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Summary

We begin in Chapter 2 with an introduction to the various notions of a bundle of 

C*-algebras that have appeared throughout the literature, and clarify the definitions 

of upper- and lower-semicontinuous C*-bundles not explicitly defined in a formal way 

elsewhere. The definition of Co(v^)-algebra, introduced by Kasparov [38], and its re

lation to C*-bundles is discussed in this chapter also. The purpose of this chapter is 

to bring together concepts that we will refer to in subsequent sections and which are 

described using various notations by different authors. Most of this is implicitly under

stood elsewhere, though Theorem 2.3.12, relating sub-modules of Co(^)-modules and 

subbundles of C*-bundles, is a new result.

Chapter 3 concerns the study of the multiplier algebra M{A)  of a non-unital C*- 

algebra A.  When A is the section algebra of a C*-bundle over a space X,  we consider 

two approaches to representing M{A)  as the section algebra of a bundle over ^ X .  Our 

first approach involves extending the evaluation homomorphisms from A to M{A),  

using properties of the strict topology on M{A),  and is similar to the construction 

of Akemann, Pedersen and Tomiyama [1]. This gives M{A)  the desired structure of 

a C*-bundle which we describe in Theorem 3.1.6. Moreover, we show that lower- 

semicontinuity of >1 as a C*-bundle passes to M{A)  under this construction (Corol

lary 3.1.9).

The second approach is due to Archbold and Somerset [8]; when A is the section 

algebra of a C*-bundle arising from a Co(X)-algebra, we describe how M{A)  carries 

naturally the structure of a C(/9X)-algebra (hence an upper-semicontinuous C*-bundle 

over PX),  where PX  is the Stone-Cech compactification of X.  We then investigate 

conditions under which these bundle representations of M{A)  coincide.

Central to this is the study of the relationship between the spaces Prim(A), 

Prim(A/(A)), X  and ^ X .  Further, we relate the different types of bundle represen

tations of M{A)  with the question of ‘spectral synthesis in the multiplier algebra of 

a Co(-^)-algebra,’ as studied by Archbold and Somerset in [9] and [11]. Some of the 

principal results of section 3.4, namely Corollaries 3.3.6, 3.4.7 and 3.4.8, and The

orem 3.4.10,were obtained independently by Archbold and Somerset, and have been 

published in [11]. Theorem 3.4.6 is a new result and has not appeared elsewhere.



In Chapter 4, we examine the relationship between sheaves and bundles in the 

category of C*-algebras. In the case of a sheaf of C*-algebras over a locally compact 

Hausdorff space X,  this relationship is described in detail in Theorem 4.2.10. As 

a consequence, we establish a Stone-Cech type theorem for C*-bundles over locally 

compact Hausdorff spaces in Corollary 4.2.11. In section 4.3 we consider the particular 

case of a sheaf arising from the multiplier algebra of a Co(^)-algebra A. We show in 

Theorem 4.3.7 that this sheaf is in fact equivalent to the ‘sheaf of local sections’ of the 

bundle defined by the C(^X)-algebra M(A)  considered in Chapter 3.

Chapters 5 and 6 concern the study of tensor products of C*-bundles, primarily the 

case of the minimal (or spatial) tensor product A <8>q B  of two C*-algebras A and B. 
Our approach is focused on the related problem of determining the ideal structure of 

A 0Q i? in terms of those of A and B. We give a complete description in Chapter 5 

(Theorems 5.3.3 and 5.5.9) of the topological space of Glimm ideals of A ^ a B  in terms 

of the ideal spaces of A and B,  without additional assumptions on A and B,  extending 

earlier results of Kaniuth [37]. As a consequence, we determine in Theorem 5.4.3 the 

centre ZM{A  (8)q B) of the multiplier algebra of A (S>a B in terms of these spaces.

Under some additional assumptions on the ideal structure of A (8>q B, we show 

in Theorem 5.6.2 that if the Dauns-Hofmann representations of A and B give rise to 

well-behaved C*-bundles, then the same is true of A(8)q B, sharpening earlier results of 

Kaniuth [37] and Archbold [6]. The results of this chapter have been published in [45].

Finally, Chapter 6 is dedicated to the investigation of the stability of important well- 

behaved classes of C*-bundles, the quasi-standard C*-algebras and continuous Co(X)- 

algebras, under the operation of taking tensor products. Our approach differs from 

that considered previously by Kirchberg and Wassermann [40], who studied analogous 

problems for fibrewise tensor products of C*-bundles. Indeed, we show in Theorem 6.4.4 

that continuity of the tensor product bundle we study here is a strictly weaker property 

than continuity of the fibrewise tensor product.

Our main results of this chapter, Theorems 6.5.6, 6.6.6 and 6.6.10, show that neither 

the class of quasi-standard C*-algebras nor the continuous (7o(X)-algebras are stable 

under tensor products, and identify the largest subclass of each which is tensor stable. 

In the case of the minimal (respectively maximal) tensor product, this is the subclass 

of exact (respectively nuclear) C*-algebras. As a related result we give several new 

characterisations of exact C*-algebras in Theorem 6.6.3.
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C o(X )-structure in C*-algebras, M ultip lier A lgebras and

Tensor P roducts

David M cConnell 

A b s tra c t

Our general theme concerns topological decompositions of C*-algebras and the inter
actions of these decompositions with multiplier algebras, tensor products and module 
structures. A primary focus is placed on modules known as Co(X)-algebras.

Bundle structures, specifically C*-bundles, for a C*-algebra A (not usually uiiital) over a 
suitable base space X ,  are closely related to Co(>^)-algebras, and a natural consideration 
is to relate such structures on A to bundle representations of the multiplier algebra M (yl) 
of A over the Stone-Cech conipactification ^ X  of X.  We discuss how the strict topology 
on M(A)  can be used in this context, and in the case of a Co(A')-algebra A,  relate it to 
the induced C(/3A)-algebra structure on M{A).  Further preliminary results concern the 

ideal structure of M{A)  when v4 is a Co(A)-algebra.

Sheaves of C*-algebras over X  provide another approach which is partially equivalent to 
bundles when the topological space X  is locally compact and Hausdorff. As a corollary, 
we show that a C*-bundle over a locally compact Hausdorff space X  defines naturally a 

C*-bundle over /3A' in such a way that their algebras of continuous sections are naturally 
isomorphic. These results are applied to the particular case of the sheaf of multipliers 
of a Co(A)-algebra A,  which is shown to be canonically isomorphic to the sheaf of local 
sections arising from the C(/3A)-structure on M{A).

For our main results we consider the minimal tensor product A  (g)̂  B  of two C*-algebras 
A and B.  Extending earlier results of Kaniuth [37], we obtain a complete description 
of the topological space of Glimm ideals of A  (gia B  in terms of those of the factors 
(results published in [45]). As a consequence, we construct the Dauns-Hofmann bundle 
representation [21] of A B  in terms of the corresponding representations of A and 
B,  and describe the structure of the centre of the multiplier algebra oi A <Sia B  in this 
setting.

Given a Co(A')-algebra A and a Co(V)-algebra B, we demonstrate how A ® a B  carries 
naturally the structure of a C q ( A  x  F)-algebra. 'We study the associated C*-bundle 
decomposition of A S  over this space, and in particular we compare its structure to 
the fibrewise tensor product studied elsewhere. As a consequence, we obtain several new 
characterisations of the property of exactness in terms of the stability of certain classes 

of Co(A)-algebras under the operation of forming tensor ])roducts.
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Chapter 1

Introduction

Bundles or fields of C*-algebras are an important aspect of the topological decomposi

tion theory of C*-algebras, and have lead to significant advances in the field. The prob

lem of representing a C*-algebra A as the algebra of sections of a bundle of C*-algebras 

over a suitable base space may be regarded as that of finding a non-commutative 

Gelfand-Naimark Theorem, which represents a conmuitative C*-algebra A as the alge

bra of continuous complex-valued functions vanishing at infinity on a locally compact 

Hausdorff space. A number of non-commutative decomposition theorems have been 

obtained, notably by Fell [27], Dauns and Hofmann [21], Lee [44], and Archbold and 

Somerset [7]. Often, however, these constructions give rise to bundles of a very general 

type, the structure of which can be difficult to study.

The focus of this thesis is the investigation of certain structural properties of these 

bundle decompositions of C*-algebras, and the interaction of these properties with 

constructions such as forming multiplier algebras and tensor products. Central to 

the theory is the study of important topological spaces of ideals of the C*-algebra A 

under consideration, namely the space of primitive ideals Prim (^) (with its hull-kernel 

topology) and its complete regularisation, the space of Glinnn ideals. These spaces may 

be regarded as non-commutative analogues of the character space of a commutative C*- 

algebra.

We begin in Chapter 2 with an account of these topological spaces of ideals of 

C*-algebras. We introduce also various notions of a bundle of C*-algebras that have 

appeared throughout the literature, and clarify the definitions of upper- and lower- 

semicontinuous C*-bmidles not explicitly defined in a formal way elsewhere. The defi-
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CHAPTER 1. INTRODUCTION 2

nitioii of C'o(X)-aIgebra (that is, a C*-algebra A  which is also a Baiiach Co(X)-iiiodule), 

introduced by Kasparov [38], and its relation to C*-bundles is discussed in this chapter 

also. The purpose of this chapter is to bring together concepts tha t we will refer to in 

subsequent sections and which are described using various notations by different au

thors. Most of this is implicitly understood elsewhere, though Theorem 2.3.12, relating 

sub-modules of Co(-Y)-modules and subbundles of C*-bundles, is a new result.

In Chapter 3, we consider the multiplier algebra M{A)  of a (non-unital) C*-bundle 

A,  and the different approaches to obtaining a bundle decomposition of M{A) .  Our 

first approach involves extending the evaluation homomorphisms from A  to M{A) ,  

using properties of the strict topology on M{A) ,  and is similar to the construction 

of Akemann, Pedersen and Tomiyama [1]. This gives M[A)  the desired structure of 

a C*-bundle which we describe in Theorem 3.1.6. Moreover, we show that lower- 

semicontinuity of ^  as a C*-bundle passes to M (A) under this construction (Corol

lary 3.1.9).

The second approach is due to Archbold and Somerset [8]; when A  is the section 

algebra of a C*-bundle arising from a Co(X)-algebra, we describe how M{A)  carries 

naturally the structure of a C(,0X)-algebra (or a C*-bundle over (3X),  where f3X is 

the Stone-Cech compactification o^ X .  By contrast, this construction preserves upper- 

semicontinuity of the bundles under consideration. We then investigate conditions 

under which these bundle representations of M( A)  coincide.

Central to this is the study of the relationship between the spaces Prim(A), 

Prim(Af(yl)), X  and I3X. Further, we relate the different types of bundle representa

tions of M{A)  with the question of ‘spectral synthesis in the multiplier algebra of a 

C o(^)-algebra,’ as studied by Archbold and Somerset in [9] and [11]. We remark tha t 

some of the main results of Section 3.4 were obtained independently by Archbold and 

Somerset, and have been published in [11]. In particular, Corollary 3.3.6 corresponds 

to [11, Proposition 2.6(i) and (iii)], and Corollary 3.4.7 to [11, Corollary 4.3]. Stronger 

versions of Corollary 3.4.8 and Theorem 3.4.10 were also given in [11, Corollary 4.4] 

and [11, Theorem 4.6] respectively. Theorem 3.4.6 is a new result.

As is the case for objects studied in algebraic and differential geometry, the notion of 

a sheaf of C*-algebras is closely related to tha t of a C*-bundle. The connection between 

tliese notions has been studied by Hofmann [33] (in the case of sheaves and bundles of 

Banach spaces), and more recently by Ara and Mathieu [3] (in the particular case of
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C*-aIgebras). However, in general, the theory of sheaves is less well-developed than that 

of bundles in the category of C*-algebras. In Chapter 4, we examine the relationship 

between these two notions. In the case of a sheaf of C*-algebras over a locally compact 

Hausdorff space X ,  this relationship is described in detail in Theorem 4.2.10. As 

a consequence, we establish a Stone-Cech type theorem for C*-bundles over locally 

compact Hausdorff spaces in Corollary 4.2.11. In Section 4.3 we consider the particular 

case of a sheaf arising from the multiplier algebra of a Co(X)-algebra A. We show in 

Theorem 4.3.7 that this sheaf is in fact equivalent to the ‘sheaf of local sections’ of the 

bundle defined by the C(,0X)-algebra M{A)  considered in Chapter 3.

Chapters 5 and 6 concern the study of tensor products of C*-bundles, primarily the 

case of the minimal (or spatial) tensor product A 0 ^  B  of two C*-algebras A and B. 

Our approach is focused on the related problem of determining the ideal structure of 

A (8>q B  in terms of those of A and B.  We give a complete description in Chapter 5 

(Theorems 5.3.3 and 5.5.9) of the topological space of Glimm ideals of A(8>q jB in terms 

of the ideal spaces of A and B,  without additional assumptions on A and B,  extending 

earlier results of Kaniuth [37]. As a consequence, we determine in Theorem 5.4.3 the 

centre Z M{ A B) of the multiplier algebra of A B  in terms of these spaces.

Using these results we construct the Dauns-Hofmann C*-bundle associated with 

A iSia B  in terms of the corresponding bundles of A and B.  Under some additional 

assumptions on the ideal structure of A (gî  B,  we show in Theorem 5.6.2 that if the 

Dauns-Hofmann representations of A and B  give rise to well-behaved C*-bundles, then 

the same is true of B,  sharpening earlier results of Kaniuth [37] and Archbold [6]. 

The results of this chapter have been published in [45].

Finally, Chapter 6 is dedicated to the investigation of the stability of important well- 

behaved classes of C*-bundles, the quasi-standard C*-algebras and continuous Co{X)- 

algebras, under the operation of taking tensor products. Using similar techniques 

to those considered in Chapter 5, we describe how the minimal tensor product of a 

Co(A')-algebra A and a C'o(y)-algebra B  carries the structure of a Co{X x F)-algebra, 

and investigate the structure of the associated C*-bundle over X  x Y.  Our approach 

differs from that considered previously by Kirchberg and Wassermann [40], who studied 

analogous problems for fibrewise tensor products of C*-bundles. Indeed, we show in 

Theorem 6.4.4 that continuity of the tensor product bundle we study here is a strictly 

weaker property than continuity of the fibrewise tensor product.
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We show in Section 6.6 that for an inexact continuous C o(^)-algebra A, one can 

always construct a continuous Co(V^)-algebra B  such that A  <8>q B  is discontinuous as 

a Co{X X y)-algebra. As a consequence i t  is shown in Theorem 6.5.6 tha t stability of 

continuity is in fact equivalent to exactness of A. Thus our tensor product construc

tion identifies exactness in precisely the same way as the fibrewise tensor product of 

Kirchberg and Wasserrnann [40, Theorem 4.5].

We apply these results in particular to those Co(-^)-algebras arising from C*- 

algebras A  with Hausdorff primitive ideal space, and the quasi-standard C*-algebras 

introduced in [7]. Until now, it appears tha t there were no known examples of a pair of 

quasi-standard C*-algebras whose minimal tensor product fails to be quasi-standard. 

Our main results of this section, 6.6.6 and 6.6.10, show that neither of these classes are 

stable under tensor products, and identify the largest subclass of each which is tensor 

stable. In the case of the minimal (respectively maximal) tensor product, this is the 

subclass of exact (respectively nuclear) C*-algebras. As a related result we give several 

new characterisations of exact C*-algebras in Theorem 6.6.3, in terms of short exact 

sequences arising from Glimm and minimal primal ideals.



Chapter 2

Preliminaries on C'o(X)-algebras, 
C*-bundles and ideal spaces

In this section we introduce elements of topological decompositions of C*-algebras, in 

particular, the decomposition of a given C*-algebra A  into the algebra of (continuous) 

sections of a bundle of C*-algebras. Central to  these decomposition theories is the 

structure of certain topological spaces of ideals, the primitive and Glimm ideal spaces, 

of the algebra under consideration, which we introduce in Section 2.1.

There are numerous different definitions of C*-bundles appearing throughout the 

literature. In many cases these definitions turn  out to be essentially equivalent, though 

the reasons for this are by no means obvious. Thus it will be convenient for us to give 

an account of these equivalences, in order to conveniently reference results regarding 

C*-bundles published elsewhere. Most of this chapter is therefore expository in nature.

In Section 2.2, we relate two of the main definitions of C*-bundles. The first, a (H)- 

C*-bundle by our terminology (Definition 2.2.1), is the more traditional in some sense; 

we consider a (locally compact Hausdorff) base space X ,  a total space A  consisting of 

a collection of C*-algebras {Ax : x G X}, and algebras of continuous sections F(X , ^ ) .  

The second, which we call simply a C*-bundle (Definition 2.2.7), is closer to tha t of an 

‘algebra of operator fields,’ and frequently offers a simpler framework in which to work. 

Results of Fell and Hofmann show that, under the assumption that the norm functions 

of sections are upper-semicontinuous on X ,  these constructions are in fact equivalent.

5
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A more recent bundle-type decomposition is tliat of Co(X)-algebras (Defini

tion 2.3.1), that is, a C*-algebra A  which is an essential Co(X)-Banach module for 

some locally compact Hausdorff space X.  We introduce Co(X)-algebras in Section 2.3, 

and give an account of how Co(v\r)-algebras are equivalent to the C*-bundles in the 

previous section. The advantage of Co(X)-algebras is that many more technical results 

concerning C*-bundles have convenient formulations in the language of Co (A')-algebras.

Most of the results of this section are known, or at least implicitly understood, 

elsewhere in the literature. Theorem 2.3.12, relating sub-Co(-^)-modules of a Co(-^)- 

algebra with sub-bundles of the associated C*-bundle, is new.

For a topological space X ,  C( X)  will denote the continuous complex valued func

tions on X ,  and C*’(X) will denote those functions in C( X)  tliat are bounded, which 

is a C*-algebra with pointwise operations and supremum norm. Similarly, Co(X)  will 

denote the C*-subalgebra of C*(X) consisting of those functions that vanish at infinity 

on X.  If in addition X  is compact, then we shall frequently identify Co(A'’) and C^{X)  

with C{X) ,  since aU three are equal in this case.

If X  is locally compact, non-compact and Hausdorff, then X  will denote the one- 

point compactification X  U {oo} of X ,  and /3X the Stone-Cech compactification of 

X.

For a Hilbert space H,  D[H)  will denote the C*-algebra of bounded linear operators 

on H,  and K{ H)  the ideal of compact operators. For C*-algebra A,  by a representation 

of A  we mean a ^-homomorphism n : A ^  B{H) .  A representation tt is said to be 

irreducible if H  contains no nontrivial proper closed subspaces invariant under 7r(yl), 

and factorial if the closure of 7r(A) in the weak operator topology on B{H)  has trivial 

centre.

For a locally compact Hausdorff space X  and a C*-algebra A, C^(X,  A)  will denote 

the bounded norm-continuous A-valued functions on X,  which is a C*-algebra with 

pointwise operations and supremum norm. We define Co( X, A)  and C{ X , A )  analo

gously. When X =  N, we shall often write £°°{A) and cq{A) to denote C*(N, vl) and 

Co(N, >1) respectively.

A state on a C*-algebra A is a linear functional (p : A ^  C which is positive (in the 

sense that 4){u*a) >  0 for all a e  A ), and satisfies ||(/)|| =  1. Other definitions will be 

introduced as they arise.
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2.1 The prim itive and Glimm ideal spaces of a C*-algebra

In this section we describe certain topological spaces of ideals of a C*-algebra A, which 

will be of interest to us in subsequent sections.

By a primitive ideal of a C*-algebra A  we mean ker(7r), where tt : A —> B{H)  is an 

irreducible representation of A  on some Hilbert space H.  We will denote by Prim(yl) 

the set of primitive ideals of the C*-algebra A.

We now describe how Prim (^) is regarded as a topological space with the hull-kemel 

(or Jacobson) topology. For T  C Prim(A), we define the kernel of T, k{T)  via

k{T) = P |{ P  - . P e T }

For an ideal J  of A,  we define its hull, hull( J )  as

hull(J) = { P e  P rim (^) : P D J } .

D efin ition  2 .1 .1 . Let A  be a C*-algebra. Then the hull-kemel topology on Prim(>l) 

is defined by the closure operation cl(T) =  hull(/c(r)) for all T  C Prini(yl).

The following proposition lists some well-known properties of the topological space 

P rim (^) in the hull-kernel topology, which shall be used frequently in the sequel.

P ro p o s it io n  2 .1 .2 . Let A  be a C*-algebra. Then the topological space P rim (^) has 

the following properties:

(i) Every open subset U C Prim(A) is o f the form

U = { P e  Prim(yl) : P ^ I }

for some ideal I  of A. [24, Proposition 3.1.2]

(a) For every ideal I  of A, the map P PC\I (resp. P  ^  P / I )  is a homeomorphism  

of the open subset {P  G Prim(A) : P  ^  1} (resp. the closed subset {P  G Prim(A) : 

P  ^  I } )  onto P rim (/) (resp. P vim {A /I)). [24, Proposition 3.2.1]

(Hi) Prim(A) is aTo-space. ]24, Proposition 3.1.1]

(iv) Prim(yl) is locally compact in the sense that every P  G Prim(j4) admits a compact 

neighbourhood. ]24, Corollaire 3.3.8]
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(vj I f  A is unital then Prini(y4) is compact. [24, Proposition 3.1.8]

Elementary examples show that we cannot expect P rim (^) to admit stronger sep

aration properties than Tq in general. Indeed, it follows from the definition of the 

hull-kernel topology that a one-point subset {P} C Prim(j4) is closed if and only if P  

is a maximal ideal of A. Note tha t when Prim(yl) is non-Hausdorff, it is not necessarily 

true that compact subsets of Prim(yl) are closed.

When ^  is a commutative C*-algebra, the Gelfand-Naimark Theorem asserts that 

A  =  Co(v\') for some locally compact Hausdorff space X .  In this case, the irreducible 

representations of A  are precisely the characters on A, and thus we may identify 

Prim(yl) with X ,  where x  G X is identified with the maximal ideal { /  G Co{X) : 

f {x)  =  0} of A. Moreover, the hull-kernel topology on Prim(/1) corresponds to the 

usual topology on A" under this identification. In particular, P rim (^) is Hausdorff 

whenever ^  is a commutative C*-algebra.

Often when working with non-Hausdorff spaces such as Prim(.4), it is convenient to 

construct a related space satisfying stronger separation axioms but preserving certain 

information about the original space. The complete regularisation of a topological space 

A is a procedure for associating a completely regular space p X  to A  in such a way 

that their algebras of (bounded) continuous functions are isomorphic. We describe this 

construction below for general spaces A , and then return to the particular case of the 

complete regularisation of Prim(A).

D efin itio n  2.1.3. A topological space A  is said to be completely regular (or a Ty- 

chonoff space) if it is a Hausdorff' space, and given any closed subset F  C X  and 

a point X  G X \ F ,  there is a continuous function /  : A  —> R with / (x )  =  1 and

f { F)  = {0}.

T h e o re m  2.1.4. [29, Theorem 3.9] Let X  be a topological space. Then there exist

a completely regular space p X  and a continuous surjection p x  ■ X  ^  p X  with the 

property that the map /•->■ / o p x , where f  G C^{pX) ,  is a ^-isomorphism of C^{pX)  

onto C^{X) .

We give the details of the construction of p X  and p x  below, since we will refer to 

it in subsequent sections.

For /  G C{X) ,  let coz(/) =  {x G X  ; /(x )  /  0}, the cozero set of / .  Replacing 

/  with m in ( |/|, 1), we may assume that any cozero set in A  is the cozero set of some
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continuous function /  : X  —> [0,1].

Define an equivalence relation on X  as follows: for X\ , X2  G X  w rite x\  X2 if

/ ( x i )  =  f { x 2 ) for all /  G C^(X ) .  Let p X  = X j  «  and let p x  '■ X  p X  be the

quotient m ap. Each /  G C ^{ X)  defines a  function on p X  by setting  /^([x]) =  / ( x ) ,  

where [x] denotes the ^-equivalence class of x. Denote by Ter the weak topology on p X  

induced by the  functions { /^  : /  G C*’(.Y)}. T hen the  space p X  w ith the  topology 

has the required properties.

D efin it ion  2 .1 .5 . T he trip le [pX,T„-, p x )  constructed  in Theorem  2.1.4 is called the 

complete regularisation of the space X .

We shall often refer to  p X  as the com plete regularisation of X  when p x  and are

understood.

An alternative construction of p X  is as follows: let I  denote the closed unit interval 

and the set of all continuous m aps f  : X  -> I.  Let P { X )  =  ^  where

I f  = 1 for all f  £ , and let r  : X  —> P { X )  be defined via r (x )  =

Defining , P { p X )  and r '  : p X  —>• P { p X )  analogously, it is clear th a t =  { /^  : 

/  G / ^ }  and hence P { p X )  = P { X ) .  The definition of /^ ,  where /  G , ensures th a t 

t '  ° P x  =  ■T", hence t { X )  is equal to  T' {pX) .  On the o ther hand, it is well-known th a t 

r '  is a hom eom orphism  onto its image [55, Lem m a 1.5], so th a t t { X )  is homeomorphic 

to  pX.

Now let X  and Y  be topological spaces and 4> : X  ^  Y  & continuous m ap. Then 

setting  4>P{px{x)) = {py ° <t>){x) gives a m ap 0^ : p X  —> p Y  such th a t the diagram

P x PY

commutes. To see th a t (j>̂ is continuous, let U =  co z (/)  be a cozero set in p Y . Then 

{py o 4>)~^{U) is precisely the cozero set in X  of the  continuous function f  o py  o 0. It 

follows th a t {4>P)~^{U) =  c o z (/ o p y  o (f))P is open in p X  by the definition of To--

Thus the assignm ent of p X  to  X  and to  4> defines a covariant functor from the  

category of topological spaces to  the  subcategory of com pletely regular spaces, called 

the Tychonoff  functor.  T he term  Tychonoff functor was first used by M orita in [47, p. 

32].



CHAPTER 2. PRELIMINARIES 10

Now let A  be a C*-algebra and Prim(A) the space of primitive ideals of A  with the 

hiill-kernel topology. We define Glimm(yl) as the complete regularisation /9Prim(>l) of 

Prim(>l), and denote by pA '■ Prim(>4) —> Glimm(y4) the complete regularisation map.

Let p S Glinnn(yl) and choose P  G Prim(/1) with Pa {P) =  P- We associate to the 

point p the norm closed two sided ideal Gp of A  given by

Gp =  f|{g e P rim (^) : g «  P} =  f |{ Q  e  P rim (^) : pa(Q) = pj  k ([P ]) .

Note that since [P] is closed in P rim (^) and Gp = k{[P]), each equivalence class in 

P rim (^ )/ w is of the form

[P] =  hull(fc([P])) =  hull(Gp), 

by the definition of the luill-kernel topology.

Definition 2.1.6. The ideals {Gp : p G Glim m (^)} are known as the Glimm ideals 

of A. The space Glimm(y4), with the topology Ter is called the Glimm space of the 

C*-algebra A.

Since the assignment p Gp is injective, we will regard elements of Glimm(yl) as 

either points of a topological space or as ideals of A, depending on the context.

Exam ple 2.1.7. [7, p. 353] Let {M2 {C)) denote the C*-algebra of bounded se

quences of 2 x 2  matrices over C (with pointwise operations and supremum norm). Let 

A  C consist of those sequences x  =  (x„) with the property that, as n —> oo,

the subsequences {x2n) o.nd (x2n+i) satisfy

X2n -> diag(Ai(a;), A2 (a:)), X2n+\ -> diag(A2 (x), A3 (x))

for some complex scalars Aj(x) (1 <  i <  3). Then A is a C*-subalgebra of i°°{M 2 {C)).

The irreducible representations o f A  consist of the evaluation mapssn ■ A  —)• M 2 (C), 

where en{x) = for all x  e  A , n  e  N, together with Aj : ^  > C for  i =  1,2,3. Hence

Prim(A) =  {ker(e„) : n  £ N} U {ker(Aj) : 1 <  i < 3}.

The topology on P rim (^) is as follows:

(i) the points ker(e'„) are isolated fo r  all n G N,
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(ii) the point ker(Ai) (respectively ker(A3 ) j  has a neighbourhood basis consisting o f 

sets o f the form  {ker(e2n) ' >  -̂0 } U {ker(Ai)} (respectively {ker(£2n+i) : n >

no} U {ker(A3 )} ) fo r  some uq G N.

(Hi) the point ker(A2 ) has a neighbourhood basis consisting o f sets o f the fo rm  {ker(ejj) : 

n  >  no} U {ker(A2 )} fo r  some no G N.

I t is easily seen that the equivalence classes o f the relation «  on Prim(>l) satisfy  

[ker(£n)] =  {ker(e„)} fo r  n  G N, while ker(Ai) sa ker(A2 ) ~  ker(A3 ). Hence

3

Glimm(yl) =  {ker(£„) ; n  G N} U i n  ker(Aj)}
i=l

with topology homeomorphic to N.

2.2 C*-bundles

There are m any different definitions of Innidles or fields of C*-algebras appearing 

throughout the literature, although it is often the case th a t they are in fact equivalent. 

In this section we give two definitions of C*-bundles th a t  will appear in subsequent 

sections, and give a sliort description of the relations between the  two.

In the m ost general sense, a bundle is sim ply a surjective m apping p : E  ^  X ,  

where X  is called the base space and E  as the  total space. For each x G X  we regard 

p~^{x)  as the  fibre of E  over A", and thus th ink  of E  as the disjoint union of fibres 

E  =  U xgx  our case, we will require th a t E  carries a topology and algebraic

operations in such a way th a t each fibre p~^{x)  is a C*-algebra.

Definition 2.2.1 below is essentially due to  Dauns and Hofm ann [21], generalising an 

earlier definition of Fell [28]. Om- term inology ‘(H )-C*-bundle’ was used first by Dupre 

and G illette [26].

D e f in it io n  2 .2 .1 . Let A  bo a topological space and  X  a locally com pact Hausdorff 

space. An upper semicontinuous (H)-C*-bundle over AT is a trip le [ A , X , p )  consisting 

of a continuous, open surjection p : A  ^  X  together w ith ^-algebraic operations and 

norm s m aking each fibre Ax  :=  p “ *({a:}) into a C*-algebra such th a t the following 

conditions are satisfied:

(i) T he m ap a !->■ ||a ||^^ is upper sem icontinuous .4 ^  R,
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(ii) Involution a a* is continuous A  A,

(iii) T he m aps (a, 6) ab and (a, 6) a + b are continuous from Ap  :=  G 

^  X ^  : p[a) =  p{b)} to  A ,

(iv) For each A G C, the m ap a  Aa is continuous A  A ,

(v) If {aj} is a net in A  such th a t ||ai|| —> 0 and p(aj) -> x  in X ,  then  a, —>■ Ox, the 

zero element of Ax-

If we replace ‘upper sem icontinuous’ w ith ‘continuous’ in (i) then  A  is called a contin

uous (H)-C*-bundle over X .

Rem ark  2.2.2. Fell’s definition [28, p. 10] of a  C*-bundle required th a t the  norm  

functions in (i) be continuous. O ur definition of a continuous (H)-C*-bundle is called 

an (F)-C*-bundle by Dupre and G illette [26, p. 8 ], who reserve the term  (H)-C*-bundle 

for upper-sem icontinuous bundles.

For an open subset U C A", a (local) section 7  of (>4, X , p )  is a m ap j  ■. U ^  A  such 

th a t p{"i{y)) =  y for all y ^  U, i.e. j { y )  G Ay  for all y G U.  T he set of all bounded 

continuous sections U ^  A  is denoted by F^([/, ^ ) .  T he set of those 7  G r^(C7, th a t 

vanish a t infinity on U,  in the sense th a t  {y & U : ||7 (2/)|| >  e} is com pact for all s: >  0, 

is denoted by To{U,A).  Then T ’’{U,A)  and Fo(C/, »4) are C*-algebras w ith pointwise 

operations and suprem um  norm , see e.g. [58, Proposition C.23] or [3, Lem m a 5.2],

L e m m a  2 .2 .3 . Let { A , X , p )  be an upper-semicontinuous (H )-C -bund le  and K  C X  

an open, compact subset. Then every continuous section 'y : K  ^  A  is bounded.

Proof. Since the m ap A  M+ sending a where a G Ax,  is upper-

sem icontinuous on A ,  it follows th a t the  m ap K  —> R +, x  i-)- ||7 (x)|| is upper- 

sem icontinuous on K .  B ut then  since K  is com pact, it follows th a t  x  ||7 (x)|| is 

bounded, i.e. 7  is bounded. □

E x a m p le  2 .2 .4 . (i) Let X  be a locally compact Hausdorff space and B  a C*-algebra.

Setting A  = X  x  B  and p  : A  X  the projection onto the first factor, the triple 

{ A , X , p )  IS a continuous (HJ-C*-bundle over X , with constant fibre Ax = B . A 

bundle of this type is called the trivial bundle over X  with fibre B .
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It is easily verified that the section algebras in this case are canonically *- 

isomorphic  Fo(A', =  Cq{X,  D) and P*'(X, =  C^[X,  B)  (where the latter are

considered as C -algebras with pointwise operations and the suprem um  norm).

(a) W ith A  as in (i), fix  xq ^  X  and a C-subalgebra B q C B . Let be the subspace 

o f A  given by

^ 0  =  {(a ,̂ b) e  A  : b e  B(j i f  x  =  xq}.

Setting po = p \^^, the triple is again a continuous C*-bundle over X ,

whose section algebras satisfy

P o (;^ ,^ o ) =  { /  G C o { X , B )  : /(x o )  G Bo},  

and sim ilarly fo r  P^(A,>4o)-

Beyond trivial cases, it is not im m ediately obvious how C*-binidles arise. Suppose 

th a t we are given a locally com pact Hausdorff space X  and a collection of C*-algebras 

{Ax : X E X } .  Setting A  =  ]J{Aa. : x  £ X }  gives a well-defined surjection p : A  X  

via p(a) =  X  whenever a G A ^. We wish to determ ine under w hat conditions does this 

construction equip tlio triple A",p) with the s tru c tu re  of an upper-sem icontinuous 

(H)-C*-bundle.

Theorem  2.2.5 below asserts th a t given a sufficiently large collection P of sections 

X  ^  A  w ith suitable properties, there is a  unique topology on A  such th a t [ A , X , p )  

is an upper-sem icontinuous (H)-C*-bundle, such th a t every section in P becomes a 

continuous section X  A . The original result, for continuous (H)-C*-bundles, is due 

to  Fell [28, Proposition 1.6]. T he fact th a t the  analogous result holds in the upper- 

sem icontinuous case was observed by Dupre and G illette [26, P roposition  1.9], though 

no proof was given. A self-contained proof of the  general (i.e. upper-sem icontinuous) 

case m ay be found in [58, Theorem  C.25].

T h e o r e m  2 .2 .5 . (Fell) Let X  be a locally compact HausdorJJ space and A  =  {A x  : x  €

X }  a collection of C*-algebras. Define p : A  ^  X  via p{a) =  x  fo r  a G Ax. Let P

be a *-algebra o f sections X  A  (with pointwise operations), such that the following 

conditions hold:

(i) the map x  i-> ||7 (x)|| is upper sem icontinuous on X  fo r  all 7  G P,

(a) fo r  each xq G X ,  the set {7 (xo) : 7  G P} is dense in
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Then there is a unique topology on A  such that { A , X , p )  is an upper-semicontinuous

(H )-C -bundle over X  with F C F ^ (X ,^ ) . I f  we replace ‘upper-semicontinuous’ with

‘continuous’ in (i), then {A , X , p )  is a continuous (H)-C*-bundle.

In fact, under some additional conditions on the family F of sections, Proposi

tion 2.2.6 shows tha t we may conclude F =  Fo(^). Again, this result was shown orig

inally by Fell [28, Proposition 1.7] in the continuous case, the upper-semicontinuous 

analogue may be found in [58, Proposition C.24].

Proposition  2.2.6. Suppose that { A , X , p )  is an upper-semicontinuous (H)-C*-bundle 

over X , and that F C F q (X ,^ ) is a subspace such that

("ij 7  e  F and f  € Cq{X)  implies that /  • 7  : x h4 f{x)'y{x) belongs to F, and

(ii) for each xq ^  X , {7 (xo) : 7  £ F} is dense in Ax^.

Then F is dense in Fo(X, .4).

As a consequence of Theorem 2.2.5 and Proposition 2.2.6, we see that it is possible in 

certain cases to construct a (H)-C*-bundle by specifying the base space X , fibre algebras 

Ax and a suitable C*-algebra of sections A. In particular, it is possible to avoid making 

reference to the topology on the total space (since this is uniquely determined by the 

section algebra by Theorem 2.2.5). We shall favour this approach throughout much of 

this work for simplicity.

Motivated by these considerations, we make the following definition of a C*-bundle;

Definition 2.2.7. A C*-bundle is a triple = { X , A , nx  : A  —> Ax)  where X  is 

a locally compact Haiisdorff space, A  a C*-algebra, and tXx '■ A Ax surjective *- 

homomorphisms for all x G X satisfying

(i) the family {ttx : x G X} is faithful, i.e., C\xeX =  {0 }>

(ii) for each /  G Cq{X)  and a £ A  there is an element f  ■ a E A  with the property 

that

' ^xi f  ■ O') =  f{x)i^x[o) for all x  & X.

If in addition the functions N{a)  : X  M+, x  i-> ||7rx(a)|| where a e  A, belong to

Co(X) for all a G ^  then we say th a t is a continuous C*-bundle over X .  If for

all a G >1 the functions N{a)  are upper-semicontinuous (resp. lower-semicontinuous)
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on X ,  and if for each e >  0 the set {x e  X  : N{a)  > e} has com pact closure in X ,  

then we say th a t ^  is an upper-semicontinuous C*-bundle (resp. lower-semicontinuous 

C*-bundle).

Rem ark  2.2.8. A continuous C*-bundle in the  sense of Definition 2.2.7 was called a 

‘m axim al full algebra of operator fields’ by Fell [27, §1-1]. Similarly, our notion

of a sem icontinuous C*-bundle corresponds to  Rieffel’s ‘sem icontinuous fields of C*- 

algebras’ [52, Definition 1.1]. T he term inology ‘bundle’ has m ostly  replaced ‘field’ in 

more recent literature , e.g. [40], [48], [6 ].

T he following Theorem  makes precise the equivalence between upper-sem icontinuous 

(H)-C*-bundles and C*-bundles.

T h e o r e m  2.2 .9 . Let X  be a locally compact H ausdorff space.

(i) Let { A , X , p )  be an upper-semicontinuous (H)-C*-bundle over X . Then setting  

A  =  r o ( ^ , ^ ) ,  Ax — p~^{x) and ttx ■ A  Ax the evaluation mapping fo r  all 

X G X ,  the triple { X , A . ttx ■ A —> Ax)  is an upper-sem icontinuous C*-bundle over 

X . Moreover i f { A , X , p )  is continuous then so is { X , A , ttx '■ A  —> Ax)-

(a ) Let (X , A, 7Ti : A  —̂ A^) be an upper-semicontinuous C*-bundle over X .  Set 

.4 =  U { - 4 x : x e . Y } .  p : .4 —̂ X  the surjection sending each a e  Ax to x , and for  

each a ^  A  define a section a : X  ^  A  via d(x)  =  TTx(a). Then there is a unique 

topology on A  such that ( A , X , p )  is an upper-sem icontinuous (H)-CT-bundle over 

X  and such that the map a a is a ^-isom orphism  o f A  onto  Fo(-Y, I f  

{X,A, -Kx '■ A  Ax)  is continuous then so is { A , X , p ) .

Proof, (i): Since the norm on F o (^ ) -^) is the suprem um  norm , it is clear th a t condition

(i) of Definition 2.2.7 is satisfied. For all 7  G Fo(-Y, and /  G C o(X ), the section 

/  • 7  : X !->■ f { x ) j { x )  belongs to Fo(X ,>l) by [58, Lem m a C.22]. It follows from the  

definition of /  • 7  th a t iXx{f • 7 ) =  f { x ) ^ { x )  =  f {x)T:x{l)  for all x G X , hence condition

(ii) of Definition 2.2.7 is satisfied also.

For each 7  G ro(A’’, ^ ) ,  the norm  function N {‘~̂ ) is the  com position x h->- 7 (x) ^  

||7 (x)|| of a continuous function and an upper-sem icontinuous function, hence is upper- 

sem icontinuous on X .  Moreover, A^(7 ') vanishes a t infinity on X  by definition of

The final assertion follows from the fact th a t in a continuous (H)-C*-bundle, the 

m ap 7 (x) |[7 (x)|| is continuous.
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(ii): By Theorem 2.2.5, there is a unique topology on A  such that {A,X,p)  is an 

upper-semicontinuous (H)-C*-bundle over X  with {d : a £ A} C F*(X, Moreover, 

by assumption the former is in fact contained in Fo(X, ^1).

Using condition (ii) of Defintion 2.2.7, we have

( /  • a)^{x) = T^xif ■ a) = f{x)nx{a) = f{x)a{x)

for all G G >1 and /  G Cq{X).  In particular, the hypotheses of Proposition 2.2.6 are 

satisfied, so that {a : a G A}  is dense in Fo(A', ^ ) . Being closed, we must have equality.

The continuous case follows from the continuous cases of Theorem 2.2.5 and Propo

sition 2.2.6. □

In subsequent sections, we shall mostly make use of C*-bundles, rather than (H)- 

C*-bundles. One exception is Chapter 4, where it will be necessary to consider the 

local section algebras T^{U,A) for open subsets U of X.  The fact that these sections 

do not necessarily vanish at infinity on U means that we are unable to make use of the 

equivalence given in Theorem 2.2.9(ii), which only applies to Fo(—,^ ) .

Definition 2.2.10. Let {X^A,tTx : A —> A^) and {X, B, ax  : B  -> B^.) be C*-bundles 

over A". Suppose that the following conditions are satisfied

(i) fi is a C*-subalgebra of A,

(ii) for each x E X , Ux = t̂x\b -

Then {X, B,Ux ■ B ^  Bx) is said to be a C*-sub-bundle of (A’, A,-Kx '■ A ^  Ax)-

2.3 Equivalence o f Co(X)-algebras and C*-bundles

Definition 2.3.1. Let X be a locally compact Hausdorff space. A Co{X)-algebra is 

a C*-algebra A together with a ^-homomorphism ha '■ Cq{X) ZM[A)  with the 

property that ha{Cq{X))A = A.

It follows from the Dauns-Hofmann Theorem [21] which we will discuss below (The

orem 2.3.6), that there is a ^-isomorphism 6a '■ C*'(Prim(A)) —> ZM{A)  with the 

property that

0A{f)a + P — f{P)(a + P),  for a G >1, /  G C^(Prim(A)), P  G Prim(A). (2 .3 . 1 )
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This gives an equivalent formulation of Definition 2.3.1: a Co(X)-algebra is a C*-algebra 

A together with a continuous map 4>a '■ Prim(yl) —> X .  The maps /m and cpA are related 

via f iA if)  = (^A{f ° (f>A) for all /  G Co(X) [58, Proposition C.5]. We call 4>a the base 

map and jj,A the structure map.

