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The coherent coupling of quantum dots is a sensitive indicator of the energy and phase relaxation

processes taking place in the nanostructure components. We formulate a theory of low-temperature,

stationary photoluminescence from a quantum-dot molecule composed of two spherical quantum

dots whose electronic subsystems are resonantly coupled via the Coulomb interaction. We show that

the coupling leads to the hybridization of the first excited states of the quantum dots, manifesting

itself as a pair of photoluminescence peaks with intensities and spectral positions strongly dependent

on the geometric, material, and relaxation parameters of the quantum-dot molecule. These

parameters are explicitly contained in the analytical expression for the photoluminescence

differential cross section derived in the paper. The developed theory and expression obtained are

essential in interpreting and analyzing spectroscopic data on the secondary emission of coherently

coupled quantum systems. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4905258]

I. INTRODUCTION

The nonradiative transfer of energy in low-dimensional

structures has been the subject of much research1–4 due to

the many prospective uses of this phenomenon in optoelec-

tronics,5,6 quantum computing,7–9 biology, and medi-

cine.10,11 The first theory of nonradiative energy transfer was

developed in the late 1940s by F€orster,12 who studied the res-

onant migration of energy between a pair of dye molecules

using the semiclassical quantum approach, while considering

the dipole–dipole interaction between the molecules.

F€orster’s theory was extended a few years later by Dexter13

to include transfer by means of dipole-forbidden transitions,

which occur due to the overlapping of the dipole field of a

sensitizer with the quadrupole field of an activator and

exchange effects. The past decade has witnessed the emer-

gence of many experimental14–17 and theoretical18–25 works

devoted to the investigation of various aspects of nonradia-

tive energy exchange between semiconductor quantum dots

(QDs), including the studies on how the exchange is affected

by the nearby metallic nanoparticles26,27 and photon modes

of optical microcavities.28,29 The widespread interest in

different kinds of QD nanostructures—including molecules

and oligomers,30,31 two- and three-dimensional supercrys-

tals,32–35 as well as dendrites36,37—is explained by the size-

dependent energy spectrum of QDs, their high chemical

stability, and fluorescence brightness (the product of the

quantum yield and extinction coefficient). These features

make QD nanostructures ideal objects for experimental stud-

ies of nonradiative energy transfer via the methods of optical

spectroscopy. Of significance from the theoretical viewpoint

is that in many practical instances such transfer can be

adequately described within the framework of the dipole–di-

pole approximation even when the QDs almost touch each

other.21,22,38,39

The interdot Coulomb interaction can lead to both the

incoherent transfer and hybridization of energy states in the

closely packed ensembles of QDs, just as it does in atomic

and molecular systems.40 The presence or absence of coher-

ence effects in a QD molecule is determined by the relation-

ship between the interdot-interaction matrix element MI,II

(subscripts I and II correspond to the first and second QDs),

energy detuning DI,II¼EI – EII of the QDs’ excitations

coupled by the interaction, and dephasing rate C of the inter-

dot transitions. The formation of the entangled states in a

pair of QDs is possible when

jMI;IIj � jDI;IIj; �hC: (1)

Otherwise, only the energy transfer, either reversible or not,

can occur.19–21

The value of C can be approximated by a sum of the

dephasing rates of electronic transitions in the first and

second QDs

C � CI þ CII; Ca ¼ ðci;a þ cf ;aÞ=2þ �cfi;a ða ¼ I; IIÞ;

where ci,a and cf,a are the energy relaxation rates of the initial

and final transition states and �cif ;a is the pure dephasing rate

of transition ji; ai ! jf ; ai. The matrix elements of the

dipole-allowed transitions are typically less than a few milli-

electronvolts in QDs made of direct-bandgap semiconduc-

tors,22,39 which means that the coherent coupling can only be

realized between QDs with relatively slow phase and energy

relaxations. A simple estimate of the dephasing rate C showsa)Electronic mail: baimuratov.anvar@gmail.com
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that the condition in Eq. (1) is satisfied for a pair of identical

CdSe QDs at temperatures below 90 K. Since the matrix ele-

ments of the dipole-forbidden transitions are much smaller

than those of the dipole-allowed one, the forbidden interdot

interaction is far less attractive from the viewpoint of experi-

mental investigation of the coherence effects.

