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Summary

In this work, we present first results from dynamical simulations of the chirally rotated
Schrodinger functional (SF) in lattice QCD. More specifically, we discuss the deter-
mination of renormalization constants of quark-bilinears, and show evidence for the
expected automatic O(a) improvement of these determinations. After a short intro-
duction on the topics of non-perturbative renormalization and improvement in lattice
field theory. we recall the technical advantages of renormalization schemes based on
the SF. We then motivate and discuss the lattice regularization of the SF with chirally
rotated boundary conditions, and present details and tests on the simulation algo-
rithm. Finally, we comment on the results and on future possible applications of the

method.
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1
Introduction

The Standard Model (SM) of particle physics gives a unified theoretical description of
all known phenomena governed by the strong, weak, and electromagnetic interactions.
Extraordinarily accurate predictions have been confirmed so far for an incredibly wide
range of experiments, and up to the highest energies reachable in current accelerators.
The discovery of a possibly fundamental scalar field made at CERN in July 2012,
might even corroborate the most debated sector of the SM. The generation of the
fermion and gauge boson masses through the Higgs-mechanism, provides indeed an
elegant and accurate description of the present experimental evidence. The SM then
passes another crucial test, and this makes it more difficult to predict what is beyond.

A way to capture the physics beyond the SM consists in exploring higher and
higher energy scales, where new degrees of freedom might become active and manifest
explicitly in the dynamics. On the other hand. the existence of as yet undetected high-
energy excitations might be unveiled at low-energy through their effects as virtual
particles. To this end, however. unprecedented precision is needed in both theoretical
and experimental determinations.

In this respect, the strongly interacting sector of the SM plays a crucial role. Indeed,
at energies much below the mass of the W-bosouns, the SM can be accurately described
by a theory of strongly coupled quarks and gluons and some effective electro-weak
interactions.! As a result, precise SM predictions require first of all control on the
strong interaction contributions, which are in general the dominant ones and most

difficult to treat.

'We recommend (Donoghue, Golowich and Holstein, 1994) for an introduction to the effective
low-energy descriptions of the SM. A discussion in the context of lattice field theory techniques can

then be found in (Lellouch, 2011).



2 Introduction

The aim of our work is to develop techniques in the context of lattice field theory
which can lead to precise theoretical determinations of strong interaction contributions.
In order to introduce our study in more detail, we start in the next section with a brief
review of the theory of the strong interactions, namely, Quantum Chromo Dynamics
(QCD).? This simply serves us to fix some of the notation, and recall some basic
concepts needed in the following. Later, we introduce the lattice formulation of QCD

and thus contextualize our study. We then conclude with an outline of this work.

1.1 Quantum Chromo Dynamics

QCD is a quantum field theory characterized by a gauge invariance under the color
group SU(3).. It is defined in terms of a gluon field A,, and quark and anti-quark
fields v and . The latter are taken to be a column and row vector of length Ni,
respectively, where N; corresponds to the number of quark flavours f = u,d, s, c. b, t,
considered. For reasons that will become clear shortly, the theory is set-up in Euclidean
space-time.

The dynamics of QCD is determined by the action,

S[A, v, %] = Sg|A] + Sr|A. ¥, ¥), (1.1)

where Sg is the action for the gluon field, while Sf is the action for the quark fields.

The action for the gluon field is given by,
1
SclA] = ~53 dz te{ Fuo (@) F (@) ) (1.2)
90
where F),, is the field strength tensor defined by (cf. (A.23)),

F(z) = 0,Au(z) — 0,A,(z) + [Au(z), Au(z)], (1:3)

and gg is the (bare) gauge coupling of the theory.

The action for the quark fields instead is defined as,
Seld, 0.7 = [ daT(@)P + M) (1.4)

2For an introduction please see e.g. (Ellis, Stirling and Webber, 1996; Aitchison and Hey, 2004).
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where ) is the massless Dirac operator, I = v,,(9,+A,), and M is a N x Ny diagonal
matrix which diagonal elements are the (bare) quark masses, 7n£ , of the quark flavours
f. The Euclidean Dirac matrices, 7,, are collected in Appendix A.2.

Given the classical action and field content of the theory, its formal quantization

is specified by the Euclidean partition function,
= / [DA][DY)[ D] e~ 5S4, (1.5)

where the integration measures are given by,

[DA] = Hd4“ ), [Dy]= HHdw (z) Dw]—HHduAa : | (1.6)

T, pu.a f z,Aa f z,Aa

We refer the reader to Appendix A.1 for the index definitions.

The quantum mechanical expectation value of a generic product of local fields,

O = O[A, ¥, )], is then obtained from the Euclidean correlation functions,?

)=+ / [DA|[DY][DT] O[A, ¢, T =S4+, (1.7)

Apart from the aforementioned gauge invariance and manifest SO(4) global invariance,
the theory posses a series of exact discrete symmetries, namely: parity. charge conju-
gation, and Euclidean time-reflection (see Appendix A.6). In addition, there are some
approximate continuous global symmetries which are described by the chiral-flavour
group SU(Ng)p x SU(N¢) g, where L and R stand for the left- and right-handed chiral
components of the quark fields.*?

The chiral-flavour symmetries will be studied in more detail in the next chapter.

Here we just want to note that if the quark masses 'm({ are all degenerate, then the

3A rigorous discussion on the reconstruction of quantum mechanical expectation values from
Euclidean correlation functions can be found in (Liischer, 1977; Osterwalder and Seiler, 1978), where
the lattice formulation of QCD is employed.

4Just for completeness, we recall that the L (left) and R (right) handed chiral components of the
quark fields ¢ and ¢ are defined as: ¥ = Ppi, ¥y = Ppi, ;R = ¢Pp, and EL = 1 Pp, where the
projectors Pr and Pp, are given in Appendix A.2.

5In the following we will not discuss the exact U(1) vector symmetry associated with the baryon

number conservation, nor the anomalous U(1) axial symmetry (see e.g. (Aitchison and Hey, 2004)).
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mass matrix My is proportional to the identity, and the action (1.4) is invariant under

the flavour (or vector) transformations,

U(z) = ¢'(2) = e Y (a),
" ., - o (1.8)
v(z) = ¢ () = v(x)e*

where a®, a = 1,..., Ny2—1, are real constants, and T® are algebra elements of SU(Ny)

(see Appendix A.3). In the case where the quark masses are all zero, the action (1.4)
is also invariant under the chiral (or axial) transformations,

() = '(x) = T G (a),

(1.9

P(x) = ¥'(z) = Plx)e " T",

where 75 is defined in Appendix A.2. In the next chapter, we will show how these
syminetries of the QCD action are in fact symmetries of the whole quantum theory.
Given these observations, it might come as a surprise that the plethora of strong
interactions phenomena can be described by such an apparently simple theory with
relatively few parameters and extended symmetry properties. The dynamics of QCD,
however, is highly non-trivial and a solution of the theory is generally difficult to
obtain. In fact, at high-energies the (renormalized) QCD coupling becomes smaller
and smaller as the energy of the considered process increases. This is the property
of asymptotic freedom (Gross and Wilczek, 1973; Politzer, 1973). In this regime, the
strong interactions can be described in terms of nearly free quarks and gluons, and
accurate determinations can be obtained through a perturbative approximation of the
QCD path-integral. On the other hand, at intermediate and low energies the strong
coupling is not small, and a perturbative treatment of the strong interactions is not
valid anymore. A non-perturbative solution of the theory is then generally needed in

order to obtain meaningful predictions.
1.2 Lattice QCD

The lattice formulation of QCD is so far the only known method to obtain a non-
perturbative solution of the theory (Wilson, 1974).% Starting from the Euclidean path-

integral (1.7), the lattice formulation is defined by introducing a space-time lattice and

SFor an introduction to lattice field theory we suggest (Montvay and Miinster, 1997; Rothe, 2012).
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discretizing the fields and the action. The finite lattice spacing effectively works like
a momentum cutoff that eliminates all energy frequencies of the theory above ~ a~1,
where a is the lattice spacing. The lattice hence provides a non-perturbative regulator,
which makes the theory finite and mathematically well-defined.

Nowadays, essentially all quantitative results in lattice QCD are obtained through
numerical simulations. Considering a finite space-time volume, the theory has a finite
number of degrees of freedom and numerical methods can be applied to solve it. Due
to the extensive number of degrees of freedom, Monte Carlo (MC) methods are used
to estimate the discretized path-integrals: representative gauge field configurations are
generated stochastically, and the expectation values of generic observables are com-
puted as ensemble averages.” For the given lattice parameters lattice QCD gives exact
answers within the statistical uncertainties. Physical results are then expected to be
obtained once the infrared and ultraviolet cutoffs have heen removed or, equivalently,
the infinite volume and continuum limits have been taken.

The effects of a finite physical volume are generally easier to handle. For example
if one considers particle masses, general field theoretical considerations show that in
a theory with a mass gap the corrections due to the finite volume are exponentially
suppressed with the system size, where the exponential decay rate is given by the
mass gap itself. In QCD, this means that finite volume hadron masses differ w.r.t.

—mxL) where m, is the pion

their infinite volume counterparts by corrections of O(e
mass and L is the finite size of the system.® Similar conclusions can be drawn for many
other quantities of interest.

In practice, another infrared cutoff than the volume needs to be handled in lattice
simulations. This is given by the quark masses. Without entering too much into the
details, the problem can be tracked down to the difficultly of inverting the lattice Dirac
operator numerically for relatively light quark masses. This computation is required for
example in the generation of the field ensembles through MC simulations, as well as in
the evaluation of fermionic correlation functions. The quark masses in fact provide an

"We will discuss the current simulations algorithms for lattice QCD in Chapter 4.

8We refer to (Liischer, 1986a; Liischer, 1986b) for the details on the derivation and conditions

under which this result holds. A shorter introduction can be found in (Liischer, 1988).
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infrared cutoff for the Dirac spectrum, and the numerical computation of the inverse
operator clearly suffers from the removal of this cutoff. Here we just want to mention
that significant improvement has been achieved in this respect, and relatively small
if not physical quark masses can now be simulated. In addition, the tools developed
in the context of chiral perturbation theory can help in extrapolating lattice results
at unphysical quark masses to their physical values.” The problem of determining our
observables at the physical quark masses is then generally under control.

More delicate is the issue of taking the continuum limit. In numerical simulations
this is done by simulating the theory at different values of the lattice spacing a, and
then extrapolate the results for a — 0. This procedure, however, is very demanding
in terms of computational effort. The cost of current simulations indeed scales as a=7
towards the continuum limit, if the physical volume is kept fixed and for comparable
statistical precision (Schaefer, 2012). This means that in practice the lattice spacing
can be varied only by a modest factor. Considering that, as we shall see. lattice observ-
ables can differ from their continuum values by corrections of O(a), it is not obvious
that reliable and precise extrapolations can be performed. A theoretical understanding
of the approach to the continuum limit of lattice observables is certainly needed, as
well as techniques to control and eventually accelerate the convergence.

Related to the problem of taking the continuum limit there is the problem of the
renormalization of the theory. As we remove the cutoff, the bare lattice correlation
functions will develop divergences that need to be cancelled by the usual parameter
and field renormalization. In this respect, note that renormalization is an ultraviolet
phenomenon with relevant energy scales of O(a~1). Since the continuum limit of lattice
QCD is expected to be reached by tuning the bare coupling go — 0,'° one is tempted
to conclude that the renormalization of the theory can be performed perturbatively

in terms of the bare coupling.!! Bare lattice perturbation theory, however, is known

9For an introduction to chiral perturbation theory and its applications to lattice QCD see
e.g. (Sharpe, 2006; Golterman, 2009).

10From asymptotic freedom we expect g2(a) “~ where Aqep is some hadronic scale.

0 -1
log(aAQcp) '’
1'We ignore for the moment the case of power-divergences where a perturbative treatment is not

even possible a priori. We will return to this issue in the next chapter.
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to be poorly convergent (Parisi, 1980; Lepage and Mackenzie, 1993). Even though the
situation can be improved, it is still difficult to estimate the systematic errors one is
introducing with this approximation. In fact, the crucial question is whether one is in a
regime of lattice spacings fine enough for this approach to be reliable at all. In present
simulations this is generally difficult to achieve since the lattice spacing a can not be
taken much smaller than the relevant physical scales of the observables considered,
as otherwise the computation becomes too expensive. In conclusion, in order not to
introduce uncontrolled approximations in renormalized lattice observables, the renor-
malization has to be performed non-perturbatively! As any other non-perturbative
determination, the renormalization has then to deal with the systematic effects we
discussed, namely, finite-volume effects, discretization effects, and quark-mass effects.
It is the aim of this work to develop methods for the non-perturbative renormalization
of lattice QCD where all these systematic effects are under control.

Given these general considerations, the details of the renormalization will depend
on the specific lattice regularization employed. Note that in lattice QCD there is quite
some freedom in choosing the regularization. At least in perturbation theory and for
some classes of actions, it has then been proven that the specific choice does not matter
once the continuum limit is taken (Reisz, 1989; Reisz and Rothe, 2000). This property
is referred to as the universality of the continuum limit, and it is assumed to be valid
also at the non-perturbative level. In this work we consider the original formulation of
lattice QCD as proposed by Wilson (Wilson, 1974). This discretization is theoretically
robust, practically simple, and relatively cheap to simulate. All these nice properties
make this alternative a concrete possibility to obtain precise and solid determinations.

The well-known drawback of Wilson's formulation is the explicit breaking of chiral
symmetry at finite lattice spacing. Since chiral symmetry is a fundamental property
of QCD this might be a source of concern. The effect of the breaking, however, is
theoretically well-understood, and the correct chiral symmetry relations are recovered
in the continuum limit after a proper renormalization of the theory (Karsten and Smit,
1981; Bochicchio et al., 1985; Testa, 1998). On the other hand, as discussed in detail

in the next chapter, the absence of this symmetry at finite lattice spacing implies that
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the renormalization of the theory is more complicated, and the leading discretization
effects are of O(a). Ideas are then needed in order to obtain precise continuum limit
extrapolations of renormalized lattice observables using this regularization.

In this respect, we just want to mention that chiral symmetry is a delicate issue
on the lattice (Nielsen and Ninomiya, 1981a: Nielsen and Ninomiya, 1981b; Nielsen
and Ninomiya, 1981¢). In fact, lattice formulations that preserve (a lattice version of)
chiral symmetry do exist.!? and have been recently exploited for large scale simulations
(see (Chiu, 2013)). On the other hand, even though major progress has been achieved
in simulating chiral lattice fermions, these formulations are still very demanding from
the computational point of view, and are not yet feasible for most computations.
For this reason Wilson fermions remain a popular choice especially when precision is

required.

1.3 Outline

In this work we study non-perturbative renormalization schemes based on the chirally
rotated Schrodinger functional (SF) of QCD (Sint, 2006; Sint. 2011). Renormalization
schemes based on the SF (Liischer, Narayanan, Weisz and Wolff, 1992; Sint, 1994) have
proven to be powerful tools in solving non-perturbative renormalization problems in
lattice QCD. For the case of Wilson-quarks, we argue that the chirally rotated version
of the SF is a valuable and interesting alternative to be considered. The aim is to
improve our control on discretization effects, and offer novel approaches for the renor-
malization of operators that might be complicated by the absence of chiral symmetry.
In order to motivate and introduce these renormalization schemes, as well as present
the results of our investigation. several tools and concepts need to be discussed first.

A general outline of this work is then the following:

Chapter 2 We start by introducing the standard Wilson formulation of lattice QCD.
In particular, we focus on the consequences of chiral symmetry breaking on the
renormalization of the theory. Secondly, we analyze the approach to the continuum

1230me original references on chiral lattice fermions are (Kaplan, 1992; Narayanan and Neuberger,

1995; Neuberger, 1998; Liischer, 1998b). For an introduction instead we recommend (Liischer, 2000;
Kaplan, 2009).
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limit of renormalized lattice observables through Symanzik’s effective continuum
theory. After a short introduction on the latter, we study how the leading O(a)
discretization effects of Wilson fermions can be systematically removed from our
observables. Next, the general difficulties of performing non-perturbative renor-
malization on the lattice are discussed in detail. As we shall see, the requirements
of controlled finite-volume effects and discretization effects put severe constraints
on the determination of scale-dependent renormalization factors and parameters
from lattice QCD. In this respect, we present how finite-volume renormalization
schemes in combination with finite-size scaling techniques provide a general and

elegant solution to the problem.

Chapter 3 We introduce the Schrodinger functional (SF) of QCD as a practical tool
to define non-perturbative finite-volume renormalization schemes. Through its
formal continuum definition we motivate this choice, and present its nice features.
Secondly, we discuss the standard lattice formulation of the SF, paying particular
attention to the renormalization and O(a)-improvement of the theory. This will
lead us to introduce an alternative regularization of the SF based on the chirally
rotated Schrodinger functional (ySF). The connection with the standard SF is
discussed, and the lattice regularization, renormalization, and O(a)-improvement
of the xSF are presented in detail. The crucial property of the novel formulation
is that. differently from the standard SF regularization, the O(a)-improvement
of the theory is (almost) automatic. As we shall see, the YSF thus does not only
provide an interesting test of universality for the SF, but also alternative methods
for the renormalization of operators where O(a) cutoff effects are automatically

absent.

Chapter 4 We shortly review the general algorithmic strategies for simulating lattice
QCD. We then present the details of the algorithms that we have implemented
to simulate the ySF. Finally, some consistency checks are discussed in order to

support the correctness of our implementation.

Chapter 5 We present results from dynamical simulations of Nf = 2 O(a)-improved

Wilson-fermions with chirally rotated boundary conditions. More precisely, we
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consider the renormalization of several quark-bilinears including the non-singlet
axial and vector currents, and pseudo-scalar density. After a short presentation of
the set-up, we discuss how the expected universality between the ySF and SF can
be exploited to define renormalization conditions for these operators. The results
are then compared with previous SF determinations, and their automatic O(a)
improvement is demonstrated. We conclude the chapter with a detailed analysis

of the robustness of our simulations.



2
Non-perturbative renormalization

In this chapter we want to review some of the basic concepts of non-perturbative
renormalization in the context of lattice field theory. As said, the aim of this work is to
study a set-up for the non-perturbative renormalization of operators and fundamental
parameters where all systematic effects are under control. The concepts that will be
presented here are the building blocks for introducing and motivating our set-up in
the next chapter. Through the next sections we will also fix some of the notation, and
define several quantities which are central for our analyze later on.

More precisely, we start in the next section with a presentation of the standard
Wilson formulation of lattice QCD (Wilson, 1974). In particular, we are interested in
understanding the additional renormalization originating from the explicit breaking of
chiral symmetry by the regularization. To this scope, the Ward identities of the theory
will be studied in detail. Secondly, we introduce Symanzik’s effective theory. This
powerful tool allows us to systematically study and eventually improve the approach
to the continuum limit of renormalized lattice observables. We conclude discussing the
general problems in performing non-perturbative renormalization on the lattice, and
present how finite-volume renormalization schemes and finite-size scaling techniques
provide an elegant solution.

Note that most of the material presented in this chapter is by now standard wisdom
in lattice field theory. The author then recommends the references that will be provided

for a more detailed an complete discussion.
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2.1 Wilson fermions and chiral symmetry
2.1.1 The Wilson formulation of lattice QCD

In the standard Wilson formulation of lattice QCD, the quark and anti-quark fields
¢(z) and ¥ (z) live on the sites x of the lattice and carry color, flavor and Dirac indices
as in the continuum. We assume %/ and ¥ to be isospin doublets of mass-degenerate
light quarks since this will be the case of most interest for us. The gauge field instead
is represented through a field of SU(3) matrices U, (z) associated with the links of the
lattice (z,z + aft), where p =0, ..., 3, labels the four space-time directions, and /i is
the unit vector in the direction p. The index p = 0 is conventionally associated with
the time direction, while the indices & = 1,2, 3, are associated with the spatial ones. If
not specified otherwise, we consider the theory to be defined on a hyper-cubic lattice
with lattice spacing a, and infinite extent in all directions.

The dynamics of theory is determined by the action.
S[U. ¢, ] = Sg[U] + Se[U, v, ¥], (2.1)

where Sg is the Wilson (or plaquette) gauge action, and Sg the Wilson quark action.

The gauge action Sg is defined by,

3
SalU] = é S w{l- Pu(@)}. (2.2)

& piw=0

where gg is the bare gauge coupling of the theory, and P, (x) is the plaquette field:
P () = Ulz)0u(z + o)V (x + ad)~ U, (2) L.

In order to define the fermionic action Sg. we introduce the Wilson Dirac operator,
Dy =1 {m(Vi+V,) —aViv,}, (2.3)
i

where the lattice covariant derivatives V,, and V,; are defined in Appendix A.4. The
second term in curly brackets is the Wilson term. This is included in order to avoid the
well-known doubling problem on the lattice (see e.g. (Montvay and Miinster, 1997)).

As we shall see shortly, however, it is source of other concerns.
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The action for the quark fields Sp is then defined by,
Sp[U, ¢, %) = a* Za(r) (Dw + mo)¥(x), (2.4)

where m is the bare quark-mass of the degenerate quark-doublet.

Given the definitions (2.2) and (2.4), it is easy to show that the lattice action (2.1)
shares all the discrete symmetries of the continuum QCD action (1.1), viz., parity,
charge conjugation, and Euclidean time reflection (see Appendix A.6).} This, however,
is not true for the continuous global symmetries. The SO(4) symmetry of continuum
QCD is unavoidably broken down to the discrete hyper-cubic group H(4). Moreover,
not all internal symimetries are preserved, as we now show.

The non-singlet vector (flavour) transformations (1.8) can be analogously defined
on the lattice, and for Ny = 2 Wilson-quarks read,

,a

U(z) = ¥'(z) = eV T (a),

—
o
ot
=

U(z) = T (x) = B(a)e

o

;G
—lQy, p)

where 7%, a = 1,2, 3, are Pauli matrices acting on the isospin indices of the quark
fields (cf. Appendix A.3), and af, are some real parameters. The gauge action (2.2)
is trivially invariant under any fermionic transformation, and does not need to be
discussed. It is then immediate to conclude that the Wilson quark action (2.4) is
invariant under the transformations (2.5) since the bare quark masses are degenerate.
Vector symmetry is thus preserved by the Wilson action.

Secondly, we consider the non-singlet axial (chiral) transformations (1.9). which

for Ny = 2 Wilson-quarks are given by,

Il
)
=
]
e
NL“
o
(<
€
—~
&
==

P(x) = Y (x)
) (2.6)
Te) = () =

where a9 are some real parameters. In this case. even if the bare quark mass my is zero,
7. o * ve . . .
the presence of the Wilson term (a®’V,V 1) makes the Wilson action not invariant

!The lattice action (2.1) satisfies the property of reflection positivity (Liischer, 1977). This is a
fundamental property for the quantum mechanical interpretation of the theory, which includes the

existence of a Hilbert space of states for the theory, and a positive self-adjoint Hamiltonian operator.
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under the axial transformations (2.6). The Wilson term thus explicitly breaks chiral
symmetry, which is not a symmetry of the Wilson action.

Chiral symmetry is a fundamental aspect of the low-energy dynamics of QCD.
The explicit breaking of this symmetry by the regularization might then be a source
of concern. In order to better understand this issue. in the next two subsections we
investigate the breaking of chiral symmetry through the Ward identities of the theory.
Dealing with a quantum field theory, we need to extend our analyze from the simple
action to the correlation functions of the theory in order to fully capture the effects
of the breaking. As we shall see, chiral symmetry is restored in the continuum limit if
the lattice theory is properly renormalized (Karsten and Smit, 1981; Bochicchio et al.,
1985: Lischer, Sint, Sommer and Wittig, 1997b; Testa, 1998). In fact, the requirement
of chiral symmetry restoration in the continuum limit can be used as a condition to

fix this renormalization.

2.1.2 Chiral Ward identities

In this subsection we want to study the Ward identities (WIs) of the theory, and
specifically those related to chiral symmetry. The idea is first to discuss these relations
in the formal continuum theory.? In the next subsection we will then repeat their
derivation in the lattice theory with Wilson fermions. This will allow us to better
understand the consequences of the breaking of chiral symmetry by the regularization
on the renormalization of the theory. Note that we will skip most of the technical
details, and basically summarize the main results. We thus recommend the original
references that will be given for a more complete discussion. For an introduction instead
we suggest (Sommer, 1997; Liischer, 1998a; Vladikas, 2011).

As introduced, in Euclidean space-time the expectation value of any product of
local fields O is given in terms of the functional integral (cf. (1.7)),

1 — L —S[AYT
o= / [DA][DY][DY] OA, 4, P e SA¥¥I], (2.7)
2For a more rigorous derivation instead of the formal continuum theory one could consider a
chirally preserving lattice formulation. The bare lattice correlation functions would then respect Wis

analogous to the formal continuum ones (Hasenfratz, 1998; Kikukawa and Yamada, 1999). Since,

however, we did not present chiral lattice fermions in detail, we will proceed less rigorously.
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In order to obtain WIs, we simply consider suitable changes of variables in the func-

tional integral, of the form,
¥(z) = Plz) + (@),  Blz) - Ble) + 69(x). (2.8)

Specifically, we consider infinitesimal local versions of the flavour and chiral transfor-

mations (2.5) and (2.6), which are given by,

dv(x) = zlia% (.T)%] ¥(z), Svip(x) = —i(z) {Q‘C, (x) :;—] , (2.9)
Sa(z) =1 l'afﬂl(r)g—a%] U(x), dat(z) = iv(x) {ai(r)%ﬁl—'yg,} ’ (2.10)

where ay 4 (x) are smooth functions that vanish outside some bounded region of space-
time we will denote by R.
Since the Pauli matrices are traceless, the integration measure in (2.7) is trivially

invariant under these transformations, and we then conclude that,
(0 6x8S) = (6x0), (2.11)

where dx S and 6x O, with X = V, A, are the infinitesimal variations of the continuum
action S and observable O corresponding to the transformations (2.9) and (2.10).
respectively. By considering different transformations, observables O, and functions
ay (x), many useful relations among correlation functions can be obtained. These are
collectively referred to as WIs. The relations that follow from the local chiral-flavour
transformations we are considering are just a special case that goes under the name
of chiral-flavour Wls (or axial-vector W1Is).

We first consider the vector Wls that derive from the vector transformations (2.9).

In this case, the variation of the action (1.1) is given by.?
oy S = ——i/Rd‘i;rmx (x)0.V,! (2), (2:12)

3Note that the derivation of this result involves a partial integration. Hence, if as in Chapter 3
one considers the case of compact space-time manifolds with boundaries, it is important that ay (z)
smoothly goes to zero outside some bounded domain R that does not contain the boundaries, as
otherwise additional terms might arise. If this condition is met, then the result holds regardless of

the boundary conditions for the fields.
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where we defined the non-singlet local vector current Vji(z) as,

Ve(@) = T@) S a). (213)

Given this result, it is now convenient to decompose the product of local fields O as
O = Oint Oext, where Oy and Oy are products of fields localized in the interior
and exterior of R, respectively. Using the general relation (2.11), we then immediately

obtain the vector Wis,
/ diz a%r(;r)(a‘,\/,f(a:) Ot Ot} = 3{(0v Oint) Oext ) (2.14)
R

If we consider the fields in the product O to be localized outside the region R, i.e..
Oint = 1 and O = Oy, the variation dy Oy, vanishes, and so the r.h.s. of (2.14).
Since the resulting equation is valid for any choice of R, we can choose R to be a

single space-time point x, and thus conclude that,
<0/,1 L;:Z'(I)Oext) =0. (215)

Note that in the more general case of non-degenerate quark-masses, the above relation

is modified, and reads,

(0, V. (x) Opxt) = 1€3%°0mg (S8(x) Oext), (2.16)

K

where dmyg is the mass difference between the two light quarks, and S%(z) is the
non-singlet scalar-density,

S*(z) = 'L;)(;l:);—au'.'(r). (2.17)
This is the partially conserved vector current (PCVC) relation, and Vi (z) is generally
referred to as the PCVC. The relations (2.15) and (2.16) are the Euclidean versions
of the corresponding operator relations in Minkowski space-time. Different fields O,
then correspond to different matrix elements of the operator relation.

Moving to the case of the axial transformations (2.10), the variation of the action

(1.1) is now given by,

048 = —i/Rd‘l.T o () (6,,AZ(I) — 2moP%(z)). (2.18)
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where we introduced the non-singlet local axial current A (z),
a

A4(2) = P(@) 5 wmv (@), (2.19)

and the non-singlet pseudo-scalar density P?(z).

7.0.

Po() = P(a)

Vs (x)- (2.20)
Using again the general relation (2.11), we can derive the azial Wis,

/ A4z 0% (2)(0 A% (2) Otnt Oest) = ({64010t Oexct)

A (2.21)

+2mo/ diz o (2){P*(z) Ot Oext)-
R

Analogously to the vector case (2.16), if we consider a product of fields O localized
outside the region R, and take R to be a single space-time point x, the expression

(2.21) reduces to the familiar partially conserved axial current (PCAC) relation,

(0, A% () Oext) = 2mo (P (2) Ot (2.22)

a
"
The local axial current is thus conserved only for vanishing quark-masses.

The above relations have been formally obtained in the continuum theory. However,
analogous relations can be derived among the corresponding bare correlation functions
in a regularization that preserves chiral-flavour symmetry. This said, it is possible to
show that, in general, (partially) conserved currents do not need any renormalization
(see e.g. (Collins, 1986; Vladikas, 2011)).+® Hence. if we define the renormalized vector

and axial currents,

(AR)e = ZaAZ, (VRS = Zv V2, (2.23)

we conclude that Z4 = Zy = 1. Using standard arguments, the finiteness of the axial
current implies through (2.22) that the product of the bare quark mass mq and the
pseudo-scalar density P%(z) is also finite (see e.g. (Testa, 1998)). Consequently, the

4If the conserved current is associated with a gauge symmetry, this conclusion is not always true.
The vector current in QED for example requires renormalization (Collins, Manohar and Wise, 2006).

SFor the specific case of the axial and vector currents, and a chirally preserving lattice regular-

ization of QCD, a detailed proof can be found in (Hasenfratz, 1998; Kikukawa and Yamada, 1999).
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bare quark mass mg renormalizes multiplicatively and inversely proportional to the

pseudo-scalar density,
(Pr)* = ZpP*?, mp = Zynmy = Z};I"lo- (2.24)

Analogously, the finites of the vector current implies through (2.16) that the quark-
mass difference and the scalar-density renormalize with inverse renormalization factors

(see e.g. (Vladikas, 2011)),
(Sr)® = ZsS*, dmp = Zsmdmgy = Zglémo. (2.25)

From the above equations, one is tempted to conclude also that Zp = Zg. In fact,
using the more general chiral WIs (2.21) one can show that operators in the same
chiral multiplet renormalize with the same multiplicative factor (see e.g. (Bochicchio
et al., 1985)). The same can be shown for operators in the same flavour multiplet using

the Wis (2.14) instead.®

2.1.3 Lattice Ward identities

After the discussion of the chiral-flavour Wls in the continuum, in this subsection we
want to study how the relations (2.15) and (2.22) get modified on the lattice with

Wilson fermions.

On the lattice the generic expectation value for a product of fields, O = O[U, ¢, ¥],

is given by the lattice path-integral,

© =12 / [DU)[DY)[DF] O[U, b, F) e~S1W3), (2.26)

Z
where S is the Wilson action (2.1), while the partition function Z is defined by the
normalization condition (1) = 1. The integration measures instead are given by:.
(DU = [] dUi(z), [D¥]= ][] dvael) [D¥]= [] Waulz), (227)
T,u.a z,Aa z.Aa
where dU is the Haar-measure over the group SU(3), while dv) and dv» are differentials

of the Grassmann algebra (Montvay and Miinster, 1997).

6Two or more operators are said to be in the same chiral (flavour) multiplet if they transform
into each other under the chiral (flavour) transformations (2.6) (or (2.5)). The operators P* and S¢
for example are in the same chiral multiplet. The corresponding operators with a different index a

instead belong to the same flavour multiplet.
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Starting from this definition, one can derive WIs for the lattice theory in complete
analogy with the continuum case already discussed. As a results, one finds essen-
tially the same equations, but with additional contributions to dy 4.5 which come
from the variation of the Wilson term under the local chiral-flavour transformations
(2.9) and (2.10). More precisely, considering the case of the PCAC relation (2.22), one
obtains (Bochicchio et al., 1985),

(07 A, (2)Ocxt) = 2mo (P (7)Oext) + a{X () Oext) (2.28)

where ), is the backward lattice derivative (A.17), and X is a dimension 5 operator.
Its explicit form can be easily worked out (see e.g. (Vladikas, 2011)).7

Naively, one might conclude that the corresponding term contributes only at O(a),
and then simply vanishes when a — 0. However, in order to understand what happens
to (2.28) when the continuum limit is taken, one first needs to consider the renor-
malization of the operator X“, as this conclusion might not be correct. On the lattice
indeed the operator X can mix under renormalization with operators of lower or equal
dimension, and same quantum numbers (Testa, 1998). The mixing with operators of
equal dimension involves coefficients that only diverge logarithmically with a. These
contributions are thus suppressed in the continuum limit by the explicit factor of a in
(2.28). The mixing with lower dimensional operators instead, is given by coefficients
which are inverse powers of the lattice spacing multiplied by finite functions of the bare
coupling i.e. renormalization scale-independent (Testa, 1998). The inverse powers of
the lattice spacing can thus cancel the explicit factor a in (2.28) and generate finite,
if not divergent, contributions. The key observation however is that the operator X
only mixes with lower dimensional operators that are already present in (2.28), since
all the operators with the legitimate quantum numbers are there. The effect of the
renormalization of X¢ can thus be recast into a renormalization of the fields in the

WiIs. In fact, one can show that this renormalization is all what is needed to make the

"We note that in the lattice PCAC relation the separation between the lattice regularization of
9 A, and the definition of the operator X ¢ is not unique. In (2.28) for example we consider the local
definition of the axial current (2.19). The form of X® thus differs from the one of the given reference
where the point-split axial current /Z;‘L is considered (Vladikas, 2011). It is however easy to convert

between the two definitions.
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PCAC relation finite (Testa, 1998). The resulting renormalized lattice PCAC relation

then reads.®

<5#(AR)z(I)cht> = 2mpg((Pr)*(z)Ocxt) + O(a), (2.29)

where the O(a) terms denote contributions that vanish (up to logarithms) linearly with
a in the continuum limit i.e. discretization effects. As before, the renormalized axial
current is defined as (Ag);, = Z4Aj;. However, since the conservation of the current
is now spoiled by discretization effect. we expect Z4 # 1. In fact, the renormalization
constant Z 4 is a finite function of the bare coupling go (Testa, 1998),% which only goes
to 1 in the continuum limit, i.e., Z(go) L B 08 correctly normalized continuum
WIs (2.22) are then recovered for a — 0. Secondly, we note that the bare quark mass
g is not protected by an additive renormalization, hence: mp = Z,,(my —m), where
7/ — Z;l, and m(amg, go) = C“’#“"QO), with ¢(go.amg) a regular function of amg
and go (Testa, 1998). In practice, it is thus convenient to introduce the (bare) PCAC

mass, )
MpCAC = 2{P%(x)Opxs)

which renormalizes multiplicatively, and inversely proportional to the pseudo-scalar

(2.30)

density, i.e.,

(PR)" = ZpPa. mpr = ZI;lZA MpCAC- (231)

We stress that different choices of Qg or flavour index a in (2.30) will give definitions
for mpeac that differ by O(a) effects (cf. (2.29)). Only in the continuum limit all these
definitions are expected to coincide.

An analogous discussion as for the PCAC relation can now be done for the PCVC

relation (2.15). In this case, one obtains the lattice vector WIs (see (Vladikas, 2011)),

(2 V9 (2)Ocxt) = a{Y *(2) Ooxt)s (2.32)

[T
where the expression for the dimension 5 operator Y'* can again be easily worked out.

8Note that we substituted the backward lattice derivative 9y, with 8, defined in (A.16) since the
two coincide up to O(a) terms.

9This is true if a mass-independent renormalization scheme is chosen for Z 4, as otherwise one
also has a finite amg dependence (Testa, 1998). The important point, however, is that a dependence

on a renormalization scale apu is excluded by general considerations.
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Considering the renormalization of the above relation, we note that the only lower
dimensional operator that Y¢ mixes with is given by 9,V. A finite renormalized

expression is then given by,

(0u(VR)i(2)Ocxt) = Ola), (2.33)
where up to O(a) terms we replaced 9}, by 5“, and where we defined the renormalized
local vector current as before, i.e., (Vgr); = ZvVj. Similarly to the axial case, the
renormalization factor Zy is a finite function of the bare coupling, and in general,
Zyv(go) # 1. The main difference w.r.t. the axial case, however, is that in this case
the operator Y can be written as the divergence of a dimension 4 operator A, i.e.,
Y@ = —0;Aj. Using (2.32) one can then define a conserved lattice vector current 17:

which satisfies,!?

where,
Vela) = Vii(z) + alj ()
1 [— N T gl _ . e
=3 P(x) (v, — I)U,,(.L‘)—Q-zy(;;- + afit) + P(x + app)(y, + l)U;(;r)?y(.r)} .
(2.35)

The conservation of this lattice current in the bare theory allows one to show that the
corresponding renormalization factor is given by Zy = 1 (see e.g. (Vladikas, 2011)).
The conserved current V’f thus does not need renormalization, as expected. In addition,

the difference between the matrix elements of (Vg)j; and Vi are purely discretization

a— go—0

effects (cf. (2.33) and (2.34)). Since, V§ = Vi'. we then conclude that, Zv (go) "= 1,
and the continuum vector Wls (2.15) are recovered in both cases.

Before concluding we want to mention that by investigating more general lattice
WIs (cf. (2.21)), one can infer other important consequences of the explicit breaking of
chiral symmetry by Wilson’s regularization. In particular, one can show that the over-
all multiplicative renormalization factors of operators that belong to the same chiral

10Note that in the expression (2.34) one can either use 9y, or gy since the conserved vector current

V¢ is time independent.
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multiplet generally differ by finite functions of the bare coupling (Testa, 1998). This
means that for example (Zp/Zs)(go) # 1, where this function only approaches 1 for
go — 0. Note also that the renormalization of the individual operators is in general
complicated by the mixing with operators of different chirality. The mixing pattern is
in fact only restricted by parity and flavour symmetry (Bochicchio et al., 1985). This
additional renormalization can be particularly difficult for more complicated opera-
tors as for example many interesting four-quark operators responsible for electro-weak
hadronic transitions (Donini et al.. 1995).

To summarize the results of this subsection, first of all we have seen that by properly
(re)normalizing the local axial and vector currents we recover, up to cutoff effects, the
continuum WL In particular, in the case of the vector current we found a conserved
lattice definition that does not need renormalization, and respect continuum-like W1ls.
Secondly, the PCAC relation suggested us a valid definition for a renormalized quark
mass through (2.31). This allows us to define the chiral point where the quark-masses
are zero by simply requiring mpcac = 0. Note however that at zero quark-mass the
renormalized axial current is only conserved up to discretization effects. Moreover, the
critical value of the bare quark-mass mg for which mpcac = 0 is implicitly defined
by the equation: meyit (g0) = T(amerit, go), and it is then a function of gg. Finally, as
mentioned above, we commented on the fact that operators in the same chiral multiplet
do not renormalize with the same multiplicative factors, but a finite rescaling is needed.