For clarity we will denote any Co(v^)-algebra A  by the triple {A,X,(I)a) or 

{A, X,fiA)-  For X  E X  we define the ideal Jx via

Jx = ItA ({ /  e  C o ( X )  : f { x )  =  0}) =  f ] { P  G Prim(A) : M P )  =  ^} ,  (2-3.2)

see [48, Section 2] for example.

Remark 2.3.2. We do not require that the base map (pA ■ Prim(y4) —> X  be surjective, 

or even that (/)^(Prim(.4)) be dense in X .  It is shown in [8, Corollary 1.3] that (pA has 

dense range if and only if the structure map ha is injective.

If X G X\Im((/),4 ), then we may still define the ideal Jx of A  via

Jx =  l^A ( { /  £ Co(X) : f { x )  =  0}).4; it is shown in [8, §1] tha t = A  for all such 

X .  This is consistent with our second definition of Jx in (2.3.2), when we regard the 

intersection of the empty set {P  G Prim(yl) : (Pa{P) =  x]  of ideals of ^  as itself.

The relationship between Co(A')-algebras and C*-bundles is well known, see [48] 

or [58, Appendix C] for example. Wo give details in the following proposition, which 

will be used frequently in what follows.

P ro p o s itio n  2 .3 .3 . Let A be a C*-algebra and X  a locally compact Hausdorff space.

(i) I f  {A, X , 12a) is a Co{X)-algebra, then with Ax = A /J ^  and-Kx '. A  ^  Ax the quo

tient *-homomorphism, the triple {X, tt^ : > Ax) is an upper-semicontinuous 

C*-bundle [48, Theorem 2.3j.

(ii) I f  (X ,A ,7 T x  : A  —> Ax) is a C* -bundle, then setting ^A { f)u  =  /  • a  for f  G

C o(X),a  G A defines a * -homomorphism i i a  '■ Cq{X) —> Z M {A )  such that

{A,X,i^ia) is a Cq{X)-algebra. Aloreover, { X ,A ,n x  : A  —> Ax) is an xipper- 

semicontinuous -bundle if  and only i /ke r(7 T x )  =  Jx for all x  € X  [4 O, Lemmas 

2.1 and 2.3].

(Hi) The Co{X)-algebra { A ,X , ij,a ) gives rise to a continuous C*-bundle {X ,A ., t̂ x '■ 

A —> Ax) i f  and only if  the corresponding base map 4>a '■ Prim(yl) X  is an open 

map [44, Theorem 5].
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As a consequence of Proposition 2.3.3, we will regard Cn(X)-algebras and upper- 

seniicontinuous C*-bundles as being (essentially) equivalent. Moreover, we may unam

biguously speak of a Co(^)-algebra {A ,X ,f iA )  being continuous if the corresponding 

C*-bundle {X,A^-nx '■ ^  ^ x )  is continuous.

For clarity, we give the (H)-C*-bundle analogue of Proposition 2.3.3 below.

Corollary 2 .3.4. Let {A,X,i.ia) be a Co{X)-algebra. Then there is an upper- 

semicontinuous (H)-C*-bundle {A , X , p )  over X  such that:

(i) for each x G X  the corresponding fibre algebra is given by Ax =  Aj J^ ,

(a) the map 7  : >1 —> Fo(X ,>1), where

7 (a) (x) =  a +  Jx for all a £ A, X  G X

is a *-isomorphism.

E xam ple 2 .3 .5 . [24, Let A  be the C*-algebra of sequences a = {un) C A/2 (C)

that converge as n ^  00 to a diagonal matrix, denoted by diag(Ai(a), A2 (a)), where 

Aj(a) are complex scalars for i = 1,2. Then Z(A)  consists of those a £ A such that 

Un is a scalar multiple of the identity matrix for all n G N, so that Ai(a) =  A2 (a) and 

Z{A) may be identified with C(N). It follows that A  is a C{N)-algebra.

The corresponding ideals { :  n G N} 0/  (2.3.2) are given by Jn = {a E A : a„ = 0}

for  n G N and Jqo =  {a G A : Ai(a) =  A2 (a) =  0}. The corresponding C*-bundle 

{A, N, 7T„ : —> An) has fibres An = Af2 (C) f o r n  G N and Aoo = C©C, with 7 r„ (a )  =  a „

for  n G N and Ttoo{a) =  Ai(a) © A2 (a) for all a E A. Moreover, {A, N, 7t„ : A —> A„) is 

a continuous C*-bundle since the sequences (a„) converge in norm.

Given a C*-algebra A, it is natural to ask how one may construct a space Y  and fibre

algebras Ay in such a way that (F, A,7Ty : A  Ay) is a C*-bundle. Of course, taking 

Y  =  {y} to be a one-point space and ny : A  Ay = A  the identity ^-homomorphism 

gives a continuous C*-bundle decomposition of A  in a trivial way.

At the other extreme, if Prim(A) is Hausdorff, then being also locally compact, we 

may take the identity map on Prim(yl) as a base map. It then follows tha t the triple 

(yl, Prim(yl), where 6a is the Dauns-Hofmann ^-isomorphism of (2.3.1),

is a continuous Co(Prim(A))-algebra. Thus by Proposition 2.3.3 we get a continuous 

C*-bundle (Prim(A), A, ttp : A —> A / P )  over P rim (^), and it is easily verified that the
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fibre algebras are simple C*-algebras in this case. This result was obtained originally 

by Fell in [27].

The most general decomposition Theorem of this type was given by Dauns and 

Hofmann in [21], who showed that any C*-algebra A  may be decomposed as an upper- 

semicontinuous C*-bundle over its space of Glimm ideals.

T h e o re m  2.3.6. (J. Dauns, K.H. Hofmann) Let A  be a C*-algebra. Then A is a 

Cq{Y )-algebra, and hence the section algebra of an upper-semicontinuous C*-bundle 

{Y, A ,np : A ^  Ap), where

(i) i/G lim m (^) is locally compact, Y  = Glimm(A), Ap =  A/G p and np = Qp : A  ^  

A/G p the quotient homomorphism for all p G G hnm i(^),

(a) i/G lim m (^) is not locally compact, Y  = ,5Glimm(^), and

• for p G Glimm(/1), Ap =  A/G p and np = qp : A  ^  A /G p the quotient 

*-homorphism, and

• for p G ;0Glinnn(/l)\Glinmi(yl), Ap = {0}.

If Prirn(yl) is Hausdorff, then l)eing locally compact, it is necessarily completely 

regular. Thus P rim (^) =  Glimm(yl), both as sets of ideals and topologically. In 

this case the Dauns-Hofmann bundk' associated with A  is precisely the continuous 

C*-bundle over Prim(A) obtained by Fell [27, Theorem 2.3]. More generally, Lee’s 

theorem [44, Theorem 4] implies that the Dauns-Hofmann bundle of a C*-algebra A  is 

a continuous C*-bundle if and only if the complete regularisation map is open. Note 

that if this is the case then necessarily Glimm(A) is locally compact.

E xam ple 2.3.7. Let A be the C-algebra of Example 2.1.7. Then since G lim m (^) is 

homeomorphic to N, is a C{N)-algebra by Theorem 2.3.6. The fibre algebras of the 

corresponding C*-bundle are given by An = A/2 (C) for n G N and Aqo =  C © C © C, 

where 7r„(a) =  a„ for  n G N and 7Too(a) =  Ai(a) © \ 2 {a) © ^ 3 {a) fo r  all a G A.

This bundle is upper-semicontinuous but fails to be continuous. To see this, consider 

the sequence a = {a„) with «2n =  diag(l,0) and a 2n+i =  0 for all n G N. Then clearly 

a G A, and for all 7? G N we have ||7r2n(a)|| =  ||7roo(a)|| =  1, while ||7r2n+i(o-)|| =  0 for  

all n G N. It follows that n ||7r„(a)|| is discontinuous at infinity.
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In the following example, from [21, Exam ple 9.2], we give a C*-algebra A  for which 

the local com pactness of P rim (^ ) does not pass to  Glim m(/1). In particu lar, we describe 

how (j4, G hm m (j4),/i^ ) fails to  be a C o(G lim m (yl))-algebra in this case.

E x a m p le  2 .3 .8 . Let H  be a separable infinite dimensional Hilbert space, {e„ : n  =  

1 ,2 , . . .}  a fixed orthonormal basis fo r  H , and let K { H )  denote the compact operators 

on H . The subset D{ H)  o f all compact operators that are diagonal with respect to the 

basis {e„} is a C*-subalgebra o f K { H ) .  Let

A  = { F e  C ( [ - l ,  1], K { H ) )  : F{t )  G D{ H)  f or  all t > 0 } .

With pointwise operations and norm  ||F || =  sup{||F (<)|| : t G [—1,1]}, A is a C*-

algebra. Each element F  o f A  is given by an infinite m atrix o f continuous functions

F ij  : [—1,1] —> C, such that

=  Y^{Fi,j{t)ei : i =  1, 2 , . . . } .

The set Prim (A ) consists o f the ideals

P{t)  =  { F e A : F { t )  = 0} f o r t < 0

F{t ,  n)  =  { F  ^  A  •. Fn^n[t) =  0} fo r  i >  0, n  e  N

The topology on Prim (A ) is as follows:

•  For t < 0, a neighbourhood basis fo r  P{t )  is given by the sets

N{ t , e )  := {P{q) ■■ q < 0, \q — t\ < e} , 0  < e < |t|

•  For t = 0 and n  G N, P (0 , n) has a neighbourhood basis o f sets

M (0 ,n ,e )  :=  {P(g) : —e <  g <  0} U {F{q , n)  : 0 < q < e} , 0  < e < 1

•  For t > 0 and  n  G N, a neighbourhood basis fo r  F{t ,  n)  is given by the sets

M { t , n , £ )  :=  {P{q , n)  : q > 0, \q — t\ < e } , 0  < £ < t
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For each n  let 1„ = [0,1] x {n}, and fo r  t G [0,1] let =  {t ,n)  G In- Then

OO

Prim(A) =  [ - l , 0 ) U ( U  ^n),
n=l

where each point 0^"  ̂ has a neighbourhood basis o f intervals (—£,0) U It is

easy to see that fo r  a pair o f points 0^"  ̂ and with n  ^  m , any open neighbourhood 

o/O^”  ̂ will intersect every open neighbourhood in the subset [—1,0).

The complete regularisation map p : Prim(74) —> Glim m(A) fixes the sets [—1,0) 

and (0^’̂ \ 1̂ ” ]̂ fo r  all n. The set {0^"  ̂ : n  G N} is m.apped to a single point which rue 

will denote by 0 fo r  convenience. Hence

OO

G lim m (^) =  [-1 ,0 ] U | J ( 0 ( ” \ l ( " ’],
n=i

where a neighbourhood basis o f 0 is given by the sets (—<5o,0] U I J ^ j  (0^"\ <5̂” )̂ where 

0 <  <  1 fo r  all j  > 0. A ll other points o f G lim m (^) have a neighbourhood basis

consisting o f intervals. Moreover, the point 0 does not have a compact neighbourhood 

in  Glimm(yl). For a proof o f these facts, see [21, Examples 3-4 and 9.2].

Consider the *-hom om orphism  ĵ iA '■ C o(G lim m (^)) —> Z M ( A )  obtained from  the 

restriction  ° •\))' D auns-H ofm ann ^-isom orphism  and

p \  : C^(Glim m (yl)) —> C ^(Priin(yl)) the *-isom orphism  f  f  ° pA o f Theorem 2.1.4- 

Since the point 0 does not have a compact neighbourhood in  G lim m (^), it follows 

that every f  G Co(Glinini(yl)) satisfies /(O) =  0. Hence fo r  a lia  £ A  and P  G hull(Go),

M f ) a  + P =  { fopA) {P)  ( a + P )  = 0,

by (2.3.1). In  particular, /i^(C o(G lim in(A ))) • A  C Go, a proper ideal o f A , so that the 

triple (>1, G Iim ni(j4),/i^) fails to be a Co(GUmm(A)')-algebra.

Rem ark  2.3.9. O ur definition of a G o(X )-algebra (Definition 2.3.1) requires th a t X  be 

a locally com pact Hausciorff space. W hile the space Glimm(i4) of E xam ple 2.3.8 fails to  

be locally com pact, it is necessarily true  th a t the  non-unital com m utative C*-algebra 

C o(G lim m (^)) m ay be identified with Cq{ X)  for some locally com pact, non-com pact 

Hausdorff space X  (where X  is the m axim al ideal space of Go(G lim m (A))). It is easily 

seen th a t  X  is hom eom orphic to  the subspace G lim m (j4)\{0} of G limm(j4) in this case, 

bu t th a t we still have î a {Co{X) )  ■ A  C Go, so th a t  A  fails to  be a G o(X )-algebra with 

respect to  th is construction.
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If A  is unital, then since Prim(>l) is compact, the same is true for Glimm(yl), and 

so the pathology of Example 2.3.8 cannot occur.

Definition 2.3.10. A C*-algebra A  is called quasi-central if P  2  for ^  ^

Prim(>l).

Clearly every unital C*-algebra A  is quasi-central, since the unit of A  belongs to 

Z{A).  Moreover, when is a quasi-central C*-algebra, Glimm(yl) is necessarily locally 

compact. This fact is well known, we give a proof in Proposition 2.3.11 below for 

completeness.

Proposition  2.3.11. Let A  be a quasi-central C*-algebra, and denote by 9a '■ 

C^(Prim(yl)) —̂ Z M { A )  the Dauns-Hofmann *-isomorphism and by p \  : C*(Glimm(yl)) 

C*’(P rim (^)) the *-isomorphism induced by the complete regularisation map pA '■ 

Prim(v4) —> Glimm(A). Then Glimm(yl) is locally compact, and the restriction of the 

mapping 9a o p*̂  to Co(Glimm(yi)) is a ^-isomorphism  o/Co(Glinnn(yl)) onto Z(A) .

Proof. Let p  G Glimm(yl) and denote b y  Gp the corresponding Glimm ideal of A. Then 

since Z{A)  ^  Gp there is some z e  Z{A)  with ||z-|-G p|| =  1. Since Z{A)  C ZM{A) ,  

there is f z  G C*’(Glimm(yl)) such that 9a ° PaHz) = z.

For any P  G Prim(A) and a & A,  (2.3.1) ensures tha t

{z + P){a + P)  = f , ipAiP) ){a  + P).

Since z P  E. Z { A / P )  it follows that

\\z + p\\ = \ f M P ) ) \

for a ll P  G Prim(.4).

Now, since z G A,  the set

K  := {P G Prim(yl) ; | | 2  +  F || >  ^}

=  { P e  Prim(A) : \ f ,{pA{P))\  >

is compact by [24, Proposition 3.3.7]. Moreover, it is easily seen th a t Pa [K)  = {q & 

Glimm(yl) : \fz{(})\ >  5 }, which is again compact. Since
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and fz is continuous on Glinnii(.4), it follows that Pa {K) is a compact neighbourhood 

of p in Ghmm(^). Hence Ghmni(yl) is locally compact.

It is shown in [22, Proposition 1] that for a quasi-central C*-algebra A,

^/l(C'o(Prim(j4))) = Z{A).  We will show that p \  maps Co(Glimm(A)) onto 

Co(Prim(j4)), from which the second assertion will follow.

Let /  G Co(Prim(A)), then there is e  C^(Glimm(y4)) with =  / .  For any

£ > 0, the set

K,  := {P e Prim(A) : |/ (P ) | > e} 

is compact. Moreover, its image under is compact and is precisely the set

PAil^e) = {p S Glimm(A) ; 1/(P)| > e for all P  G hull(Gp)}

=  {p G GHmm(yl) : |/^(p)| > e}.

It follows that fP G C'o(Glimm(^l)). Thus we have shown that p^(Co(Ghmm(A))) D 

Co(Prim(A)).

Since Z{A)  is an ideal of ZM{A),  the identifications

0^(Co(Prim(^))) = Z{A)  C (04 o p:i)(Co(Glimm(^))) C ZM{A)

ensure that (Co(rrini(yl))) is a closed ideal of Co(Glimm(A)). If this inclusion

were strict, it would follow that there exists a nonempty closed subset F  C Glimm(>l) 

with the property that

(;9:i)-i(Co(Prim(^))) =  { /  G Co(Glimm(A)) : / |^  =  0}.

Take 2 G Z{A)  and again denote by G Co(Glimrn(yl)) the unique function with 

{9a ° P*A){fz) = z. Then for any P  G Prim (^) with Pa{P) G F  and any a G A, we 
would have

(z + P )(a + P) =  {eAop\ ){ f , ){a + P)

= MpA{P)){a + P)

= 0 + P.

In particular, z ^  P  for all such P,  so that P  2  Z{A),  a contradiction. □

The following Theorem identifies when a subalgebra of a Co(X)-algebra can be 

identified with a subbundle of the associated upper-semicontinuous C*-bundle.
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T h e o re m  2 .3 .12 . Let be a Co{X)-algebra, and l : A  ^  B  a *-

monomorphism with the property that G i{A) for all a G A and f  E Cq{X).

Then

(i) There is a *-homomorphism '■ Cq{X)  —> Z M [ A )  with the property that

i(/M (/)a ) =  (2.3.3)

Hence (A, X ,/ i^ )  is a Cq{ X ) -algebra, and i is a Co{X)-module map,

(a) For X £ X  we let = I^a H I  £ Cq{X)  : f { x )  = 0} )^  and

Jx =  IJ-b U I  G Co{X)  : f { x )  = 0})B.  Then we have i{Ix) =  H l[A),

(Hi) I f  B  is a continuous Co{X)-algebra then so is A.

Proof, (i) Denote by C  the C*-subaIgebra of M{ B)  generated by l[A) and i.ib{Cq{X)). 

Since t(A) is closed under multiphcation by ^ b {Cq{X))  by assumption, l{A) is a closed 

two-sided ideal of C.  Then by [20, Proposition 3.7(i)], there is a =t=-hoinomorphism 

a : C ^  M{ A)  extending on i{A).  Moreover, for /  G Cq{X)  and a G A,  we have

(<7 o ^i B) i f )a =  CT(^s( / ) i (a ) )  =  a{L{a)^iB{f))  =  a { a  o ^ b ) ( / ) ,

since a o t  is the identity on A. As in [45, (3.1)], we see tha t (ao^B)(C'o(X))  C ZM{A) .  

Thus we get a =(=-homomorphism iia =  cr o fiB : Co(X) —̂ Z M { A ) .  To see tha t is 

non-degenerate, let {f \ )  be an approximate identity for Cq{X).  Then since /jb is non

degenerate, l-iB{f\)b b for all b E B. In particular, for all a G A we have

IJ‘A { f x ) a  =  a { ^ i B { f \ ) i { a ) )  a { i { a ) )  =  a ,

which shows tha t i ia{Cq{X))A is dense in A.  By the Cohen-Hewitt factorisation The

orem, ^a{Cq{X) )A  =  A.

To see th a t (2.3.3) holds, note th a t for /  G Co(X)  and a E A,  we have

i { H A { f ) a )  =  i { { a o  i i b ) U ) o)

=  « . ( cr ( /X B ( / ) / , ( a ) ) )

=  H B { f ) i { a )

Thus { A , X , ijLa ) has the required properties.
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(ii) T he inclusion i,{Ix) C n  l{A) follows from (2.3.3). Now let a G n  i {A)  and 

e >  0. By npper-sem icontinuity there is a neighbourhood U of x in X , w ith com pact 

closure U,  such th a t ||i(a) +  Jy\\ <  e for all y €  U.  Choose a continuous /  : X  ^  [0,1] 

such th a t f { x )  =  1 and f { X \ U )  =  0, then  /  G C q{X)  since U is com pact. T hen

(1 -  /M(/))a +  Ix =  { a -  f { x) a)  +  4  =  0 +  4 ,

so tha t (1 -  € Ix-

Now we have

11(1 -  i iA{f))a -  all =  \\^^A{f)a\\ = \\a{nB{f)i{a))\\ = | | / t s ( / ) i ( a ) | | , 

since a  is injective on l{A). Moreover,

ll/is(/)i(a)ll =  sup ||/iB (/)t(a) +  Jyll =  sup ||/(y )(t(a )  +  Jj/)|| 
yex yex

= s u p |/(y ) | ||i(a) +  Jyll 
yeu

<  s u p  | | t ( a )  +  JyII <  £■ 
yeu

Combining these facts, wo see that

I l «  +  4 | |  <  1 1 ( 1  - / M ( / ) ) a - a | |  =  l l / i B ( / ) ^ ( o ) l l  <  £ •

Since e >  0 was arbitrary and Ix closed, a £ Ix-

(iii) By [24, Corollary 1.8.4] and by part (ii) we may identify

A = ^  = '-(^) + Jx ^ ^
Ix (̂ Îx) Jx ^  Jx Jx

Hence for a G and x E X ,  ||a +  /x|| =  lk(®) +  ^ îll- Since norm functions of elements 

of B  are continuous on X ,  the same is true for A.  □



Chapter 3

Multipliers of (7o(X)-algebras

In this diapter, we consider the problem of obtaining a C*-bundle decomposition of 

the multipher algebra M{A)  of a C*-bundle { X , A , ttx : A Ax)- Central to this is 

the notion of the ‘strict topology’ on M{A),  and how it relates to the embedding of 

Prim(yl) as an open subset of Prim(M(y4)).

We examine two different approaches to obtaining such a bundle representation 

of M{A)  over p X ,  the Stone-Cech compactification of X.  The first approach (Theo

rem 3.1.6) depends on extending each *-homomorphisms ttx '■ A ^  Ax to a (strictly 

continuous) *-homomorphisms nx : M{A)  —> M{Ax)-  Indeed, this may be interpreted 

as a generalisation of a theorem of Akemann, Pedersen and Tomiyama [1, Theorem 

3.3].

In the case that the bundle [X^A^-Kx '■ A Ax) arises from a Co(X)-algebra 

{A,X,y.A),  then Archbold and Somerset have shown in [8] how M{A)  carries naturally 

the structure of a C(/3X)-algebra. It follows that M{A)  may be decomposed as an 

upper-semicontinuous C*-bundle over P X .

A natural question that arises from these constructions is that of determining when 

these bundle decompositions of M{A)  agree. The final two sections of this chapter are 

dedicated to the study of this question. We give a partial characterisation of those 

C*-algebras for which this occurs in Section 3.4.

W'̂ e remark that some of the main results of Section 3.4 were obtained indepen

dently by Archbold and Somerset, and have been published in [11]. In particular,

26
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Corollary 3.3.6 corresponds to [11, Proposition 2.6(i) and (iii)], and Corollary 3.4.7 

to [11, Corollary 4.3]. Stronger versions of Corollary 3.4.8 and Theorem 3.4.10 were 

also given in [11, Corollary 4.4] and [11, Theorem 4.6] respectively. The results of 

Theorems 3.1.6 and 3.4.6, and Corollary 3.1.9, are new.

3.1 The strict topology on M{A)

Definition 3.1.1. Let A  be a C*-algebra. The strict topology on M{A)  is the locally 

convex topology generated by the seminorms

{b ||a^|l, b i-> ||6a|j : a ^  A}.

If A  is unital then M{A)  = A  and the strict topology is equal to the norm topology. 

In general, M{A)  is the strict completion of A  [20, Proposition 3.5 and 3.6].

N ota tion  3.1.2. For a subset S  C M{A)  we ivill denote by S  its closure in the strict 

topology on M{A) .

Proposition  3.1.3. ([20, Proposition 3.8] and [8, Proposition l .l( i)] )  Let A and B  be 

C*-algebras and n : A ^  B  a *-homomorphism. Then n extends uniquely to a strictly 

continuous *-homomorphism tt : M{A)  —> M{tt{A))  defined via

7r(m)7r(a) =  ■n{ma) and 7r(a)n(m) =  7r(am)

fo r  all a £ A and rn e  M{A) .  Moreover, the kernel of n satisfies

ker^  =  (ker(Ti'))'" =  {6 e  M{A)  : bA Ab C ker(Tr)}.

Note tha t Proposition 3.1.3 allows us to identify the strict closure in M{ A)  of an

ideal J  of A.  Indeed, letting tt \ A ^  A / J  he the quotient ̂ -homomorphism, its

extension th : M{ A)  M { A / J )  has kernel

j  = { b e  M{A)  :bA + A b c  J}.  (3.1.1)

Proposition  3.1.4. Let A  be a C*-algebra.

(i) I f  P  E Prim(yl) then P  G Prim(A/(yl)), and P  is the unique primitive ideal of 

M{A)  whose intersection with A is P.
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(a) The map Prim(v4) P rim (A /(v4)), P  P  is a homeomorphism o /P rim (y l)  onto 

the dense open subspace

{Q e P n m { M { A ) )  : Q 2  A }

of P r im {M {A ) ) .

Proof, (i): By [24, Proposition 2.11.2(ii)] there is a unique Q € P r im (A /(^ ) )  w ith  

Q n  A =  P.  The fact th a t Q =  P  is shown in [20, Lemma 6.1]. ( ii): Is shown in  [20, 

Proposition 6.2], □

Remark 3.1.5. In  the com m utative case, the embedding map o f P roposition 3.1.4(ii) is 

weU understood. Indeed, let B  be a non-unita l com m utative C*-algebra. Then by the 

Gelfand-Naimark Theorem, B  =  Cq{ X )  where X  is a locally compact, non-compact 

Hausdorff space. Then M { B )  =  C \ X )  =  C { ^ X ) .  For x ^  X ,  let =  { /  e 

Co{X)  : f [ x )  =  0 }, and for x  G ^ X ,  let =  { /  e C \ ^ X )  : / ( x )  =  0}. Then 

P rim (B ) =  { M ^ : x e X }  =  X  and P r im (M (5 ) )  =  { K P  : x  e ^ X ]  =  ^ X .  P r im (5 )  

is embedded in P r im (A f(5 ) )  v ia  M ^ { x  E X ) ,  and it  is easily seen tha t for each

X  £ X , is the ideal M x  o f Proposition 3.1.3.

Theorem  3.1.6. Let { X , A , t t x  ■ A  —> Ax) be a C*-bundle. For x  E X  set M x  =  

%x{M{A)) ,  and f o r  q G I 3 X \ X  let Mq =  {0 } and let nq be the zero * -homomorphism.  

Then the triple {I3X, M { A ) , t t x  : M { A )  -> Mx) is a (T-bundle. I f  in addit ion A is 

a-unital ,  then Mx  =  M { A x )  f o r  all  x  Q. X .

Proof. We show tha t conditions (i) and (ii) o f D efin ition  2.2.7 are satisfied. To see tha t 

r i i e / S A ' =  {0 }, let m G M { A )  and suppose th a t m  G ker(^x)- Then for

all X G X  and a e A  we have

TTx{m)-Kx{a) =  7Tx(ma) =  0 and 7Tx(a)#j(m) =  TTx{am) =  0.

I t  follows tha t m a ,a m  G ker(7Tx) for aU x  E X .  Since [ X , A , ttx '■ A  —> Ax)  is a 

C*-bundle, th is implies th a t ma  =  am  =  0 for all a G A, so tha t m  =  0.

To see tha t condition (ii) is satisfied, we firs t note th a t by Proposition 2.3.3(ii) there 

is a ^-homomorphism '■ C'o(-^) Z M { A )  such tha t ^A{ f )< i  =  /  -a for all /  G Co{X)  

and a E A. By Proposition 3.1.3, extends to  a s tr ic tly  continuous ^-homomorphism 

f i A  ■ M { C q { X ) )  =  C { P X )  -> Z M { A ) .  For g G C { P X )  and m  G M { A ) ,  define g ■ m  to 

be fLA{g)m.
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We claim that nq{g ■ m) =  g{q)^q{m) for all g G C { p X ) ,m  G M {A )  and q G (SX.

Note that i f  ^ G P X \ X  there is nothing to prove. Let x E X  and a G A, and note

that a factorises as a =  /  ■ 6 for some /  G Cq{X)  and b £ A hy the Cohen-Hewitt

factorisation theorem [25, Theorem 16.1]. Then since

{g • m ) ( /  • b) =  f iA{g)mnA{f)b =  ^y i(g/)(m 5) =  {gf )  ■ {mb),

we have

fcxig ■ rn)'n;^{a) =  Tt^{g ■ m)-KxU ■ b) =  nx{{gf) ■ {mb))

=  {gf){x)-nx{mb)

=  9 {x)f{x)TTx{m)TTx{b)

=  g{x)nx{m)TTx{f ■ b)

=  g { x ) n x { m ) T T x { a )

for all X G X . Thus for all a £ A, x E X,  we have

{^x{g ■ m) -  g{x)TTx{m)) ^^{a) =  0.

Since Ax is an essential ideal of [8, Proposition 1.1 (ii) and (v)], it  follows that

^x{g ■ m) =  g{x)nx{m)

for all X G X , so condition (ii) follows.

Finally, if  A  is cr-unital then the *-homomorphisms nx ■ M {A )  —> M {A x )  are

necessarily surjective by [49, Theorem 10]. □

Remark 3.1.7. Note that if  (A", A,-nx '■ A ^  Ax) is a C*-bundle and x G A" is such that 

Ax =  {0 }, then tt^ is the zero *-homomorphism, and hence Mx =  nx{M{A))  =  {0} 

also.

Theorem 3.1.6 makes no reference to continuity of the bundles under consideration. 

The following example shows that when (X , j4, 7r„ : A  —> An) is a continuous C*-bundle, 

{/3X, M { A ) , tTx : M {A )  —> Mx) may fail to be continuous.

Exam ple 3.1.8. Let H  be a separable infinite dimensional Hilbert space and A  =  

C{N, K { H ) ) ,  regarded as a C*-bundle (N, 7t„ : A  —> A^) where An =  K { H )  and

TTn ■ A ^  An the evaluation mappings fo r  all n G N. Then M { A )  =  C{N, B{H)g*),

where B{H)s* denotes B {H )  with the strong-* topology [1, Corollary 3.5].
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In the C*-bundle {N, M {A ),nn  : M {A ) Mn), we have Mn =  B [H ) and the

and let p„ he the projection onto the one-dimensional subspace corresponding to e„ for  

all n  G N. Setting

M{An))  is not an upper-semicontinuous C*-bundle.

The C*-bundle {N, M{A) , nn  ■ M[A)  —> M{A)n)  of Example 3.1.8 is in fact lower- 

semicontiniious. This is a special case of Corollary 3.L9 below.

C o ro lla ry  3 .1.9. Let (X,j4, tTx : A  —> Ax) be a lower-semicontinuous C*-bundle. Then 

the bundle {M{A),  p X , n x  ■ M{A)  —> Mx) of Theorem 3.1.6 is lower-semicontinuous.

Proof. We remark tha t for a C*-algebra B  and m G A /(5 ), it always holds tha t 

||m|| =  sup{||6m|| \ b £ B, ||6|| <  1} =  sup{||m6|| : b e  B, ||5|| <  1}, 

see [20, §2],

Now let { X , A , nx  ■ A Ax)  be a lower-semicontinuous C*-bundle and take m G 

M{A).  Denote by N{m)  : (3X —> R+ the function N{m){x)  =  ||7Ta;(m)||, and note that 

for all a G A and x & X  we have N{a){x)  = | |7 r x (a ) | |  since tTx extends tt̂ .

We first show that N{m)  is lower semicontinuous on X .  Note tha t for all x  G X ,  

^  (^x) and so

since maps the unit ball of A  onto the unit ball of Ax.  It follows tha t the norm 

function N[m)  restricted to X  is the pointwise supremum of the collection [N{ma)  : 

a £ A,  ||a|| <  1}, which are lower-semicontinuous on X  since ma  G A  for all a E. A.  It 

follows that N{m)  is lower-semicontinuous on X  [19, Theorem IV.6.2.4].

maps TTn are again the evaluation mappings for all n  G N. To see that {N, M{ A) , nn  ■ 

M[A)  Mn) is not a continuous C-bundle, let {e„} be an orthonormal basis for H

n G N

n =  oo

then f  is strong-*-continuous from  N —> B{H) ,  hence f  G M[A) .  But the norm  

function of f  fails to be upper-semicontinuous at oo, hence (N, M(yl),7r„ : M{A)  —>

) l i sup{||7rx(m)6|| : b e  Ax,  ||6|| <  1}

sup{||7t-i(m)7ri(a)|| : a e  A,  ||7ra;(a)|| <  1}

sup{||7r2;(ma)|| : a e  A,  ||a|| <  1},
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If X e  P X \ X ,  then N{m){x)  =  0, hence N{m)  is trivially lower-semicontimious at 

these points. The fact that the sets {x  G (3X : N{m){x)  > e)  have compact closure in 

I3X for all m  G M{ A) , s  >  0 is innnediate from the fact tha t ^ X  itself is compact. □

Remark 3.L10. We now describe how Proposition 3.1.4 allows us to construct 

Glimm(M(v4)) in terms of Glimm (^) (as a topological space). By applying the Dauns- 

Hofrnann isomorphism to M{A) ,  we get a ^-isomorphism • C'(Prim(A/(yl))) —)•

ZM{ A) ,  again satisfying

+ Q = f {Q)  {m + Q) ,

for /  e  C (Prirn(A /(A ))),m  e  M{ A) , Q  G Prim(A'/(yl)). Thus C*(Prim(A)) and 

C(Prim (A/(yl))) are ^-isomorphic, and it follows tha t their structure spaces are home- 

omorphic. Together with the imiversal properties of the complete regularisation and 

Stone-Cech compactification, there is a commutative diagram of ^-isomorphisms:

C''(Prini(A)) 

p 'a

C''(Glinmi(vA))

h n A ) ° ^ A

Z M{ A )

C (Prim (A /(^)))

C(^Glimm(A)) ^ ------------------------ C(Glimm(A/(A)))

Since Prim(A/(v4)) is compact, the same is true of Glimm(A'/(A)), and thus the 

^-isomorphism C(Glimm(A/(yl)) —> C’(/3Glimm(^)) is dual to a homeomorphism l : 

/3Glimm(^) —> Glinim(A/(yl)). Moreover, it is shown in [8, Proposition 4.7] that the 

map i satisfies Pm [a ){P) = Pa {P) for all P  G Prim(74). In particular the diagram

Prim (/1) Prim(A/(A))

PA

Glimm(i4)

/SGlimm(y4)

Ph!(A)

Glimni(A</'(A))

commutes. The advantage of this fact is that, as a topological space, Glimm(A/(A)) 

depends only on the topological space G linnn(^) (which in turn  is defined uniquely by 

Prim(y4)), and may thus be constructed without knowledge of Prim(A/(y4))\Prim(yl).
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3.2 The C(;0X)-algebra associated w ith  the m ultipher al

gebra of a Co(X)-algebra

In this section we describe how the multipher algebra of a Co(X)-algebra A may be 

regarded as a C(,0X)-algebra in a natural way. This may be regarded as the C o(^)- 

algebraic analogue of Theorem 3.1.6, although the upper-semicontinuous C*-bundle 

over defined by the C(/3X)-algebra structure on M{A)  over P X  (via Proposi

tion 2.3.3) does not agree in general with that of Theorem 3.1.6.

If {A, X ,  1.1a) is a Co(X)-algebra with structure map (pA '■ P rim (^) —> A", then as 

in the proof of Theorem 3.1.6 we get a ^-homomorphism fiA ■ C{/3X) ZM {A) .  

This construction gives M{A)  the structure of a C(^A')-algebra, whose properties we 

describe in the following proposition.

Proposition  3.2.1. [8, Proposition 1.2] Let { A , X , i j . a )  be a Co{X)-algebra with base 

map HA and structure map (f>A- Then setting fiM[A)i f)  =  ^ /i ( /  ° 4>a ) for f  £ C{PX) ,  

the triple {M{A),  PX,  ® C{^X)-algebra. Moreover, we have the following

properties:

(i) for  f  e Co { X ) ,  ^iM{A){f) = ^^Aif),

(ii) =  1a/(4)>

(iii) Denoting by 4>m(a) ■ Prim(M(>l)) —>■ /3A the base map associated with i.im(^a)j 

have <I)M{A)[P) =  4>a { P )  for all P  G Prim(>l).

Remark 3.2.2. It is not immediately evident th a t the ^-homomorphism ĵ-m (A) ■ 

C( PX)  —> Z M{ A )  of Proposition 3.2.1 agrees with the strictly continuous extension 

fiA ■ C{PX)  Z M{ A )  of fiA from Proposition 3.1.3. Indeed, for g G C{PX) ,  fiAig) is 

defined by the action

i^A[g)l^AU) =  l^A[gf)  for all /  G Co{X).

But then for any such / ,  we have

I ^ Mi A ) { 9 ) l ^ A { f )  =  e A { { g \ x ) ° 4 > A ) 0 A { f o ( p A )

=  & A { { g f ) o < p A )

= i- Â{gf),

so that necessarily fiM{A){g) =  P-Aig) for all g G C{(3X).
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R eturn ing  to  the case of a Cq(A")-algebra [ A . X ^ ^ a ] and the C (/3X )-algebra 

( A / ( y 4 ) , / 3 A , w c  now describe the relationship between their associated (upper-

sem icontinuous) C*-binidles. By analogy w ith th e  ideals of A  defined in (2.3.2), we

define for y  G j3X the ideals Hy  of M { A )  via

Hy = f i M i A ) { { f ^ C { l 3 X : f { y )  = Q} ) M{ A)  (3.2.1)

=  f |  { g  G P n m { M { A ) )  : <^m(A)(Q) =  v} ■ (3-2.2)

We rem ark th a t for x  & X ,  the quotient m orphism  \ A  A / J x  gives rise to  a

stric tly  continuous ^-homomorphism ijx '■ M { A )  M { A / J x ) ,  whose kernel is the  ideal 

Jx of (3.1.1). Thus we m ay identify M { A ) / J x  canonically w ith qx{M[A))  C M { A / J x )  

and w rite M { A ) / J x  C M[A/Jx)-,  with equality holding whenever A  is cr-unital, as in 

Theorem  3.1.6.

One m ight expect th a t for x  € X  the ideals Hx  and Jx are equal; however, this is 

not tru e  in general. The following proposition lists some of the  known relations between 

the ideals Jx, Hx and Jx-

P roposition  3 .2.3. [8, Proposition 1.3] Let {A,X, i . i a)  be a Cq{X)-algebra. Then for  

each X e  A  the ideals Jx, Hx and Jx satisfy the following relations:

(i) Jx — Hx  ^  Jx^

(it) Hx^] A  = J x ^  A  = Jx, and

(Hi) Jx =  Hx i f  and only i f  Hx is strictly closed in M { A ) .

W ith  { A , X , ij,a ) a C o(A )-algebra and {M {A) ,  P X ,  the  C (^X )-a lg eb ra  of

P roposition  3.2.1, we get upper-sem icontinuous C*-bundles over X  and /3X  respectively 

by Proposition  2.3.3(i). T he following theorem  describes the  relationship between the 

two, and in particu lar, we com pare the bundle associated w ith {M{A) ,  P X ,  and

the bundle { P X , M { A ) , ^ x  '■ M { A )  —> Mx)  of Theorem  3.1.6.

T heorem  3.2.4. Let { A , X , i i a )  be a Co{X)-algebra and {M{A),pX,iii^ji^A))  

C{PX)-algebra of  Proposition 3.2. L  Denote by {X,  A,-Kx : A  ^  Ax) a n d { ( 3 X , M { A ) , a y  : 

M { A )  — > M { A ) y )  the upper-semicontinuous C*-bundles o f  Proposition 2.3.3(i) associ

ated with { A , X , i i a )  and { M { A ) ,  P X ,  fij^^^A)) respectively. Then { X , A , iTx : A  —> A x )  

and { j 3 X , M { A ) , U y  : M { A )  ^  M [ A ) y )  satisfy the following relations:
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(i) The fibre algebras of {/5X, M { A ) , a y  : M ( A )  M { A ) y )  are given by M { A ) y  =  

M { A ) / H y  and the *-homomorphisms ay : M [ A )  M { A ) y  are the quotient *- 

homomorphisms for all y G (3X.

(ii) Extend { X , A , - K x  '■ ^  > ^x) io a bundle { ( 3 X , A , 7 T y  : A  A y ) ,  where for y G 

I 3 X \ X , we set A y  = 0 and let n y  : A  ^  A y  be the zero ^-homomorphism. Then 

i P X , A , T : y  : A  ^  A y )  is a subbundle o f { p X , M { A ) , ( j y  ; M { A )  M { A ) y ) .

(Hi) For X G X , Ax is an essential ideal o f M{A)x  i f  and only if  Hx is strictly closed 

in M[A) .  Hence we may regard M{A)x  Q M{Ax)  i f  and only i f  Hx is strictly 

closed in M{A) .

If  in addition A is a-unital, then assertion (Hi) becomes

(Hi)’ fo r  X & X  we may make the identification M{A)x  =  M[Ax)  if  and only i f  Hx is 

strictly closed in M{A) .

Proof. Assertion (i) follows from the fact that (A/(>4), is a C(/9X)-algebra,

and the construction of the upper-semicontinuous C*-bundle { P X , M { A ) , a y  : M[ A )  —> 

M{ A) y )  in Proposition 2.3.3(i).

By construction, the image of Ma/(.4) is contained in Z M { A ) ,  and thus we have 

I^M{A){C{PX)) ■ A Q A.  Assertion (ii) then follows from Theorem 2.3.12.

Since for each x G X  we have Hx C\ A  = Jx A — Jx hy Proposition 3.2.3(ii), [24,

Proposition 1.8.4] shows tha t we may identify

A _  A + Jx ^ M{A)

Jx Jx

and
^  ^  A + Hx ^ M{A)
Jx Hx Hx

Thus by [20, Proposition 3.7], we get *-homomorphisms

M{A)  ^ ^ . A .  ^ M{A)  ^ ^ . A .
a : — ------ > M ( — ) and tt :  > M{ —  ),

^X J x

extending the identity on the (copies of ) A / J x  in each case. Moreover, since by [8, 

Proposition l.l(v )], is an essential ideal of ^  jg injective.
J x  ^  J x

Since by Proposition 3.2.3 we have Hx  C Jx,  it follows tha t there is a surjective 

^-homomorphism r  : M d l  Together with the fact tha t t t  and a extend the
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identity on we thus get a commutative diagram

M{ A )  T M { A )  
Jx

Thus a  is injective if and only if r  is, i.e. if and only if Hx = Jx- This occurs if and only 

if Hx  is strictly closed in M{A)  by Proposition 3.2.3(iii). Again, using [20, Proposition 

3.7], we see th a t a  is injective if and only if A / J x  is an essential ideal of M{ A ) / Hx

If A  is CT-unital then the canonical mapping cjx ■ M{A)  —> M { A / J x )  is necessarily 

surjective [49, Theorem 10], so tha t (iii)’ follows. □

One might expect that in well-behaved cases, the bimdle decompositions of M{A)  

defined in Theorem 3.2.4 agrees with that of Theorem 3.1.6. This is of particular interest 

in the case tha t { A , X , ila) is a continuous Co(X)-algebra, since the former is upper- 

semicontinuous, and the latter is lower-semicontinuous by Corollary 3.1.9. However, 

we cannot expect the fibre algebras to agree at points of Im(0j\^(^))\Im((/)^).