It should be noted that one can realize the coherent re-

gime of Coulomb coupling between the QDs of different

sizes by applying an electromagnetic field to tune QD’s

energy spectrum and satisfy the resonance condition.41 Such

a selective field application is quite a technological chal-

lenge, because observation of coherent coupling requires the

smallest interdot distance possible.

Another problem associated with the realization of coher-

ent energy transfer in QD systems is the variation of the intra-

band energy relaxation rates in QDs over a wide range of 109

to 1013 s�1 even at cryogenic temperatures.42–48 Therefore,

even if the resonance condition is satisfied for the fundamen-

tal transition of one QD and some transition between the

high-energy excited states of the other, the coherent coupling

may still be absent due to the fast intraband relaxation. We

can thus conclude that the coherent coupling should be the

easiest to achieve between the lowest-energy states of the

QDs of equal sizes, made of a wide-bandgap semiconductor,

because the interband relaxation rates of the fundamental tran-

sitions in such QDs can be much less than jMI;IIj=�h.

One of the key tasks in the field of nonradiative energy

transfer is the development of a theoretical framework of the

photoluminescence spectroscopy that would enable distin-

guishing between different regimes of energy transfer in QD

nanostructures and extracting important QD parameters

(e.g., energy spectrum and phase relaxation rates) from ex-

perimental data. In our previous works,19,21 we theoretically

studied stationary photoluminescence from double QDs

exhibiting the reversible or nonreversible incoherent reso-

nant energy transfer. This paper continues these studies by

presenting a theory on the secondary emission from a pair of

coherently coupled QDs and analyzing the manifestations of

coherence effects in the photoluminescence spectra.

II. HAMILTONIAN FORMALISM

Consider a quantum-dot molecule (QDM) whose inter-

action with classical excitation field and quantum radiation

field is described by the Hamiltonian

H ¼ HQDM þ HR þ HQDM;L þ HQDM;R; (2)

where the first two terms represent the noninteracting QDM

and emitted photons. The terms HQDM,L and HQDM,R

describe the interactions between laser field (L) and vacuum

of electromagnetic radiation (R), respectively.

We focus on the QDM composed of two QDs and

described by the Hamiltonian

HQDM¼
X

a

X
p

Ep;aa†
p;aap;aþ

X
p;q

ðMqI;pIIa
†
q;Iap;IIþH:c:Þ; (3)

where Ep,a is the energy of the electron–hole-pair state p in

the first (a¼ I) or second (a¼ II) QD, and a†
p;a and ap,a are

the creation and annihilation operators of the electron–hole

pairs. The matrix element MqI;pII � hq; IjVCjp; IIi describes

the Coulomb interaction between the QDs, which are

assumed to be coupled through the screened potential

VC r; rI; rIIð Þ ¼
e2

ejrþ rI � rIIj
; (4)

where r is the vector directed from the center of the second

QD to the center of the first QD, whereas rI and rII are the

radius vectors of electrons in the reference frames with the

origins at the QD centers. By considering spherical QDs in a

dielectric matrix, one can describe the effect of screening

using the effective permittivity20,22

e ¼ eI þ 2eMð Þ eII þ 2eMð Þ
9eM

;

where eI, eII, and eM are the high-frequency permittivities of

the QDs and matrix. Note that Eq. (3) neglects the interdot

exchange interaction, which is justified due to its weakness

for QDMs embedded in dielectric.49

The Hamiltonian of noninteracting photons is of the

form

HR ¼
X

k

�hxkb†
kbk;

where b†
k and bk are the creation and annihilation operators

of photons of mode k and frequency xk, whereas the last two

terms in Eq. (2) are given by

HQDM;L ¼
X
p;a

ð/ðtÞVðLÞpa;0ae�ixLta†
p;a þ H:c:Þ

and

HQDM;R ¼
X
p;a;k

ga;kði�hV
ðkÞ
pa;0abka†

p;a þ H:c:Þ;

where ga;k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p�hxk=ðeaVÞ

p
, V is the normalization vol-

ume, V
ðgÞ
pa;0a ¼ �ehp; ajregj0; ai ðg ¼ L; kÞ;�er is the dipole

moment operator, eg is the polarization vector, and /ðtÞ is

the complex envelope of the excitation field of frequency

xL.