To conclude, since Zy and Z4 go to 1 in the continuum limit, one might ask the
question whether these finite renormalization factors are needed at all. The answer is
that, as we have seen, properly normalized matrix elements of the local axial or vector
current differ from their continuum limit by powers of the lattice spacing. On the other
hand, omitting Z4 (or Zy) implies that the same bare matrix elements will converge
to their continuum limits as power series in gy (Bochicchio et al., 1985), which is only
logarithmic in the lattice spacing.!’ This convergence is much slower than any power
of a, and reliable continuum extrapolations of unrenormalized bare matrix elements
can be very difficult if only a few lattice spacings are available over a limited range.

11We remind that close to the continuum limit, g2(a) ~ m.
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Through these examples, we can appreciate the importance of non-perturbative
renormalization. For example, if we had Z4 only at 1-loop order in perturbation theory,
a perturbatively renormalized matrix element of the axial current would converge to
its continuum limit with O(g§) corrections. As said, however, any power of the bare
coupling is much slower than any positive power of the lattice spacing a as a — 0.
Secondly, we want to note that there are cases where a perturbative treatment of the
renormalization would fail altogether. The renormalization of the bare quark-mass, and
more generally of any power-divergence, is an example where the renormalization can
only be performed non-perturbatively. In fact, in order to identify the chiral point, one
could think of determining the value of the critical mass m.;(go) using a perturbative
estimate for the function ¢(gg, amg) in . If, however, such function is known only up
to O(g{) corrections, this would lead to uncancelled O(%}a-) divergences in the PCAC
mass for example. While this is perfectly fine in perturbation theory, it is certainly
not in a non-perturbative determination.

As a last remark we want to mention that, once the correct WIs have been shown
to be recovered in the continuum limit through a proper renormalization of the theory,
one can actually turn the tables and impose the validity of a set of Wls at finite lattice
spacing in order to determine the necessary renormalization constants (Bochicchio
et al., 1985; Maiani and Martinelli, 1986; Martinelli et al., 1993; Liischer, Sint, Sommer
and Wittig, 1997b). It is important to note at this point that in principle any relation
among correlation functions which is dictated by chiral symmetry can be used to fix

this renormalization. We will explore these ideas in detail in Chapter 5.

2.2 Symanzik's effective theory and O(c)-improvement

As seen in the previous section, renormalized lattice observables computed with Wilson
fermions generally suffer from O(a) discretization effects (cf. (2.29)). Since long ago,
these effects are known to be rather large in the range of lattice spacings considered
in current simulations (see e.g. (Jansen, et al., 1996)). This can make continuum limit
extrapolations difficult, and ultimately not very precise. In order to better control
these extrapolations and eventually devise strategies to accelerate the convergence,

a theoretical understanding of how renormalized lattice observables approach their
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continuum limit is then needed. As we present in the next subsection, a quantita-
tive analysis can be obtained through Symanzik’s effective theory, which will lead us
to introduce Symanzik’s improvement programme for lattice field theory (Symanzik,
1981b; Symanzik, 1983a; Symanzik, 1983b). The presentation will follow closely the
one of (Liischer, Sint, Sommer and Weisz, 1996). For a more introductory discussion

we recommend (Liuscher, 1998a; Weisz, 2010).

2.2.1 Symanzik’s effective theory

Despite being difficult to prove rigorously, the idea of Symanzik is in principle simple.!?
It is well-known that the effect of as yet unknown high-energy degrees of freedom
can be described at low-energy by adding higher-dimensional interaction terms to
the original Lagrangian. The new Lagrangian so constructed defines an effective low-
energy description for the underlying more fundamental theory. A similar situation
occurs in lattice QCD. In purely formal terms, we can regard the momentum cutoff
a~! as a scale of new physics, and our lattice theory as the fundamental theory defined
at this scale. The associated low-energy effective theory is then a continuum theory

with action,

Set = So+aS; +a%Sy + ..., (2.36)

where Sy denotes the continuum QCD action, while the Si’s, & > 1, contain higher-

order terms. More precisely, these contributions are of the form,
SEl— /d'l.”l‘ﬁ;,-(:r), (2.37)

where the Lagrangians Lj(z) are linear combinations of local composite operators
of dimension 4 + £.1* Among the list of all possible such fields, only those that are

invariant under the syminetries of the lattice theory need to be considered.!4

12The existence of Symanzik’s effective theory is only conjectured (Weisz, 2010). However, it is
supported by low-order perturbative calculations, and non-perturbative numerical results.

13The dimension counting eventually includes (non-negative) powers of the quark mass which may
multiply some of the fields.

4We remind that for Ny = 2 (mass-degenerate) Wilson fermions these are: gauge invariance,
U(1) x SU(2) vector symmetry, and all exact discrete symmetries of the lattice action including

space-time symmetries (cf. Section 2.1.1).



Symanzik's effective theory and O(a)-improvement 25

In addition to the effective action, we need an effective description for the lattice
operators. In a lattice correlation function, indeed, cutoff effects do not only originate
from the action but also from the local composite operators inserted. For simplicity,
in the following we consider a generic local gauge invariant lattice field ¢(z), which
renormalizes only multiplicatively, i.e., (0r)(z) = Zy¢(x). In the effective theory the

renormalized lattice field ¢g is then represented through an effective field,
et (T) = ¢o(z) + ady () + d®da(z) + ..., (2.38)

where ¢g(z) is the corresponding continuum field, while the fields ¢5.(x), k > 1, are
linear combinations of local fields of dimension dy + k, where d; is the engineering
dimension of ¢(z). Analogously to the case of the effective action, only local fields with
the appropriate dimensions and symmetry properties enter in the combination ¢y ().

Given the effective action and fields, we have to discuss how lattice correlation
functions are actually described by the effective theory. In the following, we restrict
ourselves to on-shell correlation functions. These are all position space correlation
functions of local composite operators at non-zero physical distance. The reason for this
terminology is that all on-shell quantities in QCD, as for example hadron masses. or
matrix elements of local operators between particle states, can be extracted from these
correlation functions. This restriction is hence not severe, and meets most practical
purposes.'? To simplify the discussion, we also restrict to analyze the leading O(a)
effects. Terms proportional to higher-powers of the lattice spacing are anyhow expected
to be suppressed if the lattice spacing is fine enough.

As an example of correlation function we consider the connected n-point Green
function of the operator ¢(z) introduced above. The generalization to more general
correlation functions involving several types of fields is straightforward. Specifically,
since we want to study the approach to the continuum limit of this observable, the

properly renormalized quantity needs to be considered. In this case, this is given by,

(GR)TI ('Tl, e In) — <(GSR)(-'51) c (@'R)(l'n))c- (239)

15Note that if this assumption is not made, additional cutoff effects can arise when the composite
fields in the correlation functions are brought at coinciding space-time points. These effects are specific

of the correlation function considered, and are not taken into account by the effective action and fields.
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where (- - - ). refers to the connected part of the Green function. Note that we assume
the space-time points x1, ..., x,, to be at a non-zero physical distance from each others.
In the effective theory, the lattice correlation function (2.39) is then represented

through the asymptotic expansion (see e.g. (Liischer, 1998a)),

(GR)n(Z1, ... Tpn) = (o(z1) - - - Po(Tn))™

—a,/d4y(¢>o(11)"'ét)(In)Cl(y»gom (2.40)

+ay (bo(x1)- - d1(xk) - do(n)) ™ + O(a?),
k=1

where the expectation values (- - - )°" are taken w.r.t. the continuum action Sp.1% The
second term on the r.h.s. of the equation is given by the O(a) contribution of the
effective action, here considered as an operator insertion in the correction function.
Due to the integral over y, this insertion can possibly generate contact terms when y
coincides with the points zx. In principle, one should then analyze the potential diver-
gences that arise from the operator product expansion of the operators involved, and
provide proper renormalization prescriptions for the non-integrable singularities that
survive. These contact terms, however, can always be reabsorbed into a redefinition of
the operator ¢;(x), which contains all the fields with the correct symmetry properties
and dimensions. This, as we shall see, is all we need to know in practice.

To conclude we want to comment on a couple of technical points regarding (2.40).
First of all, the a dependence of lattice correlation functions is not only expressed
by the explicit factors of a in (2.40). It is clear that, while the general form of the
basis fields in £4(y) and ¢;(z) is only dictated by the field content and symmetries
of the lattice theory, the coefficients that multiply them clearly depend on the details
of the latter. Consequently, even though the basis elements in £;(y) and ¢;(x) are
independent of a, the coefficients that multiply them are in general functions of the
lattice spacing. In fact, in perturbation theory, they are calculable polynomials in

In(a) (Liischer, 1998a).

161 the following we can imagine the effective theory to be regularized on a space-time lattice

with a very fine lattice spacing ¢ < a. The fields in £;, ¢g and ¢;, are then renormalized ones.
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Secondly, the basis of operators in £;(y) and ¢;(z) can in general be reduced using
the field equations of motion (Liischer, 1998a). In principle, the field equations are only
valid in correlation functions up to contact terms.!” These again can arise when y gets
close to one of the points z; in (2.40). As discussed, however, these contact terms
simply amount to a redefinition of the field ¢,(z). The latter thus depends on exactly
which basis of operators has been considered for the effective action. When the field
equations are used to simplify ¢; instead, no contact terms can arise since all points

. are kept at physical distance.

2.2.2 Symanzik’s improvement programme

Symanzik’s effective theory provides an effective description of our lattice theory when
the cutoff scale is well above the relevant energy scales of the observables we are
considering. In particular, the form and nature of the discretization effects is made
explicit in terms of irrelevant operators contributing to the effective action and fields.
This suggests the idea that one can try to modify the original lattice theory in such
a way that the corresponding effective theory is free from such contributions. The
way this is realized in practice is what is referred to as the Symanzik’s improvement
programme (Symanzik, 1981b; Symanzik, 1983a: Symanzik, 1983b), which aims at
systematically removing cutoff effects order by order in the lattice spacing. The general
idea of this strategy goes as follows.

One starts by adding to the lattice action and fields, lattice representatives of the
irrelevant operators in S; and ¢;. As long as the lattice symmetries are respected,
the specific discretization does not really matter and will only affect higher-orders in
a. At this point. the crucial observation is that by adjusting the coefficients of these

operators one is able to modify the size of the corresponding O(a) contributions in the

17The relations between the basis fields in £1(y) or ¢;(z) can be easily derived at tree-level,
using the classical field equations. In principle, however, the renormalization and mixing of the basis
operators should be taken into account when deriving these relations. The simple relations determined
at tree level are then replaced in general by more complicated equations involving more basis fields,
and with coefficients that depend on the coupling and the chosen renormalization conditions. On the
other hand. the only information that is used in practice is that, given a fixed number of constrains,

some of the basis fields can be expressed in terms of the others (Liischer, 1998a).
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effective theory. The coefficients can then be fixed by imposing suitable improvement
conditions. These are obtained by considering some combinations of lattice observables
which are pure lattice artifacts, and are hence expected to vanish in the continuum
limit. In general, a given combination is chosen such that the contribution of a specific
irrelevant operator is isolated. The corresponding coefficient is then determined as a
function of the lattice spacing by simply requiring the given combination to vanish.
Once the lattice action and fields have been improved. any renormalized on-shell lattice
correlation function of these fields is then expected to be free of O(a) discretization
effects. In fact, Symanzik’s improvement programme can be seen as an extension of
the renormalization of the theory at the level of irrelevant operators. Of course, the
modification of the theory so obtained does not alter the continuum limit of the theory,
since the latter is only redefined at the cutoff level.!®

In perturbation theory, improvement coefficients can be easily obtained from any
(renormalized) lattice observable by comparing it with its continuum limit. This is
particularly simple at tree-level., where one simply compares the lattice action and
fields with their continuum counterparts. The improvement coefficients so determined
are universal, and independent from the observable considered. On the other hand, in
a non-perturbative determination taking the continuum limit is generally demanding.
It is then convenient to define improvement conditions based on symmetries which
are broken by the discretization, but are expected to be recovered in the continuum
limit. In this respect, note that improvement coefficients determined through non-
perturbative simulations suffer in general from O(a) ambiguities. This means that
different improvement conditions will give coefficients that differ by O(a) effects. These
ambiguities, however, are consistent with O(a) improvement since they only affect
improved lattice observables at O(a?).

Given these considerations, one may ask whether a perturbative estimate of the
improvement coefficients is good in practice. Note that, in the case of improvement
the situation is more relaxed than for the renormalization of marginal or relevant

operators. Even if the computation of the improvement coefficients is not accurate,

1&Reflection positivity however might be compromised (Liischer and Weisz, 1985a; Parisi, 1985).
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no systematic effects are introduced in the results if these are extrapolated to the
continuum limit. The answer to the above question then very much depends on the
specific observable, and irrelevant operator considered. The effect of the latter has thus
to be studied in some detail (e.g. by varying its coefficient in simulations), in order
to conclude if a perturbative estimate of the corresponding improvement coefficient is
satisfactory.

To conclude. one has to keep in mind that as any effective theory Symanzik’s theory
is only an asymptotic concept. This means that it is not known a priori the range of
lattice spacings at which this description really sets in. It could well be that current
simulations are far very far from its regime of applicability. In practice, however,

Symanzik’s effective theory provides a very robust and effective description.

2.2.3 O(a) improvement of Wilson fermions

Having introduced the general principles of Symanzik’s effective theory and associated
improvement programme, in this subsection we consider its application to Wilson’s
formulation. Specifically, we consider the case of (two) massless fermions. As we will
motivate in the next section, this is the set-up we are most interested in. In addition,
when restricting to zero quark-masses, the improvement programme is simplified. since
one does not need to consider any reparametrization of the bare lattice theory.”

As seen, the first ingredient of Symanzik’s effective theory is given by the effective

action (2.36). In the massless case, this starts with the massless continuum QCD action

fef {1.1)),*
So = —% d*z tr{F (2)Fu(z)} + /(141"5(1')@&’:(1). (2.41)

The terms that appear in the O(a) correction, S7, must then be integrals over local
composite fields of dimension 5 that respect all symmetries of the massless lattice
action. In fact, there are only two terms that can contribute to Sj, these are given by
(see e.g. (Lischer, 19984a)),

19We refer to (Liischer, Sint, Sommer and Weisz, 1996) for a detailed discussion about this point.

20We remind that in order to define Wilson’s theory in the massless limit, one has to tune the bare

quark masses to their critical value e.g. by requiring the PCAC mass to vanish (cf. Section 2.1.3).
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S1=¢ /d4a"'z,_/>(:v)§0#,,F#,,y’;(:L') + C'Q/d4llfa(T)DuD“¢'(IL'), (2.42)

where ¢, co are some given coefficients, and 7, is defined in Appendix A.2.%! First of
all, note that both terms in S; explicitly break chiral symmetry. These contributions
are hence present because of the explicit breaking of chiral symmetry by Wilson's
regularization.?? Secondly, note that the two operators can be reduced to a single
operator by using the field equations of motion (Liischer, 1998a). In the following we
then choose to consider the operator proportional to ¢y, as it is conventionally done
in the literature.

Having the form of the effective action. the second step is to introduce lattice
representatives of the corresponding O(a) contributions to the original lattice action.
Specifically, the improved Wilson-action can be defined as (see e.g. (Liischer, 1998a)),

Sr=5+0a"Y cwlg0) ¥(2)30, Fi(z), (2.43)

xT

where S is the standard Wilson action (2.1), and ﬁ;w is a lattice regularization of
the continuum field strength tensor F),,. A possible definition for I?W is given by the
clover discretization specified in (A.26). The additional term in (2.43) is known as the
Sheikholeslami-Wohlert (SW) term (Sheikholeslami and Wohlert, 1985). As discussed
in the previous subsection, the corresponding coefficient cqy(go) needs to be tuned
according to some improvement condition in order to remove the corresponding O(a)
discretization effects from lattice observables.

The value of csw(go) is easily obtained at tree-level in perturbation theory, and is
given by céa) = 1 (Sheikholeslami and Wohlert, 1985). In fact, the coefficient has also
been computed in perturbation theory to the 1-loop order (Wohlert, 1987; Liischer
and Weisz, 1996). As mentioned at the beginning of the section, however, the O(a)
discretization effects of Wilson fermions are generally large at the lattice spacings
considered in current simulations. In particular, a perturbative estimate of ¢, turns

21No purely gluonic terms are present. Indeed, in the pure gauge theory the leading discretization

effects are expected to be of O(a?) (Liischer and Weisz, 1985b).
22Lattice regularizations that preserve chiral symmetry do not posses any O(a) discretization effects

(see e.g. (Niedermayer, 1999)).
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out to be not very effective in most cases. This led to devise a strategy for the non-
perturbative determination of c¢g. This determination has been obtained through the
Schrodinger functional of QCD, introduced in the next chapter. The corresponding
improvement condition is based on the restoration of the PCAC relation (2.29) up to
O(a?) corrections. We refer to the original references for the details of this compu-
tation (Lischer, Sint, Sommer and Weisz, 1996; Liischer, Sint, Sommer, Weisz and
Wolff, 1997a: Jansen and Sommer, 1998), and to (Liischer, 19984; Sommer, 1997) for
an introduction.

Through the O(a) improvement of the lattice action, one obtains that spectral
quantities like for example particle masses, approach their continuum limit with O(a?)
corrections (Liischer and Weisz, 1985b).%% As discussed in Section 2.2, however. in
order to achieve full O(a) improvement of generic on-shell correlation functions, one
needs to improve the corresponding fields as well. In the following we present the O(a)
improved definitions for the quark-bilinear fields introduced in Section 2.1.2. These in
fact will be needed for our discussion in Chapter 5. We remind that, similarly to the
improvement of the action, in order to improve the fields one first needs to identify
the O(a) contributions to the corresponding effective operators. In this case, these are
given by operators of dimension 4 with the same symmetry transformations as the
lattice operator considered. Again, one can use the equations of motion to reduce the
number of terms that appear. Finally, given the continuum basis of counterterms so
obtained., one adds lattice representatives to the original lattice fields with arbitrary
coefficients. The latter need then to be fixed by requiring the absence of O(a) lattice
artifacts in some on-shell correlation functions of the improved fields.

Starting from the local axial current (2.19), one can show that after using the
equations of motion, its O(a) improvement can be obtained in the chiral limit by

considering the operator (see e.g. (Liischer, 1998a)),
(‘4!)2 = AZ +acy (go)éﬂpa, (2.44)

where, we remind, 5,‘ is defined by (A.16), and P“ is the pseudo-scalar density (2.20).
The coefficient c4(go) is chosen in order to achieve the O(a) improvement of correlation

23Spectral quantities indeed do not depend on the interpolating fields employed for their extraction.
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functions of the local axial current. This coefficient has been computed for example
using the Schrodinger functional, and enforcing the restoration of chiral symmetry
through the PCAC relation (2.29). This allowed its determination first in perturbation
theory (Liischer and Weisz, 1996), and later also non-perturbatively (Liischer, Sint,
Sommer, Weisz and Wolff, 1997a: Della Morte, Hoffmann and Sommer, 2005¢).
Considering the local vector current (2.13), an O(a) improved definition is given

by (see e.g. (Sint and Weisz, 1997)),

(Vi) =V +acv(90)d.T,,, (2.45)

where the tensor operator T}, (z) is defined as,

a

— 5 ’
T,‘j,,(r) = 7’¢’(J')TC’;LV (). (2.46)

&

In the case of the point-split discretization of the vector current (2.35), one can take the
same O(a) counterterm as for the local one. The corresponding improvement coefficient
though will change i.e. cv(go) — ¢ (go). For completeness, we mention that the value
of ey (go) is known to 1-loop order in perturbation theory (Sint and Weisz, 1997).
A non-perturbative determination instead has only been attempted in the quenched
approximation (Guagnelli and Sommer, 1998).

Differently from the axial and vector currents, the pseudo-scalar and scalar densities
do not have any operator of dimension 4 that can contribute to their Symanzik’s

effective expansion. Consequently. they are already O(a) improved, i.e.,
(Bt =P% (Sp)%="15%. (2.47)

Finally, the O(a) counterterm to the tensor operator (2.46) is given in terms of the

local vector current as (see e.g. (Sint and Weisz, 1998)),
(T = Tp, + acr(90) 8.V = 8, V2), (2.48)

where ¢r(go) is only known to 1-loop order in perturbation theory.
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2.2.4 Automatic O(a¢) improvement of massless Wilson fermions

To conclude this section on the O(a) improvement of Wilson fermions, we want to
present the somehow surprising feature that massless Wilson fermions in a finite phys-
ical volume are automatically O(a) improved. This means that the O(a) counterterms
to the effective action and operators are not needed to obtain O(a) improved definitions
of physically interesting observables (Frezzotti and Rossi. 2004).2* Even though this is
not the physical regime one is generally interested in, this fact had been overlooked for
more than 20 years! It is crucial, however, for our study. Indeed, as we will motivate
in the next section, this is the regime where we want to perform the renormalization
of the theory. Before presenting the argument. we note that since we are considering
a finite space-time volume, some boundary conditions for the fields need to be chosen.
In the following we will assume (some sort of) periodic boundary conditions for all
fields. We anticipate, however, that the argument is not insensitive to the boundary
conditions imposed.

In order to start presenting the argument. let us consider a generic lattice observable
O given by a finite product of multiplicatively renormalized local fields at non-zero

physical distances. The corresponding Symanzik’s expansion (2.40) is then given by,
(O)e = (O)e°™ — a(S100)°™ + a{60p)°™ + O(a?), (2.49)

where Oy is the continuum (renormalized) field corresponding to the renormalized
lattice operator O, while 6O is a shorthand notation for the associated O(a) operator
counterterm. The argument now relies on the following observations.

First of all, the continuum massless QCD action Sy of (2.41) is chirally symmetric.

In particular, if we consider the discrete ~5-transformation,
U = Y59, D= =P, (2.50)

the action Sy is invariant under this transformation. The counterterm action S; in

(2.42) instead changes sign.

24The proof of this result has been completed by several authors in later works (Aoki and Bir,
2006; Shindler, 2006; Sint, 2006; Frezzotti, Martinelli, Papinutto and Rossi, 2006).
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Secondly, if one considers the transformation (2.50) as a change of variables in the
functional integral, it is possible to show that the transformation is non-anomalous
and leaves the functional integral measure invariant, at least for an even number of
quark-flavors (Sint, 2011). The transformation properties of a given expectation value
(Op)eont under the transformation (2.50), are then dictated by those of the operator
Oy considered. In particular, since the vs-transformation squares to the identity, any
composite field Oy can be decomposed into parts which are even, O§*", or odd, O§4¢,

under this transformation, where we define,
Osveu 5 O(e]ven’ ogdd 5 _Ogdd. (2.51)

Note that, this mapping can be carried over to the lattice even though there the ~5-
transformation is not a symmetry. Also on the lattice we can then talk about 7;-even
and odd fields O, similarly defined as in (2.51). In particular, once this decomposition
is considered, the corresponding O(a) counterterms of a yz-even observable, OFV<",
can be shown to be v5-odd, and vice versa interchanging even with odd (Frezzotti and

Rossi, 2004; Aoki and Bér, 2006). Given these observations we conclude that,

<Sl O(c]ven) (C::Ont — L (S] O(C)\’Ol))gollt — 0.

<6OSVC“>§OH‘ = _<508V0n>§0n( — O. (252)
In turn, this means that for y;-even lattice observables, O®V°", we have (cf. (2.49)).
(OC\'CII)C = <OSVCI)>?OI]L + 0(02). (253)

~s-even observables are then automatically O(a) improved. This does not mean that
O(a) effects are absent from the theory, but rather that these effects are confined in

correlation functions of 75-odd observables, for which we have,
(0°%), = ~a($10§1)™ + a (30T + O(a?), (2.54)

where we used the fact that: (0399)cont = —(Ogdd)eont = (. Note that the corrections
in (2.54) are of order a® rather than a2. In fact, the mechanism of automatic O(a)

improvement more generally implies that lattice effects in y5-even (v5-odd) correlation
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functions only come with even (odd) powers of the lattice spacing (Frezzotti and Rossi,
2004; Aoki and Bir, 2006). In conclusion, the main result is that we can get rid of the
Of(a) effects in our lattice observables by projecting them on their even components.
The odd components do not anyway contribute in the continuum limit, and only
contain the leading discretization effects.

To conclude, as discussed in Section 2.1.3; the chiral limit of Wilson fermions can
be identified through the condition mpcac = 0. In the unimproved lattice theory,
however, this condition can be satisfied only within the intrinsic O(a) ambiguities in
the determination of mpcac. One may then ask whether this O(a) ambiguity in the
definition of the chiral point can invalidate the result here presented, for which we
require the quark-masses to be zero. In fact, it can be show that the O(a) ambiguity
in the determination of the critical line me.(gg) only affects ys-even observables at
O(a®). The reason is that this ambiguity can be effectively described by an O(a) mass-
counterterm in the effective action (see e.g. (Sint, 2006)). This counterterm, similarly
to the ones already present in Sy, is v5-odd, and thus does not contribute at leading
order to a in ys-even observables.

Some other subtle points in the proof of automatic O(a) improvement are the
following. As emphasized at the beginning of the subsection, it is crucial that the
physical volume of the lattice is finite. The reason is that no spontaneous breaking of
chiral symmetry can occur in this case (see e.g. (Weinberg, 2005)). This guarantees
that expectation values which are expected to vanish because of the chiral symmetry
of the action do not acquire non-trivial values (cf. (2.52)). In addition, as mentioned,
also the boundary conditions for the fields in finite volume matter for automatic O(a)
improvement to hold. The boundary conditions for the quark-fields, indeed, need to
be compatible with the transformation (2.50) in order to be able to prove this result.

Finally, we note that a mass term for the fermions would unavoidably spoil the
argument of automatic O(a) improvement since in this case the vs-transformation is
not a symmetry of the continuum QCD action. On the other hand, the argument can
be restored by introducing a twisted-mass term (Frezzotti, Grassi, Sint and Weisz.

2001; Frezzotti and Rossi, 2004). In this case the continuum QCD symmetry exploited
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to prove the argument is not spontaneously broken, and the then result holds also in

an infinite physical volume.

2.3 Scale dependent renormalization

In Section 2.1, we studied in detail the renormalization of Wilson's theory originating
from the explicit breaking of chiral symmetry by the regularization. In this case. the
necessary renormalization is given in terms of finite functions of the bare coupling gy,
that do not depend on any renormalization scale u, e.g. Za, Zp/Zs, .... The most
common case of renormalization in lattice QCD, however, is scale-dependent. The first
important example is given by the renormalization of the fundamental parameters
of QCD i.e. the gauge coupling and quark-masses. Scale-dependent renormalization
is then necessary for local composite quark-fields which are not (partially) conserved
currents. Of particular interest for us are the quark-bilinears discussed in Section 2.2.3.
In all these cases, the connection between the bare quantity and the renormalized one
is expressed in terms of a scale-dependent renormalization factor Z = Z(gg. amg, ap),
which has to be fixed by some suitable renormalization condition.?® The aim of this
section is to present the problem of scale-dependent renormalization in lattice QCD.?¢
More precisely, we want to discuss how to compute the non-perturbative running of a
given renormalization factor Z w.r.t. the renormalization scale p.

We start in the next subsection presenting some interesting physical applications
where this problem comes about. We then try to understand how one could eventually
work on the lattice to perform these computations. As it will become clear shortly,
a straightforward approach to the problem has to face some intrinsic limitations in
order to keep systematic effects under control. We thus conclude the section showing
how these limitations can be overcome by considering finite-volume renormalization

schemes, together with finite-size scaling techniques.

25For simplicity we assume that any power divergence in our observables has been taken care of.
We are then left only with the problem of the overall multiplicative renormalization.
26For an introduction to the topic of non-perturbative renormalization on the lattice we recommend

the following set of lectures (Sommer, 1997; Liischer, 1998a; Weisz, 2010; Vladikas, 2011).
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Before moving to the discussion, we note that if one considers QCD with only light
quarks (i.e. u, d and s), it is convenient to adopt mass-independent schemes for the
renormalization factors Z (Weinberg, 1973). In this case, the renormalization constants
do not depend on the quark-masses, i.e., Z = Z(go, ap). Their renormalization group

equations are then easier to solve since the running of the quark-masses in disentangled.

2.3.1 Connecting low-and-high-energies

In lattice QCD, one generally renormalizes the theory through some hadronic scheme
(see e.g. (Liischer, 1998a)). Indeed, it is natural to fix the bare parameters by requiring
a set of observables, as for example some hadron masses or decay constants, to take on
their physical values. Analogously, it is convenient to renormalize the bare operators by
demanding some matrix elements between hadronic states to assume prescribed values.
At high-energy, however, perturbation theory is commonly applied to make predictions
of strong interaction contributions. In this case, the renormalization schemes in use are
generally different. A popular and technically advantageous scheme, for example, is
given by the MS scheme of dimensional regularization ('t Hooft, 1973; Collins. 1986).%7

The problem of non-perturbative renormalization can now be defined as matching
a given hadronic scheme to some perturbative scheme. In more physical terms, this
means connecting the low- and high-energy sectors of QCD. In principle. this presents
no fundamental obstacles. Once the theory is renormalized in a given hadronic scheme,
any quantity that did not enter in the renormalization conditions is a prediction of the
theory. In particular, this includes the high-energy behavior of renormalized matrix
elements and parameters in any other scheme.

Apart from the purely theoretical appeal of the problem, there are several instances
where this connection would be desirable in practice. The renormalized coupling and
quark-masses, for example, are generally extracted at high-energy by fitting the results
of some scattering processes to their perturbative predictions. The values so obtained

are then used as an input for the perturbative computation of any other quantity

27From now on we choose the MS scheme as our perturbative scheme of reference. At high-energy,

the connection between different schemes can then be made through perturbative computations.
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of interest. It is clear, however, that this procedure suffers from several systemat-
ics which are difficult to quantify. In particular, these include the truncation of the
perturbative series in the corresponding expansions, as well as the contamination of
non-perturbative effects which might not be completely suppressed at the energies con-
sidered.?® Having more systematic methods for these determinations is then important
not only to corroborate, but also to improve the results. In this respect. we note that
lattice QCD allows in principle for a determination of the fundamental parameters of
QCD where all systematic effects are under control. Indeed, matching a given hadronic
scheme to a perturbative scheme would permit the non-perturbative determination of
the strong coupling and quark masses at high-energy in terms of some well-known
low-energy constants of the theory (see e.g. (Sommer, 1997)).

Establishing a connection between perturbative and non-perturbative schemes is
also important in the context of operator renormalization (see e.g. (Weisz, 2010;
Vladikas, 2011; Lellouch, 2011)). In particular, many interesting cases where operator
renormalization is necessary are related to the determination of electro-weak transition
amplitudes between hadronic states. In these computations, the electro-weak interac-
tions are described by effective low-energy interactions between guarks and gluons.
More precisely, the virtual contributions corresponding to the electro-weak bosons.
and heavy-quarks (i.e. t, b, and eventually c), are integrated out using perturbative
methods, resulting in some effective interactions between the light quarks. The generic
transition amplitude, A, between the hadronic states |7) and |f) is then schematically

represented as,

A = (fIHent|i) = Cw (1){fI(Or) (W)]3), (2.55)

where Heg is the effective electro-weak Hamiltonian. Heg is generally given in terms
of some Wilson coefficients Cy, and corresponding renormalized operators Op (see
e.g. (Donoghue, Golowich and Holstein, 1994)). The Wilson coefficients incorporate the

short distance effects of the electro-weak transition under consideration. The operators

28This comes without mentioning the practical difficulties in extracting these parameters from
this class of observables, the precision of which is already limited by many systematic effects (see

e.g. (Donoghue, Golowich and Holstein, 1994)).
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Op instead describe the low-energy effective interactions among quarks and gluons.
Their matrix elements between the initial and final hadronic states |i) and |f), encode
the long-range non-perturbative contributions of the strong-interactions to the process.

The renormalization scale u effectively separates the two energy scales above. In
practice, this scale has to be chosen high enough such that a perturbative estimate
of the Wilson coefficients Cy is possible, and reliable. In this respect, we note that
the renormalization scheme of the operators Op is fixed by the perturbative scheme
employed in the computation of the Wilson coefficients. Indeed, the scale and scheme
dependence of the coefficients and hadronic matrix elements have to cancel each other
in order to give a physical amplitude A independent of any renormalization scale and
condition.

While the computation of the Wilson coefficients is naturally performed using
perturbation theory, in order to capture the non-perturbative effects of the strong-
interactions one would like to determine the hadronic matrix elements of Og using
lattice techniques. The renormalized electro-weak matrix elements in (2.55), are then

generally given by,

(FIOR) i) = lim Zo(go(a), ar2)(f1O(go(@)) i} bare (2.56)

where (f|O]i)pare denotes the bare matrix element computed on the lattice. We remind
that the matrix element on the L.h.s. must be renormalized in the perturbative scheme
of the corresponding Wilson coefficients. The renormalization factor Zo = Zo(go. ap),
then defines the non-perturbative bare matrix element in the perturbative scheme.
The most naive approach to determine Zp is to rely on bare lattice perturbation
theory. In this case, one would simply compute Zp in a convenient perturbative lattice
scheme, and then match directly to the MS scheme at a given order in perturbation

MS,LAT
Zo

theory. The resulting matching factor, Zp = , is then of the general form,

NS 2(q 1
ZE T (go(a)va) = 1+ B0 log(an? + 1) + O(gl). (257)

9 is the anomalous dimension of the operator O at the lowest order, pu is

where v,
the renormalization scale in the MS scheme, and k is a constant that depends on the

lattice regularization employed for the computation of the bare matrix element.
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This strategy, however, is not very reliable since it is hard to quantify the systemat-
ics effects one is introducing with this approximation.?® Apart from the generally bad
convergence of bare lattice perturbation theory (Parisi, 1980), it is indeed difficult to
estimate the size of discretization (and finite volume) effects in these determinations.
In (2.57), in fact, these effects are unavoidably entangled with the renormalization
effects, since the renormalization scale is effectively given in terms of the lattice cut-
off a=1. For a trustable determination of Zp, and thus of (2.56), one then needs to
proceed non-perturbatively. As a result, the renormalization constant Zo factorizes in

NPT

v XgPT_MS , where Z5" " is defined in some non-perturbative

two parts: Zo = Zp»

scheme, while X gPT_I\ 1S is the finite matching coefficient hetween this scheme and the

perturbative one.

2.3.2 The necessity of a renormalization window

Given the observations of the previous subsection, we now want to understand which
are the general difficulties that one encounters in the determination of Zp using lattice
techniques. To this scope, we will consider an explicit example given by a popular
approach to the problem. Discussing the limitations of such an approach. will help us
in motivating finite-volume renormalization schemes, which are presented in the next
subsection. As we shall see. the combination of this class of schemes with finite-size
scaling methods, offers a general solution for the determination of Z» where these
limitations are absent.

Moving to our presentation, the basic principle of any of these strategies is to rely on
an intermediate non-perturbative renormalization scheme. In the specific example we
want to consider, this is given by a regularization independent momentum subtraction
scheme (RI-MOM) (Martinelli et al., 1995).3" The key idea in this case, is to mimic
non-perturbatively what is done in continuum perturbation theory to renormalize the

operators. More precisely, one imposes the renormalization conditions by considering

29We refer to (Liischer, 1998a) for a more detailed discussion including also some explicit examples.

30For an introduction we recommend (Vladikas, 2011).
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matrix elements of the operator O between quark states |p) with given momenta p.3!
Specifically, the renormalization conditions require these matrix elements to be equal

to their tree-level values, i.e.,

(P|O|P)tree

<P|O(90 ) ’p>lmre pu2=p? ’
(2.58)

This defines the renormalization factor Z&! in the RI-MOM scheme at the renormal-

<p|(OR)(lL)|p>|p2=,u2 = <p|0|p>'tree = Zgl(go,a}l) =

ization scale % = p?. In the following we will thus use the notation Z&' = Z&(go, ap).
The matrix elements in (2.58) are then computed non-perturbatively for several
momenta p at the relevant values of bare coupling gy in large physical volumes.
Once the renormalization factor Z§! is determined, the generic bare matrix element
(f1O(go)|i)bare can be renormalized, and extrapolated to the continuum limit. The
result obtained is now independent of the regularization employed. The renormalized
operator and corresponding matrix element, can then be converted from the RI-MOM
scheme, to any other perturbative scheme using continuum perturbation theory.

In conclusion, the desired renormalized matrix element of (2.56), is given by,

FIOES (W) = X5*™ (9573, p/1) lim. Z8(90(0), ap) (£10(90(0)) i} pare

= (2.59)
= X SRl (g /) (FI(ORH () ]5),

where g1 denotes the renormalization scale in the MS scheme, 9xis is the corresponding
renormalized coupling, and X ng Rlis the perturbative matching factor between the RI-
MOM, and MS scheme. The latter is generally known to several orders in perturbation
theory (see e.g. (Martinelli et al., 1995)). The nice features of this approach are that
one does not involve any perturbative approximation in the determination of Z(r,)“. and
the matching factor ngé,m is computed using continuum perturbation theory at high

orders.

31Working with quark states at the non-perturbative level implies some difficulties. First of all, one
has to deal with the problem of Gribov copies (Gribov, 1978), and more generally of gauge fixing on
the lattice (see e.g. (Giusti et al., 2001)). In additional, the O(a) improvement of the theory needs to
be reconsidered since the correlation functions employed are not on-shell (Martinelli et al., 1995). A
similar method to the one discussed here but which uses gauge-invariant on-shell correlation functions

is described in (Martinelli et al., 1997; Becirevic et al., 2003).
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From our discussion, it is clear that the practical success of the program outlined
above depends on several conditions. First of all, in order to obtain reliable continuum
extrapolations of the renormalized matrix elements in (2.59), the momenta p at which
we evaluate Z3! need to be well below the lattice cutoff ™!, as otherwise discretization
effects can be large. On the other hand, the range of p’s explored determines the scale
at which in the continuum one connects the RI-MOM scheme with the perturbative
scheme. In order for this connection to be safe, the matching needs to be performed
at an energy scale pu where perturbation theory can be trusted. The control over

discretization effects and non-perturbative effects, thus requires the existence of a

“renormalization window” given by,
Agep € 1 K a™t, (2.60)

where Aqcep is a typical scale of non-perturbative QCD effects (lets say a few GeV).

These conditions, however, are not always easy to be satisfied within the above
strategy. The values of the lattice spacing a, indeed, are generally limited by the fact
that the physical size of the lattice, L. has to be large enough such that finite volume
effects are negligible. In this approach, this is crucial for a reliable determination of
both the bare matrix element (f|O|i)pare. and the renormalization factor Zgl. In this
respect, we note that in current large volume lattice simulations one generally has:
a~! < 5GeV (see e.g. (Schaefer, 2012)). This means that a perturbative matching
between the non-perturbative scheme and the perturbative one has to be trusted at
this relatively low energy scale.®?

To conclude, in this subsection we have learned which are the conditions for a
reliable non-perturbative scale-dependent renormalization. These can be summarized

by the following chain of inequalities,
L' < Agep €< p<at. (2.61)
Once again, going from right to left, we have: first, the cutoff scale a=! must be

much higher than all other physical length scales in the problem, as in particular

32In practice, many technical improvements have been developed in order to make this matching
more and more reliable with such a constraint (see e.g. (Vladikas, 2011) and references therein). Here,

however, we are stressing on the basic principles of this approach.
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the perturbative scale p at which we match the two schemes. This is necessary in
order to control cutoff effects. Secondly, the renormalization scale p must be much
higher than the typical scale of non-perturbative QCD effects Aqcp., such that the
matching between the non-perturbative and perturbative schemes can be safely made
through perturbation theory. Finally, the physical size of the lattice L must be large
enough such that all relevant non-perturbative scales are contained without sizable
finite volume effects. A rough estimate of (2.61) shows that the lattices required need
a great resolution: L/a > 50, which is generally difficult to achieve with present

computer and algorithmic resources.

