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Summary

Salmonella enterica serovar Typhimurium (S. Typhimurium) is an important foodborne
pathogen that causes self-limiting gastroenteritis, or more serious systemic infections in
susceptible hosts. S. Typhimurium can infect a wide host range and encounters a series of
stressful conditions within various host environments. S. Typhimurium expresses a Type
Three Secretion System (TTSS) encoded on a pathogenicity island (SPIl), to mediate
invasion of the host intestinal epithelium. Once internalised, S. Typhimurium survives
and replicates within the Salmonella containing vacuole (SCV). S. Typhimurium
expresses a second TTSS, encoded on a second pathogenicity island (SPI2), to survive the

harsh intracellular environment and establish systemic infection.

S. Typhimurium operates a carefully co-ordinated programme of gene expression in
response to environmental, spatial and temporal cues in order to survive and establish
infection, without incurring fitness costs as a result of inappropriate gene expression.
Gene expression is controlled at the transcriptional level by protein factors. An important
control point for gene expression also occurs post-transcriptionally. Post-transcriptional
gene regulation is often mediated by small non-coding RNAs (sSRNAs) which may act in
cis or in trans to their target genes. Cis-acting sSRNAs often display long regions of
base-pair complementarity to their target genes. 7rans-acting sRNAs usually affect
expression of target genes through short imperfect base-pairing interactions, and often
require the RNA chaperone, Hfq. 7rans-acting sRNAs control gene expression by a
diverse range of mechanisms, but a common feature of SRNA-mediated gene regulation
involves a base-pairing interaction in the translation initiation region of the target mRNA,
resulting in the inhibition or stimulation of translation. sRNAs may also affect target
mRNA stability through promotion or through protection of the target transcript from
degradation by cellular ribonucleases. Some sRNAs also directly interact with target

proteins.

The transcriptional and post-transcriptional regulatory elements within the cell are
intimately connected via complex regulatory networks. This thesis explores the extent of
the interconnections between the transcriptional and post-transcriptional regulators, by
investigating the protein factors that regulate expression of S. Typhimurium sRNAs. We
have used an RNA-seq-based transcriptomic approach to explore the regulons of 18

virulence-associated regulators namely, o-factors, transcription factors, two-component



systems, an RNA chaperone and an exoribonuclease, under infection-relevant conditions.
Our particular focus was the regulation of expression of SRNA genes. We confirmed that
a global RNA-seq-based approach can be effectively used for the investigation of
bacterial gene regulation, including sRNA-based regulons. We identified 170 sRNA
genes which are differentially expressed in one or more of the panel of regulatory
mutants, allowing us to generate a transcriptional regulatory network which highlights the
complex regulatory interconnections between transcriptional and post-transcriptional
regulators. Many of the putative regulatory interactions were further characterised, using
a mixture of molecular biology approaches, such as northern blotting, and bioinformatic
approaches, such as correlative analysis, binding motif analysis and conservation
analysis. We identified 14 sRNAs which are predicted to play important roles in S.

Typhimurium virulence, based on their patterns of regulation.

Two putative virulence-associated sSRNAs, STnc520 and STnc1480, were chosen for
detailed mechanistic analysis to elucidate their transcriptional regulation using
techniques, such as mutant complementation, Chromatin Immunoprecipitation and
quantitative real-time PCR. STnc520 was found to be one of a small number of genes
which is directly regulated by the SPI1-encoded transcription factor, SprB. We showed
that STnc1480 is targeted by the xenogenic silencing protein H-NS. The transcription
factors PhoP and SlyA counteract the repressive effects of H-NS at the STnc1480
promoter. Preliminary steps to elucidate the biological roles of STnc520 and STnc1480
involved transcriptomic approaches, a two-plasmid target validation assay and western
immunoblotting. Further experimentation is necessary to validate the mRNA targets of
STnc520. STncl480 post-transcriptionally activates expression of hilA, the central
regulator of SPI1 gene expression, consistent with an important role for STnc1480 in S.

Typhimurium pathogenesis.