III. RESONANT COUPLING OF QUANTUM DOTS

As was mentioned earlier, the coherent coupling of QDs

in a QDM is strongest when the energies of the lowest

excited electronic states of the QDs coincide. If this reso-

nance condition is nearly satisfied, then the interdot interac-

tion is dominated by two resonant terms and the Hamiltonian

of the QDM takes the form

HQDM ¼ EIa
†
I aI þ EIIa

†
IIaII þ h01jVCj10ia†

IIaI

þ h10jVCj01ia†
I aII;

where a†
a and aa are the creation and annihilation operators

of the electron–hole pairs in the lowest excited states of

energies EI and EII and we have employed the following
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notations for the wave functions of the noninteracting QDs:

j00i ¼ j0; Iij0; IIi; j10i ¼ j1; Iij0; IIi, and j01i ¼ j0; Iij1; IIi.
In order to describe the electronic subsystem of the

QDM, we use the approximation of infinitely high potential

barriers for the confined electrons and holes and the two-

band model of the QDs’ band structure.19–21 We also assume

that both QDs are in the regime of strong confinement and

that their resonant interband transitions are dipole-allowed.

Then, the matrix element of the Coulomb potential calcu-

lated in the dipole–dipole approximation for the lowest

excited state is given by19

MI;II � h10jVCj01i ¼ e2v
er3
jr Ið Þ

vc jjr IIð Þ
cv j; (5)

where v describes the orientational dependence of MI,II and

jrðaÞcv j ¼ Pa=E
ðaÞ
g is the matrix element of the coordinate oper-

ator ra expressed through the Kane parameter, Pa, and the

bandgap, E
ðaÞ
g , of the QD’s semiconductor. The interband

matrix element is of the form V
ðgÞ
1a;0a ¼ �e

ffiffiffi
2
p
jrðaÞcv j.

By adopting the spherical coordinates with the z axis paral-

lel to vector r, one gets the following functional dependency:50

vðhI; hII;uÞ ¼ sin hI sin hII cos u� 2 cos hI cos hII; (6)

where we have assumed that rI and rII make angles hI and hII

with r, and u is the difference between the azimuths of rI

and rII. This expression shows that v2 ranges from zero to

four and, thus, significantly affects the energy transfer effi-

ciency. The dependencies of v2 on the polar angles hI and hII

for three different u are plotted in Fig. 1. It can be seen that,

regardless of u; v2 peaks for the following four orientations

of the QDs’ dipole moments: (i) hI¼ hII¼ 0; (ii) hI¼ 0 and

hII¼p; (iii) hI¼ p and hII¼ 0; and (iv) hI¼ hII¼p. This

implies that the maximum energy transfer efficiency occurs

in the QDMs with parallel dipole moments of the QDs.

When the nearly resonant excitations of the two QDs are

coupled through the Coulomb potential, they get hybridized

and form excitations of the QDM. The states of the new exci-

tations are the superpositions of the QD states and can be

easily found via the canonical transformation.51,52 Creation

of the QDM excitations is described by new operators, a†
1

and a†
2, related to the old ones as

a†
1

a†
2

 !
¼ S#

a†
I

a†
II

 !
; S# ¼

cos# sin#

�sin# cos#

 !
; (7)

where the transformation angle # ¼ ð1=2Þarctan½2MI;II=
ðEI � EIIÞ� ð�p=4 < # < p=4Þ is the parameter of canonical

transformation. The wave functions and energies of the

QDM excitations are given by

j1ii ¼ cos# j10i þ sin# j01i;
j2ii ¼ cos# j01i � sin# j10i

and

E1;2 � �hx1;2 ¼
1

2
EI þ EII6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI � EIIð Þ2 þ 4jMI;IIj2

q� �
:

(8)