Indeed, when x  G Im((;&;i/(^))\Im((^^), then Hx  is a proper ideal of M{A)  by Re

m ark 2.3.2. B ut since x  ^  lui(</>^), it follows th a t every Q G Prim M (A ) with Q ^  Hx 

satisfies Q D A.  In particular, Hx 2  A,  so that Hx  cannot be strictly closed since A  

is strictly dense in M{A) .  By contrast, the fibre algebras of Theorem 3.1.6 a t these 

points are {0} by definition.

The following corollary shows that for a continuous Co(-^)-algebra with

surjective base map, the assumption that Jx =  Hx for all x G X  is enough to ensure 

continuity of (A/(/l),/3A",

C o ro lla ry  3 .2 .5 . Let {A,X, f i A)  be a continuous Co{X)-algebra and {M(A) ,  PX,  

the C{PX)-algebra associated with its multiplier algebra. Suppose that the base map 

(pA '■ Prim (A) —> X  associated with { A , X , h a )  is surjective, and that Jx = Hx for all 

X  E  X . Then {AI{A), (3X, i s  a continuous C[^X)-algebra.

Proof. For all c G M{A) ,  the map x  

Corollary 3.1.9, and the map x i-> ||c-|- Hx

c Jx is lower-semicontirmous on X  by

is upper-semicontinuous on I3X by Propo

sition 2.3.3(i). Since Jx = Hx for all x  G lm(0yi) by assumption, it follows tha t x  i-> 

||c +  Hx\\ is continuous on X  for all c G M{A).  By [8, Proposition 2.8], it follows that
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X  |jc+  Hx\\ is continuous on PX,  whence the C(,0X)-algebra {M{A) ,  0 X ,  is

continuous.

□

Remark 3.2.6. Archbold and Somerset observed in [11] that for a a-unital continuous 

Co(X)-algebra {A ,X ,ij,a )  with surjective base map, the condition = Hx for all 

X  e  X  implies continuity of P X , Moreover, if A  is separable, then the

converse holds. This observation follows from comparing the results of [8, Theorem 

3.8] with those of [11, Corollary 4.7]. However, we believe the argum ent given in 

Corollary 3.2.5 sheds more light on the relation between these two notions, in particular 

regarding the different bundle representations of M{ A)  considered in Corollary 3.1.9 

and Theorem 3.2.4.

3.3 Strict closures of the ideals Hx

In this section we examine a natural question th a t arises as a consequence of The

orem 3.2.4(ii), that is, when are the ideals Jx and Hx equal. We begin with some 

general results regarding the connection between strictly closed ideals of  M{  A)  and the 

hull-kernel topology on Prim (A/(A)).

N o ta tio n  3 .3 .1 . To allow for the identification of Prim(yl) as an open subset of 

P rim (M (^)), we fix some notation in order to avoid ambiguity regarding hulls and 

kernels. We shall write hullprini(>i) (/) to denote the hull of an ideal I  o f A  in Prim(>4), 

and kA{S)  the kernel o f a subset S  C Prim(j4), Analogously we define hullprimA/(^)(*^) 

(J an ideal of M[ A ) )  and kM(A){S) (S a subset o f P n mM{ A ) ) .

T h e o re m  3.3 .2 . Let A  be a C*-algebra and let J  be a proper norm-closed two-sided 

ideal o f M{A) .  The following are equivalent:

(i) J  is strictly closed in M{A)

(ii) J  = (J  n A ) -

(Hi) hullprimA/(/l)(*/) nP rim (A ) is dense in hullpHm(A/(A))(-/)

Proof. If A  is unital then the strict topology on M{ A)  =  ^  is the norm topology and 

(i),(ii) and (iii) are trivially satisfied for any norm closed two sided ideal J  of A.  So we 

may assume that A  is non-unital.
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Note that (i) to (Hi) are satisfied if J  =  {0}. On the other hand, no proper ideal J  

of M {A)  with J  D A  can be satisfy conditions (i),(ii) or (iii). Indeed, since A  is strictly 

dense in M{A),  ii J  D A  then clearly (i) and (ii) are impossible. Moreover, identifying 

Prini(yl) = {Q E Prim (i\/(yl)) : Q 2  A) ,  hullprim(A/(4 ))(J') H Prim(yl) =  0 in this case, 

so {iii) cannot hold either. So we may assume without loss of generality tha t J  fl is 

a nonzero proper ideal of A.

{ii) => (i) is obvious. To see that {i) => {ii), note tha t by (3.1.1) it always holds that 

J  C (J  n since if x G J  then for any a & A, ax, xa & J  H A, so th a t x e  (J  fl v4)~. 

Suppose this inclusion were strict. Then there would be a net {a\) in J  Ci A  strictly 

converging to x G (J  H A)" ' \J .  Since this net is contained in J ,  J  cannot be strictly 

closed.

To see the equivalence of {ii) and {Hi), let F  =  hullpri„i(j\/(^))( J)  and Fo = F  C\ 

Prim(j4), note tha t /ci\/(/i)(F) =  J . For P  G Prim(y4), it is clear tha t P  ^  J  if and only 

if F  5  J ,  which occurs if and only if P  D J  n  >1 by (3.1.1). Hence the kernel of

F(), regarded as a subset of P rim (A /(^)), satisfies

kM iA) {Fo )  = f ] { P : P e P v h n { A ) , P D J }  

= f ] { P  : P e P n m{ A ) , P  D J n A }

=  ( . / n /!)■",

where the final equality follows from [8, Proposition l.l(iv )].

Thus if J  =  (J  n  A)~, then

c l  P r im ( A / ( > l ) ) ( - fb )  =  l l u l l p r i m ( A / ( > l ) ) ( ^ A / ( > l ) ( - P b ) )  =  l l u l l p r i n i ( i \ / ( / l ) )  (>^) =  F,
SO {ii) implies {Hi). Conversely, if cl prim{M{A)){Fo) =  F,  then

J  =  I‘̂ M{A){F)  -  fcM(yl)(cl PrimA/(/l)(-Po)) =  (-^b) =  ( J  0  A)'",

SO {Hi) implies {ii). □

E xam ple 3 .3 .3 . I f  A = Co{X) is commutative, then any ideal J  of M {A)  =  C{(3X) 

is of the form

J  = { f e C { l 3 X ) : f \ j ,  = 0}

for  some closed subset F  C p x . Thus by Theorem 3.3.2, J  is strictly closed if and only 

if  F  n  X  is dense in F.
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C o r o lla r y  3 .3 .4 . Let { A , X , ( P a ) be a Co{X)-algebra and denote by (t>M(A) '■

P rim (A /(A )) —> the unique extension of  4>a '■ Prim (yl) X ,  where we re

gard P rim (^ ) as a dense open subset  o /P r im (A /(^ )) . Then fo r  each x  G Im((/)4 ),

is s trict ly closed in M { A )  i f  and only if( j)^^{{x})  is dense in

Proof. By Theorem  3.3.2, Hx is strictly  closed in M (yl) if and only if hullprim(A/(yi)) 

Prim (A ) is dense in hullprim(A/(^))(-f^i)- B ut then

hullprim(i\/(A)) (-^ i) =

and since 4>m (A) extends (pA,

liullprim(M(^))(^x) H Prim (A ) =  n  P rim (^ ) =  4>^^{{x}),

from which the conclusion follows. □

Let /  be a norm -closed two-sided ideal o f a C*-algebra A.  T hen I  is said to  be 

modular  if the quotient C*-algebra A / 1  is unital (obviously if A  is unital th is is true 

for every proper ideal). T he relationship between m odular ideals and the topology on 

Prim(>l) has been studied in [23, Section 3], where a result sim ilar to  Lem m a 3.3.5  

below was obtained for the prim itive ideal space of the m inim al unitisation  A i  o f a 

C*-algebra A.

L e m m a  3 .3 .5 . Let A  be a C*-algebra and I  a n or m  closed, two-sided modular  ideal of  

A. Then A / I  is i somorphic to M { A ) / I ,  and we  can identify

hullprim(M (/l))(-^) ^  ^  hu llp rim (/ l)  (-^) }•

In particular,  no Q  E P rim M (A ) with Q ^  A  has Q  ^  I.

Pro of  By [24, Theorem  1.8.4], A / I  =  {A +  I ) / I ,  and by [8, Proposition L l(v ) ] ,  the  

latter is an essential ideal o f M { A ) / I .  B eing unital, they  m ust be equal.

Since P r im (A //)  =  hullprim(^)(/) and P r im (M (A ) //)  =  hullprim(M(A))(-^)> the *- 

isom orphism  A / I  =  M { A ) / I  gives rise to  a com m utative diagram  o f hom eom orphism s

P r l m ( f ) P r i m l ^ )

P ^ P / I  Q ^ Q / i

P t—^ P  ~
hullprini(^)(.^) îullprjjyj(j\/(yi)  ̂(7)
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Thus every Q e  satisfies Q =  F  for some P  £ hullpri„i(4 ) ( /) .  In

particular we may regard luillprim(j\/(^))(-^) ^  Prim(>l), so that there is no Q  €  

Prim (A /(^))\P rim (yi) with Q D / .  □

Part (i) of Corollary 3.3.6 below was shown in [8, Proposition 2.2].

C o ro lla ry  3 .3 .6 . Let {A ,X ,f iA)  be a Co{X)-algebra with base map (j>A o,nd structure 

map fiA, and let x  G Ini^.

(i) If fiA{Co{X)) r \A<^Jx ,  then Jx is a modular ideal of A and Hx is strictly closed 

in M {A ).

(a) If i i a {Co{X ))  r\ A Q Jx and Jx is a modular ideal of A, then Hx is not strictly 

closed in M{ A) .

Proof. As in the remark preceding the corollary, part (i) was shown in [8, Proposition 

2 .2],

To prove (ii), note that since Jx is modular, (p^^{x) is closed in PrimA/(yl) by 

Lennna 3.3.5. Then together with Corollary 3.3.4, we see that Hx is strictly closed 

in M{ A )  iff Since is contained in Priin(^), it follows

that Hx will be strictly closed if and only if no i? e  Prim (A /(^)) with R D A has 

4’aj{A){^) =  But then [8, Lemma 2.1] shows that since /i^ (C o(X )) fl A C Jx, there 

is some R  G Prim (A/(A)) such that R D A and 4>m[a){R) — Thus Hx is not strictly 

closed in M[ A) .

□

C o ro lla ry  3 .3 .7 . Let A  be a quasi-central C*-algebra and denote by {A, Glimm(A), /i^) 

the Co{G\imm{A))-algebra associated with the Dauns-Hofmann representation of A. 

Then Hp is strictly closed in M{ A)  for  all p  G Glimm(74).

Proof. Since A  is quasi-central, G limm(^) is locally compact and /i^(C o(G linnn(^))) =  

Z{ A)  by Proposition 2.3.11. Since no P  G Prim(yl) contains Z{ A) ,  it follows that 

Z{ A)  % Gp for a llp  G Glimm(>l). In particular, {p  G G lim m (^) : /i^ (C o(G hm m (^)))n  

A % Gp)  =  Glimm(A), so that Hp is strictly closed in M{ A )  for all p  G G lim m (^) by 

Corollary 3.3.6(i). □

E x a m p le  3 .3 .8 . Let A  C C^(N, A/2 (C)) be the C"-subalgebra of sequences x =  (x„) 

such that Xn —> diag(A(x),0) for some complex scalar A(x). Then A is a continuous
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C{N)-algebra, where fo r  f  G C (N ), =  / ( n ) l 2 x2 fo r  all n £ N. For all n  E N,

the ideals Jn satisfy  =  {x =  {xm) & A  : Xn = 0}.

M{ A )  may be identified with those sequences y  =  {y„) G C^(N, A/2 (C)) such that

(i) 0 and yn'^^ -> 0,

(ii) yn'^'’ Ai(y) and

(Hi) the sequence {y^'^'^)n>no bounded,

see e.g. [4, Example 4-5].

Note that fo r  all n G N, A /  Jn is unital, and the set

{ n e N : ^ i A { C { N ) ) n A ^ J n }

is identified with N. In  particular we have =  Hn fo r  all n  G N, while J^o 2  -^oo by 

Corollary 3.3.6.

In fact, it is straightforward to verify that we have J„  =  {y G M { A )  : =  0}

fo r  all n G N, while = {y E M { A )  : —> 0}. Thus M{ A) / J ao  =  C  while

M { A ) / H ^  = C ( B i ‘̂ / c o .

We rem ark th a t the  C*-algebra A  of Exam ple 3.3.8 shows th a t  th e  question of 

w hether or not Hx is s tric tly  closed in M (yl) is not determ ined by the  base m ap 

(j)A : Prini(yl) —> X  alone in general. To see this, let B  = C (N ), regarded as a  C(N )- 

algebra in the obvious way. T hen  P rim (A ) is hom eom orphic to  P rim (i?) =  N, and thus 

we m ay identify the base m aps (pA and  (j>B, being the  identity  m ap in each case. Since 

M { B )  = B,  it follows th a t Hn — Jn = Jn for all n  G N (these are the  m axim al ideals 

of C (N )), and in particu lar H^o is s tric tly  closed in M{ B ) .

3.4 Strict closures and spectral synthesis

We now give an account of how the  question ‘when is Hx  =  J x ’ m ay in terp re ted  as one 

of ‘spectral synthesis’ for the  m ultip lier algebra of a C o(X )-algebra. T he m ain idegis 

and techniques in this section were developed by Archbold and Som erset in [9] and [11].

For a topological space X  denote by C r { X)  the  ring of continuous real valued 

functions on X ,  and for /  G C r { X)  let Z { f )  = { x  E X  : f { x )  =  0}. We say th a t a 

subset Z  C X  is a. zero set if Z  =  Z { f )  for some /  G C r {X) .
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D e f in it io n  3 .4 .1 . Let X  be a topological space and denote by Z { X )  th e  collection of 

all zero sets of continuous functions on A". A nonem pty subfam ily of Z { X )  is called 

a  z-filter on X  if

(i) 0 ^ - ^ ,

(ii) If Z], Z 2 G then  Zi n  Z 2 G F ,  and

(iii) If Z '  e  Z [ X )  such th a t  Z'  ^  Z  for some Z  ^  T  th en  Z'  G T .

Let 1 be an (algebraic) ideal in C r {X) .  T hen  the collection

Z[I] = { Z { f )  : f e l }

defines a  z-filter on X . We say th a t /  is a z-ideal if Z { f )  G Z\I]  implies f  & I- 

Conversely if is a z-filter on X  then the set

I[F]  =  { /  e  C r { X )  : Z{ f )  G : f }

is an  (algebraic) ideal in Cj i {X) .  Moreover, there is a bijective correspondence between 

the  set of z-ideals of C}{{X)  and z-filters on X  given by /  Z[I] (so th a t  I  =  /[Z[7]]). 

For a proof of these facts see [29, Section 2.2 to  2.7].

Now let A  be a C'o(A')-algebra w ith base m ap 4>a- For b G M{ A ) ,  define

Z{b)  =  {x G Iin04 : b G Jx}  =  {x G lm4>A '■ | | t  +  ^x|| =  0},

and note th a t  Z{b)  is not a  zero-set ( th a t is, of a continuous function) on Im 0^ in 

general, since th e  norm  function of b need not be continuous.

In w hat follows let To each z-filter T  on X ^  (hence to  each z-ideal

I[T \  in C r {X^) )  we define an algebraic ideal of M [ A )  given by

l J s  = { b ^  M{ A )  : Z{b) D Z  for som e Z  G J^}, (3.4.1)

and  let Ljr  be its norm  closure. In [9, Theorem  3.2] it is shown th a t the  m ap T  i-> Ljr 

is an injection whenever Jx is non-m odular for all x  G X,p.

W ith  Mp  =  { /  G Cfi{Xip) : f {p)  = 0}, let Z[Mp] be the  collection of zero sets of 

functions in Mp,  i.e.

Z[Mp] = { Z e Z { X ^ ) : p e Z } .
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Let Op be the  (not necessarily closed) ideal of /  G C r {X^) such th a t /  vanishes in a 

neighbourhood of p.  Then

Z[Op] =  { Z e Z { X ^ ) : p e m t { Z ) }

W hen A/p =  Op, p is called a P -poin t in X^.  If g G X^  is a P -poin t in X  then  g is a 

P -poin t in X^  [29, 4L].

O ur in terest in the  ideals Mp and Op is as follows:

T h eorem  3.4.2. [9, Theorem 4-3j Let {A,X,(I)a) be a a-unital Co{X)-algebra with 

base map (f>A and let X^ =  ln\(f)A- Then the map T  L j- of (3.4-1) has the following 

properties:

( i )  for X  G X < f „  L z [m ^ ]  =  J x ,

(ii) f o r p e  c\px{X^), Lz[Op] =  Hp.

T he following exam ple exhibits a non-a-un ita l C o(X )-algebra { A , X , i l a )  and a P- 

point X  E X^ (so th a t =  Ox) w ith the  p roperty  th a t Jx ^  Hx- In particu lar, th is 

shows th a t  the  conclusion of Theorem  3.4.2 m ay fail when the  gissumption th a t A  is 

a -u n ita l is dropped.

E xam ple 3 .4.3. Let u)\ be the first uncountable ordinal and X  =  [0,u;i] with the 

order topology. Let A be the C*-subalgebra of C ’’{ X , M 2 {C)) consisting of those f  € 

C ^ { X , M 2 {C)) such that f{oj \ )  is a matrix with zeros everywhere except in the (1 ,1 )- 

entry.

Then Prim (vl) is easily seen to be homeomorphic to X ,  and thus {A,X, (j )A) is a 

continuous C{X)-algebra where 4>a '■ Prim(v4) X  is the canonical homeomorphism.

Now, the centre of A may be identified with C o([0,a;i)), acting as scalar multiples 

of the 2 x 2  identity matrix. Moreover, the structure map ^ a '■ C { X )  —>■ Z M { A )  is 

precisely the Dauns-Hofmann isomorphism of (2.3.1), and so

HA { C { X ) ) f \ A  =  Z M { A ) r \ A  =  Z{ A)  =  Co([0,u;i)).

Thus for  x £  X , we have Jx 5  Z{ A)  if  and only if x  — u \ .  Since AJ =  C, is a 

modular ideal of A, and so is not strictly closed by Corollary 3.3.6.

On the other hand, u \  is a P-point in X  by [29, 50], and so the z-ideals and 

Ou)i of C r { X)  are equal. Since this shows that either L z [m ^̂ ] /  Jui: or
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Returning to the case of a a-unital Co(X)-algebra {A, X ,  4>y\), Theorem 3.4.2 shows 

tha t the question of identifying those points x  G X ^  for which =  Hx may be 

interpreted as one of ‘spectral synthesis.’ More precisely, an element h G M {A)  belongs 

to Hx if and only if b may be approximated in norm by elements vanishing on a 

neighbourhood of x. Since b is zero as a multiplier of A / J x  if and only if 6 G Jx, we 

will regard M{A)  as adm itting ‘spectral synthesis at x ’ if and only if Jx =  Hx-

In the case that the ideals Jx are not m odular for any x  G X ^  then injectivity of the 

map ^  Ljr [9, Theorem 3.2] shows that the ideals Jx and Hx (x G are equal if 

and only if x is a P-point in X^ .  While Theorem 3.4.2 does not require this assumption,

without it, the map i-)- Ljf need not be injective. In particular, for x  G X^ ,  it is

possible th a t M x  ^  Ox [x not a P-point in but L z [m ]̂ =  Lz[Ox\-

We will show that for certain Co(.Y)-algebras and open subsets E  C X^ ,  the exis

tence of a dense subset of E  consisting of points x  with Jx non-modular is enough to 

show Mp Op implies L z [Mj,] ^  - ẑ[Op] for p e  E.

The following theorem relates zero sets of bounded continuous functions on X ^  with 

elements of M{A).  It is the main technical tool used in [10] to prove injectivity of the 

embedding map.

T h eorem  3.4 .4 . [10, Theorem -S.Sj Let {A,X,(p/i^) be a a-unital Co{X)-algebra with 

base map (j)A and let X ^  = Ini^/i. Let u & A be strictly positive with ||u|| =  1. Let

f  G C^{X^)  with 0 <  /  <  1, and Z  be the zero set of f . Then there exists b G M{A)

with 0 < b < 1 such that

(i) b e  A + Jx for all x  G X ^ \ Z ,

( a )  I — b E J x  for  all X  &  Z

Moreover, denoting by sp(u -|- Jx) the spectrum of u + Jx in A j  Jx and by V  = {x & 

X( j \Z  ; 2min sp(u -|- Jx) <  f [x ) } ,  then Hx is not strictly closed in M[ A)  for all 

x  G c i x ^ ( y )  n  z .

We will need a slight modification of [10, Corollary 3.1]:

L em m a 3.4 .5 . Let {A^X,4>a) be a a-unital Co{X)-algebra with X ^  =  Im 0^. Then for  

each zero set Z  in X̂ j, there exists an element b^ G M{ A)  with 0 < b^ < 1 such that

(i) ||6^ + Jx\\ = 0 for all x  & Z,
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(ii) \\h^ +  Jx\\ =  1 whenever x  G X ^ \ Z  and Jx is not a modular ideal of A.

Proof. Apply Theorem 3.4.4 to get an element b G M {A) ,  0 <  6 <  1 satisfying condi

tions (i) and (ii) of Theorem 3.4.4. Set = 1 — b. Then by (ii), \\b^ +  Jx|| =  0 for ail 

X G Z.

Recall th a t A / J ^  =  (.4 +  Jx) / Jx  is an essential ideal of the unital C*-algebra 

M { A ) / J x  [8, Proposition l.l(v )]. In particular, if Jx  is not m odular then necessar

ily ^  ^  A /(/l).

By (i) of Theorem 3.4.4, b = 1 — G A-t-Jx for all x G X t f \Z .  If Jx is not modular, 

then this imphes tha t \\b^ -|- ( ^  +  J x ) | |  =  1, and hence

1 =  \ \b^  -|- ( ^  -|- J x ) | |  ^  \ \b^  +  J x \ \  ^

which completes the proof. □

T h eorem  3 .4 .6 . Let {A,X,(Pa) a o-unital Co{X)-algebra with base map 4>a and let 

X ^  =  Im 0^. Suppose that E  C X ^  is a relatively open subset of X ^  such that the set 

{y E E  : Jy is not modular } is dense in E.  Then for  any x  € E ,  Jx = Hx i f  and only 

i f  X is a P-point in X^ .

Proof. If X is a P-point in then Jx =  Hx by [10, Theorem 4.3].

Suppose X  is not a P-point in X^ ,  so there exists a zero set Z  of X ^  with x  G Z but

X ^  in tx^(Z ). Then E \ Z  is open in E,  hence open in X ^ .  Let c G L^^fo ]' there

is a zero set W  G Z[Ox] such that

Z(c) := { y e X ^ : \ \ c + J y \ \  = 0 } D W .

Let O  be an open neighbourhood of x in X ^  with O  contained in W.  Then O % Z  

(since otherwise x G mtx^{Z) ) .  Hence { E \Z )  fl O is open in X ^ ,  nonempty and 

contained in E.  Hence there is a point y G { E \ Z )  n  O  such th a t Jy is not a modular 

ideal of A. For this y, the element b^ of M{ A)  of Lemma 3.4.5 satisfies \\b^ -I- Jy\\ = 1, 

while ||c-t- JyW =  0. In particular,

| |6 ^ - c | |  >  \\{b^ -  c) + JyW = 1,

and since our choice of c G L^^fo ] arbitrary, b^ ^  Hx- On the other hand, b^ G Jx

by Lemma 3.4.5(i). It follows th a t Hx  is not strictly closed in M{A) .  □
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We investigate the conditions that ensure th a t the hypothesis of Theorem 3.4.6 are 

satisfied by the set E  =  X 0 \ U,  where

U = { x e X :  /m (Co(X )) n A ^ Z J x } -  (3.4.2)

Note th a t since Jx = A  whenever x  £ X\X(i,, the set U is contained in We have 

seen already in Corollary 3.3.6 that for all x  Q. U, Hx is strictly closed in M{A) .

Under the additional assumption that the Co(-Y)-algebra A  is continuous, Theo

rem 3.4.6 characterises the set of points x  e  X ^ \U  such th a t Hx is strictly closed in 

M{A):

Corollary 3.4.7. Let  (A, X ,  (p^) he a a-unital continuous Co{X)-algebra with base map 

(pA, let Xfp = lm (0^) and

U = { x e X  ■. f i {Co{X) )nA<^Jx} .

Then for  x  E E  = Xfp\U,  Hx is strictly closed in M (>1) if  and only i f  x  is a P-point in 

X ^ .

Proof. By [8, Lemma 3.6], the set of x e  Im</) such th a t Jx is not a m odular ideal of A  

is dense in X ^ \ U . Hence the conclusion follows from Theorem 3.4.6. □

A straightforward application of Theorem 3.4.6 is the case where (yl, X , 4>a) is a o- 

unital Co(A!’)-algebra with Z{A)  = {()}. Indeed, in th a t case we have HA{CQ{X))r\A C 

Z M { A )  n  /I =  Z{A)  = {0}, so that [7 =  0.

As we have seen, if in addition { A , X , ij,a ) is continuous, then the set of x G X ^  

with Jx not m odular is dense in X^.  Hence for x  € the equality Jx = Hx holds if

and only if x is a P-point in X ^  by Corollary 3.4.7.

There are however other conditions on a Co (A!”)-algebra {A, X ,  4>a ) with Z{A)  =  {0} 

which ensure th a t this characterisation is still valid. In [23], it is shown th a t the 

existence of a set of m odular primitive ideals with nonempty interior in Prim  (A) is 

sufficient in certain cases to imply Z{A)  /  {0}.

Let T  be a To space. A point x G T  is said to be separated if given any y & T  with 

y  ^  c1t({2^}), X and y have disjoint neighbourhoods. For F  C T ,  let S{F)  be the set 

of separated points of F.  If for every closed nonempty F  C T,  the interior of S{F)  is 

nonempty, then T  is said to be quasi-separated [23, Definition 7].
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Corollary 3.4.8. Let (A, X, 0^) be a a-unital Co[X)-algebra with base map 4>a , 

Z{A)  =  {0}, and suppose that at least one of the following conditions hold:

(i) A  is a continuous Co{X)-algebra with respect to the base map 4>a ,

(a) A  is liminal, or

(Hi) A  is separable and Prirn(>l) is quasi-separated.

Then Jx — Hx if and only if  x  is a P-point in := Im</)^.

Proof. In case (i) =  0 and so Corollary 3.4.7 gives the result. For cases (ii) and (iii),

by [23, Propositions 11 and 12], Z(A)  /  {0} if and only if the set of m odular primitive 

ideals has nonempty interior. So if Z( A)  = {0}, the set of non-modular primitive ideals 

is dense in Prim (A).

Take x  E X ^  such th a t Jx is a m odular ideal of A, and suppose P  G Prim(A) with 

4>{P) = X .  Then by [23, Lemme 4 and Proposition 9], P  m ust be a modular ideal of 

A  (since otherwise P  £ Prim(7) for every m odular ideal I  of A, while we know that 

P  ^  P rim (J^)).

Now suppose V  is an open subset of X ^  such th a t Jx is m odular for all x  E V. 

Then would be an open subset of P rim (^) consisting of m odular ideals, which

is impossible. Hence the set of x G X ^  such th a t is non-modular is dense in Xip. 

The conclusion thus follows from Theorem 3.4.6. □

Let {A,X,(pj\)  be a a-unital, continuous Co(X)-algebra with base map (pA and let 

X(f, =  Then Corollaries 3.3.6 and 3.4.7 characterise the set of x  in U and X ^ \U

(where U denotes the closure of U in X ^)  such th a t Hx is strictly closed in M{A) .  All 

th a t remain are points on the boundary of U . We have been unable to  characterise 

those points x  on the boundary of U such tha t Hx  is strictly closed in general. However, 

when M{ A)  is a continuous C(/9X)-algebra, the following Lemma allows us to give a 

full characterisation.

L em m a 3.4.9. [8, Lemma 3.3] Let {A, X ,  (p^) be a a-unital Cq{ X ) -algebra, u a strictly 

positive element of A  with ||w|| =  1, and suppose that M{A)  is a continuous C{j3X)-  

algebra. Define /  : X  —> [0,1] as

f {x )  = { l - \ \ { l - u )  + H x \ \ ) l

Then
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(i) f  is continuous on X ,

(a) U is the cozero set of f ,

(Hi) I f  X  £  X  and 0 <  f { x )  <  ^ ,  then 2min sp(u + Jx) <  f { x)  (hence x  belongs to the 

set V  of Theorem S.4-4)-

The following Theorem characterises completely the set of points x  £ X ^  such that 

Hx is strictly closed in M{ A)  when M{ A)  is a continuous C(/3A’)-algebra:

T h eorem  3 .4 .10 . Let {A,X,(f>A) be a a-unital Co{X)-algebra with base map (pA such 

that M{ A)  is a continuous C{(iX)-algebra, let X ^  — and

u  = { xeX^: ^{ Co{ X) ) r \ A<ZJx} .

Then for  any x  G X ^ , Hx is strictly closed in M{ A)  if  and only i f  either

(i) x  E U, or

(ii) x  G X ^ \U  and x  is a P-point in X , 

where U =  c\x^{U).

Proof. If X e  [7 then Hx is strictly closed by Corollary 3.3.6.

If (ii) holds then, since A  is necessarily a continuous C 'o(^)-algebra, Hx is strictly 

closed by Corollary 3.4.7.

Now suppose neither (i) nor (ii) hold. Then x  G U \U .  Let /  be the function given 

in Lemma 3.4.9, and note th a t f {x)  — 0. Then any neighbourhood of x  contains a 

neighbourhood W  of x  with f {y)  < ^ for all y  G W,  hence 2min sp(u +  Jg) <  f {q)  for 

all q G W  riU by Lennna 3.4.9 (iii). In particular, x  G clx(V^), so Hx  cannot be strictly 

closed by Theorem 3.4.4. □

We conclude this section with two examples illustrating the relationship between 

the strict topology on the multiplier algebra of a Co(X)-algebra { A , X , i.i a ) and the 

ideal structure of the C(/3X)-algebra (A/(>1),

E xam p le  3 .4 .11 . Let A  = C(N, c q ) =  C(N)(8)co =  Co(N x N) be the trivial continuous 

C{N)-algebra with fibre c q . Then P rim (^) is canonically isomorphic io N x N, and 

the base map (pA : Prim(yl) —>■ N is the projection onto the first coordinate. Since
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A/(co) = £°° = C{I3N), it follows from [1, Corollary 3-4] that M{A)  = C { N , i ^ ) ,  where 

denotes with the strict topology induced by regarding as the multiplier algebra 

of C o .

By Theorem 3.1.6, M{A)  may be regarded as a O'-bundle ouerN (=  /3N), with fibre 

algebras M{A)n  =  for all n  € N. On the other hand, by Proposition 3.2.1, M[A)  

is canonically a C{N)-algebra with base map 4>m [ A)  '■ Prim (A/(A )) —> N the unique 

continuous extension of (j>a to Prim(Af(yl)). Regarding A as Cq(N x N), it is clear 

that Prim(Af (yl)) =  /3(N x N), and that 4>m[A) ^he Stone-Cech extension of (j)  ̂ [29, 

Theorem 6.5(1)].

As in Theorem 3.2.4, C{N)-algebra (Af(A), N, gives rise to an upper-

semicontinuous C*-bundle {N, M{ A) , an  : M{A)  M[A)n) ,  with fibre algebras sat

isfying M{A) n  =  M { A ) / H n  for all n G N. Moreover, by [9, Theorem 4-9], we may 

make the identifications M{A)n  = M { A ) / J n  = M{An)  = fo r  all n  G N, while 

M{A)oc = M { A ) / H ^ ,  with //qo £  Joo- Moreover, there are uncountably m any distinct 

norm-closed ideals J  of M{A)  satisfying Hoo C J  C J ^ .

We make some remarks about the structure o f the fibre algebra M { A ) ^ :

(i) as a commutative, unital C*-algebra, there is a compact space K  with M(A)co = 

C{K) .  Moreover, K  may be identified with the subset hull(//oo) of Prim{M{A)) ,  

so that K  = 4>~l^^^{{oo}).

(a) Since H^o C J ^ ,  it follows that M{A)/Joo = i°° is a nontrivial subquotient of 

M{A)oo- particular, K  contains a copy o//3N as a proper closed subset.

(Hi) For each ideal J  of M[ A)  with C J  C there is a corresponding closed 

subset F j C K  with J / H qo =  { /  G C{K)  : f \p^  =  0}. Thus we get uncountably 

many such subsets of K , with K \ F j  nonempty in each case.

Example 3.4.12 below should be compared with the (non-a-unital) Co(v\r)-algebra 

of Example 3.4.3.

E x a m p le  3 .4 .12 . Let be the first uncountable ordinal and consider the space X  = 

[OjWi] with the order topology. Then fo r  a  & X ,  we have

(i) I f  a  is a successor ordinal, then a  is isolated in X ,

(ii) I f  a  ^  u i  is a limit ordinal, then a  is a non-P-point of X , and
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(Hi) a  =  bj\ is a (non-isolated) P -po in t  o f  X  [29, 50].

I f  B  is any  separable, no n -u n i ta l  C*-algebra then  the tr iv ia l con tinuous  C {X )-a lg eb ra

A  =  C { X , B )  has  M { A )  =  C ^ { X , M { B ) p )  by [1, Corollary 3.4j- Moreover, since X  is 

com pact and  B  separable, A  is a -un ita l .  S ince  f i A i f )  =  f  ' ^ m (b ) f o r  all f  G C { X ) ,  

it is clear that the set U o f  (3.4-2) satisfies U =  9. T hus  by Corollary 3-4.7, we have

Ja  =  H a i f  and  only i f  e i ther  a  is a successor ordinal or  a  =  u \ .



C h a p te r  4

Sheaves of C*-algebras

This chapter concerns the interplay between sheaves of C*-algebras and C*-bundles, 

with a particular focus on sheaves arising from Co(A')-algebras.

Our definition of a sheaf of C*-algebras is due to Ara and M athieu [3], and is 

closely related to the sheaves of Banach spaces studied by Hofmann [33]. W hen work

ing in the category of C*-algebras, it is natural to restrict the ‘gluing property’ (Defi

nition 4.1.1(iv)) of a sheaf to bounded families of local sections. Thus our notion of a 

sheaf differs from the ‘classical’ sheaves studied in algebraic and differential geometry.

One advantage of the sheaf theoretic approach is th a t sheaves may be conveniently 

defined over non-Hausdorff base spaces. Indeed, sheaves distinguish between points of a 

topological space having distinct open neighbourhoods, i.e., To-spaces such as Prim (A). 

By contrast, the theory of C*-bundles is not well developed in this setting.

We may regard sheaves of C*-algebras as a generalisation of C*-bundles. Indeed, 

given an upper-semicontinuous (H)-C*-bundle ( A , X , p )  over a locally compact Haus- 

dorff space X ,  we obtain naturally  the sheaf of local sections of the bundle. More 

precisely, we assign to each open subset U C X  the C*-algebra T^{U,A),  and for a 

smaller open subset V  C U,  restriction from U to V  corresponds to the usual notion of 

restriction of a continuous section.

In the other direction, starting  from a sheaf 21 of C*-algebras, one must first con

struct the ‘stalks’ of the sheaf a t each point of the base space. This construction gives 

rise to a bundle of a very general type, with the property th a t sections of the sheaf

50
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21 define continuous sections of the resulting bundle. This construction is due to Ara 

and M athieu [3, Section 5], although the main ideas are similar to those used by Hof

mann [33]. We will not discuss this approach in its utmost generality, however, we give 

some examples (Examples 4.1.6 and 4.1.7) to illustrate the difficulties th a t arise in the 

case of non-Hausdorff base spaces.

Even in the case of a sheaf 21 over a locally compact Hausdorfif space X , it is 

unknown in general whether or not 21 is isomorphic to the local section sheaf of the 

associated bundle. We obtain partial results in this direction in Section 4.2. As a 

consequence, we give an interesting ‘Stone-Cech compactification’-type theorem for 

upper-semicontinuous (H)-C*-bundles over locally compact Hausdorff spaces (Corol

lary 4.2.11).

The final section of this chapter concerns the study of the so-called ‘m ultiplier sheaf’ 

associated with a Co(X)-algebra (A ,X ,/x^). We show that, with no additional 

restrictions on ^  or X , is canonically isomorphic to the local section sheaf of the 

associated bundle (Theorem 3.1.6). Moreover, this bundle may be identified with tha t 

arising from the C(/3X)-algebra {M{A) ,  PX,  of Proposition 3.2.1 in a natural

way.

4.1 Sheaves of C*-algebras

Let X  be a topological space (not assiuned to be Hausdorfit) and 0 { X )  the collection 

of open subsets of A'. Then 0 { X )  is a category whose morphisms are inclusions, tha t 

is, for V, U ^  0 { X ) ,  V —> if and only if V  C U.

D e fin itio n  4 .1 .1 . [3], [33] A presheaf of C*-algebras is a contravariant functor 21 :

0 { X )  C*\ that is, for IJ^V e  0 { X )  with V  C U we have a ^-homomorphism

^v ,u  ■ 2l(C/) 21(F), such th a t the maps satisfy the following properties:

(i) For all U G 0 { X ) ,  is the identity ^-homomorphism, and

(ii) For W ,V ,U  G 0 { X )  with H' C 1/ C [/, the composition relation ^w ,u  =  ° 

$i/,C7 holds.

A sheaf of C*-algebras 21 is a presheaf satisfying the additional conditions:

(iii) 21(0) =  {0}, and
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(iv) For every collection {Ui ; i  G ^  C>{X), and  { s ,  : i  G 7} w ith  Sj e  for

all i, such th a t ^UinUj,Ui{si) =  ‘̂ UinUj,Uj{sj) and su p { ||s j|| : i e 1} < oo, setting  

U =  Uig/ there  is a unique s € 2t(J7) w ith  = Sj for all z e / .

We begin w ith some com m utative exam ples of presheaves and sheaves, in particu lar 

to  illustra te  condition (iv) of Definition 4.1.1.

E xam ple  4.1.2. (i) Let X  be a locally compact, non-compact Hausdorff space and

let A =  Co{ X) .  For F  C X  dosed defined the closed ideal 1{F)  =  { f  ^ A : 

f \ p  =  0}, and for  U G 0 { X )  set  2l(X)(C/) =  A / I { U) .  Then it is easily verified 

that 2l(X)(C7) =  Co{U) fo r  each U  G 0 { X ) .  For V  C U e  0 { X ) ,  we have 

I{U)  C I { V) ,  and hence there is a *-homomorphism

that 2 l(X ), together with these restriction mappings, is a presheaf of C*-algebras 

over X .

To see that 2l(X ) is not a sheaf, for each x £ X  choose an open neighbourhood 

Ux of X  such that Ux is compact. Then {Ux ■ x £  X )  is an open cover of X ,  and 

2 l(A ')(f/) is a unital C*-algebra for  all x  G X .  If we define fx =  Ijj^ G ‘2i {X){Ux)  

for all X  G X ,  then clearly we have the relations fx ljT riU  ~  f y \u  nlJ 

x , y  £  X .  But there is no f  £  2 l(X )(A ’) for which f\jj^ =  1^^ fo r  all x  E X ,  

since Co{ X)  has no unit.

(a) With X  as in (i), setting (£{X){U) =  C^{U) for  all U  G 0 { X ) ,  together with the 

usual restriction mappings, defines a sheaf of C*-algebras over X .

(Hi) When X  is compact, U is compact for  all U G 0 { X )  and hence with  2 l(X ) as in 

(i), 2l(AT)(J7) is unital for  all such U. However, it is still possible that the presheaf 

2l(A") fails to be a sheaf. Indeed, take =  N and consider the open subset U =  N,

and the open covering {C/„ =  {n} : n  G N} o f U.  T h e n ^ { X ) { U )  =  C{ U)  =  C (N ), 

and ‘Q\.{X){Un) =  C  for all n.  For each n define fn G 2l(/7„) via

^v,u ■■ V ) { U )  =  Coi U)  2 l(X )(F )  =  Co{V).

For f  G Cq{U),  ^v , u{ f )  is precisely its usual restriction f \ y .  Then it is clear

n even.

n odd
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Then there is no f  ^  C(N) with f \ y ^  = fn{n) fo r  all n, hence 2 l(X ) is not a 

sheaf.

(iv) Suppose now that X  is an extremally disconnected compact Hausdorff space. Then  

the presheaf o f  part (i) is a sheaf (and in fact equals ff(X ) o f part (ii)).

Indeed, let U G 0 { X )  and {Ui : i E 1} an open cover o f  U . Note that U is open 

in X ,  hence U is extremally disconnected [29, 1H5]. It  follows that each Ui is 

open in U, hence Uq =  IJ ie / is an open subset o f  U.

Consider a bounded collection { /i : i G /}  with f i  €  2l(X )(/7j) fo r  all i, such that

f i lu in u j  =  fjluiDUj ^  define f  : Uq ^  C via f { x )  = f i {x)

fo r  X E Ui,  then f  is well-defined and bounded. Moreover, since Ui is open fo r  

all i, it follows that fo r  each x  e  X ,  f  agrees with the continuous function  f i  on 

some neighbourhood U i  of x ,  hence f  is continuous on U q .

Finally, since U q is an open subset of U , there is f  & C^{U)  =  C[U)  extending  

f  [29, 1H6[. Hence f \ j j  = fi  fo r  all i E I ,  which shows that 2l(A!') is a sheaf.

The fact that ‘Q[{X){U) =  (T(X)(J7) f or  all U  £  0 ( X )  is evident from  [29, 1H6[ 

also.

C onsider now a C*-algebra A  and open subsets U, V  of P rin i(A ) w ith V  C U. T hen  

U and  V  correspond to  closed two sided ideals A{U)  and A { V )  respectively, such th a t 

A{U)  =  fc (P rim (^)\;7 ) and A{ V)  =  fc (P rim (A )\y ).

Since V  C U,  P r im (y l) \t/  C P rim (j4 ) \y , and so

A { V )  = k { P f m i { A ) \ V )  C k { PT i m{ A) \ U)  = A{U) .

In p articu la r, A { V )  is a closed two-sided ideal of A{U) .

T his construction  gives non-coraniutative generalisations of th e  presheaf 2 l(X ) and 

the  sheaf £ (X ) of Exam ple 4.1.2. Indeed, for open subsets U , V  e  0 (P rim (> l) w ith 

1/ C [/, we have P rim (A )\{ / C P rim (^ )\V ', and so y l(P rim (y l)\[/)  =  k{U)  is an 

ideal of y l(P rirn (A )\F ) =  k{V) .  Thus k { V ) / k { U)  is an ideal of A / k { U )  and we get a 

*-honioniorphism
A A/k(U) _  A

fc(Z7) k{V)/k{U) ^  k{y) '

S etting  2l(J7) =  A / k { U )  and <!>;/[/ : A / k { U )  —)• A / k { V )  the  quo tien t *- 

hom om orphism s described above for all U , V  E C>{X) w ith  V  C U,  gives a  p resheaf 21
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of C*-algebras over Prim (A). We remark th a t when A  = Co(X)  is commutative, 21 is 

precisely the presheaf 2l(X) of Example 4.1.2(i).

