effective action (see e.g. (Sint, 2006)). This counterterm, similarly 

to the ones already present in Si,  is os-odd, and thus does not contribute at leading 

order to a in "ys-even observables.

Some other subtle points in the proof of automatic 0 (a ) improvement are the 

following. As emphasized at the beginning of the subsection, it is crucial that the 

physical volume of the lattice is finite. The reason is that no spontaneous breaking of 

chiral s>'mmetry can occur in this case (see e.g. (^^^einberg, 2005)). This guarantees 

that expectation values which are expected to vanish because of the chiral synmietry 

of the action do not acquire non-trivial values (cf (2.52)). In addition, a.s mentioned, 

also the boundary conditions for the fields in finite volume m atter for automatic 0 (a) 

improvement to hold. The boundary conditions for the quark-fields. indeed, need to 

be compatible with the transformation (2.50) in order to be able to prove this result.

Finally, we note that a mass term for the fermions would unavoidably spoil the 

argument of automatic 0 (a) improvement since in this case the 7,r,-transformation is 

not a symmetry of the continuum QCD action. On the other hand, the argument can 

be restored by introducing a twisted-mass term (Frezzotti, Grassi. Sint and Weisz. 

2001; Frezzotti and Rossi, 2004). In this case the continuimi QCD symmetry exploited
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to  prove the argument is not spontaneously broken, and the then result holds also in 

an infinite physical volume.

2.3 Scale dependent renormalization

In Section 2.1, we studied in detail the renorm alization of \M lson‘s theory originating 

from the explicit breaking of chiral synm ietry by the regularization. In this case, the 

necessary renormalization is given in term s of finite functions of the bare coupling go. 

th a t do not depend on any renorm alization scale fi, e.g. Za,  Zp j Zs -  ■ ■ ■ ■ The most 

common case of renormalization in lattice QCD, however, is scale-dependent. The first 

im portant e.xample is given by the renormalization of the fundam ental param eters 

of QCD i.e. the gauge coupling and quark-masses. Scale-dependent renormalization 

is then necessary for local composite quark-fiekls which are not (partially) conserved 

currents. Of particular interest for ils  are the quark-bilinears discussed in Section 2.2.3. 

In all these cases, the connection between the  bare quantity  and the renormalized one 

is expressed in term s of a scale-dependent renormalization factor Z  =  Z(.9q. amQ, a/x), 

which has to he fixed by some suitaWe renormalization condition.^® The aim of this 

section is to  present the problem of scale-dependent renormalization in lattice QCD.^® 

More precisely, we want to discuss how to com pute the non-perturbative running of a 

given renormalization factor Z  w .r.t. the renorm alization scale

\ \ ’e s ta rt in the next subsection presenting some interesting phy.sical applications 

where this problem comes alDout. We then tr\^ to  understand how one could eventually 

work on the lattice to perform these com putations. As it will become clear shorth', 

a straightforw ard approacli to  the problem has to face some intrinsic lim itations in 

order to keep system atic effects under control. We thus conclude the section showing 

how these lim itations can be overcome by considering finite-volume renormalization 

schemes, together w ith finite-size scaling techniques.

■̂̂ For sim plicity we assum e th a t any power divergence in our observables has been taken care of. 

W e are then left only w’ith  th e  problem  of the overall m ultip licative renorm alization.

^^For an introduction to th e  top ic  o f non-perturbative renorm alization on th e  la ttice  we recom m end  

th e  foUowang set o f lectures (Som m er, 1997; Luscher, 1998a; W eisz, 2010; Vladikas, 2011).
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Before moving to  the discussion, we note th a t if one considers QCD with only hght 

quarks (i.e. n, d and s), it is conveuicnt to  adopt m ass-independent schemes for the 

renorm ahzation factors Z  (Weinberg, 1973). In this case, the renorm ahzation constants 

do not depend on the quark-masses, i.e., Z  = Z(go,ap).  Their renormalization group 

equations are then easier to  solve since the running of the quark-masses in disentangled.

2 .3 .]  C o n n ectin g  low -an d -h igh -en erg ies

In lattice QCD, one generally renormalizes the theory through some hadronic scheme 

(see e.g. (Liischer. 1998a)). Indeed, it is natural to  fix the bare param eters by requiring 

a set of observables, a.s for example some hadron masses or decay constants, to  take on 

their physical values. Analogously, it is convenient to  renormalize the bare operators by 

dem anding some m atrix  elements between hadronic states to assume prescribed values. 

At high-energy, however, perturbation  theory is commonly applied to  make predictions 

of strong interaction contributions. In this case, the renorm alization schemes in use are 

generally different. A popular and technically advantageous scheme, for example, is 

given by the  MS scheme of dimensional regularization ( 't Hooft, 1973; Collins. 1986).^^

The problem of non-perturbative renorm alization can now lie defined as matching 

a given hadronic scheme to some perturbative scheme. In more physical term s, this 

means comiecting the low- and high-cncrg,y sectors of QCD. In principle, this presents 

no fundam ental obstacles. Once the theory is renorinalized in a given hadronic scheme, 

any cjuantity th a t did not enter in the renorm alization conditions is a prediction of the 

theory. In particular, this includes the high-energy behavior of renormalized m atrix 

elements and pai’am eters in any other schemc.

A part from the pm-ely theoretical appeal of the  problem, there are several instances 

where this comiection would be desirable in practice. The renormalized coupling and 

quark-masses. for example, ai-e generally extracted at high-energj' by fitting the results 

of some scattering processes to  their perturbative predictions. The v-alues so obtained 

are then used as an input for the perturbative com putation of any other quantity

" 'F rom  now on we choose th e  MS scheme as oiir pertu rba tive  scheme of reference. A t high-energ>\ 

th e  connection between different schemes can then  be m ade through pertu rba tive  com putations.
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of interest. I t is clear, however, th a t this procedure suffers from several system at- 

ics which are difficult to  quantif^^ In particular, these include the tnm cation of the 

perturbative series in the corresponding expansions, as well as the contam ination of 

non-perturbative effects which might not be completely suppressed a t the energies con­

sidered.^* Having more system atic m ethods for these determ inations is then im portant 

not only to  corroborate, but also to  improve the results. In this respect, we note th a t 

latticc QCD allow's in principle for a determ ination of the fundamental param eters of 

QCD where all system atic effects are under control. Indeed, matching a given hadronic 

scheme to a perturbative scheme would perm it the non-perturbative determ ination of 

the strong coupling and quark masses at high-energy' in term s of some well-known 

low-energj' constants of the theorj' (see e.g. (Sommer, 1997)).

Establishing a connection between perturbative and non-perturbative schemes is 

also im portant in the context of operator renormalization (see e.g. (Weisz, 2010; 

Vladikas, 2011; Lellouch, 2011)). In particulai', manj' interesting cases where operator 

renorm alization is necessary are related to  the determ ination of electro-weak transition  

am plitudes between hadronic states. In these com putations, the  electro-weak interac­

tions are described by effective low-energy interactions between quarks and gluons. 

More precisely, the virtual contributions corresponding to  the electro-weak bosons, 

and heavy-quarks (i.e. t, b, and eventually c), are integi'ated out using perturbative 

methods, resulting in some effective interactions between the light quarks. The generic 

transition am plitude, A,  between the hadronic states I?) and | / )  is then schematically 

represented as,

^  =  (/IHetflO =  C’„.-(M )(/l(Ofi)(//)|i), (2.55)

where Heff is the effective electro-weak Hamiltonian. Kctr is generally given in term s 

of some \Mlson coefficients Cw-  and corresponding renormalized operators O r  (see 

e.g. (Donoghue, Golowich and Holstein, 1994)). The Wilson coefficients incorporate the 

short distance effects of the electro-weak transition under consideration. The operators

2SXhis comes w ithout m entioning th e  practical difficulties in extracting  these param eters from 

th is class of observables, th e  precision of which is already limited by many system atic effects (see 

e.g. (Donoghue, Golowich and Holstein, 1994)).
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O r  instead describe the low-energ)' effective interactions am ong quarks and gluons. 

Their m atrix elem ents between the initial and final hadronic states | j) and | / ) ,  encode 

the long-range non-perturbative contributions of the strong-interactions to the process.

The renormalization scale // effectively separates the two energy scales above. In 

practice, this scale has to be chosen high enough such that a perturbative estim ate  

of the W ilson coefficients C w  is possible, and reliable. In this respect, we note that 

the lenorinalizatioii scheme of the operators Oj? is fixed by the perturbative scheme 

employed in the com putation of the W ilson coefficients. Indeed, the scale and scheme 

dependence of the coefficients and hadronic m atrix elem ents have to cancel each other 

in order to  give a physical am plitude A  independent of any renormalization scale and 

condition.

\M iile the com putation of the \\'iIson coefficients is naturally performed using 

perturbation theory, in order to capture the non-perturbative effects of the strong- 

interactions one would like to determine the hadronic m atrix elem ents of O r  using  

lattice techniques. The renormalized electro-weak m atrix elem ents in (2.55), are then 

generally given by,

( / l(O iv ) ( /i) |! ’) =  lin i Z o(<7o{a),o /0(/|C ^(.9o(a))|« )baro , (2 .56)
a —>0

where (/|0 |?)bare denotes the bare m atrix elem ent com puted ou the lattice. We remind 

that the matrix element on the l.h.s. must be renormalized in the perturbative scheme 

of the corresponding W ilson coefficients. The renormahzation factor Z o  =  Zo{go- 

then defines the non-perturbative bare m atrix elem ent in the perturbative scheme.

The m ost naive approach to determine Z q  is to rely on bare lattice perturbation  

theory. In this case, one would sim ply com pute Z q  in a convenient perturbative lattice  

scheine, and then match directly to the MS schcme at a given order in perturbation  

theory. The resulting matching factor. Z o  =  . is then of the general form,

a/i) =  1 +  log(a//.)2 +  k}  +  0(so‘), (2.57)

where 7 ^^ is the anomalous dimension of the operator O  at the lowest order, is 

the renormalization scale in the MS scheme, and k  is a constant that depends on the 

lattice regularization employed for the com putation of the bare matrix element.
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This strategj-, however, is not very rehable since it is hard to quantify the systeinat- 

ics effects one is introducing with this approximation.^® A part from the generally bad 

convergence of bare lattice perturbation  theory (Parisi, 1980), it is indeed difficult to 

estim ate the size of discretization (and finite voliune) effects in these determinations. 

In (2.57), in fact, these effects are unavoidal)ly entangled with the renormalization 

effects, since the renorm alization scale is effectively given in term s of the lattice cut­

off For a trustable determ ination of Z o ,  and thus of (2.56). one then needs to 

proceed non-pert\irbatively. As a result, the renormalization constant Z o  factorizes in 

two parts: Z o  =  Z q ^ '^  x  where Z q ^ ^  is defined in some non-perturbative

scheme, while is the finite m atching coefficient lietween this scheme and the

perturbative one.

2 .3 .2  T h e n ecessity  o f  a ren orm alization  w indow

Given the observations of the previous subsection, we now want to  understand which 

are the general difficulties th a t one encounters in the determ ination of Z o  using lattice 

techniques. To th is scope, we will consider an explicit example given by a popular 

approach to the problem. Discussing the lim itations of such an approach, will help us 

in motivating finite-volume renorm alization schemes, which are presented in the next 

subsection. As we shall see, the com bination of this class of schemes w ith finite-size 

scaling methods, offers a general solution for the determ ination of Z o  where these 

limitations are absent.

IMoving to  our presentation, the basic principle of any of these strategies is to rely on 

an interm ediate non-perturbative renorrnahzation scheme. In the specific example we 

want to  consider, this is given by a regularization independent m omentum subtraction 

scheme (RI-MOM) (M artinelh ef, a i ,  1995).^“ The key idea in this case, is to  mimic 

non-perturbatively w hat is done in continuum  perturbation  theory to  renormalize the 

operators. More precisely, one imposes the renorm alization conditions by considering

refer to  (Liischer. 1998a) for a m ore detailed discussion including also some explicit examples.
'^®For an in troduction we recom mend (Vladikas, 2011).
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m atrix elements of the operator O  between quark states |p) with given mom enta 

Specifically, the renorm alization conditions require these m atrix elements to be equal 

to  their tree-level values, i.e.,

( p | ( O f l ) ( M ) | p ) | p - , =  =  { p | 0 | p ) | t r e e  ^  ( 9 0 - a /^ )  =
jlP/bare ^2 =p2

(2.58)

This defines the renorm alization factor Zq* in the RI-MOM scheme at the renormal­

ization scale fjr — . In the following we will thus use the notation s  Z^^{go, ap).

The m atrix  elements in (2.58) are then computed non-perturbatively for several 

m om enta p  a t the relevant values of bare coupling in large physical volumes. 

Once the renormalization factor is determined, the gcneric bare m atrix element 

bare eaii be renormalized, and extrapolated to the continuum limit. The 

result obtained is now independent of the regularization employed. The renormalized 

operator and corresponding m atrix  element, can then be converted from the RJ-IMOM 

scheme, to  any other perturbative scheme using continiuun perturbation  theory.

In conclusion, the desired renormalized m atrix element of (2.50), is given by.

(/l(Ofl^)(/^)10 = \nn Z^\yQ[a),ap){f\0{go{a))]i)\,^rc
_  (2..50)

where denotes the renormalization scale in the MS scheme, g ^  is the corresponding 

renormalized coupling, and is the perturbative m atching factor between the RI-

MOM. and MS scheme. The la tte r is generally known to several orders in pertiirbation 

theory (see e.g. (M artinelh et ai ,  1995)). The nice features of this approach are tha t 

one does not involve any perturbative approxim ation in the determ ination of Z q .̂ and 

the m atching factor is com puted using continuum perturbation theory a t high

orders.

■^^Working with quark states at the non-perturbative level implies some difficulties. First of all, one 

has to deal with the problem of Gribov copies (Gribov, 1978), and more generally of gauge fixing on 

the lattice (see e.g. (Giusti et ai .  2001)). In additional, the 0 (a ) improvement of the theor>' needs to  

be reconsidered since the correlation functions employed are not on-shell (Martinelli et ai .  1995). A 

similar method to the one discussed here but which uses gauge-invariemt on-shell correlation functions 

is described in (Martinelli ct a i ,  1997; Becirevic et ai ,  2003).
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From our discussion, it is clear th a t the practical success of the  program outlined 

above depends on several conditions. F irst of all, in order to obtain reliable continuum 

extrapolations of the renormalized m atrix elements in (2.59), the m om enta p  a t which 

we evaluate need to  be well below the lattice cutoff as otherwise discretization 

effects can be large. On the  other hand, the range of p's  explored determines the scale 

a t which in the  continuum  one connects the RI-MOM scheme w ith the perturbative 

scheme. In order for this connection to be safe, the m atching needs to be performed 

a t an energy scale fi where perturbation  theory can be trusted . The control over 

discretization effects and non-perturbative effects, thus requires the existence of a 

‘•renormalization window" given by,

A q c d  "C m a  \  (2 .6 0 )

where A q c d  is a typical scale of non-perturbative QCD effects (lets say a few GeV).

These conditions, however, are not alwaj's easy to  be satisfied within the above 

strategy'. The values of the  lattice spacing a, indeed, are generally limited by the fact 

th a t the  physical size of the lattice, L . has to  be laige enough such th a t finite volume 

effects are negligible. In this approach, this is crucial for a reliable determ ination of 

both  the bare m atrix  element ( / | C > | i ) b a r e -  ojrid the renorm alization factor In this

respect, we note th a t in current large volume lattice simulations one generally has: 

<  5 GeV (.see e.g. (Schaefer, 2012)). This means th a t a perturbative matching 

between the non-perturbative scheme and the pertm bative one has to  be trusted  at 

th is relatively low energy scale.

To conclude, in this subsection we have learned wliich are the conditions for a 

reliable non-perturbative scale-dependent renormalization. These can be summarized 

by the following chain of inequalities,

L   ̂ A q c d  ■C! m a (2 .6 1 )

Once again, going from right to  left, we have; first, the  cutoff scale must be

much higher th an  all o ther physical length scales in the problem, as in particular

practice, m any technical improvem ents have been developed in order to  make th is m atching 

m ore and more reliable w ith such a  constraint (see e.g. (V'^ladikas, 2011) and references therein). Here, 

however, we are stressing on the  basic principles^ of th is approjich.
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the perturbative scale fi a t which wc match the two schemes. This is necessary in 

order to  control cutoff effects. Secondly, the renorm alization scale fi must be much 

higher than  the t>'pical scale of non-perturbative QCD effects Aqcd^ such th a t the 

m atching between the non-perturbative and perturbative schemes can be safely m ade 

tlirough perturbation  theory. Finally, the physical size of the lattice L must be large 

enough such th a t all relevant non-perturbative scales are contained w ithout sizable 

finite volume effects. A rough estim ate of (2.61) shows th a t the lattices required need 

a great resolution: L /o  ^  50. w'liich is generallj^ difficult to  achieve with present 

com puter and algorithmic resources.

2 .3 .3  F in ite -v o lu m e sch em es and scaling tech n iq u es

The problem with the type of strategy discusscd in the previous subsection, is th a t one 

is trying to fit two very separate energj" scales into a single lattice simulation, namely: 

the non-perturbative scale set by the hadronic m atrix  element, and the perturbative 

scale set by the m atching between the non-perturbative renormalization scheme and 

the perturbative one. As we now present, however, this is not necessary in practice.

The key idea is to use as an interm ediate non-perturbative renormalization scheme 

'A finite-volume scheme (Wolff. 1986; Liischer. Weisz and Wolff. 1991).^^ The peculiaritj’ 

of this class of schemes is th a t one identifies the renorm alization scale with the inverse 

size of the physical volume, i.e.,

fi =  L - \  (2.62)

In order words, one uses finite volume efi'ects to define renormalized p;u’am eters and 

operators. The main advantage of those schemes is th a t the problem of connecting 

low- an high-energy scales can be split over several volumes, each of w'hich covers only 

a limited range of energies. This allow's the conditions (2.61) to  be easily satisfied at 

each step of the com putation. In order to disclose a hit more the strategy, wc now 

present in detail how the renormalized m atrix elements of (2.56) can be computed

^^For a i l  introduction to  finite-volum e renorm alization schem es and their use in lattice field theory  

we recom m cnd the set o f lectures (Som m er, 1997; Liischer, 1998a; W eisz, 2010).
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using these methods. More precisely, we will start by giving the master formula for 

this type of computations. We will then discuss in detail each key step.

The determination of (2.56) using finite-volume techniques, can be sunmiarized as 

(cf. (2.59)),

imof^){p^) \ i )  =  (2.63)

where,

= \imZl^^{go{a)^aL-i,){f\0{go{a))\i)x^^^^^ (2.64)
( j —> 0

The first ingredient is. of course, the bare matrix element (/|C>(yo)|i)barc- This, we 

recall, must be computed in a large physical volume of spatial extent Loo, for several 

values of the bare coupling go. The latter should be chosen such that L^o can be 

taken large enough that finite volume corrections are negligible within the statistical 

accuracy of the matrix element, i.e. Loo ^  On the other hand, however, a must 

be small enough that discretization effects are under control, i.e. a <C but large

enough that sinmlations are affordable, i.e. Loo/a 100.

Secondly, the renormalization factor = Z ^ ‘̂ {g^),a/L). is obtained as fol­

lows. One considers some matrix element of the operator O in a lattice with given 

resolution L/a.  and fixed bare coupling g^. Note that all dimensionfull parameters 

in the system must be rescaled in fixed proportions with L  such that L is the only 

scale in the problem. The finite-volume renormalization factor Z q '̂  ̂ is then defined 

by requiring the chosen renormalized matrix element to tissume some prescribed value 

e.g. its tree-level value. This implicitly defines the renormalization factor ® at the 

bare coupling go, and renormalization scale /j. = L~^. In particular, at high enough 

energy (small enough L), i.e. f.i 2> Aqcd: the finite-volume renormalization factor can 

be evaluated in pertiu'bation theory. The finite-volume scheme can thus be matched 

to any conventional perturbative scheme in infinite volume (see e.g. (Liischer, 1998a)). 

The finite matching factor ® is determined in this way.

Given the renormalization condition for , the renormalization of the bare 

matrix element (2.64) at low-energ\- proceeds as follows. One starts by considering the 

renormalization condition for at the values of the bare coupling go where the bare



Scale dependent renormalization 45

m atrix element {f\0{go)\i)hnre lias been computed. Note th a t the discretization effects 

in th e  determ ination of are under control once the simple condition L / a ^  1 is

satisfied. Choosing a suitable Luiox/a at the largest value of go. then implicitly defines 

the  renorm alization scale =  i,7,ax- Given the typical values of the lattice spsicing

in simulations, and assuming I/,„ax/« =  0(10), one generally has /J.min =  0(100) MeV. 

The continum n limit in (2.64) must now be taken keeping ^min fixed, which in turn  

requires to  adjust i „ , a x / «  as a function of go. i-e. im ax /a  =  ( ^max/ t t ) (5o)-  Finally, 

given the values of go and {Lmax/f^){go) so defined, one computes accordingly,

and performs the limit in (2.64). As a result, the renormalized m atrix  element in 

the finite-volume scheme, (/|(Ofl''®)(/tmin)|*)' is obtained at the renorm alization scale

/ ‘ m in  =  ■ ^rnax-

The last step of the determ ination (2.03) requires the r\miiing of the renormalized 

m atrix  element ( / |(0 ^ ''® ) |j)  from the low-energy scale /t,nirn 'ip  the high-energ>' 

scale /imax =  where the connection to  the MS scheme can be safely made using

To this end, the idea is to  determine the non-p)crturbative evolution operator 

defined by (see e.g. (Guagnelli eJ, al., 2000)),

( O h ){h ') =  Uoili'..l^)[On){^,).. Uoi i i ' . i i )  =  l i m  ( ^ . 0 5 )

The way this is constructed in practice is through a fiuite-size scaling technique, i.e. 

step-scaling. More precisely, one first introduces the continuum  stejvscaling function 

do-  defined by.

/ > r  V  ̂ / r^ v. / / r \   ̂{ go{a) .  a / 2 L )c r o { u ) =  h m  Y.o{u,  a L ) .  T , o [n . a  L )  =  p y g  .- ■ , -— j j -  
« - + o  Z^^^{go[a} . a L)

. ( 2 .66 )
g^(L~^)—u

As emphasized in the  above equation. <Jo{u) is olitained as the continuum limit 

of the lattice step-scaling function T,o{u. a /L) .  This is com puted by determ ining 

Z ^ ’̂ igo- a / i )  and Z^ ' ^{go .  a /2L )  for several values of go and resolutions L /a .  a t fixed 

renornaalization scale // =  L ~ ^ . The la tter is kept fixed by tuning go and L / a  such 

th a t a given renormalized finite-volume coupling g^{L~^)  is constant. Once the step- 

scaling (Tc){u) is obtained, this allows to run the renormalized operator {Ojj){fJ.) from 

the renorm alization scale ji down to p /2 , where p =  L~^ is specified by u  =  g^{L~^).
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The energj^ range M m a x ]  can thus be split in a number of stops k, where the

renorm alization scale is varied by a factor of two a t each step, i.e. îmax =  2*’/x„,in. 

The step-scaling function croi'u) then needs to  be determ ined at the corresponding 

values of the  finite-volume coupling € [mq, . . . ,  Wfc-i], where uo =  and

Finally, the evolution operator U ( / i m a x ,  / ‘■min) >s obtained as.

f c - i

^ o ( M i i i a x ; / ^ r n i n )  ~  ( ^ ^ 0 '  ( 2 . 6 ^ )

1=0

To conclude, finite-volume renorm alization schemes provide a general solution to  non- 

perturbative renorm alization problems. The practical success of the program outlined 

above, however, ver>' much depends on the details of the specific scheme chosen. In 

particular, some basic criteria should be met by the finite-volume scheme in order to 

make this program  feasible:

•  The finite-volume scheme should be relatively simple to com pute in perturbation  

theory, such th a t the matching at high-energj- w ith o ther j^erturbative schemes 

can performed easily and accurately.

•  The given scheme should be relatively easy compute nuiiierically, and have a good 

statistical precision once estim ated through Monte Carlo methods.

•  Discretization effects should be mild, such tha t relatively small lattice sizes L /a  

call be considered for the running, and safe continuum limit extrapolations can 

be obtained for renormalized quantities like for example the lattice step-scaling 

function S q .

Careful consideration of the above points led to the introduction of renormalization 

schemes based on the Schrodinger functional of QCD (Liischer, Narayanan, Weisz and 

Wolff, 1992). This powerful tool will be the central topic of the next chapter.
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The Schrodinger functional

In the last chapter, we presented the advantages of using finite-volume renormalization 

schemes for the non-pcrturbative renormalization of the  lattice theory. In particular, 

we discussed th a t several practical criteria have to be satisfied by the specific scheme 

in order to make this renormalization feasible (cf. Section 2.3.3). In this chapter, 

we want to  introduce a family of schemes th a t enjoy many attractive features in this 

respect. These schemes are based on the Schrodinger functional (SF) of QCD (Liischer, 

Narayanan, Weisz and Wolff. 1992; Sint. 1994: Sint, 1995).

\Ye thus begin the chapter presenting the SF in the continuum. S tarting from the 

pure Yang-Mills theory, we later introduce fermions. Note th a t, although only formal, 

the continuum formulation will allow us to discuss many of the crucial properties of the 

set-up on fairly general grounds. Secondly, given the continuum  definition, we present 

the lattice regularization of the SF. After a short discussion of the pure gauge theory, 

we will discuss the inclusion of fermions in detail. More precisely, we will first review 

the standard  lattice formulation of the SF based on Wilson-fermions. In particular, wc 

will investigate the 0 (c )  improvement of the theory, and show how the SF boundary' 

conditions for the quark fields break the argument of autom atic 0 (a )  imisrovement 

presented in Section 2.2.4. This will lead us to introduce an alternative discretization 

of the SF where this nice feature is recovered. The formulation is based on the chirally 

ro ta ted  Schrodinger functional ( \S F )  (Sint, 2011), which is the main focus of this 

work. Finally, the chapter is concluded with an analysis of the novel set-up including 

the details of the regularization, renormalization, and 0 (a )  improvement of the theory.
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3 .1  T h e Schrodinger functional: formal definition

3.1 .1  Y ang-M ills th eo ry

The Schrodinger functional is given by the quantum-mechanical propagation kernel 

from some field configuration at time xq =  0, to some other configuration at xq =  T. 

In Euclidean space-tiine, this can be written as a functional integral over all fields with 

given boundary conditions (Liischer, Narayanan, Weisz and Wblff. 1992), In particular, 

since we are interested in studying the theory in finite volume, we consider space to be 

a. L x L x L  torus. The space-time manifold is then given by a hyper-cylinder, with finite 

spatial extent L, and finite temporal extent T.  The gauge potential A^{x)  € su(3). 

is defined accordingly for all 0 < .tq < T.  It is periodic in the spatial directions, and 

satisfies Dirichlet boundary conditions in the time direction. The latter are specified

where C,  and C  are classical gauge potentials, and A^{x)  denotes the gauge transform 

of ^4fc(x), which is defined as.

Note that in order to preserve periodicity, only periodic functions A(x) are permitted.

Given these definitions, the functional integral representation of the Schrodinger 

functional can be written as (Liischer, Narayanan, Weisz and Wolff, 1992),

C^'(x), at xq = 0, 

C[,(x), at To = T.
(3.1)

.4^(x) =  A (x ).4 i.(x )A (x )-'+ A (x )a itA (x )-\ A(x) G SU(3). (3.2)

(3.3)

where the gauge action Sq is given by.

(3.4)

with defined in (A.23), wdiile the integral measures are defined by,

X

(3.5)

where dA is the Haar measure over the gauge group SU(3).
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The integral over the gauge group in (3.3) guarantees that Z[C',C]  is invaiiant 

under arbitrary gauge transformations of the boundary value fields C  and C .

3 .1 .2  In d u ced  background field

A characteristic property of the SF is given by the following observ’ation. The boundary’ 

value fields C  and C , can be chosen in such a way that, up to gauge transformations, 

the action Sq  has a unique global minimum field configuration (Liischer, Narayanan, 

Weisz and Wolff. 1992). This field configuration is generally referred to as the induced 

background field, and it will be denoted as B in the following. The existence of this 

unique minimal action configuration, is an essential ingredient for the perturbative 

expansion of the SF. Indeed, in the weak cotipling regime, go —> 0, the fields close to B 

will dominate the path integral, and the .SF can be computed by performing a saddle 

point approximation around B.  In particular, the corresponding effective action,

r[B] = -  In Z[C.C'].  (3.6)

has a regular perturbative expansion of the form.

r[B] = \ u [ B ]  +  Fi[i?] + + . . . , (3.7)
9o

where the leading term is given by.

ro[5]=flo“5G[B]. (3.8)

where 5g [B] is the action of the background field. The higher-order terms in the 

expansion, are then given by sums of vacuum bubble Feynmami diagrams with an 

increasing number of loops.

Given this nice property, the perturbative evaluation of the effective action can 

proceed as usual (Liischer, Narayanan, Weisz and Wolff, 1992). First, a regularization 

is chosen in order to regularize the divergent loop integi'als. This can be eitfier a 

continuimi regularization, like dimensional regularization, or a lattice regularization

^N ote th a t  we can  u nam biguously  label th e  effective ac tion  in te rm s  of th e  background  field, 

in s tea d  o f  th e  b o u n d ary  value fields. T h e  background  field an d  th e  b o u n d a ry  fields, indeed , a re  in a 

one-to -o n e  correspondence .



50 The Schrodinger functional

for example. Secondly, gauge fixing has to  be performed taking care of imposing the 

correct bom idary conditions on the gauge and ghost fields. The Feynmann rules can 

then be derived in standard  fashion, where the vertices and propagators will now 

depend on the background field, similarly to  a background field method.^ Some degree 

of complication is certainly introduced by th e  loss of translation invariance in the  tim e 

direction. In general, however, perturbation  theory in the SF has been shown to be 

feasible up to  two loops, w'ith several explicit continuum  and lattice com putations, both 

in pure Yang-lVIills theory and full QCD.^ In addition, several autom ated tools have 

been developed over the last years in order to  help performing tiiese calculations on the 

lattice (Takeda. 20096: Hesse and Sommer, 2013: Brambilla et a i,  2013). In conclusion, 

the SF offers a robust and practical framework for perturiiative com putations in finite 

volmne.

At this point, the reader might wonder whether such an elaborate set-up as the 

SF is in fact needed to  obtain a regular perturl)ative expansion in finite volume. Why 

not simply consider for example finite-volume schemes defined in a hyper-tours? Tlie 

answer to this question is ra ther technical. Here we just want to mention th a t the 

problem in this case is th a t in a finite volume witli periodic boundary conditions, the 

perturbative expansion of the path-integral is greatly complicated due to the presence 

of gauge zero-modes (Gonzalez-Arroyo, Jurkiewicz and Korthals-Altes, 1981). The.se 

modes are constant gauge field configurations of minimal action th a t dom inate the low- 

energy dynamics of the theoiy in a finite volume. In particular, in the perturbative 

evaluation of the path-integral one has to  trea t the non-zero modes and the zero-modes 

differently, where for the  la tte r a standard  perturbative approach is not possible. Here 

we do not want to enter into the details of this technical subject. Wc thus refer the 

reader to  the review in (Fodor et ai, 2012) for a detailed discussion about these points, 

and how to deal properly w ith gauge zero-modes in perturbation theorj'.

To conclude, we note th a t alternative boundary conditions do exist, which eliminate

“For an introduction to  background field m ethods we refer to (A bbott, 1982).

list o f early com putations is given by (Liischer, Narayanan, Weisz and Wolff. 1992; Narayanan  

and Wolff, 1995; Sint, 1995; Sint and Somm er, 1996; B ode, Weisz and Wolff. 1999; Bode. W eisz and  

Wolff. 2000).
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the gauge zero-modes of Yang-Mills theory in finite volume. An example is given by 

twisted periodic boundary conditions (’t Hooft, 1979). A nice feature of these boundary 

conditions is th a t translation invariance is preserved in all space-time directions. One 

the o ther hand, these boundary conditions impose some restrictions on the m atter 

content of the  theory (Parisi, 1984). In particular, m atter fields in the  fundam ental 

representation of the gauge group SU(A^) are forced to  come in multiples of the num ber 

of colors N.  This, imfortunately. is not very convenient for studies of QCD.''

3.1 .3  R en orm aliza tion

Through the perturbative study of the SF. one can anal,ytically investigate the nature 

and form of the divergences th a t appear in the formulation, and thus understand its 

renorm alization. In this respect, a relevant and noii-trivial question is whether a local 

quantum  field theory formulated on a manifold with boundaries develops additional 

ultra-\'iolet divergences. In fact, the presence of the boundaries can be described by 

additional interaction term s in the Lagrangian. which effectively impose on the fields 

the given boundary conditions. The renormalization of the theorj' can then in principle 

be altered by the presence of these additional terms.

The first studies in this direction have been conducted by Symanzik in the mass- 

less <p| theory (Symanzik. 1981a). In particular, in this work Symanzik expressed the 

expectation th a t all divergences in the SF could be removed by renormalizing the bare 

coupling constant, and bj' including in the bare action the boundary counterterms.

where Zj and Z 2 are some divergent renormalization factors. In fact, Symanzik con­

jectured th a t  th is result is generic, and the SF of any renormahzable theory can be 

made finite by the usual param eter and field renormalization, and by adding a few 

boundary coim terterm s to the action. These boundary counterterm s are given as local 

composite fields of mass dimension less or equal to 3 integrated over the boundaries at

‘̂ Note how ever t l ia t  q u a rk  fields in tlie  adjo in  re p re sen ta tio n  o f th e  gauge g roup , do n o t suffer 

from  an y  re s tr ic tio n . O tlie r in te re s tin g  theo ries th a n  Q C D  can  tlien  b e  s tu d ied  in fin ite-vohune wit)i 

th e se  b o u n d a ry  co n d itio n s, see e.g. (G onzlez-A rroyo an d  O kaw a. 2013).

(3.9)
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x'o =  0 and rro =  T. In particular, only the countertcrms that respect the symmetries 

of the theorj’ are allowed.^

In the case of the pure Yang-Mills theorj^ we then expect the SF to be finite after 

the renormalization of the bare coupling. Indeed, we note that there are no non-trivial 

gauge invariant polynomials in the gauge potential with mass dimension less or equal 

to 3. Even though this conjecture has never been proven, quite some evidence has 

been accumulated over the years confirming this expectation.® In particular, several 

1-loop and even 2-loop computations have been performed where this has been shown 

explicitly (Liischer, Narayanan, Weisz and Wolff, 1992; Narayanan and Wolff, 1995; 

Bode, Weisz and Wolff, 1999). Similar results have been obtained for QCD. In this 

case, as we shall see. the situation is even less trivial since the renormalization of the 

SF requires in general some dimension 3 boundary coimterterms (Sint, 1995; Sint and 

Sommer, 1996; Bode, Weisz and Wolff, 2000; Sint. 2006).

To conclude, we note that in addition to the perturbative results, many non- 

perturbative studies of the SF have been conducted so far using several different lattice 

regularizations, and considering many different theories. The nimierical results show 

that a universal continuum limit of the SF exists, and it is obtained after the expected 

renormalization of the theory. There is thus little doubt that Symanzik's conjecture is 

correct in these cases, and most likely in general.

3 .1 .4  Q uarks

The introduction of fennions in the SF was first considered in (Sint, 1994). There, 

starting from the lattice theory with Wilson-fermions, the boundary conditions and 

action of the continuum theory could be inferred. Specifically, the Euclidean action of 

the SF of QCD is given by,

S[Ay\'ip] = Sq [A] (3.10)

^O f course the relevant sym m etries to  be considered depend on th e  specific regulator employed. For 

the  case of gauge theories, we will always assum e th a t  th e  regularization preserves gauge sym m etry.

prove of Sym anzik's conjecture to  all order in pertu rba tion  theory is com plicated by the  loss of 

tim e transla tion  invariance in th e  SF. A standard  application of power counting in m om entum  space 

is thus not possible in this cfise.