2.3.3 Finite-volume schemes and scaling techniques

The problem with the type of strategy discussed in the previous subsection, is that one
is trying to fit two very separate energy scales into a single lattice simulation, namely:
the non-perturbative scale set by the hadronic matrix element, and the perturbative
scale set by the matching between the non-perturbative renormalization scheme and
the perturbative one. As we now present, however, this is not necessary in practice.
The key idea is to use as an intermediate non-perturbative renormalization scheme
a finite-volume scheme (Wolff, 1986; Liischer, Weisz and Wolff, 1991).33 The peculiarity
of this class of schemes is that one identifies the renormalization scale with the inverse

size of the physical volume., i.e.,

p=L"1. (2.62)

In order words, one uses finite volume effects to define renormalized parameters and
operators. The main advantage of these schemes is that the problem of connecting
low- an high-energy scales can be split over several volumes, each of which covers only
a limited range of energies. This allows the conditions (2.61) to be easily satisfied at
each step of the computation. In order to disclose a bit more the strategy, we now

present in detail how the renormalized matrix elements of (2.56) can be computed

33For an introduction to finite-volume renormalization schemes and their use in lattice field theory

we recommend the set of lectures (Sommer, 1997; Liischer, 1998a; Weisz, 2010).
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using these methods. More precisely, we will start by giving the master formula for
this type of computations. We will then discuss in detail each key step.
The determination of (2.56) using finite-volume techniques, can be summarized as

(cf. (2.59)),
(FIOME) (i) = XMEFVS (g uLmin)Uo(LoL LEL)(FIORY )LL), (2.63)
where,

<f|(og\s)(L1—n}1x)i7> e 31_[)% ngs(go(a) aLl:l}\x)<f|0(g0(a’))]7>bdr0 (264)

The first ingredient is, of course, the bare matrix element {f|O(go)|?)bare- This, we
recall, must be computed in a large physical volume of spatial extent L., for several
values of the bare coupling go. The latter should be chosen such that L., can be
taken large enough that finite volume corrections are negligible within the statistical
accuracy of the matrix element, i.e. Lo, > m>!. On the other hand, however, a must
be small enough that discretization effects are under control, i.e. a € Ac_)é:D: but large
enough that simulations are affordable, i.e. Ly, /a < 100.

Secondly, the renormalization factor ZEVS = ZEVS(go,a/L), is obtained as fol-
lows. One considers some matrix element of the operator O in a lattice with given
resolution L/a, and fixed bare coupling gg. Note that all dimensionfull parameters
in the system must be rescaled in fixed proportions with L such that L is the only
scale in the problem. The finite-volume renormalization factor Z5VS is then defined
by requiring the chosen renormalized matrix element to assume some prescribed value
e.g. its tree-level value. This implicitly defines the renormalization factor Z5YS at the
bare coupling gy. and renormalization scale u = L~!. In particular, at high enough
energy (small enough L), i.e. 1> Aqcp. the finite-volume renormalization factor can
be evaluated in perturbation theory. The finite-volume scheme can thus be matched
to any conventional perturbative scheme in infinite volume (see e.g. (Liischer, 1998a)).
The finite matching factor XCI\DTS FVS is determined in this way.

Given the renormalization condition for ngs, the renormalization of the bare
matrix element (2.64) at low-energy proceeds as follows. One starts by considering the

renormalization condition for ZEVS at the values of the bare coupling go where the bare
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matrix element (f|O(go)|?)bare has been computed. Note that the discretization effects
in the determination of Z5YS are under control once the simple condition L/a 3> 1 is
satisfied. Choosing a suitable L.« /a at the largest value of gy, then implicitly defines
the renormalization scale pmi, = LgL.. Given the typical values of the lattice spacing
in simulations, and assuming L, /a = O(10), one generally has ji,,;, = O(100) MeV.
The continuum limit in (2.64) must now be taken keeping i, fixed, which in turn
requires to adjust Lyax/a as a function of gg, i.e. Lyax/@ = (Lmax/a)(go). Finally,
given the values of gg and (Lmax/a)(go) so defined, one computes ngs accordingly,
and performs the limit in (2.64). As a result, the renormalized matrix element in

the finite-volume scheme, (f|(O5VS)(ftmin)|i). is obtained at the renormalization scale

Hmin = Ly—n}u
The last step of the determination (2.63) requires the running of the renormalized

matrix element (f|(OEYS)

i) from the low-energy scale ji;;,, up to the high-energy
scale pmax = L, %“, where the connection to the MS scheme can be safely made using
X(I;TS‘F\'S. To this end, the idea is to determine the non-perturbative evolution operator
Uo(y/, p) defined by (see e.g. (Guagnelli et al., 2006)),

ZF\"S a 7
(OR)W) = Uo(', 0)(Or) ), Uolu', ) = lim 22 (90:a#)

————————, 2.65
a—0 Zg\s(go.(l/t) ( )

The way this is constructed in practice is through a finite-size scaling technique, i.e.
step-scaling. More precisely, one first introduces the continuum step-scaling function

oo. defined by,

oo(u) = lim Xo(u,a/L). Yo(u,a/L) = Z5"(9o(a)- a/2L)

] . (2.66
a—0 ZcF)\'S(QO(a)ﬂ/L) g2(L-1)=u ( )

As emphasized in the above equation, op(u) is obtained as the continuum limit
of the lattice step-scaling function ¥o(u,a/L). This is computed by determining
ZEVS(go.a/L) and ZEYS(go, a/2L) for several values of go and resolutions L/a, at fixed
renormalization scale ;1 = L~1. The latter is kept fixed by tuning gy and L/a such
that a given renormalized finite-volume coupling g?(L~!) is constant. Once the step-
scaling oo (u) is obtained, this allows to run the renormalized operator (Ogr)(u) from

the renormalization scale i down to /2. where pu = L1 is specified by u = g%(L~1).
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The energy range [fmin: fmax) can thus be split in a number of steps k, where the
renormalization scale is varied by a factor of two at each step, i.e. pimax = Qkumin.
The step-scaling function op(u) then needs to be determined at the corresponding
values of the finite-volume coupling u € [ug, ..., ux—1], where vy = g*(2L_L,), and

-1

Up—1 = §2(Lmin). Finally. the evolution operator U (jtmax, ftmin) 1S Obtained as,

k—1
UO(,UJmax: ,“'min) = H Ual(ul)- (267)
=0

To conclude, finite-volume renormalization schemes provide a general solution to non-
perturbative renormalization problems. The practical success of the program outlined
above, however, very much depends on the details of the specific scheme chosen. In
particular, some basic criteria should be met by the finite-volume scheme in order to

make this program feasible:

e The finite-volume scheme should be relatively simple to compute in perturbation
theory, such that the matching at high-energy with other perturbative schemes
can performed easily and accurately.

e The given scheme should be relatively easy compute numerically, and have a good
statistical precision once estimated through Monte Carlo methods.

e Discretization effects should be mild, such that relatively small lattice sizes L/a
can be considered for the running, and safe continuum limit extrapolations can
be obtained for renormalized quantities like for example the lattice step-scaling

function Yp.

Careful consideration of the above points led to the introduction of renormalization
schemes based on the Schrédinger functional of QCD (Liischer, Narayanan, Weisz and

Wolff, 1992). This powerful tool will be the central topic of the next chapter.



3
The Schrodinger functional

In the last chapter, we presented the advantages of using finite-volume renormalization
schemes for the non-perturbative renormalization of the lattice theory. In particular,
we discussed that several practical criteria have to be satisfied by the specific scheme
in order to make this renormalization feasible (cf. Section 2.3.3). In this chapter.
we want to introduce a family of schemes that enjoy many attractive features in this
respect. These schemes are based on the Schrédinger functional (SF) of QCD (Liischer,
Narayanan, Weisz and Wolff, 1992; Sint, 1994: Sint, 1995).

We thus begin the chapter presenting the SF in the continuum. Starting from the
pure Yang-Mills theory, we later introduce fermions. Note that, although only formal,
the continuum formulation will allow us to discuss many of the crucial properties of the
set-up on fairly general grounds. Secondly. given the continuum definition, we present
the lattice regularization of the SF. After a short discussion of the pure gauge theory,
we will discuss the inclusion of fermions in detail. More precisely, we will first review
the standard lattice formulation of the SF based on Wilson-fermions. In particular, we
will investigate the O(a) improvement of the theory, and show how the SF boundary
conditions for the quark fields break the argument of automatic O(a) improvement
presented in Section 2.2.4. This will lead us to introduce an alternative discretization
of the SF where this nice feature is recovered. The formulation is based on the chirally
rotated Schrédinger functional (xSF) (Sint, 2011), which is the main focus of this
work. Finally, the chapter is concluded with an analysis of the novel set-up including

the details of the regularization, renormalization, and O(a) improvement of the theory.
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3.1 The Schrodinger functional: formal definition
3.1.1 Yang-Mills theory

The Schrodinger functional is given by the quantum-mechanical propagation kernel
from some field configuration at time zg = 0, to some other configuration at xg = T'.
In Euclidean space-time, this can be written as a functional integral over all fields with
given boundary conditions (Liischer, Narayanan, Weisz and Wolff, 1992). In particular,
since we are interested in studying the theory in finite volume, we consider space to be
a L x Lx L torus. The space-time manifold is then given by a hyper-cylinder, with finite
spatial extent L, and finite temporal extent 7. The gauge potential A,(x) € su(3).
is defined accordingly for all 0 < zy < T. It is periodic in the spatial directions, and
satisfies Dirichlet boundary conditions in the time direction. The latter are specified
by,
A > ot
o) = Cp(x), atzo=0, (3.1)
Ci(x), atzg=T,

where C, and C” are classical gauge potentials, and A (x) denotes the gauge transform

of Ax(x), which is defined as,
A;}(x) = Af\(x)A;‘.(x)A(x)—1 - A(x)BkA(x)_l. A(x) € SU(3). (3:2)

Note that in order to preserve periodicity, only periodic functions A(x) are permitted.
Given these definitions, the functional integral representation of the Schrodinger

functional can be written as (Liischer, Narayanan, Weisz and Wolff, 1992),
Z[C.C') = /D[A]/D[A]e‘SG[A], (3.3)
where the gauge action Sg is given by,
I T S
SclA] = ——2/ da:o/ Pxtrf B (=) Fu(z)}, (3.4)
295 Jo 0

with F),, defined in (A.23), while the integral measures are defined by,

DlA] = [] d4i(z), D[] =[[dA), (3.5)

Tyl,a

where dA is the Haar measure over the gauge group SU(3).
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The integral over the gauge group in (3.3) guarantees that Z[C’,C] is invariant

under arbitrary gauge transformations of the boundary value fields C' and C”.

3.1.2 Induced background field

A characteristic property of the SF is given by the following observation. The boundary
value fields C' and C’, can be chosen in such a way that, up to gauge transformations,
the action S has a unique global minimum field configuration (Liischer, Narayanan,
Weisz and Wolff, 1992). This field configuration is generally referred to as the induced
background field, and it will be denoted as B in the following. The existence of this
unique minimal action configuration, is an essential ingredient for the perturbative
expansion of the SF. Indeed, in the weak coupling regime, gy — 0, the fields close to B
will dominate the path integral, and the SF can be computed by performing a saddle

point approximation around B. In particular, the corresponding effective action,?
['[B] = -ln Z[C,C], (3.6)
has a regular perturbative expansion of the form,
T[B] = ;—SI‘U B] +T1[B] + g2Ts[B] + ..., (3.7)
where the leading term is given by,
[o[B] = ¢2Sc(B), (3.8)

where Sg[B] is the action of the background field. The higher-order terms in the
expansion, are then given by sums of vacuum bubble Feynmann diagrams with an
increasing number of loops.

Given this nice property, the perturbative evaluation of the effective action can
proceed as usual (Liischer, Narayanan, Weisz and Wolff, 1992). First, a regularization
is chosen in order to regularize the divergent loop integrals. This can be either a
continuum regularization, like dimensional regularization. or a lattice regularization

INote that we can unambiguously label the effective action in terms of the background field,

instead of the boundary value fields. The background field and the boundary fields, indeed, are in a

one-to-one corrcspondence.
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for example. Secondly, gauge fixing has to be performed taking care of imposing the
correct boundary conditions on the gauge and ghost fields. The Feynmann rules can
then be derived in standard fashion, where the vertices and propagators will now
depend on the background field, similarly to a background field method.? Some degree
of complication is certainly introduced by the loss of translation invariance in the time
direction. In general, however, perturbation theory in the SF has been shown to be
feasible up to two loops, with several explicit continuum and lattice computations, both
in pure Yang-Mills theory and full QCD.? In addition. several automated tools have
been developed over the last years in order to help performing these calculations on the
lattice (Takeda, 2009b; Hesse and Sommer, 2013; Brambilla et al., 2013). In conclusion,
the SF offers a robust and practical framework for perturbative computations in finite
volume.

At this point, the reader might wonder whether such an elaborate set-up as the
SF is in fact needed to obtain a regular perturbative expansion in finite volume. Why
not simply consider for example finite-volume schemes defined in a hyper-tours? The
answer to this question is rather technical. Here we just want to mention that the
problem in this case is that in a finite volume with periodic boundary conditions, the
perturbative expansion of the path-integral is greatly complicated due to the presence
of gauge zero-modes (Gonzalez-Arroyo, Jurkiewicz and Korthals-Altes, 1981). These
modes are constant gauge field configurations of minimal action that dominate the low-
energy dynamics of the theory in a finite volume. In particular, in the perturbative
evaluation of the path-integral one has to treat the non-zero modes and the zero-modes
differently, where for the latter a standard perturbative approach is not possible. Here
we do not want to enter into the details of this technical subject. We thus refer the
reader to the review in (Fodor et al., 2012) for a detailed discussion about these points,
and how to deal properly with gauge zero-modes in perturbation theory.

To conclude, we note that alternative boundary conditions do exist, which eliminate

2For an introduction to background field methods we refer to (Abbott, 1982).

3A list of early computations is given by (Liischer, Narayanan, Weisz and Wolff, 1992; Narayanan
and Wolff, 1995; Sint, 1995; Sint and Sommer, 1996; Bode, Weisz and Wolff, 1999; Bode, Weisz and
Wolff, 2000).
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the gauge zero-modes of Yang-Mills theory in finite volume. An example is given by
twisted periodic boundary conditions ('t Hooft, 1979). A nice feature of these boundary
conditions is that translation invariance is preserved in all space-time directions. One
the other hand, these boundary conditions impose some restrictions on the matter
content of the theory (Parisi, 1984). In particular, matter fields in the fundamental
representation of the gauge group SU(NN) are forced to come in multiples of the number

of colors N. This, unfortunately. is not very convenient for studies of QCD.*

3.1.3 Renormalization

Through the perturbative study of the SF, one can analytically investigate the nature
and form of the divergences that appear in the formulation, and thus understand its
renormalization. In this respect, a relevant and non-trivial question is whether a local
quantum field theory formulated on a manifold with boundaries develops additional
ultra-violet divergences. In fact, the presence of the boundaries can be described by
additional interaction terms in the Lagrangian. which effectively impose on the fields
the given boundary conditions. The renormalization of the theory can then in principle
be altered by the presence of these additional terms.

The first studies in this direction have been conducted by Symanzik in the mass-
less ¢} theory (Symanzik, 1981a). In particular, in this work Symanzik expressed the
expectation that all divergences in the SF could be removed by renormalizing the bare

coupling constant. and by including in the bare action the boundary counterterms,
/ Ex {2107 + 220000} + / d'x {216 - 220000}, (3.9)
mo=T" xo0=0

where Z; and Zs are some divergent renormalization factors. In fact, Symanzik con-
jectured that this result is generic, and the SF of any renormalizable theory can be
made finite by the usual parameter and field renormalization, and by adding a few
boundary counterterms to the action. These boundary counterterms are given as local
composite fields of mass dimension less or equal to 3 integrated over the boundaries at

4Note however that quark fields in the adjoin representation of the gauge group, do not suffer

from any restriction. Other interesting theories than QCD can then be studied in finite-volume with

these boundary conditions, see e.g. (Gonzlez-Arroyo and Okawa, 2013).
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29 = 0 and xg = T. In particular, only the counterterms that respect the symmetries
of the theory are allowed.?

In the case of the pure Yang-Mills theory, we then expect the SF to be finite after
the renormalization of the bare coupling. Indeed, we note that there are no non-trivial
gauge invariant polynomials in the gauge potential with mass dimension less or equal
to 3. Even though this conjecture has never been proven, quite some evidence has
been accumulated over the years confirming this expectation.® In particular, several
1-loop and even 2-loop computations have been performed where this has been shown
explicitly (Liischer, Narayanan, Weisz and Wolff, 1992; Narayanan and Wolff, 1995:
Bode, Weisz and Wolff, 1999). Similar results have been obtained for QCD. In this
case. as we shall see, the situation is even less trivial since the renormalization of the
SF requires in general some dimension 3 boundary counterterms (Sint, 1995: Sint and
Sommer, 1996; Bode, Weisz and Wolff, 2000; Sint, 2006).

To conclude, we note that in addition to the perturbative results, many non-
perturbative studies of the SF have been conducted so far using several different lattice
regularizations, and considering many different theories. The numerical results show
that a universal continuum limit of the SF exists, and it is obtained after the expected
renormalization of the theory. There is thus little doubt that Symanzik’s conjecture is

correct in these cases, and most likely in general.

3.1.4 Quarks

The introduction of fermions in the SF was first considered in (Sint, 1994). There,
starting from the lattice theory with Wilson-fermions, the boundary conditions and
action of the continuum theory could be inferred. Specifically, the Euclidean action of

the SF of QCD is given by,

S[A, ¥, ¥] = Sg[A] + Sr[A, ¥, ¥, (3.10)

50f course the relevant symmetries to be considered depend on the specific regulator employed. For
the case of gauge theories, we will always assume that the regularization preserves gauge symmetry.
6 A prove of Symanzik’s conjecture to all order in perturbation theory is complicated by the loss of
time translation invariance in the SF. A standard application of power counting in momentum space

is thus not possible in this case.
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where the gauge action Sg has been already introduced in (3.4), while the fermionic

action S is defined as,

T L
Seld.50] = [ deo [ % B(a)(D+ m)u(a)
> 0 (3.11)

L z
- / d*x [¢(z) P_v(x)] |10=0 — / d3x [¢¥(z)Py(z)] |10=T‘
0 0

The projectors Py = %(1 =+ ) are used to project on the Dirichlet components of the

quark fields. More precisely, the Dirichlet houndary conditions for the quark fields are

given by,
Py(@)]zp=0 = p+(x). P_() ot = p_(x),
i - (3.12)
V(x)P-|ao=0 = P_(x). V(@) Py leo=T = P4 (%),

where p,, p_. p’_. and p/,, are some given source fields. It is then general practice to
take the quark fields to be periodic in the spatial directions. but allow for a constant
U(1) background field in the covariant derivative, i.e.,

D,=06,+A,+ i%‘i. 6, = (1—0u0)6, 6 € [0.27]. (3.13)
This Abelian field can be eliminated by an Abelian gauge transformation of the quark
fields, but as a consequence the spatial boundary conditions of the fields would change,
and be periodic up to a phase factor. These boundary conditions are interesting. since
they offer some additional freedom in probing the quark dynamics in finite volume.
Given these definitions, some observations are in order. The first thing that we want
to note is that the boundary conditions (3.12) only constrain half of the components of
the quark fields at the boundary. From a classical point of view, this can be understood
by noticing that the Dirac equation is a first order differential equation. A given
solution is then uniquely determined when half of the components of the fields are
specified at each boundary. The second remark concerns the boundary terms that
appear in the quark action (3.11). Naively, one might have expected that similarly to
the case of the gauge action, the quark action would have been given by the standard
action (1.4), supplemented with the boundary conditions (3.12). The origin of these

terms, however, is easily explained. Once the boundary conditions (3.12), and parity
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invariance of the action are assumed. these terms guarantee that the action has smooth,
i.e. C*°, solutions to the classical field equations of motion (Sint, 1994). Finally, one can
prove that the boundary conditions for the quark fields introduce a gap in the spectrum
of the Dirac operator. More precisely, for any smooth gauge potential, the spectrum
of the massless SF Dirac operator is purely discrete and with no zero modes (Liischer,
2006). As we shall see, this property is very important in practice since it allows
numerical simulations of the SF directly in the chiral limit.

Having introduced the classical action and boundary conditions, the path-integral

representation of the SF of QCD can be defined as (Sint, 1995),
217, C'i7-p0.Cl = [ DIA] [ DIADWIDE 1+, (319)

where the functional integral is over all fields which satisfy the boundary conditions

(cf. (3.1)),

Ak(X)zo=0 = CR (%), A(0)|ao=T = Ch(x),
Py() zg=0 = A(X)ps (%), Pt(@)lzor = p_(%), (3.15)
B(@) P-zp=0 = P_(X)A(X) ™, V(@) Py |ag—1 = 7y (x).

Including the quark fields, the renormalization of the SF has to be reconsidered. In
particular, differently from the case of the pure Yang-Mills theory, gauge invariant
composite fields of mass dimension 3 are present in QCD (Sint, 1995). More precisely,
taking into account the boundary conditions for the fields, one finds that the boundary
counterterms,

@T)(I)P_z/)(r)hozo, E(;z:)Py/;(z)lxo:T, (3.16)
need to be added to the action in order to obtain a finite renormalized SF. Inspecting
(3.11), it is easy to see that these counterterms can be included through a multiplicative

renormalization of the quark boundary values, namely,

(pR)+ = 2 Pps. ... (BR)+ = 2177, (3.17)

where Z: is a logarithmically divergent factor. This means that for homogeneous
boundary conditions, i.e. vanishing boundary values p4,..., 7., the SF of QCD is

finite after the usual coupling and quark-mass renormalization.
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Even in the case of vanishing boundary values, however, the renormalization (3.17)
is important once one considers correlation functions in the SF. The generic correlation

function of an operator O in the SF is defined as,

0 = {% / D[A] / D[AID[¥)D[¥] O[A, ¥, ¥] e—SIAﬁ“@} . (3.18)

p=p=p'=p'=0
and is thus evaluated at vanishing boundary values. On the other hand, apart from
operators made out of quark and gluon fields that live in the bulk, O may also involve

the “boundary quark fields” defined by,

§ =) AT

= p_(x) = 7’y (x)’ (3.19)
a8 5 = ) :
=5 C) = Fe

Note that, these functional derivatives are well-defined objects since they act on the
Boltzmann factor e~ before we set the boundary values to zero. In fact, taking these
functional derivatives effectively corresponds to considering the insertion in correlation
functions of the non-Dirichlet components of the quark fields infinitesimally close to
the boundaries (Liischer and Weisz, 1996), i.e.,

¢(x) = P_9(04.x), ¢'(x) = Pyy(T-.x),

B - ., _ (3.20)

¢(x) = ¥(04,%) Py, ¢ (x) =9(I-,x)P,
where the arguments x¢y = 0, and ¢y = T_ indicate that the fields are located in the
bulk, infinitesimally away from the time boundaries at zg = 0 and zg = T, respectively.

In particular, one can consider operators made out of finite products of Fourier

components of these fields. A simple example is given by the operator,
~a

2

s = [y ty) S dta) (3.21)

We will consider these operators in more detail in the context of the lattice theory. Here
we just want to mention that, firstly these operators are gauge invariant quantities.
Secondly, single insertions of these boundary operators in on-shell correlation functions
are made finite by multiplying the bare operators with the appropriate number of

renormalization factors, (Z¢)%, where n is the total number of ¢ and ( fields that
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appear in the given composite field. This is certainly a non-trivial result which is related
to the fact that once the bare parameters and boundary values are renormalized, the

SF is completely finite (Liischer, Sint, Sommer and Weisz, 1996).
3.2 The Schrodinger functional: lattice formulation

In the previous section, we formally introduced the SF in the continuum, and discussed
its main features. In order to perform a concrete non-perturbative study. however, a
lattice regularization needs to be specified. In this section, we will start discussing the
lattice regularization of the SF for the pure Yang-Mills theory, as originally proposed
in (Liischer, Narayanan, Weisz and Wolff, 1992). We will then present the standard

formulation of the SF of QCD with Wilson-fermions (Sint, 1994).

3.2.1 Yang-Mills theory

We set-up our theory by considering an hyper-cubic lattice with finite spatial extent
L and finite temporal extent T, both are assumed to be integer multiples of the lattice
spacing a. As usual, our gauge field is defined by assigning an SU(3) matrix U,(z) to
every pair (x,z + afi) of points of the lattice. In particular, the temporal link variables

Jo(x) are defined for all lattice points with 0 < zg < T. As in the continuum, we then
require the gauge fields as well as the gauge transformation functions to be periodic
in the spatial directions with period L.

The action for the gauge field is taken to be the Wilson action,

T 3
Selt] = = 3 3 3" w(P) {1~ Pul@)}, (3.22)

90 x€Tl zo=0 p,r=0

where I is defined as the set of spatial points on a given time-slice, i.e..
= {x‘x/aEZS, 0<zp< L, k= 1.2,3}. (3.23)

Comparing with the corresponding lattice action in infinite volume (cf. (2.2)), we note
the additional weight factor w(P) introduced by the presence of the boundaries. For
the moment, w(P) is taken equal to 1 in all cases except for the spatial plaquettes
at 2o = 0 and 2o = T, which are given the weight % The significance of this weight

factor will be discussed in more detail in the next section.
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Given the definition of the action, the lattice regularization of the SF for the pure
Yang-Mills theory is now defined as (Liischer, Narayanan, Weisz and Wolff, 1992),

Z[C,C') = / DUl %l DU =[] dUu(), (3.24)

T,

where dU denotes, as usual, the gauge invariant Haar measure on SU(3). Specifically,
the integration in (3.24) is over the gauge fields U, (z) with 0 < o < T for p = 0,
and 0 < zg < T for p = 1,2,3. The links at the boundaries are then fixed, and have

prescribed values,
Wi (x) = Uk(2)|zo=0> WiLE) = Upls)| s (3:25)

To make contact with the continuum definition of the SF (cf. Section 3.1.1), the link
variables W and W’ should be related with the continuum boundary values C' and
C’. The connection is made by recalling that U, (z) is the parallel transporter along
the straight line connecting = + afi with x. We thus identify the link Wj(x) with the
corresponding parallel transporter determined by the continuum boundary field Cy(x).
In other words, we set,
1 ~ ~
Wi(x) = Pexp {a./u dtC(x + ak — mk)}. (3.26)
where the symbol P denotes the path ordered exponential.” W/ (x) is similarly given in
terms of the field C}.(x). With this construction, if we perform a gauge transformation
C — C™, the associated boundary field W transforms as a proper lattice gauge field.
In this respect, we emphasize that the lattice SF has to be regarded as a functional
of the continuum fields C' and C’, rather than the boundary link fields W and W”’.
In particular, the continuum limit of the lattice theory is taken by keeping C' and C’
fixed while sending the lattice spacing a to zero.
To conclude, comparing the lattice SF (3.24) with its continuum counterpart (3.3),
we note that an integral over the gauge transformation functions is missing. The reason
is that the lattice SF is already invariant under arbitrary gauge transformations of the

boundary fields (Liischer, Narayanan. Weisz and Wolff, 1992). Indeed, as discussed, a

"The path ordered exponential is such that the fields at larger integration variable t come first.
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gauge transformation C — C? induces a corresponding gauge transformation of the
fields W. It is then easy to see that this transformation can always be compensated by a
change of variables in the path-integral (3.24). Finally, we also want to mention that the
lattice SF has a rigorous quantum mechanical interpretation as the propagation kernel
from the field configuration W to the field configuration W’ (Liischer, Narayanan,
Weisz and Wolff, 1992). In fact, this is the starting point for its construction in terms

of the transfer matrix of the theory.

3.2.2 Quarks

Given the definition of the lattice SF for the pure Yang-Mills theory, in this subsec-
tion we discuss the inclusion of fermions. Specifically, we present the standard lattice
formulation of the SF of QCD with Wilson-fermions (Sint, 1994).% As for the previous
subsection, we will not enter into the details of the construction, but simply summarize
the main results. We then refer the reader to the given references for the details.
Starting directly from the path-integral, the lattice regularization of the QCD SF

with Wilson fermions is given by (Sint, 1994),
2[p. . C'ip_1p+.C) = [ DIDWIDFIe, (3.27)

where the integration is over all quark and anti-quark fields at Euclidean times z, with
0 < z¢g < T. The integral measure for the gauge fields, we remind, has been already
specified in (3.24). In (3.27), the lattice action S = Sg + Sf is given in terms of a pure

gauge part Sg, defined in (3.22), and a fermionic part Sg given by,

w

Sp = a* Z v { Zaw% Vi + V;\)u( r) — Ug(a)y(x + a@)}

xel k=1 o
T—a als
+0 Y 3 @30T, + V) - aViV,) + mo Joi@) e
xel zo=a
3
+ad® ZE(T)RL{ Z ave3 (Vi + Vi) ¥ (z) — U (z — ab)v(z — a())} T’
xel k=1 o

where, we recall, Py = %(1 +70)-

8The SF of QCD has been later formulated with several other fermionic discretizations. Some
examples are found in (Taniguchi, 2005; Liischer, 2006; Takeda, 2009a; Perez-Rubio and Sint, 2010).
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The first observation we want to make is that, by taking the classical continuum
limit of (3.28), one recovers the corresponding continuum action (3.11). In particular,
the correct boundary terms are obtained. Secondly, we note that the quark and anti-
quark fields at the boundaries o = 0, T, are not integration variables in (3.27). Hence,
they are not active degrees or freedom. Some of their components, however, appear in

the action (3.28). More precisely, these are given by,

Pyi() |20 = pu (), P_tb(@)|zp=r = p_ (%),
N - (3.29)
B(2)P-| gm0 = P_ (%), U(@)Py|zgr = P (),

where we specified their values in terms of the source fields pi, p_, p’_, and p/,. As
one might have expected, the components that appear in (3.29) correspond to the
Dirichlet quark field components introduced in the continuum theory (cf. (3.12)). In
particular, it is interesting to note that the dependence on the boundary fields only
enters through the components (3.29). The complementary components, instead, are
completely decoupled from the dynamical fields, and thus from the theory. In this
respect, we want to stress that, on the lattice, the relations (3.29) should not be
regarded as specifying some houndary conditions for the fields. Rather, they define
sources to which some particular combinations of field components near the boundary
couple (cf. (3.35)). Indeed, strictly speaking, in lattice field theory boundary conditions
are not really imposed on the fields, but instead they are encoded in the details of the
lattice action close to the boundary (Liischer. 2006).

Given these observations, for vanishing boundary values (3.29). the lattice quark

action (3.28) reduces to the simple form,

T—a
Se=a'y S () (D + mo)u(a). (3.30)

x€l zg=a

where we recover the (infinite-volume) massless Wilson Dirac operator (cf. (2.3)),
Dy =¥ 0 (Tu +91) — a3V, @)
m

Note that as we did in the continuum theory, we include in the covariant derivatives

an additional Abelian field by defining (cf. (3.13)),
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Vith(a) = = [ B U, 2z + o) ~ $(z)] (3.32)

and similarly for V: (see Appendix A.4).

Finally, the SF correlation function of a lattice operator O is given by (cf. (3.18)),

<m={§/pwmwmawawmfwwm} . (3.33)

p=p=p'=p'=0
As in the continuum theory, we can consider fields O constructed out of the boundary
quark fields (3.19), analogously defined on the lattice. As an example, the lattice

operator corresponding to (3.21), simply reads,
a. .6 - T_ el
O5=a" ) Ty 5 756(2)- (3.34)

In particular, one can show that in the lattice theory the derivatives w.r.t. the boundary
values (3.19) correspond to the insertion in correlation functions of the quark field
components (cf. (3.20)) (Liischer and Weisz, 1996),

¢(x) = Up(0,x)P_9(a,x) , ¢'(x) = Up(T — a,x)T Pooy(T — a,x), _
(3.35)

/!

C(x) = ¥(a,x)PyUp(0,x)1, ¢ (x) =9(T - a,x)P_Uy(T — a.x).

Operators like (3.34) can then be argued to be gauge invariant (Liischer, Sint, Sommer

and Weisz, 1996; Liischer and Weisz, 1996).
3.3 The Schrédinger functional and O(«) improvement

Having introduced the standard lattice discretization of the SF with Wilson-fermions,
in this section we want to study the O(a) improvement of the theory. We thus start in
the next subsection with a discussion of how Symanzik’s effective description extends
to the SF (Liischer, Sint, Sommer and Weisz, 1996). As one expects, some modifications
w.r.t. to the infinite volume analysis of Section 2.2 are in order due to the presence of
the boundary. Symanzik’s effective theory will then allow us to identify the sources of
O(a) effects in the SF. More precisely, as we shall see, discretization effects come from
two sources: firstly from O(a) counterterms localized in the interior of the space-time
volume, and secondly from counterterms localized at the boundary. In particular, the

O(a) counterterms localized in the bulk of the space-time are the same as the ones



The Schrédinger functional and O(a) improvement 61

identified in infinite volume, or equivalently, in a finite volume without boundary.
It is thus natural to ask whether for these contributions the argument of automatic
O(a)-improvement of massless Wilson fermions in finite volume also applies in the SF
(cf. Section 2.2.4). As we shall see, unfortunately, this is not the case since the SF
boundary conditions for the quark fields explicitly break this argument. As a result,
all bulk O(a) counterterms need to be taken into account in order to eliminate the

corresponding effects in the standard SF regularization.

3.3.1 Symanzik’s effective theory and the SF

Before presenting the details of Symanzik’s effective description for the SF, we need
to introduce the class of lattice observables we want to consider. Symanzik’s effective
theory will then allow us to describe the approach to the continuum limit of the
properly renormalized quantities, and discuss their improvement.

In the following, we restrict our attention to correlation functions of products of
local composite fields ¢(x), and Fourier components of the boundary quark fields
Cy),-- .Z/(z). The fields o(z) are assumed to be multiplicatively renormalizable, and
inserted at non-zero physical distances from each other. and from the boundaries. The
latter condition guarantees that contact terms between the fields ¢(z), and the Fourier
components of the boundary fields are avoided. The renormalization and improvement
of this class of observables is then relatively simple since the bulk and boundary
operators can be discussed separately.

In particular, we note that the insertion of the operator ¢(z) in the interior of
the volume requires the same renormalization as in on-shell correlation functions in
infinite volume. Instead. the product of any finite number of Fourier components of
the boundary fields ((y), .. fl(z). is made finite by simply multiplying each boundary
field with the corresponding renormalization factor Z; (cf. Section 3.1.4). As already
noticed, this is a non-trivial result, since one might expect short distance singularities
to appear when considering products of more Fourier components. These singularities,
however, are already taken care of at the level of the SF, and are thus cancelled by

the renormalization of the boundary fields (Liischer, Sint, Sommer and Weisz, 1996).
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Given these observations, it is clear now how to proceed for the improvement of
this class of observables. Similar conclusions as for their renormalization can in fact
be drawn. Specifically, the improvement of the fields ¢(z) is the same as in infinite
volume. and hence does not need to be rediscussed (cf. Section 2.2.1). Correlation
functions of the boundary quark fields, instead. are automatically improved once the
SF is improved (Liischer, Sint, Sommer and Weisz, 1996). In this respect, given the
discussion on the renormalization of the SF (cf. Section 3.1.3), we expect that further
terms need to be included in the corresponding Symanzik effective action in order to
account for boundary effects. The general higher-order contribution to the Symanzik

effective action of the SF, is then given by (Liischer, Sint, Sommer and Weisz, 1996),
Sk = /dd.lf LE(x) +/ d3x {Bi(z)|zo=0 + Bi(T)|zo=T} (3.36)

where the bulk Lagrangian Lx(x) is defined in (2.37), while the boundary operators
By (z) and Bj.(z) are given by linear combinations of local composite fields of dimension
3 + k.9 Note that the basis fields in Bi(z) and Bj(z) need to respect all internal
symmetries of the lattice theory and the discrete space-time rotations and reflections.
In particular, By(x) and Bj(z) are related by time reflection, so that only one of
them really needs to be discussed. In addition, as in the infinite volume case, the
field equations of motion can be used to reduce the number of operators in the bulk

Lagrangian L (z). and in the boundary terms By (x) and B} (z).

3.3.2 O(a) improved action

Starting from the general expression for the Symanzik effective action, one can now
construct an improved lattice action for the SF with Wilson-fermions. In the following
we present the main results of this construction, although leaving out most of the

technical details. For the latter, we refer the reader to the discussion in (Liischer, Sint,

9Technically the boundary operators are first defined in the bulk infinitesimally close to the
boundaries, and then a proper limit has to be taken where the coefficients of the basis operators
in Bi(r) and B (x) are scaled in a precise way (Liischer, Sint, Sommer and Weisz, 1996). For us,
however, these details are unimportant, and we can consider the formal expression for the effective
action given above. In fact, we are only interested in the form of the boundary terms, and this is

determined only by svmmetry considerations.
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Sommer and Weisz, 1996). This said, considering only the leading O(a) corrections,

the improved lattice action for the SF with Wilson-fermions can be written as,
Sy =S+6S; +6Scyp + 6SEp- (3.37)

Here, S = Sg + S, is the unimproved lattice action given by the sum of the pure
gauge action (3.22), and the quark action (3.28). The O(a) volume counterterm, 45y,

related to £, is then analogously defined as in the infinite volume case, i.e. (cf. (2.43)),

88y =a®y Z cow(90) V(@) 10,0 B (z)0(x). (3.38)

xel zg=a
The additional ingredients in (3.37) are the O(a) boundary counterterms, which divide
into a purely gluonic term, dS¢ 1, and a fermionic term, §Sg,,. Considering first the
gluonic contribution. we note that in the pure gauge theory any gauge invariant local
composite operator has mass dimension greater or equal to 4. The only fields that can

contribute to B; and B} are then given by,
tr {F()I\VF();‘-} and tr {FMF/\‘I}. (339)

In particular, for the corresponding lattice counterterms we can choose operators that

are already present in the gauge action (3.22). In this case, these counterterms read.,

0Sgp = 5 z(Cs 90) Z Z Z tr{l — Py(z)}

x€l 9=0.T k,i1=0 (340)

Py ()},

XEF x9=0,T—a k=0
where we introduced the corresponding improvement coefficients c¢s(go) and ¢t (go).
Making this choice, the insertion of the gluonic counterterm dS¢ ;, simply modifies the
weight function w(P) in the action. Specifically, w(P) can be redefined as (cf. (3.22)),
%cs (go) for spatial plaquettes at zqg = 0, and T,
w(P) =< ¢i(go) for time-like plaquettes P attached to the boundaries, (3.41)
1| otherwise.

