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Thesis Summary

Metal oxide ceramics constitute a group of inorganic compounds with a rich
set of properties that have found use in many technological applications of
present relevance. Defects in the crystalline structure of these materials ac-
count for some of their more attractive characteristics. The properties and
compounds that are central to this work are the ionic conductivity in cerium
dioxide electrolytes and the combination of a high electronic conductivity
with transparency in cadmium oxide. The evolution of these attributes
in the presence of defects are investigated using both first principles and

interaction potential methods.

The optimization of the ionic conductivity in CeOq-based electrolytes was
initially approached by studying the interactions between the defects in-
troduced upon doping CeO, with Y, using newly developed interaction
potentials, as well as, neutron diffraction data. The advent of more ad-
vanced methods of first principles calculations made it possible to simulate
the f-electrons in lanthanide elements, such as, Nd, Sm and Gd. Subse-
quently, a library interaction potentials was constructed for CeO, and ZrO,

doped with the rare earth elements Sc, Y, La, Nd, Sm and Gd.

Furthermore, the ionic conductivity was investigated in ternary mixtures
of CeO, electrolytes using the elements from the library of interaction po-
tentials and the results were put in the context of contradicting reports
regarding the merits of such solid solutions. This work was expanded to
comprise other industrially relevant solid solutions like CeOg-Z1rOs-CeyOs5,
which under specific growth environments are known to display cation or-
dering and high oxygen storage capacities.

Lattice strain is widely recognized as one of the best ways to improve
the ionic conductivity of solid electrolytes, however the magnitude of the
changes undergone is still in dispute. For this reason, the work on CeO,

conductivity was concluded with an examination of how this property is

1



affected by strain. These studies were performed on thin slabs which were
subjected to varying amounts of strain in order to simulate the different

levels of lattice mismatch.

The second type of ceramic material that was considered in this thesis
was that of transparent conducting oxides, in particular, cadmium oxide.
The work presented here clarifies the nature of the intrinsic defects that
dominate the electronic conductivity in this material, along with the role
of hydrogen as an adventitious dopant. This work is concluded with the
search for the best donor dopants for cadmium oxide, with the aim to

increase transparency and electronic conductivity.
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Introduction

1.1 Metal oxides in everyday applications

Geopolitical and environmental concerns surrounding energy uncertainty have become
a topic difficult to ignore. It is, therefore, of paramount importance for the present
and long term viability of the economy and our lifestyles to find cleaner ways to exploit
the resources that are commonly used at present and, to find more efficient means to
produce electricity in the medium and long term. Distributed Generation of electricity
has been touted by national and international agencies, such as, the Organisation for
Economic Co-operation and Development (OECD) [1-3], as a possible means to incor-
porate nascent technologies into the energy market. Some of these technologies rely
on renewable sources, e.g. wind and solar, but they are still severely limited by high
production costs. As a result, it is crucial to optimize the components of these devices
in order to make them competitive against the current standards. In this regard, the
broad grouping of metal oxide compounds offers a wide range of properties that can
be exploited by emerging technologies, from energy production and catalysis to the
now ubiquitous area of optoelectronic devices. The aim of this thesis is to detail how
chemical and physical changes affect the properties of two such compounds, namely
cerium dioxide (ceria) and cadmium oxide. In particular, computer simulations are
employed in the systematic study of the ionic conductivity of oxide ions in CeO, at
elevated temperatures, while in the case of CdO, the simulations are used to examine
the electronic structure characteristics of this material, as well, as the formation en-
ergies of intrinsic and extrinsic defects. The significance of these properties and their

everyday applications are highlighted in the following sections of this Chapter.
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1.2 Ionic conducting oxides

1.2.1 Solid Oxide Fuel Cells

Solid oxide fuel cells (SOFCs) [4-6] have been put forward as one of the technologies
which could potentially play a significant role in the mid- and long-term future of
energy conversion. SOFCs possess several advantages over existing technologies [7].
Among them are high fuel efficiencies and low pollutant emissions compared with heat
engines, such as, the internal combustion engine (ICE). Standalone SOFCs have effi-
ciencies of ~40% while ICEs operate at ~25%. In addition, SOFCs can be run using
a variety of fuels, such as, natural gas, Liquefied Petroleum Gas (LPG), methanol,
gasoline and hydrogen. This is a particularly important property given that it opens
the possibility for SOFCs to take advantage of the increasing availability of natural gas
from hydraulic fracturing, the extensive infrastructure for gasoline storage and delivery,
as well as, being able to exploit future developments in the use of hydrogen as a power
source. In comparison, Polymer Electrolyte Membrane Fuel Cells (PEMFCs) operate
only with pure hydrogen, because any CO present in the fuel mix can poison their
platinum electrodes. This represents a serious disadvantage given that hydrogen is
currently very expensive to produce and difficult to store, however, PEMFCs continue
to attract attention for smaller applications, such as in motor vehicles. In contrast, the
relatively high working temperatures of SOFCs mean that platinum is not required as
a catalyst in the electrodes and carbon monoxide acts not as a poison to the electrodes

but as a fuel when it is oxidized at the anode.

Additional efficiency gains can be achieved because waste heat can be recycled by
heating water, as it is done in the case of Combined Heat and Power systems (CHP).
The construction of SOFCs also confers them with significant advantages; in this case,
their simple and scalable modular designs where a number of units are arranged in
stacks without moving parts, which significantly reduces noise pollution and compo-
nent deterioration due to mechanical failure. This type of design also improves ceramic

strength given that the stacks maintain the electrolyte under compressive stress.

All of these advantages make SOFCs a very attractive prospect for energy conver-
sion. However, several challenges remain in order to make these systems economically
feasible, such as the optimization of the various components of the stacks shown, in Fig-

ure 1.1, i.e. electrolyte, anode, cathode, casings and seals so as to obtain cost-effective
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Figure 1.1: Diagramatic representation of a typical SOFC [8]. The cathode (air elec-
trode) is light green, the anode (fuel electrode) is olive and the electrolyte is light blue.

power output per unit area in the systems. However, there are two processes which
limit significantly the performance of SOFCs, namely the Oxygen Reduction Reaction
(ORR) at the cathode and the ionic conductivity of the electrolyte. Most modern
SOFCs use Y203 doped ZrO, (Yttria Stabilized Zirconia - YSZ) as their electrolyte
due to its relatively high oxide conductivity; however, this material has the severe
drawback of achieving this conductivity only at high working temperatures (around
~1000°C), which brings with it engineering challenges such as different thermal expan-
sion of the various components, corrosion issues, sealing problems and long start-up
times. Interest in ceria-based electrolytes stems from their ability to operate at lower
temperatures than current technologies. SOFCs function by a series of electrochemical
reactions which take place at the electrodes. The cathode (air electrode) catalyzes
the oxygen reduction (Equation (1.1)) and it is typically made of an oxide such as

lanthanum strontium manganate (LSM).

1
5()2+2e— - 0% (1.1)

The anode (fuel electrode) catalyses the oxidation of the fuel (Equations (1.2), 1.4

and 1.4), which may be hydrogen, carbon monoxide or a hydrocarbon such as methane

3
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8. 9]. It is usually a two-phase mixture of nickel and YSZ [9].

Hy +0% = HyO 4 2¢~ (1.2)
00407 500,42 (1.3)
CHy4 +40%* — 2H,0 + CO, + 8¢~ (1.4)

The electrolyte separates the fuel and air compartments in the cell so that the oxide
anions generated at the cathode migrate from one side of the cell to the other through
the electrolyte. The electric current generated is transported by an external electric
circuit, c¢f. the wide variation in oxygen partial pressure from the cathode (0.2 atm)
to the anode (1x1071 to 1x1072% atm) makes optimization of these components very
difficult and it is the reason why different materials are required for each electrode.
Furthermore, in order to obtain high currents from the cell it is necessary that the
reactions have fast rates and high fluxes of molecules (porous electrodes), ions and
electrons (8].

The Electron Motive Force (EMF) of the cell is determined by the chemical potential

of oxygen, which is expressed by the Nernst equation:

RT p(()2)cathode> -
EMF =T—In|{ ——— 1.5
4F ( p(()Q)anode ( )

where I' is the ionic transport number of the electrolyte and expresses the ratio of the
ionic conductivity with respect to the total conductivity, ' = o;/0, its value should
ideally be close to 1, i.e. conductivity is mostly ionic in nature, R is the ideal gas
constant, 71" is the operating temperature, F is the Faraday constant, p(O2)cathode and
P(0O2)anode refer to the oxygen partial pressure at the cathode and anode, respectively.
The EMF corresponds to the Open Circuit Voltage (OCV) when there is no external
circuit connected to the cell.

Figure 1.2 (a) shows the polarization (performance) curve for a typical electrochem-
ical power cell. The voltage drop (n) seen in the low I (current) region (i) includes the
contribution from the kinetics of the chemical reactions at the solid-gas interfaces [10].
The flat region (ii) is due to the cell resitance, which includes electrolyte resistance.
Region (iii) illustrates the voltage drop at high currents which is caused by depletion

of acceptor sites or mobile ions at an interface of the cell. Thus, a high value of o; in

1
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the low-o; side of the interface increases the power density by displacing region (iii) to
higher currents [10]. Thermodynamic stability of the electrolyte to reactions occurring
at the electrode/electrolyte and reactant/electrolyte interfaces is determined by the
relative positions of the energy levels of reactants and electrodes with respect to the
electrolyte’s band-gap (Ey). Figure 1.2 (b) shows that the Highest Occupied Molecular
Orbital (HOMO) of the reductant (fuel) should be below the energy of the electrolyte’s
conduction band (E.), while the Lowest Unoccupied Molecular Orbital (LUMO) of the
oxidant (oxygen) should be higher in energy than the valence band (E, of the elec-
trolyte. Similarly, for the Fermi energies (Ep) of the electrodes, where the Ep for the
anode should rise to the value of the HOMO of the reductant while that of the cathode
should fall to the level of the oxidant’s LUMO [10].

1.2.2 Electrolytes for SOFCs

An ideal electrolyte for SOFC applications should display high ionic conductivity while
also being an electronic insulator; this is necessary in order to avoid internal short cir-
cuits [11]. In addition, the electrolyte needs to be able to withstand the operational
temperature regimes as well as being chemically stable under the oxidizing conditions
of the cathode and the strongly reducing conditions of the anode. The total conduc-
tivity for these electrolytes is expressed in terms of the electronic (o) and ionic (o)
conductivities as o = 0; + 0.

For a given operational temperature the electrolyte of choice should have an Area
Specific Resistance (ASR = R- A = L/c) below 0.15 - ecm?, so that for an electrolyte
filn thickness (L) of 15 pm, the specific ionic conductivity (o;) should be higher than
1072S-cm™!. It must also be taken into account that ionic conductivity is a tensor
(vector) quantity so its value may vary with direction along a given grain axis, i.e.
0; is an anisotropic quantity. YSZ achieves this level of conductivity at temperatures
above 700°C, whilst doped-ceria electrolytes, such as that produced by Ceres Power,
[7] consisting of CeggGdy 10195 (CGO10) can achieve these conductivities at tempera-
tures higher than 500°C for films of 10-30um in thickness. The work presented in this
thesis examines the factors that affect ionic conductivity in Rare Earth (RE) doped
ceria (REDC) and its possible role as the electrolyte in SOFCs that operate at inter-
mediate temperatures (IT-SOFCs), i.e., 500 - 800°C. This lower working temperature
range means that standard stainless steel can be used for many of the balance-of-plant
components, thus bringing down production costs. Therefore, the optimization of elec-

trolytes for SOFCs must take into account ease of fabrication as well as the parameters
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Figure 1.2: (a) Performance curve for a typical electrochemical power cell. [10] (b)
Idealized (flat-band) band structure of a thermodynamically stable electrolyte. Note
that the reactant energies lie within the electrolyte “window” (E4 - band gap) [10].



1.2 Ionic conducting oxides

determining the ASR, i.e. the film should be as thin as possible (small L), yet strong

enough to be durable, with high O?~ conductivity and a large area [10].

The very low oxygen partial pressures (logiop(O2)~ -20) found at the fuel side
electrode (anode) of SOFCs have detrimental effects on ceria-based electrodes and the
electrolytes given the tendency for ceria to be reduced (Ce*t — Ce3t) under these

conditions: '
2CeE. + 06 € Vo + 502 + 90, (1.6)

& e ?

@

O L o &

o

Figure 1.3: Spin density in the vicinity of an oxygen vacancy (hollow red cube) illus-
trates the localization of an electron in the Ce 4f states for Cet (blue). Cet jons are
shown in beige and O?~ in red.

O

Where the Kroger-Vink symbols CeZ, + O indicate that both the Ce*t and 0?2~
are in their lattice sites, while V{j represents a vacancy in an oxygen position with a net
charge of +2 and Cec, indicates that a Ce>* cation is present in a Ce** lattice position,
with a net negative charge. The formation of Ce3* (see Figure 1.3), whose ionic radius
is larger than that of Ce®* (1.11 and 0.97 A, respectively), can lead to increased lattice
strain as well as increased electronic conductivity due to polaronic hopping of the 4f
electrons [11-17]. Increased dopant concentration enhances the reduction of cerium
ions for a given oxygen partial pressure. In some cases, the electronic conductivity can
be considerably higher than ionic conductivity [18], where the value for the latter is
7x1072Scm ™! at 1000°C for pure reduced ceria (CeO,_;) while the total conductivity
is 2.5x107! Sem ! at 1000°C. The lattice strain and relaxation caused by the forma-

tion of Ce** and additional anion vacancies due to doping can produce large stresses
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and structural failure at high temperatures [7, 19-22]. However, the principal moti-
vation for using ceria-based electrolytes is that they provide high oxide conductivities
at intermediate temperatures, thus if the operating temperature is maintained within
500-600 °C the problems associated with the reduction of Ce** can be averted, accord-

ing to studies by Steele [12] and Goodenough [10].

1.2.3 Thermodynamics of oxide ion mobility

The ionic conductivity (¢;) in ceria, and other materials, can be expressed by a classical

model as an Arrhenius-type equation:

E
g; = AO/’[W(%XI) <_kBaj> (17)

where E, represents the activation energy of oxygen vacancy diffusion, 7" is the tempera-
ture, kp is the Boltzman constant and Ag is the composition-dependent pre-exponential
factor [12, 23]. Materials with a low E, value are better ionic conductors at low temper-
ature regimes. One can divide E, into different component parts with a direct physical
meaning related to the lattice strain caused by the presence of defects and others which
account for interactions of the form cation-cation, cation-vacancy and vacancy-vacancy,
the effect of which depends on a balance between electostatic (charge-charge) and elas-
tic interactions [24]. In this way, the ionic conductivity in pure ceria is divided into

Ey, the vacancy formation energy and E,,, the migration barrier, so that:

B=5:+E, (1.8)

When ceria is doped with trivalent (aliovalent) cations, such as RE3*, oxygen va-
cancies form in order to counteract the charge imbalance. [25, 26] This process is

expressed in Kroger-Vink notation as follows:

RE;0; + 2Ce%, + OF — 2RE(, + V§ + 2Ce0, (1.9)

Equation (1.9) shows that one oxygen vacancy is formed for every two trivalent

metal cations. It would, therefore, be expected that the highest ionic conductivity for

8
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doped ceria should be observed when [V;;] = 0.5 in

0i = Ap/T[V5] (1 = [V5]) exp (—f;‘}) (1.10)

because this would maximize the number of charge carriers available. However, in prac-
tice it is observed that the peak in conductivity occurs at much lower concentrations,
whose value depends on the dopant used. It is the nature of the dopant which deter-
mines the extent to which the various components of E, affect the ionic conductivity
of doped ceria. In its simplest form, the dopant-vacancy interaction can be thought of
as that between two dopant cations with a single charge compensating vacancy (CCV)
(Equation 1.11), however at large dopant concentrations larger dopant-rich nano do-

mains are expected [27].

9REj, + Vi, — ((Ro.’Ce)va)x (1.11)

This association represents a barrier to migration in doped ceria and it is dependent
on the charge, size and geometry of the dopant cations. There is, therefore, a trade-off
between the increased number of oxygen vacancies formed by doping and the increased
migration barrier caused by the presence of dopants. This defect association has been
reported to be significant at temperatures up to 1000 K. [12] The detrimental effect of
cation-vacancy association is coupled to the presence of dopant-concentration depen-
dent resistivity at grain boundaries, thus making it necessary to separate the compo-
nents of the total ionic conductivity (o4 ) into lattice conductivity (o;.) and boundary
conductivity (oy.), which is, unfortunately, something omitted in some of the litera-
ture [28] and which leads to wide variation in optimal dopant concentration values
reported. Lattice and grain boundary contributions to ionic conductivity can be sepa-
rated through the use of impedance spectroscopy methods. The sintering temperature
at which the ceramics are fabricated will also affect the extent of dopant segregation,
and with it the ionic conductivity of the material. [12] Furthermore, the presence of
resistive grain boundaries may also have an effect on electronic conductivity and their
presence may obscure the full effect of co-dopants used when preparing new electrolyte

materials [12].

It has been reported, that at temperatures up to 1000K, a plot of ¢7" Vs 1/T

should be curved, i.e. it displays two different slopes, because the effective vacancy



1. INTRODUCTION

concentration in the lower temperature regime ([V]) is lower than expected for a
given composition of the systems Ce;_,RE;Oy_, /5 due to cation-vacancy and vacancy-
vacancy association [12], while in the high temperature regime, these clusters become

separated.

1.2.4 Three Way Catalysts

The advent of tighter regulations on the emissions from motor vehicles has spurred
a great deal of interest in the development of catalytic materials. Ceria-zirconia solid
solutions (CZO) constitute integral components of Three Way Catalysts (TWC), which
are used to treat exhaust fumes [29, 30]. TWCs convert CO, NOy and hydrocarbon
(HC) gases into the less harmful CO,, Ny and H,0O according to the following redox

reactions [31]:

CO + HyO = COp + Hy (1.12)

200 + 0y = 200, (1.13)

CuHanya + (3“ 1) 0 <50, el DIt (1.14)
H, + Oy — 2H,0 (1.15)

INO, = Ny + 20, (1.16)

2C0 + 2NO — Ny + 2CO, (1.17)

A stoichiometric air-to-fuel ratio is required for optimal conversion, but variations
can be compensated by the use of oxygen storage materials (OSM) which act as oxygen
buffers. Keeping the ratio of air to fuel within a narrow band (between 14.6:1 and
14.8:1 air:fuel) allows the metal catalyst to work at high levels of efficiency. Under
operating conditions CZO releases oxygen in fuel-rich conditions through the reduction
mechanism indicated in Equation 1.6, while in fuel-lean conditions the reverse takes

place and the cerium cations are re-oxidized with the subsequent absorption of oxygen.

10
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The construction of a typical monolithic TWC is depicted in Figure 1.4 [31]. In this
device the exhaust gases pass through a ceramic material, which takes the form of a
honeycomb-like structure in order to maximize its surface area. This ceramic block
is covered with a thin coating of platinum, palladium, or rhodium and mounted on
a stainless steel casing that is attached to the exhaust manifold. Given its role in
TWCs, it is crucial that the processes of CZO reduction/oxidation occur rapidly as
well as reversibly and, that oxygen be efficiently transported between the surface and
the bulk, which means that the material should possess a fast ionic conductivity of this

material.

HC
Co
NO,

Figure 1.4: Schematic of a monolithic three-way catalyst [31].

1.3 Transparent Conducting Oxides

Transparent conducting oxides (TCOs) are compounds which combine the normally
mutually exclusive properties of transparency and conductivity. Most highly trans-
parent materials, such as glass, behave as insulators with high electrical resistivities

of > 10 cm, whereas materials with low resistivities (107* — 1077 Qcm), such as

11
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metals, do not transmit visible light. The combination of both properties in a single
material is thus quite an unusual phenomenon and TCOs have proved indispensable
in the development of optoelectronic devices such as solar cells, flat panel displays and
light emitting diodes [32-35]. In practice, the combination of high conductivities and
optical transparency entails some level of compromise. For example, the current indus-
try standard n-type TCO is InyO3:Sn (ITO) which usually demonstrates conductivities
of ~ 10*Sem ™!, whilst retaining > 90 % transparency [36, 37), however, ITO has some
drawbacks in that it displays significant absorption in the blue green region of the
visible spectrum and corrosion in organic light-emitting diode (OLED) devices, which
are gaining in popularity in the optoelectronics market. The overwhelming demand for
ITO, coupled with the low abundance of indinm within the earth’s crust have made
indium an increasingly expensive commodity, which has led to a large research drive to
replace ITO as the industry standard TCO [38]. The focus of the TCO work presented
here is CdO. Interest in the properties of this material can be dated back as far as

1907, when Badeker first studied its thermoelectric properties [39].

1.3.1 Electronic structure requirements

Figure 1.5 illustrates the band structure of an idealized TCO [40]. The introduction
of a deep impurity band (yellow) in the bandgap of an insulating material helps to
keep intense interband transitions from the valence band (blue) to the impurity band,
represented by A, and, similarly for transitions from the impurity band to the con-
duction band (red), represented by A.. This requires the band gap of a host material
to be more than 6.2 eV, i.e. Ay, = A, = 3.1 eV for transparency in the visible range.
Furthermore, the impurity band should be narrow enough (less than 1.8 ¢V) to keep
intraband transitions (as well as the plasma frequency) below the visible range [40].
Alternatively, the second conduction band (CBM+1) should be separated from the
CBM by greater than 3.1¢V [41]. This large CBM-CBM+1 separation ensures that
any donor electrons in the conduction band are not excited by visible light to the next
conduction band, and therefore ensures optical transparency, which is vital for device
performance. In the case of p-type TCOs, absorption must not occur from bands within

~ 3.1eV of the VBM to the hole states near the VBM [42, 43].

12
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- J___-]--EF

Figure 1.5: Idealized (flat-band) band structure of an ideal TCO (E4 - band gap) [40].
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Figure 1.6: Schematic representation of a solar cell.

13



1. INTRODUCTION

1.3.2 Transparent p-n junctions

A p-n junction refers to an interface between two regions in a semiconducting material,
one that is doped n-type (excess electrons) and another which is doped p-type (electron
holes). At these boundaries electrons may pass from the n-type side to the p-type, while
holes flow in the opposite direction. These junctions are the basic building blocks of
the majority of semiconductor devices, such as, transistors, diodes, integrated circuits,
etc. The growing importance of optoelectronic devices over the last decade has meant
that a great deal of research is currently devoted to the development of p —n junctions
made from TCO materials. While n-type TCO materials can be readily produced, as
was the case for CdO in 1907, the synthesis of p-type TCO counterparts has proved
more difficult. In wide band gap oxides, the top of the valence band is predominately
composed of oxygen 2p states [44]. However, the introduction of positive holes in the
valence band edge has little effect on the hole conductivity given that the holes are
trapped by nearby oxygens, which prevents their migration. This restricts traditional
p-type doping approaches [45]. Nevertheless, oxides where the metal possesses a closed
shell valence electronic configuration of similar energy to that of oxygen can provide a
solution. Interaction between the electronic states of the metal and oxygen result in
covalent states at the top of the valence band. This can provide the dispersion required
for the effective transport of positive holes. Metals with complete d shells such as Cu
and Ag are well suited for this purpose [43, 46, 47]. One possible application of these
transparent semiconductors would be a solar cell as shown in Figure 1.6 [48]. This
basic scheme shows how sunlight is absorbed upon impacting a thin semiconducting
layer. This leads to electron loss from the semiconducting material, with subsequent
flow to produce electricity. The most efficient solar cells on the market are based on
silicon, which elevates the production costs, and are usually designed around a p —n
junction scheme, which allows current flow in only one direction. CdTe, GaAs and
SnS are among the candidate thin film materials suggested as possible replacements
for silicon [49]. CdO with its metallic-like conductivities could also serve as a possible
candidate, however these efforts have been hampered thus far by the fact that no p-type

CdO has been observed.
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1.4 Thesis Outline

The work presented here is divided into two broad categories. Firstly, the study of
ionic conductivity in ceria-based electrolytes by detailed analysis of defect interactions
and the application of strain to thin slabs of the material. Secondly, a detailed analysis
of the intrinsic defects in cadmium oxide, the case of adventitious H-doping, as well
as, the study of a number of single electron donors from groups 3, 13 and 17. This
Chapter provided the motivation and background to study these materials.

Chapter 2 introduces the underlying theory to be used throughout this work. It
follows the broad categories enumerated above in the sense that Interaction Potentials
(IP) were the main tool for the study of ionic conductivity in doped ceria, while the
the ab initio methods were used in the treatment of defects in CdO. Chapter 3 presents
the concepts in solid state physics/chemistry that are basic to this work, as well as,
the simulation techniques that allow the implementation of the theory from Chapter
2,

Yttrium-doped ceria (YDC) is the first ionic conductor considered in this work. A
thorough study of the factors that determine its conductivity is presented in Chapter
4 using simulations and experimental data from our collaborators Dr. Steve Hull and
Dr. Stefan Norberg. In addition, the concept of an ideal dopant radius is formulated,
as well as, the consequences of doping ceria with one such ideal cation. This chapter
also introduces the method of potential fitting that is used to generate IPs from ab
initto simulations.

Chemical optimization of ceria’s ionic conductivity is carried forward to Chapter 4
where a self-consistent IP is used to study the effect of doping ceria with more than
one dopant species. The study of ionic conductivity is concluded with an investigation
of how this property is affected by elastic strain.

Chapter 7 is devoted to the ab initio study of the changes in the electronic structure
of CdO that result from defects, as well as, their associated formation energies. These
results, are then used to make predictions about the likelihood of producing p-type
CdO, as well as the determination of the optimal dopant species from a variety of

aliovalent cations and an anion, F.
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Calculation of the energies of

microscopic systems

2.1 Intoduction

The chief aim of this thesis is to make use of computer simulation techniques in order to
gain a deep understanding of the factors that determine the properties of metal oxides.
This chapter details the theories underlying the two branches of simulation employed
throughout this work. Section 2.2 introduces the concepts behind Quantum Mechanical
(QM) or ab inatio simulations, while Section 2.3 is concerned with Interaction Potential
(IP) simulations.

The principal differentiating factor between these two levels of theory is the way
in which electrons are represented. In the case of QM simulations, the electronic
wave function is modelled directly by solving the Schrodinger equation. This is in
contrast to IP simulations, where the electrons are not considered explicitly; rather,
it is their resulting attractive and repulsive interactions which are taken into account.
This intrinsic distinction between QM and IP methods has important ramifications for
the kinds of problems and the answers that can be accessed by using either technique.
For instance, IP simulations are less computer intensive than QM, and thus can be
performed on much larger systems; however, IPs are not typically able to account for

instances where electronic redistribution occurs.
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2.2 Quantum mechanical techniques

2.2.1 Schrodinger Equation

In its time-independent form, the Schrodinger equation (Equation 2.1) provides in-
formation about the stationary states (standing waves) of a quantumn system [50-52].
Such states are more commonly known as orbitals in atomic or molecular systems and
their properties underpin most of what is known about interatomic interactions. This
relationship takes the form of a partial differential eigenvalue equation, where E corre-
sponds to the total energy (eigenvalue), W is the wave function (eigenvector) and H is

the Hamiltonian operator (second-order differential operator):

HU = EV (2.1)

The Hamiltonian consists of kinetic and potential energy operators as shown below:

- -ty +V(r) (2.2)
2m
and o2 p 5
2 e I .
V2 = (aﬂ taat 822> (2.3)

where A = % V2 is the Laplacian (Equation 2.3) and V(r) is the configuration-
dependent potential energy operator. The wave function obtained from the Schrodinger
equation completely describes a quantum system, and thus is fundamental to quantum
theory. But despite this central role, it is typically conceived of as an abstract concept
with no explicit definition or physical meaning, and although several interpretations
exist, it is the Born interpretation of the wave function that is most prevalent in
quantum chemistry [53]. This interpretation postulates that ¥? is to be understood
as a probability distribution of the particle to which it corresponds. A consequence of
this interpretation is that:

/‘I/*\I/dT =1 (2.4)

In this case ¥* is the complex conjugate of the wave function and d7 indicates in-
tegration over all space. Wave functions which satisfy Equation 2.4 are said to be

normalized. Solutions to the Schrodinger equation are also typically required to be
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orthogonal:

/\I':n\IJndT =0 {m#£n) (2.5)

The orthonormality (orthogonality and normality) of wave functions is conveniently

expressed using Kronecker delta notation:
/\Il:n\IlndT =i (2.6)

where

i 0. iftm=<n
Omn = o # (27)
1 - itm=n

The crux of the vast majority of quantum chemical methods involves finding solu-
tions to the Schrodinger equation. The various levels of theory available are differenti-
ated from one another by the assumptions and approximations inherent to each. The
next sections outline the reasons why these approximations are necessary and introduce

some of the most important ones for the purpose of computer simulation.

2.2.2 The Born-Oppenheimer Approximation

The Schrodinger equation can be solved exactly, in terms of an analytical expression,
for only a few cases, such as the particle in a box, the harmonic oscillator, the particle
on a ring, the particle on a sphere and the hydrogen atom [50, 51]. Common to
these examples are the boundary conditions imposed on the solutions and the fact
that these systems are composed of at most two interacting particles, as in the case of
the hydrogen atom. To understand why more complex systems require approximate
solutions to the Schrodinger equation it is necessary to first consider the kinetic (.i)
and potential energy (V) terms that are associated with the nuclei (n) and electrons

(e) of the system, as shown below:

ﬁ:,‘n_*‘ nn+”c+ ne T Vee (28)
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where the suffixes A, B, C... refer to nuclei, while i, j, k... correspond electrons, Z refers
to the nuclear charge and M is the mass. The first term in Equations 2.8 and 2.9 is
usually exluded from calculations in what is known as the Born-Oppenheimer (BO)
approximation, which attempts to decouple the wave function of a system into nuclear

and electronic degrees of freedom:

\IjTota[ = WYp X we (21())

Justification for Equation 2.10 comes from the large mass disparity between elec-
trons and nuclei, which means that the electronic wave function (¥.) depends only on
the positions of the much heavier nuclei and not their momenta. In practice this means
that the electrons are assumed to be under a constant nuclear potential formed by a
fixed atomic configuration (Vnn) and any changes to it can be accommodated rapidly
by the electrons. This approximation greatly simplifies the process of obtaining the
total energy of a system, because terms like the kinetic energy of the nuclei (ln) can
be completely excluded from the calculation, while V,, need only be updated when
there are changes to the geometry, and thus forms part of the external potential of
fixed nuclear charges acting on the system of electrons. Therefore, the Hamiltonian

becomes:

H =T, + Vert (Rat) + Ve (2.11)
Here, V is the external potential imposed by the nuclear positions (R4) on a system
of N electrons. Despite the simplification achieved by applying this approximation,
the many-body nature of the problem still remains. In particular, the quantum cor-
relations that give rise to the electron-electron interactions (V..) are not addressed
by the BO description of the system. It is, therefore, necessary to introduce further

approximations that deal with this problem directly or indirectly.

2.2.3 Hartree self-consistent-field

According to Hartree’s self-consistent-field (SCF) model, the motion of each electron in
the effective field of the other N —1 electrons in the system is governed by a one-particle
Schrodinger equation.  Self-consistency of the electronic charge distribution with its
own electrostatic field leads to a set of coupled integro-differential equations (Hartree

equations) for N one-particle wave functions. The resulting total wave function for the
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system takes the form of a product of these one-electron wave functions:

¥ (z1, ..., 2N8) = Xi(z1)x5(x2) XK(23).... XN (TN) (2.12)

where N is the number of electrons. This expression is typically known as the Hartree
product (HP), where the terms such as x;(z;) signify occupancy of spin orbital x; by

electron 1. The system energy from this wave function is given by:
(OIH| W) =€¢;+¢j+ex+.kn=E (2.13)

In practice, the exact wave function is unknown due to the many-body nature of the
problem; hence, the variational principle is introduced in order to compare trial wave
functions (V7). This theorem states that the energy obtained from a given Wr is always

greater than or equal to the true ground state energy:

(Up| H |U7) = Er > Ey = (Uo| H o) (2.14)

By this prescription it is necessary to iteratively improve the trial wave function.