Let A he. a. C*-algebra and I  a norm-closed two sided ideal of A.  Then /  is also 

an ideal of M{A) ,  and hence there is a unique =t=-homomorphism tt/ : M{ A)  —> M{I )  

extending the identity on I  [20, Proposition 3.7].

Now if we first associate A{U) to U £ C>(Prim(A)), then for any V  € 0(Prim (y4)) 

with V  C U, A{V)  is a closed two-sided ideal of A{U).  Thus by [20, Proposition 3.7], 

we get a *-homomorphism : M{A{U))  M{ A{ V) )  extending the identity on

Defin ition 4 .1 .3 . For a C*-algebra A,  we define the multiplier sheaf of  A  as 

the sheaf over Prim(.A) with d)lA{U) = M{A{U))  and the restriction m appings '■ 

TlAiU)  —> TIa{V)  defined as above [3, Propostion 3.4].

It clear th a t when A = Cq{X)  is a comnnitative C*-algebra, then for all U G 0 { X )  

we have T I a {U) =  M { C q{U)) = C^{U),  and th a t the restriction *-homomorphisms 

^v ,u  are the usual restriction mappings for all U , V  E 0 { X )  with V  C U.  Thus the 

multiplier sheaf generalises the sheaf C(A’) of Example 4.L2(ii).

Defin ition 4 .1 .4 . Let X  and Y  be topological spaces, ip : X  ^  Y  a continuous map 

and 21 a presheaf of C*-algebras over X.  Then setting (V',2l)(J7) =  2 l(^ “ ^((7)) for all 

U G 0 { Y ) ,  and whenever V, U  £ 0 { Y )  with V  C U ,  defines

a presheaf ■0*21 of C*-algebras over Y.  The presheaf ■0*21 is called the direct image of 

the presheaf 21 under the map ■0.

We rem ark th a t if the presheaf 21 in Definition 4.1.4 is a sheaf, then the same is 

true for '0*21.

Let /  be a directed set and suppose th a t {Aj}jg/ is a family of C*-algebras indexed 

by I . Suppose th a t for all i , j  £ I  with i < j  there is a ^-homomorphism : Ai —> Aj ,  

such th a t whenever i < j  < k we have o  ̂ j. Then the family {Ai, is 

called a directed system  o f C*-algebras.

Denote by

^  =  |( a j ) j6 /  e  Y \ A i  : 3 iQ e  I  with Uj =  V j  >  i o j  , (4.1.1)

then A' is a ^-algebra in the obvious way. Let p ; /I ' —> M be the seminorm p{ { a j ) )  — 

infj> jo ||aj||, where io G /  is such th a t aj =  whenever j  > iq. Observe tha t
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p  has th e  C*-property p{a*a) =  pia)"^, and  hence induces a  C*-norm on the  ^-algebra 

y l '/  ker(p).

We define the direct limit hn^i.^^ of the  d irected  system  as th e  C*-

com pletion of A '/kerp .

D e f in i t io n  4 .1 .5 . Suppose tlia t X  is a  topological space and 21 a  presheaf of C*- 

algebras over X .  For x q  ^  X , let {Ui : i ^  1} be the  dow nw ards-directed set

of open neighbourhoods of x q  in X .  T hen  we get a  directed  system  of C*-algebras

(2l(J7j), and we define

21,3 =  h i^2 l([/i), 
i e l

th e  stalk o /2 l a t x q .

We rem ark th a t for each U  G 0 ( X )  and xq G we get a *-liom om orphism

■ '-^(^0 (4-1-2)

which we regard as the  evaluation m ap a t x q . To see th is, let 01'̂ ^  be defined as in (4.1.1), 

and  let px^ ■ 2l^(, —> M be th e  corresponding sem inorm . T hen  each a E 2l((7) defines 

{ui) e  via

a _  i 0 U^^U

and the  m ap a (a,) is clearly injective. T hus we m ay regard the  quotien t m apping

21^3/ ker(pxo)> when restric ted  to  the  im age of 21(17), as a ^-hom om orphism  $ 10,[/ : 

2l(J7) 21^0 for all xq G U.

T h e stalks of a sheaf of C*-algebras are  in general difficult to  com pute. In the  

case of th e  m ultip lier sheaf 971 of a C *-algebra A  over Prim (yl), one m ight expect th a t  

{TIa )p  =  M { A / P )  for all P  e  Prim (yl). However, the  following two exam ples show 

th a t  th is  need not be the  case.

E x a m p le  4 .1 .6 . Let A  be the C*-algebra o f sequences x  =  (x„) C M 2 (C) such that 

Xn  diag(Ai(x),  A2(x)). Then the irreducible representations o f  A  are given by e„ : 

A  —>■ A/2 (C), en{x) = Xn fo r  n  G N, and Xj : A  ^  C  fo r  i =  1,2.  Thus

Prim (/1) =  {ker(s-n) : n  G N} U {ker(A;) : i =  1, 2},
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where the points ker(e„) are isolated for all n e N, and each ker(A, ) has a neighbourhood 

basis consisting of sets of the form

Ui,no ■= {ker(e„) : n > no} U {kerAJ

for some no S N, i =  1, 2.

For each no G N, the multiplier algebra M{A{U\^rio)) ideal A{Ui^no) corre
sponding to a neighbourhood U\^no o/ker(Ai) is given by those sequences y =  (j/„) G 

C^(N, Af2(C)) such that

(i) yn'^^ -> 0 and yn'^'‘ -> 0,

(a) yn'^^ Ai(y) and

(Hi) the sequence {yn'‘̂^)n>no is bounded,

see e.g. [4, Example 4-5]. It follows that the stalk of at ker(Ai) is given by

m AkeriX ,) = lin̂ i M{A{Ui,no)) =  C © £°°/co = C ®  C m \ N ) .
T lO ^ O O

Similarly, (9??,4)ker(A2) =  C{0N\N) ©C.
On the other hand, the corresponding primitive quotients ^ /ker(Aj) are one

dimensional for i =  1, 2.

Exam ple 4.1.7. Let H  be a separable infinite dimensional Hilbert space and 

A  =  C{N, B{H)) ,  where N =  N U {oo} is the one-point compactification of N. 

Then Prim(v4) =  N x {{0}, We will compute the stalk of the multiplier sheaf

of A over Prim(A) at each point ofPnm{A) .

We first describe the neighbourhood bases of the points in Prim(^) and the ideals

of A to which each open neighbourhood corresponds.

(i) For each n G N, the one-point sets {(n, {0})} are open and have closure

{{n,{0})] = {{n,{0]) , {n,K{H))} .

It is easily seen that the corresponding ideal A{{n, {0})) is identified with those

f  £ A with f {m)  = 0 for m  /  n and f {n)  G K{H) .  Thus >l((n, {0})) is

canonically identified with K{H) .
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(a) The points { n , K{ H) )  are closed, and have a m inim al open neighbourhood 

given by

O n = { { n , { 0 } ) , { n , K { H ) ) } .

A{On) is then identified with those f  E A such that f { m)  = 0 whenever m  ^  n, 

hence A{On) = B{H) .

(Hi) The point (oo, {0}) has a neighbourhood basis consisting of sets of the form

Uno = {{n,  {0}) ; n  >  no}

fo r  some no G N. Thus

MUno) = { f  E A :  f {n)  = 0 for n <  n o , / (n )  G K{ H)  fo r  n  > no},

and A{Uno) identified with C^{N,  K{ H) ) .

(iv) The point (oo, K{ H) )  has a neighbourhood basis consisting of sets of the form

Kio =  {{n,  {0}), (n, K{ H) )  : n > uq}

fo r  some no G N. Hence

A{Vno) = { f  e  A :  / ( n )  = 0 f o r n  < no},

which is *-isomorphic to A.

It is clear from  (i) and (ii) that for each n  G N the stalks satisfy  (5Jt^)(„_{o}) =

i'^A){n,K{H)) = B{H) .
Considering the point (oo,{0}), we have OT(t/rio) =  for all no G

N, where C^(N, B{H)g^,) denotes the C*-algebra o f norm-bounded stong-* continuous 

B{H )-valued functions on N, see [1, Corollary 3-4] or [51, Proposition 2.57J. Let 

{Ui : z G /}  be the set o f neighbourhoods o f {oo, {0}) in Prim(yl) and {f i)i^i  €

Then there is no G N and f  G 2n(C/no) such that f i  =  f\^^ fo r all i with Ui C Uno- 

With the identification Tl{UnQ)  =  C^{N,  B{H)s*) ,  and denoting by p  : ^o})

the canonical seminorm, it is clear that p{ f )  =  limsup | | / (n ) | |  =  0 z/ and only i f  

| | / (n ) | |  0. It follows that 2Tt(oo,{0}) is *-isomorphic to

C>’C N ,B iH ),,)
Co{N, B{H) )  ■
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The fact that this quotient C*-algebra is not isomorphic to B{H) ,  the multiplier algebra 

of the primitive quotient of A at (oo,{0}), may be deduced from [9, Theorem 4-9].

For the point {oo, K{H)) ,  it is clear that for each no G N, A{VnQ) is unital and 

hence equals M{A{Vno))- T^hus the stalk dyi(̂ ao,K{H)) ^he quotient of A modulo those 

sequences converging to zero in norm, which is easily seen to be *-isomorphic to B{H).  

Again, this differs from the multiplier algebra of the primitive quotient of A at this 

point, which is identified with the Calkin algebra B{ H) / K{ H) .

4.2 Sheaves and C*-bundles

In this section we examine the relationship between (pre-) sheaves of C*-algebras and 

C*-bundles. In [33], Hofmann showed that there is a natural equivalence between 

sheaves and bundles of certain classes of Banach spaces over hereditarily paracompact 

Hausdorff spaces. In the context of C*-algebras, this problem was considered by Ara 

and Mathieu in [3], with particular reference to the study of local multiplier algebras.

We shall only consider bundles and sheaves over locally compact Hausdorff spaces. 

Many of the constructions in this section are still valid over more general classes of 

spaces, although our definition of (H)-C*-bundle (Definition 2.2.1) requires additional 

assumptions in these cases, in order to ensure that the (local) section algebra is non

trivial, for example [33, Definition 3.3] and [3, Definition 5.1]. As a consequence, some 

of the results from [33] and [3] quoted in this section are not given in their utmost 

generality. In particular. Theorems 4.2.1 and 4.2.3 are both valid over non-Hausdorff 

spaces (provided that [3, Definition 5.1] is taken as the definition of a (H)-C*-bundle).

The following Theorem describes how the local section algebras of an upper- 

semicontinuous (H)-C*-bundle give rise to a sheaf of C*-algebras over the same space.

T h eo rem  4.2.1. [3, Theorem 5.3] Let (>t, X, p) be an upper-semicontinuous (H)-

(T'-bundle over a locally compact Hausdorff space X . Then for each U G 0{ X) ,  set 

2l([/) =  T^{U,A),  and define ^v ,u  ■ r>^{U,A) r'> (F ,^) via

^ v ,u il){ x )  = l {x)  for all x  e  V,

whenever V,U  G 0 { X )  with V  C U. Then the assignment U i-> r*(t/^, .A), together with 

these restriction mappings , defines a sheafT^{—, A)  of C*-algebras over X
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D efin it ion  4.2.2. Given an upper-seniicontinuous (H)-C*-bundle ( A , X , p )  over a lo

cally compact HausdorfF space X ,  the sheaf r ^ (—, ^ )  defined in Theorem  4.2.1 is called 

the local section sheaf of the bundle { A , X , p ) .

Conversely, in [3, Theorem 5.6], it is shown how to associate an upper-

semicontinuous (H)-C*-bundle to  a presheaf 21:

T h eo rem  4.2.3. [3, Theorem 5.6] Let X  be a locally compact Hausdorff space and 

21 a presheaf of C-algebras over X . Then there is a canonically associated upper 

semicontinuous (H)-C*-bundle { A , X , p )  over X  such that

(i) For each x  ^  X  the fibre Ax of A  at x  is given by the stalk 2li o /2 l at x,

(ii) For each U e  0 { X )  we get an injective *-homomorphism vu : 2l(J7) —> r^{U,A)  

defined via

i'u{s){x) =  where x  ^ U , s  e  2l(C7).

(Hi) For each xq & X , a e  A xq, and e >  0, there is an open neighbourhood U o f xq 

and s e  2l(?7) such that ||i^(/(s)(xo) — a|| <  e.

Suppose the sheaf 21 of Theorem 4.2.3 is the local section sheaf r ^ ( —,5 )  of some 

upper-semicontinuous (H)-C*-bundle (B, X , q) over X . Then the upper-semicontinuous 

(H)-C*-bundle (.4, A",;;) induced by 21 is canonically isomorphic to {B,X,q) \  th a t is,

there is a homeomorphism of A  onto B whose restriction to each fibre Ax  is a *-

isomorphism of Ax  onto Bx- In particular, the m apping : 21 —> r*(J7, of Theo

rem 4.2.3(ii) is necessarily a =t=-isomorphism for all U G 0 ( X ) .  This is discussed in [3, 

§5].

Given a presheaf 21 and U, V  E 0 { X )  with V  C U,  it is clear from the definition 

of the *-homomorphisms and $xo,\' ~  ° :̂o G V.  It

follows th a t for all a G 2l(J7) and xq € V,  we have uu{a){xo) = (vy o $ \/[;)(a)(xo). In 

particular, the diagram

^ { U ) - ^ r ‘’{U,A)

wu V

2l(V)^Xr^(F,>4)

commutes for all U. V E 0 ( X )  with V  C U.
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A natural question which arises from this construction is as follows; starting  from a 

sheaf 21 of a C*-algebras over X ,  under what conditions may we make the identification 

2l(?7) =  r^(J7, for all U G 0 { X ) ,  where { A, X, p )  is the associated (H)-C*-bundle 

over X?  Evidently, this will occur precisely when the maps vy ■ -> r*(C/, yl) are

surjective for all U E 0 { X ) .

Definition 4.2.4. Let X  be a locally compact Hausdorff space and C(A’) the sheaf 

^{X){U)  = C^{U)  for ah U G 0 ( X )  together with the usual restriction mappings. 

A sheaf 21 of C*-algebras over X  is said to be a <Z{X)-sheaf if for every nonempty 

U G 0 { X ) ,  2l(J7) is an essential C^(U)  Banach module (1 • a =  a for all a G 2l(/7)^), 

such that the restriction mappings commute in the following sense: for V, U E 0 ( X )  

with V  C U , a e  2l([/) and /  G C \ U ) ,

^ v ,u { f  -a)  =  i f \ v )

Most of the sheaves of interest to us are C(X)-sheaves. The following example shows 

that one may easily construct sheaves that are not (T(X)-sheaves in general.

E xam ple 4.2.5. Let X  and Y  be locally compact Hausdorff spaces, where V' contains 

at least two points, p : X  x Y  X  the (open) projection mapping, and 21 a sheaf of 

(7-algebras over X ,  with 2l(X) /  {0}. For U G 0 { X  x Y ),  set (p*2l)([/) =  

and let p*^v,u  =  ^p{v),p{U) ■ iP*^){U)  (p*2l)Cl^) whenever U ,V  e  0 { X  x Y )  with

V C U . Then p*2l is a sheaf of C*-algebras over X  x Y .

We claim thatp*^ is not a € {X  xY)-sheaf. Indeed, let Vi, V2 be disjoint open subsets 

of Y , with disjoint compact closures in Y ,  and take f  G C*’(X x Y )  with f \ xxVi  =  ^ 

and = 1. Then (p*2l)(X x Vi) = (p*2l)(X x V2 ) =  2l(X).

Let a be a nonzero-element o /2 l(X ), then since

P*^xxVi ,xxY = P*^x x V2,XxY = =  ida(x)>

it follows that p*^xxVi,Xxy{0‘) 0 f o r i  =  1,2. Thus, i f p*^  were a € {X  x Y)-sheaf, it 

would follow that there was an element f -a  G 2l(X) =  p*2l(X x Y ).  Since the restriction

'Equivalently, C^{U) ■ 2l((7) =  2l((7) by [25, Corollary 15.3]
^The sheaf p*2l is the inverse image sheaf of 21 under the map p.
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mappings must commute in the sense of Defin it ion 4-^-4, we would then have

f  ■ a =  ^ x . x i f  ■ u) =  p* ^ x x VuX x y U  ■ a)

=  i f l x x x O  ' ( P * ^ X x V u X x Y { a ) )  =  0

while also

/  • a  =  $ x , A ' ( / • a )  =  P * ^ X x V 2 , X x Y { f  ■ a )

=  i f l x x V i )  ' (P*^x>^\^‘2,Xxy{a))

=  ( I x x V b )  • a =  a /  0,

which is clearly impossible.

The follow ing proposition shows tha t the local section sheaf o f an iipper- 

semicontinuons (H)-C*-bun(lle is a (T(X)-sheaf in a natura l way. Th is fact was 

observed in [3, §5], we include a proof for completeness.

P roposition  4 .2 .6 . Let (A ,X ,p )  be an upper-semicontinuous (H)-C*-bundle over a

locally compact Hausdorff space X .  Then fo r  each U  £ 0 { X ) ,  7  G r^ ( [ / ,  and

f  G C ^{U), the section f  ■') \U  where

i f  ■ l ) { x )  =  f {x ) 'y (x )  fo r  all x  e U ,

belongs to r ^ {U ,A ) .  Moreover, the local section sheafT^{—,A )  is a € {X )-shea f with 

respect to this action of C^{U) on T̂ ’ {U ,A ).

Proof. W ith  U, 7  and /  as in the statement o f the proposition, then the fact th a t /  • 7  

belongs to  r^ ( [ / ,  is shown in [58, Lemma C.22]. Moreover, i t  is clear from  the 

defin ition  o f /  • 7  that

11/ -711 = sup||/(x)7(x)|| =  sup |/(x )| • ||7(x)|| < ||/|| ||7|| , 
x € U  x & U

and th a t 1 • 7  =  7  for all 7  G T^{U,A).  I t  follows tha t T^{U ,A )  is an essential C^{U)-  

Banach module.

Given U ,V  ^  0 { X )  w ith  V C U ,  then for a ll /  G E r \ U , A )  and x e V

( ( /  • 7 ) Ik )  (2 )̂ =  ( /  • 7)(a^) =  f { x h { x )  =  { { f \ y )  ■ (7 |^^)) (x)

whence ( /  • 7 )!^/ =  {f\y) • (7lvO- Hence r ^ ( —,>1) is a ff(.Y)-sheaf as required. □
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As a consequence of Proposition 4.2.6, starting from a sheaf 21, a necessary condition 

for the maps uy of Theorem 4.2.3(ii) to be surjective is tha t 21 be a C(Ji^)-sheaf. The 

following Lemma shows th a t for any (£(X) sheaf 21, the action of C^(U) on 2l([/) 

corresponds precisely to pointwise multiplication by scalar valued functions when we 

identify 2l(?7) with uu{^{U))  C F'’{U,A).  Again, this fact was observed for unital 

^(X)-sheaves in [3, §5].

Lem m a 4.2.7. Let 21 6e a <t{X)-sheaf. Then for  s G 21(^7) and f  € C^{U), we have 

^ u { f  ■ s){xo) =  ^xo,u{f  ■ s) = f{xo){i^u{s)){xo)

for  all xo G U.

Proof. Let e >  0 be given, then there is an open neighbourhood W  of xq contained in 

U such that \ f {x)  — f{xo)\ < § for all x  G VV". In particular, ||( / |i |-)  — f{xo)\\w < £, 

and so for any s G 2l(C/),

l l ^ v v , ( / ( / ■ s  - / ( a ^ o ) s ) l l  =  • s )  - / ( a : o ) ^ H ' , ( 7 ( s ) | i

=  II ( ( / I v v )  “ / ( ^ o ) )  • ^ v v , c / ( s ) | |

<  I K / l v v )  “  / ( ^ o ) | | H ' | l ' J ’ H ’, f / ( s ) | |

<  e ||$ iv ,(/(s) | |  <  e | | s | | .

It follows tha t ^xo ,u{f  ■ s -  f{xo)s)  = 0, and so v u { f  ■ s ) ( x q ) =  f  {xq)vu{s){xq). □

If 21 is a (T(X)-sheaf, then 2l(f/) is a C(/3{/)-algebra for all U G 0 { X ) .  In particular, 

2l(X) is a C(,5X)-algebra, and so 2l(Js^) is canonically isomorphic to the section algebra 

of an upper-semicontinuous (H)-C*-bundle over j3X. We wish to compare this bundle 

to tha t defined by the sheaf 21 in Theorem 4.2.3. First we describe how a sheaf A  over 

X  may be identified with a sheaf over P X  via the direct image functor.

If we denote by i : X  ^  P X  the canonical inclusion, then the direct image sheaf 

i,2l over P X  is defined via

t*2l(\/) =  2l(i~^(y)) =  2 l(F n J ^ ) , where V  € 0 { p x ) ,

with restriction mappings '■ (t*2l)(C/) -> (i-*2l)(l^) for U ,V  e  0 { P X )  with

V C U  defmed as

=  ^vnx,unx-
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We will denote by ^ X ,  l^p ) the bundle over P X  defined by i*2l, and by :

(i*2l)(C/) —> r*(?7, (,*21) the injective *-homoniorphisins of Theorem 4.2.3(ii) for all 

U G 0 {P X ) .

The following Lemma shows that when 21 is a £(X)-sheaf, then the stalks of 21 and 

i*2l agree at points of X .  Moreover, we show th a t every element of a stalk is the image 

of a global section of the sheaf.

L em m a 4.2.8. Let X  be a locally compact Hausdorff space, 21 a €{X)-sheaf of C*- 

algebras over X , and i*2l the direct image sheaf corresponding to the inclusion mapping 

L - . X ^ P X .

(i) i*2l is a €{PX)-sheaf, where for all U G 0{(3X) the action of C^{U) on (t,2l)(?7) 

IS given by

/  • « =  i f l unx )  ■ for all a G (u2l)(C7), /  G C"([/).

(ii) For each x q  G X , the stalks 2 l i p  and ( t « 2 l ) 2 . Q  are isomorphic,

(iii) For each xq G A ' (respectively P X )  and a G 2lj;g there is a global section 7 G 

i^x(2l(A’')) C r ' ’( X ,^ )  (respectively ■) G with ^(xo) =  a.

Proof. (i) For every nonempty U G 0 { P X )  we have ((-♦2l)(f/) =  2l(C/ fl A") by def

inition. Since 2l(J7 n  A') is an essential C^{U n  A’)-module, and C^{U H A') is

a C^(C/)-module with respect to the usual restriction mappings, it is clear that 

(i,2 l)(t/) is an essential C^(C/)-module. Moreover, for V,U ^  0 { P X )  with V  C U,  

the restriction mappings satisfy

{‘■*^)\\u{f ■ 0,) =  ^vnx ,unxiU\unx)  '

= i f l v n x )  ' ^ y n x ,u n x [ ( i )

= i f\v)  ' ii''*^)v,u{a)) ■

for all a G t*2l(J7) and /  G C^{U).

(ii) For x q  e  X  denote by { V i  : i e  1 }  C  0{j5X)  the directed set of open neigh

bourhoods of Xq in j5X. Then we have i*2l(Vi) =  2l(V; fl A’) for all i G I,  and

since A" is open in (3X there is an index io G /  with =  A , so that Vi C A
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whenever i > io- In particu lar, {V̂  : i >  io l ^  0 { X )  is the d irected  set of open 

neiglibourhoods of xq in X .  T hus

((-*21)10 : =  =  11141'-*21(^ 2)
l E l  i > i o

=  111421(^0
i > i o

~  2 1 x 0  •

(iii) For e >  0, there  is U E 0 { X )  and s G 2l([/) such th a t  ||;/t/(s)(xo) — a|| <  e by 

Theorem  4.2.3(iii). Let /  G C ^{X )  such th a t /(x q )  =  1 and w ith /  su p p o rted  on 

a com pact neighbourhood K  of xq contained in U,  and set V  =  X \ K .  T hen  for 

any x  e  U n V , w e  have

^(unv) {^{unv),u iU\u) ■ ^)) (^) =  = 0.

Since V(unv) is injective, th is im plies th a t  $ ([ /n v ),(7 ( ( / I f / )  • s) =  0 .

Now we have open sets U , V  w ith U U V  = X  and a pair of sections 0 G 2l(V^) 

and ( f l u)  ■ s G 2l(?7) whose restric tions to U C\V agree. Since 21 is a sheaf, there 

is s' G 2l(X ) w ith <I>(7,a'(sO ( / I t / )  ' particu la r, ||i^;c(s')(xo) — a|| <  e, so

(2l(X ))(xo) is dense in 2lxo- Since i/a:(21(^))(xo) is closed, it m ust in fact equal 

21x0-

T he case of ^ X  follows from applying th is result to  the  C (,5X )-sheaf i*2l.

□

If 21 is a C(X )-sheaf, then  in particu la r 2l(J'£ )̂ is a C (/3X )-algebra. D enote by 

A  =  2l(X ) and for xq e  X  let Jxq =  { /  G C{j3X)  : / ( x q ) =  0} • A, which is closed by 

the  Cohen factorisation T heorem  [25, T heorem  16.1].

P r o p o s i t io n  4 .2 .9 . Let  21 6e a € { X ) - s h ea f  o f  C*-algebras over a locally compact Haus- 

dorff  space X . Then with the above notation, f o r  any xq G X ,  the map ^ xo ,x  '■ ^  ^ xq 

is surjective with kernel J xq, so that we have a natural identification 2lxo =  A / J x ^ ,  such 

that for  each a E A  we have ux{0'){xo) = a + J xq.

Proof. We first show th a t  ker$XQ_x =  Jxqj so  th a t  a  1-  ̂ a  +  Jx^  defines an  em bedding 

of A/Jxq  into 21x0- Let a £ A  w ith  ||a || =  1 and /  G C{PX)  w ith /(x q )  =  0, so th a t
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f  ■ a ^  JxQ- If £■ >  0 is given, there is an open neighbourhood \V  of xq such th a t 

| |/ ( x ) | | <  I  for any x  e  In particular, ||/ |j^ '|| <  T hen

l l ^ i v . x ( / • a ) | |  =  1 I ( / I h ' )  •

< | l l » l l < £ .

Hence /  • a  e  ker^a;^,^, so tha t C ker$xo,x-

O n th e  o ther hand, suppose a G ker ^xo ,x  aiid take £ >  0. T hen  there is an  open 

neighbourhood of xq such th a t ||$iv,x(<i)|| <  §• In particu la r, for any x  E W  we 

have

| | ( i / u - 0 ‘I>i i -A' )( t i ) (2:) l !  =  l k x ( a ) ( a : ) | |  <

Let /  : P X  —> [0,1] be continuous w ith /(x q )  =  1 and  f \ x \ w  =  0- Since v x  is 

isom etric,

||fl -  (1 -  / )  • o|| =  sup \\i^x{a -  (1 -  / )  • a)(3;)||
ie/3A'

=  sup ||i^x(a)(x) -  (1 -  f ){x) iyx{a){x)\ \  
xe0X

= sup | |/ ( x ) ^ x ( a ) ( 2;)|| <  ^  <  £.
x€X ^

Since (1 — / )  • a G J xq and J^q is ('losed, a £ J^q.

In particu lar, we now have AjJx^  = A /  'kei ^ xq,x  ^  '^xq- E quality  then  follows from 

Lem m a 4.2.8(iii). □

We rem ark  th a t, with 21 as in P roposition  4.2.9, a sim ilar identification m ay be 

o b ta ined  for the  stalks of the (£(/3A')-sheaf i*2l. Indeed, let A  =  (i*2l)(/3A') =  2l(X ) 

and J xq =  { /  G C { P X )  : /(x q ) =  0 } - ^  for xq G ^ X .  T hen  we see th a t  (t*2l)io =  A/Jx^  

for all Xq G ^ X  also, and th a t for all a G A we have th e  identification

{t-*^)xo,0x{a) = {i*iy){PX){a){xo)  =  a  +  J ^ g .

T h e o r e m  4 .2 .1 0 . Let  21 6e a <Z{X)-sheaf o f  C*-algebras over a locally compact Haus-  

dorf f  space X ,  and { A , X , p )  (respectively P X ,  L^p) ) the upper-semicontinuous  

(H)-C*-bundle over X  (respectively j3X)  associated with 21 (respectively i*2lj.
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(i) The map '■ i^A)  is a *-isomorphism. Moreover,

denoting by A  = ' ^ { X )  =  (/,*2l)(^X) and by Jx — { f  ^  C { P X )  : f { x )  = 0] ■ A,  

where x  G ( i X , this isomorphism satisfies

=  a  +  Jx, f o r  all a & A, x  e  ^ X .

(a)  The bundles { A , X , p )  and P X ,  i^p) satisfy the relations

A  = and p  =  (t*p)|_4 ,

so that the total space A  of  { A , X , p )  is precisely the subspace (<.*p)“ ^(A') of  i ^ A  

with the relative topology. In  particular, f o r  each U G 0 { X )  we may regard

i ^ u m u ) ) c r ^ { u , u A ) .

Proof, (i): We rem ark th a t  since I3X is com pact, every continuous section 7  :

P X  i ^ A  is bounded by Lem m a 2.2.3, and so we have T{j3X.,L^A) =  F^(/3A’, i* ^ )  =  

Fo(/9A", l^:A). Note also th a t {L*iy)0 x  is an  injective *-hom om orphism  by Theorem  4.2.3. 

We show th a t the algebra of sections of the  bundle {l^A, (3X, L^p) satisfies

conditions (i) and (ii) of P roposition  2.2.6, whence it will follow th a t  {i*v)px  is 

surjective.

Take 7  =  {i*^)i3x{o ) i  where a e  A, and /  e  C { P X ) .  T hen  by Lem m a 4.2.7, for 

each X £ P X  we have

{i'*i )̂l3x{f ■ a){x) =  f{x){L^iy)i3x{a){x) =  / (x)7(x),

so th a t in particu lar the section / - 7 , where {f- 'y){x)  =  f {x) 'y{x) ,  belongs to  {l*u)0 x { ^ ) -  

For X  G P X  and c G =  [i*p)~^{x),  Lem m a 4.2.8(iii) gives an  elem ent a G

A  w ith {i*i')0 x{ o ) {x )  =  c. T hus we m ay apply P roposition  2.2.6 to  th e  subalgebra 

of T{PX,L^,A)  =  Fo(i3Ar, t* ^ ) ,  and conclude th a t {i*v)j3x { A )  is dense in 

V{PX , i t ,A ) .  Being also closed, equality  follows, hence {i*i')isx is an  isom orphism.

T he second assertion is im m ediate from Proposition  4.2.9 applied to  the £(/3X )- 

sheaf t*2 l.

(ii): By Lem m a 4.2.8(ii), for each xq G X  we have =  {Lt^)xQ, and so ^  =  

{X) ,  as a  collection of fibre algebras. It is clear from th is fact and th e  definitions 

of ( A , X , p )  and { L ^ A , p X , u p )  th a t  p  =

By Proposition  4.2.9, applied separately  to  th e  (T(A')-sheaf A  and the  (£(/3X)-sheaf 

i*2 l we have

{i*y)0x{a){xQ) =  ux{a){xo) =  a  +  J ^ o ,
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for all a e  A  and xq G X .  In particular, given 7 G and a e  A

with 7  =  the restriction of 7 to A" agrees with the continuous section

ux{a)er>>{X,A) .

Denote by F the collection of sections X  —> U ie x  given by

r  =  {7lx  : 7  e  {i*v)0x ((i*2l)(/3x))}.

Then we have shown that each 7 G F is continuous as a section X  ^  A.  Moreover, 

each 7  G F is necessarily continuous as a section X  l ^A  by definition of 

(being the restriction to X  of an element of F(/3AT,

It is clear tha t F satisfies the hypotheses of Theorem 2.2.5, and so the (H)-C*-bundle 

topology on for which each 7  G F is continuous is unique. Since both A  and

{i'*p)~^{X), have this property, it follows tha t A  =  (i*p)“ ^(A').

Finally, for U G 0 { X ) ,  i/t/(2l({/)) C T^[U,A)  by definition of vu- But then since 

A  = ( l , p ) - ^ (X) ,  we have r^(L/,A) = F \ [ / , i , ^ ) .

□

In the particular case that the sheaf 21 in Theorem 4.2.10 is the local section sheaf 

F^(— of an upper-semicontinuous (H)-C*-bundle ( A , X , p ) ,  the direct image sheaf 

t*'2l gives rise to a bundle over /3X containing { A , X , p )  as a sub-bundle. We show in 

Corollary 4.2.11 below that in fact this bundle has certain Stone-Cech compactification- 

type properties. While we will not make use of this result in subsequent sections, we 

believe th a t it is interesting in its own right.

C o ro lla ry  4 .2 .11 . Let X  be a locally compact Hausdorff space and { A , X , p )  an upper- 

semicontinuous (H )-C -bundle over X . Then there is an upper-semicontinuous (H)- 

C^-bundle { A^ , /3X,p^) over (3X  with {p^)~^{X) = A  and p ^ \^  =  p, such that every 

7 G F^(A’, .4) has a unique extension to a continuous section 7^ G r { p x ,  A^) .

Proof. Let 21 be the bounded section sheaf 2l(t/) =  F^(C7,^), U G 0 { X ) ,  associ

ated with the bundle {A , X , p ) ,  which is a (T(X)-sheaf by Proposition 4.2.6. It is well 

known th a t the upper-semicontinuous (H)-C*-bundle over X  induced by 21 is precisely 

(yl, AT,p), and that vu is the identity ^-isomorphism for all U G 0 { X ) ,  see the proof 

of [3, Theorem 5.6] for example.

The direct image sheaf i*2l gives rise to an upper-semicontinuous (H)-C*-bundle 

{i^,A, (3X, L ,̂p), which we take as {A^ , l3X,p^).  Then it follows from Theorem 4.2.10(ii) 

th a t (p^)~^{X)  = A  and p ^ \^  =  P-
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For 7  e  F ^ ( X , d e f i n e  7 ^ G V{PX^A^)  via 7 ^ =  Then with

A = ^ ( X )  = (t,2l)(/3X) and = { f  e  C{/3X)  : f { x )  =  0} • A for x G X , we have

7^(a:) =  7  + ='r{x)

by Theorem 4.2.10(i). Hence 7 ^ is a continuous extension of 7  to a section P X  A^ ,  

and we have a commutative diagram

'2l(X ) =  F ''(X ,^ )

{ i . ^ ) W X )  = u r ^ { x , ^ i ^ - ^ r i i 3 x , A 0 ) .

By Theorem 4.2.10(i), {i*i')0x is a ^-isomorphism, and it follows tha t 7  i-> 7 ^ is a 

^-isomorphism of F^(A ',^) onto F(A ",^^). In particular 7 ^ is unique. □

4.3 T he m ultiplier sheaf o f  a C'o(X)-algebra

In this section we consider a Co(X)-algebra (A, X , 0^ ) and the associated sheaf of C*- 

algebras defined by the direct image 4>A*‘̂ A-,  where is the multiplier sheaf of A  

over Prim(v4) of Definition 4.1.3. Our main result states tha t

(i) the upper-semicontinuous (H)-C*-bundle over X  induced by (pA*^A  agrees with 

th a t defined by the C (^X )-algebra  {M{A),  pX,(p{^i(^A)) (restricted to X ) ,  and

(ii) dJlx is canonically ^-isomorphic to the local section sheaf F^(—, A^) of this bundle.

We begin with the study of the ideals of A  corresponding to  open subsets of X .

P ro p o sitio n  4 .3 .1 . Let {A,X,(Pa) be a Co{X)-algebra with base map (f)A and structure 

map I.IA- For x  E X ,  denote by Jx = ni-f* ^ P rim (^) : 4>a { P )  =  x]  and fo r  U G O x  

let A{U) = f ]{Jx  : X G X \ U } .

(i) Prim (yl([/)) is canonically homeomorphic to the open subset (f)^{U)  o /Prim (> l).

(ii) {A{U),U,4>a {u )) is ® Cq{U) algebra with base map (j)A{U) given by the restriction 

ofcpA to (pA^U),
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(in) For each x  E U , we have A{U) + Jx = A,  and the ideal J{U)x of  A{U) given by 

J{U)x = r | { ^  e  P rim (A (t/)) : <^^(t/)(P) =  x} 

satisfies J{U)x = A{U)  fl Jx, so that A{U) / J {U) x  = A /  Jx-

(iv) Denote by { A , X , p )  the upper-semicontinuous (H)-C*-bundle over X  defined by 

{A, X , 4 >a ), and by ^ a ^  r o ( X ,^ )  the *-isomorphism of Corollary 2.3.4-

Then the restriction of to A{U) is a ^-isomorphism of A(U)  onto ro(i7, .4).

Proof, (i): Note tha t for P  G Prim(y4) we have P  D A{U)  if and only if <Pa{P) ^  U . 

Thus we may identify

</,-!([/) =  {P  e  Prim (A) : P  ^  A{U)) ,

and so the map P  Pr \A{U)  is a homeomorphism of (j)~^{U) onto Prim (^(?7)) by [24, 

Proposition 3.2.1].

(ii): Note tha t U is locally compact since it is an open subset of X .  (ii) is then 

immediate from the fact that Prim(yl(J7)) is homeoniorphic to

(iii): By [24, Proposition 2.11.5] we have

J { U ) x  :=  f ] { P e P i - M M U ) ) : < i > A i U ) { P )  =  x }

= f ] { Q n A { U ) : Q e ( l ) - / { U ) , M Q )  = x}

=  P |{Q  G Prim(y4) : =  x} n  ^ ( t / )

=  A { U ) n J x .

By [24, Corollary 1.8.4], we identify A( U) /A{U)  C\Jx = {A{U)  +  J x ) / J x ,  which is an 

ideal of A /  Jx. Now take b G A / J x  and a £ A  such th a t a Jx = b. Choose /  G Cq{X)

with f { x )  =  1 and f \ x \ u  =  0. For any P  G Prim(>l) such th a t P  D  A{U)  we have

4>a { P )  0  U  and so

HA{f)a + P  = 0A{f  o ^A)a  +  P  =  f{4>A{P)) (a +  P )  =  0 +  P.

In particular j.iA{f)a G P  whenever P  5  A{U),  hence HA{f)a  £ ^{U) .  Moreover, 

f-iA{f)a + Jx ^  f i x )  (a + Jx) = a + Jx = b, 

which shows that b G {A[U)  +  Jx) /  Jx,  and so A{ U) /  {A{U)  n  Jx) = A /  Jx-
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(iv): Let {A{U),U,q)  denote the upper-semicontinuous (H)-C’‘-biindle over U de

fined by and 7 ^(t/) : A{U) ro{U,A{U))  the *-isomorphism of

Corollary 2.3.4. By (ii), for each x  ^  U,  the fibres p ~ \ x )  and q~^{x)  of A  and A{U)  

respectively are ^-isomorphic. Moreover, the definitions of 'y^ and 'yA{u) ensure th a t 

for all a e  A{U)  and x £ we have 7 ^ (a)(x ) =  7a (u) M ( ^ )  the identification 

A / J x  =  A{U) / J {U) x  of (ii)). In particular, for all a G A{U),  7 /i([/)(a) agrees with the 

restriction to U of continuous local section 7 /i(a) of { A , X , p ) .

It follows from these fact th a t 7 4 (c/)(A(J7 )) (=  ro{U,A{U)) )  m ay be regarded as a 

C*-subalgebra of T^{U, A). Moreover, by the definitions of 7 ^ and A{U)  it is evident 

th a t 7 ^ (a )(x ) =  0 for each a £ A{U)  and x  G X \ U .  Since 'Ya{u){(^) vanishes a t infinity 

on U, for each e > 0 the set

{ x ^ X  : ||7 ^(a)(x )|l > e ]  = { x ^ U  : ||7A(C/)(a)(a^) || >  &}

is compact, so th a t in fact 7 /i(^ (J7 )) C r o ( t / ,^ ) .  By (ii) 'ya{A{U))  is closed under 

pointwise m ultiplication by Cq{U), so th a t ')a {A(U))  =  ro (t/, ^ )  by Proposition 2.2.6.

□

Now suppose th a t {A, X ,  0^ ) is a Co(A'’)-aigebra, and consider open subsets [/, V  of 

A" with V  C U.  Then Prim(^)\</)^^(f7) C Prim(A)\<?!)^^(F), so tha t with the notation 

of Proposition 4.3.1,

A{V)  = k [ ¥rMA) \<i >-A\y ) )  <^k{Pfim{A)\ct>-^\U)) = A{U).

In particular, A{V)  is a closed two-sided ideal of A{U).  Thus we get a ^-homomorphism 

^ v ,u  '■ —>• M{ A{ V) )  extending the identity on A{V)  by [20, Proposition 3.7].

D e fin itio n  4 .3 .2 . The multiplier sheaf o f A  over X ,  which we denote by ^fftx is defined 

by assigning to each open subset U of  X  the C*-algebra M{A{U) ) ,  w ith the restriction 

m appings whenever V  C U,  defined as above.

If we denote by TI a the m ultiplier sheaf of A  over Prim (yl), then  it is clear th a t 'Xflx 

is precisely the direct image sheaf 4>a * '^ a defined via {(/)a * ^ a ){U) = VJIa {<Pa  ̂{U)) for 

all U G 0 { X ) .  It is evident from this fact th a t satisfies the gluing condition of a 

sheaf.

We have seen already in Proposition 3.2.1 th a t the m ultiplier algebra of a Cq{X)-  

algebra {A,X,4>a ) defines a C(/5AT)-algebra {M{A],pX,(t)nj(^A))- particular, M { A )
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is an essential C^(X)-m odule. Applying this fact together with Proposition 4.3.1 to 

each of the algebras M[ A[ U) )  for U G we show th a t the m ultiplier sheaf is in fact 

a (J(X)-sheaf.

L em m a 4 .3 .3 . Let A be a Cq{ X) -algebra. Then the multiplier sheafOJlx of  A over X  

is a ^ { X ) -sheaf.

Proof. Let U G 0 { X ) ,  then A{U)  is a Co(l7)-algebra by Proposition 4.3.l(i). It then 

follows from Theorem  3.2.4 th a t dJlx{U)  =  M{A{U) )  is a C(/3J7)-algebra, i.e. an 

essential C^(t/)-m odule. For V, U & 0 { X )  w ith V  C U,  we claim th a t

^V,ui l - i -M{A{U)){f) )  =  l Hl { A { V ) ) i f \ v )  

for all /  G C^{U). Note th a t it is sufficient to  show th a t

{l^M{A{V)){f\v) -  ^V,u{^l-M{A{U)){f))) a G P n A{V)

for aU /  G C \ U ) , a e  A{V)  and P  e  {Q e  P rim (yl(t/)) : Q 2  ^(1^)}-

Note th a t since A{V)  is an ideal of M{A{U) ) ,  and since is the identity on 

A{V) ,  we have

^v,u{fj‘M{A{u)){f))(t +  / ’ n A{v)  =  M A / ( 4 ( t / ) ) ( / ) a  +  -P n A{v).