For completeness, we mention that the improvement coefficients ¢(go) and ¢¢(go) are

only known in perturbation theory. Their tree-level values can be easily obtained by
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expanding the gauge action (3.22) in a, and requiring the leading O(a) effects to
vanish. The values one obtains are ¢5(0) = ¢;(0) = 1. For the specific discretization
of the SF we are considering, the value of ¢¢(gg) is in fact known at 2-loops order
in perturbation theory (Bode, Weisz and Wolff, 1999: Bode, Weisz and Wolff, 2000).
The value of ¢,(go), instead, is not known beyond tree-level. However, if one considers
spatially constant boundary fields Cy and C},. ¢s(go) does not contribute to the action.
Having specified the gluonic O(a) boundary counterterm §5¢ ,, we now comment
on the fermionic contribution §.Sgy,. In this case, the presence of the quark fields allows
to construct many more terms of mass dimension 4 with the right symmetry properties.
A detailed analysis is then necessary in order to understand how to eventually reduce
this basis of fields, and how to properly include them in the lattice action. In order to
keep our presentation short, here we simply report the result of this study and refer
the reader to (Liischer, Sint, Sommmer and Weisz, 1996) for the details. In particular,
restricting ourselves to the case of massless quarks and vanishing boundary values p.,
p—. p_,and p,, there is only a single term that needs to be added to the action. This
is given by,
0Spp=(alg) =D > W(@)u(a), (342)
x€eTl z9=a,T—a
where ¢ (go) is the corresponding improvement coefficient. In fact, note that the proper
counterterm would also contribute in changing the weight of the time-like hopping
term at the boundary from 1 to ¢ (go) (Liischer, Sint, Sommer and Weisz, 1996). This
contribution, however, does not appear in the action if the boundary values are set
to zero (cf. (3.28)). On the other hand, it contributes when considering correlation
functions of the boundary quark fields (3.19). Indeed, when we take derivatives of the
lattice action with respect to the boundary source fields, this term is inserted in the
correlation functions. As a result, the prescription (3.35) that defines the boundary

quark fields in correlation functions has to be replaced by,
¢(x) = &(g0) Uo(0,x)P-v(a,x) , ~ ¢'(x) = &(90) Uo(T — a, %) Py(T — a,x),
C(x) = &(90) $(a, )P Uo(0,)!,  T(x) = &(90) B(T — @, x)P_Up(T - a,x).
(3.43)
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For the lattice regularization we are considering, the value of ¢; is only known at 1-loop
order in perturbation theory (Liischer and Weisz, 1996; Sint and Weisz, 1998).
To conclude, for later convenience we write down the O(a) improved SF quark

action for vanishing boundary values. This can be written as,

T—a
(SDF=a*)_ > d(x)Dy(z), (3.44)

xel zp=a

where we introduced the improved Dirac operator,
D = Dy, + 0D, + 8§Dy, + my. (3.45)

This is defined in terms of the unimproved Dirac operator Dy, (cf. (2.3)), and the O(a)

counterterms 6D, and §Dy,, which are given by.

3
SDi(x) = acala) Y 4o B @)(a) (3.46)
pr=0
8Dy (z) = a(€:(g0) — 1){0zg.a + 02y . T—a } (). (3.47)

From the discussion of this subsection, it is clear that independently from the specific
lattice regularization considered, the SF unavoidably introduces additional O(a) effects
due to the boundary. The O(a) boundary counterterms here presented, indeed, do not
break any internal symmetry of the continuum SF. They are thus expected to be

present in any discretization of the SF.

3.3.3 Automatic O(a)-improvement and the SF

Given the results of the previous subsections. it comes natural to ask at this point
whether the argument of automatic O(a)-improvement of massless Wilson-fermions in
finite volume also applies to the bulk O(a) counterterms in the SF. As we shall see, this
unfortunately is not the case (Frezzotti and Rossi. 2005; Sint. 2006; Sint. 2011), and
all bulk O(a) counterterms are necessary to cancel the corresponding lattice artifacts
in the standard SF regularization.

In order to show this, we start considering a generic multiplicatively renormalized
lattice field O in a finite volume with SF boundary conditions. In particular, the field

O may contain operators ¢(z) inserted in the bulk of the lattice volume, as well as
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operators made out of boundary quark fields ((y),.. .Z'(z). The Symanzik effective

description for the corresponding expectation value is then given by (cf. (2.40)),
(O)e(py) = (O0)H,) — a(S1O0)TH, ) + al6O0)H,) + O, (3.48)

where Oy is the continuum (renormalized) field corresponding to the renormalized
lattice operator O, while 6Oy is a shorthand notation for the associated O(a) operator
counterterm. The latter, we recall, only contains counterterms associated to the bulk
operators ¢(x). The O(a) counterterm to the action, S, instead. includes both bulk
and boundary terms (cf. (3.37)). The expectation values in (3.48) are then taken w.r.t.

the continuum SF action for massless quarks, which is given by (cf. (3.4) and (3.11)),

1 /7 L T L 5
So = —7——,,/ d:ro/ xtr{F,, (z)Fu ()} +/ dxo/ dExY(z) P(x). (3.49)
29° Jo 0 0 0

Note that in (3.48) we emphasized with a subscript (P;) that SF boundary conditions
are imposed on the fields.!? In particular, we remind that these expectation values are
evaluated for vanishing boundary values (cf. (3.18)). The boundary conditions for the
quark fields thus explicitly read,

Pip(z)|ze=0 =0, P_¢)(z)|ze=T =0,

_ - (3.50)

Y(x) P-|zo=0 = 0, Y(2) Py |zo=T = 0.
Given these definitions, we recall that the argument of automatic O(a)-improvement
presented in Section 2.2.4 relied on the following observation. If we considered the
vs-transformation,

Y=Y, U= =Y, (3.51)

as a change of variables in the functional integral, both the action Sy and the functional
integral measure were invariant. This allowed us to catalog the expectation values of
the observables as even or odd under the above transformation, and thus proceed with
the proof. In the case of the SF, the action Sy is still invariant under the transformation
(3.51) (cf. (3.49)). On the other hand, in this case the transformation also affects the

10For notational convenience we indicate only the boundary conditions for the quark fields at

zg = 0. The boundary conditions for the gauge field can be ignored in the present discussion.



The chirally rotated Schrédinger functional 67

boundary conditions (3.50). In particular, it is easy to see that the transformed fields

satisfy the SF boundary conditions with the complementary projectors, e.g., at ¢ = 0,

Pitp(@)|zg=0 = 0, P_t)(2)|zg=0 = 0,

o = (3.52)
Y(2) P |zo=0 = 0, U(x) Py |go=0 = 0,
and consequently,
(Oo)ctry = (Oo)th). (3.53)

Thus, the transformed correlation functions can not be proportional to the original
ones, and the proof of automatic O(a)-improvement can not go through. This may
be taken as a property of the fermion measure that is not invariant under the ~s-
transformation (3.51). since the function space integrated over in the path-integral
is not the same before and after the change of variables. However, we prefer to say
that chiral symmetry is explicitly broken by the SF boundary conditions.!! The ~s-
transformation (3.51) is then not a symmetry of the continuum massless SF, and the

argument as it stands does not hold.

3.4 The chirally rotated Schréodinger functional

In the previous subsection we understood that in the standard lattice regularization
of the SF with Wilson-fermions, the property of automatic bulk O(a)-improvement
in the chiral limit is spoiled by the boundary conditions for the quark fields. The
question then arises naturally whether it is possible to recover this nice feature by
changing the boundary conditions for the fields. Essentially. one would need to find
alternative SF boundary conditions and field transformations such that the latter
are symmetries of the massless continuum theory, while the modified (homogeneous)
boundary conditions are left invariant.!> As we now present, at least in principle, there

are several possibilities to achieve this.

1 This can be properly seen by studying the WIs of the theory (Liischer, 2006; Sint, 2011).
2In the following we refer in general to SF boundary conditions as Dirichlet boundary conditions
in the time direction, supplemented with periodic boundary conditions in the spatial directions. The

boundary conditions (3.50) are then referred to as the standard SF boundary conditions.
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If one insists in keeping the vs-transformation (3.51) as a symmetry transformation,

one could consider the boundary conditions specified by (Frezzotti and Rossi, 2005),'3
1 1 .
P = 5(1 +v) — Ii= 5(1 T )s (3.54)

Alternatively, one could choose a different symmetry transformation, as for example

the vs-transformation (3.51) augmented by a flavour permutation (Sint, 2006), i.e.,

V= T, o YT (3.55)

lis a Pauli matrix. This flavour permutation does not affect the bulk action,

where 7
and O(a) improvement for y57!-even observables in the bulk can be shown as in
Section 2.2.4. Boundary conditions invariant under this transformation can then be
easily obtained by adding a flavour structure to the original projectors (Sint. 2011)
e.g.,

P =

(1+y) — Pr=_(1£97%). (3.56)

o] =
| =

It is indeed easy to show that: [y571, Pi] =10
Another possibility is again to consider the 57!-transformation above, but with
the boundary projectors (Sint, 2006 Sint, 2011),

Qz =>(Lxinyr) = [157.Qz] =0 (3.57)

| =

In conclusion, it is relatively simple to come up with a set of boundary conditions and
symmetry transformations that meet the basic requirements. Certainly, what is non-
trivial is to show that the theory obtained is a sensible alternative to the standard SF.
First of all, by modifying the boundary conditions arbitrarily and independently from
the bulk action, it is not even clear a priori if the theory defined is sensible at all. The
proposal made in (3.54), for example, suffers from several inconsistencies already at
the classical level (Gonzalez-Lopez, 2011). Secondly, besides basic requirements such
as a well-defined classical continuum theory, and the renormalizability of the quantum

13Note that the most generic boundary conditions for the quark fields are given by By (z) = 0,

where B is a linear operator of non-maximal rank (Liischer, 2006). We can then discuss different

choices of boundary conditions in terms of different projector structures.
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theory, one would like to maintain some of the characteristic features of the standard
SF boundary conditions. These include in particular the absence of zero modes in the
massless Dirac operator, that allows numerical simulations at zero quark-masses. Yet
another difficultly is given by the actual implementation of the boundary conditions
on the lattice. As we briefly commented, on the lattice one does not really impose
the boundary conditions on the fields. These instead are encoded in the structure of
the lattice action close to the boundaries. Thus, depending on the given boundary
conditions, it might be relatively difficult to determine the proper structure.

In this respect, in (Sint, 2006; Sint, 2011) the author has shown that the boundary
conditions specified by the projectors (3.57) provide a natural solution to all these
problems. In fact, in the case of Wilson-fermions these boundary conditions simply
lead to an alternative lattice regularization of the SF with the standard boundary
conditions (3.50). We thus start in the next subsection motivating this result. The rest
of the chapter is then dedicated to a detailed discussion of the resulting lattice theory.
For the presentation we follow closely the original references (Sint, 2006; Sint, 2011).

We then recommend (Sint, 2007a) for an introduction.

3.4.1 A chiral rotation to the Schrodinger functional

In order to understand the nature of the projectors (3.57). let us consider the formal
massless continuum theory. As we now show, the projectors Q+ naturally appear by
applying a chiral rotation to the standard SF. More precisely. let " and L_, to be quark
doublets satisfying the homogeneous SF boundary conditions (3.50). Performing then
a non-singlet chiral field rotation,

8

¢ =R(a)yh, ¢ =0R(a), R(a)=e"7T, (3.58)

the rotated fields satisfy the chirally rotated boundary conditions,

Py (a)i()|zp=0 = 0, P_(a)¥(z)|eso=1 = 0,
— _ (3.59)
U(@)roP-(a)lzg=0 = 0, V()10 P4 ()|zo=1 = 0,
where the projectors Py(«) are defined as,
1 ;
Pi(a) = 3 [1 - 'yoe"m”s]. (3.60)



70 The Schrédinger functional

In particular, for a = 7/2, one finds,

1 2
Py(r/2) = 5(1 tivYs73) = Qx, (3.61)
and the boundary conditions (3.59) take the form,

Q+9(2)lze=0 = 0, Q-(@)|zo=1 = 0,

P(2)Q4 |zo=0 = 0, B(2)0—|ager = 0.

(3.62)

As anticipated, the boundary conditions with the projectors Qi naturally appear
when chirally rotating quark fields satisfying the standard SF boundary conditions.
In the following we will thus refer to the formulation of the SF so obtained as the
chirally rotated Schriodinger functional (xSF). In this respect, note that the non-singlet
chiral rotation (3.58) is a non-anomalous symmetry transformation of the continuum
massless QCD action. Considering this transformation as a change of variables in
the functional integral, we then expect to obtain simple relations between correlation
functions with standard and chirally rotated SF boundary conditions.

Specifically, performing such a change of variables for the case of interest a = 7/2,

we derive the generic identities,
(O, B)(py) = (OIR(x/2)%, TR(T/2)]) g, (3.63)

where the integration variables are assumed to be % and > on both sides. In particular,
note that the operator O can contain in principle boundary quark fields ((y), .. .Zl(z).
These are naturally included in the mapping by identifying them with the non-Dirichlet
components near the time boundaries, i.e. (cf. (3.20)),

¢(x) = Q-v(04,x), ¢'(x) = Qr(T-. x),

B . 3 B - . (3.64)
((x) = v(0+.x)Q, ¢ (x) =v(T-, x)Q+

In summary, we have seen that the continuum SF with chirally rotated boundary
conditions merely corresponds to a “rewriting” of the original SF. Indeed, the two
formulations are related by a non-anomalous field redefinition. On the other hand,
the relation becomes non-trivial once we consider the lattice regularization of these

formulations in terms of Wilson-fermions. In this case, the bulk action is not invariant
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under the chiral rotation (3.58), and the two set-ups define different regularizations
of the standard SF.! In particular, the relations (3.63) will not be exact at finite
lattice spacing. Similarly to the chiral Wls, however (cf. Section 2.1.3), these relations
are expected to hold up to discretization effects among properly renormalized lattice
correlation functions. To conclude, the problem that is left to solve is to determine a
lattice discretization of the SF with Wilson-fermions, such that the chirally rotated
boundary conditions (3.62) are correctly implemented. Differently from the standard
discretization of the SF, this formulation is then expected to benefit from the property

of automatic bulk O(a)-improvement in the chiral limit.

3.4.2 xSF boundary conditions on the lattice

Defining a lattice field theory which reproduces the correct boundary conditions in the
continuum limit is not automatic. As remarked several times by now, on the lattice one
cannot really impose the boundary conditions directly on the fields. Rather, these are
encoded in the specification of the dynamical field variables, and in the details of the
lattice action close to the boundaries (Liischer, 2006). Hence, one is in the situation
where the boundary conditions in the continuum theory arise “dynamically” from the
details of the lattice theory, once the continuum limit is taken. In particular, different
lattice theories with different actions can give the same boundary conditions for the
fields in the continuum limit.

Given these ohservations, the way one can proceed in the definition of the target
lattice theory is the following (Liischer, 2006). First one needs to define a lattice theory
where the correct boundary conditions are obtained in the classical continuum limit
i.e. in the free case. Secondly, the renormalization of the theory has to be studied.
In particular, given the symmetries of the lattice regularization. one has to determine
all possible boundary counterterms that can appear. Finally, given the list of these
counterterms, one can conclude if the desired boundary conditions are obtained auto-
matically in the continuum limit, or if the fine tuning of some counterterm is needed.

14 The chirally rotated SF presents some interesting applications also in the case of chirally preserv-

ing bulk discretizations. In fact, it allows for a simple definition of the SF for overlap (or domain-wall)

fermions (Sint, 2007b). For different approaches see (Taniguchi, 2005; Liischer, 2006; Takeda, 2009a).
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In the case of the xSF, the correct (homogeneous) boundary conditions for the free
theory can be obtained through an orbifold construction (Sint, 2006; Sint, 2011).1°
This construction, however, is rather technical, and will not be discussed here. We
thus refer the reader to the references for the details. For brevity of exposition, here we
simply introduce the lattice discretization of the xSF resulting from this investigation.
In particular, note that in (Sint, 2011) three different discretizations of the xSF have
been proposed. In the following we present the one we believe is the most convenient
for numerical applications. Given the lattice regularization, in the next subsection we
will then study the renormalization and O(a) improvement of the ySF.

This said, the lattice regularization of the chirally rotated SF of QCD with Wilson-

fermions is defined by,!¢
2[00 = /D[U]’D[v’v]D{E]e‘S. (3.65)

where the integration is over all quark and anti-quark fields ¥)(z) and () at Euclidean
times 0 < xg < T. The integral over the gauge fields is defined as usual (cf. (3.24)).
Similarly, the gauge part Sg of the action S = Sg + Sy has been already introduced

in (3.22), while the fermionic part Sg is now given by,

T
S = a’ Z Z @(J:)(Dw + mg)y’)(r), (3.66)

x€l =0

where we define the xSF Dirac operator Dy as,
—Up(z)P-v(z + a0) + (K + insm>P_)9(x) if 2o =0,
Dwi(z) = { Dy¥(z) if 0 <z < T, (3.67)
(K + iv5 T3Py )(x) — Up(x — a0)t Pytp(x — a0)  if 2o = T.

In the above expression, Dy, indicates as usual the (infinite-volume) Dirac operator

(2.3), while K is the corresponding restriction to a time-slice, more precisely,

3
a * *,
K=1+5 > {w (Vi + VE) — aViVi}. (3.68)
k=1
15For an earlier application of these techniques to lattice field theory see (Taniguchi, 2005).
16Note that we only consider the case of vanishing boundary values. In the expression for the

lattice path-integral we then suppress the dependence on the boundary source fields.
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It is worth comparing at this point the action (3.66), with the corresponding result
for the standard SF regularization (3.30). As one might have expected, the difference
between the two definitions only relies in the structure of the Dirac operator close to
the boundaries at o = 0, 7. In addition, for the specific discretization of the xSF we
are considering, the dynamical field variables in (3.65) are different w.r.t. the standard
SF case (3.27), since they also include the fields at the boundaries.

To conclude, we want to note that the xSF Dirac operator (3.67) satisfies the
~vs-hermiticity property of the standard Wilson operator, (75D )7 = 75Dy, up to a
flavour exchange, i.e.,

(757 Dw)t = 157 Dw. (3.69)

This property is enough to ensure that the ySF Dirac operator has a real determinant.
As we will discuss in the next chapter, this is a fundamental requirement for the
numerical simulation of the theory. Moreover, a well-defined eigenvalue problem is
obtained for (7571 Dy-). This allows to conclude that the lowest eigenvalue A, of the

free xSF Dirac operator (3.67) is given by (Sint, 2011),

I!>‘miu'| =

ISR

sin (:—;I)a = QIT— T'=T +a. (3.70)

Fermionic zero-modes are thus excluded.!”

3.4.3 Renormalization and O(a) improvement

In the previous subsection, we have introduced the lattice regularization of the xSF.
For this construction, the correct chirally rotated boundary conditions are realized in
the free theory, and the key features of the standard lattice formulation of the SF are
maintained. In this concluding subsection, we thus want to study the renormalization
of the theory in order to understand if the correct boundary conditions can be obtained
also in the presence of the interactions. Once the proper boundary conditions are real-
ized, automatic bulk O(a)-improvement is then expected to set in, in the chiral limit.
As a result, the O(a) counterterms to the bulk action and operators will be irrelevant

17Similarly to the standard SF case, this statement can be extended to the continuum massless

xSF Dirac operator defined for any smooth gauge potential (Sint, 2011).
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for the improvement of 757!-even observables. Together with the renormalization of
the boundary, we also want to understand if additional O(a) boundary counterterms
are present in the ySF w.r.t. the standard SF regularization. In this respect, we note
that the discussion of the renormalization and O(a) improvement of the xSF, is rather
technical, and more involved than in the case of the standard SF regularization. In the
following we thus simply summarize the main results and observations concerning this
study, while leaving the details to the original reference (Sint, 2011). To conclude, it
comes without saying that any bulk counterterm, as well as purely gluonic boundary
counterterms, do not need be rediscussed since these are the same as for the standard

SF case.

The boundary counterterms. In order to determine the allowed counterterms,
we first need to identify the symmetries of the lattice theory as determined by the
lattice action. In fact, it is easy to see that the symmetries of the lattice xSF are given
by: charge conjugation, spatial lattice rotations, space and time reflections combined
with a flavour exchange 7!, and global U(1) vector like rotations with generator 73 /2.
As in the standard regularization of the SF, indeed, the Wilson term breaks all axial
symmetries. The additional structure of the xSF Dirac operator at the boundaries then
explicitly breaks parity and time reflection (only recovered up to a flavour exchange),
and two of the generators of the non-singlet vector rotations.'®
Given the lattice symmetries, one can now list all fermionic operators of mass
dimension 3 and 4. Their integrals over space taken at zo = 0 and zg = 7', then define
the possible counterterms to the lattice action that are needed to renormalize and O(a)
improve the boundary effects in the SF. In particular, note that we restrict ourselves
to the case of vanishing quark-masses. Moreover, we discuss only the counterterms
at xg = 0. The ones at zg = T, in fact, are related to the latter by time reflection
combined with a flavour exchange.
¥Note that we conventionally refer to vector and axial symmetries as defined in the standard
SF base (cf. Section 2.1.1). In other words, vector transformations are defined as the ones that
preserve the standard SF boundary conditions, while the remaining chiral-flavour transformations

are identified with the axial transformations. These definitions are necessary once we consider the

massless case (Sint, 2011).
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Given these observations, after symmetrizing with respect to charge conjugation,

we find the following 3 operators of mass dimension 3 (Sint, 2011),

O1 = P0Q+¥ — P10Q_v = PirsT>¢, (3.71)
02 = PQ9, (3.72)
03 = %Q_9. (3.73)

The operators of mass dimension 4 instead are 8 in total. Using partial integration
and the field equations of motion, however, one can reduce their number to 3. These

are conventionally taken to be (Sint, 2011),

O4 =¥ Q41 Dt — ¥ Dy Q42, (3.74)
— = ~

Os5 =Y Qv Dty — ¥ Dy Q -1, (3.75)

Os = ¥ Q4101 Dkt + ¥ Divk10Q+ 9. (3.76)

As expected, due to the reduced symmetry of the xYSF more counterterms are allowed
than in the standard SF case. Specifically. one ends up with 3 O(1) and 3 O(a) fermionic
boundary counterterms. Having these counterterms we can now proceed and discuss

their inclusion in the lattice theory.

Lattice parametrization. Starting from the boundary counterterms corresponding
to O3 and Os, these can be directly included in the lattice action through a redefinition
of the Dirac operator. More precisely, we can define an O(a) improved yxSF quark action

it given by,
T

(S)p=a*y Y V()Du(a). (3.77)

x€l zog=0
where we introduced the improved xSF Dirac operator,

D =Dw + (S'DWJ, + 0Dwp + my. (3.78)

This is given in terms of the unimproved xSF Dirac operator Dy (cf. (3.67)). and the

bulk and boundary counterterms, § Dy, and 6Dy p.
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The bulk O(a) counterterm 6Dy ,, is the same as in the standard SF regularization,

and is given by (cf. (3.46)),
3
Dw () = (1 = 20,0 — 0z0,T) @ Csw(g0) Z i ;W(T U(x). (3.79)

The boundary counterterm 6Dy, instead, contains the O(1) and O(a) counterterms

corresponding to Oz and Os, and it is defined by (Sint, 2011),

EDWh(2) = (Bag0 + Sa07)[(2(00) = 1) +a (ds(g0) ~ VD[ v(@).  (3.80)

In the above definition, Dy can be any lattice discretization of the spatial components

of the continuum Dirac operator, v Dg. In our setup, we consider,
il * * \
D, = §’>‘k(vk + Vi —aVieVyi), (3.81)

which leads to a slightly simpler implementation in the simulation program. Note that
the O(a) counterterm proportional to ds(go) plays an analogous role to the & /(go)
counterterm discussed in the standard SF regularization (cf. Section 3.3.2). The cor-
responding counterterms can be in fact related through the field equations of motion.
The implementation adopted here, however, is more convenient in practice since it does
not require any modification of the boundary quark fields (cf. (3.43)). For the specific
X SF regularization we are considering, the value of ds(gg) is then known to 1-loop order
in perturbation theory (Vilaseca. 2013). The dimension 3 counterterm proportional to
25(go), instead, is a relevant operator and the corresponding coefficient z7(gg) must
be determined non-perturbatively. We will discuss this in more detail at the end of
this section.

At this point, we are left with two O(1) and two O(a) boundary counterterms to
be discussed. Considering first the terms corresponding to the operators Os and Oy,
their contribution can be shown to manifests only in the two-point functions of the
boundary fields ¢(x) and ((y) at coinciding points x =y (Sint, 2011). Similarly of
course for ¢’/(x) and Z,(y). As it will be discussed in detail in Chapter 5, however,
these two-point functions can be generally avoided in practice and consequently the

corresponding renormalization and improvement.



The chirally rotated Schrédinger functional 77

Finally, this leaves us with one O(1) and one O(a) boundary counterterms, which
correspond to the operators O; and Og, respectively. The presence of an additional
O(1) boundary counterterm should not come as a surprise. Indeed, as already discussed
in the case of the standard SF, one generally needs to renormalize the boundary
values (cf. Section 3.1.4). In practice, the counterterm corresponding to O can thus
be accounted for by the renormalization of the boundary quark fields that enter in

correlation functions (cf. Section 3.3.1), i.e.,!?

=2, Cpn=2: Ch=2K Co=2L. (3.82)

In this respect. we note that in the xSF the definition of the boundary quark fields

(3.19) in correlation functions can be taken to be (cf. (3.35)),

Cx) = Up(0.x)0-v(a.x) ,  ('(x) =Uo(T — a,x)'049(T - a, x),

!

{(x) = ¥(a,x)Q-Uo(0,x)t,  {'(x)

We stress, however, that this representation is correct as long as Wick contractions

(3.83)

¥(T — a,x)Q Uy(T — a,x).

of boundary quark fields at the same boundary are avoided (Sint, 2011). Moreover,
the effect of the remaining O(a) counterterm can be shown to lead to a redefinition of
these boundary quark fields, which specifically reads (Sint, 2011),

((x) = [1+ ds(go)aDs¢(x),

C(x) = ¢(x)[1 — ds(go)aDs).

(3.84)

and similarly for ¢/(x) and ’(x). where d.(go) is the corresponding improvement
coefficient. On the other hand. this O(a) counterterm can be neglected in most practical
applications. Indeed, the counterterm Og is v57'-odd, and thus contributes only at
0O(a?) in y57!-even correlation functions (see below).

To conclude, the situation is not as bad as it might have seemed at first. In practice,
the main new feature of the xSF formulation w.r.t. the standard SF regularization is
given by the determination of the renormalization parameter z¢(go). We thus conclude
the section and chapter with a discussion about this important point.

9The role of @1 might become more clear if one chirally rotates this operator back to the standard

SF base, i.e. Yiys73 Lie E’d)’. Considering then the boundary conditions for the fields, the operator

obtained is the one responsible for the renormalization of the boundary values in the SF (cf. (3.16)).
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Renormalization of z;. In order to better understand the role of the counterterm
proportional to zf, it is useful to look at the corresponding operator O3 in the standard

SF base. Applying a chiral rotation to O3 we obtain,
50 R, Sl - 8.
YQ_v — ¢ Priysmo. (3.85)

This term explicitly breaks parity, and two of the generators of flavour symmetry.
The lattice symmetries of the ySF are thus not enough to prevent the appearance
of this counterterm that consequently needs to be fine tuned in order to recover the
proper symietries, or equivalently boundary conditions, in the continuum limit. In
this respect, we note that in the standard SF base, the 737!-transformation (3.55)

corresponds to the discrete SU(2) flavour transformation,
=4 i, o .
V' = =72 Y = —P T (3.86)

From this perspective. it is clear the role of z; in the argument of automatic O(a)-
improvement: it restores the relevant continuum symmetry needed to prove the result.

Given these observations we conclude that, since parity and flavour symmetry
are good continuum symmetries of the SF, the renormalization parameter z; has to
be finite i.e. a scale-independent function of the bare coupling go (Sint, 2011). The
careful reader might have noticed that we already anticipated this result with our
notation. In particular, the tree-level value of zf(go) is given by 25(0) = 1 (Sint, 2011).
This can be interpreted as the fact that the chirally rotated boundary conditions are
correctly realized for the free theory. However, when the interactions are included, the
boundary conditions are not protected by any lattice symmetry and this parameter
needs to be renormalized. In particular, since the counterterm corresponding to zf
is a relevant operator at the boundaries, we expect that z; needs to be determined
non-perturbatively.

From the above discussion, it is also clear how the renormalization parameter
zf(go) can be fixed. In practice, we can consider any lattice observable which is a
pure source of parity and/or flavour symmetry breaking effects. The renormalization
condition that defines zf(go) at a given go is then simply obtained by requiring the

given observable to vanish (Sint, 2011). In particular, we note that a class of these
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observables is given by the v57!-0odd correlation functions. It is indeed clear that any
non-trivial value for these quantities is a consequence of the aforementioned symmetry
breaking by the regularization.

Once z7(go) has been tuned, and the quark-masses are set to zero, automatic
bulk O(a) improvement is expected to hold in the xSF. Specifically, this means that
757 -even observables will be free of all O(a) contributions corresponding to v57-odd
counterterms (cf. Section 2.2.4). These include in particular the O(a) contributions
coming from the bulk action, the O(a) counterterms associated to operator insertions
in the volume of the lattice, and also the boundary counterterm proportional to d4(go)-
On the other hand, some O(a) effects will still be present due to a couple of y57!-even
boundary counterterms. As we have seen. these are given by the O(a) counterterm
proportional to ds(gg), and if only spatially constant gauge fields are considered at
the boundaries, the pure gauge counterterm proportional to ¢¢(gg) (cf. Section 3.3.2).
Note that in the xSF the fermionic contribution to this improvement coefficient will
be different w.r.t. the standard SF regularization. Its value has been in fact computed
to 1-loop order in perturbation theory in (Vilaseca, 2013). Interestingly, the result
obtained is much smaller than in the standard SF regularization. Together with the
very small 1-loop coefficient of dy (Vilaseca. 2013), this gives us confidence that a
perturbative estimate of these coefficients might be good enough in practice. Finally,
we recall that the complementary feature of automatic O(a) improvement is that all
v57!-0dd observables will be pure O(a) lattice artifacts. In particular, they will contain
all the effects corresponding to y57'-odd counterterms (cf. Section 2.2.4).

To conclude, a crucial question one needs to address is whether the non-perturbative
tuning of zy is feasible in practice. As just mentioned, automatic O(a) improvement is
obtained by tuning simultaneously z, and the bare quark masses mg to their critical
value mei¢. In principle, one could expect these conditions to be quite independent.
at least close to the continuum limit. Any dependence of the critical mass meri, on 2y,
indeed, is a pure lattice artifact. In a non-perturbative determination, however, it is
difficult to tell a priori which is the size of these discretization effects at the values of

the lattice spacing covered by current simulations.
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As a last remark, we note that in the unimproved theory the renormalization
parameter z¢ can be determined non-perturbatively only up to O(a) ambiguities. This
means that different renormalization conditions lead to determinations of z; which
differ by O(a) effects. Similarly to the determination of the chiral point, one might
thus wonder if this ambiguity in the tuning of z; can spoil the argument of automatic
O(a) improvement (cf. Section 2.2.4). In fact, as for the case of the critical mass, the
effect of an O(a) ambiguity in z; can be described by an insertion in the Symanzik
effective action of the corresponding counterterm multiplied by an O(a) coefficient.
One then concludes that this counterterm is 571-odd, and thus it will only contribute

to O(a?) in y57!-even quantities.
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Simulation algorithm

In this chapter, we present some details of the numerical implementation of the
XSF in our simulation program. We will keep this technical discussion rather short.
Essentially, we will focus on the main techniques that have been developed, and simply
give an overview of how the xSF Dirac operator can be efficiently included in dynamical
lattice QCD simulations. This will allow us in particular to discuss some of the tests
that have been performed in order to check the reliably of the code.

Specifically, we start the chapter with a short review of the main algorithm on
which modern simulations are based on, namely, the Hybrid Monte Carlo {(Duane,
Kennedy. Pendleton and Roweth, 1987). The presentation merely serves to introduce
the notation, and some basic concepts needed in the following. For a more complete
presentation we recommend the following set of lectures on which our short review is
based (Kennedy, 2006; Liischer, 2010a).

After this short introduction, we will discuss in some detail the main algorithmic
tools that have been implemented for an efficient simulation program. In this respect,
note that the code we developed is based on the openQCD! package of (Liischer and
Schaefer, 2013), which offers an advanced simulation program for Wilson-type fermions
including the standard SF set-up presented in Section 3.2. Our simulation strategies
then naturally derive from this work. The inclusion of the xSF Dirac operator in the
package, however, is not entirely straightforward. Indeed, as we shall see, the peculiar
matrix properties of the ySF Dirac operator w.r.t. to the standard SF one, forced us
to redefine some of the methods implemented in the original code.

We conclude the chapter presenting some of the more stringent tests we have

performed on our implementation.

Lhttp://luscher.web.cern.ch/luscher /openQCD /
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4.1 The Hybrid Monte Carlo
4.1.1 Statistical interpretation of the functional integral

The physical information of the lattice theory is contained in its correlation functions.

As we have seen, these have the path-integral representation (cf. (2.26)),
1 — —. N0
©) =2 / [DU)[DY|[DF] OU. 4. T = SW9), 4.1)

The basic goal of lattice QCD can be summarized in practical terms as the numerical
evaluation of these path-integrals. In particular, due to the generally high number of
integration variables in these integrals, exact integration methods are not applicable,
and the evaluation has to proceed stochastically. Lattice QCD simulations are then
based on Monte Carlo methods. and specifically on Markov chains and the concept of
importance sampling.

The first complication that arises in the evaluation of the lattice path-integrals, is
that the quark fields are represented in terms of Grassmann valued fields. At present,
no practical method exists for a direct simulations of this type of fields.? The theory
that has to be simulated is then the one obtained after the integration of the quark
fields. In the case of two mass-degenerate Wilson-quarks, for example, the resulting
partition function assumes the form,

Z= / DU){det D(U)}?e=%¢),  DU] =[] dUu(), (4.2)
T,
where D(U) denotes the massive Dirac operator in the presence of the gauge field U.

Assuming that the determinant, det D, is real,
1 ,
pU) = 2750, S(U) = Sa(U) - In| det DU)P?, (4.3)

defines a normalized probability density on the space of gauge fields.

The generic lattice expectation value (4.1) can then be rewritten as,

(©) = / D] p(U)OW), (4.4)

where the operator O(U) may contain terms resulting from the integration of the

quark fields.

2Some attempts have been made for example in (Creutz, 1998).
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Given this reinterpretation, lattice QCD resembles a classical statistical system
where the states are given by gauge field configurations, and the expectation values
of generic obhservables are defined by ensemble averages. This suggests the idea that
these expectation values can be estimated stochastically by generating an ensemble
of representative gauge field configurations {Uy,...,Uxn}, distributed according to
the probability D[U]p(U). The given expectation value is then approximated by the

average over the ensemble, i.e..
(0) = NZO(U& + 0[N, (4.5)
i=1

The central limit theorem assures that, asymptotically, the correct expectation values
are obtained up to correction of O(N~1/2),

In practice, representative gauge field ensembles are constructed through Markov
chains. The general procedure of evaluating integrals outlined above then goes under
the name of importance sampling (see e.g. (Kennedy, 2006; Liischer, 2010a)). The
difficult task of lattice QCD is to find efficient algorithms that generate representative

gauge field configurations with the desired probability distribution.

4.1.2 Towards the Hybrid Monte Carlo

Lattice QCD simulations are made difficult by the necessity of including the quark
determinant in the probability distribution (4.3). Indeed. the determinant depends
non-locally on the gauge field, and simple local algorithms as the ones commonly used
for pure gauge theories are not practical.> One thus needs to find an alternative, more
efficient way, to deal with this non-locality. Because of this reason, today lattice QCD
simulations generally rely on some variant of the so-called Hyvbrid Monte Carlo (HMC)
algorithm (Duane, Kennedy, Pendleton and Roweth, 1987).

The starting point of the HMC is the introduction in the theory of a su(3)-valued

field,

I, (z) = IL; (z)T°. I (z) & R. (4.6)

3We refer to (Liischer, 2010a) for a discussion of the algorithms for the pure gauge theory.
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The role given to this field is that of canonical conjugate momentum of the gauge field

U. In particular, the theory is now described by the Hamiltonian function,

H(ILU) = 3(ILII) + S(U), (ILI0:= ZHZ(I)HZ (z). (4.7)
T, 1
Note that, the introduction of this field and consequent interpretation, does not alter

the physical content of the theory since,
(O = / DIUOU)e~5Y) = constant x / D[ID[U)OU)e~ HILY), (4.8)

This reinterpretation however suggests the following idea to generate an ensemble of
gauge fields with the correct probability distribution.

One starts by considering the Hamiltonian equations of motion associated to the
corresponding classical statistical system. In the context of lattice QCD, these are
generally referred to as the molecular dynamics (MD) equations, and are defined by,

Gz, t) = =F,(z,t), Fji(z,t) = 0,,5(U(t)),

(4.9)
OU,(2.1) = L, (2. )U, (2. 1),

where the derivative over the gauge group J, , is defined in Appendix A.3. The fields
now depend on the additional time coordinate t. This fictitious time parameter simply
parameterizes the evolution of the fields in field space. In particular, note that the
MD equations are deterministic equations. The corresponding solutions II, (z,t) and
U, (z,t) at time t, are uniquely determined by the initial values of the fields at ¢ = 0.

A sequence of properly distributed gauge fields U can now be obtained as follows.
Given a field of initial momenta Il (z,0) = II,(z), and a starting gauge field U, (z,0) =
Uyu(z), a new gauge field U}, () is obtained by integrating the MD equations up to a
given time t = 7, i.e., U} () = Uy,(z, 7). The corresponding momenta field I1,(z, 7) is
then discarded, and resampled according to the Gaussian probability density, p(Il)
e~ 2L The chain hence continues starting from the new momenta I’ (z) so obtained,
and the latest gauge configuration U}, (z). This ideal algorithm can be shown to be

ergodic, and to lead to the desired probability distribution (see e.g. (Liischer, 2010a)).
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4.1.3 Numerical integration of the MD equations and accept-reject step

In practice, the MD equations (4.9) need to be integrated numerically. This means that
the time interval [0, 7] is divided in N steps of size €, and a given integration scheme is
applied that gives the correct results for € — 0. Here we do not want to enter into the
details of any specific integration scheme, and we refer the reader to the extensive study
in (Omelyan, Mryglod and Folk, 2003). We note however that, in general, so-called
symplectic integrators are employed. These discrete integration schemes have the nice
property that they preserve the time-reversibility of the solutions of the MD equations,
and also the phase-space integration measure D[II]D[U]. As we will comment shortly.
these are two fundamental conditions for the correctness of the algorithm. We also
mention that, in general, it is convenient from the numerical point of view to integrate
different contributions to the MD forces with different resolutions €, depending on
their magnitude (Sexton and Weingarten, 1992). It is in fact intuitive that it is better
to integrate more accurately the larger contributions to the forces, while using larger
step-sizes for the smaller ones. This strategy is clearly more advantageous if the larger
contributions to the forces are also the cheaper ones to evaluate numerically. In lattice
QCD simulations, for example, this is generally the case since the contribution to the
forces deriving from the gauge action is normally larger in magnitude and certainly
cheaper to evaluate, than the fermionic contributions.

Given these observations, the main consequence of the numerical integration of
the MD equations is that the Hamilton of the system is not preserved along the MD

evolution. More precisely, for fixed step-size € the difference,
AH(ILU) = {HI(7),U(7)) = HI1(0),U(0) }n(0)=n.v (0)=U" (4.10)

does not vanish in general. If not corrected, this can be shown to lead to an inexact
algorithm. This means that the probability distribution of gauge fields that we obtain
integrating the MD equations numerically at finite €, does not correspond to the desired
distribution we would obtain for e = 0. A possible solution to this problem is simply to
repeat the evaluation of our observables by running the algorithm for different values

of €, and then extrapolate the results for € — 0. Fortunately, this expensive procedure
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can be avoided. In fact, the algorithm can be corrected simply by accepting the gauge
field configuration obtained after the numerical integration of the MD equations with

probability (Duane, Kennedy, Pendleton and Roweth, 1987),
P,.c = min{1,e~AHILU)}, (4.11)

Provided that the numerical integrator is time reversible, and preserves the phase-
space integration measure D[II]D[U], this leads to an exact algorithm.