The Schrodinger functional: formal definition 53

where the gauge action S q  has been already introduced in (3.4), while the fermionic 

action S-p is defined as,

The projectors P± =  ^(1 ± 7o) are used to project on the Dirichlet components of the 

quark fields. More precisely, the Dirichlet boundary conditions for the qutirk fields are 

given by.

where p + .  p_ , p'_, and are some given source fields, It is then general practice to 

take the quark fields to be {periodic in the spatial directions, hut allow for a constant 

U (l)  background field in the covariant derivative, i.e.,

This Abelian field can be elim inated by an Abelian gauge transform ation of the quark 

field.s. but as a consequence the spatial boundary conditions of the fields would change, 

and be periodic up to a phase factor. These boundary conditions are interesting, since 

they offer some additional freedom in probing the quark dynamics in finite volume.

Given these definitions, some observations are in order. The first thing th a t we want 

to  note is th a t the boundar y conditions (3.12) onh- constrain half of the components of 

the quaik  fields at the boundary. From a classical point of view, this can be understood 

by noticing th a t the Dirac equation is a first order differential equation. A given 

solution is then uniquely determ ined when half of the components of the fields are 

specified at each boundary. The second remark concerns the  boundary term s tha t 

appear in the quark action (3.11). Naively, one might have expected th a t similarly to 

the case of the  gauge action, the quark action would have been given by the standard  

action (1.4), supplem ented with the boundary conditions (3.12). The origin of these 

term s, however, is easily explained. Once the boundary conditions (3.12), and parity

(3.11)

P+'<li )̂\xo=0 =  p+(x), P _ i’(x)!:,o^r =  />'_(x),

V’{ ^ ) P - \to=o =  P-(x). to(.'r)P+|i„=T = P+(x),
(3.12)

(3.13)
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invariance of the action are assumed, these terms guarantee that the action has smooth, 

i.e. C°°, solutions to the classical field equations of motion (Sint, 1994). Finally, one can 

prove that the boundary conditions for the quark fields introduce a gap in the spectrum 

of the Dirac operator. More precisely, for am^ smooth gauge potential, the spectrum

of the massless SF Dirac operator is purely discrete and with no zero modes (Liischer,

2006). As we shall see, this property is very important in practice since it allows

numerical simulations of the SF directly in the chiral limit.

Having introduced the classical action and boundary conditions, the path-integral 

representation of the SF of QCD can be defined as (Sint, 1995),

Z[p'+,p'_.C'-,p_,p+,C] = I  V[K] j  (3.14)

where the functional integral is over all fields which satisfy the boundary conditions 

(cf. (3.1)),

Ak{x)\xo=o =  ^^^(x). -4fc(x)U„=T =  C [(x),

^+V>(^)Uo=u =  A(x)p+(x), P_V'(^)Uo=r =  ^/_(x), (3.15)

ii^)P-\xo=o  =7>-(x)A(x)“ \  vH2')-P+Uo=r =  /^+(x).

Including the quark fields, the renormalization of the SF has to be reconsidered. In 

particulai’, differently from the case of the pure Yang-Mills theory, gauge invariant 

composite fields of mass dimension 3 are present in QCD (Sint. 1995). More precisely, 

taking into accoimt the boundary conditions for the fields, one finds that the boundary 

counterterms,

(3.1G)

need to be added to the action in order to olitain a finite renormalized SF. Inspecting 

(3.11), it is easy to .see that these counterterms can be included through a multiplicative 

renormalization of the quark boundary values, nanaely,

(p r )+  =   ̂ P+- ■ ■ ■ ■ (p 'r )+ —  ̂ (3-17)

where is a logarithmically divergent factor. This means that for homogeneous 

boundary conditions, i.e. vanishing boundary values /9 + ,...,p ^ , the SF of QCD is 

finite after the usual coupling and quaik-mass renormalization.
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Even in  the  case o f vanishing bounda iy  values, however, the renorm alization (3.17) 

is im p o rta n t once one considers corre lation functions in the  SF. The generic corre lation 

fm ic tio n  o f an operator O  in  the SF is defined as,

(O ) = I 1 f P [A ] f I , (3.18)
I J p = p = p '= p '= 0

and is thus evaluated at vanishing boundary values. On the other hand, apart from  

operators made out o f quai'k and gluon fields th a t live  in  the  bu lk, O  may also involve 

the “boundary quark fields'’ defined by,

C ( x )  =  C ' ( x )  =
<5p_(x)' 6 fA { x ) '

S S
7— TT-(5p+(x) Sp'_{x)

Note th a t, these functiona l derivatives are well-defined objects since they act on the 

Bo ltzm ann factor e“ ‘® l^efore we set the boundary ralues to  zero. In  fact, tak ing  these 

functiona l derivatives effectively corresponds to  considering the insertion in  correlation 

functions o f the iio n -D ir ic lile t components o f the quark fields in fiu ites im a lly  close to 

the boundaries (Liischer and Weisz. 1996). i.e.,

C(x) =  P _ v (0 + .x ), C'(x) =  P+^’( r _ .x ) ,
_ _  _  (3-20)
C(x) =  •!/>(0+.x)P+, c'(x) =  ■0(r_,x)P_,

where the arguments .To =  0+ and T(j =  r _  ind ica te  th a t the  fields are located in  the 

bu lk, in fiu ites im a lly  away from  the tim e boundaries a t Xq =  0 and xq =  T . respectively.

In  pa rticu la r, one can consider operators made out o f fin ite  products of Fourier 

components o f these fields. A  simple example is given b j' the  operator,

a?  =  J  d -V rf- '*z a y )y 7 5 C (z )-  (3.21)

We w ill consider these operators in  more deta il in  the con tcxt o f the la ttice  theory. Here 

we ju s t w ant to  m ention th a t, firs t ly  these operators are gauge invariant quantities. 

Secondly, single insertions o f these boundary operators in  on-shell corre la tion functions 

are made fin ite  by m u ltip ly in g  the bare operatore w ith  the appropria te  number of 

renorm aliza tion  factors, (Z<;)^, where n is the to ta l num ber o f C and C fields th a t
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appear in the given composite field. This is certainly a noii-trivial result which is related 

to the fact that once the bare parameters and boundary values are renormalized, the 

SF is completely finite (Liischer, Sint, Sommer and Weisz, 1996).

3.2 The Schrodinger functional: lattice formulation

In the previous section, we formally introduced the SF in the continuum, and discussed 

its main features. In order to perform a concrete non-perturbative study, however, a 

lattice regularization needs to he specified. In this section, we will stai't discussing the 

lattice regularization of the SF for the pure Yaiig-Mills theory, as originally propo.sed 

in (Liischer, Narayanan, Weisz and Wblff, 1992). We will then present the standard 

formulation of the SF of QCD with Wilson-ferrnions (Sint, 1994).

3 .2 .1  Y ang-M ills th eory

We set-up our theory by considering an hyper-cubic lattice with finite spatial extent 

L and finite temporal extent T, both are assmned to be integer multiples of the lattice 

spacing a. As usual, our gauge field is defined by assigning an SU(3) matrix U^i{x) to 

every pair {x.x + ufi) of points of the lattice. In particular, the temporal link variables 

L\){x) are defined for all lattice points with 0 < Xo < T.  As in the continuum, we then 

reqiure the gauge fields as well as tlie gauge transformation functions to be periodic 

in the spatial directions with period L.

The action for the gauge field is taken to be the \ \ ’ilson action.

T  3

So\U] =  4 E E  E  (3.22)
x e rx o = 0 ( i . i /= 0

where F is defined as the set of spatial points on a given thne-shce, i.e.,

F =  |x |x / a  e Z ^ O <  XK- < L , k =  1 ,2 ,3 |.  (3.23)

Comparing with the corresponding lattice action in infinite volume (cf. (2.2)), we note 

the additional weight factor w(P) introduced by the presence of the boundaries. For 

tlie moment, cj{P) is taken equal to 1 in all cases except for the spatial plaquettes

at xq =  0 and o’o =  T,  which are given the weight The significance of this weight

factor will be discussed in more detail in the next section.
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Given the definition of the action, the lattice regularization of the SF for the pure 

Yaiig-Mills theory is now defined as (Liischer, Narayanan, Weisz and Wolff, 1992),

Z[C,C '] =  V{U] = '[[dUf,{x),  (3.24)
X . f . i

where dU denotes, as usual, the gauge invariant Haar measure on SU(3). Specifically, 

the integration in (3.24) is over the gauge fields U^{x) w'ith 0 < a-Q < T for ji = 0, 

and 0 < j:o < T  for /i =  1.2,3. The links at the boundaries are then fixed, and have 

prescribed \'alues,

H 't(x) =  t/^,(o:)U=o. H ''(x ) =  C/A.(a:)U„=r. (3.25)

To make contact with the continuum definition of the SF (cf. Section 3,1.1), the link 

x'ariables IV' and W  should be related with the continuum boundary values C  and 

C . The connection is made by recalling that U^{x) is the parallel transporter along 

the straight line connecting x  +  a(L with x. We thus identify the link lifc(x) with the 

corresponding parallel transporter determined by the contirmum boundary field Cfc(x). 

In other words, w'e set.

n ’fc(x) =  P ex p  | a  ^  f/fC^(x +  ok — fa k ) |.  (3.26)

where the symbol V  denotes the path ordered exponential.^ ^̂ '/•(5<:) is similarly given in 

terms of the field C[,(x). W ith this construction, if we perform a gauge transformation 

C  —> C ''. the associated lioundary field 11' transforms as a proper lattice gauge field. 

In this respect, we emphasize that the lattice SF has to be regarded as a functional 

of the continuum fields C and C . rather than the lioundary link fields W  and W . 

In particular, the continuum limit of the lattice theory is taken by keeping C and C  

fixed while sending the lattice spacing a to zero.

To conclude, compiu'ing the lattice SF (3.24) with its continuum counterpart (3.3), 

we note that an integral over the gauge transformation functions is missing. The reason 

is that the lattice SF is already invariant under arbitrary gauge transformations of the 

boundary fields (Liischer, Narayanan. Weisz and W’olff, 1992). Indeed, as discussed, a

"^The p a th  o rd e re d  ex p onen tia l is such  th a t  th e  fields a t  larger in te g ra tio n  \7 iriab le t com e first.



58 The Schrodinger functional

gauge transformation C induces a corresponding gauge transformation of the

fields W. It is then easy to see that this transformation can always be compensated by a 

change of variables in the path-integral (3.24). Finally, we also want to mention that the 

lattice SF has a rigorous quantum mechanical interpretation as the propagation kernel 

from the field configuration M' to the field configuration W  (LiLscher, Narayanan, 

Weisz and Wolff, 1992). In fact, this is the starting point for its construction in terms 

of the transfer matrix of the theory.

3 .2 .2  Q uarks

Given the definition of the lattice SF for the pure Yang-Mills theory, in tliis subsec­

tion we discuss the inclusion of fermions. Specifically, we present the standard lattice 

formulation of the SF of QCD with Wilson-fermions (Sint, 1994).® As for the previous 

subsection, we will not enter into the details of the construction, but simply summarize 

the main results. We then refer the reader to tlie given references for the details.

Starting directly from the path-integral, the lattice regularization of the QCD SF 

with W'ilson fermions is given by (Sint. 1994),

Z[^+,p'_.C';7>-,P+.C] =  j  V[U]V[4,]V[i>\e-\ (3.27)

where the integration is over all quark and ariti-quai’k fields at Euclidean times Xy with 

0 < Xq < T. The integral measure for the gauge fields, we remind, has lieen already 

specified in (3.24). In (3.27). the lattice action S =  5g 4- is given in terms of a pure 

gauge part Sq , defined in (3.22), and a fermionic part Sp given by,
3

5 f  =  ^  v H 2 - ) P - |  ^ 0 7 A - |( V t  -H V*)ip{x) -  Uo{x)ij>{x -t- a O ) |
x e r  ’̂=1

T - a

+ ^  -F mo|iy(x) (3.28)
x GF x o = n

3

+ a''* V] '^[x.)P+{ y" a i k l i ^ k  +  V*)V’(3-) -  U^{x -  a6)i>{x -  aO) j , 
xer ^ - = 1  ^^0=^

where, we recall, =  -|(1 ±  "yo).

*The SF of QCD has been later formulated with several other fermionic discretizations. Some 

examples are found in (Taniguchi, 2005; Liischer, 2006; Takixia, 2009a; Perez-Rubio and Sint, 2010).
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The first observation we want to make is that, by taking the classical continuum 

limit of (3.28), one recovers the corresponding continuum action (3.11). In particular, 

the correct boundary terms are obtained. Secondly, we note that the quark and anti­

quark fields at the boundaries x q  = 0 . T, arc not integration valuables in (3.27). Hence, 

they are not active degrees or freedom. Some of their components, however, appear in 

the action (3.28). More precisely, these are given by.

P+VHa;)ixo=o =  P+(x), P_z/-(a-)|,.„=r =  p'_(x),
_  (3.29)

tA(x)P-Uo=o = P _ (x ) , iP{x)P+\^^=T  = ^ + { x ) ,

where we specified their values in terms of the source fields p+, p_, p'_, and As 

one might have expected, the components that appear in (3.29) correspond to the 

Dirichlet quark field components introduced in the continuum theor)' (cf. (3.12)). In 

particular, it is interesting to note that the dependence on the boundary fields only 

enters through the components (3.29). The complementary components, instead, are 

completely decoupled from the cK'uamical fields, and thus from the theory. In this 

respect, we want to stress that, on the lattice, the relations (3.29) should not be 

regarded as specif\'ing some boundary conditions for the fields. Ratlier. they define 

.sources to which some particular combinations of field components near the boundary 

couple (cf. (3.35)). Indeed, strictly speaking, in lattice field theory boundary conditions 

ai'c not really imposed on the fields, l)ut instead they are encoded in the details of the 

lattice action close to the boundary (Lii.scher, 200G).

Given these observations, for vanishing boundary values (3.29). the lattice quark 

action (3.28) reduces to the simple form,

T - a

5f =  ^  ^  y.’{x){D^- + mn)vj{x), (3.30)
x € T  x o = a

where we recover the (infinite-volume) massless ’\^'ilson Dirac operator (cf. (2.3)),

=  5 E  }. (3.31)

Note that as we did in the continuum theory, wc include in the covariant derivatives 

an additional Abehan field by defining (cf. (3.13)),
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Vf,i>{x) = i  + a/7) -  V->(a-)j, (3.32)

aiid similarly for V*  (see Appendix A.4).

Finally, the SF correlation function of a lattice operator O is given by (cf. (3.18)),

(O) = i 1 j I . (3.33)
\  /  p = : p = : p '= p '= 0

As in the continuum theory, we can consider fields O constructed out of the boundary

quark fields (3.19), analogously defined on the lattice. As an example, the lattice

operator corresponding to (3.21), simply reads,

O? = ^  c(y)y75C(z). (3.34)
y.z€r

In particular, one can show that in the lattice theory the derivatives w.r.t. the boundary' 

values (3.19) correspond to the insertion in correlation functions of the quark field 

components (cf. (3.20)) (Liischer and Weisz. 199G),

C(x) =  C7o(0. x)P_V>(a. x) . C'(x) = Uo{T -  a. x )tp + ^(T  -  a. x),
_ (3-35)

(;(x) =  U>{a.-x.)P+UQ{0,x)\ Q (x) = v {T  -  a,y.)P-Uo{T -  a.x).

Operators like (3.34) can then be argued to be gauge in\-ariant (Liischcr, Sint. Sommer 

and Weisz, 1996; Liischer and Weisz, 199G).

3.3 The Schrodinger functional and 0 (a )  improvement

Having introduced the standard lattice discretization of the SF with W’ilson-fermions, 

in this section we want to study the 0(a) improvement of the theor\^ W’e thus start in 

the next subsection with a discussion of how Symanzik’s effective description extends 

to the SF (Liischer, Sint, Sommer and Weisz, 199G). As one expects, some modifications 

w.r.t. to the infinite volume analysis of Section 2.2 are in order due to tlie presence of 

the boundary. Symanzik’s effective theory will then allow us to identify the sources of 

0(a) effects in the SF. More precisely, as we shall see, discretization effects come from 

two sources: firstly from 0(a) comiterterms localized in the interior of the space-time 

volume, and secondly from counterterms localized at the boundary. In particular, the 

0(a) counterterms localized in the bulk of the space-time are the same as the ones
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identified in infinite volume, or equivalently, in a finite volume without boundary. 

It is thus natural to ask whether for these contributions the argument of automatic 

0(c)-improvement of massless Wilson fermions in finite volume also applies in the SF 

(cf. Section 2.2.4). As we shall see, unfortunately, tliis is not the case since the SF 

boundary conditions for the quark fields explicitly break this argument. As a result, 

all bulk 0 (a ) counterterms need to be taken into account in order to eliminate the 

corresponding effects in the standard SF regularization.

3.3 .1  S ym an zik ’s efTective th eory  and th e  SF

Before presenting the details of Symanzik’s effective description for the SF, we need 

to introduce the class of lattice observables we want to consider. Symanzik's effective 

theory will then allow us to describe the approach to the contiimum limit of the 

properly renormalized quantities, and discuss their improvement.

In the following, we restrict our attention to correlation functions of products of 

local composite fields 4>{x), and Fourier components of the boundarj’ quark fields 

C(y). ■.. C (z)- The fields 6{x) arc assumed to be multiplicatively renormalizable. and 

inserted at non-zero physical distances from each other, and from the boundaries. The 

latter condition guarantees that contact terms between the fields 4>{x), and the Fourier 

components of the boundary’ fields are avoided. The renormalization and improvement 

of this class of obser\’ables is then relatively simple since the bulk and boundary- 

operators can be discussed separately.

In particular, we note that the insertion of the operator (t)(x) in the interior of 

the vohune requires the same renormalization as in on-shell correlation functions in 

infinite volume. Instead, the product of any finite number of Fourier components of 

the boundary fields C ( y ) i  • ■ ■ C (z). is made finite by simply nmltiplying each boundaiy 

field with the corresponding renormalization factor (cf. Section 3.1.4). As already 

noticed, this is a non-trivial result, since one might expect short distance singularities 

to appear when considering products of more Fourier components. These singularities, 

however, are already taken care of at the level of the SF, and are thus cancelled by 

the renormalization of the boundaiy fields (Liischer, Sint, Sommer and Weisz, 199C).
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Given these observations, it is clear now liow to proceed for the improvement of 

this class of observables. Similar conclusions as for their renormalization can in fact 

be dravi^n. Specifically, the improvement of the fields cp{x) is the  same as in infinite 

volmne. and hence does not need to  be rediscusscd (cf. Section 2.2.1). Correlation 

fimctions of the boundary quark fields, instead, are autom atically improved once the 

SF is improved (Liischer, Sint, Sommer and Weisz, 1996). In this respect, given the 

discussion on the renorm alization of the SF (cf. Section 3.1.3), we expect th a t further 

term s need to be included in the corresponding Symanzik effective action in order to 

account for boundary effects. The general higher-order contribution to  the Symanzik 

effective action of the SF. is then given by (Liischer, Sint. Sommer and Weisz, 1996),

Sk = j  d'^xCkix)  + j  d^x{5fc(a-)|:ro=o +  ^I.(-r)Uo=T}- (3.36)

where the bulk Lagrangian £*(x) is defined in (2.37), while the boundary operators 

Sfc(x) and are given by linear combinations of local composite fields of dimension

3 +  fc.® Note tha t the basis fields in S t(x )  and need to respect all internal

synmietries of the lattice theory and the discrete space-time rotations and reflections. 

In particular, Bi;[x) and B[{x)  axe related by tim e reflection, so th a t only one of 

them  really needs to be discussed. In addition, as in the infinite volume case, the 

field equations of m otion can be used to  reduce the  num ber of operators in the bulk 

Lagrangian £ t(x ) .  and in the boundary term s Bk{x) and B'f.{x).

3.3.2 0 (o )  improved action

Starting from the general expression for the Symanzik effective action, one can now 

construct an improved lattice action for the SF with Wilson-fermions. In the following 

we present the main results of this construction, although leaving out most of the 

technical details. For the la tter, we refer the reader to the discussion in (Liischer, Sint,

^Technically the boundary operators are first defined in the bulk infinitesiinally close to the 
boundaries, and then a proper limit has to be taken where the coefficients of the basis operators 

in Bk{x) and are scaled in a precise way (Liischer. Sint, Sommer and Weisz, 1996). For us,
however, these details are unimportant, and we can consider the formal expression for the effective 
action given above. In fact, we are only interested in the form of the boundary terms, and this is 
determintxl only by symmetry considerations.
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Sommer and Weisz, 1996). This said, considering only the leading 0 (a )  corrections, 

the improved lattice action for the SF with Wilson-ferinions can be w ritten as,

S i  = S  + 5Sv +  <55'G,b +  SSp\,. (3.37)

Here, S  =  S q +  S-p. is the unimproved lattice action given by the sum of the pure 

gauge action (3.22), and the quark action (3.28). The 0 (a )  volume counterterm , SSy,  

related to  is then analogously defined as in the infinite volume case, i.e. (cf. (2.43)),

T - a

SSy =  X I  X !  '̂ *̂ "'(//o) (3.38)
x € F  x o = a

The additional ingredients in (3.37) are the  0 (a )  boundary counterterm s, which divide 

into a purely gluonic term , SSc.h^ find a fermionic term , SSp,\^. Considering first the 

gluonic contribution, w'e note th a t in the pure gauge theory any gauge invai'iant local 

composite operator has mass dimension greater or equal to 4. The only fields th a t can 

contribute to  Bi  and B[ are then gi\’en b>-,

tr{F(iA-fo* } and t r  {Fk-iFk-t}■ (3.39)

In particular, for the corresponding lattice counterterm s we can choose operators tha t 

are already present in the gauge action (3.22). In this case, these counterterm s read.

1  ̂
d'Scj.b =  ^ (c » (9 o )  -  1 ) ^  ^ t r { l - P w ( x ) }

x e r ..„ = o .T .,,= o  

+ -^(c ,(5o) -  1) X  X  ^ t r { l  -  P,u.(a-)},
xsr3 'o=0,T -«fc=0

where we introduced the corresponding improvement coefficients Cs(<yo) and Ct{go). 

Making th is choice, the insertion of the gluonic covmterterm 6Sa.h simply modifies the 

weight function io{P) in the action. Specifically, a;(P) can he redefined as (cf. (3.22)),

2 <̂ s(£/o) for spatial plaquettcs a t xq =  0, and T.

'(■P) =  Ct{go) for time-like plaquettes P  attached to  the boundaries, (3-41)

1 otherwise.

For completeness, we mention th a t the improvement coefficients Cs{go) and Ct{go) are 

only known in perturbation theory. Their tree-level values can be easily obtained by
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expanding the gauge action (3.22) in a, and requiring the leading 0 (« ) effects to 

vanish. The values one obtains are Ci(0) =  Cf(0) =  1. For the specific discretization 

of the SF we are considering, the value of c<(t/o) is in fact known a t 2-loops order 

in perturbation theory (Bode, Weisz and WolfF, 1999; Bode, Weisz and Wolff, 2000). 

The value of Cs{go), instead, is not known beyond tree-level. However, if one considers 

spatially constant boundarj' fields Ck and C^, Cs(go) does not contribute to  the  action.

Ha^'ing specified the  gluonic 0 (a )  boundary counterterm  (JSc.bi we now comment 

on the fermiouic contribution SSp.h- In this case, the presence of the quark fields allows 

to  construct many more term s of mass dimension 4 with the right sym m etry properties. 

A detailed analysis is then necessary in order to understand how to eventually reduce 

this basis of fields, and how to properly include them  in the lattice action. In order to  

keep our presentation short, here we simply report the result of this study and refer 

tlie reader to  (Liischer, Sint, Sommer and Weisz, 1996) for the details. In particular, 

restricting ourselves to the case of massless quarks and ■v'anishing boundary values , 

/9_, p'_, and there is only a single term  th a t needs to be added to the action. This 

is given by,

<5-S'F,b =  (C'tigo) -  1) X !  Y L  (3.42)
x€r  x o = a .T ~ a

where Ct(go) is the corresponding improvement coefficient. In fact, note th a t the  proper 

counterterm  would also contribute in changing the weight of the time-like hopping 

term  a t the boundary from 1 to  Ct{go) (Liischer, Sint, Sonuner and Weisz, 1996). This 

contribution, however, does not appear in the  action if the boundary values are set 

to  zei'o (cf. (3.28)). On the other hand, it contributes when considering correlation 

functions of the boundary quark fields (3.19). Indeed, when we take derivatives of the 

lattice action with respect to  the boundarj- source fields, this term  is inserted in the 

correlation functions. As a result, the prescription (3.35) th a t defines the bouiidaiy 

quark fields in correlation functions has to be replaced by.

C(x) =  Cf(6ro)t^o(0,x)P_v(a,x) , ' C{x.) = Ct{gQ)Uo(T -  a,x)^P+ii){T -  a.yi),

C(x) =  c,(5o)^^’{a,x)P+^7o(0,x)^ c '(x ) =  Ct(go)i’{T -  a ,x )P_U o{T  -  a .x ) .

(3.43)
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For the lattice regularization we are considering, the value of Ct is only known a t 1-loop 

order in perturbation  theorj- (Liischer and Weisz, 1996; Sint and Weisz, 1998).

To conclude, for later convenience we write down the  0 (a )  improved SF quark 

action for vanishing bom idary values. This can be w ritten as,

T - a

{ S j ) p  (3.44)
x € F  xo = a

where we introduced the improved Dirac operator,

D  — Dw SDy “h SD\  ̂ +  Tii{). (3.45)

Thi.s is defined in term s of the unimproved Dirac operator (cf. (2.3)), and the 0 (a )  

counterterm s SD^ and 5Di,, which are given by,

3

SD^itix) =  uc^y,.{go) (3-46)

SDhij){x) =  a {ct{go) -  l){<5xo.a +  ^xo.T-a}^{x).  (3.47)

From the discussion of this subsection, it is clear th a t independently from the specific 

lattice rcgwlarizatiou considered, the SF unavoidably introduces additional 0 (a )  effects 

due to the boundary. The 0 (o ) boundary counterterm s here presented, indeed, do not 

break any internal sym m etry of the continuum SF. They are thus expccted to  be 

present in any discretization of the SF.

3 .3 .3  A u to m a tic  0 (a ) - im p ro v e m e n t  a n d  th e  SF

Given the results of the previous subsections, it comes natural to  ask a t this point 

whether the argum ent of autom atic O(a)-improvcment of massless Wilson-fermions in 

finite volume also applies to  the bulk 0( a )  counterterm s in the SF. As we shall see, this 

unfortunatel}^ is not the case (Frezzotti and Rossi. 2005; Sint. 2006; Sint. 2011), and 

all bulk 0 (a )  counterterm s are necessai'y to cancel the corresponding lattice artifacts 

in the standard  SF regularization.

In order to  show this, we start considering a generic multiplicatively renormalized 

lattice field O  in a finite volume with SF boundary conditions. In particular, the field 

O  may contain operators (r>{x) inserted in the bulk of the lattice volume, as well as
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operators made out of boundary quark fields C(y) , . . - (  (z). The S;\TOanzik effective 

description for the corresponding expectation value is then given by (cf. (2.40)),

( O ) c ( P ^ )  =  ( O o n r l j  -  +  0(a2), (3.48)

where O q is the continuum (renomialized) field corresponding to the renormalized 

lattice operator O ,  while S O q is a shorthand notation for the associated 0 (a ) operator 

counterterm. The latter, we recall, only contains counterterms associated to the bulk 

operators <?!i(.t). The 0 ( a )  counterterm to the action. 5 i, iiLstead. includes both bulk 

and boundary terms (cf. (3.37)). The expectation values in (3.48) are then taken w.r.t. 

the continuum SF action for massless quarks, which is given by (cf. (3.4) and (3.11)),

■50 =  - ; : ^  /  dxo [  d®xtr{F;^^(x)F^^(x)} +  [  diQ [  (3.49)
^5“ Jo Jo  Jo Jo

Note that in (3.48) we emphasized with a subscript (P+) that SF boundary conditions

are imposed on the f i e l d s . I n  particulai-, we remind that these expectation values are

evaluated for vanishing boundary values (cf. (3.18)). The boundary conditions for the

quark fields thus explicitly read,

P+V’(a-)Uo=o =  0. P^ip{x)\:ra=T = 0.
_  (3.50)

^*!)(j:)P_Uo=o =  0 , il!{x )P + \xo = T  =  0.

Given these definitions, we recall that the argument of automatic O(a)-improveinent 

presented in Section 2.2.4 relied on the following observation. If we considered the 

7 5 -transformation,

V’ ^  15'<P- ■*/'->-V'T'5, (3.51)

as a change of variables in the functional integral, both the action Sq  and the functional 

integral measure were im-ariant. This allowed us to catalog the expectation values of 

the observ’ables as even or odd under the above transformation, and thus proceed with 

the proof. In the case of the SF, the action S q is still invariant under the transformation 

(3.51) (cf. (3.49)). On the other hand, in this case the transformation also affects the

^®For notational convenience we indicate only the boundary' conditions for the quark fields at 

xo =  0. T he boundary cond itions for the gauge field can be ignored in the present discussion.
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boundary conditions (3.50). In particular, it is easy to see th a t the transform ed fields 

satisfy the SF boundary conditions with the complementary projectors, e.g., a t :ro =  0,

P+V’(x)Uo=o = 0> 
V’(a:)P_U„=o =  0,

P-V{x)\xo=o =  0 ,

V’(.'c)P +1x0=0 =  0,

(3.52)

and consequently.

(3.53)

Thus, the  transform ed correlation functions can not be proportional to  the original 

ones, and the proof of autom atic O(o)-improvement can not go through. This may 

be taken as a property of the  fermion measure tha t is not invariant under the 7 5 - 

transform ation (3.51). since the function space integrated over in the path-integral 

is not the same before and after the change of variables. However, we prefer to say 

th a t cliiral symmetrj- is explicitly broken by the SF boim dary c o n d i t io n s .T h e  7 5 - 

transform ation (3.51) is then not a symmetry of the continuum massless SF. and the 

argum ent as it stands does not hold.

3 .4  T h e  chirally rotated Schrodinger functional

In the previous subsection we understood tha t in the standard  lattice regularization 

of the  SF w ith Wilson-ferniions, the property of autom atic bulk 0(a)-im provernent 

in the chiral limit is spoiled by the boundary conditions for the quark fields. The 

question then arises naturally whether it is possible to  recover this nice feature by 

changing the boundary conditions for the fields. Essentially, one would need to find 

alternative SF boundary conditions and field transform ations such tha t the la tter 

are sym m etries of the massless continuum theory, while the modified (homogeneous) 

boundary conditions are left invariant,^" As we now present, a t least in principle, there 

are several jjossibilities to achicve this.

^^This can be properly seen by studying the W Is of the  theory (Liischer. 2006: Sint. 2011).

the follow ing we refer in general to  SF boundary conditions as Dirichlet boundary conditions 

in the tim e direction, supplem ented w ith periodic boundary conditions in the spatial directions. The  

boundary' conditions (3.50) are then referred to  as the standard SF boundary conditions.
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If one insists in keeping the 7 5 -transform ation (3.51) as a symmetry transform ation, 

one could consider the boundary conditions specified by (Frezzotti and Rossi, 2005),^^

P± =  i ( l ± 7 o )  n ±  =  i ( l ± 7 5 r ' ) .  (3.54)

Alternatively, one could choose a different sym m etry transform ation, as for example 

the 7 5 -transform ation (3.51) augmented by a flavour perm utation (Sint, 2006). i.e.,

—> r^ 7 5 ^ ,  ij) —> —̂ 7 5 t \  (3.55)

where is a Pauli m atrix. This flavour perm utation does not affect the bulk action, 

and 0 (a) improvement for 7 5 r^-even observables in the bulk can be shown as in 

Section 2.2.4. Boundai'y conditions invariant under this transform ation can then be 

easily obtained by adding a flavour structure  to the original projectors (Sint. 2011)

P  tr

P± = \ ( l ± l o)  P± =  ^ ( l± 7 t , r 3 ) .  (3.50)

It is indeed easy to show that: [7 5 T^, P±] =  0.

Another possibility is again to consider the 7 5 T^-transformation above, but w ith 

the boundarj' projectors (Sint, 2006; Sint, 2011),

<3± =  ^(1  ±no75T®) => [7 .5 7-^ <5±] =  0. (3.57)

In conclusion, it is relatively simple to  come up w ith a set of boundarj' conditions and

sym m etry transform ations th a t m eet the basic requirements. Certainly, what is non­

trivial is to  show th a t the theory obtained is a sensible alternative to the standard SF. 

F irst of all, by modifying the boundary conditions arbitrarily  and independently from 

the bulk action, it is not even clear a priori if the theory defined is sensible a t all. The 

proposal made in (3.54), for example, suffers from several inconsistencies already at 

the classical level (Gonzalez-Lopez, 2011). Secondly, besides basic requirements such 

as a well-defined classical continuum theory, and the  renormalizaliility of the quantum

^^N ote t h a t  th e  m o st generic  b o u n d a ry  cond itio n s for th e  q u a rk  fields a re  given by BV-(a') =  0, 

w here  B is a  Hnear o p e ra to r  of non-m axim aJ ran k  (L iischer, 2006). W e can  th e n  d iscuss d ifferen t 

choices o f b o u n d a ry  co n d itio n s in te rm s  of d ifferen t p ro je c to r  s tru c tu re s .
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theory, one would like to maintain some of the characteristic features of the standard 

SF boundary conditions. These include in particular the absence of zero modes in the 

massless Dirac operator, that allows numerical simulations at zero quark-masses. Yet 

another difficultly is given by the actual implementation of the boundary conditions 

on the lattice. As we briefly commented, on the lattice one does not really impose 

the boundary conditions on the fields. These instead are encoded in the structure of 

the lattice action close to the boundaries. Thus, depending on the given boundary 

conditions, it might be relatively difficult to determine the proper structure.

In this respect, in (Sint, 2006; Sint. 2011) the author has shown that the boundar\- 

conditions specified by the projectors (3.57) provide a natural solution to all these 

problenLs. In fact, in the case of \Mlson-fcrmions these boundary conditions simply 

lead to an alternative lattice regularization of the SF with the standard boundary 

conditions (3.50). We thus start in the next subsection motivating this result. The rest 

of the chapter is then dedicated to a detailed discussion of the resulting lattice theory. 

For the presentation we follow closely the original references (Sint, 2006; Sint, 2011). 

We then recommend (Sint, 2007a) for an introduction.

3.4 .1  A  chiral ro ta tion  to  th e  Schrodinger functional

In order to understand the nature of the projectors (3.57). let us consider the formal 

massless continuum theory. As we now show, the projectors Q± naturally appear by 

applying a chiral rotation to the standard SF. More precisely, let y /  and i/-’ to be quark 

doublets satisfy ing the homogeneous SF boundary conditions (3.50). Performing then 

a non-singlet chiral field rotation,

(3.58)

the rotated fields satisfS' the chirally rotated boundary conditions.

P_(a)?/>(a-)U„=T =  0, 

?/.’(.T)7oP+(Q)Uo=r =  0,

where the projectors P±(a) are defined as.

(3.59)

(3.60)
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In particular, for a  = tt/2, one finds,

= ^(1 ±  no75T^) =  Q±- (3.61)

and the boundaiy conditions (3.59) take the form,

<3 +  V.’(a^)|xo=0 =  0, Q-i>{x)\:ro=T = 0,
_  - _  - (3.62)
i ’{x)Q+ |;jo=o =  0, i ’{ x ) Q - U„=T =  0.