2.2.4 Hartree-Fock Approximation

When written in the from given in Equation 2.12 the wave function does not satisfy
the antisymmetry principle of Pauli which requires the sign of the wave function to be

inverted when the coordinates of two electrons are interchanged:
W (21, D9seers Bae ) = =W (00, B0y T (2.15)

This problem was addressed by Slater [54], who expressed the wave function not as a

simple product, but as a determinant of an orbital matrix:

xi(z1) xj(z1) ... xn(z1)

1 | xi(z2) xj(z2) - xn(z2)
VNI| : : :

xi(zn) xjlzn) ... xn(zw)

(2.16)

Interchanging electron coordinates is equivalent to swapping two rows of the determi-

nant, which causes the sign to be inverted, as required. Within this approximation
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each electron experiences a slightly different potential field, which is obtained from a
mean field representation of the electrostatic charges of the system, both positive and

negative. In HF, the Hamiltonian is replaced by the Fock operator (f):

N
fi) = Aem) + 3 {00 - K0 (2.17)
j=1
where the label (1) indicates that the operator is one-electron in nature. The motion

of a single electron moving in the field generated by bare nuclei is represented by H"®:

M
A 1 Za
Hcore 1 =k __v2+ “A

(1)=-35V &

A=1

(2.18)
By applying relationship in Equation 2.17 the Schrodinger equation now becomes:

fi(Dxi = &xi (2.19)
The interelectron interactions of the system are accounted for by two additional
operators, the first of which is the Coulomb operator (J}(l)). which describes the

average potential due to an electron in x;:

J;(1) = /dfzxj(z)rimxj(z) (2.20)

The exchange operator (K;(1)) is a quantum mechanical effect that arises from the
Pauli exclusion principle, which requires that the wave functions of electrons be anti-

symmetric. It is defined with respect to its effect on the spin orbital y;:

. 1
R0 = | [ draxs@ @) (0 (221)
this term is only non-zero for electrons of the same spin, in which case K i(1)xi(1) is a
negative term that lowers the total energy of the system. This is the most computa-

tionally intensive part of a HF calculation in practical applications.
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2.2.5 Roothan-Hall Equations

Direct solution of the Hartree-Fock equations for complex systems, like molecules, is
not practical because of their integro-differential form [51]. Instead, common imple-
mentations express them as matrices, which are more amenable to computation. In this
approach each spin orbital is represented as a Linear Combination of Atomic Orbitals

(LCAO):

K
Xi=) Cudy (2.22)

where ¢, represents the one-electron orbitals typically referred to as basis functions,
while ¢,; corresponds to the respective coefficient associated with each one of these
orbitals. The Roothan-Hall approach incorporates these orbitals into a secular equation
as follows:

FC = SCE (2.23)

The F term corresponds to the K x K square Fock matrix whose elements correspond
to the Fock operators for each electron from Equation 2.17. S is the overlap matrix
that describes the interactions between the elements of basis set. C is another K x K

matrix and it contains the orbital coefficients ¢, i:

i1 Ci2 ... CIK
C21 C22 ... COK

€ = ) i ) ) (2.24)
Ck1 Ck2 -.- CKK

while the diagonal matrix E contains the orbital energies:

€1 (TS 0
06 .t 'S0

- : (2.25)
0. .0 €K

2.2.6 Hartree-Fock limitations

The HF method was developed shortly after the introduction of the Schrodinger equa-
tion and, from this time onward it positioned itself as one of the most important

techniques available to quantum chemists. It performs well at predicting physical
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properties, such as equilibrium interatomic distances, bond angles and total energies.
However, HF suffers from significant limitations that are related to the fashion in the
wave function is described, i.e. by means of a mean-field expressed as a single Slater
determinant. This treatment of the wave function neglects instantaneous correlations
between the electrons. Thus, contrary to predictions from HF, the probability of find-
ing two of these charged particles close to each other in a real system is lower than
would be expected from their overall density. In quantifying the HF error, Lowdin [55]
introduced the concept of correlation energy, which is defined as the difference between

the true energy of the system and the HF energy:
Ec = Ey — Eyr (2.26)

where Eg is the correlation energy, Ej is the exact energy and Eyp is the HF energy.
Note that this definition uses the variational principle to define the error, see Equation
2.14. By further decomposing this effect it is possible to identify two types of correla-
tion, namely dynamical and non-dynamical correlation. The case of dynamical corre-
lation refers to the way in which the actual motion of electrons affects others in their
vicinity. This means that HF is unsuited for the simulation of systems with delocalized
states such as metals, and in the case of metallic states, HF is unable to account for the
Coulombic screening that results from delocalized electrons. Non-dynamical (static)
correlation occurs in systems where the ground state is only described by more than one
degenerate determinant and can be accounted for by the inclusion of a small number
of excited states close to the highest occupied molecular orbital. Neglecting correlation
leads to physically incorrect results, especially close to the dissociation limit, where,
for example HF predicts that the electrons in a Ho molecule would spend equal time
on both nuclei, even after the atoms have been fully separated.

Despite accounting for only ~0.1% of the total energy, the Ec has a significant
impact on the energetics of HF simulations, because this value is similar in magnitude
to total energy differences, hence large errors are expected from calculations of cases
where electrons are redistributed, i.e. reaction energies and binding energies.

For the purposes of this thesis it is worth noting that HF scales nominally as N4,
where N is the number of basis functions, and although implemented for calculations on
periodic systems like those reported throughout this work, it is seldom used nowadays
due to its inherent inadequacies. Post-HF methods aim at accounting for electron

correlation in a variety of ways. For example, Configuration Interaction (CI) expresses
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the many body wave function as a linear combination of determinants, starting with a
reference HE wave function and adding several excited states, all of which are weighted
by coefficients. Another post-HF method is the Mgller-Plesset (MP) perturbation
theory, which adds electronic correlation to the HF wave function in the form of small
perturbations to the Hamiltonian. These post-HF methods are, however, much more
computationally expensive than standard HF, of scaling N° and higher depending
on the level of theory chosen. This limits their applicability to only small systems,
although, increased computer power could change this in the future. In the interim,
researchers have sought different methods for the simulation of periodic supercells that
are sufficiently large to simulate defects in a realistic manner. One such method is

density functional theory, which is the subject of the next section.

2.2.7 Density Functional Theory

The method of Density Functional Theory (DFT) hinges upon the relationship between
the electron density of a system and its corresponding energy. This representation has
an advantage over HF (see Section 2.2.4) in that the electron density function (p(r))
used in DFT is an observable that is always 3-dimensional, unlike the complex 3N-
dimensional wave functions of HF, where N is the number of electrons. The quantum
chemical framework of DFT relevant to this thesis starts with the work by Hohenberg
and Kohn [56], who in 1964 derived the theorems that describe the dependence of the
total energy on the electron density. They proved that the ground state energy of a

system can be written as a functional of the ground state density, po(r):

EO [,00(1')] =T [pO(r)] + Eee [Po(l‘)] + ENe [p0(r)] (227)

where r is the position vector upon which the electronic density depends, 7' [p(r)]
is the kinetic energy, F. [p(r)] corresponds to the electron-electron interactions and
Ene [p(r)] represents the interactions between nuclei and electrons. In addition, Ho-
henberg and Kohn showed the existence of a unique ground state electron density and
defined the universal density functional, which if known, would contain the information
necessary to determine all the ground state properties of a system.

This work was closely followed by that of Kohn and Sham [57], who provided a
solution to the Schrodinger equation by writing the theorems that underliec DFT as
equations resembling those of HE. In their prescription of DFT, Kohn and Sham (KS)

made use of the fact that the electron density is given by the square of the wave
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function under the Born interpretation (see Equation 2.4), thus, effectively providing
a link between the HEF wave function and the method of DFT. They showed that it is
possible to devise a fictitious non-interacting system of electrons (uniform electron gas)
generated from a HF wave function and which is assumed to have the same density as

the fully interacting electron system:
sz(I') = Z |X%(S(r)‘ - pezact(r) (2'28)

Kohn and Sham introduced the wave function in their definition of DFT, because pre-
vious attempts by Thomas-Fermi, Dirac and Slater [58] had failed to properly account
for the electronic kinetic energy. Hence, Ts [p(r)] corresponds to the kinetic energy
from non-interacting electrons which requires a correction (7¢ [p(r)]) to account for

electron-electron interactions:
T [p(r)] — Ts[p(r)] + Tc [p(r)] (2.29)

where

Ts ()] = ~3 3 (6l V7 o) (2.30)

1
In DFT the kinetic and electron-electron terms can be condensed into the Hohenberg-

Kohn universal functional, F' [p(r)] as follows:

Elp(x)) = Fplo)] + [ p0)Vec (o) (231)

The term universal means that it is system independent, in contrast to the integral
on the right hand side of Equation 2.31 which corresponds to the system dependent
interaction between the electron density and the external potential created by the nuclei
and/or an external field. From this equation it is clear that if the ground state electron
density (po(r)) is known, then minimization of this relationship will yield the ground
state electronic energy, provided there is an expression for the HK universal functional.
Thus, similarly to HF, the vatiational principle is applied in DFT because neither the
true ground state energy nor the form of the universal density functional are unknown.

To gain further insight into why this is the case it is first necessary to reexamine the
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components of F'[p(r)]:

Fp(r)] = Ts [p(r)] + J [o(r)] + Exc [p(r)] (2.32)

The term J [p(r)] in Equation 2.32 corresponds to the classical Coulomb interaction:

N N
1 1
Tl =53 / / bxil - sl drdr, (2:33)
5 g :

while the remaining non-classical (NC) parts of the electron-electron interaction, ex-
change and correlation, are now accounted for explicitly by Ex¢ [p(r)], which is known

as the exchange-correlation energy:

Exc [p(x)] = (T[p(r)] = Tks [p(r)]) + (Eee [p(x)] = J [p(r))) (2.34)
T [p(e)) + Exc [o(e) i

Having defined the energy in terms of the electron density calculated using the wave
function, it is now possible to apply the variational principle. This calculation results
in the set of orbitals, y;, which minimize the energy, subject to the constraint that
these orbitals are orthonormal (see Equation 2.6). Having defined all the components
of the DFT energy it is now possible to express the equations that describe how a

potential acts on the wave functions to produce the eigenvalues and eigenvectors:

1 [ (r) Mo,
(“‘QVZ + / P dl‘z + VXC (I‘) + E —4:|> Xi — € Xi (23:))
A

[ rio —~ T14

which is condensed to:

1
(—§V2 + Vegs (1‘)> Xi = €iXi (2.36)

These equations define the KS operator, which like that used in HF (see Equation 2.17),
is one electron in nature . Figure 2.1 illustrates the various steps in the SCF loop of DF'T
calculations. The diagram depicts how an initial electron density is used to determine
the effective potential, Vs, which acts upon it. This procedure, therefore, requires
an iterative approach for its solution because, as the diagram shows, the improved
orbitals from subsequent iterations will serve to also improve their own description of
Vess- Although similar in many respects to HE, DFT offers the advantage of being

able to. at least in theory, fully account for electronic interactions provided there exists
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an exact term for Vxe (r). In practice, rather than having the exact exchange and
zero correlation of HF, the various versions of the V¢ (r) that are available for DFT
incorporate varying amounts of both exchange and correlation. The significance of

these exchange-correlation functionals is further expanded upon in the next section.

Initial charge density
and wave function

> [('(mslruct KS matrix]
[l)mg)onahzo KS m(llll\J

NO

New charge density
and wave function

‘.

Calculate forces and
update ionic positions

Figure 2.1: Schematic representation of the self-consistent field (SCF) loop used in
DFT calculations.

2.2.8 Exchange-Correlation functional

By now it has been shown that DFT depends on an accurate description of the elec-
tronic density of the system under study in order to compute its energy and other
properties. The development of this theory presented in Section 2.2.7 illustrated how

KS DFT separates the components of the effective potential that acts on the elec-
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trons; namely, those related to Coulombic intearactions of the kind electron-electron
and electron-nuclei, while corrections to the electronic kinetic energies and the non-
classical (quantum) effects of electron self interaction, exchange and correlation are
grouped into a single functional, Vxc (r), whose actual form is unknown [58]. That is,
Vxc (r) accounts for the many-body interactions between electrons, and is given by the

functional derivative of Exc with respect to the electron density p:

1o e
dp

Vie = (2.37)

The majority of XC functionals are based on a hypothetical uniform electron gas,
where the electrons are acted upon by a positive background charge distribution which
balances out their total charge [58]. In this model both the number of electrons (N)
and the system volume (V') approach infinity, while the density (p) is constant, thus
N — oo, V. = oo, N/V = p. This representation is reminiscent of metals, however
it does not account for the rapidly varying electron densities of atoms and molecules.
Nonetheless, the homogeneous electron gas is the starting point of most XC functionals
because it is the only system for which there already exist such functionals in exact or
very accurate forms. The central assumption in this case is that Exc can be written

as follows

B ] = / i) el e (2.38)

where the term exc (p(r)) corresponds to the exchange-correlation energy per particle
of a uniform electron gas of density p(r). In this case the density also acts as a
weigliting factor, representing the probability that there is an electron at a given point
in space. This constitutes the definition of the Local Density Approximation (LDA),
which is one of the commonly used DFT functionals. Decoupling the exchange and

correlation parts of exc yields:

exc (p(r)) = ex (p(r)) +ec(p(r)) (2.39)

where the exchange part has an analytical expression known as Slater exchange:

ex (p(r) = =7\ — (2.40)

In view of the lack of such an explicit form for the correlation part e, Ceperley and

Alder [59] used highly accurate numerical quantum Monte-Carlo (MC) simulations of
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the homogeneous electron gas with different densities and subtracted ex (p (r)) from
the total energies to yield ec. This work was followed by that of Vosko et al. [60], who
used sophisticated interpolation schemes for this data to derive analytical expressions
of ec. Further work on this approach lead Perdew and Wang in 1992 to derive what is
now the more commonly used version of this type of functional [61].

In the case of LDA, the biggest approximation made is the assumption that Exc [r]
depends only on the density at point r and does not take into account changes in its
local environment. This means that better approximations must be used for systems
where the electron density varies rapidly. As a result, the first step in the improvement
of this description starts with the expression of the exchange-correlation energy in

terms of not only the local density, but also its derivatives:

Exclr] = / (p(r),Vp(r).V?p(r),..) exc (r) dr (2.41)

Hence, corrections to LDA can be included in the form of the gradient, Vp(r),
and the resulting functionals are known as the Generalized Gradient Approximation
(GGA). By including this term, GGA functionals achieve more flexibility and accuracy
than LDA at determining the electronic structure and of molecules and solids. Over
the course of GGA functional development there emerged two broad families that
differ in how the functional form was parameterized. Becke’'s 1988 exchange-correlation
functionals (B88) [62] as well as that from Lee et al. (LYP) [63] utilize data from
molecules and atoms from the first row of the periodic table; a fact that makes them
inappropriate for simulation of heavier elements. The second family of GGA functionals
comprises those for which there are no fitted parameters, which includes that by Perdew
and Wang (PW91) [61, 64] and the one by Perdew, Burke and Ernzerhof (PBE)[65].
The latter two, and in particular PBE, are the most common exchange-correlation

functionals in use for solid state simulations.

2.2.9 LDA/GGA limitations

DFT simulations have become an indispensable tool for the study of solid state systems.
This is despite the limitations inherent from the approximations made in the widely
used LDA and GGA functionals. As outlined in the previous section, these approxi-
mations relate to the way in which electron-electron interactions are represented. The
first of these inherent problems becomes apparent upon examination of Equation 2.33,

where the Coulombic term (J [p(r)]) includes a spurious interaction of an electron with
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itself that is not present in the HF definition. This Self Interaction Error (SIE) mani-
fests itself in systems that contain highly localized orbitals where the electrons are in
close proximity to each other, e.g. d- and f-orbitals and results in electron delocaliza-
tion in order to minimize this self interaction. In the case of semiconductors/insulators
with such electrons, standard DFT functionals like LDA and GGA delocalize these
electron (or hole) states over many atoms, often predicting metallic behaviour, rather
than activated deep levels. This is typically encountered when the simulated band
structures predict metallic properties for systems that are known to be semiconduc-
tors. This inherent “band gap problem” is due to a discontinuity that occurs even in
the exact exchange-correlation functional [66].

In addition, there is no systematic way for improving the current XC functionals
in use. This is in contrast to HF where addition of more determinants or inclusion of
excited levels are guaranteed to reach the exact wave function of the one-electron basis
set used. The closest analogue to this in DFT is the inclusion of more derivatives of

the density, as shown in Equation 2.41.

2.2.10 The DFT+U approach

The DET+U method was developed in order to correct the SIE inherent in standard
functionals. This problem arises from the use of approximate amounts of electronic
exchange which only partially cancel the interactions between electrons on the same
atomic centre (on-site interactions). The DFT4+U method treats only the specific on-
site interactions of electrons with a quantum number [ by means of a parameterized
Hamiltonian. The rotationally invariant form put forward by Dudarev [67] is shown

below:

U-J
Eprri+v = Eppr + ] Z (Mo = Mfmo) (2.42)

am

where 1y, is the occupation number of an orbital [ with quantum magnetic num-
ber m and a spin of o. The parameters U and J correspond to the average Coulomb
and exchange interactions between electrons of the same angular momentum on the
same atom. What this implies is that the +U correction acts as an energetic penalty
to partial orbital occupancy, i.e. the correction is zero when n = Oorl and non-zero
when there is fractional occupation, as illustrated in Figure 2.2.

Given its small impact on computer time performance with respect to standard

LDA/GGA, the DFT+U method has become a very popular way to correct the SIE,
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— [LDA
- == exact

—— LDA+U correction

Total Energy

N-1 N N-+1 N+2
Number of electrons

Figure 2.2: Sketch of the total energy profile as a function of number of electrons in
a generic atomic system in contact with a reservoir. The bottom curve is simply the
difference between the other two (the LDA energy and the exact result for an open
system). [68]

e.g. d-electrons in transition metals. Its biggest drawback, however, is the fact that
the +U term is a fitted parameter and there is not a clear formalism for determining
its true value, although first principles derivations have been put forward [68]. Finding
a single value of this parameter is also made difficult by the fact that it is geometry
dependent, which represents problems when simulating systems of low symmetry like
defects and surfaces [69]; thus potentially it is necessary to have different +U values
for these inequivalent sites and they could vary during large structural relaxations. In
addition, DFT+U should not be used to solve problems that are not fully caused by
the SIE such as the band gap error. For example, fitting the U parameter to reproduce
experimental band gaps rather than to localize polaronic defects can lead to artificially
high values which completely distort the nature of defect states [70]. In practice, the
preferred approach is to fit the U value to the relative position of the defect state in the
band gap obtained from experiments like XPS and UPS. This has been successfully

applied to the oxides of metals with highly correlated electrons, such as V5,05 [70],
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TiO, [71] and also CeO, [72].

2.2.11 Hybrid DFT

Hybrid DFT (h-DFT) methods represent another approach for correcting the SIE men-
tioned above by mixing DFT with HF. This is justified by the fact that HF does not
suffer from SIE given that its exact exchange completely cancels this spurious effect,
and also the fact that HF lacks correlation. In essence the shortcomings of both meth-
ods are complementary to each other and as a result, a mixed approach should reduce
the SIE and give rise to better Exc [r] functionals. In practice this combination is

achieved by means of a linear combination of HF exchange and the DFT functional:

Exc = aE¥F + (1 - a) EQET (2.43)

where a controls the amouut of HF exchange included in the calculation aud is typically
fitted to reproduce experimental data. More sofisticated methods like PBEO have
been developed and have been shown to work well for metals and semiconductors [73].
This functional combines 25% HF exchange with 75% PBE exhange and 100% PBE

correlation, with these values deriving from perturbation theory [74]:

Exe™ = }1 X+ -ZEiBE + Eg™™ (2.44)
However, this type of h-DFT is very computationally expensive in a plane wave for-
malism caused by the slow decay of the exchange interaction in real space. Hence, to
solve this problem it is necessary to partition the exchange interaction into long range
(LR) and short range (SR) parts [75], wchich is the case in the functional by Heyd,
Scuseria and Ernzerhof known as HSE06, where 25% of non-local HE exchange is added
to PBE, although this value is regarded as empirical by some [76]. A screening value

w = 0.11 bohr~! is applied to partition the Coulomb potential:

EHSE06 () — E;?SEOG.SR n E)l:BE.LR + ERBE (2.45)
where
1 3
EHSESSR _ ZE]\gF.SR n ZE‘EBE.SR (2.46)
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It is worth noting that setting w = 0.00 bohr~! is equivalent to PBE0, while w = oc

bohr~! corresponds to the PBE functional.

2.3 Interaction potential techniques

The preceding discussion in Section 2.2 detailed the fundamental aspects of the the-
ories that underlie a family of simulations known as first-principles or ab initio. In
contrast to those approaches, potential-based methods do not consider electrons in
an explicit manner, but rather, they model the attractions and repulsions between
atoms by means of parameterized analytical functions. This crucial difference makes
potential-based approaches capable of modelling much larger systems due to their re-
duced computational expense. The general form of the interaction potentials used to
study ions in the solid state is derived from the Born model [77], which separates the
interactions between the various species into interactions among pairs of ions, triplets,

quadruplets, etc:

n n n
U(FI;?E_”,‘") = Z (I)Q(rl']') -+ Z (I>3(r,-]-k) == Z (1)4(_rijk1) = (247)
ij ijk ijkl

However, in practice the representation of these interactions requires truncation in order
to remain computationally tractable. This gives rise to the most common type of po-
tentials where interactions are considered up to the pair-wise level, though many-body
character is achieved through the inclusion of effects like polarization and dispersion.
In this way, most interaction potentials used nowadays are composed of separate ele-
ments that represent Coulombic interactions, repulsion interactions in the short-range,

dispersion and polarization:
UTot o UCoulomb Ex URep + UDisp ES UPol (248)

The following discussion illustrates how a detailed consideration of the environmental
effects present in ionic systems can lead to a rationalized approach to the development
of potentials for ionic materials which account for the components listed in Equation

2.48.
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2.3.1 Long-range interactions

Coulomb interaction

Interactions are classified into long-range or short-range depending on how rapidly the
expressions that are used to represent them decay with distance. In the case of inverse
power laws, r~", those where n < 3 are generally deemed to be long-range in character.

This is the case of the Coulombic interaction between between point charges (q):

= 4.4;
U= Z r—J & ZQiTijQJ' (2.49)
ij

1<J 1<J

In Equation 2.49 and throughout the remainder of this work the following tensor no-

tation will be used when representing electrostatic interactions:

Ty = (7"1'1')_1 (2.50)

Ty = VaTy = —7“8(’”1'1')_3 (2.51)

T = VoVaTy; = (3r2rs — (rij)%0as) (rig)~° (2.52)
e g L < (2.53)

where the indices a, 3 and v represent the Cartesian axes x, y and z. The long-range
Coulomb interactions typically account for close to 80% of all the interactions within
a simulation, however the form of Equation 2.49 is unsuitable for atomistic simulation
due to its slow decay with distance. The most commonly used solution to this problem

is the Ewald summation described below.

Ewald summation

Within the formalism of the Ewald summation [78], the system being simulated is
considered to be infinite and each particle interacts with all the periodic images of other
particles (See Section 3.2.3 for more details on Periodic Boundary Conditions). This is
realized in practice by separating the potential into three components which converge

more rapidly than the original expression in Equation 2.49. These sums comprise
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a term in real space that represents screened interactions at short distances; another
term in reciprocal space contains the long-range interactions and a self-interaction term
which corrects the total interaction energy by removing “self” interactions of a particle
with its periodic images.

In real space, screening is achieved by surrounding each point charge with a neu-
tralizing Gaussian distribution of opposite sign. The resulting screened charges rapidly
converge to zero at long-distances and are therefore short-ranged. This allows the elec-
trostatic interactions between screened charges to be determined by direct summation

in real space:

U= 5 (0B - o + s - T) 2o

T J>t

where the screened multipole interactions are considered up to the level of induced
dipoles (See Section 2.3.2 for more details); that is g; corresponds to the point charge
on ion ¢ and g, is its induced dipole [79, 80]. The circumflex accents over the tensors

indicate that they correspond to their screened versions as given by:

bl er fe(krij)

"I‘,»J« =—=——" (2.55)
Tij T'ij
/1\ 1 /i\ (QH ) ” '2(1" _)2
_ K2 (ris 2.56
)™ (gl \ (P Vanen—1)° S

where er fc is the complementary error function:

erfe(r \/_/ (2.57)

The additional contributions to the energy in reciprocal space are calculated from the

following expressions:

. . 2
oo _h2 2
A1 e h* /4K

2
Ubeotp = % Z Tz z geosth-x;)| + Zq,- sin(h - r;) (2.58)

h>0

where UE_ 2 corresponds to the charge-charge interactions in reciprocal space summed

ecip

over the reciprocal lattice h = 27 (iX/L, + jy/Ly + kZ/L.), & is an adjustable param-
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eter that represents an inverse length and determines the relative emphasis given to the
real- and reciprocal-space terms; the reciprocal-space series becomes increasingly more
important as & increases. V' is the simulation cell volume |L, - L, x L,|. The interaction
potential model used throughout this work also accounts for the Coulombic interac-
tions of the form charge-dipole (U?7#) and dipole-dipole (U#~#). Their contributions

in reciprocal space are as follows:

B a1

Ug»;cﬁilp T Z Z(L‘ sin(h - r;) x Z(“’i -h)cos(h - r;)

v h>0 h
» (2.59)
- Zq,- cos(h - r;) x Z(“i -h)sin(h - r;)
o 2
i A & e h* /4R
Uv};{e(‘llp = 7 32 Z(”I ¢ h) ('()H(h . I‘I')
h>0 i
i (2.60)
+ D (m-h)sin(h ;)
Finally, the self-interaction corrections are given by:
" K
Udaf = N2 (¢:)? (2.61)
y—p _ 2K ()2
Usey = 3ﬁ2i:(ﬂi) (2.62)

where the charge-dipole self-interaction term is cancelled on the grounds of symmetry.

2.3.2 Short-range interactions

Ton compression in perfect crystals

Discussion of the forces that act upon ions in the solid state requires a detailed con-
sideration of how their electronic charge densities are affected by their in-crystal sur-
roundings. Figure 2.3 (top panel) illustrates an arrangement of cations and anions in a
crystal structure of cubic symmetry. In this environment, the central anion is subjected

to a potential (U(r)) caused by the electrostatic charges of the other ions in the crystal
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and, in addition, by the repulsion from the region occupied by the electron density of
the neighbouring ions which originates from Pauli’s exclusion principle [81, 82]. The
form of this potential is expressed mathematically in Equation 2.63 where it is divided
into a spherical part (Up(r)) and an angularly dependent part (Ui(r)Y;m(r)) which

varies rapidly with the orientation of the electronic position r:

Ur) = Us(r) + > Y Ui(r)Yim(r) (2.63)

>4 m

Here, the angular part is expressed by means of a spherical harmonic expansion that
involves terms of angular momentum [ = 4 or higher. In the case of ions with sp valence
electrons such as O%~, it is the spherical component that is expected to be dominant.
This is rationalized by the fact that the ground state (S) of such closed shell ions can
only mix with excited states of even symmetry (G), which tend to be prohibitively
high in energy. As a result, the electronic density of the ion is unable to adjust to
the angularly dependent part of the potential and thus remains spherical. This effect
is coupled to the exclusion of the central ion’s electrons from the volume occupied by
those of the neighbouring cations and results in an overall repulsive interaction. Thus,
as shown in Figure 2.3 (bottom panel) the spherical potential Uy tends to compress
the ion’s electron density (dark shading) relative to that of the free ion (light shading),
with a subsequent decrease of its polarizability. This confining of the electron density
can have profound effects, as in the case of the oxide anion, O% ., which is unstable in

the gas phase, but commonly occurs in condensed matter [83-85].

Polarization effects

The development of a complete description of the environmental effects on ions in
the solid state naturally leads to the consideration of environments that are less sym-
metrical than those discussed above; this is particularly true for simulations at finite
temperatures, simulations of melts and surfaces. Changing the environment around
the idealized central anion from Section 2.3.2 affects the spherical harmonic expansion
(Equation 2.63), which will likely contain [ = 0, 1 and 2 angular momentum terms;
where | = 1 corresponds to deformations of the ion’s electron density with dipolar
symmetry, while [ = 2 corresponds to quadrupolar deformations. The concomitant
change in polarization energy occurs because of the electrostatic interactions between

the dipole and quadrupole moments of the central ion and those of the ions around it.
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Figure 2.3: Top panel: Arrangement of anions and cations in a crystal of cubic sym-
metry. The sp valent electrons of the central anion are unable to respond to the rapid
angular variation in the potential, illustrated by the red dashed contour. Bottom panel:
Schematic representation of a cross section through the confining spherical potential
(Up). The dashed line corresponds to the Coulombic (Madelung) contribution due to the
ionic point charges. Confinement is enhanced by exclusion from the region occupied by
the electronic density of neighbouring ions. Uy compresses the free-anion charge density
(light shading) to the in-crystal charge density (heavy shading).

In the long range, that is, at distances exceeding the first coordination shell, the
displacement of an ion off its lattice site affects the potential experienced by the central
ion through an induced field (Es, | = 1) and a field gradient (E,z, | = 2). The
resulting dipoles g, ¢ and quadrupoles 6! 5 45 are expressed according to the multipole

expansion [86]:

: - ‘ ‘
W = o B (xi) + 3B E () BV (r) + .. L
1 & &
e 2303 CEN ) Blr) +CF B () - v (2.65)

where the Greek superscripts a, 3 correspond to the Cartesian axes and repeated

subscripts represent summation over the three values z, y and z of that subscript. The
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superscript AS indicates that these moments are appropriate when the sources of the
fields are asymptotically far away from the central ion i. The terms a and C are the
dipole and quadrupole polarizabilities, while B represents the dipole-dipole-quadrupole
hyperpolarizability. For spherical ions, a, B and C, can be specified by a single scalar
[86]. These are the in-crystal polarizabilities, and thus, are smaller than those of the
free ions due to the confinement effects discussed above.

The top panel in Figure 2.4 illustrates the displacement of a nearest neighbour (NN)
cation away from the central anion considered thus far. This symmetry breaking in
the short range modifies the anion’s confining potential. The bottom panel of Figure
2.4 shows cross sections the confining potential before (dashed line) and after (solid
line) the distortion. As is evident from the diagram, the repulsive wall of the confining
potential has been pushed away from the anion and, in the process, more space has
been made available to its electron density. This latter effect results in an additional
dipole (5®)that is in a direction antiparallel to that caused by distortions that are

AS). The net effect of these opposing dipoles has been found

asymptotically far away (u
to cause fluctuations of up to 50 % in the total dipole on the central anion [83]. The
experimental manifestation of these two effects can be studied in the far-infrared spectra
and light scattering of disordered ionic systems [87, 88]. For cation polarization, the
relative sign of the short range and asymptotic moments is the same, therefore the

short range effect enhances the dipoles above their electrostatically induced moments.

The form of the interaction potential

The full expression used throughout this work for the short-range repulsion is as follows:

Aije-gijr,‘j i g
e N T e +)  BYe™ry (2.66)

1< i<y

where the first term on the right hand side of the equation represents the exponentially
decaying electron density of each ion that leads to short-range repulsions. In Equation
2.66, those terms where 7 and j are cations are set to zero due to the small size of
their electron clouds and the considerable distance between them at the temperatures
of interest. Inclusion of the r—IJ factor has been shown to provide a better fit in the
parameterization process for the short-range interactions and, in addition, it has also

been shown improve the potential’s stability [89]. The second term is a Gaussian which
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Figure 2.4: Top panel: Symmetry breaking in the first coordination shell of a central
anion in a cubic crystal. Bottom panel: Cross sections of the confining potential for the
anion in the undistorted crystal (dashed line) and the resulting potential after symmetry
breaking (solid line). The arrows represent the direction of electron displacement, and
are, therefore antiparallel to the associated dipoles.

acts as a steep repulsive wall and accounts for the anion hard core; these extra terms
are used in cases where the ions are strongly polarized to avoid instability problems at
very small anion-cation separations [89).

The polarization part of the potential incorporates dipolar effects only and is thus

called DIPole Polarizable Ton Model (DIPPIM) [90, 91]:
UP = 3 (aunsd £ (rig)8is — azmad ' (rig)bis) T
“J
=D BT + Z 5o | i P (2.67)
i.J

Here, a; is the polarizability of ion 7, p; are the dipoles 6;; is the Kronecker delta func-
tion from Equation 2.7. The terms T7; and T?‘a are the charge-dipole and dipole-dipole
interaction tensors from Equations 2.51 and 2.52, respectively. The instantaneous val-
ues of these moments are obtained by minimization of this expression with respect to

the dipoles of all ions in the system at each step of the simulation (See Section 3.4).
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The short-range induction effects on the dipoles discussed in Section 2.3.2 above are
taken into account by means of the Tang-Toennies damping functions [92, 93]:
B (e Ak
(b974;)

firy)=1- le~bmis Z S (2.68)

k=0

where the parameter b determines the range at which the overlap of the charge densi-
ties affects the induced dipoles and the parameter ¢ determines the strength of the ion
response to this effect. Figure 2.5 illustrates how this function tends to 1 for large r and
to 1 — ¢¥ when r goes to 0. The value of n determines the form of the Tang-Toennies

function between these values.

0.8

0.6
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Figure 2.5: The Tang-Toennies damping function from Equation 2.68 for n = 6, 8,
c? =1 and b¥Y = 1.9 atomic units (a.u.)

The dispersion interactions account for the mutually induced temporary multipoles

between ions:

_ i g i .
UDlsp —— Z CG fD6(r1]) + CS st(rl]) (269)

i<j 4 "ij

s terms Cy) and Cf espond to the dipole-dipole and dipole-quac e
where the terms Cg and Cg correspond to the dipole-dipole and dipole-quadrupole
dispersion coefficients, respecitvely. The Tang-Toennies dispersion damping functions

[p(ri;) and fo(r;;) are similar to those in Equation 2.68 but here n = 6 and 8 for Céj
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and Cg, respectively and ¢ = 0 in both cases. Damping is introduced in order to

account for the short-range corrections to the asymptotic dispersion term.

2.4 Summary

This chapter provided an overview of the techniques that will be used throughout this
thesis for the study of the forces between the component species in ionic materials. The
development of these topics illustrated the theory that underlies ab initio methods in
Section 2.2, with special emphasis being given to the modern implementations of DFT.
In addition, a comprehensive discussion of IP developement was provided in Section
2.3. The general simulation methods where these techniques are implemented will be

described in detail in the next chapter.
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Solid State Simulations

3.1 Introduction

This chapter consolidates the ab initio and potential-based techniques introduced in
Chapter 2 into methods that can be applied in computer simulations of the solid
state. Section 3.2 develops concepts that are fundamental to the simulation of periodic
systems. Section 3.3 introduces static lattice calculations and Section 3.4 describes
the method of Molecular Dynamics (MD). In static lattice calculations the goal is to
minimize the energy of an input structure by optimizing its geometry, that is, when
the forces on each component species are below a certain predetermined cutoff. MD
simulations, on the other hand, calculate the time-dependent trajectory of each species
from the forces that act upon it by numerical integration of Newton’s equations of

motion.

