
PHD THESIS

Savant: An Accounting and
Accountability Framework for
Information Centric Networks

Author:

Diarmuid COLLINS

Supervisor:

Professor. Donal O’MAHONY

October 8, 2016



ii



Declaration

I declare that this thesis has not been submitted as an exercise for a degree at this or any

other university and it is entirely my own work.

I agree to deposit this thesis in the University’s open access institutional repository or

allow the library to do so on my behalf, subject to Irish Copyright Legislation and Trinity

College Library conditions of use and acknowledgement.

Signed,

Diarmuid Collins

Date: October 8, 2016



iv DECLARATION



Abstract

Content Provider i.e. entities that own or are licensed to sell and distribute content e.g., HBO,

Netflix, Amazon Prime, which use the IP-based Internet model for content distribution, con-

sume a large percentage of network bandwidth that is expected to almost treble between

2014 and 2019 [Cisco, 2015]. This requires significant infrastructural investment by con-

tent providers, content distributors (i.e. fixed-infrastructure content distribution networks

(CDNs)) and network operators e.g., AT&T. Consequently, content providers are looking for

more efficient, cheaper, secure, scalable and accountable mechanisms for the distribution of

content to end-users.

Many existing and proposed future content distribution architectures offer desirable el-

ements that may lead to less bandwidth usage, reduced network congestion, higher content

availability and reduced costs e.g., multicast IP, peer-to-peer (P2P), and so forth. For exam-

ple, the Information Centric Networking (ICN) paradigm offers solutions to many of these

challenges by decoupling user trust in content from where it is obtained by enabling the

content to self-verify i.e. the user can establish integrity, trust and provenance in content re-

ceived from trusted or untrusted infrastructure. However, these architectures typically span

domains of trust that lack central administration. Consequently, it is difficult to gather re-

liable accounting and accountability information for the content distribution process, which

we argue is a fundamental business requirement for many content providers.

Content accounting refers to any information that a content distributor needs to track, re-

lating to the delivery of content to its intended consumers. In contrast, content accountability

refers to the willingness of the communicating infrastructure to produce accurate and verifi-

able information about the content distribution process. The primary difference between an

v



vi ABSTRACT

accounting architecture and accountability architecture is that when trust fails the latter has

the tools to pinpoint the responsible entity with non-repudiable evidence.

In this thesis, we develop two tools to help identify the drawbacks and merits of existing

architectures. The first is a taxonomy for accounting information based on our analysis of

logging information gathered from the surveyed systems. The second is a generic model for

content distribution based on a synthesis of desirable elements from the surveyed architec-

tures. Utilising these tools, we propose an ICN architecture extension for content accounting

and accountability called the Savant framework, which we apply to the Named Data Net-

working (NDN) architecture. Savant naturally supports efficient content distribution while

gathering non-repudiable near real-time information efficiently from NDN clients and NDN

caches. This is supported using NDNs natural support for security, integrity and trust and by

maintaining hash chains of logs and commitment to log integrity between communicating

nodes.

Our proof-of-concept implementation, which is based on an NDN video content distri-

bution session, demonstrated that accounting and accountability information can be gathered

for an ICN packet-level architecture. Our analysis also showed that the overhead on the sys-

tem is very small if several extensions and improvements are applied to the architecture for

efficiency.

As described, ICNs/NDN with Savant support could eventually complement or replace

today’s CDN infrastructure with a scalable, trustworthy, reliable accounting and account-

ability framework for content distributed in trusted and untrusted environments meeting the

diverse requirements of content providers, network operators and end-users.



Acknowledgements

First, I would like to thank my supervisor, Prof. Donal O’Mahony. He has been an excellent

advisor throughout the PhD journey giving me the flexibility to explore many research areas

and topics while providing me with extensive support, knowledge and guidance. I am also

very grateful for the personal support and guidance he has given me over the last four years.

I would also like to acknowledge all the help, encouragement and support I have received

from staff and students in CTVR/CONNECT Centre for Future Networks over the last four

years. They have helped make this PhD journey a lot easier.

I would also like to acknowledge the help, support and feedback I have received from

several other Trinity College Dublin students particularly Elwyn Davies, Emanuele Di Pas-

cale, Paul Duggan and Andriana Ioannou.

I want to thank the anonymous reviewers at various different workshops, conferences and

journals for their excellent comments and feedback, which helped define and crystallise my

research topic.

I want to thank mam, dad, my siblings and friends for all their encouragement, love and

support over the last four years.

Finally, I want to thank my wife Monica and sons Mateo and Miguel for being my big

rock and my little rocks. Without your love and support none of this would have been

possible.

vii



viii ACKNOWLEDGEMENTS



Contents

Declaration iii

Abstract v

Acknowledgements vii

1 Introduction 1

1.1 Background and Requirements . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Savant Accounting and Accountability Framework . . . . . . . . . . . . . 4

1.3 Key Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Organisation of this Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Publications Arising from this Work . . . . . . . . . . . . . . . . . . . . . 6

2 Background and Related Work 9

2.1 Accounting and Accountability in Distribution Systems . . . . . . . . . . . 10

2.1.1 Multicast IP and Web Caching . . . . . . . . . . . . . . . . . . . . 12

2.1.2 Peer-to-Peer (P2P) . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.3 Content Delivery Networks (CDNs) . . . . . . . . . . . . . . . . . 19

2.1.4 Hybrid CDN-P2P . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.5 Transparent Caching . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.1.6 Network CDN, CDNI and Virtualisation . . . . . . . . . . . . . . . 37

2.1.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.2 Information Centric Networking (ICN) . . . . . . . . . . . . . . . . . . . . 44

2.2.1 A Data-Oriented (and Beyond) Network Architecture (DONA) . . . 45

ix



x CONTENTS

2.2.2 Publish-Subscribe Internet (PSI) . . . . . . . . . . . . . . . . . . . 46

2.2.3 Network of Information (NetInf) . . . . . . . . . . . . . . . . . . . 48

2.2.4 Content-Centric Networking (CCN) . . . . . . . . . . . . . . . . . 49

2.2.5 eXpressive Internet Architecture (XIA) . . . . . . . . . . . . . . . 50

2.2.6 MobilityFirst . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.3 Security Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.3.1 DNS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.3.2 PKI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.3.3 SPKI/SDSI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.3.4 Security Attacks in ICNs . . . . . . . . . . . . . . . . . . . . . . . 57

2.3.5 Naming and Security . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.3.6 CCN-Key Resolution Service (CCN-KRS) . . . . . . . . . . . . . 60

2.3.7 Authenticated Interests . . . . . . . . . . . . . . . . . . . . . . . . 62

2.3.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.4 Accounting Frameworks: State of the Art . . . . . . . . . . . . . . . . . . 65

2.4.1 SNMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.4.2 Ccndstatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.4.3 Contrace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.4.4 LIRA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

2.4.5 Encryption-Based and Push Interest Based Accounting in CCN . . 71

2.4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

2.5 Information Processing Systems . . . . . . . . . . . . . . . . . . . . . . . 74

2.5.1 Scalable Distributed Information Management System (SDIMS) . . 74

2.5.2 Query System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

2.5.3 Google Analytics . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

2.5.4 C3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

2.5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

2.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83



CONTENTS xi

3 Tools for Efficient Content Delivery 85

3.1 A Generic Model for Content Distribution . . . . . . . . . . . . . . . . . . 86

3.2 Taxonomy of Accounting and Accountability . . . . . . . . . . . . . . . . 88

3.3 Outstanding Challenges for Content Distribution . . . . . . . . . . . . . . 89

3.4 Savant System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4 Savant Design 97

4.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.2 Overview of The Savant Framework . . . . . . . . . . . . . . . . . . . . . 99

4.2.1 Content Provenance and Authentication . . . . . . . . . . . . . . . 101

4.2.2 Content Ingestion . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.2.3 NDN Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.2.4 Content Metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.2.5 Published Log Objects . . . . . . . . . . . . . . . . . . . . . . . . 103

4.2.6 Accounting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.2.7 Authenticated Interest Commands . . . . . . . . . . . . . . . . . . 106

4.2.8 Accountability Engine . . . . . . . . . . . . . . . . . . . . . . . . 108

4.2.9 Log Auditing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.2.10 Aggregator Functions . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.2.11 On-Demand Accounting and Accountability . . . . . . . . . . . . . 112

4.2.12 High-level Accountability Engine . . . . . . . . . . . . . . . . . . 113

4.3 Security Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.3.1 Savant’s Trust Model . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.3.2 Threats and Attack Scenarios . . . . . . . . . . . . . . . . . . . . . 117

4.3.3 Defence Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.3.4 Savant Supported Defence Mechanisms . . . . . . . . . . . . . . . 120

4.3.5 Access Control Lists . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.4 Naming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.4.1 Global and Local Namespace . . . . . . . . . . . . . . . . . . . . 122



xii CONTENTS

4.5 Savant Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.5.1 Agent Discovery and Local Identity Management Protocol . . . . . 124

4.5.2 The Log Commitment Protocol . . . . . . . . . . . . . . . . . . . 125

4.5.3 The Challenge-Response Protocol . . . . . . . . . . . . . . . . . . 127

4.6 Extensions and Improvements . . . . . . . . . . . . . . . . . . . . . . . . 127

4.6.1 Statistical Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.6.2 Public/Private Key Length . . . . . . . . . . . . . . . . . . . . . . 128

4.6.3 Published Log Object Size . . . . . . . . . . . . . . . . . . . . . . 129

4.7 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.8 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5 Savant: An Implementation 133

5.1 Savant Design and Implementation . . . . . . . . . . . . . . . . . . . . . . 133

5.1.1 High Level Components . . . . . . . . . . . . . . . . . . . . . . . 134

5.2 Considerations for Accounting and Accountability . . . . . . . . . . . . . 137

5.2.1 Packet-Level Architecture . . . . . . . . . . . . . . . . . . . . . . 138

5.2.2 Statistical Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.2.3 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.2.4 Namespace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.2.5 Prerequisites and Assumptions . . . . . . . . . . . . . . . . . . . . 140

5.3 Savant Business Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.4 Accounting Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.4.1 Control Scenario: Default . . . . . . . . . . . . . . . . . . . . . . 143

5.4.2 Minimal Accounting . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.5 Log Entries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.6 Log Object Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.6.1 Authenticated Interest Commands . . . . . . . . . . . . . . . . . . 145

5.7 Experiment Setup, Evaluation and Results . . . . . . . . . . . . . . . . . . 146

5.7.1 Experiment Overview . . . . . . . . . . . . . . . . . . . . . . . . 146

5.7.2 Experiment Configuration . . . . . . . . . . . . . . . . . . . . . . 147



CONTENTS xiii

5.7.3 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.8 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.8.1 Savant Accounting and Accountability Overhead . . . . . . . . . . 149

5.8.2 Fault Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.8.3 Accountability Engine Scalability . . . . . . . . . . . . . . . . . . 151

5.8.4 NDNSim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.8.5 Accounting Overhead Projection . . . . . . . . . . . . . . . . . . . 154

5.9 Lessons Learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.10 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6 Conclusions and Future Work 159

6.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161



xiv CONTENTS



List of Figures

2.1 YouTube Architecture[adapted from [Adhikari et al., 2012]] . . . . . . . . 23

2.2 KRS record [adapted from [Mahadevan et al., 2014]] . . . . . . . . . . . . 61

2.3 Authenticated Interest [adapted from [Burke et al., 2013]] . . . . . . . . . . 62

2.4 Application’s namespace, name/value pair access control policies and digital

certificate location. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.5 The Contrace CCN network analysis tool . . . . . . . . . . . . . . . . . . 68

2.6 SDIMS using the Pastry DHT with support for administrative isolation [adapted

from [Yalagandula & Dahlin, 2004]] . . . . . . . . . . . . . . . . . . . . . 75

2.7 The SDIMS API runs Install, Update and Probe commands across different

Administrative Domains for aggregation and propagation purposes. . . . . 76

2.8 Akamai’s Query System [adapted from [J. Cohen et al., 2010]] . . . . . . . 78

2.9 Google Analytics architecture [adapted from [Clifton, 2012]] . . . . . . . . 79

2.10 The Conviva Phase III C3 architecture [adapted from [Ganjam et al., 2015]] 81

3.1 Generic Content Distribution Model: components in black are adapted from

a high level functional CDN model [ETSI, 2011] while the blue components,

which are optional, were added for the Generic Model . . . . . . . . . . . . 86

3.2 System System Model: 1. Content Provider, 2. ICN Cache, 3. Subscriber,

and 4. Accountability Engine . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.1 High-level Overview of the Savant Architecture . . . . . . . . . . . . . . . 100

4.2 Published Log Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.3 A hash chain of published log objects . . . . . . . . . . . . . . . . . . . . 104

xv



xvi LIST OF FIGURES

4.4 Video Player State Machine (adapted from [Dobrian et al., 2013]). . . . . . 106

4.5 Authenticated Interest [adapted from [Burke et al., 2013]] . . . . . . . . . . 107

4.6 High-level Overview of the Savant Accountability Engine . . . . . . . . . . 109

4.7 High-level Overview of the NDN architecture with support from hierarchical

accountability engines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.8 This figure shows two trust models (hierarchical and local) used by the Sa-

vant framework, which are both supported by the SPKI/SDSI PKI certificate

standard. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.9 Savant’s SPKI/SDSI small-world trust model . . . . . . . . . . . . . . . . 123

4.10 Authenticated interest command supporting NDN agent discovery . . . . . 124

4.11 SPKI/SDSI local identity management protocol between client and account-

ability engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.12 Savant commitment protocol with accountability engine support . . . . . . 126

4.13 Challenge Response Protocol . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.1 A High Level View of Communicating Entities and Components in Savant . 134

5.2 NDN Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.3 NDN Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.4 Accountability Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.5 Ten Independent NDN Agents Running Gstreamer, One NDN Cache Dis-

tributing Content and One Accountability Engine Collecting Published Log

Objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.6 Video Player State Machine (adapted from [Dobrian et al., 2013]). . . . . . 143

5.7 Savant Client Log Example . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.8 Savant Cache Log Example . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.9 Metrics were Collected at 1 second intervals by an Experiment System Mon-

itoring Script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.10 NDN Client experiencing a fault before, during and after its introduction . . 150

5.11 NDN Cache with fault before, during and after its introduction . . . . . . . 150

5.12 PLOPS Processed by an Accountability Engine on EC2 . . . . . . . . . . . 151



LIST OF FIGURES xvii

5.13 Graph of PLOPS from Figure 5.12 . . . . . . . . . . . . . . . . . . . . . . 151

5.14 Rocketfuel’s "Verio US" Internet topology with one high-level accountability

engine that collects data from nine hundred and twenty low-level account-

ability engines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.15 Sample NDN agent aggregate data received by a high-level accountability

engine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

5.16 Total average downlink bandwidth consumed by a high-level accountability

engine receiving summary statistics from almost 1.5 million NDN agents. . 154



xviii LIST OF FIGURES



List of Tables

2.1 Attributes of PeerReview: An Accountable P2P Architecture . . . . . . . . 18

2.2 Attributes of P2P Architectures: Napster, BitTorrent and Kad . . . . . . . . 19

2.3 Attributes of Repeat and Compare: An Accountable CDN Architecture . . . 25

2.4 Attributes of CDN Architectures: Akamai, CoralCDN and YouTube . . . . 26

2.5 Attributes of RCA: An Accountable Hybrid CDN-P2P Architecture . . . . 33

2.6 Attributes of Hybrid CDN-P2P Architectures: ESM, SplitStream, PPLive,

LiveSky and SAAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.7 Attributes of Transparent Cache Architectures: UltraBand and OverCache . 37

2.8 Attributes of NCDN, CDNI and Virtualisation Architectures . . . . . . . . 41

2.9 Attributes of AVM: An Accountable Virtual Machine Architecture . . . . . 43

2.10 Attributes of ICN Architectures . . . . . . . . . . . . . . . . . . . . . . . . 52

3.1 Elements for Content Distribution . . . . . . . . . . . . . . . . . . . . . . 90

3.2 Summary of Architecture Attributes Surveyed in Chapter 2 . . . . . . . . . 91

4.1 Savant Authenticated Interest Commands . . . . . . . . . . . . . . . . . . 107

4.2 Log Auditing Event and Type . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.1 Example of Log Entries Collected by NDN Client and Cache Elements . . . 144

5.2 Results for Default and Minimal Scenarios . . . . . . . . . . . . . . . . . . 149

5.3 Estimated Accounting Overhead Based the Minimal Scenario . . . . . . . . 155

xix



xx LIST OF TABLES



Glossary

Accountability Content accountability refers to the willingness of the communicating in-

frastructure to produce accurate and verifiable information about the content distribu-

tion process. 1, 2

Accounting Content accounting refers to any information that a content distributor needs to

track relating to the delivery of content to its intended consumers. 2

Content Delivery Network (CDN) A set of centrally managed, geographically dispersed,

strategically located cache servers that replicate and deliver popular content close to

end-users. 19

Content-Centric Networking (CCN) A future Internet architecture that supports ICNs prin-

ciples. 49

Future Content Distribution Architectures These include emerging networking approaches

such as Information Centric Networking, MobilityFirst, Nebula, and so forth, that ad-

dress the problems and limitations of the current IP based Internet model for content

distribution. 2

Information Centric Networking (ICN) The ICN future Internet paradigm seeks to re-

solve the problems and limitations of the current IP based Internet model for content

distribution by proposing solutions for the future Internet. 1

Internet Service Provider (ISP) Is an entity that provides services and infrastructure to

end-users for accessing the Internet, e.g., Eir, Vodafone, AT&T, and BT. 1

xxi



xxii Glossary

Minimal Accounting The minimal accounting scenario supports the collection of industry

standard QoE metrics from client and cache infrastructure such as rate of buffering

events, frames displayed per second on the client, and average uplink or downlink

bitrate. 110

Near Real-Time Near real-time refers to data collected and processed within several sec-

onds of an events occurrence. 3

Real-Time A real-time event is collected and processed within milliseconds of the events

occurrence. 12

Self-verify The user can establish integrity, trust and provenance in content received from

trusted or untrusted infrastructure. 1

Trusted Infrastructure Any trusted cache element located in the network e.g., a CDN

cache server, content provider server, and so forth . 43

Untrusted Infrastructure Any untrusted cache element located in the network, e.g., P2P,

ISP cache, ICN cache, and so forth. 43



Chapter 1

Introduction

Internet video traffic from content providers i.e. entities that are licensed to sell and distribute

content1 such as Netflix and HBO, has seen exponential growth in the last fifteen years

and is predicted to make-up 80%-90% of total Internet traffic by 2019 [Cisco, 2015]. The

majority of this content is delivered to end-users by fixed-infrastructure content distribution

networks (CDNs) (referred to as Content Distributors) such as Akamai and Level3. CDNs

are typically located geographically close to end-users and offer high data availability and

performance. However, they are expensive to deploy and maintain, generate a lot of over-the-

top (OTT) traffic for Internet service providers (Internet Service Provider (ISP)) and many are

not close enough to the end-user to provide a quality content delivery experience [Aditya et

al., 2012][Ganjam et al., 2015][F. Chen et al., 2015]. These problems are exacerbated by IP’s

limitations, which include: poor security and Accountability; lack of data integrity, reliability

and trust; mobility challenges; bad multihoming support; unnecessary data retransmissions

and network traffic; network congestion; lack of user privacy; and so forth.

The Information Centric Networking (Information Centric Networking (ICN)) future In-

ternet paradigm seeks to identify solutions to these kinds of problems and limitations by

proposing solutions for the future Internet [Xylomenos et al., 2014]. ICN architectures

achieve this goal by treating names or identifiers (such as content, services and devices)

as first-class citizens. This is achieved by decoupling a user’s trust in content from where it

is obtained by enabling the content to Self-verify i.e. the user can establish integrity, trust and

1We refer to content and data interchangeably throughout this thesis.

1



2 CHAPTER 1. INTRODUCTION

provenance in content received from trusted or untrusted infrastructure. This facilitates more

efficient distribution of data in an ICN network as copies of data can be supplied from any

infrastructure element that has an available copy. ICN architectures support a paradigm shift

towards a data-centric network architecture that focuses on content distribution resolving

many of the limitations and problems of the current IP-based Internet model.

However, existing ICN architectures do not provide natural support for content Account-

ing and Accountability. Instead, many of these architectures make a virtue out of not pro-

viding it, claiming to offer natural privacy to users. Content accounting2 refers to the in-

formation tracked by content distributors related to the delivery of content to its intended

consumers. This includes content views, end-user quality of experience (QoE), user de-

mographics, and so forth. In contrast, content accountability refers to a content providers

ability to produce accurate and verifiable information about the content distribution process.

This involves the ability to establish authentication, integrity, provenance, auditability and

non-repudiation in the accounting information received [Yumerefendi & Chase, 2005]. The

primary difference between these concepts is that when trust fails, the latter has the tools to

pinpoint the responsible entity with non-repudiable evidence. Consequently, accountability

is an important concept when the primary form of communication is between nodes that span

domains of trust.

Today, centrally managed fixed infrastructure CDNs offer the best option for the produc-

tion of trustworthy accounting information by guaranteeing the integrity of the information

gathered. However, this is not a sufficient model for content that can be distributed cheaply

with better efficiency (at least for popular content) from primarily untrusted ICN infrastruc-

ture. The aim of the Savant framework is to address this challenge for ICNs, specifically the

named data networking (NDN) architecture.

1.1 Background and Requirements

In our initial investigations, we studied and compared current and Future Content Distri-

bution Architectures identifying different components utilised for efficient and successful

2We refer to accounting and feedback interchangeably throughout this thesis.



1.1. BACKGROUND AND REQUIREMENTS 3

content delivery. Our analysis helped identify the need for a trustworthy accounting and

accountability framework when distributing content. Further examination helped us isolate

generic elements required for the collection of this information across trusted and untrusted

infrastructure. These include:

• A strong identity management system, which cryptographically binds actions to nodes.

• A methodology for producing trustworthy accounting information, which captures

client and cache actions and that can be audited by trusted infrastructure components.

• A protocol, which supports commitment to log integrity between communicating nodes.

• Distributed infrastructure components to support information gathering in Near Real-

Time3, which is scalable to 10s of millions of nodes.

The main usage scenario for Savant involves a client requesting data and a cache deliver-

ing the requested content object in response. This transaction should be supported with the

collection of accounting and accountability information for the content distribution process.

For example:

• an end-user requests a movie from Netflix,

• the request gets directed to a local ISP cache that has a copy of the requested movie,

• the cache delivers a movie to the end-user,

• both the client and cache produce accounting and accountability information for the

content distribution process, which is collected and processed by Savant and presented

to the content provider.
3Near real-time refers to data collected and processed within several seconds of an incidents occurrence.

This is in contrast to a real-time event, which is collected and processed within milliseconds of the events
occurrence. In Savant, real-time data is not required because a clients video buffer contains enough content,
typically 30 seconds of buffered data, to support recovery if problems are encountered.



4 CHAPTER 1. INTRODUCTION

1.2 Savant Accounting and Accountability Framework

Savant is designed based on the premise that content providers want visibility over the con-

tent being distributed primarily for control and analytics purposes, irrespective of the infras-

tructure (trusted or untrusted) used to distribute the content. It achieves this goal by pushing

primary responsibility for accounting and accountability out to NDN clients and NDN caches

(collectively referred to as NDN agents) distributing and receiving content. Additionally, it

incorporates components and principles from many different systems and architectures to

support a near real-time accounting and accountability framework for NDN content distribu-

tion. These include [Clarke, 2001][Xylomenos et al., 2014][Aditya et al., 2012][Haeberlen

et al., 2007][Cugola & Margara, 2012]:

1. a small-world model of trust supported by the Simple Public Key Infrastructure/Simple

Distributed Security Infrastructure (SPKI/SDSI) public key infrastructure (PKI),

2. using ICN cryptographic techniques to produce log entries (referred to as published

log objects), which provide natural support for data security, integrity, authenticity and

provenance,

3. tamper-evident logs are maintained for each individual content provider by NDN agents

using an append-only hash chain between log entries,

4. a log commitment protocol to support log integrity and authenticity between NDN

agents for interests and data sent and received,

5. big data mechanisms to support the scalable near real-time collection, processing

and aggregation of published log objects with capabilities to increase or decrease the

amount of accounting and accountability information collected at NDN agents when

required.

We implemented many of Savant’s components to support a proof-of-concept implemen-

tation for use in an NDN video content distribution session. This implementation demon-

strated the feasibility of an accounting and accountability framework for an NDN content



1.3. KEY CONTRIBUTIONS 5

distribution architecture. Finally, Savant’s general principles can be applied to any ICN ar-

chitecture.

1.3 Key Contributions

• An analysis of existing and proposed future content distribution architectures4, the

components they use for efficient and successful content delivery and the identification

of the elements required for the collection of trustworthy accounting and accountability

information for content distributed across trusted and untrusted infrastructure.

• A scalable near real-time framework to support the collection, auditing, processing,

aggregation and alerting of trustworthy accounting and accountability information pro-

duced on trusted and untrusted NDN infrastructure when required.

• Demonstration of the feasibility of the Savant system in a real-world implementation

for NDN video content distribution.

1.4 Organisation of this Work

This dissertation is structured as follows. This chapter provides a high-level introduction to

some content distribution problems, providing the motivation for our work. We have also

identified key contributions from this work for accounting and accountability research in

ICN future Internet architectures.

Chapter 2, initially provides an analysis of existing and proposed future content delivery

architectures detailing their methodologies for providing efficient low-cost content distri-

bution, accounting and accountability across trustworthy and untrustworthy infrastructure.

We also provide background into the desirable architectural elements and principles based

on existing content distribution architectures, many of which Savant adopts to support near

real-time accounting and accountability for NDN content distribution.

4Future Content Distribution Architectures include emerging networking approaches such Information Cen-
tric Networking, MobilityFirst, Nebula, and so forth, that address the problems and limitations of the current
IP based Internet model for content distribution.



6 CHAPTER 1. INTRODUCTION

In chapter 3, we develop and use two tools to help analyse the drawbacks and merits of

the content distribution architectures discussed in Chapter 2. First, a generic model for con-

tent distribution that leads to efficient low-cost distribution of content. Second, a taxonomy

for analytic information based on a survey of the logging information gathered by existing

systems. Using these tools we developed a table of elements required for efficient content

distribution. This helped identify the lack of an adequate accounting and accountability

component for ICN architectures.

Chapter 4, describes the design and security model of the Savant accounting and ac-

countability framework in detail, which is supported by the tools from Chapter 3 and desir-

able architectures and elements from existing systems in Chapter 2. Additionally, we outline

Savant’s extensions and improvements to support accounting and accountability in a packet-

level architecture such as NDN.

Chapter 5, provides a description of our implementation of the Savant system. We also

carried out simulations using ndnSIM to evaluate the scalability of the architecture support-

ing millions of NDN agents. Additionally, we demonstrate Savant’s ability to detect, isolate

and resolve content distribution problems. Finally, we provide a list of lessons learned during

implementation.

Chapter 6, concludes our work on this dissertation, summarising the main contributions

and provides direction for future work.

1.5 Publications Arising from this Work

• Ó Coileáin, D. and O’Mahony, D. (2014). Savant: Aggregated Feedback and Account-

ability Framework for Named Data Networking. In Proceedings of the 17th Royal Irish

Academy Research Colloquium on Communications and Radio Science into the 21st

Century.

• Ó Coileáin D. and O’Mahony, D. (2014). Savant: A Framework for Supporting Con-

tent Accountability in Information Centric Networks. In Heterogeneous Networking

for Quality, Reliability, Security and Robustness (QShine), 2014 10th International



1.5. PUBLICATIONS ARISING FROM THIS WORK 7

Conference on (p. 188-190). Rhodes, Greece: IEEE.

• Ó Coileáin D. and O’Mahony, D. (2014). SAVANT: Aggregated Feedback and Ac-

countability Framework for Named Data Networking. In Proceedings of the 1st Inter-

national Conference on Information-Centric Networking (pp. 187–188). Paris, France:

ACM. Available from http://doi.acm.org/10.1145/2660129.2660165

• Ó Coileáin D. and O’Mahony, D. (2015). Accounting and Accountability in Content

Distribution Architectures: A survey. ACM Computing Surveys (CSUR), 47(4):59:1–59:35.



8 CHAPTER 1. INTRODUCTION



Chapter 2

Background and Related Work

The Savant framework has two main goals: provide auditable non-repudiable accounting

information to content providers for content distributed from trusted or untrusted ICN in-

frastructure, and to do this in a scalable and efficient manner. Savant consists of several

architectural elements which achieve these goals. These are adopted from existing content

distribution architectures. Throughout this chapter, we will discuss the background of each

of these elements. Moreover, this analysis will help us derive a set of requirements to support

content delivery in ICN networks while trying to satisfy the sometimes-conflicting demands

of content providers, ISP’s and end users.

We begin by defining existing content distribution models in Section 2.1, analysing them

in three ways. First, we briefly outline the content distribution methodologies adopted by

each architecture, some of the requirements they satisfy and highlight some of their advan-

tages/disadvantages. Second, we show that the trust model adopted by each architecture has

an impact on the integrity of the accounting information collected, which we believe has an

impact on the adoption of the architecture for data distribution by content providers. Third,

these elements form a basis for the development of the generic model for content distribution

outlined in Section 3.1 and the taxonomy for accounting information in Section 3.2, which

help guide the development of the Savant Framework in Chapter 4.

The rest of the chapter will provide an overview of ICN architectures in Section 2.2,

identify name resolution and security mechanisms to support Savant in Section 2.3, state of

the art accounting frameworks for IP and ICN systems in Section 2.4 and outline scalable

9



10 CHAPTER 2. BACKGROUND AND RELATED WORK

information processing and control systems in Section 2.5.

2.1 Accounting and Accountability in Distribution Systems

All of the content distribution architectures we discuss in this section are designed to support

efficient content delivery. For example, some of the early content distribution architectures

(such as multicast IP and web caching) were created to help content providers and ISPs

reduce bandwidth usage and network congestion while offering higher content availability

and reduced costs. These architecture and many others discussed in this section were devel-

oped to accommodate a myriad of requirements from content providers, ISPs and end-users

operating across trustworthy and untrustworthy infrastructure related to mobility, security,

efficiency, cost, trust, privacy, accounting, accountability, and so forth.

The premise of our work states that content providers want visibility over the content

being distributed primarily for control and analytic’s purposes. Consequently, we have two

aims in this section. First, we briefly outline the content distribution methodologies adopted

by each architecture, some of the requirements they satisfy and highlight some of their ad-

vantages and disadvantages. Our aim is to ascertain what are the desirable characteristics

of an efficient and effective content distribution architecture? Second, we identify what ac-

counting information they produce, the trust model used and if there are mechanisms to

support accountability. Our aim is also to determine what accounting and accountability

information is necessary to support the content distribution process across trusted and un-

trusted infrastructure? To achieve these goals, at the end of each section we have added a

table to help define what attributes these architectures contain. This is achieved by answering

the following questions:

• Trustworthy Accounting: Is the accounting information produced by the architecture

trustworthy i.e., not open to tampering?

• Span Trust Domains: Does the architecture span domains of trust?

• Decentralised: Is the architecture centralised or decentralised?



2.1. ACCOUNTING AND ACCOUNTABILITY IN DISTRIBUTION SYSTEMS 11

• Data Integrity: Is it possible for a malicious entity to pollute the architecture with bad

content? Can the receiver establish data integrity?

• Data Provenance: Can we determine the origin or source of the content?

• Scalable: Is the architecture scalable?

• Content Availability: Is content always available?

• Proximity Awareness: How close is the cache to the data receiver?

• Transient Nodes: Do nodes typically stay connected to the network for long periods of

time?

• Inexpensive: Is the architecture expensive or inexpensive?

• Searchable: Can the architecture be searched?

• Guaranteed (Content) Control: Does the architecture guarantee control of content?

• Guaranteed Quality: Will content be delivered with high quality?

• Guaranteed Reliability: Does it provide good reliability?

• Guaranteed Performance: Is performance guaranteed?

• Use ISP Cache: Can content be cached and retrieved from an ISP cache?

• Use P2P Cache: Is it possible to get content from a P2P cache?

• Use Multicast: Is multicast supported?

Desirable elements and attributes identified in this section form a basis for the develop-

ment of the Savant Framework in Chapter 4.



12 CHAPTER 2. BACKGROUND AND RELATED WORK

2.1.1 Multicast IP and Web Caching

Accounting and accountability were not a priority in early content distribution architectures

such as multicast IP and web caching. Multicast IP facilitates the distribution of IP data-

grams to multiple simultaneous receivers in a network, which was pioneered by Stephen

Deering at Stanford University in 1988 [Deering, 1988]. In contrast, a web cache improves

on the distribution of popular time-shifted content, which was developed independently by

both CERN and the Harvest project (which was funded by DARPA), and released in 1994.

Both architectures were very effective solutions to the content distribution problem offering

bandwidth savings, reduced origin server load, higher content availability and a reduction

in network latency for users [Barish & Obraczke, 2000][Deering, 1988]. For example, web

caching offered bandwidth savings of between 40%-50% of data transferred from a central

server [Wang, 1999]. However, in the late 90’s this lack of accounting and accountability

was identified as being a significant barrier to their adoption and utilisation [Makofske &

Almeroth, 1999][Wang, 1999].

Multicast IP Accounting

Several tools were developed to help gather accounting information in multicast IP environ-

ments. This information, which includes QoE, user behaviour information and join/leave

times of participants, is gathered using two types of multicast monitoring: passive and active

monitoring. Passive monitoring can be achieved by listening for packet information e.g.,

Real-Time (Control) Protocol (RT(C)P) traffic [Schulzrinne et al., 1996] or NORM posi-

tive acknowledgements (NORM - Negative-acknowledgment Oriented Reliable Multicast)

[Adamson et al., 2009]. In contrast, active monitoring actively queries nodes in the net-

work, e.g., mtrace (a multicast traceroute tool that traces the reverse path to source from

a group member) or the Simple Network Management Protocol (SNMP) (available from

routers and other network components on the multicast path in a domain) [Makofske &

Almeroth, 1999][Almeroth & Ammar, 1996][Al-Shaer & Tang, 2004]. Tools that utilised

some of these technologies to gather accounting information in multicast systems include:

• MListen (developed in 1996) used to monitor the join/leave times and session dura-



2.1. ACCOUNTING AND ACCOUNTABILITY IN DISTRIBUTION SYSTEMS 13

tion using RTCP of multicast group members on the Multicast Bone (MBone) overlay

network [Almeroth & Ammar, 1996];

• MHealth combined the active and passive monitoring of RTCP and mtrace data to

provide real-time health and topology of the multicast distribution tree [Makofske &

Almeroth, 1999];

However, these tools lacked security, privacy, integrity, provenance, auditability and scal-

ability of accounting information produced, factors that contributed to multicast’s lack of

adoption [Makofske & Almeroth, 1999].

Web Cache Accounting

Recent improvements to web caching architectures such as the transparent cache (see Sec-

tion 2.1.5) seek to maintain the end-to-end relationship of traditional client-server communi-

cation. A transparent cache is an ISP managed distributed network of cache servers located

close to end-users that cache and deliver the most popular web content. However, they en-

counter many of the same challenges as web cache systems related to content accounting

and accountability as they span domains of trust [Yumerefendi & Chase, 2005]. These in-

clude lack of log integrity and ability to conceal information such as user QoE from content

providers. Additionally, content providers have challenges in maintaining control over con-

tent being distributed. This results in some content providers encrypting content, which

cannot be easily cached resulting in just 22%-34% of bandwidth savings for ISPs [Woo et

al., 2013].

2.1.2 Peer-to-Peer (P2P)

Peer-to-peer (P2P) systems, which are self-organising systems designed to share data through

direct peer communication with optional support from peer-assisted infrastructure [Androutsellis-

Theotokis & Spinellis, 2004], were one of the first architectures to take steps towards pro-

viding content accountability [Haeberlen et al., 2007][Yumerefendi & Chase, 2005]. This

was primarily born out of necessity. For example, a major challenge in distributing content



14 CHAPTER 2. BACKGROUND AND RELATED WORK

on P2P networks is the inability to directly observe untrusted peer interactions, which re-

sults in parameters like end-user download experience, content served, and so forth going

unmeasured [Aditya et al., 2012]. Additionally, many P2P systems are specifically designed

to preserve user anonymity [Androutsellis-Theotokis & Spinellis, 2004]. Furthermore, the

interests of peers in a P2P network are typically not aligned with each other [Clark & Blu-

menthal, 2011], so relying on them for efficient content distribution is unwise. For example,

several BitTorrent clients exist that use the BitTorrent P2P protocol for selfish downloading

by either not contributing to the BitTorrent download process (e.g., BitThief [Locher et al.,

2006]) or by gaming the BitTorrent protocol into contributing minimal resources (e.g., Bit-

Tyrant [Piatek et al., 2007]). Additionally, as P2P systems span domains of trust, they are

also susceptible to Byzantine faults, software bugs, malicious users, and so forth which can

be difficult to identify and isolate [Yumerefendi & Chase, 2005].

Consequently, trying to establish trust in peers in a P2P system is important for building a

dependable and trustworthy content distribution system. This resulted in early research into

trust and accountability in P2P systems taking model designs from centralised reputation sys-

tems built around online communities such as the eBay auction site [Dellarocas, 2001]. For

example, the EigenTrust algorithm uses a transitive trust value to determine the reputation

of a peer. This value is assigned by other peers [Kamvar et al., 2003]. However, reputa-

tion systems such as EigenTrust are typically only effective when nodes repeatedly offend

[Haeberlen et al., 2007]. Additionally, reputation systems are susceptible to Sybil attacks,

where a host forges multiple identities that are used to increase the reputation of specific

peers [Douceur, 2002]. As a result, reputation systems are not a good enough solution when

there is not a penalty for misbehaviour [Yumerefendi & Chase, 2005], a financial incentive

for good behaviour [Sirivianos et al., 2007], or a business requirement for correct analytical

information [Aditya et al., 2012]. In these situations undeniable and non-repudiable evi-

dence of a node’s actions is required [Yumerefendi & Chase, 2005]. Consequently, there is

a requirement to get the untrusted infrastructure to produce evidence of their actions if the

integrity of the content distribution process is required.

There are two generations of P2P system unstructured and structured [Lua et al., 2005].



2.1. ACCOUNTING AND ACCOUNTABILITY IN DISTRIBUTION SYSTEMS 15

The first, unstructured P2P, is characterised by loose joining rules, decentralised downloads,

decentralised search capabilities and the random placement of data across the P2P network

[Lua et al., 2005][Rodrigues & Druschel, 2010]. Content is typically located by random

walks or flooding requests across the P2P network with non-specific search terms e.g.,

Gnutella and BitTorrent [Androutsellis-Theotokis & Spinellis, 2004]. Additionally, many

of these systems have a dependence on centralised infrastructure to locate data and other

peers (e.g., Napster or SETI@home). In contrast, structured P2P is a particular kind of P2P

application, characterised by the use of structured mechanisms such as distributed hash ta-

bles (DHT’s) to place content (or pointers to content) not at random peers but at specific

locations which facilitate fast lookup for future queries [Lua et al., 2005] [Androutsellis-

Theotokis & Spinellis, 2004]. Examples include Chord, Pastry and Kademlia [Lua et al.,

2005][Maymounkov & Mazières, 2002]. Several implementations of structured P2P system

exist such as the Kad Network and Mainline DHT.

In the remainder of this section, we give a brief overview of several unstructured and

structured P2P architectures such as Napster, BitTorrent and the Kad network (based on

Kademlia DHT) and their methodology for collecting accounting information. We also iden-

tify how accountability information can be gathered and utilised by P2P systems based on

the PeerReview [Haeberlen et al., 2007] system. Finally, we identify the weaknesses of P2P

content distribution.

Unstructured P2P: Napster

Napster, launched in 1999 by Shawn Fanning, is credited with being the first peer-to-peer

file-sharing system. It is an unstructured P2P system, which is dependent on centralised

infrastructure for file indexing, searching and peer discovery [Androutsellis-Theotokis &

Spinellis, 2004]. As Napster is a proprietary system, we looked at OpenNap (a reverse

engineered open source Napster server and protocol [Drscholl, 2001]) to understand the ac-

counting information transmitted between Napster servers and peers. The OpenNap server

collects configuration information about peers when they log in such as IP address, port and

available bandwidth [Drscholl, April 2000]. Peers notify the Napster server when they have



16 CHAPTER 2. BACKGROUND AND RELATED WORK

files available for sharing. These files are then indexed. When a peer submits a search re-

quest for a file, the Napster server responds with a list of peers hosting copies of the file.

The Napster client then sorts the results (such as server IP, port, peer bandwidth and file

details) and makes them available to the user who then decides from which server to down-

load. Once the file is selected for download, direct peer-to-peer communication takes place.

Napster was forced to shut down in 2001 due to its part in facilitating the illegal distribution

of copyrighted material following a court case filed by the Recording Industry Association

of America (RIAA) [Lua et al., 2005].

Unstructured P2P: BitTorrent

BitTorrent is a simple P2P protocol designed for peer-to-peer file sharing which runs over

the HTTP protocol. It depends on a centralised infrastructure component known as a tracker

to support file downloads. When a user wants to download a particular file, they search for

a torrent of the file. A torrent contains information about the file including a cryptographic

hash of the data pieces (pieces are fixed file size of 256KB, 512KB or 1MB), tracker URLs

and file length [B. Cohen, 2003]. A BitTorrent client then contacts the tracker or trackers

using the tracker URLs. A tracker’s primary responsibility is to help peers with complete

and partial copies of a file to locate each other. Consequently, trackers gather information

from peers such as file location and total bytes uploaded and downloaded. After an initial

list of peers has been received from a tracker (i.e. the swarm - a list of participating peers

that download and upload content to each other), peers can operate without further contact.

Structured P2P: The Kad Network

The Kad network is a structured P2P overlay implementation of the Kademlia distributed

hash table (DHT), designed in 2002 by Petar Maymounkov and David Mazières. DHT’s

(e.g. Kademlia, Pastry, Tapestry, and so forth) use a hash function (e.g. SHA1, and so

forth) to generate a globally unique key for both host machines and data objects. The key

for a data object is then stored on the host with the closest corresponding key. This method

facilitates efficient lookup for a key typically in O(logN) hops (where N corresponds to the



2.1. ACCOUNTING AND ACCOUNTABILITY IN DISTRIBUTION SYSTEMS 17

number of hosts in the system) and guarantees results. Hosts use an API implementation to

access the DHT to perform operations for generating, adding, updating, locating (routing)

and removing keys in the overlay DHT system. The DHTs differ in their approach to these

operations.

Kademlia, for example, identifies hosts and data objects using a 160-bit key. It deter-

mines the numerically closest host to a data object key using the XOR metric, which defines

the distance between two points in a key space as their bitwise exclusive or (XOR), inter-

preted as d(x,y) = x⊕ y [Maymounkov & Mazières, 2002]. When a Kademlia host sends a

message to another host, it also transmits its <IPAddress, UDP port, hostID>, which can be

added to a list called a k-bucket on the receiving host. The most popular client that supports

the Kad network and uses an implementation of the Kademlia protocol is eMule, an open

source peer-to-peer file sharing application, in active development since 2002.

Accounting, Accountability and Efficiency: P2P Systems

Napster, BitTorrent and the Kad network gather accounting information related to server

configuration and performance, network performance, user engagement, user demographics

and user QoE. Every P2P application has a specific use for information gathered. For exam-

ple, several studies exist (such as Napigator and Xnap [Whitman & Lawrence, 2002][Mauri

et al., 2004]) that use the OpenNap protocol to measure file popularity, music artist demand,

and numbers of users. Similarly, BitTorrent trackers can derive a peer sharing ratio (calcu-

lated by dividing the total data uploaded by the total data downloaded to penalise freeriding.

Comparably, Kademlia k-buckets keep track of node uptime using a least-recently seen evic-

tion policy and low-latency paths. However, the accounting information collected by these

applications lacks any form of trust or accountability, a general characteristic of early P2P

systems. PeerReview [Haeberlen et al., 2007], a system for providing accountability in dis-

tributed systems that span domains of trust, offers a solution to this problem.

PeerReview [Haeberlen et al., 2007] maintains a secure tamper-evident log on each node

for all application messages sent and received in chronological order. Peers are assigned a

public key πi and private key σi pair bound to a unique node identifier, which is used to



18 CHAPTER 2. BACKGROUND AND RELATED WORK

Table 2.1: Attributes of PeerReview: An Accountable P2P Architecture
Attribute PeerReview

Accountability x
Public/Private Key x

Tamper-Evident Log x
Log Consistency x
Trusted Auditing -

Non-Deterministic -
Challenge/Response Protocol x

Rapid Fault Detection -
Defend Accusations x
Statistical Sample x

Centralised -

digitally sign each message sent. Each node n has log entry ei = (si, ti,ci,hi) with a sequence

number si, a type ti and type-specific content ci [Haeberlen et al., 2007]. Each log record

also has a recursively defined hash hi, which creates the hash chain making the log tamper

evident. An authenticator αn
i = σn(si,hi), which is sent as part of the communication process

to node n2, is a signed statement that node n has updated its log entry ei with hash value

hi. To ensure commitment, the receiver node n2 must acknowledge the message received.