Taken together, our RNA-seq-based transcriptomic analysis of the regulons of 18
virulence-associated proteins in S. Typhimurium will provide a valuable community
resource for analysis of gene regulation. Furthermore, our investigation of the regulatory
inputs to S. Typhimurium sRNAs describes the complex interconnections between
transcriptional and post-transcriptional regulatory elements, and is a step towards the
elucidation of all molecular regulatory interactions involved in S. Typhimurium

pathogenesis.
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Chapter 1

Introduction



1.1 Salmonella

1.1.1 Overview of the Salmonella genus

Salmonellae are Gram negative, rod-shaped, facultative anaerobic members of the
bacterial family Enterobacteriaceae (Fabrega & Vila, 2013). The Salmonella genus
diverged from a common ancestor with Escherichia coli (E. coli) between 100 and 150
million years ago (Sabbagh et al., 2010). There are two recognised species within the
Salmonella genus, Salmonella bongori and Salmonella enterica. Salmonella enterica is
further subdivided into six subspecies, enterica (1), salamae (1), arizonae (1lla),
diarizonae (I11Ib), houtenae (IV) and indica (V1). Salmonellae have a broad host range
but Salmonella enterica subspecies enterica is most commonly associated with infection
of humans and other warm-blooded hosts, while the other S. enterica subspecies and S.
bongori are more commonly associated with infection of cold-blooded vertebrates or are
isolated from environmental sources (Desai er al., 2013). There are currently 2579
serovars within the entire Salmonella genus, and 1531 of these serovars belong to the
subspecies enterica (Grimont & Weill, 2007). For simplicity in this study, serovars of
Salmonella enterica subsp. enterica will be referred to using the serovar name, for

example, Salmonella Typhimurium (S. Typhimurium).

The two main clinical manifestations associated with Salmonella enterica subsp. enterica
are gastroenteritis and enteric fever, also known as Typhoid fever. Typhoid fever and the
clinically indistinguishable illness, Paratyphoid fever, are caused by the human
host-restricted serovars, Typhi and Paratyphi (McClelland et al., 2004). The early stages
of Typhoid may go unnoticed, as typhoidal Salmonella strains do not produce a
pro-inflammatory response resulting in gastroenteritis, and thus the infection might not be
treated. At later stages, the symptoms of infection include fever and associated malaise,
as well as a progression to systemic infection or the possibility of entering a carrier state
(Dougan & Baker, 2014). S. Typhi and S. Paratyphi are typically transmitted through
faecal contamination of water sources or food, and Typhoid is currently more common in
the developing world. It is estimated that there are greater than 20 million new cases of
Typhoid worldwide annually, resulting in approximately 200,000 deaths per year (Crump
& Mintz, 2010).



Non-typhoidal Salmonella (NTS) strains, by contrast, do produce an inflammatory
response upon invasion of host epithelial cells. The pro-inflammatory response leads to a
self-limiting gastroenteritis, the symptoms of which include diarrhoea with or without
blood, abdominal cramps, nausea and fever. S. Typhimurium and S. Enteritidis are the
most commonly isolated NTS serovars in clinical settings. A typical NTS infection in a
developed country lasts less than a week and rarely requires hospitalisation or treatment,
however more complicated sequelaec may develop in immunocompromised hosts
(Fabrega & Vila, 2013). Again, NTS strains are most commonly transmitted through
ingestion of contaminated food and water. As S. enterica is also a zoonotic pathogen,
infection of food-producing animals can lead to the dissemination of the pathogen
throughout the food-processing industry. In the developed world there are an estimated
93.8 million incidences of Salmonellosis caused by NTS strains, predominantly S.
Typhimurium Sequence Type 19 (ST19), which result in 155,000 deaths each year (a
mortality rate of less than 0.2%) (Majowicz et al., 2010). In developing countries,
however, the mortality rate associated with NTS sequence types is typically between
20-25% due to the combination of underlying conditions, such as HIV, malaria and

malnutrition, as well as the emergence of more invasive NTS strains (Feasey et al., 2012).

S. Typhimurium ST19 is an ideal model to study the disease progression of both clinical
manifestations of Salmonella infection as S. Typhimurium produces gastroenteritis in

human hosts and a Typhoid-like fever in mice (Sabbagh et al., 2010).

1.1.2 The pathogenesis of S. Typhimurium infection

The infection process of S. Typhimurium involves a series of stressful conditions for the
bacterium (Figure 1.1). Upon ingestion from a contaminated food or water source, the
bacterium first experiences a temperature upshift to physiological conditions. The acidic
environment of the stomach also represents a stressful environment and Salmonella
induces an acid tolerance response (ATR) to resist severe acid shock, and to prepare the
bacterial cells for further acidic conditions during intracellular infection (Foster & Hall,
1990, Foster, 1991). The bacteria enter and descend through the small intestine to reach
the preferential site for invasion, the ileum. The bacterium encounters increased
osmolarity and anaerobiosis, as well as the host intestinal microbiota during this journey

(Hebrard er al., 2011). A functional motility and chemotaxis system is a prerequisite for



