
Best Practice for DSDL-based Validation
Soroush Saadatfar

ADAPT Centre

David Filip

ADAPT Centre

Abstract

�is paper proposes a best practice guide to apply Document
Schema Definition Languages (DSDL) for validation of an
arbitrary industry vocabulary. �e research is based mainly
on a practical case study of creating such an optimized set of
DSDL validation artefacts for XLIFF 2, a complex industry
vocabulary. Available schema languages have advanced
functionality, enhanced expressivity and can be used in
concert if needed. �is advantage, on the other hand, makes
the creation of a stable and robust set of validation artefacts
hard, because there would usually be more than one way to
describe the same Functional Dependencies or Integrity
Constraints and various validation tasks can be solved by
more than one schema language.

Keywords: DSDL, validation, expressivity, progressive
validation, constraints, functional dependencies, XLIFF,
Schematron, NVDL

1. Introduction

Validation is a key component of processing vocabularies
based on XML (eXtensible Markup Language) [1]. �is
nontrivial task has been approached by a number of
various initiatives according to the needs of specific target
data models. Initially, DTD (Document Type
Definition) [2] was widely used to define structure of
XML documents and usually combined with
programmatic approaches to validate the constraints that
were not expressible in DTD. Several schema languages
followed since DTD to enhance the expressivity for
different XML constraints, however, the programmatic
approach to tackle advanced contsraints validation had
not been fully superseded. Although, the first validation
technique has advantage of expressivity and trancparency
being standardized.

Our focus in this paper will remain on non-
programmatic, standards driven, trasparent approaches
based on machine readable implementation independent
artefacts. We aim to illustrate the potential DSDL
methods and schema languages have to replace ad hoc
programmatic validation approaches based on our
experience with XLIFF (XML Localization Interchange
File Format) [3], an OASIS standard which has been
widely adopted in the localisation industry since its
inception.

XLIFF has a multimodal structure, comrising a core
namespace and several module namespaces; a complex
data model designed to fulfill current and future needs of
the industry. It is intended to complete a round-trip in
the localisation workflow and to be dynamically Modified
and/or Enriched by different Agents who manipulate the
XLIFF data in accordance with their specialized or
competing functionality. �is XML vocabulary does not
follow the normal XML behaviour when it comes to
usage of attributes and it defines a number of scopes
for NMTOKEN [4] keys (that are called IDs in XLIFF
context) instead of the usual XML convention where the

 attributes are required to be unique throughout the
document. �e task of internal fragment referencing
therefore cannot be implemented using native XML

 attributes either. �e standard specifies several
levels of date driven structures for NMTOKEN keys as
well as introducing the XLIFF Fragment Identification
Mechanism to replace the XNL and concepts
respectively. �ese approaches have been chosen with
needs of the industry in mind and will be discussed in
detail in the following section. Also some other relational
dependencies that XLIFF sets, have a complex nature
and logic and some of these we will also be covered in the
next section of this paper. As XLIFF files are meant to
circulate in arbitrary workflows, it is vital - for purposes
of lossless data exchange - that all workflow token
instances conform to the XLIFF Specification completely

Page 64 of 127

and do not violate any of its advanced constraints.
�erefore comprehensive validation should be applied
after any modification. Programmatic validation, mainly
applied to its earlier version, XLIFF 1.2, led to
misinterpretations of the standard in many cases and
developers never implemented the full list of constraints
specified by XLIFF 1.2. �ese issues motivated the
XLIFF TC and the authors of this paper to find an
exhaustive solution for validation of XLIFF 2.x (XLIFF
2.0 and its backwards compatible successors) to provide a
unified and transparent platform for validating XLIFF
instances against the full specification. Research revealed
that the DSDL (Document Schema Definition
Languages) [5] framework is capable of providing such a
solution. �is attempt succeeded and brought Advanced
Validation Techniques for XLIFF 2 [6] to be part of the
standard, starting from the 2.1 version, scheduled to
release in 2016. In the following sections, we will try to
generalize this work to provide mapping for XML
constraints and appropriate DSDL method to use. We
believe that transparent and standardized validation is a
prerequisite for achieving interoperability in workflows
and that the DSDL framework provides enough
expressivity for producing machine readable validation
artefacts for arbitrary XML industry vocabularies and
data models.