Furthermore, a single linear log, which contains all communication between peers, must be

maintained by each node to ensure consistency. This is verified by a set of independent wit-

nesses gathering all authenticators sent by node n. Each node has a number of witnesses

who check its correctness and distribute the results to other nodes in the system. A witness

can request node n to return all log entries within a certain range. It then audits node n’s

actions to ensure they conform to a reference implementation of expected behaviour based

on a deterministic state machine. Moreover, PeerReview’s challenge/response and evidence

protocols help ensure that all correct nodes eventually receive evidence of faulty nodes. Ad-

ditionally, using PeerReview, correct nodes are always able to defend themselves against

false accusations. Finally, while the PeerReview system provides irrefutable evidence of a

node’s actions using hash chains of logs, it does not scale well for large systems (hundreds

of nodes) if every fault is to be detected [Haeberlen et al., 2007]. However, using probabilis-

tic guarantees PeerReview can dramatically increase scalability at the expense of relaxed

completeness guarantees. A summary of PeerReview attributes is available in Table 2.1.



2.1. ACCOUNTING AND ACCOUNTABILITY IN DISTRIBUTION SYSTEMS 19

Table 2.2: Attributes of P2P Architectures: Napster, BitTorrent and Kad
Attribute Napster BitTorrent Kad Network

Trustworthy Accounting - - -
Span Trust Domains x x x

Decentralised - - x
Data Integrity - x x

Data Provenance - - -
Scalable x x -

Content Availability x x -
Proximity Awareness - - -

Transient Nodes x x x
Inexpensive x x x
Searchable x x x

Guaranteed (Content) Control - - -
Guaranteed Quality - - -

Guaranteed Reliability - - -
Guaranteed Performance - - -

Use ISP Cache - - -
Use P2P Cache x x x
Use Multicast - - -

While systems like PeerReview propose solutions for accountability in distributed sys-

tems, P2P systems still have other challenges to overcome. A summary of attributes of P2P

architecture covered in this section is available in Table 2.2. For example, many unstructured

P2P systems e.g., BitTorrent, have difficulty locating less popular content while some search

mechanisms for structured P2P e.g., the Kad Network, can have implications for data scal-

ability, availability and persistence [Androutsellis-Theotokis & Spinellis, 2004]. Moreover,

many P2P systems are susceptible to having geographically dispersed neighbours in addition

to transient node populations joining and leaving the network. CDNs offer solutions to some

of these challenges however.

2.1.3 Content Delivery Networks (CDNs)

Accounting information is more prevalent in Content Delivery Network (CDN) systems,

which is a set of centrally managed, geographically dispersed, strategically located cache

servers that replicate and deliver popular content close to end-users. CDNs started to ap-

pear in 1998 when companies realised the benefits they offered in terms of content control,

delivery quality, reliability, scalability, performance and accounting [Pallis & Vakali, 2006].



20 CHAPTER 2. BACKGROUND AND RELATED WORK

Since then, they have become one of the most important advances in content distribution on

the Internet with Akamai alone claiming to deliver between 15%-30% of the worlds total

web traffic [F. Chen et al., 2015]. The main components of the CDN architecture include:

the content origin server, surrogate/edge servers, software for content replication, request

routing infrastructure (RRI) and logging (data collection and analysis). In the remainder of

this section, we give a brief introduction to these components (followed by examples) as they

form a key element in understanding the requirements of content providers. Moreover, they

have a direct impact on the design of the Savant framework.

Main Components

A CDN is a tree architecture with the content origin server acting as the root of the tree. Data

is pushed to surrogate/edge servers, which are located geographically close to end-users. De-

termining how many copies of content to replicate and to which servers - known as content

outsourcing - is a major challenge. There are three content outsourcing practices that CDN

systems commonly use. These include [Pallis & Vakali, 2006]: cooperative push-based out-

sourcing, non-cooperative pull-based outsourcing and cooperative pull-based outsourcing. In

cooperative push-based outsourcing the content distributor pushes content to the CDN surro-

gate servers (or edge servers) that cooperate with each other to proactively replicate content

before client requests are handled [Pathan & Buyya, 2008]. However, this is a theoretical ap-

proach not used much in practice [Pathan & Buyya, 2008][Pallis & Vakali, 2006][Passarella,

2012]. Traditionally, CDN systems have preferred to use the non-cooperative pull-based out-

sourcing approach, which redirects user requests using DNS redirection or URL rewriting.

Cooperative pull-based outsourcing is reactive, only caching content once it is requested,

but cooperates with other caches if a cache miss occurs [Pallis & Vakali, 2006]. The RRI

component transparently redirects a user’s DNS request based on using a set of metrics such

as content location, latency to server, proximity to server and surrogate server load. The fi-

nal, and arguably one of the most important components in the CDN architecture, is logging

[Aditya et al., 2012]. CDN customers depend on logging information for analytics to help

determine what content is popular, user demographics, user behaviour, and so forth. Addi-



2.1. ACCOUNTING AND ACCOUNTABILITY IN DISTRIBUTION SYSTEMS 21

tionally, content providers want to ensure CDN systems are meeting service level agreements

(SLA’s), as poor end-user QoE can have repercussions such as lower revenues and lower user

subscriptions. CDN systems also depend on logging information to help troubleshoot and

debug system and network faults, resolve security vulnerabilities and bill customers [Repan-

tis et al., 2010].

We have selected the following three CDN systems: Akamai, CoralCDN and YouTube to

illustrate how each system utilises these core CDN components and outline how accounting

and trust is provided to content providers.

Akamai

Akamai, founded in 1998 by a group at MIT as a solution to the flash crowd problem, is

now the biggest content delivery platform in the world with over 170,000 servers located in

102 countries [F. Chen et al., 2015]. Its architecture consists of a virtual overlay network of

edge servers comprising of the origin server, edge servers, mapping system (RRI), content

outsourcing (transport) system, logging infrastructure, control software and a management

portal [Nygren et al., 2010]. Most of these components (edge servers, mapping system, con-

tent outsourcing system and logging) act in accordance with full or partial content delivery

based on the non-cooperative pull-based outsourcing technique [Passarella, 2012].

Content replication information from the content outsourcing system acts as input for

RRI metrics. Additionally, edge server logs are mined for information about the server

and network performance, debugging and troubleshooting network faults, raising alarms and

billing customers. Akamai uses these logs to develop historical metrics based on server

performance and global network conditions for use in their RRI. Furthermore, Akamai’s

management portal allows customers to view analytics related to end-user demographics,

user behaviour, network QoE, and so forth [Nygren et al., 2010]. However, the amount of

logging information gathered can consume massive resources such as in Akamai’s Query

system [Repantis et al., 2010] (see Section 2.5.2). For example, in 2010 Akamai processed

over 100TB of logs per day collected from edge server’s [Nygren et al., 2010].

In contrast to Akamai’s commercial use of the non-cooperative pull-based outsourcing



22 CHAPTER 2. BACKGROUND AND RELATED WORK

technique, CoralCDN uses the cooperative pull-based outsourcing technique, which is sup-

ported by a distributed hash table (DHT) [Pathan & Buyya, 2008][Passarella, 2012].

CoralCDN

CoralCDN, is an open source academic CDN based on P2P technologies, which has been

publicly available across the PlanetLab test bed since 2004. In 2011, it was serving between

25-50 million requests per day [CoralCDN, 2011]. The system was originally designed

so that participating peers could contribute resources to the CoralCDN network. However,

due to security implications (such as data integrity and susceptibility to pollution attacks)

it continues to be run on a centrally administered trusted test bed of primarily PlanetLab

server’s [Freedman, 2010].

The architecture itself is based on three major components: an indexing layer called

Coral, HTTP proxies and DNS servers. The Coral indexing layer offers abstract improve-

ments to existing DHT systems by helping locate nearby copies of data and avoiding server

hotspots. Coral achieves this by allowing lists of pointers (i.e. a pointer to a host with a

copy of the data) to be stored with the same key across multiple hosts. These lists offer

weaker consistency because Coral stores lists of pointers to many nodes that host data in

contrast to traditional DHT systems. A traditional DHT has only one value stored per key at

each host. This technique is known as distributed sloppy hash table (DSHT) by the authors

[Freedman & Mazières, 2003]. Furthermore, locality awareness is improved across the CDN

architecture by introducing hierarchical levels of DSHT called clusters, which have a maxi-

mum desired round trip time (RTT) called a diameter [Freedman et al., 2004]. CoralCDN, in

its current implementation, uses a three-level cluster hierarchy: regional (30ms), continental

(100ms) and global (∞) [Freedman et al., 2004] and each host becomes a member of each

cluster.

The most appealing aspect of CoralCDN’s design (which we have incorporated into the

generic model in Section 3.1) is its support for P2P content distribution. However, the in-

ability to distribute content from untrusted infrastructure (due to threats to pollution, data

integrity, and so forth) limits CoralCDNs ability to utilise this resource. Furthermore, pos-



2.1. ACCOUNTING AND ACCOUNTABILITY IN DISTRIBUTION SYSTEMS 23

Figure 2.1: YouTube Architecture[adapted from [Adhikari et al., 2012]]

sibly due to CoralCDN being an academic CDN, it does not offer access to server logging

for analytics and reporting purposes. However, CoralCDN allows the origin host to track

the originator of the content request (i.e. does not interfere with absolute URL’s) to which

CoralCDN delivers the content.

In contrast to CoralCDN’s use of the cooperative pull-based outsourcing technique, YouTube

uses the non-cooperative pull-based outsourcing technique, which is supported by a dis-

tributed network of trustworthy hierarchical cache servers [Adhikari et al., 2012].

YouTube

YouTube, founded in 2005 by a group of ex-PayPal employees and acquired by Google in

2006, is a video sharing website that allows users to play videos on demand. There is no

public information available from Google about the YouTube CDN architecture, however it

was reverse engineered in a 2012 paper (architecture depicted in Figure 2.1) [Adhikari et

al., 2012]. According to [Adhikari et al., 2012], the YouTube CDN is based on three major

components: a flat video id space, multiple layers of anycast DNS hostnames that map to

geographically dispersed servers in a 3-tier cache hierarchy.



24 CHAPTER 2. BACKGROUND AND RELATED WORK

The YouTube 3-tier cache hierarchy is comprised of a physical tier (in 38 geographic lo-

cations), a secondary tier (in eight geographic locations) and a tertiary tier (in five geographic

locations) [Adhikari et al., 2012]. YouTube uses a flat 11 character string literal identifier to

uniquely identify videos e.g. ’gqGEMQveoqg’. The total collection of video ids is referred

to as the video id space [Adhikari et al., 2012]. YouTube uses a fixed mapping technique

(using consistent hashing) to map video ids in the video id space to an anycast hostname at

the physical tier that has responsibility for serving the video e.g., v1.lscache1.c.youtube.com

[Adhikari et al., 2012]. Using the anycast hostname and multiple rounds of DNS resolutions

and HTTP redirections it is possible to locate a surrogate server geographically close to the

end-user that is responsible for the video delivery. Content distributed over the YouTube

infrastructure closely follows the Pareto Principle (80-20 rule) where the top most popular

10% of viewable items is viewed 80% of the time [Cha et al., 2007]. Popular video’s (i.e.

videos with more than 2 million views) have a much higher probability of being served by

the physical tier than unpopular videos, which need to be retrieved from secondary or tertiary

tiers [Adhikari et al., 2012].

YouTube provides extensive analytics to all content providers for advertising, user en-

gagement and user demographics. However, because Google controls the entire CDN in-

frastructure used to distribute YouTube content, no content distribution metrics are made

available for user QoE or network performance to content providers.

Accounting, Accountability and Efficiency: Content Distribution Networks

Currently, centrally managed CDN infrastructures offer the best option for the production

of trustworthy accounting information by guaranteeing the integrity of the information gath-

ered. However, this CDN model for accounting is based on trust. Content providers need to

trust the CDN will deliver content with adequate quality, speed and reliability, which is ver-

ified through the provision of accounting information. Moreover, content providers need to

trust the accounting information CDNs produce because they lack non-repudiable evidence

of actions taken i.e. accountability. However, CDN vendors depend on their reputations for

providing these services to keep existing customers and attract new ones [Clark & Blumen-



2.1. ACCOUNTING AND ACCOUNTABILITY IN DISTRIBUTION SYSTEMS 25

Table 2.3: Attributes of Repeat and Compare: An Accountable CDN Architecture
Attribute Repeat and Compare

Accountability x
Public/Private Key x

Tamper-Evident Log x
Log Consistency x
Trusted Auditing x

Non-Deterministic -
Challenge/Response Protocol -

Rapid Fault Detection -
Defend Accusations x
Statistical Sample x

Centralised x

thal, 2011].

Moreover, the business model used by a CDN also determines the amount of informa-

tion it will share with content providers. For example, Akamai allows content providers to

view information such as user engagement, user QoE, advertising, user demographics and

network performance metrics [Nygren et al., 2010]. Furthermore, the Akamai Query sys-

tem gathers extensive information about distributed surrogate servers to detect system and

network anomalies, monitor system usage, raise alarms and troubleshoot problems, which is

available to Akamai staff and indirectly to Akamai customers [Repantis et al., 2010]. In con-

trast, YouTube only provide accounting information on: advertising, user engagement and

user demographics, while CoralCDN provides no accounting information at all to content

providers.

Lack of accountability i.e. the ability to establish integrity, authenticity, provenance, trust

and audit accounting information received, is also an issue for CDNs. However, Repeat and

Compare proposes a framework for providing accountability in untrusted peer-to-peer CDN

environments for static and dynamically generated content [Michalakis et al., 2007]. This

is supported by verifiers, which are randomly selected replica servers that deterministically

repeat the content generation process and compare the results with attestation records re-

ceived from the client. Attestation records provide undeniable evidence of replica server

behaviour by cryptographically binding them to content generated. Moreover, they bind

replica servers to code and external inputs used to deliver static and dynamic content. As



26 CHAPTER 2. BACKGROUND AND RELATED WORK

Table 2.4: Attributes of CDN Architectures: Akamai, CoralCDN and YouTube
Attribute Amakai CoralCDN YouTube

Trustworthy Accounting x - x
Span Trust Domains - - -

Decentralised - - -
Data Integrity x x x

Data Provenance x x x
Scalable x x x

Content Availability x x x
Proximity Awareness x x x

Transient Nodes - - -
Inexpensive - x -
Searchable x x x

Guaranteed (Content) Control x - x
Guaranteed Quality x - x

Guaranteed Reliability x - x
Guaranteed Performance x - x

Use ISP Cache - - -
Use P2P Cache - - -
Use Multicast - - -

a result, an attestation record contains inputs e.g., client requests and original content, and

execution environment information e.g., API library and configuration parameters used. At-

testation records are included with all client requests and server responses and form a chain

of accountability from the client to the server. Each client and replica server has a public

key πi and private key σi pair generated by a trusted certification authority, which is used

to digitally sign each attestation record sent. Secure authentication is fundamental to the

Repeat and Compare system and if private keys are compromised a client or replica may

be held falsely accountable for illicit actions taken. Furthermore, a list of suspected replica

servers is distributed by a centralised set of trusted verifiers or using a decentralised trust

model based on off-line trust relationships between clients and replica servers. Repeat and

Compare offers eventual detection guarantees as clients forward sample attestation records

to verifiers, which supports scalability. A summary list of Repeat and Compare attributes is

available in Table 2.3.

CDNs offer content distributors a centralised element that supports data control, integrity,

provenance, availability, scalability and gives trustworthy accounting information for content

distributed. In most cases, such as large CDNs like Akamai and YouTube, they almost



2.1. ACCOUNTING AND ACCOUNTABILITY IN DISTRIBUTION SYSTEMS 27

always guarantee quality, reliability and performance for content delivered. A summary

list of the attributes of CDN architectures covered in this section is available in Table 2.4.

However, there are also several disadvantages to using CDNs in comparison to other content

distribution architectures such as web caching, P2P, and so forth. For example, they are

expensive to deploy and maintain, generate a lot of accounting information, and many CDNs

are not close enough to the end-user to provide a quality content delivery experience [Bitar

et al., 2012][Frank et al., 2013]. Some solutions to these challenges already exist however.

For example, multi-CDN optimisers such as C3 provided by Conviva (see Section 2.5.4)

use primitive QoE metrics in order to redirect clients to the best available CDN server if

QoE problems are being encountered [Ganjam et al., 2015]. Similarly, some CDN systems

based on the non-cooperative pull-based outsourcing technique (e.g., Akamai and YouTube)

can provide at least some content delivery over the last mile due to peering agreements and

cache servers located inside ISP networks (see Network CDNs in Section 2.1.6). Moreover,

hybrid CDN-P2P systems offer solutions to some of these challenges.

2.1.4 Hybrid CDN-P2P

In a hybrid CDN-P2P architecture, the CDN edge server can use the resources of P2P peers

such as CPU, memory, storage and bandwidth [Yin et al., 2009] while acting as a regular

server to clients not participating in P2P distribution, acting as a tracker (a centralised server

that supports file downloads) for new P2P peers joining the network and acting as a seed

(a peer who has a complete copy of a file) for P2P peers already on the P2P network [Yin

et al., 2010]. Research has shown that using the resources of peers in this way can reduce

the load on edge servers by up to two-thirds [C. Huang et al., 2008]. For example, PPLive

- a P2P video on demand (VoD) streaming system popular in China - reports serving 1.5

million users each with a 400 kbps stream using less than 10 Mbps server bandwidth [Hei

et al., 2007]. Similarly, Akamai NetSession (Akamai’s hybrid CDN-P2P system) reports

offloading 70%-80% of traffic to peers from CDN infrastructure without any impact on QoE

[Zhao et al., 2013].

There are two types of P2P streaming models used by CDN-P2P: tree-based and mesh-



28 CHAPTER 2. BACKGROUND AND RELATED WORK

based. In tree-based P2P, streaming peers are organised into groups that construct an over-

lay spanning tree for efficient data distribution, which is typically self-organising and self-

improving [Chu et al., 2002]. The tree-based streaming model delivers data to peers with low

delay and there is a reduction in packets travelling across the network compared to unicast or

mesh based P2P. Examples of tree-based CDN-P2P system include: PeerCast, End System

Multicast (ESM) [ESM, 2007] and SplitStream [Castro et al., 2003].

Mesh-based P2P streaming inspired by BitTorrent’s file swarming process, receives streams

from multiple parent peers by requesting (pulling) advertised (available) chunks of data. It

can also send streams to multiple child peers [Magharei et al., 2007]. Mesh-based P2P is

robust to peers joining and leaving with fair uploading but needs to maintain a large buffer

cache in case of late arrival of video segments [Yin et al., 2010]. Examples of mesh based

CDN-P2P system include PPLive [Y. Huang et al., 2008], AntFarm [R. S. Peterson & Sirer,

2009] and Akamai NetSession [Zhao et al., 2013]. A hybrid streaming approach combines

the push tree-based model with the pull mesh-based model, which leads to efficient delivery

with robustness to churn [Yin et al., 2009]. LiveSky [Yin et al., 2010] is example of the

hybrid approach.

Four hybrid CDN-P2P streaming systems: ESM [ESM, 2007], SplitStream [Castro et

al., 2003], PPLive [Y. Huang et al., 2008] and LiveSky [Yin et al., 2010], which demonstrate

tree-based, mesh-based and the hybrid streaming approach to content delivery are discussed

in the remainder of this section. Moreover, we briefly discuss SAAR [Nandi et al., 2007],

a control overlay for cooperative endsystem multicast (CEM) systems. Finally, we identify

what accounting information is collected to support the content distribution process.

End System Multicast (ESM) and SplitStream

The ESM research project, started in 1999 at Carnegie Mellon University [ESM, 2007], pio-

neered research into real-time P2P overlay multicast streaming. ESM is not currently imple-

mented in any production environments, however some of the ESM team went on to found

Conviva (which develops tools to support online video broadcast) in 2006 [ESM, 2007].

ESM, which is modelled on multicast IP, uses end-hosts to provide support for packet repli-



2.1. ACCOUNTING AND ACCOUNTABILITY IN DISTRIBUTION SYSTEMS 29

cation and group membership instead of using dedicated IP infrastructure [Chu et al., 2002].

Research has shown that ESM can provide a 14-fold reduction of packets travelling over the

same link when compared to unicast traffic while using about twice as much bandwidth as

multicast IP [Chu et al., 2002].

New end nodes join an ESM broadcast by contacting the broadcast source, which replies

with a random list of nodes currently participating in the overlay communication. Each node

maintains a partial list of nodes in the network for future parent selection, and periodically

learns about new members using a gossip protocol [J. Liu et al., 2008]. This list includes

the path (parents, grandparents, and so forth) back to data source, which is used to prevent

routing loops by enabling nodes to notify parents that they are descendants during probing.

A host joining the group (say host "B"), runs a parent selection algorithm that probes hosts B

knows about. These hosts reply with their current throughput and delay from source, whether

they are saturated, whether they are a descendant of B and based on the response, B is able

to determine the RTT to the source [Chu et al., 2004]. The new host B then selects a parent

with the best throughput and least delay. The parent selection algorithm helps construct an

overlay tree (tree-based P2P) rooted at the source that is optimised primarily for bandwidth

and secondarily for delay, which is self-organising, incrementally self-improving (as new

network information becomes available) and adaptive to change [Chu et al., 2002].

However, ESM and similar tree-based P2P streaming systems use a single multicast tree

when distributing content [Castro et al., 2003]. Moreover, they depend on a small number of

peers for content distribution and can perform poorly when peer parents leave the system due

to packet loss. However, the SplitStream system improves on these problems by facilitating

the creation of efficient and scalable multi-trees (multicast trees) that reduce the bandwidth

demands on individual peers. Multi-trees split the content into independent disjoint stripes of

equal size and balance the forwarding load between participating peers [Castro et al., 2003].

Stripes are content encoded using techniques such as Multiple Description Coding (MDC),

which splits content into multiple prioritised descriptions. Content can be reconstructed

from any subset of stripes received at participating peers. The more stripes received the

more video quality improves. SplitStream is implemented using the Pastry DHT [Lua et



30 CHAPTER 2. BACKGROUND AND RELATED WORK

al., 2005] and Scribe [Castro et al., 2002]. Pastry is a structured self-organising peer-to-

peer overlay network based on distributed hash tables with proximity awareness [Lua et

al., 2005]. Scribe is a decentralised application-level multicast system built upon Pastry

with resource discovery that can support large groups and an arbitrary number of members

with highly dynamic membership [Castro et al., 2002]. This combination of technologies

enables the SplitStream algorithm to construct multi-tree forests in a decentralised, scalable,

efficient and self-organising environment facilitating increased fault tolerance, path diversity

and forwarding load with low delay and link stress in comparison to ESM.

PPLive

The PPLive system is a high quality P2P protocol and application for streaming live video

and VoD - developed in 2004 at Huazhong University of Science and Technology in China. It

was commercialised in 2005 into a popular P2P based IPTV application. When a peer joins

the PPLive network, it interacts with several main centralised architectural components using

a gossip protocol (over UDP), which include: a bootstrap server, a content index server, a

tracker server (to find local peers) and a logging server [Y. Huang et al., 2008]. Once a peer

finds local peers sharing the requested content, it can also begin participating in file sharing

using the mesh-based P2P streaming model. PPLive uses its TV Engine buffer to reassemble

received video chunks, distribute chunks to other peers, reduce download rate variations

in the P2P network and feed the media buffer for video playback. To compensate for the

distribution of time-shifted content in the PPLive VoD system, peers contribute additional

disk storage to the TV Engine buffer (e.g., 1GB [Y. Huang et al., 2008]). PPLive initially

used TCP for streaming, but changed to UDP in 2007 [Y. Liu et al., 2009].

The PPLive system collects metrics that enable the content provider to determine the

health of the PPLive system. In AntFarm, which is also a mesh based P2P system, a cen-

tralised coordinator collects similar metrics and utilises them to optimise bandwidth alloca-

tion to reduce average download latencies across all peers [R. S. Peterson & Sirer, 2009].

Furthermore, SwarmServer [Sharma et al., 2014] analyses the benefits of coordinator (or

controller) performance in mesh based P2P protocols by comparing similar metrics gathered



2.1. ACCOUNTING AND ACCOUNTABILITY IN DISTRIBUTION SYSTEMS 31

across a broad range of client-assisted content delivery systems. The LiveSky and SAAR

systems gathers similar accounting information but in a hybrid streaming environment.

LiveSky and SAAR

LiveSky is a commercially deployed CDN-P2P live streaming system developed by Chi-

naCache. The LiveSky CDN-P2P architecture is comprised of [Yin et al., 2010]: a man-

agement centre; service nodes that distribute content to end hosts; end hosts that are either

peer-to-peer nodes or legacy client-server nodes. LiveSky utilizes a hybrid tree-based and

mesh-based streaming service over UDP for P2P content distribution [Yin et al., 2010]. Ser-

vice nodes and peer nodes both aggregate and submit summarised logs regularly to a log

server in the management centre. Information gathered includes [Yin et al., 2009]: users

joining and leaving the system, bytes uploaded and downloaded, list of peer interaction,

playback quality and buffer fill-up time.

SAAR [Nandi et al., 2007], a control overlay for cooperative endsystem multicast (CEM)

systems, gathers similar metrics to LiveSky but separates data dissemination and control into

separate overlay networks. Consequently, the control overlay can be shared among multiple

data plane structures (e.g., tree, multi-tree, mesh-based), each distributing different content

or channels (e.g., IPTV). Participating peers in each data overlay or group maintain a set of

state variables and proactively send updates to the control overlay. Updates include: peer

forwarding capacity, current load, stream loss rate, tree-depth, and so forth. Group variables

are aggregated by the control plane, which is managed by a spanning-tree rooted at a random

member of the control overlay. Utilising aggregate system state information, SAAR can

support efficient peer selection using an anycast primitive, which takes a constraint and an

objective function as arguments. For example, a constraint might include all nodes with

spare forwarding capacity, while the objective function might seek to limit distance from

parent nodes. Using this methodology, SAARs offers improved content delivery, reduced

channel-switching time and reduced peer overhead while supporting multiple different data

plane structures for content dissemination.



32 CHAPTER 2. BACKGROUND AND RELATED WORK

Accounting, Accountability and Efficiency: Hybrid CDN-P2P Systems

Based on our analysis, hybrid CDN-P2P systems typically gather accounting information on

server configuration and performance, network performance, user engagement and user QoE

[Yin et al., 2009][Y. Huang et al., 2008]. This information can tell a content publisher about

each participating host, the current overlay tree, the bandwidth of each overlay link, current

group membership and host performance [Chu et al., 2004]. Information gathered can also

be used to calculate additional metrics. For example, rebuffering rate i.e. the number of

clients that go into a buffering state per minute, start-up delay, aggregate quality indices, and

so forth [Yin et al., 2009]. Consequently, this information enables the CDN-P2P systems to

select the best service node for each peer, facilitates localised P2P interaction, keeps CDN

costs to a minimum while ensuring a good QoE for end-users.

To our knowledge none of these systems utilise accountability when collecting account-

ing information. However, the Reliable Client Accounting (RCA) system [Aditya et al.,

2012] proposes an accountability framework for hybrid CDN-P2P systems adopting simi-

lar principles to PeerReview [Haeberlen et al., 2007] by maintaining a hash chain of logs

between communicating peers (e.g., log entry e j = (h j,s j, t j,c j)). However, it differs in sev-

eral fundamental ways. First, the CDN infrastructure can audit logs in order to check for

integrity, consistency and plausibility i.e. modelled as an abstract state machine. This is

in contrast to PeerReview, which uses witnesses or peer infrastructure to audit logs based

on deterministic state machine. Furthermore, RCA’s focus is on reliable client accounting

rather than fault detection. Additionally, trusted RCA infrastructure use mechanisms to con-

trol client paring, quarantining problematic nodes (using statistical anomaly detection) and

issue public key πi and private key σi pairs to nodes. Moreover, RCA enforces resource

limits with the intention of constraining/minimising the impact of different types of attack

(e.g., Sybil). This information can also be used during auditing to verify clients are perform-

ing as expected. Additionally, RCA’s tamper-evident logs are designed with the intention of

reducing processing overhead on CDN infrastructure. Consequently, each client maintains

a hash sub chain along with one pair of authenticators α i
j = (s j,h j,σi(s j||h j)) for each peer

it communicates with. This represents a commitment of log integrity to the latest log entry



2.1. ACCOUNTING AND ACCOUNTABILITY IN DISTRIBUTION SYSTEMS 33

Table 2.5: Attributes of RCA: An Accountable Hybrid CDN-P2P Architecture
Attribute RCA

Accountability x
Public/Private Key x

Tamper-Evident Log x
Log Consistency x
Trusted Auditing x

Non-Deterministic x
Challenge/Response Protocol x

Rapid Fault Detection -
Defend Accusations x
Statistical Sample x

Centralised x

and hash chain state (signed by i’s private key σi). All RCA authenticators are cumulative

as each message or acknowledgement can be used to verify all pervious log entries. This is

in contrast to PeerReview, which maintains a single linear log for all communication-taking

place between peers.

Enforcing resource limits in RCA is achieved by issuing resource certificates to clients

joining the network based on physical attributes. Attributes bound to clients include: public

key πi, client GUID Gi, maximum throughput Ci (assigned based on a bandwidth test), IP

address Ai, and expiration time Ti i.e. several hours. The issued certificate is signed by

the RCA CDN infrastructures private key σP and are reissued when they expire or when

the client IP address changes. As a result, a certificate has the following properties: τi =

σP(πi,Gi,Ci,Ai,Ti). The certificate τi issued to a client is sent back to CDN infrastructure

along with tamper-evident logs that are signed by the nodes private key σi and a set of

authenticators A j, which provide non-repudiable evidence of a node’s actions. Once auditing

is complete, logs can be checked for consistency, plausibility and statistical anomalies. A

summary of RCA’s attributes is available in Table 2.5.

Hybrid systems have several limitations including not being able to utilise cache re-

sources or multicast infrastructure in ISP networks. Moreover, they have issues producing

trustworthy accounting information. Fortunately, the RCA system offers solutions to the

reliable accounting problem. A full summary of hybrid CDN-P2P architecture attributes

covered in this section is available in Table 2.6. Transparent cache systems, network CDNs



34 CHAPTER 2. BACKGROUND AND RELATED WORK

Table 2.6: Attributes of Hybrid CDN-P2P Architectures: ESM, SplitStream, PPLive,
LiveSky and SAAR

Attribute ESM SplitStream PPLive LiveSky SAAR
Trustworthy Accounting - - - - -

Span Trust Domains x x x x x
Decentralised - - - - -
Data Integrity - - - - -

Data Provenance - - - - -
Scalable x x x x x

Content Availability x x x x x
Proximity Awareness - x x x x

Transient Nodes x x x x x
Inexpensive x x x x x
Searchable x x x x x

Guaranteed (Content) Control x x x x x
Guaranteed Quality x x x x x

Guaranteed Reliability x x x x x
Guaranteed Performance x x x x x

Use ISP Cache x x x x x
Use P2P Cache x x x x x
Use Multicast x x x x x

and CDN Interconnection standardisation efforts propose solutions some of these challenges.

2.1.5 Transparent Caching

Similar to a web cache, the transparent cache is an ISP managed distributed network of

cache servers located close to end-users that cache and deliver the most popular web con-

tent. However, they maintain the end-to-end relationship of traditional client-server commu-

nication. ISPs have had to deal with the rapid growth in so-called over-the-top (OTT) data

traffic instituted by CDNs and services like YouTube and Netflix without yielding any addi-

tional revenue for the network operator. Transparent caching offers a partial solution to the

bandwidth burden of OTT traffic by caching content close to end-users. For example, AT&T

stated in a 2011 IP&TV forum presentation that content cached close to end-users needs to

travel less distance (about 90% less) across a network than content peered from an upstream

CDN [Skytide, Decemeber 2012].

A transparent cache works by redirecting web traffic to a cache server using deep packet

inspection (DPI), Policy Based Routing (PBR) and the Border Gateway Protocol (BGP)



2.1. ACCOUNTING AND ACCOUNTABILITY IN DISTRIBUTION SYSTEMS 35

without the need to configure a user’s web browser [Barish & Obraczke, 2000]. Transparent

caching has been an area of research since the early 90’s, but previous transparent caches

failed to maintain sufficient state for some application logic, which resulted in reduced func-

tionality for users such as during user login and delivering device specific content e.g., iPad,

iPhone, Nokia Lumia, and so forth. Recent improvements to transparent caching seek to

maintain the end-to-end client-server relationship, which has the added benefit of always

delivering fresh content, facilitating copyright compliance, and introducing no security vul-

nerabilities while being transparent to the user and the content provider.

There are two types of new transparent cache architecture: in-line and out-of-band. The

in-line transparent cache uses DPI to inspect all data requests and responses, replying with

cached data or caching requested data for later reuse. PeerApp is an example of an in-line

transparent cache system. The out-of-band transparent cache is located off the main network

and only certain types of traffic such as CDN and P2P are redirected to it. Examples of

out-of-band transparent cache systems include OverSi and Quilt. These types of transparent

cache are able to handle multiple forms of data such as HTTP, Real-Time Messaging Protocol

(RTMP), BitTorrent and automatically update themselves to store popular content.

PeerApp: UltraBand

PeerApp’s UltraBand provides a caching solution for the delivery of virtually any service or

application including OTT video, software downloads, web browsing and P2P content deliv-

ery. UltraBand’s architecture consists of a cache engine, which is used to detect repeatedly

requested content; storage disks, which hold the content and a management centre, which is

used for reporting, configuration and management [PeerApp, 2014b]. UltraBand uses DPI

to intercept all traffic destined for the Internet and serves the requested content locally if it

is available. One of the key features of UltraBand is that it maintains the relationship with

the content provider by waiting for them to confirm delivery before serving the requested

content. This technique, known as prefix-based web caching, compares the first N-bytes (the

prefix-key) and the content-length of a requested cacheable, dynamic or un-cacheable web

object with the prefix-key and content-length of cached web objects [Woo et al., 2013]. If



36 CHAPTER 2. BACKGROUND AND RELATED WORK

they both match the download is cancelled and instead delivered from the local cache. This

enables UltraBand to comply with US (DMCA 1998) and EU (E-Commerce Directive 2000)

digital protection laws as the application business logic is not interfered with and content is

always up-to-date.

Oversi’s: OverCache

Oversi’s transparent cache solution OverCache, provides caching for OTT video and P2P

content delivery. OverCache maintains the client-server relationship with the CDN content

provider for content requests but delivers the video file from a local cache server using the

same prefix-based web caching technique as PeerApp [Woo et al., 2013]. OverCache consists

of several architectural components including: a control plane, which offers a centralised

view of subscriber demands; a data plane, which includes a network of distributed content

caches; a management plane, which offers centralised management for the whole system.

The OverCache control plane intercepts traffic using DPI, PBR and BGP destined for

popular CDN and P2P networks and diverts packets to the data plane cache servers. The

data plane collects and stores HTTP and P2P traffic and provides better QoE to end-users

when delivering requested content.

Accounting, Accountability and Efficiency: Transparent Cache Systems

The transparent cache systems neglect to provide any accounting information to the content

distributor or content provider. They also fail to provide any accountability information for

content distributed. Moreover, a transparent cache’s inability to handle many streaming pro-

tocols or encrypted traffic results in just 22%-34% of bandwidth savings [Woo et al., 2013].

However, the transparent cache system does offer many desirable attributes for content dis-

tribution. These include: cheap resources close to end users in ISP networks that offer low

latency, high performance, large cache resources and support content control. A summary of

transparent cache architecture attributes covered in this section is available in Table 2.7.

In combination with CDN Interconnection (CDNI), network CDN (NCDN) and virtu-

alisation architectures, transparent cache software and infrastructure are evolving towards a



2.1. ACCOUNTING AND ACCOUNTABILITY IN DISTRIBUTION SYSTEMS 37

Table 2.7: Attributes of Transparent Cache Architectures: UltraBand and OverCache
Attribute UltraBand OverCache

Accounting - -
Span Trust Domains x x

Decentralised x x
Data Integrity - -

Data Provenance - -
Scalable x x

Content Availability x x
Proximity Awareness x x

Transient Nodes - -
Inexpensive x x
Searchable x x

Guaranteed (Content) Control x x
Guarantee Quality x x

Guarantee Reliability x x
Guarantee Performance x x

Use ISP Cache x x
Use P2P Cache x x
Use Multicast - -

fully featured framework for content distribution [PeerApp, 2014a]. This is explored further

in the next section.

2.1.6 Network CDN, CDNI and Virtualisation

The following architectures, which each have desirable attributes but different underlying

objectives are evolving towards a fully featured framework of content distribution. This can

be attributed to network CDNs (NCDNs), CDNI standards and the IETF Network Function

Virtualisation (NFV) framework. In the remainder of this section, we give a brief overview

of NCDNs, CDNI and virtualisation standards. Furthermore, we give a brief overview of

how PeerApp’s transparent cache system has evolved to support NFV. Finally, we outline the

provision for accounting and accountability in these architectures.

Network CDN (NCDN)

A network CDN (NCDN) is a CDN deployed and managed inside an ISPs network at the

network’s point of presence (PoPs) i.e. where subscribers connect to the Internet. There are

two types of NCDN: managed and licensed [Sharma et al., 2013]. In a managed NCDN,



38 CHAPTER 2. BACKGROUND AND RELATED WORK

a CDN provider such as Akamai or the Google Global Cache place their own servers at

PoPs inside the ISP’s network, which they maintain on behalf of the ISP. In contrast, a CDN

provider such as Akamai or EdgeCast license CDN software to ISPs enabling them to deploy

and manage their own CDN. Consequently, ISPs can determine where to place content, route

and redirect user requests. This enables NCDNs to enhance end-user QoE in comparison to

traditional CDNs and reduce the traffic on the backhaul and core network. For example,

recent research indicates that a mobile operator managed CDN with optimal positioning of

cache servers in their network can reduce content retrieval costs by more than 50% when

80% of content is cached in the CDN close to users [Spagna et al., 2013].

There has been a lot of recent research in this area. For example, several projects in-

vestigate content placement, routing and redirection strategies [Spagna et al., 2013][Sharma

et al., 2013]. Moreover, several projects are investigating NCDN and virtualisation in areas

of resource sharing and providing a dynamic and scalable architecture that is easily man-

aged [Jain & Paul, 2013][ETSI, 2013]. However, there are still outstanding challenges with

regards to accounting and accountability, controlling content, request routing and sharing

metadata between upstream and downstream CDNs. Consequently, interconnection between

independent CDNs is an area of active research, which try to address many of these chal-

lenges.

CDNs and Interconnection

The aim of the various on-going CDNI standardisation efforts (IETF CDNI [L. Peterson et

al., 2014]; ETSI Media Content Distribution (MCD) and Telecommunications and Internet

Converged Services and Protocols (TISPAN) CDNI [ETSI, 2011]; and ATIS Cloud Services

Forum (CSF) [ATIS, June 2011]) is to overcome many of the shortcomings of existing archi-

tectures by establishing a model for communication between separately administered CDNs.

A CDNI standard will enable an authoritative upstream CDN to utilise the infrastructure of a

standalone CDN that can offer the best service for content distribution. This involves defin-

ing how content is to be added, updated, deleted, pushed, pulled, converted (conversion or

adaptation), blocked (geo-blocking), logged, and so forth between one or multiple CDNs.



2.1. ACCOUNTING AND ACCOUNTABILITY IN DISTRIBUTION SYSTEMS 39

Utilising CDNI infrastructure in this way will help reduce content delivery costs, facilitate

better quality of experience for end-users and increase delivery robustness for network opera-

tors and CDN systems [Bitar et al., 2012]. Because the primary goals of each standardisation

effort are the same, we focus on IETF’s CDNI standardisation effort as a sample illustration

of CDNI architecture.

IETF Content Distribution Network Interconnection (CDNI)

The IETF CDNI standardisation effort was established in 2011 with the intention of provid-

ing a model for CDN interconnection to industry, which develops on guidelines and require-

ments gathered by the IETF Content Internetworking (CDI) group [Day et al., 2003]. The

CDNI model specifies interfaces and functionality for [Bitar et al., 2012][L. Peterson et al.,

2014]: a control interface, a request routing interface, a metadata interface and a logging

interface. The CDNI control interface facilitates CDN communication by helping intercon-

nected CDNs with initial bootstrap, agreeing what logging information to share, purging old

content, updating new content, and so forth. The request routing interface ensures the user

is redirected to the correct downstream CDN for service delivery. The metadata interface

enables the downstream CDN to request metadata information e.g., actor, genre, rating, con-

tent resolution, aspect ratio, and so forth, from the upstream CDN [Bitar et al., 2012]. The

logging interface facilitates the distribution of logging information between interconnected

CDNs for billing, reporting and analytics purposes.

A major challenge for the CDNI group is the provision of an adequate solution for the

sharing of logging information between CDNs while maintaining log integrity. Logging

information is used by CDNs to charge content providers and perform analytics related to

system and network performance, troubleshoot issues, track audiences and determine quality

of service (QoS) to end-users. For example, an upstream CDN depends on these logs to en-

sure the user achieves adequate QoS and that SLA targets were achieved by the downstream

CDN. However, a downstream CDN may want to conceal system outages. Additionally, a

downstream CDN may want to hide the topology of their network, the number of distribution

servers and their location. Therefore, some filtering or obfuscation of the logging informa-



40 CHAPTER 2. BACKGROUND AND RELATED WORK

tion is required by CDNs before sharing logs, but not enough to conceal critical information.

The question of how to filter logs while maintaining their integrity remains unanswered by

the CDNI architecture. One of the suggested solutions involves utilising a trusted third party

CDN to filter the logs [L. Peterson et al., 2014].

Virtualisation

In addition to using NCDN principles and infrastructure and CDNI standards, CDNs are

utilising virtualisation services inside ISP networks for content distribution. In these en-

vironments CDNs relinquish control over physical computation resources to ISPs with the

objective of being closer to end-users (i.e. subscribers) so that server delay and network

traffic are reduced. Moreover, virtual servers can be allocated in hours or minutes in differ-

ent locations in an ISPs network depending on end-user demands, application requirements

and resource availability [Frank et al., 2013]. For example, the Network Platform as a Ser-

vice (NetPaaS) framework supports CDN-ISP collaboration by allowing CDNs to expand or

shrink virtual server resources inside ISP networks on-demand [Frank et al., 2013].

Furthermore, the IETF Network Function Virtualisation (NVF) framework advocates

evolving virtualisation technology to combine networking hardware functions in software

that can be run on standard high volume servers, switches and storage infrastructure [ETSI,

2013][Mijumbi et al., 2016]. This results in reduced power consumption, service innovation

and automation, operational efficiencies, manageability, flexibility and efficiencies for ISP’s,

content providers and content distributors [ETSI, 2013][Jain & Paul, 2013]. For example,

these principles have been utilised recently by transparent cache providers (e.g., PeerApp)

and CDN providers (e.g., EdgeCast and Limelight) to distribute high quality video (with 4K

(4000 pixel) resolution) reliably to end users while reducing costs and network traffic and

increasing end-user QoE [PeerApp, 2014a].



2.1. ACCOUNTING AND ACCOUNTABILITY IN DISTRIBUTION SYSTEMS 41

Table 2.8: Attributes of NCDN, CDNI and Virtualisation Architectures
Attribute NCDN CDNI Virtualisation

Trustworthy Accounting - - x
Span Trust Domains x x x

Decentralised x x -
Data Integrity - - -

Data Provenance - - -
Scalable x x x

Content Availability x x x
Proximity Awareness x x x

Transient Nodes - - -
Inexpensive x x x
Searchable x x x

Guaranteed (Content) Control x x x
Guaranteed Quality x x x

Guaranteed Reliability x x x
Guaranteed Performance x x x

Use ISP Cache x x -
Use P2P Cache - - -
Use Multicast - - -

Accounting, Accountability and Efficiency: NCDN, CDNI and Virtualisation Environ-

ments

NCDN, CDNI and virtualisation architectures offer cheap mechanisms of distributing con-

tent with guaranteed performance, quality, reliability, and so forth. Additionally, content

control is maintained by the content provider. These environments can also collect all ac-

counting information, which is shared with content providers. However, they do not provide

accountability capabilities to track and audit file history, integrity or provenance of logging

information produced for physical or VM servers used [Ko et al., 2011]. Moreover, they

cannot utilise P2P or multicast infrastructure. A summary of architecture attributes covered

in this section is available in Table 2.8.

In environments where the customer does not directly control the physical infrastructure,

it can be difficult to determine who is responsible, customer or NCDN/cloud provider, for

problems encountered in the absence of accountability [Haeberlen, 2010]. Consequently

these environments are susceptible to abuse, accidental faults, malicious users, software

bugs, data loss, outages, and so forth, which impacts user adoption [Haeberlen et al., 2010].

However, several proposals outline the challenges and requirements for accountability in



42 CHAPTER 2. BACKGROUND AND RELATED WORK

these environments [Ko et al., 2011][Haeberlen, 2010]. For example, a basic log primitive

called AUDIT(A,S, t1, t2) (i.e. an agreement A for service S during time interval t1...t2)

could be offered [Haeberlen, 2010]. This primitive could be invoked by a customer to de-

tect and provide non-repudiable evidence of faults, which can be verified independently by

a third party.