As anticipated, the boundary conditions with the projectors Q± naturally appear 

when chirally rotating quark fields satisfying the standard SF boundarj" conditions. 

In the following w'e will thus refer to the formulation of the SF so obtained as the 

chirally rotated Schrodinger functional (^SF). In this respect, note that the non-singlet 

chiral rotation (3.58) is a non-anomalous symmetry transformation of the continuum

masslcss QCD action. Considering this transformation as a change of variables in

the functional integral, we then expect to obtain simple relations between correlation 

functions with standard and chirally rotated SF boundary conditions.

Specifically, performing such a change of vai’iables for the case of interest q  = t t / 2 , 

we derive the generic identities,

{0[4>,M(P^) =  (0[i?(7r/2)v.^i?(^/2)]),Q ^), (3.63)

where the integration variables are assumed to be and v’ on both sides. In particular, 

note that the operator O can contain in principle boundary quark fields C(y)". . .  C (z). 

These are naturally included in the mapping b\' identifying them with the non-Dirichlet 

components near the time boundaries, i.e. (cf. (3.20)),

C(x) =  Q_t/’(0+,x), C'W =  Q+V'(T_,x),
(3.64)

C(x) =  p{Q+.x)Q_,  Ĉ (x) =  ■0(r_,x)O+.

In summaiy, we have seen that the continuum SF with chirally rotated boundary’ 

conditions merely corresponds to a ‘‘rewriting” of the original SF. Indeed, the two 

formulations are related by a non-anonialous field redefinition. On the other hand, 

the relation becomes non-trivial once we consider the lattice regularization of these 

formulations in terms of \Mlson-fermions. In this case, the bulk action is not invariant
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under the chiral ro tation (3.58), and the two set-ups define different regularizations 

of the standard  SF.^"* In pai'ticular, the relations (3.63) will not be exact a t finite 

lattice spacing. Similarly to the chiral WLs, however (cf. Section 2.1.3), these relations 

are expected to  hold up to discretization effects among properly renormalized lattice 

correlation functions. To conclude, the problem th a t is left to  solve is to determine a 

lattice discretization of the SF with Wilson-fermions, such th a t the chirally rotated 

boundary conditions (3.62) are correcth' implemented. Differently from the standard 

discretization of the SF. this formulation is then expected to  benefit from the property 

of autom atic bulk O(a)-improvement in the chiral limit.

3.4 .2  x S F  b oundary con d ition s on th e  la ttice

Defining a lattice field theory which reproduces the correct boundary conditions in the 

continuum limit is not autom atic. As remarked several tim es by now. on the lattice one 

cannot really impose the boundary conditions directly on the fields. R ather, these are 

encoded in the specification of the dynamical field vai'iables, and in the details of the 

lattice action close to  the boundai’ies (LiLscher. 200G). Hence, one is in the situation 

where the boundary conditions in the contimium theory arise ‘'dynamically” from the 

details of the lattice theory, once the continuum limit is taken. In particular, different 

lattice theories with different actions can give the same boundarj’ conditions for the 

fields in the continuum limit.

Given these observations, the w’ay one can proceed in the definition of the target 

lattice theory is the following (Liischer. 2006). First one needs to define a lattice theoiy 

where the correct boimdarj^ conditions arc obtained in the classical continuum limit 

i.e. in the free case. Secondly, the renormalization of the theory has to be studied. 

In jjai'ticular, given the sj’nnnetries of the lattice regularization, one has to  determine 

all possible boundai-y counterterm s that can appear. Finally, given the list of these 

counterterm s, one can conclude if the desired boundary conditions are obtained auto­

matically in the continuum limit, or if the fine tuning of some counterterm  is needed.

^■^The chirally ro tated  SF presents some interesting applications also in the case of chirally preserv­

ing bulk discretizations. In fact, it allows for a simple definition of th e  SF for overlap (or domain-wall) 

fermions (Sint, 2007fc). For different approaches see (Taniguchi. 2005; Liischer, 2006; Takeda, 2(l09a).
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In the case of the xSF, the correct (hoinogeneous) boundary conditions for the free 

theory can be obtained through an orbifold construction (Sint. 2006; Sint, 2011).^^ 

This construction, however, is ra ther technical, and will not be discussed here. Wc 

thus refer the reader to  the references for the details. For brevity of exposition, here we 

simply introduce the lattice discretization of the  X'SF resulting from this investigation. 

In particular, note th a t in (Sint, 2011) three different discretizations of the X'SF have 

been proposed. In the following we present the one we believe is the most convenient 

for numerical applications. Given the lattice regularization, in the next subsection we 

will then study the renorm alization and 0 (a )  improvement of the \S F .

This said, the lattice regularization of the chirally ro tated  SF of QCD with Wilson- 

fermions is defined by,̂ ®

Z[C'-,C] = J  V [ U ] V [ v ] V m e - ^ . (3.65)

where the integration is over all quark and anti-quark fields v>{x) and ip{x) a t Euclidean

times Q < xq < T.  The integral over the gauge fields is defined a.s usual (cf. (3.24)).

Similarly, the gauge part S q of the action S  = S q + has been already introduced

in (3.22). while the fermionic part Sp is now given by,

T

Sp =  o'* ^  ^  il>{x){V\v +  mi))i>{x), (3.66)
xer io=o

where we define the xSF Dirac operator Pvr as,

— Uo{x)P-tl’i^  +  «6) +  {K  +  P-)i/j{x) if xq =  0,

'D\\"ip(x) = < Dv.’tl^{x) if 0 <  Xq < T . (3.67)

[K  +  i')5T^P+)'tl>{x) — Uq{x — aO)'^P+tj^{x — aO) if xq =  T.

In the above expression, indicates as usual the (infinite-vohmie) Dirac operator 

(2.3), while K  is the corresponding restriction to a time-slice, more precisely,

3

A' =  1 +  f  ^  {7fc(Vt +  V,*) -  a V t V k } .  (3.68)
A:=l

^^For an earlier application of these techniques to lattice field thtx^ry see (Tanigiichi, 2005). 
^^Note th a t we only consider the  case of vanishing boundary  values. In th e  expression for the  

lattice path-in tegral we then  suppress the  dependence on the  boundary  source fields.
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It is worth comparing at this point the action (3.66), with the corresponding result 

for the standard SF regularization (3.30). As one might have expected, the difference 

between the two definitions only relies in the structiu'e of the Dirac operator close to 

the boundaries at xq =  0, T. In addition, for the specific discretization of the x'SF we 

are considering, the dynamical field variables in (3.65) are different w.r.t. the standard 

SF case (3.27), since they also include the fields at the boundaiies.

To conclude, we want to note that the \SF Dirac operator (3.67) satisfies the 

'/5-hermiticity property of the standard Wilson operator, (^sDw)^ =  up to a

flavour exchange, i.e.,

This property is enough to ensure that the xSF Dirac operator has a real determinant. 

As wc will discuss in the next chaptcr, this is a fundamental requirement for the 

numerical siiimlation of the theoi'j'. Moreover, a well-defined eigenvalue problem is 

obtained for This allows to conclude that the lowest eigenvalue A,„j„ of the

free ^SF Dirac operator (3.67) is given by (Sint. 2011),

Fcrmionic zero-modes are thus excluded.^'

3 .4 .3  R en orm a liza tio n  and 0 ( a )  im provem ent

In the previous subsection, we have introduced the lattice regularization of the X'SF. 

For this construction, the correct chirally rotated bomidary conditions arc realized in 

tlie free theory, and tlie key features of the standard lattice formulation of the SF are 

maintained. In this concluding subsection, we thus want to study the renormalization 

of the theory in order to understand if the correct boundary conditions can be obtained 

also in the presence of the interactions. Once the proper boundary conditions are real­

ized, automatic bulk O(o)-improvement is then expected to set in, in the chiral limit. 

As a result, the 0(a) counterterms to the bulk action and operators will be irrelevant

^'Sim ilarly to the standard SF case, th is statem ent can be extended to  the continuum  m assless 

X’SF Dirac operator defined for any sm ooth  gauge potential (Sint, 2011).

(->5T^27vv)'* =  7 5 T ^ P vv . (3.69)

r  = T  +a. (3.70)
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for the improvement of 7 r,r^-even observables. Together with the renormahzation of 

the boundary, we also want to understand if additional 0(n) boundary counterterms 

are present in the X'SF w.r.t. the standard SF regularization. In this respect, we note 

that the discussion of the renormalization and 0(n) improvement of the xSF, is rather 

technical, and more involved than in the case of the standard SF regularization. In the 

following we thus simply summarize the main results and observations concerning this 

study, while leaving the details to the original reference (Sint, 2011). To conclude, it 

comes w'ithout saying that any bulk counterterm, as well as purely gluonic boundary 

counterterms, do not need be rediscussed since these are the same as for the standard 

SF case.

The boundary counterterm s. In order to determine the allowed countcrterms, 

we first need to identify the symmetries of the lattice theoiy as determined by the 

lattice action. In fact, it is easy to see that the symmetries of the lattice xSF are given 

by: charge conjugation, spatial lattice rotations, space and time reflections combined 

with a flavour exchange and global U(l) vector like rotations with generator r'*/2. 

As in the standard regularization of the SF, indeed, the \Mlson term breaks all axial 

symmetries. The additional structure of the xSF Dirac operator at the laoundaries then 

explicitly breaks parity and time reflection (only recovered up to a flavour exchange), 

and two of the generators of the non-singlet vector rotations.^*

Given the lattice symmetries, one can now list all fermionic operators of mass 

dimension 3 and 4. Their integrals over space taken at x-q =  0 and xq = T, then define 

the possible counterterms to the lattice action that are needed to renormalize and 0(o) 

improve the boundary effects in the SF. In particular, note that we restrict ourselves 

to the case of vanishing quark-masses. Moreover, we discuss only the counterterms 

at xq = 0. The ones at xq =  T, in fact, are related to the latter by time reflection 

combined with a flavour exchange.

^®Note th a t  we conventionally refer to  vector and axial sym m etries as defined in the  standard  

SF base (cf. Section 2.1.1). In o ther words, vector transform ations are defined as the  ones th a t 

preserv'e the  standard  SF boundtiry conditions, while the  rem aining chiral-flavour transform ations 

are identified with the  cixial transform ations. These definitions are necessarj' once we consider the 

ma-ssless case (Sint, 2011).
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Given these observations, after symmetrizing w ith respect to charge conjugation, 

we find the following 3 operators of mass dimension 3 (Sint. 2011),

Oi = ip~foQ+4< -  in o Q - i!  = (3.71)

02=^Q +'4>. (3.72)

0 3  =  (3.73)

The operators of mass dimension 4 instead are 8  in to tal. Using partia l integration 

and the field equations of motion, however, one can reduce their numlier to  3. These 

arc conventionally taken to be (Sint. 2011),

0 4  =  V Q+lkDi,4' -  ■!/' (3.74)

0 5  =  ip Q-'ykDkip -  V Dk')kQ~^'- (3.75)

C>6 =  i '  Q + lo lkD kV  +  P Dk'ikH^Q+■>!>■ {‘i.lG )

As expected, due to  the reduced sym m etry of the \S F  more counterterm s are allowed 

than  in the standard SF case. Specifically, one ends up with 3 0 (1 ) and 3 0 (o ) fermionic 

boundary counterterm s. Ha\'ing these counterterm s we can now proceed and discuss 

their inclusion in the lattice theory.

L a ttice  p aram etrization . Starting from the boundary counterterm s corresjionding 

to  O 3  and Or,, these can be directly included in the lattice action through a redefinition 

of the Dirac operator. More precisely, w'e can define an 0 (o ) improved X'SF quark action 

it gi-v'cn by,
T

( S j ) f  =  X !  (3.77)
x G F  x q = 0

■where we introduced the improved xSF Dirac operator,

T> =  'Dw +  5'D\\\i, +  d'Dxwi, +  mo. (3.78)

This is given in term s of the unimproved \S F  Dirac operator V w  (cf. (3.67)), and the

bulk and boim dary counterterm s. and 5T>\\\b.
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The bulk 0 (a )  counterterm  SV w.v  is the same as in the standard SF regularization, 

and is given by (cf. (3.46)),

3

ST>w.v4ix) =  (1 -  Sxo.o -  Sxo,T)aCs^.{go) ^  ja^^F^^{x)ij>{:x). (3.79)
/Li,1̂  =  0

The Ijoundary counterterm  6 V w.b ,  instead, contains the 0 (1 ) and 0 (a )  counterterm s 

corresponding to O 3  and O 5 , and it is defined by (Sint, 2011),

ST>w,bi){T) =  (Ŝ ro.o +  ^xo.t ) [ { z f id o )  -  1) +  o (rfs(5o) -  l)D .,j t/>(3-). (3.80)

In the aliove definition. can be any lattice discretization of the spatial components 

of the continuum Dirac operator, ')kDk- In our setup, we consider,

D , =  +  V,* -  aV^Vfc), (3.81)

which leads to a slightly simpler im plem entation in the simulation program. Note th a t 

the 0 (a) counterterm  proportional to  ds(go) plays an analogous role to the Ot(go) 

counterterm  discussed in the standard  SF regularization (cf. Section 3.3.2). The cor­

responding counterterm s can be in fact related through the field equations of motion. 

The im plem entation adopted here, however, is more convenient in practice since it does 

not require any modification of the  boundary quark fields (cf. (3.43)). For the specific 

\S F  regularization we are considering, the value of ds(go) is then known to 1-loop order 

in perturbation  theory (Vilaseca, 2013). The dimension 3 countorterm  proportional to 

Zf{ga) ,  instead, is a relevant operator and the corresponding coefficient ; / ( 5o) niust 

be determ ined non-perturbativelj^ We will discuss this in more detail at the end of 

this section.

At this point, we are left with two 0 (1 ) and two 0 (a )  boundary counterterm s to 

be discussed. Considering first the term s corresponding to  the operators O 2  and O 4, 

their contribution can be shown to manifests only in the two-point functions of the 

boundary fields C(x) and ^(y) at coinciding points x  =  y  (Sint, 2011). Similarly of
 f

course for C^(x) and C (y)- As it will be discussed in detail in C hapter 5, however, 

these two-point functions can be generally avoided in practice and consequently the 

corresponding renorm alization and improvement.
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Finally, this leaves us with one 0 (1 )  and one 0 (a )  boundary counterterms, which 

correspond to the operators 0 \  and O q, respectively. The presence of an additional 

0 (1 )  boundary comiterterm should not come as a surprise. Indeed, as already discussed 

in the case of the standard SF, one generally needs to renormalize the boundary' 

values (cf. Section 3.1.4). In practice, the countcrtenn corresponding to O i  can thus 

lie accounted for by the renormalization of the boundary quark fields that enter in 

correlation functions (cf. Section -3.3.1), i.e.,^®

Cr =  C;? =  ZcC- Cr  =  Z iC , Cr  =  (3.82)

In this respect, we note that in the X'SF the definition of the boundary quark fields 

(3.19) in correlation functions can be taken to be (cf. (3.35)),

C(x) =  t/o(0. x)Q _V ’(a. x ) . C'(x) =  U(){T -  a, ■k)^Q+-iJj{ T  -  a. x),
_ _  - _ _  - (3-83)
C(x) =  ii’{ a ,x . ) Q - U o ( Q : X ) \  (^(x) =  y (T  -  a .y i )Q + U o { T  -  a . x ) .

W e  stress, however, that this representation is correct as long fis Wick contractions 

of boundary quark fields at the same boiuidary are avoided (Sint. 2011). Moreover, 

the effect of the remaining 0 (a )  counterterm can be shown to lead to a redefinition of 

these boundary' quark fields, which specifically reads (Sint, 2011),

C(x) [1 +  fI,(ffo)aD,,]C(x),
_  _  _ (3.84)
C(x) C(x)[l -  d^(g„)aDs].

and similarly for C^(x) and C^(x), where rf,(5o) is the corresponding improvement

coefficient. On the other hand, this 0 (a )  counterterm can be neglectcd in most practical

apj:)lications. Indeed, the counterterm Oe  is 7 5 T^-odd, and thus contributes only at 

O(n^) in 7 5 T^-even correlation functions (see below).

To conclude, the situation is not as bad as it might have seemed at first. In practice, 

the main new feature of the xSF  formulation w.r.t. the standard SF regularization is 

given by the determination of the renormalization parameter 2 /(^ 0 ). We thus conclude 

the section and chapter with a discussion about this important point.

^®The ro le o f O i  m igh t becom e m ore clear if one ch ira lly  ro ta te s  th is  o p e ra to r  back to  th e  standfiTd 

SF  ba^e, i.e. . C onsidering  th e n  th e  b o u n d a ry  cond itio n s for th e  fields, th e  o p e ra to r

o b ta in e d  is th e  one responsib le  for th e  ren o rm aliza tio n  o f  th e  b o u n d a ry  vTilues in  th e  SF  (cf. (3 .16)).
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R e n o rm a liz a t io n  o f  Zf .  In order to b e tter understand the role of the countertcrni 

proportional to 2 ^, it is useful to  look a t the  corresponding operator O 3  in the standard  

SF base. Applying a chiral rotation to O 3  we obtain,

rpQ- i p  . (3.85)

This term  explicitly breaks paxity, and two of the generators of flavour symmetry. 

The lattice symmetries of the \'S F  are thus not enough to prevent the appearance 

of this counterterm  th a t consequently needs to  be fine tim ed in order to  recover the 

proper symmetries, or equivalently boundary conditions, in the  continuum limit. In 

this respect, we note tha t in the standard  SF base, the 'ysT^-transformation (3.55) 

corresponds to  the discrete SU(2 ) flavour transform ation,

Ip' iJ} —> —V) T^.  (3.86)

From this perspective, it is clear the role of Z f  in the argum ent of autom atic 0 (a )-  

im provem ent: it restores the relevant contirmum sym m etrj’ needed to  prove the result.

Given these observations we conclude th a t, since parity and flavour sym m etry 

ai'e good contimnmi synmietries of the SF. the  renorm alization param eter Zf  has to 

be finite i.e. a scale-independent function of the  bare coupling go (Sint, 2011). The 

careful reader might have noticed th a t we already anticipated tliis result w ith our 

notation. In particular, the tree-level value of z j l g o )  is given by Zf {0)  =  1 (Sint, 2011). 

This can be interpreted as the fact th a t the  chirally ro tated  bom idary conditions are 

correctly realized for the free theory. However, when the interactions are included, the 

boundary conditions are not protected by any lattice sym m etry and this param eter 

needs to  be renormalized. In particular, since the counterterm  corresponding t o  Zf  

is a relevant operator at the boundaries, we expect th a t z j  needs to  be determ ined 

non-perturbatively.

From the above discussion, it is also clear how the renorm alization param eter 

Zf (go)  can lie fixed. In practice, we can consider any lattice observalile which is a 

pure source of parity  an d /o r flavour sym m etry breaking effects. The renorm alization 

condition th a t defines Zf{go)  a t a given go is then simply obtained by requiring the 

given observable to  vanish (Sint, 2011). In particular, we note th a t a class of these
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observables is given by the 7 5 T^-odd correlation functions. It is indeed clear that any 

non-trivial value for these quantities is a consequence of the aforementioned syumietry  

breaking by the regularization.

Once Zf{go)  has been tuned, and the ciuark-masses are set to  zero, autom atic 

bulk 0 (a )  improvement is expected to liold in the xSF- Specifically, this means that 

7 5 T^-even observables will be free of all 0 (a )  contributions corresponding to 7 5 T^-odd 

counterterms (cf. Section 2,2.4). These include in particular the 0 (a )  contributions 

coming from the bulk action, the 0 (a )  counterterms associated to operator insertions 

in the volume of the lattice, and also the boundary countertenn proportional to dg{go).  

On the other hand, som e 0 (a )  effects will still be present due to a couple of 7 5 r^-even 

boundary counterterms. As we have seen, these are given by the 0 (a )  comiterterm  

proportional to ds{go) ,  and if only spatially constant gauge fields are considered at 

the boundaries, the pure gauge counterterm proportional to Ctigo)  (cf. Section 3.3.2). 

Note that in the x'SF the fermionic contribution to this improvement coefficient will 

be different w.r.t. the standard SF regularization. Its value has been in fact computed  

to 1-loop order in perturbation theory hi (Vilaseca. 2013). Interestingly, the result 

obtained is much smaller than in the standard SF regularization. Together w ith the  

very small 1-loop coefficient of dg (Vilaseca. 2013). this gives us confidence that a 

perturbative estim ate of these coefficients might lie good enough in practice. Finalh', 

we recall that the complementary feature of autom atic 0 (a )  improvement is that all 

7 sr^-odd observables will be pure 0 ( a )  lattice artifacts. In particular, they will contain  

all the effects corresponding to 7 5 T^-odd counterterms (cf. Section 2.2.4).

To conclude, a crucial question one needs to address is whether the non-perturbative 

tuning of Zf is feasible in practice. As just mentioned, aiitom atic 0 (a )  improvement is 

obtained by tuning sim ultaneously 2 / ,  and the bare quark m asses riiQ to their critical 

value merit- In principle, one could expect these conditions to be quite independent, 

at least close to the continuum limit. Any dependence of the critical mass n i c r i i  on Z f ,  

indeed, is a pure lattice ai’tifact. In a non-perturbative determination, however, it is 

difficult to tell a priori which is the size of these discretization effects at the values of 

the lattice spacing covered by current simulations.
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As a last remark, wc note that in the unimproved theory the renormalization 

parameter Zf can be determined non-perturbatively only up to 0 (a )  ambiguities. This 

m eans that different renormalization conditions lead to determ inations of 2 /  which 

differ by 0 (a )  effects. Similarly to the determination of the chiral point, one might 

thus wonder if this ambiguity in the tuning of Zf can spoil the argument of autom atic 

0 ( c )  improvement (cf. Section 2.2.4). In fact, as for the case of the critical mass, the 

effect of an 0 (a )  ambiguity in Zf can be described by an insertion in the Symanzik 

effective action of the corresponding counterterm multiplied by an 0( a )  coefficient. 

One then concludes that this counterterm is 7 5 r^-odd. and thus it will only contribute 

to O(a^) in 7 5 r^-even quantities.



Simulation algorithm

In this chapter, we present some details of the numerical im plem entation of the 

,\'SF in our simulation program. We will keep this technical discussion rather short. 

Essentially, we will focus on the main techniques th a t have been developed, and simply 

give an overview of how the xSF Dirac operator can be efficiently included in dynamical 

lattice QCD simulations. This will allow us in particular to discuss some of the tests 

th a t have been performed in order to check the reliably of the code.

Specifically, we start the chapter with a short review of the  main algorithm on 

which m odern simulations are based on. namely, the Hybrid Monte Carlo (Duane, 

Kennedy. Pendleton and Roweth. 1987). The presentation merely serves to  introduce 

the notation, and some basic concepts needed in the following. For a more complete 

presentation we recommend the following set of lectures on which our short review is 

based (Kennedy. 2006; Liischer, 2010a).

After this short introduction, we will disciLss in some detail the main algorithmic 

tools th a t have been implemented for mi efficient simulation program. In this respect, 

note th a t the code we developed is based on the openQCD^ package of (Liischer and 

Schaefer. 2013). which offers an advanced sinnilation program for W ilson-type fermions 

including the standard  SF set-up presented in Section 3.2. Our simulation strategies 

then naturally  derive from this work. The inclusion of the xSF Dirac operator in the 

package, however, is not entirely straightforward. Indeed, as we shall see, the peculiai' 

m atrix  properties of the X'SF Dirac operator w.r.t. to the standard SF one. forced us 

to  redefine some of the m ethods implemented in the original code.

\^^e conclude the chapter presenting some of the more stringent tests we have 

performed on our implementation.

'h t tp :  / /lu.sch(!r.web.cerri.ch/luscher/opeiiQCD/
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4.1 The Hybrid M onte Carlo

4 .1 .1  S ta tis tica l in terp reta tio n  o f  th e  fu n ction a l in tegral

The physical information of the lattice theory is contained in its correlation fmictions. 

As we have seen, the.se have the path-integral representation (cf (2.26)),

(O) =  ^  j[DU][V'tp][D'^] 0[C/. V'.^] (4.1)

The basic goal of lattice QCD can be summai'ized in practical terms as the numerical 

evaluation of these path-integrals. In particular, due to the generally high number of 

integration variables in these integrals, exact integration methods are not apphcable. 

and the evaluation has to procecd stochastically. Lattice QCD simulations are then 

based on Monte Carlo methods, and specifically on Markov chains and the concept of 

importance sampling.

The first complication that arises in the evaluation of the lattice path-integrals, is 

that the quark fields are represented in terms of Grassmaiiii valued fields. At present, 

no practical method exists for a direct simulations of this type of fields.^ The t;heor\’ 

that has to be simulated is then the one obtained after the integration of the quark

fields. In the case of two mass-degenerate WiLson-quarks, for example, the resulting

partition function a.ssumes the form,

Z =  /'p[[/]{detD(C/)}2e-^°(^'\ V[U] = ] \ d U , (4.2)

where D{U) denotes the massive Dirac operator in the presence of the gauge field U. 

Assuming that the determinant, det D, is real,

p(l7) =  ^(C/) = 5 G ( f / ) - l n | d e t D ( [ / ) | 2 ,  (4.3)

defines a normalized probability density on the space of gauge fields.

The generic lattice expectation value (4.1) can then be rewritten as,

{O) = I  V[U]p{U)0{U), (4.4)

where the operator 0{U)  may contain terms resulting from the integration of the 

quark fields.

^Some attem pts have b(?en m ade for exam ple in (Creutz, 1998).
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Given this reinterpretation, lattice QCD reseinbley a classical statistical system 

where the states are given by gauge field configurations, and the expectation \Tilues 

of generic observ'aliles are defined by eiLseinble averages. This suggests the idea that 

these expectation values can be estimated stochastically by generating an ensemble 

of representative gauge field configurations {C/i,. . . ,  distributed according to

the probability V[U]p{U).  The given expectation value is then approximated by the 

average over the ensemble, i.e..

1= 1

The central limit theorem assures th a t. asymptotically, the correct expectation \-alues 

are obtained up to correction of

In practice, representative gauge field ensembles are constructed through Markov 

chains. The general procedure of evaluating integrals outlined above then goes under 

the name of importance sampling (see e.g. (Kennedy, 200G; Liischer, 2010a)). The 

difficult task of lattice QCD is to find efficient algorithms that generate representative 

gauge field configurations with the desired probability distribution.

4.1 .2  Tow ards th e  H yb rid  M on te  C arlo

Lattice QCD simulations are made difficult by the necessity of including the quark 

determinant in the probability distribution (4.3). Indeed, the determinant depends 

non-locally on the gauge field, and simple local algorithms as the ones commonly used 

for pure gauge theories are not practical.'^ One thus needs to find an alternative, more 

efficient way, to deal with this non-locality. BecaiLse of this reason, today lattice QCD 

simulations generally rely on some variant of the so-called Hybrid Monte Carlo (HMC) 

algorithm (Duane, Keianedy, Pendleton and Roweth, 1987).

The starting point of the HMC is the introduction in the theory of a su(3)-valued 

field.

n,(x) = n;i(T)r«. n"(.r)eR. (4.6)

^\Ve refer to  (Liischer, 2010a) for a discussion of the algorithm s for the pure gauge theor>'.
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The role given to this field is that of canonical conjugate momentum of the gauge field 

U. In particular, the theory is now described by the Hamiltonian function,

/ / ( n , i o  = ^ (n ,n )  + 5(c/), (n ,n )  =  ^ n ” (i)n;(x).  (4.7)
X . / /

Note that, the introduction of this field and consequent interpretation, does not alter 

the physical content of the theory since,

(O) = j  V[U]0{U)e-^^^"> =  constant x j  V[U]V[U]0(U)e-^^^'^K (4.8)

This reinterpretation however suggests the following idea to generate an ensemble of 

gauge fields with the correct proV>ability distribution.

One starts by considering the Hamiltonian equations of motion associated to the 

corresponding classical statistical system. In the context of lattice QCD, these are 

generally referred to as the molecular dj'namics (MD) eciuations, and aie defined by,

d,U,{x . t)  = -F , {xA %  P;: ix , t )=d , . ,S{U{f) ) .

dtU^{x.t)  =  t),

where the derivative over the gauge group is defined in Appendix A.3. The fields 

now depend on the additional time coordinate t. This fictitious time parameter simply 

parameterizes the evolution of the fields in field space. In particular, note that the 

MD equations are deterministic equations. The corresponding solutions (x,i) and 

Ufi{x.t) a t time t. are uniquely detennined by the initial values of the fields at t = 0.

A sequence of properly distributed gauge fields U can now be obtained as follows. 

Given a field of initial momenta 11̂  (a", 0) =  II,;, (a:), and a starting gauge field (x, 0) =  

U^{x), a new gauge field U'^{x) is obtained by integrating the MD equations up to a 

given time t = t ,  i.e., U'^{x) =  U^,{x,r). The corresponding momenta field 11^(2:,r )  is 

then discarded, and resampled according to the Gaussian probability density, p(II) a  

g- |(n.n) 'pjjg chain hence continues starting from the new momenta II'(.t) so obtained, 

and the latest gauge configuration U',{x). This ideal algorithm can be shown to be 

ergodic, and to load to the desired probabihty distribution (see e.g. (Liischer, 2010a)).
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4 .1 .3  N um erica l in tegration  o f th e  M D  eq u a tio n s and  a ccep t-reject s tep

111 practice, the MD equations (4.9) need to be integi’ated numerically. This means that 

the time interval [0, r] is divided in N  steps of size e, and a given integration scheme is 

applied that gives the correct results for e —> 0. Here we do not want to enter into the 

details of any specific integration scheme, and we refer the reader to the extensive study 

in (Omelyan, Mryglod and Folk, 2003). We note however that, in general, so-called 

symplectic integrators are employed. These discrete integration schemes have the nice 

property that they preserve the time-reversibility of the solutions of the MD equations, 

and also the phase-space integration measure P[II]I?[(7]. As we will comment shortly, 

these are two fundamental conditions for the correctness of the algorithm. We also 

mention that, in general, it is convenient from the numerical point of view to integrate 

different contributions to the MD forces with different resolutions e, depending on 

their magnitude (Sexton and Weingarten. 1992). It is in fact intuitive that it is better 

to integrate more accurately the larger contributions to the forces, while using larger 

step-sizes for the smaller ones. This strategy is clearly more advantageous if the larger 

contributions to the forces are also the cheaper ones to evaluate numerically. In lattice 

QCD simulations, for example, this is generally the case since the contribution to the 

forces deriving from the gauge action is normally larger in magnitude and certainly 

cheaper to evaluate, than the fermionic contributions.

Given these ol)servations, the main consequence of the numerical integration of 

the MD equations is that the Hamilton of the system is not preser\'ed along the MD 

evolution. More precisely, for fixed stejvsize f the difference,

AHiU,  U) =  {H{n{r).  U{r)) -  H{n{0).Umn(O)=n.u(o)=u,  (4.10)

does not vanish in general. If not corrected, this can be shown to lead to an inexact 

algorithm. This means that the probability distribution of gauge fields that we obtain 

integrating the MD equations numerically at finite e. does not correspond to the desired 

distribution we would obtain for f =  0. A possible solution to this problem is simply to 

repeat the evaluation of our observables by running the algorithm for different values 

of e, and then extrapolate the results for f —> 0. Fortunately, this expensive procedure
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can be avoided. In fact, the algorithm can be corrected simply by accepting the gauge 

field configuration obtained after the nimierical integration of the MD equations with 

probability (Duane, Keimedy, Pendleton and Roweth, 1987),

Pacc =  m in{ l ,e -^"< n-^)} .  (4.11)

Provided th a t the numerical integrator is tim e reversible, and preserves the phase- 

space integration measure V \^'D [U ], tliis leads to an exact algorithm.

To conclude, we want to  note th a t even though the numerical integration of the MD 

equations does not conserve the Ham iltonian H , it is possible to  show th a t a “shadow” 

Hamiltonian H  is in fact conserved (Kennedy, Silva and Clark. 2013). Asymptotically, 

this coincides with the Hamiltonian H  up to  0 ( f " )  corrections, i.e. H  = H  + 0 (e "), 

where the value of n  depends on the  so-called order of the discrete integration scheme 

employed.^ Even though only asym ptotic, the analytic control pro\'ided by the shadow 

Hamiltonian on the form of the step-size errors, suggests interesting applications for 

the optim ization of the  MD integrators (Clark. Joo, Kennedy and Silva, 2011).

4 .1 .4  P se u d o -fe r m io n  a c t io n  an d  fin a l a lg o r ith m

The algorithm presented so far can in principle be applied to sim ulate the target 

distribution (4.3). A straightforw ard application of the  algorithm, however, is not 

feasible in practice. A direct com putation of the force deriving from the fermionic 

action indeed, requires the evaluation of the quark determ inant. Given the high number 

of degrees of freedom of the problem this is clearly unfeasible.

This problem can be overcome by using a pseudo-fermion representation of the 

quark determ inant, of the form,

|d e tD ( t/) |^  =  constant x f

^  (4.12)
Spf(t/, 0) = {<b, [D{U)^D{U)]-^0) ,  V\4>] =  d0^a(.T)d0^„(x)*.

x . A . q

"^This reminds of Sym anzik's effective theory now extended to  th e  5d theory which includes the 

tim e coordinate t. It is difficult, however, to  push this suggestive analogy very far, since th e  HMC 

as a field theory in 5d does not seem to  be renormaUzable, and in fact no t even local (Liischer and 

Schaefer, 2011).
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Here the pseudo-ferinion fields (j) carry the same indices as a quark field il'. Instead of 

being G rassm ann valued field, though, they are complex valued fields. Note th a t we 

also introduced the natural scalar product (•,•) on the space of such fields. In fact, 

as we shall see, more complicated representations of the quark determ inant, involving 

several different pseudo-fermion fields, are used in practice to  improve the efficiency 

of the  simulations. We will comment on this later, in the next section.

To conclude, we now have all the basic ingredients of the HMC. We can thus 

schematically summarize the main steps of the algorithm as follows:

(a) A m om entum  field 11̂  (a )̂, and a pseudo-fermion field (f){x) are generated randomly 

accordingly to the probability density: p(II. 0) a  cxp{—1(11.11) — Spf{U.6)}.

(b) The MD equations ai'e integrated from time t = 0 to some time f =  t  >  0, taking 

n ^ (x ) and Ufi{x) as the initial values.

(c) The new gauge field U'^{x) is set to  the gauge field U^{x,  t )  obtained in (b) with 

probability,

P&Qc =  m i u { l ,  (4.13)

In particular, if the proposed field is rejected, C^',(x) is set to the original field, 

i.e. t/;,(x) =  6^^(x,0).

4.2  T h e  xSF in numerical simulations

Having introduced the basic concepts of the simulation algorithm, we now want to 

discuss in detail the numerical im plem entation of the xSF. stress again th a t the 

code we developed is ba.sed on the openQCD package. As a result, most of the techniques 

th a t will presented in the following have been originally developed for this code. These 

are described in detail in the dedicated code documentation.^ or alternatively, in the 

more condensed presentation of (Liischer and Scliaefer, 2013). However, substantial 

work had to  be done in order to  adjust the existing program for the standard  SF 

regularization to  the ,\SF. A part from the obvious changes in the Dirac operator, this 

mostly concerned the evaluation of the difTereut types of fermionic forces integi'ated 

in the HMC. We will now present these modifications in detail.