2. Analysis of the XML Data Model

XML has a very simple, but at the same time universal
and generalized nature as a data model: (a) it is
composed of only two objects: XML nodes and their
values (b) data model expressed through value and
structure of nodes (c) it defines a minimum set of rules in
terms of syntax. �ese properties enable XML to deliver
its main task- extensibility. Each XML-based vocabulary
represents the target data model by specifying valid
scenarios of structure and values of declared nodes.

In this section, we will discuss constraints of XLIFF 2
from general XML point of view. We will first have a
brief look at the structure and purpose of XLIFF. We
review the literature for available definitions and
notations of XML constraints in the next step and then
apply them to XLIFF. �is section will also include
Processing Requirements that XLIFF specifies for different
types of users (Agents) as they modify XLIFF instances.
�is type of constraints require progressive (dynamic)
validation as they are based on comparison of files before
and after Agents perform changes.

2.1. XLIFF Structure

�e main purpose of XLIFF is to store and exchange
localizable data. Typically, a localisation workflow
contains processes like extraction, segmentation (process
of breaking down the text into the smallest possibly
translatable linguistic portions, usually sentences),
metadata enrichment (like entering suggestions based on
previous similar content, marking up terminology etc.),
translation (editing of target content portions
corresponding to source content portions) and merging
the payload (the translated content) back to the original
format. An XLIFF document can facilitate in its
progressing instances all the aforementioned tasks. �e
extracted segmented content will be placed in the
element children of . �e translated content is
kep aligned in siblings of the elements; it
can be added later in the process. In other words, the
flow of original text transforms into sequence of
elements within a element, the logical container of
translatable data. Parts of the content which are not
meant to be translated can be stored in the
siblings of the elements. elements can be
optionally structured using a parent (ancestor)
recursively. Finally, a elements will wrap the possibly
recursive structure of and elements. An
XLIFF instance (an XML document with the root)
can have one or more elements. In order to preserve
metadata and markup within text (e.g. the HTML
tag), XLIFF has 8 inline elements , (e.g. element in
"Listing 1" for well formed paired codes) some recursive,
which may appear along with text in
pairs. �e native codes may be stored in
elements, which are then referenced from inline
elements. To avoid confusion, we present a simplified
notion of XLIFF and skip many other structural parts.
"Listing 1" shows a sample XLIFF file.

Page 65 of 127

Best Practice for DSDL-based Validation

Listing 1 - Sample XLIFF instance

2.2. XML Constraints

�e structural relation of XML nodes is the first step of
shaping the tree of the targeted data model. All other
constraints can be specified only afterwards. Generally,
studies for defining XML constraint have proposed keys
[7], foreign keys [8] and functional dependencies [9],
[10]. �ese papers represent each type of constraint
through mathematical expressions which is out of scope
of this paper as our goal is to match every category with
appropriate schema language in practice. �erefore we
will consider general types as well as some of their special
cases.

2.2.1. Keys and foreign keys

�e concept of and , introduced by DTD, cover
the category of keys and foreign keys respectively.
However, these attributes implement only special cases of
these types, absolute keys/foreign keys , setting the scope of
keys to the root element, i.e. absolute path. In XLIFF, for
instance, only elements define absolute keys whilst

keys are specified at 14 points of XLIFF core elements.
Relative keys can be of various complexity depending on
steps of relativity they designate (starting from zero steps,
i.e. absolute keys). For example for elements, with
only one step of relativity (from the root element), scope
of key uniqueness is the parent element. Number of
steps for one key can be a variable if the corresponding
element is allowed at different places of the XML tree,
like elements with unique keys in the scope of

, where the latter element might occur at
several levels of the hierarchy. �ese variables, however,
have a minimum value stating how close the element can
be to the tree root, in the case of the minimum
number of steps is 3. In a more complicated scenario
keys might be shared among nodes of distinct types and
distinct parents. Keys for all inline elements, some of
which can be recursive, are set at the level, but only
for those appearing in the source text whereas elements
of the target must duplicate their corresponding key in
source. �is type of content, where an element can have
a mix of text and other elements, is usually being
dropped in attempts of generalizing Keys for XML as an
assumption [11] and therefore not well researched.

XLIFF, when it comes to foreign keys, has all of its
referencing attributes relative (e.g. attribute
in "Listing 1"). Even though cross-referencing is allowed
only at the unit level, the standard defines format of IRIs
pointing to XLIFF documents through Fragment
Identification. �is mechanism allows one to specify a
unified path to any node with identifier. �erefore the
notion

 is an alternative valid value which specifies the
referenced node by an absolute path instead of the
shorter form used in Listing 1, where identifier is given
relatively (within the enclosing unit).