For example, the accountable virtual machine (AVM), which is an ordinary virtual ma-

chine (VM) with accountability capabilities, uses a similar log entry (e.g., ei = (si, ti,ci,hi)).

It records non-repudiable information about software running on the VM that can be audited

by replaying it against a VM reference copy [Haeberlen et al., 2010]. AVM uses similar prin-

ciples to PeerReview’s tamper-evident logging [Haeberlen et al., 2007], which is extended

to add non-deterministic asynchronous inputs (such as virtual hardware interrupts, mouse

clicks, and so forth) from the VM instance. All application inputs, outputs, non-deterministic

events and tamper-evident logs are maintained by an accountable virtual machine monitor

(AVMM) process that runs in the VM. An authenticator, which is a commitment to log in-

tegrity, is attached to all outgoing messages: ai := (si,hi,σ(si||hi)). Consequently, authenti-

cators can be used as verifiable evidence that the log has been tampered. In order to perform

log auditing and replay in AVM, a copy of the tamper-evident log and authenticators pro-

duced during the execution are required. Additionally, the original software image, to replay

the whole log, or a snapshot of the virtual machine state, to replay the log from a log seg-

ment, is required. Authenticators are verified against log segments. If this step succeeds the

log is genuine. Furthermore, the segment is replayed on the reference software or snapshot

to check whether or not the execution described by the segment matches the events in the

tamper-evident log [Haeberlen et al., 2010]. These tools allow users to detect faults, iden-

tify faulty nodes and produce non-repudiable evidence of a VM’s actions. AVM could be

extended to provide evidence of time for SLAs by including precise program timing during

replay [A. Chen et al., 2014]. A summary of AVM attributes is available in Table 2.9.

VMs have additional levels of complexity in comparison to physical servers if tracking

the VM to physical server mapping is required. These include [Ko et al., 2011]: links be-

tween the VM and physical machine operating system; VM location and physical machine



2.1. ACCOUNTING AND ACCOUNTABILITY IN DISTRIBUTION SYSTEMS 43

Table 2.9: Attributes of AVM: An Accountable Virtual Machine Architecture
Attribute PeerReview

Accountability x
Public/Private Key x

Tamper-Evident Log x
Log Consistency x
Trusted Auditing x

Non-Deterministic x
Challenge/Response Protocol -

Rapid Fault Detection -
Defend Accusations x
Statistical Sample -

Centralised x

location; how files are written in VM and physical machine memory. Current systems, such

as AVM [Haeberlen et al., 2010], provide accountability for the VM instance only, not phys-

ical server to VM mapping.

2.1.7 Summary

Many of the architectures discussed in this section offer desirable attributes for efficient con-

tent distribution such as multicast, caching, using distributed resources, and so forth. How-

ever, a content distribution architectures successful adoption depends on the requirements

of content providers, ISPs and end-users related to mobility, security, efficiency, cost, trust,

privacy, accounting, accountability, and so forth. In this section, we observed that content

providers primarily utilise content distribution infrastructure that offers extensive accounting

and accountability information for the content distribution process e.g., fixed infrastructure

CDNs. This observation forms the basis of our hypothesis, which states that the level of

adoption and utilisation of a content distribution architecture in commercial environments

relies on the level of content accounting and accountability they offer. Combining this ob-

servation with the information centric networking (ICN) future Internet paradigm, which

utilises many of the attributes discussed in this section for efficient content distribution, can

lead to a scalable, trustworthy, reliable, accounting and accountability framework for content

distributed in Trusted Infrastructure and Untrusted Infrastructure environments.



44 CHAPTER 2. BACKGROUND AND RELATED WORK

2.2 Information Centric Networking (ICN)

The primary objective of the ICN paradigm is to identify the limitations of the current Inter-

net architecture and propose solutions for the future Internet [Xylomenos et al., 2014]. These

limitations include [Xu et al., 2006]: poor feedback and accountability; lack of data integrity,

reliability and trust; mobility challenges; bad security; inefficient caching and mirroring; un-

necessary data retransmissions and network traffic; network congestion; high distribution

costs; poor content availability; and lack of user privacy. This is achieved by treating names

or identifiers such as content, services and devices as first-class citizens. Key ICN design

principles include: routing, caching, mobility, security, content protection, trust, privacy and

accountability. ICNs are being actively investigated by many projects funded by the National

Science Foundation (NSF) in the USA and the European Commission in the EU [Venkatara-

mani et al., 2014][Han et al., 2012][Zhang et al., 2010][Trossen et al., 2008][Trossen, 2011].

ICNs naturally support the opportunistic caching of self-verifying content in the network

offering increased data availability, less bandwidth demands, reduced origin server load and

better QoS for content delivery [Fayazbakhsh et al., 2013]. For example, the MultiCache

ICN architecture demonstrated traffic reductions of between 53%-62% for inter-domain and

intra-domain traffic and better download times (over 62% lower) in comparison to BitTorrent

P2P content distribution [Katsaros et al., 2011]. Caching can take place on-path i.e. directly

in the path of network traffic such as Named Data Networking (NDN) (NDN) [Zhang et al.,

2010], or off-path i.e. available from an off-path cache server such as Network of Information

(NetInf) [Ahlgren et al., 2012]. On-path caching works in conjunction with name-based

routing i.e. a name is looked up in a routing table and then forwarded towards the relevant

data store. Data can be stored along the reverse request path in a router cache (e.g., NDN). In

off-path caching, data is resolved to a location and data availability announced using routing

protocols, which can then be resolved by a name resolution system (e.g., NetInf).

In the remainder of this section, we briefly describe several of the main ICN architectures

including Data-Oriented (and Beyond) Network Architecture (DONA), Publish-Subscribe

Internet (PSI), Network of Information (NetInf), Named Data Networking (NDN), eXpres-

sive Internet Architecture (XIA) and MobilityFirst.



2.2. INFORMATION CENTRIC NETWORKING (ICN) 45

2.2.1 A Data-Oriented (and Beyond) Network Architecture (DONA)

The Data-Oriented Network Architecture (DONA) was proposed by a research team at UC

Berkeley in 2007. It was the first ICN architecture to propose a clean-slate redesign of Inter-

net naming and name resolution by advocating an approach based around flat-namespaces

for content, services, and so forth [Koponen et al., 2007]. These flat-namespaces take the

following form: <P:L>, where P is a cryptographic hash of the principal’s public key where

the principal represents a host, domain, person, organization, and so forth, and L represents

the label or human readable hierarchical name [Ghodsi et al., 2011][Koponen et al., 2007].

Every principal must be associated with a public-private key pair and every datum, service,

host, domain, and so forth must be associated with a principal [Koponen et al., 2007]. DONA

proposes that data is named in the following format [Ghodsi et al., 2011]:

<data, P, L, metadata, signature>

The data received in this format is self-certifying and can be verified as having come

from the principal by checking that the public key hashes to P and the key generated the

signature, which associates the object with the name [Koponen et al., 2007].

DONA uses resolution handlers (RHs), which are servers located within an autonomous

system to identify and locate data. There is at least one RH in each autonomous system.

Additionally, they are interconnected as an overlay over the Internet to RHs in Tier 1 and

peering autonomous systems supporting a hierarchical name resolution service [Xylomenos

et al., 2014]. The RH’s are aware of data location on a network due to REGISTER(P:L) mes-

sages, which act similar to link state advertisements (e.g., OSPF). These messages are sent

to RHs by content publishers (i.e. the principal). Moreover, RHs propagate these messages

to parent and peering autonomous system domains. Tier 1 autonomous systems are aware of

all registrations in the entire network [Xylomenos et al., 2014].

A client seeking data will issue a FIND(P:L) or FIND(*:L) message (where * means

any purveyor) to determine the location of an object named <P:L>or <*:L>. The RH’s will

route this request to the most appropriate copy of the data. RH’s use longest prefix matching

on <P:L>or <P>or <L>to yield the entry, which determines the location of data. Once a

FIND record has been resolved by a RH, a standard transport-level TCP response ensues and



46 CHAPTER 2. BACKGROUND AND RELATED WORK

data is routed using normal IP routing and forwarding mechanisms [Koponen et al., 2007].

Moreover, mobility is supported by clients simply issuing a new FIND request from their

next location [Xylomenos et al., 2014].

DONA supports both on-path and off-path caching. If a RH wants to keep a cache of

the data it needs to change the FIND source address to be its own address. This ensures

that the data will traverse this RH on the return journey to the client. The RH cache can

now serve future FIND requests for this data. Once an RH has a copy of the content, it can

advertise this content using REGISTER(P:L) to other RH’s on the network, assuming that

the machine is authorized to service this content. DONA also provides an UNREGISTER

command to notify RH’s of expired data or when a mobile publisher has moved location

(before re-register), which will be relayed to other RH’s [Xylomenos et al., 2014]. If any

client in the system or autonomous system cannot service a FIND request, an error message

is returned to the source of the FIND [Koponen et al., 2007].

DONA also proposes using a routing mechanism similar to source-routing called path-

labels, which are constructed domain by domain as a packet travels from the client to the

server. The local-id of a domain is appended to packets as they cross-different domains by

routers. When the packet is on the return journey the local-id is removed from the source

address. This methodology has several benefits including: smaller inter-domain routing

tables, no-globally meaningful addresses, difficulty to spoof source addresses, a symmetric

path across domains, supports multicast distribution trees and importantly an ability for ISP’s

to identify DOS attacks [Koponen et al., 2007].

2.2.2 Publish-Subscribe Internet (PSI)

The PSI architecture realises the design principles of the EU funded projects PURSUIT

(September 2010 to February 2013) and its predecessor Publish-Subscribe Internet Routing

Paradigm (PSIRP) (January 2008 to June 2010) for a clean-slate, information oriented In-

ternet architecture. PSI supports caching, native multicast, multihoming and mobility of in-

formation objects including files, content chunks, streaming media and services [Xylomenos

et al., 2012]. A unique ID pair identifies information objects consisting of: scope identifier



2.2. INFORMATION CENTRIC NETWORKING (ICN) 47

(SID) and rendezvous identifier (RID). SIDs group related information while RIDs uniquely

identify the information object itself. A RID must be unique within a scope(s) and a SID

must be unique within a parent scope. Information objects can belong to multiple scopes,

however they must be associated with at least one scope [Xylomenos et al., 2014]. Infor-

mation consumers subscribe to objects in a scope or information objects directly based on

RID.

The PSI architecture is supported by several key components. These include a ren-

dezvous node (RN), which matches a subscriber’s request to an information object publisher;

a topology manager (TM) that determines the best route to a subscriber; and a forwarder

node (FN), which delivers the requested object [Xylomenos et al., 2014]. RNs, or a collec-

tion of RNs in a rendezvous network (RENE) act as a hierarchical DHT to locate data based

on (SID,RID) pair [Xylomenos et al., 2012]. Information object producers announce the

availability of published information objects to their local RN. TMs utilise link-state rout-

ing to compute the best path to a consumer, in which RNs and FNs also participate. The

TM uses the LIPSIN source-routing scheme to compute the forwarding path to consumers.

LIPSIN is a multicast forwarding mechanism that uses a Bloom filter to encode source-

route-style forwarding instructions into packet headers [Jokela et al., 2009]. Moreover, PSI

supports security in the architecture using Packet Level Authentication (PLA), a technique

for encrypting and signing individual packets [Xylomenos et al., 2014]. Consequently, the

information consumer can easily establish data integrity, accountability and confidentiality.

Additionally, an RID can optionally be a hash of the information object facilitating easy self-

certification at the consumer. Consumer mobility is supported using multicast and caching.

This is achieved by sending data to multiple caches simultaneously (sometimes based on pre-

diction) with the goal of reducing handoff latencies [Xylomenos et al., 2014]. Finally, PSI

supports both on-path and off-path caching and managed content replication (comparable to

a CDN) [Xylomenos et al., 2012].



48 CHAPTER 2. BACKGROUND AND RELATED WORK

2.2.3 Network of Information (NetInf)

The Network of Information (NetInf) architecture was proposed and implemented by the

Architecture and Design for the Future Internet (4WARD) project, active from January 2008

to December 2010 and the Scalable and Adaptive Internet Solutions (SAIL) project active

from August 2010 to February 2013. Both were funded by the EU under FP7. Named

information objects are flat-ish taking the form: ni://A/L, where A is the authority and L

is the local part relative to the authority [Xylomenos et al., 2014]. Both A and L can be a

hash (of the authorities public key and/or information object) allowing self-certification or

a hierarchical string [Dannewitz et al., 2010]. Hierarchical names are useful for routing as

longest prefix matching can be used. However, matching information objects to A and L are

always treated as if they are flat identifiers i.e. they must match content exactly.

One of the fundamental differences between NetInf and other ICN architectures is that

the public key/secret key (PK/SK) pair in NetInf is bound to the information object rather

than to any particular owner or company. This means that the owner of a data object can

change while keeping the information object ID persistent [Dannewitz et al., 2010]. The

metadata field provides additional information to help validate the data e.g., public keys for

information object and owner identification, content hashes, certificates and a data signature

authenticating the content.

NetInf supports two methods of information object retrieval: 1) using a name resolution

system (NRS) or 2) using name-based routing [Xylomenos et al., 2014]. The NRS uses a

distributed hash table (DHT) such as Multilevel DHT (MDHT) or SkipNet, which is a hier-

archy of DHT’s for name resolution. The NRS resolves information objects (i.e. ni://A/L)

to a globally-available resource (Global NRS) using the authority A part; or locally available

resource (Local NRS) using the local part L relative to the authority. Moreover, the MDHT

architecture also proposes a Resolution Exchange (REX) system that keeps track of all data

object owners in the NetInf Internet, which provides redirects to the primary resolution sys-

tem. REX principles are similar to DNS where a trusted third party will run distributed REX

systems. The other object retrieval method proposed by NetInf is name-based routing. Con-

tent routers (CRs) are populated by a routing protocol used by publishing sources to advertise



2.2. INFORMATION CENTRIC NETWORKING (ICN) 49

available information objects, which are propagated to neighbour routers. Information object

requests are sent hop-by-hop towards the publisher or cache. Furthermore, a hybrid approach

using the NRS (to reach the general location) and name-based routing mechanisms or vice

versa can be chosen freely, which keeps routing table sizes small.

Like the other ICN designs, caching is fundamental to the NetInf’s ability to provide

enhanced information dissemination. NetInf supports both on-path and off-path caching. It

employs a storage engine to manage requests by end nodes to STORE() data on the network.

Once data has been stored on the network, the storage engine will register the published data

into the NRS using the PUBLISH() primitive. Data is retrieved using the GET primitive.

Finally, mobility is supported by the NRS maintaining topological information about each

connected node, which is updated by each host as it moves through the network [Xylomenos

et al., 2014].

2.2.4 Content-Centric Networking (CCN)

The Content-Centric Networking (CCN) (CCN) architecture, which supports ICNs princi-

ples, was initiated by Van Jacobson at the Palo Alto Research Centre (PARC) and described

in a Google tech talk in 2006 [Jacobson et al., 2009]. The Named Data Networking (NDN)

project, which is led by Lixia Zhang (UCLA) and funded by the National Science Founda-

tion (NSF) in the US under its Future Internet Architecture (FIA) program, is an implemen-

tation of CCN principles to improve on the current Internet architectures limitations. The

primary goal of the NDN project is to request an object by name and receive it from the net-

work rather than from a particular end-point on the Internet. Information flow thus becomes

receiver driven (pull-based model) and the network (i.e. the NDN routing infrastructure) di-

rects the content request to the best available resource. This is supported by digitally signed

self-verifying content.

The main infrastructure in the NDN architecture is the NDN router, which is comprised

of several components including: a Pending Interest Table (PIT); a Forward Information

Base (FIB), which is populated by a name-based routing protocol (e.g., based on OSPF) or

with static routes; and a Content Store, which can store requested data for future requests



50 CHAPTER 2. BACKGROUND AND RELATED WORK

[Y. Liu et al., 2009]. The NDN client retrieves content by sending an Interest packet that

contains the name of requested content to the local NDN router, which is added to the PIT.

The NDN router performs longest-prefix match lookup for content name on the FIB table

and forwards the Interest out the relevant interface. Once a copy of the data is located, it is

sent back to the requesting client by checking the PIT entry of each router along the Interest

reverse request path. NDN routers create a multicast tree of frequently requested content

aggregated by the PIT table. Future requests for the same content can be delivered directly

from the NDN router content store (on-path caching) without having to return to the content

source for the data. Subscriber mobility is supported using the Listen First Broadcast Later

(LFBL) routing protocol, caching and multicast nature of the NDN architecture [Xylomenos

et al., 2014]. Finally, like other ICN architectures, NDN does not provide natural support for

content accounting and accountability; instead it offers natural privacy to users [Jacobson et

al., 2009].

Our work on the Savant framework outlined in Chapters 4 and 5 is based on NDN archi-

tecture principles.

2.2.5 eXpressive Internet Architecture (XIA)

The XIA clean-slate architecture, also funded by the NSF’s FIA program since 2010, aims to

provide an evolvable Internet architecture with functionality to support expressiveness and

intrinsic security [Anand et al., 2011]. XIA utilises the concept of principals, referred to

as eXpressive identifiers (XIDs), to support expressiveness in the architecture. Every prin-

cipal (or XID) uniquely identifies a host (HID), administrative domain (AD), service (SID),

content (CID), and so forth. These principals support an evolvable network that can easily

introduce new functionality such as the incremental deployment of new Internet architec-

tures over time. This is supported by a fallback option, which is a directed acyclic graph

(DAG) (used by XIA’s eXpressive Internet protocol (XIP)) containing the destination prin-

cipal and additional legacy principals that are known to existing routing infrastructure [Han

et al., 2012]. This fallback option specifies alternative action(s) if a legacy router does not

know how to deal with the primary principal. For example, AD:HID:SID:CID defines the



2.2. INFORMATION CENTRIC NETWORKING (ICN) 51

route to CID, where AD (i.e. a fallback option) is globally routable. Moreover, this offers

the network more flexibility to perform in-network optimisations as it can observe intent

(based on principals) and act on them directly. For example, XIA supports on-path and

off-path caching of content objects [Han et al., 2012]. As a result, if a user requests con-

tent AD:HID:SID:CID, the network can direct the request to a local cache server with an

available copy of the requested content i.e. CID.

Intrinsic security is supported in the architecture by unique XIDs derived from the hash

of a public key or a hash of the content itself. As a result, communicating entities can

independently ascertain the integrity of the communication process without support from

third-party infrastructure [Anand et al., 2011]. Moreover, applications can utilise a name-

resolution service to resolve human readable names to addresses (i.e. XID or DAGs) [Han

et al., 2012]. Finally, these mechanisms support an evolvable Internet architecture that also

offers support for ICN content distribution.

2.2.6 MobilityFirst

MobilityFirst, also funded by the NSF’s Future Internet Architecture (FIA) program since

2010, proposes a clean-slate Internet architecture with mobility and trustworthiness as key

architectural design principles [Venkataramani et al., 2014]. These design goals are achieved

by separating names or identifiers from addresses or network location. This is supported by

a logically centralised global name service (GNS), which dynamically binds names to a flex-

ible set of attributes (including but not limited to a network address). Globally unique identi-

fiers (GUIDs) define names for principals such as devices, users, services, networks, content,

and so forth. These are derived using a one-way hash function of the entities public key or

from the content itself. Self-certification and authentication of GUIDs between communi-

cating entities is achieved without third-party support using a simple bilateral cryptographic

challenge-response procedure [Venkataramani et al., 2014]. MobilityFirst supports on-path

content storage and retrieval for popular content [Xylomenos et al., 2014]. Routing is sup-

ported by hierarchical forwarding tables, the GNS and routable content addresses (which are

encoded as a two-tuple [PID, CID] where PID corresponds to the publisher’s GUID and CID



52 CHAPTER 2. BACKGROUND AND RELATED WORK

Table 2.10: Attributes of ICN Architectures
Attribute ICNs

Accounting -
Span Trust Domains x

Decentralised x
Data Integrity x

Data Provenance x
Scalable x

Content Availability x
Proximity Awareness x

Transient Nodes -
Inexpensive x
Searchable x

Guaranteed (Content) Control -
Guarantee Quality x

Guarantee Reliability x
Guarantee Performance x

Use ISP Cache x
Use P2P Cache x
Use Multicast x

is the content’s GUID) [Venkataramani et al., 2014]. MobilityFirst supports a dynamic, se-

cure and mobile architecture with many endpoint principals and location-independent com-

munication primitives supported by a logically centralised GNS. Finally, these mechanisms

offer support for ICN content distribution.

2.2.7 Summary

This section outlines some common ICN research architectures and their respective method-

ologies to resolve the problems and limitations of the current IP based Internet model. A

summary of ICN architecture attributes covered in this section is available in Table 2.10.

Content naming plays an important role in each architecture determining if support of a PKI

or a name resolution service is required. Naming also plays an important part in routing,

routing aggregation, security (e.g., self-verifying content) and so forth. Moreover, privacy is

identified as an important issue for all architectures. However, caching data on untrusted ICN

infrastructure has consequences for accounting and accountability, as the content provider

cannot directly observe or trust analytic’s associated with content distributed. This is in

contrast to the current CDN content distribution model, which provides extensive analytic’s



2.3. SECURITY MECHANISMS 53

to content providers. Moreover, initial ICN architectures give no indication about how to

gather this information from trusted or untrusted infrastructure. Instead, many of these ar-

chitectures make a virtue out of not providing it claiming to offer natural privacy to users.

Consequently, the goal of our work on Savant is to provide a framework for collecting ac-

counting and accountability information for content distributed from trusted and untrusted

ICN infrastructure. However, first we identify existing systems to support ICN architectures

and help avoid security threats and attacks mechanisms. Moreover, we will focus on security

mechanisms specifically related to the NDN ICN architecture as this is the architecture we

have utilised for the Savant framework.

2.3 Security Mechanisms

ICN content can be retrieved from any infrastructure element (trusted or untrusted) that has

an available copy. This is supported by digitally signed self-verifying content to help es-

tablish integrity, authenticity, provenance and trust in content received. However, securing

the content itself is not sufficient to ensure that an end user will receive the exact piece of

content they requested. Additionally, securing content rather than the path it travels across

has exposed many new and legacy types of security issues in ICNs [AbdAllah et al., 2015].

For example, a user can encounter network delays due to denial of service DoS attacks, cor-

rupt data, confidentiality issues, and so forth. Consequently, ICNs depend on a variety of

infrastructure, algorithms and techniques to ensure the requested content item is delivered to

end-users. Furthermore, NDN’s model of trust does not rely on any centralised public key

infrastructure (PKI), instead advocating a distributed model of trust. Trust in keys is typi-

cally established using a PKI-like certificate chain based on the content naming hierarchy

[Xylomenos et al., 2014]. However, individual applications are responsible for managing

their own trust models. Consequently, the elements outlined in this section are required to

support Savant framework. We start with a brief description of DNS and PKI as several of

the ICN security implementations utilise these components in their design.



54 CHAPTER 2. BACKGROUND AND RELATED WORK

2.3.1 DNS

The domain name system (DNS) is a globally distributed hierarchical name service database

for the Internet that is administered by Internet Assigned Numbers Authority (IANA), which

is in turn managed by Internet Corporation for Assigned Names and Numbers (ICANN). Its

most popular use is mapping human readable domain names to IP addresses. The original

specification was released in 1983 as a replacement to the hosts.txt file, which was centrally

maintained and distributed via FTP by the Stanford Research Institute Network Information

Centre (SRI-NIC) [Mockapetris & Dunlap, 1988]. DNS was designed to be easily updat-

able, scalable, distributed, fault tolerant and utilise caching to improve performance. The

architecture consists of three major components [Mockapetris, 1987]: domain namespace

and resource records (RRs), name servers and resolvers.

The domain namespace forms a tree-like structure, with "." acting as the root of the

tree. Each node or leaf in the tree is associated with a label. A nodes domain name is a

concatenation of labels, separated by ".", which represent a path from a node (left or farthest

point from root) to the root of the tree. Data for each domain name is organised as a set

of resource records (RRs). Each RR is composed of several fields, which include: type

(e.g., address record (A)), time to live (TTL) (i.e. length of time in seconds to cache a RR)

and RDATA (the data e.g., IP address) [Mockapetris & Dunlap, 1988]. By formatting data

in this way, queries can be limited to RRs of a specific type, which can also be cached by

name servers. Name servers are repositories of information that answer queries with data

they possess i.e. RRs. Resolvers interface with clients and use algorithms to resolve client

queries to name servers with RRs. These algorithms are supported by local DNS resolvers

that are preloaded with a list of root or top level domain (TLD) servers e.g., .ie, .org, .com.

As a result, they can direct unknown requests to a resolver that can provide an answer.

DNS’s scalability is supported by the concept of zones, which are sections of the global

database controlled and managed by specific organisations and that can grow to arbitrary

size. An organisation can gain zone control (become the authoritative name server for a

domain) by persuading a parent zone to assign it subzone control. Moreover, a parent can

further delegate subzones under its control to other organisations. Each parent is responsible



2.3. SECURITY MECHANISMS 55

for maintaining the zone’s data and providing redundant servers [Mockapetris & Dunlap,

1988]. Utilising this model, DNS can easily scale to provide a distributed and fault tolerant

name service for the Internet. Finally, registrars are entities authorised to manage and reserve

domain names within TLDs.

DNS is a popular globally distributed hierarchical name service database for the Internet

that maps human readable domain names to IP addresses. Its architecture is outlined briefly

here as many ICN security implementations borrow components from its design.

2.3.2 PKI

Public key infrastructure (PKI) provides strong authentication on the Internet by binding a

public/private key pair to an entity e.g., person, organisation, account, and so forth, using a

digital certificate. A PKI is a set of components including users, certificate authorities (CAs),

software, physical infrastructure and policies for producing, distributing, storing, using, au-

thenticating and revoking digital certificates and managing the life cycle of public keys. Dig-

ital certificates are issued by a CA based on a certificate standard for interoperability such as

X.509, Pretty Good Privacy (PGP) and Simple Public Key Infrastructure/Simple Distributed

Security Infrastructure (SPKI/SDSI) [Buchmann et al., 2013]. These standards specify for-

mats for digital certificates, certificate revocation lists, path certification algorithms, and so

forth.

There are several trust models used by these certificate standards including hierarchical

trust (e.g., X.509), web of trust e.g., PGP, and small-world model of trust e.g., SPKI/SDSI

[Buchmann et al., 2013][Clarke, 2001]. In the hierarchical model, the CA acts as a cen-

tralised trust anchor, or root of trust, for all digital certificates produced. Similarly, the web

of trust model establishes trust in keys by getting trusted users of the network to certify key

ownership. In each model, trust in an entity can be established by building a certificate path

from a trusted entity to the certificate of the entity requiring trust. For example, in the hi-

erarchical model, trust in an entity can be reduced to trusting the anchor i.e. the CA, and

following the certificate path or chain of trust to the entity requiring trust.

Several ICNs propose using the SPKI/SDSI model where trust originates from a local



56 CHAPTER 2. BACKGROUND AND RELATED WORK

principal [Zhang et al., 2010][Ghodsi et al., 2011]. We also use this model to support Savant.

Consequently, we provide a broader overview of it main components here.

2.3.3 SPKI/SDSI

SPKI/SDSI supports a scalable local namespace architecture using public keys based on a

small-world model of trust. It binds authorisations i.e. privileges, delegation of rights, and

so forth, to local identifiers i.e. local names in the certificate issuers local namespace, that

are valid globally [Clarke, 2001]. In SPKI/SDSI a principal can also act as a CA that can

issue name certificates and authorisation certificates for their local namespace.

A SPKI/SDSI name certificate binds a local name (e.g., user1) in the certificate issuer’s

namespace (e.g., /netflix) to a public key. It has four fields including [Clarke, 2001]: issuer,

which is the public key that signs (or authorises), the name certificate; identifier, which

contains the issuer’s public key and a local name that is being defined; subject, the thing

being empowered by the certificate e.g., the public key of the entity receiving a namespace;

and validity period i.e. certificate start and end date.

A SPKI/SDSI authorisation certificate grants a specific authorisation to a certificate sub-

ject. It has five fields including [Clarke, 2001]: issuer’s public key that signs, or authorises

the certificate; subject, the public key or group of the entity receiving authorisation e.g.,

the end-user; tag, the authorisation being granted e.g., allowed publish in namespace /net-

flix/user1; delegation bit, a Boolean value; and validity period i.e. certificate start and end

date.

Moreover, SPKI/SDSI access control lists (ACLs) have a similar syntax to SPKI/SDSI

authorisation certificates. ACLs restrict access to a resource, which is set up and managed by

a guardian process responsible for protecting it. ACL fields include [Clarke, 2001]: issuer,

subject; tag; delegation bit and validity period. A request to access a resource is contained

in a signed tag, which authenticates the request and a chain of certificates that prove authori-

sation to perform a request [Clarke, 2001].

The ability to trust data received and ensure the network delivers valid content is a fun-

damental design requirement for all ICNs. Consequently, in the remainder of this section we



2.3. SECURITY MECHANISMS 57

give a brief overview of some of the security considerations in ICNs, with a specific focus

on NDN.

2.3.4 Security Attacks in ICNs

One of the primary philosophies of the ICN paradigm is to secure content itself rather than

the path it travels across. This is achieved by decoupling a user’s trust in content from where

it is obtained by enabling the content to self-verify i.e. the user can establish integrity, trust

and provenance in content received from trusted or untrusted infrastructure. This facilitates

more efficient distribution of data in an ICN network as copies of data can be supplied from

any infrastructure element that has an available copy. However, ICNs are susceptible to many

new and legacy types of attack in part as a result of this change, which have an impact on the

following [AbdAllah et al., 2015]:

• Privacy and Censorship: As data is named, users are susceptible to attacks such as

monitoring and censorship.

• Cache Poisoning: Caches intentionally polluted with corrupt or unpopular content.

• Resource Exhaustion: Infrastructure susceptible to large amounts of requests or flood-

ing attacks.

• Path Infiltration: Attackers can announce invalid routes for content.

• Network Congestion: Attacker directing data through heavily congested networks.

• Denial of Service (DoS): Any of the attacks outlined so far can lead to denial of service

i.e. user not receiving requested content.

• Unauthorised Content Access: Viewing content without permission or authorisation.

• Masquerading: Gaining access to the content producer’s private key and pretending to

be them.



58 CHAPTER 2. BACKGROUND AND RELATED WORK

The CCN-KRS framework, outlined in Section 2.3.6, can help prevent issues such as

cache poisoning and DoS attacks. Others, such as user privacy, preventing unauthorised ac-

cess to content or circumventing path infiltration attacks will be covered later as part of the

Savant framework in Section 4.3.1. Additionally, the Savant framework itself was designed

to detect problems during the content distribution process. For example, in Section 5.8.2, we

identify several use cases where Savant can detect infrastructure faults and resource exhaus-

tion scenarios. Moreover, Savant could be utilised to redirect clients to alternative trusted

cache resources for content distribution using authenticated interest commands (see Section

2.3.7). Finally, while we offer solutions to many of these attacks, there are still issues (e.g.,

privacy related), which may go undetected or unresolved by the architecture.

2.3.5 Naming and Security

Data security is achieved in ICNs by binding content to an entity that created it using pub-

lic key cryptography. Consequently, all entities (or principals) that publish content (e.g.,

videos, web pages, and so forth) must be associated with a public/private key pair. Using

public keys, the following security goals can be derived from data received: authenticity and

authentication (data provenance), confidentiality and privacy, integrity (data not modified)

and non-repudiation (cannot deny producing data). The two most common methodologies

for naming content in ICNs include: hierarchical human-readable names and self-certifying

names.

Hierarchical Names

Hierarchical names are composed of arbitrary length typically human-readable strings sim-

ilar to DNS, which are delimited by ’/’ e.g., /ie/tcd.ie/cs/index.html. Names are bound to

entities e.g., organisation, person, and so forth, by an inherent relationship between the con-

tent name and the publisher. Content metadata provides the location of public keys needed

to establish integrity, provenance, trust and authenticity in the content received. This can be

supported by traditional PKI mechanisms to establish trust in keys such as hierarchical trust

or web of trust. However, ICN architectures are free to define new trust models as trust is



2.3. SECURITY MECHANISMS 59

between the content publisher and consumer.

For example, CCN advocates using SPKI/SDSI, which uses a distributed trust model

that does not require support from a globally trusted (root) authority. Additionally, as all

CCN/ICN entities that publish content are bound to a principal, they already have the com-

ponents (i.e. public keys) required to become a CA and support the SPKI/SDSI trust model

[Clarke, 2001]. Consequently, publishers (i.e. the certificate issuer) can define local names

in their namespace and bind these names to public keys of other CCN publishers (i.e. the

certificate subject) [Jacobson et al., 2009]. For example, the /tcd publisher can define the

local name /tcd/cs, which can be bound to the public key of Trinity College Dublin’s com-

puter science department. Similarly, authorisations (such as read/write privileges) can be

granted from the certificate issuer to the certificate subject. As CCN’s names are hierarchical

and content is published as a named content object, a trust relationship can be expressed as

published CCN content, which effectively act as a digital certificate.

Flat-namespace

Flat self-certifying namespaces consist of <P:L>, where <P> is a cryptographic hash of a

principal’s public key and <L> is a unique label with respect to the principal, chosen by

the principal. For example, the DONA architecture [Koponen et al., 2007][Ghodsi et al.,

2011] distributes content in the form <Data, P, L, Metadata, Signature>. Data received

can be verified as having come from an original source (i.e. the principal) by checking that

the public key hashes to <P> and the signature matches the data received. Consequently,

data integrity can be assured. However, a label can also be a cryptographic hash of the data

itself, which end users can use to establish data integrity. In this case, <P> can be assigned

to any purveyor of the content such as a CDN. In both cases data itself is self-verifying.

Consequently, they do not require the services of a PKI to establish data integrity. However,

as namespaces are flat, long and not human readable, it can be difficult to associate names

to content. Consequently, some external mechanism to bind human-readable names to flat

names is required. However, users can easily learn flat names via some external trusted

mechanism such as a search engine, social network or from friends.



60 CHAPTER 2. BACKGROUND AND RELATED WORK

The naming methodology used by ICNs has an impact on whether or not a PKI or some

external mechanism to bind human-readable names to flat names is required. NDN requires

the support of a PKI.

2.3.6 CCN-Key Resolution Service (CCN-KRS)

The CCN architecture requires content to be signed by its publisher. Content metadata pro-

vides the location of public keys needed to establish integrity, provenance, trust and authen-

ticity in the content received. However, the CCN network can have multiple copies of signed

content with the same name from different content providers. As a result, an end-user cannot

trust that the content name:public key binding in the metadata, which is valid, reflects the data

they requested. Moreover, network infrastructure cannot easily differentiate between valid

or polluted content chunks based on the content name only. As a result, a CCN end-user can

specify additional security parameters in an interest such as a publisher’s public key digest

(PPKD) or a content digest along with the content name. However, no framework exists for

end-users to learn this information prior to requesting content. The CCN-key resolution ser-

vice (CCN-KRS) aims to solve this problem. It is a DNS-like service for resolving authorised

content publisher security information such as the public key certificate and content digests

for a CCN namespace [Mahadevan et al., 2014]. CCN-KRS guarantees (assuming network

and cache compliance) an end-user will receive content matching the name and public key

requested, which can be verified against the digital certificate received from KRS.

Key Resolution Service (KRS)

The requirements of a global DNS-like key resolution service for CCN include [Mahadevan

et al., 2014]: It must be secure; scalable to 1014 content names; have a fast response time,

with similar performance to DNS; flexibly resolve a content name to a content hash, pub-

lisher certificate, public key certificate chain or a future parameter; operate transparently to

end-users; and be easily discoverable. As KRS and DNS have similar requirements, KRS

adopts DNS-like components in its design. This includes using local KRS and authoritative

KRS servers. Moreover, KRS uses CCN interests and digitally signed content objects (i.e.



2.3. SECURITY MECHANISMS 61

KRS records) for all communication. Local KRS servers can be discovered transparently in

the network by end-users using a DHCP-like CCN service or using a predictable/predeter-

mined namespace such as /krs.

h5

h4

h7

h6

hi  = recursive hash value
s0 = Sequence Number e.g., timestamp 
t0 = Interest / Data 
c0 = <from-node>
<message (e.g., recent QoE information)> 

Example:

s5=14104465...
t5=Data
c5=/ndn/tcd.ie/seg1

s6=1410446...
t6=Event
c6=avg-bitrate=185kbps

s7=141048...
t7=Event
c7=buffing-interruption=1

s4=14104463...
t4=Data
c4=/ndn/tcd.ie/seg1

/ndn/fixture-namespace/command/ramdomizer||authentication tags

Prefix Cmd Randomizer and Auth Tag

/ndn/agent-namespace/command/ramdomizer||authentication tags

Prefix Cmd Randomizer and Auth Tag

/ndn/agent1.cs.tcd.ie/cpu-on/ramdomizer||digital signature

Prefix Cmd Randomizer and Signature
Example:

Example:

Name:

Payload:

Security 
Info:

Signature
Certificate or Certificate Chain

Public Key or Content Digest

Content Name

Figure 2.2: KRS record [adapted from [Mahadevan et al., 2014]]

A KRS record is a published CCN content object composed of (see Figure 2.2): a content

name, which matches the interest received; payload, which contains security information

associated with the KRS request i.e. content providers public key or content digest; signature

for the KRS content object produced by the KRS server; and a certificate chain of trust, which

is anchored at a globally trusted entity. After a client receives a KRS record for a content

object and verifies its integrity and authenticity, it can specify the content name along with

the publishers public key digest or content digest in all future interests.

For scalability purposes a KRS zone is assigned a name prefix to manage. Like DNS,

each zone has one or more authoritative KRS servers, which store and manage KRS records

associated with a name prefix and sub-prefixes. Requests that cannot be resolved locally

(or by cached KRS records) are forwarded to the KRS authoritative zone server or to a root

or top level domain (TLD) server if the authoritative zone is unknown. As CCN names

are hierarchical, KRS servers use longest prefix-matching (LPM) algorithms when looking

for the next hop KRS server to send a request. LPM also supports a KRS server resolving

cached KRS record requests for sub-prefixes (e.g., /tcd/cs) to an authoritative key for that

prefix (e.g., /tcd). Consequently, KRS record requests for the same or similar keys can be

resolved quickly.

To support CCN principles, if an intermediate KRS server receives a KRS record from

an authoritative KRS server, it needs to decapsulate the record before re-encapsulating it as

a response to interest received. For trust and authentication purposes, all KRS servers and



62 CHAPTER 2. BACKGROUND AND RELATED WORK

end-users must be able to trace a KRS server’s certificate chain to a trusted entity i.e. a global

trusted authority. Additionally, it is envisioned that KRS will adopt a federated methodology

similar to DNS where publishers use a registrar, which has naming and certification authority

for top level domains. This registrar is accredited by a global entity like ICANN, which

coordinates namespace allocation and manages KRS root servers.

The model of trust used by CCN-KRS assumes KRS servers form a chain of trust that

anchors at a global trusted authority. After checking a KRS records integrity and authenticity,

a client can specify the publishers public key digest or content digest along with content

name for all interests sent. Specifying this information in an interest guarantees (assuming

network and cache compliance) an end-user will not receive fake or incorrect content from

the network.

2.3.7 Authenticated Interests

The concept of authenticated interests was originally proposed to increase security across

IP networks for building automation systems (BAS) [Burke et al., 2012]. The aim was to

provide a simple, secure, access controlled and low-latency framework for communicat-

ing between controllers and low-powered lighting fixtures in untrusted IP networks. It was

demonstrated using NDN, a popular implementation of CCN principles, by the NDN lighting

control system [Burke et al., 2013][Burke et al., 2012].

h5

h4

h7

h6

hi  = recursive hash value
s0 = Sequence Number e.g., timestamp 
t0 = Interest / Data 
c0 = <from-node>
<message (e.g., recent QoE information)> 

Example:

s5=14104465...
t5=Data
c5=/ndn/tcd.ie/seg1

s6=1410446...
t6=Event
c6=avg-bitrate=185kbps

s7=141048...
t7=Event
c7=buffing-interruption=1

s4=14104463...
t4=Data
c4=/ndn/tcd.ie/seg1

/ndn/fixture-namespace/command/ramdomizer||authentication tags

Prefix Cmd Randomizer and Auth Tag

Figure 2.3: Authenticated Interest [adapted from [Burke et al., 2013]]

Authenticated interests add commands and authentication tags, i.e. digital signatures

or message authentication codes (MACs), to NDN interests [Burke et al., 2013]. They are

composed of three parts, as illustrated in Figure 2.3. The prefix is used for routing, a fixture

specific command and a randomizer (nonce, timestamp, and so forth), which is concatenated

with an authentication tag computed over the rest of the interest. Authentication tags use

nonce, timestamps and estimated RTT to ensure uniqueness and prevent timing and replay



2.3. SECURITY MECHANISMS 63

attacks. Commands are transparent to NDN routing infrastructure and can be interpreted and

executed by the destination infrastructure. Furthermore, commands and acknowledgements

can be encrypted by either the receivers public key or a shared symmetric key.

NDN Lighting Control System

The NDN lighting control system, which demonstrates a concrete NDN-based security archi-

tecture for BAS systems, has four components [Burke et al., 2012]: configuration manager

(CM), fixture (Fix), application (App) and authorization manager (AM). The AM manages

access control, public/private key pair generation and acts as a trusted third party (TTP) or

root of trust for all keys. All lighting fixtures (Fix’s) are assigned a specific namespace, a

public key owned by the AM and access control permissions at initial start-up by the CM.

A long-term secret key is also generated by the Fix at this time to support optional use of

application-specific symmetric keys. For performance reasons, the AM can communicate

the signing key pair to the Fix. Additionally, a Fix can generate and manage key-pairs under

its sub-namespace.

Regional 
Accountability 

Engine

Content 
Provider

NDN Cache

PIT

Content Store

FIB

Summary Accounting and Accountability Information

Content

Interests

End-user 
Device

National 
Accountability 

Engine

Ireland

Spain

UK

EU

Global  
Accountability 

Engine
US

Asia

ISP

/ndn/tcd/cs/application1/domain/lighting-domain-1/expiry/2015123125959Z/key

App Namespace

name/value pair name/value pairRouting 
prefix

Digital Certificate

Access Control Policies

Figure 2.4: Application’s namespace, name/value pair access control policies and digital

certificate location.

When the AM creates a signing key pair for the App’s namespace, it also specifies the

App’s access control policies using attributes (i.e. name/value pairs) such as domain, expiry

date, and so forth in the namespace (see domain and expiry date name/value pairs in Figure

2.4). The AM associates an App with a namespace, which is composed of the App’s prefix

and access control policies, by publishing a content object containing the public key under

/namespace/key. This effectively acts as digital certificate (see App Namespace and Key in

Figure 2.4). When an App sends an authenticated interest command to a Fix, it includes its

namespace, which contains access control policies defined by the AM.



64 CHAPTER 2. BACKGROUND AND RELATED WORK

When an authenticated interest is received by a Fix it: examines if the command is valid;

checks the App is allowed run the command i.e. based on namespace and access control

policies installed at start-up by the CM; inspects the randomizer information; verifies au-

thentication tag; executes the command; and finally responds with signed content as an ac-

knowledgement. No specific commands are specified, but they can be as simple as on or off

or more complex like "intensity/+10/rgb-8bit-color/F0FF39".

Finally, a content producer (i.e. App or Fix) can prove its ownership of a key with a

simple challenge-response protocol. When a challenger sends an interest with random nonce

for data, only the content producer, one of its ancestors or a TTP can respond with valid

(signed) data.

Auditing and Feedback

When auditing and feedback for accountability purposes is required, digital signatures are

recommended [Burke et al., 2012]. However, for performance purposes, MACs are preferred

when collecting data from low powered devices such as sensors. Consequently, the NDN

lighting control system also proposes a mechanism utilising an application-specific symmet-

ric key, which is generated by Fix and shared with App after verifying its public key, for

sending commands and generating auditable acknowledgements supporting accountability

[Burke et al., 2013]. This is supported by a hash chain, which is generated (when required)

by the Fix or a TTP with input x and length `. An anchor H`(x) valid for ` signatures is

sent to the App as a certificate along with other parameters. For each authenticated interest

command sent (assuming a reliable link with no lost packets), App includes the last H i(x)

received from Fix. Fix’s acknowledgement must contain H i−1(x) to ensure accountability,

which can be easily verified by App.

The model of trust used by the NDN lighting control system assumes a namespace prefix

is bound to a public-key signature, which is issued by a TTP or an ancestor. Consequently,

an entity can only publish in its namespace or the namespace of its children.



2.4. ACCOUNTING FRAMEWORKS: STATE OF THE ART 65

2.3.8 Summary

The analysis of these security mechanisms leads to two important conclusions. First, all ICNs

regardless of the naming scheme utilised, depend on external trusted mechanisms of binding

(hierarchical or human readable) names to public keys or flat names respectively. Second,

every ICN requires a PKI to manage the life cycle of public keys. This is a required piece of

infrastructure for any content distribution model that depends on public key cryptography.