Denoting by 4>a (u ) ■ Prim(y4(J7)) — >• U and 4>a {V) ■ Prim (yl(F )) — > V  the relevant base 

maps, it is clear th a t (pA{U)\p,i^,^A{V)) =  Regarding A (T /)/(P n y l(F ))  C A{ U) / P,
we may thus identify

Ma/(>i(i;))(/)o + P n y4(V) =  ^J-M{A[u)){f)(^ + P  

=  f{4>Aiu){P)){a + P).

Thus it is clear th a t

^v,u{^^M[A[u))U))a + Pr \A{V)  = /($^(c/)(P))(a + P n ^ ( y ) )

=  U\v){4>a[V) {P n A{V) ) )  (a +  P n A{V))  

=  I^M{A{V)){f\v)0‘+  P

as required. □
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We have seen in Theorem  3.2.4 th a t for a C o (^ )-a lgeb ra  {A, X ,  the C { ^ X ) -  

algebra {M{A),  PX,  gives rise to  an upper-sem icontinuous (H)-C*-bundle over

I3X w ith global section algebra canonically isomorphic to  M {A ) .  Considering the direct 

image sheaf where 971  ̂ is the m ultiplier sheaf of A  over X ,  we get an upper-

semicontinuous (H)-C*-bundle over j3X by Theorem  4.2.3. Via Theorem  4.2.10, we 

now show th a t both bundles are in fact equivalent.

T h e o re m  4 .3 .4 . Let ( A , X , be a Cq{ X ) - algebra, {M{A),I5X , i.li ĵ (̂j<̂̂ ) the C{(3X)-  

algebra defined by its multiplier algebra, and dJlx the multiplier sheaf of  A  over X .  

Denoting by t : X  ^  P X  the inclusion mapping, then the upper-semicontinuous (H)- 

C*-bundle over P X  associated with t*T lx  may be naturally identified with that associ

ated with the C{PX)-algebra { M{ A) , P X ,

Proof. Denote by {M ,  l3X,p)  the bundle defined by the C(/9A')-algebra { M{ A) , PX,  

in Corollary 2.3.4, and by { M ' , p X , p ' )  th a t  defined by the sheaf i*T lx  in Theo

rem 4.2.10, with to tal spaces A4 =  {Mp : p  G /3X}  and A4'  = {M^  : p  G PX} .  For each 

p  e  P X ,  let Hp denote the ideal of M{ A )  defined in (3.2.1).

By Theorem  3.2.4(i) we have Mp  =  M { A ) / H p  for all p  G P X , and by Corollary 2.3.4 

the m apping 7 a/(^) : M{ A )  —> r { P X , A 4 ) ,  where 7a/(A)(c)(p) =  c-\- Hp for all c G AI(A)  

and p G P X ,  is a ^-isomorphism.

Since is a €(A")-sheaf by Lemma 4.3.3, is a C(/3A")-sheaf by Lemma 4.2.8.

Moreover, since =  t - * ^ x { P ^ )  = M{ A )  and Hp =  { /  G C{ PX)  : f {p)  =

0} • M{ A )  for all p  G P X ,  it is clear from Proposition 4.2.9 th a t = M{ A ) / H p  

for all p  G P X .  The m apping {i*v)px '■ M{ A )  T{PX,  M ' )  is a ^-isomorphism by 

Theorem  4.2.10(i), and also satisfies {t-*i')0x{c){p)  = c -\- Hp for all c G M{ A)  and 

p e p x .

It follows th a t we m ay identify Mp = M^  =  M { A ) / H p  for all p G p X ,  and thus M  

and A4'  consist of the same collection of fibre algebras. Moreover, the global section 

algebras T{ PX, M. )  and V { P X , M ' )  are bo th  isomorphic to  M{ A)  via the identifica

tion of c G M{ A )  with the section p ^  c-\- Hp. Since the  (H)-C*-bundle topology on 

Wp^px  {-^) /^pi  which every c G M { A )  defines a continuous section in this m an

ner, is unique by Proposition 2.2.6, it follows th a t  A4 = A4'  as topological spaces. □

L e m m a  4 .3 .5 . Let  {A, X , (f)a ) be a Cq{ X ) - algebra and U g O x - F o r c G M { A )  denote
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by c\y := ^u .x {c )  its restriction to an element of M{A{U)) .  Then

||c |^ || =  sup | |c +  JyW, 
y€U

where J y  is the ideal of A  of (2.3.2), and J y  its strict closure in M { A )  as in (3.1.1).

Proof. As a consequence of Proposition 4.3.1(ii), we will regard A /  J y  and A { U ) / J { U ) y  

as being equal for all y & U. Denote by iXy : A  ^ / J y  and T̂ U,y '■ -^{U) ^ / J y  the 

quotient m appings, and by : M [ A )  —> M { A / J y )  and T^y^y : M [ A [ U ) )  —> M { A / J y )  

their extensions to M { A )  and M ( A ( U ) )  respectively. We first claim th a t  for all c € 

M { A )  we have n y { c )  =  ^u,y{c\u).

Note th a t since ^ u , x  is the identity on A { U ) ,  for all c G M [ A )  and b  G A { U )  we 

have

{c \y)b  =  ^ u , x { c ) ^ u , x { b )  =  ^ u ,x {c b )  =  cb.

It follows th a t for all c G M { A ) , b  E  A { U ) ,

^ u , y { c \ u ) - ^ u , y { b )  =  T T u , y { { c \ y ) b )  =  TTy{cb) =  n y ( c } r r y ( b )

and sim ilarly ^t ^^^y(b) ^^^^y(c^^)  =  7 T y { b ) n y { c ) .  Now as each a  G  A f j y  m ay be w ritten 

as a  =  T T u , y { b )  =  T^y { b )  for some b  G follows th a t  ^u,y{c\u) — ^yi^)  all

c G M { A ) .

Since P|{ker(^t/,j/) '■ y & U} = {0} by Theorem  3.1.6, it follows th a t for any c G 

M { A )  we have

||c |y || =  sup ||% y (c |[;) ||
yeu

= sup ||fPy(c)|| 
yeu

= sup
yeu

t / i j

□

P r o p o s i t io n  4 .3 .6 . Let {A,X,(Pa ) be a Co{X)-algebra, (A f(^ ),/?X , the

C{j3X)-algebra associated with M [A ) ,  and { A , X , p )  and {A4, p X , q )  the upper- 

semicontinuous (H)-C*-bundles associated with (A,X,(I)a ) o,nd (A/(j4),/3X, 

respectively. Denoting by ^  ro (-^ ,.4 ) and  7j\/(^) : M[ A )  -> T { f i X , M )  the

*-isomorphisms of  Corollary 2.3.4, the bundles A  and M  satisfy the following relations:
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(i) For each x  E X ,  denoting by Ax = p  *(x) and Mx = q the fibre algebras,

then Ax may be identified with an ideal of  Mx in such a way that 7 ^ (a )(x ) =  

'rM{A){a){x) for  all a ^  A.

(a) The map i : A  ^  M ,  where for  all x  E X , : Ax Mx is the identification

of part (i), is a homeomorphism onto its image.

(Hi) For all U G O x ,  ro(J7 , i s  an essential ideal o f T ^ { U , M ) ,  when we identify A  

with its image l{A)  C M .

Proof, (i): For each x  € X ,  let Jx and Hx  be as defined in (2.3.2) and (3.2.1) 

respectively. Then since Jx =  ^  by Proposition 3.2.3(ii), we m ay identify

A / J x  =  A / { H x  A)  =  {A + H x ) / Hx by [24, Corollary 1.8.4], which is a closed two 

sided ideal of M { A ) / H x .  Under th is identification, the image of a  +  J i  of a G ^  is 

identified w ith a +  Hx (regarding a as an elem ent of M{A)) .

By Corollary 2.3.4, the ^-isomorphisms j a  and 7 a/(^) satisfy 7^1 (a) (x) = a + Jx and 

7 ^/(4 ) (a) (x) = a + Hx  for all a E A  and x  E X , so th a t 7 ^ (a)(a:) =  7 a/(>1)(^)(^) via the 

identification above.

(ii): It is clear th a t l{A) w ith the subspace topology inherited from A4,  satisfies 

the conditions of Definition 2.2.1. Moreover, since 7 ^(a) =  7 A/{,4 )(a) for all a  G i4, it 

follows th a t ')a {A) C F*’(X, i ( ^ ) ) .  T he family of sections ^ a {A) satisfy conditions (i) 

and (ii) Theorem  2.2.5, hence the subspace topology on t{A)  is the unique topology 

for which these sections are continuous. It follows th a t i is a hom eom orphism  onto its 

image.

(iii): We first show th a t F o ( t/,>1) is a  closed two-sided ideal of Let

s G F^([/, yVJ) and a G Fo(J7, ^ ) .  Since for each x  E U , Ax  is an ideal of M^, we have

s{x)a{x ) ,a{x)s{x )  G Ax  for all such x.  Thus s a ,a s  G T^{U,A).

To see th a t  the norm  functions of sa  and as  vanish a t infinity on U , note th a t  for 

each x  we have ||(sa)(a:)|| <  ||s(x)|| • ||a (x )|| <  ||s|| ■ ||a (x )||. I t follows (if s /  0) th a t for 

each e >  0 ,

{x  E U : ||(sa)(x )|| >  e} C {x  E U : ||s|| • ||a (x )|| >  e}

=  {x e U : ||a(x)|| >  ^ } ,

and the  la tte r  is com pact since x  ||a(a:)|| vanishes a t infinity on U.  Hencc the  set

of  {x  E U : ||(sa)(x ) || >  e}, being closed by upper-sem icontinuity of x ||(sa )(x ) ||, is
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compact for each e > 0. Applying a similar argument to the norm function of as shows 
that sa,as € ro(t/, .4).

To see that r o ( ? 7 , i s  essential in T^{U,M),  let s G such that s that
annihilates ro(t/, ^)- We claim that s = 0.

For each xq G U, there is m G M{A)  such that 7m(a)(^)(^o) =  s { x q )  (that is, 
s(xo) =  m +  i^xo)- We will show that 7i\/(A)(’Ti)(xo) =  0, from which the claim will 
follow. Denote by m' = =  (^f/ ° ^U,x){'ni)., and let e > 0 be given. Since
(m' — s)(xo) =  0 and x i-> \\{m' — s)(x)|| is upper-semicontinuous on U, there is an 
open neighbourhood W  of xq contained in U with l|(m' — s)(x)|| < |  for all x G W . It 
follows that

||(m' -  s)|„,|| =  sup ||(m' -  s)(x)|| < ^ < £■ 
xew ^

Now take a G Fo(VF, with ||a|| =  1. Since W  C U, we have A{W)  C A{U) 
and so Fq(H ,̂ Q To{U,A) by Proposition 4.3.1(iv). In particular this implies that 
(s|j^.)a =  0. Then

| | ( m ' | j ^ , ) a | |  =  II ( ( m ' - s  +  s ) | j ^ , ) r t l |

<  | | ( m '  -  6 ' ) | u - l l  •  l l “ l l  +  l l ( « l i v ) o | |

Since i^w ■ M{A{W))  —>■ A4) is injective, it is isometric, and since restriction

is transitive,

=  ( 7 a / ( / 1 ) ( " i ) | ( ^ )  =  7 i \ / ( A ) ( ^ ) | i y  =  <Pw,x{m),

so tha t in particular Hm'lj,,!! =  ||$vi/,x(’7i)||. By [20, §2], the norm of ($u',x)(?^) is 

given by

||($iv,A:)(m)|| =  sup{||(^>H';s:)(m)6|| : b G A{W) ,  ||t|| =  1}.

Now uw restricted to A{W)  is a ^-isomorphism of A{W)  onto Fo(H^, by Propo

sition 4.3.1(iv), so for any a G Fo(H", >4) with ||a|| =  1 there is 6 G A{W)  with 

uw[b) ~  ')A{w)iP) — ll̂ ll =  1- Thus

||($H^,x)(m)|| =  sup{|| {{uw o ^w,x) {m) )  vw{b)\\ : b G A{W) ,  ||6|| =  1}

=  sup{||(m'|,^.)nv(^^)|| : b G A{W),  ||6|| =  1}

=  sup{||(m '|j^,)a|| : a G F o (ir, ^ ) ,  ||a || =  1} <  e,

1
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where the inequahty on the last line follows from (4.3.1).

By Lem m a 4.3.5, we have

||($vv,x)(m )|| =  sup ||6 + J x ll , 
x&W

while ||7A/(^)(m)(xo)|| =  ||m +  i/xoll- B ut then by [8, Lem m a 1.5] this gives 

\ h M{ A ) { m) { x o ) \ \  =  \\m +  HxoW =  inf sup ||m  +  Jy
x o€V  yy^Y

=  i n f  l l ( ^ H / ; c ) ( m ) | |  <  e ,
X O & V

the infimum being taken over all open neighbourhoods V  of xq in X . Since e >  0 was 

arbitrary , this gives |i7y\/(^)(?7i)(a:o)|| =  0, and so s(xq) =  0.

We conclude th a t  sa =  0 for all a G ro(C/, implies s =  0, so th a t ro(f7, is an 

essential ideal of r^(J7, A1).

□
T h e o r e m  4 .3 .7 . Let { A , X , îi a ) be a Cq{ X ) - algebra, dJlx the associated m,ultiplier 

sheaf o f  A  over X  (Definition 4-1-S), and { M , p X , p )  the upper-semicontinuous (H)- 

C*-bundle over j3X associated with l^,T\x  by Theorem 4-2-10. Then fo r  each open 

U Q X ,  the map ujj :  ̂ r^ (J7 , A1) of Theorem 4-2.3 is a *-isomorphism. In

particular T l x  ’'nay be identified with the local section sheaf U r * ( t / ,  A ^).

Proof. T he restriction of vu  to  A{U)  is a ^-isom orphism  by Proposition 4.3.1. By 

Proposition 4.3.6(iii), ro ([/, .4) is an essential ideal of A^), so there is a *-

isom orphism  rj : r^{U,Ai)  —> M{ro{U,  A))  extending the  identity  on ro(C/, Thus 

we get a com m utative diagram

M { A { U ) ) ^ ^  r \ U ,  M)  M(ro(C/, ^))

N ote th a t  since rj o vy  extends the ^-isomorphism  î u \a {U)  ̂ m ust be surjective. B ut 

then  since rj is injective, vu m ust be surjective. □

In certain  cases Theorem  4.3.7 allows us to  construct the  m ultiplier sheaf of a 

C o (^ )-a lg eb ra  as sections of a bundle depending only on A ,  as the  following corollary 

shows.
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C o ro lla ry  4 .3 .8 . Let { A , X , ^ la) he a a-unital  Co{X)-algebra and denote hy ( A , X , p )  

the associated upper-semicontinuous (H)-(T-bundle  over X .  I f  fo r  all x  E X  we have 

^^A{Co{X))^[A 2  Jx, then with the identification of  Theorem 4-3.1, the multiplier sheaf  

of A  over X  satisfies dJlx{U)  =  F^(J7, for  all U E 0 ( X ) .

Proof. Since /i4 (Co(-^)) f) A  ^  for all x G X ,  A / J x  is unital for all x G X  by [8, 

Proposition 2.2], and thus the  ideal H x  of (3.2.1) is strictly  closed in M { A )  by Corol

lary 3.3.6. It then follows from Theorem  3.2.4(ii)’ th a t M { A ) / H x  =  M { A / J x )  — A j J x  

for all X.

Together w ith Proposition 4.3.6(ii), this last fact shows th a t  { A , X , p )  =  {A4 ,X ,q ) ,  

and so dJlx{U) =  T^{U,A)  by Theorem  4.3.7.

□

Recall th a t by Proposition 2.3.11 any quasi-central C*-algebra A is a C o (P rim (Z (^ )))- 

algebra, where the  s tructu re  m ap is the  inclusion m apping C o (P rim (Z (^ )))  =  Z{A)  ^  

Z M { A ) .

C o ro lla ry  4 .3 .9 . Let A be a quasi-central -algebra, (^ , P rim (Z (yl)),/i^ i) its canoni

cal representation as a CQ{Pr\m{Z{A)))-algebra, and [A ,Pr \u \{Z{A)) ,p )  the associated 

upper-semicontinuous (H)-C*-bundle over P rim (Z (yl)). Then, with the identification of  

Theorem 4-3.7, the multiplier sheaf o f  A  over P rim (Z (i4)) satisfies '^Pr\m{Z(A)){U) — 

r \ U , A )  for  all U G C >(Prim (Z(^))).

Proof. Note th a t /i^ (C o(P rim (Z (A ))) =  Z{A)  in th is case, and since P  2  Z{ A)  for any 

P  G Prim (yl), it follows th a t Jx 2  Z[ A)  for any x  G P rim (Z (^ )) . Thus Corollary 4.3.8 

applies. □



Chapter 5

The Glimm space of the minimal 
tensor product

In this section we study the space of Ghmm ideals of the minimal tensor product 

A <S>a B  of two C*-algebras A and B. We show that there is a natural open bijection of 

Glimm(yl) x Ghmm(B) onto Glimm(yl(8)Q B), and identify a large class of C*-algebras 

A for which this map is a homeomorphism for all B. In the case that the map fails to 

be a homeomorphism, we show that the topology on Glimm(A i8> q  B) depends only on 

that of the product space Prim(>l) x Prim (5). In particular, Glimm(j4 B) may be 

constructed in all cases without knowledge of those ideals of yl(8>Q B  which do not arise 

from a pair of ideals of A and B.
This result, together with the Dauns-Hofmann Theorem, allows us to construct the 

centre ZM{A B) of the multiplier algebra oi A®^ B  in terms of these spaces. We 

obtain a precise characterisation of those C*-algebras A and B  for which ZM{AiS>aB) — 
ZM{A)  (gi ZM(B) ,  and show that this may occur even when M{A)  0 ^  M{B)  is strictly 

smaller than M[A B).
When the Glimm spaces are regarded as sets of ideals, we show that the map sending

[G,H) ^  G <Sia B + A<S>a H

implements the above bijection. This extends an earlier result of Kaniuth [37], who 

obtained a similar result under the assumption that A (8>q B  satisfies the property (F)

78
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of Tomiyania [54], Our approach is similar to that of Kaniuth, in that we use an 

alternative definition of the Glinnii space based on the complete regularisation of the 

space of factorial, rather than primitive, ideals. The reasons for this are discussed in 

Section 5.5.

Finally, we apply these results to the study of the Dauns-Hofmann representation 

of A <8)q B over Glimm(y4 0 ^  B). We discuss conditions under which the resulting C*- 

bundle depends only on tlie corresponding bundles associated with the Dauns-Hofmann 

representations of A and B. Moreover, we investigate the stability of the properties 

of continuity and quasi-standardness of these bundles under the operation of taking 

minimal tensor products.

Sections 5.1 to 5.7 have appeared in the article [45].

5,1 Introduction

The focus of our work is the relationship between a C*-algebra A and its collection 

of primitive ideals Prim(^), a to{)ological space in the hull kernel topology, the as

sociated complete regularisation space Glimm(yl) of Priin(i4), and in particular how 

Ghmm(j4(8>Q B) relates to Glimrn(/1) and Glimm(Z^). Here A ^ a  B  is the minimal (or 

spatial) tensor product of two C*-alge\)ras A and B (Definition 5.3.1) and our work is 

motivated by a desire to extend earlier work such as [37], [6], [42].

As described in Theorem 2.3.6, Dauns and Hofmann showed in [21] that any C*- 

algebra A may be represented as the section algebra of an upper semicontinuous C*- 

bundle over Glimm(A) if this space is locally compact, or over its Stone-Cech compacti- 

fication otherwise. Under this representation the fibre algebras are given by the Glimm 

quotients of A. Thus in the case of the minimal tensor product of C*-algebras A and 

B,  a natural question that arises is to determine Glimm(A<8>Q B) in terms of Glimm(A) 

and Glimm(i?), both topologically and as a collection of ideals of A<Sia B. A related 

problem (over more general base spaces) was studied by Kirchberg and Wassermann 

in [40], and later by Archbold in [6], by considering the fibrewise tensor product of the 

corresponding bundles of A and B.

We will denote by Id'(yl) the set of all proper norm-closed two sided ideals of A. 

By Fac(yl) we mean the space of kernels of factor representations of A, which is a 

topological space in the hull-kernel topology (Definition 5.5.1).

There is a natural embedding of Id '(^) x Id '(5) into Id'(y4 <Sia B) sending (/, J ) ^
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ker(^/ 0  qj),  where qj and qj  are the quotient maps. The restrictions of this map 

to the spaces of primitive and factorial ideals are known to be homeomorphisms onto 

dense subspaces of Prim(j4(8>Q 5 ) and Fac(^®Qi?) respectively, see [59], [42], Recently 

A.J. Lazar has shown in [42] that any continuous map /  : Prim(>l) x Prim(B) —>■ Y,  

where y  is a Ti space has a continuous ‘extension’ to Prim(>l(8)Q B),  where we identify 

Prim (^) X Prim(B) with its image under the above embedding.

We begin in Section 5.2 with considerations of the complete regularisation of a 

product X X F  of topological spaces, gathering together and extending results on 

this theme from the literature. Central to this is the theory of w-compact spaces, 

introduced by Ishii in [35]. We establish (Proposition 5.2.9) conditions on a C*-algebra 

A that ensure that the complete regularisation of Prim(v4) x Prim (5) is homeomorphic 

to the product space Glimm(yl) x Glimm(i?) for any C*-algebra B.  In the presence of a 

countable approximate unit for A,  a necessary and sufficient condition for this to occur 

is that Glinnn(i4) be locally compact. In the general case, sufficient conditions include 

compactness of Prim(yl) (e.g. if A is unital), or that the complete regularisation map of 

Prim(A) is open (e.g. if A is quasi-standard, see [7]). Local compactness of Glimm(74) 

is always a necessary condition.

Using the extension result of Lazar together with the universal property of the 

complete regularisation of a topological space described in Section 5.2, we show (The

orem 5.3.3) that as a topological space Glimm(^ B)  is the same as (or can be 

identified in a natural way with) the complete regularisation of Prim(yl) x Prim (5). 

We investigate conditions under which the latter coincides with the cartesian product 

space Glinnn(>l) x Glimm(i?), while showing that the underlying sets always agree. In 

Corollary 5.3.4 we give some rather general conditions on A or on B for this coincidence 

but show an example in Section 5.7 where it fails.

An equivalent formulation of the Dauns-Hofmann isomorphism (2.3.1) identifies 

Z M (^) with the C*-algebra of bounded continuous functions on Glimm(A). We show in 

Theorem 5.4.3 that for any C*-algebras A and B, Z M { A ^ a B )  can be identified with the 

bounded continuous functions on (the complete regularisation of) Prim(yl) x Prim (5), 

and give necessary and sufficient conditions (Theorem 5.4.6) for ZM{ A)  0  ZM{ B)  =  

Z M{ A  0Q B).

In Section 5.5, we determine the set of Glimm ideals of A 0q  i? in terms of the 

Glimm ideals of A and B.  In order to do this, we use an alternative construction
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of Glim in(^) based on the complete regularisation of Fac(yl) (rather than Prim (^)) 

first considered by Kaniuth in [37]. The reason for this is the fact tha t there exists a 

continuous surjection Fac(yl (8 >a B)  —)• Fac(j4) x Fac(-B), while it is not known if the 

restriction of this map to Prim(A(g)Q B)  has range P rim (^) x P rim (5).

We show in Theorem 5.5.9 that the map Glimni(A) x Glimm(B) —>• Glimm(j4(giQ i?) 

sending (G, H) ^  G B  + A ® a  B  determines the homeomorphism of these spaces 

when considered as sets of ideals. This extends K aniuth’s result [37, Theorem 2.3], 

which was proved under the assimiption that A ® a  B  satisfies Tomiyama’s property 

(F), defined below.

In Section 5.6 we consider the problem of determining conditions for which the 

canonical upper semicontinuous bundle representation of A(8 >q -B over Glimm(A(8 >Q B)  

of [2 1 ] is in fact continuous (i.e. A ^ a B  defines a maximal full algebra of operator fields 

in the sense of Fell [27]). The main result of this section (Theorem 5.6.2) shows that, 

under the assumption that ker(gc ® Q h )  = G (8 |q B  -\- A <S>a H  for all pairs of Glinnn 

ideals (G,H)  of A  and B,  this representation oi A  B  is continuous precisely when 

the corresponding bundle representations of A  and B  (over Glimm(>l) and Glimm(i?) 

respectively) are continuous. We also show that, under a different assumption that does 

not require tha t these ideals be equal, continuity of A  and B  is a necessary condition 

for continuity of A (8 >q 5  (Proposition 5.6.4).

Let a  and /3 be states of A  and B  respectively. Then the product state  a  0  /? of 

A®a B  is defined via (cv0/3)(a(8)6) =  a{a)^{b)  on elementary tensors a ^ b  and extended 

to A<Sia B  by linearity and continuity. If / ,  J  e  Id'(yl (8 >q B)  with I  % J-, then we say 

tha t a state 7  of .A (8 )q 5  separates I  and J  if 7 (J )  =  {0} and there exists c G I \ J  

with 7 (c) =  1. The minimal tensor product A <S>a B  is said to satisfy Tomiyama’s 

property (F) if given any pair I,  J  €  Id'(j4 (g)̂  B)  with I  ^  J,  there is a product state 

o i A ^ a B  separating I  and J . There are many equivalent characterisations of property 

(F), see [42, Proposition 5.1] for example.

If a  : X  —> F  is a continuous m ap between topological spaces we will denote by 

Q* : C{Y)  —̂ C{X)  the unique *-homomorphism given by a*{f )  =  /  o o- for /  e  C{Y).
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5.2 The com plete regularisation of a product of topologi

cal spaces

In this section we relate the complete regularisation p{X  x F ) of the product of two 

topological spaces X  and Y  to the product space p X  x p Y .

Lem m a 5.2.1. Let X  and Y  be topological spaces. Then there is an open bijection

p{X)  X p{Y)  ^  p{X  X y )  

sending { p x { x ) ,  p v i v ) )  ^  p x x Y { x , y ) .

Proof. We first show that {X /  w) x (F / Ri) =  (X x F ) /  sa as sets; specifically that 

{xuVi)  ^  [X2 , y 2 ) if and only if xi «  X2 and yi «  ya- Indeed, if (x i,j/i)  (x2 ,j/2 ) and 

/  G C*^{X) then f  o n x  e  C^{X  x Y) ,  hence / (x i )  =  /  o 7Tx(xi,2/i) =  /o7 rx (x2 ,y2 ) =  

/ ( x 2 ), and xi w X2 -

On the other hand if both x\  k . x 2 and y\ ~  1/2, take g G C^(X x Y ) ;  then g{x i , y \ )  =  

g { x 2 , y i )  =  g { x 2 , y 2 ) -  it follows that the mapping {px{x),  py{y))  ^  p x x Y { x , y )  is a 

well-defined bijection.

In order to show that the above map is open we use the fact tha t in a completely 

regular space, the cozero sets of continuous functions form a base for the topology [29, 

3.4]. Consider a basic open set coz(/^) x coz{gP) in p X  x p Y , w'here /  G C'^{X),g G 

C^{Y).  Then h{x,y)  = ( /^  o px){x){gP o PY){y) defines an element of C^{X  x F ) , and 

hence gives h^ G C^{p{X x Y))  with o p x x v  =  h. Then coz(/i^) =  coz(/^) x coz{g^), 

so that coz(/^) X coz{gP) is an open subset of p{X  x Y ) .  □

In view of Lemma 5.2.1, for any topological spaces X  and Y  we identify p{X)  x  p{Y)  

and p[X  X Y)  as sets. This canonical map is not a homeomorphism in general, however 

(see Example 5.7.1). Thus in what follows, we will denote by p X  x  p Y  this product 

space with the (possibly weaker) product topology r^, and by p{X x Y )  the space with 

the topology r^r induced by the functions in C^{X x  Y) .

The following result was obtained originally in [34];

T heorem  5.2.2. (Hoshina and Morita) [36, Theorem 2.4]

Let X  and Y  be topological spaces. The following are equivalent:

( i )  p X x  p Y  =  p { X  X  Y) ,
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(a) For any cozero set G of X  x Y  and any point (x, y)  G G there are cozero sets U 

and V of X  and Y  respectively with {x, y)  E U x V  C G.

D e fin itio n  5 .2 .3 . Let { X , T )  be a topological space. For a subspace Y  C X  denote 

by Ty the topology on Y  generated by {co z(/) : /  G C{ Y) } .

For a topological space {X,  T )  and a subset U C X  we  denote by T  ft; the subspace 

topology on U inherited from T . For two topologies 7 i , ? 2  on X  we write 7i <  ? 2  to 

say that 71 is weaker than Ti-

For any subset U C A", we denote by U the T-closure of U and by c\ ry{U)  the t x - 

closure of U.  The following lennna establishes some basic properties of the r-topologies 

on subspaces of a topological space (A", T):

L em m a 5 .2 .4 . Let { X , T )  be a topological space and let U C X .  Then:

(i) TV < T  \u,

(a) U is Tx open if and only if U =  for  some open subset II' C p X ,

(Hi) If U is T x - o p e n  then U is saturated with respect to the relation w on X  (hence 

X \ U  is saturated also).

(iv) c\rx{U)  =  Px  ̂ (^px{U)^. where px { U)  is the Tcr-closure of p x { U)  in p X ,

(v) If U C V  C X  then r y  \(j< r y .

Proof, (i) Every basic T;y-open set is of the form {x  £  U : f { x )  7  ̂ 0} with f  \ U  ^  [0,1] 

continuous, hence is open in T  \u-

(ii) Note that for every continuous f  : X  ^  [Oil]i co z (/)  =  pj } { coz { f^) )  by the 

construction of /^. Hence U C X  r^-open if and only if there exist continuous 

functions fi \ X  ^  [0,1] for all i in some index set I  such that

u = \J coz(/i) = y p-'̂  (c o z ( /f)) = I y c o z ( / f)
i€l iel \ i€ l

Since the Tcr-open subsets of p X  are unions of cozero sets, the conclusion follows.

(iii) Suppose U is r^-open and x £ U. Then there is a cozero set neighbourhood 

c o z (/)  of X  contained in U, where /  : AT —> [0,1] is continuous. Thus for any y E X \ U ,  

f { y )  =  0 and f [ x)  7  ̂ 0. Hence t  7 6  y for any such y, and so [x] C U.
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(iv) By (ii) y p x { U ) j  is t x  closed. Now suppose F  C X  is t x  closed and U C F.  

Then p x { F )  is closed in p X  by (ii), and contains p x {U ) ,  hence contains p x {U ) .  By 

( iii) , th is gives F  =  p~'^ [p x {F ) )  3  p~̂  ( p x { U ) ) ,  as required.

(v) I f  C y  C X ,  then every /  E C (V ) has /  [[/G C (U ).  Hence co z (/) n  f /  =  

co z (/ \u)  is a cozero set o f U, so tha t the subspace topology tv \u is weaker than

TU-  □

D e f in it io n  5 .2.5. A  topological space { X , T )  is said to  be w-compact i f  given any T -  

open covering {Ua}aeA  o f tlien  there exist a i , . . .  a „  G A  such tha t X  =  c Ity  {Uai U 

. . .U t/aJ.

I t  is shown in [36, Proposition 3.3] tha t X  is w-conipact i f  and only i f  any fam ily  

{Q q }  o f rx -open  subsets o f X  w ith  the fin ite  intersection property  has P| Qa /  0- 

The class o f w-compact spaces was introduced by Ishii in  [35] to  characterise the 

topological spaces X  for which p {X  x  F )  =  p X  x  p Y , for any topological space Y :

T h e o re m  5.2 .6 . [36, Theorem 4 - l j  For a topological space X  the following are equiv

alent:

( i)  p {X  X Y ) =  p X  X  pY fo r  any space Y ,

( i i )  For each x  E X  there is a cozero set neighbourhood U  o f x  such that U  is w-

compact.

We w ill show in Proposition 5.2.9 tha t condition (ii) o f Theorem 5.2.6 is satisfied by 

P rim (A ) for a large class o f C*-algebras A. The follow ing Lemma gives a sufficient con

d ition  for a po in t x  in  a general topological space X  to  have a cozero set neighbourhood 

w ith  w-compact closure.

L e m m a  5.2 .7 . Let { X , T )  be a topological space and suppose that p x {x )  G p X  has a 

compact neighbourhood K  such that there is a compact C  C X  with p x {C )  =  K . Then 

x  has a cozero set neighbourhood U in X  with U w-compact.

Proof. Choose /  G C {p X )  w ith  f { p x { ^ ) )  =  1 and f { p X \ m i K )  =  {0} .  Le t U  =  

p ~ ^ {c o i [ f ) )  =  coz{ f  o p x ) ,  a cozero set neighbourhood o f x  in  X .  We claim  th a t U D C  

is T(/-dense in U.

Let y  be a co/ero set o f U, then V  is also a cozero set o f X  by [36, Lemma 3.9].

Choose g G C {p X )  such tha t V  =  coz{g o p x ) .  Note th a t for any v G p x i y )  =  coz(^)
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there is y G C  svidi tha t p x [ y )  =  v, hence g o p x { y )  =  g{v)  ^ 0 .  So l^ n C  is non-empty, 

and since every t u  open subset o f is a union o f cozero sets such as C/ PI C  is 

Tt/-dense.

I f  <5 C [ /  is a nonempty r^-open subset, then i t  is re lative ly open (in the subspace 

topology T  ['[/) by Lennna 5.2.4 (i). In  particu la r, Q D U  is nonempty, and moreover is 

Ty open by Lemma 5.2.4 (v).

Take a collection {Q q } o f r^-open subsets o f U  w ith  the fin ite  intersection prop

erty. Then for every fin ite  subcollection {Q a j }"=D  the intersection n j= i(Q a j CiU) =  

( r i j = i  Qaj ^  nJ7 is nonempty. I t  follows tha t { Q a ^ U }  is a collection o f T(/-open subsets 

o f U  w ith  the fin ite  intersection property. Since f i  C  is T[;-dense,

is nonempty for every such subcollection. Thus {Qa  n  [ /  H C } is a collection o f subsets 

o f C  w ith  the fin ite  intersection property. Since C  is compact, p| (Q q  n fl C)nC ^  0. 

As

L e m m a  5.2.8. Let X  be a topological space and suppose that every x  E X  has a cozero 

set neighbourhood w ith w-compact closure. Then p X  is locally compact.

Proof. I f  ^  C A" is w-compact, then p x { ^ )  is w-compact by [36, Proposition 3.10]. But 

then since px  {A)  is completely regular i t  is homeomorphic to  its complete regularisation 

p { p x { A ) ) ,  hence is compact by [36, P roposition 3.4].

For each po in t x  G X , let Ux be a cozero set neighbourhood o f x  w ith  Ux w-compact. 

Then px{Ux)  is compact, and is a neighbourhood o f p x { x )  since px{Ux)  is open by 

Lemma 5.2.4(iv). □

P ro p o s it io n  5 .2.9. Let A  be a C -a lgebra such that one o f the fo llow ing conditions

(Qa n t/n C) n c c

for each a , th is implies that H Q a  ^  Ittnice U is w-compact. □

hold:

( i)  Prim(74) is compact,

(a ) the complete regularisation map p^  : P r in i( ^ )  —> G lim m (j4) is open, or
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( l i i )  A is a -un ita l and G lim m (yl) is locally compact.

Then every P  G P rin i(j4 ) has a cozero set neighbourhood w ith w-compact closure. Hence 

fo r  any C*-algebra B , the complete regularisation /9(Prim (A) x  P r iin (S ))  o /P rim (y4) x 

P r im (5 ) is homeomorphic to the product space G lim m (j4) x G lim m (i? ).

Conversely, i/G lim m (j4 ) is not locally compact then there is P  E P rim (y l) that does 

not have a cozero set neighbourhood w ith  w-compact closure.

Proof. Note tha t i f  (i) holds then G lim m (/1), being the continuous image o f the compact 

space Prim (> l), is compact. The proposition is then immediate by Lemma 5.2.7 w ith  

C  =  Prim(y4) and K  =  G hm m (A).

In  cases (ii) and (in ), take P  G P rim (A ) w ith  Pa {P)  — x  and let K '  be a compact 

neighbourhood o f x  in G lim m (^ ). B y  [43, Theorem 2.1 and Proposition 2.5], K '  is 

contained in a compact subset o f G lim m (A ) of the form

K  :=  {G  G Glimm(y4) : ||a +  G|| >  a }  =  Pa { { P  S P rim (> l) : ||a +  P|1 >  a } ) ,

for some a E A  and a  >  0, and the set { P  G P rim (A ) : l|a +  P|| >  a }  is compact by [24, 

Proposition 3.3.7]. Then K  is a compact neighbourhood o f x,  and the conclusion thus 

follows from Lemma 5.2.7.

I t  then follows from Theorem 5.2.6 tha t i f  any o f the conditions (i) to  ( iii)  hold, 

/9(Prim(v4) x F )  =  p (P rim (A )) x  p{Y)  for any space Y.  In  particu lar, i f  B  is a C*-algebra 

then we have

p (P rim (A ) X P rim (5 ))  =  /9(Prim(y4)) x /9 (P rim (5 )) =  G lim m (> l) x G lim m (i? ).

On the other hand i f  G lim m (^ ) is not locally compact, then by Lemma 5.2.8 there 

is P  G P r im (^ )  for which no cozero set neighbourhood o f P  has w-compact closure.

□

Remark 5.2.10. Suppose tha t is a C*-algebra such th a t P rim (y l) does not sat

isfy condition (ii) o f Theorem 5.2.6. Then there is a topological space Y  for which 

/9(Prim (A) X F )  /  G lim m (A ) x p{Y) .  I t  is not im m ediate ly evident whether th is 

space Y  can be chosen as P r im (5 )  for some C*-algebra B.  Thus the pa rtia l converse 

in Proposition 5.2.9 does not preclude the possibihty tha t p (P r im (^ )  x P r im (5 ))  =  

G lim m (yl) x G hm m (5 ) for all C*-algebras A  and B.
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We will show in Example 5.7.1 however th a t p( X  x y )  /  p(X)  x p(V)  is indeed 

possible when X  and Y  are primitive ideal spaces of C*-algebras. Specifically, we 

construct a C*-algebra A  for which /9(Prim(A) x P rim (^)) /  Glimm(v4) x Glimm(A)

Remark  5.2.11. Another natural topology on the complete regularisation p X  of a space 

X  is the quotient topology induced by the complete regularisation map p x ; th a t is, 

the strongest topology on p X  for which px  is continuous. Since px  is continuous as 

a map into [pX,Tcr), it always holds tha t Ter <  Tq. However, there is an example due 

to D.W.B. Somerset of a space X  for which Ter ^  Tq on pX,  and a C*-algebra A  with 

Prim(yl) liomeomorphic to X  [41, Appendix].

It follows from [7, p. 351] and [41, Theorem 2.6] tha t if A  is a C*-algebra satisfying 

one of the conditions (i) to (iii) of Proposition 5.2.9, then necessarily Ter =  Tq on 

G lim m (^).

5.3 The Glirnm space o f th e m inim al tensor product of 

C*-algebras

In this section we show that, as a topological space Glimm(i4 <8>q B)  can be naturally 

identified with Glimm(y\) X Cilhmu(B), when the latter space is considered as the 

complete regularisation of Prini(/1) x Prim (B). We first recall the definition of A  (g)̂  B  

and discuss the canonical embedding of Prim(y4) x P rim (5) in Prim(A (8>q B).

D e fin itio n  5 .3.1. Let A  and B  be C*-algebras and let A q B  denote their ^-algebraic 

tensor product. For representations n : A  ^  B{H)  and a : B  B{ K)  of A  and B  on 

Hilbert spaces H  and K  respectively, there is a unique (algebraic) ^-homomorphism

T T ( D a : A Q B - ^  B{H)  © B{ K)  C B { H ^ K ) ,

where H ® K  denotes the Hilbert space tensor product of H  and K.

Setting

||c||j^ =  sup [|(7r O (j)(c)|| , c e  A Q  B

where tt and a range over all representations of A  and B  respectively, defines a C*-norm 

||-1|  ̂ on A q B.  The completion A 0 q  i? of A 0  5  in this norm is called the minimal or 

spatial tensor product of A  and B.
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Let "K \ A ^  A' and a \ B  B ' he *-honiomorphisms of C*-algebras. Then there is a 

unique *-homomorpliisin 7r(gicr : A ® ^ ^  A'lSiaB', sucli that (7r(8)cT)(a0 6 ) =  TT(a)<S>(7{b) 

for all elementary tensors a ^ b  ^  A(S> B. In particular let ( /, J )  G W^(74) x Id'(i?) and 

denote hy qi : A ^  ^ / I ,Q J  '■ B  B / J  the quotient homomorphisms. Then we have a 

♦-homomorphism qj iS> qj ■ A  (8>a B  —>• {A/1)  (g)̂  ( B/ J ) .

For more details on the constructions of A (S>a B , H ® K  and tt (8> ct we refer the 

reader to [31] and [53] [Chapter IV].

We now define two natural maps >̂, A : Id'(j4) x Id^(B) Id'(A <8»q B)  via

$ ( / ,  J )  =  ker{q i® qj)  (5.3.1)

A(7, J )  =  I  + A ® a J -  (5.3.2)

The following Proposition lists some known properties of the map

Proposition  5.3.2. Let A  and B  be C*-algebras and A ® ^ B  their minimal C*-tensor 

product. Then the map $  defined by (5.3.1) has the following properties:

(i) I f  I , K  6 Id'(A) and J , L e  Id '(fi) are such that I  ^  K  and J  ^  L then $ ( / ,  J )  D 

$ (X ,L )  [42, Lemma 2.2],

(ii) The restriction of ^  to P rim (^) x Prim (B) is a homeomorphism onto its image 

which is dense in Prim(j4 B) [59, lemme 16],

(Hi) The restriction o/<J> to Fac(^) xFac(B ) is a homeomorphism onto its image which 

is dense in Fac(yl(8>Q B)  [42, Corollary 2.7],

(iv) For I , J  E Id^(^) x Id '(i?), $  (hull(J) x hull(J)) is dense in hu ll($ (/, J ))  [42, 

Corollary 2.3],

(v) For I , j £  Id'(>l) X Id^(B), we have

$ ( / ,  J )  =  : {P,Q)  e  hull(7) X hull(J)}

[42, Remark 2.4]

Theorem 5.3.3 below identifies the complete regularisation of Prim(yl) x P rim (5) 

with that of Prim(j4 0 q  B).  A s discussed in the remarks following Lemma 5.2.1, we 

need to take into account the appropriate topology on the former space. Thus we will 

refer to /9(Prim(>l) x Prim (B)) as (Glim m (^) x Glimm(i?), Ter), and /9(Prim(yl)) x 

p(Prim (i?)) as (Glimm(j4) x Glimm(i?),Tp)
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T h e o re m  5.3 .3 . Let A  and B  he C-algebras, let A  <8)q B  be their minimal C*- 

tensor product and denote by Pa , P b  o,nd p a  the complete regularisation maps of 

Prim(yl), Prim(-B) and Prim(j4 i8)q B) respectively. Then there is a homeomorphism 

ij) : Glimm(j4 (gia B)  (Glimm(yl) x Gl i mm( ) ,  Tct) given by

It follows that -0 defines a continuous bijection Glimm(A (8>a B) (Gliniin(^) x 

Glimin(i?), Tp).