2.2.2. Functional Dependencies

Attempts of generalizing this nontrivial category for
XML has been limited so far and define only some
variations of Functional Dependencies (FD) [12]. A
significant progress has been made though, by applying
mappings of paths in XML document to relational
nodes. Basically, FDs specify functional relations of XML
nodes and play an important role in data models being
the most complex of XML Integrity Constraints. Co-
occurrence constraints and value restrictions are some
usual variations of FDs. XLIFF has various FDs, some of
which we review in this paper. �e element has an
optional attribute, but when present must
match attribute of the root element. �e latter
attribute, on the other hand, is initially optional (at early

Page 66 of 127

Best Practice for DSDL-based Validation

stages of the localization process), but must be present
when the document contains elements. Another
interesting and complex FD in XLIFF relates to the
optional attribute of . As was mentioned
earlier, the sequence of and elements
specifies the flow of text at the unit level, but sentences of
a translated paragraph may have different order than in
the source language. In this case elements must
specify their actual "deviating" position respective to the
default sequence. !is value then points to the
corresponding element for ID uniqueness
constraints over inline elements "Listing 2" and "Listing
3" show a paragraph with three sentences in different
order, represented in HTML and XLIFF respectively.

Listing 2 - Paragraph with disordered sentences after
translation

Listing 3 - Usage of attribute in XLIFF

!e XLIFF file in Listing 3 is valid, in terms of
constraints, as (a) values are between 1 and 5 (segments
and ignorables combined) (b) each element
occupying a different position than its natural explicitly
declares its order.

2.2.3. Data Types

Constraints of this category apply various rules on values
that can be assigned to XML nodes. !e concept of
Simple and Complex data types was introduced by W3C
XML Schema [13] and provides a solid library that
enables one to build custom data types through
manipulating simple data types and specifying
restrictions for them. A number of libraries have been
developed after that to target specific needs. Allowed
values can be defined in many different ways including
set of fixed values, default values, forbidden values/
characters, mathematical restrictions for numeral values,
specific or user-defined format etc. We will return to this
topic in the following sections.

2.2.4. Progressive Constraints

Some data models are designed to perform in different
stages of their life cycle and therefore might need to be
validated against different set of constraints according to
the stage they are at. Initially optional attribute
of XLIFF, which was mentioned earlier, serves as a good
example for this case. But some advanced constraints,
like XLIFF Processing Requirements, focus on the
applied modifications in documents and perform
validation based on comparison of data before and after
changes were made. For example, if value of one attribute
has been changed by the last user, value of some other
nodes must be changed as well. Technically, this type can
be considered as a cross-document functional
dependency, but as XML vocabularies are being often
used for exchange purposes, this might grow into a
category on its own in the future. XLIFF classifies its
users (Agents) based on the type of general task they
carry out (e.g. Extracting, Enriching etc.) and assigns
different sets of Processing Requirements to each group.

In the following section we will examine expressivity
of popular XML schema languages against each of the
aforementioned types.

3. Implementing XML Constraints

After specifying XML Integrity Constraints, we now will
explore schema languages which can implement the
constraint types in the previous section. W3C XML
Schema is the schema language to define the structure of
XML trees with the widest industry adoption. !e
DSDL framework, on the other hand, is a multipart ISO
standard containing various languages for different
validation tasks and broad domain of constraint types.

Page 67 of 127

Best Practice for DSDL-based Validation

Schema languages often perform across constraint types
and DSDL provides the framework for mapping and
using them together. In the current section we aim to
highlight the task each language can handle the best.
Following such guidance will contribute to optimizing
performance level of the validation process.

3.1. XML Schema

�is schema language is useful for defining the XML tree
nodes and their relations in the XML tree. XML Schema
uses XML syntax and Data types [4], the second part of
the language, introduces an advanced library of data
types which is widely used and referenced by other
schema languages. Users can apply different restrictions
to values of elements or attributes. XML Schema
supports only absolute Keys and foreign Keys using a
limited implementation of XPath [14], a syntax for
regular expressions in XML. �e concept of key in XML
Schema presumes that the attribute must always be
present and thus cannot be applied to optional attributes.
Finally, XML Schema cannot target Functional
Dependencies of any level of complexity.

3.2. DSDL framework

Some parts of DSDL, like RelaxNG [15] and
Schematron [16], were standalone projects initially that
were subsequently standardized as part of the framework.
For the goals of this paper, we only review 3 parts of the
framework that together enable full expressivity for XML
Integrity Constraints.