2.4 Accounting Frameworks: State of the Art

In this section, we give a brief overview of several IP and ICN frameworks that seek to

maintain visibility and control of network elements and/or data. Our aim is to provide some

background into IP-based frameworks, while highlighting the current state of the art in ICNs.

These frameworks offer insight into the importance of gathering accounting information

related to the content distribution process and understanding some of the requirements of

content providers and ISP’s. However, the model for accounting typically used by these

systems is based on trust i.e. they lack accountability. Consequently, the content provider

needs to trust the infrastructure to deliver content with adequate quality, speed and reliability.

2.4.1 SNMP

The Simple Network Management Protocol (SNMP) is a low-overhead protocol standard de-

signed to manage IP-based network devices such as routers, servers, computers, and so forth.

Several versions of the protocol were developed. The first IETF RFCs for SNMPv1 started

in 1988. SNMPv1 proposes the basic network management components, protocols and oper-

ations of the framework, which include [Stallings, 1998]: management station, management

agent, SNMP proxy, management information base (MIB), network management protocol

and trap-directed polling. All three versions of SNMP utilise these basic concepts.

The management station uses a protocol for information exchange and a database con-

taining summary information. These standardised components support human monitoring,

control, analysis, fault recovery, and so forth of managed devices. A management agent runs



66 CHAPTER 2. BACKGROUND AND RELATED WORK

on managed devices and responds to the management stations requests and actions. Agents

can also send unsolicited information called traps to the management station based on local

events. Additionally, an agent can act as a proxy to support one or more devices such as

modems, bridges and computers that do not implement SNMP agent software. Each agent

maintains a collection of standardised objects in a management information base (MIB) that

are accessible to the management station. Objects are essentially data variables represent-

ing some feature of the managed system. The network management protocol can GET or

SET objects values and agents can notify the management station of a significant event via a

TRAP message [Stallings, 1998].

The management station can use the trap-directed polling technique to collect key base-

line information (e.g., interface characteristics, performance statistics, packets sent/received,

and so forth) from agents at periodic intervals (e.g. once daily) [Stallings, 1998]. Agents are

responsible for notifying the management station about unusual events (such as a restart, link

failure, overload conditions, and so forth) using SNMP TRAP messages. The management

station can perform further investigation on agents using GET or SET SNMP messages after

notification. The trap-directed polling operation reduces the overhead on agents, the network

and the management station.

SNMPv2 (work started in 1993) addressed limitations in the original design, which in-

cluded the inability to query network entities efficiently for information. This was facilitated

by bulk data transfer capabilities in SNMPv2. Moreover, decentralised network management

was supported by manager-to-manager cooperation features (e.g., alerts and a manager-to-

manager MIB [Stallings, 1998]). The primary contribution of SNMPv3 (work began in 1997)

addresses security issues in previous versions related to privacy, authentication and access

control. These functions are supported by symmetric-key cryptography and utilise precon-

figured access control policies to prevent unauthorised users running commands at agents

[Stallings, 1998].



2.4. ACCOUNTING FRAMEWORKS: STATE OF THE ART 67

2.4.2 Ccndstatus

The ccnd daemon is the forwarder/router process required for CCNx protocol communi-

cation, which must be run by every CCNx node. It is based on an implementation of the

CCN/NDN principles outlined in Section 2.2.4. Its primary functions include maintain-

ing a forwarding information base (FIB) table, a pending interest table (PIT) and a content

store (CS). The ccndstatus command returns internal state from the local or remote ccnd

daemon, which includes information about the FIB, PIT and CS and can help explain its

behaviour. It can be run via command line or HTTP request against routers. Information

returned includes [PARC, 2015]: ccnd identity (e.g., ID, start time, current time), content

object statistics (e.g., stored, stale, duplicate, sent), interests (names, pending, propagating,

accepted, sent, dropped), configured interfaces (e.g., ID, IP address, bytes in/out, content

objects in/out, pending interests) and forwarding information (e.g., name prefix, ID, expiry

time).

However, the requestor has to trust the metrics produced as no accountability model

exists in ccndstatus to establish integrity or authenticity of information produced. Moreover,

it provides no information about transmission delay, RTT from consumer to content, and so

forth. Additionally, commands need to be run against individual routers. As a result of these

design decisions, it is difficult to trust metrics produced, trace content paths efficiently and

troubleshoot or monitor CCN networks.

2.4.3 Contrace

Contrace is a tool for measuring and tracing content in CCN/NDN networks running over IP

[Asaeda et al., 2015]. It aids with performance evaluation, troubleshooting issues, estimating

content popularity, investigating routing paths and caching conditions in CCNs. Network

tools such as IP’s ping and traceroute and multicast IP’s traceroute facility inspired its design.

These tools cannot directly trace data, forwarding paths (including multipath) or cache status

for name prefix’s in CCN as they are based on host centric rather than data centric content

distribution models. Moreover, similar tools do not currently exist to evaluate CCN networks

or protocols. See Figure 2.5 for a high-level overview of contrace.



68 CHAPTER 2. BACKGROUND AND RELATED WORK

Process

Accountability 
Engine

Aggregator 
Functions

Client

Interest

Accounting

Content

Content Providers

ISP

Internet

Cache

Content Ingestion

Savant

Discovery & 
Commitment 

Protocols

Global PKI

Trust

CCN-KRS

KRS Record
Request/Response

Local Trust

Trust

NDN Agent

SPKI/SDSI Name Cert

Authenticated Interest: Name Cert

Accountability Engine

Authenticated Interest: Authorisation Cert

SPKI/SDSI Authorisation Cert

contrace 
command-line 

interface

contraced 
daemon

contraced 
daemon

ccnd ccnd

Router 
/Publisher

End-user/consumer

query/response

query/response

query/response query/response

...

...

Figure 2.5: The Contrace CCN network analysis tool

A contraced daemon runs on every CCNx router and interfaces with the local ccnd dae-

mon, which is a required component for CCNx communication. The ccnd forward informa-

tion base (FIB) table (see Section 2.2.4) is populated by a name-based routing protocol (e.g.,

OSPF). In contrace, a query message is invoked by a user (via a command-line interface),

which is passed to the contraced daemon. The local ccnd process responds to the query

request with cache and forwarding path information. The contraced daemon can then for-

ward the request to a neighbour router’s contraced daemon, which queries the local ccnd and

responds or forwards the request on to the next router. A response is generated by the con-

traced daemon running on the content forwarder and sent back to the user. Router policies

defined by the network administrator can limit the information in the response. However,

if no policies are defined, cache efficiency, performance and state information captured by

contrace includes [Asaeda et al., 2015]:

• Cached content size.

• Number of cached content chunks.

• Amount of received interests for the content (i.e. content popularity).

• Lifetime and expiration time of cached content.

• Node name or IP address of the publisher or NDN cache.

• RTT between content consumer and NDN cache or content publisher.



2.4. ACCOUNTING FRAMEWORKS: STATE OF THE ART 69

• Cache state per name prefix in NDN cache.

• Prefix forwarding path information.

Contrace is a powerful network measurement tool that can be used to help design and

test new routing protocols and forwarding/caching strategies in CCN/NDN. However, the

contrace accounting model depends on trust. It assumes that routers will not return invalid

or inflated metrics as they lack accountability mechanisms.

2.4.4 LIRA

This architecture is described in an article published in late 2015 in the arXiv preprints repos-

itory, which is a source of eprints of scientific papers. It shares some of the underlying goals

of the Savant architecture such as controlling content and collecting accurate accounting in-

formation for the content distribution process. To our knowledge it has not been published

in any peer reviewed conferences or journals to-date.

The objective of the Location-Independent Routing Layer (LIRA) framework is to sup-

port the deployment of ICNs by providing a network architecture that aligns with the goals of

content providers and ISP’s. LIRA identifies several obstacles hindering ICN deployment by

these entities as follows [Psaras et al., 2015]: absence of a scalable name resolution service,

lack of content control, no data access logging i.e. content accounting information, and the

need for backward compatibility with the current IP Internet model. LIRA achieves these

goals using several mechanisms.

First, content providers are directly involved in the name resolution process. This is

achieved using the Internet’s current standardised location-dependent mechanisms based on

URLs, HTTP, DNS and IP addresses. All consumers are required to consult the content

provider and ask for content name/ID (cID) before content transfer takes place. The content

provider responds with the cID (but not content) to the consumer. Additionally, they can

also add a list of up-to-date cIDs for subsequent content in the response. This avoids the

client having to make requests for every individual content chunk. Consumers use these

cIDs to retrieve content from any local cache that supports LIRA principles and has content



70 CHAPTER 2. BACKGROUND AND RELATED WORK

availability. By requiring all consumers to ask the content provider for content, consumers

are prevented from accessing content transparently to the content provider facilitating the

production of content access logs (i.e. accounting information related to content views).

However, consumers or search engines could distribute known cIDs to other users. To

prevent this, LIRA uses flat self-certifying ephemeral names for content that periodically

expire (after some time period proportional to content popularity). Changing cIDs invali-

dates existing copies of content located in network caches, which will be evicted based on a

cache replacement or predefined eviction strategy. This effectively enables content providers

to purge LIRA caches of old content and actively control content delivered to consumers.

Moreover, this mechanism offers more control over content than specifying a TTL value in

published content. A TTL that is too long results in the delivery of out-dated content while

a TTL that is too short results in the unnecessary redelivery of content.

To support these mechanisms, LIRA transparently adds an extra layer on the protocol

stack above the network (IP) layer and below the transport layer. This layer supports the

ICN philosophy of a location independent data distribution network. All LIRA nodes imple-

ment a Content Forwarding Information Base (C-FIB) table and content cache [Psaras et al.,

2015]. The C-FIB manages incoming and outgoing content based on name and supports na-

tive multi-source routing and off-path cached content delivery (e.g., from neighbour nodes).

Moreover, content cached locally (on-path caching) can be delivered directly to consumers.

Furthermore, LIRA nodes can be deployed incrementally with backward compatibility for

IP using traditional IP location-based routing. Evaluations show a performance gain for ISPs

with a subset of LIRA nodes deployed in the network while content providers continue to

maintain full control of content.

The LIRA content accounting model requires all consumers to ask the content provider

for ephemeral data names (that periodically change). Moreover, it needs to trust caches will

evict expired content and ISP’s, search engines and consumers will not share cIDs with other

users.



2.4. ACCOUNTING FRAMEWORKS: STATE OF THE ART 71

2.4.5 Encryption-Based and Push Interest Based Accounting in CCN

This architecture was also described in papers published in late 2015 in the arXiv preprints

repository. It shares many of the design goals of the Savant architecture such as gathering

accounting information for content distributed and the need for accountability in information

produced. However, it fails to resolve issues related to per-consumer specific accounting and

preventing several types of ICN attacks. In contrast, Savant seeks to specifically address

these types of challenges, which are outlined in Chapter 4 and Chapter 5. To our knowledge

this architecture has not been published in any peer reviewed conferences or journals to-date.

Encryption-based and push interest (pInt) based accounting are two practical secure

schemes for gathering real-time feedback information for content distributed in CCN net-

works (specifically using the CCNx 1.0 protocol). The encryption-based scheme works by

encrypting content (a form of access control), which is transparent to networking infrastruc-

ture as it works at the application layer. In contrast to the encryption-based scheme, the

pInt-based scheme operates at the network-layer requiring router participation and modifica-

tions to the CCNx architecture. Both schemes are based on the identification of three types

of accounting information. These include [Ghali et al., 2015]:

• Individual: information is bound to a unique consumer e.g., name or public key. User-

specific information needs to be added to the interest payload1.

• Distinct: the same information as individual but identities are not revealed.

• Aggregate: this is an aggregate of the set of unique consumers.

To facilitate probabilistically accurate accounting, the authors recommend that distin-

guishing information such as nonces and timestamps should be added to interests as payload

for all three types of accounting [Ghali et al., 2015].

Encryption-Based Accounting

The encryption-based scheme works by encrypting each content chunk and getting con-

sumers to retrieve decryption keys, which are the same for all users, directly from the content
1CCNx 1.0 interests can carry payload information in an interest that is signed by the producer. This is in

contrast to the NDN protocol outlined in Section 2.2.4, which does not currently support interest payloads.



72 CHAPTER 2. BACKGROUND AND RELATED WORK

producer [Ghali et al., 2015]. This model facilitates per chunk accounting at the application

layer by the content producer. To support individual accounting, consumer specific data

needs to be specified in interests sent to the content provider for data decryption keys. How-

ever, if aggregate or distinct accounting is needed, no additional consumer information is

required when requesting decryption keys. While this scheme is transparent to the routing

infrastructure, it is based on an access control model. Moreover, it is an inefficient mecha-

nism as at least two interests are sent per content chunk requested i.e. one interest for data

and one for decryption keys. Additionally, all content chunks need encrypting by producers

and decrypting by consumers.

pInt-Based Accounting

The pInt-based scheme is distinct from access control and requires half the number of mes-

sages per content chunk compared to the encryption-based scheme. pInt messages are gen-

erated by routers to inform the content producer that their content has been requested. This

occurs when a cache hit occurs on a router or when collapsed (or aggregated) interests in the

pending interest table (PIT) are satisfied. To support accounting at router caches, the pInt-

based scheme requires a new flag in the content header called ACCT. Flag values include

[Ghali et al., 2015]: NONE, AGGREGATE, DISTINCT or INDIVIDUAL corresponding to

the types of accounting available.

A pInt message is the same as a regular interest as it contains interest name and payload

information, which corresponds to the name and payload of the interest for data served.

However, pInt messages do not leave state behind in routers and interests are not aggregated

or multicasted. As a result, a content producer is guaranteed to receive real-time information

about content requested in the network (i.e. assuming no network failures, maliciousness,

and so forth).

The pInt-based scheme also provides mechanisms to mitigate forgeries and replay attacks

for the individual accounting type by authenticating users and cryptographically binding

consumer specific data to a distinct interest, a nonce and a timestamp. A producer can

detect replayed nonces by maintaining a list of all recently received nonces for a consumer.



2.4. ACCOUNTING FRAMEWORKS: STATE OF THE ART 73

Furthermore, the authenticity of public keys and symmetric keys can be established using

some distribution mechanism prior to verification.

However, preventing forgery and replay attacks is not possible with aggregate or distinct

accounting types as consumer-specific data is required. Additionally, the pInt-based mecha-

nism cannot differentiate between routers not generating pInt messages (when they should),

causing inflation attacks in distinct or aggregate accounting types or when genuine network

packet loss events occur. The authors conclude that per-consumer specific accounting is not

possible without application support when consumers are dishonest, because routers do not

verify consumer specific information before distributing content.

The encryption-based and pInt-based accounting mechanisms identify some of the re-

quirements and challenges of designing an accounting and accountability framework for

ICN architectures.

2.4.6 Summary

We have covered a variety of systems that seek to maintain visibility and control of net-

work elements or data in IP and ICN environments. Many of these systems were designed

with a specific purpose (e.g., network measurement), which is achieved by gathering ac-

counting information. We began with an overview of SNMP, which is used to maintain and

control IP-based network devices. Ccndstatus offers similar information to SNMP (but no

control) and is limited to querying one CCNx network device at a time. Contrace extends

ccndstatus functionality by measuring and tracing content in CCN/NDN networks running

over IP. LIRA uses self-certifying ephemeral names for content that periodically expires to

support content control and content accounting. The encryption-based and pInt-based ac-

counting schemes offer two practical secure frameworks for gathering real-time accounting

information for content distributed in CCN networks. The pInt-based scheme highlights

the importance of gathering accountability information for content distributed in untrusted

environments.

However, many of these architectures lack proper support mechanisms to avoid new and

legacy types of attacks in ICNs as identified in Section 2.3.4. Moreover, if integrity, authen-



74 CHAPTER 2. BACKGROUND AND RELATED WORK

ticity and non-repudiation can be established in accounting information produced for content

distributed in trusted or untrusted environments in near real-time and in a scalable manner,

it would be a useful tool or to support the requirements of content providers, ISPs and end-

users. To support this near real-time capability, an architecture would require the support of

a scalable information processing and control system.

2.5 Information Processing Systems

The collection of accounting information for analytics purposes is common in many con-

tent distribution architectures such as P2P, fixed-infrastructure CDN, hybrid CDN-P2P and

network CDN (NCDN) systems [Bitar et al., 2012] [Androutsellis-Theotokis & Spinellis,

2004][Nygren et al., 2010][Repantis et al., 2010]. The information gathered by these sys-

tems is used for monitoring and alerting on distributed system and network health, content

location and access logging, user engagement and demographics, and so forth. This infor-

mation is typically presented in raw, aggregated and summarised form based on locally or

globally defined metrics. Moreover, with the advent of big data platforms large volumes of

accounting information can now be processed in real-time (or near real-time). The mecha-

nisms and systems to perform these actions have evolved over the last fifteen years, some

of which we discuss in the following section. Moreover, many of the attributes from ar-

chitectures discussed in this section have been used to support the Savant framework. We

begin with a brief overview of the SDIMS system, which provides some background into

distributed aggregation frameworks that can operate in untrusted P2P environments.

2.5.1 Scalable Distributed Information Management System (SDIMS)

The Scalable Distributed Information Management System (SDIMS) is a hierarchical data

aggregation framework for large scale distributed networked systems. The SDIMS philoso-

phy is to provide detailed information locally and summary information globally instead of

providing all information to all nodes, which supports the architectures scalability. SDIMS



2.5. INFORMATION PROCESSING SYSTEMS 75

N

vn

N
N

Node 011XX

Node 100XX Node 101XX

Node 010XX

Node 110XX

Normal Pastry routing without SDIMS ADHT modifications

Leaf Set: Node 011xx 
Node ID 100XX IP=x.x.x.x
Node ID 101XX IP=x.x.x.x

Leaf Set: Node 010xx
Node 110XX IP=x.x.x.x

Administrative Domain 1 Administrative Domain 2

Virtual Node

vn vn

vnvn

Update
Probe Install

UpdateUpdate

Probe

vn Virtual Node (vn)

Administrative Domain
API Commands 

(Install, Update & 
Probe)

N
N

N Node (N) vn

N

Leaf Sets

Figure 2.6: SDIMS using the Pastry DHT with support for administrative isolation [adapted
from [Yalagandula & Dahlin, 2004]]

achieves these design goals using the Pastry2 distributed hash table (DHT) with modifications

to support local domain awareness using administrative isolation and scalable aggregation

trees.

First, physical nodes are inserted into the Pastry DHT and assigned a globally unique

key. Administrative isolation is achieved by modifying Pastry’s routing tables so that each

node maintains a separate routing table (called a leaf set) to identify groups of nodes for

each administrative domain (e.g., a university department) they are a member (see leaf sets

in Figure 2.6). A leaf set might be statically configured by a network administrator.

Second, scalable aggregation trees (implemented by every node) store and manage dy-

namic attribute key values, perform attribute aggregation using aggregation functions and

propagate aggregate values to virtual nodes3 in different administrative domains (see Figure

2.7). Each node stores raw attributes as a set of tuples <attributeType, attributeName, value>.

For example:

• <uplink-bitrate, avg-uplink-bitrate, 5mb/s>

• <downlink-bitrate, avg-down-link-bitrate, 10mb/s>

2Pastry (outlined briefly in Section 2.1.4) is a structured self-organising P2P overlay network based on
DHTs with proximity awareness (i.e. local or near by nodes) [Lua et al., 2005]).

3A virtual node acts as a convergence point or root node for an administrative domain. The virtual node is
selected by finding the numerically highest node in the administrative domain (see virtual nodes in Figure 2.6).
The virtual node in an administrative domain maintains aggregate values representative of the local domain and
aggregate data received from other administrative domains. An abstract view of this configuration is depicted
in Figure 2.7.



76 CHAPTER 2. BACKGROUND AND RELATED WORK

N

vn

N
N

Node 011XX

Node 100XX Node 101XX

Node 010XX

Node 110XX

Normal Pastry routing without SDIMS ADHT modifications

Leaf Set: Node 011xx 
Node ID 100XX IP=x.x.x.x
Node ID 101XX IP=x.x.x.x

Leaf Set: Node 010xx
Node 110XX IP=x.x.x.x

Administrative Domain 1 Administrative Domain 2

Virtual Node

vn vn

vnvn

Update
Probe Install

UpdateUpdate

Probe

vn Virtual Node (vn)

Administrative Domain
API Commands 

(Install, Update & 
Probe)

N
N

N Node (N) vn

N

Leaf Sets

Figure 2.7: The SDIMS API runs Install, Update and Probe commands across different
Administrative Domains for aggregation and propagation purposes.

• <buffering, avg-buffering-events, 2>

Aggregation takes place globally on attributeType values and locally on attributeKey

values (where attributeKey is a secure hash function (such as SHA-1) over <attributeType,

attributeName>) [Yalagandula & Dahlin, 2004]. Each node in the DHT has an obligation to

manage aggregation for values that map to its key. Moreover, every node in an administrative

domain will have some responsibility for performing data aggregation.

To support flexible distributed aggregate computation and propagation of aggregate val-

ues between administrative domains in the DHT, SDIMS provides an API for installing4

aggregation functions and updating and probing aggregate information. This is depicted in

Figure 2.7. These functions can be invoked by any of the nodes in the tree. After a node ap-

plies an aggregate value update e.g., adding a raw attribute update for buffering interruptions

during a video session, the SDIMS aggregation API may trigger re-computation of aggregate

values up the tree and down different sub-trees using the update function. These functions

enable applications to monitor, query and react to state changes or issues in the distributed

system.

Finally, SDIMS only guarantees eventual consistencies for large distributed systems as

aggregate values are not recalculated each time a global probe occur.

4How far up or down different subtrees an update will propagate depends on the install parameters for each
aggregation function. Install parameters include: attributeType, aggregation function, what to update (e.g., all
nodes), domain restriction information and expiry time.



2.5. INFORMATION PROCESSING SYSTEMS 77

2.5.2 Query System

Query is the monitoring system for Akamai’s EdgePlatform, which is a purpose built CDN

of edge servers and optimised protocols that offers accelerated delivery for applications and

content to end-users. Query provides near real-time information about Akamai’s globally

distributed network and services, which handle between 15% to 30% of the Internet’s traffic

each day [F. Chen et al., 2015]. It includes over 170,000 servers located in 102 countries and

1,300 autonomous systems running over one million software components [F. Chen et al.,

2015][J. Cohen et al., 2010]. It has been in constant development and use since Akamai’s

inception in 1998 supporting user services such as live or on-demand media streaming, static

and dynamic HTTP content, and so forth.

Query’s design goals include [Repantis et al., 2010]: low latency for data and queries,

scalable, reliable, consistent, fault-tolerant, with complete and synchronised data. These

goals are achieved using several mechanisms and components in a hierarchical architecture,

which is depicted in Figure 2.8. First, a Query process runs on every Akamai owned and

managed machine i.e. not end-user machines, which collects and combines metrics from

local software components into database tables [J. Cohen et al., 2010]. A set of tables col-

lected at short intervals (i.e. every minute or two depending on configuration) is called a

generation. Generations are collected and combined into tables by cluster proxies, which

process information from all edge machines in a geographical location or cluster. Cluster

proxies provide combined data to top-level aggregators (TLAs). TLAs collect and aggregate

all generations from portions or the entire network, which are again added to database tables.

TLAs send copies of these tables to SQL parsers, which compute and answer user queries.

Data is accessible to users via SQL queries. All queries are executed immediately or pe-

riodically, depending on the availability of tables in SQL parsers. If data is needed regularly,

machines prewarm (or cache) tables based on a predefined list of required data. This infor-

mation is collected, combined and aggregated as part of a generation. If some tables don not

exist in the SQL parser, a request is sent to the TLA for the tables. If tables are still missing,

data is requested from cluster proxies and then from edge machines. Tables missing at all

layers will be delivered during the succeeding generation. This supports the architecture’s



78 CHAPTER 2. BACKGROUND AND RELATED WORK

Query

Process Process

Generations (Combined)

Query Process

Process Process

Generation
Edge Server 1

Query Process

Process Process

Generation
Edge Server 2

Cluster A

Top-Level 
Aggregator

SQL Parsers SQL ParsersSQL Parsers

Users Users Users

Cluster B Cluster C

Cluster Proxy & Edge Server 3

Select * from FileSystem
where time > today

Select * from FileSystem
where disk > 90%

Figure 2.8: Akamai’s Query System [adapted from [J. Cohen et al., 2010]]

scalability, as only required data and tables are collected, combined and aggregated.

It takes Query about two to three minutes to collect, decode and aggregate data from

edge machines and offer a best-effort synchronized view of Akamai’s network and services

[Repantis et al., 2010]. Users and applications that use Query include [J. Cohen et al., 2010]:

Akamai’s alert system, which monitors and alarms on servers, outages, and so forth; histori-

cal data collection, which is used to track quantitative metrics over time; Akamai’s customers

(i.e. the content providers) providing estimates of recent traffic patterns for content delivered.

Data consistency, completeness and synchronisation are best effort. Moreover, data la-

tency can be up to a few minutes. Finally, these resources are highly replicated for scalability,

reliability and fault tolerance purposes

2.5.3 Google Analytics

Google Analytics is a service that collects and measures website traffic data and provides

a tool to study a user’s online experience. Information collected includes [Clifton, 2012]:

traffic volumes, geographic distribution, latency, user behaviour, social media traffic, and

so forth. Google acquired Urchin Software Corp in April 2005, which developed a web

statistics software program called Urchin to analyse server log files. Urchin went on to



2.5. INFORMATION PROCESSING SYSTEMS 79

become Google Analytics, which was released in November 2005. However, the architecture

has evolved significantly since Urchin. As well as providing analytics for web traffic based

on predefined queries, it has also developed into a big data analytics platform. Figure 2.9

shows an illustration of the Google Analytics architecture.

Website 1

Website 2

Website 3

Website 1
Google Analytic's 
Data Collectors

Google's Bigtable 
Proprietary Database

Pre-computed Reports

Google Cloud Dataflow Cluster (which 
was previously a MapReduce Cluster)

Google Dremel/BigQuery

Query 
Engine

Customised 
Interface

Standard 
Interface

Export API

BigQuery 
Interface

End-User Reports

Figure 2.9: Google Analytics architecture [adapted from [Clifton, 2012]]

The architecture is composed of several components to support data collection, scalabil-

ity and big data. First, JavaScript code needs to be installed on every web page to enable

the collection and reporting of visitor interactions. Second, the Google Analytics JavaScript

library (analytics.js) needs to be downloaded by all end-users accessing the website. Addi-

tionally, JavaScript needs to be enabled on the end-user’s browser, otherwise metrics will not

be sent to Google’s collection servers. Third, all information sent to the collection servers

is stored in Bigtable (see Figure 2.9), which is an internal distributed (database-like) storage

system (in development at Google since 2004) designed for scalability and high performance

[Chang et al., 2008]. Fourth, Google Analytics uses two tables in Bigtable. One is associated

with raw clicks, 200TB in size, while the other is a summary table, 20 TB in size, contain-

ing predefined summaries for each website [Chang et al., 2008]. In the past, the summary

table was generated from the raw clicks table by periodically scheduled MapReduce func-

tions. MapReduce is a parallel programming model for batch processing and generating

large datasets [Chang et al., 2008]. However, it was announced in June 2014 that MapRe-

duce has been completely abandoned by Google in favour of Cloud Dataflow [Salapura et

al., 2015]. Like MapReduce, the Dataflow processing model, hides the complexity of large

scale distributed processing from users (such as coordinating workers, data sets, dealing with



80 CHAPTER 2. BACKGROUND AND RELATED WORK

failures, and so forth) by providing an easy to use programming model allowing users to fo-

cus on the logical composition of the data processing job [Akidau et al., 2015]. However,

unlike MapReduce, the Dataflow model can easily process petabytes of data, which caused a

performance issue for MapReduce, deal with both batch processing and ad hoc streaming of

unsorted data, and offer real-time monitoring capabilities [Akidau et al., 2015]. This process

is complemented by Dremel (BigQuery is the public implementation of Dremel), which is

a scalable distributed massively parallel interactive query system that can run aggregation

queries against very large data sets over shared clusters in seconds (e.g., trillion row tables)

[Melnik et al., 2010]. Finally, data is made available to users via the Google Analytics Query

Engine.

2.5.4 C3

Conviva (briefly mentioned in Section 2.1.4), was founded in 2006 and develops tools that

support online video optimization, performance and analytics for content providers and end-

users. Conviva’s C3 controller is a centralised scalable network model for optimising video

delivery on the Internet. It uses global knowledge and a real-time view of network state as

well as content provider policies and objectives to choose the optimal CDN server for content

delivery to a client. Additionally, it seeks to detect and resolve video QoE issues experienced

by users such as start-up delays, low bitrate, buffering, frame dropping, and so forth in near

real-time.

The C3 controller evolved in three phases [Ganjam et al., 2015]. The first phase started in

2006 when P2P content distribution was a cheap alternative to CDNs, which typically cost in

the region of 40 cents/GB. The primary goal of the centralised C3 controller was to compute

optimal overlay trees (based on client location, volume, churn, and so forth) to deliver CDN

quality live video streams over P2P. In this stage clients were largely homogenous (e.g.,

desktop machines) and utilised the Flash/RTMP protocol. Additionally, the number of clients

was relatively small (tens of thousands).

The second phase started in 2009 with the arrival of cheaper CDN distribution (5 cents/GB),

the entry of big players such as Apple and Hulu (seeing the potential for video distribution)



2.5. INFORMATION PROCESSING SYSTEMS 81

Globally 
Centralised 
Controller

Decision 
Instance 
Server

Modeling Layer

Decision Layer

C3 Controller

Decision 
Instance 
Server

Decision 
Instance 
Server

Decision 
Instance 
Server

Client1
Sensing/Actuation 

LayerClient1 Client1 Client1

Front End 
Data Centres

Centralised 
Compute 
Cluster

End-Users

Figure 2.10: The Conviva Phase III C3 architecture [adapted from [Ganjam et al., 2015]]

and the emergence of HTTP and chunk-based video streaming protocols. The centralised C3

controller evolved to calculate the optimal CDN and bitrate for a client. This was achieved

using a player plugin, which was downloaded by the client when the session started allowing

C3 to modify the player logic and select the best CDN server. However, later adaptations

during the video session (such as bitrate switching) could not be supported by C3 and relied

on local client adaptation logic. Consequently, there was a lot of QoE metric computation

and summarisation logic defined in the player plugin.

The third phase started in 2011 and saw a massive increase in client heterogeneity, which

involved supporting different protocols (e.g., proprietary and HTTP chunking), devices (e.g.,

mobile, set-top-box, TV), application frameworks (e.g., Akamai, Ooyala, PrimeTime) and

the emergence of big data platforms. These trends and advances supported the latest develop-

ment of C3, a diagram of which is available in Figure 2.10. First, the QoE data computation

and summarisation logic moved from the client (in phase two) to the C3 controller, which

was supported by a big data platform e.g., Apache Spark [Zaharia et al., 2012]. The C3 sens-

ing/actuation layer, which runs on the client, provides several functions: it sends raw video

quality metrics to the C3 controller; it receives and implements decisions from the controller

e.g., change CDN or increase/decrease frequency of metric collection; and it has built in fault

tolerance if connectivity is lost to the C3 controller. Second, the C3 controller was split into

two layers [Ganjam et al., 2015]: the centralised modelling layer offers a global view of the



82 CHAPTER 2. BACKGROUND AND RELATED WORK

network state, it’s decisions are pushed to a scalable globally distributed decision layer that

operates on a per-client basis. The global modelling layer operates with stale information

i.e. up to tens of seconds or minutes, based on feedback metrics from clients. This layer

operates based on the premise that CDN metrics are stable for minutes at a time [Ganjam et

al., 2015]. The decision layer, which is horizontally scalable up to 100s of millions of users,

operates geographically close to clients performing calculations and updates on a per-client

basis in milliseconds. The decision layer combines information from: the global (stale) mod-

elling layer; up-to-date client metrics received, aggregated and monitored at intervals of 5-20

seconds; and global policies to make optimal CDN and bitrate selections for clients. These

mechanisms support a scalable, responsive and up-to-date view of the global network state.

The architecture provides scalability by centralising the global model layer, which has

a stale picture of network state and using a distributed layer located close to end-users to

provide decisions quickly to clients.

2.5.5 Summary

In this section, we give a brief overview of several information processing and aggrega-

tion frameworks based on a centralised or decentralised models. SDIMS provides some

background into distributed aggregation frameworks that can operate in untrusted P2P envi-

ronments. Akamai’s Query system uses principles of hierarchical aggregation from SDIMS,

collecting near real-time information about Akamai’s globally distributed network and ser-

vices. In contrast to SDIMS which can operate on untrusted infrastructure, all information

collected and aggregated by Query takes place on trusted infrastructure. Google Analytics

provides a centralised platform that collects data from untrusted client infrastructure, which

is aggregated and presented to content providers. Similarly, Conviva gathers client-side met-

rics that support online video optimization and performance. This is supported with a cen-

tralised global model layer that operates with stale information and a horizontally scalable

decision layer that operates on a per-client basis in milliseconds and is located geographically

close to clients.

The advent of big data analytics supports the collection and processing of near real-time



2.6. CHAPTER SUMMARY 83

information from end-users. However, all of these systems depend a model of trust, which

assumes perfect integrity of the accounting information received for aggregation. Moreover,

it is typically based on the observation of one entity (i.e. the end-user).

2.6 Chapter Summary

This chapter introduces a number of systems and concepts related to content distribution,

security, accounting, accountability and information processing. Each section deals with a

specific aspect of research we believe is required to support effective accounting and ac-

countability for content distribution in ICN environments. We use many of these systems,

concepts and methodologies to support the design of the Savant framework in the following

chapters.



84 CHAPTER 2. BACKGROUND AND RELATED WORK



Chapter 3

Tools for Efficient Content Delivery

In Section 2.1 and 2.2, we surveyed existing and proposed future content delivery archi-

tectures detailing their methodologies for providing efficient low-cost content distribution,

accounting and accountability across trustworthy and untrustworthy infrastructure. We also

surveyed several architectures and systems to help identify desirable elements that can lead to

reduced network traffic, less network congestion, lower distribution costs and smaller origin

server load. Moreover, we identified which architectures and frameworks increase content

availability, scalability, content control, security, accountability and that can help manage

accounting information produced.

In this chapter, we develop and use two tools to help analyse the drawbacks and merits of

the content distribution architectures discussed in Section 2.1 and 2.2. The first is a generic

model for content distribution, developed by synthesising the most desirable elements that

lead to efficient low-cost distribution of content. The second is a taxonomy for analytic in-

formation based on a survey of the logging information gathered by existing systems. Using

these tools in combination with the other systems, mechanisms and frameworks surveyed in

Chapter 2, we identify a table of elements required for efficient content distribution. Finally,

we highlight outstanding challenges for content distribution.

85



86 CHAPTER 3. TOOLS FOR EFFICIENT CONTENT DELIVERY

Content 
Acquisition

Content 
Ingestion

Content 
Deployment

Billing

End User

P2
P

M
ul

tic
as

t 
IP

Request 
Routing / Find 

Content

Accounting

Accounting

Content

Content 
Preparation

Replica 
Server2

IS
P 

Ca
ch

e 
 

IC
N 

Ca
ch

e

IPX

CS
P

Accountability 
& Auditing

Aggregation

Optional

Request

Content

Content

IPX

Accounting

Figure 3.1: Generic Content Distribution Model: components in black are adapted from
a high level functional CDN model [ETSI, 2011] while the blue components, which are
optional, were added for the Generic Model

3.1 A Generic Model for Content Distribution

The generic content distribution model in Figure 3.1 is a synthesis of the most important el-

ements in existing content distribution architectures discussed in chapter two. We have used

a high level functional CDN architecture model [ETSI, 2011] (with components for content

acquisition, ingestion, preparation, deployment, request routing, replica servers, accounting

and billing) as the baseline for our generic model. This is due to the CDNs prevalence and

success for content distribution on the Internet [Nygren et al., 2010][Pathan & Buyya, 2008].

However, the generic model adds the functional elements: accountability, ISP cache, P2P,

cloud service provider (CSP), ICN cache (store-and-forward) and multicast IP to comple-

ment existing CDN elements. Consequently, the generic models functional elements iden-

tify more efficient and cost effective methods of content delivery than the traditional CDN

model [ETSI, 2011]. Elements of the generic model utilised by existing content distribution

architectures are summarised at the end of this chapter in Table 3.1.



3.1. A GENERIC MODEL FOR CONTENT DISTRIBUTION 87

Overview of the Generic Model Components

The generic model uses the following elements for content delivery, which can be mapped

to one or more functional CDN activities [ETSI, 2011]. User generated content (UGC) and

commercial licensed content acquired from content providers is uploaded into the content

delivery system. The ingestion element prepares content for distribution to many different

users, devices and networks, preforming tasks such as transcoding, resolution conversion,

encryption and incorporating publisher controls. Ingested content is then pushed or pulled

to CDN replica servers based on content popularity. In the generic model this information

can also be pushed or pulled to ISP cache, ICN cache, CSP, multicast IP and P2P systems.

The request routing element interacts with the deployment element to keep an updated view

of content availability across CDN replicas, ISP cache, multicast IP, CSP and P2P infras-

tructure. Request routing is also responsible for directing users to copies of content using

adaptive or non-adaptive routing algorithms that depend on heuristics or metrics based on

network conditions, server load and server health. The generic model’s accounting element

is responsible for monitoring events such as user engagement, network and system perfor-

mance and user demographics, which also provide input for reporting, billing, analytical

information and request routing elements. Our model enhances accounting with account-

ability, which can provide non-repudiability for content accounting information collected

from trusted or untrusted infrastructure [Haeberlen et al., 2007].

However, the ability to monitor all the logging information generated across distributed

trusted and untrusted infrastructure is a major challenge [Ko et al., 2011][Repantis et al.,

2010]. Consequently, a major obstacle is to identify what accounting and accountability

information should be gathered based on the content distribution infrastructure (trusted or

untrusted)? In the next section we develop a taxonomy of accounting and accountability

based on information gathered by existing content distribution architectures.



88 CHAPTER 3. TOOLS FOR EFFICIENT CONTENT DELIVERY

3.2 Taxonomy of Accounting and Accountability

The following taxonomy is based on our analysis of the accounting and accountability in-

formation collected from existing content distribution systems: multicast IP, web cache,

CDN, P2P, transparent cache, CDN-P2P, NCDN, CDNI, virtual environments and ICN sys-

tems. We have grouped the information into the following categories by purpose. Each

sub-category is likely to be of special interest to sub-groups within an organisation such as

marketing, IT and customers.

• Server Configuration and Performance: Details of system information relating to

the distributing server or peer. For example, CPU-type, available RAM, RAM-occupancy,

IP address, open ports and port numbers, CPU usage, OS version, temperature, power

usage, content location, content availability, and so forth.

• Network Performance: Information about the performance of the network when de-

livering the requested content. For example, bytes uploaded, bytes downloaded, total

bytes transferred, speed, reliability, round-trip time (RTT), latency, and so forth.

• Advertising: Record of ads pushed to user. For example, impressions (ad displayed

to user), cost per impression, cost per click, click through rate, gross revenue, ad type

(e.g., reserved in-stream ads (non-skippable), banner ads, auction ads, and so forth)

[Clifton, 2012].

• User Engagement: User involvement and interaction with the content. For exam-

ple, unique-views (i.e. distinct individuals requesting content), subscribers (users who

prearrange access to a service), total play time (minutes watched), content marked

as favourite, user likes and dislikes, user comments, user shares e.g., via Facebook,

Google+ and Blogger [Clifton, 2012][Pathan & Buyya, 2008].

• User Quality of Experience (QoE): Measuring the kind of experience the user has

with the content. For example [Dobrian et al., 2013]: join time (i.e. time it takes for

the buffer to fill up and start playing), buffering ratio - percentage of session time (i.e.

playing time + buffering time) spent buffering, rate of buffering events (i.e. frequency



3.3. OUTSTANDING CHALLENGES FOR CONTENT DISTRIBUTION 89

of buffering interruptions), average bitrate (e.g.,100 kbps), rendering quality and rate

of bitrate switching.

• User Demographics: Data characterising users. For example, age, location (by coun-

try, city, ISP), gender, device type (computer, tablet, mobile, game console, TV) and

operating system.

• State Machine: A log of the sequence of events (deterministic or non-deterministic)

that a node is expected to follow (based on a protocol) when sending, receiving and

processing messages between CDN systems [Haeberlen et al., 2006][Haeberlen et al.,

2007].

Organisationally sub-groups have different motivations for analysing information in each

of the taxonomy categories. For example, information gathered by the server configuration

and performance and network performance categories can be useful for engineering teams to

determine if the system and network are performing adequately and have enough resources to

scale. Similarly, marketing teams are interested in analytical information related to advertis-

ing, user engagement and user demographics to analyse user behaviour. There are also other

factors determining sub-group interest in these accountability categories. For example, con-

tent producers might be interested in network performance and user QoE if the distribution

infrastructure is untrusted e.g., P2P.

3.3 Outstanding Challenges for Content Distribution

The objective of Chapter 2 was to illustrate the value that can be gained by using alterna-

tive architectures (trusted and untrusted) for content distribution to reduce costs and increase

performance to end-users, while continuing to provide adequate levels of accounting and

accountability information. However, many of the systems discussed are research systems

(such as ESM [Chu et al., 2002], SplitStream [Castro et al., 2003], CoralCDN [Freedman,

2010] and all ICN systems [Xylomenos et al., 2014]) with no paying customers and as a con-

sequence have a tendency to lack accounting and accountability capabilities. However, one



90 CHAPTER 3. TOOLS FOR EFFICIENT CONTENT DELIVERY

Table 3.1: Elements for content distribution based on existing and proposed future Internet
architectures

Element P2P CDN TC CDN-P2P NCDN & CDNI ICN
Content Acquisition x x x x x x
Content Ingestion x x x x x x
Content Preparation x x x x x x
Content Deployment x x - x x x
Routing x x x x x x
Accountability x x - x - -
Accounting x x - x x x
Accounting Aggregation - x - x x -
Billing - x - x x x
Security - x - x x x
Use Replica Servers - x - x x x
Use P2P x x x x - x
Use ISP Cache x - x - x x
Use ICN cache - - - - - x
Use multicast IP - - - - - x
Use CSP - x x x x x
Note: P2P=Peer-to-Peer; CDN=Content Distribution Network; TC=Transparent Cache;
CDN-P2P=Hybrid CDN-P2P; NCDN&CDNI=Network CDN and CDN Interconnection;
ICN = Information Centric Networking; CSP=Cloud Service Provider.

of the goals of Chapter 2 was to identify desirable elements for content distribution, which

can be used for the design and development for future content distribution architectures. To

this end, we created the generic model (see Figure 3.1), which combines the advantageous

elements from each architecture identified in Section 2.1 for efficient low-cost content dis-

tribution. Many of the architectures discussed utilise one or more generic model elements.

However, no architecture provides support for the whole model (see Table 3.1 and Table 3.2).



3.3. OUTSTANDING CHALLENGES FOR CONTENT DISTRIBUTION 91

Ta
bl

e
3.

2:
Su

m
m

ar
y

of
A

rc
hi

te
ct

ur
e

A
ttr

ib
ut

es
Su

rv
ey

ed
in

C
ha

pt
er

2

Attribute

Napster

BitTorrent

Amakai

Kad

CoralCDN

YouTube

ESM

SplitStream

PPLive

LiveSky

SAAR

UltraBand

OverCache

NCDN

CDNI

Virtualisation

ICNs

Tr
us

tw
or

th
y

A
cc

ou
nt

in
g

-
-

-
x

-
x

-
-

-
-

-
-

-
-

-
x

-
Sp

an
Tr

us
tD

om
ai

ns
x

x
x

-
-

-
x

x
x

x
x

x
x

x
x

x
x

D
ec

en
tr

al
is

ed
-

-
x

-
-

-
-

-
-

-
-

-
-

x
x

-
x

D
at

a
In

te
gr

ity
-

x
x

x
x

x
-

-
-

-
-

-
-

-
-

-
x

D
at

a
Pr

ov
en

an
ce

-
-

-
x

x
x

-
-

-
-

-
-

-
-

-
-

x
Sc

al
ab

le
x

x
-

x
x

x
x

x
x

x
x

x
x

x
x

x
x

C
on

te
nt

A
va

ila
bi

lit
y

x
x

-
x

x
x

x
x

x
x

x
x

x
x

x
x

x
Pr

ox
im

ity
A

w
ar

en
es

s
-

-
-

x
x

x
-

x
x

x
x

x
x

x
x

x
x

Tr
an

si
en

tN
od

es
x

x
x

-
-

-
x

x
x

x
x

-
-

-
-

-
-

In
ex

pe
ns

iv
e

x
x

x
-

x
-

x
x

x
x

x
x

x
x

x
x

x
Se

ar
ch

ab
le

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
G

ua
ra

nt
ee

d
(C

on
te

nt
)C

on
tr

ol
-

-
-

x
-

x
x

x
x

x
x

x
x

x
x

x
-

G
ua

ra
nt

ee
d

Q
ua

lit
y

-
-

-
x

-
x

x
x

x
x

x
x

x
x

x
x

x
G

ua
ra

nt
ee

d
R

el
ia

bi
lit

y
-

-
-

x
-

x
x

x
x

x
x

x
x

x
x

x
x

G
ua

ra
nt

ee
d

Pe
rf

or
m

an
ce

-
-

-
x

-
x

x
x

x
x

x
x

x
x

x
x

x
U

se
IS

P
C

ac
he

-
-

-
-

-
-

x
x

x
x

x
x

x
x

x
-

x
U

se
P2

P
C

ac
he

x
x

x
-

-
-

x
x

x
x

x
x

x
-

-
-

x
U

se
M

ul
tic

as
t

-
-

-
-

-
-

x
x

x
x

x
-

-
-

-
-

x



92 CHAPTER 3. TOOLS FOR EFFICIENT CONTENT DELIVERY

As identified above, centrally managed CDN infrastructure is the most popular content

distribution architecture [Nygren et al., 2010] but it is also the most expensive and arguably

one of the least efficient [Greenberg et al., 2008][Mathew et al., 2014]. However, the CDN

infrastructure offers the best option for the production of trustworthy accounting informa-

tion by guaranteeing the integrity of the accounting information gathered. Consequently, it

is only rational to assume that any future Internet architecture that spans domains of trust

must provide the same level of accounting and accountability (or trust) as a CDN. However,

CDN logging has its own list of challenges such as requiring trust in the CDN provider, large

log size, associated processing costs and poor availability of real-time log information. Con-

sequently, we propose re-evaluating the following research question: how best to provide

scalable trustworthy content accountability for accounting information produced on trusted

and untrusted infrastructure? Additionally, identifying what taxonomic information to col-

lect to support the content distribution process is also required. Finally, while the production

of scalable and reliable accounting information is an issue for most of the architectures sur-

veyed, it is not an inherent problem in either existing or future Internet architectures.