3.2 Properties of periodic systems

3.2.1 Crystal lattices

Bravais Lattice

The concept of the Bravais lattice is one that is fundamental to the description of the
periodic arrangement of atoms in crystals. A Bravais lattice is defined as an infinite

array of discrete points with an arrangement and orientation that appears exactly the
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same regardless of which point it is viewed from [94]. Mathematically, it is given by a

set of discrete position vectors R, which in three dimensions take the form:
R—= nia; + nqas + nsas (31)

where n; are integers, while a; are a set of non-coplanar vectors typically known as the
primitive vectors which are said to generate or span the lattice. Figure 3.1 illustrates
a portion of a two-dimensional (2D) square Bravais lattice with primitive vectors a,

and a; and a lattice spacing of a.

Figure 3.1: Two-dimensional square Bravais lattice with primitive vectors a; and ap
with lattice spacing a.

Similarly, Figure 3.2 presents portions of the two three-dimensional (3D) lattices
that will be encountered throughout this work: a) the simple cubic (SC) lattice and b)
the face centred cubic (FCC) lattice. The points in a Bravais lattice that are closest
to a given point are called its nearest neighbours and this number is known as the
coordination number (CN) of the lattice, whose value is 6 for the SC lattice and 12 for
the FCC lattice.

Primitive unit cell

Another important concept typically encountered in the study of the solid state is that
of the primitive unit cell. It is defined as the volume of space which, when translated
through all the vectors in a Bravais lattice fills all of space without overlapping or
leaving voids [94]. A primitive cell must contain only one lattice point, unless it is

positioned in such a way that there are points on its surface. A common example of
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Figure 3.2: a) Simple cubic Bravais lattice. b) Face centred cubic Bravais lattice.

this type of cell is the Wigner Seitz (WS) primitive cell, which is defined as the region
of space about a lattice point that is closer to that point than to any other lattice
point. It is constructed by drawing lines connecting the point to all its neighbours,
then bisecting each of these lines with a plane (or line in the case of 2D), and then
taking the smallest polyhedron enclosed by these planes as shown in Figure 3.3a for
the two dimensional square lattice presented above. In three dimensions, the WS cell
for the SC lattice is simply a cube with sides that are half the length of the original
cell, while in the case of the FCC lattice the WC cell is a rhombic dodecahedron as
shown in Figure 3.3b.

In practice, real crystals are finite in extent and, it is discontinuities in their period-
icity (defects) which typically impart the material with interesting properties as will be
shown in the reminder of this thesis. Moreover, physical crystals are constructed from
an underlying Bravais lattice, together with a description of the arrangement of the
species within it, such as atoms, molecules, or ionic species. Therefore, a distinction
must be made between the abstract pattern of points in a Bravais lattice and an actual
crystal subject so simulation by introducing the term crystal structure to refer to a
Bravais lattice which has identical copies of the same repeating unit, known as the

basis, located at each point.
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Figure 3.3: a) Wigner-Seitz primitive cell for the square lattice in two dimensions. b)
The rhombic dodecahedron that is the Wigner—Seitz primitive cell for the FCC Bravais
lattice.

The reciprocal lattice

Just as the concept of the Bravais lattice is fundamental to the description of crystalline
systems, so is that of the reciprocal lattice to the analytical study of their structure. It
is often encountered in the theory of crystal diffraction, as well as, in the description of
functions which have the same periodicity as the Bravais lattice. The reciprocal lattice
for a Bravais lattice described by R is constructed by fixing the periodicity of a plane
wave 'K to that of the lattice. This is achieved when the set of wave vectors K satisfy
the relation

it (3.2)

for all R in the Bravais lattice [94]. Note that the resulting reciprocal lattice is defined

with reference to a specific Bravais lattice, also called the direct lattice in this context:

bl:gﬂ(ﬂ) bQZQ,r(_a_l_Xa_s); b3:2ﬂ<u) (3.3)
a; Az X ag as -a; X ag Az - a; X A

or 1ore COllCiSCly
b,‘ O aj - 27!'(),‘_]‘ (34)

where 0;; is the Kronecker delta function encountered in Section 2.2.1. These reciprocal
vectors have units of the form 1/length and are said to belong to k-space, also known

as momentum space, as opposed to r-space for the direct lattice. The reciprocal lattice
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is a Bravais lattice itself and it is given by:
k = kib; + koby + k3bs (35)

where k; are integers, i.e. any vector k can be written as a linear combination of b;.

The first Brillouin zone

As mentioned above, the reciprocal lattice is a Bravais lattice itself. Moreover, the
reciprocal of the reciprocal lattice is the original direct lattice. The WS cell of a lattice
in k-space is commonly known as the first Brillouin zone. Its volume is given by
by - by X bz. Shown in Figure 3.4 is the Brillouin zone for the space group Fm3m-O;,
(225) which is common to crystals with an FCC lattice as is the case of the cubic
systems discussed in this thesis. The shape of the BZ illustrated in Figure 3.4 is
known as the truncated octahedron. Each of the high symmetry points and lines is
given a special label, depending on the symmetry operations associated with them.
These “special” k points indicate locations within the BZ where energy degeneracies
occur due to symmetry restrictions [95]. The high symmetry positions I' = (0,0, 0),
A= (%.(). %) W = (% % %) = (-g g. %) L= (% % %) will be used in Chapter 7 for
the calculation of the band structure of cadmium oxide (CdO).

3.2.2 Periodic potential in crystals

As shown in Section 2.2.1 the electrons in crystalline systems can be thought of as a
group of non-interacting particles which are acted upon by a static one-electron effective
potential U(r):

Hy = (—%v? T U(r)> V= Ev (3.6)

As this potential originates from a periodic array of nuclei in a crystal like those shown

in Figure 3.2 it has the same periodicity of the underlying Bravais lattice
Ur+R)=U(r) (3.7)

where R corresponds to the primitive vectors from Equation 3.1. Electrons that are

subject to a periodic potential are known as Bloch electrons.
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Figure 3.4: Brillouin Zone for the space group Fm3m O,‘r; (225) (FCC) showing the
high symmetry points.

3.2.3 Bloch’s Theorem

Bloch’s theorem sets forth that the eigenstates 1 of the one-electron Hamiltonian in a
periodic potential (Equation 3.6) can be chosen to be a plane wave times a function

with the periodicity of the Bravais lattice [94, 96]:
Y(r) = tpg(r)e™" (3.8)

where the periodic function is described by u,(r + R) = uy(r) and n is an integer
quantum number called the band index n = 1, 2, 3,... This quantum number corre-
sponds to the appearance of independent eigenstates of different energies, but with the
same k values. Any value of k that is outside the first BZ can be reduced to the first

zone as indicated by an alternative formulation of Bloch’s thorem:

Y(r + R) = e By(r) (3.9)
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Allowing k to range outside the first BZ is unnecessary as the properties of Bloch
electrons are fully described within this volume as shown in Figure 3.5 for a reciprocal

vector G in k-space.

s e ' 0

L% g

& &

\®)
Q
o
oF-—-—-=-=-—--

Figure 3.5: Periodicity of the energy with respect to the reciprocal lattice.

The Born-von Karman boundary conditions are applied to the wave functions in
order to arrive at the set of allowed values of k. The general form of these boundary

conditions is as follows:
O(r + Njaj) = O(r) 9=l 2. D (31())

where N; is the number of unit cells along the jth direction. This boundary condition

iNjk-a,

implies that e = 1. From this relationship it is possible to define the allowed

values for the wave vector

k=Y A, (3.11)

Computer simulations are usually performed on relatively small systems which con-
tain between several hundred and several thousand atoms. This is quite small compared
to physical systems typically found in the laboratory, whose size is in the order of Avo-
gadro’s number, i.e. O(10%) particles. The simulation of relatively small systems is
the result of the computational cost involved. A problem inherent to the direct sim-
ulation of a small number of particles is that it will likely lead to disproportionately
high surface effects with respect to the bulk solid. This is because a typical simulation
box contains a higher proportion of particles near the surface than the much larger
physical system being simulated given the high area:volume ratio of a small simulation
cell. Nonetheless, it is possible to take advantage of the periodic symmetry found in
crystals in order to reduce the computational cost and overcome the unphysical repre-

sentation of surfaces in the bulk. The simulation schemes presented in this thesis make
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use of a technique called periodic boundary condition (PBC) for the ionic species in
the simulation cell, as illustrated in Fig. 3.6. In this case a primary cell or simulation
box is defined by a set of non-coplanar vectors a, b and c, as well as, the positions
of the particles within it. It is then replicated in all directions to better represent
a macroscopic sample and simplify the calculation. As the simulation proceeds, the
movement of each particle in the primary cell is replicated by each of its images, and
in cases where a particle leaves the simulation box one of its images from a contiguous

box enters it through the opposite face.
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Figure 3.6: Periodic boundary conditions: The primary cell (centre) is replicated in all
directions. The figure shows how as one particle leaves this box, one of its images from
a contiguous box enters from the opposite side.

3.2.4 Basis sets and pseudopotentials

Practical implementations of the ab initio methods from Section 2.2 call for the rep-
resentation of the wave function in a way that is both accurate and computationally

inexpensive. This is usually achieved by means of linear combinations of functions
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known as a basis set. As shown above, for periodic systems plane waves can be used
as a basis set because of the intrinsic connection that exists between free electrons and
plane waves. In addition, they provide an efficient and accurate representation of the
wave function [97, 98]. The wave function can, thus, be described by a basis set made

up of plane waves, which in three dimensions can be written as follows:
/ — i(k+G)-
Yaclr) = ) _ c(G)et+E)* (3.12)
G

Where G is a reciprocal vector like that in Equation 3.5 and ¢;(G) are the plane
wave coeflicients that must be optimized in order to solve the Schrodinger equation.
The wave vector k can also be thought of as a frequency factor, with high values
indicating rapid oscillation, and thus high kinetic energy. The allowed values for k are
determined by the unit cell translational vector t, where k - t = 27m, with m being
a positive integer. In this way the typical spacing between k vectors is ~ 0.01 eV
(electron volts). The size of the basis set is uniquely characterized by the k vector
with the highest energy that is included, known as the cutoff, i.e. |G|? < Ecyon. For
example, a cutoff of 200 eV corresponds to approximately 20000 functions in the basis
set, hence the cutoft value should be chosen in order to increase accuracy and minimize
computational cost. Note that the size of a plane wave basis set depends only on the
size of the periodic cell and not on the actual system described within it, i.e. the
basis set is not system dependent. This is in contrast with other popular basis sets
that use nucleus—centred Gaussian functions which increase linearly with system size.
This means that plane wave basis sets are more favourable for larger systems. An
additional advantage of plane wave basis sets over localised basis sets, like those which
use Gaussian functions, is that they do not suffer from basis set superposition error.
This error occurs due to the mixing of functions in the short range, i.e. there is an
overlap and hence mixing between the functions centred on different atoms that are in
close proximity to each other.

Plane wave basis functions are ideally suited for the simulation of delocalized and
slowly varying electron densities as is the case of the valence bands in metals. However,
the electrons in the atomic core are strongly localized in the vicinity of the nucleus and,
in addition, the valence electrons undergo rapid oscillations in this region in order to
mantain ortogonality. Therefore, the cutoff required to simulate these properties would
be very high if only plane waves were used. To circumvent this problem, a pseudopo-

tential is normally introduced to be able to describe the interaction between the valence
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electrons with the core electrons and the nucleus. Pseudopotentials are derived from
all-electron calculations from which the parameters of the pseudopotential are defined
in order to reproduce the behaviour and properties of the valence electrons. Figure 3.7
illustrates this concept, where the pseudopotential wave function has the same form as
the all-electron wave function beyond the region limited by the core radius r., but it has
fewer nodes within. This representation decreases the magnitude of the plane wave ba-
sis set required to carry out the simulation [99]. In 1990 Vanderbilt [100] demonstrated
that by relaxing the constraint that the real and pseudo wave function represent the
same charge (norm-conservation) it is possible to achieve the same accuracy using a

smoother function and therefore a smaller cutoff. These advances were followed by the

'
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Figure 3.7: Top: Schematic representations of the relationship between the all-electron
wave function (dashed black line) and a pseudopotential (solid red line) wave function.
Bottom: Nuclear Coulomb potential (dashed black line) and pseudopotential (solid red
line). Note that both wave functions and potentials are matched beyond the radius cutoft
Hor

introduction of the Projector Augmented Wave (PAW) method developed by Blochl
[101] to accurately and efficiently calculate the electronic structure of materials within
the framework of DFT. In the PAW method, localized basis sets are used to represent
the core electrons, with the effect of these core states being projected onto the valence
electrons. This approach retains the numerical advantages of pseudopotential calcu-

lations, while retaining the physics of all-electron calculations, including the correct
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nodal behaviour of the valence electron wave functions. The PAW fixed core states are

generated from all-electron scalar relativistic calculations.

3.3 Statiec Lattiee Calculations

3.3.1 Structural Optimisation and Convergence

The search for the minimum energy geometry of a particular material necessitates a
number of criteria to be considered a priori: i) the optimization of the forces acting
upon all the species of the system, ii) the resolution of the basis set, which is related
to the plane wave cut-oft, and iii) the k-point sampling density. In DFT, the forces
acting upon the ions in the system are computed at the end of an SCF cycle (See
Section 2.2.7). These values are calculated using classical mechanics, which prescribes
that the forces acting on the nuclei are given by the derivative of the energy with
respect to position. This problem could, at first, be approached by moving the ions in
all directions, however, for a system composed of N ions, this method would require
6N costly evaluations of the system’s energy. Practical applications of this procedure
employ the Hellmann Feynman theorem [102], which states that the forces on any
fixed nucleus in a system of nuclei and electrons are given by the classical electrostatic
attraction exerted on the nucleus. This means that by using the Hellmann Feynman
theorem, all the forces acting on all the ions can be calculated directly from the wave
function by calling the energy subroutine only once and on a single ionic configuration,
which results in a considerable speed-up. The optimization methods most commonly
used are highlighted in the following section.

The structural optimization described so far has a main drawback in that it ignores
an additional term that is required in order to represent the derivative of the basis
set with respect to the ionic position. This term is known as the Pulay stress, or also
as the Pulay force, and it should always be considered in calculations when localized
basis sets are used. In plane wave basis set calculations, however, this error arises
due to the basis set being incomplete with respect to changes in volume. Thus, non-
constant volume calculations result in an underestimation of the equilibrium volume
unless a very large plane wave cut-off is used. This issue is addressed by optimizing the
unit cell at a series of volumes (lattice constants). where the atomic positions, lattice
vectors and angles are allowed to relax within the constrained total volume. Usually,

the starting configuration is obtained from databases that contain experimental and/or

o
ot



3. SOLID STATE SIMULATIONS

computational data for the material of interest, as well as, related ones. The variational
principle thus establishes that the ground state of a system has the lowest energy, hence
the equilibrium value is the minimum energy obtained from the resulting energy-volume

data fitted to the Murnaghan equation of state [103], as shown below

E(V)=Ey+ % {Bl (1 - ;‘;) -1+ (?) Bl} (3.13)

where By corresponds to the bulk modulus and B is its pressure derivative, V; is the
equilibrium cell volume and Ej is the ground state energy. To test for convergence, a
series of energy-volume curves are plotted using different plane wave cut-off energies
and k-point densities. A plane wave cut-oftf energy of 300-500¢V is sufficient for the
simulation of the metal oxide systems studied in this work. The minimum energy for
each curve is then compared to ensure convergence to within 0.01 eV /atom as shown in
Figure 3.8 which depicts a plot of the energy as a function of small fractional variations
in the lattice constant of CdO for a cut-off of 400eV. Through years of undertaking
electronic structure calculations within the Watson research group, it has been ob-
served that a k-point sampling density of approximately 0.04 A~! results in acceptable
convergence for most non-metallic systems. Table 3.1 shows a simple convergence ta-
ble between lattice vector magnitude, k-point sampling density and the number of
k-points. The number of k-points is taken as a whole integer, and is rounded to the
nearest even number for continuity in the convergence. Even numbers produce a distri-
bution in which the zone centre is not included, while odd numbers give distributions
that include the zone centre. Using all even numbers ensures equivalent distributions,
varying only in the density of points.

Once an equilibrium volume has been obtained from the fit to Equation 3.13, a
final geometry relaxation is performed at this value, which results in the optimized

structure for the material.

3.3.2 Energy Minimization and Optimization

The goal of static lattice calculations is to determine the structural configuration which
yields the lowest energy for the system under study. This kind of simulation belongs
to a general type of optimization problems. In static lattice calculations, the atomic

coordinates of a structure are adjusted in order to minimize the potential energy of the
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Figure 3.8: Different k-point sampling densities for CdO. Shown in black is a k-point
sampling density of 8x8x8 and 12x12x12 shown in red.

Table 3.1: Relationship between the magnitude of the lattice vector to the k-point
density, with a sampling rate 0.04 A~

Lattice Vector (A) LV™! LV~1/0.04 k-point density

2.00 0.5000 12.50 12
4.00 0.2500 6.26 6
6.00 0.1667 4.17 1
8.00 0.1250 3.13 4
10.00 0.1000 2.50 2
12.00 0.0834 2.09 2

system. This is expressed mathematically as:

ouy,
— =0 (3.14)
or
where Up is the lattice energy and r represents the atomic positions. In practice this
entails reducing the force acting on each atomic coordinate (¢) to zero, i.e. F; = —%.

Here, V' is the potential energy calculated using either the first principles or potential-

based methods from Chapter 2. The basis of this approach is to express the lattice

o7
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energy by means of a Taylor expansion in terms of the basis strain dr:

s oUL(r)
Lldi U ml i a =

As the position vector r is made up of three components, this gives rise to a 3N ma-

2
Lol e . (3.15)

trix for an N-atom system. The numerous methods that have been developed to solve
this problem operate by iteratively reducing the energy until a minimum is found. This
is done by gradually changing the atomic coordinates as the system moves closer to the
minimum. The starting point for each iteration (r,4;) is the configuration obtained
from the previous step (r,). Minimization methods are broadly differentiated by how
many terms from Equation 3.15 they include. The most commonly used minimiza-
tion techniques encountered in solid state physics/chemistry are either first or second
derivative methods. One can generally expect higher accuracies from those methods
that include higher derivatives at the cost of computational expense.

As is the case with other simulation techniques, static lattice calculations have a
number of drawbacks. Firstly, if more than one energy minimum is present in the
system then the calculation may only find a local rather than the global minimum;
this is a problem common to all optimization schemes. Secondly, static lattice calcula-
tions ignore the vibrational properties of the crystal, thereby effectively simulating the
system at 0 K and also neglecting the zero point energy. Despite these shortcomings,
however, this family of simulation techniques represents a powerful tool in solid state
simulations given their excellent agreement with experimental results. Some of the de-
tails of these methods will be highlighted in the following sections. For further details,
please consult Leach (2001) [51].

First-order Minimization Methods

Steepest Descents

The method of steepest descents is an example of a first-order derivative minimization
technique. This method starts with an initial configuration ry and each iteration ad-
vances along a line in the direction parallel to the net force, represented by the vector
s, below

8n
Sp = —— (3.16)
|&n|

where g, is a vector containing the gradients (first derivatives) of the function. Figure

3.9 illustrates a one-dimensional example of this method for the function f(z) = 2% —

o8
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2% +2, with the initial guess 7o = 2 and subsequent iterations marked by a red dot until
the minimum is reached [104]. As the direction of the gradient is determined by the
largest interatomic forces, the steepest descent method is often useful for relieving the
highest energy features in an initial configuration. A major drawback of this technique
is found in locations where the function resembles a narrow valley; in such cases, the
fact that the direction of displacement is orthogonal to the gradient means that the

method will proceed in a large number of small successive steps.

f(z)
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Figure 3.9: Ilustration of the steepest descent method for the one-dimensional function
f(z) = 23 — 222 + 2.

Conjugate Gradients

The method of conjugate gradients (CG) is a modification of the steepest descents
method. In fact, the first step of a CG calculation uses the steepest descent direction,
however subsequent iterations use the information from previous gradients to calculate

the new displacement vector:

Sp = —8n + TnSn-1 (317)
where
Zn - 8n
Yy = ————— 3.18
" gn—1 " 8n-1 ( )
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This modification imparts more efficiency to the CG method over what can be
achieved using steepest descent, particularly when evaluating potential energy surfaces

(PES) with long narrow valleys.

Second-order Minimization Methods

Newton-Raphson

Being a second-order method, Newton-Raphson is expected to be more efficient than
CG in terms of the number of iterations required to reach the minimum, but with a
higher cost per step. Addition of second-order derivative terms captures information

about the function curvature as expressed below for the gradient at step n:

U,  8°Uy -
B Ll e Lot = g 1 4 H, <87 (3.19)
n— n—1

Here, H,,_; is the Hessian of second-order partial derivatives and or is the displacement
of ions between iterations n — 1 to n, i.e. 0r = r, — rp_1. At the minimum energy,

where n is qul'dl to zero, the atom displacements are giVOll l)\
SN ¥ -1

where H,,_; is the inverse Hessian matrix. Thus, the working equation for calculating

the atomic positions using the Newton-Raphson method is:

Ty =Ty 1~ 8e1 Hyly (3.21)

In theory, this method is capable of determining the minimum of a purely quadratic
(harmonic) function in a single step. However, this is rarely the case for the problems
encountered in simulations of the solid state and, hence, the minimization proceeds
iteratively. In order to successfully apply the Newton-Raphson method, it is neces-
sary that the Hessian be positive definite, which refers to a matrix whose eigenvalues
are all positive. Instances where this is not the case will lead the minimum search
towards saddle points where the energy increases. In addition, far from a minimum,
the harmonic approximation is not appropriate and the minimization can become un-

stable. Therefore, the standard approach is to initially employ a more robust method

60



3.3 Static Lattice Calculations

such as CG in order to move the system close to the minimum and, then to apply the

Newton-Raphson method.

Quasi-Newton

The calculation and inversion of the Hessian matrix performed in course of a Newton-
Raphson method have a deleterious effect on its overall efficiency. One way to speed
up the minimization is to use quasi-Newton methods. These techniques still apply the
working equation of the Newton-Raphson method (Equation 3.21), but rather than
explicitly calculating the inverse Hessian at each iteration an approximate form is used.
The full inverse Hessian is only recalculated after a fixed number of iterations, or when
the energy changes are too large for the approximation to be valid. Precisely how the
inverse Hessian is approximated is what distinguishes the several types of quasi-Newton
methods, e.g. the Davidon-Fletcher-Powell (DFP) and the Broyden-Fletcher-Goldfarb-
Shanuno (BFGS) methods [51].

The inverse Hessian is approximated in the DFP method as follows:

sror  (Hyl, -dg) ® (H,' - og)
or - 0g og -H ' -og

n—

(3.22)

where dg = g, — g,_1 and the symbol ® when interposed between two vectors means
that a matrix must be formed. An alternative, and more efficient, approach to that in

Equation 3.22 is the BFGS method, which includes an additional term

or@ér  (H.., -og) ® (H,'-dg)

H,' ~ H'|+ — - g 35
& N og-H,' g (3.23)
+(0g-H,!;-dg)u®u (3.24)

where _ i =
A (3.25)

T %rog og-H,'-ig

Common to all of these methods is their use of just the new and current points to
update the inverse Hessian. Assuming that this approximation holds, as the minimiza-
tion progresses, the estimate of the inverse Hessian becomes closer to the true inverse
Hessian matrix and, on approaching the minimum these methods have a similar accu-

racy to the Newton-Raphson method.
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3.3.3 Electronic Structure Calculations

Band Structure

The band structure of a solid depicts the ranges of energy that its electrons may possess.
Band structures consist of plots of the Kohn-Sham eigenvalues from DFT calculations
as a function of k. To obtain this data, it is first necessary to calculate the charge
density and wave function self-consistently with a homogeneous k-point sampling. The
following step requires the calculation of the eigenvalues non-self-consistently along a
selection of high symmetry directions of the reciprocal cell (as shown in Figure 3.4)
using the self-consistent charge density which defines the potential. The choice of
high symmetry points is specific for the Brillouin zone of the structure. The band
structure, thus shows the evolution of the band energy along these specific directions.
This type of sampling is necessary because it is not feasible to plot the bands at all
possible k-points. The changes in the band energy observed provide information on
the types of interactions that occur among the electrons of the material. For example,
band dispersion indicates the interaction strength, while the band energy at a certain
point reveals the interaction’s symmetry and topology. Other important information
that can be obtained from the band structure is the position of the valence band
maximum and the conduction band minimum, which are used to estimate the band
gap of the material. Materials intended for SOFC electrolyte applications like ceria,
should possess wide band gaps, i.e. to be electronic insulators. On the other hand,
TCOs are wide band gap semiconductors whose optimization ultimately depends on the
balance between electrical conductivity and optical transparency. These requirements
impose very specific demands on the properties observed in the band structure of the
material such as conduction bands that are highly dispersed at the bottom, which
result in small effective masses and, thus highly mobile electrons, as well as, a band

gap of more than 3.1¢V [40].

Electronic Density of States

The electronic density of states (EDOS) is another way of visualizing information about
the electronic structure of a material. The total EDOS shows the density of eigenvalues
as a function of energy, i.e. it is essentially a band structure integrated with respect
to the energy. The EDOS provides an intuitive and accessible view of the electronic
structure; one which is readily comparable to photoemission experiments. Investigation

of the EDOS can give an idea of the underlying bonding in a crystal, thus making it
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possible to monitor any changes that occur due to different composition, pressure or
structure.

It is also commonplace to calculate the partial electronic density of states (PEDOS),
which decomposes the information in terms of the ionic species, as well as the orbitals
and the spins. This is carried out by projecting the wave functions onto spherical
harmonics that are non-zero within spheres of a specified radius around each ion, the
same way that an atomic orbital basis set represents the wave function in a region of
space. This radius around a given ion with which wave function will be associated is an
user determined parameter that is estimated by monitoring the electron distribution
around each ion in plots of the charge density as the projection radii are varied until

the number of electrons associated with each ion is correct.

Effective mass

In semiconductor physics, one quantity which is often used to gauge the likely con-
ductivity of a material is its transport effective mass. This gives an estimate of the
conductive ability of the bulk material. A low effective mass is associated with a higher
mobility and therefore greater conductivity. For a material to have good n-type con-
ductivity, it should have a low electron effective mass at the CBM and similarly, a good
p-type conductor should have a low hole effective mass at the VBM. Bands with low
effective masses possess a high degree of curvature and conversely, flat bands have high
effective masses. Highly dispersed bands lead to a high degree of electron/hole delo-
calisation which results in high conductivity. In contrast, flat bands result in localised
electrons/holes which are not very mobile. In this work, the transport effective mass,

m’(Ey), was calculated using the following equation for a free electron [105, 106]:

1 1 dEy

e (3.26)

*
m'T

where Eji is the band edge energy as a function of the wave vector k, which is
obtained directly from DFT calculations. This assumes that the first derivative of Ej
is the same as that of a parabolic band at the same k-point. However, this is only an
initial approximation as in many of the materials of interest, the VBM and CBM are
not parabolic due to band gap renormalization [106]. This approach also assumes a
band-like conduction mechanism, hence, if a polaronic hopping mechanism is dominant,
the calculated masses may not be accurate and can only be used to provide a rough

estimate of the conductive ability of the material in question.
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Bader Charge Analysis

Atomic charges in molecules or solids are not defined explicitly in quantum chemical
theory. For example, in the case of DFT calculations the output obtained is the
electron density. In addition for plane wave basis set simulations, the determination
of how the electrons should be partitioned amongst the ions is not a straightforward
task, as illustrated in the determination of the ionic radius used in PDOS calculations.
The most commonly used scheme used in quantum chemistry to assign charges is the
Mulliken analysis, which relies on a localized orbital basis set for the determination
of charges. On the other hand, the partitioning scheme proposed by Bader takes an
alternative approach [107]. In this case, partial charges are derived directly from the
electron density itself. The optimized charge density is placed on a three dimensional
grid and analyzed to assign regions of charge defined by surfaces that run through
minima in the electron density. This method is therefore independent of the basis set
employed. The fastest implementation for assigning the regions of electron density is
based on the steepest ascent method [107]. In this case, each point in the grid is taken
in turn and a steepest ascent optimization is performed until a maximum of charge
density is reached. This results in the assignment of finite regions for each maximumn

in the charge density.

3.3.4 Defect Calculations

The principal focus of the work presented in this thesis is the study of how the proper-
ties of metal oxides are altered by defects in their crystalline structures. In the case of
SOFC electrolytes, simulations were used to investigate the ordering of oxygen vacan-
cies in systems with high defect concentrations (See Chapter 4). This section, however,
pertains mostly to the work presented in Chapter 7, where relatively low defect concen-
trations in CdO were studied using DFT. These simulations of isolated defects, such as
ion vacancies or substituents, were carried out using supercells which were generated
from optimized unit cells. The introduction of these larger cells is necessary in order
to model relatively small defect concentrations and also to avoid spurious interactions
between neighbouring images of the defects under the periodic boundary conditions
of the simulations. However, the increased system size makes their simulation more
computationally expensive, which means that a compromise between system size and
computational cost is routinely required. In practice this means that for the simula-

tions of the type presented here some kind of image correction is necessary [108]. The
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following discussion details the techniques employed to calculate the energies of defects

in supercells.

Formation Enthalpy of a Neutral Defect

The formation energy of a neutral defect D is calculated using the following relation

AH; (D,0) = (EP— E¥) + ) "n; (Ei + ) (3.27)

where E* is the total energy of the host supercell, EP? is the energy of the supercell
with the neutral defect (charge 0), while E; corresponds to the energies of the species
in the simulation in their standard states, e.g. Cd(s) and O,(g), n corresponds to the
change in the number of atoms in an external reservoir of the element, thus n takes
positive values when atoms are added to the reservoir and negative values when atoms
are removed from it. Formation energies depend on the relative abundance of each
species in the environment, which are represented by the chemical potentials y;. For
example, the chemical potential of the metal (Me) in a generic oxide (MeO) corresponds
to the energy of a reservoir of Me atoms in equilibrium with the system. Those Me
atom states with energy values that are higher than pye by a few kg7 will be empty,
while those that are lower by same amount will be filled [109-111]. Hence high values
of pae correspond to Me-rich enrvironments, while low values correspond to Me-poor

environments.

Formation Enthalpy of a Charged Defect

For a defect D in charge state ¢ the formation energy is given by adding extra param-

eters to the equation already encountered for neutral defects as shown below:

AH;(D,q) = (EP?—E¥) + 3 ni (Ei + )
+q (Er + €l par) + Eatign [4] (3.28)

The additional terms in this equation account for the exchange of electrons with the
Fermi level (Er), which is the chemical potential for the electrons and ranges from the

VBM (Ef = 0eV) to the calculated CBM, eff,, is the VBM eigenvalue of the host bulk.
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FEatign [q] is a correction used to align the VBM of the bulk and the defective supercells
and also to correct for finite-size effects in the calculations of charged defects, performed
using the freely available SXDEFECTALIGN code by Freysoldt et al [108]. The only
extra parameter required for this scheme is the dielectric constant of the system, which
is taken from experimentally determined values. An additional correction was made
in order to account for band-filling effects [112, 113], and is especially necessary in the

case of materials like CdO where defect states occupy strongly dispersive bands.

Chemical Potential Limits

As already discussed, the chemical potentials reflect the experimental growth condi-
tions, which in the case of oxides can be metal-rich or oxygen-rich, and anything in
between. However, their values are constrained by the condition that, in equilibrium,
their sum must equal the calculated enthalpy of the host (H'f“eo). which in the case of

CdO corresponds to the total energy of the two atom unit cell:

Hme + fo < AHif\ieO (3.29)
The lower limit of po, corresponds to a Me-rich/O-poor environment is determined

by Me metal formation:
Aprte = 0eV, = Apo = AH}'© (3.30)

The upper bound of pg (Me-poor/O-rich) is limited by the formation of O,:

Hnme = AH}W’Q — Apo =0 (301}

Note that this generalized description of the chemical potential limits for MeO does
not take into account other stoichiometries of the metal oxide, such as MeO,. An
additional constraint is necessary in order to include this compound if its formation

enthalpy lies within the limits already imposed by MeO, i.e. if MeO, has a lower
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formation energy than MeO

tare + 200 < AHY (3.32)

Solution of this system of linear equations thus provides the set of chemical potential

limits.

Thermodynamic Transition Levels

The presence of impurities and point defects often leads to the formation of new defect
levels in the band gap of a material. These defect levels can be identified experimentally,
however, there is no definite way of assigning a given defect level to a particular defect.
The high degree of detail afforded by DFT simulation techniques means that they are
becoming increasingly popular as a means to carry out this assignment. However,
it is generally not possible to compare the single particle levels (SPLs), i.e. the raw
eigenvalues (Kohn Sham states) of the defect state in the band structure, because
experimental data is usually based on transitions from one charge state to another.
Thus, to compare simulation results with experiment it is necessary to first calculate
thermodynamic ionization (transition) levels. The thermodynamic transition levels
(ionization levels) of a given defect, ep (¢/q'), correspond to the Fermi-level positions

at which a given defect changes from charge state g to ¢”:

AHY(D,q) — AH! (D.q)
q—q

ep(q/q) = (3.33)

The transition levels derived from this relation are typically plotted in a transition
level diagram (TLD) and compared to experimentally derived trap levels. An example
of how to generate one such diagram is presented in Figure 3.10, where the formation
energies of oxygen defects in CdO for different charge states are plotted as a function
of the Fermi energy (Eg) under both metal-rich/oxygen-poor and metal-poor/oxygen-
rich conditions. The n-type defects (Vi) are shown as blue lines whereas the p-type

(OP") are shown as orange lines. For each defect type, the solid line corresponds to
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the charge state with the lowest energy for a given value of Fg. The dots indicate
where the transitions between charge states occur. Also shown in this diagram is the

conduction band minimum (CBM) of the material [44].
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Figure 3.10: Transition level diagram for oxygen defects in CdO (a) cadmium-
rich /oxygenpoor conditions and (b) cadmiumpoor/oxygenrich. The n-type defects (Vo)
are shown as blue lines whereas the p-type (O?er) are shown as orange lines. The dots
represent the transition levels (ep (¢/q’)). The black dashed line indicates the position
of the conduction band minimum (CBM) in CdO.