3.2.1. RelaxNG

�is schema language describes structure and content of
information items in an XML document through a tree
grammar. �e grammar-based validation RelaxNG offers
is an easy and convenient approach, although it keeps the
expressivity power of this language close to the level of
XML Schema. RelaxNG has some basic built-in data
types so other libraries (e.g. XML Schema Data types)
should be used for advanced requirements in this type of
constraints. Although it does not support any variations
of Keys and foreign Keys, RelaxNG is able to cover some
basic Functional Dependencies like co-occurrence
constraints based on values or presence of XML nodes.
Defining such constraints in RelaxNG, however, might
wind up not pragmatic for vocabularies with a large
number of nodes. such as XLIFF. For instance, the
constraint on attribute in XLIFF, which was
mentioned earlier, could, theoretically, be expressed in

RelaxNG by defining two possible valid grammars, but
this would unfortunately effectively double the volume of
the schema. Overall, RelaxNG is a simple language to
use compared to XML Schema. Its focus on targeting
only one problem has made RelaxNG an efficient schema
language [17] and therefore more and more industry
vocabularies tend to pick this language for validation
tasks. We developed an experimental RelaxNG schema
for XLIFF 2, yet this was not adopted as part of the
advanced validation feature for XLIFF 2.1 by the XLIFF
TC due to a wide overlap with the XML Schema, which
already was a normative part of the standard and needs to
be kept for backwards compatibility reasons.

3.2.2. Schematron

�e rule-based validation allows Schematron to catch
Functional Dependencies violations. �is schema
language provides full support for both XPath regular
expressions and functions which enables users to define
comprehensive sets of XML paths to express an arbitrary
Functional Dependency, key or foreign key. Each
Schematron rule describes permitted relationships
between document components by specifying a context,
i.e. the XML node(s) where the current rule applies and
then conducting the user-defined test. Because XPath
integration provides a powerful mechanism for
navigating through XML trees, Functional Dependencies
often may be expressed in multiple ways. It is a
convenient approach to first define the subject and the
object of a Functional Dependency as well as whether the
path, through which the subject affects the object, is
relative or absolute. Consider the Functional
Dependency for the attribute, where the subject
node is any element whith explicitly specified
order. �e object then would be such a element
that occupies the natural position of the subject. �e
subject and object are related at the unit level (the
common ancestor), therefore a relative regular
expression needs to be applied. "Listing 4" illustrates
implementation of this constraint using our convention.

Page 68 of 127

Best Practice for DSDL-based Validation

Listing 4 - XLIFF Functional Dependency for the
 attribute expressed in Schematron

Schematron also introduces a phasing mechanism that
can be used to group constraints in various phases so that
rules are applied only when the relevant phase is active .
Using this feature, alongside with function of
XPath enables cross-document rules and progressive
validation consequently. An XLIFF Processing
Requirement, forbidding any changes in
element (which stores the original data), is represented in
Schematron in "Listing".

Listing 5 - XLIFF constraint on element
expressed in Schematron

Schematron also offers some other useful features like
variables (used in "Listing 5") and several tools to
produce customized and informative error reports. e
full adoption of XPath has made Schematron the most
expressive schema language in the DSDL framework that
is capable of handling the most complex Functional
Dependencies, Keys and foreign Keys. Many of XLIFF
constraints and Processing Requirements have been
implemented in Schematron for the Advanced Validation
feature to be avialable as of XLIFF 2.1.

3.2.3. NVDL

Namespace-based Validation Dispatching Language [18],
NVDL, provides a schema language for selecting
elements and attributes in specific namespaces within a
document that are to be validated by a specified schema.
NVDL is especially useful for muyltimodal XML

vocabularies, such as XLIFF, that may contain different
namespaces within a single document instance. NVDL
can handle the task of mapping namespaces and assign
appropriate schema artefacts for effcetive validation. !e
Advanced Validation feaure for XLIFF 2.1 and successors
uses NVDL to compartmentalize the validation task for
any potential XLIFF Document and run XML Schema
and Schematron artefacts to validate static and dynamic
usage of XLIFF Core and Module namespaces. Although
Schematron rules can be embedded in both XML
Schema and RelaxNG, it is generally advisable to use
NVDL for this purpose, even in cases where the XML
document declares only one namespace, as the former
approach would require additional extraction and
processing where NVDL is supported by various tools
and libraries and provides simpler syntax for the task.