3.4 Savant System Model

Based on the generic model, research question, distributing content that spans trust domains,

and the reliable trustworthy accounting requirement, we have developed the following sys-

tems model for Savant. It supports the production and collection of trustworthy accounting

information in an ICN environment. The model has four main components with five main

functions, which are depicted in Figure 3.2. These include:

1. Content Provider: A set of entities that are licensed to sell and make content available

for distribution. This involves performing activities described in the generic model (see

3.1) such as content acquisition, ingestion, preparation, deployment, and directing end-

users to copies of available content (request routing / find content). Companies that

fall into this category include: Netflix, YouTube, HBO, BBC, and so forth.

2. ICN Cache: Popular content is cached in an ISPs network, which can be any trusted



3.4. SAVANT SYSTEM MODEL 93

or untrusted ICN component that can cache data, respond to subscriber requests for

available content, and deliver data to end-users. The following elements in the generic

model correspond to ISP cache components: replica servers, P2P, ISP cache, ICN

cache, multicast IP, and CSP. The ICN cache element also collects and sends account-

ing and accountability information to the accountability engine. Organisations that fall

into this category include: Eir, Vodafone, AT&T, BT, and so forth.

3. Subscriber: Content is requested by a subscribers device. A subscriber is any end-user

that interacts with content available from a content provider. This component dis-

plays and renders delivered data to the end-user. It also reports industry standard QoE

metrics associated with the content distribution process to the accountability engine

element.

4. Accountability Engine: This element is owned and operated by the content provider.

It collects and aggregates data from cache and subscriber entities. It can also send

commands (Cmds) or instructions to these elements. For example, commands include:

collect additional CPU consumption statistics; increase/reduce the frequency of data

collection; instruct a client to download content from an alternative cache resource.

These commands are outlined in greater detail in Section 4.2.7.

5. Content Provider: The accountability engine provides summary data back to the con-

tent provider. The content provider is responsible for the generic model elements for

collecting accounting information and billing customers. They can also send com-

mands to ICN Cache or Subscriber elements via the accountability engine. For exam-

ple, instruct all subscribers in Ireland to blacklist a certain cache element.

There are several assumptions to make this architecture function. As outlined in Sec-

tion 2.1, the premise of our work states that content providers want visibility over content

distributed for control and analytic’s purposes. Based on ideas and principles explored in

multicast and web caching in Section 2.1.1, P2P in Section 2.1.2, hybrid CDN-P2P in Sec-

tion 2.1.4, and transparent caching in Section 2.1.5, we assume that content cached in an

ISP’s network can be delivered with high quality, reliability and performance, and at low



94 CHAPTER 3. TOOLS FOR EFFICIENT CONTENT DELIVERY

Distribute Content 
e.g., a movie

Cache & Distribute 
Content

Request, Receive, 
& Render Data

Savant System Model
A system model needs to be introduced:

1. that clarifies the systems that  are involved in the realisation 
of the proposed architecture, 

2. to which organisation they belong to 
3. and the functionality will be associated with them. 

It needs to be clear where functionality of these architectures will be 
located and the extend of the architecture. 

Aggregate and 
Summarise 

Accounting Data. 
Send Commands 

(Cmds) and 
Instructions to ICN 

Cache and 
Subscriber

1. Content Provider 
e.g., Netflix, YouTube, 

Amazon Prime

2. ICN Cache 
Infrastructure Trusted and 
Untrusted Located in ISP 

Networks e.g., Eir, 
Vodafone, AT&T, BT.

3. Subscriber
e.g., Any end-user that 

interacts with data 

Large Data Large Data

4. Accountability Engine

Accounting Cmd

Feedback

Cmd

5. Content Provider 
Accounting and Billing

Summary Feedback

Cmd

Figure 3.2: System System Model: 1. Content Provider, 2. ICN Cache, 3. Subscriber, and 4.
Accountability Engine

cost. Additionally, ICN principles are used by cache and subscriber elements to produce

accounting information.

The Savant accounting and accountability element provides trustworthy accounting infor-

mation about the content distribution process to the content provider for content distributed

from trusted and untrusted elements. In Chapter 4 we outline how this is achieved with

Savant based on ICN principles.

3.5 Chapter Summary

All of the content distribution architectures and systems surveyed in Section 2.1 and 2.2 use

at least some combination of desirable elements identified in the generic model for content

distribution. Only ICN architectures potentially offer support for the whole model. How-

ever, they lack adequate mechanisms to provide accountability for accounting information

produced on trusted or untrusted infrastructure. At present, the CDN architecture offers the

most comprehensive support for efficient content distribution while also assuring integrity

and trust in the accounting information gathered. It is the technology that has been most suc-



3.5. CHAPTER SUMMARY 95

cessful commercially but also the most expensive to use. While this model is adequate for

centrally managed and centrally controlled content distribution architectures, it is an inade-

quate model to use when distributing content from both trusted and untrusted infrastructure.

Consequently, we identified a major challenge to solve before all generic model elements

can be utilised for efficient content distribution. This involves providing adequate levels of

accounting and accountability information during the content distribution process to content

providers and content distributors. Two research issues are identified arising from this chap-

ter. The first is how best to provide scalable trustworthy content accountability for content

accounting information produced on trusted and untrusted infrastructure? The second is the

identification of what information to collect as part of the content distribution process. Fi-

nally, the taxonomy and the generic model used in this chapter may be used as foundations

for the design and development of future Internet architectures that can utilize trusted and

untrusted infrastructure for efficient low-cost content distribution, accounting and account-

ability.



96 CHAPTER 3. TOOLS FOR EFFICIENT CONTENT DELIVERY



Chapter 4

Savant Design

In chapter one, we identified the problems we wish to solve and the requirements for the

Savant architecture. In chapter two, we surveyed existing content distribution models, archi-

tectures and accounting methodologies. Moreover, we identified mechanisms and systems

we will utilise in our solution that perform such functions as accountability, data aggregation

and security. In chapter three, we synthesised the most important elements in existing con-

tent distribution systems identified in Section 2.1 and 2.2 into a generic model for content

distribution. Additionally, we developed a taxonomy for analytic information based on a

survey of the logging information gathered by these systems.

Based on our analysis in chapter three, we observed that it is difficult to gather reliable

accounting and accountability information for architectures that span domains of trust and

that lack central administration such as P2P or ICN architectures. We also noticed that there

is a correlation between the efficiency of the content distribution architecture and the integrity

of accounting information produced. Moreover, there is a relationship between the success of

a content distribution architecture and the amount of accounting information it produces. For

example, we observed that content providers typically utilise arguably inefficient distribution

infrastructure that offers extensive accounting and accountability information for the content

distribution process e.g., CDNs.

Consequently, one of the primary philosophies of this thesis is that accounting and ac-

countability information is a fundamental business requirement for many content providers.

Moreover, it should be supported in future Internet architectures such as ICNs as they can

97



98 CHAPTER 4. SAVANT DESIGN

potentially support the whole generic model by offering efficient low-cost content distribu-

tion from trusted or untrusted infrastructure. However, existing ICN architectures do not

provide natural support for content accounting and accountability. Instead, many of these

architectures make a virtue out of not providing it claiming to offer natural privacy to users.

Consequently, Savant is designed for ICN architectures based on the premise that content

providers want visibility over the content being distributed primarily for control and ana-

lytics purposes. This goal was achieved by combining cryptographic techniques, PKI se-

curity processes, ICN principles and information flow processing mechanisms utilised in

existing systems to develop a scalable, secure, near real-time accounting and accountabil-

ity framework for an ICN packet-level content distribution architecture [Haeberlen et al.,

2007][Aditya et al., 2012][Cugola & Margara, 2012][Burke et al., 2013] .

This chapter is divided into several sections. First, we identify Savant’s architectural re-

quirements. Second, we give an overview of the main components, attributes and processes

in the Savant framework. Third, we outline Savant’s security and trust model, providing de-

tails about threats, attacks and defence mechanisms. Fourth, we provide details of Savant’s

global and local namespace, which is based on the trust and security models adopted. Fifth,

we outline Savant’s protocols: agent discovery and local identity management protocol, log

commitment protocol and challenge response protocol. Sixth, we give an overview of the ex-

tensions and improvements needed to make Savant scalable. Finally, we analyse our solution

based on Savant’s architectural requirements and conclude the chapter.

4.1 Requirements

We identify several requirements to support accountability in an untrusted accounting envi-

ronment. These include:

1. Identification of the accounting information to be collected from NDN client and cache

infrastructure during content distribution.

2. Provide auditable, tamper-evident and non-repudiable accounting and accountability

information for content distributed from trusted and untrusted infrastructure.



4.2. OVERVIEW OF THE SAVANT FRAMEWORK 99

3. The architecture must reduce the accounting information overhead in contrast to ex-

isting infrastructure such as CDNs. However, it should also guarantee fault detection

and the ability to diagnose problems in near real-time. Consequently, the architecture

should be able to increase or decrease accounting and accountability collection when

required.

4. The architecture must be able to scale both in terms of content distribution and ac-

counting and accountability collection.

5. The architecture should provide a model to prevent security threats and attacks such

as polluting data, cache poisoning, sending unauthorised authenticated interest com-

mands, and so forth.

4.2 Overview of The Savant Framework

Existing ICN architectures do not provide organic support for content accounting and ac-

countability. Instead, many of these architectures make a virtue out of not providing it

claiming to offer natural privacy to users. Content accounting refers to the information

tracked by content distributors related to the delivery of content to its intended consumers.

This includes content views, end-user quality of experience (QoE), user demographics, and

so forth. In contrast, content accountability refers to a content providers ability to produce

accurate and verifiable information about the content distribution process. This involves the

ability to establish authentication, integrity, provenance, auditability and non-repudiation in

the accounting information received [Yumerefendi & Chase, 2005]. The primary difference

between these concepts is that when trust fails, the latter has the tools to pinpoint the re-

sponsible entity with non-repudiable evidence. Consequently, accountability is an important

concept when the primary form of communication is between nodes that span domains of

trust, which is the case in ICN architectures.

Savant is designed based on the premise that content providers want visibility over the

content being distributed primarily for control and analytics purposes. This is achieved by

pushing primary responsibility for accounting and accountability out to the NDN clients



100 CHAPTER 4. SAVANT DESIGN

and NDN caches, collectively referred to as NDN agents, sending and receiving content. A

high-level overview of the Savant architecture is depicted in Figure 4.1.

KRS Record
Request/Response

Process

Aggregator 
Functions

Client

Interest

Accounting

Content

Content Providers

ISP

Cache

Content 
Ingestion

Discovery & 
Commitment 

ProtocolsICANN-like Entity

Trust

CCN-KRS

Local Trust

Trust

NDN Agent

SPKI/SDSI Name Cert

Authenticated Interest: Name Cert

Accountability Engine

Authenticated Interest: Authorisation Cert

SPKI/SDSI Authorisation Cert

contrace 
command-line 

interface

contraced 
daemon

contraced 
daemon

ccnd ccnd

Router 
/Publisher

End-user/consumer

query/response

query/response

query/response query/response

...

...

Accountability Engine 
(EC2)

Internet

Figure 4.1: High-level Overview of the Savant Architecture

Content providers are responsible for collecting and auditing published log objects as-

sociated with content emanating from them. This is supported by a set of accountability

engines, which are owned and operated by the content provider or a trusted third party. NDN

agents are directed to a local accountability engine by the NDN network based on contact

information contained in the content metadata. This is specified during the content inges-

tion process. The accountability engine runs aggregator functions based on event processing

languages to aggregate, summarise and alert upon data collected [Cugola & Margara, 2012].

Additionally, it performs log auditing (see Section 4.2.9), supports NDN agent discovery

(see Section 4.5.1) and log commitment between NDN agents (see Section 4.5.2).

Moreover, content providers and NDN agents depend on two security models based on



4.2. OVERVIEW OF THE SAVANT FRAMEWORK 101

the SPKI/SDSI small-world model of trust (see Section 2.3.2). The first model is supported

by a globally trusted ICANN-like entity, which coordinates namespace allocation and digital

certificates with content providers. This entity also administers and regularly updates a col-

lection of globally distributed CCN-KRS servers (described in Section 2.3.6), which resolve

authorised content publisher security information for a CCN namespace. NDN agents get

the latest security information for content providers from CCN-KRS servers. In the second

model, content providers bind trust to NDN agents by assigning them name and authorisation

certificates using the SPKI/SDSI certificate standard.

In the remainder of this chapter, we identify components and attributes needed to support

the scalable collection of accounting and accountability information in an untrusted decen-

tralised ICN environment. Moreover, for simplicity purposes, we assume that a content

provider (such as Netflix) will be the entity managing the content distribution process and

the Savant framework. However, this function can be delegated to a third party by applying

the same principles.

4.2.1 Content Provenance and Authentication

In ICNs, data is bound to the entity that created it. As a result, all entities (or principals

i.e. entities capable of generating a digital signature) that publish content (e.g., movies, web

pages, log objects, and so forth) must be associated with a public key πi and private key σi

pair. This is to ensure that integrity, trust, authenticity and non-repudiation can be estab-

lished in the data received. To establish a trust context in Savant, all NDN agents sending

and receiving content must be identifiable to content providers. Moreover, to ensure authen-

ticity and non-repudiation in content and log objects received, a security model is required.

As discussed above, Savant uses a small-world model of trust to support the architectures

scalability. We will provide details of Savant’s security model in Section 4.3.

4.2.2 Content Ingestion

Commercially licensed content acquired from content producers is uploaded into the content

delivery system. The ingestion element prepares content for distribution to many different



102 CHAPTER 4. SAVANT DESIGN

users, devices and networks, performing tasks such as encryption, adding metadata and pro-

ducing signed chunks of content. Similar to the generic model outlined in Section 3.1, in

Savant this information can then be pushed or pulled to CDN replica servers, ISP cache, ICN

cache, CSP, multicast IP and P2P systems. Moreover, content can be cached opportunisti-

cally at any trusted or untrusted ICN cache resource. Most ICN architectures support either

on-path or off-path caching. On-path caching refers to information cached along the interest

reverse request path taken by the ICN routing service. Off-path caching directs requests to

cache servers not on the requested path. Moreover, content is typically cached according to

some cache replacement strategy such as Least Frequently Used (LFU), Most Recently Used

(MRU), Most Frequently Used (MFU), and so forth.

4.2.3 NDN Agents

If content is cached on untrusted infrastructure in the network, content providers and dis-

tributors cannot monitor the data distribution process. As a result, the primary responsibility

of NDN caches and NDN clients (collectively referred to as NDN agents) is to produce ac-

counting and accountability information for the content distribution process. An NDN cache

is a component that holds a copy of requested content and is prepared to deliver it to any

entity that requests it. In contrast, an NDN client downloads, views and interacts with the

content received from an NDN cache.

An NDN cache creates a log entry for content if it is retrieved from its local content store.

It also creates log entries for collapsed interests in its PIT table. A collapsed interest refers to

an interest that is not forwarded upstream to the content provider. The original interest that

reached the content provider already triggered the creation of a log entry. Collapsed interests

support content objects being multicast to multiple simultaneous receiver’s in NDN. This

scheme has similarities to the push interest based accounting mechanism outlined in Section

2.4.5.

It is envisaged that NDN agents will have some monetary agreement with content providers.

For example, the NDN cache might distribute content and produce accounting and account-

ability information for a fee, while the NDN client might pay a subscription to view content.



4.2. OVERVIEW OF THE SAVANT FRAMEWORK 103

4.2.4 Content Metadata

In ICNs, content metadata is associated with information such as content author, creation

date, expiry date, data encoding rate, security, search keywords, and so forth [Ahlgren et al.,

2012]. This information is specified during the content ingestion process and is customisable

by the ICN architecture or content provider. As outlined above in Section 2.3.5, a digital

signature is computed over the content object’s name, payload and the metadata in ICN

architectures. Consequently, metadata is bound to content and creator and cannot be changed

without affecting the integrity of the content object.

In Savant, content providers are responsible for collecting published logs associated with

content emanating from them. This is supported by a set of accountability engines, which are

owned and operated by the content provider or a trusted third party. To support accountabil-

ity engines collecting logs from NDN agents, the content provider specifies a feedback field

in the metadata during the content ingestion process. This field directs NDN agents to the ac-

countability engine responsible for collecting accounting and accountability information for

that content provider. For example, Netflix’s accountability engine may be contactable via

the metadata feedback:/netflix/acc-engine, which is directed by the NDN network to the lo-

cal /netflix/acc-engine resource. Moreover, it is bound to the content and cannot be changed

by a malicious third party. The only entity that will receive accounting and accountability

information for the content distribution process is specified in the metadata. If the content

provider wants to allow content anonymity, they can just omit the feedback metadata during

content ingestion.

4.2.5 Published Log Objects

Savant NDN agents use NDN technology to publish log objects. Consequently, all log ob-

jects act as digitally signed commitments to log integrity and provenance. A published log

object ei has the following properties: ei = (hi,si, ti,ci). This corresponds to a sequence

number si (always increasing e.g., timestamp), a type ti (e.g., Interest, Content or Event),

type-specific content ci (e.g., content name, QoE, and so forth) and a hash hi of the current

log object.



104 CHAPTER 4. SAVANT DESIGN

h5

h4

h7

h6

hi  = recursive hash value
s0 = Sequence Number e.g., timestamp 
t0 = Interest / Data 
c0 = <from-node>
<message (e.g., recent QoE information)> 

Example:

s5=14104465...
t5=Data
c5=/ndn/tcd.ie/seg1

s6=1410446...
t6=Event
c6=avg-bitrate=185kbps

s7=141048...
t7=Event
c7=buffing-interruption=1

s4=14104463...
t4=Data
c4=/ndn/tcd.ie/seg1

/ndn/fixture-namespace/command/ramdomizer||authentication tags

Prefix Cmd Randomizer and Auth Tag

/ndn/agent-namespace/command/ramdomizer||authentication tags

Prefix Cmd Randomizer and Auth Tag

/ndn/agent1.cs.tcd.ie/cpu-on/ramdomizer||digital signature
Prefix Cmd Randomizer and Signature

Example:

Example:

Name:

Payload:

Security 
Info:

Signature
Certificate or Certificate Chain

Logs

Log Object Name

Figure 4.2: Published Log Object

Figure 4.2 illustrates the fields in a published log object. The log object name reflects

the local namespace convention outlined in Section 4.4.1. The payload contains log entries

such as ei = (hi,si, ti,ci). Each log object is cryptographically signed and carries a link in

the metadata to the associated public key and certificate chain. In the Savant security model,

the accountability engine receiving a published log object will only trust the NDN agent if

the digital certificate anchors at the content provider. Content providers use the SPKI/SDSI

certificate standard, which enables local principals (i.e. content provider) to issue digital

certificates to NDN agents. Savant’s security model is outlined in more detail in Section 4.3.

h5

h4

h7

h6

hi  = recursive hash value
s0 = Sequence Number e.g., timestamp 
t0 = Type: Interest / Data / Event
c0 = content message (e.g., recent QoE 
information), Interest sent, etc.,

Example:

s5=14104465...
t5=Data
c5=/ndn/tcd.ie/seg1

s6=1410446...
t6=Event
c6=avg-bitrate=185kbps

s7=141048...
t7=Event
c7=buffing-interruption=1

s4=14104463...
t4=Interest
c4=/ndn/tcd.ie/seg1

/ndn/netflix/accountability-engine/cmd=namecert/ramdomizer||authentication tags
Feedback Prefix Cmd Randomizer and Auth Tag

/ndn/agent-namespace/command/ramdomizer||authentication tags

Prefix Cmd Randomizer and Auth Tag

/ndn/agent1.cs.tcd.ie/cpu-on/ramdomizer||digital signature

Prefix Cmd Randomizer and Signature

Example:

Example:

Name:

Payload:

Security 
Info:

Signature
Certificate or Certificate Chain

Public Key or Content Digest

Content Name

Figure 4.3: A hash chain of published log objects

Tamper-Evident Logs

A recursively defined hash chain hi linking the current log object with the previously pub-

lished log object hi−1 makes the log tamper-evident. This is depicted in Figure 4.3. By



4.2. OVERVIEW OF THE SAVANT FRAMEWORK 105

maintaining hash chains between published log objects, an NDN agent commits to the in-

tegrity of the current log object and to all previously published log objects. Moreover, a

single linear append-only log, which contains all communication between NDN agents for a

particular content provider, must be maintained by each NDN agent to ensure consistency.

4.2.6 Accounting

Content accounting enables a content provider and a content distributor to track the content,

quality of service (QoS) and end-user QoE. This information can help to determine what

content is popular, the geographical location of users and what kind of performance clients

are receiving from the network [Aditya et al., 2012]. Content providers can use this infor-

mation to maximise revenue and minimise distribution costs, while providing the user with

a quality viewing experience for the least cost [Balachandran et al., 2012]. As can be seen

in the taxonomy in Section 3.2, there is a broad spectrum of accounting and accountability

information that can be produced by NDN agents. The following illustrate two possible ac-

counting scenarios. We utilise the minimal scenario in Section 5.7 to demonstrate Savant’s

capabilities. The minimal and maximal accounting scenarios collect different amounts of

accounting metrics related to content distributed, client QoE and network QoS.

Minimal

This scenario collects industry standard QoE metrics based the on the player state machine

in Figure 4.4 (adapted from [Dobrian et al., 2013]). Client metrics monitored include [Do-

brian et al., 2013]: join-time, which is the time it takes for the buffer to fill up and start

playing; buffering ratio, which is the fraction of total session time (i.e. playing time plus

buffering time) spent buffering; rate of buffering events, which is the frequency of buffering

interruptions; rendering quality, which is the frames displayed per second on the client; and

average uplink or downlink bitrate (e.g., 200 kbps). Additionally, a sample of content chunks

distributed is gathered.

It is envisaged that this accounting scenario will be the default for video content distri-

bution in Savant, as the overhead for accounting and accountability is small on NDN agents



106 CHAPTER 4. SAVANT DESIGN

Figure 4.4: Video Player State Machine (adapted from [Dobrian et al., 2013]).

while the utility of the metrics gathered is high. Savant’s performance under this scenario is

demonstrated in Section 5.7.

Maximal

There is a broad spectrum of accounting information to gather in the maximal scenario.

However, we limit the information collected to the following metrics on the client and cache

server. These include: CPU usage, uplink and downlink bandwidth, user demographic in-

formation and all content chunks distributed. This is in addition to minimal metrics such

as join-time, rate of buffering events, buffering ratio and rendering quality. Moreover, addi-

tional metrics can be inferred from the information gathered. For example, the time taken

to serve all individual content chunks, chunk delivery failures, cache hit ratios and content

popularity. Additionally, content quality can be determined based on chunks distributed,

received and frequency of end-user random access such as Play/Stop/Seek.

4.2.7 Authenticated Interest Commands

Savant’s scalability and potential to detect, isolate and resolve content distribution problems

depends on its ability to run commands whenever required at NDN agents. We realise this

using authenticated interest commands, which add commands and digital signatures to NDN

interests [Burke et al., 2013]. Savant’s authenticated interest commands are based on the

same principles as the NDN lighting control system outlined in Section 2.3.7. They provide

a secure, access controlled and non-repudiable methodology for communicating with un-

trusted infrastructure. Additionally, authenticity and provenance of commands received can

be easily established by NDN agents based on security information received for the content

provider using the CCN-KRS framework.



4.2. OVERVIEW OF THE SAVANT FRAMEWORK 107
h5

h4

h7

h6

hi  = recursive hash value
s0 = Sequence Number e.g., timestamp 
t0 = Interest / Data 
c0 = <from-node>
<message (e.g., recent QoE information)> 

Example:

s5=14104465...
t5=Data
c5=/ndn/tcd.ie/seg1

s6=1410446...
t6=Event
c6=avg-bitrate=185kbps

s7=141048...
t7=Event
c7=buffing-interruption=1

s4=14104463...
t4=Data
c4=/ndn/tcd.ie/seg1

/ndn/fixture-namespace/command/ramdomizer||authentication tags

Prefix Cmd Randomizer and Auth Tag

/ndn/agent-namespace/command/ramdomizer||authentication tags

Prefix Cmd Randomizer and Auth Tag

/ndn/agent1.cs.tcd.ie/cpu-on/ramdomizer||digital signature

Prefix Cmd Randomizer and Signature
Example:

Example:

Figure 4.5: Authenticated Interest [adapted from [Burke et al., 2013]]

To recap Section 2.3.7, an authenticated interest is composed of three parts, as illustrated

in Figure 4.5. The prefix is used for routing commands to NDN agents while the cmd carries

the directive. The randomizer contains a nonce and timestamp to prevent timing and replay

attacks, which is concatenated with a digital signature computed over the rest of the interest.

The content provider or one of its delegates such as an accountability engine signs interests.

Savant uses simple commands such as on or off to enable or disable accounting functionality.

However, more sophisticated commands can be run, such as redirecting clients to alternative

cache resources or blacklisting cache servers from content distribution. See Table 4.1 for a

list of sample commands used by Savant.

Table 4.1: Savant Authenticated Interest Commands
Command Comment

cpu-on/cpu-off Turn off/on CPU statistics at NDN agent

framedrop-on/framedrop-off Turn off/on frame drop accounting on client

uplink-on/uplink-off Turn off/on average uplink bitrate

downlink-on/downlink-off Turn off/on average downlink bitrate

blacklist=[ip-address] Blacklist cache server

/namespace=[ip-address] Add new route for /namespace

logging-period=15 increase/decrease logging periodicity

sample-frequency=325 chunk statistical sample frequency

Savant uses a similar methodology to the NDN lighting control framework described in

Section 2.3.7 to produce and verify authenticated interest commands. However, as NDN

agents are expected to run on non-resource constrained devices, we recommend using public

keys and digital signatures for authentication. This is in contrast to the NDN lighting con-

trol system, which advocates using symmetric keys to produce message authentication codes

(MACs), on resource constrained devices [Burke et al., 2012]. Moreover, as the collec-



108 CHAPTER 4. SAVANT DESIGN

tion of additional accounting metrics can have associated costs (both system and monetary),

all commands received from content providers must be acknowledged. Consequently, ac-

countability and non-repudiation is supported in the architecture as both interests and data

responses are digitally signed.

When an NDN agent receives an authenticated interest from a content provider, it deter-

mines whether or not to execute the command, as follows:

1. Obtain and verify the authenticity of the content providers public key. If the key is not

available locally, it can be retrieved using the CCN-KRS framework [Mahadevan et

al., 2014], which is outlined in detail in Section 2.3.6.

2. Verify the digital signature in the authenticated interest received is from the content

provider.

3. Check if the content provider is allowed to run the command, which is determined by

the access control policy described in Section 4.3.5.

4. Verify the command is well formed.

5. Verify the randomizer information is current e.g., timestamp.

If these steps are completed successfully, the NDN agent executes the command and gen-

erates a data response to the content provider. Moreover, the command executed is published

as a log object.

4.2.8 Accountability Engine

The accountability engine is a critical piece of infrastructure for the Savant framework. A

high-level overview is depicted in Figure 4.6. It is infrastructure owned and operated by

the content provider or a trusted third party. Its primary function is to support content

providers collecting, aggregating and auditing accounting and accountability information

collected from trusted or untrusted NDN agents. However, it also supports NDN agents with

discovering accountability engine infrastructure based on metadata specified during content

ingestion. Moreover, it supports log commitment (see Section 4.5.2), which ensures an NDN



4.2. OVERVIEW OF THE SAVANT FRAMEWORK 109

Process

Attribute List
Category 1: System Configuration 
CPU Type, OS Version, RAM, System Up-time, IP address

Category 2: Network Performance
Bytes Uploaded, Downloaded, Speed & Reliability
Category 3: User Engagement
Content marked as favourite, User likes and dislikes, Pause, Play, 
Fast-Forward, Rewind, User comments, User shares e.g., to 
Facebook, Google+ and Blogger. 
Category 4: User Quality of Experience (QoE)
Last join time (time it takes for the buffer to fill up and start playing), 
total play time (minutes watched), Buffering ratio - fraction of 
session time (i.e., playing time + buffering time) spent buffering, 
Rate of buffering events (i.e., frequency of buffering interruptions), 
Average bitrate (e.g., 100kbps), Rendering quality and Rate of 
bitrate switching. 

Configuration Manager

NDN  
Content 
Store

NDN Publish

NDN Publish

NDN Video Client

Accountability 
EngineSubscribe

Subscribe

Subscribe

NDN Cache  

Content Player

NDN Content

NDN Cache 

NDN Interest

NDN Publish

NDN Publish

NDN Publish

NDN Publish

NDN Publish
NDN Publish

Subscribe

Subscribe
NDN Publish
Published Information

NDN Publish

Subscribe

Subscribe

Publish

NDN Publish

Figure 4.6: High-level Overview of the Savant Accountability Engine

agent cannot create log entries for interest or content it never sent or received. Furthermore,

during the agent discovery process (see Section 4.5.1), the accountability engine provides

NDN agents with digital certificates based on the SPKI/SDSI certificate standard to support

the production of accounting and accountability information in local namespaces. This is

based on the local trust model outlined in Section 4.3.1.

When NDN agents are authorised to publish accounting and accountability information

in a content provider’s namespace, the collection of accounting and accountability informa-

tion can start. NDN agents produce published log objects using sequential data names based

on the hierarchical naming scheme. As a result, it is easy for accountability engine infras-

tructure to formulate the name of the next interest to send for a published log object. Once

the log object is collected, the following happens on the accountability engine:

1. The integrity and authenticity of the published log object is established using the NDN

agents public key.

2. The log object is decapsulated.

3. The integrity of the logs hash chain is determined.



110 CHAPTER 4. SAVANT DESIGN

Table 4.2: Log Auditing Event and Type
Event Type

Uplink bandwidth Deterministic (every second)
Downlink bandwidth Deterministic (every second)

Buffering ratio Non-deterministic
Join-time Deterministic (occurs once)

Rate of buffering events Non-deterministic
Rendering quality Non-deterministic

Interest Deterministic
Content Deterministic

4. Logs are audited based on the accounting scenario used, e.g., typically using the Min-

imal Accounting scenario.

5. Logs are presented to aggregator functions for data aggregation, summarisation and

alerting.

4.2.9 Log Auditing

Each log is audited according to a logging scenario defined by the content provider and based

on a record of authenticated interest commands received. Combined, they identify what in-

formation is expected to be in the log during auditing e.g., QoE metrics, interests and content

sent/received, and so forth. For example, based on the minimal accounting scenario outlined

in Section 4.2.6, the log should contain some of the information in Table 4.2. While certain

information is deterministic by predictably occurring at intervals such as every second (e.g.,

uplink or downlink bandwidth), other metrics such as buffering interruptions or rendering

quality are non-deterministic and can occur due to network fluctuations or client-side issues.

Regardless of the order of data in the log, it should be compatible with what was defined

in the accounting scenario used and based on authenticated interest commands received. For

example, if an authenticated interest command is received to turn on CPU metric gathering,

then we would expect to see CPU metrics occurring deterministically every second in the log.

Any evidence of log subversion, log-tampering (i.e. based on checking for the consistency

of hash chains between published log objects) or inconsistencies (i.e. logs deviate from the

expected logging scenario) can be reported directly to the content provider or investigated



4.2. OVERVIEW OF THE SAVANT FRAMEWORK 111

further using authenticated interest commands.

4.2.10 Aggregator Functions

Aggregator functions based on information flow processing mechanisms are utilised by Savant-

NDN agents and accountability engines to aggregate, summarise and alert on data collected

[Cugola & Margara, 2012][Zaharia et al., 2012]. Some aggregator functions embody func-

tionality similar to data stream management systems, which run queries continuously and

provide updated answers when new data arrives. Savant’s accountability engine is config-

ured to produce a summary of events received at ten second intervals1 using the following

generic Apache Spark SQL command:

Listing 4.1: Apache Spark SQL Command

1 SELECT hostname, eventtype, AVG(value) as Average

2 FROM records

3 GROUP BY hostname, eventtype

4 ORDER BY eventtype desc

The command in Listing 4.1 produces a table in the accountability engine every ten sec-

onds with an average of all events received grouped by NDN agent. Other functions can

perform complex event processing such as monitoring event patterns for multiple related

events in tables produced, then notifying interested parties on occurrence. Consequently, ag-

gregator functions can determine what feedback information to collect and the frequency at

which it is collected. Furthermore, they can combine the outputs from other aggregator func-

tions, supporting compositional processing. Utilising support from high-level accountability

engine infrastructure, aggregation is performed in the distributed architecture incrementally

and hierarchically and does not require large volumes of logs to be aggregated nightly, which

is common in existing CDN, CDNI and hybrid CDN-P2P systems such as Akamai and Aka-

mai Netsession [Nygren et al., 2010] [Aditya et al., 2012]. Furthermore, Savant supports

decentralised aggregation in order to aggregate information as close as possible to the data

1This interval can be configured by the content provider and changed easily when required. For example,
if the log size is very large and gathered every 1, 10, or 60 minutes, the SQL can be configured to reflect this
interval.



112 CHAPTER 4. SAVANT DESIGN

source and minimise the amount of bandwidth used when collecting logging information. Fi-

nally, summarised information is published as a log object, which is available for collection

by higher-level accountability engines or the content provider.

4.2.11 On-Demand Accounting and Accountability

One of the defining benefits of the Savant framework is its ability to monitor the content

distribution process by collecting a subset of the information available in the taxonomy in

Section 3.2 in near real-time, while maintaining the flexibility to gather additional account-

ing information when required. This is achieved utilising authenticated interest commands

(outlined in Section 4.2.7) and choosing the right subset of accounting metrics to monitor.

In the current implementation of Savant, we use the minimal accounting scenario (defined

in Section 4.2.6) by default, which is based on industry standard QoE metrics [Dobrian et

al., 2013]. These metrics are summarised in a table in the accountability engine (currently

at ten second intervals using the Apache Spark framework [Zaharia et al., 2012]). This is

supported by aggregator functions (outlined in Section 4.2.10) based on event processing

languages, which intelligently aggregate, monitor and alert on arriving data in near real-

time. Using aggregator functions and authenticated interest commands, Savant can easily

collect additional metrics if anomalies are detected. For example, if the downlink bandwidth

decreases on a client, this could initiate collection of additional accounting metrics on the

client and cache to try determine the cause of the fault. In Section 5.8.2, we present an

example of Savant detecting a fault scenario.

In the current version of Savant, the frequency that NDN agents produce and accountabil-

ity engine infrastructure collect published log objects is configurable by the content provider

using authenticated interest commands. This interval, which is currently set to 15 seconds

by default for all NDN agents, can be increased or decreased when needed at a single pair of

communicating NDN agent or all NDN agents by the content provider.



4.3. SECURITY MODEL 113

Regional 
Accountability 

Engine

 
 

 

Content 
Provider

NDN Cache

PIT

Content Store

FIB

 

Summary Accounting and Accountability Information

Content

Interests

End-user 
Device

National 
Accountability 

Engine

Ireland

Spain

UK

EU

Global  
Accountability 

Engine
US

Asia

ISP

Figure 4.7: High-level Overview of the NDN architecture with support from hierarchical
accountability engines.

4.2.12 High-level Accountability Engine

Savant’s scalability is supported by hierarchical accountability engines, which collect and

aggregate summary data from multiple low-level accountability engines. Summary informa-

tion is propagated back to the content provider as published log objects. The Savant architec-

ture forms a tree-like structure where leaves represent NDN agents, accountability engines

correspond to branches and the content provider acts as the root of the tree. A high-level

overview of the NDN architecture with support from hierarchical accountability engines is

depicted in Figure 4.7.

4.3 Security Model

NDN’s trust model does not rely on any centralised public key infrastructure (PKI), instead

advocating a distributed trust model. Trust in keys is typically established using a PKI-like

certificate chain based on the content naming hierarchy [Xylomenos et al., 2014]. However,



114 CHAPTER 4. SAVANT DESIGN

the CCN network can have multiple copies of published content with the same name from

different content providers, which are bound to valid public keys. Savant aggravates this

trust problem further as both NDN agents and content providers can publish content in any

namespace they choose. Consequently, a key resolution service is required (such as CCN-

KRS [Mahadevan et al., 2014], which is adopted by Savant) to resolve authorised content

provider security information for a CCN namespace (see Section 2.3.6). Moreover, Savant

requires a scalable and flexible security model that can manage namespace allocation and the

integrity and authenticity of published content for both content providers and NDN agents.

This should be supported with a PKI for producing, distributing, storing, using, authenti-

cating and revoking digital certificates and managing the life cycle of public keys. Finally,

known and unknown threats and attack methods should be mitigated in the best possible way.

4.3.1 Savant’s Trust Model

In Savant, different levels of trust are required between content providers, NDN agents and

accountability engine infrastructure. For example, if a private key is compromised in any

ICN architecture, an attacker can publish valid content under the publishers namespace. This

is a serious threat for content providers as they are responsible for copyrighted material such

as movies, TV shows, and so forth. Additionally, an attacker with a publisher’s private

key in Savant can send authenticated interest commands to NDN agents (see Section 4.2.7),

which can impact on client performance and have associated monetary costs. In contrast to

content providers publishing copyrighted material, NDN agents produce accounting metrics

related to the content distribution process, which while important, are less critical to secure.

Moreover, these metrics are typically only of interest to the content provider.

Consequently, we envision Savant using at least two PKI trust models to support the ar-

chitectures scalability, see Figure 4.8. In the first PKI model, trust is anchored at a globally

trusted ICANN-like entity, which supports content providers publishing copyrighted mate-

rial and end-users getting authorised content for a namespace. In the second PKI model, trust

originates from the content provider (local principal) to NDN agents publishing accounting

and accountability information. Both trust models are based on the SPKI/SDSI PKI cer-



4.3. SECURITY MODEL 115

Global Trust
SPKI/SDSI

CCN-KRS

Globally 
Trusted 

ICANN-Like 
Entity

Queries/Updates

End-user-1 End-user-2

Netflix HBO

NDN 
Cache-A

NDN 
Cache-B

Interest /netflix/obj1
Interest /hbo/obj1

Global Trust
SPKI/SDSI

Global Trust

Content

Interest

Local Trust

Local Trust
SPKI/SDSI

Local Trust
SPKI/SDSI

CCN-KRS 
Request/Response

Namespace: /hboNamespace: /netflix

Figure 4.8: This figure shows two trust models (hierarchical and local) used by the Savant
framework, which are both supported by the SPKI/SDSI PKI certificate standard.

tificate standard (see Section 2.3.2). End-users receiving content can easily establish the

authenticity of a content providers public key by following the certificate path from the trust

anchor to the content provider’s digital certificate.

Global Trust Model

In the global PKI model, we envisage content providers such as Netflix and HBO using

the services of a globally trusted ICANN-like entity to coordinate namespace allocation and

manage associated digital certificates. Additionally, one of its secondary responsibilities is to

update the CCN-KRS service (outlined in Section 2.3.6) with the latest security information

(such as new, updated or revoked digital keys) for content providers. Consequently, end-

users can easily resolve up-to-date authorised content publisher security information for a

CCN namespace. This entity can also act as a CA that produces digital certificates, manages

the life cycle of public keys and certifies and accepts liability for the authenticity of these

keys if required. However, trust can originate from different sources based on the SPKI/S-

DSI certificate standard. As a result, its main responsibilities include managing namespace



116 CHAPTER 4. SAVANT DESIGN

allocation and updating CCN-KRS servers.

This ICANN-like entity can also delegate capabilities to third party registrar entities (sim-

ilar to those used in DNS in Section 2.3.1), which are authorised to manage and reserve pre-

fixes. To ensure the architecture’s scalability, registrars are also authorised to produce digital

certificates using the SPKI/SDSI certificate standard for content providers.

Local Trust Model

In the local trust model (i.e. small-world model of trust), NDN agents are given digital cer-

tificates by the content provider (e.g., Netflix) based on the SPKI/SDSI certificate standard.

In this model trust originates from the content provider (i.e. local principal), which defines a

local name in the issuers namespace using SPKI/SDSI name certificate (outlined in Section

2.3.2) and assigns these names to NDN agents. Moreover, the local principal grants autho-

risations using SPKI/SDSI authorisation certificate (outlined in Section 2.3.2) to publish log

objects under a namespace.

Granting name and authorisation certificates to NDN agents can also be delegated (us-

ing the authorisation certificate delegation bit) to an accountability engine (or other entity)

by the content provider. For example, a Netflix end-user is granted a name certificate for

namespace /netflix/acc-engine/user1 by a Netflix accountability engine, which also issues an

authorisation certificate to publish log objects under that namespace.

SPKI/SDSI supports a secure, scalable and flexible authorisation model managed by a

content provider or accountability engine infrastructure, which can build distributed trust

among local communities without requiring the support of a globally trusted entity (root).

Moreover, every accountability engine or content provider is free to adopt an independent

model for managing the life cycle of NDN agent public keys, which can expire periodi-

cally requiring new certificates to be issued. NDN agents require valid digital certificates to

publish in a content providers namespace.

Adopting the SPKI/SDSI trust model can also help mitigate some ICN threats and attacks

identified next while continuing to support the architecture’s scalability.



4.3. SECURITY MODEL 117

4.3.2 Threats and Attack Scenarios

Several threats and attacks were identified related to the Savant accounting and accountability

model. These include [AbdAllah et al., 2015]:

1. Corrupted Data: Data has not been modified or tampered with and comes from an

original source. Data integrity, provenance and authenticity can be established.

2. Unauthorised Access: End-users viewing content without permission or authorisation.

3. Cache Poisoning: Caches intentionally polluted with corrupt or unpopular content.

4. Path Infiltration: Attackers announcing invalid routes for content.

5. Unauthorised Commands: Unauthorised (authenticated interest) commands being run

against NDN agents such as turning off or on accounting and accountability function-

ality.

6. Privacy - Content Monitoring and Censorship: A third party eavesdropping, inter-

cepting and modifying published log object information or authenticated interest com-

mands.

7. Collusion: Agents suspected of colluding to perform malicious or deceitful behaviour.

This includes an inflation or deflation attack where the client and cache collude to over

or under report upload or download activity [Aditya et al., 2012]. Similarly, a Sybil

attack, when a user forges multiple identities that join a system in order to perform one

or multiple attacks while subverting the system authority.

8. Denial of service (DoS) Attacks: This includes interest flooding and content/cache

poisoning [Afanasyev et al., 2013]. Additionally, content providers overloading the

cache or client with requests for accounting and accountability information using au-

thenticated interest commands.

9. Poor Quality of Service (QoS): Caches refusing, degrading or aborting data transfers

to end-users and reporting otherwise.



118 CHAPTER 4. SAVANT DESIGN

10. Resource Exhaustion: Infrastructure susceptible to large amounts of requests or flood-

ing attacks.

4.3.3 Defence Mechanisms

To illustrate Savant’s defence mechanisms against these kinds of threats and attacks, we

consider how a content provider similar to Netflix might use the NDN model for content

distribution in conjunction with the Savant framework for accounting and accountability.

• To support Savant, each end-user device, cache server and content provider must be

associated with identities that can be cryptographically asserted. Public keys are used

to establish the integrity and provenance in content and log objects received from con-

tent providers and NDN agents. In Savant, a globally trusted ICANN-like entity issues

namespaces to content providers and digital certificates (if required). Additionally,

content providers adopt a local trust model using the SPKI/SDSI certificate standard

to issue name and authorisation certificates to NDN agents for publishing accounting

and accountability information.