3.4 Molecular Dynamics

Molecular Dynamics can be thought of as a Determinist’s dream; the ability to follow
an individual atom’s motion as a part of a bigger system of interacting particles and
in this way gather information is a concept that provides as much appeal now as it did
when the laws of motion were first elucidated. The equations of motion provide the
relationships that govern the interactions between the various species that constitute
the system under study as a function of time. In this way, it is possible to overcome

energy barriers in the system in order to find the global minimum, c.f. static lattice
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calculations. However, as the amount of real time modelled is currently very short,
this is only true for small energy barriers in the order of a few kg1, where kg is the
Boltzmann constant.

The motion of the particles in a system is governed by Newton’s second law, which
relates the forces acting on each particle to changes in their positions as follows

(92 r;
ot?

Fi =m; = m;aq; (334)
which indicates that the force F; imparts an acceleration a; to a particle i of mass m;.

Details on how this equation is applied in practice are provided in the sections below.
1

3.4.1 Finite Difference Method

Once the forces between the particles have been calculated it is necessary to integrate
the equations of motion in order to obtain the time-correlated trajectories of the par-
ticles in the simulated system. The integration can be done in a variety of ways, but
it generally involves using the Taylor expansion of the function (or integral) of interest
and truncating it at different points; then, in some cases, one can make use of deriva-
tives from previous steps to obtain better estimates of the quantities being calculated,
nawely, positions, velocities and forces.

A good integration algorithm must meet certain criteria. Firstly, it should allow for
use of long timesteps, typically of the order of 1071 —107'%s. This is necessary because
long timesteps allow exploration of a greater portion of the phase space (See Section
3.4.2), from which the thermodynamic data are calculated, for the same number of
cycles. Secondly, the algorithm must conserve the total energy and momentum, as well
as being time-reversible. The time reversibility of an algorithm refers to the ability to
retrace the trajectory of the system in phase space if the momenta of the particles are
reversed. Time-irreversible algorithms are not compatible with energy conservation,
hence one expects long-term energy drift to affect these algorithms. Thirdly, the algo-

rithm should follow closely the true phase space trajectory of the system, thus making
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it possible to sample the desired constant energy surface. It is not expected that the
algorithm exactly duplicates the true trajectory due to the finite precision available
from computers and the accumulation of errors as the simulation proceeds, neither is
it necessary to have the true trajectory because the properties calculated from the MD
data depend on statistical averages [50)].

Other important properties desirable in an integration algorithm are that it is fast,
although its speed only has limited impact given that most of the CPU time is devoted
to calculation of the forces, thus it is preferable to search for ways of optimizing the
latter aspect of the calculation rather than the integration algorithm. In the early
days of MD it was also important to keep memory usage to a minimum, however this
restriction only applies to very large systems these days given that these hardware
constraints have been reduced. Finally, maintaining the program is facilitated if the
algorithm is easy to code.

Equation 3.35 represents the Taylor series expansion of particle positions from time
t forward by a time step of 0t to t+0dt., assuming the acceleration to be constant during

the timestep

a;(t) b;(t)

ri(t 4 6t) = ri(t) + vi(t)ot + - 5t + 3—|5t3 + O(sth) (3.35)
Similarly, the backward expansion is given by
. . (L) . b;(t) . -
ri(t — 6t) = ri(t) — v;i(£)0t + 3’2(' )0t2 - %ot“ + O(ot*) (3.36)

By adding Equations 3.35 and 3.36 one eliminates all odd-order terms. This is the

functional form of the time reversible Verlet algorithm

ri(t + 6t) = 2r;(t) — ri(t — 0t) + a;0t + O(6tY) (3.37)

Note that the local truncation error is of order O(6t*), however the algorithm is
said to be of third order. Omne source of error in this algorithm is the fact that the

acceleration term a;0t2, which is much smaller than (2r;(t) —r;(t —0t)), is added to this
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difference thus leading to loss of precision. Also, in equation (3.37) there is no explicit
calculation of the velocity v;(t), which is required to calculate the kinetic energy. If
one truncates after the second term in Equation 3.37 and rearranges the variables the
following expression for the velocity is obtained

s I‘i(t aF (St) - I'i(t - (St)

vi(t) = o + O(6t?%) (3.38)

Equation 3.38 is the first-order central difference estimator. Note however that
this equation shows a second order truncation error, as a result the kinetic energies
calculated from these velocities are less accurate than the potential energies calculated
using Equation 3.37. An alternative version is the Verlet Leapfrog algorithm. This
algorithm is numerically equivalent to the Verlet algorithm and it produces identical
trajectories. However, instead of expanding the positions around ¢ by +40t and —dt one
expands the velocities at half-integer timesteps and uses these velocities to compute

the new positions:

ot 1l e
vi(t + —2-) = v;(t — 501‘,) + a(t)ot (3.39)
. 1 [
vi(t) ! (t+ 1(5t)+ (t 15t) (3.41)
(t) = = | v o~ vi(t — =¢ 3.
1\ 2 1\ 2 (] 2
ot 4l 6t t4dt 6t t t+ot -6t t+ot
a
Figure 3.11: Schematic representation of the Verlet leapfrog algorithm.

The leapfrog algorithm updates the velocities before the positions are changed, as
illustrated in Figure 3.11 [114]. The main advantage of this algorithm over the original

Verlet (Equation 3.37) is that here the small difference between two large quantities
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is no longer computed as was the case with Equation 3.38. Moreover, having the
velocities explicitly stated in the algorithm makes further manipulations like velocity
scaling much easier.

In choosing a time step dt for calculations one must also take into consideration
that there are two types of errors involved in the numerical integration of the equations
of motion, namely the truncation error and the round-off error. The truncation error
appears when terms in the Taylor expansion are omitted from the calculation; this
means that in the Verlet algorithm the acceleration is assumed to be constant for the
duration of the timestep, but this assumption is only true in the limit of an infinitely
small timestep. On the other hand, the round-off error comes from the finite precision at
which the values being calculated can be stored; therefore, as the calculation proceeds
these errors increase exponentially and after a number of steps the dynamic connection
between points along the trajectory becomes disrupted (this effectively means that
Molecular Dynamics is not a truly deterministic method); both truncation and round-
off errors combine into a global error. One must then compromise on the time step
chosen for the simulation in order to sample the phase space at a good resolution
level, whilst reducing the effect of truncation and round off errors. In order to decide
upon an acceptable timestep it is necessary to carry out a number of trial runs and
monitor the conservation of total energy to a given level of accuracy; this will allow the
identification of a critical value for ¢ at which the algorithm becomes unstable, then
the chosen timestep should be smaller than the critical value. Fortunately, the time
averages that are calculated in MD can tolerate errors in particle trajectories. In fact,
the errors introduced as the calculation proceeds could be thought of as uncontrolled

perturbations that are expected also in physical systems.

3.4.2 Ensembles
Microcanonical ensemble

A statistical ensemble relates macroscopic observables, like temperature and pressure,

to the microscopic information from MD simulations. Direct solution of Equation
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3.34 provides the simplest form of molecular dynamics simulations, which are those
performed on thermodynamically isolated systems, i.e. those which do not exchange
matter or energy with their surroundings, thus their number of particles (N), total en-
ergy (£) and volume (V') remain constant, while the temperature (7") and the pressure
(P) are allowed to fluctuate. For this reason this ensemble is typically known as NV E.

Under this set of conditions the total Hamiltonian (Hre) of the system is given by

Hyve(pn,tn) = Ex(pn) + U(rw) (3.42)

where Fk is the kinetic energy and U is the potential energy and the phase space of
the system is described by the position (ry) and momentum (py) of each particle.
This ensemble is seldom used in practice, however, because of the severe restriction
presented by the fact that it corresponds to isolated systems with few experimental

counterparts.

Canonical ensemble

Iz the canonical ensemble (NVT') the system temperature is held constant by coupling
it to a heat bath. In this case, each point in phase space is sampled with a probability
equal to the the Boltzmann factor e~ /557 Traditionally, phase space sampling along
the NV'T" ensemble has been performed using Monte-Carlo methods, however these
simulations do not provide time-correlated particle trajectories, but instead each step
depends only on the previous one. One of the most popular implementations of the
canonical ensemble is the method proposed by Nosé [115, 116] and improved by Hoover
[117]. Within this formalism, the Lagrangian of the system is increased by an additional
degree of freedom that is coupled to the kinetic energy of the system. It can be thought

of as a friction factor that is added in order to adjust the velocities of the system. To

understand how this thermostat is implemented it is first necessary to clarify how the
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temperature is related to the kinetic energy

- P}l ksT :
T(t) = ; Sl =5~ (3N = N,) (3.43)
In Equation 3.43 N, is the total number of independent internal constraints (fixed bond
lengths and angles), which in the case of a periodic box with total linear momentum
of zero, as used here, is 3. The term (N — N,) is also expressed as Ng to indicate
the total number of degrees of freedom in the system. The mechanism by which the
Nosé-Hoover method modifies the laws of motion [118], and thus the temperature, is
as follows
oU (r;) Pn

Q= — s - pz‘a (3-44)

where 7 is the friction coefficient whose time dependence is given by

dT] . Pn 2 A5
i 0 (3.45)

and @ corresponds to the effective mass of the thermostat
Q == A'VdkaTEIﬂQ (346)

Here, T,.; is the temperature of the extended system, i.e. that which is being simulated
as well as the reservoir, 7 is typically called the relaxation time and it is a free parameter
that models the strength of the coupling of the system to the thermostat. A small
value of 7 yields a large derivative for n and hence a large additional friction coefficient
acting on the motion of the particles; thus, this case is said to be strongly coupled.

The effective Hamiltonian used in this method is therefore given by

d If 2

Hyvr =U + Z + NyskpTn (3.47)

Notwithstanding, Martyna et al. [119, 120] demonstrated that the dynamics from

the Nosé-Hoover thermostat are not guaranteed to produce a canonical distribution.
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The solution they proposed prescribes the use of chains of thermostats rather than a
single one. The thermostat chains (M) couple the system to a first thermostat 7,
which is in equilibrium with the system under study, while successive thermostats 7;
are at equilibrium with the next thermostat in the chain 7;;;. The equations of motion

now become

_9U(ry) P

= = 3.48
a 81'1', pl Q] ( )
dn; Py

=l R 3.49
. (3.49)
L p? D,
ap, = Z ﬁ Sk J\/’Tdfk‘BT — Pm i (3.5())
2
p'? = T p’] +1 9
a, = |—=— —kgT| — Z 3.51
v L?j—l ’ ] B B Sy
V)
Apy = (gn‘\;_ll - kBT) (3.52)
and the Hamiltonian is

Nas p2 pQ M
Hyyvr = U + Z ﬁ o % i ‘Ndfkngl + Z kBT'I’]j (3:)3)

i=1 L j=2

Isothermal-isobaric ensemble

The isothermal-isobaric, or NPT, ensemble produces phase space averages that can be
directly compared to experimental data given that these are the typical conditions that
are encountered. The equations of motion were derived by Martyna et al. [120] and
couple a thermostat of position 1 and momentum p, with a barostat of momentum p,
as follows

P

Vg = E i I‘j“l;—i, (354)
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Ur) _p p

a, = — - —Pi—= 3.55
{2 ari pl 11' pl Q ( ")"))
where the change in volume with time is given by
dav  dVp.
— = 3.56
it W {556
for a given set of internal, P, and external, P, pressures
PnPe -
ae = dVv (Pint B Pext) - (307)
Q
the thermostat parameters thus become
dn _ py
— == 3.58
Nag p2 pQ
- == + = — (Ngr + 1) kgT 3.59
The Hamiltonian for this ensemble is
N 5 5
el B 7 5
Hypr = +U+(]\df+1)k3177+PextV (3.()())

2 om, 2w ' 2Q

3.4.3 Equilibration and production dynamics

In order to initialize an MD simulation it first necessary to assign random velocities to
each particle using a random number generator under the constraint of the Maxwell-
Boltzmann distribution in order to reach the desired thermodynamic state point. The
system is then allowed to come to equilibrium from the initial positions and velocities
prior to data collection at a given temperature and pressure. The aim of this process is
to create a thermalized distribution of velocities. This equilibration period usually lasts
in the order of several pico seconds. The subsequent production period is characterized

by simulations that are sufficiently long to allow the convergence of the properties
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under study. Throughout this period, data is collected at a set number of intervals.
The process by which properties of the bulk material are drawn out of the mass of

trajectory data is known as ensemble averaging (Section 3.4.2).

3.4.4 Ergodicity

Thus far it has been shown that the MD method proceeds by repeatedly integrating
the trajectories in phase space along the constant energy hyper surface for a relatively
small number of particles. The ergodic hypothesis assumes that the calculated time
average for a small number of particles over a long time is equivalent to averaging over

a large number of particles for a short time

M

00 = i 7 [ x(0 :A}B:;TZX e

Where X is the property being measured, (X) is its average, 7 is the time and M

is the number of steps.

3.4.5 Mean Square Displacement

The ionic conductivity (o) of a material can be found from MD by calculating the Mean
Square Displacements (MSD) for each species in the system. The MSD ((Ar(¢)?)) is

given by:

(Ar(t)?) = = Z Ar;(t)? (3.62)

for every particle i, which has travelled a distance Ar;(t) in time ¢. Information about

ionic conductivity is obtained from an MSD vs time plot given that

D= lm — (Ar > (3.63)

t«oc O

where D is the self-diffusion coefficient [121], i.e.. the slope of the plot. One can then
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use this value to calculate o by using the Nernst-Einstein equation:

Ng¢*D
kgTHg

In Equation (3.64) N is the number of charge carriers per unit volume, ¢ is the

charge on the carriers, 1" is the temperature and Hpg is the Haven coefficient, which is

normally set to 1. [122] Another important feature of MD simulations is that one is

able to follow the trajectory of individual species so that properties of interest can be

calculated separately, for example, the anionic and cationic mobilities can be calculated

independently.

3.4.6 Pair correlation function

The pair correlation function g;;(r). also known as Radial Distribution Function (RDF),
gives an indication of the probability of finding a particle at a certain distance from
another particle (these may be of the same or different species) and it provides valuable
structural information which can be compared with data obtained from experiment. It

is expressed as follows:
: 1 nglr)
4nriAr  p;

where n;;(r) is equal to the number of atoms of type j located at a distance between r
and r+Ar from an atom of type 7 and p; is the number density of atoms of type j. given
by p; = ¢jpo. These partial radial distribution functions can be easily calculated from
the simulation output and is obtained as average over the simulation. The total radial
distribution function G(r) is calculated from the individual partial radial distribution
functions g;;(r) by using weighting parameters, which in this case are the concentrations

of each species ¢; and their neutron scattering lengths b;:

G(T‘) = 2 CiCjbib]'g,'j(T')/ Z(b,‘ci)Q (366)

ij=1

78
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3.5 Summary

This chapter highlighted some of the underlying theory necessary to perform the sim-
ulations presented throughout this work. Section 3.2 illustrated how the periodicity
in crystals can be exploited to facilitate the simulation process. Sections 3.3 and 3.4
provided the framework necessary to utilize the potential energy models from Chapter

2 in both static and time dependent calculations.

n



-I
| S
o
:
=) .
i i =
s -
= I
L
H oy o SRR B S - TR PR
:“ . I T TS S B S RO R . . o = -
2l o b
. i ~
: .
l.—- " i LI . .
. ~ moa .
T i 'Li'"'“!.'l MI‘- ..|. S A L IHI A . ST B o
L - -
5 -

o Al e abe, _m.m

ot ‘ IL#' T
‘-"‘" S S :"“1-‘1:1: - o

) - ;‘ﬁll-' 'lr'lll'l"" Rl """Tr'
. :..' Hu ' N h “ E i rl . 'E 'q " B .
. L ST, e 'r“- .' -. - 1*. 21 Lla .| ol ,.-wr"'l fa .'l‘. ST
: \ = .

"alul'_“.‘—' : - f 1 i’l- .
Ry Ao 'am_u-,.n,ﬁ'? ‘ﬁ.} ’H' q'f: .

hﬂ-“zm;x L R

*%ﬁ;ﬂnj&;ﬁm i'-'l"'h' I.'u'#""”av'ir Fi B

"
| . .
Ll " LI
A - !
B 5 i
| . I S " B L o = s - o S A - D S o



4

Interaction Potential for doped

ceria

4.1 Introduction

This Chapter details the methods used to parametrize IPs. The parameter set obtained
for doped ceria is tested by means of comparison to structural and dynamic experimen-
tal data. Finally, the model system YDC is employed to investigate the effects that
determine the drop in ionic conductivity as the dopant concentration is increased as

was mentioned in Section 1.2.3.

4.2 Properties of pure and doped ceria

In its pure stoichiometric form CeOs, is pale yellow and has a cubic fluorite-type struc-
ture with space group Fm3m and lattice constant 5.411 AA at room temperature [123],
Figure 4.1 (a) [124], which is maintained up to its melting point. This represents an
advantage in terms of stability over the more commonly used SOFC electrolyte YSZ
which only adopts this structure after it is stabilized by doping [15]. The fluorite struc-
ture is advantageous because it provides the space required for oxide anion mobility. In

addition to its role as an electrolyte in SOFCs, ceria has found applications in several
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technologically relevant areas such as catalysis [8, 125, 126]. In catalysis, it plays an
important role due to its oxygen storage capacity, which stems from the change in
oxidation state undergone by the Ce*t cations and release/absorption of oxygen under
different environments [125]. These properties of CeO, are made use of in Three-Way
Catalysts (TWC), where it assists in the oxidation of CO to CO, under reducing condi-
tions through the reduction of Ce** to Ce**. Under fuel-lean conditions, the reduction
of NO to Nj is assisted by the oxidation of Ce3t to Ce*t.

Doping ceria with RE cations, such as Sm, Gd, or Y leads to high ionic conductivity
in the intermediate temperature range (500 — 800°) [18, 127]. The remainder of this
thesis abbreviates the names of RE-Doped Ceria systems (Ce;_,RE;Os_4/5) to ScDC,
YDC, GDC, SmDC, NDC and LDC. Several synthetic routes for producing doped CeO
ceramics have been reported in the literature, in particular Y-doping has been achieved
by methods such as precipitation of metal oxides from the corresponding nitrates [121,
128], solid state reactions of pelletized mixtures of YoO3 and CeO, [15, 129]. as well
as the sol-gel method [130]. Y is highly soluble in ceria, in fact, at 1500°C ceria can

accommodate 20.5 mol% Y,0O3 into its lattice [129].

(a) (b)
8 T T T T T T ‘ T
[ ® CN(Ce)
7.8 # CN(Ideal) —
| A4 CN(V)

Coordination Number (CN)
a
T

~N
i
1

" : L ’ 1 : .
0 0.1 0.2 0.3 0.4 0.5
xin Cer,Y.Os

Figure 4.1: (a) Fluorite-type structure seen in CeOs [10]. It consists of an array
of anions (red) occupying the tetrahedral sites in an fcc array of cations (gold). (b)
Variation in the average cation coordination number (CN) with Y3+ content [15].

However, Magic-Angle-Spinning NMR (%Y MAS-NMR) studies [15] have shown
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that the average coordination number of Y cations in YDC is smaller than expected
if the oxygen vacancies were randomly distributed, suggesting association between the
dopant cations and the vacancies in the system, such as, Y3*-V-Y3*. Figure 4.1 (b)
shows the change in average coordination numbers as a function of Y** concentration.
The coordination numbers observed were all below those for a system where the same
number of vacancies are distributed at random, however, depending on the fabrication
method, Y,03-like clustering cannot be excluded. X-ray diffraction data from the same
study showed that increasing the Y content reduces the unit cell volume due to the
oxygen vacancies generated, despite the fact that the Y3t cation is slightly larger than
Ce**, 1.019A and 0.97A respectively [131]. Previous studies have looked at ageing
effects in YDC and found that the conductivity increases with time (heating at 1000°C
for 8 days) for samples with Y3 contents up to 20%, due to improved grain boundary
conductivity. This is in sharp contrast to YSZ electrolytes whose conductivity decreases

with time due to phase transitions that take place under different conditions [129].

As with all other materials of industrial significance, it is very important to charac-
terize the fabrication process of doped-ceria electrolytes to ensure reproducible results
are obtained. To this end, the availablity of high purity powders with SiO, concen-
trations below 50 ppm is essential to dispel confusion regarding the optimum dopant
concerntration required to achieve the highest ionic conductivity. SiO, is seen to ac-
cummulate at the grain boundaries, forming amorphous phases [12, 18, 129], and it is
associated with reduced oxide ion conductivity. These impurities may come from the
ore, the furnace refractories, where the sintering takes place, and even from silicone
grease used in the SOFC test apparatus [12]. It is this reduced ionic (and electronic)
conductivity at grain boundaries with varying levels of impurities which is reported
to cause, at least in part, the discrepancies observed in total conductivities. Another
reason to exclude siliceous impurities from the samples is that they can segregate to
electrode-electrolyte three-phase boundary regions and dramatically increase the elec-
trode resistance. The negative effect of grain boundaries on the ionic conductivity is

minimized by fabrication of electrolytes with large grain sizes and the pure reagents.
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4.3 Potential Parametrization

The DIPPIM potential is parametrized by simultaneously minimizing the objective
functions presented in Equations (4.1) and (4.2) using a non-gradient simplex and
MIGRAD method [132], as implemented in the package MINUIT [133, 134]. These
functions use x? testing to compare the dipoles and forces obtained from DFT cal-
culations for a given ionic configuration. Here, uPET represents the dipole along the
a Cartesian axis for ion ¢ as given by DFT, while u!F represents the value obtained
from the potential model. The forces are handled in a similar manner, i.e. F2FT is the
DFT value against which F/Y is compared. Therefore, the values for Ap and Ap are
an indication of how well the potential model describes a given set of ab initio data.
This method to generate IPs is commonly known as force matching [135-137]. Both
the dipole and the force components are given an equal weighting in the calculation of

the total x2.

S0 |6 (0D - 6677

I il s

Ap({x}) =

2
Siaa |[F3 (1) - F5P|

Ar({x}) = (4.2)

e ‘F_A.DFTr
i,A [T i,0
Figure 4.2 illustrates the steps carried out in the development of an IP. The process
starts by first performing DFT calculations on a number of high temperature ionic
configurations. Such configurations may be obtained using an initial ansatz interatomic
potential model or from ab mnitio MD simulations. The forces on each species were then
determined directly from each DFT calculation and the dipoles were obtained from a
Wannier analysis of the Kohn-Sham (KS) wave functions [138, 139]. The set of MLWFs
generated made it possible to associate orbitals with each ion (cf. the KS description
where they are delocalized throughout the simulation cell), this, in turn, provided a
detailed account of the polarization undergone by each ion due to the electrostatic field

of the surrounding environment [137]. Once the information about forces and dipoles
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is gathered from the ab initio calculations, the parameters in the IP were fitted to
them [137] DFT’s known failure to include Van der Waals (dispersion) interactions
[58] made it necessary to add the empirically derived dispersion terms after the fit. A
correct representation of the dispersion interactions is necessary in order to accurately

represent the material’s density and stress tensor.

( 2)
Initial DFT Approximate
Configuration Potential
4 J
% l P)
Molecular
Dynamics
. J
Improved " New
Potential - DFT Configurations

Figure 4.2: Flow chart illustrating the potential development process.

The YDC potential was parametrized by performing DFT calculations, in the local
density approximation parametrized (LDA), using the CPMD code [140]. For this
system, the simple DFT approach is known to give the correct valence states (Ce'*
and Y3), so that a correction like DFT+U functional was not needed. Twelve 2
x 2 x 2 supercells with Ceps5Y050175 compositions and a total of 88 atoms were
constructed. Each model supercell was obtained from high temperature (2500 K) MD
simulations that were run for 50 ps in order to reach structural equilibrium. Figure
4.4 illustrates one of the cells used in the parametrization process. The forces on
each species were determined directly from each DFT calculation, and the dipoles were
obtained from a Wannier analysis of the Kohn-Sham (KS) wave functions [138]. In this

case, the delocalized optimal KS eigenvectors ({\I/n}n:l N) are transformed into a set of

85



4. INTERACTION POTENTIAL FOR DOPED CERIA

Maximally Localized Wannier Functions (MLWFs) that are associated with individual
ions and from which the ionic multipole moments can be calculated [138, 139]. In
this work, MLWFs were determined by unitary transformation of the KS eigenvectors

according to the following relationship

N
FRES IR L (4.3)

where the sum runs over all the KS states {¥,}, _, y. and the unitary matrix U
was determined by iterative minimization of the wannier spread (2

N

Q=3 ((r2), - (¢12) (4.4

For each ion i in the system, the component along the a Cartesian axis of the
dipole moment, p$, is calculated from the Wannier function Centre (WC) positions,

n

r", according to

N
=2y % (4.5)
=1

Once the information about both forces and dipoles was gathered from the ab initio
calculations, the parameters in the interatomic potential were fitted to them. The value
of the objective functions obtained were 0.289 and 0.145 for the forces and dipoles,
respectively, and an average of 0.217. These values compare favourably with those
previously reported for Zry Y07 Y3NbO7 [90, 141]. Figure 4.3 provides a visual repre-
sentation of the match between the forces (top panel) and dipoles (bottom panel) along
the r-axis obtained from DFT (black) and DIPPIM (red). Only six of the twelve con-
figurations used to parametrize the potential are shown. Each point along the abscissa
represents an ion, i.e., the first 56 ions in each configuration are O, followed by 16 Y
and 16 Ce. The close agreement seen indicates that the potential model used in this
study is able to reproduce the ab initio data. However, there is a clear tendency for the
DIPPIM values to deviate from those obtained from DFT for all species in cases where

the forces have large magnitudes. This issue might arise from the parametrization
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procedure employed or because a more complex potential model is required. An im-
portant property of this model is that the parameter values derived for a given species
are transferable across different coordination environments and system compositions,
thus, values for Ce and O can be used in systems with a different dopant or in studies
of ceria co-doping, as shall be seen in Chapter 5. The resulting parameters are reported
in 4.1. One problem with DFT calculations is the uncontrolled representation of the
dispersion interaction. Although dispersion energies constitute only a small fraction
of the total energy, they have a considerable influence on transition pressures and, in
particular, on the material density and stress tensor. For this reason, the dispersion
parameters were not included in the fits, as discussed by Madden et al. [91], but were

added afterward. The parameters from refs. [90, 142] were used.
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Figure 4.3: Comparison of forces, Fy, (top) and dipoles, g, (bottom) along the x-
axis for six of the twelve configurations used to parametrize the interaction potential.
Configuration 4 corresponds to Figure 4.4. All values reported are reported in atomic
units.

A potential was parametrized for reduced CeO, as well. Similarly as above, first a
short ab initio MD simulation was performed on CeOy g75 at high temperature. This

configuration was used to calculate the forces acting on the ions and these, in turn,
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Figure 4.4: One of the twelve configurations used to parametrize the DIPPIM potential.
Gold, blue and red represent cerium, yttrium and oxygen, respectively.

were used for the fitting procedure. These calculations were performed with the Vi-
enna Ab-Initio Simulation Package (VASP) [98, 143] within the DFT+U framework.
A value of U = 7eV was chosen to ensure correct localization of the f electrons. The
Ce®t cations were identified as those with spin 1, while the Ce** ones have no spin.
The Ce*t and Ce*t cations are then treated as two different cationic species in the
potential parametrization and separate terms are obtained to describe the interactions
between, for instance, Ce*t - O?~ and Ce?t - O?~. The parameters for the Ce*t - 02~
and O%~ - O?~ were then fixed to the values obtained before for the Y-doped CeO,
system, so that these parameters are all consistent and can be used together. This
procedure is equivalent to treating the Ce3* cations as a dopant species, in the same
way as was done for Y. While an ionic model for reduced CeO, might not be justified a
priori, the picture arising from DFT+U calculations and experiments seems to confirm
this model. The f electrons are, indeed, found to be strongly localized on the Ce3*

cations in agreement with an ionic picture. Also, a recent study on Ce®* /Ce*t ordering

88



4.4 Potential Validation

in ceria nanoparticles [144] showed that strikingly similar relative energy ordering of
the isomers and atomic scale structural trends (e.g., cation cation distances) are ob-
tained in both the DFT and interionic-potential calculations, which, again, proves the
validity of this approach. The resulting parameters for the Ce*" cations are reported
in 4.1. The potential parametrization was performed using two DFT codes because the
CPMD package does not have an implementation of the DFT+U framework needed to
describe reduced CeO,, while functionality required for the Wannier analysis was not

available in VASP at the time of writing.

Finally, the same procedure was repeated to include other cations. In this case
we obtained parameters for La*t and Gd3*. This was again done by performing a
short MD simulation on Gd and La-doped CeO, at high temperature and using the
final configuration to calculate forces to which the potential parameters can be fitted.
Once again, we fixed the parameters for the Ce'* — 0%~ and O?~ ~ O?" to the values
obtained before for the Y doped CeO, system. This ensures that these parameters are
all consistent and allows the study of mixed systems - such as, for instance, partially
reduced, and Y and La doped CeO,. The resulting parameters for the dopant cations
are reported in 4.1. This procedure can be repeated for as many dopant cations as
desired.

The quality of the potentials can be assessed by comparing model predictions to
experimental data, since no experimental data was used in the optimization of the
model parameters. In the following section we present our predictions, using the herein
developed IPs, for lattice parameters, local crystalline structure, thermal and chemical
expansion, and elastic constants, and their comparison with the experimental values.

The way these quantities are calculated is described in each section.

4.4 Potential Validation

In a recent paper, Xu et al.[145] compared six different interatomic potentials for ceria

available in the literature [146-151] and tested their accuracy by reproducing a series of
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Table 4.1: Parameters of the LDA DIPPIM potential. All values are in atomic units.

00 YO Y0 Cot0 G40 Lal

A 55.3 111.1  105.9 2187 2369 98.6
a¥ 6.78 1377  1.269 1.473  1.566 1.257
B 50000 50000 50000 50000 50000 50000
b 0.85 1.35 14 1.35 1.35 1.35
iy 1er 058 Dy 188 193 169
5 162 -33 -45 999 -44  0.00
be‘ 1.7% 167 1.75 3.50 3.5 3.5
cp 045 -91  -047 0.00  0.00  0.00
R SN 12 12 190 s
Cg 1023 240 240 240 240 240
b;]z.sp 1.0 1.5 1.5 1.5 1.5 14

aoz— 149

(l'yzt + 26()

acvet 4 5.()

Oz(ve.:x 4 11.2

QGd:i } 68

Qg3+ 10.8

experimental data (lattice constants, thermal expansion, chemical expansion, dielectric
properties, oxygen migration energy and mechanical properties). Two main limitations
were found. The first was that none of the reviewed potentials could reproduce all the
fundamental properties under study, although some displayed higher accuracy than
others. While all the potentials could reproduce the static properties, such as lattice
parameters and elastic constants, they all failed at reproducing the thermal expansion
coeflicient, and to a lesser degree the oxygen migration energy, for pure CeO,. Indeed,
some potentials gave thermal expansion coefficients which were one order of magni-
tude smaller than the experimental one and also severely underestimated the oxygen
migration energy. Thermal and chemical expansion properties of ceria are particularly
important in the context of SOFCs given that differential expansion of the components
has a detrimental effect on the long term durability of the fuel cells [152, 153]. A

second problem evinced from the study by Xu et al. was that not all the interatomic
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potentials have a complete set of parameters available for the study of both doped and
reduced CeO,. The potential by Inaba et al [148], for instance, properly reproduces
the thermal expansion coefficient and the elastic properties, but cannot be tested for

chemical expansion because it does not have parameters for Ce?*.

The first limitation can be easily understood by looking at 4.5, where we show the
shape of a typical interatomic potential. Such a potential is harmonic in the vicinity
of the equilibrium position (red curve is a parabola fitted to the potential) but at dis-
tances away from the equilibrium position, it deviates from that shape and becomes
anharmonic. It is this anharmonicity which is responsible for the thermal expansion
observed in solid materials. A potential’s failure to reproduce the experimental thermal
expansion means that it is not properly parametrized and/or the potential’s shape is
not correct at distances greater than the equilibrium position. In particular the strong
underestimation of the thermal expansion coeflicient, as observed by Xu et al., indicates
that the potential maintains a harmonic description of the system in regions where this
approximation is not valid. The potential also deviates from the harmonic behavior at
distances shorter than the equilibrium one, with the interatomic potential being more
repulsive than its harmonic approximation. This feature plays an important role in
the calculation of the oxygen migration barrier. When an oxygen ion hops from one
site to another, it has to squeeze between neighboring cations, so that the average
interatomic distance between the oxygen and these cations is much smaller than at
equilibrium. If a potential’s description of this interaction is predominantly harmonic,
then the repulsion between these ions will be underestimated and, consequently, the

migration energy barrier will be underestimated, as observed by Xu et al.