"’’h t tp :/ /lu s c h e r .w e b .c e rn .c h /h isc h e r /o p e r iQ C D /
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4.2 .1  F requency sp littin g  o f  th e  q u ark-determ inant

In Section 4.1.1, we recalled that an essential ingredient for the numerical simulation 

of the theory is that once all fermionic species are integrated out, the product of the 

resulting determinants of the Dirac operators must be real and positive. As noticed, the 

W ilson-Dirac operator for two m ass-degenerate quarks with xSF  boimdary conditions 

satisfies this property' (cf. Section 3.4.2). CoiLsidering the improved operator P  of 

(3.78), the herm iticity of (7 5 T^P) implies indeed for its flavour diagonal components,

P  =  d ia g (p (i> .p (-’) (4.14)

and therefore,

d et(P ) =  det(p(^>) det(P(2)) =  ^et [ (p ( i) ) t (p ( i) ) ]  >  0. (4.15)

Given this result, one can apply the HMC algorithm as described in the previous 

section, using for example the simple pseudo-ferniion representation (4.12) for the 

ciuark determinant (4.15). Some tim e ago, however, it has been noticed that numerical 

sinm lations can be greatly stabilized by considering more elaborate representations of 

the quark-determinant (Hasenbusch. 2001; Hasenbiisch and Jansen, 2003).

In order to present the specific representation we considered, we first need to dis­

cuss the inclusion of a twisted-m ass term in the Dirac operator. As the reader might 

recall, we l)riefly commented on the possibility of adding a twisted-m ass to the quarks 

in the context of autom atic 0 (o )  improvement (cf. Section 2.2.4). On the other hand, 

an additional m otivation for introducing a twisted-m ass term is given by the fact that 

such a term provides a sharp infrared cutoff in the spectrum  of the ^^'ilson Dirac op­

erator (Frezzotti, Grassi, Sint and Weisz, 2001). W ithout going into the details, this 

generally helps in the simulation of \^^ilson-fermions at small physical quark masses, 

since it prevents the occurrence of nearly zero eigenvalues of the Dirac operator. Small 

eigenvalues in fact can make the com putation of the corresponding fermionic forces 

very difficult, and might even destabilize the simulations (see e.g. the discussions 

in (Del Debbio et al., 2006; Liischer and Palombi, 2008; Liischer and Schaefer, 2013)).

Introducing a tw-isted-mass term in the xS F  Dirac operator, the corresponding 

determinant reads {jA >  0),
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d et(D  +  iii')oT^) =  det(P*^^ +  1 ^ 7 5 ) det(P*^^ —

=  det +  *^7 5 )]

=  det +  z /n sA 2 ? +  >  0 ,

(4.1C)

where w'e defined A D  =  For the specific lattice discretization we are

considering, this term is gauge-link-independent and localized at the boundaries, i.e.,

N ote that the presence of this term is peculiar of the \S F , and is related to the fact 

that the 7 5 -hermiticit.y of the operator T> is only vahd up to a flavour exchange. Indeed, 

in the standard SF ease, it is easy to see that the linear term in fj. is absent (see below). 

In conclusion, the expression (4.16) clearly shows the role of the twisted-m ass as an 

infrared regulator for the zero-modes of the Dirac operator.

The new representation of the quark determinant is now obtained by considering 

the simple rewriting,

where we introduced several different twisted-m asses 0  <  /io <  • ■ • <  Ihi- In particular, 

if non-zero the lo-west mass /io can scr\'c as infrared regulator to be reweighed away, 

or it may be interpreted as a physical twisted-m ass of the quark doublet (Lvischer and 

Schaefer, 2013). Given the factorization (4.18), the basic idea is then to represent each 

term that appears in the product thought a separate pseudo-fermion representation  

(4.12). As a result, the pseudo-fermion action 5pf corresponding to the factorized 

determinant is given by the sum of different contributions associated with the different 

pseudo-fermion fields d > Q , namely.

AD  =  2 ( 7 5 P _ < 5 : r o , 0  +  15^^+6xo.t )- (4.17)

d e t ( ( 0 ^ ^ ^  - I -  i 7 5 M o ) ^ ( ^ ’ * * '  +  « 7 ' 5 M o ) )

d e t ( ( I > < ^ ’ - f  z 7 5 / i „ ) t ( P ^ ^ '  -t- iT o l^ n ) )
k = Q

d c t ( ( P < ^ >  - I -  +  h o / u O )  ]
d e t ( ( P ( i )  - I -  i 7 5 A t / c + i ) ^ ( I ^ ^ ^ ^  +  n s M f c + i ) )  J  ’

(4.18)

}

n

(4.19)

where.
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Spl.n =  (<Pn. +  f75Mr, ) )] ~ V „ )  , (4.20)

while,

■5pf,*.- =  { k̂- +  n'5/^fc))]” <̂̂ fc).
(4.21)

A  =  -  il5lJk+i)<Pk-

for /c =  0, . . . ,  n — 1. In the MD evolution each component of the total pseudo-fermion 

action will contribute with tlie corresponding force. In particular, we immediately see 

that independently from the number of terms that appear in the product (4.18), only 

two types of forces need to be considered; the one originating from the action t,vpe 

(4.20), and the one associated with the t\T)e (4.21).

The techniqtie presented above, was firstly proposed in (Hasenbusch, 2001; Hasen- 

busch and .Tansen, 2003), and is generally referred to as Hasenbusch (twisted-mass) 

preconditioning. This factorization effectively works as a frequency splitting of the 

quark determinant. This seems to reduce the fluctuations in the corresponding forces 

along the MD trajectory, and thus stabilize the simulations (see e.g. (Schaefer, 2012)). 

In practice this means that, for a given Pace and r, the twisted-niasses can be tuned 

such that larger stej>sizes f can be considered for the numerical integration of the MD 

equations.® In particular, it has been noticed that the twisted-masses . . . .  can 

be generally tuned such that a hierarchy in the magnitude of the different forces result­

ing from the determinant splitting is obtained. The Hasenbu.sch preconditioning can 

then be efRcientlj' combined with a multiple step integration of these forces (Urbach. 

Jeinsen. Shindler and Wenger, 2006).

To conclude, we will now study in detail the resulting types of forces that appear 

due to the factorization of the quark determinant. In this respect, we want to note 

that while the force computation deriving from the action (4.20) needed minor changes 

w.r.t. the original code, the ones associated with (4.21) instead had to be redefined. 

The basic motivation is due to the following observation.

®Note th a t, in fact, there  is not solid theoretical understanding of why such splitting  stabilizes 

th e  simulations. This m eans th a t the  tuning of th e  twisted-m asses is poorly guided, and essentially- 

based on numerical experim ents. In any case, different ideas to  obtain a  frequency splitting  of the  

quark-determ inant can be foimd in e.g. (Liischer, 2005; Clark and Kennedy, 2007).
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Considering the standard SF Dirac operator (3.45), including a twisted-m ass term, 

the resulting determinant for two mass-degenerate quark fields reads,

det [(D  +  i//75)^(D  -h i/.no)] =  dct(D D ^ -t- >  0 , (4 .22)

where we used the 75-hermiticity property 75-075 =  D^. In particular by defining the 

operator Q =  75Z?, we sim ply obtain,

det [{D +  ?:/05) (̂-C> +  n na)]  =  det [(Q -  i f i ){Q +  i/j.)]. (4 .23)

We then see that the operators in square brackets tri\-ialh' com nnite, even without 

resorting to the properties o f the determinant. In the case of the xSF  instead we have,

det +  z//75)^(p(^^-f 77^5)] =  det [(Q^ -  i / j ) ( Q - I - i/O ], (4 .24)

where we defined Q =  and by using , we have Q} =

The main difference in this case is that ^  Q.  and in particular,

[Qt, Q] =  (p ( i) ) t p d )  _  (p (2))tp (2) ^  Q 2,5)

In other words, in the \S F  case the operator Q is non-herniitian and non-normal. 

As we shall sec more explicitly shortly, this in practice reduces the flexibility of the 

psendo-fcrmion representation, in particidai' when ratios of determinants are taken. 

In fact, once a form of the pseudo-fermion action is specified, e.g. (4 .21), the different 

matrix contributions do not commute.

T h e  fo rce  d e r iv in g  fro m  a  q u ark  d o u b le t . Given the factorization (4 .18). we 

have seen that the first type of contribution to the pseudo-fermion action is given by 

(4 .20). For the derivation of the corresponding MD force, it is convenient to rewrite 

this contribution as,

‘5'pf̂  = (̂ ' [(̂ '̂ ’ + + nv'))]~V).
=  ((p(-> -  n '5 /i))“ S 5 0 . (^5^“  ̂ -  n-5/0)” S5<?), (4-26)

= (i'-v),

where we used that 75P'*^75 =  (P*̂ “ )̂̂ , and we defined y; =  (P^^  ̂ — This

form also suggests how the pseudo-fermion fields can be actually obtained. As discussed
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in Section 4.1.4, the pseudo-fermions indeed need to be generated at the beginning of 

the MD evolution according to the probability density p{<p.U) oc From the

expression (4.26), it is clear that this can be achieved by sim ply generating Gaussian- 

distributed fields  ̂ i.e. p {Q  oc and then computing,

(4.27)

The M D force corresponding to (4.26) is also easy to derive since (cf. eq. (4.9)),

-f’i!'/] =  ij;) =  2 Re (iJj. (4.28)

Using then the identity =  1, w ith A  a general gauge-link dependent matrix, the

sim ple relation dx,iiA~^ =  —A~^{dx,^A)A~^,  is obtained. From this identity we can 

rewrite the expression (4.28) more explicitly as.

F(jJ =  -2Re(x',75(^)x.^p(->)v>), (4.29)

where,

X =  +  hoM}''^75V’ =  +  hs/^)] V : (4.30)

V =  -  ?7o/i)“ S5<^- (4.31)

N ote that, the gauge group derivative of the xS F  Dirac operator is independent of 

the flavour considered, i.e., =  0 (cf. (4.17)). In fact this derivative

is equiv"alent to the one obtained from the standard SF Dirac operator. The explicit 

expression is given in Appendix B. In the case of the xSF, however, since the quark- 

fields are dynamical at 2 :0  =  0, T,  the pseudo-fermion fields are non-zero at these 

tim e-slices. and consequently x  and 4>. The force (4.29) is thus non-vanishing for all 

dynam ical gauge link variables.'

To conclude, we obtain the field x  by solving the normal equation in (4.30) using a 

standard Conjugate Gradient (CG) solver. N ote that in the force com putation, the field 

V’ can then be obtained by a simple matrix m ultiplication without further inversions, 

i.e.,

7 5 (2 ?̂ ^̂  +  n'5M)x =  V ' -  (4.32)

^We rem ind  th a t  these  a re  defined as th e  gauge fields U^{x)  w ith  0 <  xq <  T  for /i =  0, an d  

0 <  xq <  T  for p  =  1. 2 .3 .
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F o rce  d e r iv in g  fro m  th e  r a t io  o f  d e te rm in a n ts .  We now discuss the second 

type of forces whidi derives from the pseudo-ferinion action (4.21). Tliese have been 

obtained by applying straightforwardly the results discussed in (Hasenbusch, 2001; 

Hasenbusch and Jansen, 2003). For later convenience we will first recall the general 

strategy as presented in the given references, and then simply list and conmient the 

results we derived for our specific case. This will also allow us to adopt a more compact 

notation.

As we have seen, the sta llin g  point is the  factorization,

det(rtV) =  det(WtH/)-^^l^^^;^ =  det(U'tH ')det((l¥-')t(Ftv-)^-i)^  (433)

where V' is our original Dirac operator, while H ' is the so-called preconditioner. For 

the moment, we do not assiune any specific form or relation between V  and TV. In 

particular, these operators do not generally conmiute. Focusing now on the second 

determ inant defined on the r.h.s. of (4.33). this can be represented through a pseudo- 

fermion representation defined bj' the action (cf. (4.21)).

= (vv't0.(rtv)-MrV).

=  ( ( V r K - ') t a  (v rv '- i ) to ) ,  (4.34)

=

where V’ =  (Vi'V^“ ^)t®. In this form, it is explicit tha t the specific pseudo-fermion

representation has been chosen such th a t the corresponding pseudo-fermions can be

easily obtained. In this case indeed, given some Guassian-distributed fields correctly 

distributed  pseudoferm ion fields can be simply generated as,

0 =  ( y H /- i ) t^ .  (4.35)

Note tha t the  form of (4.34), offers the suggestive interpretation th a t the effect of the 

preconditioning m atrix W' is to  replace the original pseudo-fermion fields d>, with some 

“effective'’ pseudo-fermions fields, given by i  = W^^o.

The force corresponding to  (4.34) can be easily derived, and is given by,

=  - 2 R c { x . d , , , y H )  +  2 R e (x '.5 ,.^ T rU ), (4.3G)
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where

X =  { V ^ V ) ~ H V U .  (4.37)

^  =  (H -V -i)+0  =  Vx- (4.38)

Given this general expression, we can now consider our specific case defined in (4.21). 

This is in fact equivalent to  choosing.

V = { Q  + iiJ.o), W'̂  =  (S  +  *Mi), (4.39)

where for simplicity we defined the two generic twisted-masses tlia t occur as fio < f-ii ■ 

We remind th a t Q =  In this specific case clearly, and the

expression (4.36) simplifies to.

F(^^ = - 2 R c ( x . d , . ^ V U ’'), (4.40)

where i// = 'ip — d>. In term s of the flavour diagonal Dirac operators, the final result for 

the force reads,

F(2) =  -2 R e  (x% 7o(5x.,2?'->)V/), (4.41)

where,

X = [(P^ ’̂ +  i75/io)^(P^^’ +  nsA'o)]” ^ ,
(4.42)

® =  75(2^^^  ̂ -  hofJl )<P-

and,

W' = 7 5 (2?̂ ^̂  +  »75Mo)x -  0- (4.43)

Note th a t, the above expression could be reduced to,

%)' =  i(/io -  ^ 1 )7 5 (2?^^' -  n 5 /io )“ V , (4.44)

where the cancellation between the two term s in (4.43) is done analytically, and is 

thus expected to  be numerically b etter behaved. Unfortunately, however, this would 

require an additional inversion of the Dirac operator at each step of MD trajectory. 

This solution is too expensive in term s of com putational effort, and we then opted for
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the original representation (4.43), which only requires a single matrix multiplication 

and vector subtraction once x  has been computed.

Finally, note that the pseudo-ferniion fields are obtained by first solving the normal 

equation,

-  *75/^o) ,̂ (4.45)

where  ̂ are Gaussian-distributed fields, and then computing,

c) =  75(2?*̂  ̂ +  175 /̂1)0 '. (4.46)

Differently from the determination of the \  field, the inversion of the Dirac operator 

here is required for the (generally) larger tv.isted-mass /ii. The computation is thus 

cxpected to be less expensive.

To conclude, we want to note that in the case of the standard SF, an analogous 

computation of the force would have involved the operators,

V = i Q  +  iiJo). \ V = { Q  +  i in).  (4.47)

where, we remind, Q =  'y-,D. In this case, and 11' commute with their hermitian 

conjugates V''̂  and IV'̂ . The pseudo-fermion action (4.34) can then be rewritten as,

5̂ ? = ((vrv'-i)V,(ivv-')V), , ^

(4.48)
= (0.,{\vUv){vH-)-'4>).

which for the SF ca.se explicitly reads.

(4.49)
= {0Al + il^l-l^l){DD^ +1̂ 1)-' )̂-

The corresponding force computation can thus be nicely rccast in the previous simpler 

case of a single quark determinant (Liischer and Schaefer, 2013),

=  (4.50)

where for the standard SF W'e have (cf. eq. (4.26)),

sl)'> =  { 0 , ( D D ^ +  l,lr^ct>). (4..51)
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4 .2 .2  E ven -od d  p recon d ition in g

Another common technique to speed-up lattice QCD simulations is based on even- 

odd preconditioning (see e.g. (LiLscher, 2010a).) In this section we com m ent on the 

specific im plem entation that has been considered, in particular in conjunction \vith 

the Haseiibusch preconditioning just presented.

A lattice point x  is classified to be even or odd depending on whether the sum of 

its coordinates xq +  Xi +  X2 +  x^, is even or odd. In particular, any quark field can be 

split into two jjarts,

=  ij’e +  i'o- (4.52)

where iPg (rpo) has support on the even (odd) sites o f the lattice only. If then tlie lattice  

points are labeled such that the even come first and the odd come after, the \S F  Dirac 

operator assumes the block structure,

(4.53)

The operators Deo and Poe simply include the hopping terms that connect odd to

even and even to odd points, respectivelj'. N ote that these com ponents of the xSF

Dirac operator are trivial in flavour space. The non-trivial flavour structure is in fact 

contained in the diagonal part M  =  Dee +  T̂ oo, which is given by (cf. (3.78)),

4 -H niQ -f- Csw if 0 <  a:o <  r  -  a,

M( x )  =   ̂ 4- jjig -I- if x'o =  0, (4-54)

Zf +  3dg -I- mo +  if x'o =  T.

Given these observations, the even-odd preconditioning is based on the following result. 

The gencric Dirac equation =  V for the source field ri, can be solved by first

solving,

=  Ve -  D eo (I?S )-'r ,„ , (4.55)

for V’ei where

pW  =  pW  _  (4.56)

V

V
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is the even-odd preconditioned Dirac operator. (Note that, acts inside the subspace 

of fields defined on the even sites only.) Once the solution V’e is given, the odd field 

components of tp can be obtained simply as,

(4.57)

Solving the Dirac equation in this way is generally advantageous e.g. 2-3 times faster. 

In fact, T>io does not couple different lattice points, and can then lie easily inverted. 

The expensive part of solving the Dirac equation is thus limited to half of the space­

time volume i.e. the even sites only (cf. (4.55)).

In addition, even-odd preconditioning comes with the factorization of the quark 

determinant,

det P(') =  det det (4.58)

In this respect, note that differently from the standard SF case, for the \S F  Dirac 

operator Vaai’i^) 7  ̂0 at the boundaries Xo =  0. T  (cf. (3.78)). As a consequence, the 

operator product that defines involves the inverse of VuJ on all odd sites x  in the 

range 0 < a:o < T. However, while a numerical inversion is needed to invert Poo in 

the bulk of the lattice, at the boundaries this can be done on a piece of paper. Only 

in the bulk in fact the space diagonal part of the Dirac operator depends non-trivially 

on the gauge field (cf. (4.54)). Consequently, the determinant det Poo is given by a 

product of determinants one for each odd j)oint in the time range 0 < jq  < T. As 

we w ill conmient later in this section, though, the contributions from the boimdaries 

Xq =  O. T  can be neglected in practice.

Given the factorization (4..58). one can think of combining it w ith the Hasenbusch 

twisted-mass preconditioning (4.18). In this case, if  the twisted-mass is introduced 

only as an infrared regulator, one could consider including it  only on the even sites of 

the lattice (Liischer and Schaefer. 2013). One thus introduces the projector If. on the 

subspace of quark fields that vanish on the odd sites. Its action on a generic spinor 

field tfj is defined as,

{V’(a') i f  X is even,
(4.59)

0 if  X is odd.
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The Dirac equation w ith the twisted-mass on the even sites then reads.

(p(^) ip'V5lg)^(3-) =  Tj{x). (4.60)

This can lie solved analogously as discussed before: first solving the even-odd precon­

ditioned system,

-t- =  Ve -  (4.61)

and then obtaining il)o as in (4.57).

Combining now the factorization of the cjuark determ inant (4.58) with (4.18), one 

obtains (Liischer and Schaefer, 2013),

d e t ( ( 0 ' ^ '  -t- i//o75le)^(^?^^^ +  V o T s le ) )

=  d c t ( ( p ( / j ) t p W ) d e t ( ( p ( l )  +  +  ' > n 7 5 l e ) ) x  ^ 3 )

X T f  d e t  [  + ?A 'fc75 le) )  1
n = 0  ^  d e t ( ( P ( l )  +  i / i i t+ i 7 o le ) t ( X ) ( l )  -i- i / U . + i J ^ l e ) )  ) ’

where we will gon6;rally consider the  case w ith /xo = 0. Similarly to  (4.18), the idea 

is to  represent each term  in the product (4.62) though a separate pseudo-fermion

repre.sentation. Note th a t in this case, the pseudo-fermion fields diQ.e <Pn.e- need

to be defined only on the even sites of the lattice. The pseiido-fermion action Spf 

corresponding to the factorized determ inant (4.62) is then given by,

7}
5pf =  5det +  Y2 (4.63)

k=0

where the 5pf,fc are defined analogously to the expressioiLS (4.20) and (4.21), by simply 

replacing 2?̂ *̂  w ith > cpe.k-. and also /x* The new component in the

action (4.63), is given by the contribution of the  small determinant det((P ioV ^oo^)- 

This is given by,

5<iet =  - T r  lo g (l, +  (PiJ,))tD (i)). (4.64)

Note th a t in the case of the X'SF, X>oo is herm itian except a t the boundaries Xq = 0, T.

We will now conclude the section presenting the derivation of the three different 

typos of forces th a t appear in the  case of even-odd Ha.senbusch preconditioning.



The xS F  in numerical simulations 99

T h e  fo rc e  d e r iv in g  from  th e  q u ark  d o u b le t:  e v e n -o d d . A s just seen, the first 

type of contribution that enters in the pseudo-fermion action (4.63), is given by,

•5'pf  ̂ =  {<t>e- + i y U 7 5 l e ) ] “ V e ) ,

= ((p(-) -  i|U75le)“S5(^e, -  J / O s l e ) " ,
(4.65)

=  ( ( P ' ^ ^  -  i / i 7 5 l e ) “ S 5 ® c -  ~  « 7 0 5  Ifi ) “  S s C ^ e )  ,

=  (?/.', leV-')>

where we defined w =  N ote that 7 5 T^-hermiticity also holds for

and has been used to derive the expression above. Similarly to the case of (4.26), 

the representation (4.65) clearly shows that properly distriljuted pseudo-fermioii fields 

can be generated from Gaussian-distriliuted fields simply as,

©£■ =  75(^’' '̂ -  UnrAe)^e-  (4.66)

where both ©g and are defined only on the even sites of the lattice.

The representation (4.65), is also convenient when considering the derivation of the 

corresponding MD force, hicleed. this is sinijjly given by.

leV ) =  2 Re {ip, led^,^,yj). (4.67)

In particular, we can avoid taking the gauge-group derivative of the preconditioned 

operator and only work with The exphcit form of force Fx^l,  is in fact

given by (cf. (4.29)),

F W  =  (4.68)

where,

=  (p ( l)  +  l/J75le)“ ^75leV', (4-69)

V; =  -  i/J75le)“ ^75Cie. (4.70)

To conclude, note that the \  and tj) fields can be efficiently com puted bj- solving the 

even-odd preconditioned Dirac equation (cf. (4.55) and (4.57)). Indeed, it is easy to 

show that the \  field is given by,
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X e  =  +  i n ~ f 5 l e ) H t > ^ ^ ' ’ + ? V i 7 5 l e ) ] “ V c .
(4.71)

Xo =  - (P < y)- 'P ocX e .

This can be easily inferred from the definition of x  in (4-69), considering th a t the 

pseiido-ferniion field cf>e is onlj' defined on the  even points of the lattice. Secondly, 

once X  is obtained, a bit more subtle is the determ ination of ijj- which is given by,

i ’e =  +  V 7 5 le )X 'e
(4.72)

i 'o  =

/"2 \
As we can see, Poo is used to  obtain the odd components of %>. This is because, v  is 

in principle com puted through the inversion of and not of (cf. (4.70)).

Finally, we note tha t the com putation of the action (4.65) only requires the even 

components of i/’, since S,,f =  (•!/.', leV)  =  (^c- ^’e)-

F o rce  d e r iv in g  fro m  th e  r a t io  o f  d e te rm in a n ts :  e v e n -o d d . The .second type 

of contribution th a t enters in (4.63) is defined from (4.21) by simply replacing the 

Dirac operator with P*'*. and restricting the pseudo-fermion fields and twisted- 

masses to the even sites of the lattice only (cf. (4.62)). The general presentation of 

the Hasenbusch preconditioning outlined before in this section (see (4.33) and relative 

discussion), can then be trivially extended to  the even-odd preconditioned case. In 

particulai', the pseudo-fermion representation can be similarly defined in term s of the 

action (cf. (4.34)),

=  { ( l ! ' l / - i )+ 0 e .  (VrV’- ^ ) U , ) .  (4.73)

=  iiJe-M ’e)-

where ipe =  ( i r V “ )̂'*’0e. As one can immediately see, the only difference w .r.t. to 

the case in (4.34) is th a t now the  pseudo-fermion fields live on the even sites only, 

and we consider the even-odd preconditioned Dirac operators V  and IV. These will be 

specified shortly.

It comes w ithout saying th a t, the  pseudo-fermions can be obtained from Guassian- 

d istributed fields as,
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4>e =  ( V W - ^ ) H e .  (4.74)

and th a t assuming, . the expression for the force is given bj'̂ ,

F ^ l  =  - 2 K o { x e , d x . ^ V ^ ^ ' ^ ) ,  (4.75)

where

Xe =  [ V H T ^ W ^ e .  (4.76)

i>'e =  (W -'V~‘ )V e  - 4 > e  =  ^ X e  ~  0 e -  (4.77)

The preconditioned operators th a t we now choose, are the ones expected and given

by,

V =  { Q  +  i f J o ) .  H =  { Q  +  i p i ) ,  (4.78)

where Q  =  F rom tlie  general expression o f the force (4.75), i t  is clear th a t in

th is  ease we have the com plica tion  o f com puting  the derivative o f the preconditioned

opera tor On the o ther hand, i t  is possil)le to  show th a t the force F x ^ ji can be in 

fact rew ritten  in  terms o f the  derivative o f the  standard D irac operator and fields 

and Ip  th a t live  on a ll sites o f the la ttice . Such deriva tion  is simple, b u t ra ther lengthy. 

I t  is thus no t presented here. In  a few words, the  idea is to  com pute ana ly tica lly  the 

derivative o f the  preconditioned operator (4.56) by considering its  expression in  term s 

o f the components ■'Dco.'Do^.. Then, by recom bining the pieces opportune ly

together, one can prove the re la tion (cf. (4.41)),

=  -2 R e (x e ,7 5 (3 x ,„ i> ‘ ''^ )^^ :).=  -2 R e (x ,7 5 (a x , ,P ‘ "> )p ')- (4.79)

where,

Xe =  [ (2 ? '^ '  + * / J ( l 7 5 l e ) ] “ ^ ( ^ ^ ^ ’ +  l / / l 7 5 le ) ( P e :
(4.80)

X o =  - ( P ( ; ? )  + P „ e X e .

and,

P e  =  75(^^^’ + H k n -> ^ e )X e  ~  Oe
(4.81)

a = -(I>il?)tPoc^V.

The standard D irac operator thus provides the  odd components o f the fields as 

expected from  the so lu tion o f the even-odd preconditioned D irac equation (c f  (4.57)).
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Force deriving from  the  small determ inant. To conclude, we want to briefly 

comment on how to treat the contribution to the pscudo-fermion action deriving from 

small determinant det((I?iJ) )̂'*^Poo )̂- We recall that this is given by,

5det =  -T rlog(le +  trlog[(Af<^’(a-))tA/<^^(a-)], (4.82)
X  odd

where indicates the upper flavour component of the matrix M  in (4.54). First

of all, note the matrix P<k?, and so are non-hermitian only for Xq = Q.T

(of, (4.54)). In particular, at these values of xq the matrix M^^^(x) is gauge link 

independent. For all practical purposes, we can then restrict the sum on the r.h.s of 

(4.82) to all odd points x with 0 < I q < T. In fact, since the contributions at xq =  O.T 

are independent from the gauge fields, the action at these time slices is constant along 

the MD trajectorj-. Consequently, these contributions cancel wlien we consider the 

accept-reject step in the HMC. In addition, they will not contribute to the MD forces 

either once we take the gauge-group deri\'ative of the action. In conclusion, one can 

proceed in the exact same way as in the standard SF case (Liischer and Schaefer, 2013). 

We then report the expression for the force corresponding to (4.82) in Appendix B.

4.3 Tests on the implementation

Given the details of our implementation, in this concluding section we want to present 

the results of some consistency checks we have performed. In this respect, note that 

the main modifications w.r.t. the original openQCD package have been the following. 

First of all, we have implemented the X'SF Dirac operator, which also required some 

modifications of the communication routines for the fields, and of the CG solver. 

Secondly, the computation of the forces, actions, and pseudo-fermion generation, has 

been modified according to what we described in the previous section.® Tiie integration 

of the MD ecjuations, and the other details of the HMC, however, have been left 

unchanged. This said, the main tests that have been performed are;

*The author is grateful to  John B ulava for his help in checking the im plem entation of the xS F  

Dirac operator, field com m unications, and CG solver.
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•  T h e  appU cation of th e  xS F  D irac o p era to r on random  te s t sources has been 

com pared  w ith  th e  resu lts ob ta ined  from  an independen t im plem entation.®  T h is 

included difTerent la ttice  param eters, M PI para lleliza tions, an d  m achines.

•  T h e  solu tion  of th e  D irac equation  =  ?; has been te s ted  analogously. In 

p a rticu la r, th e  resu lts for several non-triv ial ferm ionic co rre la tion  functions have 

been com pared  w ith  an independen t de term ination .

•  G iven th e  resu lts above, we have te s ted  th e  so lu tion  of th e  D irac equation  using 

even-odd p recondition ing  (cf. (4.55) and  (4.57)). T h is is a strong  check on th e  

preconditioned  D irac o p era to r and  its com ponents: 2?eo, "Doe, and  T > oo  ■

•  As we will discuss in m ore detail in th e  nex t subsection , we have checked th e  

consistency betw een th e  MD action , and  force com pu tations. Sim ilarly, we have 

also checked th e  consistency betw een th e  action  co m p u ta tio n , and pseudo-ferm ion 

generation .

•  F inally, we have preform ed som e extensive sim ulations of Â f =  2 0 (a )-im p ro v ed  

W ilson-ferniions w ith \S F  boundary  conditions, in o rder to  check th e  s ta tis tica l 

agreem ent am ong th e  different types of p recondition ing  on a  set o f observables.

For com pleteness, in th e  next subsections we present th e  deta ils  of th e  resu lts of 

th e  last tw o te s ts  listed above.

4 .3 .1  F o rce , a n d  a c t io n  c o m p u ta tio n

T here  are several ways to  check the  consistency betw een th e  co m p u ta tio n  of th e  

pseudo-ferm ion action , and  th e  corresponding  forces. We no te however th a t ,  in general, 

these  k inds of te s ts  do no t d e tec t a  consisten t e rro r betw een th e  force an d  action  evalu ­

ation , as in th e  case for exam ple w here th e  D irac o p era to r is no t w ell-im plem ented. For 

th is  reason, it is im p o rta n t to  check th e  la tte r  independently , as we discussed above. 

T h is said, a  way to  p robe th e  consistency betw een th e  forces an d  actions is suggested 

in th e  orig inal openQCD package. T he idea is to  com pare th e  co m p u ta tio n  of th e  force, 

w ith  a num erical gauge-group derivative of th e  corresponding  action .

®The au tho r thanks Stefan Sint for having provided these crosschecks.
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More precisely, starting  from a given pseiido-fermion field gauge field U^{x),  

and m om enta field Il;j(a;) =  I l“ (a :)r“ , one defines.

where e is a small param eter i.e. e <C 1. In fact, only the dynamical links are changed 

in the above transform ation. It is then easy to show th a t,

As anticipated, the evaluation of the two term s above perm its to  check the consistency 

between force and action com putation.

In Table 4.1 we present some results we have obtained for a given choice of lattice 

param eters, for the different actions and forces introduced in Section 4.2. Note th a t 

we adopt the following notation:

• STD: standard  single pseudo-fermioii representation of the quark determ inant. 

The associated force and action are: and (cf. (4.29) and (4.26)).

• HAS: Hasenbusch (twisted-mass) factorization of the quark determ inant (4.18),

and corresponding psendo-fermion representation. In particular, here we consider

the case with only two pseudo-fermions. Then, the associated force and action for
( ‘2 )the  single ratio of determ inants are: (x) and 5pf (cf. (4.41) and (4.34)).

•  EO: single pseudo-fermion representation of the even-odd preconditioned quark- 

determ inant (4.58), excluding the contribution of the  small determ inant (4.64). 

The associated force and action are: F ^ ^ \x )  and (cf. (4.68) and (4.65)).

•  EO +SD ET: as above bu t including the contribution from the small determ inant.

• EO+HAS: Hasenbusch (twisted-mass) factorization of the even-odd precondi­

tioned quark determ inant (4.62), and corresponding pseudo-fermion representa­

tion. In particular, here we consider the case with only two pseudo-fermions. Then, 

the associated force and action for the single ratio of determ inants are: f I ^ \ x )

In Table 4.1 we also include a comparison of the action com putation with the 

corresponding pseudo-fermion generation. This is obtained by firstly generating some

(4.84)

and (cf. (4.79) and (4.73))
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G aiissian-distribiited fields ^ with action S  =  Then, given the fields one

can com pute the pseudo-fermion fields </> as discussed in the previous section, and

evaluate the corresponding action . If the generation of the fields 4> is correct, the
(i)two actions should coincide i.e. S  = .

T ab le  4 .1  Results for the consistency checks of the action and force computations, and 

pseudo-fermion generation. The results are obtained for a given pseudo-ferraion field (j>, gauge 

field configuration U, and momenta R. The lattice considered has: L/a  =  T/ a  = 8. The values 

for the twisted-masses are o/uo = 0.1 and o/ii =  1.0. The CG solver residuum is res = 10“ *̂ , 

and ( = 10““*.

STD EO EO SDET HAS EO-^HAS

1*5- V !
3.12e-08 

1.50e-08

2.44e-08

8.50e-09

3.86e-08

4.80e-09

9.47e-08

2.50e-08

3.77e-07

1.5e-08

As we can see from the table, the results are generally good for both tests, and 

for all types of preconditioning. They are indeed consistent with the ones (roughly) 

expected, considering the size of the lattice volume, and the chosen CG residuum.

To conclude, in order to check the consistency of the force and action com putation 

as integrated into the HMC, we have performed the following additional test. Given 

an initial pseudo-fermion field 0, gauge configuration U, and m om enta configuration 

n , we have integrated numerically the MD equations up to a fixed tim e t  =  t  for 

several different values of the step-size e. We have then measured the difference A H  in 

the Hamiltonian at the beginning, and at the end of the MD trajectories as in (4.10). 

If the com putation of the action and forces is consistent, we then expect A H  oc e", 

where n  depends on the order of the numerical integrator.

In Figure 4.1, we present the  results for a 2"'* and 4*''’ order integrator for some given 

lattice param eters, and different values of the  integration step-size e  at fixed t  =  2 .  

The details of the numerical integrators can be found in (Liischer and Schaefer, 2013). 

Note th a t we consider simulations of N( = 2 0(a)-im proved Wilson-fermion with ^SF  

boundary conditions, and we employ both Hansenbush and even-odd preconditioning. 

W ithout entering into the details, in principle we expect for the given 2""̂  and 4''*’
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Fig. 4.1: |A / / | as a function of the step-size. D ata obtained from a single trajectory  

of length r  =  2, for fixed (f>̂ U^ and II. The simulations considered are for TVf =  2 

0(a)-im proved Wilson-fermions with xSF boundary conditions; both Hasenbusch and 

even-odd preconditioning are used. The lattice considered has L / a  =  T /a  =  8, and 

the twisted-masses are given by a^o = 0-0 =  1-2. Note th a t the gauge force

is integrated on a much finer time-scale through a 4^  ̂ order integrator.

l.Oe-02

(a ) 2^^  o rd e r  in te g r a to r

3.0e-04 8.0e-04 i.3e-03

l.8e-04

3.0e-0.S

(b )  4^^ o rd e r  in te g r a to r

l.3e-04

-  8.0e-05

O.Oe+00 l.Oe-05 2.0e-05 3-0e-05
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order integrators: A H  oc and A H  oc e'*, respectively; this assuming th a t the value 

of t  is small enough th a t higher-order term s in e are negligible in A H .

As we can see from the figure, this is nicely the case. Note th a t the  results a t each 

e are obtained from a single MD trajectory, and the line on the plot is a linear fit of 

the d a ta  constrained to  zero.