For the sake of definiteness in the following analysis, we

focus on the QDMs with QDs made of the cubic modifica-

tion of CdSe or InSb. The material parameters of the two

semiconductors are given in Table I. We also assume that

the QDMs are embedded in fused silica with a high-

frequency permittivity eM¼ 2.13.54

The energy splitting E1 – E2 of states j1ii and j2ii is

relatively small and very sensitive to the materials and the

geometrical parameters of the QDMs. The latter can be con-

cluded from the behavior of the transformation angle # as a

function of a QD radius for a given radius of the other QD

and a fixed QDs’ spacing illustrated by Fig. 2. As the figure

suggests, for hybridization of the QDs’ excitations to be effi-

cient, the relative difference of the QDs’ radii in a typical

QDM cannot exceed 1%. Since the radii of real QDs vary

discretely, with the steps determined by the lattice constants

of the QD materials, careful control over the radii, materials,

and shapes of the QDM’s components is required to achieve

the resonance and realize strong coherent coupling even at

cryogenic temperatures.

The interaction between the states of the QDM with

coherently coupled QDs and the classical excitation field is

FIG. 1. Dependence of v2 on polar angles hI and hII for (a) u ¼ 0, (b) u ¼ p=2, and (c) u ¼ p.

TABLE I. Parameters of CdSe and InSb QDs53 used in the calculations (mc

and mv are the effective masses of electrons and holes, respectively; m0 is

the free-electron mass; and �hxLO is the energy of longitudinal optical

phonons).

mc/m0 mv/m0 E
ðaÞ
g ðeVÞ Pa (cm3 g s�2) �hxLO ðmeVÞ ea

CdSe 0.11 1.14 1.736 1.30� 10�19 26 5.8

InSb 0.14 0.44 0.236 1.51� 10�19 16 15.7
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described by the transformed Hamiltonian ĤQDM;L ¼ Ĥ1L

þĤ2L, where

ĤbL ¼ /ðtÞ e�ixLtV
ðbLÞ
1;0 a†

b þ H:c:;

index b enumerates the states of the QDM, j1ii and j2ii, and

the new matrix elements are related to the old ones via

V
ð1LÞ
1;0

V
ð2LÞ
1;0

0
@

1
A ¼ S#

V
ðLÞ
1I;0I

V
ðLÞ
1II;0II

0
@

1
A: (9)

The transformed Hamiltonian of the QDM interaction

with the emitted photons of frequencies x1R and x2R is also

a sum of two terms, ĤQDM;R ¼ Ĥ1R þ Ĥ2R, with

ĤbR ¼ iBba†
b � iB†

bab

and the new operators are given by

B1

B2

 !
¼ S#

gI;1RV
ð1RÞ
1I;0Ib1R

gII;2RV
ð2RÞ
1II;0IIb2R

0
@

1
A:

IV. PHOTOLUMINESCENCE OF A QUANTUM-DOT
MOLECULE

We next use the results of the previous section to calcu-

late the intensity of the photoluminescence from the QDM

comprising QDs with resonant electronic subsystems. The

energy-level diagram illustrating the excitation of the QDM

and its radiative and nonradiative relaxation channels is

shown in Fig. 3. Both the interband and intraband

nonradiative relaxations, shown by the dashed arrows, occur

due to the interaction of the QDM with a bath and are

described by the phenomenological rates f01, f02, and f21. In

order to calculate the rates W1 and W2 of the spontaneous

light emission from states j1ii and j2ii, we construct a five-

by-five density matrix using the following basis:

j1Þ ¼ j00ij0Ri; j2Þ ¼ j1iij0Ri; j3Þ ¼ j2iij0Ri;
j4Þ ¼ j00ij1Ri; j5Þ ¼ j00ij2Ri;

where j0Ri denotes the vacuum of photons and j1Ri and

j2Ri are the states of the emitted photons.

The dynamics of the QDM is governed by the general-

ized master equation for the reduced density matrix55

FIG. 2. Transformation angle # vs ra-

dius RII of the second QD in [(a) and

(b)] CdSe and [(c) and (d)] InSb

QDMs; RII¼ 2 nm in (a) and (c); and

r¼ 9 nm in (b) and (d). The angle

jumps at RII¼RI from �p/4 to p/4.