It would seem from the above analysis that the limitations of the existing potentials
are due to the fact that they are too harmonic. This might be due to the way they are
parametrized, given that they are optimized by fitting their parameters to a small data

set of experimental properties, usually elastic constants and lattice parameters. These
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Figure 4.5: The shape of a typical interaction potential (black line) and of its harmonic
approximation (red line).

are equilibrium or near-to-equlibrium properties, which allow the sampling of only a
small region of the potential energy surface (PES) of the system, around the equilibrium
distance. Little or no information is provided about the long- or short-distance behavior
where the potential becomes anharmonic. In this work we use a different methodology,
which was used successfully for similar oxide systems [90, 142, 154-162], to parametrize
interatomic potentials for stoichiometric, reduced and doped CeO,. The key idea
of this methodology is that the potential’s parameters are fitted to a series of DFT
calculations on high-temperature, distorted CeO, configurations. This allows sampling
wider regions of the PES than those accessed by macroscopic equilibrium observables.
We obtain parameters for stoichiometric, reduced and doped (La, Gd and Y) CeO,
and test them against the experimental data. The agreement is quite good for all the
studied properties, including thermal expansion and oxygen migration energy barriers.
This methodology can be easily extended to other dopant cations in ceria or similar

materials.

92



4.4 Potential Validation

4.4.1 Thermal expansion
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Figure 4.6: Simulated lattice expansion (points) Vs temperature for stoichiometric
CeO;. The red line represents a linear fit of the MD data. The thermal expansion, a;,
extrapolated from the fit is 9.0 x 1076 K1

Xu et al. [145] found that most potentials in the literature fail to reproduce the
thermal expansion of this material. For this reason, we test our potential with this
quantity first. Figure 4.6 shows the calculated expansion of the lattice parameter, in
the 300 - 1000 K temperature range. This was calculated by performing molecular
dynamics simulations with 4 x 4 x 4 supercells in an NPT ensemble, at the required
temperatures. We used barostats and thermostats as described by Martyna et al[119,
120] and we set the external pressure to zero. The lattice parameters were averaged
over a 0.1 ns long simulation and used to calculate the percentage expansion. In 4.6
the corresponding thermal expansion coefficient is extracted by fitting a straight line
to our data. The obtained value is a = 9.0 x 107% K~ which is within 15-20 % the
experimental values (see 4.2). This is a substantial improvement compared to the
Grimes [146], Gotte 2004 [149] and Gotte 2007 [150] potentials which gave a thermal

expansion coefficient of 1.27 x 107% |, 6.65 x 107% | 7.31 x 107% K1, respectively. We
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remind the reader that no empirical data was used in the parameterization of this
potential, so that this potential was not manually optimized in order to reproduce the

thermal expansion coefficient.

Table 4.2: Comparison between the experimental and simulated thermal expansion
coefficients (a).

a (1079 K71) Reference

9.0 This work
10.7 Ref. [163]
i Ref. [164]
11.6 Ref. [165]

4.4.2 Elastic properties

Elastic constants and the bulk modulus were calculated and compared to the experi-
mental values. The three independent elastic constants were obtained by straining an
optimized simulation cell in different directions by a small amount (typically a fraction
of a percent) and the resulting stress tensor is recorded after relaxation of the atomic
positions. After repeating this procedure for several magnitudes of positive or negative
strain, the linear relationship between strain and stress is used to obtain the elastic

constants at 0 K. The bulk modulus was extracted from a volume versus pressure curve.

Table 4.3 reports the three elastic constants and the bulk modulus. These are
within 15% of the reported experimental values, with the exception of Cy;, whose
value is overestimated by 32%. We believe this agreement to be quite good, especially

considering that the experimental data for these properties are quite scattered.

One of the main motivations of the work of Xu et al. [145] was to find a reliable
potential to describe - and perhaps explain - the observed elastic softening of ceria
with decreasing oxygen partial pressure (FPp,). For this reason in 4.7 we report the

Young modulus for reduced ceria as a function of the lattice constant, together with
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Table 4.3: Experimental and simulated elastic constants and bulk modulus for stoichio-
metric CeOs.

Property (GPa) MD Experimental [166, 167

Cy 952 386 - 450
Ci2 137 105 — 124
Cyq 66 0l = 73

B 270 204 - 236

the experimental data from the work of Wang et al. [145, 168] and the ones obtained
with the Grimes and Gotte 2007 potentials [145]. The scale of the plot is the same
as in Fig. 3 in ref [145] to facilitate a comparison. Our interatomic potential shows
the expected elastic softening as a function of the lattice constant (or analogously, as
a function of the non-stoichiometry). The values obtained with our simulations are
within the experimental error. The level of accuracy is indeed better than the Grimes

potential and comparable with the Gotte 2007 potential.
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Figure 4.7: Young modulus Vs the lattice parameter in CeO2_,. Red symbols are the
experimental data from Wang et al. [168], green and blue symbols are the simulated data
obtained with the Grimes [146] and Gotte 2007 [150] potentials, while the black ones are
from our own potential.
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4.4.3 Structural properties of reduced ceria

The local crystal structure of reduced ceria has been recently studied with neutron
diffraction experiments [11]. From that set of data, total radial distribution func-
tions were extracted for different values of z in CeOs_,. In Figure 4.8, we report the
calculated total radial distribution functions, G(r)(from Equation 3.66), for different
non-stoichiometries and we compare them with the ones extracted from the neutron
diffraction data. The agreement is good for all the studied compositions. The first
peak in the simulated G(r)s appears as a doublet while in the experimental data it
appears as a single broad peak . This is probably caused by the lower spacial resolution
of the experimental data and has been observed in previous studies as well [90, 162].
A visual analysis of the oxygen-oxygen radial distribution functions (not shown) shows
an increased broadening as a function of x, which is indicative of an increased disorder

within the anion sublattice [11].

4.4.4 Chemical expansion

The conditions found at the anode side of SOFCs lead to the reduction of Ce** to Ce?*
with a subsequent change in the lattice parameter. This chemical expansion affects the
performance of the electrolyte as it creates a strain in the cell and can eventually cause
fractures. For this reason, in this section, we test the ability of our potential to describe
this behavior accurately. In Figure 4.9 we report the calculated lattice parameter as
a function of the oxygen non-stoichiometry in CeO; at 1273 K and compare this with
the neutron data from Hull et al. [11] at the same temperature. The agreement is
excellent and the simulated chemical expansion coefficient, 0.338 A, is within 7 % of
the experimentally determined chemical expansion coefficient, 0.362 A. Such a good
agreement is encouraging and also indirectly confirms that our ”ionic” approach, in

which we see Ce®t as a different cation species, carries the correct physics.

In Table 4.4 we report the calculated lattice parameters for CeggsRE20; ¢ at room

temperature, where RE = Gd3*t, La3* and compare them with the experimental val-
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Figure 4.8: Radial distribution functions, G(r), for different values of z in CeOq_,, at
1273 K. Red lines and black empty dots correspond to the MD and experimental [11]
G(r)s respectively.

ues. The agreement is within 1% and the trend of increasing lattice parameter with

increasing cation radius is properly reproduced.

Table 4.4: Comparison between experimental [169] and simulated lattice parameters
for CegsREg201.9 at room temperature (RE = Gd®t, La3t).

Lattice parameter MD (A) Experimental (A) [169]

Gd3+ 5.426 0.423
La3t 5.494 5.476

a7
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Figure 4.9: Lattice parameter (red line) as a function of the nonstoichiometry, z.
in CeOs_,. The simulations were performed at 1273 K, the same temperature as the
reported experimental data [11] (black empty circles).

4.5 Defect interactions and the ionic conductivity

in YDC

This Section examines the factors that affect the ionic conductivity of YDC at its work-
ing temperature as an electrolyte in SOFC applications. In particular, we investigate
the effect of oxygen vacancy ordering on the conductivity of YDC using a combination
of experimental neutron diffraction, ionic conductivity data and molecular dynamics

simulations using the potential parameters reported in Table 4.1.

4.5.1 Simulation details

All molecular dynamics simulations on the cubic Ce;_,Y,Os_ /5 system were performed
using a supercell of 4 x 4 4 unit cells for a range of x values (Table 4.5). Each model
was set up by distributing the ions randomly over their average crystallographic posi-

tions. Coulombic and dispersion interactions were summed using Ewald summations
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Table 4.5: Number of atoms of each species in the Ce;_;Y;O,_ ;5 systems used
throughout this study

Ce1—z Y20 42 Ce't ions Y3+ ions 0O? ions oxygen vacan-
cies

0 256 0 512 0
0.04 246 10 507 5
0.08 236 20 502 10
0.12 226 30 497 15
0.18 210 46 489 23
0.20 204 52 486 26
0.24 194 62 481 31
0.26 190 66 479 33
0.30 178 78 473 39
0.36 164 92 466 46
0.40 152 104 460 52

[78] whilst the short-range part of the potential was truncated to half the length of the
simulation box (~ 10 A). Each concentration was initially equilibrated at a temperature
of 2073 K for 120 ps; the temperature was then scaled down to room temperature at a
rate of 1.64 K ps~!. The diffusion coefficients were calculated for temperatures of 873
K and above. All simulations were performed at constant temperature and pressure
(NPT ensemble), as described by Martyna et al. [119, 120] using a timestep of 1 fs.
In addition to these calculations, we also constructed model systems (referred to as
average cation ac-YDC) where both cations are assigned the same short-range poten-
tial parameters as those of the Ce** ions in the original potential. In this model both
cations are given the same charge so that the total for all cations balances that of the
O?~ ions present in the simulation for the same concentration ranges that were used in
the calculations described above for Ce;_,Y;O,_; /5. These idealized systems allow us
to eliminate the effects of differing charges and lattice strain induced by having both
host and dopant cations and serve as reference systems in which the cation-vacancy

ordering effects are absent.
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4.5.2 Structural properties of YDC

Figure 4.10 shows the change in cubic lattice parameter, ag, at 300K as a func-
tion of dopant concentration in Ce;_,Y,0s_ 52, obtained from the MD simulations
(blue squares) and from previous XRD experiments (red diamonds and black circles
[15, 129]). The trend observed is that the lattice constant decreases as the dopant con-
centration increases. This is caused by vacancy formation upon doping, which coun-
teracts the increased number of the slightly larger Y3+ cations. This effect is discussed
in detail in ref [20]. Figure 4.11 compares the total radial distribution function, G(r),
generated from the MD simulations (using Equation 3.66) with those obtained from
the neutron diffraction experiments, both at 1073 K and represented by red dashed
lines and black solid lines, respectively. The range of concentrations shown is from x =
0.04 to 0.26. In addition, the results for a 10 ps Local Density Approximation (LDA)
Car-Parrinello MD [170] simulation performed for the composition z = 0.12, shows the
high level of agreement between our IP and ab initio. Overall, the agreement between
the MD simulations and the neutron diffraction data in Figure 4.11 is good, the only
deviation (common to both MD and ab initio simulations) being that the simulated

peak at around 2.7A is slightly sharper that the experimental one.

Figure 4.12 shows a plot of the partial radial distribution functions, g;;(r). for
CepssY0.1201.94 at 1073 K, from MD, RMC and ab initio simulations. Overall, the high
level of agreement between the data sets confirms that the DIPPIM potential used
here is able to account well for the structural properties of YDC at various dopant
concentrations. The plots for gee_o(r) and gy_o(r) show that the Y-O distance is
slightly longer than Ce-O, which is explained by the stronger Coulombic attraction
exerted by the Ce!t cation and is in good agreement with Shannon’s radii of 0.97 A
and 1.019A for Ce't and Y3*, respectively [131]. Overall, this comparison shows
that the DIPPIM potential can satisfactorily reproduce the experimental structural
data for this system. In the next section, we will therefore focus on cation-vacancy
and vacancy-vacancy ordering tendencies (which can be probed only with computer

simulations) and their effects on the conductivity of this material.
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Figure 4.10: Room temperature lattice constants from experiment (red diamonds and
black circles), taken from previously published XRD data [15, 129] and DIPPIM (blue
squares) lattice constants as a function of dopant concentration z in Ce1—2YzOq /5.
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Figure 4.11: Total radial distribution functions G(r) for Ce;_;Y;O9_; /5 where z =
0.04, 0.08, 0.12, 0.18 and 0.26 from experiment (black solid lines) and MD (red dashed
lines). The green dotted line represents a Car-Parrinello MD simulation for z = 0.12.
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Figure 4.12: Partial distribution functions, g;;(r), from MD simulations (red dashed
lines) and experiment (black solid lines) for CeggsY(.1201.94. The green dotted lines
represent a Car-Parrinello MD simulation for x = 0.12.

4.5.3 Cation-vacancy interactions

Figure 4.13: Cations (green) are coordinated tetrahedrally around the anions (red) in
the fluorite structure. Four planes can be delineated using the cations at the vertices of
the tetrahedron.
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The vacancy analysis of fluorite structured materials probes the occupancy changes
of the tetrahedral sites formed by the face centred cubic cation sublattice shown in
Figure 4.13. As the picture illustrates, these are the sites where the oxide ions and,
thus, their vacancies are normally present. The oxygen vacancy analysis is performed
making use of the fact that the cations in the systems under study do not diffuse, even
at high temperatures. Thus, it is possible to specify the cation sublattice in terms
of tetrahedra, each of which may be empty (vacancy) or occupied by an oxide anion.
For a set of time-correlated instantaneous ionic configurations, i.e., frames in an MD
simulation, one can determine which tetrahedral sites are empty. However, distinction
must be made between the vibrations undergone by the oxide anions, which are large in
amplitude at the temperatures of interest, and instances when a given oxide anion has
truly vacated a given tetrahedron. This distinction is made by imposing the condition
that a site be considered a vacancy only if it has been vacant for a period of at least two
frames. The position of each vacancy is then defined as the centre of the tetrahedron
formed by the average positions of the four surrounding cations. These positions can
then be used to calculate partial radial distribution functions (RDFs), from which
vacancy ordering in real space can be studied. Integration of these partial RDFs (g(r))

peaks from zero out to the position r. gives the coordination number:

i = 47rp/ (- rg(r)dr (4.6)
0

where p is the vacancy density in the simulation cell. This method has been previously
used to study similar materials, such as, Zro Y207 Y3NbO; [158], YDC [171] and PbO,
(89, 172].

Figure 4.14 shows the geat—vac(r) at 1073 K for z = 0.18 (a), 0.26 (b), 0.30 (c) and
0.36 (d) in Ce;_;Y;0g_g/o. The first two peaks in the RDFs represent the number of
vacancies that are in the nearest neighbour and next-nearest neighbour position of each
cation, respectively. The results show that there is no clear tendency for the vacancies

to associate with either cation at the nearest neighbour position, although the next
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nearest neighbour position shows, especially for low dopant concentrations, enhanced
association of the vacancies with the Y3 cations with respect to the Ce* cations,

which indicates repulsion of the vacancies by the former species.
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Figure 4.14: Cation-vacancy partial distribution functions, geat—vac(7), obtained from
MD simulations at 1073K for = = 0.18 (a), 0.26 (b), 0.30 (¢) and 0.36 (d) in
Ce1-2Yz0q_z/2. Y-vacancy and Ce-vacancy g(r)s are represented by blue (solid) lines
and red (dashed) lines, respectively.

At first, our results might seem at odds with previous evidence from the literature.
Indeed, room temperature MAS NMR measurements on YDC show clearly that the Y
coordination number is smaller than that of the Ce cations (See Figure 4.1 (b)), thus
implying that vacancies associate with Y cations [15, 173]. Static calculations, based
on interatomic potentials or DFT, also show that there is a preference for vacancies
to be nearest-neighbour to Y, as opposed to next nearest neighbour. However, this
preference is rather weak and the energy difference between these two configurations is
smaller than 0.1 - 0.2 eV [15, 173]. This explains why we do not observe such ordering in
our simulations. Indeed, since our calculations are performed at high temperatures (>
873 K), this weak ordering tendency is washed out by entropic effects. This argument is
confirmed by recent calorimetric measurements, performed at 973 K, which show that

little defect ordering is observed in YDC compared to YSZ and yttria-doped HfO,. Kim
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et al. [15] performed 'O MAS NMR studies and found evidence of different resonances,
which they assigned to oxygen atoms with different numbers of yttrium cations in the
first coordination sphere. However, when the temperature is raised to 673 K, these

resonances coalesce, indicating that at this temperature this ordering effect vanishes.

4.5.4 Vacancy-vacancy interactions

Figure 4.15 illustrates the gvac—vac(r) at a range of dopant concentrations at 1073 K.
For the purpose of comparison, a gyac_vac(r) for CeOy at the same temperature is also
included as it represents that expected from a random distribution of vacancies. The
directions/distances in the simple cubic oxygen sublattice are indicated by <100>,
<110>, <111>, <200>, etc. The patterns observed indicate that there is an enhanced
ordering of oxygen vacancies along the <210> and <211> that is not dependent on
the dopant concentration. Figure 4.15 also indicates that as the Y** content increases
the vacancies tend to pair along the <111> direction with respect to the random

distribution. This has been observed in several fluorite structured oxides [11, 161, 162]
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Figure 4.15: Vacancy-vacancy partial radial distribution function, gyac—vac(7), obtained
from MD simulations at 1073K for z = 0.12, 0.26, 0.30 in Ce;—3Yz09_4 /2.
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4.5.5 Ionic conductivity

The ionic conductivity was estimated using the diffusion coefficients from MD simu-
lations according to the Nernst-Einstein formula shown in Equation 3.64. Figure 4.16
shows the ionic conductivity as a function of dopant concentration at 1073 K and 873 K
obtained from experiments and simulations. At the temperatures in question there is
a peak in the conductivity (o) with increasing Y** content at x 2 (.12 for the experi-
mental data. This maximum is less pronounced in the MD simulation data, but it also
occurs at r = (.12 in the case of the 1073 K simulations. This peak becomes less pro-
nounced at 873 K for both data sets. These data are in excellent agreement with those
reported elsewhere and highlight the predictive capabilities of the DIPPIM potential.
The data from simulations at multiple temperatures can be used to generate Arrhe-
nius plots, from which activation energies can be obtained. Figure 4.17 illustrates the
observed behavior of an increasing migration energy as a function of Y203 concentra-

tion, which is in excellent agreement with the experimental findings of Tian et al. [174].

If the migration energy in Figure 4.17 is extrapolated to x = 0, a value of approxi-
mately 0.47eV is obtained. This corresponds to the oxygen migration energy in CeO,
and compares well with the experimental results and with previous DFT calculations,
as shown in Table 4.6. This further demonstrates that this potential can successfully
reproduce the ionic conductivity properties of this material.

Table 4.6: Comparison between experimental and simulated oxygen migration energies
for CeOq_,. for z — 0.

Migration energy (eV) Reference

0.47 This work
0.52 Ref. [175]
0.40 Ref. [176]
0.47 Ref. [177]

As discussed above, the shape of the conductivity versus composition plot is usually

attributed to two types of interactions, namely, those between cations and vacancies
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Figure 4.16: lonic conductivity as a function of dopant concentration at 1073 K (blue
lines with circles) and 873 K (green lines with diamonds). Dashed and solid lines represent
experimental and MD results, respectively. The orange line with squares corresponds to
the conductivity at 1073 K of the average cation systems (ac-YDC) where the cations
carry the same charge.
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Figure 4.17: Oxygen migration energy in Ce;—;Yz0q /5 Vs Y203 concentration, .
These migration energies were extracted from an Arrhenius plot of the MD diffusion
coeflicients at high temperatures.
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and those between vacancies themselves. Our study of these interactions has shown
no clear evidence for the former, but a strong tendency for vacancies to pair along the
<111> direction with increasing dopant concentration. In order to confirm which of
these effects dominates the observed maximum in conductivity, Figure 4.16 also shows
a plot of the conductivities at 1073 K for the average cation systems, ac-YDC, where
both cationic species carry the same charge and have the same short-range repulsion
interactions with the oxide ions. These calculations were included in order to explore
the effects of the vacancy-vacancy interaction in a more direct manner, given that
cation-vacancy effects are, de facto, eliminated in ac-YDC. In this case we see that
the conductivity has a peak at the same dopant concentration, although all values are
higher than either the experimental or the simulated results for the real system at the
same temperature. The latter is probably a consequence of the potential which has, on
average, less repulsive short-range interactions [162]. Figure 4.16 shows that, even if all
the differences between the cation species are removed, a maximum in the conductivity
is still observed in ac-YDC, which happens at the same vacancy concentration as in
the real material, x = 0.12. This serves to confirm that the observed maximum in the
conductivity, and its subsequent drop, are predominantly caused by vacancy-vacancy

interactions in cases where there is small cation size mismatch, as is the case in YDC.

4.6 Conclusions

Section 4.2 provided some background on the properties of ceria and presented the main
challenges that must be considered in its optimization for use as an SOFC electrolyte.
Section 4.3 detailed the method of force-matching that is employed to parametrize the
[Ps used throughout this thesis. The reliability of the new interionic potential was
studied for stoichiometric, reduced and doped CeO, in Section 4.4, where a series of
fundamental properties of these materials were calculated and compared to experi-
mental data. The agreement for all these properties (thermal and chemical expansion
coefficients, lattice parameters, oxygen migration energies, local crystalline structure

and elastic constants) is very good, with the calculated values being within 10-15%
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of the experimental ones. We note that such accuracy is comparable to that of DFT
calculations, but the computational cost is reduced significantly. These potentials can
thus be used to predict and elucidate the atomic-scale properties of CeOs in situa-
tions where DFT calculations are not practical due to their size limitations. With
such potentials, nano-second long simulations on 1000s of atoms can be performed and
these can be used to understand the structural, chemical, mechanical and conducting

properties of this material, as previously done in similar systems [90, 142, 154-162].

In Section 4.5.5 the potential set that was parametrized served to assess the role
of the processes which affect the conductivity in Ce;_, Y0552 (YDC), namely, the
local ordering of the anion vacancies and their preference to reside in the vicinity of
either cationic species. The former was found to have a more pronounced effect with
increasing x, whilst there was no clear tendency for the vacancies to be located near
the host Ce*t or dopant Y?* cations in the intermediate temperature range. In fact,
it was found that vacancy ordering along the <111> direction, driven by their strong
repulsion at closer distances [24, 178, dominates at high x values. The decreasing ionic
conductivity with increasing z is, therefore, for the most part dominated by vacancy-
vacancy interactions in YDC. This was confirmed by performing simulations on average
cation, ac-YDC, systems, where both cationic species carry the same charge and have
the same short-range repulsion interactions with the oxide ions. Our results showed
that the ac-YDC systems displayed the same maximum in conductivity as those where

the ions carry their formal charges, namely x ~ 0.12.

Recent studies of the local ordering of anion vacancies in a series of fluorite-
structured materials such as YSZ, ScSZ, CeOq_s, Zr0 5052 Y0.5+0.25: Nbo.25:01.75 [11, 158,
161, 162] also showed a strong ordering of the vacancies along <111> directions, to-
gether with a preference for the vacancies to reside in the vicinity of the smaller cationic
species - when these have ionic radii that are quite different, such as the case of YSZ.
The results presented in this Chapter indicate that the same arguments apply to YDC.
As result of this, we conclude that the vacancy ordering tendencies in these fluorite-

structured materials are very similar and share the same features, even though the local
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structure of these materials can be very different [11, 90, 158, 162] Most importantly,
the tendency for vacancies to order along the <111> direction is still observed even
when the differences between the host and dopant cations are completely removed.
These results therefore appear to indicate that vacancy-vacancy interactions in these
materials are an intrinsic effect, rather like a property of the fluorite lattice and that,
consequently, they cannot be minimized/avoided by changing the chemistry of these
compounds . This has significant consequences as these interactions ultimately limit
the conductivity of these materials for z > 0.12. For this reason, different optimiza-
tion strategies are considered in the remainder of this thesis. In Chapter 5, the use of
multiple dopant species (co-doping) is assessed as a means to improve the conductivity
beyond that of the best single dopants. Chapter 6 diverges from this compositional
approach by examining how the application of strain to thin films of YDC affects their

conductivity:.
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Solid solutions of ceria with

multiple cationic species

5.1 Introduction

5.2 Co-doped ceria electrolytes

Traditionally, ionic conductivity optimization has been approached from a composi-
tional perspective. This has meant that, in order to improve the conductivity of ceria-
based electrolytes, researchers have mostly focused on parameters such as the ionic
radius of the dopant cation and its concentration, x in Ce;_,RE;Oz_./2. The chief
aim has been to minimize defect interactions, especially those between dopants and
vacancies [23, 24, 151, 179-181]. These studies have variously identified a number of
RE elements, such as Gd3*, Y3+, Sm** and Pm3* as the best candidate dopants, given
that their radius mismatch with the host cation (Ce**) balances the competing electro-
static and elastic components of the defect interactions which control their association
[182]. Nevertheless, recent studies have shown that in the limit where cation-vacancy
interactions are reduced to a minimum, it is vacancy-vacancy association which ulti-
mately determines the ionic conductivity drop as a function of dopant concentration

in fluorite-structured materials, such as, Yttria Doped Ceria (YDC) [171], Yttria Sta-
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bilized Zirconia (YSZ) and Scandia Stabilized Zirconia (ScSZ) [162]. This means that
different optimization strategies must be sought if [T-SOFCs are to realize their po-

tential in commercial applications [183-186].

An interesting route for improving the ionic conductivity of fluorite-structured elec-
trolytes is co-doping, i.e. doping these materials with more than one cation species.
This approach has been successfully employed on ZrO, by Politova and Irvine [187]. In
this case, the material is doped with two different cation species, each of which plays
a different role. Sc is added to improve the ionic conductivity, since its radius is very
close to that of Zr, thus minimizing cation-vacancy interactions; while Y, on the other
hand, is introduced because its larger ionic radius fully stabilizes the fluorite structure
and removes a phase transition to a lower-symmetry phase observed in pure Sc-doped
ZrO,. It is important to note that Y addition to Sc-doped ZrO, is found to lower the
conductivity of this material. There is therefore a trade-off between stability and ionic
conductivity in this co-doped zirconia system. In the case of Politova and Irvine, the
authors found that very small concentrations of Y are necessary to stabilise the cubic

fluorite structure and that this has a small effect on the conductivity.

It has been suggested that co-doping can also be used to improve the ionic conduc-
tivity of ceria based electrolytes [130, 188-199]. However, contrary to the stabilizing
role it plays in zirconia, co-doping in ceria is done in order to either reproduce the
ionic radius of an ideal dopant, or the lattice constant of ceria doped with said dopant.
Co-doping with two or more different cations aims to obtain an average or “effective”
cation radius that is very close to that of Ce** and, thus the average strain introduced
by the dopant cations is minimized. This is substantiated by different interpretations
of how a dopant with a critical radius (r¢) is likely to affect defect-defect interac-
tions. For example, in 1989 Kim suggested that the ideal dopant would not change
the volume of the host lattice upon its introduction, hence minimizing elastic strain,

and identified rc = 1.038 A [200]. More recently, researchers have had access to a more
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5.2 Co-doped ceria electrolytes

detailed view of the interplay between strain and electrostatics with the use of ab initio
methods, which in 2006 lead Andersson et al. [23] to ascertain that rc should be that
which maximizes oxygen vacancy disorder. Their simulations showed that when ceria
is doped with relatively small cations, vacancies prefer to sit in a nearest neighbour
(NN) position with respect to the dopant cation, whereas, for larger cations, vacan-
cies prefer to sit in a next nearest neighbour (NNN) position. The crossover between
these two tendencies was observed at Pm®*, for which the NN and NNN positions
have the same energy, which was rationalized in terms of a perfect balance between
the elastic (related to the dopant’s radius) and Coulombic interactions between Pm3*
and a vacancy. This finding implies that Pm?** is the ideal dopant for ceria and this
material should display the highest ionic conductivity. Unfortunately, Pm®* is ra-
dioactive, so the authors suggested, instead. to try a mixture of Sm/Nd which have
slightly smaller /larger ionic radii than Pm3*.! Based on these ideas, multiple research
groups have carried out experiments in order to test several co-doping schemes for
ceria, e.g. Y/Sm co-doping [193], La/Y co-doping [130], Lu/Nd co-doping [201] and
Sm/Nd co-doping [192], of which the latter two were specifically aimed at reproducing
the r¢ values predicted by Kim and by Andersson, respectively. In general, co-doping
studies have pointed to increases in the ionic conductivity with respect to singly doped

systems, which has lead to the conclusion that there exists a “co-doping” effect in ceria.

Modern simulation techniques have become a mainstay within the materials science
community, not only because they afford researchers information which is complemen-
tary to their experiments, but also because they can serve as predictive tools [202].
Hence, the implementation of reliable computer simulations can be used to clarify the
role of particular effects present in physical experiments in a targeted and controlled
manner. To this end, the interaction potentials reported here are shown to perform
with the accuracy of state-of-the-art first-principles calculations, i.e. hybrid Density

Functional Therory (DFT), but at the computational cost of classical (polarizable)

We note here that the radii of these three elements (1.079, 1.093, 1.109 A for Sm, Pm and Nd,
respectively [131]) are all very similar and almost within the associated experimental error.
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molecular dynamics. This approach allows us to study, for the first time, systems with
realistic doped/co-doped defect concentrations within the temperatures of interest for
SOFC applications (600-1000 C°), and to accumulate sufficiently long trajectories to
calculate the conductivity. This is in contrast to most of the previous computational
work on doped ceria which has typically used static DFT calculations or ad hoc em-
prirical potentials. The use of computer simulations allows us to focus on the bulk
behaviour of this material, excluding factors like grain size and boundaries, sintering
conditions, impurity levels, etc, which are known to also (negatively) affect the con-
ductivity of these materials [10, 203]. We show that co-doping does not significantly
improve the conductivity of these materials, but rather, we find that the conductivity
of the co-doped systems lies within the range spanned by the singly doped systems, i.e.
it is an average of the two. The reason for this is that introducing two cation species
with radii which are bigger or smaller than that of a given r¢ affects the local structure

of ceria and results in deep traps for the vacancies.

5.2.1 Methods

Interionic Potential

The highly correlated nature of the f-electrons found in lanthanide elements makes
necessary the use of high levels of theory in order to correctly describe their electronic
structure. Such demands have been found to be satisfied by the inclusion of a fraction
of non-local Hartree-Fock exchange within the framework of Density Funcional Theory
(DFT), which gives rise to hybrid functionals (h-DFT) [204, 204-206]. Alternative
DFT functionals are also available, namely, those which include a Hubbard parameter
U (DFT+U). They represent a viable alternative to h-DFT and their ability to describe
the properties of ceria has been widely documented [207-211]. Nonetheless, h-DFT
provides a better agreement with experimental lattice constants and does not require
fitting a +U value for the f-electron systems. In either case, however, DFT calculations

are prohibitively expensive from a computational point of view for this type of study
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regardless of the functional; this is because of the long Molecular Dynamics (MD)
simulation times and large systems required to study the ionic conductivity of doped
ceria. For this reason interionic potentials (IP) implemented in an in-house MD code
(PIMAIM) and derived from static h-DFT calculations were used in this work, as they
accurately reproduce the structural ab initio data at a fraction of the computational
cost. This approach has been successfully used for a series of related oxides [20, 155,
157, 158, 160-162], including Y-doped ceria [17, 171], as well as a variety of ionic
systems [212-214]. The RE dopant cations studied in this article included La, Nd,
Sm and Gd, as well as, Y and Sc. A crucial feature of this potential set is that they
were fitted with a common O — O term, which made it possible to perform simulations
with several dopant cations within the same cell, i.e. to co-dope ceria. Details on
the interionic potential used (DIPPIM - DIPole Polarizable Ionic Model) are found in
Chapters 2 4.

Potential parameterization

A total of 19 2 x 2 x 2 fluorite-structured supercells were used to fit this IP set. They
included YSZ (1), ScSZ (1), ceria-zirconia (3), pure ceria (1), reduced ceria (1) and
two configurations of composition Ceg 5REg 501 75 for each of the systems. Each model
supercell was obtained from high temperature (2000 K) ab initio MD simulations that
were run for a few pico seconds in order to reach structural equilibrium. The forces
on each species were determined directly from each DFT calculation, and the dipoles
were obtained from a Wannier analysis of the Kohn-Sham (KS) wave functions [138].
In each case, hybrid density functional theory (h-DFT) calculations using the Heyd,
Scuzeria, Ernzerhof (HSE06) functional [75, 215], as implemented in the VASP code
[216] were performed. The inclusion of a fraction of nonlocal Hartree-Fock exchange to
standard DFT in functionals such as HSE is known to be necessary to correctly describe
the electronic strucuture of lanthanide oxides, such as, reduced ceria [204, 205] due to
the highly correlated f-electrons present in these elements. This DFT functional also

represents an improvement over other more commonly used functionals like LDA (Local
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Density Approximation) or GGA (Generalized Gradient Approximation) in terms of
a closer agreement to experimental lattice constants [204] in cases where there are no
f-electrons present, e.g. YDC, LDC, etc.

Although dispersion energies constitute only a small fraction of the total energy,
they have a considerable influence on transition pressures and, in particular, on the
material density, thus the lattice constant, and the stress tensor. However, the dis-
persion terms were not included in the initial fit due to the well known uncontrolled
representation of dispersion within the framework of DFT [58]. Instead, values for the
CY and C¥ terms were determined from the dipole polarizabilities for each element
that resulted from the initial potential fit. The a values thus obtained have been pre-
viously found to be in very good agreement with other theoretically derived values
[17, 217]. The relationship between the dispersion coefficients and the dipole polariz-
ability is given by the Slater-Kirkwood equation [218, 219]. The final values for the
DIPPIM parameters were then obtained by fixing the values of the polarizabilities and
dispersion terms in a last round of optimization and re-fitting. The final x? values for
fit were 0.216 for dipoles and 0.335 for forces. Table 5.1 presents the parameters for

the DIPPIM interionic potential set that was obtained.