To conclude, we want to note that even though the numerical integration of the MD
equations does not conserve the Hamiltonian H | it is possible to show that a “shadow”
Hamiltonian H is in fact conserved (Kennedy, Silva and Clark, 2013). Asymptotically,
this coincides with the Hamiltonian H up to O(€") corrections, i.e. H = H + O(e"),
where the value of n depends on the so-called order of the discrete integration scheme
employed.* Even though only asymptotic, the analytic control provided by the shadow
Hamiltonian on the form of the step-size errors, suggests interesting applications for

the optimization of the MD integrators (Clark. Joo, Kennedy and Silva, 2011).

4.1.4 Pseudo-fermion action and final algorithm

The algorithm presented so far can in principle be applied to simulate the target
distribution (4.3). A straightforward application of the algorithm, however, is not
feasible in practice. A direct computation of the force deriving from the fermionic
action indeed, requires the evaluation of the quark determinant. Given the high number
of degrees of freedom of the problem this is clearly unfeasible.

This problem can be overcome by using a pseudo-fermion representation of the

quark determinant, of the form,

|det D(U)|? = constant x /’D[qb]e‘spf(v’o),
4.12)
Su(0.6) = (6. DU DO ), Diél = [] dbnal@)dbral@).

T, A«

4This reminds of Symanzik's effective theory now extended to the 5d theory which includes the
time coordinate t. It is difficult, however, to push this suggestive analogy very far, since the HMC
as a field theory in 5d does not seem to be renormalizable, and in fact not even local (Liischer and

Schaefer, 2011).
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Here the pseudo-fermion fields ¢ carry the same indices as a quark field . Instead of
being Grassmann valued field, though, they are complex valued fields. Note that we
also introduced the natural scalar product (-,-) on the space of such fields. In fact,
as we shall see, more complicated representations of the quark determinant. involving
several different pseudo-fermion fields, are used in practice to improve the efficiency
of the simulations. We will comment on this later, in the next section.

To conclude, we now have all the basic ingredients of the HMC. We can thus

schematically summarize the main steps of the algorithm as follows:

(a) A momentum field II, (), and a pseudo-fermion field ¢(x) are generated randomly
accordingly to the probability density: p(IL, ¢) o exp{—3(IL,II) — Sp¢(U. 8)}.

(b) The MD equations are integrated from time ¢ = 0 to some time t = 7 > 0, taking
II,(z) and U, (x) as the initial values.

(c) The new gauge field U} (x) is set to the gauge field U, (z, 7) obtained in (b) with
probability,

Py = min{l,e~4HILU)} (4.13)

In particular, if the proposed field is rejected, U (z) is set to the original field,
e U (z) = U,(=,0).

4.2 The SF in numerical simulations

Having introduced the basic concepts of the simulation algorithm, we now want to
discuss in detail the numerical implementation of the ySF. We stress again that the
code we developed is based on the openQCD package. As a result, most of the techniques
that will presented in the following have been originally developed for this code. These
are described in detail in the dedicated code documentation,® or alternatively, in the
more condensed presentation of (Liischer and Schaefer, 2013). However, substantial
work had to be done in order to adjust the existing program for the standard SF
regularization to the xSF. Apart from the obvious changes in the Dirac operator, this
mostly concerned the evaluation of the different types of fermionic forces integrated

in the HMC. We will now present these modifications in detail.

Shttp://luscher.web.cern.ch/luscher/openQCD /
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4.2.1 Frequency splitting of the quark-determinant

In Section 4.1.1, we recalled that an essential ingredient for the numerical simulation
of the theory is that once all fermionic species are integrated out, the product of the
resulting determinants of the Dirac operators must be real and positive. As noticed, the
Wilson-Dirac operator for two mass-degenerate quarks with ySF boundary conditions
satisfies this property (cf. Section 3.4.2). Considering the improved operator D of

(3.78), the hermiticity of (y571D) implies indeed for its flavour diagonal components,
D = diag(PM), D?®)  4DMy5 = (D), (4.14)

and therefore,
det(D) = det(DM) det(D?) = det [(DM)T(DM))] > 0. (4.15)

Given this result, one can apply the HMC algorithm as described in the previous
section, using for example the simple pseudo-fermion representation (4.12) for the
quark determinant (4.15). Some time ago, however, it has been noticed that numerical
simulations can be greatly stabilized by considering more elaborate representations of
the quark-determinant (Hasenbusch, 2001; Hasenbusch and Jansen, 2003).

In order to present the specific representation we considered, we first need to dis-
cuss the inclusion of a twisted-mass term in the Dirac operator. As the reader might
recall, we briefly commented on the possibility of adding a twisted-mass to the quarks
in the context of automatic O(a) improvement (cf. Section 2.2.4). On the other hand,
an additional motivation for introducing a twisted-mass term is given by the fact that
such a term provides a sharp infrared cutoff in the spectrum of the Wilson Dirac op-
erator (Frezzotti, Grassi, Sint and Weisz, 2001). Without going into the details, this
generally helps in the simulation of Wilson-fermions at small physical quark masses,
since it prevents the occurrence of nearly zero eigenvalues of the Dirac operator. Small
eigenvalues in fact can make the computation of the corresponding fermionic forces
very difficult, and might even destabilize the simulations (see e.g. the discussions
in (Del Debbio et al., 2006; Liischer and Palombi, 2008; Liischer and Schaefer, 2013)).

Introducing a twisted-mass term in the ySF Dirac operator, the corresponding

determinant reads (u > 0),
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det(D + iprys73) = det(DW) + ipys) det(D — i)
= det [(DV +ipys) (DY +ipys)] (4.16)

= det [(D(l))T(D(l)) + iuys AD + #2} >0,

where we defined AD = D® — D). For the specific lattice discretization we are

considering, this term is gauge-link-independent and localized at the boundaries, i.e.,
AD = 2(75P-024,0 + 15 P+ 020,7)- (4.17)

Note that the presence of this term is peculiar of the YSF, and is related to the fact
that the 75-hermiticity of the operator D is only valid up to a flavour exchange. Indeed,
in the standard SF case, it is easy to see that the linear term in p is absent (see below).
In conclusion, the expression (4.16) clearly shows the role of the twisted-mass as an
infrared regulator for the zero-modes of the Dirac operator.

The new representation of the quark determinant is now obtained by considering

the simple rewriting,

det((’D(l) + ‘i’}s/lg)T(D“) + i"y’g/to))

n—1 A

: ; let((D™M) + ivspr) (DY + i)

=det((DWV + 15 U, tDW 4+ 5 fn dct{ : — - 3
. =i stn)) 11 49 D m + iragins JFOD + i)

k=0
(4.18)

where we introduced several different twisted-masses 0 < pg < ... < p,,. In particular,
if non-zero the lowest mass pq can serve as infrared regulator to be reweighed away,
or it may be interpreted as a physical twisted-mass of the quark doublet (Liischer and
Schaefer, 2013). Given the factorization (4.18), the basic idea is then to represent each
term that appears in the product thought a separate pseudo-fermion representation
(4.12). As a result, the pseudo-fermion action Sy corresponding to the factorized
determinant is given by the sum of different contributions associated with the different

pseudo-fermion fields ¢, . .., ®n, namely,

Si=>_ Sn (4.19)
k=0

where.
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Spf,n = (én- [(D(l) -+ i'75.“*n)T(D(l) + i’75:u"n))]_ld)n): (420)
while,
Stk = (&k, (PN + iys ) (DD + i”J'S,Uk))]—lg)k)- (4.21)
& = 75(D® — ispik41) bk
for k =0,...,n—1. In the MD evolution each component of the total pseudo-fermion

action will contribute with the corresponding force. In particular, we immediately see
that independently from the number of terms that appear in the product (4.18), only
two types of forces need to be considered: the one originating from the action type
(4.20), and the one associated with the type (4.21).

The technique presented above, was firstly proposed in (Hasenbusch, 2001; Hasen-
busch and Jansen, 2003), and is generally referred to as Hasenbusch (twisted-mass)
preconditioning. This factorization effectively works as a frequency splitting of the
quark determinant. This seems to reduce the fluctuations in the corresponding forces
along the MD trajectory, and thus stabilize the simulations (see e.g. (Schaefer, 2012)).
In practice this means that, for a given P,.. and 7, the twisted-masses can be tuned
such that larger step-sizes € can be considered for the numerical integration of the MD
equations.® In particular, it has been noticed that the twisted-masses jq. ..., jin can
be generally tuned such that a hierarchy in the magnitude of the different forces result-
ing from the determinant splitting is obtained. The Hasenbusch preconditioning can
then be efficiently combined with a multiple step integration of these forces (Urbach.
Jansen, Shindler and Wenger, 2006).

To conclude, we will now study in detail the resulting types of forces that appear
due to the factorization of the quark determinant. In this respect, we want to note
that while the force computation deriving from the action (4.20) needed minor changes
w.r.t. the original code, the ones associated with (4.21) instead had to be redefined.
The basic motivation is due to the following observation.

ONote that, in fact, there is not solid theoretical understanding of why such splitting stabilizes
the simulations. This means that the tuning of the twisted-masses is poorly guided, and essentially

based on numerical experiments. In any case, different ideas to obtain a frequency splitting of the

quark-determinant can be found in e.g. (Liischer, 2005; Clark and Kennedy, 2007).
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Considering the standard SF Dirac operator (3.45), including a twisted-mass term,

the resulting determinant for two mass-degenerate quark fields reads,
det [(D + iuys) (D + ipys)] = det(DD' + u%) > 0, (4.22)

where we used the 75-hermiticity property v5Dvs = D?. In particular by defining the

operator Q = v5D, we simply obtain,
det [(D + ipys)' (D +ipys)] = det [(Q — ip)(Q + ip)]. (4.23)

We then see that the operators in square brackets trivially commute, even without

resorting to the properties of the determinant. In the case of the xSF instead we have,
det [(DW + ipvs) (DD + ipns)] = det [(QF — i) (Q +ip)], (4.24)

where we defined Q = 75D, and by using 75D M5 = (D), we have Qt = 45D,

The main difference in this case is that Q' # Q. and in particular,
(@1, Q] = (D)D) — (D@)IDP . (4.25)

In other words, in the xSF case the operator Q is non-hermitian and non-normal.
As we shall see more explicitly shortly, this in practice reduces the flexibility of the
pseudo-fermion representation, in particular when ratios of determinants are taken.
In fact, once a form of the pseudo-fermion action is specified, e.g. (4.21), the different

matrix contributions do not commute.

The force deriving from a quark doublet. Given the factorization (4.18). we
have seen that the first type of contribution to the pseudo-fermion action is given by
(4.20). For the derivation of the corresponding MD force, it is convenient to rewrite
this contribution as,

S = (8, (PP + i)' (DD +isp))] ™

(PP — iyspu) " 1y50, (DB — iys)) " 1r50), (4.26)

5).

= (v, 9),
where we used that v5DM)q; = (DP))F, and we defined v = (D) —iy5u)~1y5¢. This

form also suggests how the pseudo-fermion fields can be actually obtained. As discussed
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in Section 4.1.4, the pseudo-fermions indeed need to be generated at the beginning of
the MD evolution according to the probability density p(¢.U) x e=%»(Y), From the
expression (4.26), it is clear that this can be achieved by simply generating Gaussian-

distributed fields € i.e. p(&) e~ 29 and then computing,
¢ =7(D® —iysp)e. (4.27)
The MD force corresponding to (4.26) is also easy to derive since (cf. eq. (4.9)),

F{) = 8.8y = 0c,(¢, %) = 2Re (4, 8 u¥). (4.28)

Using then the identity AA~! = 1, with A a general gauge-link dependent matrix, the
simple relation 9; ,A~! = —A71(8, ,A)A~!, is obtained. From this identity we can

rewrite the expression (4.28) more explicitly as,

F{) = —2Re (x,75(82,, D)), (4.29)

where,
X = (DY +iysp) sy = [(DD +iysp) (DD +iysp)] 76, (4.30)
¥ = (DP — iysp) " 50 (4.31)

Note that, the gauge group derivative of the xSF Dirac operator is independent of
the flavour considered, i.e., ; ,(D® — DM) = 0 (cf. (4.17)). In fact this derivative
is equivalent to the one obtained from the standard SF Dirac operator. The explicit
expression is given in Appendix B. In the case of the xSF, however, since the quark-
fields are dynamical at ¢ = 0,7, the pseudo-fermion fields are non-zero at these
time-slices, and consequently x and ¢. The force (4.29) is thus non-vanishing for all
dynamical gauge link variables.”

To conclude, we obtain the field x by solving the normal equation in (4.30) using a
standard Conjugate Gradient (CG) solver. Note that in the force computation, the field
1 can then be obtained by a simple matrix multiplication without further inversions.
ie.,

15(DD + iysp)x = 9. (4.32)

“We remind that these are defined as the gauge fields Up(z) with 0 € 29 < T for p = 0, and
0 <xg<Tfor p=1:23.
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Force deriving from the ratio of determinants. We now discuss the second
type of forces which derives from the pseudo-fermion action (4.21). These have been
obtained by applying straightforwardly the results discussed in (Hasenbusch, 2001;
Hasenbusch and Jansen, 2003). For later convenience we will first recall the general
strategy as presented in the given references, and then simply list and comment the
results we derived for our specific case. This will also allow us to adopt a more compact
notation.
As we have seen, the starting point is the factorization,

det(V1V)

det(V1V) = det(W*W)m

= det(WTW)det(W-HN(VIV)W™1), (4.33)

where V is our original Dirac operator. while W is the so-called preconditioner. For
the moment, we do not assume any specific form or relation between V' and W. In
particular, these operators do not generally commute. Focusing now on the second
determinant defined on the r.h.s. of (4.33), this can be represented through a pseudo-

fermion representation defined by the action (cf. (4.21)),

SD = (wie, (VIV)~iwte),

= (WVHte, WV —Hig), (4.34)
= (%),
where ¢ = (WV~1)¢. In this form. it is explicit that the specific pseudo-fermion

representation has been chosen such that the corresponding pseudo-fermions can be
easily obtained. In this case indeed, given some Guassian-distributed fields &, correctly

distributed pseudo-fermion fields can be simply generated as,
o= (VW h)te, (4.35)

Note that the form of (4.34), offers the suggestive interpretation that the effect of the
preconditioning matrix W is to replace the original pseudo-fermion fields ¢, with some
“effective” pseudo-fermions fields, given by ¢ = Wie.

The force corresponding to (4.34) can be easily derived, and is given by,

F® = —2Re(x,0:,V1) + 2Re (x, 8. W), (4.36)

(
T, p
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where

x = (VIV)"1wig, (4.37)
=WVl =Vy. (4.38)

Given this general expression, we can now consider our specific case defined in (4.21).

This is in fact equivalent to choosing,
V=(Q+im), W=(Q+im), (4.39)

where for simplicity we defined the two generic twisted-masses that occur as g < ji1.
We remind that Q@ = v5D(1). In this specific case clearly, Oz 4 vt = Oz Wt and the

expression (4.36) simplifies to,

F(QZ = —2Re (X- 81,/1‘/11/’/)-, (4.40)

Tyt

where ¢/ = 1) — ¢. In terms of the flavour diagonal Dirac operators, the final result for

the force reads,

F{) = —2Re (x, 75(8: u D)), (4.41)
where,
x = (DD +iysp0) (DD + iysp00)) ™1 8,
. (4.42)
¢ = 75(D® —iysp1)0.
and,
¥ = 75(DY + iyspo)x — ¢. (4.43)
Note that, the above expression could be reduced to,
W =i(po — )5 (PP — iyspg) 1o, (4.44)

where the cancellation between the two terms in (4.43) is done analytically, and is
thus expected to be numerically better behaved. Unfortunately, however, this would
require an additional inversion of the Dirac operator at each step of MD trajectory.

This solution is too expensive in terms of computational effort, and we then opted for
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the original representation (4.43), which only requires a single matrix multiplication
and vector subtraction once x has been computed.

Finally, note that the pseudo-fermion fields are obtained by first solving the normal
equation,

(PP +iysp0)H (DY) + iy p01)]¢" = 35 (PP — iz pa0)E. (4.45)

where £ are Gaussian-distributed fields. and then computing,
¢ =5(DY +ivsu1)¢'. (4.46)

Differently from the determination of the y field, the inversion of the Dirac operator
here is required for the (generally) larger twisted-mass p;. The computation is thus
expected to be less expensive.

To conclude, we want to note that in the case of the standard SF, an analogous

computation of the force would have involved the operators,
V=(Q + ing), W =(Q+iu), (4.47)

where, we remind, @ = v5D. In this case, V and W commute with their hermitian

conjugates V1 and W1. The pseudo-fermion action (4.34) can then be rewritten as,

SE = (Wvhle, WV i),

(4.48)
= (o, (WIW)(VIV) 1),
which for the SF case explicitly reads,
S2 = (¢,(DD' + p2)(DD' + 1i2)"10).
W ! 0 (4.49)

= (&, (1 + (uf — u))(DD + )~ 0).

The corresponding force computation can thus be nicely recast in the previous simpler

case of a single quark determinant (Liischer and Schaefer, 2013),

X

x

Bl B B (4.50)
where for the standard SF we have (cf. eq. (4.26)),

SY = (6,(DD' + 12)7'9). (4.51)
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4.2.2 Even-odd preconditioning

Another common technique to speed-up lattice QCD simulations is based on even-
odd preconditioning (see e.g. (Liischer, 2010a).) In this section we comment on the
specific implementation that has been considered, in particular in conjunction with
the Hasenbusch preconditioning just presented.

A lattice point z is classified to be even or odd depending on whether the sum of
its coordinates xg + x1 + ro + 3, is even or odd. In particular, any quark field can be
split into two parts,

Y = Ye + Yo, (452)

where ¥, (1,) has support on the even (odd) sites of the lattice only. If then the lattice
points are labeled such that the even come first and the odd come after, the xSF Dirac

operator assumes the block structure,

Dea D }
T — Sl (4.53)

DOL‘ DO()
The operators D, and D, simply include the hopping terms that connect odd to
even and even to odd points, respectively. Note that these components of the ySF
Dirac operator are trivial in flavour space. The non-trivial flavour structure is in fact

contained in the diagonal part M = D + Do, which is given by (cf. (3.78)),

4 4+ mg + Csw Ziyzo iawf‘w(m). if0<zg<T—a,
M(z) = 25+ 3ds + mo + iy P_T3, if zg =0, (4.54)

zf + 3ds + mo + ’i’)’:,P+T3, feg=T.

Given these observations, the even-odd preconditioning is based on the following result.
The generic Dirac equation D1y = 5 for the source field 7, can be solved by first
solving,

DDy =10 — Deo(DD) 110, (4.55)

00

for ©., where

DD = DY) — Doo (D)) 1D, (4.56)
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is the even-odd preconditioned Dirac operator. (Note that, DO acts inside the subspace
of fields defined on the even sites only.) Once the solution 1, is given, the odd field

components of ¥» can be obtained simply as,
Yo = (D)™ {1lo — Doctle}- (4.57)

Solving the Dirac equation in this way is generally advantageous e.g. 2-3 times faster.
In fact, D((,To) does not couple different lattice points, and can then be easily inverted.
The expensive part of solving the Dirac equation is thus limited to half of the space-
time volume i.e. the even sites only (cf. (4.55)).

In addition, even-odd preconditioning comes with the factorization of the quark
determinant,

det DY = det D) det DY, (4.58)

In this respect, note that differently from the standard SF case, for the xSF Dirac
operator De,¥(z) # 0 at the boundaries xo = 0,7 (cf. (3.78)). As a consequence, the
operator product that defines D involves the inverse of D((,L) on all odd sites x in the
range 0 < z¢g < T. However, while a numerical inversion is needed to invert D‘(fo) in
the bulk of the lattice, at the boundaries this can be done on a piece of paper. Only
in the bulk in fact the space diagonal part of the Dirac operator depends non-trivially
on the gauge field (cf. (4.54)). Consequently, the determinant det D((,i,) is given by a
product of determinants one for each odd point in the time range 0 < z¢p < T. As
we will comment later in this section, though, the contributions from the boundaries
zg = 0,T can be neglected in practice.

Given the factorization (4.58). one can think of combining it with the Hasenbusch
twisted-mass preconditioning (4.18). In this case, if the twisted-mass is introduced
only as an infrared regulator, one could consider including it only on the even sites of
the lattice (Liischer and Schaefer, 2013). One thus introduces the projector 1, on the
subspace of quark fields that vanish on the odd sites. Its action on a generic spinor
field v is defined as,

U(x) if x is even,

ly(z) = (4.59)
0 if x is odd.
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The Dirac equation with the twisted-mass on the even sites then reads.
(DD + ipysle)do(z) = n(z). (4.60)

This can be solved analogously as discussed before: first solving the even-odd precon-
ditioned system,

(DY + iuys)de = e — Deo(DS) ™ 10, (4.61)

and then obtaining v, as in (4.57).
Combining now the factorization of the quark determinant (4.58) with (4.18), one

obtains (Liischer and Schaefer, 2013),

det((PM) +ipgys1e) (DY + ipgysle))

=det((DLL))'DL)) det (D + iptny51e) (DD + ipnys1e)) x

00

} "l:[ldet{ det((DD +ippys 1)t (DD + g5 L)) }
n=0 det((DD +ipgy1751e)H (DD +ippy1vs5le)) )

(4.62)

where we will generally consider the case with pg = 0. Similarly to (4.18), the idea
is to represent each term in the product (4.62) though a separate pseudo-fermion
representation. Note that in this case, the pseudo-fermion fields oége..... On.e. need
to be defined only on the even sites of the lattice. The pseudo-fermion action Sp¢

corresponding to the factorized determinant (4.62) is then given by,

Spf = Sdet + Z Spf,k: (463)
k=0

where the S i are defined analogously to the expressions (4.20) and (4.21), by simply
replacing D) with D, Ok — Ge.k. and also px — prle. The new component in the
action (4.63), is given by the contribution of the small determinant det( (D(()%,))TD&)).
This is given by,

Saet = —Trlog(le + (D) DEY). (4.64)
Note that in the case of the xSF, ’D((,i,) is hermitian except at the boundaries g = 0. 7.

We will now conclude the section presenting the derivation of the three different

types of forces that appear in the case of even-odd Hasenbusch preconditioning.
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The force deriving from the quark doublet: even-odd. As just seen, the first

type of contribution that enters in the pseudo-fermion action (4.63), is given by,

(e (DD +ips10) (DY +ipys1e)] ~ de),

= (D@ —ipysle) " v5de, (DP —ipysle) Mysde), e
(PP — ipys1e) 50, 1e(DP — ipysle) s de).
(

where we defined ¢ = (D® —ipys1.) " 1950.. Note that 57! -hermiticity also holds for
D and has been used to derive the expression above. Similarly to the case of (4.26),
the representation (4.65) clearly shows that properly distributed pseudo-fermion fields

can be generated from Gaussian-distributed fields &, simply as,
e = 5(D? —ipysle)ée. (4.66)

where both ¢, and &, are defined only on the even sites of the lattice.
The representation (4.65), is also convenient when considering the derivation of the

corresponding MD force. Indeed. this is simply given by.

F4) — (’),_,LSI()}I) = 0Oz, (¥, 1e¥) = 2Re (¥, 10z 47). (4.67)

T,u

In particular, we can avoid taking the gauge-group derivative of the preconditioned
operator DY), and only work with (')T‘,,D“). The explicit form of force FI(B is in fact

given by (cf. (4.29)),

F{!) = —2Re (x,75(0z,, D?)¥)), (4.68)

where,
x = (DM +ipysle) " sled, (4.69)
¥ = (D —ipysle) " ysde. (4.70)

To conclude, note that the x and v fields can be efficiently computed by solving the
even-odd preconditioned Dirac equation (cf. (4.55) and (4.57)). Indeed, it is easy to

show that the y field is given by,
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Xe = [(ﬁ(l) & iﬂVsle)T(ﬁ(l) o 7.‘/"7519)]_1973@
(4.71)

No'—= _(D(l))_lDOCXe-

00
This can be easily inferred from the definition of x in (4.69), considering that the
pseudo-fermion field ¢, is only defined on the even points of the lattice. Secondly,

once Y is obtained, a bit more subtle is the determination of ¢», which is given by,

Pe = v5(DY +ipysle)xe
(4.72)

Yo = —(DZ) 1 Dyette.

00

As we can see, ’D((f,) is used to obtain the odd components of ¥. This is because, v is
in principle computed through the inversion of D and not of D) (cf. (4.70)).
Finally, we note that the computation of the action (4.65) only requires the even

components of 1, since Sp¢ = (¥, 1e00) = (e, Ye).

Force deriving from the ratio of determinants: even-odd. The second tvpe
of contribution that enters in (4.63) is defined from (4.21) by simply replacing the
Dirac operator D) with D), and restricting the pseudo-fermion fields and twisted-
masses to the even sites of the lattice only (cf. (4.62)). The general presentation of
the Hasenbusch preconditioning outlined before in this section (see (4.33) and relative
discussion). can then be trivially extended to the even-odd preconditioned case. In
particular, the pseudo-fermion representation can be similarly defined in terms of the
action (cf. (4.34)).
S = (W, (V1V)1Wtg,),

= (WV~—"Dtg,, WV —1te,), (4.73)

= (Ve Ye),
where ¢, = (WV~1)1¢,. As one can immediately see, the only difference w.r.t. to
the case in (4.34) is that now the pseudo-fermion fields live on the even sites only,
and we consider the even-odd preconditioned Dirac operators V and . These will be
specified shortly.

It comes without saying that, the pseudo-fermions can be obtained from Guassian-

distributed fields &, as,
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¢ = (VW g, (4.74)

and that assuming, ar,#VT = 8”,VV t, the expression for the force is given by,

F{® = —2Re(xe, 05, V1)), (4.75)

where
xe = (VIV)1W1g,, (4.76)
Y, = (WV ), — ¢ = Vxe — 0. (4.77)

The preconditioned operators that we now choose, are the ones expected and given
by,

V=(Q+im), W=(Q+im), (4.78)
where Q = D). From the general expression of the force (4.75), it is clear that in
this case we have the complication of computing the derivative of the preconditioned
operator D?). On the other hand, it is possible to show that the force F{’,Z can be in
fact rewritten in terms of the derivative of the standard Dirac operator D), and fields
x and v that live on all sites of the lattice. Such derivation is simple, but rather lengthy.
It is thus not presented here. In a few words, the idea is to compute analytically the
derivative of the preconditioned operator (4.56) by considering its expression in terms
of the components Dﬁ.g).D((f)), Deo. Doe. Then, by recombining the pieces opportunely

together. one can prove the relation (cf. (4.41)),

F{%) = —2Re (e, 1502, D)), = —2 Re (x.75(05 s DD)), (4.79)
where,
Xe = [(DD +ipgrs1)H (DD + ipgys1e)] L (DD + ip1vsle) de. .
Xo = (D) Duce. ER
and,
Py = 75(D + gy 1e) Xe — e
(4.81)

w(l) = _(D(Q) )TDU(?U'e-

(e1¢)
The standard Dirac operator D*) thus provides the odd components of the fields as

expected from the solution of the even-odd preconditioned Dirac equation (cf. (4.57)).
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Force deriving from the small determinant. To conclude, we want to briefly
comment on how to treat the contribution to the pseudo-fermion action deriving from

small determinant det((’D‘()},))TD((,},) ). We recall that this is given by,

Saet = —Trlog(le + (D)D) = = > trlog(MM(x)! MV (z)],  (4.82)
zodd

where MV indicates the upper flavour component of the matrix A in (4.54). First
of all, note the matrix D', and so M(1)(z), are non-hermitian only for zo = 0,T
(cf. (4.54)). In particular, at these values of xy the matrix M) (z) is gauge link
independent. For all practical purposes, we can then restrict the sum on the r.h.s of
(4.82) to all odd points z with 0 < zg < T In fact, since the contributions at g = 0.7
are independent from the gauge fields, the action at these time slices is constant along
the MD trajectory. Consequently, these contributions cancel when we consider the
accept-reject step in the HMC. In addition, they will not contribute to the MD forces
either once we take the gauge-group derivative of the action. In conclusion, one can
proceed in the exact same way as in the standard SF case (Liischer and Schaefer, 2013).

We then report the expression for the force corresponding to (4.82) in Appendix B.

4.3 Tests on the implementation

Given the details of our implementation, in this concluding section we want to present
the results of some consistency checks we have performed. In this respect, note that
the main modifications w.r.t. the original openQCD package have been the following.
First of all, we have implemented the xySF Dirac operator, which also required some
modifications of the communication routines for the fields, and of the CG solver.
Secondly, the computation of the forces, actions, and pseudo-fermion generation, has
been modified according to what we described in the previous section.® The integration
of the MD equations, and the other details of the HMC, however, have been left

unchanged. This said, the main tests that have been performed are:

8The author is grateful to John Bulava for his help in checking the implementation of the xSF

Dirac operator, field communications, and CG solver.
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e The application of the xSF Dirac operator D) on random test sources has been
compared with the results obtained from an independent implementation.? This
included different lattice parameters, MPI parallelizations, and machines.

e The solution of the Dirac equation D(V¢) = 75 has been tested analogously. In
particular, the results for several non-trivial fermionic correlation functions have
been compared with an independent determination.

e Given the results above, we have tested the solution of the Dirac equation using
even-odd preconditioning (cf. (4.55) and (4.57)). This is a strong check on the
preconditioned Dirac operator DO and its components: Dey, Doe, ’Dé?, and DE,Q

e As we will discuss in more detail in the next subsection, we have checked the
consistency between the MD action, and force computations. Similarly, we have
also checked the consistency between the action computation, and pseudo-fermion
generation.

e Finally, we have preformed some extensive simulations of Ny = 2 O(a)-improved
Wilson-fermions with xSF boundary conditions, in order to check the statistical

agreement among the different types of preconditioning on a set of observables.

For completeness, in the next subsections we present the details of the results of

the last two tests listed above.

4.3.1 Force, and action computation

There are several ways to check the consistency between the computation of the

pseudo-fermion action, and the corresponding forces. We note however that, in general,

these kinds of tests do not detect a consistent error between the force and action evalu-

ation, as in the case for example where the Dirac operator is not well-implemented. For

this reason, it is important to check the latter independently, as we discussed above.

This said, a way to probe the consistency between the forces and actions is suggested

in the original openQCD package. The idea is to compare the computation of the force,

with a numerical gauge-group derivative of the corresponding action.

9The author thanks Stefan Sint for having provided these crosschecks.
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More precisely, starting from a given pseudo-fermion field ¢(x), gauge field U, (x),

and momenta field I1,(z) = II{,(x)T, one defines,

1

iy Espf(qbv UQIZ)v (Uen)u(r) = eEH“(I)Uu(I)v (483)

2
S = 3pt(9, U

where € is a small parameter i.e. ¢ < 1. In fact, only the dynamical links are changed

in the above transformation. It is then easy to show that,

ds 1
€

= S S = F =) I%(2)88 ,Spr. (4.84)
T,

As anticipated, the evaluation of the two terms above permits to check the consistency
between force and action computation.

In Table 4.1 we present some results we have obtained for a given choice of lattice
parameters, for the different actions and forces introduced in Section 4.2. Note that

we adopt the following notation:

e STD: standard single pseudo-fermion representation of the quark determinant.
The associated force and action are: Fl(ll)(.r) and Sl()}) (cf. (4.29) and (4.26)).

e HAS: Hasenbusch (twisted-mass) factorization of the quark determinant (4.18),
and corresponding pseudo-fermion representation. In particular, here we consider
the case with only two pseudo-fermions. Then, the associated force and action for
the single ratio of determinants are: Ff)(z) and S}()?) (cf. (4.41) and (4.34)).

e EO: single pseudo-fermion representation of the even-odd preconditioned quark-
determinant (4.58), excluding the contribution of the small determinant (4.64).
The associated force and action are: F,S‘”(m) and Sr(;fl) (cf. (4.68) and (4.65)).

e EO+SDET: as above but including the contribution from the small determinant.

e EO+HAS: Hasenbusch (twisted-mass) factorization of the even-odd precondi-
tioned quark determinant (4.62), and corresponding pseudo-fermion representa-
tion. In particular, here we consider the case with only two pseudo-fermions. Then,
the associated force and action for the single ratio of determinants are: Ff’)(x)

and Sx()?) (cf. (4.79) and (4.73)),

In Table 4.1 we also include a comparison of the action computation with the

corresponding pseudo-fermion generation. This is obtained by firstly generating some
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Gaussian-distributed fields ¢ with action S = %({,{). Then, given the fields &, one
can compute the pseudo-fermion fields ¢ as discussed in the previous section, and
evaluate the corresponding action Sl(Dif)' If the generation of the fields ¢ is correct, the

two actions should coincide i.e. S = Sézf).

Table 4.1 Results for the consistency checks of the action and force computations, and
pseudo-fermion generation. The results are obtained for a given pseudo-fermion field ¢, gauge
field configuration U, and momenta I1. The lattice considered has: L/a = T'/a = 8. The values
for the twisted-masses are apo = 0.1 and ap; = 1.0. The CG solver residuum is res = 1072,

and e = 1074,

STD EO EO + SDET HAS EO+HAS

|45 /F — 1| 3.12e-08 2.44e-08  3.86e-08  9.47e-08  3.77e-07
IS — Spel  1.50e-08  8.50e-09  4.80e-09  2.50e-08  1.5e-08

As we can see from the table, the results are generally good for both tests, and
for all types of preconditioning. They are indeed consistent with the ones (roughly)
expected, considering the size of the lattice volume, and the chosen CG residuum.

To conclude, in order to check the consistency of the force and action computation
as integrated into the HMC, we have performed the following additional test. Given
an initial pseudo-fermion field ¢, gauge configuration U, and momenta configuration
II, we have integrated numerically the MD equations up to a fixed time t = 7 for
several different values of the step-size e. We have then measured the difference AH in
the Hamiltonian at the beginning, and at the end of the MD trajectories as in (4.10).
If the computation of the action and forces is consistent, we then expect AH o €™,
where n depends on the order of the numerical integrator.

In Figure 4.1, we present the results for a 2°¢ and 4'" order integrator for some given
lattice parameters, and different values of the integration step-size € at fixed 7 = 2.
The details of the numerical integrators can be found in (Liischer and Schaefer, 2013).
Note that we consider simulations of Ny = 2 O(a)-improved Wilson-fermion with xSF
boundary conditions, and we employ both Hansenbush and even-odd preconditioning.

Without entering into the details, in principle we expect for the given 2°¢ and 4"
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Fig. 4.1: |[AH]| as a function of the step-size. Data obtained from a single trajectory
of length 7 = 2, for fixed ¢, U, and II. The simulations considered are for Ny = 2
O(a)-improved Wilson-fermions with ySF boundary conditions; both Hasenbusch and
even-odd preconditioning are used. The lattice considered has L/a = T'/a = 8, and
the twisted-masses are given by apog = 0.0 and ap; = 1.2. Note that the gauge force

is integrated on a much finer time-scale through a 4*" order integrator.

(a) 274 order integrator

1.5e-02 T T

1.0e-02 | 7

IAHI

5.0e-03

3.0e-04 8.0e-04 1.3e-03

(b) 4th order integrator

1.8e-04 - T

1.3e-04 |

IAHI

8.0e-05 | o

3.0e-05
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order integrators: AH o €2 and AH o ¢, respectively; this assuming that the value
of € is small enough that higher-order terms in € are negligible in AH.

As we can see from the figure, this is nicely the case. Note that the results at each
€ are obtained from a single MD trajectory, and the line on the plot is a linear fit of

the data constrained to zero.

4.3.2 Check on the preconditionings

In this concluding subsection, we present some tests we have performed in order to
check the equivalence of the different types of preconditioning implemented. More
precisely, for a given choice of lattice parameters, we have computed a set of different
observables using simulations where different representations of the quark determinant
have been employed. If the preconditionings are all well-implemented, we then expect
the results from the different simulations to agree within their statistical uncertainties.

Specifically, for the test we have considered simulations of Ny = 2 O(a)-improved
massless Wilson-fermions with xSF boundary conditions. The given lattice parameters
are: L/a = T'/a = 6, and 3 = 6/g¢ = 5.6. The observables we have studied then are
the average plaquette (Plaq), and the energy density as defined through the Gradient
flow (Liischer, 201056). In particular, we have measured two different discretizations
of the energy density denoted in the following by W, and Y,.. The details of these
discretizations are unimportant for the present discussion. Note however that, W, and
Yaet, have been computed for a value of the flow time ¢ specified by ¢ = v/8t/L = 0.3.
This is in general a sensible value to obtain a good statistical precision for these
observables (Fritzsch and Ramos, 2013). Finally, we have generated roughly 240.000
MD trajectories of length 7 = 2, corresponding to 480.000 molecular dynamics units
(MDU). In particular, the plaquette has been measured at each trajectory finding
an integrated autocorrelation time of 7, ~ 4 — 5MDU, while the Gradient flow
observables every 5 trajectories without detecting any autocorrelation.

In Table 4.2, we report the results of the simulations for the three observables
considered, and the different types of preconditioning. Similarly to the previous sub-

section, we adopt the following notation:
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e STD: standard single pseudo-fermion representation of the quark determinant.

The twisted-mass is set to zero i.e. apg = 0.0.

e HAS: Hasenbusch factorization of the quark determinant (4.18) considering two
pseudo-fermions with twisted-masses: apg = 0.0, and ap; = 1.2.

e EO: single pseudo-fermion representation of the even-odd preconditioned quark-
determinant (4.58). The twisted-mass is set to zero i.e. apg = 0.0.

e EO+HAS : Hasenbusch factorization of the even-odd preconditioned quark deter-
minant (4.62) considering two pseudo-fermions with twisted-masses: apg = 0.0,

and ap; = 1.2.
Note that we have set the twisted-mass o to zero, as otherwise a reweighting would
have been needed to compare the results with and without even-odd preconditioning.

Table 4.2 Results for the average plaquette, and Gradient flow energy densities Wact, and

Yact, for different types of preconditioning.

(@) STD HAS EO EO-+HAS

Plaq 1.89463(4) 1.89469(5) | 1.89469(5) 1.89466(5)
Yae 377.8(1)  377.8(1) | 377.8(1)  377.9(1)
Waee  7325(2)  732.4(2) | 732.4(2)  732.6(2)

As we can see from the results in the table, the precision on the plaquette is
very good. Nevertheless very good agreement is found between all preconditionings.
Similar conclusions can be drawn for the Gradient flow energy densities. In this case,
it is interesting to note that the difference between W, and Y., which is roughly a
factor 2, is in fact a pure discretization effect.

To conclude, just to give an idea about timings, we report in Table 4.3 the average
time taken by the different simulations to compute a single trajectory. Note that the
P,c has been tuned in order to be roughly equal in all runsi.e. P, ~ 0.90—0.95. As we
can see from the table, the gain from the even-odd preconditioning is evident, almost
a factor 4. A bit surprisingly, also the Hasenbusch preconditioning helps considerably,

even though we have considered a very small lattice volume. Finally, note that if
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the two preconditionings are combined together, an overall factor of 5 in speed up is

obtained. These results remarkably show the effectiveness of these preconditionings.

Table 4.3 Average time per trajectory for the different preconditionings.