FIG. 3. Energy-level diagram and transitions in a QDM comprising a pair of

coherently coupled QDs. The classical optical field of frequency xL excites

the low-energy state j2ii and/or the high-energy state j1ii of the QDM. The

excited states then decay at rates f01 and f02 nonradiatively, or at rates W1

and W2 with the emission of secondary photons x1R and x2R. Solid and

dashed arrows correspond to the radiative and nonradiative transitions,

respectively; f21 is the rate of transitions j1ii ! j2ii.
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@qij

@t
¼ � i

�h
Ĥ ; q̂
� �

ij þ dij

X
k 6¼j

fjkqkk � cijqij; (10)

where dij is the Kronecker delta, fjk denotes the rate of transi-

tions jkii ! jjii due to the thermal interaction with the bath,

cij ¼ ðcii þ cjjÞ=2þ �cij for i 6¼ j gives the damping rate of the

qij coherence, cii is the total decay rate of population out of

state jiÞ, and �cij is the pure dephasing rate of transition

jjÞ ! jiÞ. Assuming for simplicity that both QDs are made of

the same material, one gets the following relaxation operator

matrix:

ĉ ¼

0 c01 c02 0 0

c01 c11 f21 c01 c01

c02 f21 f02 c02 c02

0 c01 c02 0 0

0 c01 c02 0 0

0
BBBBBB@

1
CCCCCCA
;

where the rows from top to bottom and columns from left to

right correspond to states j1Þ; j2Þ;…; j5Þ, and where

c01¼ c11/2þ ccv, c02¼ f02/2þ ccv, and c11¼ f01þ f21.

Parameter ccv can be found from the phenomenological

equation for the dephasing rate of interband transitions,19,21

and is given by

ccv Tð Þ ¼ c0 þ aT þ b exp
�hxLO

kBT

� �
� 1

� ��1

;

where c0 is the dephasing rate due to the radiative and

nonradiative transitions induced by the interaction with

the bath, �hxLO is the energy of the longitudinal optical

(LO) phonons in QDs, kB is the Boltzmann constant, and

T is the system’s temperature. The last two terms in this

expression describe the interaction of the QDM with the

acoustic and LO phonons through the phenomenological

coefficients a and b. Since the typical energy splitting of

the QDM states due to the interdot Coulomb interaction

is of the order of the cutoff energy (a few millielectron-

volts) of the acoustic phonon dispersion,56 and much

smaller than the LO phonon energy (tens of millielectron-

volts), the upper state j1ii nonradiatively decays to the

lower state j2ii predominantly with the emission of

acoustic phonons.

By considering the stationary excitation ð/ ¼ constÞ
and perturbatively solving Eq. (10) to the lowest orders in

the electron–photon interaction, one can find the photon

emission rates W1¼ @q44/@t and W2¼ @q55/@t. The measura-

ble luminescence differential cross section (LDCS), which

gives the energy emitted by the QDM per a unit solid angle

dX in a unit frequency interval dxiR, scales in proportion to

the photon emission rate and is given by

dri

dXdxiR
¼ V�hx3

iR

4 pcð Þ3
Wi

IL

i ¼ 1 or 2ð Þ; (11)

where IL is the excitation light intensity. With this relation-

ship, the major contributions to the LDCS from the excited

states of the QDM are found to be

dr1

dXdx1R

�C x1Rð ÞjV 1Rð Þ
1I;0I j

2
cos2#jV 1Lð Þ

1;0 j
2 2

c11

�

� c01

c2
01þD2

1;1R

c01

c2
01þD2

1;L

þ sin2#
c02

c2
02þD2

2;1R

� 2

c22

jV 2Lð Þ
1;0 j

2 c02

c2
02þD2

2;L

þjV 1Lð Þ
1;0 j

2f21

c11

c01

c2
01þD2

1;L

 !35
(12a)

and

dr2

dXdx2R

�C x2Rð ÞjV 2Rð Þ
1II;0IIj

2
sin2# jV 1Lð Þ

1;0 j
2 2

c11

c01

c2
01þD2

1;2R

"

� c01

c2
01þD2

1;L

þ cos2#
c02

c2
02þD2

2;2R

2

c22

� jV 2Lð Þ
1;0 j

2 c02

c2
02þD2

2;L

þ jV 1Lð Þ
1;0 j

2 f21

c11

c01

c2
01þD2

1;L

 !35;
(12b)

where CðxÞ ¼ 4x4=ðpc4�h2Þ and Di,j¼xi – xj. The intensity

of the QDM photoluminescence is the sum of these two

contributions.