4 .3 .2  C h e ck  o n  th e  p r e c o n d it io n in g s

In this concluding subsection, we present some tests we have performed in order to 

check the equivalence of the different types of preconditioning implemented. More 

precisely, for a given choice of lattice param eters, we have com puted a set of different 

observables using simulations where different representations of the quark determ inant 

have been employed. If the preconditionings are all well-implemented, we then expect 

the results from the different sinmlations to agree within their statistical uncertainties.

Specifically, for the test we have considered sinmlations of Â f =  2 O(a)-improved 

massless Wilson-fermions with ^S F  boundary conditions. The given lattice param eters 

are: L /a  = T j a  = 6, and ^ =  6/go = 5.6, The observables we have studied then are 

the average plaquette (Plaq), and the energy density as defined through the G radient 

flow (Liischer, 20106). In particular, we have measured two different discretizations 

of the energy density denoted in the following by H^act and Vact- The details of these 

discretizations are unim portant for the present discussion. Note however th a t, ll^act and 

Yact, have been com puted for a value of the flow tim e t specified by c =  \/8</L  =  0.3. 

This is in general a sensible value to obtain a good statistical precision for these 

observables (Fritzsch and Ramos, 2013). Finally, we have generated roughly 240.000 

MD trajectories of length r  =  2, corresponding to  480.000 molecular dynamics units 

(MDU). In particular, the plaquette has been measured a t each tra jectory  finding 

an integrated autocorrelation tim e of Tint ~  4 — 5 MDU, while the  G radient flow 

observables every 5 trajectories w ithout detecting any autocorrelation.

In Table 4.2, we report the results of the simulations for the three observables 

considered, and the different types of preconditioning. Similarly to the previous sub­

section, we adopt the following notation:
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• STD: standard  single pseudo-fermion representation of the quark determ inant. 

The twisted-mass is set to  zero i.e. afiQ = 0.0.

•  HAS: Hasenbusch factorization of the quark determ inant (4.18) considering two 

pseudo-fermions with twisted-masses; ano = 0.0, and a/j-i = 1.2.

• EO: single pseudo-fermion representation of the  even-odd preconditioned quark- 

determ inant (4.58). The twisted-mass is set to  zero i.e. a/uo =  0.0.

•  EO +H A S ; Hasenbusch factorization of the even-odd preconditioned quark deter­

m inant (4,62) considering two pseudo-fermions with twisted-masses: a/iQ =  0.0, 

and afii = 1.2.

Note th a t we have set the  twisted-mass /io to zero, as otherwise a reweighting would 

have been needed to compare the results with and w ithout even-odd preconditioning. 

Table 4.2 Results for the average plaquette, and Gradient flow energy densities M'act, and 

yact, for different types of preconditioning.

o STD HAS EO EO-hHAS

Plaq 1.89463(4) 1.89469(5) 1.89469(5) 1.89466(5)

377.8(1) 377.8(1) 377.8(1) 377.9(1)

H^act 732.5(2) 732.4(2) 732.4(2) 732.6(2)

As we can see from the results in the table, the precision on the plaquette is 

very good. Nevertheless very good agreement is found between all preconditionings. 

Similar conclusions can be drawn for the Gradient flow energy densities. In this case, 

it is interesting to  note th a t the difference between VFact and Facti which is roughly a 

factor 2, is in fact a pure discretization effect.

To conchide, ju st to  give an idea about timings, we report in Table 4.3 the average 

tim e taken by the different simulations to  com pute a single trajectory. Note th a t the 

Pacc has been tuned in order to  be roughly equal in all runs i.e. Pacc ~  0.90—0.95. As we 

can see from the table, the gain from the even-odd preconditioning is evident, almost 

a factor 4. A bit surprisingly, also the Hasenbusch preconditioning helps considerably, 

even though we have considered a very small lattice volume. Finally, note th a t if
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the  two preconditionings are combined together, an overall factor of 5 in speed up is 

obtained. These results remarkably show the effectiveness of these preconditionings. 

Table 4.3 Average time per trajectory for the different preconditionings.

Time (s)

STD 31

HAS 17

EO 8

EO+HAS 6



5
The chirally rotated SF at work

In the previous chapter we discussed in detail the numerical implementation of the 

xSF, and presented some consistency checks on the basic algorithm. Assuming the 

correctness of the latter, in this concluding chapter we want to  study some applications 

of the method. In particular, we are interested in providing evidence for the two 

main features expected from the xSF  with Wilson-fermions, namely: the universality 

of its continuum limit w ith the standard  SF regularization, and the realization of 

autom atic 0 (a )  improvement in the chiral limit. Note th a t these properties have been 

confirmed in detailed studies in the quenched approxim ation (Sint and Leder, 2010: 

Lopez, Jansen, Renner and Shindler, 2013a; Lopez, Jansen, Renner and Shindler, 

20136), and recently also to  1-loop order in perturbation theory (Vilaseca, 2013). In 

this work, the  non-trivial question we want to  answer is whether these features also 

hold when the non-perturbative continuum  limit of the full theory is considered. In this 

respect, we will focus on the theory with Â f =  2 dynamical massless Wilson-fermions 

with xSF  boundary conditions. For this case in fact, many results are available for 

comparison with the standard  SF regularization.

The chapter thus begins by setting-up the connection between SF and x^F . More 

precisely, starting  from a standard  set of SF correlation functions, we study formally 

in the continuum their chiral rotation. We then determ ine the corresponding set of 

xSF correlation functions, and the expected universality relations. The corresponding 

lattice correlation functions and 0 (a )  counterterm s are also commented.

Secondly, given the universality relations we will study their consequences on the 

lattice. As we already remarked, on the lattice these relations are expected to  be 

valid among properly renormalized lattice correlation functions up to  discretization 

effects. The idea is thus simply to  define a suitable set of observables and test whether
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th e  expected  un iversah ty  rela tions are correctly  recovered in th e  continuum  lim it. As 

we shall see, as a  by -p roduc t of th is investigation  we will determ ine several finite 

renorm aliza tion  constan ts  of in te rest re la ted  to  th e  break ing  of chiral sym m etry  by 

W ilson-ferm ions. In add ition , these observables will provide a  non-triv ial check for 

au to m a tic  0 ( a )  im provem ent in th e  xS F . Indeed, by study ing  th e  continuum  lim it of 

these  q u an titie s  we will be able to  determ ine if th e  expected  scaling is realized.

Before p resen ting  any resu lts, however, a crucial issue needs to  be addressed first. 

As presen ted , th e  correct chirally ro ta ted  b oundary  conditions are ob ta ined  in the  

con tinuum  lim it only if th e  finite renorm aliza tion  p aram ete r Z f { g o )  is p roperly  tu n ed  

(cf. Section 3.4.3). As also discussed, th is  p a ra m ete r can be fixed by im posing a t finite 

la ttice  spacing  p arity  a n d /o r  flavour resto ra tio n  on a given observable. On th e  o ther 

hand , in o rder to  ob ta in  au to m atic  0 ( a )  im provem ent one needs to  sim ultaneously  

tu n e  th e  quark  m asses to  zero. A t finite la ttice  spacing th is  sim ultaneous tu n in g  of 

Zf and th e  bare  quark  m asses m ight p resen t som e difficulty due to  th e  presence of 

d iscre tization  effects. It is th u s  im p o rta n t to  u n d erstan d  w hether th e  tu n in g  is feasible 

a t th e  relevant values of the  la ttice  spacing in sim ulations.

F inally , th e  ch ap te r is concluded w ith a detailed  analysis of th e  correctness of 

th e  sim ulations. Specifically, th is  includes: a s tu d y  of the  reversibility  and  m easure 

preserving p roperties  of th e  MD in teg ra to r in th e  IIM C , an estim ation  of th e  longest 

au to co rre la tio n  tim es in th e  sim ulations, and  an investigation  of th e  ergodicity  of the  

a lgorithm  in sam pling  th e  topological sectors.

5.1  Correlation functions and universality relations

As an tic ip a ted , in th is  section we w ant to  presen t th e  xS F  correla tion  functions and 

co rresponding  un iversality  re la tions th a t  will be stud ied  la te r in th e  chapter. To th is  

end , afte r som e com m ents on th e  specific se t-up  we are considering, we will in troduce 

a  se t of su itab le  correla tion  functions in th e  s ta n d a rd  SF base. T hen , by perform ing 

th e  p roper chiral ro ta tio n  we will o b ta in  th e  corresponding correla tion  functions in the  

x S F , and derive th e  un iversality  rela tions of in te rest. T he section is th u s concluded 

w ith  a discussion of th e  corresponding  la ttice  correla tion  functions, and th e ir  0 ( a )
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counterternis. N ote that m ost of the details here presented can be found in a condensed  

form in (Sint and Leder, 2010).^

5 .1 .1  F la v o u r  s tr u c tu r e

So far we have assumed the quark fields to be doublets consisting of an up and down 

type quarks, i.e.,

(5.1)

In practice, however, it is convenient to look at the correlation functions obtained in 

a theory with four flavours of quarks. In the following, the quark fields will be then 

assumed to be of the form,

V ’u '

\^d')
where we consider two up and two down type flavours of quarks.

Given this definition, the chiral rotation (3.58) is redefined as,

tP' --= R{a)iP, i>' =  i ’R{a), R{a)  =  \  (5.3)

where, I 2 <8> =  d iag (l, —1,1,  —1). The boundary conditions (3.62) are also

modified accordingly, and are now specified by the projectors,

=  diag(Q±,Q=p,<5±,(5=p), <3± =  | ( 1  ±  «7o75)- (5-4)

After this short remark we can proceed and present the correlation functions of interest 

in the standard SF base.

5 .1 .2  S F  c o r r e la t io n  fu n c t io n s

The SF correlation functions that we are interested in involve the quark-bilinear fields 

introduced in the context of the WIs (cf. Section 2.1.2 and Section 2.2.3). Differently

^The au thor thanks Stefan Sint and Bjorn Leder for sharing several notes before publication. The 

presentation given in th is section is based on th is m aterial.
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from  our o rig ina l presentation, however, here we w ork w ith  operators w ith  defin ite  

flavour assignment instead o f isospin index. Th is  means th a t, fo r example, we consider 

the axia l and vector currents specified by,

= '* / ' / ! 7m^ / 2> (5-5)

where the  flavour indices / i  and /2 stand for u , d  and eventua lly u ' , d ' . O bviously 

these operators can be obta ined from  the defin itions given in  (2.13) and (2.19), by 

s im p ly ta k in g  appropria te  linear com binations o f the  generators o f the  flavour group. 

In  p a rticu la r, note th a t in the fo llow ing we on ly consider flavour non-singlet operators. 

We thus exclude any opera tor w ith  flavour assignment / i  =  /g.

In  add ition  to  the flavour currents presented above, we also s tudy the scalar and 

pseudo-scalar densities (cf. (2.20) and (2.17)),

5’-̂ ' =«/’/! V̂/2, = '0/1 I b i ’ h  - (5-6)

and the tensor density (cf. (2.46)),

=  (5.7)

For completeness we then include the pseudo-tensor density,

(5.8)

since th is  is n a tu ra lly  obta ined from  a ch ira l ro ta tio n  o f the tensor density.

The SF corre la tion  functions o f interest are now defined as tw o -po in t functions of 

the quark b ilinear operators in troduced above, and bilinears o f the zero-momentum 

components o f the boundary fields, ( ( y ) , . . . ,  (;(z). Specifically, we firs t consider the 

b ilinear boundary operator (3.21) w ith  defin ite  flavour assignment, namely,

Q h h  =  I  d V 'z C / , ( y ) /^ + 7 5 C /, ( z ) .  (5.9)

Note th a t com paring w ith  the  de fin ition  (3.21) an add itiona l p ro jec to r appeared. 

However, tak ing  in to  account the boundary conditions for the fields i t  is easy to  see 

th a t th is  p ro jec to r is in fact redundant (cf. (3.20)). On the o ther hand, i t  is useful to  

rem ind us which are the  non -D irich le t field components at the  boundaries.
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Given th is  definition, we can now in troduce th e  first set of b o n ndary -to -bu ik  SF 

correla tion  functions defined by (Liischer, S int, Som m er and Weisz, 1996; L iischer and 

Weisz, 1996; S int and Weisz, 1997),

f x ( x o )  =  (5.10)
Z \ / ( F + )

w here X  s tan d s  for X  =  As a first rem ark , no te  th a t  due to  tran s la tio n

invariance in th e  sp a tia l d irections, these co rrela tion  functions only depend  on  xq- 

Secondly, f v  and f s  are odd  under p arity  an d  consequently  vanish (cf. Section A .6.2). 

T his is also tru e  on th e  la ttice  w ith  s ta n d a rd  SF b o u n d ary  conditions. T hese correla tion  

functions, however, are still in te resting  since a t finite la ttice  spacing no t all of the ir 

chirally  ro ta ted  co u n te rp arts  are au to m atica lly  zero. T his because, as d iscussed, the  

la ttice  xS F  explicit breaks parity , w hich is only recovered up  to  a  flavour exchange.

In add ition  to  th e  f x  correla tion  finictions, we can consider co rrela tion  functions 

involving fields w ith  an open sp a tia l index k.  In o rder to  define these, we first need to  

in troduce th e  bilinear b oundary  o p era to r,

Given th is  definition, th e  new set of correla tion  functions is specified by, 

k v i x o )  =
k = l ^

w here th e  fields Vfc s ta n d  for th e  b ilinear quark-fields, Ifc =  A^ ,  Vfc,Tofc,Tofc. N ote th a t,  

in th is  case, p arity  sym m etry  im plies Ua  = k f  =  0.

Finally, we define th e  boundary -to -b o u n d ary  correlators,

h  = E  (5-13)
' fc=i ^

w here th e  source fields a t upper-tim e bou n d ary  are given by,

= I d^yd\c’fAy)P-'y^Cf,i )̂, (5.14)

=  J  d ^ y d ^ ^ C f , { y h k P + C h { z ) .  (5.15)

To conclude, we no te th a t  if only non-singlet o p era to rs  are considered, th e  flavour 

indices on th e  correlation  functions are  red u n d a n t in th e  case of s ta n d a rd  SF bou n d ary
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conditions. This is true both in the continuum and on the lattice, since in both cases 

the Dirac operator and boundary conditions are trivial in flavour space. Hence, one 

has for example that: and similarly for the ky  functions, and

the boundary-to-boundary correlators. However, it is important to specify the exact 

flavour assignment once we consider the rotation of these correlation functions to the 

xSF base. The chiral rotation, indeed, distinguishes between up and down quark- 

flavours (cf. (5.3)), and thus different flavour assignments correspond to different ^SF 

correlation functions. Note that, at least in the continuum, this does not mean that 

flavour symmetries are broken by the xSF boundary conditions, but rather that the 

flavour symmetries of the standard SF assume a different form in the xSF (Sint, 2011).

5 .1 .3  xS F  c o r r e la t io n  fu n c t io n s  an d  u n iv e r sa lity  r e la t io n s

Given the SF correlation functions presented in the previous subsection, it is now easy 

to derive the corresponding ^SF correlation functions. Indeed, these are obtained by 

simply considering the relation (3.63) now defined in terms of the transformation (5.3). 

More precisely, we have,

(5.16)

where O is a generic quark bilinear operator, while the xSF bilinear source field 

is obtained by chirally rotating the bilinear SF boundary field . In Appendix C, 

we collected the results for the operators corresponding to the SF boundary

fields and

Having these definitions, the ^SF correlation functions related to the SF correlators 

f x  can be easily found. Indeed, if we define the ^SF two-point functions gx  of the 

operators X  = Vq, A q, S, P,  as,

gflf^{xo) = - U x M ^ { x ) Q t f ^ )  (5.17)
Z \ / ( Q+ )

it is easy to work out the following universality relations (Sint and Leder, 2010),
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/ a = 9 7 ' = g f  = —igv̂  — ig^ I (5.18)

f p = igT' = - i g f  = II (5.19)

f v = 9 T ' II II = ig^\ (5.20)

f s = igT' II 1 Cc II 5 s ' "  =  p f  • (5.21)

Thus, choosing different flavour combinations in the  SF correlation functions, and 

applying the corresponding chiral ro tation, we can obtain several non-trivial relations 

among correlation functions with different flavour assignment and quark-bilinear 

insertions. In fact we note th a t, given our definition of the boundary fields in the X^F, 

the corresponding transform ation properties of the  correlation functions are simply 

found by considering the chiral transform ations of the quark-bilinears X .

Analogously to  the case of the g x  functions, if we introduce the ,\SF correlation 

functions of the bilinear fields Yk =  Ak ,  Vk,Tok-Tok,  defined by,

3

> (5-22)
° f c = i  '  M Q + )

the following universality relations with the SF correlation fimctions k y  are easy to 

derive (Sint and Leder, 2010),

k v luu' — ty idd'
— w 1II —  ILj  ̂ , (5.23)

kA ]U U
— M

jdd 
— M = —— I'f'Y , (5.24)

k r =  i l f ' II 1 _  lud
—  L'j' idu 

— f'T ’ (5.25)

k f = il^^ ' =  - i i f _  lud— ij, _  idu— tj,  . (5.26)

Finally, we can define the boundary-to-boundary xSF correlators,

gf^f ^ = , (5.27)
\  / ( Q + )

’ (5.28)
°  f c = i  \  /  (<3+)

where again we collected the results for the boundary fields Q corresponding to 

the SF source fields and in Appendix C.
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I t is th en  easy to  find th e  un iversahty  rela tions,

h  =  g r '  =  g f  = g f  =  9 f \  (5-29)

fci =  =  i f  =  i f  =  if^.  (5.30)

In conclusion, we ob ta ined  several form al rela tions betw een x S F  an d  SF correlation  

functions. However, as discussed, once we move to  th e  la ttice  these  rela tions are not 

expected  to  be exact anym ore. Even a t  zero quark-m ass, indeed, th e  W ilson bulk 

ac tion  is not invarian t under th e  chiral ro ta tio n  (5.3), and  th e  general rela tions (5.16) 

can no t be derived. On th e  o th e r hand , we expect these re la tions to  be valid up to  

d iscre tization  effects am ong properly  renorm alized la ttice  co rrela tion  functions, such 

th a t  once the  continuum  lim it is taken  th e  un iversality  rela tions are recovered. In the  

nex t section, we will investigate in detail som e of th e  consequences of th is  expecta tion . 

Before th a t,  we conclude th is  section w ith  a sh o rt discussion on th e  la ttice  definition 

of th e  X'SF correla tion  functions here in troduced , and  th e ir  0 ( a )  coun terterm s.

5 .1 .4  xS F  c o r r e la t io n  fu n c t io n s  o n  t h e  l a t t i c e

Given th e  form al continuum  definition of th e  x ^ F  correla tion  functions, it is easy to  

define th e ir  la ttice  coun terparts . F irs t of all, th e  b ilinear quark  fields X  and Y  are easily 

regularized on th e  la ttice  (cf. Section 2.1.2 and  Section 2.2.3). In th is  respect, we recall 

th a t  in th e  case of th e  vector cu rren t one can e ith er consider th e  local (cf. (2.13)) or 

po in t-sp lit definition (cf. (2.35)). T h e  la tte r  does no t requ ite  any finite renorm alization , 

an d  in add ition  satisfies for degenerate  qu ark  m asses th e  conservation  law (2.34). N ote 

th a t  th is  rela tion  holds in th e  in terio r of th e  la ttic e  volum e, independen tly  from th e  

specific xS F  bou n d ary  conditions considered.

Secondly, as we have seen, th e  la ttice  b o u n d ary  source fields are ob ta ined  from th e ir  

con tinuum  co u n te rp arts  by sim ply replacing th e  space in tegrals w ith  sp a tia l sum s (cf. 

(3.34)). As an exam ple, if we consider th e  continuum  field (C .l) ,  th e  corresponding  

la ttic e  field reads,

Qr' =  ^  Cu(y)7o'75<3-Cu(z)- (5-31)
y .z s r
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In particular we remind that when inserted in correlation fvuictions, the boundary 

fields are equivalent to the following expressions in terms of quark fields,

C(x) =  t/o(0,x)(5_'i/;(a,x), ( '(x ) =  [7o(r -  a, x) + (5-'i/'(T -  a, x), (5.32)

C(x) =  V'(a,x)<5+;7o(0,x)t, = ip{T -  a,x)Q+Uo{T -  a ,x).  (5.33)

As discussed in Section 3.4.3, this representation is correct only if Wick contractions 

of boundary fields at the same boundary are not present in the correlation functions. 

In the following, we will avoid the appearance of these contributions by choosing 

proper flavour assignments in the two-point functions. Moreover, note that we leave 

out the 0 (a ) boundary counterterm proportional to ds{go) (cf. (3.84)). For most of 

the applications we will consider this is in fact not relevant.

Given these observations, it is now straightforward to determine the corresponding 

lattice expressions for the xSF correlation functions presented in the previous sub­

section. In particular, we can study their transformation properties w.r.t. the lattice 

symmetries, in order to determine some exact relations among different correlation 

functions or specific properties of individual correlators. In this respect, we collected 

some of these results in Appendix C. Here we just want to mention tha t in practice we 

can restrict ourselves to consider only correlation functions with flavour assignment 

uu' and ud, since the flavour combinations dd’ and du are related to the former by 

exact lattice relations. Furthermore all correlation functions are found to be either 

real, purely imaginary or vanishing exactly.

To conclude, it is important for our analysis later on to identify the 0 (a ) operators 

counterterms to the lattice xSF correlation functions here introduced. As discussed, 

for this type of correlation functions, the 0 (a ) operator counterterms are determined 

by the corresponding counterterms to the quark-bilinears X  and Y  inserted in the bulk 

of the lattice volume (cf. Section 3.3). In fact, however, the given counterterms might 

contribute or not to the corresponding correlators gx  or ly- More precisely, given the 

results in Section 2.2.3, we obtain that for the vector correlators.

9v/ H ^ o) =

+ cv{go) adol^^ '̂^

(5.34)

(5.35)
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where Vj indicates as usual the improved (local) vector current (2.45). As we can see, 

the 0 (a )  counterterm  proportional to  the  spatial derivatives of the  tensor correlator 

does not contribute to  the gy  functions. This can be easily understood by noticing th a t 

in the  xSF  translation  invariance is preserved along the spatial directions. Secondly, 

we rem ind th a t if the  point-split vector V̂ j (cf. (2.35)) is considered in (5.35) instead 

of the local current, a different improvement coefficient Cy{go) is needed.

For the axial vector correlators the situation is somehow the other way around, 

namely,

9Af^{xo) =  9a ^Hxo) -h CA{go) adog^ji^\ (5.36)

(5.37)

Then, for the tensor and pseudo-tensor correlator we have,

l^Y^ixo) =  4*-^"(xo) 4- CT(go)o5o/{?'^% (5.38)

+  Cf{go)adol^^^^. (5.39)

Finally, the scalar and pseudo-scalar correlators do not need any operator improve­

ment, as we have seen, i.e.,

a{ i /^xo)=g{}^^{xo) ,  (5.40)

aiYHxo) =  gi^^^xo). (5.41)

At this point, the  reader might wonder why we considered this type of boundary- 

to-bulk and boundary-to-boundary correlation functions for our study. The reason is

th a t thanks to  the projection to  zero momentum of both quark and anti-quark fields

a t the boundary, these correlation functions are expected to  have in general milder 

cutoff effects and b e tte r statistical precision than  gauge invariant correlation functions 

involving only bulk operators (see e.g. (Della M orte, Sommer and Takeda, 2009)).

5.2 Renormalization conditions and 0(a) improvement

Given the universality relations between SF and xSF correlation functions presented in 

the previous section, a non-trivial question now is w hether these relations are correctly
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recovered once the continuum hm it of the properly renormalized lattice correlation 

functions is taken. In this section, we will thus define a set of suitable observables th a t 

will allow us to  address this question. In addition, the investigation of these quantities 

will give us the opportunity  to  confirm whether the property of autom atic 0 (a )  is at 

work as expected for the  xSF.

More precisely, in the next subsection we will define several ratios of xSF  two- 

point functions which are expected to  converge to  a common continuum limit due to 

some universality relation. In fact, at finite lattice spacing these ratios are related to 

finite renormalization constants originating from the breaking of chiral sym m etry by 

Wilson-fermions (cf. Section 2.1.3). Similarly, we will also consider ratios of boundary- 

to-boundary correlators which are again expjected to  converge to  the same continuum 

limit because of some universality relation. Finally, we will define the basic tools to 

study the non-perturbative running of the quark-masses in the SF and xSF. More 

precisely, we will introduce a finite-volume renorm alization scheme for the  pseudo­

scalar density, and the corresponding step-scaling function. Studying the continuum 

limit of these functions will then provide a direct test of the universality between SF 

and xSF.

5.2.1 R en orm aliza tion  co n d itio n s from  u n iversa lity  rela tion s

The starting  point is given by the formal continuum relations (5.18)-(5.21) and (5.23)- 

(5.26). As discussed, on the lattice these relations are expected to  be valid up to 

discretization effects among properly renormalized correlation functions. S tarting  from 

this assumption, we consider the following set of relations involving the jsT^-even 

boundary-to-bulk two-point functions,

+ O(a^), (zgr')B = ( g f ) R  + 0{a%
{ I V ' ) r  = { - O r  +  0 { a ^ ) ,  ( i l f ' ) R  = O r  + 0{a^) .  (5.42)

Note th a t if autom atic 0 (a )  improvement is at work, the expected discretization effects 

in these relations are of other O(a^). This will be presented in detail in Section 5.2.4.

Given the above relations, we remind th a t the renorm alization of the correlation 

functions we are considering simply involves the renorm alization of the boundary fields
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w ith the appropria te  factors Z<;, and the renorm alization of the  quark-bilinears X  and 

Y . More precisely, we have,

{9x ) r = Z ^ Z x g x ,  {1‘y ) r  = Z (^ZyW ,  (5.43)

where Z \  and  Z y  correspond to  the renorm alization factors of the quark bilinear X  

and Y , respectively. Considering a definite exam ple we have,

Z I Z aqT  = - iZ lZ y g X ^^  +  0 (a 2 ) , (5.44)

and consequently.

As we can see, the ratio  of these bare correlation functions corresponds, up to  cutoff 

effects, to  the ratio  of the finite renorm alization constants related  to  the local vector 

and axial curren ts (cf. Section 2.1.3). This ratio  is then expected to  have a well-defined 

continuum  lim it sim ply given by 1, which could be verified explicitly.

For till' ])iirpose of our analysis, however, it is more convenient to  somehow turn  

the  tables. Once the validity of the universality relations is assum ed, we can use the 

ratio  of bare tw o-point functions to  actually  define a renorm alization condition for 

the  finite renorm alization constants. By com paring different definitions of these renor­

m alization factors also including determ inations from the  stan d ard  SF, we will then 

be able to  assess if the assum ed hypothesis of vmiversality was well founded. As we 

will discuss in more detail la ter in th is section, the  advantage of th is approach is th a t 

the  difference between these definitions is expected to  scale to  the continuvun lim it as 

O (a^). This is easy to  verify numerically, and the  actual scaling will provide a check for 

au tom atic  ()(a) im provem ent. The continuum  lim it of (5.45), instead, is reached only 

logarithm ically w ith a due to  the contribution  of the finite renorm alization constants. 

A direct verification of the approach of th is ratio  to  1 is then  more difficult to  perform  

through non-pertu rbative studies. This, however, is a possible approach to  consider in 

order to verify universality in pertu rbation  theory  (Vilaseca, 2013).

This said, the renorm alization conditions for the finite renorm alization constants 

can be sim ply obtained by imposing the validity of the expected continuum  relations
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on p ro p erly  reno rm alized  la ttic e  co rre la tio n  functions. G iven th e  re la tio n  (5.44) for 

exam ple, we can  define (S in t a n d  L eder, 2010),

_ 9 T ' ( ^ o ) (5.46)

N ote th a t  it is convenien t to  m easu re  th e  co rre la tio n  functions in th e  m idd le  o f th e  

la ttic e  in  o rder to  m axim ize th e  d is tan ce  from  th e  bo u n d arie s , an d  th u s  m in im ize th e  

co rrespond ing  cu to ff effects. T h e  a c tu a l ren o rm aliza tio n  cond ition  is th e n  specified  by 

several o th e r  de ta ils  re la te d  to  th e  specific x S F  se t-u p , as for exam p le  th e  b o u n d a ry  

co nd itions for th e  fields an d  th e  geom etry . T h ese  w ill be d iscussed  in th e  n ex t section .

G iven th e  re la tio n  (5.46), we n o te  th a t  if we use th e  p o in t-sp lit d isc re tiz a tio n  of 

th e  vec to r cu rren t we can  o b ta in  d irec tly  th e  ren o rm aliza tio n  fac to r for th e  local ax ial 

cu rren t Z a , specifically,

(5.47)
gT i ô)

C onsidering  th e n  o th e r u n iv e rsa lity  re la tio n s in (5.42), th e  ren o rm aliza tio n  of th e  axial 

cu rre n t can  also  be  defined by th e  ra tio ,

i if/ixo)— (5.48)

T h e  ren o rm aliza tio n  of th e  local vec to r cu rren t in s tead , can  be o b ta in ed  by co m p arin g  

m a trix  e lem en ts o f th e  local a n d  p o in t-sp lit v ec to r cu rren ts  as,

__ 11^ (^o)
(5.49)

G iven th e  above defin itions, we can  also consider th e  som ehow  “m ixed” d efin ition  of 

th e  ax ia l cu rren t ren o rm aliza tio n  defined by,

’(a;o)y l g  _ (5.50)

T h is  will be useful la te r on  in o u r scahng  stud ies.

F inally , in  sim ilar fash ion , from  th e  re la tio n s (5.42) we can  define fin ite  ra tio s  of 

sca le -dependen t ren o rm a liza tio n  c o n s ta n ts  belonging  to  th e  sam e ch ira l n m ltip le t, e.g..

Z p  ^ ig's' (â o) 
Zs g'pixo)

Z t i l f  [x q )
(5.51)



Renormalization conditions and 0 (a )  improvement 123

To conclude, a few observations are in order. Firstly, note th a t in principle we could 

define the renorm alization conditions above in term s of the  corresponding improved 

correlation functions (5.34)-(5.41). Ju st to  give some examples we could then have.

y 9  — V
^ A j  = 9X (^o)

< ( - o ) o

xo = ^ IIoH

(5.52)

However, if autom atic 0 (a )  improvement holds the insertion of the 0 (a )  operator 

counterterm s will only affects the results a t O(a^).

In this respect, a second im portant rem ark is the following. The relations (5.46)- 

(5.52) only determ ine the finite renorm alization factors up to  O(a^) effects. Depending 

on the choice of the lattice size, the  boundary values of the fields, or other kinem atical 

param eters like xq, different results for Z y  and Z a will be obtained. One could then 

think th a t it is be tter to  assign a system atic error to the norm alization constants by 

studying these variations in detail. Since however it is difficult to judge which choices 

of param eters are “the more reasonable” , this error estim ates will tu rn  out to be rather 

subjective. It is thus b etter to simply define the normalization constants through a 

particular norm alization condition (Liischer, Sint, Sommer and W ittig , 19976; Guag- 

nelli et ai ,  2001). The ])hysical m atrix elements of the renormalized currents th a t one 

is interested in must then be calculated for a range of lattice spacings so as to  be 

able to extrapolate the d a ta  to  the  continuum limit. The results obtained in this way 

are guaranteed to be independent of the chosen normalization condition, because any 

differences in the  norm alization constants of O(a^) extrapolate to  zero together with 

the cutoff effects associated with the m atrix elements. In particular note th a t also for 

these finite renorm alization constants, a renorm alization condition is not only specified 

by the boundary conditions for the  fields and the geometry of the xSF, bu t also by the 

condition of constant physical spatial extent L. This said, it is always im portant to 

study different renorm alization conditions in order to  verify th a t the given definition 

of the renorm alization constants does not have accidentally large O(a^) effects, which 

might render the continuum limit extrapolations difficult to be performed.

Finally, the fact th a t these finite renorm alization constants can be obtained from 

the expected universality relations between the SF and xSF should not come as a
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surprise. As discussed in Section 2.1.3, a possibility to determine these renormalization 

factors was simply to impose on a set of properly renormalized lattice correlation 

functions, the validity of some continuum WIs. In order words, one is imposing the 

restoration of chiral symmetry at finite lattice spacing on a set of observables. Here, 

the idea is the same, since the universality relations between SF and xSF are a simple 

manifestation of the chiral symmetry of the massless QCD action once considered in 

a finite volume with SF boundary conditions.

5 .2 .2  F la v o u r  s y m m e tr y  r e s to r a t io n

Other interesting observables can be obtained by considering the xSF boundary-to- 

boundary correlation functions. This corresponds to study the universality relations 

(5.29). Analogously to what we discus.sed in the previous sub.section, on the lattice we 

expect these relations to be realized as,

(<7r')« =  K " ) «  +  0(a2), ( /r ' ) f l  =  (^i")fl + 0(a2). (5.53)

Note that again we have anticipated the expected O(a^) scaling for these 7 5 T^-eveu 

correlation functions. We then remind that the renormalization of these two-point 

functions is simply determined by the multiplicative renormalization of the boundary 

quark fields, i.e.,

{.g{^hR = Z tg { ^ ^ \  = (5.54)

Consequently the ratios,

=  l +  ^  =  l +  0(«^), (5.55)

have a well-defined continuum limit, and should approach 1 with O(a^) corrections. 

These observables thus offer some interesting probes for the realization of the correct 

relations in the continuum limit. In particular, since these ratios involve the same basic 

correlation function with different flavour assignments, they are a clear indicator of 

the breaking of flavour symmetry by the x^F with Wilson-fermions.
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5 .2 .3  T h e  r u n n in g  o f  t h e  q u ark  m a sse s

So far we have only looked at universality relations involving ^S F  correlation functions. 

Even though the  relations are implicitly based on the equivalence w ith some common 

SF correlator, we would like to  consider some explicit example of the relation between 

SF and x^F . In this respect, we study the renormalization of the pseudo-scalar density, 

which as seen is related to  the renormalization of the quark masses (cf. Section 2.1.3). 

The idea is to  compare the determ ination of the renorm alization factor Zp as obtained 

from the  SF and xSF. Of course, it is natural to define renormalization conditions 

in the SF and xSF such th a t the  same renorm alization scheme is obtained for the 

renormalized m atrix  elements of the pseudo-scalar density, hi this way, the  ratio of the 

renorm alization factors Z p ’s computed with the SF and xSF is expected to  converge 

to  1 in the continuum  limit.

Given this observation a simple definition for the renormalization constant Z p  in 

the SF and xSF can be obtained as (Capitani, Liischer, Sommer and W ittig, 1999; 

Sint and Leder, 2010),

i f p ) R  f p  I (5 56)
\ / ( / l ) f i  V T l l t r e e  \ / \9 i ' ^ ) r  \ / ^ l t r e e ’

where at a given value of the bare coupling go we require the renormalized m atrix 

elements to  be equal to  their tree level values. Note th a t in the above expressions, the 

boundary-to-boundary correlators f i  and are used to cancel the boundary quark 

field renorm alization factors The resulting expressions for the renormalization 

constant of the pseudo-scalar density are then given by,

Z f { g o , L / a ) = c { L / a ) ^ ^ '
f p { x o )

Z f ^ i g o , L / a )  = c ' { L / a ) ^  
9 p ( x o ) Xq — 2

(5.57)
o p / v S P

where the factors c and c' are chosen such th a t Z p  (0, L/ a )  = 1. We stress th a t we

defined a finite-volume renorm alization scheme for Z p  hy fixing the renorm alization

^At this point we want to mention that the renormahzation constants are not expected to be 

equal between tlie standard SF and xSF. Indeed, the ratio of these renormalization factors in the 

two set-ups is given by a finite function of go that only approaches 1 in the continuum limit. This 

somehow limits the flexibility in defining suitable quantities to test universality. In particular, note 

that consequently the relation f p  =  +  0 { a ? )  does not hold, but instead one has f p  =  g ' ^  +  0 ( g Q ) .
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scale in te rm s of th e  physical sp a tia l ex ten t o f th e  volum e L.  To do th is  consistently  we 

have to  require p  = T / L  to he a fixed ra tio , and sim ilarly  for all o ther dim ensionfull 

qu an titie s  th a t  en ter in th e  definition of Z p  (cf. Section 2.3.3). T h is will be com m ented 

in deta il in th e  nex t section. G iven these  defin itions we th en  expect,
7 S F

^  =  1 +  O (a^). (5.58)

R elated  to  th e  renorm aliza tion  fac to r Z p ,  an o th er in te resting  q u an tity  to  consider is 

th e  corresponding  step  scaling function  (cf. Section 2.3.3). As we have seen, a definition 

of a  renorm alized quark  m ass can be ob ta in ed  as (cf. (2.31)),

mpiiJ,) = \mZrn{go,aiJ-)mpcAc{9o,amo{go))\-^^^y Zmigo.au) =  (5-59)

w here g{n)  is a  given renorm alized coupling which is kept fixed in o rder to  keep th e  

renorm alization  scale co n stan t w hile approaching  th e  continuum  lim it. T h e  schem e 

for th e  quark  m asses is then  im plicitly  specified by th e  renorm aliza tion  schem e of Z p . 