Simulation Details

All MD simulations on the singly doped Ce;_,RE;O;_,/2 and co-doped systems were
performed using 6 x 6 x 6 supercells (~ 2592 atoms, depending on the dopant con-
centration). Three different co-doped systems formed part of this study. Firstly,
Cei_zNdg 5:5m0 5,052, which, as was mentioned in Section 5.1, has been previously
studied experimentally [192] because the average radius of both dopants matches that
of Pm. Similarly, Ce;_;Scq.22,Lag.78:02_5/2 was included given that in this ratio of La
and Sc the ionic radius Pm is also reproduced. Three different supercells were set up
for each dopant concentration, z = 0.05, 0.10, 0.15, 0.20, 0.25 and the values reported

here, such as, ionic conductivities, lattice constants and activation energies were ob-
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Table 5.1: Parameters for the HSE DIPPIM potential. All values are in atomic units,

except those corresponding to the ionic radii (A) which are shown in parentheses alongside
0%

. ’ o 2= o [ = &
the dipole polarizabilities . The parameters bg and by, were given the same
value. Here, O represents a placeholder for the identity of the ionic species specified in a
given column

Interaction AY a¥ B b C'éj C’éj béj bgj
0%~ - 0* 7.15 18.52 50000 1.00 83 1240 1.30 1.70
Cett - 02— 8220 1.19 50000 1.55 47 595  1.50 1.96
Zrit — 02~  89.79 1.29 50000 1.75 21 271 162 210
La3t - 02~ 102.63 1.25 50000 1.30 57 731 1.46 1.88
Ce3t - 0~ 100.02 1.25 50000 1.20 71 902 147 1.90
Nd3t - 02—  94.24 1.25 50000 1.36 56 709 1.49 1.94
Sm3t - 0>~ 87.79 1.25 50000 1.38 49 630 1.51 1.97
Gd3t - 0%~ 79.98 1.25 50000 1.38 23 293  1.54 2.00
Yot -0 1180 1.38 50000 1.50 21 264 1.60 2.08
Sc3t - 0?2~ 61.66 1.28 50000 1.75 15 197 177 2.30

Ion « radius (A) bgz_ S c(D)z_ ok c%)‘ Ll

02 13.97 1.38 2.18 3.03

Cett 5.86 0.97 1.75 1.85 0ulT

74+ 2.38 0.84 1.74 1.56 -0.60

La3t 7.51 1.16 1.50 1.43 -0.20

Ce’t 9.72 1.143 1.59 £ 0.05

Nd3+ 7.24 1.109 1.67 1.94 0.00

Sm3t 6.28 1.079 1.67 1.97 -0.14

Gd3+ 2.56 1.053 1.69 1.75 -0.89

Y3+ 2.31 1.019 1.47 1.08 -0.60

Sc3t 1.70 0.87 1.67 1.36 -0.39

tained from the averages of these three configurations per system. Each calculation
was set up by randomly distributing the dopants over the cation sublattice and the
oxygen vacancies over the anion sublattice. The supercells were initially equilibrated
at a temperature of 1673 K for 40 ps; the temperature was then scaled down to room
temperature at a rate of 2K ps™!. The diffusion coefficients were calculated for tem-
peratures between 873 K and 1473 K from simulations that were up to 3ns long in the
case of the lowest temperature. The 300 K lattice constants were obtained from 10 ps
long runs. All simulations were performed at constant temperature and pressure (NPT
ensemble), as described by Martyna et al. [120] using a time step of 1 fs. The Coulom-

bic and dispersion interactions were summed using Ewald summations [78], while the
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short-range part of the potential was truncated at 12.96 A.

5.2.2 Results and discussion

The reliability of the models used in the computer simulations presented throughout
this work is assessed in Section 5.2.3 by means of comparison against experimental
and computational results for singly doped ceria. We also note that this approach has
already been successfully used to model yttria-doped ceria, as reported in ref. [17].
Section 5.2.4 builds upon these results to determine whether co-doping is likely to
improve the ionic conductivity in these solid electrolytes. The co-doped systems are

referred to as Sc:LDC and Nd:SmDC.

5.2.3 Potential assesment
Lattice constants of singly doped ceria

The DIPPIM simulated lattice constants for CeggoREg 100195 at 300 K are shown in
Figure 5.1 as a solid black line. Their associated errors are represented by the standard
deviation of the values from the three simulations carried out for each system. The
dashed red line in Figure 5.1 corresponds to the values for the same systems predicted
by Hong and Virkar [220], who derived an empirical expression for the relationship

between the ionic radius of the dopant and the lattice constant of RE-doped ceria:

alE, Pre) = %[rmg + (1 — x)rce + (1 — 0.252)r0

+0.2527,, ] % 0.9971 (5.1)

In Equation 5.1, x corresponds to the dopant concentration in Ce;_,RE; O /o,
while rce, 7o, TR and 7, correspond to the ionic radius of Cet (0.970A) [131], O*"
(1.380 A) [131], the ionic radii of the dopants (See Table 5.1 in the Appendix) and the
radius of a vacancy (1.164 A) [220], respectively. Figure 5.1 also presents experimental

(open symbols) and computational (closed symbols) lattice constant values for the
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Figure 5.1: Lattice constants for CeggoRE(1001.95. DIPPIM values at 300K (this
work) are shown as a solid black line. The errors correspond to the standard deviation
obtained from three simulations. Hong and Virkar [220] values are represented by a
dashed red line. Experimental data from [221-223] for ScDC, [129, 191, 224, 225] for
YDC, [191, 225, 226, 226, 227] for GDC, [191, 225, 228] for SmDC, [191, 228] for NDC
and (163, 225, 229] for LDC.

same compositions (10% cation doped) of SeDC, YDC, GDC, SmDC, NDC and LDC.
As shown in Chapter 4, DIPPIM simulations are expected to perform as well as the
DFT functional from which they were parameterized [171]. In this case, the use of
hybrid DFT functionals means that errors in the calculated value of lattice constants
with respect to experiment for doped ceria should be in the order of 0.20% [204]. This
is borne out by the results presented in Figure 5.1, which show an excellent agreement
with the range of experimental data available in the literature and also with the values
calculated from Equation 5.1. In the case of ScDC, the simulations provide a better
estimation of the lattice constant than that obtained from Equation 5.1 with respect
to experiment, however both models underestimate the value of ay. For DIPPIM
simulations of ScDC, the largest error is 0.45% compared to the value from Grover et
al. [221]. Despite this being a relatively small error, it is likely that this discrepancy

arises from sources other than the DFT functional employed in this work. In fact, of
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the three experimental sources cited, Grover et al. (highest value for ag), as well as,
Gerhardt-Anderson and Nowick [223] (lowest value for ag) predict low solubilities for
scandia (ScoO3) and thus, formation of C-type phases in CeggoSco 100795 which are
characteristic of sesquioxides that crystallize in the cubic bixbyite structure, such as
scandia. Although similar, the F-type phase (cubic fluorite, Figure 4.1(a)) differs from
the C-type phase in that the latter has an ordered array of oxygen vacancies along the

< 111 > direction, leaving the Sc metal with a 6-fold coordination (Figure 5.2(b)).

Figure 5.2: a) CeOy crystal structure illustrating the 8-fold coordination of Ce*t. b)
Sc203 crystal structure illustrating 6-fold coordination of Sc3*.

Tonic conductivity of singly doped ceria

The ionic conductivities for the singly doped ceria systems under study are presented
in Figure 5.3. In agreement with the literature for singly doped ceria, the best dopants
were found to be Gd and Sm [12, 151, 228]. In particular, GDC was found to have the
highest conductivity among all dopants for the simulations at all temperatures. The
size of the errors in this plot illustrates why it is often the case that different stud-
ies assign the highest conductivity to different elements, depending on the fabrication
conditions or the type of simulation performed. These errors become larger at lower
temperatures because of the slower diffusion. Furthermore, the concentration which
gives the highest conductivity varies from one doped system to another for a particular

temperature. The dashed red line (vertical) shown in Figure 5.3 represents the critical
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ionic radius put forward by Andersson et al. [23] (r.) for the ideal dopant cation, which

corresponds to that of Pm.

Figure 5.4 presents the DIPPIM simulated ionic conductivities at 873 K, as well
as, a range of conductivity values from other studies for the same singly doped ceria
(Cep.90RE(1001.95) systems at the same temperature. Individual literature values are
labelled a) to m), with open symbols indicating experimental values and filled symbols
those from other computational studies. This figure shows that there is a significant
spread in the experimental data set, as exemplified by GDC which shows a variation in
conductivity of ~2.5 x (from 0.01 [230] to 0.025 [12]). Such fluctuations are typically
ascribed to different fabrication methods, sintering times and temperatures, grain sizes
and impurities [12, 230], all of which are excluded from the our computational bulk
models. Nonetheless, what is clear from Figure 5.4 is that the DIPPIM potentials used
in this work deliver conductivity values which lie in the lower end of the range of the

experimental ones, but constitute a good predictor of the overall tendencies in doped

ceria.
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Figure 5.3: Ionic conductivities for singly doped ceria (CeggoREg.1001.95) at 1273K
(blue diamonds), 1073 K (black dots) and 873K (red triangles). The dashed red line
represents the critical ionic radius (r¢) introduced by Andersson et al. [23].
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Figure 5.4: Ionic conductivities for CeggoREg 100195 at 873K from this work (solid
blue triangles). Open symbols correspond to experimental values, while filled symbols
were obtained from computational data in the literature: a) Steele [12], b) Huang et
al. [226] and Omar et al. [192] ¢) Xia and Liu [231], d) Zhou et al. [230], ¢) Dholabhai et
al. [232], f) Kasse and Nino [199], g) Grope et al. (at 893 K) [233] and Omar et al. [191],
h) Shemilt and Williams (234], i) Jung et al. [235], j) Kasse and Nino [199], k) Omar
et al. [191] 1) Aneflous et al. [236] and m) Dikmen et al. [229]. The dashed red line
represents the critical ionic radius (r¢) introduced by Andersson et al. [23]
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Figure 5.5: Arrhenius plots for singly doped ceria systems, CepgoREp.1001.95, where
RE = GDC, LDC, NDC, SeDC, SmDC. The temperature range is 873K - 1473 K.
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The E, values for these systems were calculated from Arrhenius plots are shown in
Figure 5.5. These plots of In(c7") vs 1/7" within this range of temperatures were found
to be linear for all dopants. This is important as it indicates that there is no extensive
clustering of dopants and vacancies, which would occur if the simulations spanned
both sides of the critical temperature (7) below which nucleation centres form around
the dopants leading to progressive trapping of the vacancies into such clusters as the
temperature decreases [10, 226]. If the calculations had been carried out at sufficiently
low temperatures (1™ ~ 856 K for GDC [226]), then two different E, values would have
be obtained for the 7" > 7™ and 7" < 1™ temperature regimes. For this reason, the
literature data presented in Figure 5.6 corresponds to the 7" > T™ region only. Their
corresponding E, values are presented in Figure 5.6 (filled black circles) as a function
of dopant ionic radius and were obtained from simulations between 1473 K and 873 K.
Experimental values are distinguished with the same open symbols from Figure 5.4
and labelled a) to o). Just as was found to be the case with ionic conductivities,
Figure 5.6 illustrates that the self-consistent DIPPIM potentials used in this work are
able to predict the activation energies for the various RE dopants used in this study.
This is particularly impressive since no experimental data were used at any stage
of the potential parameterazation. We can therefore proceed to study co-doping in
this material, with the confidence that the employed simulation technique can reliably

predict the properties of these materials.

5.2.4 Co-doped ceria
Lattice constants of co-doped ceria

Figure 5.7 presents the DIPPIM calculated (filled symbols) and experimental lattice
constants (open symbols) from Buyukkilic et al. [228] at 300K for Ce;_,RE; O, /5.
where z = 0.05, 0.10, 0.15, 0.20, 0.25 and RE = Sm, Nd, Nd:SmDC and Sc:LaDC.
The co-doped systems shown correspond to an effective dopant cation radius of 1.093 A
for the stoichiometries specified in Section 5.2.1. It is evident from the figure that the

calculations predict the correct lattice constant for the singly doped systems over the
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Figure 5.6: Activation energies from this work (filled black circles) between 1473 K and
873 K for Ceg.goREn.1001.95. Open symbols correspond to experimental values: a) Zhang
et al. [237], b) Omar et al. [192], ¢) Omar et al. [191], d) Huang et al. [226], e) Xi and
Liu [231]. f) Jung et al. [235], g) Shemilt and Williams [234], h) Omar et al. [191], i) Kasse
and Nino [199], j) Aneflous et al. [236], k) Omar et al. [191], 1) Kasse and Nino [199], m)
Stephens and Skinner [238], n) Lang et al. [239] and o) Dikmen et al. [229]. The dashed
red line represents the critical ionic radius (r¢) introduced by Andersson et al. [23]

entire composition range, and that this carries over to the co-doped cerias under study.
The agreement is particularly good for the systems that are the focus of this study,
namely CeggoREg1001.95. The results show that co-doping can be successfully used to

reproduce the lattice constant of a cation with a critical dopant radius, rc.

Ionic conductivity of co-doped ceria

Thus far the results presented for the ionic conductivity of singly doped ceria have
shown only progressive changes in both the bulk ionic conductivities and activation
energies as a function of dopant ionic radius. Hence, the question of whether co-
doping is a viable alternative for substantially improving these properties becomes: Do
co-doped systems show a marked increase (decrease) in ionic conductivity (activation
enerqgy) or is this property simply the average of the singly doped systems?

To answer this question it is necessary to compare directly the ionic conductivity
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Figure 5.7: DIPPIM calculated (filled symbols) and experimental (open symbols) lattice
constants from Buyukkilic et al. [228] at 300K for for Ce; ;RE;O5_, /2, where z = 0.05,
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of the co-doped systems with that of their “parent” singly doped ceria compounds.
Hence if there exists a co-doping effect it would be expected that such systems display
ionic conductivities that are higher than the average of the values obtained for singly
doped ceria. These data are presented in Figure 5.8 (a) for the Sc:LaDC system and
Figure 5.8 (b) for Nd:SmDC. The data in these plots is presented as a ratio of the
calculated conductivities for the co-doped systems (ocp) with respect to the weighted
average for the singly doped parent compounds with the same total number of dopant
cations (owa). The weighting factors are given by the ratio of each co-dopant as
specified in Section 5.2.1, namely 0.50 for both Nd and Sm in Nd:SmDC, as well as,
0.22 and 0.78 for Sc and La, respectively in Sc:LaDC. The solid red line indicates a
linear correspondence between both data sets (co-doped vs weighted average of singly
doped), i.e. no co-doping effect. It is clear from these plots that any deviations in
ocp away from the owa values are within the margin of error of these measurements
(standard deviation). This indicates that the conductivities of co-doped ceria can be
predicted by simply calculating the average of the two parent singly doped cerias for

all temperatures and dopant concentrations.

Accordingly, it is expected that the corresponding activation energies for the ionic
conductivity of co-doped ceria display the same averaging effect. This is confirmed in
Figure 5.9, which depicts the DIPPIM FE, (eV) for CepgoRE( 100195 from Figure 5.6
(filled black circles), along with those for the co-doped systems, Nd:SmDC (filled blue
triangle) and Sc:LaDC (filled black triangle). Experimental values from a) Omar et al.
[191] (open squares) and b) Kasse and Nino [199] (open circles), with green for SmDC,
maroon for Nd:SmDC and orange for NdDC. Both data sets show that despite having
the same effective r¢ value of 1.093 Aand taking into account the errors intrinsic to
these calculations, the co-doped Sc:LaDC system has a higher activation energy than
Nd:SmDC; that is, the DIPPIM simulations, as well as, the experimental data for these
co-doped systems show changes in bulk ionic conductivities and activation energies that
are in line with an averaging effect with respect to the singly doped “parent” oxides,

with small deviations from this behaviour likely due to sampling error. The simple,
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yet often overlooked, explanation for these patterns is found by analyzing the local

structure around the dopants in these systems as shown in the next section.
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Figure 5.9: DIPPIM activation energies (eV) for CepgoREp.1001.95 from Figure 5.6
along with those for the co-doped systems, Nd:SmDC (filled blue triangle) and Se:LaDC
(filled black triangle). Experimental values from a) Omar et al. [191] (open squares) and
b) Kasse and Nino [199] (open circles) with green for SmDC, maroon for Nd:SmDC and
orange for NdDC.

Local structure of co-doped systems

A configurational analysis of the MD simulations for 10% cation doped LaDC, ScDC
and Sc:LaDC is illustrated in Figure 5.10 in the form of the cation-vacancy partial
radial distribution functions (gcat—vac(r)) obtained from the average of the three con-
figurations used for each system. Appendix 4.5.4 details the process of oxygen vacancy
identification and subsequent calculation of g(r). The average values are presented in
order to eliminate any possible configuration-dependent ordering of the cations. The
La/Sc doubly and singly doped systems are illustrated given that the large radius mis-
match between the dopant cations with the host facilitates visualization of the small

changes undergone, however the conclusions were confirmed for the other co-doped
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systems. The top panel shows the g(r)s for La - Vac in Sc:LaDC (dashed orange line)
vs La- Vac in LaDC (dotted turquoise line); the bottom panel contains the g(r)s for
Sc - Vac in Sc:LaDC (dashed green line) vs Sc- Vac in ScDC (dotted magenta line).
The solid black lines in both panels correspond to the Ce - O g(r) in bulk ceria at
the same temperature, which exemplifies a random vacancy distribution, but with a
slightly different lattice constant due to the absence of dopants. The number of va-
cancies coordinated to the cations in these systems were obtained by integrating the
peaks in Figure 5.10 and are reported in Table 5.2, with the addition of the values for
GdDC of the same concentration which are included for comparison as it is the best
single dopant system. These results show that Sc acts as a vacancy scavenger in ScDC,
with the vacancies ordering in the first coordination shell of this cation. This is a well
known effect which has been documented by experiments [223, 240] and simulations
[151, 241]. In fact, dopant cations that are smaller in radius than Ce*t are generally
expected to have vacancies in Nearest Neighbour (NN) positions, while those that are
larger are expected to have the vacancies in the Next Nearest Neighbour (NNN) po-
sition. The latter effect is observed in the case of the larger La and Gd (Table 5.2)
cations as indicated by the pronounced second peak. The results in Figure 5.10 and
Table 5.2 clearly show that the local environment, and thus the local strain, of the
dopant cations undergoes few changes in going from singly doped systems to those
with more than one dopant species.
Table 5.2: Number of vacancies in the Nearest Neighbour (NN) and Next Nearest
Neighbour (NNN) positions with respect to the cations in a random distribution, GdDC,

Sc:LaDC, LaDC and SeDC. These values were obtained from the integration of the peaks
in Figure 5.10

Peak Random GdDC LaDC Sc:LaDC SecDC Sc:LaDC

Ce-O Gd-Vac La-Vac La-Vac Sc-Vac  Sc-Vac
15t (NN) 0.200 0.168 0.062 0.059 0.734 0.878
ond (NNN) 0.600 1.356 1.502 1.578 0.412 0.467

Previous studies have shown that concomitant with cation-vacancy ordering, there

also exist inherent vacancy-vacancy ordering interactions in fluorite-structured mate-
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Figure 5.10: Cation vacancy partial radial distribution functions (gcat_vac(r)) at
873 K. Top panel: Random (solid black line), La®*  Vacancy in Sc:LaDC (dashed or-
ange line) and La3t - Vac in LaDC (dotted turquoise line). Bottom panel: Random
(solid black line), Sc*t -~ Vacancy in Sc:LaDC (dashed green line) and Sc3t -~ Vacancy in
ScDC (dotted magenta line)

rials [11, 162, 171, 242]. Figure 5.11 presents the three configuration average vacancy

vacancy partial radial distribution functions (gvac—vac(r)) at 873K for Sc:LaDC (solid
black line), LaDC (dot-dashed turquoise line), ScDC (dotted magenta line), GdDC
(dot-dot-dashed green line) as well as a random vacancy distribution, which is simply
the O O g(r) from CeO, at the same temperature. The <100>, <110> and <111>,
<210>, etc labels indicate different directions along the simple cubic anion sublattice.
The values obtained upon integration of these peaks are reported in Table 5.3. The
results show that for this dopant concentration vacancies display some degree of long
range ordering as evidenced by the sharp peaks in the <210> and <211> positions,
while the positions that are at shorter distance in the simple cubic lattice are under-
populated with respect to a random vacancy distribution. This effect arises from the
Coulomb repulsions between the vacancies. Common to all the doped ceria systems is
also a deleterious redistribution of the vacancies which favours short range occupancy
along the <111> direction with respect to an idealized random system. This effect is

larger in inferior conductors, like LaDC and ScDC than in the better ones like GADC,
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for example; in the case of Sc:LaDC, co-doping is shown to enhance this ordering,
because the small Sc3t cations trap the vacancies in the NN positions, while the large
La3t cations repel them towards NNN but also increase their migration barrier [241],
which leads to an overall increase in the vacancy ordering of co-doped systems. This
indicates that the “synergistic” effect on bulk ionic conductivity from co-coping is not

realized.

Table 5.3: Number of vacancies surrounding another vacancy along the <100>, <110>
and <111> directions of the simple cubic anion sublattice of 10% cation doped GADC,
LaDC, ScDC and Sc:LaDC, as well as a random distribution of the same number of
vacancies. These values were obtained from the integration of the peaks in Figure 5.11

System <100> <110> <111>

Random  0.150 0.300 0.200
GdDC 0.001 0.010 0.056
LaDC 0.06 0.007 0.107
SeDC 0.001 0.062 0.170
Sc:LaDC  0.006 0.023 0.213

5.2.5 Ceria co-doping in perspective

Despite the significant improvements in the ionic conductivity of co-doped ceria re-
ported by several previous studies [130, 192195, 197, 201, 243, 244] this work found
that this property is simply an average of the singly doped materials. This is in accor-
dance with an early experimental/computational study by Yoshida et al. [245, 246], as
well as, recent experimental data reported Figure 5.9 for Nd:SmDC [191, 199]. Similar
results were reported by Ralph et al. for Yb:LaDC and Sm:YDC, and by Li et al. [240]
for Sc:GdDC, who observed a worsening in these properties for co-doped cerias with
substantially mismatched dopant cations. The interpretation provided in both cases
was that the localized nature of the strains caused by each dopant species does not

change substantially in the co-doped systems compared to singly doped materials.
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Figure 5.11: Vacancy vacancy partial radial distribution functions at 873K for
Sc:LaDC (solid black line), LaDC (dot-dashed turquoise line), ScDC (dotted magenta
line), GADC (dot-dot-dashed green line) and a random vacancy distribution (O-O g(r)).
The <100>, <110> and <111> labels indicate different directions along the simple cubic
anion sublattice.

We point out that our investigation has left out a series of factors, such as long-
range cation ordering, grain boundaries, impurities, etc, that might also affect the total
conductivity of these materials. This was done on purpose, because the focus of this
investigation was on bulk properties of perfect fluorite-structured materials. We note
here that these factors have usunally a detrimental effect on the conductivity of these
materials, so that our conclusions are not invalidated by leaving them out. For in-
stance, cation ordering might be expected in Sc:LaDC[247], because the cations have
significantly different ionic radii. This was not taken into account in these calculations,
because the cations were randomly distributed and the simulation timescale does not
allow them to diffuse. Cation ordering is known to lead to a decrease of the ionic
conductivity, as observed in several oxides [158, 248]. so that the effects of co-doping
might be even more detrimental to the material’s conductivity that what we predict in

this investigation.
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Finally, we wonder why many studies have found an enhancement of the ionic con-
ductivity in some co-doped materials, while others have not. We note that, as discussed
above, there are many factors (grain boundaries, cation ordering, phase separation and
nano-domain formation, impurity levels, etc) that affect the ionic conductivity of these
materials and it is very hard to separate their effects. As an example, the conductivity
of 10% GdDC, as shown in figure 5.4, varies by as much as a factor of 2.5 in differ-
ent experiments. Such a huge variation is probably caused by a combination of these

factors and shows that it is not trivial to compare the conductivity of these materials.

5.3 Ceria-zirconia solid solutions

Ceria-zirconia ceramics are essential components within automotive exhaust catalysts,
where the Ce3t « Ce't redox reactions allow them to operate as oxygen ion buffers
that provide oxygen to convert harmful CO and hydrocarbon gases to more benign CO,
and H,O species [249, 250]. Under reducing conditions, the ZrO,-CeO, system should
transform into the ZrO,-Ce;O3 one, though their phase diagrams are rather different
and only tentative suggestions for the ternary ZrO,-CeO,-CeoO3 phase diagram have
been presented (see Ref. [251], and references therein). However, particular attention
has focused on the systems with a Zr:Ce ratio of 1:1. Conventional high temperature
solid-state synthesis under oxidizing conditions produces Zrg 5Ceq 50, with a tetragonal
distortion of the fluorite structure (labelled t'), which transforms to the cubic fluorite
phase with randomly distributed cations at 1831 K [252]. Reduction of the same mate-
rial at temperatures in excess of 1323 K favours the loss of oxygen and ordering of the
two cation species along the <110> direction to form a pyrochlore structured phase
of stoichiometry Ce,Zr,0O7 in which the oxygen vacancies are next to the smaller Zr**
cations, leaving them with a 6-fold coordination (see Figure 5.12) [253, 254].
Oxidation of the CeyZr,O7 phase at temperatures of ~ 873 K incorporates additional
O, into the lattice, forming the phase k-CeZrOy4 [255]. Remarkably, the pyrochlore-like
long-range ordering of the cations is retained throughout the intercalation of anions

from CeyZry07 to k-CeZrOy, though the latter phase is metastable and reverts to the
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Figure 5.12: Pyrochlore structure of the CesZroO7 system. The Ce*t cations are shown
in beige, Zr't cations are shown in green and the oxygen anions in red.

(cation disordered) t'-Zrg;Ceq 502 phase at ~1123K [256]. The crystal structure of
k-CeZrOy can be described as a ‘filled pyrochlore’, though diffraction studies indicate
that the symmetry is either cubic [254] or rhombohedral [257] and involves partially
occupied anion sites significantly displaced from the ideal positions within the equiva-

lent cubic fluorite arrangement.

It has been observed that k-CeZrOy4 possesses a remarkably high oxygen storage
capacity (OSC), which is defined as the ratio of reduced cerium ions in the system,
iLe. [Ce*t]/(|Ce®t]+[Cet]). In the case of k-CeZrOy it is around 89% of the theoreti-
cal maximum value [254, 258], which is close to twice that of other ZrO,-CeOq-Cey O3

compositions, including t'-Zrg 5Cep 505, and roughly 50 times that of pure CeOs.

The OSC of CZO is very important for its applications in TWCs and, in order to
better understand its origins it is necessary to make use of the atomic-level information
gleaned from computer simulations. The macroscopic observable of OSC depends on

two properties that can be calculated, namely, the reduction energy and the ionic
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conductivity. Thus, a low reduction energy is essential in order to facilitate the release
of oxygen, while a high oxygen diffusivity will ensure that this material can respond
quickly to changes in the oxygen content of the exhaust chamber. As a result, the
aim of this section is to investigate the evolution of the ionic conductivity of CZO as a
function of [Ce®t], and, in doing so, to study the role of ordering and crystal structure
on the conducting properties of CZO. These simulated conductivity results are of great

information

5.3.1 Methods

MD simulations were performed on cation ordered (pyrochlore-like) and cation dis-
ordered (fluorite-like) Cegt , CedtZrgtO5~; solid solutions on 6 x 6 x 6 supercells.
These cells contained ~ 2592 atoms, depending on the level of reduction being simu-
lated, which ranged from fully oxidized systems, ¢ = 0.00, to fully reduced systems,
0 = 0.25 in increments of 0.025. These concentrations are reported in terms of the
vacancy concentration as it is the most common form found in the CZO literature and
because it facilitates the comparison with the other doped-ceria systems already dis-
cussed, given that 20 = z. The supercells were initially equilibrated at a temperature
of 1673 K for 40 ps; the temperature was then scaled down to room temperature at a
rate of 2K ps~!. The diffusion coefficients were calculated for 1273 K from simulations
that were up to 1.5ns long. The remaining details of the simulations were the same as

those in Section 5.2.1.

5.3.2 Results

The ionic conductivities (S/cm) at 1273K for Cegt ,;Celf Zrgt O3~ are presented in
Figure 5.13. The black diamonds indicate the conductivities of the fluorite-structured
(disordered cations) systems, while the red triangles correspond to those calculated for
the pyrochlore-like (ordered cations) systems. Although the data is somewhat scattered
given the relatively large errors associated with the slow diffusions observed and the

fact that a single configuration was used for each concentration of Ce3*, it is clear
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that the conductivity of the disordered systems is on average 20 times larger than that
observed in the ordered systems. Also shown in Figure 5.13 are the conductivities of
GDC and LDC with equivalent numbers of vacancies at the same temperature. In this
case, the difference between the best ionic conductor (GDC) and the fluorite-structured
CZO systems is in the order of 5 times, while the conductivity of LDC is 3 times higher
on average than that of disordered CZO. These results are expected given the large
ionic radius mismatch mismatch between Ce't, Ce3t and Zr**. The conductivities of
pyrochlore-structured CZO systems are also impacted by the underlying cation order
of these compounds. In fact, the conductivities of the pyrochlore systems were so low

that a step-like MSD was observed (Figure 5.14).
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Figure 5.13: lonic conductivities (S/cm) of CZO solid solutions. The black line indi-
cates the conductivities of the fluorite structured systems, while the red line corresponds
to those calculated for the pyrochlore-like systems. The conductivity values for GDC are
shown in purple and those for LDC in turquoise. Concentrations are expressed in terms
of 0, which corresponds to the vacancy concentration in Ceéfg_z 5Ceg§'ZrégO§: 5

The cation-vacancy g(r)s for CeghsCedt Zrgt0F 4,5 solid solutions at 1273K are
illustrated in Figure 5.15). Panel (a) shows that the vacancies reside in the NN position
to the small Zr** cation in both fluorite and pyrochlore CZO. although enhanced

occopancy is observed in the latter due to the structural characteristics of this crystal
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Figure 5.14: MSDs for Ccéz_25C03;21'éngg:6 solid solutions at 1273 K for selected
concentrations. The data for fluorite-structured CZO is shown on the left panel, while
those for the pyrochlore-structured CZO is shown on the right.

system. In the case of the larger cations, Ce*t (b) and Ce3* (c), there is a substantial
difference in the first coordination shell between both structures; the vacancies in
pyrochlore systems are NNN to both large cations. The large height of the peaks
for the preferred positions of vacancies with respect to Zr*t and Ce3* indicate that
there is trapping of the vacancies at these sites.

The most striking evidence for this vacancy trapping is observed in the gy_y(r) of
these compounds, which are plotted in Figure 5.16. Although, disordered CZO is a
poor conductor, it still retains tha main features of vacancy ordering that are found
in high performance electrolytes like GDC. However, the positioning of the vacancies
in the pyrochlore-like systems confirms that the low vacancy mobilities result from
trapping.

Thus far the simulations indicate that pyrochlore-structured CZO is a rather poor
ionic conductor. Hence, to understand why this ordered structure performs better as an
OSM than its cation-disordered counterpart, it is necessary to quantify the differences
in the reduction energy in both structures. Figure 5.17 presents the DFT+U calculated
values for this property as a function of 4. These calculations were performed by Dr
Dario Marrocchelli using a 2 x 2 x 2 fluorite supercell with 96 atoms where the cations
were either ordered in a pyrochlore-like structure or placed at random. The reduction

energies is given by FRreduction = EBuk — Fpefect — 1/ 2EQ2

Fom. Were then calculated by
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Figure 5.16: Vacancy-vacancy partial radial distribution functions for
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5. SOLID SOLUTIONS OF CERIA WITH MULTIPLE CATIONIC
SPECIES

removing individual oxygens from the lattices until all the cerium cations were reduced,
which is achieved when a total of 8 anions are removed. The results show that the
reduction energies of both systems coalesce as successive oxygens are removed from
the structures. However, the average reduction energy of the fluorite CZO system is
2.02 eV, while that of pyrochlore CZO is 0.58 ¢V. This difference between both systems
is likely the cause for enhanced OSC in pyrochlore CZO with respect to fluorite CZO.
Similar observations have been made experimentally by [259] and using DFT+U by

[30].
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Figure 5.17: Reduction energy as a function of non-stoichiometry in
CeéE_Q 5Ce§§ZrégOg: s for the fluorite-structured (black dots) and pyrochlore-structured

(orange) systems.

5.4 Conclusions

This work was motivated by the conflicting evidence that surrounds the merits of ceria
co-doping as a means to improve this electrolyte’s ionic conductivity. Here we used
Molecular Dynamics simulations that employ accurate interionic potentials, parame-

terized with respect to first-principles calculations. No experimental data was used to

138



5.4 Conclusions

parameterise these potentials. This methodology allowed the study of large systems
at realistic operating temperatures (~ 873-1273 K) and defect concentrations. The
conclusions pertain only to bulk properties, because the models that were simulated do

not include grain boundaries, impurity segregation, dislocations, etc.