We illustrate the results obtained by considering two

QDMs made of identical QDs: one comprising a pair of 4-nm

in diameter CdSe QDs and the other—a pair of 8-nm in diam-

eter InSb QDs (for material parameters refer to Table I). The

radii of the QDs were chosen such as to place the lumines-

cence peaks of the QDMs in the visible range (Ra¼ 2 nm and

4 nm for CdSe and InSb, respectively). According to Eqs. (5),

(6), (8), (12a), and (12b), the photoluminescence intensity

heavily depends on the mutual orientations of the transition

dipole moments and the polarization of the excitation field.

For the sake of definiteness, we focus on the ideal situation in

which the three vectors rI, rII, and eL are codirectional, and

thus, both the interdot and the QDM–light interactions are

strongest. We also take T¼ 4 K and use the following set of

phenomenological constants: c0¼ 7.7� 107 s�1, a¼ 1.5

� 1010 s�1 K�1, and b¼ 2.3� 1013 s�1,21 which leads to

ccv¼ 6� 1010 s�1.

Figure 4 shows how the photoluminescence spectra of

the QDMs change with the interdot distance when the excita-

tion energy (�hxL ¼ 2773:34 meV for CdSe QDs and �hxL ¼
1983:26 meV for InSb QDs) coincides with the fundamental

transition energy in the decoupled QDs. The two peaks, cen-

tered at frequencies x1 and x2, arise in the spectra due to the

coherent coupling between the QDs. The peaks are seen to

grow with r as they gradually merge together and approach

the excitation frequency. The peaks’ splitting scales as 1/r3

[see Eqs. (5) and (8)], whereas the full width at half maxi-

mum (FWHM) of both peaks is about 2c01� 2c02� 80 leV

[see Eqs. (12a) with #¼ p/4]. The splitting is slightly larger

than 2 meV when the CdSe QDs nearly touch each other

(r¼ 4.5 nm), and becomes too small for experimental resolu-

tion when r exceeds 10 nm. In the case of the InSb QDM, the

peaks’ splitting is about 7 meV for r¼ 8.5 nm, and the peaks

cease to be resolvable only when the interdot distance

exceeds 30 nm.
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Figure 5 shows the LDCS spectrum of the CdSe QDM

with r¼ 10 nm and f02¼ f12/2¼ 108 s�1 for three nonradia-

tive relaxation rates from the high-energy molecule’s state

j1ii. Variation of f01 is seen to change the intensity of the lu-

minescence peaks while almost not affecting their widths:

faster relaxation from state j1ii results in a stronger

photoluminescence signal and vise versa. These results dem-

onstrate that by carefully choosing the parameters of the

QDs, interdot distance, and excitation frequency, one can

tune the positions and relative intensities of the QDM photo-

luminescence peaks as desired for practical applications.

V. CONCLUSIONS

We have developed a theory of low-temperature, sta-

tionary photoluminescence from a pair of spherical quantum

dots coupled by the Coulomb interaction in a quantum-dot

molecule. The lowest-energy electron–hole-pair states of the

dots were assumed to be nearly resonant and characterized

by low decay and dephasing rates. The coherent coupling of

the quantum dots under these conditions was shown to mani-

fest itself in the molecule’s photoluminescence spectrum as

a pair of peaks, the intensities and spectral positions of which

are determined by the geometry and materials of the dots, as

well as by the rates of energy and phase relaxations of their

electronic subsystems. We also derived an expression for the

photoluminescence differential cross section, which is useful

for interpreting and analyzing the secondary emission spec-

tra of coherently coupled quantum dots.
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