In p a rticu la r, we can define a finite-volum e schem e by considering th e  definition oi  Z p  

given in (5.57), and  as a renorm alized coupling th e  SF coupling g^{L)  (Della M orte 

et a i ,  2005a). In th is way th e  renorm aliza tion  scale of th e  quark  m asses is given in 

te rm s of th e  box size L, and  finite size scaling can be applied  to  determ ine th e  running.

In practice , we recall, th is  is done by considering the  s tep  scaling function op{u)  

defined by (cf. Section 2.3.3),

Zp{go,2Lla)
a p{ u )  = lim Y ,p { u , a /L ) ,  ' L p ( u , a / L )  = (5.60)

u=g^ (L)a-»0 ’ ’ ’ Z p { g o , L / a )

Prom  th e  definition (5.59), it is th e n  easy to  conclude th a t ,

As an tic ip a ted , th e  step>-scaling function  describes th e  runn ing  of th e  quark  masses. 

In p a rticu la r, th is  function  can be eva lua ted  n o n -pertu rba tive ly  th ro u g h  num erical 

sim ulations by apply ing  th e  recipe (5.60). Eventually , once high-energies are reached 

th e  resu lts can be com pared  w ith  p e r tu rb a tio n  theory , and th e  conversion to  o the r 

p e rtu rb a tiv e  schemes is possible. For ou r analyze, however, th e  im p o rta n t observation  

is th a t  we expect th e  s tep  scaling function  ob ta in ed  from th e  la ttice  SF and ^ S F  to  

be equal in th e  continuum  lim it.
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5 .2 .4  A u to m a t ic  0 ( a )  im p r o v e m e n t

In the previous subsections, we introduced several interesting quantities in order to 

investigate the expected universality of the SF and xSF. Since a continuum limit is 

involved in this analyze, it is natural to exploit these observables to study also whether 

autom atic 0 (a )  improvement is realized as expected for the xS F . The expectation is 

that, once the bare quark masses are tuned to their critical value, and the boundary 

renormalization parameter Zf(go)  is properly determined, then 0 (a )  contributions 

corresponding to 7 sT^-odd counterterms will be absent in 7 5 T^-even observables (cf. 

Section 3.4). On the contrary, 7 sT^-odd observables will be pure discretization effects, 

and will contain all these 0 (a )  contributions. As discussed, this in practice means that 

for 7 5 T^-even observables the 0 (a )  counterterms coming from the bulk action, and 

the operator insertions in the interior of the volume do not contribute at 0 (a ) .  The 

remaining 0 (a )  effects are thus localized at the boundaries, and correspond to the 

0 ( a )  operators coiinterterms proportional to C t ( g o )  and d s { g o ) -

On the other hand, in (5.42) and (5.53) we exj^ressed the expectation that the 

universality relations am ong 7 5 r^-even correlation fimctions are valid up to O(a^) 

effects. This seems to contradict the conc:hision above, since in principle 0 ( a )  boundary 

contributions are present. However, it is possible to show that these 0 (a )  terms do not 

contribute in these specific relations. In Ajjpendix D. l ,  we offer a siniple proof of this 

result. Here we just want to mention that this conclusion is not a feature of autom atic 

0 ( a )  improvement. Indeed, it simply relies on the fact that the correlators involved 

in these relations are expected to have a common continuum lim it, and the 7 5 T^-even 

0 (a )  boundary counterterms are invariant under chiral rotations. As a result, the 

observables we derived from universality relations involving 7 5 T^-even ^SF correlation 

functions are fully 0 (a )  improved. Of course, similar conclusions apply to  suitable 

universality relations between SF and ^SF correlation functions (cf. (5.58)). N ote 

however that in this case, the determination from the SF requires all the necessary 

(bulk) 0 ( a )  improvement as otherwise 0 (a )  contaminations will enter in the relations.

In the case of the finite renormalization constants discussed in Section 5.2.1, this 

means that any change in the details of the renormalization conditions will effect the
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results only at O(o^). As anticipated indeed, any difference in determ inations obtained  

from different renormalization conditions is a pure discretization effect. We then expect 

for exam ple the definitions and (or Z ^ ) to difTer by O(a^) terms, and similarly 

for Zy  and Zy.

To conclude, autom atic 0 (a )  improvement can be also verified by studying the 

7 sT'^-odd correlation functions. As said, these are expected to be pure 0 (a )  effects. 

In particular, the correlators that are not trivially zero due to som e exact lattice  

sym m etry of the ^SF are given by (cf. Appendix C.2),

U U
9 p

l u d  t y  ,
] U U
I ' j ' (5.62)

Note that in practice, we can sim ply consider the bare correlation fiuictions in order 

to verify autom atic 0 (a )  improvement. In fact, the corresponding renormalization 

factors only contribute logarithm ically in a while taking the continuum limit. N ote also 

that the xo-derivatives of the above correlators correspond to the 0 (a )  counterterms 

of the 7 5 T^-even correlation fim ctions we considered in the definition of the finite 

renormalization constants Z v  and Z a (cf. Section 5.1.4). If these correlators are pure 

0 (a )  effects, it is then clear that they can only contribute to O(a^) in the determination  

of these finite constants.

Finally, we just want to  mention the possibility that 7 5 r^-odd observables could 

be exploited to determine som e of the 0 (a )  improvement coefficients. In fact, they  

offer a source of pure cutoff effects that could be used to impose suitable improvement 

conditions. On the other hand, the problem that occurs with these observables is that 

it is difficult to isolate the 0 ( a )  contribution coming from a specific source. Indeed, 

these correlation functions include contributions from the bulk action and operators, 

and also boundary counterterms. In addition, one should consider the effect coming 

from the 0 (a )  uncertainty in the tuning of the critical mass and Z f .  In conclusions, 

a straightforward application of this idea is not practical, and some more elaborate 

strategy needs to be devised.
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5.3 The lattice setup

In the previous section, we defined the observables th a t will be investigated and their 

expected features. Before presenting the corresponding results, however, we need to 

specify the  lattice set-up. This includes: the boundary conditions for the fields, the 

xSF geometry, the choice of the lattice action, and the renorm alization conditions 

for the bare param eters, gQ^niQ, and Z f .  The renorm alization of the la tte r is done 

by requiring three given observables to  assume some prescribed values while the  bare 

coupling go —> 0. The specification of these observables is w hat defines our line of  

constant physics (LCP). Regarding the boundary conditions for the fields, we recall 

th a t these consist of the gauge boundary fields, C  and C ', and the angle 9 th a t defines 

the spatial periodicity of the quark fields (cf. Section 3.1). In the following, we consider 

the boundary gauge fields to vanish, namely C  =  C ' =  0. The angle 9, instead, is taken 

to  be equal to zero if not specified otherwise. Finally, the  xSF  geometry is simply 

defined by the condition T  = L. Given these definitions, we now describe the lattice 

action in detail.

5 .3 .1  L a t t ic e  a c tio n

In order to choose the lattice action, we need to  consider th a t we want to  compare 

our results with previous standard  SF determ inations. In particular, we would like to 

compare the results for the finite renormalization constants defined in Section 5.2.1. 

Since this is clearly done at finite lattice spacing, to do it consistently we have to 

choose the very same bulk lattice action as in the standard  SF regularization. In the 

following, we thus study the theory with N f  =  2 non-perturbatively 0(a)-im proved 

W ilson-fermions. More precisely, we consider the  action as specified by (3.22), and 

(3.77), where the value of the improvement coefficient Csw(ffo) been tuned non- 

perturbatively (Jansen and Sommer, 1998). As we will comment on shortly, this plays 

to  our advantage. In principle, if autom atic 0(a)-im provem ent holds, we would not 

need to  tune this coefficient in order to elim inate the 0 (a )  contributions coming from 

the bulk action in our j^T^-even  observables. However, the absence of these bulk 

0 (a )  contributions is expected to  help significantly in the determ ination of the critical
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quark mass and Zf (cf. Section 5.3.3). On the other hand, note that by considering an 

improved bulk action, the property of autom atic 0 (a )  improvement can be verified only 

through the study of the 0 (a )  contributions coming from the operator improvement.

To conclude, in order to com pletely specify the lattice action, we need to define 

the values for the improvement coefficients corresponding to the two 7 5 T^-even 0 (a )  

boundary counterterms. Specifically, we consider Ct{go) and d<i{gQ) as given by 1-loop 

order perturbation theory (Vilaseca, 2013).^ As com mented, however, we expect our 

determ inations to be independent at 0 (a )  from these contributions (cf. Section 5.2.4). 

Finally, note that for the convenience of the reader we collected the expressions for 

these improvement coefficients, together with Cswigo), in Table 5.1.

T ab le  5.1 0 (a )  improvement coefRcients for the xSF lattice action.

Coefficient Expression Notes

l - g o  0 .4 5 4 -g J  0.175+Pu 0.012+g,“ 0.045 
1 - s g  0.720

1 +  (0.006888 X N{ -  0.08900)

0.5 -  <;2(o.0009 x  C ^ )  C f  = ^

5 .3 .2  L in es o f  c o n s ta n t  p h y s ic s  (L C P s)

In this subsection we present the details of the LCPs considered. More precisely, we 

will first discuss how the bare coupling is renormalized, and later introduce the precise 

renormalization conditions for the quark-masses and Z f .  As anticipated, since we are 

considering finite-volume renormalization schemes for the renormalization factors, the  

physical spatial extent L  of the volume needs to be kept fixed while approaching 

the continuum limit. This defines our condition for the renormalization of the bare 

coupling. Given some values of the bare coupling go then, we have to tune our lattice 

size L / a  such that L  is constant in physical units. In the following, we present two 

sets of lattice parameters which correspond to quite some different physical regimes. 

On one hand, we will consider values of the lattice spacing typical of iion-perturbative 

large volume simulations. The finite volumes we will consider thus have L ~  0.6 fm.

w arm ly  th a n k  Pol Vila-seca for sh a rin g  h is re sn lts  before pu b lica tio n .

^sw  { g o ) 

ctigo) 
ds(go)
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These will be mostly used for the determ ination of the finite renorm alization constants. 

Secondly, we will enter in the “femto-universe” , in order discuss the running of the 

quark masses. The finite volumes in this case are p retty  tiny with L < 0.25 fm.

L C P q: h a d ro n ic  reg im e . For the first LCP we are considering, the range of bare 

couplings and thus lattice spacings is fixed by the large volume simulations performed 

with N( = 2 non-perturbatively 0(a)-im proved Wilson-fermions. The details of the 

corresponding lattice ensembles can be found in (Pritzsch et ai ,  2012). In particular, 

in the la tte r work the lattice spacing a has been determ ined in physical units in term s 

of the Kaon decay constant for the values of the bare coupling of interest. Given 

these results, it is easy to  define a set of L/ a ' s  for the given go’s such th a t the physical 

L  is constant.

T ab le  5 .2  Lattice parameters that define the two sets LCPo and P'l’.

p L / a a (fm) ^crit {P) Zf W)

5.2 8 0.0755(9)(7) 0.1356491(36) 1.2824(07)

5.3
LCPo

9.2* 0.0658(7)(7) - -

5.5 12 0.0486(4) (5) 0.1367093(27) 1.3112(10)

5.7 16 0.0379(15) 0.1367058(36) 1.3061(21)

7.2 8 - 0.1341925(15) 1.2296(04)

P T  8.4 8 - 0.1325594(11) 1.1901(02)

9.6 8 - 0.1313952(11) 1.1617(02)

'T h i s  p o in t w as n o t d irec tly  sim u la ted . Som e in te rp o la tio n  in s tea d  w as con ­

sidered . See te x t  an d  A p p en d ix  D.3.

The idea is simply to  fix L  a t the coarsest lattice spacing by choosing some value of 

L/a .  This choice is in principle arbitrary  and only guided by the condition L / a  2> 1, 

which guarantees th a t cutoff effects are under control for our finite-volume observables. 

After some careful analysis we chose the value of L / a  =  8, which corresponds to 

a physical spatial extent of L ~  0.6 fm. The values for L / a  corresponding to  the
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other lattice spacings are then easily inferred from the condition L  =  const.^ The 

results are collected in Table 5.2, together with the values of the lattice spacing in 

physical units, the values of the bare coupling P = 6/qq, and the tuned values for 

Zf{go) and «crit(5o) =  (2rricrit(ffo) +  8)“ .̂® Note th a t for la tte r convenience, we will 

refer to  this set of lattice param eters as LCPq- A s we shall see, for this choice of 

param eters cutoff effects tu rn  out to  be relatively small for most of the observables 

we considered. Moreover, the resulting lattice volumes are also small, and extensive 

numerical simulations could be thus performed.

Given the results in Table 5.2, some specifications are in order. First of all, note th a t 

of course we can only simulate a t integer values of L/a .  In the table we thus reported 

the closest integer values th a t satisfy the condition L =  const. For the value of the 

bare coupling given by /3 =  5.3, however, this would have corresponded to  a lattice size 

of L /a  =  9, and our algorithm can only sim ulate L/a-even  lattices. Consequently, we 

decided to interpolate our observables a t the “exact” value of L / a  determ ined by the 

condition L  =  const, i.e. L / a  = 9.2. The details of this interpolation are discussed in 

Appendix D.3. For the other values of L / a  instead, we have estim ated the system atic 

effects on our observables due to the deviation from the exact values of L/a.  This is 

also discussed in the Appendix, more precisely Appendix D.2. We invite the reader 

to  consult these appendices only after the discussion in the next section, when the 

specific observables we considered have been introduced.

Finally, note th a t in Table 5.2 we also reported a set of lattice param eters referred to 

as PT . This includes three relatively high values of /? a t fixed lattice size L / a  = 8. These 

param eters of course do not satisfy the condition of constant physical L. Nevertheless, 

we will consider this set to  have an idea of how our non-perturbative results connect 

to  their perturbative predictions, and to other non-perturbative determ inations at 

high-/?.

^Note that the error on the value of L and consequently on L / a  deriving from the uncertainty in 

the lattice spacing a can be neglected in practice.
®The physical value of the lattice spacing for /3 =  5.7 was not available from non-perturbative 

determinations. We thus had to estimate it using the values at larger /9’s and the results for the 3-loop 

perturbative running of the bare coupling (Bode and Panagopoulos, 2002).
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T ab le  5 .3  Lines of constant physics corresponding to the non-perturbative running of the 

quark-masses.

LCP L/a P ^  6/gg “  ~  3s f (-̂ ) ^crit (/̂ ) ZfiP)

6 6.6085 2.0146(56) 0 .1352428(24) 1 .2580(3)

LCPs 8 6.8217 2.014(10) 0 .1348340(22) 1 .2452(5)

12 7.09300 2.014(20) 0 .1343877(15) 1 .2370(4)

6 6.1330 2.488(11) 0 .1360800(30) 1 .2777(6)

LCP.2 8 6.3229 2.479(13) 0 .1357386(20) 1 .2688(4)

12 6.63164 2 .479(25) 0 .1351926(11) 1 .2570(3)

6 5.6215 3.326(20) 0 .1366258(43) 1 .2896(8)

LCPi 8 5.8097 3 .334(19) 0 .1365442(19) 1.2902(6)

12 6.11816 3 .334(49) 0 .1361290(20) 1 .2831(7)

L C P i ,2 ,3 : f e m to - u n iv e r s e .  A s d iscussed , w e w ant to  in vestiga te th e  un iversality  o f 

th e  continuum  lim it betw een th e standard SF and th e  by stu d y in g  th e  running of  

th e  quark-m asses at high-energy. To th is end, we w ill consider th e  three L C P s defined  

in T able 5.3. For th ese  values o f th e  lattice param eters indeed , previous standard SF  

d eterm ination s are available for th e  q uantities o f interest (D ella  M orte et a l ,  2005a). 

In particular, note th a t in th is case th e  condition  L  =  const, is im plicitly  enforced  

by fixing th e  SF coupling 5 gp(L ) to  a prescribed value (cf. S ection  5 .2 .3 ). For later  

reference, th e  corresponding values for th e  SF  coupling are then  also reported in the  

tab le  togeth er w ith  their errors. F inally, we n ote th a t for th ese ensem bles th e  ferm ionic  

angle 9 has been  set t o  9 =  0 .5  in order to  m atch th e  renorm alization  schem e for th e  

pseudo-scalar d ensity  adopted  in (D ella  M orte et  al., 2005a).

T h is concludes our d iscussion  on th e  renorm alization of th e  bare coupling. W e will 

now address th e  renorm alization  o f th e  quark-m asses and Zf.



134 The chirally rotated SF at work 

5 .3 .3  T u n in g  o f  toq a n d  Zf

In order to discuss the renormalization conditions for the quark masses and Zf,  we 

start recalling that the (renormalized) quark-masses need to be tuned to  zero in order 

to define a mass-independent scheme for our renormalization constants (cf. Section  

2.3). This is also a necessary condition to obtain autom atic 0 (a )  improvement. The 

second condition, instead, is the renormalization of the xSF  boundary conditions which 

amounts to fixing the boundary coefficient Zf  (cf. Section 3.4.3).

To fix the quark-masses one then sim ply tunes the PCAC mass (2.30) to zero at 

each value of the bare coupling qq. In particular, to com pletely specify the definition  

of PCAC mass, we set Ogxt =  in (2.30) and require.

This defines the critical value merit(so) for the bare quark masses. In particular, note 

that since we are not considering the improved axial current Aj  (cf. (2.44)) in the above 

definition, our determination of the critical mass will suffer from 0 (a )  ambiguities, 

even though the bulk action is improved. As discussed, however, this does not affect

Regarding the tuning of Z f { g o )  instead, we inipo.se the criteria of parity/flavour 

symmetry restoration on som e suitable observable. A convenient set of observables is 

given by the 7 gr^-odd correlation functions (5.62). Specifically, we then consider the 

condition,

As we shall see, this correlation function offers a good sensitivity on Zf,  and also a good  

statistical precision. Similarly to the case of meriti the determination of z /  so obtained  

will suffer from 0 (a )  ambiguities. Hence, if another 7 5 r^-odd correlation function is 

used to determine Zf,  the difference between these two determ inations will scale as 

0 (a )  to  the continuum limit. However, as argued for the critical mass, this ambiguity 

will only effect 7 5 T*-even functions at O(a^). In this respect, we want to note that 

these expectations have been extensively confirmed in perturbation theory (Vilaseca, 

2013), and also in the quenched approximation (Sint and Leder, 2010).

mpcAC (50, merit (50)) (5.63)

7 5 T^-even functions at 0 (a )  but only at O(a^).

5 4 '^ ( ^ o )Ixo =  i  =  0- (5.64)
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To conclude, once th e  renorm alization  conditions above are im posed on th e  bare 

quark-m asses and  Zf,  we expect au tom atic  0 ( a )  im provem ent to  be realized. However, 

th e  p rac tica l question  now is how difficult it is to  force these  conditions w ith in  a good 

precision in num erical sim ulations. Before m oving to  discuss th e  resu lts, we will address 

th is  im p o rta n t issue in th e  following paragraph .

T u n in g  s t r a t e g y .  In princip le one would expect th a t  close to  th e  continuum  lim it, 

th e  d e term in a tio n s of mcnt(go)  and  Zf(go)  are ra th e r  independen t. T hese param eters 

indeed are b o th  functions of th e  bare coupling only. However, a t  a  generic value of th e  

la ttice  spacing, cutoff effects c reate  an in terdependence betw een these two param ete rs 

w hich a priori is hard  to  quantify. In general, th e  tu n in g  of mo and  Zf  need then  to  

be perform ed sim ultaneously. A possible s tra teg y  one can pursue is th e  following.

W e consider sim ulations a t different values of mo, and  for each mo we choose a 

given set of z / ’s, then:

1. A t fixed Zf,  we com pute mpcAci f^ io,  ^ f ) ,  Vmo, and determ ine merit by requiring 

^npCAc("icrit,-Z/) =  0. T his gives merit =  merit(-Z/)-

2. A t fixed Zf ,  we com pute  g^)^{mQ.Zf),  Vmo, and  in te rp o la te  in ;7io to  get 

g'/ f  (rUcritiz f ) , z  f )  =  f ( z f ) ,  which is now only function of Zf.

3. We d eterm ine th e  value z j  by requiring  f { Z f )  =  0.

4. A t fixed mo, we in te rpo la te  m p c A c (”iOi-^/) hi Zf  to  get m p c A c b u o ,

5. m*^ij is determ ined  by requiring  mpcAc{i^^lnt ,  ^})  =  0.

A nalogously one can in te rpo la te  and get m ’ ĵ̂  =  nicnt (Zf )  from  1.

6. Check th a t  z j )  = 0; if no t go back to  3. and ite ra te .

Basically, one th u s  has to  solve a  m inim ization  problem  in two variables, and  if th e  

in te rdependence is strong  it could be difficult to  satisfy th e  tw o conditions w ith in  a

good precision. In  th e  quenched approx im ation  however, it has been observed th a t

once th e  bulk action  is im proved, th e  PC A C  m ass tu rn s  o u t to  be ra th e r  independen t 

from  Zf  (Sint and  Leder, 2010). From  th e  po in t of view of th e  s tra teg y  discussed above, 

th is  m eans th a t  in p ractice: nicr\t{zf)  ~  const Hence, in m ost of th e  cases

one can  m ake th e  tw o conditions be satisfied independently : one first tu n es to  zero
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qiiark-m asses, and  th en  determ ines a t th e  given critical m ass. As we now show 

w ith an explicit exam ple also in dynam ical sim ulations th is  resu lt seem s to  hold. M ore 

precisely, th e  P C  AC m ass does n o t depend  m uch on Zf if th e  two param ete rs  are close 

to  th e ir  critica l values.

As an exam ple consider th e  resu lts  for th e  P C  AC m ass shown in F igure 5.1. As 

one can  see from th e  figure, th e  values of mpcAC do not depend m uch on Zf in th e  

given range. As we will com m ent on shortly, th is  range is in fact a typ ical range to  

ob ta in  a good tu n in g  for Zf.  T hese m easurem ents are for L / a  =  8 an d  /3 =  5.2, nam ely 

th e  coarsest la ttice  we considered along th e  L C P given by LCPq (cf. Table 5.2). T he 

situ a tio n  is th u s expected  to  be even b e tte r  for th e  o ther la ttices a t sm aller values of 

th e  la ttic e  spacing. In fact, th is  is w h a t we observe.
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z p  1.2850 
z ^  1.2900

0.01  -

j
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N
'Xj<ua.
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Fig. 5.1: Value of m p c A C  for L f a  = 8, (3 =  5.2, and  th ree  d ifferent values of Z f .  

niq =  mo — w here has been determ ined  from  a co n s tan t fit of th e  th ree

^ c r i t ( - 2 / ) '
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In this situation, as anticipated the critical mass turns out to be rather independent 

on Zf. After some experimentation one thus ends up with a range of ttiq and Zf close 

to their critical values. Given these ranges, one can then generally obtain a single 

value of merit =  ^crit ensures that the PCAC mass vanishes within some desired 

precision over the whole range of z / ’s. ® Once this value is determined, one interpolates 

the given renormahzation condition for Zf at  This is what we show for example

in Figure 5.2, which is the result for and g'p' interpolated to zero quark-masses. 

We recall that our renormalization condition for Zf is based on g'^ — 0. In the figure 

however we also consider the eventual tuning based on a different 7 sr^-odd function, 

namely . As discussed the difference in the determination of Zf from these two 

different correlators is an 0 (a ) effect. As we can see, the two determinations 2 ^* and 

z^  * corresponding to g'^  and ^p“ , respectively, are in fact pretty close and within 

error comj^atible (the errors are not shown for readability of the plot.) This suggests 

that these 0( a)  effects are relatively small.

To conclude, this was j list a quick illustration of how the tuning looks like. Tlie main 

point we want to stress is that, similarly to what has been concluded in the quenched 

approximation, also in the dynamical case the tuning of the additional renormalization 

parameter is relatively straightforward, at least for the case where the bulk action is 

improved. In fact, if one is relatively close to the critical values of mo and z /  the two 

conditions can be implemented independently in practice. In this respect, note that if 

the value of the critical mass is known from a previous standard SF determination, 

this could be used as part of the definition of the LCP. In this case, one simply has 

to tune Zf for the given value of the critical mass (Sint and Leder, 2010). Indeed, 

since the critical mass is determined through the PCAC relation, it is expected to 

be independent from the specific boundary conditions employed, up to discretization 

effects. However, we did not follow this strategy since we wanted to acquire familiarity 

with the tuning. Moreover, if the 0(a)  effects between the SF and xSF determinations 

of tlie critical mass are large, this might induce large O(a^) effects in the xSF results.

®This can  be  o b ta in e d  in p rac tice  by a  w eighted  fit over th e  d ifferen t m critC ^/) in th e  given range 

o f  Z f  for exam ple.
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Fig. 5.2: Results for and g'p^ interpolated at zero quark-mass for L /a  = 8, and 

/3 =  5.2.

5 .4  Determ ination o f  Z y  and Za

Having introduced the lattice setup and discussed the tunning of the bare quark-masses 

and Zf, we  can now present our results. We thus s ta rt with the finite renormalization 

constants Z y  and Z a - Specifically, we first compare our determ inations with previous 

standard  SF com putations. We then study the scaling to  the continuum limit of the 

difference between different definitions of these renormalization factors. As we shall 

see, the O(a^) scaling expected from autom atic 0(a)-im provem ent is nicely realized, 

and cutoff effects are generally small in these observables. In order to  provide further 

evidence to  this conclusion, we will compare the results for the finite renorm alization 

constants for two different LCPs. In addition, the xq dependence of our definitions will 

be investigated.
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5 .4 .1  Z v -  a  f i r s t  lo o k

We s ta r t  from  th e  resu lts for th e  renorm alization  of th e  local vector cu rren t Z y ,  which 

is th e  sim plest case to  study. We note indeed th a t  its d e term in a tio n  does not rely 

on any universality  re la tion  betw een th e  SF and  xS F , b u t sim ply on th e  un iversality  

betw een th e  m atrix  elem ents of th e  local and  po in t-sp lit vector cu rren ts . M oreover, 

th e  resu lts from  th e  s ta n d a rd  SF, Zy^,  a re  q u ite  accu ra te  and  provide a  s tringen t 

com parison (D ella M orte, H offm ann, K nechtli, Som m er and  Wolff, 20056).
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Fig. 5.3: R esu lts for th e  renorm alization  of th e  local vector cu rren t as a  function of 

go- T h is includes a  com parison betw een th e  x S F  de term ina tions Z y  and  Z y ,  and  th e  

s ta n d a rd  SF d e term in a tio n  Z ^ . T h e  1-loop p e rtu rb a tiv e  resu lt is also given. T he set 

of la ttice  pa ram ete rs  is th e  one corresponding  to  LCPq an d  P T . N ote th a t  the  po in ts  

have been slightly  shifted  in in o rder to  im prove th e  readab ility  o f th e  plot.

In F igure 5.3, we p resen t our resu lts for Z y  (cf. (5.49)) as a function  of go for 

th e  line of co n s tan t physics defined by L C P q, and  the  se t of la ttice  param ete rs  given
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by P T  (cf. Table 5.2). The first th ing to  note is th a t, apart from Z® at the largest 

value of the  bare coupling, our results nicely agree within errors with the standard 

SF determ ination. This of course does not have to  be the case since in general we 

expect O(a^) differences, assuming th a t autom atic 0 (a )  is a t work for our results. 

The conclusion is thus simply th a t these O(a^) effects are smaller than  the statistical 

uncertainly in the standard  SF determ ination. Note however th a t given our precision 

we can resolve some differences between our two definitions Z y  and Z y , a t the largest 

values of the bare coupling. This can be b etter seen in Figure 5.4, where we provide a 

zoom of Figure 5.3 on the results corresponding to  LCPq only. As we can see from this 

figure the spread of our determ inations is in fact compatible with an O(a^)  effect. If we 

consider for example the relative difference between Z y  and Z y  a t the largest value 

of the bare coupling, since the corresponding lattice size is L /a  =  8, we would expect 

(roughly): 1 — Zy j Z \ y  ~  1/64 ~  1.5%, which is in fact the case. We will investigate 

this in more detail shortly, in order to check if also the scaling of these differences to 

the continuum limit is the expected one.

To conclude, a few observations are in order. F irst of all, we want to  comment on 

the higher precision of our determ inations. In this respect, note th a t the  errors shown 

in the figures are not only statistical bu t include an estim ate of the main systematics. 

These are related to  the  fact th a t the conditions: L  =  const., mpcAC =  0, and for 

the xSF  case also, =  0, are only satisfied within some precision. The details of 

our error estim ates is given in Appendix D.2. Here we just want to mentioned th a t 

through dedicated numerical simulations and the information from the tuning runs, 

we have estim ated the derivative of our renorm alization factors w .r.t. these three 

quantities in order to propagate the corresponding uncertainties in our determ inations. 

Moreover, note also th a t to  have a fairer comparison between our and the standard 

SF determ ination, one should increase our errors by roughly a fact two in order to 

compensate for the different statistic.^ This said, however, still our determ inations 

tu rn  out to  be much more precise. We believe th a t the origin of the higher precision is

^We believe this to be a conservative statement, even though it is difficult to access the effective 

statistic on since no autocorrelations are provided in the corresponding reference. We thus have 

estimated those based on our runs.
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Fig. 5.4: Results for the renormalization of the local vector current as a function of 

go- This includes a comparison between the xSF determ inations Z® and Z y ,  and the 

standard  SF determ ination Zf^.  The set of lattice param eters is the one corresponding 

to  LCPq. Note th a t the points have been slightly shifted in in order to  improve the 

readability of the plot.

due to  the fact th a t our definitions are given by simple ratios of two-point functions (cf. 

(5.49)). In particular, we have noticed th a t considering only the statistical errors, the 

ratio  of such correlation functions is of 0(10) times more precise than  the individual 

correlators.® In the standard  SF case, instead, Z y  is obtained through a WI. This 

results in having to  com pute the more complicated ratio of a three-point function 

involving two boundary source fields and the local vector current, with a two-point 

boundary-to-boundary correlator (see e.g. (Della Morte, Hoffmann, Knechtli, Sommer 

and Wolff, 20056)).

®Of course th is sta tem en t depends on the  given lattice param eters and o ther details. Here we just 

w ant to  give a rough idea of the size of the  statistical correlations of these tw o-point functions.
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Going back to  Figure 5.3, we also want to briefly comment on the da ta  corre­

sponding to the set PT . This inchides the d a ta  with < 1. As discussed these 

determ inations do not lie on a LCP since it is L ja  and not L  which is fixed while 

go 0. The difTerence between the different determ inations is thus expected to  scale 

as 0(gg). However, note th a t the errors include a rough estim ate for the deviation from 

the condition L  =  const. Surprisingly, the definition Z\,  is not much sensitive to  these 

O(gQa^) effects. We will notice a similar behavior in the Z a  determ ination from the 

standard  SF later on. Consequently the results from the different determ inations all 

agree, and seem to smoothly connect with the perturbative 1-loop results. Note th a t 

this corresponds to  the determ ination for L /a  —> oo (see e.g. (Della M orte, Hoffmann, 

Knechtli, Sommer and Wolff, 20056) and references therein). In this respect, it would 

be interesting to  compare the results with perturbation  theory at finite L /a .  Using 

these results might also help in further reducing the differences in our determ inations.

Table 5.4 Values for Zv  from the xSF corresponding to LCPq.

L /a z t 7I

5.2 8 0.74680(26) 0.73844(51)

5.3 9.2 0.75217(67) 0.74592(59)

5.5 12 0.76632(67) 0.76251(76)

5.7 16 0.77997(29) 0.77801(36)

Finally, in Table 5.4 we report our final results for Z y  corresponding to the line of 

constant physics given by LCPq.

5 .4 .2  Z ^:  a  f irs t look

Similarly to  the previous subsection, we now want to  compare our results for Z a 

with the standard  SF determ ination, Z ^ . We recall th a t our definitions are given by 

(5.47), (5.48), and (5.50). In Figure 5.5 we present the corresponding results for the line 

of constant physics given by LCPq, and the set of param eters referred to  as PT . The 

results for the standard  SF are also shown, as well as the 1-loop perturbative prediction. 

The corresponding details of these results and the definition of Z a  can be found
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Fig. 5.5: Results for the renormalization of the local axial current as a function of go- 

This includes a comparison between the \S F  determinations Z^,  Z \ ,  and the 

standard SF determination Z ^ . The 1-loop perturbative result is also given. The set 

of lattice parameters is the one corresponding to LCPq and PT. Note that the points 

have been slightly shifted in Qq in order to improve the readability of the plot.

in (Della Morte, Hoffmann, Knechtli, Sommer and Wolff, 20056; Della Morte, Sommer 

and Takeda, 2009; Fritzsch et ai,  2012). In particular, note that a first update of Z^  has 

been given by the Alpha Collaboration in (Della Morte, Sommer and Takeda, 2009), 

since large cutoff effects have been observed in their first computation along the line of 

constant physics given by LCPq (Della Morte, Hoffmann, Knechtli, Sommer and Wolff, 

20056). The updated SF results for Z \ ,  thus correspond to a different LCP defined by 

the values of /3 =  5.2,5.4,5.7, and the larger lattice resolutions L /a  =  12,16,24. The 

results for at the values of Qq where the large volume simulations were performed 

have then been obtained through a proper interpolation in qq. The latest updated 

results used in Figure 5.5 can be found in (Fritzsch et ai,  2012).
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Fig. 5.6: R esu lts for th e  renoraia lizatio ii of th e  local axial cu rren t as a function of 

go -  T his includes a com parison betw een th e  xS F  determ ina tions Z ^ ,  and  th e

s ta n d a rd  SF d e term ina tion  . T h e  set of la ttice  param ete rs  is th e  one corresponding 

to  LCPq. N ote th a t  th e  ]3oints have been slightly  shifted in in o rder to  im prove th e  

readab ility  of th e  plot.

S im ilarly to  th e  case of Z y , we see good agreem ent betw een ours and  the  s ta n d a rd  

SF d eterm ina tion . In th is  case, however, th e  errors in th e  la tte r  com p u ta tio n  are much 

larger. T h is can be b e tte r  seen in F igure 5.6, w here we consider only th e  resu lts  in 

th e  range of bare couplings corresponding  to  L C P q. We also notice th a t  given our 

precision we can resolve some differences betw een th e  different xS F  definitions for Z ^ .  

In p articu la r, again as for th e  case of Z y ,  th e  size of these differences is sm all and 

com patib le  w ith  an  O (a^) effect. T h is  will be investigated  m ore in deta il in th e  next 

subsection.