• To force NDN agents to produce accounting and accountability information, content

providers can encrypt content before distribution to protect it from unauthorised ac-

cess. Decryption keys are shared with authorised users. Consequently, all end-users

viewing content must be accessible to the content provider. Additionally, this content

can be set to periodically expire (e.g., daily) requiring replacing at caches with new

encrypted content.

• In CCN/NDN, establishing trust in content is an application-dependent concept. Con-

sequently, it is difficult for the CCN network to differentiate between valid or polluted

content based on content name only. As a result, Savant employs the CCN-key reso-

lution service (CCN-KRS), which is a DNS-like service for resolving security infor-

mation (such as public key certificates) for a CCN/NDN namespace [Mahadevan et

al., 2014]. As outlined in Section 2.3.6, CCN-KRS supports the restriction of content

requests to that which is signed with a content providers public key or content digest



4.3. SECURITY MODEL 119

[Mahadevan et al., 2014]. Consequently, public keys or content digests can be speci-

fied in the interest sent, which guarantees (assuming network compliance) an end-user

will not receive fake or polluted content from a cache. Additionally, content provider

security information is maintained and updated in CCN-KRS in cooperation with a

globally trusted CA.

• A related attack involves caches advertising invalid routes for content. Using CCN-

KRS security information, the CCN network will only deliver valid content for an

interest request (assuming network compliance).

• NDN agents can also establish the integrity and provenance of authenticated interest

commands received from content providers using the CCN-KRS framework [Burke

et al., 2013]. Additionally, they include mechanisms (such as timestamps, estimated

round-trip-time, sequence number, and so forth) to protect against an adversary attack

that records, drops, modifies, replays, injects or delays commands [Burke et al., 2013].

• Several threats exist whereby accounting information is disclosed to a competitor. This

involves eavesdropping on information sent between client, cache and accountability

engine. Encrypting all published log object information with the content providers

public key or a symmetric key shared with the accountability engine can rectify this

issue. Moreover, authenticated interest commands and data response can optionally be

encrypted with the receiver’s public key.

• A related threat involves a competitor running a hostile cache node where they have a

complete view of the accounting process for a particular content item in a specific re-

gion. This falls into an area of collusion attacks if the competitor also runs client nodes

to create fake transactions. The use of a strong identity management system, which

binds actions to agents, should act to discourage this kind of behaviour, assuming the

cost of getting caught outweighs the gains [Yumerefendi & Chase, 2005].

• Savant is susceptible to several types of denial of service (DoS) attack including: con-

tent pollution and interest (and authenticated interest) flooding. As discussed in Sec-

tion 2.3.6, the CCN-KRS framework limits the impact of content pollution attacks by



120 CHAPTER 4. SAVANT DESIGN

guaranteeing the client will not receive corrupted or fake content. To mitigate interest-

flooding attacks, we advocate using proven statistical algorithms that use per packet

router state, interest satisfaction ratios (i.e. interests sent versus satisfied) and ex-

plicit interface limits to restrict the amount of malicious interests forwarded by routers

[Afanasyev et al., 2013]. Moreover, authenticated interest commands received can

help isolate the attack source as commands are signed by the attacker, which is iden-

tifiable to the system. Finally, we suggest content providers and caches use some sort

of monetary model based on reimbursement for different amounts of accounting and

accountability information produced. These choices require future research.

4.3.4 Savant Supported Defence Mechanisms

Other attack methods exist that cannot be mitigated by the mechanisms outlined above. How-

ever, the faults generated by these attacks can be recognised by the Savant framework and

some action taken (e.g., raise an alarm or redirect clients to alternative infrastructure for

content distribution using authenticated interest commands). These include:

• Savant can monitor the quality of experience of experience (QoE) between NDN

agents using aggregator functions based on event processing languages. Consequently,

it is able to recognise issues such as caches refusing, degrading or aborting data trans-

fers to NDN clients. Moreover, published log objects provide non-repudiable evidence

of actions taken by NDN agents, which can be audited. Alarms can be raised and some

action initiated such as automatically redirecting clients to alternative trusted cache in-

frastructure for content distribution using authenticated interest commands.

• Authenticated interest commands could also be used to redirect client infrastructure

to alternative trusted cache resources if NDN agents are suspected of colluding to

perform malicious or deceitful behaviour. This is similar to the hybrid CDN-P2P ap-

proach adopted by the RCA system [Aditya et al., 2012], which redirects (quarantines)

nodes suspected of causing malicious or deceitful behaviour to trusted infrastructure

for content distribution.



4.3. SECURITY MODEL 121

• As Savant has the capability to process and aggregate client and cache performance

metrics it can monitor for types of DoS attacks such as resource exhaustion or network

congestion. This is supported by authenticated interest commands, which turn off an

on accounting and accountability information at NDN agents. Moreover, as Savant

knows the location of multiple copies of content, it can redirect client infrastructure to

an alternate location for content distribution.

This is not an exhaustive list of attacks methods that can be identified by Savant. It serves

only to illustrate some of Savant’s capabilities. In Section 5.8.2, we engineer a fault into the

NDN content distribution process to demonstrate Savant’s ability to detect and isolate some

of these kinds of attack.

The defence mechanisms outlined above are supported by the Savant trust model, asym-

metric and symmetric cryptographic techniques, the CCN-KRS framework, a strong identity

management system and proven statistical algorithms (to mitigate interest flooding attacks).

Moreover, Savant components such as accountability engines, aggregator functions and au-

thenticated interest commands provide additional mechanisms to recognise faults and per-

form some action to help mitigate content distribution problems.

4.3.5 Access Control Lists

An NDN agent can decide whether or not to execute authenticated interest commands re-

ceived from content providers based on locally defined access control lists (ACLs). NDN

agents can optionally create their own ACLs using the SPKI/SDSI certificate standard (see

Section 2.3.2). These ACLs can determine what authenticated interest commands content

providers are allowed to run on NDN agents. Consequently, they are expected to be based

on policies and agreements between content providers and NDN agents. For example, an

NDN cache may adopt a monetary model based on reimbursement for different amounts of

accounting and accountability information produced and shared with content providers.

Every NDN agent contains a complete list of access control policies for all accounting

and accountability information listed in the accounting taxonomy in Section 3.2. However,

for scalability purposes, all of these are disabled by default except for the minimal accounting



122 CHAPTER 4. SAVANT DESIGN

scenario metrics outlined in Section 4.2.6. However, the other metrics can be turned off

and on when required using authenticated interest commands. It should be noted that the

more access control policies activated, the more accounting and accountability information

generated. This can have a significant impact on available client, cache and accountability

engine resources. Consequently, it is recommended that this functionality be turned on only

when necessary.

4.4 Naming

4.4.1 Global and Local Namespace

The global and local namespace used by content providers and NDN agents in the Savant

architecture is dependent on the trust model used. As outlined in Section 4.3, Savant uses

hierarchical and local trust models supported by the SPKI/SDSI certificate standard.

The hierarchical model is rooted at a globally trusted ICANN-like entity that manages

namespaces and optionally, digital certificates. This entity designates content providers such

as Netflix and HBO to be the authoritative publisher for a prefix e.g., /netflix or /hbo. This

is reflected in the global CCN-KRS service, which like DNS today, can be easily queried

by NDN agents. Moreover, a content provider is free to manage the sub-prefix in any way

they choose. For example, Netflix movies may be published under /netflix/movies while TV

shows might be published under /netflix/tv.

To support the architecture’s scalability, content providers are responsible for managing

trust relationships between themselves and NDN agents. This is supported by Savant’s small-

world model of trust based on the SPKI/SDSI certificate standard [Clarke, 2001]. As outlined

in Section 4.3, name and authorisation certificates are issued by the content provider or an

accountability engine designated by the content provider to NDN agents. An NDN agent’s

namespace is local to the namespace of the entity granting it a name certificate.

For example in Figure 4.9, an ICANN-like entity designates Netflix as the authoritative

publisher for the /netflix prefix. Netflix in turn grants several accountability engines author-

ity to delegate authorisation certificates and publish in a local namespace in the certificate



4.5. SAVANT PROTOCOLS 123

Netflix

Accountability 
Engine USAAccountability 

Engine UK

NDN 
Agent2

NDN 
Agent4

NDN 
Agent3NDN 

Agent1

Designate Trust Designate Trust

Designate Trust
Designate Trust

Namespace: /netflix

Local Namespace: 
/netflix/acc-engineLocal Namespace: 

/netflix/acc-engine

Local Namespace: 
/netflix/acc-engine/agent1

Local Namespace: 
/netflix/acc-engine/agent3

Local Namespace: 
/netflix/acc-engine/agent4Local Namespace: 

/netflix/acc-engine/agent2 
/netflix/acc-engine/agent2/logid1
/netflix/acc-engine/agent2/logid2

ICANN-like 
Entity

Netflix designated the authoritative publisher for /netflix prefix

Figure 4.9: Savant’s SPKI/SDSI small-world trust model

issuer’s namespace (e.g., /netflix/acc-engine). Accountability engines can, via succession,

grant NDN agents authority to publish in a local namespace to the accountability engine

(e.g., /netflix/acc-engine/agent1).

Moreover, NDN agents publish log objects for a content provider under their designated

namespace e.g., /netflix/acc-engine/agent2/logid1. If NDN agents interact with multiple con-

tent providers, they will publish log objects under multiple namespaces e.g., /netflix or /hbo

or /bbc. Accountability engines send interests to NDN agents for published log objects.

Moreover, accountability engines and hierarchical accountability engines can publish aggre-

gate data under the namespace designated to them by the content provider e.g., /netflix/acc-

engine/logid1.

4.5 Savant Protocols

Several protocols are required to support the Savant framework. The first underpins agent

discovery and identity management and is supported by the accountability engine and the

SPKI/SDSI certificate standard. The second supports log commitment between NDN agents,



124 CHAPTER 4. SAVANT DESIGN

which is also aided by the accountability engine. The third ensures a content publisher

(content provider, NDN agent, and so forth) can prove its ownership of a key, which is

achieved using a simple challenge response protocol. We will outline these protocols in the

remainder of this section.

4.5.1 Agent Discovery and Local Identity Management Protocol

Content providers specify the accountability engine responsible for collecting accounting

and accountability information using feedback metadata during content ingestion. For ex-

ample, Netflix’s accountability engine might be contactable via the following metadata:

feedback:/netflix/acc-engine. NDN agents read metadata when sending or receiving content.

If the feedback field is present and the NDN agent does not have a valid SPKI/SDSI name

or authorisation certificate for the content provider, it will contact the local2 accountability

engine by sending it an authenticated interest command. The authenticated interest contains

the following information (see Figure 4.10): the feedback prefix; a command request for

a name or authorisation certificate; the NDN agents IP address and public key (generated

by the NDN agent if required), which will be used to publish log objects; randomizer and

authentication tags.

/netflix/acc-engine/cmd=cert-request/ip=ipaddress/agent-public-key/randomizer and authentication tags 

Feedback Prefix Command Request IP Address Agent Public Key Randomizer and 
Authentication tags

Figure 4.10: Authenticated interest command supporting NDN agent discovery

After verifying the integrity of the authenticated interest received using the digital sig-

nature and NDN agent’s public key, the accountability engine responds with a published

content object (see Figure 4.11). This content object acts as a SPKI/SDSI name certificate.

It contains the accountability engines public key i.e. the issuer, a local namespace in the ac-

countability engines namespace i.e. the identifier e.g., /netflix/acc-engine/agent1, the NDN

agents public key i.e. the subject, and a certificate start and expiry date i.e. the validity

2The NDN network forwards the request to the closest (i.e. local) accountability engine responsible for
collecting accounting and accountability information for that content provider. Interests are forwarded based
on NDN router FIB table entries, which are populated by a name-based routing protocol.



4.5. SAVANT PROTOCOLS 125

period.

/netflix/acc-engine/cmd=cert-request/ip=ipaddress/agent-public-key/randomizer and authentication tags 

Feedback Prefix Command Request IP Address Agent Public Key Randomizer and 
Authentication tags

Data Response: /netflix/agent1/nonce=99988992

Interest: /netflix/agent1/nonce=99988992

Challenger Content Producer

SPKI/SDSI Name Certificate
Authenticated Interest: Name Cert Request

NDN Agent Accountability Engine
Generate 
Key Pair

Authenticated Interest: Authorisation Cert Request

SPKI/SDSI Authorisation Certificate

Figure 4.11: SPKI/SDSI local identity management protocol between client and account-

ability engine

On receiving the name certificate, the NDN agent sends another authenticated interest

command requesting an authorisation certificate to publish content under its assigned local

namespace. The accountability engine responds with a second content object, which acts as

an SPKI/SDSI authorisation certificate (see Figure 4.11). It contains: the accountability en-

gine’s public key i.e. the issuer; the NDN agents public key i.e. the subject; the authorisation

to publish under the local namespace /netflix/acc-engine/agent1 i.e. the tag; and a certificate

start and expiry date i.e. the validity period.

When both SPKI/SDSI name and authorisation certificates have been received, the NDN

agent can publish log objects under its designated local namespace until the associated cer-

tificates expire or are revoked. Published logs are collected and audited in near real-time by

the accountability engine. Moreover, content providers have direct control over the security

model used and can manage the life cycle of public keys associated with NDN agents. Fi-

nally, the agent discovery and local identity management protocol runs only when the name

or authorisation certificates do not exist or expire on NDN agents.

4.5.2 The Log Commitment Protocol

Log commitment between NDN agents ensures that an NDN agent cannot create log entries

for interests or content it has never sent or received. This is accomplished by adding the dig-

ital signature of the published log object for the interest or content sent to the corresponding

agents log for interest or content received.

The log commitment protocol in Figure 4.12 is an improvement on previously pub-



126 CHAPTER 4. SAVANT DESIGN

Client Cache Acc-Engine

Step 2: LogID=002; Interest; 
chunk_1

Step 3: Data chunk_1

Step 15: LogID=003; Content; 
chunk_1; sig_890

Step 5: Interest /cache/LogID=890/content-name/nonce

Step 12: LogID=891; Interest; chunk_1;sig_002

Step 6: Interest /client/LogID=002/content-name/nonce

Step 8: Data .../LogID=002

Step 10: Interest ../LogID=002
Step 11: Data

Step 14: Data
Step 13: Interest ../LogID=890

Step 4: LogID=890; Content; chunk_1

Step 9: Data.../LogID=890

Published Log Object
Interest Sent
Data Response

Step 1: lnterest chunk_1
 

Step 7: 
Associate Cache 

& Client 

Figure 4.12: Savant commitment protocol with accountability engine support

lished versions [Ó Coileáin & O’Mahony, 2014b], [Ó Coileáin & O’Mahony, 2014a] and

[Ó Coileáin & O’Mahony, 2014c]. As a result of these changes, less network and system

resources are required to support the log commitment and accountability process between

NDN agents. The updated protocol works as follows:

• Log objects are published at the client (Step 2) for interest sent (Step 1) and the cache

(Step 4) for Data response (Step 3).

• The client (Step 6) and the cache (Step 5) send the content name (in interest or data

sent/received), nonce and ID of recently published log objects to the accountability

engine.

• The accountability engine associates communicating agents using the content name

and nonce (Step 7).

• It then responds to each agent with the opposing agents LogID (Step 8 to Step 9).

• The client and the cache share published log object information (Step 10 and Step 11;

Step 13 and Step 14).

• Log commitment occurs when the digital signature for the interest or content sent is

appended to the receiving agents log (Step 12 and Step 15).

Step 10 to Step 12 and Step 13 to Step 15 typically occur in parallel.



4.6. EXTENSIONS AND IMPROVEMENTS 127

This protocol supports log integrity and authenticity between the clients and caches by

getting NDN agents to acknowledge having sent or received interests and data messages.

Moreover, they provide non-repudiable evidence of their actions by digitally signing a pub-

lished log object.

It should be noted that in early versions of the Savant architecture we proposed perform-

ing log commitment and verification for every individual content chunk distributed. How-

ever, it quickly became apparent that gathering accounting and accountability information

for all content chunks distributed in a packet-level ICN architecture is a major challenge. As

a result, we take a statistical sample of content chunks distributed. This process is covered

in greater detail in Section 5.2.2.

/netflix/acc-engine/cmd=cert-request/ip=ipaddress/agent-public-key/randomizer and authentication tags 

Feedback Prefix Command Request IP Address Agent Public Key Randomizer and 
Authentication tags

Data Response: /netflix/agent1/nonce=99988992

Interest: /netflix/agent1/nonce=99988992

Challenger Content Producer

Figure 4.13: Challenge Response Protocol

4.5.3 The Challenge-Response Protocol

A content producer i.e. a content provider, accountability engine, trusted third party or NDN

agent, can prove its ownership of a private key using a simple challenge response protocol

adopted from the NDN lighting control system [Burke et al., 2012]. A challenger sends an

interest to a content provider with a random nonce (see Figure 4.13). For example, /netflix/a-

gent1/nonce=99988992. Based on NDN principles, only a content producer with the secret

key can respond to the interest received with a valid content object.

4.6 Extensions and Improvements

During Savant’s implementation, we encountered many problems for video distribution re-

lated to the volume of content objects created in a packet-level ICN architecture such as

NDN. Additionally, there were also issues related to the size of published log objects and



128 CHAPTER 4. SAVANT DESIGN

the overhead of producing and verifying content received. Consequently, the remainder of

this section outlines several modifications we made to Savant to improve the architectures

scalability.

4.6.1 Statistical Sample

Savant can monitor all content chunks distributed between NDN agents. However, there

is a significant overhead performing log commitment in a packet-level architecture such

as NDN for every individual content chunk distributed. As a result, we use a systematic

sampling technique to flag content chunks for log commitment using metadata e.g., flagged-

content=true, during content ingestion. When a published log object, linked via a hash chain

to the previous log entry, is produced by both the client and cache infrastructure that matches

flagged metadata, the log commitment protocol is utilised. As a result, the accountability

engine and the content provider have a non-repudiable tamper-evident view of the content

distribution process between NDN agents based on a statistical sample, which can be audited,

aggregated, summarised and alerted upon.

4.6.2 Public/Private Key Length

In the initial design, content and log objects were both published with at least 2048 bit

RSA keys. However, there is a significant overhead for NDN agents and accountability

engine infrastructure producing, verifying and auditing published log objects produced. In

the updated design, content providers such as Netflix continue to publish copyrighted content

using at least 2048 bit RSA keys, while NDN agents now use at most 1024 bit RSA keys.

As outlined in Section 4.3.1, we justify this change by the level of trust required different

entities. For example, we believe stronger keys are required to support copyrighted material

such as movies and TV shows provided by content providers. In contrast, NDN agents

publish local accounting and accountability information using digital certificates provided

by the content provider or accountability engine. Consequently, a compromised key only

puts one NDN agent’s integrity in danger.



4.7. ANALYSIS 129

4.6.3 Published Log Object Size

Chunk size varies across ICN architectures due to the overhead required for asymmetric

cryptography. In NDN, this is about 650 bytes per chunk, which is independent of the chunk

size [Salsano et al., 2012]. Consequently, there is an argument in favour of adding more than

one log entry, which is typically between 50 bytes to 130 bytes in size, to a published log

object. This would reduce the system and network overhead of producing, distributing and

verifying published log objects at both NDN agents and accountability engine infrastructure.

To achieve this in Savant, all interests and content sent and received and all accounting

metrics produced during a fifteen second interval are aggregated into one published log object

by both client and cache infrastructure. Additionally, hash chains are maintained between

each log entry. Consequently, when logs are collected by the accountability engine, hash

chain integrity between log entries and published log objects requires verification.

4.7 Analysis

In section 4.1, we outlined several requirements that Savant must fulfil. We now analyse how

we believe these requirements have been satisfied by Savant’s design.

The first requirement was to identify what accounting information should be collected

from NDN agents. In the taxonomy in Section 3.2, there is a broad spectrum of accounting

and accountability information that can be produced by NDN agents. However, the most

useful information is defined in the minimal accounting scenario in Section 4.2.6, which is

based on industry standard QoE metrics for video distribution. It is envisaged that this would

be the default scenario for video content distribution in Savant, as the overhead for account-

ing and accountability is small on NDN agents while the utility of the metrics gathered is

high.

Savant also needs to provide auditable, tamper-evident and non-repudiable accounting

and accountability information for the content distribution process. This was achieved by

getting NDN agents to use NDN principles to publish log objects. This requires all infras-

tructures that can publish content or log objects to be associated with identities that can be



130 CHAPTER 4. SAVANT DESIGN

cryptographically asserted. Moreover, by maintaining hash chains between published log

objects, an NDN agent commits to the integrity of the current log object and to all previ-

ously published log objects. Furthermore, logs are audited according a logging scenario

(e.g., minimal) defined by the content provider and based on a record of authenticated inter-

est commands received. Combined, they identify what information is expected to be in the

log during auditing e.g., QoE metrics, interests and content sent/received, and so forth.

The next requirement was to reduce the amount of accounting information collected and

processed in contrast to existing infrastructure such as CDNs [Repantis et al., 2010], while

maintaining the ability to detect faults and diagnose problems in near real-time. This was

achieved by collecting the minimal accounting metrics defined in Section 4.2.6 and allowing

content providers to run authenticated interest commands on NDN agents. This is supported

by aggregator functions running on accountability engine infrastructure that monitor, ag-

gregate and alert on data collected. These mechanisms support Savant gathering additional

accounting metrics when required, which helps with problem investigation, fault detection,

and so forth during the content distribution process.

Savant also requires scalability, which has been achieved with several mechanisms. The

first utilises accountability engines, which aggregate and summarise data produced at NDN

agents. Moreover, hierarchical accountability engines summarise data collected from multi-

ple low-level accountability engines. Summary information is propagated back to the content

provider as published log objects. We also identified several extensions and improvements

such as statistical sampling and size of published log objects needed to ensure the volume of

log objects produced did not overload NDN agents or accountability infrastructure.

Savant requires a security model to ensure the architectures scalability and prevent vari-

ous types of ICN threats and attacks. We achieved this by developing two trust models based

around content providers and NDN agents using the SPKI/SDSI certificate standard. Content

providers depend on a globally trusted ICANN-like entity to manage namespace allocation

and digital certificates. This entity provides updates regularly to a globally distributed CCN-

KRS service, which helps NDN agents resolve authorised content provider security infor-

mation for a CCN namespace. Additionally, NDN agents use a local trust model rooted at



4.8. CHAPTER SUMMARY 131

the content provider supported by the SPKI/SDSI certificate standard. These models provide

scalable mechanisms to manage global and local namespace allocation, and manage the life

cycle of public keys for content providers and NDN agents. Furthermore, we provide details

of Savant’s protocols to manage agent discovery and identity management, and log commit-

ment between NDN agents. This is in addition to mechanisms for detecting log tampering

using hash chains, log auditing, and proving key ownership using the challenge response

protocol. Savant also provides various processes to encrypt authenticated interest commands

and published log objects, prevent timing and replay attacks, determine access permissions

using ACLs, and so forth.

In the next chapter, we analyse the behaviour of the Savant system we implemented and

also the architecture’s scalability based on simulations using ndnSIM, an ns-3 module that

allows discrete-event network simulation for Internet systems.

4.8 Chapter Summary

This chapter outlines the design of the Savant accounting and accountability framework for

NDN content distribution. It grew out of the requirements for effective content distribution

identified in Chapter three, which was based on our analysis of content distribution architec-

tures in Chapter two. Existing effective models for content distribution rely on centralised

trust to deliver content with adequate quality, speed and reliability. However, this is not a

sufficient model for content distributed from primarily untrusted infrastructure. The aim of

the Savant framework is to address this challenge for an ICN packet-level architecture, where

the content is distributed from primarily untrusted infrastructure. We identified the architec-

tures requirements in Section 4.1. The remainder of the chapter outlines how we satisfy

these requirements. This was accomplished using cryptographic techniques, PKI security

processes, information flow processing mechanisms and ICN principles to collect, control,

audit and aggregate accounting and accountability information in near real-time in a scalable

and efficient manner.



132 CHAPTER 4. SAVANT DESIGN



Chapter 5

Savant: An Implementation

This chapter discusses our approach to implementing the Savant framework outlined in

Chapter 4. To develop the whole architecture would be a very substantial undertaking. How-

ever, we have implemented several components to support a proof-of-concept accounting

and accountability framework for video distribution using the NDN ICN architecture. Com-

ponents implemented include: client and cache accounting and accountability functionality;

the log commitment protocol outlined in Section 4.5.2; accountability engine processes such

as log auditing, hash chain verification, aggregator functions and authenticated interest com-

mands; and basic security functionality. We outline how we implemented these components

and experiments carried out to validate the architecture in the remainder of this chapter.

5.1 Savant Design and Implementation

We implemented Savant1 accounting and accountability components using Java SE 7, which

runs on the Ubuntu 14.04.3 LTS operating system. We used the NDN v0.3.4 library [NDN,

2015] for security, routing, caching, and so forth and GStreamer 0.102, which is a pipeline

based multimedia framework for playing, recording, streaming, and editing media content.

1The full implementation consists of over 50 Java classes and about 7,000 lines of code (including about
3,000 lines of my own code), which includes elements for NDN, security, GStreamer, Apache Spark and
accounting and accountability. The library produces independent jar files for the NDN client, NDN cache and
accountability engine components. Access to bitbucket code available on request from collindi@tcd.ie.

2GStreamer 0.10 is available from https://gstreamer.freedesktop.org/documentation/gstreamer010.html.
GStreamer-Java was also required as the client player was written in Java https://github.com/gstreamer-java

133



134 CHAPTER 5. SAVANT: AN IMPLEMENTATION

Gstreamer

Content Store

NDN Library

Accounting & 
Accountability

Data

Interest

Accounting & 
Accountability

NDN Cache(EC2-Cache)
NDN Client(EC2-Client-1)

Log 
Commitment 
& Discovery 

Protocol

NDN Library

Content 
Ingestion

Content 
Provider

Pull

End-User

Accounting Summary

USA CDN 
Replica 
Server

UK CDN 
Replica 
Server

Push

Content Store

NDN Library

Accounting & 
Accountability

NDN Cache(EC2-Cache) Gstreamer

Accounting & 
Accountability

NDN Client(EC2-Client-1)

Log 
Commitment 
& Discovery 

Protocol

NDN Library

Aggregator 
Functions(Apache Spark)

NDN Library

Auditing
Accounting & 
Accountability

Accountability Engine 
(EC2-Acc-Engine)

Log Commitment & 
Discovery Protocol

Aggregator 
Functions(Apache Spark)

NDN Library

Auditing
Accounting & 
Accountability

Accountability Engine 
(EC2-Acc-Engine)

Log Commitment & 
Discovery Protocol

Figure 5.1: A High Level View of Communicating Entities and Components in Savant

Moreover, accountability engine components use the Apache Spark library3, which is a

framework for real-time event stream processing and data aggregation [Zaharia et al., 2012].

Furthermore, all client, cache and accountability engine elements ran on Amazon EC2 in-

stance machines with the following configuration: m3.medium, CPU=1, memory=3.75GB.

These libraries and configuration allowed us to focus exclusively on producing, collecting,

aggregating and auditing accounting and accountability information for the NDN content

distribution process rather than solving NDN routing, video player or data aggregation is-

sues.

5.1.1 High Level Components

The Savant architecture is relatively simple. A high-level view of libraries and components

utilised by Savant is depicted in Figure 5.1. All entities use the NDN Library for requesting

and publishing content. Additionally, they all use an Accounting & Accountability process

to publish log objects using NDN principles.

3Available from http://spark.apache.org



5.1. SAVANT DESIGN AND IMPLEMENTATION 135

Gstreamer

Content Store

NDN Library

Accounting & 
Accountability

Aggregator 
Functions(Apache Spark)

NDN Library

Savant 
Auditing

Data

Interest

Accounting & 
Accountability

Accounting & 
Accountability

Accountability Engine 
(EC2-Acc-Engine)

NDN Cache(EC2-Cache)
NDN Client(EC2-Client-1)

Log 
Commitment 
& Discovery 

Protocol

NDN Library

Content 
Ingestion

Content 
Provider

Pull

End-User

Accounting Summary

USA CDN 
Replica 
Server

UK CDN 
Replica 
Server

Push

Content Store

NDN Library

Accounting & 
Accountability

NDN Cache(EC2-Cache) Gstreamer

Accounting & 
Accountability

NDN Client(EC2-Client-1)

Log 
Commitment 
& Discovery 

Protocol

NDN Library

Aggregator 
Functions(Apache Spark)

NDN Library

Savant 
Auditing

Accounting & 
Accountability

Accountability Engine 
(EC2-Acc-Engine)

Figure 5.2: NDN Client

Gstreamer

Content Store

NDN Library

Accounting & 
Accountability

Aggregator 
Functions(Apache Spark)

NDN Library

Savant 
Auditing

Data

Interest

Accounting & 
Accountability

Accounting & 
Accountability

Accountability Engine 
(EC2-Acc-Engine)

NDN Cache(EC2-Cache)
NDN Client(EC2-Client-1)

Log 
Commitment 
& Discovery 

Protocol

NDN Library

Content 
Ingestion

Content 
Provider

Pull

End-User

Accounting Summary

USA CDN 
Replica 
Server

UK CDN 
Replica 
Server

Push

Content Store

NDN Library

Accounting & 
Accountability

NDN Cache(EC2-Cache) Gstreamer

Accounting & 
Accountability

NDN Client(EC2-Client-1)

Log 
Commitment 
& Discovery 

Protocol

NDN Library

Aggregator 
Functions(Apache Spark)

NDN Library

Savant 
Auditing

Accounting & 
Accountability

Accountability Engine 
(EC2-Acc-Engine)Figure 5.3: NDN Cache

Gstreamer

Content Store

NDN Library

Accounting & 
Accountability

Data

Interest

Accounting & 
Accountability

NDN Cache(EC2-Cache)
NDN Client(EC2-Client-1)

Log 
Commitment 
& Discovery 

Protocol

NDN Library

Content 
Ingestion

Content 
Provider

Pull

End-User

Accounting Summary

USA CDN 
Replica 
Server

UK CDN 
Replica 
Server

Push

Content Store

NDN Library

Accounting & 
Accountability

NDN Cache(EC2-Cache) Gstreamer

Accounting & 
Accountability

NDN Client(EC2-Client-1)

Log 
Commitment 
& Discovery 

Protocol

NDN Library

Aggregator 
Functions(Apache Spark)

NDN Library

Auditing
Accounting & 
Accountability

Accountability Engine 
(EC2-Acc-Engine)

Log Commitment & 
Discovery Protocol

Aggregator 
Functions(Apache Spark)

NDN Library

Auditing
Accounting & 
Accountability

Accountability Engine 
(EC2-Acc-Engine)

Log Commitment & 
Discovery Protocol

Figure 5.4: Accountability
Engine

NDN Client

The NDN client (in Figure 5.1 and Figure 5.2) renders video to the end-user using the

GStreamer multimedia player. GStreamer sends interests for content using the NDN Li-

brary when the buffer is empty or goes below a certain threshold. The NDN cache replies to

interests received with content objects. Every time an event occurs on the GStreamer player

based on the minimal accounting scenario defined in Section 4.2.6 and Section 5.4, a log

entry is created and linked to the previous log entry with a hash chain by the accounting

and accountability component. Additionally, a log entry is created each time an interest or

content chunk matching the statistical sample (methodology described in Section 5.2.2) is

encountered by the player. Every 15 seconds4 a batch of log entries is produced as one NDN

published log object (see Section 4.2.5) by the NDN client.

NDN Cache

The primary function of the NDN cache (in Figure 5.1 and Figure 5.3) is to accept interests

from the NDN client and respond with chunks of content. To simplify the implementation,

all content is retrieved from the local NDN cache content store i.e. it is not forwarded to an

upstream cache or content provider. We used the standard NDN cache component (in NDN

4Fifteen seconds is currently the default interval. However, it can be reconfigured on-demand by sending
an authenticated interest command to a pair of NDN agents or to all NDN agents by the content provider. This
process is outlined in more detail in Section 4.2.11 and Section 5.6 for additional information



136 CHAPTER 5. SAVANT: AN IMPLEMENTATION

v0.3.4 library) with code modifications to gather a statistical sample (methodology described

in Section 5.2.2) when content is retrieved. Sampled data is sent to a Java process, which

performs hash chaining, accounting and accountability functionality. This component also

collects and processes accounting metrics related to uplink bandwidth usage. Like the client,

the cache publishes a log object at intervals of 15 seconds, which contain a batch of log

entries for the content provider.

Accountability Engine

The accountability engine (in Figure 5.1 and Figure 5.4) is built as a standalone Java process.

We implemented functionality to collect published log objects from NDN agents (which is

supported by the NDN library) and aggregate data received (supported by the Apache Spark

framework (see Aggregator Functions in Section 4.2.10)). We also developed functionality

to audit hash chain state and verify the integrity and provenance of published log objects

received. Furthermore, the accountability engine assists NDN clients and caches with ac-

countability. This component was developed based on the statistical sampling technique

(outlined in Section 5.2.2) and the log commitment protocol outlined in Section 4.5.2.

To support the log commitment protocol, NDN agents send the interestId or contentId

and the logId of the locally created published log object to the accountability engine using a

standard NDN interest. The accountability engine responds with a published content object

in response to the interest received, which contains the corresponding agents logId. NDN

agents perform log commitment by requesting the opposing agents published log object and

committing the associated digital signature to their log.

Finally, the collection of additional accounting metrics at NDN agents is achieved using

authenticated interest commands. In the current Savant implementation, authenticated inter-

est commands are generated and sent manually when an issue is detected within NDN agent

infrastructure.



5.2. CONSIDERATIONS FOR ACCOUNTING AND ACCOUNTABILITY 137

Gstreamer

Content Store

NDN 
Library

Accounting & 
Accountability

NDN Cache(EC2-Cache)

NDN Client(EC2-Client-1)

NDN Library
End-User

NDN 
Library AuditingAccounting & 

Accountability

Accountability Engine 
(EC2-Acc-Engine)

Log Commitment & 
Discovery Protocol

Gstreamer
NDN Client(EC2-Client-2)

NDN Library

Gstreamer
NDN Client(EC2-Client-X.....)

NDN Library

Gstreamer
NDN Client(EC2-Client-9)

NDN Library

Gstreamer
NDN Client(EC2-Client-10)

NDN Library

End-User

End-User

End-User

End-User

Aggregator 
Functions(Apache Spark)

Interests/Data
Accounting

Figure 5.5: Ten Independent NDN Agents Running Gstreamer, One NDN Cache Distributing
Content and One Accountability Engine Collecting Published Log Objects.

5.2 Considerations for Accounting and Accountability

In this section, we identify several considerations for collecting accounting and accountabil-

ity information for content distributed in a packet-level ICN architecture such as NDN. In the

NDN v0.3.4 library, chunk size typically ranges between 1024 bytes to 8800 bytes5. Many

of the following considerations would not be necessary if content chunks were larger than a

maximum of 8.8KB e.g., 500KB, 1MB, and so forth. Additionally, it proved useful to define

the accounting information to collect based on existing standards because the volume of logs

collected can get very large. Many of the considerations in this section were the result of

problems experienced with early versions of the Savant architecture. In some cases issues

were discovered when we deployed several NDN agents running full client functionality on

Amazon EC2 instances, similar to the overview depicted in Figure 5.5.

5NDN uses a default chunk size of 4KB (roughly three IP packets of 1500 bytes), which limits the negative
effect on performance if one fragment is lost due to congestion. However, as CCN is an evolving Future Internet
Architecture (FIA), the current CCN 1.0 implementation allows chunk size up to 64KB [PARC, 2015]. Other
ICNs, such as MultiCache, support 16MB chunks [Katsaros et al., 2011].



138 CHAPTER 5. SAVANT: AN IMPLEMENTATION

5.2.1 Packet-Level Architecture

As mentioned in Section 4.6.3, chunk size varies across ICN architectures due to the over-

head required for asymmetric cryptography, which is about 650 bytes per chunk regardless

of chunk size [Salsano et al., 2012]. Savant uses chunk sizes of 8800 bytes, which is the

maximum allowed by the NDN v0.3.4 library. This is to try and reduce the accounting and

accountability overhead associated with the log commitment protocol (see Section 4.5.2).

5.2.2 Statistical Sample

It is difficulty for scalability purposes to perform log commitment and verification for every

individual content chunk distributed in a packet-level ICN architecture. As a result, we

take a statistical sample of content chunks distributed. This was achieved using the content

chunk number, a sampling interval, the modulo operation at NDN agents and support from

accountability engine infrastructure. This process is supported by the following mechanisms:

• In NDN, every content chunk is numbered. Chunk numbers start at 0 and increment

by 1 until the end of the file.

• We used the systematic sampling technique to select the sampling interval, where the

sith content chunk is selected. The sampling interval si, is calculated as: si = P
p , where

P is the amount of NDN content chunks created by a file during the content ingestion

process and p is the sample size.

• For ease of development, we statically configured the sampling interval at distributed

NDN agents. However, this value can also be specified in metadata during content in-

gestion or configured remotely when required at NDN agents by accountability engine

infrastructure using authenticated interest commands.

• The modulo operation finds the remainder after dividing the chunk number by the

statistical sample size. If it equals zero, then it performs log commitment, as outlined

in the protocol in Section 4.5.2



5.2. CONSIDERATIONS FOR ACCOUNTING AND ACCOUNTABILITY 139

5.2.3 Security

All entities that publish content and log objects in the Savant architecture including NDN

agents, accountability engine infrastructure, content providers, and so forth, require a pub-

lic/private key pair. This enables integrity, trust and provenance to be established in content

and log objects received, as discussed in Section 2.3.5. However, our security implementa-

tion only provides enough support for basic proof of concept. To simplify the development,

testing and auditing process, all RSA keys are hard-coded at each entity and located in a local

database table. In the current implementation, all entities utilise RSA 2048-bit encryption

keys for signing content and log objects. Savant can be extended in the future to use the

SPKI/SDSI PKI model [Clarke, 2001] and CCN-KRS framework [Mahadevan et al., 2014].

Additionally, tamper evident logs are supported using the SHA-1 hash function for linking

log entries and published log objects.

5.2.4 Namespace

DNS is a distributed hierarchical name service database for the Internet, which is separate

from the IP architecture. Similarly, namespace management is not a component of the

NDN architecture. However, it is a fundamental element required for its successful oper-

ation [Zhang et al., 2014]. All publishing entities in the NDN architecture implicitly require

a globally routable name. We envision using an ICANN-like entity to coordinate names-

pace allocation to content providers. As discussed in Section 4.3.1, this is supported by the

SPKI/SDSI distributed trust model, which maps a small-world model of trust on to public

keys and local namespaces. In Savant, this translates to trust originating from the content

provider (local principal) to NDN agents. Consequently, NDN agents publish log objects in

a sub-namespace of the content provider. Moreover, we expect NDN agents to interact with

multiple content providers and publish log objects in multiple different namespaces. For

example:

• /netflix/agent-id/logs

• /hbo/agent-id/logs



140 CHAPTER 5. SAVANT: AN IMPLEMENTATION

• /bbc/agent-id/logs

In this implementation, all entities publish under the /tcd namespace. For example:

• /tcd/data

• /tcd/client-1/logs

• /tcd/ndn-router/logs

• /tcd/accountability-engine/logs

5.2.5 Prerequisites and Assumptions

To reduce the programming overhead associated with the following prerequisites and as-

sumptions, we manually configure namespaces and routing prefixes at every NDN entity

operating on Amazon EC2 in the current Savant implementation.

Full Agent Connectivity

Full agent connectivity implies that all NDN entities should be able to establish direct com-

munication with all other NDN entities. NDN operates as an overlay network on top of the

IP Internet using UDP. Consequently, all entities must have an IP address and several UDP

ports open. For example, the NDN Network Forwarding Daemon (NFD), which is run by

every NDN entity requires UDP port 6363 open.

All Entities Publish Under a Unique namespace

In order to publish content in Savant, all entities must publish under a unique namespace.

However, any NDN entity can publish under any NDN namespace. As a result, when re-

questing published content, the requestor e.g., accountability engine or NDN agent, should

also specify content publisher security information such as the public key certificate or con-

tent digests.



5.3. SAVANT BUSINESS MODEL 141

Routing

For routing purposes, all entities must be associated with a NDN prefix and an IP address.

For example, all NDN agents need a route entry for the accountability engine. The following

command creates a UDP tunnel to the remote accountability engine NFD at an NDN agent:

• nfdc register /ndn/accountability-engine udp://<IP-ADDRESS>

The accountability engine should also have a back route to NDN agents, which is sup-

ported by the agent discovery protocol. This enables accountability engine infrastructure to

collect published log objects from NDN agents for auditing and aggregation purposes.

Agent Discovery Protocol

To access the Savant network, NDN agents need to make contact with the accountability en-

gine, which is supported by the NDN agent discovery protocol (as outlined in Section 4.5.1).

Metadata in content received specifies the accountability engine responsible for collecting

accounting and accountability information for a content provider. This enables the account-

ability engine infrastructure to collect published log objects and support the log commitment

protocol between NDN agents. However, to reduce the development overhead in this im-

plementation, the accountability engine infrastructure is manually configured at each NDN

agent.

5.3 Savant Business Model

The free business model utilised by web and transparent cache systems discussed in Section

2.1.1 and Section 2.1.5 is based on decreasing capital and operational costs by localising

traffic to cache servers with available content in a company or ISPs network. We advocate

using a similar model with a Savant ICN system, where cache servers take part in the content

distribution process without requiring payment. Their reward is non-financial and delivers

the following benefits to content providers:

1. Reliable trustworthy analytic information associated with content distributed from

their network. This functionality is supported by the Savant framework.



142 CHAPTER 5. SAVANT: AN IMPLEMENTATION

2. Reduced costs associated with distributing data from expensive CDN infrastructure

or content provider equipment, as data is now delivered from a local network cache

server.

3. Network operators can offer better QoE to end-users then the content provider as data

is located close to subscribers.

4. Using the web cache business model reduces the amount of relationships or business

agreements a content provider needs to maintain with cache providers, which could

potentially run into thousands worldwide.

We anticipate that these benefits will deliver financial savings within their own organi-

sations that will compensate for the effort of taking part in Savant dialogues. In summary,

the free web/transparent cache business model helps both network operators and content

providers reduce costs and infrastructure overheads associated with requesting, distributing,

and delivering frequently requested content to end-users, while continuing to offer reliable

and trustworthy analytic information for the content distribution process.

5.4 Accounting Scenarios

Significant amounts of accounting metrics can be collected by Savant. Such metrics relate to

(see Section 3.2): advertising, record of ads pushed to users; network performance, quality of

service; demographics, data characterizing users; and so forth. This data can help diagnose

system and network problems, determine the success of a marketing campaign or bill clients

for movies watched. Listing each metric individually is outside the scope of this work.

However, we did define and use one6 ICN accounting and accountability scenario for use

in the NDN video content distribution session (see Section 4.2.6): minimal accounting. We

also define the default scenario, which serves as the control scenario.

6In previous versions of Savant we also defined and implemented a maximal accounting scenario, see Sec-
tion 4.2.6. However, it quickly became apparent that gathering accounting and accountability information for
all content chunks distributed in a packet-level ICN architecture is a major challenge. This is why we chose to
gather a statistical sample of content chunks distributed, see Section 5.2.2



5.4. ACCOUNTING SCENARIOS 143

Figure 5.6: Video Player State Machine (adapted from [Dobrian et al., 2013]).

5.4.1 Control Scenario: Default

We compare the minimal accounting scenario against a set of base values for CPU con-

sumption, uplink and downlink bandwidth usage. See Figure 5.9 for an example of metrics

collected. We call this control scenario: default. The default scenario shows the overhead of

the NDN content distribution process on NDN client and NDN cache infrastructure without

any accounting or accountability functionality turned on. In the experiments in Section 5.8,

we evaluate the Savant minimal accounting and accountability scenario against this scenario.

5.4.2 Minimal Accounting

The minimal accounting scenario collects industry standard QoE metrics based the on the

player state machine in Figure 5.6 (adapted from [Dobrian et al., 2013]). Client metrics mon-

itored include [Dobrian et al., 2013]: join-time, which is the time it takes for the buffer to fill

up and start playing; buffering ratio, which is the fraction of total session time (i.e. playing

time plus buffering time) spent buffering; rate of buffering events, which is the frequency

of buffering interruptions; rendering quality, which is the frames displayed per second on

the client; and average downlink bitrate e.g., 200kb/s. We also collect a statistical sample of

content chunks distributed, which is supported by the log commitment protocol outlined in

Section 4.5.2. The collection, processing and aggregation of these metrics form the basis of

our experiments in Section 5.8. The minimal scenario also has support for hash chaining (see

Section 4.2.5), log commitment (see Section 4.5.2) and accountability (see Section 4.2.1).

Table 5.1 shows the log metrics collected for the minimal accounting scenario while Figure

5.7 and Figure 5.8 show screenshots of log entries collected.