The results show that co-doping can be successfully used to reproduce the lat-
tice constant of ceria doped with a single cation which has an ionic radius equal to
the effective radius from two co-dopants. However, close examination of the bulk ionic
conductivity of co-doped ceria revealed that this property is not enhanced by co-doping
and can be described as an average of the conductivities of the “parent” singly-doped
compounds. This result was explained by the fact that the vacancy ordering tendencies
of individual dopant cations remain largely unchanged in co-doped systems. For this
reason, co-doping with cations that are bigger/smaller than a given ideal dopant radius
(rc) leads to the combination of unwanted defect trapping tendencies, as exemplified
by the case of the significantly mismatched Sc:LaDC system. where Sc3t is an oxygen
vacancy scavenger while La®t repels vacancies. In conclusion it is the local structure
of these materials, rather than their average structure, that dictates their conducting
properties. These results effectively reject co-doping as a possible avenue for improving
ceria conductivity. More fruitful outcomes are likely to be achieved in other intensely

investigated areas such as the application of strain [186, 260, 261].
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Strain effects on the ionic
conductivity of ceria-based

electrolytes

6.1 Introduction

Current thin film deposition techniques allow for the fabrication of epitaxially grown
oxides with high levels of control over the microstructure, stoichiometry and lattice
mismatch of individual layers [262-266]. These developments have attracted much at-
tention to this area of research because they might open a new avenue for SOFC elec-
trolyte optimization in a way similar to that which has been achieved in Si-based semi-
conductors [267]. Changes in the ionic conductivity of thin film electrolytes, whether
detrimental or beneficial, are ascribed to interfacial effects present at phase bound-
aries. One such effect is the formation of space charge regions which have been shown
to cause a dramatic increase in the fluoride ion conductivity of materials with a low
concentration of bulk defects, such as, BaF,/CaF, heterostructures (268, 269]. How-
ever, heavily doped extrinsic ionic conductors like doped ceria/zirconia possess narrow
space charge regions, and thus, are not expected to display a significant enhancement

of their ionic conductivity as a result of this effect [262, 266, 270]. Coherent growth of
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6. STRAIN EFFECTS ON THE IONIC CONDUCTIVITY OF
CERIA-BASED ELECTROLYTES

a thin film on a substrate, or heterostructure, leads to strain (€) due to the structural
mismatch which arises from differences in their lattice vectors (Equation 6.1).
a; — Qo

€= —— (6.1)

Qo

Thin films can elastically accommodate strains of € ~ 0.03, depending on the thickness
of the film and the elastic properties of the material [263, 271]. Strain levels beyond
this value are typically released by the films through the formation of dislocation net-
works, defect clustering at the interface and rotations with respect to the substrate or

other layers [272-275].

Substantial research efforts have been devoted, over the last decade, to the elucida-
tion of how interfacial effects alter ionic conductivity. Many such studies have focused
on YSZ as it is the prevalent electrolyte in SOFCs. The results reported in the liter-
ature for this material show significant scatter in the range of conductivities achieved
through the formation of interfaces. Experimental investigations have observed conduc-
tivity enhancements varying from a colossal 10® increase in o; [276] down to neglegible
changes [277] and myriad values in between [266, 270, 271, 278 283]. Early theoretical
work using Molecular Dynamics (MD) simulations found only a small enhancement in
o; for YSZ mediated by a lowering of the activation barrier [284]. Similar conclusions
were arrived at more recently by Dezanneau et al. [285], who also performed MD
simulations, and found enhancements of up to 2 x for strains of 3% at 833 K. These
results are further corroborated by recent Density Functional Theory (DFT) calcula-
tions which have predicted a maximum enhancement of up to four orders of magnitude

in this property, at 400K for relatively high strains (e = 4%) [260, 261].

In the case of REDC, the conductivity enhancements observed have been more
modest. For example, Chen et al. studied thin GDC films grown on MgO (lattice
mismatch of 28%) and found only a small increase in the ionic conductivity with

respect to the bulk system [272]. Suzuki et al. [286] spin coated sapphire substrates
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6.1 Introduction

with CeO, thin films, as well as, GDC films of different concentrations. Their study
found that the conductivity increased with diminishing film thickness. However, this
change may be attributed to a lowering of the oxygen vacancy formation energy which
leads to reduction of Ce't to Ce®t (Equation 1.6), and thus, to electronic conductivity

[287).

This is an undesirable effect in SOFC electrolytes as it causes an internal short circuit
and cell delamination through lattice expansion [11, 19-21, 126, 263, 288]. Similar re-
sults were obtained by Perkins et al., who saw the formation of discrete micro-domains
containing Ce*t in SDC/CeO, heterostructures (€ ~ 0.0035) grown on MgO substrates
[289]. Studies of the ionic conductivity in epitaxial SDC films grown on MgO substrates
using SrTiOz (STO) buffer layers (e ~ 0.016) found a conductivity of 0.07 Scm™! at
973 K compared to ~0.02 Sem™! for dense polycrystalline pellets at the same tempera-
ture [265]. In the case of STO-buffered SDC/YSZ heterostructures (e ~ 0.055)) grown
on MgO, the same group found a conductivity increase of two orders of magnitude
with respect to SDC polycrystaline pellets and about one order of magnitude increase
compared to either SDC or YSZ thin films [266]. A recent computational study, which
employed static calculations with interatomic potentials, predicted an enhancement in
o; of up to four orders of magnitude when tensile strain (¢ = 0.040) was applied to
bulk CeO, [290]. These enhancements in conductivity were attributed by Rushton et al.

to a lowering of the binding energy between oxygen vacancies and dopant cations [291].

This brief survey of our current understanding of interfacial effects highlights the
need for further investigation in this area of materials research. To this end, computer
simulations can play an important role because the various processes which underlie
complex phenomena can be treated in a direct and controlled manner, thus, making it
possible to evaluate their contribution to the overall changes observed in experiments.
In this work we have assessed how the ionic conductivity in YDC is modified when
bulk and thin films are subjected to isotropic and anisotropic biaxial strain, respec-

tively. Our study has a series of distinctive features that set it apart from previous
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work. Firstly, we use molecular dynamics simulations coupled with accurate dipole-
polarizable interatomic potentials derived directly from ab initio calculations [17, 171].
Secondly, our use of the slab method allows us to account for the relaxation perpen-
dicular to the plane where strain is applied (Poisson effect), as well as the effect on the
ionic conductivity that results from the presence of surfaces on this material; all under
realistic dopant concentrations (10-20 %) and high temperatures (1273-1673 K). Also,
this paper differs from previous ones [260, 261, 290, 292] in that we only study small
strain levels (¢ < 0.021), that can be elastically accommodated in thin films. Finally,
in our simulations, the Ce cation reduction reaction (Ce** to Ce3t), observed in some
studies [286], is not allowed. This makes it possible to isolate the effects of strain on

the ionic conductivity only.

6.2 Methods

6.2.1 Interatomic Potential

The computational methods used in this study are well established and have been de-
scribed elsewhere for doped ceria and other oxides [17, 155, 158, 160, 171], as well as
fluoride systems [212, 213|. The interatomic potential that was employed is known as
the DIPole Polarizable Ion Model (DIPPIM) [91] and was described in Chapter 2. The
derivation of parameters for the IP is described in Chapter 5, where h-DFT, rather
than LDA was employed as was the case for the potential in Chapter 4. The parame-
ters used are listed in Table 5.1. The inclusion of a fraction of nonlocal Hartree-Fock
exchange to standard DFT in functionals such as HSE is known to be necessary to cor-
rectly describe the electronic strucuture of lanthanide oxides such as ceria [204, 205].
This is important in cases where highly correlated f-electrons are present. However,
for YDC this potential represents an improvement in terms of a closer agreement to

experimental lattice constants [204].
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6.2 Methods

6.2.2 MD Simulation Details

All Molecular Dynamics simulations were performed with an in-house code (PIMAIM)
which uses three-dimensional periodic boundary conditions. The ionic conductivities
of three different dopant concentrations were studied, namely Ce;_;Y,O2_5/» where
x = 0.08,0.12,0.18. This choice of values originated from our previous work, described
in Chapter 4, where it was found that the conductivity maxium in YDC is at z = 0.12
[171]. The other two values for the dopant concentration were included in order to
investigate if straining YDC causes a shift in the position of the conductivity maximum.
As was the case in previous studies, the dopant cations and their corresponding charge
compensating vacancies were distributed at random within their respective sublattices.
Short MD simulations were carried out for each concentration at constant temperature
and pressure (NPT ensemble) [120] in order to obtain the equilibrium lattice constants
at three temperatures, 7" = 1673 K, 1473 K and 1273 K. Isotropic tensile strain was
simulated by expanding the axes of 6 x 6 x 6 fluorite supercells (henceforth referred to
as bulk) under constant temperature and volume conditions (NV'1" ensemble). Each
bulk simulation cell was subjected to three different strain levels ¢, = €, = €, =
{0.007,0.014,0.021} for each temperature. YDC thin films of the same concentrations
as bulk were simulated using slabs that exposed the (111) surface which has been found
to be the most stable for ceria both in experiments and simulations [293, 294]. The size
of the simulation cells along 2 and y were ~30A and ~26A (Figure 6.1a), respectively,
depending on the dopant concentration and temperature. The length along the z-axis
for the slab simulation cells was 80 A. This corresponded to a vacuum gap of ~ 40 A
depending on the dopant concentration and temperature (Figure 6.1b). The vacuum
gap is necessary in order to avoid interactions between periodic images of the slabs
along this direction. By using slabs with these dimensions it was possible to have
similar numbers of ions of each species as in the bulk YDC cells. Table 6.1 reports
the number of atoms from each species in these systems. The simulation of anisotropic
biaxial strain on YDC was performed by applying every combination of strain to the

slabs, where €,,¢, = {0.007,0.014,0.021} (Picture 6.1a). These simulations were run
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in the NVT ensemble resulting in the lattice vectors along the z and y directions of
the slabs being fixed while relaxation was allowed along the direction normal to the
slab surface (z-axis) in order to account for the Poisson effect (Picture 6.1b). Note
also that the effective strain applied to the slabs is different to that applied to the bulk
systems given their different orientations, thus a certain strain along <100> direction

will have a different effect to the same strain along <111> direction [295].
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Figure 6.1: a) CeOs slab zy-plane b) Slab yz-plane. Ce*t and O?~ are shown in as
beige and red spheres, respectively.

Table 6.1: Number of ions from each species in the bulk and slab simulation cells for
each concentration of YDC.

Bulk Slab
z in Ce;_Y; 02 42 Ce Y O Ce Y O
0.08 796 68 1694 766 66 1631
0112 762 102 1677 734 98 1615
0.18 710 154 1651 684 148 1590

The use of the DIPPIM interatomic potential made it possible to perform the long
simulations required to measure the diffusion coeflicients of these systems, which in
the case of the lowest temperature considered was 600 ps with a timestep of 1fs for all

calculations. Coulombic and dispersion interactions were handled using Ewald summa-
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6.3 Results and discussion

tions, while the short-range part of the potential was truncated at 12.7 A. The errors
associated with the reported values for conductivities and activation energies were esti-
mated from the calculations on YDC presented in Chapter 5, where the three different

supercell configurations were used for each concentration under study.

6.3 Results and discussion

6.3.1 Bulk YDC conductivity

Figure 6.2 presents the activation energies, E, (eV), for vacancy migration in bulk
YDC obtained from DIPPIM simulations using both the HSE IP parameters (Table
5.1) from Chapter 5 and those presented in Chapter 4, which were obtained from LDA
calculations (Table 4.1), as well as, from experimental data available in the literature.
The E, values predicted by the h-DIPPIM potential were calculated from Arrhenius
plots of the ionic conductivity in the temperature range 1273 K — 1673 K (NVT ensem-
ble) for each of the three concentrations considered in this study. The errors associated
with this data set were found to be in the order of 3%. The previous LDA-DIPPIM
(I-DIPPIM) work used 4 x 4 x 4 cells under NPT conditions [17] and a wider tem-
perature range (1073 K — 2073 K). As expected, both sets of computational data are
very similar despite being parameterized using different DFT functionals (h-DIPPIM
shown as green circles and I-DIPPIM as black triangles). Moreover, the values from
the simulations are in good agreement with the range of available experimental results
(blue diamonds [296] and red squares [26]). Table 6.2 contains the DIPPIM calculated
bulk o; (Sem™!) as a function of dopant concentration at 1473 K. Both the h-DIPPIM
and the I-DIPPIM potentials predict = 0.12 to be the ionic conductivity maximum
in YDC. The same level of agreement was observed between the potentials for all tem-
peratues studied. This indicates that the h-DIPPIM potential maintains the previous
potential’s ability to account for the properties of YDC, but with the added advan-

tages discussed above (Section 6.2). As a result, all subsequent parts of this study were
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performed using the h-DIPPIM potential.

1:25
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Figure 6.2: Bulk activation energies, E, (eV), calculated using the h-DIPPIM (green
circles) and 1-DIPPIM potentials (black triangles. Experimental bulk activation energies
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Table 6.2: Bulk ionic conductivities, o; (Sem™!), at 1473K from LDA (-DIPPIM)
(17, 171] and HSE (h-DIPPIM) DIPPIM potentials (present work). The errors associated
with the h-DIPPIM data set are 1.58%, 0.64%, 1.25%, respectively for z = 0.08, 0.12
and 0.18. The -DIPPIM data set is expected to have slightly larger error values due to
the use of smaller simulation cells.

T in CCI_xYl-OQ_I/Q

0.08
0.12
0.18

I-DIPPIM  h-DIPPIM

0.110 0.125
0.132 0.136
0.125 0.122

Application of isotropic strain to bulk YDC caused an increase in the material’s ionic
conductivity, ;. Figure 6.3 presents o; of bulk Ce;_,Y,O,_;/2 when € = 0.021 relative
to e = 0.000 (6%!/0°) as a function of temperature. The conductivity maximum
remains at x = 0.12 (red squares) for all the temperatures considered, however the

highest increase in o; with strain (3.50 x) is observed for z = 0.18 (blue triangles)
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6.3 Results and discussion

at 1273 K. These results also show that the impact of strain on o; increases as the
temperature decreases from 1673 K to 1273 K. This effect can be explained in terms
of the decrease in the activation energy of vacancy migration, E, (eV) (Table 6.3)
due to the activated nature of the conduction mechanism. The intrinsic error in these
results (up to 3%) is small in comparison to magnitude of the changes observed in E, for
YDC. The changes observed are also similar to those reported by De Souza et al. [290],
who found a decrease of up to 40% for CeO, at € ~ 0.02. Lower temperatures were
not included in this study as they are more difficult to simulate because they require
longer MD trajectories (in the order of several ns of simulation time). Unfortunately,
isotropic strain is difficult to realize experimentally and is presented here due to its
theoretical interest. As a consequence, the changes in conductivity experienced by
YDC under these conditions will be used only as a benchmark when compared to

those of anisotropically strained slabs in the next section.

oo x=-0.08| -

| | ]
1273 1473 1673
Temperature (K)

Figure 6.3: Ionic conductivities of bulk Ccl,IYzOQ_m/Q when € = 0.021 relative to € =
0.000 (6*1/6%) as a function of temperature. The different concentrations are indicated
as z = 0.08 (black dots), 0.12 (red squares) and 0.18 (blue triangles).
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Table 6.3: Activation energies, £, (eV), as a function of strain, e, for bulk YDC.
The values in square brackets correspond to the percentage change with respect to the
activation energy without strain for a given concentration. The reported values for
unstrained systems have errors of 1.86%, 3.00% and 1.80% for =z = 0.08, 0.12, 0.18,
respectively. It was found that the magnitude of these errors decreases with strain.

zin Ce; ,Y,0p pp 0.000  0.007 0.014 0.021
0.08 0.570 0.487 [-14.6] 0.397 [-30.4] 0.338 [-40.7]
0.12 0.650 0.580 [-10.8] 0.554 [-14.8] 0.392 [-39.6]
0.18 0.674 0.651 [-3.3] 0.567 [-15.9] 0.493 [-26.8]

6.3.2 YDC slabs: surface effects

The YDC slabs discussed in this section serve as models for the study of ionic conduc-
tivity of epitaxially grown thin films, in particular, coherently grown films where the
lattice mismatch does not exceed € = 0.03. Figure 6.4 presents the 2D ionic conductiv-
ities, o; (Sem™1), at 1273 K for unstrained YDC as a function of dopant concentration
for bulk (blue triangles) and slabs (black diamonds). These conductivities were cal-
culated from the diffusion coefficients along the z and y directions only (D, - 2D
lateral diffusion). The MD simulations reveal that, for zero strain, the conductivities
of the slabs are 50% higher than those of bulk YDC of the same concentration. This
pattern remains unaffected when all three components of the diffusion coefficient (D,
Dy. D,) are included in the calculation of the conductivity of bulk YDC and when this
value is obtained from the average of the conductivities along the zy, yz, 2z planes (3D
conductivity shown as red dots). To the authors’ knowledge, this is the first time that
such a behaviour is observed in YDC. Apart from the increase in the conductivity, the
behaviour of the two systems is similar, with the highest conductivity achieved for a
dopant concentration of r = 0.12.

The MD technique makes it possible to perform a detailed examination of the con-
ductivity within each atomic layer along the z-axis of the slabs (delimited by horizontal
blue dashed lines on the left in Figure 6.5). The diffusion coefficients for each of these

13 layers of CepgsY0.1201.94 at 1273 K are presented on the right hand side of Figure
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Figure 6.4: 2D (lateral) ionic conductivities, o; (Sem™!), for unstrained bulk (blue
triangles) and slabs (black diamonds) as a function of dopant concentration at 1273 K.
Bulk 3D ionic conductivities are shown as red dots.

6.5 as a function of depth (black dots aligned to their corresponding layers). These
values have an associated error of up to 5%. It is immediately clear that the layers
with exposed surfaces show a significantly higher conductivity (~4 x) than those in
the bulk region of the slab, with the lowest conductivities seen in the subsurface layers.
The diffusion coefficient for bulk YDC of the same concentration as the slab is shown
for comparison (vertical red dashed line). The increased conductivity in the surface
regions is likely due to the substantial changes to the coordination environment around
the oxygen anions in these layers. This is evident when the positions of the oxide anions
on the surface regions (solid blue circle in Figure 6.5) are compared to those in the low

conductivity subsurface (dashed black circle in Figure 6.5).

6.3.3 YDC slabs: strain effects

All combinations of strains, where ¢, ¢, = {0.007,0.014,0.021}, were applied to the
YDC slabs. However, it was found that, although the conductivity tended to increase

whenever there was strain along either direction, the change was generally larger when
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Figure 6.5:
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Diffusion coefficient (10 cm?/s)

3D diffusion coefficients for each atomic layer along the z-axis for
Cep8sY0.1201.94 at 1273 K (black dots). The vertical red dashed line indicates the bulk
conductivity at the same dopant concentration and temperature. Attention is drawn to
the high degree of disorder in anion sublattice on surface layers (solid blue circle) com-
pared to the ordered subsurface layers (dashed black circle). Ce**. Y3+ and O?~ are

shown in as beige, blue and red spheres, respectively.

€z = €, (which is to be expected since YDC adopts a cubic fluorite structure). For this

reason, we will only report strain where €, = ¢, for the slabs. In Figure 6.6 we report
) A & Y

the conductivity vs strain for Ce;_;Y;Os_z/ slabs at 1273 K, where x = 0.08 (black

dots), 0.12 (red squares) and 0.18 (blue triangles). The plots show that o; increases

with strain for all concentrations of YDC, and just as in the bulk system, x = 0.12 dis-

plays the highest conductivity. The inset shows the change in conductivity of the same

YDC systems when €, = ¢, = 0.021 with respect to the unstrained slabs (¢%!/0°) for

all temperatures under study. As was seen in bulk YDC (Figure 6.3), applying strain

to YDC causes a larger increase in conductivity at lower temperatures. In the case of
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slabs, this change corresponds to a 1.44 x rise with respect to the unstrained slab at
the same temperature for z = 0.18 (¢f. the increase for isotropically strained bulk was
3.5 x). This increase may appear modest when compared to the orders of magnitude
seen in some of the YSZ literature [276], but it is in very good agreement with the lat-
est reports on ceria and zirconia-based electrolytes [265, 266, 277, 289]. Our findings
are in also reasonable agreement with previous calculations [260, 261, 290], when the
differences in strain values and temperatures are factored in. The activation energies,
E, (eV), of the YDC slabs (Table 6.4) decrease as the strain increases, nevertheless,
these changes are not as pronounced as was the case of bulk YDC (Table 6.3), espe-
cially when € = 0.021. Again, since the ionic conductivity is an activated process, the
conductivity enhancement is expected to be higher at lower temperatures, as observed

by Kushima and Yildiz for YSZ [260, 261].

0.16 =
i = 1.4} 1
0.14F 7 -
1.2} o
..‘_A [ 1.0} ]
= : " "
0.12 di
) . Tesspencare () "”3
o J
oo x=0.08
0.1 smumx=012 | 4

Aax=0.18

0.08

Figure 6.6: Ionic conductivities of Ce;—;Yz0g ;5 slabs at 1273K as a function of
strain. The different concentrations are indicated as x = 0.08 (black dots), 0.12 (red
squares) and 0.18 (blue triangles). Inset: 2D ionic conductivities of Ce;_Y;Op_, /o slabs
when e, = €, = 0.021 relative to €; = €, = 0.000 (6%1/5°) as a function of temperature.

The ionic conductivities of the YDC slabs manifest a high degree of anisotropy,
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6. STRAIN EFFECTS ON THE IONIC CONDUCTIVITY OF
CERIA-BASED ELECTROLYTES

Table 6.4: Activation energies, E, (eV), as a function of strain, where €, = ¢, for YDC
slabs. The values in square brackets correspond to the percentage change with respect to
the activation energy without strain for a given concentration. The reported values for
unstrained systems have errors of 4.00%, 5.13% and 3.92% for z = 0.08, 0.12 and 0.18,
respectively.

zin Ce; ,Y,0p oo 0.000  0.007 0.014 0.021
0.08 0.511 0.479 [-6.3]  0.477 [-6.6] 0.419 [-18.1]
0.12 0.608 0.528 [-13.2] 0.510 [-16.1] 0.504 [-17.1]
0.18 0.691 0.643 [-6.9] 0.588 [-14.9] 0.499 [-27.7]

which is evidenced when the diffusion coefficients , D (107®cm?/s), are decomposed
into the individual components along each Cartesian direction. The values reported in
Table 6.5 correspond to the diffusion coeflicients along the z (D;). y (D,) and z (D,)
directions for biaxially strained CegggYo.1201.94 slabs and isotropically strained bulk
(square brackets) of the same concentration. The results show that D, and D, increase
more slowly in the slabs than they do in bulk when strain is applied. This anisotropy
likely arises from the compression along the z direction of the slabs (Poisson effect).
The D, values of our simulation slabs are constrained by the non-periodicity along this
direction and they will ultimately tend to zero as a result, provided the simulation time
is long enough. However, in the timescales presented here the results indicate that the
relaxation perpendicular to the surface plane does not lead to a diffusion enhancement.
Table 6.5: Slab diffusion coefficients (107® cm?/s) along each Cartesian axis for
Cep.88Y0.1201.94 at 1273K under different strain, where €, = €, levels. Isotropically

strained bulk diffusion coefficients are shown in square brackets for comparison. These
uni-axial diffusion coefficients values have an associated error in the order of 5%.

€z = € D (1078 em?/s) D, (1078 cm?/s) D, (107® cm?/s)

0.000 33.5 [23.0] 33.7 [26.8] 23.3 [24.4]
0.007 38.1 [42.9] 37.5 [42.4] 24.5 [39.9]
0.014 40.5 [59.2] 44.1 [62.5) 25.4 [59.1]
0.021 49.3 [89.8] 47.1 [89.9] 26.7 [87.0]




6.4 Conclusions

6.4 Conclusions

This work attempts to rationalize the impact of strain in epitaxially strained RE-doped
ceria. The simulations used accurate dipole-polarizable interatomic potentials derived
directly from ab initio calculations. The simulation conditions were realistic from the
point of view of the strains applied, dopant cation concentrations and the temperatures
employed. Also, for the first time, the slab method was applied to this problem which
allowed for a more realistic representation of biaxially strained systems. In addition,
the results from the slab calculations illustrated the effects of surfaces on the ionic
conductivity. The results obtained from our calculations indicate that there is a clear
enhancement of the conductivity in the surface region of a thin film. This resulted in
our films being ~ 50% more conducting than the corresponding bulk sample, for zero
strain. This effect is related to the more disordered atomic configurations observed
in the surface layers and the presence of under-coordinated atoms. When strain is
applied, either isotropically (bulk) or biaxially (slab), a moderate enhancement in the
ionic conductivity is observed, for the studied temperature and strain ranges. Biaxially
strained thin films are found to be less conductive than isotropically strained YDC,
which has been ascribed to the highly anisotropic diffusion mechanism observed in the
thin films. Our findings confirm those from recent experimental studies which em-
ployed films of high crystallographic quality and found only a limited impact on the

ionic conductivity from tensile strain [266, 277].
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Properties of cadmium oxide from

first principles

7.1 Intrinsic defects and adventitious H doping

The remarkable TCO properties of CdO were first described in 1907 by Badecker [39)].
Since then, this material has positioned itself as a prototypical wide band gap trans-
parent semiconductor, which adopts the rock salt (RS) structure (Figure 7.1) with
space group Fm3m-O; (225). This material has been reported to be an n-type degen-
erate semiconductor which possesses a small indirect band gap (E;,nd in Figure 7.2) of
~ 0.84 ¢V [297] and a larger direct band gap (E;iir in Figure 7.2) of ~ 2.2V [298, 299).
CdO is a highly non-stoichiometric material, and generally possesses large carrier con-
centrations (~ 10" — 10%° cm~?) together with large electron mobilities in the bulk [300].
These high carrier concentrations generate a pronounced Moss-Burnstein (MB) shift
which can considerably extend the optical band gap, EgP*[301] indicated in Figure 7.2.
In addition, donor dopants can extend EZP* above 3.1eV, making CdO suitable for
TCO applications. Mobilities of the order of ~ 200 em?V~1s~! and conductivities as
high as 42000 S cm™! have been reported for doped CdO samples [302], which is an or-
der of magnitude higher than the typical conductivities of the industry standard TCOs.

Understanding the defect chemistry of CdO is therefore vital for the development of
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7. PROPERTIES OF CADMIUM OXIDE FROM FIRST PRINCIPLES

improved TCOs.

X
F PP

XXX

c
i
a

Figure 7.1: Rock salt structure of CdO. Shown in gray are the Cd cations while the
oxide ions are in red.

To date, however, there is still uncertainty regarding the nature of the dominant
intrinsic defects in this material. Cd interstitials (Cd;) [303, 304] and oxygen vacancies
(Vo) [33, 305] have both been put forward as the dominant defects in CdO. Similar to
other n-type TCOs [306], hydrogen impurities have also been suggested both experi-
mentally [307] and theoretically [308] to act as donors in CdO by means of adventitious
doping. A recent experimental study by King et al. found that intrinsic defects and
H impurities all act as shallow donors in CdO[309]. This finding is intriguing, as in
all other n-type TCOs, Vo acts as a deep donor, and cation interstitials, while being
shallow donors, are generally too high in energy to contribute heavily towards any
intrinsic conductivity [310, 311]. This suggests that intrinsic defects behave differently
in CdO compared to the other TCOs. The discussion that follows examines the forma-
tion of intrinsic defects and hydrogen impurities in CdO using screened hybrid density
functional theory (h-DFT). Hydrogen is included along the intrinsic defects given its

concomitant presence under experimental conditions. The effects of one electron donors
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7.1 Intrinsic defects and adventitious H doping

K I L W

Figure 7.2: Schematic band structure highlighting the Fermi level stabilization energy,
Egs, The Moss-Burnstein shift, E;“B, and the optical band gap, E;;'", for defective CdO.
The green shaded areas indicate occupation by electrons. The VBM is set to 0eV.

typically used as dopants in CdO are discussed in Section 7.2. These dopants include
the RE cations Sc, Y and La, as well as, three members from group 13, namely, Al,

Ga, In. Anionic dopants are also examined by means of F defects.

7.1.1 Methods

All calculations were performed using the periodic DFT code VASP,[98, 143] in which
a plane-wave basis set describes the valence electronic states. The PBE [65] gradient
corrected functional was used to treat the exchange and correlation. The PAW [101,

312] method was used to describe the interactions between the cores (Cd:[Kr] and
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7. PROPERTIES OF CADMIUM OXIDE FROM FIRST PRINCIPLES

O:[He]) and the valence electrons. In this way the Cd 4d states are explicitly included
in the valence. To counteract the self interaction error [313] and the band gap errors
inherent to standard DFT functionals such as the PBE functional, higher levels of
theory must be used. An often used approach to overcome these errors is to utilize
hybrid functionals, which include a certain percentage of exact Fock exchange with the
DFT exchange and correlation, as discussed in Chapter 2. Hybrid functionals have been
shown to yield improved decriptions of the structure, band gap and defect properties of
a number of oxide semiconductors [46, 204, 314 -328]. Unfortunately, hybrid functionals
are very computationally demanding, and have in some cases been overlooked in favour
of less computationally expensive methods, such as the “+U” correction [67, 329],
or even a range of a posteriori corrections to LDA/GGA calculations [330]. In this
study we have used the screened hybrid density functional developed by Heyd. Scuzeria
and Ernzerhof (HSE06)(75, 215], as implemented in the VASP code [216]. Structural
optimizations of bulk CdO were performed using both PBE and HSE06 at a series of
volumes in order to calculate the equilibrium lattice parameters. Convergence with
respect to k-point sampling and plane wave energy cut off were checked, and for both
PBE and HSE06 a cutoft of 400eV and a k-point sampling of 8 x 8 x 8 were found
to be sufficient. Calculations were deemed to be converged when the forces on all the
atoms were less than 0.01eV A1, A 2x2x2 simulation cell consisting of 64 atoms was
used for our defect calculations. The plane wave cutoff was set at 400 eV and a 2x2x2
Monkhorst-Pack special k-point grid was used in all defect calculations. Structural
optimizations were considered to be converged once the forces on all species were less
than 0.02eV A~'. All defect calculations were spin polarized. Density of states are

shown with a Gaussian smearing of 0.02eV.

The chemical potentials discussed in Chapter 3, p;, reflect the specific equilibrium
growth conditions, within the global constraint of the calculated enthalpy of the host,
in this case CdO: pucq+po = AHdeO = —2.15eV. The lower limit for po, which charac-
terizes a Cd-rich/O-poor environment, is determined by the formation of metallic Cd:

Apcg = 0eV; Apo = —2.15eV. The upper limit for po (Cd-poor/O-rich conditions)
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7.1 Intrinsic defects and adventitious H doping

is governed by O, formation: Apucq = —2.15eV; Apo = 0eV. The formation of CdO,
was also considered, but it was found to not be a chemical potential limit. Under both
sets of conditions, the solubilities of H-related species are limited by the formation of

H0, ie. po + 2un < AH?C = —2.67eV.

7.1.2 Bulk CdO

The calculated lattice parameters, bond lengths and electronic structure data for the
PBE and h-DFT calculations on CdO are presented in Table 7.1. The HSEO6 struc-
ture is only slightly overestimated with respect to the experimental values [331], and
is more accurate than standard DFT functionals [332]. HSE06 has previously been
shown to be better at accurately predicting the structure and band gap data of many
semiconductors compared to standard DFT functionals. In fact, it has been shown
that standard DFT functionals are not able to accurately calculate the band structure
features of CdO, even predicting CdO to be a semi-metal [332], and that methods that
go beyond GGA/LDA must be employed [309, 333]. Both the PBE and the HSE06 cal-
culated band structure for CdO are shown in Figure 7.3. The valence band maximum
(VBM) occurs at L, which is slightly higher than the ¥ line (between K and I'). PBE
yields a band structure in which the CBM comes down below the VBM, indicating a
semi-metallic system, which is in line with the findings from previous standard DFT
results [334].

From the HSEO6 band structure (Figure 7.3 (b)) we obtain values of 2.18 eV and
0.89¢V for Eg" and E;“", respectively. These results compare well with recent exper-
imental studies which reported EJ" to be 2.20eV [299] and 2.16eV.[298] The most
recent measurement of the E;“d (0.90eV)[335] is also in excellent agreement with our
HSEO06 calculated E;“d. As discussed in Section 1.3, for an effective TCO material, it is
important that the second conduction band (CBM+1) is separated from the CBM by
greater than 3.1eV [41]. This large CBM- CBM+1 separation ensures that any donor
electrons in the conduction band are not excited by visible light to the next conduction

band, and therefore ensures optical transparency, which is vital for device performance.
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7. PROPERTIES OF CADMIUM OXIDE FROM FIRST PRINCIPLES

Table 7.1: Geometrical and electronic structure data for CdO calculated using GGA-
PW91, GGA-PBE, and HSE06, and compared to known experiments. a is the lattice
parameter, measured in A, dcg_o is the Cd-O bond length in A, the volume is measured
in A3, Egir is the direct band gap in eV, E;"d is the indirect band gap in eV, VB width is
the width of the main valence band in eV, and d states is the position of the Cd d states
relative to the VBM at 0eV and is measured in eV.

GGA-PBE HSEO06

GGA-PW91[332] (This Study) (This Study) Expt.

a 1.80 4.79 472 4.70 (331]
i 2.39 2.36 2.35 [331]
Volume 110.59 109.90 105.15 103.82 [331]

Egir 0.60 0.61 2.18 2.16-2.20 [298, 299
B -0.51 -0.51 0.89 0.84-0.90 [335]
VB width ~4.00 3.94 4.45 ~5.00[336]
d states ~-6.60 -5.7to-74  -6.5to-8.3 ~-8.50 [309]

Similarly, for p-type TCOs, absorption must not occur from bands within ~ 3.1eV of
the VBM to the hole states near the VBM.[42, 43] For CdO, the CBM+1 is ~ 15eV
higher than the CBM, indicating that the conduction band features of CdO are ideal

for a candidate TCO.