Proof. The map pA ^ PB '■ Prim(j4) x Prim (B) —> (Ghmm(>l) x Ghmm(i?), Ter) is tlie 

complete regularisation map of Prim(yi) x P rim (5 ) by Lemma 5.2.1. For the remainder 

of the proof we will consider Glimm(yl) x Glimm(i?) with this topology (from which 

the second assertion will follow since Tp is weaker).

By [42, Theorem 3.2], the map {pA x ps)  o : <I> (P rim (^) x Prim(i^)) —> 

Glimm(yl) x Glimm(-B) extends uniquely to a continuous map {pA x p s)  '■ P rim (^  0 q 

B) —> Glimm(yl) x Glimm(B).

Since Glim m (^) x Glimm(/?) is completely regular, [pA x pb) induces a continuous 

(surjective) map il; : Ghnmi(yl®„ B) Glim m (^) x Glimm(B) with the property that 

Pa =  [PA X P b )  [55, Corollary 1.8].

To show that i p is in fact a homeomorphism, it suffices to show that the =t=- 

homomorphism /̂)* : C*’(Glimm(yl) x G lim m (5)) —> C*(Glimm(^(8iQ B)), i p * { f )  =  f o i p  

is surjective [29, Theorem 10.3 (b)j.

To this end, let /  G C*(Glinmi(j4 (S>q  B)),  s o  th a t /  o G (Prim(yl (8)q  B))  and 

hence f o p a o ^  e  C* (Prim(v4) x P rim (5)). Denote by ^ G C*’(Glimm(i4) x Glim m (5)) 

the unique function such that g  o [ p A  x p ^ )  =  f  °  P a ° ^ -  Then f  o  p̂ y and g  o  [ p A  x p g )  

are both continuous extensions of 5 o (pA x p^)  o to Prim(j4 (8)q B),  hence must 

agree by [42, Theorem 3.2].

{ipop̂ )mp,Q)) = {PA{p),PBm-

Prim(yl) X Prim(5)^—^ ^  Prim(j4 B)

Glimm(yl) x Glimm(B) ^  —  G lim m (^ (gî  B)
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Take m G Glimin(v4 (g)̂  B)  and M  G Prim(>l <8)q B)  such tliat Pa{M) = m.  Then

= {gotp){m)  =  {g o'ip o p^){M)

=  {9 ° {pA X Pb) ) { M)

=  { f ° P a ) { M )

= f { m )

It follows that 'tp*{g) =  / ,  hence ip* is surjective. □

Note that Theorem 5.3.3 shows that ° ^  is surjective. In particular, given any 

M  e Prim(v4 <8)q B)  there exist {P, Q) G Prim(>l) x Prim (5) such that M  «  ^{P,  Q)-

Corollary 5.3.4. Let A and B be O'-algebras such that either A or B  satisfies one of 

the conditions (i)-(iii) of Proposition 5.2.9. Then Ter = Tp on Glimm(y4) x Glimm(i?), 

and hence Glimm(yl B) is homeomorphic to (Glimm(yl) x Glimm(B),Tp) via the 

map Ip of Theorem 5.3.3.

Proof. Immediate from Proposition 5.2.9 and Theorem 5.3.3. □

5.4 The central multipliers A < S a  B

In this section we apply Theorem 5.3.3 to determine the centre of the multiplier algebra 

of A (8>q B  in terms of the topological space (Glimm(yl) x Glinmi(i?), Tct). We show 

in Theorem 5.4.3 that ZM{ A B)  is ^-isomorphic to the C*-algebra of continuous 

functions on the Stone-Cech compactification of (Glimm(j4) x Glimm(B), Tct). Further 

in Theorem 5.4.6 we give necessary and sufficient conditions on this space for which 

ZM{A)  O ZM{ B)  = Z M{ A B).

The embedding of M{A)  (g)̂  M{B)  C M{A B)  is discussed in [1], we include a 

proof in Lemma 5.4.1 below for completeness. It is shown in [32, Corollary 1] that for 

C*-algebras C  and D  we have Z{C (8>q D)  = Z{C) ® Z{D)  (where Z{C) <S) Z{D)  is the 

unique C*-completion of the algebraic tensor product Z{C)  © Z[D)  by nuclearity). In 

particular it follows that for any C*-algebras A and B  we may identify Z(M{A)  (8|q 

M{B))  — ZM{A)  (8) ZM{B) .  Thus in this section we are concerned with relating the 

centre of the larger algebra M{ A B)  with that of M[A)  (8iq M{B).

Recall that an ideal /  of a C*-algebra C is said to be essential in C if given any 

nonzero ideal J  of C, J  fl 7 ^  {0}. Equivalently for any c ^ C ,  cl  = Ic = {0} implies 

c = 0.
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Suppose th a t C  is a C*-algebra and 2 £  A /(C ) such th a t zc = cz for all c & C.  

T hen  it is easily verified th a t {zm — m z ) C  =  C { z m  — mz )  =  {0} for all m  G M{ C) .  

Since C  is an essential ideal of M{ C) ,  we conclude th a t

Z M { C )  =  {2 e  M{ C)  : z c = c z  for all c G C}. (5.4.1)

L e m m a  5 .4 .1 . There is a canonical embedding 0  : M{ A )  <S)a M { B )  M { A  (g)̂  B)  

such that

(0 (x  (g) y))  (a (8> 6) =  xa (g) yb and {a (g) b) (0(a: (g) y)) = a x ® b y

f or  all a E A , b  £ B , x  £ M { A ) , y  G M{ B ) .  Moreover, Q { Z M { A )  <S) Z Af ( B) )  C 

Z M ( A ^ a B ) .

Proof. C learly M [ A )  (g>Q M{ B )  contains A B  as a two-sided ideal. Suppose J  is a 

nonzero ideal of M { A )  (g)̂  M{ B) .  Then by [2, P roposition  4.5], J  contains a nonzero 

elem entary tensor x (g) y where x G M { A ) , y  G M{ B ) .  Since A  is essential in M{ A) ,  

there is a G w ith either ax  ^  0 or xa  7  ̂ 0. Suppose w.l.o.g. th a t  xa  ^  0, so th a t 

||(xa)*xa|| =  ||xa||^ ^  0. Setting a' = (xa)*,  we then  have an elem ent a' E A  with 

a 'xa  ^  0. Sim ilarly there are b, b' e  B  w ith b'yb 7  ̂ 0. It follows th a t

a'xa  (g b'yb = {a' (g b' ){x <Siy){a<® b)

is a nonzero element of J  fl (yl B).  Hence ^  <g>a is essential in M (A) <g>Q M( B ) .

By [20, Proposition 3.7 (i) and (ii)], there is a unique *-hom om orphism  0  : M{A)iSia 

M [ B )  M [ A  (ga B)  extending the canonical inclusion of A  (g)̂  B  in to  M [ A  (g^ B) ,  

which is injective since (g^ 5  is essential in M (>1) (g>Q M{ B ) .  For elem entary tensors 

x ® y  & M  (A) (S>a [B) and a ® b e  A  <Sia B  we have

(0 (x  (g y)) (a ig) 5) =  0 (x  (g y )0 ( a  <S)b) — 0 ( x a  <g) yb) = xa<Si yb,

(since 0  is the  identity  on A 'Siq B) ,  and sim ilarly (a (g b) (0 (x  (g y)) = a x  <Si by.

For elem entary tensors 21 (g 22 £ Z M [ A )  (g Z M { B )  and a<S) b E A  (g^ B  we have

0 (2 1  0  Z2 ){a (g 6) =  z \a  (g z^b = azi (g bz2  =  {a(S> b) 0( z i  (g 22),

from which it follows th a t for any 2 G Z M { A ) i ^ Z M [ B ]  and c  G A<SiaB, Q{z)c = cQ{z) .  

Hence by (5.4.1) we see tha t S [ Z M { A )  (g Z M { B ) )  C Z M { A ® a  B) .  □
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We remark that it was shown in [1, Theorem 3.8] that if A  is a-unital and non- 

unital, and B  is infinite dimensional, then 0  is not snrjective. In what follows, we will 

suppress mention of 0  and simply consider M{A)  0 ^  M{B)  C M { A  (8)q B).

The following result gives an equivalent formulation of the Dauns-Hofmann isomor

phism of equation (2.3.1).

Corollary 5.4.2. [21, III  Corollary 8.16] For any C*-algebra A , there is a

homeomorphism of Pvm\ {ZM{A) )  onto /?Ghmm(i4), and hence a ^-isomorphism  

Ha '■ C(/3Ghmm(A)) —> ZM{ A) .  Moreover, satisfies

li-AiDo- — f{p)a G Gp, fo r all f  G C'(^Glimm(>l)),p G G lim m (^),a  G A,

where Gp = ^ Prim(A) : p a { P )  = p] is the Glimm ideal o f A  corresponding to p.

Applying this identification to A<S>a B  together with the homeomorphism -ip of The

orem 5.3.3 allows us to determine Z M { A ® a  B)  in terms of Glimm(A) and Glimm(B):

T heorem  5.4 .3 . Let A and B  be C*-algebras and denote by rp the homeomorphism  

of Theorem 5.3.3. For each point p G G hm m (^ <8)q B) let Gp denote the Glimm 

ideal of A <S>a B  corresponding to p. Then there is a canonical *-isomorphism  0 ^  : 

C(/3(Ghmm(Y4) x Glimm(i?), Tct)) —> Z M { A ^ a  B)  with the property that

^ a { f ) c -  i f  o^){.p)c G Gp,

for all f  G C(/3(Glimm(^) x Glimm(i?), Tcr)),p G Ghmm(A (gia B) and c E. A  (8>q B.

Proof. Since ip is & homeomorphism the induced map tp* is a ^-isomorphism. Denote by 

Ha the ^-isomorphism of Corollary 5.4.2 applied to A<^aB, and by 0 q  the composition 

of the ^-isomorphisms

G (/3(Glimm(A) x Glim m (S), Tc,.)) ^ > G (^Glimm(A (8iq B)) > Z M { A  B).

Then 0 ^  clearly has the required properties since fia does. □

On the other hand, applying the identification of Corollary 5.4.2 to A  and B  sepa

rately gives ^-isomorphisms

G (/3Glimm(yl) x /?Glimm(i?)) — ^  G  (^Glimm(j4)) (gi G (/?Glimm(i?))

Z M { A ) ® Z M { B ) ,
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where i' is the canonical identification satisfying (8> g){x,y)  = f{x)g{y)  for all

elementary tensors f  %g  and (x,y) G /3Glimm(A) x /3GHmm(i?).

Let X  and Y  be completely regular spaces. Then since the product j iX  x is 

compact, the universal property of the Stone-Cech compactification [29, Theorem 6.5 

(I)] ensures that the inclusion i : X  x y  —> P X  x /3F has a continuous extension to 

: P{X  x F ) —> /3A’’ X (3Y. Moreover, since l has dense range, compactness of P{X  x Y)  

implies that is necessarily surjective.

Considering Glimm(yl) C ,5Glimm(>l) and Glimm(B) C /3Glimm(5), Lemma 5.2.1 

gives a continuous map

(f) : (Glimm(A) x Glimm(B), Ter) ^ (Glimm(^) x Ghmm(i?),rp)

T
/SGlimm(yl) x /3Ghmm(fi),

and (f) is a homeomorphism onto its range if and only if Tp = on Glimm(yl) x 

Glimm(B). Again by the universal property of the Stone-Cech compactification, 4> 

extends to a continuous surjection

4>̂ : /3 (Ghmm(yl) x G\hum{B),Tcr) —> /3Glimm(yl) x /3Glimm(.B).

Dual to this map is an injective *-honiomorphism

: C (/3Glinmi(yl) x /3Ghnmi(i?)) ^  C (/9 (Glimm(^) x Glimm(i?), Ter)),

sending /  >-> /  o .

The situation is summarised in the following diagram:

C (^Glimm(A) x ^Glinnu(i?))‘̂— C (,0(Glimm(^) x Ghmm(i?), Tct))

r
C (/9Glimm(>i)) ® C (/3Ghmm(i?))‘̂----------------C (;8Glimm(v4 (g)̂  B))

ZM{A)  ®  Z M { B f ------------------------------------------ ^  Z M{ A  B)

Corollary 5.4.4. For any C*-algebras A and B,  Z M [ A ) ® Z M { B )  =  Z M ( A ^ a B )  if 

and only if the canonical map

0^ : /? (Glimni(v4) x Glimm(i?), Tct) /9Glimm(yl) x /3Ghmm(i?)
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is injective. Moreover, when this occurs we have Tp = on Glinini(yl) x G lim m (5).

Proof. We first show that the preceding diagram commutes; that is, for any h G 

C(/3Ghmm(^) x /3Ghmm(i?)) the multiphers z\ and Z2  of A i8)q B  given by

Zi  =  {i^ia 0-^*0 { ( j ) ' ^ y ) { h ) ,  Z2 =  ((/M ® /ifi) o u )  ( h )

are equal. By linearity and continuity it suffices to check equality for functions of the 

form h = 'Si g), where /  G C(/3Glinim(j4)), g G C(/3Ghmm(5)).

Consider an elementary tensor a <8> 6 G B, and a pair {P,Q)  G Prim(A) x

Prim (B). We will show that {z\ — Z‘2 ){a<S>b) + ̂ {P,  Q) = 0. Set (p, q) =  {pA x pb){P,Q),  

and note that by Theorem 5.3.3 {' ipop(^o^)[P^Q) = (p,q). In particular it follows that

{tp* o {(f)^y){h){pa{^{P,Q))) = {(l)^y{h){ipo p ^ o ^ { P , Q ) )  = h{p,q) = f{p)g{q).

Firstly by applying the ^-isomorphism of Corollary 5.4.2 to the element {ip* o 

{(p^)*){h) of C(/3(Ghmm(A 0 Q B))  see that

zi{aSb) + ^[P,Q) = o{cl>0y){h){a^b) + ^P, Q)

=  f{p)g{(l){(>.<Sb) + ^{P,Q)

=  f {p)aiSgiq)b+^{P, Q) .

On the other hand, applying Corollary 5.4.2 to /  G C(^Glimm(yl)) gives p^iD o- 

f{p)a  G P,  so that

{pA{f)a -  f{p)a) <S) g{q)b = PA{f )a  O g[q)b -  f {p)a  O g{q)b G ker(^p (g) qq) =  $ (P , Q),

from which it follows that/Xyi(/)a(8i5(q')6-f'J>(P, Q) =  f {p)a®g{q)b+^{P,Q) .  A similar 

argument applied to B  gives pA{ f )a  (gi g{q)b +  $ (P , Q) =  pA{f )a  ® PB[g)b +  ^[P,  Q), 

and we conclude that

zi{aS>b) + ^ {P , Q)  = pA{f)aS> PB{g)b + ^[ P , Q)

=  {pA S  P b  ° i^){h){a(Sib) +  ^ { P , Q )

= Z2{aSb)  + ^ P , Q ) .

In particular [z\ — Z2 ){a®b)  G ^{P,  Q) for all a G A, 6 G .B and (P, Q) G Prim(yl) x 

Prim (fi). Since P |{$(P , Q) : (P, Q) G Prim (^) x Prim (P)} =  {0}, it follows that
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( 2 1  —  Z2){a ^  b) = 0 for all a £  A,b  e  B. Thus ( 2 1  -  22) 0 a  = {0}, that is, 

2 ] =  2 2 -

Since the vertical arrows of the diagram all describe ^-isomorphisms, the inclusion 

Z M [A )  (8) Z M {B )  C  Z M { A  (8)q  B) will be surjective if and only if is. By [29, 

Theorem 10.3], is surjective if and only if 4>̂ is a homeomorphism.

But then , being a continuous surjection from a compact HausdorfT space to a

Hausdorff space, is thus a homeomorphism if and only if it is injective.

The final assertion follows from the fact tha t 4>̂  is the identity on Glimm(/1) x 

Glimm(i?).

□

Let A" and Y  be completely regular spaces. The question of establishing conditions 

on A', Y  and X  x Y  for which canonical surjection : I3{X x Y )  ^  x ^ Y  is injective 

(and hence a homeomorphism) has been studied by several authors. If either AT or F  is 

finite, then this is trivially true. The most well-known characterisation in the infinite 

case is due to Glicksberg [30].

Definition 5.4.5. Let A' be a completely regular space. We say that A" is pseudocom

pact if every /  e  C{X)  is bounded.

Glicksberg’s Theorem [30, Theorem 1] states tha t, for infinite completely regular 

spaces X  and Y  the canonical map /3(A x F ) —> f iX  x ^ Y  is a homeomorphism if and 

only if A” X y  is pseudocompact.

T heorem  5.4.6. For any C*-algebras A and B, Z M{ A )  (8> Z M [ B )  = Z M { A ^ a  B)  if  

and only if  one of the following conditions hold:

(i) Glimm(yl) or Glimm(B) is finite, or

(a) Tp = Ter on Glimm (^) X Glimm(Z?) and G hm m (^) x Glimm(B) is pseudocompact.

Proof. If (i) holds, w.l.o.g. Glimm(i?) is finite, hence discrete and compact. In particu

lar pb  is an open map, so by Proposition 5.2.9(ii), Tp =  Ter on Glimm(A) x Glim m (5). 

Then by [55, Proposition 8.2] the map is a homeomorphism and hence Z M{ A)  ® 

Z M { B )  =  ZM{A<Sia B) by Corollary 5.4.4.

If Glimm(A) and Glinnn(i?) are infinite then by [30, Theorem 1],

/3 ((Glimm(yl) X Glimm(i?), Tp)) is canonically homeomorphic to ^0Glimm(j4) x
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^Glimni(i?) if and only if (Glimm(yl) x Glimm(5), Tp) is pseudocompact. Hence 

in the infinite case, Corollary 5.4.4 gives ZM{A)  ® ZM{ B)  =  ZM{ A  (8>q B)  if and only 

if (ii) holds. □

Clearly if M{A) M{B)  = M{A B)  then ZM{A)  ® ZM[B)  = Z{M{A)  

M{B))  = ZM{ A B).  We will show in Example 5.7.2 that the converse is not true; 

we construct C*-algebras A and B  such that Z M  {A) <Si ZM{B)  = Z{ M [A 0 ^  B)),  but 

M{A) M{B)  C M{ A B).

Remark 5.4.7. It is easily seen that the continuous image of a pseudocompact space 

is pseudocompact. In particular if X  and Y  are completely regular spaces such that 

X X y  is pseudocompact, then since the projection maps -nx and Try are continuous 

we have necessarily that both X  and F  are pseudocompact.

In the other direction, it is not always true that a product of pseudocompact spaces 

is pseudocompact; see [29, Example 9.15] for a counterexample. However, for a product 

of pseudocompact spaces X  and Y,  one of which is also locally compact, then X  x Y  

is pseudocompact by [55, Proposition 8.21].

5.5 Glimm ideals

We now turn to the question of determining the Glimm ideals of A 0Q B  in terms of 

those of A and B. More precisely Theorem 5.5.9 shows that, when the Glinmi spaces 

are considered as sets of ideals of A,B  and B, then the map A of Equation (5.3.2) 

satisfies A = .

We define a new map : Id^(A <S>a B)  Id '(^) x Id '(5), which is a left inverse of 

the map $  of Equation (5.3.1). For M  £ Id'(A(8iQ B)  we define closed two-sided ideals 

and of A and B  respectively via

= { a e  A : a ^  B C M } , M ^  = { b e  B : A ^ b C  M}.  (5.5.1)

The assignment 'P(M) =  (M ^, M ^ )  gives a map ^  : Id '(^  (8)̂  B)  —> Id'(A) x Id'(i?). 

We define the topological space Fac(^) analogously to Prim(yl) (Definition 2.1.1).

Definition 5.5.1. For a C*-algebra A,  we denote by Fac(^) the set of kernels of 

factorial representations of A.  For I  e Id'(y4) we let

hulI/(7) =  {M e Fac(A) : M  D I},
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and for T  C Id'(yl) we let

fc(T) =  n { 7 : / G T } ,

the kernel of T.

The hull-kemel topology on Fac(y4) is defined via the closure operation cl(T) =  

hull/(A:(T)) for all T  C Fac(A).

P ro p o s it io n  5 .5.2. Let A and B  be C*-algebras and B  their minimal C-tensor  

product. Then the map 'I' : Id'(/1 (8>q B) -> Id '(^ )  x Id '(B ) satisfies the following 

properties:

(i) o (I> is the identity on Id'(v4) x Id '(B ),

(li) 'I'(Fac(j4 (8iq B)) =  Fac(A) x Fac(B),

(Hi) The restriction o / >]> to Fac(A(g)Q B) is continuous in the hull-kemel topologies,

(iv) For any M  G Fac(^ (8)q B), the inclusion A/ C $  o 'P(A/) holds.

Proof, (i) and (iii) are shown in the proof of [42, Theorem 2.6]. To prove (ii), [31, 

Proposition 1] shows that ^'(Fac(yl(2)Q B)  C Fac(A) x Fac(B). Surjectivity then follows 

from Proposition 5.3.2(iii) and part (i).

As for (iv), it is shown in [17, Lemma 2.13(iv)] th a t for any prime ideal A1 of A ® a B  

we have M  C But then [12, Proposition H.6.1.11] shows tha t every factorial

ideal of a C*-algebra is prime, from which (iv) follows.

□

We remark that Proposition 5.5.2 (ii) shows tha t maps Prim(yl(8)a-B) to Fac(>l) x 

Fac(5). It is not known in general whether 'I' maps Prim(j4 (8>q B)  onto Prim(>l) x 

Prim (B). For this reason, we will need to use an alternative construction of the space 

of Glimm ideals of a C*-algebra, which was first considered by Kaniuth in [37].

It is shown in [37, Section 2] how for any C*-algebra A, Glimm(yl) can be con

structed as p(Fac(yl)). For I , J  & Fac(^) we write 7 J  if / ( / )  =  / ( J )  for all 

/  e  C^(Fac(^)), and denote by [/]/ the equivalence class of I  in Fac(yl). We remark 

tha t when A  is separable the spaces Fac(yl) and Prim(A) coincide [12, Propositions 

n.6.1.11 and II.6.5.15].

P ro p o s it io n  5 .5.3. Let A be a C-algebra. Then the relation '^ f  on Fac(A) has the 

following properties:
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(i) For I  G Fac(A) and P  G hull(7) we have

[I]f n  P rim (/i) =  [P] and k{[I ]f )  =  k  ( [P ] ) ,

(ii) F ac(j4 )/ ~ /  is homeomorphic to P rim (y l)/ «  via the map [I]f i-> [F], where 

P  G h u l l ( / ) ,  when both spaces are considered with the quotient topology,

(Hi) Each G limm ideal o f A  is of the fo rm  G j — k  ([ /] /)  fo r  some I  G Fac(yl).

(iv) The equivalence classes o f satisfy

[I]f =  \m\\f{G,).

Proof. P arts  (i) and (ii) are shown in [37, Lem m a 2.2], (iii) is im m ediate from (i).

To prove (iv) take 1 G Fac(j4). I t follows from the  definition of th a t the equiva

lence class [I]f is a closed subset of Fac(j4). By the  definition of the hull-kernel topology 

and by p art (iii) we then have

[/]/ =  hull;(A :([/]/)) =  h u ll;(G /).

□

As a consequence of P roposition 5.5.3(ii), we shall consider the set of equivalence 

classes F ac(A )/ as G lim m(A), and denote by : F ac(^ ) Glimm(yl) the cor

responding quotient m ap. Moreover, we m ay unam biguously speak of the  quotient 

topology Tq on Glim m(A) as the strongest topology on th is space for which either pA 

or is continuous.

For C*-algebras A  and B  and two pairs of ideals (P, Q),  {R,  S)  G Fac(j4) x Fac(i?), 

we will w rite (P, Q) ~ /  (R,  S)  when g{P, Q) =  g{R,  S)  for all g G C*'(Fac(j4) x F ac(P )). 

By Lem m a 5.2.1, this is equivalent to  saying P  R  and Q ~ /  5 .

Lem m as 5.5.4, 5.5.5 and Proposition  5.5.6 below relate equivalence classes of the 

relation ~ /  in Fac(/1) x F ac(P ) w ith those in Fac(A 0 ^  B) ,  via the m aps $  and

L e m m a  5 . 5 . 4 .  Let  {I, J)  G Fac(A) x F a c (P ) , and let Gj  = k  ([ /] /)  and G j  =  k {[J]f) be 

the corresponding Glimm ideals o f A  and B  respectively. Then k  (['J’( / ,  J)]f ) ,

the G lim m  ideal o f A ®  a B  corresponding to [ $ ( / ,  J)]y , satisfies G^ ^ j j ^  C 4> (G /,G j).
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Proof. The fact that $ ( / ,  J )  G Fac(j4ig>Q i?) follows from Proposition 5.3.2 (iii). Taking 

[P,Q]  G liull(7) X hull(J) we have Q) G hull ($ ( / ,  J ))  b y  Proposition 5.3.2 (i). In 

this case Proposition 5.5.3(i) gives

m f )  = k{[P]),k{[J]f) = k{[Q]) and = k m P , Q ) ] ) ,

and so we may replace {I, J)  with (P, Q).

Note that if {R, S)  G Prim(74) x Prim (S) such tha t {R, S)  w {P,Q),  and /  G 

C*’(Prim(A<8>Q-B) then / o $  G C^(Prini(A) x Prim (S)), h e n c e 5))  =  f { ^ {P, Q) ) ,  

so that ^ { R , S )  PS $ (P , Q). It then follows from Proposition 5.3.2(v) that

^ { G j , G j )  = ^{k{[P]),k{[Q])) = : {R, S)  G \m\l{k[P]) x hull(fc[Q])}

=  f ] m R , S ) : i R , S ) ^ { P , Q ) }

D f ] { M  G P rim (^  B) : M  ^  $ (P , Q)}

=  k { MP , Q) ] )  = G^^j^j)

□

Lem m a 5.5.5. For any M  G Fac(y4 (8)q B),  ^  o G Fac(yl (2>q B)  and M

Proof. The fact that <I> o G Fac(yl (8>q B)  follows from Propositions 5.3.2(iii)

and 5.5.2(ii). By Proposition 5.5.2(iv), we have M  C $  o ^(A-/). Hence $  o ^(A f) G 

hully(Af) =  {M} ,  so tha t A/ w / $  o ^(A /).

□

Note tha t the proof of Proposition 5.5.6 below requires th a t we base the definition 

of Glimm ideals on the complete regularisation of the space of factorial ideals (since 'I' 

maps factorial ideals to factorial ideals).

Proposition  5.5.6. Let  ( /, J )  G Fac(^) x Fac(P), M  G Fac(^<8iai?) and let {M^ ,  M ^ )  

denote Then M  if and only if  { M ^ , M ^ )  Kij { I , J) .  Hence with

G j , G j  and G^(^j j) as defined in Lemma 5.5.4, we have

M  G hull/ (Gd,(/,j)) if and only if  G hull/(G /) x hu ll/(G j)
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Proof. Suppose M  $ ( / ,  J ) , and take g G C^(Fac(yi) x F ac(5 )). Using Proposi

tion  5.5.2 (ii) and ( iii) , we have (? o <]> g C* (Fac(A (8Iq B)) .  Hence

g { M ^ , M ^ )  =  [g o =  {g o v& )($(/, J )) =  g{I,  J),

since o $  i f  the iden tity  on Fac(A) x Fac(5) by Proposition 5.5.2 (i). I t  follows tha t

Since ( [$ ( / ,  J ) ] / ) ,  Proposition 5.5.3(iv) shows tha t [$ ( / ,  J ) ] /  =

h u llj(G 4,(; J)). S im ilarly [I]f  =  h u ll j(G /)  and [J]y =  h u lly (G j) .

To prove the converse, suppose tha t Then by Lemma 5.2.1,

say /  and Rif J, so tha t 2  Gj  and ^  G j .  Together w ith  Lemma 5.5.4, 

th is gives the inclusion

o <K{M) =  $ ( M ^ ,  M ^ )  D $  { G i , G j )  D

and since by Proposition 5.3.2(iii) <J> o ^ '(M )  G Fac(>l (8>q B),  i t  follows from Proposi

tion  5.5.3(iv) tha t $ o ^ / (M )  k j  <3>(i, J ). Then by Lemma 5.5.5 we have M  $(/, J). 

The final assertion o f the statement follows from Proposition 5.5.3(iv). □

In what follows we make use o f the map A  : Id '(/1 ) x Id '(B )  ^  Id'(yl(SiQ B)  defined 

via (5.3.2). For ( / ,  J ) G prim e(yl) x  p r im e (fi) , (<1/ o A ) ( / ,  J ) =  ( / ,  J ) [17, Lemma 

2.13(i)]. We w ill extend this to general ( / ,  J ) G Id '(/1 ) x  Id '(B )  in  Lemma 5.5.7 below. 

On the other hand, i f  A' G Id '(> l (8>q B)  then

{Ao'iiJ)(K) =  ^  K  (5.5.2)

by the defin ition o f and in (5.5.1).

L em m a 5.5.7. Let I  and J be proper ideals of A and B  respectively. Then

(i) h u l l /A ( / ,  J ) =  ' i i - \ h u \ \ f { I )  x h u ll/ ( J ) ) .

(ii) ^ o A ( 7 , J )  =  ( / , J )

Proof. To show (i), take F  G h u ll/A (7 , J ) , then '^{F) =  (F '^ ,F ^ )  G Fac(A) x Fac(5) 

and F ^  ^ I , F ^  D J. Hence ^ ( F )  G h u ll;(7 ) x  h u ll/ (J ) .

On the other hand, suppose F  G Fac(74 (8|q B)  and '^{F)  G hully(7) x hu llj-(J ). 

Then using (5.5.2), A(7,  J ) C A ( F ‘̂ ,F ^ )  C F ,  as required.
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To prove (ii), let K  = A{ 1 , J )  and { K ^ , K ^ )  = 'I'(A’). Then if c € / ,  a (8) i? C 

I  B  C K,  so  a e  A''^ and hence I  C K ^ .  On the other hand, suppose a G and 

b G -B\ J ,  so tha t a (8) 6 G K . Choose a bounded linear functional A on B  vanishing on 

J  such that X{b) = 1. Let L \  : AiSia B  ^  A he the corresponding left slice m ap defined 

via L \[a ' (g) b') — \{b')a ' on elementary tensors and extended to A  0 q  B  by linearity 

and continuity [54, Theorem 1], Then Lx{A Q J)  — {0} and L \{ I  © B) C / ,  so that 

L\ { K)  C I.  In particular Lx{a®b)  — u E  I,  hence C I  and so = I.  A similar 

argument shows th a t =  J ,  which completes the proof. □

C o ro lla ry  5.5.8. Let {I, J)  G Fac(>l) x Fac(B). Then with G j, G j and G<i,(̂ j j) defined 

as in Lemma 5.5.4, we have

=  Gj  B  + A  (8)q G j

Proof. Take M  G Fac(>l (8>q B). By Proposition 5.5.6, M  D G^(^j j'̂  if and only if 

M  G (hully(G/) X hullj(G 'j )) .  Hence by Lemma 5.5.7(i), M  ~D G<j)(/,j) if and only 

if M  D A (G /, G j) , so  =  A (G/, G,;). □

As a consequence of Corollary 5.5.8, we are now in a position to prove a similar 

result to [37, Theorem 2.3]:

T h e o re m  5.5.9. Let A and B  be C*-algebras and denote by ip : Glimm(A (8)q B) —> 

(Glim m (^) x Glimni(B), rcr) the homeomorphism of Theorem 5.3.3. Then identifying 

the Glimm spaces with the corresponding sets of ideals we have

(i) A =  on Glimm(A) x Glimm(i?), hence A  is a homeomorphism of 

(Ghmm(yl) x Ghmm(i?), Ter) onto Glimm(j4 (8»u B),

(ii) is given by the restriction o f t o  G lim m (^ 0 q  B ).

Proof. Following the notation of Theorem 5.3.3, Proposition 5.5.3(i) and Corollary 5.5.8 

show that the diagram

P rim (^) x Prim(B)'^— ^ P rim (^  (8>q B)

P A ^ P B  Pa

Glimm(v4) x Glimm(fi) —— Gl i mm(A B)
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coinniiites, i.e., th a t A o x p^)  = Pq o $ . Therefore if we can show th a t -0“  ̂ o 

iPA  X Pb ) =  P a ° ^  alsO) tlie ii it will follow necessarily th a t A  =  (since p A  x p ^  is 

surjective).

From Theorem  5.3.3, the extension {pA x p ^ )  of pA x pB to  Prim(74(8iQ B )  satisfies 

{PA X P b ) ^  PA X P b  and ^  o  p ^  =  { p A x  P b ) ,  s o  we have

o [ p A  X p b ) =  o { p A X P b )

=  O  { - I p  O  P a )  o $

=  P q  o

which proves (i).

Assertion (ii) is then  im m ediate from (i) and Lem m a 5.5.7(ii). □

Suppose th a t A  and B  are C*-algebras such th a t A  (8>q B  satisfies Tom iyam a’s 

property  (F). U nder this assum ption, K an iu th ’s result [37, Theorem  2.3] shows th a t 

the  m ap A : (Glimm(yl), r , )  x (G lim m (fi), Tg) -> (G lim m (^ (8>q B ), r^) is an open 

bijection, where Tg denotes the quotient topology on the  Glinmi space as discussed in 

R em ark 5.2.11.

In order to  extend this to arb itra ry  m inim al tensor products, we first need some 

Lemmas:

L em m a  5 .5 .10 .  Suppose that the complete regularisation maps pA and pB are open 

with respect to either T q  or T c t  on G lim m (^) and  G lim m (5) respectively. Then

(i) T q  =  Ter on each o /G hm m (A ) and G lim m (B),

(ii) fq = Tcr = Tp on Glimm(yl) x Glimm(jB), where fq is the topology induced by the 

product map pA x  pB,

(Hi) Tq =  T„ on Glimm(yl B).

Proof, (i) is shown in the discussion in [7, p. 351].

(ii) As a consequence of (i), we m ay consider Tp as the  p roduct of the quotient 

topologies. Since pA x  pB is necessarily Tp continuous, Tp is always weaker th an  f q .

Consider a f q  open subset U  of G h n m i(^ ) x G lim m (5) and let {x, y)  G U.  Choose 

{P, Q)  G Prim (yl) x P rim (5 )  w ith {pA x  p b ){P,  Q)  =  (a:̂ , v)- T hen since {pA x  pb )^^  {U)
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is an open subset of Prini(A ) x P rin i(5 ), we can find open neighbourhoods W  of P  

and S  of Q such th a t VV x 5  C x p^)~^(U) .  T hen  we have

iPA X p b )[P,Q)  = {x,y)  e  PA{yv)  X p b {S) c  U,

and pA{y^)  X Pb {S) is Tp-open since pA and pB are bo th  Tg-open. In p articu lar (x , y )  

is a Tp-interior point of U,  and hence U is Tp-open.

T he fact th a t  Tp =  Tct follows from condition (ii) of Proposition  5.2.9.

As for (iii), it is always tru e  th a t Tq  is stronger th an  T e r ,  thus we need to  prove th a t 

any Tq  open subset U  of Ghnmi(A<8)Q B)  is Tcr-open. By p art (ii) and Corollary 5.3.4, 

Ip i s  & hom eom orphisni of (Ghmm(A(8>Q B ) , T c r )  onto (G h m m (^) x G lim m (P ), fg). So 

given a r^-open subset U of Glimm(/1(8)Q5), it will suffice to  prove th a t is fg-open, 

th a t  is, th a t  {pA x (■0(ZY)) is open.

Let W  =  [pA X p b )~^{'^{U)).  We will show th a t  W  =  [p~^{U)).  Since U  is

Tg-open and $  is continuous on Prim (A ) x P rim (B ) by Proposition 5.3.2(ii), th is  will 

im ply th a t W  is open. For any [P,Q)  e  Prim (yl) x P r im (5 ) , Theorem  5.3.3 gives

i p o p a o  $ (P , Q) =  {p^ X p b ){P,  Q),

so th a t {P,Q)  G W  if and only if p^ o $ (P , Q) G {tp{U)) =  U.  It follows th a t 

W  =  (P q H ^ ))) so th a t is f^-open and hence U  is Tcr-open.

□

Lem m a 5.5.11. Let  p^^,p^ and pa denote the complete regularisation maps ofFac{A) ,  

F ac(P ) and  Fac(y4 (8>q B)  respectively, and let ip : G hm m (A  <S>a B )  —> Glim m (A ) x 

G lim m (B ) be the map o f Theorem 5.3.3. Then it holds that

i ’ o p i o ^  = p { x  p^^

on Fac(yl) x Fac(B ).

Proof. Let ( / ,  J )  G Fac(yl) x Fa.c{B) and {p,q) =  (p;^ x p^q){1,J). Take (P, Q)  G 

h u ll(/) X h u ll(J ) , so th a t  {pA x Pb ){P^Q)  =  ( P ) ? )  b y  Proposition  5.5.3(i). T hen  by 

Proposition  5.3.2(i), <I>(P, Q) €  huh (<I>(/, J ) ) ,  so th a t {pa o # ) (P , Q) =  (p^ o $ ) ( / ,  J )  

by Proposition 5.5.3(i) applied to A  0Q B.

Finally, Theorem  5.3.3 gives

{ i p o p a o  $ )(P , Q) = { p A  X pb){P,  Q),
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so that

{-ipop^o $ ) ( / ,  J )  =  {p{ X J),

as required. □

We are now in a position to extend [37, Theorem 2.3], which required the assumption 

tha t A ® a  B  satisfies property (F).

T heorem  5.5.12. The map "ip o f Theorem 5.3.3 defines a continuous bijection of 

(Ghmm(yl (8>q B) , Tq)  onto the product space (Ghmm(A),Tq) x (Ghmm(B), Tg), where 

Tq denotes the quotient topology induced by the complete regularisation map. It follows 

that its inverse A is an open bijection. Moreover, A  is a homeomorphism whenever the 

complete regularisation maps pA and p s  are open with respect to the quotient topologies 

on Glimm(yl) and Ghmm(i5).

Proof. Let x V be a basic open subset of the product space (G hm m (^),rg) x 

(Ghmm(B),Tg). Then by Proposition 5.5.3(ii), the preimages W  := and

S  := are open subsets of Fac(A) and Fac(i?) respectively. We claim that

xp~^{U X V) is a Tg-open subset of Glimm(^(8>Q 5 ) , that is, that [pL)~^ x V)) is

an open subset of Fac(v4(8>Q B).  Since the map 'I' is continuous by Proposition 5.5.2(iii), 

it will suffice to show that

[plr  ̂ xv)) = X s).

Let M  6 X S).  By Lemma 5.5.5 M  Riy <3) o 'I'(M ), so tha t Pa{M) =

pL{^  o Then Lemma 5.5.11 gives

i ;  o p i i M )  =  { 4 > o p i o  ^ ) { ^ { M ) )  =  { p {  X p i ) { < i >{ M) )  e U x V .

Hence pi {M)  G x V), and we have x 5 ) C {pi)~^ x V)).

To show the reverse inclusion, let M  G {pa)~^ x V)), and {p,q) = {ip o

P a ) { M )  G Z// X V. Choose {I , J)  E W  x S  with {p̂  ̂ x p^^){I, J ) = {p,q). Then invoking 

Lemma 5.5.11 again we have

{-ipo pI){4>{I,J)) = {p{ X  p { ) { I , J )  = {p,q).

Since '</; is injective and {ip o p l ) [M)  = (p, q), it follows tha t pa(M ) =  p i { ^ { I ,  J ))  and 

hence M  $ ( / ,  J ) . By Proposition 5.5.6, this implies tha t so that
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{p̂ A ^ /^b)('^('^'^)) =  (P)^)' 111 particular 'I'(A/) G (p;  ̂ x p^^)~^{U x V) =  W x 5 , so that 
M  S X S) and hence {pa)~^ x V)) C x 5), as required.

If in addition the complete regularisation maps pA and ps  are open, then by 

Lemma 5.5.10 we have Tq =  on each of Glimm(A), Glimm(i?) and Gliimn(yl (8)q B).  

Applying Corollary 5.3.4 and Theorem 5.5.9 it follows that A is a homeomorphism of 

(Glimm( A), Tq) x (Glimm(i?), r,) onto Glimm(A (8)̂  B).  □

5.6 Sectional representation

In this section, we study A <S>a B as the section algebra of the canonical upper- 

semicontinuous C*-bundle over Glinnn(j4 (8|q B)  defined by the Dauns-Hofmann Theo

rem (Theorem 2.3.6). In particular, we relate this bundle to the corresponding bundles 

over Glimm(>l) and Glimm(i?) associated with A and B  respectively.

As a consequence of Theorems 2.3.6 and 5.5.9, we can see that for any C*-algebras 

A and B  the canonical bundle associated with A®a B  has base space homeomorphic to 

(Glinnn(yl) x Ghmm(/3), Tct) (or its Stone-Cech compactification), and fibre algebras 

♦-isomorphic to the quotient C*-algebras

A®aB
A(Gp,G,)

for (p, g) e  Glimm(A) x GIimm(73), and zero otherwise.

Lee’s Theorem [44, Theorem 4] implies that this bundle is a continuous C*-bundle 

if and only if the complete regularisation map pA is open (see also Proposition 2.3.3(iii) 

and [7, Theorem 2.1]). Thus in the case of the minimal tensor product of C*-algebras, 

it is natural to ask whether p^ being open is equivalent to pA and ps  being open. It 

follows from [37, Lemma 2.2 and Theorem 2.3] that this is indeed the case when A ^ ^ B  

satisfies property (F). We now consider this question under more general hypotheses.

It is well known that A ^ a  B  satisfies property (F) if and only if $ ( / ,  J) =  A (/, J) 

for all (/, J) G Id'(A) x Id'(B); see [54, Theorem 5 (2)] for example. The assumption 

that = A{G,H)  for all Glinim ideals of A and B  is weaker in general. For

example, if H  is an infinite dimensional Hilbert space then B[H)  0^  B[H)  does not 

satisfy property (F) [57, Corollary 7]. However, Glimm(i?(i/)) is a one point space 

consisting of the zero ideal, and clearly <!>({0},{0}) =  A({0},{0}). It appears to 

be unknown whether there exist C*-algebras A and B  and Glimm ideals (G,H)  e 

Glimm(yl) x Glimm(5) such that A{G,H)  C $(G, if).
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The condition that A =  $  on Ghmm(74) is equivalent to requiring that the fibre 

algebras of the canonical bundle associated with A iS>a B  are given by the minimal 

tensor products of the corresponding fibres of the bundles of A  and B,  that is

{{A/Gp) iSia {B/Gq) : (p,q) G Glimm(>l) x Glimm (i?)}, (5.6.1)

(with topology inherited from (Glimm(yl) x Glimm(i?),Ter) by Theorem 5.5.9). Indeed 

one may always consider an element c G A  <Sia B  as a cross-section of the fibred space 

given by (5.6.1) via (p,q) c-t- $ (G p ,G ,) for (p,q) G Ghmm(yl) x Glimm(i?) [6, 

p. 136-137]. In the case that the bundles of A  and B  are continuous, it follows 

from [6, Corollary 3.1] that this representation of A <S>a B  defines a continuous C*- 

bundle over (Glimm(>l) x Glimm(B), Tp) in the obvious way if and only if A =  $  on 

Glimm(yl) x Ghmm(B).