Salmonella to approach and encounter the intestinal epithelium (Jones et al., 1981).
Salmonella is peritrichously flagellated and the flagellar system requires more than 50
genes, from approximately 17 operons (Chilcott & Hughes, 2000). Salmonella
transverses the epithelial mucus layer, avoiding destruction by elements of the host innate
immune system, such as bile and antimicrobial peptides (Haraga er al., 2008), and
directly adheres to and invades non-phagocytic intestinal epithelial cells, however
microfold (M) cells of the Peyer’s patches are the preferred target host cells (Fabrega &
Vila, 2013). Intimate attachment of the bacteria to the host epithelial cell is necessary for
induction of invasion-associated genes (Jones et al., 1981). Generation of close contact
interactions between the bacterial and host cells is mediated by Salmonella surface
appendages, such as Type 1 fimbriae, curli fimbriae and non-fimbrial adhesins (Wagner
& Hensel, 2011). Adherence of Salmonella to the apical side of the intestinal epithelial
cell induces significant host cell cytoskeletal rearrangement and membrane ruffling that
results in engulfment of the bacterial cell (Finlay et al., 1991). This process is mediated
by translocation of effector proteins through a Type Three Secretion System (TTSS),
encoded on a pathogenicity island known as Salmonella Pathogenicity Island 1 (SPII)
(Haraga et al., 2008). Detection of the invading bacteria by components of the host
immune system leads to a pro-inflammatory immune response, resulting in the production
of the symptoms of Salmonellosis and gastroenteritis (Thiennimitr ef al., 2012). A
portion of bacteria remain in the intestinal lumen of the host, rather than invade the
epithelial layer, and benefit from the induction of inflammation of the intestine.
Antimicrobial peptides and reactive oxygen species (ROS) kill non-pathogenic
commensals of the gut, but resistance mechanisms allow Salmonella to out-compete the
host microbiota and thrive in the inflamed intestine (Thiennimitr et al., 2012). As an
example, gut microbiota produce the compound hydrogen sulfide (H,S), which is
converted to thiosulphate in the gut. Neutrophils, recruited to the gut lumen to protect
against invading bacteria, produce ROS that oxidises thiosulphate and produces
tetrathionate. In contrast to the gut microbiota, Salmonella can use tetrathionate as an
alternative electron acceptor in anaerobic respiration.  This process is more
energy-efficient than fermentation, thus providing Salmonella with a growth advantage

over the fermentative gut bacteria (Winter et al., 2010).

The fraction of bacteria that become internalised in epithelial cells reside intracellularly in

membrane-derived vesicles known as spacious phagosomes (SP). These phagosomes



shrink to form an adherent membrane around one or more bacteria and this compartment
is known as the Salmonella containing vacuole (SCV) (Haraga et al., 2008). Using
effector proteins, secreted through a second TTSS encoded on Salmonella Pathogenicity
Island 2 (SPI2), and accessory proteins, Salmonella can survive and replicate within the
SCV (Fabrega & Vila, 2013). Formation of the SCV involves altering the host cell
endocytic trafficking pathway to avoid normal phagosome maturation and fusion with
lysosomes (Rathman et al., 1997). During SCV maturation, Salmonella encounters
magnesium, phosphate and iron starvation and a further reduction in pH (Hebrard et al.,
2011). Salmonella resists killing by host innate immune factors and is likely to acquire
molecules necessary for bacterial replication by positioning of the SCV close to the Golgi
apparatus (Salcedo & Holden, 2003). Salmonella also induces the formation of tubular
filamentous structures known as Salmonella Induced Filaments (SIFs), which extend
from the SCV and form complex networks throughout the cell. SIFs exist as single or
double membrane stable structures that maintain the SCV in a Golgi-associated and
juxtanuclear position, while supplying the SCV with endocytosed nutrients (Krieger et
al., 2014). In addition to this traditional view of vacuole-contained bacteria, a significant
portion of the internalised bacteria within intra-epithelial cell SCVs lyse their phagosome
and escape to the host cell cytosol. Cytosolic bacteria evade destruction by autophagic
mechanisms of the host epithelial cell, and survive to hyper-replicate later during

infection (Knodler et al., 2014).