Our HSEO06 calculated effective mass for the CBM is 0.21 m,, and for the VBM is
1.3m,. To the best of our knowledge the valence band effective masses have never been
measured experimentally, however, our conduction band effective mass is in good agree-
ment with the most recent experimental measurements of the effective mass (0.21m,
and 0.24m,) [298, 299]. The experimental valence band width of CdO is ~ 5eV,[336]
which agrees well with our calculated VB width of ~ 4.5eV. Overall, the HSE06 func-
tional describes the electronic structure features of CdO much better than standard
functionals, and yields results in excellent agreement with experiments, and also in
good agreement with the results of the computationally intensive, higher level GW

quasiparticle calculations of Bechstedt and co workers [337].
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Figure 7.3: (a) PBE and (b) HSE06 calculated band structure for CdO. The VBM is
set to OeV in both cases and is denoted by a horizontal dashed black line. Green and red
bands denote valence and conduction bands respectively. Note how the PBE calculated
conduction band comes down below the VBM, indicating a semi-metallic system.

7.1.3 Defect energetics and transition levels

The defects considered in this section include n-type Vo and Cd;, as well as the p-type
oxygen interstitial (O;) and cadmium vacancy (Vq4). In addition, H was incorporated
in a number of lattice positions, namely hydrogen in an oxygen lattice site (Hp) and
four different interstitial positions. The interstitial positions tested were the perfect
interstitial site, anion antibonding sites 1 A from an O along the (111) direction (HAB!),
(110) direction (HAB2?) and the bond centered site (HBC), as illustrated in Figure 7.4.

A plot of formation energy as a function of Fermi-level position for all intrinsic
defects and H related impurities for both Cd-rich/O-poor and Cd-poor/O-rich regimes
is displayed in Figure 7.5, see Section 3.3.4 for a discussion of how these diagrams are
plotted. For the intrinsic n-type defects, it is clear that the Vg is the most stable
defect under both sets of conditions, and will dominate intrinsic conductivity. The

Cd;, which had previously been suggested as the dominant defect (303, 304], is con-
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Figure 7.4: Positions of hydrogen intersitials in CdO: diagonal (H}-'\Bl). facial hydrogen
(H2B2) and bond centered hydrogen (HBC). Cd, O and H are denoted by grey, red and
vellow spheres respectively.

siderably higher in energy and is unlikely to play a large role in the conductivity of
CdO. The low formation energies of the Vo under both growth conditions can explain
the observed non-stoichiometry of CdO samples [300]. Both Vo and Cd; exist only in
the +2 charge state in the band gap, which is consistent with previous experimental
studies which reported that the source of undoped charge carriers in CdO were doubly
ionized donors [309]. Interestingly, CdO represents the only wide band gap n-type
TCO in which Vg acts as a shallow donor. In ZnO [310], SnO, [311], GapO3 [338]
and Inp,O3 [339] Vo has been found to be a deep donor, with “undoped” conductivity
thought to arise from the presence of adventitious hydrogen [306, 309, 311, 340].

The lowest energy H impurity in CdO under Cd-rich/O-poor conditions is Ho,
which is slightly more stable than H*®!, with both defects being lower in energy than
Vo as the Fermi level is raised to the CBM and beyond. Both H on the perfect inter-
stitial site and HAB2 were found to relax to the HAB! position. Under Cd-poor/O-rich
conditions, HAB! is the most stable defect considered, and will dominate conductivity.
The H defects are all in the +1 charge state in the gap, indicating that H behaves

exclusively as a shallow donor in CdO. Shallow donor behaviour of H; and Hp has
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Figure 7.5: Formation energies for intrinsic and hydrogen defects under (a) Cd-rich/O-
poor conditions and (b) Cd-poor/O-rich conditions. The solid dots represent the tran-
sition levels € (q/q’). The black dashed line indicates the position of the conduction
band maximum (CBM), with the purple vertical dotted line represents the maximum
achievable Fermi level before compensation occurs.

been noted previously for other wide band gap n-type oxides [306, 309, 311, 340-342].
Our results agree closely with those of King et al. who found that native defects and

hydrogen impurities both act as shallow donors in CdO samples [343].

7.1.4 p-Type CdO?

Recent valence band alignments for wide band gap oxides have indicated that the VBM
of CdO is quite high compared to the other wide band gap TCOs [344, 345]. By the
doping limit rules [346], this indicates that the VBM of CdO lies in the “p-dopable
range”, and indicates the possibility of CdO being a bi-polar material, which would be
very much sought after for the development of functional TCO p-n junctions. To the
best of our knowledge, however, no reports of p-type CdO have ever been published. To

investigate the possibility of p-type CdO, we now analyse the formation of O; and V4.
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We started our O; calculations with the O positioned on the perfect interstitial site,
however, the O moved towards one of the lattice oxygens, displacing it from its lattice
site and forming a peroxide (O-O dumbell-like) species, as shown in 7.6, which we will
now denote as OY". This type of behaviour has also been noted for ZnO [347, 348],
Al O3 [349] and SnO, [350, 351]. It is instructive to note that the structure of O is
very similar to the structure of the the anions in CdO,, which has a RS-like structure
with peroxide anions, O3, on the regular RS anion sites [352]. Our calculations reveal
that this O is the most stable p-type defect under both growth conditions, however,
it is higher in energy than the lowest n-type defects under both sets of conditions.
Both Vg and the O exist only in the neutral charge state over the range of the
band gap, under both sets of conditions, indicating that they will not act as effective
acceptors in this system. These findings explain why p-type CdO samples have never

been reported, despite it possessing a relatively high VBM.

7.1.5 Doping limits

Under both sets of growth conditions, compensation by p-type defects is not expected
to occur until well above the CBM, as indicated by the vertical dotted line in 7.5 (a)
and (b). This limit can be taken as an approximation of the Fermi level stabilization
energy, Eg S. which is the Fermi level at which the formation energy of donor defects
and acceptor defects is equal [353]. The definition of E; S is based on the amphoteric
defect model proposed by Walukiewicz,[353] and means that for Fermi levels above
(below) EgF S acceptor (donor) defects are favoured [354]. Our computed transition
levels only represent a first approximation to the doping limits, as they ignore the
effects of band gap renormalization, changes to the parabolicity of the CBM as the
number of charge carriers increases [106], and the effect of electron accumulation layers
on the band gap [355]. Nevertheless, the results can be used to rationalize the doping
behaviour seen experimentally. Taking the Cd-poor/O-rich conditions, our predicted
mazimum Fermi level position above the VBM is 2.15eV (also indicated by E;S in

7.2). which implies a maximum Moss-Burnstein shift (E;\IB) of the order of 1.26eV.
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Figure 7.6: Converged structure of an oxygen peroxide, O’ in the CdO lattice. The
two blue spheres denote the O-O dumbell.

Similarly for Cd-rich/O-poor we obtain an E;”B of 1.43¢eV, with the true MB shift
expected to lie in between the two extremes. These values are in good agreement with
the Fermi level positions reported by Piper et al. (~ 1.15eV and ~ 1.30¢eV) [356, 357,
and Speaks et al. (~ 1.00eV) [354]. This in turn implies maximum optical band gaps,

Egpt, of between ~ 3.44¢V and ~ 3.61¢V.

Using our calculated maximum Moss-Burnstein shift, and our calculated effective
mass of the CBM, we can estimate the number of charge carriers in “maximally “ doped

CdO from free electron theory using:

h2
2m*

EBM = (371'277,6)2/3 (71)
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where m* is derived from the valence and conduction band effective masses, my and

1
m*

el
mc

my according to + # and n. is the electron carrier concentration. Based on
our approximate model, this analysis predicts the maximum carrier concentration to
be ~ 4.34 x 102 cm ™2 and ~ 5.25 x 10%° em ™ for Cd-poor/O-rich and Cd-rich/O-poor
conditions respectively, before compensation by p-type defects occurs. These numbers

agree quite well with the saturation carrier concentration reported for CdO (at the

EFS), which was ~ 5 x 10%° cim—3[354].

7.1.6 Discussion

Our h-DFT calculations have shown that the formation energy of Vo is much lower
than that of the Cd; under all growth conditions, indicating that previous studies which
identified Cd; as the dominant defect[303, 304] were misguided. The low formation
energy of Vo explains the fact that CdO samples are often found to be highly sub-
stoichiometric [300]. Both Vi and Cd; are found to act as shallow donors in CdO,
meaning that the behaviour of Vg in CdO is very different to that reported for Vg in
other wide band gap n-type TCOs e.g. ZnO [112, 358, 359], SnO, [311], GapO3 [338]
and InpO3 [340, 360]. In these n-type TCOs, Vo is found to be stable only in the 0
and +2 charge states, meaning it is a negative- U defect. In CdO however, V4 is stable
only as +2 in the band gap, and does not display any negative-U character.

The origin of this can be understood by examining the structure of the Vg in the 0,
+1 and +2 charge states. For the 0 (neutral) charge state, the Cd ions neighbouring
the vacancy move outwards from the vacancy by 1.7 %, while the nearest neighbour
oxygens move towards the vacancy by 1.1% relative to the bulk bond lengths. For
the +1 charge state, the Cd ions move a further 1.4 % and the oxygens move towards
the vacancy by a further 0.5%. This trend is continued for the +2 charge state, with
the Cd moving away from the vacancy by a further 1.4 % and the O move inwards by
another 0.5%. These small relaxations are in stark contrast to the large relaxations
experienced by, for example, Vo in ZnO [347, 358, 359], which has been shown to

experience a 12 % relaxation of the four Zn ions neighbouring a vacancy towards the
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vacancy site. For the +1 and +2 charge, the Zn ions then relax away from the vacancy
by 2% and 23 % respectively, and it is the large relaxations experienced by the 0 and
+2 charge states which stabilize these charge states relative to the +1 charge state,
making the Vi a negative-U centre in ZnO. As V in CdO does not experience any

large lattice distortions, there is no driving force for negative-U behaviour.

At this point it is instructive to think about an oxygen vacancy in Kroger-Vink
notation, i.e. [V3* + 2e|, which means that there is a doubly positive vacancy on an
oxygen site, plus two free electrons. The doubly positive vacancy would be expected to
repel the neighbouring positively charged cations, however, for ZnO the cations move
towards the vacancy [347, 358] indicating that there is significant negative charge in
the vacancy site. This is explained by the fact that electrons are trapped in the Vo,
in an F-centre like fashion in ZnO, complete with polaronic distortion [359]. For the
VO+2 in ZnO, the two electrons are now absent from the vacancy, and the Zn ions are
strongly repelled away from the vacancy site. The reason that Vi behaves differently
in CdO can also be rationalized by considering the nature of the electrons left behind
up on Vo formation. Bader [107] analysis of these two electrons show that only 0.46 of
an electron is present in the vacancy position, with the other 1.54 electrons delocalized
over the Cd and O ions neighbouring the vacancy. This is noticeably less localized
than the electrons in the ZnO Vi {310, 359]. The origin of the negative-U behaviour
in other wide band gap n-type TCOs, therefore, is the trapping of the electrons in the
vacancy position, and this does not occur in the case of CdO. This type of delocalization
behaviour in CdO is more in keeping with Vg being a shallow donor, rather than a deep
donor. Similarly, the single particle levels (raw eigenvalues of the defects states) for the
Vo lie in the bottom of the conduction band in CdO. This is illustrated in 7.7, which
shows that the Fermi level is resonant in the conduction band upon Vg formation, with
no defect states in the band gap, which is at variance with the deep Vo single particle
levels in ZnO, SnO,, Gay,O3 and in In,O3 [112, 310, 311, 338, 340, 358-360]. To the
best of our knowledge, this type of shallow donor behaviour of Vo in wide band gap

oxides has only been reported for one other oxide, Tl,O3 [361] which possesses a small
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fundamental band gap of ~ 0.33 eV and a much larger optical band gap of > 2.3eV.

T T T T | T | T T '
— Total EDOS
— Cd 55

— Cd 44 |
—= ) 2p

Energy (eV)

Figure 7.7: The partial density of states for Vo in the 64 atom CdO supercell. The
position of the Fermi level, Ep is indicated by the purple vertical dashed line. The VBM
is set to 0eV. The denisty of states includes a Gaussian smearing of 0.2eV.

We find that H related impurities also have very low formation energies in CdO un-
der all growth conditions, and will always act as shallow donors. For O-poor/Cd-rich
conditions, n-type conductivity in the system will be controlled by the concentration of
Vo, Ho and H;—‘\Bl. with Hg slightly more favoured at higher Eg. Under Cd-poor/O-rich
conditions, H*B! is the dominant defect, meaning that any H in the growth environ-
ment will cause unintentional n-type conductivity under all growth conditions. These
findings are in good agreement with the recent experiments of King et al. who found
that both intrinsic defects and H related impurities act as shallow donors in CdO [343].

According to the doping limit rules [346, 353, 362-365], the higher a material’s
VBM is on an absolute scale, the easier it is to dope the material and make it p-type.
This should also mean that native p-type defects should have reasonably low formation
energies under Cd-poor/O-rich growth conditions relative to the native n-type defects.
Although CdO possesses a high VBM relative to other oxide materials [344, 345], it also

possesses a low CBM relative to other oxides, due to its low indirect band gap [344, 345],
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7.1 Intrinsic defects and adventitious H doping

Hosono and co workers have recently championed SnO as a possible bipolar material,
listing small indirect /forbidden band gaps coupled with larger optical band gaps as the
key factors in finding good candidate bipolar semiconductors [366]. By these standards,
CdO should represent a very strong candidate for bipolar activity. Our calculations,
however, indicate that even though the O has the lowest neutral formation energy
of the native acceptor defect in CdO under Cd-poor/O-rich conditions, the acceptor
ionization levels for this material are deep in the conduction band, indicating that it
cannot act as an effective acceptor in CdO. For Ep close to the valence band maximum
(which should be optimal for p-type defects), HAB and Vo 2 are both lower in energy
and will always compensate the native acceptors. Therefore, despite possessing a high
VBM, CdO can never show p-type conductivity from intrinsic defects, and it is unlikely
that extrinsic acceptors could cause p-type conductivity due to the very low formation
energies of the n-type defects. Our calculations indicate that although a high VBM
relative to the vacuum is a good indicator of p-type ability, the ultimate behaviour is
determined by the defect chemistry. In this respect, high level ab initio calculations

can prove invaluable.

The doping limits of CdO were examined using the 0/ — 1 ionization levels of
all the defects considered in order to approximate the point where compensation by
acceptors or electron trapping occurs. Our calculations indicate that the point where
compensation occurs, which can be likened to the Fermi stabilization energy, Egs (also
known as the charge neutrality level or alternatively the branch point energy [367, 368]),
is situated deep in the conduction band, with calculated limits of 1.26 — 1.43 ¢V above
the CBM depending on the growth conditions. These approximate limits agree quite
well with recent experiments that list the E§S for CdO to be ~ 1.15eV [356], ~
1.00eV [354] and ~ 1.30eV [357]. The distance of the E}® above the CBM represents
the Moss-Burnstein shift possible in doped CdO, and our limits agree well with the
large optical band gaps seen experimentally [37, 301, 369-375]. This work therefore
demonstrates that the large charge carrier concentrations and big optical band gaps of

CdO are made possible by the fact that n-type defects are not compensated by p-type
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defects until deep in the conduction band. This type of uncompensated n-type defect
chemistry behaviour is also seen for other materials (e.g. InN [376 382 and InAs [383

385] where very large carrier concentrations are sustainable). For In O3 the Eg S has
been reported to be in the range 0.30 — 0.65eV above the CBM [386, 387]. Taking
into account the fact that the effective mass for CdO is reported to be lower than or
comparable to that of InpOsz [76] and using equation 7.1, then it is clear that CdO
can sustain a much higher carrier concentration than In,Osz. This is the vital factor in

doped CdO producing the highest conductivities of any TCO reported previously [302].

7.2 Extrinsic defects in CdO

Having established the nature of the intrinsic dopants in CdO, attention now turns to
the substitution of Cd with 3+ cations, as well as the introduction of F as a dopant.
The 3+ species included three RE elements, namely Sc, Y and La, as well as, three
elements from group 13, Al, Ga and In. These defect calculations were performed on
2x2x2 supercells, as described in Section 7.1.1, where the dopant cations replaced a
single Cd ion in the 64-atom supercell (3.125% concentration). In the case of F defects,
the options tested were F in the ideal interstitial position, F;, and as a substitution
in an oxygen position Fg. These calculations were performed using the methods de-
scribed in Section 7.1.1. The solubilities of the dopants presented herein are limited by
the formation of secondary phases, i.e. nuye + mpo = A?Ieo". As a result, it was also

necessary to calculate the formation energy of ScoO3, Y203, LagO3, Al,O3, GayO3 and

InyO3. The solubility of F was determined by the formation of CdFs, AHdeF‘z.

Experimental studies into the effects of donor doping in CdO have generally yielded
samples with high optical transmittance (> 80%) in the visible spectrum, larger op-
tical band gaps than nominally undoped CdO and an increased number of charge
carriers [37, 301, 370, 388-390]. However, the extent of these modifications to the
properties of pure CdO varies for different dopant species, as well as also being de-

pendent on factors like the substrate deposition media [391], the presence of grain
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boundaries, etc. In the case of RE-doped CdO, previous studies have identified both
Y [388, 389] and Sc [40, 370, 389] as being efficient donor dopants in this material. In
contrast, reports on the properties of La:CdO have shown adverse effects as a result
of doping, such as a transition from a semiconducting oxide to an insulator at high
dopant concentrations (~ 30%), with formation of La;O3 domains [392, 393]. Within
this group of dopants, Y**, with a 6-coordinate radius of 0.90 A, is the one that most
closely matches that of Cd?** (0.95A), while Sc3* (0.75 A) and La*t (1.03 A) are more

substantially mismatched in terms of size with respect to Cd [131].

A relationship between dopant ionic radius and n-type ability has also been ob-
served in the case of the group 13 dopants, where In®** with a radius of 0.80 A [131] is
typically recognized as the best dopant cation in CdO with conductivities in excess of

)2%cin 3, both of which rep-

15x10*S/cm and carrier concentrations in the order of 5x 1(
resent improvements of an order of magnitude in these values with respect to undoped
CdO [394]. In contrast, small dopants like APt (0.54 A[131] and Ga3* (0.62 A [131])
have been shown effect more modest changes to the conductivity of CdO because they

occupy intersitial positions that act as recombination centres for dopant concentrations

exceeding 1.5% [395].

Similar to the other dopants that are the subject of this study, reports on F:CdO
have have shown that it is a viable dopant for increasing the conductivity and optical
transparency of this oxide [334, 390, 396-399]. This donor behaviour of F has been
reported in other metal oxides such as ZnO [400, 401], SnO, [402] and BaSnOj3 [403].
However, the values for the conductivities found in the literature for F:CdO vary by
as much as 5 times, from 1.5x10%S/cm [397] to 1.1x10*S/cm [399] in systems with
F concentrations of up to 10%. Similar discrepancies are found in the reported values
of the optical BG as a result of the MB shift, with values ranging from 2.3eV [399] to
2.8¢V [390] for F:CdO.

The following investigation of doped CdO is undertaken in light of these conflicting
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reports and, also due to the fact that no simulation studies have been carried out in a
comprehensive set of n-type dopants in this material. The most significant aspect in
these simulations is the use of state-of-the-art h-DFT simulations using realistic defect
concentrations and the use of defect interaction corrections, which have been shown to
be necessary in siulations with relatively small supercells [108, 112, 404, 405] that are

typically in used in these studies.

7.2.1 Results

The formation energies for the RE dopant defects included in this study are shown
in Figure 7.8, Sccq (solid black line), Yeq (solid green ochre line) and Lacq (solid lila
line). These defects are shown in the context of the intrinsic defects presented in the
previous section, as well as, H-doping, all of which are now represented by thin dashed
lines and the same colour scheme from Figure 7.5. The values for the slopes are not
explicitly indicated given that these defects can only exist in +1, 0 or -1 states. These
results indicate that the best dopant is Y, closely followed by Sc. In both cases these
defects are expected to dominate over the intrinsic and H-defects already encountered
under O-poor and O-rich conditions. This is in contrast to the formation energy of the
+1 charge state of the La defect, which is approximately 1eV higher than HAP! within
the band gap. However, despite it being a poor dopant in comparison with Y and Sc,
the formation energies of Lacq are considerably lower than the intrinsic Cd;. La is the
only dopant which shows a charge neutral state among these 3+ dopants.

Figure 7.9 presents the formation energies for the group 13 dopants, i.e., Alcq
(solid gray line), Gacq (solid beige line) and Ingq (solid pink line). From these plots it
is evident that the small dopants, Al and Ga, are not as favourable as In, which is more
closely matched with the host cation. Thus, they are not expected to dominate over
the native Vo under O-poor conditions as is the case for Incq. However, the opposite
is true under O-rich conditions, where all the dopant defects are found to have lower
formation energies than V. As with the RE dopants in Figure 7.8, all group 13 dopants

were found to be shallow donors in CdO.
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Figure 7.8: Formation energies for the RE dopants included in this study: Scgq (solid
black line), Ycq (solid green ochre line) and Lacq (solid lila line). The black dashed
line indicates the position of the conduction band maximum (CBM). The intrinsic and
H defects are shown as context and are represented using dashed lines.
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Figure 7.9: Formation energies for the group 13 dopants included in this study: Alcg
(solid gray line), Gacq (solid beige line) and Incq (solid pink line). The black dashed
line indicates the position of the conduction band maximum (CBM). The intrinsic and
H defects are shown as context and are represented using dashed lines.
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Figure 7.10 presents the transition level diagrams for F-doping under O-poor and
O-rich conditions. These results indicate that Fp (solid purple line) has the poten-
tial to confer excellent n-type properties to CdO and it is expected to dominate the
conductivity under all fabriaction environments. This is in line with previous reports
for this material [334, 397, 399]. The diagram also indicates that effective F doping is
only likely when the F atoms substitute O, because the formation energies for F; (solid
green line) are too high. Similar properties have also been reported in other F-doped

TCO materials like BaSnOj [403] and ZnO [400, 401].
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Figure 7.10: Formation energies for Fp (solid purple line) and F; (solid green line)
defects. The solid dots represent the transition levels € (q/q/). The black dashed line
indicates the position of the conduction band maximum (CBM). The intrinsic and H
defects are shown as context and are represented using dashed lines.

7.2.2 Discussion

A very complete data set for these doped CdO compounds has been assembled by the
groups of Profs Freeman and Marks at Northwestern University in the United States,
who over the last decade and a half have published a number of studies on CdO doped

with four of the species studied here, namely Ga [406], In [301, 369], Sc [370], Y [37]. In
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these articles, the authors combined experimental measurements of physical and elec-
tronic structure parameters, conductivity measurements, as well as, DFT simulations.
A key aspect of these investigations is that all the films were fabricated using Metal Or-
ganic Chemical Vapour Deposition (MOCVD), while the simulations were performed
using screen exchange LDA (sX-LDA). This consitency in terms of the methods em-
ployed greatly facilitates the comparison of the results obtained for each doped CdO
system. Figure 7.11 summarizes some of the results that were reported by Jin et al..
Shown in this figure are plots of the (a) electronic conductivities (S/cm) and (b) charge
carrier concentrations (x 102%cm=3) of CdO doped with Ga, In, Sc and Y as a function
of dopant concentration for films deposited MgO (100) from Figures 12b and 14b in
Ref. [406]. The data indicates that at relatively low concentrations of dopants, the
conductivities observed for Sc:CdO, Y:CdO and In:CdO are likely to be all very sim-
ilar if even a modest 10% error is assumed. In contrast Ga:CdO displays much lower
conductivities over the same concentration range. The carrier concentrations in Figure
7.11 (b) indicate that all dopant species increase the carrier concentration with respect
to undoped CdO, as is expected for these shallow donors. The lines in these plots
were intended by the original authors to be guides to the eye and it is not immediately
clear why no data points are available for In:CdO at low dopant concentrations. For
the other dopants the charge carrier concentrations are very similar, which suggests
that differences in the conductivities arise from factors like dopant-dependent changes
to the band hybridization in CdO. Other data sets for these dopants claim that the
solubility of these species in substitutional positions do not exceed 5% as in the case of
Y [388], La [392, 393], In [33, 388], Ga [395, 407] and Al [408], which helps to explain

the conductivity drops observed for these compounds.

In order to rationalize their experimental data the authors in the Yang et al. and
Jin et al. papers utilized a type of hybrid DFT functional known as screened exchange
LDA (sx-LDA). which has been shown to give good agreement with HSEO06 results

in other metal oxide systems where standard DFT has been shown to fail [205]. The
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Figure 7.11: Room temparature properties of doped CdO films grown on MgO (100):
(a) electronic conductivities and (b) carrier concentrations. From Figures 12b and 14b
in Ref. [406].

simulations from Jin et al. predicted that the dopants which most closely match the
ionic radius of Cd show the best conductivities. Among them, In®t with a radius of
0.80 A[131] was identified as the best n-type dopant for CdO, followed by Y, Sc and
Ga. These results were interpreted by examining the lattice distortions induced by
the dopants and the changes to the band structure of the doped systems [301]. The
authors concluded that from a structural point of view, Cd substitution by dopants
like In and Y leads to small distortions due to the fact that there is a small mismatch
in their radii. These distortions affect Cd 5d- O 2p band hybridization by changing the
Cd-O bond lengths and these observations were substantiated by plotting the band
structure of the doped systems. However, with the HSE data currently available it is not
possible to investigate these hybridization effects other than indirectly, by examining
the relaxations around the defects. These changes are presented in Figure 7.12 with
respect to bulk CdO (red dashed line), where the present results are shown as black
symbols, squares for Cd-O and circles for Me-O (Me = Al, Ga, Sc, In, Y, La). The red
symbols correspond to the sx-LDA results, where the diamonds represent the Cd-O
bond lengths and the triangles are their corresponding Me-O bond lengths. These
values were reported by Jin et al. [406] (Ga) and Yang et al. [37] (Sc, In, Y). There

is an excellent level of agreement between the HSE and sx-LDA Me-O bond lengths,
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7.2 Extrinsic defects in CdO

with Y-O being slightly underestimated by sx-LDA with respect to the HSE results
reported here. However, the Cd-O bond lengths that are closest to the substitutional
defect (nearest neighbour) in the Me:CdO systems calculated using sx-LDA are smaller
than those predicted using HSE: -1.71% for Y:CdO, -2.88% for In:CdO, -3.93% for
Sc:CdO and -4.14% for Ga:CdO. The size of these differences is large compared to
the difference between the experimental and HSE calculated lattice constants, which is
0.42%. The likely source of this discrepancy is the high dopant concentrations in the
sx-LDA studies, which were performed on relatively small 16-atom supercells, which
makes it is difficult to neglect dopant-dopant interactions [108, 112, 404, 405]. This
means that the effects of the dopants on the hybridization of the Cd 5d- O 2p bands

is likely underestimated by the sx-LDA studies.
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Figure 7.12: Cd-O (nearest neighbour) and Me-O (Me = Al, Ga, Sc, In, Y, La) bond
lengths from the present work and from Jin et al. Ref. [406] for Ga:CdO and Yang et
al. [37] for Sc, In and Y. The red line corresponds to the HSE06 Cd O bond distance for
bulk CdO from Table 7.1.
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7.3 Summary

We have revealed that Vg is the dominant intrinsic defect in CdO under all growth
conditions, acting as a doubly ionized shallow donor. Conductivity in nominally “un-
doped” CdO is likely to be dominated by Vo and H impurities under all growth condi-
tions. Despite the relatively high VBM of CdO, p-type CdO will never be realized as
the formation energy of the p-type defects are too high in energy, their ionization levels
are ultra deep, and they are always compensated by n-type defects. We have examined
the doping limits of CdO, and find that compensation by p-type defects does not occur
until > 1.2eV above the CBM, explaining why the band gap of CdO can experience
large Moss-Burnstein shifts which can extend the optical band gap from ~ 2.2¢V to a
reported ~ 3.4eV. To move the field of TCOs forward, alternatives to the expensive
and rare In,O3 and the toxic CdO must be found. This could be achieved by devising
strategies to raise the Egs of the abundant TCOs such as SnO, or ZnO (or alternatively
lower the CBM of these materials), whilst retaining the same characteristic conduc-
tion band dispersion and maintaining optical transparency. Whatever strategies may
emerge, the defect chemistry of CdO provides a glimpse of the ideal defect chemistry of
a candidate TCO, and should serve as a guide to the experimentalist and theoreticians
alike in the search for novel TCOs.

In addition, a comprehensive set of extrinsic donors has been studied. In excellent
agreement with experiment, it was found that all the dopants act as shallow donors
and are likely to increase the charge carrier concentrations in CdO. The results also
indicate that within a group there is a strong correlation between dopant size and the
formation energy of these defects. Fp was found to be the best donor dopant in this

systern.
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Discussion and Conclusions

Throughout this thesis modern theoretical methods and advanced simulation tech-
niques were employed to study the properties of metal oxide materials for industrial
applications. The work is divided into the study of the ionic conductivity in ceria-based
solid electrolytes used in Solid Oxide Fuel Cells and the defect chemistry in a model
Transparent Conducting Oxide, CdO.

The investigation of the ionic conductivity in ceria was carried out in a three-tiered
approach: firstly, in Chapters 4 and 5 the content of aliovalent cations ceria was varied
in singly doped systems, secondly, ceria solid solutions with multiple dopants were
investigated in Chapter 4 and, thirdly Chapter 6 presented a thorough investigation of
the effects of strain on doped ceria.

Chapter 4 pertains to the development of reliable interaction potentials for RE-
doped ceria using LDA DFT. Special focus was given to the YDC system since it
allowed validation of the DFT-derived potentials against neutron diffraction and AC
impedance data provided by Dr Stephen Hull and Dr Stefan Norberg. This combined
experiment /simulation approach allowed the study of the interactions between defects
in YDC. These interactions are typically classified into cation-vacancy and vacancy-
vacancy. The results showed that in common with other fluorite-structured materials,
such as zirconia-based electrolytes, it is the vacancy-vacancy interactions which ulti-

mately limit the conductivity once the cation-vacancy interactions have been reduced
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to a minimum by introducing a dopant species with a similar ionic radius to that of

the host Ce*t.

The use of state-of-the-art DFT functionals, in particular HSE06, allowed the cor-
rect description of cations with f-electrons, like Nd**, Sm**, Gd** and Ce®**. These
advances were then coupled to interaction potentials for these cations, as well as, Zr, Sc
and Y, all with common oxygen-oxygen terms, as described in Chapter 5. Having this
consistent set of potentials made it possible to simulate ternary mixtures of the form
CeO,-REL03-REJO3. Co-doped ceria compounds like these are particularly interest-
ing as there are numerous reports claiming substantially improved conductivities with
respect to their singly-doped counterparts. The results from these simulations showed
that these claims are likely to originate from experimental variation in samples and
from misinterpretation of the meaning of a critical dopant radius. The work presented
made it evident that the properties of co-doped compounds are easily described by the

weighted average of the singly doped systems.

Chapter 5 also presented an analysis of the conductivity mechanism in the system
Ce0q-ZrOy-Ce, O3 with an equal ratio of Ce*t and Zr*t cations. These solid solutions
are of particular importance given their high OSC. In particular, CZO compounds
with a pyrochlore-like cation ordering display OSCs that vastly exceed those of ceria.
These results presented here demonstrate that cation-ordered CZO displays an ionic
conductivity that is several times lower than that of the disordered phase, yet the
process of reduction is much less costly energetically. What this implies is that the
efficient exchange of oxygen with the atmosphere in TWCs requires that these CZO
materials be small in size in order to be less impacted by the low conductivities that

it displays.

Using the lattice mismatch between the components of SOFCs to increase the con-
ductivity in ceria-based electrolytes is another approach that has gathered widespread
interest. The simulations presented in Chapter 6 show that applying strain to ceria
based electrolytes increases the ionic conductivity by up to 40%. Although these gains

seem modest when compared to controversial reports that predict up to eight orders of
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magnitude increase in related YSZ electrolytes, the results are in line with the latest
experimental and computational reports on the subject. This study also brought light
on a very important effect which is the enhancement of the conductivity on the surface
of thin films.

The work that was carried out on the properties of CdO was presented in Chapter
7. This investigation consisted of two main sections. Firstly, h-DFT calculations were
performed on the intrinsic defects in this material, namely oxygen vacancies, oxygen
interstitials, cadmium interstitials and cadmium vacancies. The results pointed to a
dominance of the n-type oxygen vacancies in both O-rich and O-poor growth conditions.
Adventitious hydrogen doping was also investigated along with the intrinsic defects,
and it was shown that the defects formed the substitution of oxygen by hydrogen are
energetically favourable and are expected to dominate the conductivity of this material,
along with oxygen vacancies under O-poor conditions. Other hydrogen defects, such
as, hydogen in the interstitial position are expected to be dominant under O-rich
conditions. An important corollary from these results is that p-tvpe CdO is an unlikely
prospect given the fact that the intrinsic p-type defects, cadmium vacancies and oxygen
interstitials, do not act as effective acceptors in this system.

Extrinsic donor dopants were the subject of the second section of the CdO study
presented in Chapter 7. For this work, a variety of dopant cations with different sizes
were tested, from group 13, Al, Ga and In, from the RE elements Sc, Y and La; anion
doping was investigated using fluorine defets in the CdO lattice. The trends observed
in the formation energies of the cationic defects are consistent with a reduction of local
lattice strain when the dopant cations are of similar size as the host Cd?**. In this
case, scandium, yttrium and indium were found to be efficient donors in CdO under
all growth conditions. However, the substitution of oxygen by fluorine was predicted

to be the n-type defect under all growth conditions.
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