Theorem 5.6.2, together with Lee’s Theorem quoted above, asserts tha t under the 

assumption A =  $  on Glimm(yl) x Glimm(B), the Dauns-Hofmann representation of 

A iS>a B  defines a continuous C*-bundle over Glimm(/1 (8iq B) if and only if A  and B  

define continuous C*-bundles over Glimm(yl) and Glirnm(i3) respectively.

Lem m a 5.6.1. Let. A and B  be C*-algebras such that A{ G , H)  = ^ { G , H )  for all 

(G, H)  e  Glimm(A) x Glimm(B), and let U C Prim(A (8)q B) he open. Then

Pa{l^) =  Pq (^  n  $(Prim (A ) X P r im (5 )) ) .

Proof. Let m £ Paip() and choose M  E U such th a t Pa{M) = m.  Let Gm =  k ([M]) 

be the corresponding Glimm ideal of A  (8>q B.  Then there exist (p, q) €  G lim m (^) x 

Glimm(B) and corresponding Glimm ideals Gp and Gg of A  and B  respectively with 

Gm = ^{Gp,Gq) = A{Gp,Gq)  by Theorem 5.5.9.

Now M  e  hull(Gr„) n U ,  which is a nonempty relatively open subset of hull(Gr„). 

By Proposition 5.3.2(iv), $  (hull(Gp) x huU(Gg)) is dense in hul^G^n) =

Hence there exists {P,Q)  G hull(Gp) x hull(Gg) such tha t 3>(P, Q) G IiuII(Gto) H U. In 

particular $ (P , Q) e U f l  <I'(Prim(^) x P rim (S)), and pa o ^{P,  Q) = m.  It follows that 

Pa{^)  C /9q (Z// n  ^>(Prim(A) x P rim (5 ))), and the reverse inclusion is trivial.

□

Theorem  5.6.2. Let A  and B  be C*-algebras such that A{ G , H)  — <J>(G,/ / )  for all 

{G,H)  G Ghmm(yl) x  G hm m (5). Then the following are equivalent:
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(i) Pa is an open map with respect to To- on G lim m (^ B),

(a) Pa is an open map with respect to Tq on Glimm(A<8)Q B),

(Hi) pa and p s  are open maps with respect to Ter on Glimm(74) and Glimm(i?) re

spectively,

(iv) Pa and p s  are open maps with respect to Tq on Glimm(A) and Glimm(i?) respec

tively.

Proof. Note that by Leinrna 5.5.10(i), (i) is equivalent to (ii), and (iii) is equivalent to 

(iv). We will show that (i) implies (iv) and that (iii) implies (i).

Suppose that (i) holds. We first claim that pA x p s  is open as a map into 

(Glimm(A) x Glimm(-B),r„.). Take an open subset U  C Prim(A) x Prim (B). Then 

since the restriction of to Prim (^) x Prim (B) is a homeomorphism onto its image by 

Proposition 5.3.2(ii), there is an open subset W  C Prim(A(8iai3) with ZY'n^>(Prim(>l) x 

P rim (5)) =  ^{U).  By Lemma 5.6.1 pa{l^') =  Pa{^{i^))- Then by Theorem 5.3.3

{PA X Ps)(W) = (V' o Pq o ^)(U) = {ipo Pa){W),

which is Tcr-open since pa is an open map and tp is a homeomorphism.

As in the proof of [7, p.351], Tc- must agree with the c}uotient topology fg on 

Glimm(y4) x Glimm(i?) induc('d by the map pA x pB- In particular pA x p s  is a fg-open 

map. To see that pA is open, let W C Prini(yl) be open. Then

{Pa X Pb)  (W X P rim (5)) =  Pa{"^) x G hm m (5)

is fg-open, hence [pA x p b )~  ̂ G limm(i?)) is open. By Lemma 5.2.1 we have

{PA X pb)^^ {PA{y^) X Glim m(B)) =  p~̂  ̂ (pa(W )) x  Prim (fi),

so that in particular, (p.4 (>V)) is open. It follows that pA is a r^-open map. A 

similar argument shows that pB is r^-open, hence (i) implies (iv).

Assume that (iii) holds and take an open subset U  C Prim(yl B ). Then U H 

$(Prim(74) x Prim (B)) is a relatively open subset of $(Prim (A ) x Prim (fi)). Again 

by Proposition 5.3.2(ii), there is an open subset V C Prim (^) x P rim (5) such that 

'I'(V) =  U r\ $(Prim (yl) x Prim(Z?)). By Theorem 5.3.3 we then have

(i/; o P a )  [U n 4>(Prim(/1i) x Prim (B ))) =  (^ o o $)(V)  =  [ p A  x ps)(V) ,
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which is Tcr-open since x is a Tcr-open map by Lemma 5.5.10(ii). Together w ith  

Lemma 5.6.1, this shows tha t

P q(^) =  Pq n  $ (P rim (> l) x P r im ( f i) ) )  =  {{pA x p e ) (V ) ) ,

which is open since ip is a. homeomorphism. Hence pa is an open map.

□

FoUowing a suggestion o f R.J. Archbold, below we give a sim ilar result to [6, Propo

sition 4.1]. Under the assumption th a t A  and B  each have at least one G lim m  quotient 

containing a nonzero projection, we show in Proposition 5.6.4 th a t the im plication 

( i)= ^(iii) o f Theorem 5.6.2 does not require A  =  $  on Ghm m (j4) x G lim m (S ). We 

establish as a corollary that under the same assimiptions on A  and 5 ,  i f  A  5  is 

quasi-standard then A  and B  must be quasi-standard.

Lem m a 5.6.3. Let X  and Y  be topological spaces. Then f o r  any yo G Y , the map 

sending p x { x )  PxxY{x ,yo)  is a homeomorphic embedding of  p X  into p { X  x Y),  

with respect to the corresponding Tct-topologies on each space.

Proof. By Lemma 5.2.1 we may iden tify  p { X  x Y)  w ith  {pX x pY,Tcr) under the 

canonical mapping p x x Y {x , y )  {p x {x ) ,  py{y) ) .  C learly the map sending p x {x )  ^  

{px {x ) ,  p r iy o ) )  is a homeomorphic embedding o f p X  in to p X  x pY  w ith  the product 

topology Tp. Thus we must show th a t the restrictions o f the Tp and Ter topologies to 

the subspace p X  x { p y { v o ) }  are equal. Since Tp <  To- it  w ill suffice to show tha t for 

any Tcr-open subset O  o f p X  x pY  and xq £ X  such tha t {px{xo) , py{yo))  G O, there 

is a cozero set neighbourhood U  o f Px{xq)  in  p X  such tha t U  x {py (yo )} Q O.

Since O  is TCT-open there is ^ G C ^ { X  x Y)  such tha t coz{gP) is a neighbourhood 

o f { p x ( xq), pY ivo)) contained in O. Define /  G C ^(X )  v ia f ( x )  =  g(x,yo),  then G 

C^(pX)  and fP {px {x ) )  =  g^ {p x {x ) ,  pv iyo))  for all x e  X .  In  particu lar , f P {p x {x ) )  =  

0 i f  and only i f  g^ {px{x ) ,  py iyo))  =  0, so tha t

coz{fP)  X {pYiyo) }  =  c o z ( / )  n  { p X  X { p Y i v o ) } ) ,

as required.

□

P roposition  5 .6 .4 . Suppose that A  and B  are C*-algebras such that the complete 

regularisation map pa ■ P r im (^  (8>q B )  —> G lim m (A  (8>q B)  is open. I f  there exists a
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point Qo G Glimm(i?) (resp. po e  Glinim(j4)j such that the quotient C*-algebra B/Gq^ 

(resp. A/Gp^) contains a nonzero projection, then pA (resp. p s )  is open.

Proof. Let e & B  such tha t e + Gq^ is a nonzero projection in B/Gq^. Then the map 

0 p : A ^  {Ai^a B)/A{Gp,GqQ) defined by

0p(o) — a®  e + A{Gp, Gq^)

is a ^-homomorphism for each p G Ghmrn(A). We first claim that ker0p =  Gp.

Indeed, it is clear tha t if a G Gp then a 0 e  G A(Gp, Gq^), so tha t Gp C ker0p. Now 

choose a state  A of B vanishing on Ggg such that A(e) =  1, and consider the associated 

left slice map L \  \ A ® a  B  A  defined on elementary tensors via L\{a  (8) 6) =  \{b)a,  

and extended to ^  by linearity and continuity. Then since L \{ A  © Gq^) = {0} 

and Lx[Gp Q B)  C Gp, we have L\{A{Gp, Gq^)) C Gp. In particular, if a G kerBp then 

A{Gp, Gq^), so that

L\{(i <S>e) = \{e)a = a G Gp, 

hence kerBp =  Gp. It follows that for any a e  A  and p  G Glimm(yl), ||a +  Gp|| =

l | B p ( a ) l l -

By [7, Theorem 2.1 (i) =4> (ii)] the function on Glimm(yl (8>q B)  sending x ||a(8) 

e  +  Gill is continuous. Since by Theorem 5.5.9, A : (G hm m (^) x G lim m (5),T c t )  

Glimm(A (8 )q B)  is a homeomorphism, the map sending {p, 9 ) ||a ® e +  A{Gp, ^ 5)11

is Tcr-continuous on Glim m (^) x Glinun(fi) for every a e  A.

Finally, by Lemma 5.6.3 the map p {p,qo) is a homeomorphic embedding of 

G lim m (^) into (Glim m (^) x Ghmm(B),Ter)- It follows th a t for each a G A the func

tion p i-> IIo -h Gpll agrees with the composition of continuous maps given by

P ^  (P) Qo) A{Gp, Gq^) i-> ||a (gi e +  A(Gp, Ggo)||

Glimm(A) ^ (Glimm(yl) x Glimm(i?), Ter) ^ Glimm(.A 0 a 5 ) -----

hence is continuous. By [7, Theorem 2.1 (ii) => (i)], this implies tha t pA is open. □

Definition 5.6.5. An ideal 1 of a C*-algebra A  is said to be primal if given n >  2 

and ideals J i , . . . ,  of yl such that Ji J 2 . . .  J„ =  {0}, then there is an index 1 < i < n  

with Jj C / .  A C*-algebra A  is called quasi-standard if
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(i) the Dauns-Hofm ann representation of A is a continuous C*-bundle over 

G hm m (A ), and

(ii) For each p E Glimm(>l), the Gliinni ideal Gp is a prim al ideal of A.

For separable A, quasi-standardness of A  is equivalent to  the condition th a t A  is 

a continuous Cq(A ')-algebra such th a t there exists a dense subset D  o t X  w ith Jx 

prim itive for all x  G D. T here are several o ther equivalent definitions of quasi-standard  

C*-algebras, see [7, Theorem s 3.3 and 3.4] for example.

C o ro l la ry  5 .6 .6 . Suppose that A and B  are C*-algebras such that A  (8 )q B  is quasi

standard. I f  there exists a point go G G lim m (5) fresp. po G Glimm(yl)^ such that the 

quotient C*-algebra B/Gq^ (resp. A /G p ^) contains a nonzero projection, then A  (resp. 

B )  is quasi-standard.

Proof. Since A ^ a  B  is quasi-standard , the G linun ideals of A  and B  are prim al by [6 , 

Lemma 4.1], T he fact th a t pA and pB are open under the  respective hypotheses then  

follows from Proposition 5.6.4. □

C o ro l la ry  5 .6 .7 . Let A  and B  be C*-algebras such that Z ( A)  and Z { B )  are nonzero.

(i) I f  Pa is open then pA and pB a,re open,

(ii) I f  A  <S>a B  is quasi-standard then A  and B  are quasi-standard.

Proof. Since Z { B )  7  ̂ {0}, there is <70 G G lim m (5) such th a t Z { B )  ^  Gq^ (otherwise 

Z { B)  C P|{Gg : G G lim m (5)} =  {0}). It then  follows from [8 , Proposition 2.2(ii)]

th a t B/GqQ is in fact unital, and in p articu lar contains a  nonzero projection. Similarly, 

there is po G Gliinm(yl) for which A jG p^  is unital. Assertions (i) and (ii) then  follow 

from Proposition  5.6.4 and Corollary 5.6.6 respectively. □

We rem ark th a t  the condition Z { B )  ^  {0} is not necessary to  ensure th a t  B  has a 

Glimm quotien t containing a  nonzero projection. T his can be seen by tak ing  B  = K { H )  

for a separable infinite dimensional H ilbert space H.  T hen  Glimm(.B) consists of the  

zero ideal, so th a t  B  is a Glimm quotien t of itself. We have Z { B )  =  {0}, while B  

contains all of the finite rank projections on H.
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5.7 Examples

Our first example shows that the topologies Tp and Ter (’an indeed differ for the complete 

regularisation of a product of primitive ideal spaces when condition (ii) of Theorem 5.2.6 

fails. We show that the primitive ideal space of the (separable) C*-algebra A  of [21, 

HI, Example 9.2] admits a point Pq for which no cozero set neighbourhood of Pq in 

P rim (^) has w-compact closure. Further we exhibit a cozero set neighbourhood U of 

{Po,Pq) in Prim(A) x Prim(A) which does not contain a product V x W  of cozero sets 

V, W  C Prim(yl). Thus pA x pv{U) is a Tcr-open subset of Glimrn(yl) x Glimm(i?) which 

is not Tp-open. In particular we deduce that Glimm(i4 -4) is not homeomorphic to 

(Glimm(A) x Glimm(A),Tp).

E x a m p le  5 .7 .1 . Let A be the C*-algebra constructed in Example 2.3.8. We claim that 

none of the points 0 "̂̂  have a cozero set neighbourhood in P rim (^) with w-compact 

closure. Since Glirnm(^) is not locally compact, it follows from  Lemma 5.2.8 that there 

is a point in Prim(yl) for which no cozero set neighbourhood has w-compact closure. 

Since every point in [—1,0) U [J^ j(0 ^ ”\  1̂ "̂ ] has such a neighbourhood, it must be the 

case that there is some ni G N such that 0̂ "*̂  does not.

For rn, n G N the bijection 0ni,ti • P rin i(^) —> Prini(/1) exchanging and 

for 0 < t < 1, and fixing every other point, is clearly a homeomorphism. Thus if 

coz(/) were a neighbourhood of 0̂ "̂  with w-compact closure, coz(/ o 0^_„) would be a 

neighbourhood of 0̂ ™̂  with w-compact closure. Hence 0^"  ̂ does not have a cozero set 

neighbourhood with w-compact closure for any n.

We now show that the product topology Tp on G lim m (^) x Glimm(>l) is strictly 

weaker than Ter- Note first that

OO

Prim(yl) X Prim (^) = [—1,0) x  [—1,0) U I [—1,0) x

\  n = l

oo

U (J /m X [ - 1 , 0 )  U IJ I m X  In

The neighbourhood basis of the following types of points will be o f interest:

• sets of the form

( ( - ( 5 , 0 ) U [ 0 ( ’" \ 6 ( ™ ) ) )  X ( ( - e , 0 ) u [ 0 ( ” \ £ ( ” >) )
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where 5, e >  0.

• (x ,y )  G {0^"“̂ } X neighbourhoods of the form

( ( - i , 0 ) U | 0 W , i ) )  X ( ( ( „ - £ ) ( » ) , ( ; , +  £ )(») ) )

where 0 < ( 5 < 1 , 0 < £ : <  \y\.

• (x ,y )  G X {0^”^}; neighbourhoods of the form

For each m, n  e  N define fm,n '■ Im x In ^  [0,1] via

fm,n{x, y) — m ax(l -  m nx, 1 -  m ny,0 ).

Then fm A ^ '^v ) > 0 x  < or y < i.e. coz{fm,n) = ( ;^ ) ^ ”"̂ ) x
[0̂ ”\  Now define f  : Prim(A) x Prim(/1) [0,1] via

-/ , f fm,n{x, y) i f  (x, y) G Im X
f { x , y )  =  <

1 otherwise

Then f  is continuous since /m,n(0^"*\ O^")) =  fm,niS>^‘̂ \y^'^^) = =  1,

and by the neighbourhood bases of these points constructed above. Moreover, the cozero 

set of f  is

[ - 1, 0) X [ - i , o ) u  n - 1, 0) X 0 ^" )  u { U [ -1 .0 ) )
\  n = l  /  \ m = l

\  m ,n = l

We show that coz(/) is not a union of cozero set rectangles. To this end, let i , j  G N

and let U and V  be cozero set neighbourhoods of 0̂ *̂  and respectively. Then U =

p~^{\V), where W  is a cozero set neighbourhood of 0 in Glimm(j4), hence U is also 

neighbourhood ofO^^^ for all /c G N. In particular, for every G NU {0} there is Sk > 0 

such that
oo

U ' :=  ( - £ o , 0 ) U
n = l
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Thus we get open sets U' C U and V  C V  defined via

0 0  OO

[ / '  =  ( - (5 o ,0 )U  U  a n d y '  =  ( - f o , 0 ) u [ J [ 0 ( ” ) , 4 " ) ) ,
m=l n=l

where Sj ,ej  > 0 for all j  >  0. I f  U x V  C coz(/) then it would follow that U' x V ' C 

coz(/). In particular this would imply that

X C  X [ O W ,

for all m ,n  > 1. In other words, 6 ^  < for all n  > I and ^  fo r  all m  > I.

But then 6m = £n = 0 for all m ,n  > I.

Together with Theorem 5.2.2, this shows that T^r 7  ̂ Tp on Glimm(/1) x G lim m (^).

In what follows we denote by uq the first infinite ordinal and by u!\ the first un

countable ordinal. For i =  0,1 we let [0,w,) be the space of all ordinals 7  <  Wj and 

[OjOJj] =  [OjWj +  1). These spaces will be considered with the order topology, with basic 

open sets given by

{ a , P )  : =  {7  G [0,w,] : a  <  7  <  /?},

where a , ^  E [0 ,cu,] for i = 0 , 1 .

It follows from [29, 5.11(c) and 5.12(c)] that the space [0,o;i) is a non-compact 

pseudocompact space. On the other hand [0,a;o) is homeomorphic to N, which being 

infinite and discrete cannot be pseudocompact.

Our second example is a nontrivial application of Theorem 5.4.6. First we de

scribe the C*-algebra A  of [41, Appendix], which has the property th a t Glimm(A) 

is pseudocompact but non-compact. We then construct a (non-unital) a-unital C*- 

algebra B  with Glirnm(S) compact, such that M{ A)  (8 >q M[ B )  ^  M [ A  (8 >q B),  while 

Z M{ A )  ® Z M { B )  = Z M { A  0  B).

E xam ple 5.7 .2 . Let Y  =  [0,wi] x [0,u;o]\{{wi} x {u;o}} S  =  {wi} x [0,cJo) (^nd 

T  =  [0,a;i) X {wq}- Define a new space X  = Y  {J [y],  where y with topology such 

that Y  is embedded homeomorphically into X , and {y} is an open set whose closure is 

S u { y } .

Let C  =  Cq{Y),  D = Cq{S) and let -k\ \ C D be the restriction map. Let H  be an 

infinite dimensional separable Hilbert space and {prj} « sequence of infinite dimensional 

mutually orthogonal projections on H . Define an injective *-homomorphism  A : Z? —>
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B { H)  via \ { f )  =  /(« )P n  (identifying S  with  N in the obvious way), and note

that \ { D ) n K { H )  =  {0}.

Set  E  =  \ { D)  +  K { H )  and let tt2  ■ E  ^  D  be the quotient map. Let A  — {c®  e ^  

C  ® E  : iTi{c) = TT2 {e)}. Then  P rim (A ) is homeomorphic to X .

The complete regularisation map pA maps Y \ S  to itself, and S  U {y} to a single 

point which we will denote by z . Thus Glimm(/1) =  (y \5 ) u { 2 } ,  where a neighbourhood 

basis o f z  is given by the collection o f sets o f the fo rm  ^

some ordinals 0 <  fo r  all 1 < n  < loq.

N ote that Y \ S  =  [0,o;i) x [0,u;o], being the product o f a pseudocompact space and a 

compact space, is necessarily pseudocompact. It follows that Glimm(yl) is pseudocom

pact.

Consider the C*-algebra B  o f sequences (T „) G B { H )  such that T„ T ^  G K { H) ,  

with pointwise operations and suprem um  norm. Then  P rim (i?) consists o f the ideals

P n ,  =  { { T n )  : T n ,  =  0} , =  { (T „) : G K { H ) }

f or  uq G N, and  Pqo =  {{Tn) ■ T ^  =  0}. The ^-equivalence classes in  P rim (i?) then 

consist o f pairs {P„q,A'’„o} fo r  r?o G N, and {Foo}- A s in the proof o f [7, Proposi

tion 3.6], the complete regularisation map p s  '■ P r im (5 )  —> Glim m (i?) is open and 

G lim m (B ) is homeomorphic to N U {oc}, with Gq =  Pq fo r  all I < q < oo.

We claim that B  is a a -un ita l C*-algebra. F ix an orthonormal basis {cm : m G N} 

o f H . For each n  E. N let denote the projection onto the n-dim ensional subspace o f 

H  spanned by e i , . . .  ,e„ . Then  {1„ : n  G N} is an  increasing approximate identity fo r  

K { H ) .

Now define sequences E^'^^ = {Em'^) in B  via

p i n )  _  j  1 */ ^  ^

[ I n  ij m  > n

fo r  each n  G N . We will show that the sequence is an approximate identity fo r

B . Take T  =  (T ^) G B  and let e > 0 be given. Note that fo r  each n, ||T  — =

Siip^>i \\Tm -  Eln'^TmW =  su p „> „  ||T „  -  l„Tm ||, by definition o f E ^ ^ \  Then

• there exists mo >  1 such that \\Tm — T’oo|| <  f  whenever m  >  mo, and

•  there exists 7i\ > 1 such that ||Too — In^ooll <  |  whenever n  > Ui (since Too € 

K { H )  ).
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Set  no =  m ax (m o ,n i) .  Then i f  n > no and m  > n we have

\\Tm  ^  ^nTrnW <  ||7"m — 7"oo|| +  ||T ’oo — I n ^ m | |

<  IÎ TTJ ~  ^ooll +  \\T oo  — In^ooll +  l l ln ^ ’oo ~  l n r , „ | |3^

<  \\Tm  ^ooll +  lIT’oo ~  In ^o o ll +  \\Too ~  ^ m |l <

In  particular, fo r  all n  > uq we have \\T -  =  su p ^> „  \\Tm — In^mll <  x

so that is a countable approximate iden tity  fo r  B .

Now take the tensor product A  <S)a B . Since B  is a-unital, the inclusion M { A )  

M { B )  C M [ A  (8>q B)  is strict by [1, Theorem 3.8]. Since pB is open, Proposi

tion 5.2.9 (a ) shows that =  Tp on Glimm(A) x G lim m (B). Hence by Theo

rem 5.3.3  Glimm(yl (2i q  B ) is homeomorphic to G liinm (^) x G lim m (5 )  with the prod

uct topology. Moreover, as a product o f a pseudocompact space and a compact space, 

Glimm(yl) x Glimin(i3) is pseudocompact [55, Proposition 8.21]. It then follows from  

Theorem 5.4-6 that Z M { A )  ® Z h i [ B )  =  Z M [ A ® a  B) .



Chapter 6

Exact C*-algebras and 

Co(X)-structure

This chapter is concerned with the study of tensor products of a Co(v^)-algebra 

{A, X, ha)  and a C'o(F)-algebra [ D , Y , i j , b ) -  We describe how their minimal tensor 

product B  gives rise to a Cq{X x  y)-algebra {A B , X  x Y, fiA 18 Ms)i we 

investigate the structure of the associated upper-semicontinuous C*-bundles.

Our approach differs from the usual notion of ‘fibrewise tensor products’ of C*- 

bundles introduced by Kirchberg and Wassermann [40]. Indeed, we show in Section 6.4 

that continuity of the bundles we describe here is a strictly weaker property than 

continuity of the corresponding fibrewise tensor product bundle.

Given a fixed continuous C'o(^)-algebra {A, X,  /i), we seek conditions on A for which 

( y l  (8>q B , X  X  y , ^ i A  ^  is continuous for aU continuous C o ( i ^ ) - algebras {B,Y,hb)-  

We show that this occurs precisely when A is an exact C*-algebra (as was the case for 

the tensor product bundles considered in [40]).

Finally, we apply these results to the study of quasi-standard C*-algebras and those 

C*-algebras A with Prim(A) Hausdorff. We show that neither of these classes are stable 

under taking minimal tensor products; in each case, the subclass of exact C*-algebras 

is the largest class that is stable under this operation. As a consequence, we obtain 

some new characterisations of exact C*-algebras.

Sections 6.1 to 6.6 have appeared in the article [46].

116



CHAPTER 6. EXACT C*-ALGEBRAS AND Co(X)-STRUCTURE 117

6.1 Introduction

Tensor products of continuous bundles of C*-algebras are known to exhibit pathologi

cal behaviour. The earliest examples of this were given by Kirchberg and W assermann 

in [40], who showed that continuity of a C*-bundle was in general not preserved by 

tensoring fibrewise with a fixed C*-algebra B. Moreover, it was shown th a t such an 

operation preserves continuity for all C*-bundles precisely when B  is exact. Archbold 

later obtained a localisation of this result in [6], where continuity at a point was char

acterised in terms of a weaker exactness-type condition. Similar questions have been 

studied extensively by Blanchard and coauthors in [14], [13], [16], [15] and [18].

Here we are concerned with the stability of certain well-behaved classes of C*- 

bundles under the operation of forming tensor products. In particular, we study 

this question for continuous Co(.X')-algebras, the quasi-standard C*-algebras (Defini

tion 5.6.5) introduced by Archbold and Somerset [7], and C*-algebras with Hausdorff 

primitive ideal space (maximal full algebras of operator fields, using Fell’s terminol

ogy [27]).

In Chapter 5, we constructed the Glimm ideal space of the minimal tensor product 

of two C*-algebras in terms of thos(' of the factors. As a consequence, it is possible to 

construct the Dauns-Hofmann bundle of A<S>a ^  hi terms of tha t of A  and B , although 

the fibre algebras of this bundle r(>main difficult to describe without additional assump

tions on A  and B. In particular, it is not immediate from our results in Section 5.6 

whether or not this bundle agrees with the fibrewise tensor product of Kirchberg and 

Wassermann. Moreover, it remains difficult to show in general whether or not certain 

classes of C*-algebras with well-behaved Dauns-Hofmann representations, for example 

the quasi-standard C*-algebras, are stable under minimal tensor products.

In Section 6.3 we study a natural construction which equips the minimal tensor 

product A® c,B  of a Co (AT)-algebra A  and a Co(F)-algebra B  the structure of &Cq{X  x 

y)-algebra. It has been observed previously that this bundle representation of v4(gia B  

may differ from the fibrewise tensor product [40], [15], and that exactness of A or B 

(Definition 6.3.1) plays a decisive role in these considerations.

While the results of Kirchberg, Wassermann and Archbold give necessary and suffi

cient conditions for the continuity of the fibrewise minimal tensor product, less is known 

regarding the tensor product bundle that we study in this work. Indeed, we show in
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Section 6.4 that there are quasi-stanclard C*-algebras A and B  such that >1 <8iq B is 

quasi-standard, while the fibrewise tensor product of A and B  gives rise to a discontin

uous C*-bundle.

Related work of Blanchard [15] (concerning the amalgamated Co(A!’)-tensor product 

of two Co(X)-algebras A and B) indicated that continuity may fail for the tensor prod

uct bundle that we define in Section 6.3 also. However, the argument used in [15, §3] 

relies on specific properties of the C*-algebras involved. We show in Section 6.6 that for 

an inexact continuous Co(-^)-algebra A, one can always construct a continuous Co{Y)- 

algebra B  such that AiS>aB is discontinuous as a Co{X x Vj-algebra. As a consequence 

it is shown in Theorem 6.5.6 that stability of continuity is in fact equivalent to exact

ness of A. Thus our tensor product construction identifies exactness in precisely the 

same way as the fibrewise tensor product of Kirchberg and Wassermann [40, Theorem 

4.5].

In Section 6.6 we investigate the question of stability of the property of quasi- 

standardness under the operation of taking tensor products (in particular with respect 

to the minimal C*-norni). One consequence of this is the observation that, in general, 

the C*-bundle associated with the Dauns-Hofmann representation of such a tensor 

product is not given by the fibrewise tensor product of the corresponding bundles of 

the factors.

Until now, it appears that there were no known examples of a pair of quasi-standard 

C*-algebras whose minimal tensor product fails to be quasi-standard. It was shown by 

Kaniuth in [37] that if A B satisfies Tomiyama’s property (F), then A (8>q S  is 

quasi-standard if and only if A and B  are quasi-standard. In particular this is the case 

whenever either >1 or i? is exact. The assumption of property (F) was weakened in [45] 

to an assumption involving exact sequences related to Glimm ideals.

We show in Theorem 6.6.6 that if 4̂ is a quasi-standard C*-algebra which is not 

exact, then one can always construct a quasi-standard C*-algebra B  for which A B 

is not quasi-standard. In particular it follows that a quasi-standard C*-algebra A is 

exact if and only li A®a B  is quasi-standard for all quasi-standard B. This is consistent 

with the characterisation of exactness obtained by Kirchberg and Wassermann in [40], 

though perhaps surprising in light of the results of Section 6.4. Similarly, in the unital 

case we show in Theorem 6.6.10 that stability of the property of quasi-standardness 

under taking maximal tensor products (Definition 6.6.8) is equivalent to nuclearity.
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6.2 Preliminaries on Co(X)-algebras and C*-bundles

For a C*-algebra A  we will denote by M in-Prim al(^) its set of minimal (w.r.t. inclusion) 

primal ideals. The canonical topology r  on Min-Primal(>i) is the weakest topology such 

th a t the norm fimctions 1 ||a +  7|| on iVIin-Primal(yl) are continuous for all a ^  A. If

is a C*-algebra for which every G € Glimm(yl) is a primal ideal of A, then necessarily 

we have G lim m (^) =  Min-Primal(yl) as sets. From [7, Theorem 3.3], a C*-algebra A  

is quasi-standard if and only if (Glimm(A), Ter) =  (M in-Prim al(yl),r) (i.e., as sets of 

ideals and topologically).

The Glimm space of a C*-algebra appears as an intermediate step in any representa

tion of a C*-algebra as a Co(X)-algebra, due to the functorial property of the complete 

regularisation of a topological space (see the remarks following Definition 2.1.5). In

deed, if X  is a completely regular sj)ace and (f) : P rim (^) —> X  a continuous map, then 

(f) induces a continuous map ip : Glinnn(yl) —> X  with cp = ip o i.e..

commutes. Conversely, starting with a continuous map ip : G linm i(^) —> X ,  we may 

set (p = Ip o so that (p : Prhn(yl) —> X  is continuous.

If in addition X  is locally compact, then is a Cq{X)  algebra if and only if there is 

a continuous map ip^ : Glimni(/1) —> X . This fact is useful when working with tensor 

products of C*-algebras, since by Theorem 5.5.9 we may always construct Glimm(>i(2)Q 

B) in terms of Glimm(A) and Glimm(i?). The same is not true in general for the spaces 

Prim (—) and Fac(—).

In the remainder of this section we give some technical results on the structure of 

Co(X)-algebras and Glimm spaces of C*-algebras which we will make reference to in 

subsequent sections.

Lem m a 6.2 .1 . Let A be a Co{X)-algebra with base map ( p A  '■ P rim (^) — > X ,  and 

denote by ipA '■ Glinnn(/1) —> A' the induced continuous map with the property that 

"ipA ° Pa = (pA- Then for each x  ^  X , the ideal Jx of (2.3.2) is given by

Prim(yl)

G hnnn(^) X

P a

Jx =  G Glinnn(/1) : iPa {G) = x}.
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Proof. Let F  =  '0^*({x}) C Glimm(v4), so that for P  £ P rim (^), we have (j>A{P) =  ^  

i f  and only if  p a { P )  S F. Thus

=  p | { P e P r i m ( y l ) : p ^ ( P ) e F }

=  n  ^  Prim (A) : p a {P) =  p } }
p€F

=  r i f o  e Glimm(>l) ; ipAiG) =  x).

□

As was the case in [37] and Chapter 5, we w ill make use of the space Fac(yl) of 

factorial ideals of A, in order to define a Co (A")-algebra structure on A. Lenmia 6.2.2 

and Proposition 6.2.3 below generalise parts of [37, lennnas 2.1 and 2.2] from Glimm 

ideals to the ideals Jx defined in the Co(A)-algebra case.

Lem m a 6.2.2. Let A be a C*-algebra and X  a locally compact Hausdorff space. Then 

any continuous map <pA ■ Prim(j4) -> A' has a unique extension to a continuous map 

(f)̂  ̂ : Fac(A) —> X . For I  G Fac(^4) and P  G hull(7) we have <t>̂ Â I) =  <f>A{P)-

Proof. By [42, Lemma 3.1] there is a unique continuous map (pA ■ p rim e(^) —> X

extending 4>a - Set (j>L =  4>̂a is continuous since ^ a is. Uniqueness
Fac(y4)

follows from the fact that Prim(A) is dense in Fac(yl).

Take I  G Fac(A) and P G hun(7), so that P G c l{ / } .  Then since 0;̂ is continuous 

and extends (j)A, we necessarily have that (p̂ Â I) =  4>̂ â P) =  <Pa{P)- D

P ro p o s itio n  6.2.3. Let A be a C*-algebra and X  a locally compact Hausdorff space.

(i) A is a Co{X)-algebra i f  and only i f  there exists a continuous map (j)̂  ̂ : Fac(vl) —> 

A ,

(a) For x  G ln\(j)A, Jx =  ^  Fac(A) : <Pa(^) ~

(Hi) For I  G Fac(A) and x G A , we have I  ^  Jx i f  o,nd only i f  =  x.

Proof, (i) I f  >1 is a Co(A)-algebra w ith base map (f)A ■ P rim (^ ) A  then 4>a has a 

unique continuous extension to a map <f>i : Fac(yl) —> A  by Lemma 6.2.2. Conversely,A

if  such a map exists then setting cpA =  <Pa defines a base map.
Prim(y4)
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(ii) For X  G wc have

Jx = f ] { P  G Prim(A) : 0^(P) = x} D f ] { I  G Fac(^) : =  x}

since extends (j>A- Take I  G P'ac(^) such tha t =  x. Then for all P  G hull(/),

4)a{P) =  hence P  ^  Jx for all such P. Hence Jx (hull(/)) =  /  for all I  G Fac(A)

with = X,  so that

Jx  C P|{/ G Fac(yl) : 0^(7) =  x}.

as required.

(iii) It follows from (ii) th a t if </>;̂ (7) =  x then I  ^  Jx- Now suppose tha t I  ^  Jx

and take P  G hull(/). Then P  D Jx and so 4>a{P) =  x  by [8, p. 74]. It then follows

from Lemma 6.2.2 that

</>̂ (7) = 4>a [P)  =  X.

□

6.3 Tensor Products of C*-biindles

Definition 6.3.1. A sequence of *-homomorphisms between C*-algebras of the form

0 ----- ^ J - ^ B ---- ------------------ ^ 0 , (6.3.1)

where J  is an ideal of B,  i the inclusion of J  into 7?, and q the quotient *- 

homomorphism, is called a short exact sequence of C*-algebras. We say that a 

C*-algebra A  is exact if the sequence

0 ----^ A ^ a J ^ ^ A ^ a B ^ ^ A ^ a { B / J ) ------ ^ 0  (6.3.2)

is exact for every short exact sequence of the form (6.3.1).

A C*-algebra A  is exact if and only if A(8a 7? has property (F) for all C*-algebras B. 

Clearly if A  is such that A ® a B  satisfies (F) for all B , then for any short exact sequence 

of the form (6.3.1), exactness of (6.3.2) follows from the fact th a t A({0}, J)  =  'I*({0}, J ) . 

The converse is shown in [17, Proposition 2.17]. We will make use of this equivalence 

repeatedly in the sequel.

The following theorem lists some of the known properties of tensor products of 

C*-bundles, and their relation to the maps $  and A.



CHAPTER 6. EXACT C*-ALGEBRAS AND Co(X)-STRUCTURE 122

T h e o re m  6.3 .2 . Let =  {X,A,-Kx '■ ^  ^x )  : D  —> By) be

C*-bundles over locally compact spaces X  and Y  respectively. Then

(i) the fibrewise tensor product £ /  iSia ^  of and ^  defined via

^  y< Y, A lS>Q B , TTx ^  CTy : A  <S>a B ^  Ax iS>a By)

is a C*-bundle over X  x Y  [6, p .136,137].

I f  in addition s /  and SS are continuous, then

(a) .s/ <Sia ^  is lower-semicontinuous over X  x Y  [40, Proposition 4-9], and

(Hi) for  (xo, yo) & X  X  Y , the function

{x,y) ^  IKttx ®cTy)(c)||

is continuous for all c e  A  B  at ( x q , yo) if o-nd only if

ker(7rio (gi =  ker(Trio) i8 iq 5  +  ^  <8>a ker(ayo),

that is, if  and only z/$(ker(7TiQ), ker((Tyg)) =  A(ker(7TiQ), ker(cTyg)) [6, Theorem 

3.3].

We now introduce an alternative approach to defining a C*-bundle structure on the 

tensor product of two (upper-semicontinuous) C*-bundles, based on the ideal structure 

of ^  <8>a -B rather than the fibrewise tensor product. This construction was considered 

previously in [15], in the case where the base spaces are compact, however, we will need 

additional information on the interplay between the base and structure maps involved.

Suppose tha t { A , X , cI)a ) is a C 'o(^)-algebra and {B,Y,<f)B) a Co(F)-algebra, where

■ Prim(yl) —> X  and (j)B ■ Prim(i?) —> Y  are their base maps. Then we get a 

continuous map <I>B ■ Prim(>l) x Prim(i?) —> X  x F. By a theorem of Lazar [42, 

Theorem 3.2], we get a unique continuous map (pa : Prim(i4 0 a  B) ^  X  x Y  such that

Prim(yl) X Prim(5)'^-^— Prim(^4 (8>a B)

X  x Y

commutes, tha t is, (f>a ° ^  = (pA ^  (Î B- Thus, taking (f>o, as the base map, A  <8)q B  

becomes a Cq{X x  y)-algebra, (A 0 q  B , X  x  Y,4>a)-
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The structure maps fiA '■ Co{X)  — > ZM{A),i^lb '■ Cq{Y) ZM{ B)  and ^ l a  : 

Co(X X y )  —> ZM{ A B)  are then uniquely determined by (t>Ai4>B and cj)a- We will 

show in Proposition 6.3.3 that in fact j.ia may be identified with the map ha<S> Hb ■ 
Co{X)  ® Cq{Y) ^  ZM{A)  ® ZM{ B)  C Z M{ A  B).

For X e  X , y  e Y  we shall fix the following notation for the ideals defined in 

equation (2.3.2):

Ix =  ^ l A { { f e C o { X ) ■ . f { x )  =  0 } ) A

= f ] {PePyim{A) :4>A{P)  = x}

Jy = ^^B{{9 ^  Co{Y) : g{y) = 0}) B 

=  ^ =  2/}

I<x,y = |-̂ a {{h G Co{X X r )  : h{x, y) = 0}) [A ®a B)

= P |{M  e  Prim(/1 0 ^  B)  : ^q(A/) =  [x,y)}.

By [1], there is a canonical injective ^-homomorphism l : M{A)®aM{B)  —> M (A 0a 

B),  and by Lemma 5.4.1 this map satisfies

i{x 0  y){a 0  6) = (x«) 0  {yh) and (a 0  b){i{x 0  y)) =  («x) 0  (hy).

for all elementary tensors x 0  y G M[A)  0 „  M{B) ,  a ^ b e A  0q  B,  so that the image 

i {ZM{A)  0  ZM{B) )  is contained in ZM{ A  0 q  B).  We will suppress mention of l and 

simply consider ZM{A)  ® ZM{B)  C ZM{ A  0q  B).

P ro p o s it io n  6 .3 .3 . Suppose {A,X,(I)a) is a Co{X)-algebra and {B,Y,4>b) a Co(Y)  

algebra. Then with the above notation:

(i) A B is a Cq{X x  Y)-algebra with base map 4>a ■ Prim(y4 0q  B) X  x  Y  

satisfying (j>a o ^  = cpA x cpB,

(a) The structure map '■ Cq{X x  Y)  —̂ Z M{ A  0 ^  B) corresponding to </>q

be identified with [ i î a  0  H b )  °  V >  where r] : Cq[X x  Y)  ^  Cq{X)  0  Co(y) is the 

canonical *-isomorphism and we identify ZM{ A)  0  ZM{ B)  with its canonical 

image in ZM{A<Sia B) .

(Hi) Denoting by 4>a ''^b extensions of 4>a ,4>b and 4>a to Fac(yl), Fac(5)
and Fac(yl 0q B) respectively, we have (f>a o ^  x (f>̂  ̂ on Fac(A) x Fac(5),
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(iv) For any M  G Fac(^  (8)q B)  and {x,y)  e  Â  x Y,  4>a[M) =  (x, y) if  and only if  

{(t>A ^

(v) For all {x,y)  ^  X  x Y  we have Kx,y =  ^{ I x ,  Jy)-

Proof  (i) is shown in the remarks preceding the proposition.

(ii) For /  G C o { X  x Y) ,  we have iJ,a{f) =  O a { f  °  where : C^(Prim(j4 ( S > a  

B)) ZM(A<S>a B)  is the Dauns-Hofmann isomorphism of equation (2.3.1). For 

f  ® g ^  Cq[X)  ig) Co(Y)  and (x, y)  E X  x  Y,  the ^-isomorphism rj satisfies rj~^{f  <8> 

g){x,y)  = f{x)g{y) .  Thus by hnearity and continuity, it suffices to show th a t for all 

f  ® g E Co{X)  0  Cq{Y)  and a <8> 6 G ^  i8)q 5  we have

l-^a{ri~^{f ® g ) ) { a ^ b )  = {^lA^ f iB){f  ^  g ) { a ^ b )  ^  j.iA{f)a ^  i.iB{g)b.

Take [P,Q)  G Prim(y4) x P rim (5), then the Dauns-Hofmann ^-isomorphism 6a 

of (2.3.1) gives

(/ta o 7?“ ^)(/(8>5)(a 0  6 ) -h $ (P , Q) =  6a { 7 f \ f  g) o 4>a) {a b) + <i'{P,Q)

=  V ~ ' i f  ®  g)  o < P a m P ,  Q ) )  { a  0  b - f  <D(P, Q ) )

= i f  °  4>a ) { P ) { 9  o 4>B){Q){a 0 6 -h $(P, Q) ) ,

and since A  0 ^  B / ^ { P ,  Q) = {A/ P)  0 q  {B/Q) ,  the last line becomes

( ( /  o 4>A){P){a + P))  0  {{g o 4>B){Q){b + Q)) ■

On the other hand, applying the isomorphisms 6a and 6b  of (2.3.1) associated with A  

and B  respectively we get

(MA<8)Ms)(/<8>5)(a0 6 )-h $ (P ,Q ) =  {fiA{f)a + P) ® {pLB{g)b + Q)

= {dAifo<pA)a + P) ^ { d B{ g ° ( p B) b  + Q)

= ( ( /  o (l>A){P){a + P))  0  {{g o (l)B){Q)ib + Q ) ) .