A portion of the intact SCVs then transcytose to the basolateral membrane of the
epithelial cell and, once across the intestinal epithelium, the bacteria are engulfed by
phagocytic cells, primarily macrophages, leading to bacterial internalisation within SCVs
again. Salmonellae within intra-macrophage SCVs trigger similar host cell pathways to
those triggered by intra-epithelial cell SCVs, avoiding phagosome maturation and
allowing the bacteria to proliferate (Fabrega & Vila, 2013). The intra-epithelial cell SCV
and the intra-macrophage SCV share a number of common characteristics as well as some
key differences. Nutrient starvation and acidic pH is a feature of both intracellular
vacuoles, but the intra-macrophage environment induces expression of systems involved
in the resistance to oxidative and nitrosative stress, which reflects the more bactericidal
nature of the macrophage environment (Hautefort ez al., 2008). The migration of infected
macrophages allows for dissemination of S. Typhimurium, via the bloodstream, to organs

such as the spleen and liver in mice and immunocompromised hosts (Haraga et al., 2008).
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Figure 1.1 Pathogenesis of S. Typhimurium

S. Typhimurium is ingested from contaminated food or water sources. While descending
through the gastrointestinal tract S. Typhimurium encounters a variety of stressful
conditions (labelled in red). Zoomed in panel: S. Typhimurium invades epithelial cells of
the ileum. Environmental signals within the gut induce expression of the SPI1 TTSS,
which injects effector proteins into the host epithelial cell that trigger intestinal
inflammation and bacterial endocytosis. S. Typhimurium survives and replicates
intracellularly within a Salmonella containing vacuole (SCV). In susceptible hosts, S.
Typhimurium becomes engulfed by macrophages and survives and replicates within the
SCV, leading to bacterial dissemination and systemic infection. Conditions encountered
by S. Typhimurium within the macrophage SCV are labelled in red. These environmental
conditions lead to the induction of the SPI2 TTSS, which injects effector proteins,
necessary for the intracellular lifestyle, into the macrophage cytosol.



1.1.3 Salmonella Pathogenicity Island 1 (SPI11)

The S. Typhimurium genome contains 13 pathogenicity islands, or SPIs (Kroger et al.,
2012). SPIs 1-5 have been clearly shown to play a direct role in §. Typhimurium
virulence (Fabrega & Vila, 2013) and SPI1 and SPI2 are the best studied pathogenicity
islands as a result of the key role they play in the infectious process of S. Typhimurium.
SPII is a 40 kb cluster of Salmonella-specific DNA that encodes all the components
necessary to form a functional TTSS apparatus, the effectors which are translocated into
the host cytoplasm by the TTSS, as well as regulators of SPIl gene expression
(Ellermeier & Slauch, 2007). TTSSs are widespread among Gram negative pathogenic
bacteria as a method of injecting bacterial effector proteins into host cells to mediate
bacterial invasion or co-option of host cell function (Galan, 2001). Expression of
SPIl-encoded genes is induced in the intestinal epithelium, following adherence of the
bacterium to the host cell, and SPIl genes mediate the host cell actin cytoskeleton
rearrangement, as well as engulfment and internalisation of the bacteria (Zhou & Galan,

2001).

The SPIl TTSS is embedded in the inner and outer bacterial membranes, spans the
periplasmic space and contains a needle-like structure that extends into the extracellular
environment and makes contact with the host cell (Schraidt & Marlovits, 2011). The
components of the SPIlapparatus are organised into distinct gene clusters. In general
terms the prg/org and inv/spa clusters encode the needle complex, while the sic/sip
operon encodes the translocon that embeds into the host cell membrane, as well as some
effector proteins (Ellermeier & Slauch, 2007). The apparatus is composed of a
multimeric ring-shaped base structure which spans the inner and outer bacterial
membranes. An inner ring comprises the PrgH and PrgK proteins, while the InvG protein
forms an outer ring and neck region of the base structure (Schraidt et al., 2010). A
needle-like structure extends from the base, comprising the Prgl protein (Kimbrough &
Miller, 2000) and inner rod, PrgJ. The inner rod acts as a molecular ruler to modulate the
length of the needle complex and to switch TTSS substrate (Lefebre & Galan, 2014).
When contact with the host cell is made, the translocon, which is a pore-like complex
consisting of the SipB, SipC and SipD proteins, is secreted via the TTSS and embeds in
the host cell membrane (Collazo & Galan, 1997).