Time (s)
STD 31
HAS 17
EO 8

EO+HAS 6
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The chirally rotated SF at work

In the previous chapter we discussed in detail the numerical implementation of the
xSF, and presented some consistency checks on the basic algorithm. Assuming the
correctness of the latter, in this concluding chapter we want to study some applications
of the method. In particular, we are interested in providing evidence for the two
main features expected from the xSF with Wilson-fermions, namely: the universality
of its continuum limit with the standard SF regularization, and the realization of
automatic O(a) improvement in the chiral limit. Note that these properties have been
confirmed in detailed studies in the quenched approximation (Sint and Leder, 2010;
Lopez, Jansen, Renner and Shindler, 2013a; Lopez, Jansen, Renner and Shindler,
2013b), and recently also to 1-loop order in perturbation theory (Vilaseca, 2013). In
this work, the non-trivial question we want to answer is whether these features also
hold when the non-perturbative continuum limit of the full theory is considered. In this
respect, we will focus on the theory with Ny = 2 dynamical massless Wilson-fermions
with xSF boundary conditions. For this case in fact, many results are available for
comparison with the standard SF regularization.

The chapter thus begins by setting-up the connection between SF and xSF. More
precisely, starting from a standard set of SF correlation functions, we study formally
in the continuum their chiral rotation. We then determine the corresponding set of
XSF correlation functions, and the expected universality relations. The corresponding
lattice correlation functions and O(a) counterterms are also commented.

Secondly, given the universality relations we will study their consequences on the
lattice. As we already remarked, on the lattice these relations are expected to be
valid among properly renormalized lattice correlation functions up to discretization

effects. The idea is thus simply to define a suitable set of observables and test whether
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the expected universality relations are correctly recovered in the continuum limit. As
we shall see, as a by-product of this investigation we will determine several finite
renormalization constants of interest related to the breaking of chiral symmetry by
Wilson-fermions. In addition, these observables will provide a non-trivial check for
automatic O(a) improvement in the ySF. Indeed, by studying the continuum limit of
these quantities we will be able to determine if the expected scaling is realized.

Before presenting any results, however, a crucial issue needs to be addressed first.
As presented, the correct chirally rotated boundary conditions are obtained in the
continuum limit only if the finite renormalization parameter z5(go) is properly tuned
(cf. Section 3.4.3). As also discussed, this parameter can be fixed by imposing at finite
lattice spacing parity and/or flavour restoration on a given observable. On the other
hand, in order to obtain automatic O(a) improvement one needs to simultaneously
tune the quark masses to zero. At finite lattice spacing this simultaneous tuning of
2y and the bare quark masses might present some difficulty due to the presence of
discretization effects. It is thus important to understand whether the tuning is feasible
at the relevant values of the lattice spacing in simulations.

Finally, the chapter is concluded with a detailed analysis of the correctness of
the simulations. Specifically, this includes: a study of the reversibility and measure
preserving properties of the MD integrator in the HMC, an estimation of the longest
autocorrelation times in the simulations, and an investigation of the ergodicity of the

algorithm in sampling the topological sectors.

5.1 Correlation functions and universality relations

As anticipated, in this section we want to present the ySF correlation functions and
corresponding universality relations that will be studied later in the chapter. To this
end, after some comments on the specific set-up we are considering, we will introduce
a set of suitable correlation functions in the standard SF base. Then, by performing
the proper chiral rotation we will obtain the corresponding correlation functions in the
XSF, and derive the universality relations of interest. The section is thus concluded

with a discussion of the corresponding lattice correlation functions, and their O(a)
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counterterms. Note that most of the details here presented can be found in a condensed

form in (Sint and Leder, 2010).*

5.1.1 Flavour structure

So far we have assumed the quark fields to be doublets consisting of an up and down

type quarks, i.e.,
W= ety (5.1)
Ya
In practice, however, it is convenient to look at the correlation functions obtained in
a theory with four flavours of quarks. In the following, the quark fields will be then
assumed to be of the form,
Yy
T R B (5.2)
Py
Yar
where we consider two up and two down type flavours of quarks.

Given this definition, the chiral rotation (3.58) is redefined as,
¥ =R(a)y, ¥ =9PR(a), R(a)=e*1087), (5.3)

where, 1o ® 73 = diag(1,—1,1,—1). The xSF boundary conditions (3.62) are also

modified accordingly, and are now specified by the projectors,

Qi = ding{ Qs Qs Qs Q) Q+ = 3(1 £iv07ys)- (5.4)

After this short remark we can proceed and present the correlation functions of interest
in the standard SF base.
5.1.2 SF correlation functions

The SF correlation functions that we are interested in involve the quark-bilinear fields

introduced in the context of the WIs (cf. Section 2.1.2 and Section 2.2.3). Differently

!The author thanks Stefan Sint and Bjérn Leder for sharing several notes before publication. The

presentation given in this section is based on this material.
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from our original presentation, however, here we work with operators with definite
flavour assignment instead of isospin index. This means that, for example, we consider

the axial and vector currents specified by,

Aijilfz = Efx’YN’YS@/)fzv Vuflf? b @fl’yl‘d}fb’ (5.5)

where the flavour indices f; and f, stand for u,d and eventually u’,d’. Obviously
these operators can be obtained from the definitions given in (2.13) and (2.19), by
simply taking appropriate linear combinations of the generators of the flavour group.
In particular, note that in the following we only consider flavour non-singlet operators.
We thus exclude any operator with flavour assignment f; = fs.

In addition to the flavour currents presented above, we also study the scalar and

pseudo-scalar densities (cf. (2.20) and (2.17)),
Shh =P, PO =T, (56)
and the tensor density (cf. (2.46)),
TP =1, do by, (5.7)
For completeness we then include the pseudo-tensor density,
TR = iysapins (5.8)

since this is naturally obtained from a chiral rotation of the tensor density.
The SE correlation functions of interest are now defined as two-point functions of
the quark bilinear operators introduced above, and bilinears of the zero-momentum

components of the boundary fields, ((y),...,((z). Specifically, we first consider the

bilinear boundary operator (3.21) with definite flavour assignment, namely,

oft - / PByd®aC,, (y)PyrsCs (2). (5.9)

Note that comparing with the definition (3.21) an additional projector P, appeared.
However, taking into account the boundary conditions for the fields it is easy to see
that this projector is in fact redundant (cf. (3.20)). On the other hand, it is useful to

remind us which are the non-Dirichlet field components at the boundaries.
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Given this definition, we can now introduce the first set of boundary-to-bulk SF
correlation functions defined by (Liischer, Sint, Sommer and Weisz, 1996; Liischer and

Weisz, 1996; Sint and Weisz, 1997),

Fx(@o) = 5 (X0 (z) 0P ) (5.10)

(Py)’
where X stands for X = Ay, V, S, P. As a first remark, note that due to translation
invariance in the spatial directions, these correlation functions only depend on zg.
Secondly, fi and fs are odd under parity and consequently vanish (cf. Section A.6.2).
This is also true on the lattice with standard SF boundary conditions. These correlation
functions, however, are still interesting since at finite lattice spacing not all of their
chirally rotated counterparts are automatically zero. This because, as discussed, the
lattice xSF explicit breaks parity, which is only recovered up to a flavour exchange.
In addition to the fx correlation functions, we can consider correlation functions
involving fields with an open spatial index k. In order to define these, we first need to

introduce the bilinear boundary operator,
O — [ dydaC,, P01 (0). (5.11)

Given this definition, the new set of correlation functions is specified by,

3

ky (zo) = _% Z <ka1f2($)0£2f1>
k=1

, 512
(P+) ( )

where the fields Y} stand for the bilinear quark-fields, Yi = Ax, Vi, Tok, Tgk. Note that,
in this case, parity symmetry implies k4 = k7 = 0.
Finally, we define the boundary-to-boundary correlators,

3
f- A%<05flfzo'5fzf1> oy i 3 <o]{1f2(x)o;cf2fl> : (5.13)

(P+) i (P+)

where the source fields at upper-time boundary are given by,

o = / d3yd*a T (y)P-1sC), (2), (5.14)
ot — / Bydz Ty (y)1PsCl, (). (5.15)

To conclude, we note that if only non-singlet operators are considered, the flavour

indices on the correlation functions are redundant in the case of standard SF boundary
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conditions. This is true both in the continuum and on the lattice, since in both cases
the Dirac operator and boundary conditions are trivial in flavour space. Hence, one
has for example that: f}‘(“/ = g{d’ = fud = f¢ and similarly for the ky functions, and
the boundary-to-boundary correlators. However, it is important to specify the exact
flavour assignment once we consider the rotation of these correlation functions to the
XSE base. The chiral rotation, indeed, distinguishes between up and down quark-
flavours (cf. (5.3)), and thus different flavour assignments correspond to different xSF
correlation functions. Note that, at least in the continuum, this does not mean that
flavour symmetries are broken by the xSF boundary conditions, but rather that the

flavour symmetries of the standard SF assume a different form in the xSF (Sint, 2011).

5.1.3 xSF correlation functions and universality relations

Given the SF correlation functions presented in the previous subsection, it is now easy
to derive the corresponding ySF correlation functions. Indeed, these are obtained by
simply considering the relation (3.63) now defined in terms of the transformation (5.3).

More precisely, we have,
(O[R(m/2)%, Y R(n/2)]Q112) 5. = (O, P|O/ 1) (p,), (5.16)

where O is a generic quark bilinear operator, while the ySF bilinear source field Q/1/2
is obtained by chirally rotating the bilinear SF boundary field ©/1/2. In Appendix C,
we collected the results for the operators Q/1f2 corresponding to the SF boundary
fields Of*/* and OJ'%.

Having these definitions, the xSF correlation functions related to the SF correlators
fx can be easily found. Indeed, if we define the ySF two-point functions gx of the
operators X = Vp, Ap, S, P, as,

1
f1f2/ = _Z({xhf(y foh 5.17
o) = 5 (XPP @RS (5.17)

it is easy to work out the following universality relations (Sint and Leder, 2010),
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fa= g = oF =—ight=ig¥, (5.18)
fr=igd" = —ig§" = ¥ = g¥, (5.19)
fr= gt = o =—igy =igP, (5.20)
fo=igs =—igt = g gin, (5.21)

Thus, choosing different flavour combinations in the SF correlation functions, and
applying the corresponding chiral rotation, we can obtain several non-trivial relations
among xSF correlation functions with different flavour assignment and quark-bilinear
insertions. In fact we note that, given our definition of the boundary fields in the xSF,
the corresponding transformation properties of the correlation functions are simply
found by considering the chiral transformations of the quark-bilinears X.
Analogously to the case of the gx functions, if we introduce the xSF correlation

functions of the bilinear fields Y, = A, Vi, Tok, Tok, defined by,

3
1
1{'1f2(170) — _6 Z <ka1f2($)Q£2f1> }

k=1 (Qy)

(5.22)

the following universality relations with the SF correlation functions ky are easy to

derive (Sint and Leder, 2010),

by = B = & =it =g, (5.23)
ka= I = 9 = —ilgd = agy, (5.24)
il == (5.25)
ho =i = il = =P, (5.26)
Finally, we can define the boundary-to-boundary xSF correlators,

1

g{1f2 - —§<Q£1f2 ng2f1> M (5.27)
(Q+)

138

l{1f2 == Z <Q£1f2 Q;cfgf1> ik (5.28)
k=1 (Q+)

where again we collected the results for the boundary fields Q'f1f2 corresponding to

the SF source fields (’7?‘ 2 and (’);cflf"’ in Appendix C.
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It is then easy to find the universality relations,

=g =gt =gf=g®, (5.29)

B = = (5.30)

In conclusion, we obtained several formal relations between xSF and SF correlation
functions. However, as discussed, once we move to the lattice these relations are not
expected to be exact anymore. Even at zero quark-mass, indeed, the Wilson bulk
action is not invariant under the chiral rotation (5.3), and the general relations (5.16)
can not be derived. On the other hand, we expect these relations to be valid up to
discretization effects among properly renormalized lattice correlation functions, such
that once the continuum limit is taken the universality relations are recovered. In the
next section, we will investigate in detail some of the consequences of this expectation.
Before that, we conclude this section with a short discussion on the lattice definition

of the xSF correlation functions here introduced, and their O(a) counterterms.

5.1.4 xSF correlation functions on the lattice

Given the formal continuum definition of the xSF correlation functions, it is easy to
define their lattice counterparts. First of all, the bilinear quark fields X and Y are easily
regularized on the lattice (cf. Section 2.1.2 and Section 2.2.3). In this respect, we recall
that in the case of the vector current one can either consider the local (cf. (2.13)) or
point-split definition (cf. (2.35)). The latter does not requite any finite renormalization,
and in addition satisfies for degenerate quark masses the conservation law (2.34). Note
that this relation holds in the interior of the lattice volume, independently from the
specific xSF boundary conditions considered.

Secondly, as we have seen, the lattice boundary source fields are obtained from their
continuum counterparts by simply replacing the space integrals with spatial sums (cf.
(3.34)). As an example, if we consider the continuum field (C.1), the corresponding

lattice field reads,

Q' =a® Y Gy 1015Q-Cul2). (5.31)

y,z€l'
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In particular we remind that when inserted in correlation functions, the boundary

fields are equivalent to the following expressions in terms of quark fields,

¢(x) = Up(0,x)Q—(a,x), ¢'(x) = Uo(T — a,x)'Q_¢(T — a,x),  (5.32)
{(x) = ¥(a,x)Q+Up(0,%)", (%) = (T — a,%)Q4+Up(T — a,x). (5.33)

As discussed in Section 3.4.3, this representation is correct only if Wick contractions
of boundary fields at the same boundary are not present in the correlation functions.
In the following, we will avoid the appearance of these contributions by choosing
proper flavour assignments in the two-point functions. Moreover, note that we leave
out the O(a) boundary counterterm proportional to ds(go) (cf. (3.84)). For most of
the applications we will consider this is in fact not relevant.

Given these observations, it is now straightforward to determine the corresponding
lattice expressions for the ySF correlation functions presented in the previous sub-
section. In particular, we can study their transformation properties w.r.t. the lattice
symmetries, in order to determine some exact relations among different correlation
functions or specific properties of individual correlators. In this respect, we collected
some of these results in Appendix C. Here we just want to mention that in practice we
can restrict ourselves to consider only correlation functions with flavour assignment
uu’ and ud, since the flavour combinations dd’ and du are related to the former by
exact lattice relations. Furthermore all correlation functions are found to be either
real, purely imaginary or vanishing exactly.

To conclude, it is important for our analysis later on to identify the O(a) operators
counterterms to the lattice xSF correlation functions here introduced. As discussed,
for this type of correlation functions, the O(a) operator counterterms are determined
by the corresponding counterterms to the quark-bilinears X and Y inserted in the bulk
of the lattice volume (cf. Section 3.3). In fact, however, the given counterterms might
contribute or not to the corresponding correlators gx or ly. More precisely, given the

results in Section 2.2.3, we obtain that for the vector correlators,

g () = g P (w0, (5.34)

l\f/l,fz(:vo) = 1112 (20) + cv(g0) aol it 2, (5.35)
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where V7 indicates as usual the improved (local) vector current (2.45). As we can see,
the O(a) counterterm proportional to the spatial derivatives of the tensor correlator
does not contribute to the gy functions. This can be easily understood by noticing that
in the xSF translation invariance is preserved along the spatial directions. Secondly,
we remind that if the point-split vector ‘7# (cf. (2.35)) is considered in (5.35) instead
of the local current, a different improvement coefficient cg;(go) is needed.

For the axial vector correlators the situation is somehow the other way around,

namely,
992 (z9) = {7 (20) + ca(go) abogh (5.36)
1 () = 4 o). (5.37)

Then, for the tensor and pseudo-tensor correlator we have,

192 (z0) = 1172 (20) + cr(g0) adold} 2, (5.38)
zgfﬁ(;po) = 11172 (20) + c5(g0) adol . (5.39)

Finally, the scalar and pseudo-scalar correlators do not need any operator improve-
) I 3

ment, as we have seen, i.e.,

g8 ) = gB P (), (5.40)
98 (z0) = gf%* (z0). (5.41)

At this point, the reader might wonder why we considered this type of boundary-
to-bulk and boundary-to-boundary correlation functions for our study. The reason is
that thanks to the projection to zero momentum of both quark and anti-quark fields
at the boundary, these correlation functions are expected to have in general milder
cutoff effects and better statistical precision than gauge invariant correlation functions

involving only bulk operators (see e.g. (Della Morte, Sommer and Takeda, 2009)).

5.2 Renormalization conditions and O(a) improvement

Given the universality relations between SF and xSF correlation functions presented in

the previous section, a non-trivial question now is whether these relations are correctly
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recovered once the continuum limit of the properly renormalized lattice correlation
functions is taken. In this section, we will thus define a set of suitable observables that
will allow us to address this question. In addition, the investigation of these quantities
will give us the opportunity to confirm whether the property of automatic O(a) is at
work as expected for the ySF.

More precisely, in the next subsection we will define several ratios of xSF two-
point functions which are expected to converge to a common continuum limit due to
some universality relation. In fact, at finite lattice spacing these ratios are related to
finite renormalization constants originating from the breaking of chiral symmetry by
Wilson-fermions (cf. Section 2.1.3). Similarly, we will also consider ratios of boundary-
to-boundary correlators which are again expected to converge to the same continuum
limit because of some universality relation. Finally, we will define the basic tools to
study the non-perturbative running of the quark-masses in the SF and xSF. More
precisely, we will introduce a finite-volume renormalization scheme for the pseudo-
scalar density, and the corresponding step-scaling function. Studying the continuum
limit of these functions will then provide a direct test of the universality between SF

and xSF.
5.2.1 Renormalization conditions from universality relations

The starting point is given by the formal continuum relations (5.18)-(5.21) and (5.23)-
(5.26). As discussed, on the lattice these relations are expected to be valid up to
discretization effects among properly renormalized correlation functions. Starting from
this assumption, we consider the following set of relations involving the ~57!-even

boundary-to-bulk two-point functions,

(95 )R = (—igh?)r + O(a?), (ig8" )r = (g5")r + O(a?),
(g = (-l + Ofa?), (2 )R = (13%)r + O(a?). (5.42)

Note that if automatic O(a) improvement is at work, the expected discretization effects
in these relations are of other O(a?). This will be presented in detail in Section 5.2.4.
Given the above relations, we remind that the renormalization of the correlation

functions we are considering simply involves the renormalization of the boundary fields
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with the appropriate factors Z¢, and the renormalization of the quark-bilinears X and

Y. More precisely, we have,
(9x)r = Z¢Zxgx,  (ly)r=Z¢Zyly, (5.43)

where Zx and Zy correspond to the renormalization factors of the quark bilinear X

and Y, respectively. Considering a definite example we have,

Z?ZAg}j“I - —iZ?ng‘“,d + ()(az), (5.44)
and consequently,
gii“' Y + 0(a®
— __Z . 5.45
—igu‘,‘i Za (a ) ( )

As we can see, the ratio of these bare correlation functions corresponds, up to cutoff
effects, to the ratio of the finite renormalization constants related to the local vector
and axial currents (cf. Section 2.1.3). This ratio is then expected to have a well-defined
continuum limit simply given by 1, which could be verified explicitly.

For the purpose of our analysis, however, it is more convenient to somehow turn
the tables. Once the validity of the universality relations is assumed, we can use the
ratio of bare two-point functions to actually define a renormalization condition for
the finite renormalization constants. By comparing different definitions of these renor-
malization factors also including determinations from the standard SF, we will then
be able to assess if the assumed hypothesis of universality was well founded. As we
will discuss in more detail later in this section, the advantage of this approach is that
the difference between these definitions is expected to scale to the continuum limit as
O(a?). This is easy to verify numerically, and the actual scaling will provide a check for
automatic O(a) improvement. The continuum limit of (5.45), instead, is reached only
logarithmically with a due to the contribution of the finite renormalization constants.
A direct verification of the approach of this ratio to 1 is then more difficult to perform
through non-perturbative studies. This, however, is a possible approach to consider in
order to verify universality in perturbation theory (Vilaseca, 2013).

This said, the renormalization conditions for the finite renormalization constants

can be simply obtained by imposing the validity of the expected continuum relations
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on properly renormalized lattice correlation functions. Given the relation (5.44) for

example, we can define (Sint and Leder, 2010),

Zv _ _ g4 (z0)
ZA —ig%d(l'o) T,

Note that it is convenient to measure the correlation functions in the middle of the

(5.46)

~N

o=

lattice in order to maximize the distance from the boundaries, and thus minimize the
corresponding cutoff effects. The actual renormalization condition is then specified by
several other details related to the specific xSF set-up, as for example the boundary
conditions for the fields and the geometry. These will be discussed in the next section.

Given the relation (5.46), we note that if we use the point-split discretization of
the vector current we can obtain directly the renormalization factor for the local axial

current Z4, specifically,
~ig® (zo)
94" (xo)

Considering then other universality relations in (5.42), the renormalization of the axial

Z4

(5.47)

T
To=%

current can also be defined by the ratio,
il (zo)
14%(o)

The renormalization of the local vector current instead, can be obtained by comparing

= (5.48)

Io:%

matrix elements of the local and point-split vector currents as,

2oy 1 (e
7 = ggd( 21 NI 8 1‘;—(0) : (5.49)
@) | 67 0) |y

Given the above definitions, we can also consider the somehow “mixed” definition of

the axial current renormalization defined by,

Z8ile (o)
l:f‘d(.’l,‘o)

This will be useful later on in our scaling studies.

lg
Z4

(5.50)

Iu:%

Finally, in similar fashion, from the relations (5.42) we can define finite ratios of
scale-dependent renormalization constants belonging to the same chiral multiplet, e.g.,

Zr _ il (zo)

Zp _ ig8" (z0) =
w=f 25 W (zo)

Zs ~ gpi(ao) s

P
To=7%
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To conclude, a few observations are in order. Firstly, note that in principle we could
define the renormalization conditions above in terms of the corresponding improved

correlation functions (5.34)-(5.41). Just to give some examples we could then have,

7 = ———_igg,(m) S Li il B = —lﬁ L

g7 (€0) lgo=1 U4%(0) lgp=1 9y (@0) |zp=z
However, if automatic O(a) improvement holds the insertion of the O(a) operator
counterterms will only affects the results at O(a?).

In this respect, a second important remark is the following. The relations (5.46)-
(5.52) only determine the finite renormalization factors up to O(a?) effects. Depending
on the choice of the lattice size, the boundary values of the fields, or other kinematical
parameters like zq, different results for Zy and Z4 will be obtained. One could then
think that it is better to assign a systematic error to the normalization constants by
studying these variations in detail. Since however it is difficult to judge which choices
of parameters are “the more reasonable”, this error estimates will turn out to be rather
subjective. It is thus better to simply define the normalization constants through a
particular normalization condition (Liischer, Sint, Sommer and Wittig, 1997b; Guag-
nelli et al., 2001). The physical matrix elements of the renormalized currents that one
is interested in must then be calculated for a range of lattice spacings so as to be
able to extrapolate the data to the continuum limit. The results obtained in this way
are guaranteed to be independent of the chosen normalization condition, because any
differences in the normalization constants of O(a?) extrapolate to zero together with
the cutoff effects associated with the matrix elements. In particular note that also for
these finite renormalization constants, a renormalization condition is not only specified
by the boundary conditions for the fields and the geometry of the xySF, but also by the
condition of constant physical spatial extent L. This said, it is always important to
study different renormalization conditions in order to verify that the given definition
of the renormalization constants does not have accidentally large O(a?) effects, which
might render the continuum limit extrapolations difficult to be performed.

Finally, the fact that these finite renormalization constants can be obtained from

the expected universality relations between the SF and xSF should not come as a
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surprise. As discussed in Section 2.1.3, a possibility to determine these renormalization
factors was simply to impose on a set of properly renormalized lattice correlation
functions, the validity of some continuum WIs. In order words, one is imposing the
restoration of chiral symmetry at finite lattice spacing on a set of observables. Here,
the idea is the same, since the universality relations between SF and ySF are a simple
manifestation of the chiral symmetry of the massless QCD action once considered in

a finite volume with SF boundary conditions.

5.2.2 Flavour symmetry restoration

Other interesting observables can be obtained by considering the xSF boundary-to-
boundary correlation functions. This corresponds to study the universality relations
(5.29). Analogously to what we discussed in the previous subsection, on the lattice we

expect these relations to be realized as,
(G1*)r = (GiDR+0(@®),  (1*)r = (U1")r +O(d®). (5.53)

Note that again we have anticipated the expected O(a?) scaling for these y57!-even
correlation functions. We then remind that the renormalization of these two-point
functions is simply determined by the multiplicative renormalization of the boundary

quark fields, i.e.,

(o n = 2ol (P = 2 (550

Consequently the ratios,

gt 3 [ ,
g 1+ 0(a”), = 1+ 0(a?), (5.55)

have a well-defined continuum limit, and should approach 1 with O(a?) corrections.
These observables thus offer some interesting probes for the realization of the correct
relations in the continuum limit. In particular, since these ratios involve the same basic
correlation function with different flavour assignments, they are a clear indicator of

the breaking of flavour symmetry by the xSF with Wilson-fermions.
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5.2.3 The running of the quark masses

So far we have only looked at universality relations involving xSF correlation functions.
Even though the relations are implicitly based on the equivalence with some common
SF correlator, we would like to consider some explicit example of the relation between
SE and xSF. In this respect, we study the renormalization of the pseudo-scalar density,
which as seen is related to the renormalization of the quark masses (cf. Section 2.1.3).
The idea is to compare the determination of the renormalization factor Zp as obtained
from the SF and xSF. Of course, it is natural to define renormalization conditions
in the SF and xSF such that the same renormalization scheme is obtained for the
renormalized matrix elements of the pseudo-scalar density. In this way, the ratio of the
renormalization factors Zp’s computed with the SF and xSF is expected to converge
to 1 in the continuum limit.

Given this observation a simple definition for the renormalization constant Zp in
the SF and xSF can be obtained as (Capitani, Liischer, Sommer and Wittig, 1999;
Sint and Leder, 2010),

Urr _ fp (6¥)r _ 9§ | (5.56)
\/(f1>R \/Eh,ree \/kgild>R \/Whree

where at a given value of the bare coupling gy we require the renormalized matrix
elements to be equal to their tree level values. Note that in the above expressions, the
boundary-to-boundary correlators f; and gi¢ are used to cancel the boundary quark
field renormalization factors Z;.? The resulting expressions for the renormalization
constant of the pseudo-scalar density are then given by,

fP(-TO) Iu:%’ 9gp (1’0) 1‘()=%’
(5.57)

where the factors ¢ and ¢’ are chosen such that Z}S;.F/XSF(O, L/a) = 1. We stress that we

Z5F (g0, L/a) = e(L/a) L1k 25" (g0, Lfa) = ¢ (L) Y39

defined a finite-volume renormalization scheme for Zp by fixing the renormalization

2At this point we want to mention that the renormalization constants Z are not expected to be
equal between the standard SF and xSF. Indeed, the ratio of these renormalization factors in the
two set-ups is given by a finite function of go that only approaches 1 in the continuum limit. This
somehow limits the flexibility in defining suitable quantities to test universality. In particular, note

that consequently the relation fp = g';,d+0(a2) does not hold, but instead one has fp = g}gdﬁ—O(gg).
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scale in terms of the physical spatial extent of the volume L. To do this consistently we
have to require p = T'/L to be a fixed ratio, and similarly for all other dimensionfull
quantities that enter in the definition of Zp (cf. Section 2.3.3). This will be commented

in detail in the next section. Given these definitions we then expect,

SF
Zp

xSF
ZP

=1 40(a"). (5.58)

Related to the renormalization factor Zp, another interesting quantity to consider is
the corresponding step scaling function (cf. Section 2.3.3). As we have seen, a definition
of a renormalized quark mass can be obtained as (cf. (2.31)),

ZA(90)
Zp(go,ap)’

where g(u) is a given renormalized coupling which is kept fixed in order to keep the

mp(p) = lim Zm(go, ap) mecac(go, amo(go))| Zm(go,ap) = (5.59)

9(n)’
renormalization scale p constant while approaching the continuum limit. The scheme
for the quark masses is then implicitly specified by the renormalization scheme of Zp.
In particular, we can define a finite-volume scheme by considering the definition of Zp
given in (5.57), and as a renormalized coupling the SF coupling g*(L) (Della Morte
et al., 2005a). In this way the renormalization scale of the quark masses is given in
terms of the box size L, and finite size scaling can be applied to determine the running.
In practice, we recall, this is done by considering the step scaling function op(u)
defined by (cf. Section 2.3.3),
Zp(go,2L/a)

op(u) = lim ¥p(u,a/L), Yp(u,a/L) = —————— E 5.60

P =l Sp(ua/l),  Splwa/l) = ZEHE L (560)
From the definition (5.59), it is then easy to conclude that,

B - C R Y (5.61)

mr(p/2)’
As anticipated, the step-scaling function describés the running of the quark masses.
In particular, this function can be evaluated non-perturbatively through numerical
simulations by applying the recipe (5.60). Eventually, once high-energies are reached
the results can be compared with perturbation theory, and the conversion to other
perturbative schemes is possible. For our analyze, however, the important observation
is that we expect the step scaling function obtained from the lattice SF and xSF to

be equal in the continuum limit.
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5.2.4 Automatic O(a) improvement

In the previous subsections, we introduced several interesting quantities in order to
investigate the expected universality of the SF and ySF. Since a continuum limit is
involved in this analyze, it is natural to exploit these observables to study also whether
automatic O(a) improvement is realized as expected for the xSF. The expectation is
that, once the bare quark masses are tuned to their critical value, and the boundary
renormalization parameter z¢(go) is properly determined, then O(a) contributions
corresponding to vs7'-odd counterterms will be absent in vs7!-even observables (cf.
Section 3.4). On the contrary, y57!-odd observables will be pure discretization effects,
and will contain all these O(a) contributions. As discussed, this in practice means that
for y57'-even observables the O(a) counterterms coming from the bulk action, and
the operator insertions in the interior of the volume do not contribute at O(a). The
remaining O(a) effects are thus localized at the boundaries, and correspond to the
O(a) operators counterterms proportional to ¢:(go) and ds(go).

On the other hand, in (5.42) and (5.53) we expressed the expectation that the
universality relations among ~ys7!'-even correlation functions are valid up to O(a?)
effects. This seems to contradict the conclusion above, since in principle O(a) boundary
contributions are present. However, it is possible to show that these O(a) terms do not
contribute in these specific relations. In Appendix D.1, we offer a simple proof of this
result. Here we just want to mention that this conclusion is not a feature of automatic
O(a) improvement. Indeed, it simply relies on the fact that the correlators involved
in these relations are expected to have a common continuum limit, and the v57'-even
O(a) boundary counterterms are invariant under chiral rotations. As a result, the
observables we derived from universality relations involving vs57!-even ySF correlation
functions are fully O(a) improved. Of course, similar conclusions apply to suitable
universality relations between SF and xSF correlation functions (cf. (5.58)). Note
however that in this case, the determination from the SF requires all the necessary
(bulk) O(a) improvement as otherwise O(a) contaminations will enter in the relations.

In the case of the finite renormalization constants discussed in Section 5.2.1, this

means that any change in the details of the renormalization conditions will effect the
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results only at O(a?). As anticipated indeed, any difference in determinations obtained
from different renormalization conditions is a pure discretization effect. We then expect
for example the definitions Z9 and ZY (or fo) to differ by O(a?) terms, and similarly
for Z{ and Z},.

To conclude, automatic O(a) improvement can be also verified by studying the
vs57t-0dd correlation functions. As said, these are expected to be pure O(a) effects.
In particular, the correlators that are not trivially zero due to some exact lattice

symmetry of the xSF are given by (cf. Appendix C.2),

' | S (5.62)

Note that in practice, we can simply consider the bare correlation functions in order
to verify automatic O(a) improvement. In fact, the corresponding renormalization
factors only contribute logarithmically in a while taking the continuum limit. Note also
that the zg-derivatives of the above correlators correspond to the O(a) counterterms
of the ys7!-even correlation functions we considered in the definition of the finite
renormalization constants Zy and Z4 (cf. Section 5.1.4). If these correlators are pure
O(a) effects, it is then clear that they can only contribute to O(a?) in the determination
of these finite constants.

Finally, we just want to mention the possibility that vy57'-odd observables could
be exploited to determine some of the O(a) improvement coefficients. In fact, they
offer a source of pure cutoff effects that could be used to impose suitable improvement
conditions. On the other hand, the problem that occurs with these observables is that
it is difficult to isolate the O(a) contribution coming from a specific source. Indeed,
these correlation functions include contributions from the bulk action and operators,
and also boundary counterterms. In addition, one should consider the effect coming
from the O(a) uncertainty in the tuning of the critical mass and zs. In conclusions,
a straightforward application of this idea is not practical, and some more elaborate

strategy needs to be devised.
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5.3 The lattice setup

In the previous section, we defined the observables that will be investigated and their
expected features. Before presenting the corresponding results, however, we need to
specify the lattice set-up. This includes: the boundary conditions for the fields, the
XSF geometry, the choice of the lattice action, and the renormalization conditions
for the bare parameters, gg,mg, and zy. The renormalization of the latter is done
by requiring three given observables to assume some prescribed values while the bare
coupling go — 0. The specification of these observables is what defines our line of
constant physics (LCP). Regarding the boundary conditions for the fields, we recall
that these consist of the gauge boundary fields, C' and C’, and the angle 6 that defines
the spatial periodicity of the quark fields (cf. Section 3.1). In the following, we consider
the boundary gauge fields to vanish, namely C' = C’" = 0. The angle 6, instead, is taken
to be equal to zero if not specified otherwise. Finally, the xSF geometry is simply
defined by the condition 7' = L. Given these definitions, we now describe the lattice

action in detail.

5.3.1 Lattice action

In order to choose the lattice action, we need to consider that we want to compare
our results with previous standard SF determinations. In particular, we would like to
compare the results for the finite renormalization constants defined in Section 5.2.1.
Since this is clearly done at finite lattice spacing, to do it consistently we have to
choose the very same bulk lattice action as in the standard SF regularization. In the
following, we thus study the theory with N; = 2 non-perturbatively O(a)-improved
Wilson-fermions. More precisely, we consider the action as specified by (3.22), and
(3.77), where the value of the improvement coefficient cqw(go) has been tuned non-
perturbatively (Jansen and Sommer, 1998). As we will comment on shortly, this plays
to our advantage. In principle, if automatic O(a)-improvement holds, we would not
need to tune this coefficient in order to eliminate the O(a) contributions coming from
the bulk action in our 7s7'-even observables. However, the absence of these bulk

O(a) contributions is expected to help significantly in the determination of the critical
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quark mass and zy (cf. Section 5.3.3). On the other hand, note that by considering an
improved bulk action, the property of automatic O(a) improvement can be verified only
through the study of the O(a) contributions coming from the operator improvement.

To conclude, in order to completely specify the lattice action, we need to define
the values for the improvement coefficients corresponding to the two vs7!-even O(a)
boundary counterterms. Specifically, we consider ¢;(go) and ds(go) as given by 1-loop
order perturbation theory (Vilaseca, 2013).3 As commented, however, we expect our
determinations to be independent at O(a) from these contributions (cf. Section 5.2.4).
Finally, note that for the convenience of the reader we collected the expressions for

these improvement coefficients, together with cqy(go), in Table 5.1.

Table 5.1 O(a) improvement coefficients for the xSF lattice action.

Coeflicient Expression Notes
=02 —a 6 ’ 8
cow(90) 1—g2 0.454 gulo—-lg?%sof?;oomﬂg“ 0.045
ct(go) 1+ g2(0.006888 x N; — 0.08900)
ds(go) 0.5 — g2(0.0009 x Cp) Cp = E =1

5.3.2 Lines of constant physics (LCPs)

In this subsection we present the details of the LCPs considered. More precisely, we
will first discuss how the bare coupling is renormalized, and later introduce the precise
renormalization conditions for the quark-masses and zy. As anticipated, since we are
considering finite-volume renormalization schemes for the renormalization factors, the
physical spatial extent L of the volume needs to be kept fixed while approaching
the continuum limit. This defines our condition for the renormalization of the bare
coupling. Given some values of the bare coupling gy then, we have to tune our lattice
size L/a such that L is constant in physical units. In the following, we present two
sets of lattice parameters which correspond to quite some different physical regimes.
On one hand, we will consider values of the lattice spacing typical of non-perturbative

large volume simulations. The finite volumes we will consider thus have L ~ 0.6 fm.

3We warmly thank Pol Vilaseca for sharing his results before publication.
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These will be mostly used for the determination of the finite renormalization constants.
Secondly, we will enter in the “femto-universe”, in order discuss the running of the

quark masses. The finite volumes in this case are pretty tiny with L < 0.25 fm.

LCPg: hadronic regime. For the first LCP we are considering, the range of bare
couplings and thus lattice spacings is fixed by the large volume simulations performed
with Ny = 2 non-perturbatively O(a)-improved Wilson-fermions. The details of the
corresponding lattice ensembles can be found in (Fritzsch et al., 2012). In particular,
in the latter work the lattice spacing a has been determined in physical units in terms
of the Kaon decay constant Fi, for the values of the bare coupling of interest. Given
these results, it is easy to define a set of L/a’s for the given go’s such that the physical
L is constant.

Table 5.2 Lattice parameters that define the two sets LCPy and PT.

B L/a a (fm) Kerit (B) zf(B)

52 8  0.0755(9)(7) 0.1356491(36) 1.2824(07)
LOP, 5.3 9.2 0.0658(7)(7) - =

55 12 0.0486(4)(5) 0.1367093(27) 1.3112(10)

57 16  0.0379(15)  0.1367058(36) 1.3061(21)

78 & - 0.1341925(15)  1.2296(04)
PT 84 8 - 0.1325594(11)  1.1901(02)

96 & - 0.1313952(11)  1.1617(02)

*This point was not directly simulated. Some interpolation instead was con-

sidered. See text and Appendix D.3.

The idea is simply to fix L at the coarsest lattice spacing by choosing some value of
L/a. This choice is in principle arbitrary and only guided by the condition L/a > 1,
which guarantees that cutoff effects are under control for our finite-volume observables.
After some careful analysis we chose the value of L/a = 8, which corresponds to

a physical spatial extent of L ~ 0.6fm. The values for L/a corresponding to the
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other lattice spacings are then easily inferred from the condition L = const.* The
results are collected in Table 5.2, together with the values of the lattice spacing in
physical units, the values of the bare coupling 3 = 6/g2, and the tuned values for
2f(g0) and Kerit(90) = (2merit(go) + 8) 1.5 Note that for latter convenience, we will
refer to this set of lattice parameters as LCPy. As we shall see, for this choice of
parameters cutoff effects turn out to be relatively small for most of the observables
we considered. Moreover, the resulting lattice volumes are also small, and extensive
numerical simulations could be thus performed.

Given the results in Table 5.2, some specifications are in order. First of all, note that
of course we can only simulate at integer values of L/a. In the table we thus reported
the closest integer values that satisfy the condition L = const. For the value of the
bare coupling given by g = 5.3, however, this would have corresponded to a lattice size
of L/a = 9, and our algorithm can only simulate L/a-even lattices. Consequently, we
decided to interpolate our observables at the “exact” value of L/a determined by the
condition L = const. i.e. L/a = 9.2. The details of this interpolation are discussed in
Appendix D.3. For the other values of L/a instead, we have estimated the systematic
effects on our observables due to the deviation from the exact values of L/a. This is
also discussed in the Appendix, more precisely Appendix D.2. We invite the reader
to consult these appendices only after the discussion in the next section, when the
specific observables we considered have been introduced.

Finally, note that in Table 5.2 we also reported a set of lattice parameters referred to
as PT. This includes three relatively high values of /3 at fixed lattice size L/a = 8. These
parameters of course do not satisfy the condition of constant physical L. Nevertheless,
we will consider this set to have an idea of how our non-perturbative results connect

to their perturbative predictions, and to other non-perturbative determinations at

high-£.