To conclude, we w ant to  no te th a t  th e  s ta n d a rd  SF d e term in a tio n  of Z a  is much 

m ore involved th a n  th e  corresponding  x S F  de term ination . In th e  s ta n d a rd  SF, Z ^
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is o b ta in ed  th ro u g h  a W I. As a resu lt, one has to  consider th e  ra tio  of a four-point 

function  involving two b oundary  source fields and two axial cu rren ts , w ith  a two- 

po in t b o u n d ary -to -b o u n d ary  correla tor. T h e  precision of th is  d e term in a tio n  is thus 

expected  to  be generally  lower th a n  in th e  case of th e  x S F  w here only tw o-point 

functions are  involved. In add ition , for th e  s ta n d a rd  SF d e te rm in a tio n  th e  im proved 

axial cu rren t A i  needs to  be considered in o rder to  o b ta in  an 0 ( a )  im proved definition. 

T h e  correspond ing  de term in a tio n  of th e  im provem ent coefficient ca needs th u s to  be 

perform ed first (see e.g. (D ella M orte, H offm ann and Sonm ier, 2005c) for th e  details 

of th is  co m p u ta tio n ).

F inally, in T able 5.5 we collect our final resu lts  for Z a  corresponding  to  the  line of 

co n s tan t physics given by LCPq and  th e  th ree  definitions.

T a b le  5 .5  Values for Z a  from th e  xS F  corresponding to  LCPq.

L /a 7 I z ^ l

5.2 8 0.78026(29) 0.76950(45) 0.77820(47)

5.3 9.2 0.78406(52) 0.77564(48) 0.78214(80)

5.5 12 0.79448(59) 0,78948(64) 0.79342(91)

5.7 16 0.80527(29) 0.80280(32) 0.80482(43)

A fter th is  discussion on Z y  and  Z a , we can conclude th a t  ou r resu lts look sensible 

and  in fact very prom ising. In th e  nex t subsection , we th u s presen t a series of te s ts  

th a t  we perform ed on th e  size and  n a tu re  of th e  cutoff effects in these determ inations. 

T h is will b o th  serve us as a check for au to m atic  0 ( a )  im provem ent, as well as for 

co rrobo ra ting  th e  robustness of our results.

5 .4 .3  Z v  a n d  Z a '- a  c lo s e r  lo o k

As an tic ip a ted , in th is  subsection  we collected a few observations on th e  n a tu re  and 

size of cutofT effect in our Z y  and  Z a  d e term inations. We now p resen t these in detail.

S c a l in g  o f  Z y  A d if fe re n c e s .  We here p resen t th e  continuum  lim it ex trap o la tio n  

of th e  differences betw een different renorm alization  conditions th a t  define Z y  and
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Z a - We stu d y  th is  along th e  line of co n stan t physics given by LCPq. W e recall th a t  

if au to m atic  O (a)-im provem ent is a t work, we expect these  differences to  scale like 

O (a^) (cf. Section 5.2.4). T h e  resu lts  we ob ta ined  are shown in F igure 5.7.

z 8 - z ^ ~  z ® - z 'a - ^  z J , - z ; | ~
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Fig. 5.7: C ontinu iun  lim it ex trap o la tio n s  for th e  differences betw een different xS F  

defin itions of Z y  and  Z a  along th e  line of co n stan t physics defined by LCPq.

N ote th a t ,  since L  is fixed in physical un its , th e  continuum  lim it is ob ta in ed  by 

sim ply tak in g  a /L  —> 0. As we can see, th e  difference betw een ou r two definitions 

of Z y , as well as th e  differences am ong several definitions of Z a , nicely ex trap o la tes  

to  zero w ith  th e  expected  O (a^) scaling. N ote th a t  th e  lines on th e  p lo t are given in 

fact by linear fits in (a /L )^  constra ined  to  pass from  zero. We w ant to  stress again 

th a t  th is  resu lt is non-triv ia l. Indeed , as m entioned, even th ough  ou r bulk action  is 

0 ( a )  im proved, th e  full im provem ent of our de term ina tions would generally  require th e  

corresponding  (bulk) 0 ( a )  o p e ra to r  im provem ent. As an exam ple Z y  would require 

th e  im provem ent of b o th  th e  local and  po in t-sp lit vector cu rren ts (cf. (5.52)).
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In order to  corroborate the above observation further, in Figure 5.7 we considered 

the effect of substitu ting Z ^  with the corresponding improved definition Z^^  (cf. 

(5.52)) in the difference Z ^  — where the improvement coefficient for the axial 

current, Ca , has been fixed to  its non-perturbative value (Della M orte, Hoffmann and 

Sommer, 2005c). As we can see, (a bit surprisingly) there is basically no effect of the 

0 (a )  operator counterterm  within the errors. This give us confidence to  interpret the 

result as the fact th a t the 0 (a )  operator improvement only contributes as an O(a^) 

effect, which in this case turns out to  be very small. To conclude, as already noticed in 

the previous subsections, also the (relative) differences between the different definitions 

are small. In fact, we have only ~  1.0— 1.5% differences a t the coarsest lattice spacing.

C o m p a r iso n  w ith  a n  a l te rn a t iv e  L C P . Given the results presented so far, it 

seems th a t cutoff effects in our determ inations of Z y  and Z a  are generally small and 

have the expected scaling to  the continuum limit. In order to have another estim ate 

of the  size of cutoff' effects, we thus decided to com pute our finite renorm alization 

constants at tJie coarsest lattice spacing for a different lattice resolution L/a .  More 

precisely, a t the value of the bare coupling specified by /3 =  5.2, we considered a lattice 

with L / a  = 12 instead of L / a  = 8. This would correspond to  a LCP where L  ~  0.9 fm. 

As discussed, we then expect the dependence on L / a  a t fixed bare coupling go to be 

an O(a^) effect.

T ab le  5 .6  Comparison between the results for different finite renormalization constants 

between two lattices with L / a  =  8 and L / a  =  12 at fixed /3 =  5.2. Note that for the 

convenience of the reader the relative difference between the results of the two ensembles is 

also given in per cent.

L / a 7l Z p / Z s y^9

8 0.7468(3) 0.7384(5) 0.7923(5) 0.7803(3) 0.7695(4) 0.7782(5)

12 0.7334(4) 0.7304(8) 0.7385(22) 0.7732(7) 0.7636(7) 0.7667(8)

~% 1.8 1.1 6.8 0.9 0.8 1.5

In Table 5.6, we report the  values we obtained for our finite renorm alization factors
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for the two lattice sizes L /a  = 8,12 at fixed (3 = 5.2. For later convenience we also 

included the determination of Zp/Zs -  As we can see, the (relative) difference between 

the Z y  and Z ^  determinations on the two lattices is small, and generally of the order 

of a couple of per cent. This is not case though for the ratio Z p / Z s  which shows more 

pronounced cutoflF effects. We will discuss this in more detail in a later section.

xq—d ep en d en ce  of Zy  an d  Za - The last quantities we have looked at in order to 

study the size of cutoff effects in our finite renormalization constants, are related to 

their xq dependence. As discussed, we normally measure the ratio of our two-point 

functions in the definition of the Z  factors a.i xq = T /2, i.e. in the middle of the lattice 

volume. This we argued generally leads to smaller cutoff effects since it maximizes the 

distance from the boundaries where the 0 (a ) (and higher) boundary counterterms are 

localized.® However, any other value of xq in the bulk of the lattice is equally good in 

principle and should lead to 0{a?) differences in the results.

Given these observation, we then studied the quantities defined by,

AZ =  Z(3T/4) -  Z (T /2), {LdoZ){T/2),  (5.65)

where Z  is our generic finite renormalization factor. In order words, we looked at the 

difference between the Z  factors at xq = 3T/4 and Xq = T /2, and at the xo-derivative 

at Xq =  T/2.  Note that, the latter has to be multiplied by L  in order to obtain a 

dimensionless quantity that scales to a finite value in the continuiun limit.

In Figure 5.8 we thus present the results for the continuum limit extrapolations of 

these quantities as a function of (a/L)^ along the LCP defined by LCPq.^^ As we can 

see, regarding A Z  the differences are generally small and below a couple of per cent 

also at the coarsest lattice spacing. The only Z  factor that stands out is Z^,  but still 

cutoff effects are of the order of just a few per cent.

®We recall that in fact the 0 (a ) boundary counterterms are not expected to contribute to  the 

finite renormalization constants. Higher-orders are however certainly present.
^®We obviously exclude the point xg = a where the boundary source fields are localized, as other­

wise contact terms will originate between the boundary fields and the quark-bilinears.
''N o te  tha t for A Z  we omitted the value for L /a  = 9.2 since the interpolation is not straightforward 

in this case.
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Fig. 5.8: C on tinuum  l im it  extrapo la tions for A Z  and LBqZ  along the line o f constant 

physics given by LCPq.
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W hat is clear from the figure is that these diflferences cannot be described by a 

simple O(a^) effect over the whole range of lattice spacings considered. Some higher- 

order contributions are indeed present. In the plots, we thus show a fit of the data 

that contains a linear and quadratic term in (a/L)^, and it is constrained to pass 

through zero for a —̂ In this way, we had at least a single degree of freedom for 

the fit to (roughly) judge its quality. In fact, the fit nicely describes the data, and we 

thus conclude that even though some higher order effects seem to be enhanced in this 

quantity they correctly extrapolate to zero in the continuum limit.

Concerning the slope LdgZ at Xq = T/2  similar conclusions can be drawn. In this 

case we also have an additional point at L/ a  = 9.2 which fits on our fitting curves. 

The thing that we want to note here is that in this case also the ratio Z p j Z s  shows 

some sizable cutofT effects at the largest values of the lattice spacing.

This concludes our discussion on Z y  and Za- A s we have seen, our determinations 

are solid and much more precise than the standard SF determinations. In fact, here 

we have only presented a comparison of these determinations with results from the 

standard SF. Our computation of Za-, however, turns out to be very precise also 

if compared with other determinations, where for example twisted-mass fermions and 

several different methods have been employed (Constantinou e< a/., 2010). On the other 

hand, since the gauge action is different in this case we could not directly compare.

5 .5  Determ ination o f  ZpjZs

In the previous section, we discussed in some detail the determination of the finite 

renormalization constants Z y  and Z a using the x^F. As discussed in Section 5.2.1, 

however, the universality relations among xSF correlation functions allow us to easily 

define also renormalization conditions for the ratio of scale-dependent renormalization 

factors belonging to the same chiral multiplet (cf. (5.51)). As an example of this 

application, in this section we briefly present the determination of the ratio ZpjZs-

also tried a cubic instead of a quartic term in a /L , which describes the data equally well.
^^Note that a similar discussion on the enhancement of cutoff effects in some SF correlation func­

tions for this range of physical parameters can be found in (Della Morte, Sommer and Takeda, 2009).
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More precisely, we will consider the finite renorm alization factor defined by,

=  (5-66)

Note th a t the  two definitions simply differ by the choice of Z a - This renormalization 

factor Z  in interesting since it gives the ratio  of the bare quark mass difference over 

the  corresponding PCAC mass difference. It is thus of interest for the tuning of the 

quark masses in the non-degenerate case. Similarly to  the case of Z y  and Zyi, also 

in this case we compare our results with previous SF determ inations for N{ = 2 non- 

perturbatively 0 (a )  improved WiLson-fermions. The details of the la tte r com putation 

can be found in (FYitzsch, Heitger and Taiitalo, 2010).

1.05

N

L/a=12

0.95

SF

0.9
.05

T

Fig. 5.9: Results for the finite renorm alization factor Z  as a function of go- This 

includes a comparison between the xSF determ inations Z®, Z \  and the standard  SF 

determ ination Z ^^.  The set of lattice param eters is the one corresponding to  LCPq. 

Circled instead are the  results of a determ ination at /? =  5.2 and L j a =  12.
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In Figure 5.9 we report our results for the renormalization factor Z  along the LCP  

given by LCPq. The standard SF determination, , is also shown. Note that we 

included the result of a fit for the corresponding mean value over the range of go 

of interest. As we can see from the plot, excluding the value at the coarsest lattice 

spacing, the xSF  and SF determ inations have similar precision. On the other hand, we 

can resolve some sizable discretization effects. For the largest value of the bare coupling, 

j3 =  5.2, indeed the relative difference between x^ F  and SF determ inations is of the 

order of ~  10%. The difference however disappears quite quickly as we approach the 

continuum lim it, and for j3 =  5.7 it is reduced to ~  0.1%. This is much faster than an 

O(a^) effect, since we would expect in this case a reduction by a factor of four. The 

difference between our two determ inations of Z  instead is only dictated by Z a and 

thus as already noticed is small.

To conclude, we want to note that the difference between the SF and xSF  determi­

nations at the coarsest lattice spacing is significantly reduced if we consider our results 

for L / a  =  12 instead o i L ja  =  8. In fact, in this case the relative difference goes down 

to ~  4%, as can be seen also from the plot. This suggests that the LCP defined by 

L /a  =  12 at /3 =  5.2, and which corresponds to L ~  0.9 fm, is probably more suited  

for a reliable com putation of the Z  factor through the xSF.

Finally, for com pleteness, in Figure 5.10 we report the determ ination of Z  including 

the set of lattice parameters corresponding to PT. As we can see, the results slowly 

move towards the 1-loop perturbative determination (Guagnelli et a i ,  2001) for the 

largest values of go.

5.6 Automatic 0(a) improvement

In the previous sections, studying different finite renormalization constants we gave 

evidence that autom atic 0 (a )  improvement holds for our xS F  determinations. More 

precisely, we have shown that several non-trivial 7 sT'^-even observables have corrections 

w.r.t. their continuum values of O(a^), even though the corresponding 0 (a )  operator 

improvement has not been implemented. To com plete this analysis, in this section we 

want to present some results on the complementary feature expected from autom atic 

0 (a )  improvement, namely that 7 sT^-odd observables are pure 0 (a )  effects.
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Fig. 5.10: Results for the renormalization factor Z as a function of go- This includes a 

comparison between the xS F  determinations Z^, Z \  and the standard SF determina­

tion The 1-loop perturbative result is also given. The set of lattice parameters is 

the one corresponding to LCPq and PT.

For this study we consider the bare 7 5 r^-odd correlation functions corresponding 

to (5.62), and in addition some alternative discretization of the latter (see below). 

Note that we exclude g'^  since this has been used for the tuning of Zf,  and thus 

is autom atically zero within errors. As discussed already, in practice we can simply 

focus on the bare correlation functions since they are anyway expected to vanish as 

0 ( a )  effects up to logarithmic corrections. In particular, the correlation functions we 

consider are the only 7 5 T^-odd correlators among those we introduced that do not 

vanish identically because of some exact lattice symmetry.

Given these observations, in Figure 5.11 we present the results for the continuum  

limit extrapolation of the 7 sr^-odd two-point functions considered along the line of 

constant physics defined by L C P q. A s we can see from the plot, with the exception of
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Fig. 5.11; Continuum limit extrapolations for a set of 7 5 r^-odd correlation functions 

along the line of constant physics given by LCPq.

the single correlation function all other 7 5 T^-odd correlators are zero within errors. 

We are thus tem pted to conclude that once the bulk action is improved, the remaining 

cutoff effects corresponding to the bulk 0 (a )  operator counterterms, and eventually 

some 0 (a )  boundary counterterms, and the 0 (a )  ambiguities in the determination of 

the critical mass and Z f ,  are generally small.

Going back to we see instead a clear 0 (a )  scaling to the continuum limit. The 

results for indeed are described rather well by a linear fit in a / L  constrained to 

zero. These sizable 0 (a )  effects in we argue, can be attributed to the corresponding 

0 (a )  operator counterterm. As we can see from the plot indeed, if we consider the bulk 

0 (a )  improved definition (of. (5.35)), where Cy is set to its tree-level value 

the corresponding results are com patible with zero. To conclude, note that also 

and do in principle have 0 (a )  contributions coming from the insertion of the 

bulk operators and T q ,̂ respectively (cf. (5.34) and (5.38)). In this case, however.

,ud „  uu’
'v - B -  gp
,ud l U U '

'v I j

,ud
■v,
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the respective im provem ent coefficients Cv and ct are zero at tree-level, and the ir 

1-loop corrections are small (S in t and Weisz, 1998). We thus expect th a t in general 

the co n tr ib u tio n  o f the  corresponding 0 (a) counterterm s is sm aller than  fo r the case 

o f ZHd.

5.7 Results from the femto-universe: Zp

In  th is  section, we want to  investigate the un iversa lity  o f the  continuum  l im it  between 

the SF and xS F  by s tudy ing  the runn ing  o f the quark masses at high-energy. More 

precisely, we w ant to  compare the  results for the scale-dependent renorm aliza tion  o f 

the pseudo-scalar density, Z p ,  and the corresponding step-scaling function  (cf. Section 

5.2.3). To th is  end, we w ill consider the LCPs defined by: L C P i, L C P 2 , and LC P 3  (cf. 

Table 5.3). As discussed, in th is  case the LC P  is defined in  term s o f the SF coupling 

g^(L ) ,  which im p lic it ly  fixes the physical spatia l extent L  o f ou r space-time la ttice . In 

fact, for the range o f (renorm alized) couplings we have chosen, the resu lting  volumes 

are p re tty  t in y  w ith  L  <  0.25 fm. We thus suggestively refer to  these volumes as the 

femto-universe  (L iischer, 1998a). Note th a t on these ensembles we have also conducted 

a s im ila r scaling analysis as the one presented in  Section 5.4.3 and 5.6. Since analogous 

conclusions were found, we decided to  collect the results in A ppend ix  D.4. W ha t we 

w ill present instead is a discussion on flavour sym m etry resto ra tion  (cf. Section 5.2.2).

Before m oving to  the results, le t us m ention th a t fo r the  de term inations on these 

ensembles we have included estimates for the systematics effects com ing from  the  fin ite  

precision on the  tu n in g  to  zero quark-mass, as well as fo r the  tu n in g  o i  z j .  However, 

apart from  the s tudy o f the step scaling functions, we d id  no t include an estim ate for 

the fin ite  precision on the cond ition  g‘̂ {L )  =  const. T h is  in  fact is no t s tra igh tfo rw ard  

since the deriva tive  o f our observables w .r.t. the SF coupling needs to  be determ ined, 

e ither a na ly tica lly  or num erically. We d id  not do th is  yet. On the o ther hand, as we 

w ill discuss, even w ith o u t inc lud ing  these systematics the q u a lita tive  p ic tu re  th a t w ill 

emerge is the  expected one.
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5.7.1 T h e  ru n n in g  o f  th e  q u a rk -m a sse s

R a t io  o f  p se u d o -sc a la r  r e n o rm a liz a t io n  fa c to rs . The first quantity  we consider 

is the ratio of Z p  factors defined in (5.58). As discussed, in this ratio  the universal 

divergent part cancels between the SF and xSF renorm alization constants leaving only 

a finite regular function of the lattice spacing. The corresponding results for this ratio 

for the three ensembles L C Pi, LC P 2 , and LC P 3  are presented in Figure 5.12. Note 

th a t more precisely we look a t the quantity,

Z X S F

^ = 1 - ^ ,  (5.67)

where we subtracted  the expected continuum limit of the ratio. We recall th a t the 

values for Z ^  can be found in (Della M orte et al., 2005a).

0.008

0.004

BS

-0.004

0 0.01 0.02 0.03

(a/L)^

Fig. 5.12: Continuum  limit extrapolations for the relative difference Ft (5.67) of Z p  

factors computed from the SF and x^F . The lines of constant physics considered are 

specified by the value of the SF coupling g^,  and are given by L C Pi, L C P 2 , and LC P 3 .
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As we can see, the agreement between SF and ^S F  is generally good, indicating 

th a t cutoff effects are small. In fact, the relative difference R  between the corresponding 

Z p  factors is never greater than  1%, even for the largest value of the SF coupling and 

smallest lattice size L /a  considered. The scaling of this ratio however is not evident. 

In particular it is not clear whether L /a  = 6 does or does not belong to  the scahng 

region. An additional point a t a larger value of L /a  would thus be desirable to  make 

definite conclusions. On the other hand, already at L /a  =  12 the ratio has the expected 

continuum  value within errors for all three values of the SF coupling.

0.86

0.84
r<~.

0.82
0.01 0.02 0.03

(a/L)'

Fig. 5.13: Continuum  limit extrapolation for the lattice step-scaling function 

and E |f  obtained from the xSF and SF, respectively. The line of constant physics is 

defined by L C Pi.

S te p -sc a lin g  fu n c tio n  o f  Zp.  The second observable we considered is the step- 

scaling function of Z p  (cf. eq. (5.60)). More precisely, we studied the continuum hmit 

of the lattice step-scaling fimction E p as obtained from the xSF, and compared the
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results with the corresponding SF determ ination (Della Morte et ai ,  2005a). Note 

th a t we considered a single value of the  SF coupling g^{L).  The com putation of the 

step-scaling function in fact requires the evaluation of Zp  for the double lattices with 

L ' / a  =  2L/a,  and it then involves lattices up to  L j a  =  24. These are relatively 

demanding in term s of com puter resources, and we thus decided to  focus only on the 

most non-perturbative case by choosing the largest coupling.

The corresponding results are shown in Figure 5.13. Note th a t the error due to 

the uncertainty in the SF couphng was added in quadrature to  the  statistical error 

of The la tter has been estim ated using the 1-loop result for the derivative of

with respect to (Della M orte et ai ,  2005a). This is in fact universal so th a t 

we could use the result for the standard  SF. The resulting correction is very tiny, and 

it increases the error of by a t most 5% at the the largest coupling and lattice.

Going back to the results in the figure, we find good agreement between the SF 

and xSF determ inations of the step-scaling function already a t finite lattice spacing, 

indicating th a t cutoff effects are relatively small w .r.t. the statistical uncertainties. The 

results for L / a  > 6 in fact are com patible within a single standard  deviation, while the 

values a t L/o, =  6 only differ by (roughly) 2 standard  deviations. On the  other hand, 

due to the slightly b etter precision in our determ inations and the value obtained for 

L j a  = 6, we could not simply fit our results to  a constant as in the  standard  SF case. 

A linear continuum extrapolation in {ajL)^  was needed in order to  obtain  a good 

Our resulting continuum value then turned out to be slightly higher and less accurate 

than  the SF determ ination. However, the two agree w ithin two standard  deviations.

To conclude, we obtained a non-trivial check of universahty between the standard  

SF and the xSF also from the study of scale-dependent renorm alization factors. This 

suggest to combine the results from the SF and xSF in a joint continuum  extrapolation 

in order to improve the accuracy of the  determ ination,

^'*We note th a t in principle the  step-scaling function has 0 ( a )  discretization errors coming from 

the  boundaries. There in fact we only have improvement a t 1-loop order in p e rtu rb a tio n  theory. The 

relevant question for these continuum  lim it extrapolations is thus w hether these effects are small 

com pared to  the  sta tistica l precision on the  results, such th a t  in practice a  linear behavior in well 

describes the data .
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5.7 .2  F lavour sy m m etry  restoration

To conclude, we briefly p resen t som e resu lts  on th e  ra tio  of th e  boundary -to -b o u n d ary  

co rre la to rs (5.55). More precisely, in F igure 5.14 we consider th e  continuum  lim it of 

these ra tio s  for th e  th ree  lines of co n stan t physics L C P i, L C P 2 , and  L C P 3 . As noticed, 

these ra tio s  are expected  to  converge to  1 in th e  continuum  w ith  O (a^) corrections. 

We th u s  considered linear fits in (a /L )^  constra ined  to  pass th ro u g h  1 .

■g_ 0.99

0.98

g- = .1..1 
g^ = 2.5 
g- = 2.0

0.97
0.01 0.02 0.03
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1.002
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Fig. 5.14: C ontinuum  lim it ex trap o la tio n s for ra tio s of boundary -to -b o u n d ary  corre­

la tion  functions for th e  lines of co n stan ts  physics given by L C P i, L C P 2 , and  L C P 3
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As we can see from the figure, the values we obtained for these ratios are very 

precise. The ratios of li correlators then nicely follow the expected O(a^)  scaling for 

all values of the SF coupling and including all lattice sizes. Note also th a t, the violations 

from the continuum limit are very tiny in this case and of the order of a t most 0.5%.

For the case of the gi functions the situation is similar a t the two smallest values of 

the SF coupling, which extrapolate to  1 with the proper O(a^) scaling. The corrections 

from the continuum value however are more pronounced than  in the case of the li 

functions bu t yet quite small i.e. of the  order of ~  1.5%. For the largest value of the 

SF coupling instead, we see some tension for the value of the <;i’s ratio  a t L / a  = 12. 

On the other hand, as mentioned, in these determ inations we did not inchide the 

system atic errors due to  the statistical uncertainty on the SF coupling. Note th a t this 

is in general twice as large for the largest lattice sizes on a given LCP (cf. Table 5.3). 

We thus suspect th a t this contribution is im portant for these ratios of correlation 

functions due to their high-precision, and th a t our errors are then underestim ated. In 

any case, we conclude th a t the expected scaling is qualitatively confirmed.

5.8 Some checks on the simulations

To conclude this chapter, we want to  present some of the checks we performed on 

our simulations in order to  support the  reliability of our determ inations. Specifically, 

these include: a study of the reversibility and area preservation of the MD integrator 

in the HMC, an estim ate of the longest autocorrelation times in our simulations, and 

a discussion on the ergodicity of the algorithm in sampling the different topological 

sectors.

5 .8 .1  R e v e r s ib il ity  an d  a rea  p r e s e r v a tio n  in  th e  M D  e q u a tio n s

The first issue th a t we want to  address is the integration of the MD equations in the 

HMC. As discussed in Section 4.1.3 indeed, in order for the algorithm  to be exact, 

the numerical integrator needs to  satisfy two basic properties: tim e reversibility, and 

preservation of the phase-space measure. In principle, these properties are guaranteed 

if symplectic integrators are employed. In practice, however, rounding errors in the 

integration of the MD equations, and a “sloppy” solution of the Dirac equation along
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the  MD trajectory  can compromise these basic properties (see (Joo et a l ,  2000)). 

In particular, the la tte r issue can be quite problem atic if, as in our case, one uses 

chronological inversions to speed up the solution of the Dirac equation along the MD 

trajectory  (see (Liischer, 2010a)). In this case indeed the reversibility of the algorithm 

can be severely violated. In the following we will thus investigate if our choices of 

param eters for the numerical integrator were sensible in this respect. Note th a t we 

will focus only on the simulations belonging to  LCPq. These in fact were the more 

delicate from a nimierical point of view.

In order to  study the tim e reversibility and area preservation of the algorithm we 

need to introduce a suitable set of observables. In this respect, from the hypothesis 

of area preservation of the integrator one can easily derive the following relation (see 

e.g. (Montvay and Miinster, 1997)),

where A / /  is the difference in the Hamiltonian between the end and starting  point of 

a tra jectory  (cf. (4.10)).

A second useful quantity to  consider is given by.

where I 1 " ( t )  and U " { t )  are obtained by integrating the MD equations up to a time 

t = T  starting  from the initial conditions II"(0) =  —n(T ), and U ”{0) = U { t ) .  If 

the integrator was exactly time-reversible, we would then expect the  difference in the 

Ham iltonians (5.69) to  be zero. In particular, note th a t 1/(5// gives an estim ate of 

the  frequency with which we make a mistake in the accept-reject step along the HMC 

history. It is then im portant th a t this quantity  is much longer than  the to ta l length of 

our runs.

Analogously to  the difference in the energy (5.69), one can look directly a t the 

difference between the gauge fields U and U " . This can be done by introducing some 

suitable norm on the space of gauge fields. In our case we consider,

(5.68)

d / / ( n ,  U) =  { / / ( n " ( r ) ,  t / " ( r ) )  -  / / ( H ( 0 ) ,  f/(0)}n(o)=n,j/{O)=c/, (5.69)

5U{U) = maxx,M.|;7„'^(x) -  t/'^ (x )|,
i.j

(5.70)
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where i , j  indicate the row and column indices of the given hnk variable. In (5.70) we 

are thus looking a t the maximum absolute deviation in the gauge field, component 

by component, after integrating the MD equations back-and-forth a given trajectory. 

Again if the integrator was exactly time-reversible, we would expect this quantity  to 

be exactly zero.

T ab le  5.7 Reversibility checks for the ensembles in LCPq. The maximum (max), minimum 

(min), and average (avr) values for 6H  and 5U are given.

L / a /?
SH 5U

min max avr min max avr

8 5.2 1.21e-09 1.38e-06 2.52e-07 7.81e-10 1.04e-08 1.36e-09

12 5.5 5.60e-10 2.08e-06 5.15e-07 l.lle -0 9 1.07e-08 1.76e-09

16 5.7 4.20e-08 5.67e-06 1.21e-06 1.28e-09 1.59e-08 2.05e-09

8’ 5.3 5.00e-12 1.71e-07 2.45C-08 6.45e-ll 1.17e-09 1.23e-10

10 5.3 5.84e-09 1.31e-06 3.43e-07 1.09e-09 6.56e-09 1.88e-09

12 5.3 5.06e-10 2.38e-06 6.58e-07 1.44e-09 1.15e-08 2.81e-09

12 5.2 3.42e-10 2.69e-06 6.03e-07 1.72e-09 1.86e-08 3.53e-09

* A smaller CG residuum has been used.

In Table 5.7, we present the  results for (5.69) and (5.70) for the ensembles in LCPq. 

The measure has been performed by considering (roughly) 300 — 500 trajectories of 

the corresponding ensemble. As we can see from the table, the values are generally 

very good (e.g. compare w ith the discussion in (Joo et al., 2 0 0 0 ) ) . In particular, 

the  values of 5H  are such th a t the  frequency of mistakes in our accept-reject step is 

extremely rare given the length of our runs (cf. Table 5.9).

To conclude, in Table 5.8 we also report the results for (5.68). Note th a t the different 

replicas for the given ensembles have been investigated separately. As we can see

^®We note that there is no solid theoretical argument for judging the goodness of these numbers, 

since the effects of the rounding are very difficult to infer, especially those related to the iterative 

solution of the Dirac equation in the integration of the MD equations.
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Table 5.8 Checks on the area preservation for the ensembles in LCPo. Note that the different 

replicas vt have been studied separately.

L j  a /3
(e"

■AH'̂

r\ r2 rs T4

8 5.2 1.0012(11) 1.0009(12)

12 5.5 0.9952(23) 0.9947(22) 1.0036(23)

16 5.7 1.0011(39) 1.0039(40) 1.0087(39)

8 5.3 0.9988(11) 1.0008(17)

10 5.3 0.9998(21) 1.0012(20) 1.0026(21) 1.0009(20)

12 5.3 0.9986(38) 1.0051(41) 1.0018(40)

12 5.2 0.9965(23) 1.0006(21) 1.0010(21)

from the talkie, the condition is generally well-satisfied. In particular, three standard 

derivations differences from the expected condition are not unusual. This because this 

expectation value is in general dominated by “spikes” in A H  related to the occurrence 

of small eigenvalues of the Wilson Dirac operator along the MD trajectories.

5.8.2 A u tocorrelation s and topology

In order to study the reliability of our statistical error estimates, we have analyzed the 

autocorrelations in our simulations. Only if the latter are reliably determined indeed, 

o\u' error estimate can be trusted. To this end, we have considered three different 

observables, namely: the average plaquette (Plaq), a given discretization of the Yang- 

Mills action at positive flow time Vact (Liischer, 20106), and the topological charge at 

positive flow time summed over the whole space-time volume Qtop (Liischer, 20106). 

In particular, the flow observables have been measured for a value of the flow time 

specified by c =  \fW tjL  ~  0.5. We note that, in general, observables defined through 

the Yang-Mills gradient flow are good indicators for potentially long autocorrelations 

in our simulations (Liischer and Schaefer, 2013). These observables can in fact be used 

to estim ate the exponential autocorrelation time Texp, or a t least to have a lower-bound 

for it. In addition, differently from the case of the plaquette, the autocorrelations of



164 The chirally rotated SF a t work

these observables have a well-defined continuum  lim it, so th a t their scaling can be 

studied (Liischer, 20106).

In Table 5.9, we present our results for the ensembles along the LCP given by L C P q. 

The autocorrelations have been estim ated as discussed in (Wolff, 2004). In particu lar, a 

general criteria for a proper determ ination  of the autocorrelations in our sim ulations is 

th a t the length of our runs should be at least of the order of 100 Texp (Schaefer, Sonnner 

and V iro tta , 2011; Schaefer, 2012). If we take as Tgxp the longest of the au tocorrelation 

tim es we have m easured, th is condition is generally satisfied for each of the replicas of 

our ensembles.

T a b le  5 .9  Integrated autocorrelation tim es for the average plaquette (P laq), the flow 

Yang-Mills action ( V l c t ) ,  and the flow topological charge Q t o p ,  for the ensem bles along the 

LCP given by LCPq. T he total number of trajectories o f the different ensem bles are also given  

in terms of the corresponding replica sets.

L / a /? Tint (Plaq) "^int ( ^ c t ) "^int (Q to p ) tra j. (MDU)

8 5.2 6.0(3) 14(1) 7.0(5) 40000 X 2

12 5.5 4.8(3) 41(8) * 8000 X 3

16 5.7 4.7(4) 42(9) 11(2) 6000 X 3

8 5.3 5.7(2) 10.0(5) 10.8(6) 80000 +  40000

10 5.3 5.5(3) 35(5) 48(7) 10000 X 4

12 5.3 5.6(4) 100(25) 95(23) 8000 X 3

12 5.2 7.2(6) 59(11) 37(6) 10000 X 3

Before concluding, we want to note th a t for L / a  =  12 and /3 =  5.5 we could not 

determ ine the autocorrelation function for the topological charge. This was due to  a 

peculiar behavior of the la tte r. This can be seen in more detail in F igure 5.15, where we 

show the topological charge d istribu tion  along the MC history of th ree of the ensembles 

of LCPq.^® As we can see from the figures, the system  gets quickly frozen in the trivial

^®Note th a t  for th e  scope of illu stra tion , for each given ensem ble we patched  th e  different replica 

histories one after th e  o ther.
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topological sector Qtop =  0 as the lattice spacing is decreased. Already at the coarsest 

lattice spacing, however, the topological charge does not show much excursion outside 

this sector, which then seems to  be the only relevant one at this physical volume. 

On the other hand, at the interm ediate lattice spacing corresponding to  /3 =  5.5 the 

topological charge rapidly jum ps to —1 and stays around this value for roughly 150 

MDU. This did not allow us to  determine the corresponding autocorrelation function 

along the MC history. In this respect, we note th a t these rapid excursions of the 

topological charge to  non-trivial sectors in relatively small volumes are not unexpected 

in simulations of the SF (see e.g. (Jansen and Sommer, 1998)).

To conclude, the relevant general question is how the sampling of the topological 

sectors in simulations does affect the determ ination of our specific observables within 

our precision (Schaefer, Sonnner and V irotta, 2011). In this respect, we note th a t 

renormalization factors and param eters can in principle be defined such th a t only 

contributions from the trivial topological sector are considered (Fritzsch, Ramos and 

Stollenwerk, 2013). In this way one can avoid in practice the consequences of a bad 

sampling of the topological charge as we approach the continuum limit of the SF. 

In our case, however, this is not an issue since the pliysical volume is small enough 

th a t only the trivial topological sector actually contributes to  the SF path  integral. 

Indeed, the restriction of our renormalization factors, and renorm alization conditions 

for mpcAC and Zf,  t o  the  trivial topological sector, does not have any influence within 

the final errors.
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Fig. 5.15: Topological charge d istribu tion . L a ttice  spacing dependence. L  ~  0.60 fm.
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6
Conclusions

In this work, we presented a first complete study of the chirally rotated Schrodinger 

functional with dynamical Wilson-fermions. The first important conclusion that we 

draw is that the expectations from the results in perturbation theory (Sint, 2011; 

Vilaseca, 2013), and in the quenched approximation (Sint and Leder, 2010; Lopez, 

Jansen, Renner and Shindler, 20136; Lopez, Jansen, Renner and Shindler, 2013a) are 

confirmed. More precisely, through the detailed analysis of several different observables 

over a wide range of parameters, we have given substantial evidence for the existence 

and universality of the continuum limit of the In particular, the property of

automatic 0(a)  improvement has been shown to be realized as expected after the 

proper renormalization of the theory.