Three SPIl-translocated effector proteins, SopE, SopE2 and SopB, which are encoded
elsewhere on the chromosome, direct host cell cytoskeleton re-modelling by activating
the host Rho GTPases Cdc42, Racl and RhoG, leading to membrane ruffling and
bacterial engulfment by macropinocytosis (Galan & Zhou, 2000, Stender et al., 2000).
The SPIl-encoded SipA is also translocated via the SPII TTSS and contributes to
bacterial engulfment by stabilising actin at the site for bacterial entry, and increasing the
membrane extrusions at this site (Zhou et al., 1999). In addition to its role as part of the
translocon complex, SipC nucleates actin filaments which aids in membrane ruffling and
increases bacterial uptake (Galan & Zhou, 2000). Three additional effector proteins,
SopD, SopA and the SPI1-encoded IacP contribute to intestinal inflammation (Fabrega &
Vila, 2013). SPII encodes a number of chaperone proteins that function to stabilise and
target their substrate proteins for translocation (Fabrega & Vila, 2013). Correct folding
and functioning of SPI1-secreted effector proteins requires the disulphide oxidoreductase,
DsbA, which is involved in the formation of periplasmic disulphide bonds (Ellermeicr &

Slauch, 2004).

Interestingly, the host cell actin cytoskeleton resumes its normal conformation shortly
after infection, despite the presence of intracellular bacteria within SCVs in the epithelial
cell. This feature has been attributed to the SPIl-encoded and secreted SptP protein,
which acts as a GTPase activating protein, stimulating the intrinsic GTPase activity of the
Rho GTPase proteins, resulting in their conversion to their inactive GDP-bound form.
The SptP-mediated reversal of actin cytoskeletal changes has been proposed to prevent
excessive damage to the host cell that could cause host cell apoptosis and prevent the

survival and replication of bacterial cells (Galan & Zhou, 2000).

1.1.4 Salmonella Pathogenicity Island 2 (SPI2)

A second TTSS encoded on a second pathogenicity island, SPI2, was identified by
signature-tagged transposon mutagenesis. Mutants of the genes encoded within this
cluster are attenuated for murine infection via the oral and intraperitoneal (i.p.) routes,
indicating that the SPI2 TTSS plays an important role after the colonisation and invasion
of epithelial cells (Shea et al., 1996). The pathogenicity island was initially found to be

40 kb in length but subsequent analysis determined that the island is mosaic in nature and



consists of 2 sections. The first section is a 15 kb region that encodes genes necessary for
anaerobic respiration using tetrathionate as a terminal electron acceptor and other genes
of unknown function. The second 25 kb region of the island encodes the TTSS and
accessory proteins (Hensel, 2000). Genes encoded within the 25 kb region were named
according to their predicted or confirmed functions. Genes encoding structural proteins
of the TTSS apparatus were named ssa, genes encoding effector proteins were named sse,
genes encoding chaperone proteins were named ssc and genes encoding regulatory
proteins were named ssr (Hensel, 2000). In contrast to the SPIl-encoded TTSS, the
function of the SPI2-encoded TTSS is to mediate Salmonella survival within the
intracellular compartment. SPI2-secreted effector proteins are translocated into the host
cell cytoplasm across the membrane of the SCV to manipulate host cell function and to
allow the bacteria to survive and replicate intracellularly (Abrahams & Hensel, 2006).
The SPI2 locus is not found in the phylogenetically older Salmonella bongori species,
indicating that Salmonella enterica acquired the ability to survive intracellularly and
cause systemic infection since the divergence of the two species (Ochman & Groisman,

1996).

Salmonellae can survive and replicate in intracellular compartments in many host cell
types, particularly epithelial cells and macrophages. The macrophage environment
appears to be the more hostile intracellular environment due to the presence of
antimicrobial peptides, acidic pH and the production of ROS, RNS and their reactive
intermediates (Hautefort et al., 2008). The specific functions of many SPI2-secreted
proteins remains to be elucidated and it has been suggested that there is a large degree of
functional redundancy between SPI2 effector proteins (Haraga et al., 2008); however it is
clear that SPI2 is essential during Salmonella proliferation within all cell types, to resist
the antimicrobial mechanisms of the host immune system (Hautefort et al., 2008, Haraga
et al., 2008). A key function of SPI2-secreted effector proteins is to modulate SCV
maturation and to alter host cell endocytic trafficking. The endocytic pathway, which
ends with lysosomal fusion, normally functions to degrade intracellular vescicles. The
association of some endocytic markers with the SCV indicates that the SCV selectively
interacts with parts of the endocytic pathway but evades destruction by lysosomal fusion
(Abrahams & Hensel, 2006). The SPI2 effector SsaB (SpiC), which also functions as part

of the SPI2 apparatus, is translocated into the host cytosol where it inactivates the
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mammalian protein Hook3, resulting in a blocking of the fusion of the SCV and lysosome

(Shotland er al., 2003).