4Note that the error on the value of L and consequently on L/a deriving from the uncertainty in
the lattice spacing a can be neglected in practice.

5The physical value of the lattice spacing for 3 = 5.7 was not available from non-perturbative
determinations. We thus had to estimate it using the values at larger 3’s and the results for the 3-loop

perturbative running of the bare coupling (Bode and Panagopoulos, 2002).
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Table 5.3 Lines of constant physics corresponding to the non-perturbative running of the

quark-masses.

LCP  L/a B =6/g5 u=g3e(L) rcrit(B) z¢(B)

6  6.6085  2.0146(56) 0.1352428(24) 1.2580(3)
LCP; 8  6.8217  2014(10)  0.1348340(22) 1.2452(5)
12 7.09300  2.014(20)  0.1343877(15) 1.2370(4)

6 61330  2488(11)  0.1360800(30) 1.2777(6)
LCP, 8  6.3229  2479(13)  0.1357386(20) 1.2688(4)
12 6.63164 2479(25)  0.1351926(11) 1.2570(3)

6 56215  3.326(20)  0.1366258(43) 1.2896(8)
LCP, 8 58097  3.334(19)  0.1365442(19) 1.2902(6)
12 6.11816  3.334(49)  0.1361290(20) 1.2831(7)

LCP, , 3: femto-universe. As discussed, we want to investigate the universality of
the continuum limit between the standard SF and the xSF by studying the running of
the quark-masses at high-energy. To this end. we will consider the three LCPs defined
in Table 5.3. For these values of the lattice parameters indeed, previous standard SF
determinations are available for the quantities of interest (Della Morte et al., 2005a).
In particular, note that in this case the condition L = const. is implicitly enforced
by fixing the SF coupling g3r(L) to a prescribed value (cf. Section 5.2.3). For later
reference, the corresponding values for the SF coupling are then also reported in the
table together with their errors. Finally, we note that for these ensembles the fermionic
angle # has been set to # = 0.5 in order to match the renormalization scheme for the

pseudo-scalar density adopted in (Della Morte et al., 2005a).

This concludes our discussion on the renormalization of the bare coupling. We will

now address the renormalization of the quark-masses and z;.
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5.3.3 Tuning of mo and zy

In order to discuss the renormalization conditions for the quark masses and zf, we
start recalling that the (renormalized) quark-masses need to be tuned to zero in order
to define a mass-independent scheme for our renormalization constants (cf. Section
2.3). This is also a necessary condition to obtain automatic O(a) improvement. The
second condition, instead, is the renormalization of the ySF boundary conditions which
amounts to fixing the boundary coefficient z; (cf. Section 3.4.3).

To fix the quark-masses one then simply tunes the PCAC mass (2.30) to zero at
each value of the bare coupling go. In particular, to completely specify the definition

of PCAC mass, we set Ogxy = di in (2.30) and require,

_ Bog4t(wo)

mpcac(9go, Merit(go)) = 29%4(z0) o (5.63)
’ To=75

This defines the critical value mcit(go) for the bare quark masses. In particular, note
that since we are not considering the improved axial current Ay (cf. (2.44)) in the above
definition, our determination of the critical mass will suffer from O(a) ambiguities,
even though the bulk action is improved. As discussed, however, this does not affect
ys7i-even functions at O(a) but only at O(a?).

Regarding the tuning of zf(go) instead, we impose the criteria of parity /Havour
symmetry restoration on some suitable observable. A convenient set of observables is
given by the y57'-odd correlation functions (5.62). Specifically, we then consider the
condition,

!
94*(20)lgp=1 = 0. (5.64)

As we shall see, this correlation function offers a good sensitivity on z¢, and also a good
statistical precision. Similarly to the case of mci¢, the determination of z; so obtained
will suffer from O(a) ambiguities. Hence, if another y57'-odd correlation function is
used to determine zy, the difference between these two determinations will scale as
O(a) to the continuum limit. However, as argued for the critical mass, this ambiguity
will only effect ys7'-even functions at O(a?). In this respect, we want to note that
these expectations have been extensively confirmed in perturbation theory (Vilaseca,

2013), and also in the quenched approximation (Sint and Leder, 2010).
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To conclude, once the renormalization conditions above are imposed on the bare
quark-masses and z5, we expect automatic O(a) improvement to be realized. However,
the practical question now is how difficult it is to force these conditions within a good
precision in numerical simulations. Before moving to discuss the results, we will address

this important issue in the following paragraph.

Tuning strategy. In principle one would expect that close to the continuum limit,
the determinations of meit(go) and z¢(go) are rather independent. These parameters
indeed are both functions of the bare coupling only. However, at a generic value of the
lattice spacing, cutoff effects create an interdependence between these two parameters
which a priori is hard to quantify. In general, the tuning of my and z; need then to
be performed simultaneously. A possible strategy one can pursue is the following.
We consider simulations at different values of mg, and for each mg we choose a

given set of zf’s, then:

1. At fixed zf, we compute mpcac(mo, 25), Ymg, and determine mc,; by requiring
mpcac(Merit, 2¢) = 0. This gives meriv = Myt (27).

2. At fixed zj, we compute g4d(mo, z7), Ymp, and interpolate in mg to get
g4 (merit(27), 2f) = f(2y), which is now only function of zj.

3. We determine the value z} by requiring f(z}) = 0.

4. At fixed mg, we interpolate mpcac(mo, zf) in zy to get mpcac(mo, z})

5. mg,;, is determined by requiring mpcac (Mg, 25) = 0.
Analogously one can interpolate and get m?};, = mcm(z}) from 1.

6. Check that gzd(m:rit,z;) = 0; if not go back to 3. and iterate.

Basically, one thus has to solve a minimization problem in two variables, and if the
interdependence is strong it could be difficult to satisfy the two conditions within a
good precision. In the quenched approximation however, it has been observed that
once the bulk action is improved, the PCAC mass turns out to be rather independent

from z; (Sint and Leder, 2010). From the point of view of the strategy discussed above,

*

this means that in practice: mei¢(2f) ~ const — m};,. Hence, in most of the cases

one can make the two conditions be satisfied independently: one first tunes to zero
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quark-masses, and then determines z; at the given critical mass. As we now show
with an explicit example also in dynamical simulations this result seems to hold. More
precisely, the PCAC mass does not depend much on zy if the two parameters are close
to their critical values.

As an example consider the results for the PCAC mass shown in Figure 5.1. As
one can see from the figure, the values of mpcac do not depend much on z; in the
given range. As we will comment on shortly, this range is in fact a typical range to
obtain a good tuning for z;. These measurements are for L/a = 8 and = 5.2, namely
the coarsest lattice we considered along the LCP given by LCPq (cf. Table 5.2). The
situation is thus expected to be even better for the other lattices at smaller values of

the lattice spacing. In fact, this is what we observe.

T T T ¥
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Fig. 5.1: Value of mpcac for L/a = 8, f = 5.2, and three different values of z¢.

*

mg = mg — M, where m?.. has been determined from a constant fit of the three

mcrit(zf)-
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In this situation, as anticipated the critical mass turns out to be rather independent
on zs. After some experimentation one thus ends up with a range of mg and z; close
to their critical values. Given these ranges, one can then generally obtain a single

value of m¢; = m?* .. that ensures that the PCAC mass vanishes within some desired

*
crit
precision over the whole range of z4’s. © Once this value is determined, one interpolates

*

the given renormalization condition for z; at my;,. This is what we show for example

in Figure 5.2, which is the result for g4? and g}‘;"l interpolated to zero quark-masses.
We recall that our renormalization condition for z; is based on g4? = 0. In the figure
however we also consider the eventual tuning based on a different v57'-odd function,
namely g}‘)“/. As discussed the difference in the determination of z; from these two
different correlators is an O(a) effect. As we can see, the two determinations zf * and
zf* corresponding to g4? and g}‘,“/, respectively, are in fact pretty close and within
error compatible (the errors are not shown for readability of the plot.) This suggests
that these O(a) effects are relatively small.

To conclude, this was just a quick illustration of how the tuning looks like. The main
point we want to stress is that, similarly to what has been concluded in the quenched
approximation, also in the dynamical case the tuning of the additional renormalization
parameter is relatively straightforward, at least for the case where the bulk action is
improved. In fact, if one is relatively close to the critical values of mg and z; the two
conditions can be implemented independently in practice. In this respect, note that if
the value of the critical mass is known from a previous standard SF determination,
this could be used as part of the definition of the LCP. In this case, one simply has
to tune zy for the given value of the critical mass (Sint and Leder, 2010). Indeed,
since the critical mass is determined through the PCAC relation, it is expected to
be independent from the specific boundary conditions employed, up to discretization
effects. However, we did not follow this strategy since we wanted to acquire familiarity

with the tuning. Moreover, if the O(a) effects between the SF and xSF determinations

of the critical mass are large, this might induce large O(a?) effects in the xSF results.

SThis can be obtained in practice by a weighted fit over the different merit(2zf) in the given range

of z¢ for example.
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Fig. 5.2: Results for g4 and g}é“l interpolated at zero quark-mass for L/a = 8, and

B =15.2.
5.4 Determination of Z, and 74

Having introduced the lattice setup and discussed the tunning of the bare quark-masses
and zy, we can now present, our results. We thus start with the finite renormalization
constants Zy and Z 4. Specifically, we first compare our determinations with previous
standard SF computations. We then study the scaling to the continuum limit of the
difference between different definitions of these renormalization factors. As we shall
see, the O(a?) scaling expected from automatic O(a)-improvement is nicely realized,
and cutoff effects are generally small in these observables. In order to provide further
evidence to this conclusion, we will compare the results for the finite renormalization
constants for two different LCPs. In addition, the 2y dependence of our definitions will

be investigated.
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5.4.1 Zy: a first look

We start from the results for the renormalization of the local vector current Zy, which
is the simplest case to study. We note indeed that its determination does not rely
on any universality relation between the SF and ySF, but simply on the universality
between the matrix elements of the local and point-split vector currents. Moreover,
the results from the standard SF, Z‘S,F, are quite accurate and provide a stringent

comparison (Della Morte, Hoffmann, Knechtli, Sommer and Wolff, 20055).
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Fig. 5.3: Results for the renormalization of the local vector current as a function of
go- This includes a comparison between the ySF determinations Z{, and Z!,, and the
standard SF determination Z‘S,F. The 1-loop perturbative result is also given. The set
of lattice parameters is the one corresponding to LCPy and PT. Note that the points

have been slightly shifted in g2 in order to improve the readability of the plot.

In Figure 5.3, we present our results for Zy (cf. (5.49)) as a function of go for

the line of constant physics defined by LCPg, and the set of lattice parameters given
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by PT (cf. Table 5.2). The first thing to note is that, apart from Zj, at the largest
value of the bare coupling, our results nicely agree within errors with the standard
SF determination. This of course does not have to be the case since in general we
expect O(a?) differences, assuming that automatic O(a) is at work for our results.
The conclusion is thus simply that these O(a?) effects are smaller than the statistical
uncertainly in the standard SF determination. Note however that given our precision
we can resolve some differences between our two definitions Z{, and Z!,, at the largest
values of the bare coupling. This can be better seen in Figure 5.4, where we provide a
zoom of Figure 5.3 on the results corresponding to LCP( only. As we can see from this
figure the spread of our determinations is in fact compatible with an O(a?) effect. If we
consider for example the relative difference between Z{, and Z!, at the largest value
of the bare coupling, since the corresponding lattice size is L/a = 8, we would expect
(roughly): 1 — Z{ /Zl, ~ 1/64 ~ 1.5%, which is in fact the case. We will investigate
this in more detail shortly, in order to check if also the scaling of these differences to
the continuum limit is the expected one.

To conclude, a few observations are in order. First of all, we want to comment on
the higher precision of our determinations. In this respect, note that the errors shown
in the figures are not only statistical but include an estimate of the main systematics.
These are related to the fact that the conditions: L = const., mpcac = 0, and for
the xSF case also, gfgd = 0, are only satisfied within some precision. The details of
our error estimates is given in Appendix D.2. Here we just want to mentioned that
through dedicated numerical simulations and the information from the tuning runs,
we have estimated the derivative of our renormalization factors w.r.t. these three
quantities in order to propagate the corresponding uncertainties in our determinations.
Moreover, note also that to have a fairer comparison between our and the standard
SF determination, one should increase our errors by roughly a fact two in order to
compensate for the different statistic.” This said, however, still our determinations
turn out to be much more precise. We believe that the origin of the higher precision is

"We believe this to be a conservative statement, even though it is difficult to access the effective

statistic on Z‘S,F since no autocorrelations are provided in the corresponding reference. We thus have

estimated those based on our runs.
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Fig. 5.4: Results for the renormalization of the local vector current as a function of
go- This includes a comparison between the xSF determinations Z{, and Z{,, and the
standard SF determination Z{'. The set of lattice parameters is the one corresponding
to LCPy. Note that the points have been slightly shifted in g2 in order to improve the

readability of the plot.

due to the fact that our definitions are given by simple ratios of two-point functions (cf.
(5.49)). In particular, we have noticed that considering only the statistical errors, the
ratio of such correlation functions is of O(10) times more precise than the individual
correlators.® In the standard SF case, instead, Zy is obtained through a WI. This
results in having to compute the more complicated ratio of a three-point function
involving two boundary source fields and the local vector current, with a two-point
boundary-to-boundary correlator (see e.g. (Della Morte, Hoffmann, Knechtli, Sommer

and Wolff, 2005b)).

80f course this statement depends on the given lattice parameters and other details. Here we just

want to give a rough idea of the size of the statistical correlations of these two-point functions.
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Going back to Figure 5.3, we also want to briefly comment on the data corre-
sponding to the set PT. This includes the data with g2 < 1. As discussed these
determinations do not lie on a LCP since it is L/a and not L which is fixed while
go — 0. The difference between the different determinations is thus expected to scale
as O(g?). However, note that the errors include a rough estimate for the deviation from
the condition L = const. Surprisingly, the definition Z, is not much sensitive to these
O(g2a?) effects. We will notice a similar behavior in the Z determination from the
standard SF later on. Consequently the results from the different determinations all
agree, and seem to smoothly connect with the perturbative 1-loop results. Note that
this corresponds to the determination for L/a — oo (see e.g. (Della Morte, Hoffmann,
Knechtli, Sommer and Wolff, 2005b) and references therein). In this respect, it would
be interesting to compare the results with perturbation theory at finite L/a. Using

these results might also help in further reducing the differences in our determinations.

Table 5.4 Values for Zy from the xSF corresponding to LCPy.

B Lja z3, Z:

52 8  0.74680(26) 0.73844(51)
53 9.2 0.75217(67) 0.74592(59)
55 12 0.76632(67) 0.76251(76)
57 16 0.77997(29) 0.77801(36)

Finally, in Table 5.4 we report our final results for Zy corresponding to the line of

constant physics given by LCPy.

5.4.2 Z4: a first look

Similarly to the previous subsection, we now want to compare our results for Z4
with the standard SF determination, Z5F. We recall that our definitions are given by
(5.47), (5.48), and (5.50). In Figure 5.5 we present the corresponding results for the line
of constant physics given by LCPg, and the set of parameters referred to as PT. The
results for the standard SF are also shown, as well as the 1-loop perturbative prediction.

The corresponding details of these results and the definition of Z4 can be found
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Fig. 5.5: Results for the renormalization of the local axial current as a function of gg.
This includes a comparison between the ySF determinations Z9%, Zf4, Zif, and the
standard SF determination Z3¥. The 1-loop perturbative result is also given. The set
of lattice parameters is the one corresponding to LCPy and PT. Note that the points

have been slightly shifted in g2 in order to improve the readability of the plot.

in (Della Morte, Hoffmann, Knechtli, Sommer and Wolff, 2005b; Della Morte, Sommer
and Takeda, 2009; Fritzsch et al., 2012). In particular, note that a first update of Z4 has
been given by the Alpha Collaboration in (Della Morte, Sommer and Takeda, 2009),
since large cutoff effects have been observed in their first computation along the line of
constant physics given by LCPg (Della Morte, Hoffmann, Knechtli, Sommer and Wolff,
2005b). The updated SF results for Z 4, thus correspond to a different LCP defined by
the values of 5 = 5.2,5.4,5.7, and the larger lattice resolutions L/a = 12,16,24. The
results for Z4 at the values of gy where the large volume simulations were performed
have then been obtained through a proper interpolation in go. The latest updated

results used in Figure 5.5 can be found in (Fritzsch et al., 2012).
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Fig. 5.6: Results for the renormalization of the local axial current as a function of
go. This includes a comparison between the xSE determinations Z%, Zh. Zﬁf, and the
standard SF determination Z5F. The set of lattice parameters is the one corresponding
to LCPy. Note that the points have been slightly shifted in g3 in order to improve the

readability of the plot.

Similarly to the case of Zy, we see good agreement between ours and the standard
SF determination. In this case, however, the errors in the latter computation are much
larger. This can be better seen in Figure 5.6, where we consider only the results in
the range of bare couplings corresponding to LCPy. We also notice that given our
precision we can resolve some differences between the different ySF definitions for Z 4.
In particular, again as for the case of Zy, the size of these differences is small and
compatible with an O(a?) effect. This will be investigated more in detail in the next
subsection.

To conclude, we want to note that the standard SF determination of Z 4 is much

more involved than the corresponding ySF determination. In the standard SF, Z4
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is obtained through a WI. As a result, one has to consider the ratio of a four-point
function involving two boundary source fields and two axial currents, with a two-
point. boundary-to-boundary correlator. The precision of this determination is thus
expected to be generally lower than in the case of the xSF where only two-point
functions are involved. In addition, for the standard SF determination the improved
axial current A; needs to be considered in order to obtain an O(a) improved definition.
The corresponding determination of the improvement coefficient c4 needs thus to be
performed first (see e.g. (Della Morte, Hoffmann and Sommer, 2005¢) for the details
of this computation).

Finally, in Table 5.5 we collect our final results for Z 4 corresponding to the line of

constant physics given by LCPy and the three definitions.

Table 5.5 Values for Za from the xSF corresponding to LCPy.

B L/a VA VA VA
A A A

52 8  0.78026(29) 0.76950(45) 0.77820(47)
53 9.2 0.78406(52) 0.77564(48) 0.78214(80)
) 0.79342(91)
) 0.80482(43)

55 12 0.79448(59) 0.78948(64
57 16  0.80527(29) 0.80280(32

After this discussion on Zy and Z 4, we can conclude that our results look sensible
and in fact very promising. In the next subsection, we thus present a series of tests
that we performed on the size and nature of the cutoff effects in these determinations.
This will both serve us as a check for automatic O(a) improvement, as well as for

corroborating the robustness of our results.

5.4.3 Zy and Z4: a closer look

As anticipated, in this subsection we collected a few observations on the nature and

size of cutoff effect in our Zy and Z 4 determinations. We now present these in detail.

Scaling of Zy 4 differences. We here present the continuum limit extrapolation

of the differences between different renormalization conditions that define Zy and
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Z 4. We study this along the line of constant physics given by LCPy. We recall that
if automatic O(a)-improvement is at work, we expect these differences to scale like

O(a?) (cf. Section 5.2.4). The results we obtained are shown in Figure 5.7.

Z%-Zlv'—’—‘ ZgA'ZIA’_e_" ZIA_ZEED—H Zi‘-Zk»——a—c

0.01 : 4
Tt e
. {

0.005 - ) t )
§

ol |
f

-0.005 { { 1

| | | -

-0.01 0 0.004 0.008 0.012 0.016
(/L)

Fig. 5.7: Continuum limit extrapolations for the differences between different xSF

definitions of Zy and Z4 along the line of constant physics defined by LCPy.

Note that, since L is fixed in physical units, the continuum limit is obtained by
simply taking a/L — 0. As we can see, the difference between our two definitions
of Zy, as well as the differences among several definitions of Z4, nicely extrapolates
to zero with the expected O(a?) scaling. Note that the lines on the plot are given in
fact by linear fits in (a/L)? constrained to pass from zero. We want to stress again
that this result is non-trivial. Indeed, as mentioned, even though our bulk action is
O(a) improved, the full improvement of our determinations would generally require the
corresponding (bulk) O(a) operator improvement. As an example Z!, would require

the improvement of both the local and point-split vector currents (cf. (5.52)).
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In order to corroborate the above observation further, in Figure 5.7 we considered
the effect of substituting Z9 with the corresponding improved definition th (cf.
(5.52)) in the difference Z9 — Z!;, where the improvement coefficient for the axial
current, ¢4, has been fixed to its non-perturbative value (Della Morte, Hoffmann and
Sommer, 2005¢). As we can see, (a bit surprisingly) there is basically no effect of the
O(a) operator counterterm within the errors. This give us confidence to interpret the
result as the fact that the O(a) operator improvement only contributes as an O(a?)
effect, which in this case turns out to be very small. To conclude, as already noticed in
the previous subsections, also the (relative) differences between the different definitions

are small. In fact, we have only ~ 1.0—1.5% differences at the coarsest lattice spacing.

Comparison with an alternative LCP. Given the results presented so far, it
seems that cutoff effects in our determinations of Zy and Z4 are generally small and
have the expected scaling to the continuum limit. In order to have another estimate
of the size of cutoff effects, we thus decided to compute our finite renormalization
constants at the coarsest lattice spacing for a different lattice resolution L/a. More
precisely, at the value of the bare coupling specified by 3 = 5.2, we considered a lattice
with L/a = 12 instead of L/a = 8. This would correspond to a LCP where L ~ 0.9 fm.
As discussed, we then expect the dependence on L/a at fixed bare coupling go to be
an O(a?) effect.

Table 5.6 Comparison between the results for different finite renormalization constants
between two lattices with L/a = 8 and L/a = 12 at fixed § = 5.2. Note that for the
convenience of the reader the relative difference between the results of the two ensembles is

also given in per cent.

Lia Z% Z, Zp|Zs Z Z A

8  0.7468(3) 0.7384(5) 0.7923(5)  0.7803(3) 0.7695(4) 0.7782(5)
12 0.7334(4) 0.7304(8) 0.7385(22) 0.7732(7) 0.7636(7) 0.7667(8)

~% 1.8 | 6.8 0.9 0.8 1.5

In Table 5.6, we report the values we obtained for our finite renormalization factors
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for the two lattice sizes L/a = 8,12 at fixed § = 5.2. For later convenience we also
included the determination of Zp/Zg. As we can see, the (relative) difference between
the Zy and Z4 determinations on the two lattices is small, and generally of the order
of a couple of per cent. This is not case though for the ratio Zp/Zg which shows more

pronounced cutoff effects. We will discuss this in more detail in a later section.

ro—dependence of Zy and Z4. The last quantities we have looked at in order to
study the size of cutoff effects in our finite renormalization constants, are related to
their 2y dependence. As discussed, we normally measure the ratio of our two-point
functions in the definition of the Z factors at zg = 1'/2, i.e. in the middle of the lattice
volume. This we argued generally leads to smaller cutoff effects since it maximizes the
distance from the boundaries where the O(a) (and higher) boundary counterterms are
localized.® However, any other value of xq in the bulk of the lattice is equally good in
principle and should lead to O(a?) differences in the results.!®

Given these observation, we then studied the quantities defined by,
AZ = Z(3T/4) — Z(T/2), (LOoZ)(T/2), (5.65)

where Z is our generic finite renormalization factor. In order words, we looked at the
difference between the Z factors at xg = 37'/4 and zg = T'/2, and at the xg-derivative
at xg = T'/2. Note that, the latter has to be multiplied by L in order to obtain a
dimensionless quantity that scales to a finite value in the continuum limit.

In Figure 5.8 we thus present the results for the continuum limit extrapolations of
these quantities as a function of (a/L)? along the LCP defined by LCP(.!* As we can
see, regarding AZ the differences are generally small and below a couple of per cent
also at the coarsest lattice spacing. The only Z factor that stands out is Z9%, but still

cutoff effects are of the order of just a few per cent.

9We recall that in fact the O(a) boundary counterterms are not expected to contribute to the
finite renormalization constants. Higher-orders are however certainly present.

10We obviously exclude the point zg = a where the boundary source fields are localized, as other-

wise contact terms will originate between the boundary fields and the quark-bilinears.

! Note that for AZ we omitted the value for L/a = 9.2 since the interpolation is not straightforward

in this case.
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What is clear from the figure is that these differences cannot be described by a
simple O(a?) effect over the whole range of lattice spacings considered. Some higher-
order contributions are indeed present. In the plots, we thus show a fit of the data
that contains a linear and quadratic term in (a/L)?, and it is constrained to pass
through zero for a — 0.12 In this way, we had at least a single degree of freedom for
the fit to (roughly) judge its quality. In fact, the fit nicely describes the data, and we
thus conclude that even though some higher order effects seem to be enhanced in this
quantity they correctly extrapolate to zero in the continuum limit.!?

Concerning the slope L8yZ at ¢ = T'/2 similar conclusions can be drawn. In this
case we also have an additional point at L/a = 9.2 which fits on our fitting curves.
The thing that we want to note here is that in this case also the ratio Zp/Zg shows

some sizable cutoff effects at the largest values of the lattice spacing.

This concludes our discussion on Zy and Z 4. As we have seen, our determinations
are solid and much more precise than the standard SF determinations. In fact, here
we have only presented a comparison of these determinations with results from the
standard SF. Our computation of Z4, however, turns out to be very precise also
if compared with other determinations, where for example twisted-mass fermions and
several different methods have been employed (Constantinou et al., 2010). On the other

hand, since the gauge action is different in this case we could not directly compare.

5.5 Determination of 7Zp/Zs

In the previous section, we discussed in some detail the determination of the finite
renormalization constants Zy and Z4 using the ySF. As discussed in Section 5.2.1,
however, the universality relations among ySF correlation functions allow us to easily
define also renormalization conditions for the ratio of scale-dependent renormalization
factors belonging to the same chiral multiplet (cf. (5.51)). As an example of this
application, in this section we briefly present the determination of the ratio Zp/Zs.
12We also tried a cubic instead of a quartic term in a/L, which describes the data equally well.

13Note that a similar discussion on the enhancement of cutoff effects in some SF correlation func-

tions for this range of physical parameters can be found in (Della Morte, Sommer and Takeda, 2009).
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More precisely, we will consider the finite renormalization factor defined by,

Zp
ZsZ

Zh9 = (5.66)
Note that the two definitions simply differ by the choice of Z 4. This renormalization
factor Z in interesting since it gives the ratio of the bare quark mass difference over
the corresponding PCAC mass difference. It is thus of interest for the tuning of the
quark masses in the non-degenerate case. Similarly to the case of Zy and Z4, also
in this case we compare our results with previous SF determinations for Ny = 2 non-
perturbatively O(a) improved Wilson-fermions. The details of the latter computation

can be found in (Fritzsch, Heitger and Tantalo, 2010).
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Fig. 5.9: Results for the finite renormalization factor Z as a function of gy. This
includes a comparison between the ySF determinations Z9, Z!, and the standard SF
determination Z5F. The set of lattice parameters is the one corresponding to LCP.

Circled instead are the results of a determination at 3 = 5.2 and L/a = 12.
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In Figure 5.9 we report our results for the renormalization factor Z along the LCP
given by LCPg. The standard SF determination, Z5F, is also shown. Note that we
included the result of a fit for the corresponding mean value over the range of g
of interest. As we can see from the plot, excluding the value at the coarsest lattice
spacing, the xSF and SF determinations have similar precision. On the other hand, we
can resolve some sizable discretization effects. For the largest value of the bare coupling,
B = 5.2, indeed the relative difference between xSF and SF determinations is of the
order of ~ 10%. The difference however disappears quite quickly as we approach the
continuum limit, and for § = 5.7 it is reduced to ~ 0.1%. This is much faster than an
O(a?) effect, since we would expect in this case a reduction by a factor of four. The
difference between our two determinations of Z instead is only dictated by Z4 and
thus as already noticed is small.

To conclude, we want to note that the difference between the SF and ySF determi-
nations at the coarsest lattice spacing is significantly reduced if we consider our results
for L/a = 12 instead of L/a = 8. In fact, in this case the relative difference goes down
to ~ 4%, as can be seen also from the plot. This suggests that the LCP defined by
L/a =12 at § = 5.2, and which corresponds to L ~ 0.9 fm, is probably more suited
for a reliable computation of the Z factor through the yxSF.

Finally, for completeness, in Figure 5.10 we report the determination of Z including
the set of lattice parameters corresponding to PT. As we can see, the results slowly
move towards the 1-loop perturbative determination (Guagnelli et al., 2001) for the

largest values of gg.

5.6 Automatic O(a) improvement

In the previous sections, studying different finite renormalization constants we gave
evidence that automatic O(a) improvement holds for our xSF determinations. More
precisely, we have shown that several non-trivial v57!-even observables have corrections
w.r.t. their continuum values of O(a?), even though the corresponding O(a) operator
improvement has not been implemented. To complete this analysis, in this section we
want to present some results on the complementary feature expected from automatic

O(a) improvement, namely that y57'-odd observables are pure O(a) effects.
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Fig. 5.10: Results for the renormalization factor Z as a function of gg. This includes a
comparison between the ySF determinations Z9, Z', and the standard SF determina-
tion Z5F. The 1-loop perturbative result is also given. The set of lattice parameters is

the one corresponding to LCPy and PT.

For this study we consider the bare v57!-0dd correlation functions corresponding
to (5.62), and in addition some alternative discretization of the latter (see below).
Note that we exclude g4? since this has been used for the tuning of zf, and thus
is automatically zero within errors. As discussed already, in practice we can simply
focus on the bare correlation functions since they are anyway expected to vanish as
O(a) effects up to logarithmic corrections. In particular, the correlation functions we
consider are the only ~57'-0dd correlators among those we introduced that do not
vanish identically because of some exact lattice symmetry.

Given these observations, in Figure 5.11 we present the results for the continuum
limit extrapolation of the y57'-odd two-point functions considered along the line of

constant physics defined by LCPg. As we can see from the plot, with the exception of
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Fig. 5.11: Continuum limit extrapolations for a set of y57'-odd correlation functions

along the line of constant physics given by LCPy.

the single correlation function ll‘i/d, all other v57'-0dd correlators are zero within errors.
We are thus tempted to conclude that once the bulk action is improved, the remaining
cutoff effects corresponding to the bulk O(a) operator counterterms, and eventually
some O(a) boundary counterterms, and the O(a) ambiguities in the determination of
the critical mass and zy, are generally small.

Going back to l%d, we see instead a clear O(a) scaling to the continuum limit. The
results for l"i/d indeed are described rather well by a linear fit in a/L constrained to
zero. These sizable O(a) effects in ll‘i/d, we argue, can be attributed to the corresponding
O(a) operator counterterm. As we can see from the plot indeed, if we consider the bulk
O(a) improved definition li‘i/‘li (cf. (5.35)), where cy; is set to its tree-level value c%o) =0,
the corresponding results are compatible with zero. To conclude, note that also l“‘,d

and la‘«“/ do in principle have O(a) contributions coming from the insertion of the

bulk operators V. and Ty, respectively (cf. (5.34) and (5.38)). In this case, however,
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the respective improvement coefficients ¢y and cp are zero at tree-level, and their
1-loop corrections are small (Sint and Weisz, 1998). We thus expect that in general
the contribution of the corresponding O(a) counterterms is smaller than for the case

d
ofll‘!}.

5.7 Results from the femto-universe: Zp

In this section, we want to investigate the universality of the continuum limit between
the SEF and xSF by studying the running of the quark masses at high-energy. More
precisely, we want to compare the results for the scale-dependent renormalization of
the pseudo-scalar density, Zp, and the corresponding step-scaling function (cf. Section
5.2.3). To this end, we will consider the LCPs defined by: LCP;, LCP5, and LCP3 (cf.
Table 5.3). As discussed, in this case the LCP is defined in terms of the SF coupling
g%(L), which implicitly fixes the physical spatial extent L of our space-time lattice. In
fact, for the range of (renormalized) couplings we have chosen, the resulting volumes
are pretty tiny with L < 0.25fm. We thus suggestively refer to these volumes as the
femto-universe (Liischer, 1998a). Note that on these ensembles we have also conducted
a similar scaling analysis as the one presented in Section 5.4.3 and 5.6. Since analogous
conclusions were found, we decided to collect the results in Appendix D.4. What we
will present instead is a discussion on flavour symmetry restoration (cf. Section 5.2.2).

Before moving to the results, let us mention that for the determinations on these
ensembles we have included estimates for the systematics effects coming from the finite
precision on the tuning to zero quark-mass, as well as for the tuning of zy. However,
apart from the study of the step scaling functions, we did not include an estimate for
the finite precision on the condition g2(L) = const. This in fact is not straightforward
since the derivative of our observables w.r.t. the SF coupling needs to be determined,
either analytically or numerically. We did not do this yet. On the other hand, as we
will discuss, even without including these systematics the qualitative picture that will

emerge is the expected one.
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5.7.1 The running of the quark-masses

Ratio of pseudo-scalar renormalization factors. The first quantity we consider
is the ratio of Zp factors defined in (5.58). As discussed, in this ratio the universal
divergent part cancels between the SF and xSF renormalization constants leaving only
a finite regular function of the lattice spacing. The corresponding results for this ratio
for the three ensembles LCP;, LCP,, and LCP3 are presented in Figure 5.12. Note

that more precisely we look at the quantity,
R=1--Et_, (5.67)

where we subtracted the expected continuum limit of the ratio. We recall that the

values for Z3F can be found in (Della Morte et al., 2005a).
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Fig. 5.12: Continuum limit extrapolations for the relative difference R (5.67) of Zp
factors computed from the SF and xSF. The lines of constant physics considered are

specified by the value of the SF coupling g2, and are given by LCP;, LCP5, and LCP3.
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As we can see, the agreement between SF and ySF is generally good, indicating
that cutoff effects are small. In fact, the relative difference R between the corresponding
Z p factors is never greater than 1%, even for the largest value of the SF coupling and
smallest lattice size L/a considered. The scaling of this ratio however is not evident.
In particular it is not clear whether L/a = 6 does or does not belong to the scaling
region. An additional point at a larger value of L/a would thus be desirable to make
definite conclusions. On the other hand, already at L/a = 12 the ratio has the expected

continuum value within errors for all three values of the SF coupling.
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Fig. 5.13: Continuum limit extrapolation for the lattice step-scaling function Z}SF
and L3 obtained from the xSF and SF, respectively. The line of constant physics is
defined by LCP;.

Step-scaling function of Zp. The second observable we considered is the step-
scaling function of Zp (cf. eq. (5.60)). More precisely, we studied the continuum limit

of the lattice step-scaling function ¥ p as obtained from the xSF, and compared the
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results with the corresponding SF determination (Della Morte et al., 2005a). Note
that we considered a single value of the SF coupling g?(L). The computation of the
step-scaling function in fact requires the evaluation of Zp for the double lattices with
L'Ja = 2L/a, and it then involves lattices up to L/a = 24. These are relatively
demanding in terms of computer resources, and we thus decided to focus only on the
most non-perturbative case by choosing the largest coupling.

The corresponding results are shown in Figure 5.13. Note that the error due to
the uncertainty in the SF coupling was added in quadrature to the statistical error
of E)}‘;SF. The latter has been estimated using the 1-loop result for the derivative of
E’}‘DSF with respect to g? (Della Morte et al., 2005a). This is in fact universal so that
we could use the result for the standard SF. The resulting correction is very tiny, and
it increases the error of Z}‘,SF by at most 5% at the the largest coupling and lattice.

Going back to the results in the figure, we find good agreement between the SF
and ySF determinations of the step-scaling function already at finite lattice spacing,
indicating that cutoff effects are relatively small w.r.t. the statistical uncertainties. The
results for L /a > 6 in fact are compatible within a single standard deviation, while the
values at L/a = 6 only differ by (roughly) 2 standard deviations. On the other hand,
due to the slightly better precision in our determinations and the value obtained for
L/a = 6, we could not simply fit our results to a constant as in the standard SF case.
A linear continuum extrapolation in (a/L)? was needed in order to obtain a good x2.14
Our resulting continuum value then turned out to be slightly higher and less accurate
than the SF determination. However, the two agree within two standard deviations.

To conclude, we obtained a non-trivial check of universality between the standard
SF and the xSF also from the study of scale-dependent renormalization factors. This
suggest to combine the results from the SF and ySF in a joint continuum extrapolation

in order to improve the accuracy of the determination.

14We note that in principle the step-scaling function has O(a) discretization errors coming from
the boundaries. There in fact we only have improvement at 1-loop order in perturbation theory. The
relevant question for these continuum limit extrapolations is thus whether these effects are small
compared to the statistical precision on the results, such that in practice a linear behavior in a? well

describes the data.
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5.7.2 Flavour symmetry restoration

To conclude, we briefly present some results on the ratio of the boundary-to-boundary
correlators (5.55). More precisely, in Figure 5.14 we consider the continuum limit of
these ratios for the three lines of constant physics LCP;, LCPs, and LCP3. As noticed,
these ratios are expected to converge to 1 in the continuum with O(a?) corrections.

We thus considered linear fits in (a/L)? constrained to pass through 1.
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Fig. 5.14: Continuum limit extrapolations for ratios of boundary-to-boundary corre-

lation functions for the lines of constants physics given by LCP;, LCP,, and LCPj3
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As we can see from the figure, the values we obtained for these ratios are very
precise. The ratios of I; correlators then nicely follow the expected O(a?) scaling for
all values of the SF coupling and including all lattice sizes. Note also that, the violations
from the continuum limit are very tiny in this case and of the order of at most 0.5%.

For the case of the g; functions the situation is similar at the two smallest values of
the SF coupling, which extrapolate to 1 with the proper O(a?) scaling. The corrections
from the continuum value however are more pronounced than in the case of the [y
functions but yet quite small i.e. of the order of ~ 1.5%. For the largest value of the
SF coupling instead, we see some tension for the value of the g;’s ratio at L/a = 12.
On the other hand, as mentioned, in these determinations we did not include the
systematic errors due to the statistical uncertainty on the SF coupling. Note that this
is in general twice as large for the largest lattice sizes on a given LCP (cf. Table 5.3).
We thus suspect that this contribution is important for these ratios of correlation
functions due to their high-precision, and that our errors are then underestimated. In

any case, we conclude that the expected scaling is qualitatively confirmed.

5.8 Some checks on the simulations

To conclude this chapter, we want to present some of the checks we performed on
our simulations in order to support the reliability of our determinations. Specifically,
these include: a study of the reversibility and area preservation of the MD integrator
in the HMC, an estimate of the longest autocorrelation times in our simulations, and
a discussion on the ergodicity of the algorithm in sampling the different topological

sectors.

5.8.1 Reversibility and area preservation in the MD equations

The first issue that we want to address is the integration of the MD equations in the
HMC. As discussed in Section 4.1.3 indeed, in order for the algorithm to be exact,
the numerical integrator needs to satisfy two basic properties: time reversibility, and
preservation of the phase-space measure. In principle, these properties are guaranteed
if symplectic integrators are employed. In practice, however, rounding errors in the

integration of the MD equations, and a “sloppy” solution of the Dirac equation along
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the MD trajectory can compromise these basic properties (see (Joo et al., 2000)).
In particular, the latter issue can be quite problematic if, as in our case, one uses
chronological inversions to speed up the solution of the Dirac equation along the MD
trajectory (see (Liischer, 2010a)). In this case indeed the reversibility of the algorithm
can be severely violated. In the following we will thus investigate if our choices of
parameters for the numerical integrator were sensible in this respect. Note that we
will focus only on the simulations belonging to LCPy. These in fact were the more
delicate from a numerical point of view.