Secondly, the universality relations offer a novel method for the computation of 

the finite renormalization constants related to the breaking of chiral symmetry by 

Wilson-fermions (Sint and Leder, 2010). In this work we investigated this possibility 

in detail. The results show that these determinations are very competitive and robust. 

Due to the property of automatic 0(a)  improvement, several different definitions can 

be studied without having to perform the corresponding improvement. This allows to 

control carefully the size of cutoff effects in the determinations, and eventually choose 

the more precise and solid definition for the given renormalization constant. Moreover, 

their evaluation in terms of simple ratios of two-point functions gives very accurate 

predictions.

In this respect, we want to note that our results for the renormalization of the 

axial current, improve significantly on previous SF determinations. The total 

error on this quantity indeed has been reduced by a factor 10. This result can have 

an important impact on the computations performed in large volume simulations with
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W ilson-ferm ions. In fact, th e  renorm ahzation  of th e  axial cu rren t is a  fundam ental 

ingred ien t in th e  presen t s tra teg y  for th e  d e term in a tio n  of th e  la ttice  spacing a t th e  

b a re  couplings of in te rest (Fritzsch et a i ,  2012). In p a rticu la r, th e  precision on Z a  has 

been so far th e  dom inan t source of e rro r in th is  determ ina tion . Im proving th e  accuracy 

on th e  la ttic e  spacing is then  crucial, since th is  q u an tity  en ters in th e  conversion of 

any dim ensionless la ttice  resu lt to  physical un its .

Table 6.1 Comparison between the lattice spacings and , as determined using 

and Z a , respectively.

(fm) qXSF

5.2 0.0755(g)(7) 0.0747(2)

5.3 0.0658(7)(7) 0.0648(2)

5.5 0.0486(4)(5) 0.0480(2)

We th u s w ant to  show th e  effect of our resu lts  for Z a  on th e  d e term in a tio n  of th e  

la ttic e  spacing a. In T able 6.1, we presen t a com parison of th e  values ob ta ined  for a 

using th e  s ta n d a rd  SF d e te rm in a tio n , Z ^ , and  ou r m ost precise d e term ina tion  Z[^ 

(cf. T able 5.5). T h e  s tra teg y  followed for th e  com p u ta tio n  is th e  sam e as in (Fritzsch 

et  a/., 2012). As we can see from  th e  tab le , th e  new prelim inary  values for th e  la ttice  

spacing  are a t  least 3 tim es m ore precise th a n  th e  previous results.^

To conclude, th e  provides a  com petitive too l for solving n o n -p ertu rb a tiv e  

renorm aliza tion  problem s on th e  la ttice . As a fu tu re  application  of th e  m ethod , it is 

th u s  n a tu ra l to  address th e  renorm aliza tion  of m ore com plicated  opera to rs . These in 

p a rticu la r  include four q u ark -o p era to rs  relevant for th e  d e term in a tio n  of electro-w eak 

hadron ic  m a trix  elem ents.

^T he a u th o r  w arm ly  th a n k s  S tefano  L o ttin i for h av ing  p rov ided  these  resu lts .



Appendix A 
Useful definitions

The notation conventions presented in this Appendix are taken from (Liischer, Sint, 

Sommer and Weisz, 1996).

A .l Index conventions

Lorentz indices /x, . . .  are taken from the middle Greek alphabet and run from 0

to 3. Latin indices run from 1 to  3 and are used to  label the components of

the spatial vectors. For the Dirac indices capital letters A, B , . ..  from the beginning 

of the alphabet are taken. They run from 1 to  4. Color vectors in the fundam ental 

representation of SU(A'^) carry indices q,/3, . . .  ranging from 1 to  N ,  while for vectors 

in the adjoint representation, Latin indices a . b . . . .  rimning from 1 to  N'^ — 1 are 

employed. By abuse of notation such indices are also used for the  flavor label of the 

axial current and density. Repeated indices are always summed over unless otherwise 

sta ted  and scalar products are taken with euclidean metric.

A.2 Dirac matrices

We choose a chiral representation for the Dirac matrices, where

The 2 x 2  m atrices are taken to  be,

eo =  — 1 Cfc =  - i a k , (A.2)

with (7 fe the Pauli matrices. In is then easy to check th a t

(A.3)

Furtherm ore, if we define 75  =  7 o7 i 7 2 7 3 , we have.



170 Useful definitions

75 =  . (A .4)

In particular, 75 =  75 and 7 I =  1.

Having introduced 75 one can also introduce the chiral projects:

Pr =  ^ ~ ,  Pl  =  ^ ^ -  (A .5)

Finally, the herm itian matrices

(A .6)

are exp lic itly  given by

(<̂ k 0 \  /cTfc 0 \
^Ok “ I I ? ^ i j  — ^i jk  I I i ( - ^ - Oy0 -CTfcJ \o ffkj

where t i j k  is the to ta lly  anti-symmetric tensor w ith  £123 =  1.

A .3 Gauge group

The Lie algebra su{N)  of SU(A'^) can be defined as the space of complex N  x N  matrices 

Xa0  which satisfy

JsTt = - X ,  t r { X }  =  0, (A.8)

where denotes the adjoint m atrix and t r { X }  =  X^a  is the trace o f X.  We may 

choose a basis T “ , a =  1 ,2 , . . . ,  — 1, in this space such tha t

t r { T “ r ‘’ } =  (A.9)

For N  =  2 , for example, the standard basis is

T “ =  ^ ,  a = 1, 2, 3, (A.IO)
i t

where r “  denote the Pauli matrices. W ith  these conventions the structure constants 

defined through

[T“ ,T ''] = ( A. 11) 

are real and to ta lly  ant-symmetric imder permutations of the indices.
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If T { U )  is a  d ifferentiable function of th e  gauge field, its  derivative w ith  respect to  

th e  link variab le  U^^{x) in  th e  d irection  of th e  generato r is defined by

{y, v)  =  {x,n),

Uv{y)  otherw ise.

In p a rticu la r, in th e  case of a  scalar function  th e  com bination .

d % n U )  = jT { U , ) , Ut{y,y) =  '

t= Q

(A.12)

d , , ^ T { U ) = T ' ^ d - ^ H U ) .  (A.13)

is a  vec to r field w ith  values in s\x{N)  th a t  transfo rm  un d er th e  ad jo in t rep resen ta tion  

of th e  gauge group.

A.4 Lattice derivatives

O rd inary  forw ard and backw ard  la ttice  derivatives ac t on colour singlet functions / ( x )  

as

d n f { x )  + aj:L) -  }{x)],  (A .14)

= ^ [ / U )  -  f { ^  -  oA)], (A .15)

w here /i denotes th e  u n it vector in th e  d irection  /i. A no ther useful d iscre tization  of 

th e  con tinuum  derivative is given by th e  average of th e  forw ard and backw ard la ttice  

derivatives,

=  ^ (9 *  +  d ^ ) f { x )  =  ^ [ / ( x  +  a/i) -  / ( x  -  afi)]. (A .16)

T h e  gauge covariant derivatives in stead , a c t on quark  fields as,

Vf^'ip{x) = ^ [ \ ^ U^ { x ) t p { x  +  a/i) -  i!{x)],  (A .17)

V'^'tp(x) = ^[i>{x) -  X ^ U l i x  -  afi)xp{x -  a/i)], (A .18)

T h e  origin of th e  phase factors,

=  00 =  0, - n < 9 k < n ,  (A.19)

is explained in Section 3.2.2. T hey  depend  on th e  sp a tia l ex ten t L of th e  la ttic e  and  are 

all equal to  1 on th e  infinite o r period ic la ttice . T he left action of th e  la ttice  derivative 

op era to rs  is th en  defined as.
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ijj{x) aVf,  = ip{x + a j l ) U l { x ) \ l  -  ip{x), (A.20)
  ■f— _ _
ip^x) aS7*̂  =  ^^{x) — ip{x — afi)Uij,{x — a/i)A^]. (A.21)

A .5 Continuum  fields and their discretization

An SU(A^) gauge potential in the continuum theory is a vector field A^{x)  with values 

in the Lie algebra su{N) .  It can thus be w ritten as,

A^{x)  = A l { x ) T \  (A.22)

with real functions / l “ (x). The associated field tensor,

Fiiu{x) =  dfj,A^{x) -  d^A^{x)  +  \Af^{x), Ay{x)],  (A.23)

may be decomposed similarly and the right and left action of the covariant derivative 

is defined by

D^ip{x) = {d^ + A ^  +i6^ /L) ip{x)  (A.24)

ip{x)D^ = ■ip{x){df  ̂ -  A^  -  i9^i/L). (A.25)

The Abelian gauge field iO^/L  appearing here has been introduced in Section 3,13.

Finally, note th a t a lattice discretization of the field strength tensor (A.23) can be 

obtained as,

= - ^ { Q f j , ^ { x )  -  Q^fj,{x)}, (A.26)

where the matrices Qni,{x) are defined as,

Qnu{x) = U^{x)U^{x + afi)Uf,{x + au)~^Uu{x)~^

+  Uu{x)U^j_{x  — a/t +  aC ')~^Uu{x — a f i ) ~ ^ U ^ { x  — a j l )

+  Ufi{x — afi)~^U^{x — ajl — av)~^U^{x — ajl — av)U^{x — av)

+ U,y{x — ai ' )~^U^{x — ai>)Ui,{x + aji — ai>)U^{x)~^.

This defines the so-called clover definition of the lattice field strength tensor.

(A.27)
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A.6 Discrete symmetry transformations

A .6.1  C h a r g e  c o n ju g a tio n

Under charge conjugation the gauge field transformations according to

U ^ { x ) ^ U ^ { x y .  (A.28)

The transformations law for the quark and anti-quark fields reads,

ipix)  —> C~^i p{x)^, ip{x) —> —ip{x)'^C, (A .29)

where C  is a 4 x 4 m atrix satisfying

7^ =  (A.30)

If the Dirac matrices are chosen as specified in Appendix A .2, we may take C  =  1 7 0 7 2  

so that C - i  =  Ct =  C.

It follows from these definitions that the W ilson action is invariant under charge 

conjugation. T his is both true in infinite volume and in the Sclirodinger fvinctional. 

In the latter case the transformation is applied to the field variables at all sites of the  

lattice including the boundaries xq =  0 and xq =  T.

A .6 .2  P a r ity

A parity transformation is defined as,

V'(a;)->• 7 ot/>(x), t p [ x ) i p { x ) ^ o ,  x  =  (rE o,-x). (A .31)

while the gauge fields transform as,

U o { x ) ^ U o { x ) ,  Uk(,x) ^  U k { x ) \  x =  { x o , - x  -  ak) .  (A .32)

We here assume periodic boundary conditions for the fields in the spatial directions

(or an infinite spatial extend). Similar consideration as for charge conjugation then

apply.
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A .6.3  T im e -re f le c tio n

A time-reflection transform ation is defined as,

ip{x) ^  i ' jojs' tpix),  Tp ix ) - t p{x ) i ' yo ' y 5 , x  = {T  -  x q , x . ) .  (A.33)

while the gauge fields transform  as,

U o { x ) ^ U o { x y ,  U k { x ) ^ U k { x ) ,  x  = {T  -  xo -  a , x ) .  (A.34)

Here we assume the case of a finite tem poral extent of the lattice volume given by T.
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Molecular dynamics forces

The results reported here are taken from the documentation of openQCD.^

The force field

F^(x) =  -2Re(x,75^x,M 2?^'V) (B.l)

is a sum of two terms,

=  -2Re(x,75ax,p(OL") + (B.2)

F]l°'^{x) =  -2R e(x,755:,,^(Peo + 2^oe)V’)- (B.3)

In order to give the explicit expression is it convenient to introduce the matrices,

4

= i «> X a {x )^ + {4’ ^  X )} , (B .4 )
A = 1

4

^  { (75(1  -  ' y f i ) ^ ) A{ x  + aj j )  <S) X A i x ^  +  (ip x ) } -  (B .5 )
A = 1

The sums in these equations run over the Dirac index of the spinors involved and

the tensor products are taken in colour space, i.e. both X/^^(x) and X^^{x) are 3 x 3

complex matrices in colour space.

Given these definitions, the force (B.2) is given by

T - a

F™(x) =  =  -gCsw(<7o) Y  ^^^'^{i^oc,nQpa{y))Xpa{y)}, (B.6)
y e r  yu=a

with Q^i, defined as in (A.27).

The force (B.3) instead is given by,

F^°^{x )= V {U ,{x )X ^{x ) } ,

 ̂h ttp : / /luscher.w eb.cern .ch/luscher/openQ C D  /

(B.7)
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where

V{7 n }  =  — m^) — g tr (m  — m^),  (B.8)

pro jects any complex 3 x 3  m a tr ix  m  to  su(3). Note th a t, F^° ^ { x )  is defined fo r a ll x  

such th a t 0 <  xq <  T  for ^  =  0, and 0 <  xq < T  fo r /u =  1, 2,3.

F ina lly , as we have seen the con tr ib u tio n  to  the  pseudo-fermion action given by 

the sm all de term inant is,

5det =  - 'n - lo g ( l .  +  =  -  ^  t r lo g [ (M ( D (x ) ) tM ( i) ( x ) ] .  (B.9)
X odd

The corresponding force then reads,

=  - |c s w (ffo ) ^  R e t r { { d , , ^ Q M ) X p A y ) } ,  (B .IO )
y  odd

where y  is odd w ith  0 <  yo <  T,  and

4

=  I ' ^ { o^ ^ { M ' ' ^ \ x ))~'^}a a - ( B . l l )
A  =  \



Appendix C 
Correlation functions

In th is A ppendix we w ant to  present some results on the  xS F  correlation functions 

presented in Section 5.1.3. Firstly, we give the definition for the boundary  source fields. 

Secondly, we give the explicit expressions for the correlation functions. Finally, given 

these expressions we list some exact sym m etry properties valid on the lattice.

C .l  Boundary source fields

The x^’F hoiiiulary fields are defined as follows.

At .')'() =  0 we have.

yrf zCu(y)7o75<3-Cu'(z),

J  d y d  zCd(y)7o75<3 +Q'(z),

J  rf̂ yd̂ zCu(y)75Q+C<i(z)-

j  d^yd^zCd(y)75<5-Cu(z),

(C .l)

(C.2)

(C.3)

(C.4)

and.

J  zC u(y)7fc<3-G '(z),

J  dVc(̂ zCd(y)7fc<3+Q'(z),

j  rf^yd^zC„(y)7o7fc<3+Cd(z), 

[ d^yd^zCAyho'ikQ-Cuiz).

(C.5)

(C.6)

(C.7)

(C.8)

At .;•() =  T  instead.
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and.

Q 'r = -J  dVrf'zC„(y)7o75Q+C-(z), (C.9)

=  - J  dW zC d(y)7o750-C d-(z), (C.IO)

Q'-<i=  y " d V 'z c l ( y ) 7 5 Q - 0 ( z ) ,  (C . ll)

2''^“ =  y ” d V z c k y ) 7 5 Q + C ( z ) ,  (C.12)

Q 'r'=  |rfWzcL(y)7^Q+C(z), (C.13)

S r '  =  [  d W z O (y )7 fc Q -C '(z )>  (C.14)

Q'ud ^  _  Jd^yd^zCuiyho-ykQ-Cdi^) ,  (C .i5)

Q'k̂ '̂  =  -  /d V 'z O (y )7 0 7 fc Q + C (z )-  (C.16)

C.2 Explicit expressions and symmetry properties

Before giving tlie explicit expressions for the correlation functions defined in Section 

5.1.3, it is convenient to introduce the following definitions. We first introduce the 

propagators for the up and down type flavours defined by,

A /“  =  j  d^ySu{x ;0 ,y )Q- ,  M'^ = j  d^ySd{x\0,y)Q+,  (C.17)

wliere on the r.h.s. we employ a continuum notation. These how’ever should he inter­

preted on the lattice as e.g.,

f  d ^y5u(x ;0 ,y )Q _, ^  5t,(a:; 0 ,y)[/o(0, y )^Q -, (C.18)
y

and similarly for M ‘̂ .

Given these definitions, after some algebra one arrives at the following explicit 

expressions for the gx-functions.
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sF '( ^ o) =  ^ ( t r {M '^ (x ) t7 5 r x M " ( x )7 o } ) ^ ,  (C.19)

g f  i^o) =  i ( t r { M “ (a :) t7 5 rx M ^(x )7 o })^ , (C.20)

5x (â o) =  J ( t r { A / ‘̂ (x ) t7 5 rx A f‘' ( x ) } ) ^ ,  (C.21)

9x M  =  ^ ( t r { M “ (x ) t7 5 rx A f“ ( : r ) } ) ^ ,  (C.22)

and sim ilarly for the /y-functions

, 3

=  g E  ( t r { M ‘'(o ;)t7 5 rrM ''(x )7 fc7 5 })^ , (C.23)
k = l  

1 ^
=  6 ( t r { A / “ (a ;) t7 5 rrM ‘'(x)7fc75}) , (C.24)

k = l  

1 ^
/y‘'(a'o) =  g X J ( t r {A / ''(a :) t7 5 ry M ‘'(a:)707fc75})^, (C.25)

1 ^
l y i x o )  =  - Y ,  { t r { M “ { x ) h , r y A r { x h o ^ n , } )  ■ (C.26)

k = l

111 order to introduce the boiiiidary-to-bouiidary correlator, we also define the matrices,

L “ = Q + I H  I  c l 'x A /“ (T ,x ), =  j  d ^ x M ‘̂ {T,x).  (C.27)

On the lattice these read e.g.,

L “  =  ( 3 + ^  C/o(T -  a, x ) t A /“ (T  -  a, x). (C.28)
X

Given these definition it is then easy to show that,

f f r '  =  ^ ( t r { ( iS o ) S o i^ “ } ) ^ ,  (C.29)

=  i ( t r { ( L “ 7 o )S o L " } ) ^ ,  (C.30)

g f = ' ^ { t v { { L - y L - ] ) ^ ,  (C.31)

g^^ =  \ { t r { { L ‘̂ y L “ ] ) ^ ,  (C.32)

and.
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J U U  __

‘  “  6
k = l

^ tr |(L S 5 7 fc )S 5 7 fc i“ } ) ^ , (C.33)

3

A:=l
( t r | ( L “757fc)S 57fc^ ''} )^ , (C.34)

3

k = l

l^trj ( i “757o7*:)S57o7A-i“ (C.35)

3

^ t r | ( L ‘'757o7it)S57o7fci'''} )^- (C.36)
k = l

Once the explicit expressions are obtained, it is also easy to  work out some properties 

and relations for the xS F  correlation functions using the exact sym m etries on the 

lattice. These are collected in Table C .l.
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T a b le  C . l  Transform ation properties of some xSF  correlation functions under: complex 

conjugation (c.c.), parity  combined with a flavour exchange (P  x r^ ) , and charge conjugation 

combined w ith complex conjugation (C  +  c.c.). Note th a t with “avr,” we indicate properties 

satisfied by tlie correlators only after the average over the gauge fields is taken, while with 

“conf,” we denote properties th a t hold for any gauge field configuration. The parity  w .r.t. the 

75T*-transform is also listed for completeness.

C.C. P  X C  +  c.c. avr. conf.

,9’r ' g f g f g f + R e -

gUd gdU
9 f + Re R e

9 T ' 9 f gA 9 T ' + R e -

9 t
„ud
9  A g t - R e R e

9 V 9 p g p '
„uu
g p - R e -

9 ^
„ud
9 p

^du
9 p

du
g p + R e R e

uu'
9 s g f 9 s

„uu'
g s + Im -

ud
9 s g f 9 s

„du
g s - 0 R e

9 V ’ - 9 f - g f 9 v - 0 -

9 ^ ‘‘ 9 v - g f 9 v + Im Im

luu'
n

idd' jdd'
M

luu' + Re -

ixid l u d i d u
h + Re R e

lUU - I f i d d '
M

l u u
“ M - 0 /

} u d
\ A

1 u d  
M

i d u
M

i d u
M + Im Im

l u u ' I f i f l u u
t y + Re -

] u d
t y

l u d
V

i d u
l y

i d u
l y - Re R e

l u u '
I t

[ d d ' [ d d ' l u u - Re -

l u d l u dIrp [ d u i p + Re Re

l u u '
f i f i d d '

f
lUU
f + Im -

1 l id  
I f

j u d
f

i d u
t

i d u
f - 0 R e



Appendix D
More on the chirally rotated SF at 
work

D . l  On the improvement of renormalization factors from 
universality relations

In Section 5.2.4, we com m ented on the fact that the 'y^r^-even 0 (a )  bounchu'y coun­

terterm s do not contribute to th e universahty relations involving 7 5 r^-even correlators. 

In order to show this result we will consider an explicit exam ple.

Let us start from the universality relation,

=  +  (D .l)

T he idea is sim ply to study the Sym anzik's expansion of the ratio,

(D.S
(gT')R

First of all, given the observations in Section 5.2.4 the Sym anzik’s expansion for the  

individual observables reads (cf. Section 2.2.4),

{ g f ) R  =  -  a [ { ^ ) o  +  +  (ffl^ l)o l +  O(a^), (D .3)

i g T ' ) R  =  ( g T ' ) o  -  a [ { ^ ) o  +  ( g t d . ) o  +  i g T J o  -  c a { ^ )o] +  o(«'^). (d .4 )

First of all, note that we indicated w ith {gx^^)o  the continuum  correlation functions 

corresponding to the lattice correlation functions on the l.h.s. of the above relations. 

Secondly, we considered explicitly  the insertion of all possible 0 (a )  counterternis that 

appear. For exam ple, { g y ‘c,^)o indicates the insertion in {gy'^)o of the 0 ( a )  countert­

erm corresponding to the bulk action and proportional to the im provem ent coefficient 

Csw Sim ilarly for the other counterterm s. However, as discussed in Section 5.2.4, the 

7 5 T^-odd 0 ( a )  counterterm s do not contribute to 7 sT '-even  correlation functions, and
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are thus crossed out in the above equations. As anticipated, the only remaining cutoff 

effects are the ones associated with the 7 5 T^-even 0 (a) boundary operators and pro­

portional to Ct and ds- Once however we consider the ratio of the above correlation 

functions, we obtain,

_ i~igv^)o -  a[i-igv4jo + i-igv%M
( g T ' ) R  { 9 T ' ) o - < ^ [ i 9 T d J o  +  i 9 Z M

+  0 (a")

< 9 l ^ %  I ̂  )o , {9 ^ c . )o )o {gXc, )o
igTh +(ffr)o (ffr)o i g T ) o  i g T ) o

+ 0(a^).  

(D.5)

If we now remind that the universality relations are valid exactly for the continuum 

correlation functions, we then have that: {—igv^)o =  {g'X̂  )o- Consequently, noticing 

that the counterterms proportional to ds and Ct are invariant under a chiral rotation, 

we hence have: {—igy^^ )o =  )o, and similarly for the Ct counterterm. We then

conclude that the term in square brackets in the above equation is zero, and thus,

= l + 0{a^).  (D.6 )
iaT  )r

Similar conclusions can be derived for Zy ,  Zp j Zs ,  Z r / Z f ,  and general universality 

relations between SF and xSF correlation functions.

D.2 Systematic error estimates

In this Appendix we want to describe how we have estimated the systematic errors 

of our renormalization constants associated with the deviation from the given line of 

constant physics. We will distinguish three sources of systematic, that are related to 

the finite precision with which we unavoidably impose the following conditions,

m  = 0, g ^  =  0, L = const., (D.7)

where m  is the PC AC mass for this section. Note that for the latter discussion, it is 

more convenient to look at the condition g'^  = 0  as a condition for Zf rather than g ' ^ . 

Note also that for definiteness we consider the case of the line of constant physics given 

by LCPq. a  similar strategy has been used for LCPi, LCP2 , and LCP3 , although in 

this case we neglected the systematic due to the condition on L. The procedure we 

used to estimate these systematics has then been the following.
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We considered the systematic error on a given (finite) Z  factor has given by,

{dZsysf  =  {dZ,^ f  + { d Z mf  + { d z ^ f ,  (D.8)

where dZm, dZ^ j , dZi ,  are the error estimates for the systematics due to the condition 

on the PC AC mass, Zf, and L, respectively. These have been estimated as follows.

Starting from dZ^^, we have,

(O.)
were d mL / d z f  is the derivative of the PCAC mass w.r.t Z f ,  multiplied by L. Note that 

the derivatives are in principle evaluated at the conditions (D.7), in practice we have 

computed them at our tuned values. Given the above expression, the derivative 

has been estimated as follows. We have generated two ensembles at L / a  = 8, = 5.2

where zj  has been varied of plus and minus 2% w.r.t. our tuned value.^ All other bare 

parameters have been kept fixed. The derivatives of our renormalization factors w.r.t. 

Z f  have then been computed using a symmetric finite difference approximation. Using 

the (less accurate) results from the tuning runs of the other ensembles of LCFq, we 

could confirm that the value of tlie derivative at L /a  =  8 is an upper bound for the 

derivatives at the larger values of L j a ?  Similarly, from the tuning runs we could also 

estimate that is zero to good approximation. This is simply the observation we 

made already that the PCAC mass does not depend much on z /, close to the critical 

values. The corresponding contribution in (D.9) has thus been neglected. Finally, for 

dzf  we have considered,

d ^ / = ( ^ )  W ( D. IO)

where dg'^^ is the residual value of on the tuned ensembles, and for we have 

taken the value computed at L /a  =  8 and /? =  5.2. In fact this derivative is not a 

cutoff' effect, and we thus used the tuning runs to estimate the continuum limit of it.

^We also checked that with a variation of Zf of 5% compatible results were obtained.
^Note that is a cutoff effect. The value at L fa  =  8 is thus expected to be an overestimation 

for larger L /a ’s, if we are in the scaling region for this quantity. Within our precision, this seems to 

be the case.
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W ithin our precision turns out to be basically constant along LCPq- The value 

we obtained is roughly given by ~  —2.5.

The second contribution in (D.8) is given by

The derivatives w.r.t. the PCAC mass have been estimated similarly to the

derivative w.r.t. Z f .  We generated a single ensemble in this case at L /a  = 8 and 

P = 5.2, where the (bare) PCAC mass has been increased by roughly 30MeV. We 

have then estimated the derivative with an asymmetric finite difference. Note that, 

this derivative is a cutoff effect, and so we have used the tuning runs in order to judge 

whether the value at L /a  = 8 offered an upper bound for it along L C P q. This is in fact 

the case. The derivative instead is not a cutoff effect. We have estimated its value 

along L C P q using again the tuning runs. In fact within our precision, this quantity 

turned out to be pretty constant along our L C P q, and roughly equal to ~  — 1.® 

To conclude with this systematic effect, we have taken dmL to be the residual PCAC 

mass arn at the tuned ensembles, multiplied by L/a.

For the last contribution in (D.8) we have simply taken,

In this case we have estimated this derivative for each ensemble along L C P q through 

a dedicated simulation. More precisely, in order to estimate the value for the ensemble 

at L /a  =  12 and /3 =  5.5, we have done a simulation at L/a = 8 and (i =  5.5 

keeping all other bare parameters fixed. The derivative has then been evaluated using 

an asymmetric finite difference.'* Similarly for the ensemble at L/a  = 16 and /3 =  5.7, 

we have generated a corresponding ensemble at L /a  = 12 and /3 =  5.7. Note that the 

ensemble at L/a  = S, P = 5.2, is by definition on the LPC, and we thus do not need 

to take this systematic into account. Regarding the ensemble at L/a  = 9.2 instead,

®Note that, the corresponding vahie obtained from tree-level perturbation theory is given by 

~  —0.3 (Vilaseca, 2013).
“*Note that in this case the denominator in this numerical derivative is of 0 (1 ), what we are 

getting is thus a really rough estimate.

(D.12)
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we have performed an interpolation of our observables to  the exact value of L /a  given 

by the condition of constant L  using the results of simulations at different L / a ’s (cf. 

Section D.3). This was done as otherwise the system atic effect related to L  would 

have been to  large, and would have spoiled the good precision of our determ inations. 

Finally, note th a t in (D.12) we neglected the contributions coming from the variation 

of the  PCAC mass, and the condition on z j  w .r.t. L.  On the other hand, using the 

results from the interpolation a t /3 =  5.3, we could get a good estim ate for d Z i  a t this 

/3. Considering th a t this is an O(a^) effect, we concluded th a t the system atic errors 

d Z i  we have estim ated on the other ensembles using (D.12) are already conservative. 

We have also checked th a t including these contributions increases the systematic error 

by roughly 20% only at the value of /3 =  5.5. For /? =  5.7 instead these are negligible. 

Given these observations, we decided to  neglect these contributions also for /3 = 5.5.

Finally, the values of d L /a  th a t enter in (D.12) have been estim ated as: d L /a  =  

/ a  — L /a ,  where j a  are the exact values of L/ a  th a t we would need to satisfy 

the condition L  =  const. These are obtained by simply using the values of the lattice 

spacings in Table 5.2. We remind th a t the uncertainty on the lattice spacing can be 

neglected in practice. L /o  instead is the value at which we simulated. In fact, these 

deviations are tiny i.e. d L / L  ~  0.03 for the two ensembles at /? =  5.5. and /3 =  5.7.

To conclude with the system atics, a few words about the points in the ensemble 

PT. dZm^dZz j  have been estim ated as described above. Regarding d Z i  instead, we 

have simulated an ensemble a t =  7.2 and L /a  =  16, and we have taken the difference 

between the corresponding Z  determ inations as a system atic on Z.  The same error has 

been used for the other points at /? =  8.4,9.6. In this case estim ating the derivative 

would have been in fact pointless since dL  is of 0(10).

T h e grad ient flow cou p lin g . Some additional information about our simulations 

can be extracted from flow observables a t very little ex tra  cost. Specifically we looked 

at the gradient flow coupling in finite volume with SF boundary conditions (Fritzsch 

and Ramos, 2013). For this coupling the renormalization scale is set by /x =  L~^,  

and the flow tim e at which is m easured is specified by the ratio c =  y / ^ / L ,  which
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Fig. D.l: Continuum limit extrapolations for the gradient flow coupling along the 

line of constant physics defined by LCPq. Three different renormalization schemes are 

considered.

c=0.5 •—' c=0.4 ’"O' ' 0=0.3
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0.0160 0.004 0.008 0.012

(a/L)‘

has to be kept fixed while taking the continuum limit.® In particular, different values 

of c correspond to different renormalization schemes. For our analysis, the important 

observation is that by measuring this observable we can gain some insight on how 

well the condition L = const, is satisfied on our ensembles. Indeed, if the condition is 

well-satisfied, the gradient flow' coupling should smoothly approach its continuum limit 

value at the renormalization scale f-i =  L~^,  with the expected scaling. Specifically, 

one would expect some 0 (a) lattice artifacts coming from the boundaries. However, if 

these effects are small within our precision, we could in principle expect an scaling, 

or even a constant.

®Note th a t in the  SF one has to  pick up a  tim e slice where to  m easure the  energy density th a t 

defines the  coupling. In the following we take x q  =  T/2.
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Given these observations, in Figure D.l we present the continuum limit extrapo­

lations of the gradient flow (GF) coupling gQp{L) for three diff’erent schemes c.® Note 

that the value at P = 5.3 is not available. In this case in fact an interpolation in L/a  

is non-trivial since this quantity is scale dependent. As we can see from the plot, as 

we move towards bigger values of c the statistical precision on the coupling decreases 

for a fixed luunber of gauge configurations, but also cutoff effects. These are general 

features of the GF coupling in finite volume (see (Fritzsch and Ramos, 2013)). Thus, 

considering the results for c =  0.5, we can conclude that qualitatively the condition 

of constant L  is well-satisfied on our ensembles. Note that this is a non-trivial result, 

in particular considering that the value for L /a  at /? =  5.7 has been estimated using 

bare lattice perturbation theory.

D.3 Details on the interpolation at /? =  5.3

We here comment on the determination of the finite renormalization constants Zy  

and Z a at /? =  5.3, since this provides indirect evidence for the automatic 0(a) 

improvement of these determinations. Similar results hold for the ratio ZpjZg.  This 

case however is less interesting since this ratio is improved once the action is improved.

As discussed in Section 5.3.2, for this value of the bare coupling the LCP condition 

L ~  0.6fm would require a lattice size of Lja  ~  9.2 (cf. Table 5.2). However, as 

mentioned our simulation code can only simulate even lattice sizes L /a. In order to 

determine the renormalization factors for the required value of L /a , we then exploited 

the cutoff dependence of Z y  a - More precisely, at fixed /? =  5.3 we have simulated three 

different lattice sizes corresponding to L /a  =  8,10,12. If the determinations are 0 (a) 

improved, we expect the results for Z v a on these lattices to differ by cutoff effects 

of O(a^). We can then use this dependence to actually interpolate the results at the 

given vale of L/a  =  9.2.

In Figure D.2 we reported our results for Zy  and Z y  at fixed /3 =  5.3 and for 

the different lattice sizes L /a  = 8,10,12. As we can see, the dependence on {a/L)'^ is 

nicely linear, meaning that higher order terms in a are negligible within our precision.

®The author wants to thank Alberto Ramos for providing several routines for the computation of 

the GF coupling.
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F ig. D.2: Z v  and Z a  in te rpo la tions fo r /3 =  5.3. Three difTerent la ttice  sizes have been 

considered: L ja  =  8 ,10,12.
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Due to  this linear dependence, it is then easy to  interpolate the results to  the desired 

value of L j a  = 9.2. These are marked on the plot by a black vertical line. Note th a t, 

the renorm alization constants defined in term s of the  /-functions only, generally have 

a milder dependence on L / a  than  those defined using ^-functions. Overall however, all 

definitions of Z v ,a  show small cutoff effects a t this (not so small) value of the lattice 

spacing.

D.4 Scaling o f Z a .v  differences and autom atic 0(a) improvement 
from the fem to-universe

Z v  a n d  Z a d iffe ren ces . Similarly to w hat done in Section 5.4.3, we considered the 

continuum limit extrapolation of the differences between different definitions of Z y  

and Z a along the LCPs given by L C Pi, LC P 2 , and LC P 3 . We collected the results 

obtained for the three different values of the SF coupling in Figure D.3. Note th a t, we 

fit the d a ta  through a linear fit in (a /L )^ , including only the points at L j a  =  8 ,12. 

The fit is then constrained to  pass through zero. Looking at the deviation from the 

fitting line thus perm its to  judge whether the L j a  = 6  lattice belongs or not to  the 

scaling region. As we can see, similar conclusions as in Section 5.4.3 can be drawn. In 

particular, the O(a^) scaling is obtained for the largest values of L/a,  and the effect 

of the 0 (a) improvement of the axial current in the definition of Z \  does not affect 

the results within errors.

A u to m a tic  0 ( a )  im p ro v e m e n t. Here we propose a study of the 7 sT^-odd correla­

tion functions considered in Section 5.6, along the LCPs defined by L C P i, LC P 2 , and 

LCP 3 . The results are collected in Figure D.4, Similarly to  w hat noticed there, the 

only (literally) odd function th a t shows some sizable cutoff effects is Remarkably, 

all other correlators are zero within errors along all LCPs. In this case however, in­

cluding the 0 (a) operator counterterm  to using the tree-level value for Cy simply 

changes the sign of the cutoff effects (cf. results for l ^ ) .  As we can see though, the  

contribution of the operator counterterm  is an 0 (a) effect th a t properly vanishes in 

the continuum limit. In conclusion, we confirm our expectation th a t 0 (a )  cutoff effects 

are generally small in these correlation functions.
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