4. Conclusion

In this paper we reviewed generalized forms of XML
Integrity Constraint types used to represent a data model
in XML. We demonstrated, on the examples from the
XLIFF industry vocabulary, that various types of Keys,
foreign Keys and Functional Dependencies can be of
different complexity depending on how advanced the
required regular expressions are. We then explored a
number of XML schema languages - focusing on the
DSDL framework - in terms of their capacity to target
different types of XML constraints and functional
dependencies. !e comparison revealed that Schematron,
mainly due to its full adoption of XPath, can provide the
highest expresivity for all types of constraints and
fucntional dependencies among the tested schema
languages. It is an industry proven best practice to
validate the static structure of XML instances first, e.g.
using RelaxNG or XML Schema, and to apply other
advanced constraints or functional dependencies only
afterwards, programmatically or by appropriate advanced
schema languages, as paths towards the tested nodes
must be established first and only then can be examined
against any such advanced constraints. We also provided
a convention to simplify and optimize defining
Schematron rules through the concept of subject/object of
Functional Dependencies.

Although the DSDL multipart standard (especially
Schematron and NVDL) has resolved many issues in the
XML validation domain, some of its aspects could be still
improved. For instance, Schematron leaves
implementation of some of its features, optional for
processors, which significantly affects the functionality
when using different processors or invoking Schematron

Page 69 of 127

Best Practice for DSDL-based Validation

rules from an NVDL schema. �ese features usually
presented via attributes like would
generally enhance the error reporting, if more widely
adopted.

Applying the methods presented in this paper to
other industry vocabularies than XLIFF is proposed as

future work. Similar investigations of DSDL applications
on various vocabularies would provide a valuable set of
artefacts for further theoretical research and study of
XML Integrity Constraints and Functional
Dependencies on the basis of emerging industry needs.

Bibliography

[1] T. Bray, J. Paoli and C. Sperberg-McQueen. Extensible Markup Language (XML) 1.0 (Fifth Edition) W3C, Nov.
2008..

[2] T. Bray, J. Paoli and C. Sperberg-McQueen. Extensible Markup Language (XML) 1.0 W3C, 1998..

[3] T. Comerford, D. Filip, R.M. Raya and Y. Savourel. XLIFF Version 2.0, OASIS Standard, OASIS, 2014.

[4] H. �ompson et al. XML Schema, Part 2: Datatypes. W3C Recommendation, Oct. 2004. .

[5] International Standards Organization, (2001). ISO/IEC JTC 1/SC 34, DSDL Part 0, Overview. ISO..

[6] S. Saadatfar and D. Filip, “Advanced Validation Techniques for XLIFF 2,” Localisation Focus, vol. 14, no. 1, pp.
43–50, 2014..

[7] P. Buneman, S. Davidson, W. Fan, C. Hara, and W. Tan, “Keys for XML,” Computer Networks, vol. 39, no. 5, pp.
473–487, 2002..

[8] M. Arenas, W. Fan and L. Libkin, On verifying consistency of XML specifications. In PODS, 2002..

[9] M. Vincent, J. Liu, and C. Liu, “Strong functional dependencies and their application to normal forms in XML,”
TODS, vol. 29, pp. 445–462, 2004..

[10] A. Deutsch and V. Tannen. MARS: A system for publishing XML from mixed and redundant storage. In VLDB,
2003..

[11] M. Arenas and L. Libkin, “A Normal Form for XML Documents,” ACM Transactions on Database Systems, vol. 29,
no. 1, pp. 195–232, Mar. 2004..

[12] w. Fan. XML Constraints: Specificaion, Analysis and Aplications. In DEXA, 2005..

[13] H. �ompson et al. XML Schema. W3C Recommendation, Oct. 2004..

[14] J. Clark and S. DeRose. XML Path Language (XPath). W3C Recommendation, Sep. 2015..

[15] International Standards Organization, (2003). ISO/IEC 19757-2:2003(E), DSDL Part 2, Regular-grammar-based
validation — RELAX NG. ISO..

[16] International Standards Organization, (2004a). ISO/IEC 19757-3, DSDL Part 3: Rule-Based Validation —
Schematron. ISO..

[17] E. van der Vlist, RELAXNG. O’Reilly Media, Inc., 2003..

[18] International Standards Organization, (2004b). ISO/IEC 19757-4, DSDL Part 4: Namespace-based Validation
Dispatching Language— NVDL. ISO..

Page 70 of 127

Best Practice for DSDL-based Validation