In order to study the time reversibility and area preservation of the algorithm we
need to introduce a suitable set of observables. In this respect, from the hypothesis
of area preservation of the integrator one can easily derive the following relation (see

e.g. (Montvay and Minster, 1997)),
fe ™ =T, (5.68)

where AH is the difference in the Hamiltonian between the end and starting point of
a trajectory (cf. (4.10)).

A second useful quantity to consider is given by,
SH(ILU) = {HM"(7),U" (7)) — H(I1(0),U(0) }n(0)=r1,u(0)=0 (5.69)

where I1”(7) and U"”(7) are obtained by integrating the MD equations up to a time
t = 7 starting from the initial conditions I1”(0) = —II(7), and U"(0) = U(r). If
the integrator was exactly time-reversible, we would then expect the difference in the
Hamiltonians (5.69) to be zero. In particular, note that 1/6H gives an estimate of
the frequency with which we make a mistake in the accept-reject step along the HMC
history. It is then important that this quantity is much longer than the total length of
our runs.

Analogously to the difference in the energy (5.69), one can look directly at the
difference between the gauge fields U and U”. This can be done by introducing some

suitable norm on the space of gauge fields. In our case we consider,

§U(U) = maxa.u|U, " (z) — U ()], (5.70)
1,7
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where 7, j indicate the row and column indices of the given link variable. In (5.70) we
are thus looking at the maximum absolute deviation in the gauge field, component
by component, after integrating the MD equations back-and-forth a given trajectory.
Again if the integrator was exactly time-reversible, we would expect this quantity to

be exactly zero.

Table 5.7 Reversibility checks for the ensembles in LCPg. The maximum (max), minimum

(min), and average (avr) values for § H and 60U are given.

o0H oU
L/a pB

min max avr min max avr

8 5.2 1.21e-09 1.38¢-06 2.52e-07 7.81e-10 1.04e-08 1.36e-09
12 5.5 5.60e-10 2.08-06 5.15e-07 1.11e-09 1.07e-08 1.76e-09
16 5.7 4.20e-08 5.67e-06 1.21e-06 1.28e-09 1.59e-08 2.05e-09

8* 5. 5.00e-12  1.71e-07 2.45e-08 6.45e-11 1.17e-09 1.23e-10
10 3 5.84e-09 1.31e-06 3.43e-07 1.09e-09 6.56e-09 1.88e-09
3

12 5.3 5.06e-10 2.38¢-06 6.58e-07 1.44e-09 1.15e-08 2.81e-09

w

13

12 5.2 3.42e-10 2.69e-06 6.03e-07 1.72e-09 1.86e-08 3.53e-09

* A smaller CG residuum has been used.

In Table 5.7, we present the results for (5.69) and (5.70) for the ensembles in LCPy.
The measure has been performed by considering (roughly) 300 — 500 trajectories of
the corresponding ensemble. As we can see from the table, the values are generally
very good (e.g. compare with the discussion in (Joo et al., 2000)).!> In particular,
the values of §H are such that the frequency of mistakes in our accept-reject step is
extremely rare given the length of our runs (cf. Table 5.9).

To conclude, in Table 5.8 we also report the results for (5.68). Note that the different

replicas r; for the given ensembles have been investigated separately. As we can see

15We note that there is no solid theoretical argument for judging the goodness of these numbers,
since the effects of the rounding are very difficult to infer, especially those related to the iterative

solution of the Dirac equation in the integration of the MD equations.
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Table 5.8 Checks on the area preservation for the ensembles in LCPg. Note that the different

replicas r; have been studied separately.

(e2)

L/ia B

i T2 T3 T4

8 52 1.0012(11) 1.0009(12)
12 55 0.9952(23) 0.9947(22) 1.0036(23)
16 57 1.0011(39) 1.0039(40) 1.0087(39)

8 53 0.9988(11) 1.0008(17)
10 3 0.9998(21) 1.0012(20) 1.0026(21)  1.0009(20)
12 53 0.9986(38) 1.0051(41) 1.0018(40)

12

o
no

0.9965(23) 1.0006(21) 1.0010(21)

from the table, the condition is generally well-satisfied. In particular, three standard
derivations differences from the expected condition are not unusual. This because this
expectation value is in general dominated by “spikes” in AH related to the occurrence

of small eigenvalues of the Wilson Dirac operator along the MD trajectories.

5.8.2 Autocorrelations and topology

In order to study the reliability of our statistical error estimates, we have analyzed the
autocorrelations in our simulations. Only if the latter are reliably determined indeed,
our error estimate can be trusted. To this end, we have considered three different
observables, namely: the average plaquette (Plaq), a given discretization of the Yang-
Mills action at positive flow time Y., (Liischer, 2010b), and the topological charge at
positive flow time summed over the whole space-time volume Qo (Liischer, 20100).
In particular, the flow observables have been measured for a value of the flow time
specified by ¢ = V/8t/L ~ 0.5. We note that, in general, observables defined through
the Yang-Mills gradient flow are good indicators for potentially long autocorrelations
in our simulations (Liischer and Schaefer, 2013). These observables can in fact be used
to estimate the exponential autocorrelation time 7exp, or at least to have a lower-bound

for it. In addition, differently from the case of the plaquette, the autocorrelations of
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these observables have a well-defined continuum limit, so that their scaling can be
studied (Liischer, 2010b).

In Table 5.9, we present our results for the ensembles along the LCP given by LCPy,.
The autocorrelations have been estimated as discussed in (Wolff, 2004). In particular, a
general criteria for a proper determination of the autocorrelations in our simulations is
that the length of our runs should be at least of the order of 100 7exp, (Schaefer, Sommer
and Virotta, 2011; Schaefer, 2012). If we take as Ty, the longest of the autocorrelation
times we have measured, this condition is generally satisfied for each of the replicas of
our ensembles.

Table 5.9 Integrated autocorrelation times for the average plaquette (Plaq), the flow
Yang-Mills action (Yact), and the flow topological charge Q:op, for the ensembles along the
LCP given by LCPq. The total number of trajectories of the different ensembles are also given

in terms of the corresponding replica sets.

L/a B Tine(Plaq) Tine(Yact) Tint(Qeop)  traj. (MDU)

8 52  6.0(3) 14(1) 7.0(5) 40000 x 2
12 55  4.8(3) 41(8) - 8000 x 3
16 57  4.7(4) 42(9) 11(2) 6000 x 3

8 53 572 10.0(5)  10.8(6) 80000 + 40000

10 53  55(3) 35(5) 48(7) 10000 x 4
12 53  5.6(4) 100(25)  95(23) 8000 x 3
12 52  7.2(6) 59(11) 37(6) 10000 x 3

Before concluding, we want to note that for L/a = 12 and 5 = 5.5 we could not
determine the autocorrelation function for the topological charge. This was due to a
peculiar behavior of the latter. This can be seen in more detail in Figure 5.15, where we
show the topological charge distribution along the MC history of three of the ensembles

of LCPg.16 As we can see from the figures, the system gets quickly frozen in the trivial

16Note that for the scope of illustration, for each given ensemble we patched the different replica

histories one after the other.
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topological sector Qtop, = 0 as the lattice spacing is decreased. Already at the coarsest
lattice spacing, however, the topological charge does not show much excursion outside
this sector, which then seems to be the only relevant one at this physical volume.
On the other hand, at the intermediate lattice spacing corresponding to f = 5.5 the
topological charge rapidly jumps to —1 and stays around this value for roughly 150
MDU. This did not allow us to determine the corresponding autocorrelation function
along the MC history. In this respect, we note that these rapid excursions of the
topological charge to non-trivial sectors in relatively small volumes are not unexpected
in simulations of the SF (see e.g. (Jansen and Sommer, 1998)).

To conclude, the relevant general question is how the sampling of the topological
sectors in simulations does affect the determination of our specific observables within
our precision (Schaefer, Sommer and Virotta, 2011). In this respect, we note that
renormalization factors and parameters can in principle be defined such that only
contributions from the trivial topological sector are considered (Fritzsch, Ramos and
Stollenwerk, 2013). In this way one can avoid in practice the consequences of a bad
sampling of the topological charge as we approach the continuum limit of the SF.
In our case, however, this is not an issue since the physical volume is small enough
that only the trivial topological sector actually contributes to the SF path integral.
Indeed, the restriction of our renormalization factors, and renormalization conditions
for mpcac and zy, to the trivial topological sector, does not have any influence within

the final errors.
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Fig. 5.15: Topological charge distribution. Lattice spacing dependence. L ~ 0.60 fm.
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6
Conclusions

In this work, we presented a first complete study of the chirally rotated Schrodinger
functional with dynamical Wilson-fermions. The first important conclusion that we
draw is that the expectations from the results in perturbation theory (Sint, 2011;
Vilaseca, 2013), and in the quenched approximation (Sint and Leder, 2010; Lopez,
Jansen, Renner and Shindler, 2013b; Lopez, Jansen, Renner and Shindler, 2013a) are
confirmed. More precisely, through the detailed analysis of several different observables
over a wide range of parameters, we have given substantial evidence for the existence
and universality of the continuum limit of the ySF. In particular, the property of
automatic O(a) improvement has been shown to be realized as expected after the
proper renormalization of the theory.

Secondly, the universality relations offer a novel method for the computation of
the finite renormalization constants related to the breaking of chiral symmetry by
Wilson-fermions (Sint and Leder, 2010). In this work we investigated this possibility
in detail. The results show that these determinations are very competitive and robust.
Due to the property of automatic O(a) improvement, several different definitions can
be studied without having to perform the corresponding improvement. This allows to
control carefully the size of cutoff effects in the determinations, and eventually choose
the more precise and solid definition for the given renormalization constant. Moreover,
their evaluation in terms of simple ratios of two-point functions gives very accurate
predictions.

In this respect, we want to note that our results for the renormalization of the
axial current, Z,4, improve significantly on previous SF determinations. The total
error on this quantity indeed has been reduced by a factor 10. This result can have

an important impact on the computations performed in large volume simulations with
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Wilson-fermions. In fact, the renormalization of the axial current is a fundamental
ingredient in the present strategy for the determination of the lattice spacing at the
bare couplings of interest (Fritzsch et al., 2012). In particular, the precision on Z4 has
been so far the dominant source of error in this determination. Improving the accuracy
on the lattice spacing is then crucial, since this quantity enters in the conversion of

any dimensionless lattice result to physical units.

Table 6.1 Comparison between the lattice spacings a°F and a*°F, as determined using Z5"

and Z4, respectively.

B a°F (fm) a*SF (fm)

52 0.0755(9)(7) 0.0747(2)
5.3 0.0658(7)(7) 0.0648(2)
0.0486(4)(5)  0.0480(2)

ot
(921

We thus want to show the effect of our results for Z4 on the determination of the
lattice spacing a. In Table 6.1, we present a comparison of the values obtained for a
using the standard SF determination, Z;EF, and our most precise determination Z‘l_‘
(cf. Table 5.5). The strategy followed for the computation is the same as in (Fritzsch
et al., 2012). As we can see from the table, the new preliminary values for the lattice
spacing are at least 3 times more precise than the previous results.!

To conclude, the xSF provides a competitive tool for solving non-perturbative
renormalization problems on the lattice. As a future application of the method, it is
thus natural to address the renormalization of more complicated operators. These in
particular include four quark-operators relevant for the determination of electro-weak

hadronic matrix elements.

!The author warmly thanks Stefano Lottini for having provided these results.



Appendix A
Useful definitions

The notation conventions presented in this Appendix are taken from (Liischer, Sint,

Sommer and Weisz, 1996).

A.1 Index conventions

Lorentz indices p,v,... are taken from the middle Greek alphabet and run from 0
to 3. Latin indices k,[,... run from 1 to 3 and are used to label the components of
the spatial vectors. For the Dirac indices capital letters A, B, ... from the beginning
of the alphabet are taken. They run from 1 to 4. Color vectors in the fundamental
representation of SU(N) carry indices a, 3, ... ranging from 1 to N, while for vectors
in the adjoint representation, Latin indices a,b.... running from 1 to N2 — 1 are
employed. By abuse of notation such indices are also used for the flavor label of the
axial current and density. Repeated indices are always summed over unless otherwise

stated and scalar products are taken with euclidean metric.

A.2 Dirac matrices

We choose a chiral representation for the Dirac matrices, where

0 e,
Yo = . (A1)
eL 0
The 2 x 2 matrices e, are taken to be,
e = —1 €k = =10%k; (A2)

with oy the Pauli matrices. In is then easy to check that

'YL = Yus {vw} =20 (A.3)

Furthermore, if we define v5 = v9y172773, we have,
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Y5 = - (A.4)

In particular, 75 = ’7; and 7% = 1.

Having introduced =5 one can also introduce the chiral projects:

1 1-—
e T % B Pp=c (A.5)

Pr 2 2

Finally, the hermitian matrices
1
Ouv = 5[7}“ 71’] (AG)
are explicitly given by

gk 0 Ok 0
0k = 5 Oij = —€ijk
0 — Tk 0 Ok

—
#
~J

L

where €;; is the totally anti-symmetric tensor with €;93 = 1.

A.3 Gauge group

The Lie algebra su(N) of SU(N) can be defined as the space of complex N x N matrices
Xap which satisfy
Xt = =X, tr{X} =0, (A.8)

where X' denotes the adjoint matrix and tr{X} = X,, is the trace of X. We may
choose a basis T%, a = 1,2,...,N? — 1, in this space such that

1

te{T°T*%} = *55‘1”. (A.9)
For N = 2, for example, the standard basis is
7-(1
T = —, a —l 2.3 (A.10)

21

where 7@ denote the Pauli matrices. With these conventions the structure constants
fabe, defined through
[ =2 (A.11)

are real and totally ant-symmetric under permutations of the indices.
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If F(U) is a differentiable function of the gauge field, its derivative with respect to
the link variable U, (x) in the direction of the generator 7'* is defined by

d etTﬂU}l(‘T) lf (yay) e (va’)v
B FW) = 2 FU)|  Uly,v) = (A12)
t=0 U,(y) otherwise.
In particular, in the case of a scalar function F(U), the combination,

@y, F(U) = T8, F (U}, (A.13)
is a vector field with values in su(/N) that transform under the adjoint representation
of the gauge group.

A.4 Lattice derivatives
Ordinary forward and backward lattice derivatives act on colour singlet functions f(x)
as
; 1 . :
8uf (@) = f(x +a) - f(a), (A.14)
1 "
8;.f(x) = ~[f(x) - f(z - ap)], (A.15)

where [ denotes the unit vector in the direction p. Another useful discretization of

the continuum derivative is given by the average of the forward and backward lattice

derivatives,
Buf () = (0 + 0 (x) = - 1f(x + o) — f(& — o], (A.16)
The gauge covariant derivatives instead, act on quark fields as,
V() = Tz + o) — (a)), (A17)
Vi) = L) ~ MU~ ai)b(z - o), (A18)

The origin of the phase factors,
dp=e%/l g,=0, -m<O<m, (A.19)

is explained in Section 3.2.2. They depend on the spatial extent L of the lattice and are
all equal to 1 on the infinite or periodic lattice. The left action of the lattice derivative

operators is then defined as,
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B(x)aV, = (e + a)Uj @)\, -~ $(2), (A.20)

B(x) Vi, = $(@) — 9z — ai)Us(x — ai),)- (A.21)

A.5 Continuum fields and their discretization

An SU(N) gauge potential in the continuum theory is a vector field A, (x) with values

in the Lie algebra su(/N). It can thus be written as,
Au(z) = AL (2)T°, (A.22)
with real functions Af,(x). The associated field tensor,
Fuv(z) = 0,A.(z) — 8, A,(z) + [Au(z), Av(z)), (A.23)

may be decomposed similarly and the right and left action of the covariant derivative

D, is defined by

D,y

(z)

By + Ay + 6, /L)(z) (A.24)

(2) =
Dy = 9(2)(3 — Au — i8/L). (A.25)

<

The Abelian gauge field 6, /L appearing here has been introduced in Section 3.13.
Finally, note that a lattice discretization of the field strength tensor (A.23) can be

obtained as,

~

Fu(@) = 55 {Qun(@) - Qu@)}, (4.26)

where the matrices @, (z) are defined as,

Qu(z) = Uu(z)Uy(z + ap)Uy,(z + ad) 10U, (z)*
+ U, (2)Uu(x — afp + a?) U, (z — at) ' Uu(z — aft) (4:27)
+ Uu(z — apt) U, (z — aft — ad) " 'Uy(x — afp — a?)U, (z — ap)

+ Uy(z — ad) U, (z — ad)U,(z + afp — ad)U,(z) 1.

This defines the so-called clover definition of the lattice field strength tensor.
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A.6 Discrete symmetry transformations
A.6.1 Charge conjugation

Under charge conjugation the gauge field transformations according to
Up(z) = Up(z)*. (A.28)
The transformations law for the quark and anti-quark fields reads,
P(z) = C (), P(z) = —y(2)C, (A.29)
where C'is a 4 x 4 matrix satisfying
Yo = —CWMC_I, (A.30)

If the Dirac matrices are chosen as specified in Appendix A.2, we may take C' = iyy72
o that @~ = C" =C.

It follows from these definitions that the Wilson action is invariant under charge
conjugation. This is both true in infinite volume and in the Schrédinger functional.
In the latter case the transformation is applied to the field variables at all sites of the

lattice including the boundaries o = 0 and 2o = T'.

A.6.2 Parity
A parity transformation is defined as,
P(z) = 109%(E), Y(z) = P(@)r, = (0,~X). (A.31)
while the gauge fields transform as,
Uo(z) = Uo(Z), Ux(z) - Ux(2)!, &= (z0,—x — ak). (A.32)

We here assume periodic boundary conditions for the fields in the spatial directions

(or an infinite spatial extend). Similar consideration as for charge conjugation then

apply.
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A.6.3 Time-reflection

A time-reflection transformation is defined as,

P(z) = rorsP(E),  P(x) = P(E)ivors, &= (T — zo,%). (A.33)
while the gauge fields transform as,

Up(z) = Up(2)!, Ur(x) = Ur(z), &= (T —z0— a,x). (A.34)

Here we assume the case of a finite temporal extent of the lattice volume given by 7.



Appendix B
Molecular dynamics forces

The results reported here are taken from the documentation of openQCD.!

The force field

FM(I) = —2Re (X(YSaI.u,D(Q)U)) (B.1)

is a sum of two terms,
F£¥(z) = —2Re (x,7150:,4(D2 + D)), (B.2)
FPoP(z) = —2Re (X, ¥50z,u(Deo + Doe)¥)). (B.3)

In order to give the explicit expression is it convenient to introduce the matrices,

o)A ® xalz)' + (¥ & x)}, (B.4)

;n

{5 = r)W)ale +ap) ®xal@)'+ @ o X} (BS)

i‘

The sums in these equations run over the Dirac index of the spinors involved and
the tensor products are taken in colour space, i.e. both X, (z) and X,(z) are 3 x 3
complex matrices in colour space.

Given these definitions, the force (B.2) is given by

F2(2) = By pSow = —Leoul(g0) 3 Z Retr{(0:,Qpr (1) Xpo W)}, (B.6)

yel'yo=a

with @, defined as in (A.27).
The force (B.3) instead is given by,

FroP (e} = PYlLEIX, (]}, (B.7)

Lhttp://luscher.web.cern.ch/luscher /openQCD/
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where

P{m} = i(m—-m') - gtr(m — mt), (B.8)

projects any complex 3 x 3 matrix m to su(3). Note that, F}]Op(z) is defined for all x
such that 0 < xg < T for p =0,and 0 < g < T for u =1,2,3.
Finally, as we have seen the contribution to the pseudo-fermion action given by
the small determinant is,
Saer = —Trlog(le + (DDWDY)) = - ) trlog(MWD(z))t MD(z))]. (B.9)
x odd
The corresponding force then reads,
FSet(m) = Or,uSdet = _%CSW(QO) Z Retr{(@z,#Qm(y))Xpa(y)}, (B.10)
yodd
where y is odd with 0 < yg < T', and

Xpol) =4 ¥ {opd (@)  Faa (B.11)
A=1



Appendix C
Correlation functions

In this Appendix we want to present some results on the xSF correlation functions
presented in Section 5.1.3. Firstly, we give the definition for the boundary source fields.
Secondly, we give the explicit expressions for the correlation functions. Finally, given

these expressions we list some exact symmetry properties valid on the lattice.
C.1 Boundary source fields

The ySF boundary fields are defined as follows.

At 1o = 0 we have,

Q:I')m/ s /daydszZu(y)"/OVSQ—Cu’(Z)v (Cl)

o dPyd®z C4(y)v0v5Q+Ca (2), (C.2)

Q5 = | d’yd’z(y(y)1Q-Cul2), (C4)

/
0yt = [ Py 2T, (r)15Q+ula), (C3)
Ik

and,

0p = [ Pydat,yma-¢u(a) (C5)
ol = [ dydaTly)nQscr a) (C6)
0t = [ dyd* 2T, (1) 10nQuu(a) (1)
ol = [ Eyd*aTy)0mQ-Gu(a). (C8)

At xg = T instead,
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o' = —/d3yd3zZ;(y)vost&Lr(Z), (C.9)
ol = —/d3yd3zz;(y)vost_<é/(Z), (10
= /dsdeZZL(y)st—CQ(Z), (C.11)
Q= /dadeZZ;(y)VsQJrCL(Z), ekl
and,
o = /d3ydsza¢(y)ka+CL/(Z)7 (C-15)
@& = /d3yd3ZZ;(y)v’kQ~<é/(Z)- (C.14)
Qi = —/dsydszz;(Y)va-Cé(Z)-, (el
Qv = — / Py d*2To(y 110w C, (2). (C.16)

C.2 Explicit expressions and symmetry properties

Before giving the explicit expressions for the correlation functions defined in Section
5.1.3, it is convenient to introduce the following definitions. We first introduce the

propagators for the up and down type flavours defined by,

= [@ysu@oyQ-, M= [Sysi@oy)Qs  (©17)

where on the r.h.s. we employ a continuum notation. These however should be inter-

preted on the lattice as e.g.,
[ys.m09)a- » @ TS@onthOy)Q- (€19
y

and similarly for M¢.
Given these definitions, after some algebra one arrives at the following explicit

expressions for the gx-functions,
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g (w0) = (s { M@ WX M @0} ), (C.19)
9% (zo) = ‘;-<tr{M“(I)T’YstMd(z)'yo}>G, (C.20)
g¥(wo) = 3{r{ M)l x MU @)} ) (C.21)
o8 (z0) = 5 ({ M @) s @)} (C.22)

and similarly for the [y-functions

= 13 )y
B (o) = 5 3 {r{ MU @)Dy Mé@pms }) (C24)
(of
(trf

try M%(z) ysTy M*( 'yk'ys} (C.23)

G’

G
ud 1 :
IY (;L‘O) = E

ld“(l()) li
6

In order to introduce the boundary-to-boundary correlator, we also define the matrices,

tr{ M (z) ysTy M4z ’Yo%’Ys}>G (C.25)
J

trd M*(z) Ty M™(z) 01k 7s > (C.26)

1 1 :
=Q+ 33 /(13x MY(T,x), L¢= Q-3 /d“"x MYT, x). (C.27)
On the lattice these read e.g.,
LIS +
P Q+FZ UolT =&, %) MY(T — a,%). (C.28)

Given these definition it is then easy to show that,

g’ = %<tr{(Ld'yg)T'yoL"}>G, (C.29)
gdd = %<tr{(L“’yo)T'yoLd}>G, (C.30)
gud = %<tr{(L“)TL“}>G, (C.31)
gl = %<tr{(Ld)*Ld}>G, (C.32)

and,
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e = é}; <tr{ (Ld’vmk)t%%LuDG, (C.33)

Ll é 23: <tr{(L“75'yk)T'y57de}>G, (C.34)
k=1

vl = ég:l <tr{ (LU'YS'YO'Yk)f'YSVO'YkLu}>G‘ (C.35)

= é i <tr{(Ld’YsWo’Yk)T“rs’Yo’Yde}>G- (C.36)
Ee=l

Once the explicit expressions are obtained, it is also easy to work out some properties
and relations for the xSF correlation functions using the exact symmetries on the

lattice. These are collected in Table C.1.
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Table C.1 Transformation properties of some xSF correlation functions under: complex
conjugation (c.c.), parity combined with a flavour exchange (P x 7'), and charge conjugation
combined with complex conjugation (C + c.c.). Note that with “avr.” we indicate properties
satisfied by the correlators only after the average over the gauge fields is taken, while with
“conf.” we denote properties that hold for any gauge field configuration. The parity w.r.t. the

757'1-Lransform is also listed for completeness.

ce. Pxt! C+cc 57! avr. conf.
gv @ ¢ @Y + Re -
gt gt g gf* + Re Re
% of & @ + B -
) T R - g — Re Re
g’ g g g - Re -
gpt g g g + Re Re
.(1;[9'“, ggd/ —9%‘1/ g%“' + Im -
g8t gyt —g¥ g8 - 0 Re
A A R SR
gyt —gud  _gdu —gi» + Im Im
et g ol et + Re -
o . e e + Re Re
G R R T
ol B T | + Im Im
e i W  + Re -
1 Iy I I — Re Re
& i & B - Re -
jad g i I + Re Re
Jue g @ 4+ Im -

ud ud du du
17; IT" —li‘ lT —= 0 Re




Appendix D

More on the chirally rotated SF at
work

D.1 On the improvement of renormalization factors from
universality relations

In Section 5.2.4, we commented on the fact that the y57'-even O(a) boundary coun-

terterms do not contribute to the universality relations involving v57!-even correlators.

In order to show this result we will consider an explicit example.

Let us start from the universality relation,
(94 )r = (—igh")r + O(a?). (D.1)

The idea is simply to study the Symanzik’s expansion of the ratio,
—igud
(—ig5) R
(9% )r

First of all, given the observations in Section 5.2.4 the Symanzik’s expansion for the

(D.2)

individual observables reads (cf. Section 2.2.4),

(98" )r = (V)0 — (g8 Do + (9¥7a,)o + (9%, )o] + O(a?), i)
(95 )r = (g5 )0 — a (g2 )0 + (95%,)o + (954, )0 — ca(BegE™ )o] + O(a?). (D.4)

First of all, note that we indicated with (gﬁf(l /2) the continuum correlation functions
corresponding to the lattice correlation functions on the Lh.s. of the above relations.
Secondly, we considered explicitly the insertion of all possible O(a) counterterms that
appear. For example, (g"‘,fjcsw)o indicates the insertion in (gi?)o of the O(a) countert-
erm corresponding to the bulk action and proportional to the improvement coefficient
Csw- Similarly for the other counterterms. However, as discussed in Section 5.2.4, the

vs57!-0dd O(a) counterterms do not contribute to ys7!-even correlation functions, and
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are thus crossed out in the above equations. As anticipated, the only remaining cutoff
effects are the ones associated with the vy57!-even O(a) boundary operators and pro-
portional to ¢; and ds. Once however we consider the ratio of the above correlation

functions, we obtain,

Cigghn _ (igtfo —al(ioith o+ (igtdo] o
(05— (950 — al(9549.)0 + (95%,)o]
il [, {(g%go <gi¢fit>o_<g’:ﬁés>o_<gﬁ’fél>°} 0(a?
- (gx“’>o{1 Jow

G G0 (650 (65")o

(D.5)
If we now remind that the universality relations are valid exactly for the continuum
correlation functions, we then have that: (—z'g’(,d)o = (gjf‘“/)o. Consequently, noticing
that the counterterms proportional to ds and ¢; are invariant under a chiral rotation,
we hence have: (vig{‘,fid\)o = (g;“f‘(;\)o, and similarly for the ¢; counterterm. We then

conclude that the term in square brackets in the above equation is zero, and thus,

Cigpualr _ 1+ O(a?). (D.6)

(9% )r
Similar conclusions can be derived for Zv, Zp/Zs, Zr/Zz, and general universality

relations between SF and xSF correlation functions.

D.2 Systematic error estimates

In this Appendix we want to describe how we have estimated the systematic errors
of our renormalization constants associated with the deviation from the given line of
constant physics. We will distinguish three sources of systematic, that are related to

the finite precision with which we unavoidably impose the following conditions,
m =0, g =4q, L = const., (D.7)

where m is the PCAC mass for this section. Note that for the latter discussion, it is
more convenient to look at the condition g4¢ = 0 as a condition for z; rather than g4¢.
Note also that for definiteness we consider the case of the line of constant physics given
by LCPy. A similar strategy has been used for LCP;, LCP5, and LCP3, although in
this case we neglected the systematic due to the condition on L. The procedure we

used to estimate these systematics has then been the following.
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We considered the systematic error on a given (finite) Z factor has given by,
(dZsys)2 = (def)Q + (dZm)’2 + (dZL)27 (DS)

where dZ,,,, de! ,dZ, are the error estimates for the systematics due to the condition
on the PCAC mass, zyf, and L, respectively. These have been estimated as follows.

Starting from dZ,,, we have,

f

(dz,,)? = (g—i)z(dzf)z’ + (%)Y%f@ﬂ?, (D.9)

were dmL /dzy is the derivative of the PCAC mass w.r.t 2z, multiplied by L. Note that
the derivatives are in principle evaluated at the conditions (D.7), in practice we have
computed them at our tuned values. Given the above expression, the derivative %
has been estimated as follows. We have generated two ensembles at L/a = 8, f = 5.2
where z; has been varied of plus and minus 2% w.r.t. our tuned value.® All other bare
parameters have been kept fixed. The derivatives of our renormalization factors w.r.t.
2y have then been computed using a symmetric finite difference approximation. Using
the (less accurate) results from the tuning runs of the other ensembles of LCP(, we
could confirm that the value of the derivative at L/a = 8 is an upper bound for the
derivatives at the larger values of L/a.? Similarly, from the tuning runs we could also
estimate that % is zero to good approximation. This is simply the observation we
made already that the PCAC mass does not depend much on z¢, close to the critical

values. The corresponding contribution in (D.9) has thus been neglected. Finally, for

dzs we have considered,

) ud\ —1
dzp = (89;; ) dgud. (D.10)

ud
where dg4? is the residual value of g4¢ on the tuned ensembles, and for %g—zﬂf- we have
taken the value computed at L/a = 8 and 8 = 5.2. In fact this derivative is not a
cutoff effect, and we thus used the tuning runs to estimate the continuum limit of it.
1We also checked that with a variation of z ¢ of 5% compatible results were obtained.
?Note that 5972; is a cutoff effect. The value at L/a = 8 is thus expected to be an overestimation

for larger L/a’s, if we are in the scaling region for this quantity. Within our precision, this seems to

be the case.
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ud
Within our precision %’;f turns out to be basically constant along LCPy. The value

ud
we obtained is roughly given by %%/L ~ —2.5.
The second contribution in (D.8) is given by

([dZ2,)° = <%>Q(dmL)2 + <%>2<dd;§>2(dmL)2. (D.11)

The derivatives w.r.t. the PCAC mass 6‘?n—ZL have been estimated similarly to the

derivative w.r.t. zy. We generated a single ensemble in this case at L/a = 8 and

B = 5.2, where the (bare) PCAC mass has been increased by roughly 30 MeV. We

have then estimated the derivative with an asymmetric finite difference. Note that,

this derivative 1s a cutoff effect, and so we have used the tuning runs in order to judge

whether the value at L/a = 8 offered an upper bound for it along LCPg. This is in fact
z;

S dz% . . . ] y
the case. The derivative Il instead is not a cutoff effect. We have estimated its value

along LCP( using again the tuning runs. In fact within our precision, this quantity
dz*

turned out to be pretty constant along our LCP, and roughly equal to dmLfL ~—13

To conclude with this systematic effect, we have taken dmL to be the residual PCAC

mass am at the tuned ensembles, multiplied by L/a.

For the last contribution in (D.8) we have simply taken,

(dZ.)? = <Lg—f—>2<%>2 (D.12)

In this case we have estimated this derivative for each ensemble along LCP( through
a dedicated simulation. More precisely, in order to estimate the value for the ensemble
at L/a = 12 and 8 = 5.5, we have done a simulation at L/a = 8 and = 5.5
keeping all other bare parameters fixed. The derivative has then been evaluated using
an asymmetric finite difference.* Similarly for the ensemble at L/a = 16 and 3 = 5.7,
we have generated a corresponding ensemble at L/a = 12 and 8 = 5.7. Note that the
ensemble at L/a = 8, # = 5.2, is by definition on the LPC, and we thus do not need

to take this systematic into account. Regarding the ensemble at L/a = 9.2 instead,

3Note that, the corresponding value obtained from tree-level perturbation theory is given by
dz% .
ok~ —0.3 (Vilaseca, 2013).

4Note that in this case the denominator in this numerical derivative is of O(1), what we are

getting is thus a really rough estimate.
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we have performed an interpolation of our observables to the exact value of L/a given
by the condition of constant L using the results of simulations at different L/a’s (cf.
Section D.3). This was done as otherwise the systematic effect related to L would
have been to large, and would have spoiled the good precision of our determinations.
Finally, note that in (D.12) we neglected the contributions coming from the variation
of the PCAC mass, and the condition on zy w.r.t. L. On the other hand, using the
results from the interpolation at g = 5.3, we could get a good estimate for dZ, at this
B. Considering that this is an O(a?) effect, we concluded that the systematic errors
dZ;, we have estimated on the other ensembles using (D.12) are already conservative.
We have also checked that including these contributions increases the systematic error
by roughly 20% only at the value of 8 = 5.5. For 3 = 5.7 instead these are negligible.
Given these observations, we decided to neglect these contributions also for g = 5.5.
Finally, the values of dL/a that enter in (D.12) have been estimated as: dL/a =
L% /a — L/a, where L®"/a are the exact values of L/a that we would need to satisfy
the condition L = const. These are obtained by simply using the values of the lattice
spacings in Table 5.2. We remind that the uncertainty on the lattice spacing can be
neglected in practice. L/a instead is the value at which we simulated. In fact, these
deviations are tiny i.e. dL/L ~ 0.03 for the two ensembles at f = 5.5. and 5 = 5.7.
To conclude with the systematics, a few words about the points in the ensemble
PT. dZ;,,dZ., have been estimated as described above. Regarding dZ, instead, we
have simulated an ensemble at 5 = 7.2 and L/a = 16, and we have taken the difference
between the corresponding Z determinations as a systematic on Z. The same error has
been used for the other points at f = 8.4,9.6. In this case estimating the derivative

would have been in fact pointless since dL is of O(10).

The gradient flow coupling. Some additional information about our simulations
can be extracted from flow observables at very little extra cost. Specifically we looked
at the gradient flow coupling in finite volume with SF boundary conditions (Fritzsch
and Ramos, 2013). For this coupling the renormalization scale is set by u = L1,

and the flow time at which is measured is specified by the ratio ¢ = v/8t/L, which
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Fig. D.1: Continuum limit extrapolations for the gradient flow coupling along the

line of constant physics defined by LCPq. Three different renormalization schemes are

considered.
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has to be kept fixed while taking the continuum limit.° In particular, different values
of ¢ correspond to different renormalization schemes. For our analysis, the important
observation is that by measuring this observable we can gain some insight on how
well the condition L = const. is satisfied on our ensembles. Indeed, if the condition is
well-satisfied, the gradient flow coupling should smoothly approach its continuum limit
value at the renormalization scale p = L~1, with the expected scaling. Specifically,
one would expect some O(a) lattice artifacts coming from the boundaries. However, if
these effects are small within our precision, we could in principle expect an a? scaling,
or even a constant.

5Note that in the SF one has to pick up a time slice where to measure the energy density that

defines the coupling. In the following we take zg = 7'/2.
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Given these observations, in Figure D.1 we present the continuum limit extrapo-
lations of the gradient flow (GF) coupling g4y (L) for three different schemes ¢.% Note
that the value at 5 = 5.3 is not available. In this case in fact an interpolation in L/a
is non-trivial since this quantity is scale dependent. As we can see from the plot, as
we move towards bigger values of ¢ the statistical precision on the coupling decreases
for a fixed number of gauge configurations, but also cutoff effects. These are general
features of the GF coupling in finite volume (see (Fritzsch and Ramos, 2013)). Thus,
considering the results for ¢ = 0.5, we can conclude that qualitatively the condition
of constant L is well-satisfied on our ensembles. Note that this is a non-trivial result,
in particular considering that the value for L/a at = 5.7 has been estimated using

bare lattice perturbation theory.

D.3 Details on the interpolation at 5 = 5.3

We here comment on the determination of the finite renormalization constants Zy
and Z4 at [ = 5.3, since this provides indirect evidence for the automatic O(a)
improvement of these determinations. Similar results hold for the ratio Zp/Zg. This
case however is less interesting since this ratio is improved once the action is improved.

As discussed in Section 5.3.2, for this value of the bare coupling the LCP condition
L ~ 0.6 fm would require a lattice size of L/a ~ 9.2 (cf. Table 5.2). However, as
mentioned our simulation code can only simulate even lattice sizes L/a. In order to
determine the renormalization factors for the required value of L/a, we then exploited
the cutoff dependence of Zy, 4. More precisely, at fixed f = 5.3 we have simulated three
different lattice sizes corresponding to L/a = 8,10, 12. If the determinations are O(a)
improved, we expect the results for Zy 4 on these lattices to differ by cutoff effects
of O(a?). We can then use this dependence to actually interpolate the results at the
given vale of L/a = 9.2.

In Figure D.2 we reported our results for Zy and Zy at fixed g = 5.3 and for
the different lattice sizes L/a = 8,10,12. As we can see, the dependence on (a/L)? is
nicely linear, meaning that higher order terms in a are negligible within our precision.

6The author wants to thank Alberto Ramos for providing several routines for the computation of

the GF coupling.
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Fig. D.2: Zy and Z 4 interpolations for 5 = 5.3. Three different lattice sizes have been
considered: L/a = 8,10,12.
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Due to this linear dependence, it is then easy to interpolate the results to the desired
value of L/a = 9.2. These are marked on the plot by a black vertical line. Note that,
the renormalization constants defined in terms of the [-functions only, generally have
a milder dependence on L/a than those defined using g-functions. Overall however, all
definitions of Zy 4 show small cutoff effects at this (not so small) value of the lattice
spacing.

D.4 Scaling of 7, differences and automatic O(a) improvement

from the femto-universe

Zy and Z,4 differences. Similarly to what done in Section 5.4.3, we considered the
continuum limit extrapolation of the differences between different definitions of Zy
and Z4 along the LCPs given by LCP;, LCP,, and LCP3. We collected the results
obtained for the three different values of the SF coupling in Figure D.3. Note that, we
fit the data through a linear fit in (a/L)?, including only the points at L/a = 8,12.
The fit is then constrained to pass through zero. Looking at the deviation from the
fitting line thus permits to judge whether the L /a = 6 lattice belongs or not to the
scaling region. As we can see, similar conclusions as in Section 5.4.3 can be drawn. In
particular, the O(a?) scaling is obtained for the largest values of L/a, and the effect
of the O(a) improvement of the axial current in the definition of Z9 does not affect

the results within errors.

Automatic O(a) improvement. Here we propose a study of the v57'-odd correla-
tion functions considered in Section 5.6, along the LCPs defined by LCP;, LCP5,, and
LCPj3. The results are collected in Figure D.4. Similarly to what noticed there, the
only (literally) odd function that shows some sizable cutoff effects is ll‘i/d. Remarkably,
all other correlators are zero within errors along all LCPs. In this case however, in-
cluding the O(a) operator counterterm to l"i/d using the tree-level value for cy; simply
changes the sign of the cutoff effects (cf. results for l%?). As we can see though, the
contribution of the operator counterterm is an O(a) effect that properly vanishes in
the continuum limit. In conclusion, we confirm our expectation that O(a) cutoff effects

are generally small in these correlation functions.
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