144 CHAPTER 5. SAVANT: AN IMPLEMENTATION

Table 5.1: Example of Log Entries Collected by NDN Client and Cache Elements
Log Entry (NDN Client) Hash hi SeqNo. si Content Type tici hi−1
Interest Sent hi 1327 interest_s=%00%02%C3 hi−1
Content Received hi 1328 content_obj_r=%00%02%C3 hi−1
Downlink BW hi 1329 do=80233 hi−1
Frames Dropped hi 1330 fd=697 hi−1
Frames Rendered hi 1331 fr=25346 hi−1
Buffering Event hi 1332 be=1 hi−1
Buffer Empty Event hi 1333 nd=1 hi−1
Duration End of Stream hi 1334 st=end-of-stream hi−1

Log Entry (NDN Cache) Hash hi SeqNo. si Content Type tici hi−1
Interest Received hi 2100 interest_r=%00%02%C3 hi−1
Content Sent hi 2101 content_obj_s=%00%02%C3 hi−1
Uplink BW hi 2102 up=51040 hi−1
CPU Usage % hi 2103 cpu=39 hi−1

Note: Hash entries are quite large for the SHA-1 message digest algorithm. For clarity they
have been removed from this table. However, the following is an example of both an hi−1
and hi hash value e.g., b8716858d6a54860abd920893e98207d9003d85e

Figure 5.7: Savant Client Log Example

5.5 Log Entries

As discussed in 4.2.5, a log entry ei has the following properties: ei = (hi,si, ti,ci). This

corresponds to a sequence number si (always increasing), a type ti (e.g., Interest, Content or

Event), type-specific content ci (e.g., content name, QoE, and so forth). Moreover, Section

4.2.5 outlined how a tamper-evident log is maintained between each log using a recursively

defined hash chain hi. This links the current log object with the previously published log

object hi−1. Table 5.1 shows example log entries for client and cache elements such as uplink

and downlink bandwidth consumed, a statistical sample of content chunks distributed, and

so forth. Figure 5.7 and Figure 5.8 show screenshot examples of real client and cache log

entries.



5.6. LOG OBJECT FREQUENCY 145

Figure 5.8: Savant Cache Log Example

5.6 Log Object Frequency

To minimise the amount of log objects produced, collected, audited, aggregated, and so

forth, the logging component periodically every 15 seconds produces one published log ob-

ject. This is a configurable interval that can be changed per content provider, data producer,

or at autonomous system (AS) level. A published log object, which is a digitally signed

commitment to log integrity and provenance (see Section 4.2.5), contains a collection of log

entries of recent QoE metrics and events that have occurred on the NDN agent over the last

15 seconds. A hash chain is maintained between each log entry and between published log

objects, which is audited by the accountability engine. This process is supported by a play-

back video buffer on the client, which is roughly 30 seconds in length. As a result of this

configurable parameter, the accountability engine can receive an aggregate of log entries at

intervals from NDN agents and perform some corrective or investigative action on the client

or cache before the end-user encounters problems i.e., before the playback buffer empties.

The interval with which published log objects are produced can be modified before data is

published by the content provider or while data is being sent or received by the cache or

subscriber elements using authenticated interest commands (see Section 4.2.7).

5.6.1 Authenticated Interest Commands

One of the defining benefits of the Savant framework is its ability to monitor the content

distribution process by collecting a subset of the information available in the taxonomy in

Section 3.2 in near real-time, while maintaining the flexibility to gather additional account-

ing information or change certain parameters on remote agents (such as log frequency) when

required. This is achieved using authenticated interest commands. The commands imple-

mented for the Savant framework are outlined in detail in Section 4.2.7. The idea here is that

due to the expected scale of the system e.g., millions of nodes, basic or minimal account-



146 CHAPTER 5. SAVANT: AN IMPLEMENTATION

ing information should be collected from all NDN agents. However, if additional metrics

are required to investigate issues outlined in the taxonomy in Section 3.2 such as network

performance issues, server problems, advertising impressions, and so forth, then the content

provider has the tools to activate the collection of additional metrics to help satisfy these

requirements.

5.7 Experiment Setup, Evaluation and Results

Our main objective during implementation was to show that the Savant system could dis-

tribute NDN video chunks efficiently while producing accounting and accountability infor-

mation, and scale to potentially millions of NDN agents. To achieved these goals, we ran

the Savant client, cache and accountability engine components on separate Amazon Elas-

tic Compute Cloud (EC2) instances7 to test and evaluate their capabilities in a real-world

content distribution environment. A complete list of the environment, software utilised and

code to reproduce experiments is available in Section 5.1. We also used ndnSIM to simulate

the production of aggregated accounting information by local accountability engine infras-

tructure representing data from thousands of NDN agents. This information is collected and

aggregated further by a hierarchical accountability engine. In the remainder of this section,

we provide an overview of our methodology to evaluate these objectives.

5.7.1 Experiment Overview

During the final two years of the PhD I ran thousands of Savant NDN experiments. Initially,

I started using the python version of NDN video already developed by UCLA Computer

Science Department [Kulinski & Burke, 2012]. However, it quickly became apparent that

the industry standard QoE metrics outlined in the minimal accounting secnario in Section

4.2.6 (adapted from [Dobrian et al., 2013]) could not be captured easily using this system.

This required building a new custom GStreamer Java player, which is outlined in Section

5.1, to support capturing these metrics. However, this was a complex undertaking and every

7As discussed above in Section 5.1, all Amazon EC2 instance machines refer to the following configuration:
m3.medium, CPU=1, memory=3.75GB.



5.7. EXPERIMENT SETUP, EVALUATION AND RESULTS 147

time the software was updated to support new Savant functionality, fix bugs, or change vari-

able parameters, the results from old experiments effectively became useless. For example,

typical variables that changed frequently included: collecting a larger/smaller sample size

of content chunks distributed, using more powerful EC2 instance machines, changing the

message digest algorithm e.g., between MD5, SHA-256, SHA-1, or collecting published log

objects at intervals of milliseconds, 1 second, 10 seconds, 15 seconds, 20 seconds, and so

forth.

5.7.2 Experiment Configuration

Experiments were scheduled to stream data from the NDN cache and render video8 at the

NDN client continuously at two minute intervals from the unix cron table for different dura-

tions of 24, 48, 72, and 96 hours corresponding to 720, 1440, 2160, and 2880 independent

experiments respectively. There are several reasons why Savant’s experiments were run at

these intervals including:

1. The Savant client video software, cache component and accountability engine element

had reliability issues. All three components needed to start up and run successfully for

1 minute 45 second periods9, otherwise the experiment failed. If any element failed,

the QoE metrics generated by all other components were also invalid and discarded.

2. Most fluctuations in the GStreamer multimedia player, client, cache, accountability

engine and network that caused QoE events, typically happened within the first 80

seconds of the content distribution process. The accounting metrics collected by Sa-

vant are detailed in Table 5.1. Long periods of stability typically followed this initial

start-up period, possibly due to an efficient EC2 environment, which resulted in mini-

mal QoE activity.

8The video ’CLANNAD - Live At Christ Church Cathedral, Dublin’ was just over 57 minutes long and
available from https://vimeo.com/35666925

9The length of time each experiment ran during the two minute cron table interval was 1 minute 45 seconds.
It takes 15 seconds to stop, restart and make sure the NDN client, cache, and accountability engine processes
are up and running. This delay was primarily required to ensure the NDN cache element retrieved data from its
long-term content store repository, and not the local cache store.



148 CHAPTER 5. SAVANT: AN IMPLEMENTATION

Figure 5.9: Metrics were Collected at 1 second intervals by an Experiment System Monitor-
ing Script

5.7.3 Data Analysis

The data collected and averaged by the experiment monitoring script and outputted to a

log file every second includes (see sample log data in Figure 5.9): CPU consumption, RAM

used, uplink and downlink bandwidth usage. Every two minutes a new log file was created on

the client, cache and accountability engine machines corresponding to the next experiment

run. After each set of experiments completed, all log files were collected from all nodes

and processed by a log-analyser10 script. This script supports the removal of invalid data

elements and outliers. For example, it was expected that the uplink and downlink throughput

should average between 95 kbps and 100 kbps for a 1 minute 45 second period. If the average

was outside these values then the log-analyser script assumed there was an experimental

error during the content distribution process and the data was discarded. The log-analyser

also computed the average for all experiments completed during the 24, 48, 72, or 96 hour

period.

5.8 Experiments

The following experiments were run to:

1. Establish the overhead of the Savant accounting and accountability process.

2. Determine if the system can detect faults.
10The log analyser code is available on request from collindi@tcd.ie



5.8. EXPERIMENTS 149

Scenario CPU Utilisation % Downlink(kb/s) Uplink(kb/s)

1 Client
Default 88% 98.0 1.3
Minimal 89% 98.4 1.4

1 Cache
Default 6% 1.1 99.5
Minimal 10% 1.2 99.6

1 Acc-Engine 2 Agents - 0.22 0.05

Table 5.2: Results for Default and Minimal Scenarios

3. Check if the accountability engine component is scalable.

4. Verify if Savant system can scale.

5.8.1 Savant Accounting and Accountability Overhead

To demonstrate Savant’s capabilities, the first experiment compares accounting scenarios:

default and minimal. The default or control scenario shows the overhead of the NDN content

distribution process on client and cache infrastructure without any accounting or accountabil-

ity functionality turned on. This serves as a baseline scenario to evaluate minimal accounting

against. We implemented the minimal scenario defined in Section 5.4 and Section 4.2.6 with

support for hash chaining (see Section 4.2.5), log commitment (see Section 4.5.2) and ac-

countability (see Section 4.2.1). Metrics were gathered from independent elements running

on dedicated EC2 instance machines. The three machines deployed on EC2 are conceptually

similar to the client, cache and accountability engine elements illustrated in Figure 5.1.

The results in Table 5.2 shows the overhead created by the NDN content distribution

process based on the default and minimal scenarios on the client and cache infrastructure.

We see that there is a small increase in CPU utilisation on the client and the cache with an

average increase of just over 2.5% for the minimal scenario in comparison to the baseline.

This is good as it demonstrates the accounting and accountability overhead on the client and

cache infrastructure is small. Additionally, we believe that implementing Savant in efficient

C code would add significant improvements to overall performance. Furthermore, based on

a sampling interval of 0.3% of content chunks distributed (see Statistical Sample in Section

5.2.2), the sum of all logging data generated for the minimal scenario i.e. uplink and down-

link bandwidth usage, log commitment, and so forth, for client, cache and accountability



150 CHAPTER 5. SAVANT: AN IMPLEMENTATION

●●

●

●

●

●
●

●

●

●

●●
●

●●
●●●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

200000

400000

600000

800000

0 10 20 30 40 50 60

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

5

10

15

20

Fault

Seconds

# 
B

uf
fe

rin
g 

E
ve

nt
s

D
ow

nl
in

k 
B

itr
at

e 
[K

bi
ts

/s
]

●

●

Buffering
Downlink

Figure 5.10: NDN Client experiencing a fault
before, during and after its introduction

●●

●

●

●

●
●

●

●

●

●●
●

●●
●●●

●●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

200000

400000

600000

800000

0 10 20 30 40 50 60

0

20

40

60

80

100

Fault

CPU Fault

Seconds

%
 C

PU

U
pl

in
k 

Bi
tra

te
 [K

bi
ts

/s
]

● CPU
Uplink

Figure 5.11: NDN Cache with fault before,
during and after its introduction

engine entities comes to a total of 0.48% increase in comparison to the baseline scenario.

This experiment shows that Savant’s overhead creates only a small increase in resource

usage (i.e. CPU, uplink and downlink bandwidth) on client, cache, accountability engine and

network infrastructure for the minimal accounting and accountability scenario.

5.8.2 Fault Detection

Utilising the prototype implementation outlined in Section 5.8.1, we engineering a fault into

the NDN content distribution process to demonstrate Savant’s ability to detect, isolate and

resolve problems. During a normal content distribution session (such as outlined in Section

5.8.1), we introduced a rogue process on the NDN cache to consume all available CPU

resources.

Figure 5.10 and Figure 5.11 show an NDN client and an NDN cache before, during and

after the introduction of this rogue process. On the client in Figure 5.10, we see a drop in

downlink bandwidth consumption and an increase in the number of buffering interruptions

occurring after the faults introduction. Similarly, on the cache in Figure 5.11, we see a drop in

uplink bandwidth consumption after the faults introduction. These anomalies were detected

by the generic aggregator function defined in Section 4.2.10 running on the accountability

engine instance on Amazon EC2. Based on the information gathered, we manually sent

an authenticated interest command to activate collection of additional CPU statistics on all

NDN agents suspected of being the source of the fault. Based on the latest metrics collected



5.8. EXPERIMENTS 151

Accountability Engine
CPU PLOPS Clients
100% 109 1,635
58% 77 -
50% 59 -
28% 27 -
23% 13 -

Figure 5.12: PLOPS Processed by an Ac-
countability Engine on EC2

0	
  

20	
  

40	
  

60	
  

80	
  

100	
  

13	
   27	
   59	
   77	
   109	
  

%	
  CPU	
  

PLOPS	
  

PLOPS	
  

Figure 5.13: Graph of PLOPS from Figure
5.12

and aggregated by the generic aggregator function, we identified a CPU resource problem

on the NDN cache (see Figure 5.11). To resolve the problem, we identified and killed the

problematic process. This caused the downlink bandwidth and buffering interruptions to

return to normal on the client, shown in Figure 5.10. Moreover, CPU utilisation and uplink

bandwidth returned to normal on the cache, which is illustrated in Figure 5.11.

This scenario shows that the Savant framework can identify problems during the NDN

content distribution process based on the minimal accounting scenario defined in Section

4.2.6 and using the aggregator functions described in Section 4.2.10. It also showed the col-

lection of additional QoE metrics at NDN agents can be initiated easily using authenticated

interest commands.

5.8.3 Accountability Engine Scalability

It was not feasible to take our working prototype and scale it to operate with a very large

number of NDN agents. Consequently, in a separate experiment our goal was to determine

how many NDN agents an accountability engine can support. This was achieved by measur-

ing the amount of published log objects per second (PLOPS), based on simulated client and

cache interactions with real published log objects, that an accountability engine can process

before the instance saturates.

In this scenario, data is collected and content integrity and hash chain is state verified by



152 CHAPTER 5. SAVANT: AN IMPLEMENTATION

High-level 
Accountability Engine

Figure 5.14: Rocketfuel’s "Verio US" Internet topology with one high-level accountability
engine that collects data from nine hundred and twenty low-level accountability engines.

the accountability engine element running on EC2. Figure 5.12 and Figure 5.13 show the

increase in CPU resource usage the more PLOPS processed by the accountability engine,

with instance saturation at 109 PLOPS. Based on this result, if each NDN agent produces

data at 15-second intervals, then we can extrapolate that each accountability engine running

on EC2 hardware can support about 1,600 concurrent NDN agents.

This experiment shows that even with a small EC2 instance machine, the overhead of col-

lecting and validating published log objects is small, which should support the architecture’s

scalability.

5.8.4 NDNSim

Savant is designed to be scalable. This is supported by hierarchical (or high-level) account-

ability engine infrastructure (see Section 4.2.12), which collects and aggregates data from

hundreds or thousands of low-level accountability engines that are located (geographically)

close to end-users. To emulate this scenario, we used ndnSIM, an ns-3 module that allows



5.8. EXPERIMENTS 153

Figure 5.15: Sample NDN agent aggregate data received by a high-level accountability en-
gine.

discrete-event network simulation for Internet systems and Rocketfuel’s "Verio US" Internet

topology. Rocketfuel is a tool that measures realistic router-level ISP topologies, while "Ve-

rio US" is an ISP topology that was mapped using the Rocketfuel technique [Spring et al.,

2002]. The Verio US topology was selected for this simulation as it offers an environment

with over nine hundred hierarchically connected nodes. This topology is illustrated in Figure

5.14.

In this simulation, we wanted to measure the uplink and downlink bandwidth overhead at

one high-level accountability engine collecting aggregate data from over nine hundred low-

level accountability engines. To achieve this goal using Rocketfuel’s "Verio US" Internet

topology, we classify one backbone node as a high-level accountability engine (see Figure

5.14), which collects summary data (represented as InData in Figure 5.16) using NDN in-

terests (represented as OutInterests in Figure 5.16) from nine hundred and twenty low-level

accountability engines (i.e. all other nodes) in the "Verio US" topology. Additionally, follow-

ing the output from the previous experiment in Section 5.8.3, each low-level accountability

engine simulates the production of summary statistics received at fifteen second intervals

from 1,600 synchronous NDN agents running the minimal accounting and accountability

scenario. A sample of summary statistics received from low-level accountability engines is

depicted in Figure 5.15. These metrics are an aggregate of published log objects received

from NDN agents including log entries from Table 5.1.

The result in Figure 5.16 shows over 73 Mbps of published log objects are received every

second by the high-level accountability engine. This represents aggregate data received from

almost 1.5 million synchronous NDN agents i.e. aggregate data received from nine hundred

and twenty low-level accountability engines, each simulating the production of aggregate

data from 1600 NDN agents. Moreover, interests sent i.e. OutInterests in Figure 5.16 appear

constant at almost zero due to their low uplink bandwidth overhead.

This simulation shows that the Savant architecture can easily scale to millions of nodes.



154 CHAPTER 5. SAVANT: AN IMPLEMENTATION

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●0

50

100

150

0 25 50 75 100
Time(s)

Do
wn

lin
k 

Ra
te

 [M
bp

s]

Type
●

●

InData

OutInterests

Figure 5.16: Total average downlink bandwidth consumed by a high-level accountability
engine receiving summary statistics from almost 1.5 million NDN agents.

Moreover, utilising large EC2 instance machines, cloud auto-scaling capabilities and scala-

bility through accountability engine hierarchy, we are confident the Savant architecture can

scale to accommodate 10s of millions and possibly 100s of millions of NDN agents.

5.8.5 Accounting Overhead Projection

In 2010, Akamai processed over 100 TB of logs per day collected from edge server’s han-

dling over 10 million HTTP requests per second [Nygren et al., 2010]. Based on data gath-

ered from the experiments in this section, we can estimate that Savant can support at least

1.5 million NDN agents sending and receiving around 8 million content objects per second.

These agents generate about 6 TB of published log objects per day, which is collected and

processed by Savant accountability engine infrastructure. This estimate is based on the data

collected using the minimal accounting scenario described in Section 5.4. While not an ideal

comparison, this is a large reduction in log size in comparison to the Akamai CDN model.

We make some additional projections for larger numbers of subscribers in table 5.3.



5.9. LESSONS LEARNED 155

Table 5.3: Estimated Accounting Overhead Based the Minimal Scenario
No. of NDN Agents Content Objects (Millions) Log Size (TB)

Akamai Unknown[Nygren et al., 2010] 10 100 TB
1.5 Million 8 6 TB
10 Million 53 40 TB
50 Million 267 200 TB
100 Million 533 400 TB
500 Million 2667 2000 TB

5.9 Lessons Learned

We end with a list of key lessons learned from implementing Savant.

First, collecting accounting and accountability information using the log commitment

protocol outlined in Section 4.5.2 for every individual content chunk distributed in a packet-

level ICN architecture is a major challenge. This is due to the volume of content chunks

created. For example, in this implementation a 294MB video file was broken up into 35,004

independent content chunks of 8.8KB in size. Consequently, if accountability is required

for every content chunk distributed it is worth considering using larger chunk sizes. Alter-

natively, gathering a random statistical sample of data chunks distributed is a viable option

(which was demonstrated in this implementation).

Second, utilising cryptographic techniques to publish log objects and authenticated inter-

ests to send commands to NDN agents is a useful insight for ICN content distribution. These

mechanisms give content providers the ability to control the content distribution process and

gather in-depth reporting and analytics information with associated integrity and authentic-

ity. They also offer the basic tools using public key cryptography for NDN agents to bill

content providers for accounting and accountability information produced and commands

executed. Furthermore, these tools offer a methodology to reduce the accounting overhead

in comparison to current architectures such as CDNs, as discussed in Section 5.8.5.

Third, accountability engines offer detailed near real-time aggregate information locally

while hierarchical accountability engine infrastructure offer summary information globally.

Moreover, using the SPKI/SDSI PKI model where trust originates from a local principal,

decisions that require support from authenticated interest commands (such as collecting ad-

ditional accounting information, and so forth) can be created and sent by the accountability



156 CHAPTER 5. SAVANT: AN IMPLEMENTATION

engine infrastructure located close to end-users. The scalability and responsiveness of a

similar architecture that uses hierarchical infrastructure to support system monitoring while

local infrastructure can execute control has already been validated by architectures such as

C3 [Ganjam et al., 2015].

Fourth, the frequency of log production, collection and analysis should be almost propor-

tionate to amount of video play time available (in seconds) in a clients buffer. However, this

interval should provide enough time to support recovery if problems are encountered (e.g.,

before the buffer empties). Producing less published log objects also reduces the accounting

and accountability overhead on client, cache and accountability engine infrastructure. Ad-

ditionally, using authenticated interest commands, it is easy to increase or decrease the log

production frequency when required. Again, near real-time log collection and analysis meth-

ods have been validated by Conviva’s C3 platform when supporting remote clients [Ganjam

et al., 2015].

Finally, if logging information is collected for every content chunk distributed, then it

is easy to calculate the uplink and downlink bitrate at NDN agents. This simplifies client-

side functionality as content providers only need to keep track of their own content and its

interaction with the client-player (e.g., frame-rate, buffering events, and so forth). This is

in contrast to the current method of collecting uplink and downlink bandwidth information

from network interfaces.

5.10 Chapter Summary

In preceding chapters, we claim the Savant architecture can offer content providers the abil-

ity to use many different trusted and untrusted cache elements to distribute content while

offering integrity and authenticity for reporting and analytics information produced. In this

chapter we demonstrated Savant’s capabilities via an implementation. We achieved our goals

of determining: if the logging component was lightweight and robust; if it could help iden-

tify, isolate and correct faults; and if it could scale to accommodate 10s of millions of NDN

agents. These attributes were demonstrated in several experiments described, which were

run on Amazon EC2 instance machines and using ndnSIM. Moreover, this implementation



5.10. CHAPTER SUMMARY 157

was supported by several extensions and improvements to support the development of an

efficient accounting and accountability framework for a packet-level ICN architecture. We

concluded with a list of key lessons learned from implementing Savant in an ICN video con-

tent distribution environment. Finally, knowledge of these consideration and lessons learned

should prove useful to future researchers implementing an accounting and accountability

framework for an ICN Internet architecture.



158 CHAPTER 5. SAVANT: AN IMPLEMENTATION



Chapter 6

Conclusions and Future Work

In this thesis, we argue that the integrity and authenticity of the accounting information

produced by a content distribution architecture is important as it provides valuable insight

about the content viewed, network performance, end-users, and so forth. The premise of

our work is that if an architecture does not provide this information it leads to its lack of

adoption and utilisation by content providers and content distributors. For example, many

architectures offer cheap and efficient content distribution mechanisms such as P2P, multi-

cast IP, web caching, and so forth, but they fail to sufficiently address this accounting and

accountability requirement leading to their limited adoption. In contrast, architectures such

as CDNs that provide integrity for accounting information produced are being utilised ex-

tensively. However, CDNs have challenges related to end-user latency, large volumes of

logging information produced, high costs, and so forth. Moreover, content providers need

to trust the accounting information produced because they lack non-repudiable evidence of

actions taken (i.e. accountability).

Furthermore, there has not been a comprehensive study of what elements and require-

ments constitute an efficient and successful content distribution system across current or

future Internet architectures. In this thesis we developed and used two tools to help identify

the drawbacks and merits of existing architectures based on systems surveyed. The first is a

taxonomy for accounting and accountability information (summarised in Section 3.2) based

on our analysis of logging information gathered from the surveyed systems. The second is a

generic model (shown in Figure 3.1) for content distribution based on a synthesis of desirable

159



160 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

elements from the surveyed architectures. This analysis (based on Table 3.1) helped iden-

tify the need for an architecture that supports the whole generic model by offering efficient

low-cost content distribution from trusted or untrusted infrastructure while supporting con-

tent: control, security, routing, billing, accounting, accountability, and ubiquitous caching.

The ICN future Internet paradigm offers solutions to many of these challenges by enabling

content to self-verify. However, it fails to provide an adequate accounting and accountability

framework for the content distribution process. Moreover, many of these architectures make

a virtue out of not providing it claiming to offer natural privacy to users.

We propose an ICN architecture extension for content accounting and accountability

called the Savant framework, which we apply to the NDN architecture. Savant is designed

based on the premise that content providers want visibility over the content being distributed

primarily for control and analytics purposes. This goal was achieved by combining cryp-

tographic techniques, PKI security processes, ICN principles and information flow process-

ing mechanisms utilised in existing systems to develop a scalable, secure, near real-time

accounting and accountability framework for an ICN packet-level content distribution ar-

chitecture. This architecture naturally supports efficient content distribution while gathering

non-repudiable near real-time information efficiently from NDN clients and NDN caches.

Our proof-of-concept implementation (shown in Figure 5.1), which was based on an

NDN video content distribution session, demonstrated that accounting and accountability

information can be gathered for an ICN packet-level architecture. Our experiments demon-

strated that the overhead on the system is very small if several extensions and improvements

are applied to the architecture for efficiency. Further experiments on NDNSim, an ns-3 mod-

ule, demonstrated that it could easily scale to accommodate 10s of millions of NDN agents.

Furthermore, we demonstrated that Savant can gather additional accounting metrics when

required, which helps reduce the accounting information overhead while still maintaining

the ability to investigate problems, detect and isolate faults, and so forth during the content

distribution process.

As described, ICNs/NDN with Savant support, could eventually complement or replace

today’s CDN infrastructure with a scalable, trustworthy, reliable accounting and account-



6.1. SUMMARY OF CONTRIBUTIONS 161

ability framework for content distributed in trusted and untrusted environments meeting the

diverse requirements of content providers, network operators and end-users.

6.1 Summary of Contributions

The main contributions of this thesis include:

• an analysis of the problem of efficient content distribution in existing and future Inter-

net architectures and recognising that the success of a content distribution architecture

relies on the level of content accounting and accountability it offers; the identification

of usage patterns and basic requirements an accounting and accountability framework

must satisfy, regardless of the infrastructure (trustworthy or untrustworthy) it is de-

ployed or implemented on;

• a system, Savant, that satisfies these requirements for future Internet architectures such

as NDN by synthesising components, designs and principles from multiple different

systems, architectures and environments into an accounting, accountability and near

real-time scalable aggregation framework supported by a set of protocols to ensure

log commitment between communicating agents and that can help identify, isolate and

correct faults;

• a demonstration of the feasibility of adding an accounting and accountability element

to the NDN ICN architecture, and verifying its applicability for video content distri-

bution;

• a lessons learned during development of an accounting and accountability framework

for a ICN packet-level architecture, which should be useful to future researchers de-

signing and implementing a similar framework.

6.2 Future Work

The Savant framework and the accounting and accountability information it gathers holds a

lot of potential for future work. These elements present a number of research questions that



162 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

we will discuss in the remaining paragraphs.

The Savant architecture presents an opportunity to develop new routing algorithms to

support the content distribution process. This is based on the observation that Savant ac-

cumulates knowledge about the locations of multiple copies of content at client and cache

infrastructure. Similar algorithms for request routing are already being utilised by CDNs

such as Akamai when directing users to surrogate servers based on a set of metrics such as

content location, latency to server, proximity to server and so forth [Nygren et al., 2010].

Additionally, Conviva’s centralised C3 controller [Ganjam et al., 2015] uses optimization

algorithms to direct users to the optimal CDN server (from a list of servers from multi-

ple CDN providers) for content delivery to a client. These algorithms are based on a set

of metrics similar to CDN request routing but also based on content provider policies and

objectives. Savant could take this further, not only incorporating policies and metrics for

the optimal CDN infrastructure, but also P2P client infrastructure, network operator caches,

multicast environments, and so forth.

The Savant architecture has the potential to decouple a content provider’s dependence on

a handful of global CDN providers by providing a framework that guarantees the integrity of

the accounting information produced. However, a monetary model based on reimbursement

for different amounts of accounting and accountability information produced is required.

This model should consider traditional CDN accounting metrics such as proximity to users,

content latency, volume of content delivered, and so forth. However, it should also consider

how much money the content distributor or network operator is saving in terms of core

and backhaul network bandwidth saved; no inter-ISP, Tier 1 or Tier 2 network traffic; and

so forth. Moreover, some models could also be considered around reimbursement for P2P

content distribution.

There is scope for developing an FCAPS (fault, configuration, accounting, performance,

security) model for network management in ICNs. Savant has already been designed with

many FCAPS requirements in mind. However, we have been focused on accounting for

the content distribution process and developing a model to establish the integrity of the ac-

counting information produced on trusted and untrusted ICN infrastructure. Moreover, our



6.2. FUTURE WORK 163

framework is designed for distributed collection and aggregation of logs produced across

millions of NDN agents. However, many of the baseline principles and components already

exist in Savant for collecting information from local network infrastructure such as a method-

ology to publish and collect logs, a security model, an aggregation and alerting system, and

so forth. Additionally, configuration instructions can be sent to network devices using au-

thenticated interests commands, which can also be used to help identify, isolate and correct

faults. Even the taxonomy we developed could be expanded to identify different statistical

metrics or objects to collect from ICN network infrastructure.

There is scope to investigate what accounting information can be produced when utilising

a service such as Savant in ICN architectures. Most of the information collected in our

implementation is based on existing industry standard QoE accounting metrics for video

distribution. However, in Chapter 5 we established that if we account for every chunk of

content distributed by client and cache infrastructure, then we can easily calculate the bitrate

based on chunk size. As a result, we do not need to gather uplink or downlink bitrate from the

client or cache infrastructure. Using Savant in conjunction with different ICN architectures

and applications will change accounting requirements, which should be explored further.

To our knowledge, the SPKI/SDSI [Clarke, 2001] security model has not been investi-

gated to any great depth in ICNs. Moreover, it has not had any significant development’s

in over sixteen years. Consequently, there is scope to investigate different security and trust

models related to local namespaces and key management using this model based around ICN

content, content providers, users, infrastructure, routing, and so forth [Zhang et al., 2010].

NDN cache components need to be located inside ISP networks and NDN traffic needs

to be directed to these elements by network operators. The advent of network function

virtualisation (NFV) frameworks inside ISP networks offers virtualised environments where

NDN caches can be easily deployed and extended [Mijumbi et al., 2016]. However, at what

location will these elements be most effective e.g., core network, backhaul network or cell

tower [Spagna et al., 2013]? Moreover, NDN cache components should not be confined

to ISP networks. They can also become part of wireless access points, P2P infrastructure,

automobiles, drones, and so forth. Detailed analysis of the benefits Savant can offer in these



164 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

environments is required.



References

AbdAllah, E., Hassanein, H., & Zulkernine, M. (2015). A Survey of Security At-

tacks in Information-Centric Networking. Communications Surveys Tutorials, IEEE,

17(3), 1441-1454. Retrieved from http://ieeexplore.ieee.org/stamp/

stamp.jsp?tp=&arnumber=7009958&isnumber=7214344 doi: 10.1109/

COMST.2015.2392629

Adamson, B., Bormann, C., Handley, M., & Macker, J. (2009, November). NACK-Oriented

Reliable Multicast (NORM) Transport Protocol. RFC 5740. IETF. Retrieved from

http://tools.ietf.org/html/rfc5740

Adhikari, V. K., Jain, S., Chen, Y., & Zhang, Z.-L. (2012, March). Vivisecting YouTube:

An active measurement study. In Proceedings of the IEEE International Conference

on Computer Communications (p. 2521-2525). Orlando, FL, USA: IEEE. Retrieved

from http://www-users.cs.umn.edu/~zhzhang/Papers/youtube-tech

-report.pdf doi: 10.1109/INFCOM.2012.6195644

Aditya, P., Zhao, M., Lin, Y., Haeberlen, A., Druschel, P., Maggs, B., & Wishon, B. (2012,

April). Reliable Client Accounting for P2P-infrastructure Hybrids. In Proceedings of the

9th USENIX Conference on Networked Systems Design and Implementation (pp. 8–8). San

Jose, CA: USENIX Association. Retrieved from http://dl.acm.org/citation

.cfm?id=2228298.2228309

Afanasyev, A., Mahadevan, P., Moiseenko, I., Uzun, E., & Zhang, L. (2013, May).

Interest Flooding Attack and Countermeasures in Named Data Networking. In IFIP

Networking Conference, 2013 (p. 1-9). Brooklyn, NY, USA: IEEE. Retrieved

from http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=

6663516&isnumber=6663488

165

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7009958&isnumber=7214344
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7009958&isnumber=7214344
http://tools.ietf.org/html/rfc5740
http://www-users.cs.umn.edu/~zhzhang/Papers/youtube-tech-report.pdf
http://www-users.cs.umn.edu/~zhzhang/Papers/youtube-tech-report.pdf
http://dl.acm.org/citation.cfm?id=2228298.2228309
http://dl.acm.org/citation.cfm?id=2228298.2228309
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6663516&isnumber=6663488
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6663516&isnumber=6663488


166 REFERENCES

Ahlgren, B., Dannewitz, C., Imbrenda, C., Kutscher, D., & Ohlman, B. (2012). A Sur-

vey of Information-Centric Networking. IEEE Communications Magazine, 50(7), 26-

36. Retrieved from http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=

&arnumber=6231276&isnumber=6231266 doi: 10.1109/MCOM.2012.6231276

Akidau, T., Bradshaw, R., Chambers, C., Chernyak, S., Fernández-Moctezuma, R. J., Lax,

R., . . . Whittle, S. (2015). The Dataflow Model: A Practical Approach to Balancing

Correctness, Latency, and Cost in Massive-scale, Unbounded, Out-of-order Data Process-

ing. Proc. VLDB Endow., 8(12), 1792–1803. Retrieved from http://dx.doi.org/

10.14778/2824032.2824076 doi: 10.14778/2824032.2824076

Almeroth, K. C., & Ammar, M. H. (1996, Aug). Collecting and Modeling the Join/Leave

Behavior of Multicast Group Members in the MBone. In Proceedings of 5th IEEE In-

ternational Symposium on High Performance Distributed Computing (p. 209-216). Syra-

cuse, NY, USA: IEEE. Retrieved from http://ieeexplore.ieee.org/stamp/

stamp.jsp?tp=&arnumber=546190&isnumber=11475 doi: 10.1109/HPDC

.1996.546190

Al-Shaer, E., & Tang, Y. (2004, April). MRMON: Remote Multicast Monitoring. In Pro-

ceedings of the IEEE Network Operations and Management Symposium (Vol. 1, p. 585-

598 Vol.1). Seoul, Korea: IEEE. Retrieved from http://ieeexplore.ieee

.org/stamp/stamp.jsp?tp=&arnumber=1317746&isnumber=29204 doi:

10.1109/NOMS.2004.1317746

Anand, A., Dogar, F., Han, D., Li, B., Lim, H., Machado, M., . . . Steenkiste, P. (2011,

November). XIA: An Architecture for an Evolvable and Trustworthy Internet. In Pro-

ceedings of the 10th ACM Workshop on Hot Topics in Networks (pp. 2:1–2:6). Cambridge,

MA, USA: ACM. Retrieved from http://doi.acm.org/10.1145/2070562

.2070564 doi: 10.1145/2070562.2070564

Androutsellis-Theotokis, S., & Spinellis, D. (2004). A Survey of Peer-to-peer Content

Distribution Technologies. ACM Computing Surveys, 36(4), 335–371. Retrieved from

http://doi.acm.org/10.1145/1041680.1041681 doi: 10.1145/1041680

.1041681

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6231276&isnumber=6231266
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6231276&isnumber=6231266
http://dx.doi.org/10.14778/2824032.2824076
http://dx.doi.org/10.14778/2824032.2824076
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=546190&isnumber=11475
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=546190&isnumber=11475
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1317746&isnumber=29204
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1317746&isnumber=29204
http://doi.acm.org/10.1145/2070562.2070564
http://doi.acm.org/10.1145/2070562.2070564
http://doi.acm.org/10.1145/1041680.1041681


REFERENCES 167

Asaeda, H., Matsuzono, K., & Turletti, T. (2015). Contrace: A Tool for Measuring

and Tracing Content-Centric Networks. Communications Magazine, IEEE, 53(3), 182-

188. Retrieved from http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=

&arnumber=7060502&isnumber=7060469 doi: 10.1109/MCOM.2015.7060502

ATIS. (June 2011). CDN Interconnection Use Case Specification and High Level Re-

quirements, Alliance for Telecommunications Industry Solutions. Technical Report ATIS-

0200003 (Vol. ATIS-0200003). Retrieved from http://webstore.ansi.org/

RecordDetail.aspx?sku=ATIS-0200003

Balachandran, A., Sekar, V., Akella, A., Seshan, S., Stoica, I., & Zhang, H. (2012, October).

A Quest for an Internet Video Quality-of-Experience Metric. In Proceedings of the 11th

ACM Workshop on Hot Topics in Networks (pp. 97–102). Redmond, WA, USA: ACM.

Retrieved from http://doi.acm.org/10.1145/2390231.2390248 doi: 10

.1145/2390231.2390248

Barish, G., & Obraczke, K. (2000, May). World Wide Web Caching: Trends

and Techniques. IEEE Communications Magazine, 38(5), 178-184. Retrieved

from http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=

841844&isnumber=18201 doi: 10.1109/35.841844

Bitar, N., Niven-Jenkins, B., & Faucheur, F. L. (2012, September). Content Distribution

Network Interconnection (CDNI) Problem Statement. RFC 6707. IETF. Retrieved from

http://tools.ietf.org/html/rfc6707

Buchmann, J. A., Karatsiolis, E., & Wiesmaier, A. (2013). Introduction to Public Key

Infrastructures. Heidelberg, Germany: Springer Berlin Heidelberg. doi: 10.1007/978-3

-642-40657-7

Burke, J., Gasti, P., Nathan, N., & Tsudik, G. (2012). Securing Instrumented Environments

over Content-Centric Networking: the Case of Lighting Control. CoRR, abs/1208.1336.

Retrieved from http://arxiv.org/pdf/1208.1336.pdf

Burke, J., Gasti, P., Nathan, N., & Tsudik, G. (2013, April). Securing Instrumented Envi-

ronments Over Content-Centric Networking: The Case of Lighting Control and NDN. In

Computer Communications Workshops (INFOCOM WKSHPS), 2013 IEEE Conference on

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7060502&isnumber=7060469
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7060502&isnumber=7060469
http://webstore.ansi.org/RecordDetail.aspx?sku=ATIS-0200003
http://webstore.ansi.org/RecordDetail.aspx?sku=ATIS-0200003
http://doi.acm.org/10.1145/2390231.2390248
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=841844&isnumber=18201
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=841844&isnumber=18201
http://tools.ietf.org/html/rfc6707
http://arxiv.org/pdf/1208.1336.pdf


168 REFERENCES

(p. 394-398). Turin, Italy: IEEE. Retrieved from http://ieeexplore.ieee.org/

stamp/stamp.jsp?tp=&arnumber=6970725&isnumber=6562841 doi: 10

.1109/INFCOMW.2013.6970725

Castro, M., Druschel, P., Kermarrec, A.-M., Nandi, A., Rowstron, A., & Singh, A. (2003,

October). SplitStream: High-bandwidth Multicast in Cooperative Environments. In Pro-

ceedings of the Nineteenth ACM Symposium on Operating Systems Principles (pp. 298–

313). Bolton Landing, NY, USA: ACM. Retrieved from http://doi.acm.org/

10.1145/945445.945474 doi: 10.1145/945445.945474

Castro, M., Druschel, P., Kermarrec, A.-M., & Rowstron, A. (2002). Scribe:

A Large-Scale and Decentralized Application-Level Multicast Infrastructure. IEEE

Journal on Selected Areas in Communications, 20(8), 1489-1499. Retrieved

from http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=

1038579&isnumber=22260 doi: 10.1109/JSAC.2002.803069

Cha, M., Kwak, H., Rodriguez, P., Ahn, Y.-Y., & Moon, S. (2007, October). I Tube, You

Tube, Everybody Tubes: Analyzing the World’s Largest User Generated Content Video

System. In Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement

(pp. 1–14). San Diego, CA, USA: ACM. Retrieved from http://doi.acm.org/

10.1145/1298306.1298309 doi: 10.1145/1298306.1298309

Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach, D. A., Burrows, M., . . . Gruber,

R. E. (2008). Bigtable: A Distributed Storage System for Structured Data. ACM Trans.

Comput. Syst., 26(2), 4:1–4:26. Retrieved from http://doi.acm.org/10.1145/

1365815.1365816 doi: 10.1145/1365815.1365816

Chen, A., Moore, W. B., Xiao, H., Haeberlen, A., Phan, L. T. X., Sherr, M., & Zhou,

W. (2014). Detecting Covert Timing Channels with Time-deterministic Replay. In

Proceedings of the 11th USENIX Conference on Operating Systems Design and Imple-

mentation (pp. 541–554). Broomfield, CO, USA: USENIX Association. Retrieved from

http://dl.acm.org/citation.cfm?id=2685048.2685091

Chen, F., Sitaraman, R. K., & Torres, M. (2015, August). End-User Mapping: Next Gen-

eration Request Routing for Content Delivery. In Proceedings of the 2015 ACM Confer-

ence on Special Interest Group on Data Communication (pp. 167–181). London, UK:

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6970725&isnumber=6562841
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6970725&isnumber=6562841
http://doi.acm.org/10.1145/945445.945474
http://doi.acm.org/10.1145/945445.945474
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1038579&isnumber=22260
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1038579&isnumber=22260
http://doi.acm.org/10.1145/1298306.1298309
http://doi.acm.org/10.1145/1298306.1298309
http://doi.acm.org/10.1145/1365815.1365816
http://doi.acm.org/10.1145/1365815.1365816
http://dl.acm.org/citation.cfm?id=2685048.2685091


REFERENCES 169

ACM. Retrieved from http://doi.acm.org/10.1145/2785956.2787500

doi: 10.1145/2785956.2787500

Chu, Y.-h., Ganjam, A., Ng, T. S. E., Rao, S. G., Sripanidkulchai, K., Zhan, J., & Zhang,

H. (2004, June). Early Experience with an Internet Broadcast System Based on Over-

lay Multicast. In Proceedings of the Annual Conference on USENIX Annual Tech-

nical Conference (pp. 12–12). Boston, MA: USENIX Association. Retrieved from

http://dl.acm.org/citation.cfm?id=1247415.1247427

Chu, Y.-h., Rao, S. G., Seshan, S., & Zhang, H. (2002). A Case for End System Multi-

cast. IEEE Journal on Selected Areas in Communications, 20(8), 1456-1471. Retrieved

from http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=

1038577&isnumber=22260 doi: 10.1109/JSAC.2002.803066

Cisco. (2015). Cisco Visual Networking Index: Forecast and Methodology 2014—

2019. Retrieved Accessed: 2015-06-02, from http://www.cisco.com/c/

en/us/solutions/collateral/service-provider/ip-ngn-ip-next

-generation-network/white_paper_c11-481360.pdf

Clark, D. D., & Blumenthal, M. S. (2011). End-to-End Argument and Application De-

sign: The Role of Trust. Federal Communications Law Journal, 63(3). Retrieved from

http://www.repository.law.indiana.edu/fclj/vol63/iss2/3

Clarke, D. E. (2001). SPKI/SDSI HTTP Server/Certificate Chain Discovery in SPKI/S-

DSI. MA, USA: Massachusetts Institute of Technology. Retrieved from http://

hdl.handle.net/1721.1/72800

Clifton, B. (2012). Advanced Web Metrics with Google Analytics. NJ, USA: John Wiley and

Sons Inc.