Translocation of effector proteins via the SPI2 TTSS results in host actin cytoskeleton
rearrangements that lead to the formation of an actin meshwork around the SCV. This
process is known as vacuole-associated actin polymerisation (VAP) and is required for
maintaining the stability and integrity of the SCV membrane. Effectors encoded outside
SPI2, SspH2 and Ssel, as well as the plasmid-encoded SpvB and the SPI1-secreted actin
binding protein SipA play a role in VAP (Fabrega & Vila, 2013). During maturation, the
SCV makes use of the host microtubule-associated proteins kinesin and dynein to migrate
to a juxtanuclear position, where bacterial replication takes place, likely due to the
increased access to nutrients and membrane fragments (Haraga et al., 2008). The SPI2
effectors SseG and SseF play a role in maintaining the SCV near the nucleus and Golgi
apparatus, while the SifA protein contributes by limiting the amount of kinesin recruited
to the SCV site, thus avoiding displacement of the SCV to the cell periphery (Abrahams
& Hensel, 2006). The microtubule cytoskeleton also acts as a scaffold for the formation
of SIFs, which are an elongation of the SCV and are derived from endocytic compartment
membranes (Krieger et al., 2014). SifA localises along the microtubules and maintains
the integrity of the SIFs (Brumell et al., 2002). The ability of SPI2-secreted effector
proteins to modulate the motility of infected macrophages plays an important role in
bacterial dissemination and the establishment of systemic infection within the liver and

spleen (Fabrega & Vila, 2013).

1.2 Transcriptional Regulation

1.2.1 Methods of transcriptional regulation

Transcription initiation is considered to be one of the most important control points for
gene expression. The co-ordinated regulation of transcription initiation is an essential
mechanism to optimise the use of valuable nutritional resources, to adapt to rapidly
changing environments and to avoid unnecessary energy consumption (Seshasayee et al.,
2011). As previously discussed, the infectious process of §. Typhimurium involves a
series of stressful events for the bacterium. §. Typhimurium encounters an array of

different environmental conditions from survival within animal intestinal tracts, to
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survival in soil, water or on contaminated food, to ingestion by the human host. Upon
ingestion the bacterium experiences temperature and pH shock, competition with host
microbiota, antimicrobial peptides, nutrient starvation, ROS, RNS and host phagocytic
cells (Fabrega & Vila, 2013). The ability of a bacterial pathogen to survive such harsh
host environments and to establish a successful infection depends not only on the
virulence factors that the pathogen expresses, but also on the ability of the pathogen to
control when and where these genes are expressed (Groisman & Mouslim, 2006). Genes
involved in survival and resistance to stressful environmental conditions and
virulence-associated genes must be expressed at the correct time and in the correct
location to avoid causing a fitness defect for the bacterium, and Salmonella must
carefully co-ordinate its programme of gene expression in order to survive each harsh
condition and to establish a successful infection. Adapting to new environments can
require promoting the expression of some genes to aid in bacterial survival, while
repressing the expression of other genes that are helpful under certain conditions, but may

be detrimental under others (Groisman & Mouslim, 2006).

An example of the importance of ensuring the correct temporal and spatial conditions for
gene expression results from the phenotypic variation or bistability of SPIl gene
expression (Hautefort er al., 2003), in which only a portion of genetically identical
Salmonella cells express the genes necessary for host epithelial cell invasion and
induction of intestinal inflammation. It was later shown that the proportion of cells that
do express SPII are at a fitness-disadvantage, compared to those that do not express SPI1
genes. The fitness defect occurs as a result of the expression of genes encoding the
translocon and effector proteins (Sturm et al., 2011). It was suggested that the bistability
and fitness cost imposed by expression of the SPI1 TTSS may be a mechanism to allow
the cells which do not express the TTSS to benefit from the induced pro-inflammatory
response and enhanced bacterial dissemination. These experiments were performed
under laboratory conditions that should induce expression of SPII1 but the data highlight
the burden of expressing virulence genes, even under conditions when expression of these
genes 1s necessary, and suggest that a similar fitness cost would be imposed by expression

of virulence genes under non-infection relevant conditions.

There are countless mechanisms that regulate the genetic output of bacterial cells, and the

key mechanisms of gene regulation used by the regulators that are relevant for this study
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are outlined below and illustrated in Figure 1.2. Transcriptional activation is mediated by
DNA-dependent RNA polymerase (RNAP), and many methods of regulating the
activation or repression of transcription are based on the properties of RNAP and/or the
ability of a protein to target and recruit RNAP. Initiation of transcription requires the
RNAP holoenzyme, which consists of the RNAP apoenzyme (Bfa,®) and the G-subunit
which is necessary for promoter recognition, DNA binding and open complex formation
(Lee et al., 2012). The RNAP holoenzyme is necessary and sufficient to initiate
transcription in the presence of an optimal promoter sequence and structure, which we
previously defined for S. Typhimurium o'’-driven promoters (Kréger et al., 2012).
Deviations from the optimal consensus promoter leads to a requirement for additional
layers of regulation, allowing promoters to detect the correct temporal and spatial signals
for gene expression, as gene promoters are often responsive to specific environmental
cues or are regulated by a protein that is expressed in response to specific environmental

cues (Seshasayee et al., 2011).

Alternating the DNA-binding o-subunit of the RNAP holoenzyme provides one of the
most basic methods of selectively regulating a subset of genes in response to changes in
environmental conditions (Lee et al., 2012). In Salmonella there are 2 families of
o-factor: 6’° and 6™*. The ¢’ family comprises the majority of Salmonella c-factors,

79y and the alternative o-factors RpoS

including the house-keeping o-factor RpoD (o
(0™¥%), RpoE (6*), RpoH (6°*™), and FliA (6®*) (Bang et al., 2005), while the ¢™*
family contains only one alternative o-factor (RpoN) (Seshasayee et al., 2011). Most

promoters contain motifs optimal for recognition and binding by o’

Alternative
o-factors, such as o’ and 024, can re-programme the preference of the RNAP holoenzyme
towards particular promoter motifs or structures (Lee et al., 2012). The o-factors compete
for limiting amounts of the RNAP apoenzyme molecule. The outcome of the competition
is determined by various factors, such as availability or activity of the o-factor or
anti-o-factor, and the tolerance of the o-factor for promoter sequences which are
divergent from the consensus sequence (Seshasayee et al., 2011). Promoters which
recognise o -associated RNAP differ from those which recognise o-factors of the c"

family (Lee et al., 2012). These differences are illustrated in Figure 1.2 B and will be

further discussed in section 1.2.7.
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Another method of selectively regulating transcription initiation is the use of trans-acting
transcription factors (TF). TFs, typically, are DNA-binding proteins that recognise and
bind specific DNA sequences in the regulatory regions of target genes and modulate
transcription of those target genes. Activation of the TF, and subsequent regulation of the
target genes of that TF, generally occurs as a result of an extracellular or intracellular
trigger (Lee et al., 2012). TFs can act on a global scale, targeting large numbers of genes,
including genes encoding other regulatory proteins, or TFs can act on a local scale,
targeting only a small number of genes in response to a specific cue (Seshasayee et al.,
2011). The DNA-Binding Domain Database (DBD) predicts that approximately 6% (290
genes) of the S. Typhimurium LT2 genome encodes validated or hypothetical TFs
(Wilson et al., 2008). The number of TFs decreases in prokaryotes that are associated
with a parasitic or symbiotic lifestyle, as environmental conditions are unlikely to change
as rapidly and dramatically for parasitic or symbiotic organisms (Seshasayee et al., 2011)

while S. Typhimurium regularly encounters rapidly changing environmental conditions.

TFs can modulate transcription by acting as an activator or as a repressor. Some TFs act
solely as activators or repressors of gene expression, while other TFs can act either as an
activator or repressor depending on the target gene promoter (Browning & Busby, 2004).
TFs directly control transcription initiation through interaction with subunits of RNAP.
Activators typically act by binding to sites which overlap the -35 hexamer within the
target gene promoter and interact with domain 4 of the o-subunit of RNAP. Activating
TFs may also bind to the a-subunit C-terminal domain (a-CTD) which is connected to the
rest of the RNAP complex by a non-structured flexible linker region (Seshasayee et al.,
2011). Association of a TF with the a-CTD provides flexibility in the location of the TF
binding site (Lee et al., 2012). In E. coli, FNR and PhoB are associated with the
o-subunit (Makino et al., 1993, Lonetto et al., 1998), while some AraC-like proteins,
such as HilD in §. Typhimurium, can target the a-CTD (Olekhnovich & Kadner, 2004).
OmpR requires the a-CTD of RNAP to activate transcription (Kenney, 2002).