Cohen, B. (2003, June). Incentives Build Robustness in BitTorrent. In Workshop on Eco-

nomics of Peer-to-Peer Systems (Vol. 6, pp. 68–72). Berkeley CA, USA. Retrieved from

http://www.bittorrent.org/bittorrentecon.pdf

Cohen, J., Repantis, T., McDermott, S., Smith, S., & Wein, J. (2010, November). Keeping

Track of 70,000+ Servers: The Akamai Query System. In Proceedings of the 24th Inter-

national Conference on Large Installation System Administration (pp. 1–13). San Jose,

http://doi.acm.org/10.1145/2785956.2787500
http://dl.acm.org/citation.cfm?id=1247415.1247427
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1038577&isnumber=22260
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1038577&isnumber=22260
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-next-generation-network/white_paper_c11-481360.pdf
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-next-generation-network/white_paper_c11-481360.pdf
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-next-generation-network/white_paper_c11-481360.pdf
http://www.repository.law.indiana.edu/fclj/vol63/iss2/3
http://hdl.handle.net/1721.1/72800
http://hdl.handle.net/1721.1/72800
http://www.bittorrent.org/bittorrentecon.pdf


170 REFERENCES

CA: USENIX Association. Retrieved from http://dl.acm.org/citation.cfm

?id=1924976.1924999

CoralCDN. (2011). Coralcdn. Retrieved 2014-03-12, from http://www.coralcdn

.org

Cugola, G., & Margara, A. (2012). Processing Flows of Information: From Data Stream to

Complex Event Processing. ACM Computing Surveys, 44(3), 15:1–15:62. Retrieved from

http://doi.acm.org/10.1145/2187671.2187677 doi: 10.1145/2187671

.2187677

Dannewitz, C., Golic, J., Ohlman, B., & Ahlgren, B. (2010, March). Secure Naming

for a Network of Information. In INFOCOM IEEE Conference on Computer Com-

munications Workshops , 2010 (p. 1-6). San Diego, CA, USA: IEEE. Retrieved

from http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=

5466661&isnumber=5466609 doi: 10.1109/INFCOMW.2010.5466661

Day, M., Cain, B., Tomlinson, G., & Rzewski, P. (2003, February). A Model for Content In-

ternetworking (CDI). RFC 3466. IETF. Retrieved from http://tools.ietf.org/

html/rfc3466

Deering, S. (1988, May). Host Extensions for IP Multicasting. RFC 1054. IETF. Retrieved

from http://tools.ietf.org/html/rfc1054

Dellarocas, C. (2001, October). Analyzing the Economic Efficiency of eBay-like Online

Reputation Reporting Mechanisms. In Proceedings of the 3rd ACM Conference on Elec-

tronic Commerce (pp. 171–179). Tampa, Florida, USA: ACM. Retrieved from http://

doi.acm.org/10.1145/501158.501177 doi: 10.1145/501158.501177

Dobrian, F., Awan, A., Joseph, D., Ganjam, A., Zhan, J., Sekar, V., . . . Zhang, H. (2013). Un-

derstanding the Impact of Video Quality on User Engagement. Commun. ACM, 56(3), 91–

99. Retrieved from http://doi.acm.org/10.1145/2428556.2428577 doi:

10.1145/2428556.2428577

Douceur, J. R. (2002). The Sybil Attack. In Peer-to-Peer Systems (Vol. 2429, p. 251-

260). Springer Berlin Heidelberg. Retrieved from http://dx.doi.org/10.1007/

3-540-45748-8_24 doi: 10.1007/3-540-45748-8_24

http://dl.acm.org/citation.cfm?id=1924976.1924999
http://dl.acm.org/citation.cfm?id=1924976.1924999
http://www.coralcdn.org
http://www.coralcdn.org
http://doi.acm.org/10.1145/2187671.2187677
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5466661&isnumber=5466609
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5466661&isnumber=5466609
http://tools.ietf.org/html/rfc3466
http://tools.ietf.org/html/rfc3466
http://tools.ietf.org/html/rfc1054
http://doi.acm.org/10.1145/501158.501177
http://doi.acm.org/10.1145/501158.501177
http://doi.acm.org/10.1145/2428556.2428577
http://dx.doi.org/10.1007/3-540-45748-8_24
http://dx.doi.org/10.1007/3-540-45748-8_24


REFERENCES 171

Drscholl. (2001). OpenNap: Open Source Napster Server. Retrieved 2014-03-12, from

http://opennap.sourceforge.net

Drscholl. (April 2000). Napster Messages (open specification). Retrieved 2014-03-12, from

http://opennap.sourceforge.net/napster.txt

ESM. (2007). End System Multicast: Streaming for the Masses. Retrieved 2013-09-19, from

http://esm.cs.cmu.edu/

ETSI. (2011). Telecommunications and Internet Converged Services and Protocols for

Advanced Networking (TISPAN); Content Delivery Network (CDN) Architecture Inter-

connection with TISPAN IPTV Architectures, Technical Report ETSI TS 182 019 (Vol.

ETSI TS 182 019). Retrieved from http://www.etsi.org/deliver/etsi_ts/

182000_182099/182019/03.01.01_60/ts_182019v030101p.pdf

ETSI. (2013). Network Functions Virtualisation (NFV); Use Cases, Tech-

nical Report ETSI GS NFV 001 V1.1.1 (2013-10) (Vol. NFV 001 V1.1.1).

Retrieved from http://docbox.etsi.org/ISG/NFV/Open/Published/gs

_NFV001v010101p-UseCases.pdf

Fayazbakhsh, S. K., Lin, Y., Tootoonchian, A., Ghodsi, A., Koponen, T., Maggs, B., . . .

Shenker, S. (2013, August). Less Pain, Most of the Gain: Incrementally Deployable ICN.

In Proceedings of the ACM SIGCOMM Conference (pp. 147–158). Hong Kong, China:

ACM. Retrieved from http://doi.acm.org/10.1145/2486001.2486023

doi: 10.1145/2486001.2486023

Frank, B., Poese, I., Lin, Y., Smaragdakis, G., Feldmann, A., Maggs, B., . . . Weber, R.

(2013). Pushing CDN-ISP Collaboration to the Limit. SIGCOMM Computer Commu-

nication Review, 43(3), 34–44. Retrieved from http://doi.acm.org/10.1145/

2500098.2500103 doi: 10.1145/2500098.2500103

Freedman, M. J. (2010, April). Experiences with CoralCDN: A Five-year Operational

View. In Proceedings of the 7th USENIX Conference on Networked Systems Design and

Implementation (pp. 7–7). San Jose, CA: USENIX Association. Retrieved from http://

dl.acm.org/citation.cfm?id=1855711.1855718

http://opennap.sourceforge.net
http://opennap.sourceforge.net/napster.txt
http://esm.cs.cmu.edu/
http://www.etsi.org/deliver/etsi_ts/182000_182099/182019/03.01.01_60/ts_182019v030101p.pdf
http://www.etsi.org/deliver/etsi_ts/182000_182099/182019/03.01.01_60/ts_182019v030101p.pdf
http://docbox.etsi.org/ISG/NFV/Open/Published/gs_NFV001v010101p-UseCases.pdf
http://docbox.etsi.org/ISG/NFV/Open/Published/gs_NFV001v010101p-UseCases.pdf
http://doi.acm.org/10.1145/2486001.2486023
http://doi.acm.org/10.1145/2500098.2500103
http://doi.acm.org/10.1145/2500098.2500103
http://dl.acm.org/citation.cfm?id=1855711.1855718
http://dl.acm.org/citation.cfm?id=1855711.1855718


172 REFERENCES

Freedman, M. J., Freudenthal, E., & Mazières, D. (2004, March). Democratizing Con-

tent Publication with Coral. In Proceedings of the 1st Conference on Symposium on Net-

worked Systems Design and Implementation (Vol. 1, pp. 18–18). San Francisco, CA, USA:

USENIX Association. Retrieved from http://dl.acm.org/citation.cfm?id=

1251175.1251193

Freedman, M. J., & Mazières, D. (2003). Sloppy Hashing and Self-Organizing Clusters.

In Peer-to-Peer Systems II (Vol. 2735, p. 45-55). Springer Berlin Heidelberg. Retrieved

from http://dx.doi.org/10.1007/978-3-540-45172-3_4 doi: 10.1007/

978-3-540-45172-3_4

Ganjam, A., Jiang, J., Liu, X., Sekar, V., Siddiqi, F., Stoica, I., . . . Zhang, H. (2015, May).

C3: Internet-scale Control Plane for Video Quality Optimization. In Proceedings of the

12th USENIX Conference on Networked Systems Design and Implementation (pp. 131–

144). Oakland, CA, USA: USENIX Association. Retrieved from http://dl.acm

.org/citation.cfm?id=2789770.2789780

Ghali, C., Tsudik, G., Wood, C., & Yeh, E. (2015). Practical Accounting in Content-Centric

Networking (extended version). CoRR, abs/1510.01852. Retrieved from http://

arxiv.org/abs/1510.01852

Ghodsi, A., Koponen, T., Rajahalme, J., Sarolahti, P., & Shenker, S. (2011, August). Naming

in Content-oriented Architectures. In Proceedings of the ACM SIGCOMM Workshop on

Information-centric Networking (pp. 1–6). Toronto, ON, Canada: ACM. Retrieved from

http://doi.acm.org/10.1145/2018584.2018586 doi: 10.1145/2018584

.2018586

Greenberg, A., Hamilton, J., Maltz, D. A., & Patel, P. (2008). The Cost of a Cloud: Research

Problems in Data Center Networks. SIGCOMM Computer Communication Review, 39(1),

68–73. Retrieved from http://doi.acm.org/10.1145/1496091.1496103

doi: 10.1145/1496091.1496103

Haeberlen, A. (2010). A Case for the Accountable Cloud. Operating Systems Review, 44(2),

52–57. Retrieved from http://doi.acm.org/10.1145/1773912.1773926

doi: 10.1145/1773912.1773926

http://dl.acm.org/citation.cfm?id=1251175.1251193
http://dl.acm.org/citation.cfm?id=1251175.1251193
http://dx.doi.org/10.1007/978-3-540-45172-3_4
http://dl.acm.org/citation.cfm?id=2789770.2789780
http://dl.acm.org/citation.cfm?id=2789770.2789780
http://arxiv.org/abs/1510.01852
http://arxiv.org/abs/1510.01852
http://doi.acm.org/10.1145/2018584.2018586
http://doi.acm.org/10.1145/1496091.1496103
http://doi.acm.org/10.1145/1773912.1773926


REFERENCES 173

Haeberlen, A., Aditya, P., Rodrigues, R., & Druschel, P. (2010, October). Accountable Vir-

tual Machines. In Proceedings of the 9th USENIX Conference on Operating Systems De-

sign and Implementation (pp. 1–16). Vancouver, BC, Canada: USENIX Association. Re-

trieved from http://dl.acm.org/citation.cfm?id=1924943.1924952

Haeberlen, A., Kouznetsov, P., & Druschel, P. (2006, November). The Case for Byzan-

tine Fault Detection. In Proceedings of the 2nd Conference on Hot Topics in System

Dependability (Vol. 2, pp. 5–5). Seattle, WA: USENIX Association. Retrieved from

http://dl.acm.org/citation.cfm?id=1251014.1251019

Haeberlen, A., Kouznetsov, P., & Druschel, P. (2007). PeerReview: Practical Accountability

for Distributed Systems. Operating Systems Review, 41(6), 175–188. Retrieved from

http://doi.acm.org/10.1145/1323293.1294279 doi: 10.1145/1323293

.1294279

Han, D., Anand, A., Dogar, F., Li, B., Lim, H., Machado, M., . . . Steenkiste, P. (2012, April).

XIA: Efficient Support for Evolvable Internetworking. In Proceedings of the 9th USENIX

Symposium on Networked Systems Design and Implementation (pp. 309–322). San

Jose, CA: USENIX. Retrieved from https://www.usenix.org/conference/

nsdi12/technical-sessions/presentation/han_dongsu_xia

Hei, X., Liang, C., Liang, J., Liu, Y., & Ross, K. W. (2007). A Measurement

Study of a Large-Scale P2P IPTV System. IEEE Transactions on Multimedia, 9(8),

1672-1687. Retrieved from http://ieeexplore.ieee.org/stamp/stamp

.jsp?tp=&arnumber=4378423&isnumber=4378421 doi: 10.1109/TMM.2007

.907451

Huang, C., Wang, A., Li, J., & Ross, K. W. (2008, May). Understanding Hybrid CDN-P2P:

Why Limelight Needs Its Own Red Swoosh. In Proceedings of the 18th International

Workshop on Network and Operating Systems Support for Digital Audio and Video (pp.

75–80). Braunschweig, Germany: ACM. Retrieved from http://doi.acm.org/

10.1145/1496046.1496064 doi: 10.1145/1496046.1496064

Huang, Y., Fu, T. Z., Chiu, D.-M., Lui, J. C., & Huang, C. (2008). Challenges, De-

sign and Analysis of a Large-scale P2P-vod System. SIGCOMM Computer Communi-

http://dl.acm.org/citation.cfm?id=1924943.1924952
http://dl.acm.org/citation.cfm?id=1251014.1251019
http://doi.acm.org/10.1145/1323293.1294279
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/han_dongsu_xia
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/han_dongsu_xia
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4378423&isnumber=4378421
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4378423&isnumber=4378421
http://doi.acm.org/10.1145/1496046.1496064
http://doi.acm.org/10.1145/1496046.1496064


174 REFERENCES

cation Review, 38(4), 375–388. Retrieved from http://doi.acm.org/10.1145/

1402946.1403001 doi: 10.1145/1402946.1403001

Jacobson, V., Smetters, D. K., Thornton, J. D., Plass, M. F., Briggs, N. H., & Braynard,

R. L. (2009, December). Networking Named Content. In Proceedings of the 5th

International Conference on Emerging Networking Experiments and Technologies (pp.

1–12). Rome, Italy: ACM. Retrieved from http://doi.acm.org/10.1145/

1658939.1658941 doi: 10.1145/1658939.1658941

Jain, R., & Paul, S. (2013). Network Virtualization and Software Defined Networking for

Cloud Computing: A Survey. IEEE Communications Magazine, 51(11), 24-31. Retrieved

from http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=

6658648&isnumber=6658638 doi: 10.1109/MCOM.2013.6658648

Jokela, P., Zahemszky, A., Esteve Rothenberg, C., Arianfar, S., & Nikander, P. (2009,

August). LIPSIN: Line Speed Publish/Subscribe Inter-networking. In Proceed-

ings of the ACM SIGCOMM 2009 Conference on Data Communication (pp. 195–

206). Barcelona, Spain: ACM. Retrieved from http://doi.acm.org/10.1145/

1592568.1592592 doi: 10.1145/1592568.1592592

Kamvar, S. D., Schlosser, M. T., & Garcia-Molina, H. (2003, May). The Eigentrust Algo-

rithm for Reputation Management in P2P Networks. In Proceedings of the 12th Interna-

tional Conference on World Wide Web (pp. 640–651). Budapest, Hungary: ACM. Re-

trieved from http://doi.acm.org/10.1145/775152.775242 doi: 10.1145/

775152.775242

Katsaros, K., Xylomenos, G., & Polyzos, G. C. (2011). MultiCache: An Overlay Archi-

tecture for Information-centric Networking. Computer Networks, 55(4), 936–947. Re-

trieved from http://dx.doi.org/10.1016/j.comnet.2010.12.012 doi:

10.1016/j.comnet.2010.12.012

Ko, R. K., Jagadpramana, P., Mowbray, M., Pearson, S., Kirchberg, M., Liang, Q., & Lee,

B. S. (2011, July). TrustCloud: A Framework for Accountability and Trust in Cloud Com-

puting. In Proceedings of the IEEE World Congress on Services (SERVICES) (p. 584-588).

Washington, DC, USA: IEEE. Retrieved from http://ieeexplore.ieee.org/

http://doi.acm.org/10.1145/1402946.1403001
http://doi.acm.org/10.1145/1402946.1403001
http://doi.acm.org/10.1145/1658939.1658941
http://doi.acm.org/10.1145/1658939.1658941
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6658648&isnumber=6658638
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6658648&isnumber=6658638
http://doi.acm.org/10.1145/1592568.1592592
http://doi.acm.org/10.1145/1592568.1592592
http://doi.acm.org/10.1145/775152.775242
http://dx.doi.org/10.1016/j.comnet.2010.12.012
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6012795&isnumber=6012651


REFERENCES 175

stamp/stamp.jsp?tp=&arnumber=6012795&isnumber=6012651 doi: 10

.1109/SERVICES.2011.91

Koponen, T., Chawla, M., Chun, B.-G., Ermolinskiy, A., Kim, K. H., Shenker, S., & Stoica,

I. (2007, August). A Data-oriented (and Beyond) Network Architecture. In Proceed-

ings of the 2007 Conference on Applications, Technologies, Architectures, and Protocols

for Computer Communications (pp. 181–192). Kyoto, Japan: ACM. Retrieved from

http://doi.acm.org/10.1145/1282380.1282402 doi: 10.1145/1282380

.1282402

Kulinski, D., & Burke, J. (2012). NDNVideo: random-access live and pre-recorded stream-

ing using ndn. University of California, Los Angeles, Tech. Rep. NDN–0007, 0(0),

0-17. Retrieved from http://www.named-data.net/techreport/TR007

-streaming.pdf

Liu, J., Rao, S. G., Li, B., & Zhang, H. (2008). Opportunities and Challenges of Peer-

to-Peer Internet Video Broadcast. Proceedings of the IEEE, 96(1), 11-24. Retrieved

from http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=

4399973&isnumber=4404137 doi: 10.1109/JPROC.2007.909921

Liu, Y., Guo, L., Li, F., & Chen, S. (2009, June). A Case Study of Traffic Locality in Internet

P2P Live Streaming Systems. In Proceedings of 29th IEEE International Conference on

Distributed Computing Systems (p. 423-432). Montreal, QC, Canada: IEEE. Retrieved

from http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=

5158452&isnumber=5158393 doi: 10.1109/ICDCS.2009.50

Locher, T., Moor, P., Schmid, S., & Wattenhofer, R. (2006, November). Free Riding in

BitTorrent is Cheap. In Proceedings of the Fifth Workshop on Hot Topics in Networks

(HotNets-V). Irvine, CA, US: HotNets. Retrieved from http://distcomp.ethz

.ch/publications/hotnets06.pdf

Lua, E. K., Crowcroft, J., Pias, M., Sharma, R., & Lim, S. (2005). A Survey and Compar-

ison of Peer-to-Peer Overlay Network Schemes. IEEE Communications Surveys Tutori-

als, 7(2), 72-93. Retrieved from http://ieeexplore.ieee.org/stamp/stamp

.jsp?tp=&arnumber=1610546&isnumber=33817 doi: 10.1109/COMST.2005

.1610546

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6012795&isnumber=6012651
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6012795&isnumber=6012651
http://doi.acm.org/10.1145/1282380.1282402
http://www.named-data.net/techreport/TR007-streaming.pdf
http://www.named-data.net/techreport/TR007-streaming.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4399973&isnumber=4404137
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4399973&isnumber=4404137
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5158452&isnumber=5158393
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5158452&isnumber=5158393
http://distcomp.ethz.ch/publications/hotnets06.pdf
http://distcomp.ethz.ch/publications/hotnets06.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1610546&isnumber=33817
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1610546&isnumber=33817


176 REFERENCES

Magharei, N., Rejaie, R., & Guo, Y. (2007, May). Mesh or Multiple-Tree: A Com-

parative Study of Live P2P Streaming Approaches. In Proceedings of the IEEE Inter-

national Conference on Computer Communications (p. 1424-1432). IEEE. Retrieved

from http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=

4215750&isnumber=4215582 doi: 10.1109/INFCOM.2007.168

Mahadevan, P., Uzun, E., Sevilla, S., & Garcia-Luna-Aceves, J. (2014, September). CCN-

KRS: A Key Resolution Service for CCN. In Proceedings of the 1st International Con-

ference on Information-centric Networking (pp. 97–106). Paris, France: ACM. Re-

trieved from http://doi.acm.org/10.1145/2660129.2660154 doi: 10

.1145/2660129.2660154

Makofske, D., & Almeroth, K. (1999, June). MHealth: A Real-Time Multicast Tree

Visualization and Monitoring Tool. In Proceedings of the International Workshop on

Network and Operating Systems Support for Digital Audio and Video. Basking Ridge,

NJ, USA: ACM. Retrieved from http://www.nossdav.org/1999/papers/

53-1441030863.pdf

Mathew, V., Sitaraman, R. K., & Shenoy, P. (2014). Energy-efficient Content Delivery

Networks using Cluster Shutdown. Sustainable Computing: Informatics and Systems.

Retrieved from http://www.sciencedirect.com/science/article/pii/

S221053791400033X doi: http://dx.doi.org/10.1016/j.suscom.2014.05.004

Mauri, J. L., Fuster, G., Santos, J. D., & Domingo, M. E. (2004). Analysis and Char-

acterization of Peer-To-Peer Filesharing Networks. World Scientific and Engineering

Academy and Society Transactions on Systems(7), 2574–2579. Retrieved from http://

personales.upv.es/jlloret/pdf/icosmo2004.pdf

Maymounkov, P., & Mazières, D. (2002). Kademlia: A Peer-to-Peer Information System

Based on the XOR Metric. In Peer-to-Peer Systems (Vol. 2429, p. 53-65). Springer Berlin

Heidelberg. Retrieved from http://dx.doi.org/10.1007/3-540-45748-8_5

doi: 10.1007/3-540-45748-8_5

Melnik, S., Gubarev, A., Long, J. J., Romer, G., Shivakumar, S., Tolton, M., & Vassilakis, T.

(2010). Dremel: Interactive Analysis of Web-scale Datasets. Proc. VLDB Endow., 3(1-2),

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4215750&isnumber=4215582
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4215750&isnumber=4215582
http://doi.acm.org/10.1145/2660129.2660154
http://www.nossdav.org/1999/papers/53-1441030863.pdf
http://www.nossdav.org/1999/papers/53-1441030863.pdf
http://www.sciencedirect.com/science/article/pii/S221053791400033X
http://www.sciencedirect.com/science/article/pii/S221053791400033X
http://personales.upv.es/jlloret/pdf/icosmo2004.pdf
http://personales.upv.es/jlloret/pdf/icosmo2004.pdf
http://dx.doi.org/10.1007/3-540-45748-8_5


REFERENCES 177

330–339. Retrieved from http://dx.doi.org/10.14778/1920841.1920886

doi: 10.14778/1920841.1920886

Michalakis, N., Soulé, R., & Grimm, R. (2007, April). Ensuring Content Integrity for

Untrusted Peer-to-Peer Content Distribution Networks. In Proceedings of the 4th USENIX

Conference on Networked Systems Design & Implementation (pp. 11–11). Cambridge,

MA: USENIX Association. Retrieved from http://dl.acm.org/citation.cfm

?id=1973430.1973441

Mijumbi, R., Serrat, J., Gorricho, J., Bouten, N., De Turck, F., & Boutaba, R.

(2016). Network Function Virtualization: State-of-the-Art and Research Chal-

lenges. Communications Surveys Tutorials, IEEE, 18(1), 236-262. Retrieved

from http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=

7243304&isnumber=7393921 doi: 10.1109/COMST.2015.2477041

Mockapetris, P. (1987, September). Domain Names - Concepts and Facilities. RFC 1034.

IETF. Retrieved from https://www.ietf.org/rfc/rfc1034.txt

Mockapetris, P., & Dunlap, K. J. (1988, July). Development of the Domain Name System.

In Symposium Proceedings on Communications Architectures and Protocols (pp. 123–

133). Stanford, CA, USA: ACM. Retrieved from http://doi.acm.org/10.1145/

52324.52338 doi: 10.1145/52324.52338

Nandi, A., Ganjam, A., Druschel, P., Ng, T. S. E., Stoica, I., Zhang, H., & Bhattacharjee,

B. (2007, April). SAAR: A Shared Control Plane for Overlay Multicast. In Proceedings

of the 4th USENIX Conference on Networked Systems Design & Implementation (pp. 5–

5). Cambridge, MA: USENIX Association. Retrieved from http://dl.acm.org/

citation.cfm?id=1973430.1973435

NDN. (2015). Named data networking. Retrieved 2015-05-20, from http://named

-data.net/

Nygren, E., Sitaraman, R. K., & Sun, J. (2010). The Akamai Network: A Plat-

form for High-performance Internet Applications. Operating Systems Review, 44(3), 2–

19. Retrieved from http://doi.acm.org/10.1145/1842733.1842736 doi:

10.1145/1842733.1842736

http://dx.doi.org/10.14778/1920841.1920886
http://dl.acm.org/citation.cfm?id=1973430.1973441
http://dl.acm.org/citation.cfm?id=1973430.1973441
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7243304&isnumber=7393921
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7243304&isnumber=7393921
https://www.ietf.org/rfc/rfc1034.txt
http://doi.acm.org/10.1145/52324.52338
http://doi.acm.org/10.1145/52324.52338
http://dl.acm.org/citation.cfm?id=1973430.1973435
http://dl.acm.org/citation.cfm?id=1973430.1973435
http://named-data.net/
http://named-data.net/
http://doi.acm.org/10.1145/1842733.1842736


178 REFERENCES

Ó Coileáin, D., & O’Mahony, D. (2014a, Aug). Savant: A Framework for Supporting Con-

tent Accountability in Information Centric Networks. In Heterogeneous Networking for

Quality, Reliability, Security and Robustness (QShine), 2014 10th International Confer-

ence on (p. 188-190). Rhodes, Greece: IEEE. doi: 10.1109/QSHINE.2014.6928686

Ó Coileáin, D., & O’Mahony, D. (2014b, April). SAVANT: Aggregated Feedback and

Accountability Framework for Named Data Networking. In Proceedings of the 17th Royal

Irish Academy Research Colloquium on Communications and Radio Science into the 21st

Century. Dublin, Ireland.

Ó Coileáin, D., & O’Mahony, D. (2014c, September). SAVANT: Aggregated Feedback and

Accountability Framework for Named Data Networking. In Proceedings of the 1st Inter-

national Conference on Information-Centric Networking (pp. 187–188). Paris, France:

ACM. Retrieved from http://doi.acm.org/10.1145/2660129.2660165

doi: 10.1145/2660129.2660165

Pallis, G., & Vakali, A. (2006). Insight and Perspectives for Content Delivery Net-

works. Communications of the ACM, 49(1), 101–106. Retrieved from http://

doi.acm.org/10.1145/1107458.1107462 doi: 10.1145/1107458.1107462

PARC. (2015). Project ccnx. Retrieved 2015-11-23, from http://www.ccnx.org

Passarella, A. (2012). Review: A Survey on Content-Centric Technologies for the Current

Internet: CDN and P2P Solutions. Computer Communications, 35(1), 1–32. Retrieved

from http://dx.doi.org/10.1016/j.comcom.2011.10.005 doi: 10.1016/

j.comcom.2011.10.005

Pathan, M., & Buyya, R. (2008). A Taxonomy of CDNs. In Content Delivery Networks

(Vol. 9, p. 33-77). Springer Berlin Heidelberg. Retrieved from http://dx.doi.org/

10.1007/978-3-540-77887-5_2 doi: 10.1007/978-3-540-77887-5_2

PeerApp. (2014a). Monetizing OTT Content and Service Delivery. Retrieved 2014-09-15,

from http://www.peerapp.com/Solutions/cse.aspx

PeerApp. (2014b). UltraBandTM 6000 Series Product Overview. Retrieved 2014-03-12,

from http://www.peerapp.com/products/UltraBand.aspx

http://doi.acm.org/10.1145/2660129.2660165
http://doi.acm.org/10.1145/1107458.1107462
http://doi.acm.org/10.1145/1107458.1107462
http://www.ccnx.org
http://dx.doi.org/10.1016/j.comcom.2011.10.005
http://dx.doi.org/10.1007/978-3-540-77887-5_2
http://dx.doi.org/10.1007/978-3-540-77887-5_2
http://www.peerapp.com/Solutions/cse.aspx
http://www.peerapp.com/products/UltraBand.aspx


REFERENCES 179

Peterson, L., Davie, B., & Van Brandenburg, R. (2014, August). Framework for Con-

tent Distribution Network Interconnection (CDNI). RFC 7336. IETF. Retrieved from

http://tools.ietf.org/html/rfc7336

Peterson, R. S., & Sirer, E. G. (2009, April). Antfarm: Efficient Content Distribution with

Managed Swarms. In Proceedings of the 6th USENIX Symposium on Networked Systems

Design and Implementation (pp. 107–122). Boston, MA, USA: USENIX Association. Re-

trieved from http://dl.acm.org/citation.cfm?id=1558977.1558985

Piatek, M., Isdal, T., Anderson, T., Krishnamurthy, A., & Venkataramani, A. (2007, April).

Do Incentives Build Robustness in BitTorrent. In Proceedings of the 4th USENIX Confer-

ence on Networked Systems Design & Implementation (pp. 1–1). Cambridge, MA, USA:

USENIX Association. Retrieved from http://dl.acm.org/citation.cfm?id=

1973430.1973431

Psaras, I., Katsaros, K. V., Saino, L., & Pavlou, G. (2015). LIRA: A Location Independent

Routing Layer based on Source-Provided Ephemeral Names. CoRR, abs/1509.05589.

Retrieved from http://arxiv.org/abs/1509.05589

Repantis, T., Cohen, J., Smith, S., & Wein, J. (2010). Scaling a Monitoring Infrastructure for

the Akamai Network. Operating Systems Review, 44(3), 20–26. Retrieved from http://

doi.acm.org/10.1145/1842733.1842737 doi: 10.1145/1842733.1842737

Rodrigues, R., & Druschel, P. (2010). Peer-to-peer Systems. Communications of the

ACM, 53(10), 72–82. Retrieved from http://doi.acm.org/10.1145/1831407

.1831427 doi: 10.1145/1831407.1831427

Salapura, V., Beaty, K. A., Bivens, A., Kim, M., & Li, M. (2015, May). Towards Build-

ing an Analytics Platform in the Cloud. In Proceedings of the 12th ACM International

Conference on Computing Frontiers (pp. 49:1–49:8). Ischia, Italy: ACM. Retrieved from

http://doi.acm.org.elib.tcd.ie/10.1145/2742854.2747279 doi: 10

.1145/2742854.2747279

Salsano, S., Detti, A., Cancellieri, M., Pomposini, M., & Blefari-Melazzi, N. (2012,

August). Transport-layer Issues in Information Centric Networks. In Proceedings of

http://tools.ietf.org/html/rfc7336
http://dl.acm.org/citation.cfm?id=1558977.1558985
http://dl.acm.org/citation.cfm?id=1973430.1973431
http://dl.acm.org/citation.cfm?id=1973430.1973431
http://arxiv.org/abs/1509.05589
http://doi.acm.org/10.1145/1842733.1842737
http://doi.acm.org/10.1145/1842733.1842737
http://doi.acm.org/10.1145/1831407.1831427
http://doi.acm.org/10.1145/1831407.1831427
http://doi.acm.org.elib.tcd.ie/10.1145/2742854.2747279


180 REFERENCES

the Second Edition of the ICN Workshop on Information-centric Networking (pp. 19–

24). Helsinki, Finland: ACM. Retrieved from http://doi.acm.org/10.1145/

2342488.2342493 doi: 10.1145/2342488.2342493

Schulzrinne, H., Casner, S., Frederick, R., & Jacobson, V. (1996, January). RTP: A Transport

Protocol for Real-Time Applications. RFC 1889. IETF. Retrieved from http://tools

.ietf.org/html/rfc1889

Sharma, A., Venkataramani, A., & Rocha, A. A. (2014, January). Pros & Cons of

Model-Based Bandwidth Control for Client-Assisted Content Delivery. In Proceed-

ings of the Sixth International Conference on Communication Systems and Networks

(p. 1-8). Retrieved from http://ieeexplore.ieee.org/stamp/stamp.jsp

?tp=&arnumber=6734893&isnumber=6734849 doi: 10.1109/COMSNETS

.2014.6734893

Sharma, A., Venkataramani, A., & Sitaraman, R. K. (2013, June). Distributing Content

Simplifies ISP Traffic Engineering. In Proceedings of the ACM SIGMETRICS/Interna-

tional Conference on Measurement and Modeling of Computer Systems (pp. 229–242).

Pittsburgh, PA, USA: ACM. Retrieved from http://doi.acm.org/10.1145/

2465529.2465764 doi: 10.1145/2465529.2465764

Sirivianos, M., Park, J. H., Yang, X., & Jarecki, S. (2007). Dandelion: Cooperative Content

Distribution with Robust Incentives. In 2007 USENIX Annual Technical Conference on

Proceedings of the USENIX Annual Technical Conference (pp. 12:1–12:14). Santa Clara,

CA: USENIX Association. Retrieved from http://dl.acm.org/citation.cfm

?id=1364385.1364397

Skytide. (Decemeber 2012). Combining cdn and transparent caching into a dynamic

duo. Retrieved 2014-03-12, from http://www.skytide.com/content/

resources/PDF/Combining_CDN_and_Transparent_Caching_into_a

_Dynamic_Duo.pdf

Spagna, S., Liebsch, M., Baldessari, R., Niccolini, S., Schmid, S., Garroppo, R., . . .

Awano, J. (2013). Design Principles of an Operator-Owned Highly Distributed Con-

tent Delivery Network. Communications Magazine, IEEE, 51(4), 132-140. Retrieved

http://doi.acm.org/10.1145/2342488.2342493
http://doi.acm.org/10.1145/2342488.2342493
http://tools.ietf.org/html/rfc1889
http://tools.ietf.org/html/rfc1889
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6734893&isnumber=6734849
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6734893&isnumber=6734849
http://doi.acm.org/10.1145/2465529.2465764
http://doi.acm.org/10.1145/2465529.2465764
http://dl.acm.org/citation.cfm?id=1364385.1364397
http://dl.acm.org/citation.cfm?id=1364385.1364397
http://www.skytide.com/content/resources/PDF/Combining_CDN_and_Transparent_Caching_into_a_Dynamic_Duo.pdf
http://www.skytide.com/content/resources/PDF/Combining_CDN_and_Transparent_Caching_into_a_Dynamic_Duo.pdf
http://www.skytide.com/content/resources/PDF/Combining_CDN_and_Transparent_Caching_into_a_Dynamic_Duo.pdf


REFERENCES 181

from http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=

6495772&isnumber=6495745 doi: 10.1109/MCOM.2013.6495772

Spring, N., Mahajan, R., & Wetherall, D. (2002, August). Measuring ISP Topologies with

Rocketfuel. In Proceedings of the 2002 Conference on Applications, Technologies, Ar-

chitectures, and Protocols for Computer Communications (pp. 133–145). Pittsburgh, PA,

USA: ACM. Retrieved from http://doi.acm.org/10.1145/633025.633039

doi: 10.1145/633025.633039

Stallings, W. (1998, Mar). SNMP and SNMPv2: The Infrastructure for Net-

work Management. Communications Magazine, IEEE, 36(3), 37-43. Retrieved

from http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=

663326&isnumber=14500 doi: 10.1109/35.663326

Trossen, D. (2011). PURSUIT Publish Subscribe Internet Technology FP7-

INFSO-ICT-257217 Codifying Evolving Tussles For Tomorrow’s Internet. Re-

trieved from http://fp7pursuit.ipower.com/PursuitWeb/wp-content/

uploads/2011/10/TR11-0001.pdf

Trossen, D., Tuononen, J., Xylomenos, G., Sarela, M., Zahemszky, A., Nikander, P., &

Rinta-aho, T. (2008). From Design for Tussle to Tussle Networking: PSIRP Vision

and Use Cases, Technical Report TR08-0001 (Vol. PSIRP-TR08-0001). Retrieved 2014-

03-12, from http://www.psirp.org/files/Deliverables/PSIRP-TR08

-0001_Vision.pdf

Venkataramani, A., Kurose, J. F., Raychaudhuri, D., Nagaraja, K., Mao, M., & Banerjee,

S. (2014). MobilityFirst: A Mobility-Centric and Trustworthy Internet Architecture.

SIGCOMM Computer Communication Review, 44(3), 74–80. Retrieved from http://

doi.acm.org/10.1145/2656877.2656888 doi: 10.1145/2656877.2656888

Wang, J. (1999). A Survey of Web Caching Schemes for the Internet. SIGCOMM Computer

Communication Review, 29(5), 36–46. Retrieved from http://doi.acm.org/10

.1145/505696.505701 doi: 10.1145/505696.505701

Whitman, B., & Lawrence, S. (2002, September). Inferring Descriptions and Similarity

for Music from Community Metadata. In Proceedings of the 2002 International Com-

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6495772&isnumber=6495745
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6495772&isnumber=6495745
http://doi.acm.org/10.1145/633025.633039
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=663326&isnumber=14500
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=663326&isnumber=14500
http://fp7pursuit.ipower.com/PursuitWeb/wp-content/uploads/2011/10/TR11-0001.pdf
http://fp7pursuit.ipower.com/PursuitWeb/wp-content/uploads/2011/10/TR11-0001.pdf
http://www.psirp.org/files/Deliverables/PSIRP-TR08-0001_Vision.pdf
http://www.psirp.org/files/Deliverables/PSIRP-TR08-0001_Vision.pdf
http://doi.acm.org/10.1145/2656877.2656888
http://doi.acm.org/10.1145/2656877.2656888
http://doi.acm.org/10.1145/505696.505701
http://doi.acm.org/10.1145/505696.505701


182 REFERENCES

puter Music Conference (pp. 591–598). Gothenburg, Sweden. Retrieved from http://

alumni.media.mit.edu/~bwhitman/whitman02inferring.pdf

Woo, S., Jeong, E., Park, S., Lee, J., Ihm, S., & Park, K. (2013, June). Comparison of

Caching Strategies in Modern Cellular Backhaul Networks. In Proceeding of the 11th

Annual International Conference on Mobile Systems, Applications, and Services (pp. 319–

332). Taipei, Taiwan: ACM. Retrieved from http://doi.acm.org/10.1145/

2462456.2464442 doi: 10.1145/2462456.2464442

Xu, D., Kulkarni, S., Rosenberg, C., & Chai, H.-K. (2006). Analysis of a CDN-P2P Hybrid

Architecture for Cost-Effective Streaming Media Distribution. Multimedia Systems, 11(4),

383-399. Retrieved from http://dx.doi.org/10.1007/s00530-006-0015

-3 doi: 10.1007/s00530-006-0015-3

Xylomenos, G., Vasilakos, X., Tsilopoulos, C., Siris, V. A., & Polyzos, G. C. (2012).

Caching and Mobility Support in a Publish-Subscribe Internet Architecture. IEEE Com-

munications Magazine, 50(7), 52-58. Retrieved from http://ieeexplore.ieee

.org/stamp/stamp.jsp?tp=&arnumber=6231279&isnumber=6231266

doi: 10.1109/MCOM.2012.6231279

Xylomenos, G., Ververidis, C. N., Siris, V. A., Fotiou, N., Tsilopoulos, C., Vasi-

lakos, X., . . . Polyzos, G. C. (2014). A Survey of Information-Centric Network-

ing Research. IEEE Communications Surveys Tutorials, 16(2), 1024-1049. Retrieved

from http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=

6563278&isnumber=6811383 doi: 10.1109/SURV.2013.070813.00063

Yalagandula, P., & Dahlin, M. (2004, August). A Scalable Distributed Information Man-

agement System. In Proceedings of the 2004 Conference on Applications, Technolo-

gies, Architectures, and Protocols for Computer Communications (pp. 379–390). Port-

land, OR, USA: ACM. Retrieved from http://doi.acm.org/10.1145/1015467

.1015509 doi: 10.1145/1015467.1015509

Yin, H., Liu, X., Zhan, T., Sekar, V., Qiu, F., Lin, C., . . . Li, B. (2009, October). Design and

Deployment of a Hybrid CDN-P2P System for Live Video Streaming: Experiences with

LiveSky. In Proceedings of the 17th ACM International Conference on Multimedia (pp.

http://alumni.media.mit.edu/~bwhitman/whitman02inferring.pdf
http://alumni.media.mit.edu/~bwhitman/whitman02inferring.pdf
http://doi.acm.org/10.1145/2462456.2464442
http://doi.acm.org/10.1145/2462456.2464442
http://dx.doi.org/10.1007/s00530-006-0015-3
http://dx.doi.org/10.1007/s00530-006-0015-3
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6231279&isnumber=6231266
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6231279&isnumber=6231266
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6563278&isnumber=6811383
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6563278&isnumber=6811383
http://doi.acm.org/10.1145/1015467.1015509
http://doi.acm.org/10.1145/1015467.1015509


REFERENCES 183

25–34). Beijing, China: ACM. Retrieved from http://doi.acm.org/10.1145/

1631272.1631279 doi: 10.1145/1631272.1631279

Yin, H., Liu, X., Zhan, T., Sekar, V., Qiu, F., Lin, C., . . . Li, B. (2010). LiveSky: Enhancing

CDN with P2P. ACM Trans. Multimedia Comput. Commun. Appl., 6(3), 16:1–16:19.

Retrieved from http://doi.acm.org/10.1145/1823746.1823750 doi: 10

.1145/1823746.1823750

Yumerefendi, A. R., & Chase, J. S. (2005, June). The Role of Accountability in Depend-

able Distributed Systems. In Proceedings of the First Conference on Hot Topics in Sys-

tem Dependability (pp. 3–3). Yokohama, Japan: USENIX Association. Retrieved from

http://dl.acm.org/citation.cfm?id=1973400.1973403

Zaharia, M., Das, T., Li, H., Shenker, S., & Stoica, I. (2012, June). Discretized Streams:

An Efficient and Fault-tolerant Model for Stream Processing on Large Clusters. In Pro-

ceedings of the 4th USENIX Conference on Hot Topics in Cloud Computing (pp. 10–

10). Boston, MA: USENIX Association. Retrieved from http://dl.acm.org/

citation.cfm?id=2342763.2342773

Zhang, L., Afanasyev, A., Burke, J., Jacobson, V., claffy, k., Crowley, P., . . . Zhang, B.

(2014). Named Data Networking. SIGCOMM Comput. Commun. Rev., 44(3), 66–73.

Retrieved from http://doi.acm.org/10.1145/2656877.2656887 doi: 10

.1145/2656877.2656887

Zhang, L., Estrin, D., Burke, J., Jacobson, V., Thornton, J., Smetters, D. K., . . . Yeh, E.

(2010, October). Named Data Networking (NDN) Project NDN-0001 (Tech. Rep.). Re-

trieved from http://www.parc.com/content/attachments/named-data

-networking.pdf

Zhao, M., Aditya, P., Chen, A., Lin, Y., Haeberlen, A., Druschel, P., . . . Ponec, M. (2013,

October). Peer-assisted Content Distribution in Akamai Netsession. In Proceedings of the

Internet Measurement Conference (pp. 31–42). Barcelona, Spain: ACM. Retrieved from

http://doi.acm.org/10.1145/2504730.2504752 doi: 10.1145/2504730

.2504752

http://doi.acm.org/10.1145/1631272.1631279
http://doi.acm.org/10.1145/1631272.1631279
http://doi.acm.org/10.1145/1823746.1823750
http://dl.acm.org/citation.cfm?id=1973400.1973403
http://dl.acm.org/citation.cfm?id=2342763.2342773
http://dl.acm.org/citation.cfm?id=2342763.2342773
http://doi.acm.org/10.1145/2656877.2656887
http://www.parc.com/content/attachments/named-data-networking.pdf
http://www.parc.com/content/attachments/named-data-networking.pdf
http://doi.acm.org/10.1145/2504730.2504752

	Declaration
	Declaration
	Abstract
	Acknowledgements
	Introduction
	Background and Requirements
	Savant Accounting and Accountability Framework
	Key Contributions
	Organisation of this Work
	Publications Arising from this Work

	Background and Related Work
	Accounting and Accountability in Distribution Systems
	Multicast IP and Web Caching
	Peer-to-Peer (P2P)
	Content Delivery Networks (CDNs)
	Hybrid CDN-P2P
	Transparent Caching
	Network CDN, CDNI and Virtualisation
	Summary

	Information Centric Networking (ICN)
	A Data-Oriented (and Beyond) Network Architecture (DONA)
	Publish-Subscribe Internet (PSI)
	Network of Information (NetInf)
	Content-Centric Networking (CCN)
	eXpressive Internet Architecture (XIA)
	MobilityFirst
	Summary

	Security Mechanisms
	DNS
	PKI
	SPKI/SDSI
	Security Attacks in ICNs
	Naming and Security
	CCN-Key Resolution Service (CCN-KRS)
	Authenticated Interests
	Summary

	Accounting Frameworks: State of the Art
	SNMP
	Ccndstatus
	Contrace
	LIRA
	Encryption-Based and Push Interest Based Accounting in CCN
	Summary

	Information Processing Systems
	Scalable Distributed Information Management System (SDIMS)
	Query System
	Google Analytics
	C3
	Summary

	Chapter Summary

	Tools for Efficient Content Delivery
	A Generic Model for Content Distribution
	Taxonomy of Accounting and Accountability
	Outstanding Challenges for Content Distribution
	Savant System Model
	Chapter Summary

	Savant Design
	Requirements
	Overview of The Savant Framework
	Content Provenance and Authentication
	Content Ingestion
	NDN Agents
	Content Metadata
	Published Log Objects
	Accounting
	Authenticated Interest Commands
	Accountability Engine
	Log Auditing
	Aggregator Functions
	On-Demand Accounting and Accountability
	High-level Accountability Engine

	Security Model
	Savant's Trust Model
	Threats and Attack Scenarios
	Defence Mechanisms
	Savant Supported Defence Mechanisms
	Access Control Lists

	Naming
	Global and Local Namespace

	Savant Protocols
	Agent Discovery and Local Identity Management Protocol
	The Log Commitment Protocol
	The Challenge-Response Protocol

	Extensions and Improvements
	Statistical Sample
	Public/Private Key Length
	Published Log Object Size

	Analysis
	Chapter Summary

	Savant: An Implementation
	Savant Design and Implementation
	High Level Components

	Considerations for Accounting and Accountability
	Packet-Level Architecture
	Statistical Sample
	Security
	Namespace
	Prerequisites and Assumptions

	Savant Business Model
	Accounting Scenarios
	Control Scenario: Default
	Minimal Accounting

	Log Entries
	Log Object Frequency
	Authenticated Interest Commands

	Experiment Setup, Evaluation and Results
	Experiment Overview
	Experiment Configuration
	Data Analysis

	Experiments
	Savant Accounting and Accountability Overhead
	Fault Detection
	Accountability Engine Scalability
	NDNSim
	Accounting Overhead Projection

	Lessons Learned
	Chapter Summary

	Conclusions and Future Work
	Summary of Contributions
	Future Work