Some methods of regulation of transcription can be indirect, for example the methylation
state of DNA can act as a signal for RNAP to initiate transcription (Low & Casadesus,
2008), while Dam-mediated DNA methylation also functions as an anti-repressor of
H-NS at the promoter of the plasmid-encoded antisense RNA FinP (Camacho er al.,

2005). In fact, the most common indirect method of initiating transcription is to relieve
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repression. Nucleoid-associated proteins (NAPs), such as H-NS, mediate transcriptional
silencing by binding DNA and forming structures which inhibit the progress of RNAP
along a gene. H-NS-mediated formation of inhibitory structures is a common method of
transcriptionally silencing horizontally-acquired DNA to avoid inappropriate expression
of foreign DNA which could disrupt the established cellular networks and cause a
reduction in fitness of the recipient bacteria (Lucchini et al., 2006, Navarre et al., 2007).
However, expression of horizontally-acquired sections of DNA can be beneficial to the
bacteria under certain circumstances, and so mechanisms of relieving the H-NS-mediated
transcriptional silencing have evolved (Stoebel er al., 2008). Counter-silencing can be
mediated in a protein-independent fashion due to environmental stimuli such as high
temperatures or osmolarity, which directly affect DNA structure (Stoebel et al., 2008).
However, protein-dependent mechanisms of counter-silencing are also common. The
SlyA family of proteins acts to counter-silence H-NS by different mechanisms in a
number of bacterial species. SlyA displaces H-NS from the hlyE promoter in E. coli
(Lithgow et al., 2007) and re-structures the H-NS-bound promoters pagC and ugtL in S.
Typhimurium (Perez et al., 2008), allowing RNAP to proceed with transcription
initiation. SlyA does not appear to have the ability to activate transcription by itself and,
therefore, often requires binding by one or more other proteins to activate transcription
after relief of the H-NS-mediated silencing (Stoebel et al., 2008). A subset of
PhoP-dependent genes requires SlyA-mediated counter-silencing, while PhoP associates
with the a-CTD of the RNAP holoenzyme to activate transcription (Zwir et al., 2012).
The co-regulation by PhoP and SlyA is in contrast to SsrB which has the dual function of
counter-silencing H-NS and activation of transcription by direct interaction with different

subunits of RNAP (Walthers et al., 2007).

A variation on the theme of counter-silencing involves inhibiting the activities of a
repressor protein. FliZ activation of class 2 flagellar operons occurs via this method.
FliZ binds and represses transcription from the ydiV promoter. The ydiV gene encodes an
anti-FlhD4C, factor which binds to the FIhD subunit of the master flagellar regulator,
resulting in inhibition of transcription of class 2 flagellar operon genes. FliZ binds a
sequence which overlaps the -35 site of the ydiV promoter, presumably occluding RNAP
from the site. The prevention of ydiV transcription results in an increase in expression of
class 2 flagellar operons (Wada er al., 2011). Environmental conditions also affect the

activity of repressor proteins. Fur acts as a transcriptional repressor when levels of the
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ferrous ion are high. Fur dimerises when associated with the ferrous ion, and binds a
“Fur box” within target promoters, blocking the binding of RNAP and thus preventing
transcription of these genes. When iron levels are low, iron dissociates from Fur and Fur
is displaced from the DNA, permitting RNAP binding and transcription initiation

(Carpenter et al., 2009).

Recently, a novel mechanism which affects transcriptional regulatory control has been
described in E. coli, and also occurs, albeit at a lower frequency, in S. enterica. This
mechanism is known as horizontal regulatory transfer (HRT) and involves the acquisition
of divergent non-homologous promoter regions through lateral DNA transfer (Oren et al.,
2014). Horizontal or lateral gene transfer has traditionally been thought of as the key to
microbial evolution and diversity (Navarre et al., 2007) and will be further discussed in
section 5.1.1. Horizontal gene transfer involves the transfer of coding sequences, and has
provided S. enterica with key virulence genes and pathogenicity islands leading to the
formation of the S. enterica pan-genome (Jacobsen er al., 2011). HRT, by contrast,
involves the transfer of transcriptionally and translationally silent regulatory regions and
is ubiquitous in promoters of ancestral genes, challenging the assumptions that ancestral
genes do not contribute to bacterial diversification. The regulatory switching mechanism
is thought to be mediated by homologous recombination, as the flanking genes are
typically highly conserved, even across distant species (Oren et al., 2014). HRT appears
to serve as a mechanism of altering promoter architecture, promoting alternative TF
binding or altering TF binding specificity, with the effect of providing fitness advantages
to recipient strains in certain niches, thus contributing to diversification of strains within a

species as well as interspecies variation (Oren et al., 2014).

The previously described examples of mechanisms of transcriptional regulation represent
a subset of the methods that are used by S. Typhimurium to regulate gene expression at
the transcriptional level. The multiple layers of regulation that can occur at a single 