Thus for all (P, Q) G P rim (^) x Prim (i?) we have

{ { n a ° v ~ ^ ) { f  ®  g )  -  {f^A ®  ^ ^ B ) { f  ®  g ) )  { a ^ b )  e  < 5 (P ,  Q ) ,

and since P |{$(P , Q) : (P,Q)  G Prim(yl) x Prim (P)} =  {0}, it follows that

i l i a  o  ^ g )  =  il^A <8) / i e ) ( /  g)-
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(iii) Let ( / ,  J )  G Fac(yl) x Fa,c{B) and {P,Q)  € h u ll(/)  x Im ll(J). T hen  by (i) we 

have {4>a X 0 ^ ) (P , Q) =  (0^ o $ )(P , Q). By [42, Corollary 2.3] we have ^ { P , Q )  € 

hu ll($ (7 , J ) ) ,  so th a t Lennna 6.2.2 gives

{<!>{ X 0 ^ ) ( 7 ,  J )  =  {cPa  X 0 b ) ( F ,  Q] = {4>a o  Q) = {<t>L o  $ ) ( / ,  J).

(iv) By Propositions 5.3.2 and 5.5.2, (<I> o e  Fac(A (8>a B )  w ith M  D o

so th a t ($  o 'P)(A /) e  cl{A/} and hence

By (iii), the la tte r  is precisely {<p̂  ̂ x (^^)(^’(A /)).

(v) By (iv) and Proposition 6.2.3(iii), we have M  G hull/(/iTx,y) if and only 

if ^ '(A /) £  hu lly (/3;) X hu llj(Jy ). But then  since ^ '“ ^ (liu ll/( /i)  x liully(Jy)) =  

h u l l / ( A (4 ,  Jy))

by Lem m a 5.5.7(i), it follows th a t Kx,y = A (/x , Jy)- D

Defin ition 6.3.4. For a Co(A ')-algebra {X,A, i . ia)  and  a C o(F )-a lgebra {B, Y, ^ l b )  we 

will denote by {A <S>a B , X  x ® fin)  the  Co{ X  x F )-a lg eb ra  defined by Propo

sition 6.3.3, and we will consider th is construction as the na tu ra l (m inim al) tensor 

product in the  category of

{ A , X , f l A ) 0 a  { B , Y , i.i b ) = [ A ® a B , X  X Y , i.i a <S> Hb )-

T he tensor product construction of definition 6.3.4 does not agree in general w ith 

the fibrewise tensor product bundle studied by K irchberg and W asserm ann in [40]. This 

fact m ay be deduced from [40, Lem m a 2.3 and P roposition  4.3], and is dem onstrated  

explicitly in [15, Proposition  3.1].

We now in troduce some properties which characterise when these two notions of 

the  tensor product of a pair of C*-bundles coincide. For C*-algebras A  and B  we define 

the  properties (Fqi) and (Fmp) on A (g)  ̂ B  as follows:

a>(G, H)  =  A (G , H)  for all (G, H)  e  G hm m (A ) x G lim m (fi) (Fqi)

$ ( / ,  J )  =  A ( / ,  J )  for all ( /, J )  €  M in-Prim al(j4) x M in-P rim al(fi). (F m p )

If in addition  { A , X , ^ a ) is a  C o(A )-algebra and { B , Y , ^ b ) a C o(i^)-algebra, we will

say th a t the Cq{X  x  F )-a lg eb ra  [A B , X  x  Y,  (g) / i s )  satisfies property (F x ,y ) if

the equation
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^>(4, Jy)  =  A ( 4 ,  Jy)  for all [ x , y ) e X x Y  (F^.k)

holds. For convenience, we will refer to (F^.y) as a property of A B,  rather than 

{A^ct  B, X  IJ-b ), when the context is clear.

We remark tha t if ^  0 a  5  satisfies Tomiyama’s property (F) then clearly A ® a B  

satisfies properties (F;sc,y), (Fqi) and (Fmp), cf [37, Theorem 1.1 and Theorem 2.3]. The 

converse is not true in general; indeed, let A  and B  be C*-algebras such tha t A® qB  does 

not satisfy property (F), and let A' =  {x} and Y  =  {y} be one-point spaces. Regarding 

A as a Co(A’)-algebra and B  as a Co(l^)-algebra in the obvious (trivial) way, we have 

Ix = {0} and Jy =  {0}. Then it is evident tha t A{Ix,Jy )  = ^{ Ix ,Jy )  = {0}, so that 

A ^ a  B  satisfies property (Fx,y), hence this property does not imply (F).

To see tha t (Fmp) and (Fqi) do not imply (F), let A = B  = B{H),  where H  is & sep

arable infinite dimensional Hilbert space. Then G\imm{B{H))  =  M in-Prim al(i?(//)) =  

{0}, so tha t as before, B{ H)  0 ^  B{ H)  satisfies (Fmp) and (Fqi), but does not satisfy

(F) by [57]. Other examples are discussed in [6, p. 140-141].

The following Theorem relates the Co{X x y)-algebra {A (8>q B , X  x F ,/m  <8> Mb)i 

its corresponding upper-semicontinuous C*-bundle, and the fibrewise tensor product of 

the bundles associated with A  and B.

Theorem  6.3 .5 . Let {A ,X , i ia )  be a Co{X)-algebra and { B , Y , ^ b )  a Co(Y)-algebra, 

and let s /  =  {X ,A , t tx  '■ A  —> A^) and ^  = {Y, B,  ay : B  By)  be the associated 

upper-semicontinuous C*-bundles over X  a n d Y  respectively. Then

(i) the Cq{X  X Y)-algebra (yl0Q B , X  x Y ,  î a ^P i-b ) defines an upper-semicontinuous 

C*-bundle

[X  x Y ,  A  B ,  \ A ® a B  [ A®a  ^)(i,y)) .

where (A B)(^x,y) = A ® ^  B / A { l x ,  Jy) for all {x, y) ^  X  x Y ,

(a) the bundle [X  x Y , A ^ a  B,j(^x,y) '■ A(S>a B  ^  (.A 0 a  B)(^x,y)] o.g^ees with the fi

brewise tensor product bundle jz/ 0 q  ^  z/ and only i f  A  0 a  B  satisfies property 

{Px ,y ),

(Hi) I f  £ /  and SS are continuous C*-bundles and A ® a  B  satisfies property (Fx,y), 

then ( ^  0 a  B , X  X  Y,fiA ® Mb) i s  a continuous Cq{X x  Y)-algebra.
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Proof, (i) is iininediate from Proposition 6.3.3(v) and the equivalence of C'o(-^)-algebras 

(resp. Co{Y) — ,Cq{X x  Y ) - )  and upper-semicontinuous C*-bundles over X  (resp. 

Y , X  X Y).

By definition of the maps <I> and A, for ah {x,y) £ X  x Y  we have ^{Ix,Jy)  = 

A{Ix,  Jy) if and only if [A 0 ^  ■̂ )(x,j/) =  ®a By, from which (ii) follows.

If Jy) =  A(/j., Jy) for all (x,y) €  X  x Y ,  then (iii) follows from (ii) and 

Theorem 6.3.2(iii). □

Remark 6.3.6. (i) Given continuous Co(A")-algebras { A , X , i ia) and {B, Y , h b )i it is

natural to ask whether or not the converse of Theorem 6.3.5(iii) holds; that is, is 

property ( F ^ ^ y )  a necessary condition for the Cq{X x  F)-algebra ( A ( 8 ) q  B , X  x  

Y, ^ a  ® hb)  to be continuous. The analogous result for the fibrewise tensor 

product is true by Theorem 6.3.2(iii). We will show in Section 6.4 that this is not 

the case; we can construct such pairs {A^X^/la) and (B,Y,i.ib) such that A ^ ^ B  

does not satisfy property ( F x , y )  but {A ( 2 ) q  B , X  x  y , (g) / x £ j )  is a continuous 

Cq{X X  y)-algebra. One interesting consequence of this fact is that continuity 

of the associated hbrewise tensor product is a strictly stronger property than 

continuity of (̂ 1 (8ia B, X  x Y, <8> Us)-

(ii) A special case of Proposition 6.3.3 arises as follows; let be a Co(X)-algebra 

and B  any C*-algebra. Then we may regard 5  as a C(y)-algebra where Y  = 

{y} is a one-point space, so that X  x Y  = X  and ^  5  is also a Cq(A')-

algebra. The base map : Prim(vl 0q  5 )  —> X is the extension of 4>a ° Pi ■ 
Prim(A) x Prim(B) X  to Prim(yl B),  where pi  is the projection onto 

the first factor. The corresponding structure map is given by 0  1 : Cq{X)  

ZM[ A ) ®Z M{ B)  C ZM{A®aB) ,  where /J ^ 0 l( / )  =  a^a(/)<8>1 for all /  e  Co(X).

Thus by Corollary 6.3.5(i) we get an upper-semicontinuous C*-bundle {X, A  0q 

B, ' jx ■■ A 0a  B ^  {A 0 Q  B)x),  where (.4 0 ^  B)x =  {A 0 ^  B)/{Ix  0 q  B)  for 

all X  ^  X.  The analogous construction in the fibrewise tensor product case is 

as follows: for a C*-bundle .e/ =  (A ,A^tXx '■ A ^  Ax)  and a C*-algebra B, we 

define the C*-bundle £/  (S>a B = { X, A  0q 5 , 7 r x  0  id ; A 0a B  —> Ax  0q B).  

The two bundles agree precisely when $(/x , {0}) =  A (/i,{0}) for all x e X,  

by Corollary 6.3.5(ii). We will make use of this special case as an intermediate 

step in the construction of the tensor product of two C*-bundles in subsequent
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sections.

6.4 Comparison with the fibrewise tensor product

In this section we show that the assumption of property (Fx,y) in Theorem 6.3.5(iii) 

is not necessary in general. More precisely, we show that for any inexact C*-algebra B,  

there is a continuous C'o(X)-algebra { A , X , ^ a ) such that

(i) the fibrewise tensor product (8iq B,  where ^  is the continuous C*-bundle 

associated with { A , X , î i a ), is discontinuous, while

(ii) the C o(^)-algebra (A<8>q B , X , f i A  <8> 1) is continuous.

This shows that the analogue of Archbold’s result [6, Theorem 3.3] for the bundles

constructed in Section 6.3 is untrue. In particular, we deduce that for continuous 

Co(A')-algebras and {B,Y, f iB) ,  the assumption that the Cq{X x  F)-algebra

{A ® c , B , X  X y ,  ® Hb) is equal to the fibrewise tensor product (i.e. A <Sia B  satisfies

property (F v >')), is not a necessary condition for continuity.

Lem ma 6.4.1. Let {A,X,i^ia) be a Co{X)-algebra, and denote by : Fac(v4) > X  

the base map. For any closed subset F  C X , setting

h = f ] { I ^ : x e F } ,

we have

(i) For M  e Fac(yl) M  2 I f  i f  o-nd only if  G F.

(ii) For any C*-algebra B  we have

l F ^ a B =  f ]  [ h  B )  .
x e F

Proof, (i) Let m  =  and suppose first tha t m  ^  F. Choose a ^  A  with

||a +  M || =  1 and /  G Co{X)  with f { m )  =  1 and / ( F )  =  {0}. Then

I^A{f)a + M  = f{(j)^^{M)){a + M )  =  f {m){a + M )  = a + M,

so that ^ A{ f ) a  ^  M.  On the other hand, for all x  e  F,

M/i(/)a + Ix = f {x){a  +  Ix) = 0,
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so tha t jj,A{f)a G If'. In particular, M  2  I f -

Now suppose that rii E F. Then by Proposition 6.2.3(iii), M  D Im and so M  D 

HxeF =  If -
(ii) We will regard B  & Co(A')-algebra as in Remark 6.3.6(ii); the base map 

( p a  : Prirn(j4 (8)q  B) ^  X  being the unique extension to Prim(yl B)  of (f)A °  P\ '■ 

Prim(,4) x Prim (B) —> A", with p\ the projection onto the first factor.

Let M  G Fa.c{A^aB)  and let {M^,  M ^ )  = We first show that M  D I p ^ ^ B

if and only if 5  I f - By Lemma 5.5.7(ii) we have B)  =  {Ip,  {0}), and since

^ is order-preserving, it is clear that if M  D I p  B  then ^  Ip- On the other 

hand, since A is also order-preserving, if 2  I f  then using (5.5.2) we see that

M  D M ^ )  2  A ( / f ,  {0}) =  I f  B.

By (i) D I f  if and only if G F. But then by Proposition 6.3.3(iv), we

have

and the conclusion follows.

□

Lemrna 6.4.2. Let X  be an extremally disconnected compact Hausdorff space. Then 

any C{X)-algebra { A ,X .^ a )  is continuous.

Proof. For each x G A we have

Ija-h/xll =  hif{||(l -  +  f{x))a\\ /  G C{ X) ]

by [14, Lemme 1.10]. Moreover, it is easily seen th a t for a given /  G C{ X)  and 

a G yl, the norm function x ^  ||(1 ~  A^/i(/) +  /(2^))^ll is continuous on X.  Since X  is 

extremally disconnected and compact, C{ X)  is monotone complete, and so the above 

infimum belongs to C (A ). □

P roposition  6.4.3. Let B  be a C*-algebra, M  a von Neumann algebra and 

(Af, Glimm(A/), the C{Glmim{M))-algebra associated with the Dauns-Hofmann 

representation of M . Then { M ^ a B ,  Glimm(A/), 0;\/(8)l) is a continuous C(Glimm(A/))- 

algebra.
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Proof. Since Z{M)  is a von Neumann algebra, Glimm(A/) =  Prini(Z(A /)) is 

an extrenially disconnected compact Hausdorff space. Continuity of {M (8>q 

B, Glinim(A/), 0jv/ ® 1) then follows from Lenmia 6.4.2. □

Theorem  6.4.4. Let B  be an inexact -algebra. Then there is a von Neumann 

algebra M , whose Dauns-Hofmann representation (A/, Glimm(A/), 0a/) o,nd associated 

continuous C*-bundle (Glimm(A/), A/, 7Tp : M  —> Mp) satisfy

(i) {M ®a 5 ,  Glimm(Af), 0A/ <8> 1) is a continuous C{Glimm{M))-algebra, and

(a) (A/(8)q5, Glimm(A/), TTpigiidB : M^SiaB —> M p ^a B ) is a discontinuous C*-bundle.

I f  in addition B  is a prime C*-algebra (e.g. if  B  primitive), then M  B  is quasi

standard.

Proof. Let M  = O ^i Then M  is a von Neumann algebra, hence it is quasi

standard by [5, Section 5]. Moreover, Z{ M)  consists of the sequences (A „ l„ )^ j  e  A/, 

where A„ G C and 1„ is the n x n identity matrix. It follows tha t Glinnn(A/) =  

Prim (Z(A /)) is canonically homeomorphic to ^N.

Since B  is inexact, the sequence

0 —̂ lo B  —̂ A/ 0Q B  —̂ [A1 / Iq) <S>a B  —̂ 0 (f)

is inexact by [39]. We claim that there is some q e  /9N for which Gq<S>aB C ker(7rg0idB). 

Suppose not. By [42, Lemma 2.2]

ker(7To (gi id s )  =  Q  ker(7r, (g) id s) ,  
ge;0N\N

and by Lemma 6.4.1

k ^ a B =  P i 7, B.

Thus if I q ® a B  = ker(7rq 0  id^) for all q G /3N\N, the above intersections would agree, 

which would imply tha t (f) was exact, which is not the case.

Thus (Af 0Q B,  PN,  7Tq 0  idg : M  0 q  B  —> Mq 0 ^  B)  is discontinuous a t some point 

p G ^N \N  by [40, Proposition 2.7].

On the other hand, by Proposition 6.4.3, the C(Glimm(Ai’))-algebra 

{M <S>a B , Glimm(Af), 9 ^  0  1) is continuous.
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Under the additional assumption that the zero ideal of B  is prime, then necessarily 

we have Glinnn(Z?) =  {0} by [7, Lennna 2.2], and so Glimm(A/(8)a is homeomorphic 

to in the obvious way. In particular, (A/ (g)̂  Glimm(Af), 0  1) corresponds

to the Dauns-Hofmann representation of M  B,  and the fibre algebras are prime 

throughout a dense subset of Glinnn(Af B), namely the points of N. By [7, Theorem

3.4 (iii)=^(i)], M  (gî  B  is quasi-standard.

□

6.5 Continuity and exactness of the Cq{X xy)-a lgebra A<S>a

D

In this section we investigate the relationship between exactness of a continuous C q(^)- 

algebra (A, and its minimal tensor product with an arbitrary continuous Cq{Y)-

algebra ( B , Y , ij.b )- The corresponding result regarding continuity of fibrewise tensor 

products of C*-bundles was obtained by Kirchberg and Wassermann in [40]:

T heorem  6.5 .1 . (E. Kirchberg, S. Wassermann [40, Theorem 4.5]) The following con

ditions on a C*-algebra B  are equivalent:

(i) B  is exact.

(a) For every locally compact Hausdorff space X  and continuous C*-bundle =  

(X, A, 7Ti : A —> Ax) over X . the fibrewise tensor product s i  (8iq B  is continuous,

(Hi) For every separable, unital continuous C*-bundle =  (N, A, 7t„ : A An) over 

N, the fibrewise tensor product is continuous.

While Theorem 6.4.4 shows that continuity of a Co{X  x F)-algebra of the form 

{A (8>q B , X  X  0  /xb) is a strictly weaker property than continuity of the cor

responding fibrewise tensor product, a discontinuous example was already exhibited 

by Blanchard in [15]. The construction of this counterexample depends heavily on 

the specific properties of the algebra-s involved. Our main result of this section. Theo

rem 6.5.6, shows tha t this pathology is in some sense universal; more precisely, we show 

that [A, X ,  f i A )  is exact if and only if the Cq{X  x  F)-algebra B , X  x Y ,  ^lb) 

is continuous for each continuous Co(F)-algebra {B ,Y ,h b )-

The following two lennnas arc known, we include a proof for completness.
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Lemma 6 .5.2 . Let A and B be C*-algebras and (/, J) G x Then the

quotient C-algebra A(S>a B / A { 1,J)  is naturally isomorphic to [ A / I ) ^ ^  [B / J ] ,  where 

is a C*-norm on {A/ I )  Q {B/J) .  Moreover, ||-||  ̂ =  ||-||^ i f  and only i f ^ { l , J )  =

Proof. Let -kj : A A /1 and n j - . B - ^ B / J h e  the quotient maps. We remark that if

(tt/ Q ttj) : A Q  B i ^ / I )  © {B/J )  denotes the canonical algebraic ^-homomorphism,

then the closure of its kernel in A iS>a B is ker(7r/ 0  t t j ) =  A{ I ,  J).

Take z =  Ym=i ^i®Vi ^  i - ^ /^)Q{B/  J) and choose a j , . . . ,  a„ G A and bi , ... ,bn & B 

such that TTi{ai) =  Xi and nj{bi)  =  yi for 1 < i <  n and set c =  X lIL i so that

(tt/ O 7t j)(c) =  Define 7 : {A/ I )  Q {B/J )  —> [0,00) via 7(2) =  ||c +  A( / ,  J)||. Then 

7 is well-defined since if  c' S A Q  B also satisfies (tt/ © ■k j ) { c ' )  =  z, then c — c' E 

ker(7T/ 0  7Tj) C A(/ ,  J), hence

7(c) =  7 ( c ' - c -h c )  =  ||c - c - | - c -h A ( / , J ) | |  =  ||c-h A (7, J)|| =7(0).

Clearly 7 is a seminorm, and since 2*2 = (tt/ © nj){c*c), we have

y{z*z) =  llc’ c +  A{ I ,  J)|| =  ||(c +  A( / ,  J))*(c + A( / ,  J))|| =  ||c +  A{ I ,  J ) f  =  7(^)^

(by the C*-condition on the quotient norm), so 7 is a C*-serninorm. Finally, if  7(2) =  0 

then c G A( / ,  J) D A Q B =  ker(7r/ © ttj) ,  s o  that 2 =  0 in {A/ I )  © {B/J) .  It follows 

that 7 is a well-defined C*-norm on {A/ I )  © {B/J) .

It follows that 7T/ 0 7Tj : A ©Q 5 —> {A / I )  ©-y {B/J)  is a bounded, surjective *- 

homomorphism of normed *-algebras, and hence extends to a ^-homomorphism tt/

7Tj : AiSiaB —> {A/I)<Si-y {B/J) .  Since the range of is closed and contains the

dense set {A/ I )  © {B/J) ,  it is surjective. We claim that ker(7T/ t t j ) = A{ I ,  J).

Since ker(7r/ 0 -y  t t j ) is closed and contains I  Q B +  A Q J, it must also contain 

A (7, J). To show the reverse inclusion, let d G ker(7r/ 0-y nj )  and e > 0. Then there is 

c £  A Q  B with ||c — d|| < By the definition of

||c-|-A(7, J)|| =  IKtt/ ©-y 7rj)(c)|| =  \ \ { t t j  n j ) { c -d ) \ \  < |

(since d G ker(7T/ ttj)). It follows that
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Since e was arbitrary, d e  A{ I , J ) .  We have shown that ker(7T/ 0 -y ttj) = A(7, J ) , and 

hence we can conchide that (̂ 4 (§)q B) /A{1 ,  J)  is canonically *-isoniorphic to {A/1) <S>-y 

(B/J ) .

For the final assertion, note that | | - | |^ =  | | - | |^  if and only if t t /  (8)  ̂ t t j  is the canonical 

♦-homomorphism ni ^  n j  : A <Sia B  ^  {A/ I )  <8 >a {B/J)-,  whose kernel is by definition 

$ ( / ,  J).  Hence the two norms are equal if and only if ker(7r/ (8>7 tt j )  (= A (/, J ))  is equal 

t o $ ( / , J ) .  □

L em m a 6 .5 .3 . Let A  = {X,A,-Kx '■ A Ax) he a C*-bundle and xq & X . Then for  

each a ^  A

l | a  +  4 o l l  =  i n f  s u p  | | 7 r x ( a ) l | ,
" x e i v

as W  ranges over all open neighbourhoods of xq in X .

Proof. Fix an open neighbourhood U of xq in X .  We first claim that

sup ||a +  Ix\\ =  su p  ||7Ta;(a)||. 
xeU x e u

It is clear tha t ker(7Tx) 5  h ,  heiice we have ||7ri(o)|| <  \\a +  Ix\\ for all x G {/ and so

the supremum on the left is always greater than or equal to that on the right.

Let xi e  [/ and choose /  e  Co(A'), 0 <  /  <  1, with / (x i )  =  1 and f { X \ U )  = 0,

then ||a +  7^  || =  | | /  • a +  ||. Moreover,

11/  • all =  sup h x i f  -a)\\ = sup ||7r3: ( /  • a)|| =  sup l/(x ) | • ||7rx(a)|| <  sup ||7Tj:(a)|i, 
x € X  xeU xeU xeU

whence

Ik +  II =  l l / - a  +  4i l l  <  11/-all <  sup ||7T3;(a)||.
x e u

It follows tha t

sup ||a +  411 < sup ||7rx(a)||, 
x e u  xeU

and so

sup ||a +  411 =  sup ||7rx(a)||. 
xeU x e u

Suppose for a contradiction that
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Then since x  |ja +  I^W is upper semicontinuous on X ,  we could find an open neigh

borhood U of xo such that

||„ + 411 < 1̂, ^ g I,
But this would then imply that

I I  T i l  I x o  I I  \  I I  /  \  I Isup ||a +  /ill <   r-^  <  a  <  sup l|7ri(a)||,
x€U V  ^  /  xeu

contradicting the fact tha t these suprema must be equal for all open neighbourhoods 

U of xq. □

Proposition  6.5.4. Let B  he an inexact C*-algebra. Then there is a separable unital 

C{N)-algebra {A ,N ,iia) such that the C{N)-algebra (^4(8)qS, N,/X/i(8>l) is discontinuous 

at oc.

Proof. Since B  is inexact, by [40, Proposition 4.2] there is a separable, unital continuous 

C*-bimdle C = (C, N, (Tn : C —> C„) with the property that the minimal fibrewise tensor 

product C (8q S  =  (C <8iq N, <8i id ; C (8>a > Cn 'S/a B)  is discontinuous at oc.

Since C  is continuous, for each n G N we have In = keran. By [6, Theorem 3.3], 

we have loo <8>q B  C ker(cToo <8) id), while In <Sia B  =  ker(an (8> id) for all n 6 N. It follows 

in particular tha t [C ®a B)/{Ioc  <8|q B)  is canonically ^-isomorphic to Cqc 0^  B,  where 

ll'll..̂  is a C*-norm on Cqo © B  distinct from ||-||^ by Lemma 6.5.2.

There is thus y =  X^Li ^  0  B  with the property tha t ||y||..  ̂ >  Hj/Hq.

Choose . . . ,  e  C  such tha t <Too(ĉ ®̂ ) =  for 1 <  i < ^, and set y =  ®

e C Q B .  Then

| | y  +  / o o 0 a ^ | |  =  | | y | | . ^  >  l l y l l a  =  | | ( a o o 0 i d ) ( y ) | | ,

by the definitions of ||-||..̂  and a^o 0  id.

Now let D = C(N) 0 ^  Coo be the trivial (hence continuous) bundle on N with fibre 

Coo, aiid denote by e„ the evaluation maps, where n £ N. Let A  be the pullback 

C*-algebra in the diagram

A ------

<̂0C
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th a t is, the  C *-subalgebra of C  © D given by

A = = { c ® d e C ® D :  cToo(c) =  eoo(c^)}-

Then we have a well-defined ^-homomorphism tTqo : A  —>■ C^o sending c ® d  to aoo{c) = 

eoo{d) [50, 2.2],

For n  G N we m ay extend (keeping the sam e notation) and g:„ to  A  by setting

crn{c®d) = a „ ( c ) ,e „ ( c 0 d )  =  e„(d)-

A  defines a continuous C*-bundle (yl, N, 7r„ ; >1 —>• ,4„) as follows: for n  G N set A 2n - i  = 

C n  and 7T2ri-i =  O n, ^ 2 r i =  C qo  and -K2n =  £ n ,  and TToo : ^  A o o  =  C oo  as above. 

C ontinuity  of A  follows easily from that of C  and D: for c ®  d E A  we have | |c t„ (c ) | |  

and ||e„(f/)|| bo th  converge to ||7roo(c © c^)||, it follows th a t | | 7 r „ ( c ®  (i)|| —> ||7roo(cffi d)||.

R egarding ^  as a C (N )-algebra, let- /.ia ■ C(N) —> Z{ A)  be the s tru c tu re  map; where 

/  G C (N ) acts by pointwise m ultiplication. Now A ® B  is a C (N )-algebra w ith s tru c tu re  

m ap I '■ C(N) (8> C —> Z M { A  B) .  For each n  G N we let be the  ideal

{n <S) 1) ^{/ G C(N) ; /(n ) =  0} 0  A jB

of AiSiaB, so th a t n  I-)- llx -t- /v„|| is upper-sem icontinuous on N. Again it follows from [6,

Theorem  3.3] th a t  for n  G N we have =  ker(7r„ (g) id), and by Proposition  6.3.3(v) 

we have Koo = loo

On the  o ther hand the  (lower-semicontinuous) C*-bundle A<S>aB =  (N, A ® a B ,  7 t„0

id : A ® c,B  —> A n ^ a B )  has fibres A „ ^ a B  = Cn+i <S>aB for n  odd, A n ® a B  =  C oo®aB
2

for 77 even, and ^oc =  C'oo <S>q B.

For 1 <  2 <  ^ let G D  be the constant section e„{d^’'^) =  c S ,  set =
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G A, and let x  =  <8> T hen for n G N we have

(tttj (g) id)(x) =  (7Tn 0  id) ( ®
Ki=l

Z=1

an+1 if n  odd

Z]i=i ®

(CTn±i (g) id)(y) if n  odd

Y i= \ cS <8> if n even

It then follows th a t

(7r„ (g)id)(x)|| =

[an±\ 0  id)(?/) if n odd

Finally, note th a t by Lem m a 6.5.3 we have

O o O ® Q  5
=  ||y||^ if n even.

||x +  A 'o o | |  =  m ax ( lim sup  | |(7r„ 0  id ) (x ) ||, IK tto o  (8> id)(x)||
V n

= \\y + Ioo<^aB\\ =  m ax ^l im su p | | ( < 7 „0 id ) (y ) | | , | | ( o -o o 0 id ) (y ) | |

Since we know th a t ||aoo 0  id)(y)|| =  ||y ||^  <  ||y ||^, the  second equality becomes

\\y\\^ = l i m s u p | i ( C T „ 0 i d ) ( y ) | | .
n

In particu lar, we conclude th a t

||a: +  Aoo|| >  lim sup  | |(7r„ 0 id ) (x ) ||
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Tims for all even n (since =  ker(7r„ (g)id) for n G N by continuity at these points) 

||2; +  A„|| =  ||(7r„(»id)(x)|| =  ||y||^ <  \\y\\^ < ||x +A"oo||, 

and it follows tha t n 1-4 ||x +  Kn\\ is discontinuous a t 00.

□

C orollary 6 .5 .5 . Let B  be an inexact (T-algebra. Then there is a separable unital, 

continuous C{N)-algebra (y l,N ,/i^), with P rim (^) homeomorphic to N, such that the 

C{N)-algebra (A (gî  i?, N , 0  1) is discontinuous at 00. Moreover, Prim(yi) is canon

ically homeomorphic to N, and /i^ agrees with the Dauns-Hofmann *-isomorphism  

0^ : C (P rim (i))  ^  Z{A).

Proof. Let /i_4) be the separable, unital continuous C(N)-algebra of Proposi

tion 6.5.4. Then by [16, Corollary 4.7] there is a unital continuous C(N)-algebra 

{A, N, j.1̂ )  with simple fibres and a C(N)-module *-monomorphism t. : A  A. By injec

tivity of the minimal tensor product we get a *-monomorphism i(8>id : A<SiaB A<^aB.

Now, is a C(N)-algebra with base map (81 1. To show that t ® id is a

C(N)-inodule map, take a b e  A <S>a B  and /  e  C(N). Then we have

® !)(/)({. ig)ia)(u 0  5) =

= (t (g) id)(^M (/)a (g) 6) e  (t <8 id )(^  (8)q B).

In particular it follows from Theorem 2.3.12(iii) tha t {A 0 ^  (g) 1) is discon

tinuous, since it contains the discontinuous C(N)-algebra (̂ 4 (go i ? , N , i g  1) as a 

C(N)-submodule.

Denote by 4>̂  : Prim(>l) N the base map uniquely determined by and by

in  = fJ-A ( { /  e  C(N) ; / (n )  =  0}j i  =  P |{ P  G P r im (i)  : (p^iP)  =  n}

for each n G N. Then since each fibre A/ In  is simple, it follows tha t In is maximal (and 

in particular primitive) for all n G N. Moreover, since every P  G P rim (^) contains a 

unique In for some n G N, we see that i-> n is a bijection. The fact th a t this map is 

a homeomorphism then follows from Lee’s theorem [44, Theorem 4]. □

T heorem  6.5 .6 . The following conditions on a C*-algebra B  are equivalent:

(t) B  is exact,
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(it) fo r  every separable, unital continuous C{N)-algebra the C{N)-algebra

{A B ,  N, 1) is continuous,

(Hi) fo r  every separable, unital C*-algebra A  with Fi'im{A) Hausdorff, C'(Prim(v4))- 

algebra (j4i8)q 5 ,  Prim (j4), 0  1) is continuous, where 9^ : C (Prim (yl)) —̂ Z (A )  

is the Dauns-Hofmann *-isomorphism,

(iv) for  every locally compact Hausdorff space X  and continuous Co{X)-algebra  

{A, X ,  1.1a), the Co{X)-algebra  (^<8>q B , X , h a  <8> 1) is continuous.

Proof. (i)=>(iv): Suppose th a t B  is exact and let { A , X , i.i a ) be a continuous C o(X )- 

algebra. T hen  since A ^ ^  B  has property  (F), we have ^ { I x ,  {0}) =  ^ { Ix ,  {0}) for all 

a; G X . It then follows from Corollary 6.3.5(iii) th a t  [A B , X ,  [xa <2> 1) is continuous.

(iv)=>(iii) and (iv)=>(ii) are evident.

(ii)=>(i): Suppose th a t B  is inexact, then  by Proposition 6.5.4 there is a separable, 

unital continuous C (N )-algebra [A, N, /i.4) such th a t N, is discontinuous,

so th a t (ii) fails.

(iii)=>(ii): This follows sim ilarly from Corollary 6.5.5.

□

C o ro lla ry  6 .5 .7 . The following conditions on a Co{Y)-algebra { B , Y , i.lb) are equiva

lent:

(i) B  is exact,

(ii) For every separable unital Co{X)-algebra {A, X ,  h a ) ,  with X  =  N ,  the Cq{X x Y ) -  

algebra (A (8>q B , X  x  Y ,^ a  ® 1̂-b ) satisfies property (F x ,y ),

(Hi) For every Co{X)-algebra {A, X ,  /i a ), the Co{X x  Y)-algebra {AiS>a B , X  x Y ,  h a <̂  

Hb ) satisfies property (F x ,y ),

I f  in addition { B , Y , ^ b ) is a continuous Co{Y)-algebra, then (i) to (Hi) are equivalent 

to:

(iv) fo r  every separable, unital continuous C{N)-algebra { A , N , ij.a ),  the C (N  x F ) -  

algebra {A  B , N x Y, h a  0  Hb) is continuous,

(v) fo r  ever-y continuous Co{X)-algebra [ A , X , ij,a ), the Co{X x  Y)-algebra [A 

B , X  x  Y , ha  'Si h b ) is continuous.
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Proof. The equivalence of (i),(ii) and (iii) is shown in the proof of [15, Proposition 3.1].

To see that (iv) implies (i), we argue by contradiction. Indeed, suppose that B is 

inexact, then by Proposition 6.5.4 there is a separable unital C(N)-algebra (y l,N ,/i^) 

with the property that the C(N)-algebra (yl(8iQ 5 , N , ( 8 >  1) is discontinuous. We will 

show that the C(N x y)-algebra (.4 i8)q 5 , N x Y, j.LA ® IJ-b ) must also be discontinuous.

Let (pA ■ Prim(A) —̂ N and 4>b '■ Prim (5) —> F  be the base maps corresponding to 

liA and /iB respectively, which are open since both A and B are continuous. We will 

denote by (pa ■ Prim(yl B) ^  N x Y  and (pA '■ Prim(A 0q B) —>■ N the base maps 

associated with j^iA^fiB  and / x^®l  respectively. Note that 4>A is not an open mapping 

since the C(N)-algebra B , N , ®  1) is not continuous, and that

o $  =  P i o ((/)^ X (Pb ) = p \ o < P a O ( ^

on Prim(yl) x Prhn(5) by Proposition 6.3.3(i).

Consider now the diagram

Prim(/1) x Prim(/?)‘̂ ^—^ Prim(A <8)̂  B)

where p\ is the (open) projection onto the first factor. To see that the lower triangle of 

this diagram commutes, note that s i n c e a g r e e s  with (pA on <J>(Prim(A)xPrim(B)), 

both maps must agree on Prim(A B) by the uniqueness part of [42, Theorem 3.2].

Then if  (p^ were open, this would imply that (pA =  P i °  (pa were open, which is 

impossible since {A 'S/a B, N, î la ® 1) is discontinuous. In particular, it follows that 

{A (8>q jB, N x Y, fiA ® /is ) is discontinuous.

The fact that (v) implies (iv) is evident. To see that (i) implies (v), note that if 

(i) holds then {A <S>q B , X  x  Y, fiA <S> ^b)  satisfies property (Fx,y) by the equivalence 

of (i) and (iii). Then by Theorem 6.3.5(iii), (A (8>q B , X  x  Y,ha <8> I^b) is a continuous 

Co{X X  y)-algebra.

□
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6.6 Quasi-standard C*-algebras and Hausdorff prim itive 

ideal spaces

This section is concerned w ith stab ih ty  of the  class of quasi-standard  C*-algebras under 

tensor products. This question was first studied by Archbold in [6], where it was shown 

th a t if A  and B  are quasi-standard  and satisfies property  (Fgi), then  B  is

quasi-standard . We gave a partia l converse to  this result in Theorem  5.6.2. However, it 

is clear from Theorem  6.4.4 th a t property  (Fqi) is not a necessary condition for A<S>aB 

to  be quasi-standard .

We will show in Theorem  6.6.6 th a t a quasi-standard  C*-algebra A  is exact if and 

only if A  (8>q B  is quasi-standard  for all quasi-standard  B.  As a related result, we show 

th a t a (not necessarily quasi-standard) C*-algebra A  is exact if and only if A  (8>q B  

satisfies p roperty  (Fqi) for all C*-algebras B ,  if and only A B  satisfies property  

(Fmp) for all C*-algebras B.  T he existence of C*-algebras A  and B  such th a t 4̂ (8>q B  

does not satisfy properties (Fqi) and (F ^ p ) was previously unknown, thus our result 

answers a question posed by Archbold [6, p. 142] and Lazar [42, p. 250].

P r o p o s i t io n  6 .6 .1 . Let A  and B  be CT'-algebras.

(i) I f  A ® a  B  satisfies (Fmp), then <8>q B  satisfies (Fqi),

(ii) I f  {A, X ,  ij,a ) is a Co{X)-algebra and { B , Y , ^ b ) o. C q{ Y ) - algebra, then A (8>q B  

satisfies property (Fqi) implies that A  <S>a B  satisfies property (Fx,y)-

Proof, (i): We first show th a t for any C*-algebra A  and G i G G lim m (^),

=  P i  {P  G M in-P rim al(^) : P  ^  G i}  .

Indeed, since each prim itive ideal of A  is prim al, we necessarily have

G i =  P i  {P  e  P rim al(^ ) : P  5  G i} C Q  {P  e  M in-Prim al(yl) : P  D G i}  .

Denote by H  the  ideal on the right, then  if the  above inclusion were stric t, there would 

be some Q e  P rim (^ )  such th a t  Q ^  G\  b u t Q ^  H . Let P  be a  minimal prim al 

ideal of A  contained in Q, then  by [7, Lem m a 2.2] there is a unique Glimm ideal G 2 

contained in P . N ote Gi /  G 2 since otherw ise P , and hence Q, would contain H .  T his 

in tu rn  implies th a t Q G \, a. contradiction.
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Since A ® a B  satisfies ( F m p ) ,  we have $  =  A  on M in -P rim a l(A ) x M in -P rim a l(B ),

and so [6, Theorem 4.1] shows tha t A  is a homeomorphism o f M in -P rim a l(^ ) x

M in -P rim a l(5 ) onto M in -P rim a l(A  B) .  For { G , H )  G G hm m (yl) x G hm m (5 ) we 

have A { G , H )  e G hm m (A  B)  by Theorem 5.5.9, which together w ith  the above 

remarks gives

A { G , H )  =  f ] { R e M m - P r i m a . \ { A ® a B )  : R - J  A { G , H ) }

=  Q  {A (7 , J ) : { I ,  J )  G M in -P rim a l(A ) x  M in -P rim a l(B ), A (7 , J) D A (G , H ) ]

On the other hand by [42, Lemma 2.2] and the first part o f the proof,

$ (G , H)  =  -!> ( P i  { /  e M in -P rim a l(^ ) : I  D G }  , f ] { J  e M in -P r im a l( f i)  : J  D H } ^

=  P i { $ ( / ,  J ) : (7, J ) e M in -P rim a l(A ) x  M in -P rim a l(B ), 7 2 G , J D H }

=  P { A ( 7 ,  J ) : (7, J ) e M in -P rim a l(y l) x  M in -P rim a l(5 ), 7 2  G , J D H } .

Finally, since ^  o A  is the iden tity  on Id '( ^ )  x Id'(7?) and since is order preserving, 

we see that

A (7 . J)  D A (G . H]  i f  and only i f  7 3  G and J  ^  H.

from which we conclude tha t H)  =  A (G , 77) for all (G, 77) £ G lim m (^ ) x 

Glimm(7?). Hence A  0 ^  B  satisfies property (Fg i).

(ii): We w ill use the notation of Proposition 6.3.3. Note tha t for a ll {x,y)  S 

X  x Y ,  we have Kx,y =  A(7x, Jy) by Proposition 6.3.3(iv), so we w ill show tha t Kx^y =  

^ ( I x ,  Jy)- Let ipA,4>B and ipa denote the continuous maps on the G lim m  spaces o f A, B  

and AiS>a B  induced by the base maps 4>a ,4>b  and 4>a respectively. We firs t show tha t 

ipa °  A  =  ipA X ipB- Indeed, for all (P, Q) G P rim (A ) x Prim(7?) we have

{(t)A X <t>R)[P,Q) =  {4>a o

by Proposition 6.3.3(i). Hence by the definitions o f tpA^fpB and 'ipa,

{-IpA X ' ^ b ) o {PA X Pb ) { P : Q )  =  { i ! a O  P a O ^ ) { P , Q ) ■

Fol\owmg the first paragraph o f the proof o f Theorem 5.5.9, we see th a t o $  =  

A o [pa X p b ), which shows that

{i^A X '4>b ){p a {P),Pb {Q))  =  ‘̂ ) { p a {P) ,Pb {Q))
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for all {P,Q) e  P rim (^) x Prini(B).

By Lemma 6.2.1,

A'x,y =  P|{G  e G lim m (^ (8>a B )  : i p a i G )  =  (a ,̂y)}-

Any such G e  Glimm(yl (8)q B) is the image A{Gp,Gq)  of a pair of Glimm ideals of A 

and B  by Theorem 5.5.9. Together with the fact th a t ipa ° ^  = '4’A V'S) this gives

' (P’ ^ Glimm(A) X Glimm{B),-ipA{p) = x  and V'b(9) =  v]-

Using $  =  A on Glimm(yl) x G lim m (5), [42, Lemma 2.2] shows that

Kx,v = {^[^{Gp,Gq):^A{p] =  x,'il)B{q) =  y]

=  ^>(n{Gp: -i/'/i(p) =  3"},n{G g: V’s (g )  =  y})

~  J y ) i

where the final equality follows from Lemma 6.2.1. Hence A B  satisfies property

(Fx,y). □

Proposition  6.6.2. Let B  be an inexact C*-algebra. Then there is a separable C*- 

algebra A with Prim(v4) Hausdorff such that

(i) there is a pair [G, H)  G Glim m (^) x Glimm(i?) with A{ G, H)  C ^[ G, H) ,

(ii) there is a pair ( /, J )  e  Min-Primal(yl) x M in-Prim al(5) with A (/, J )  C $ ( / ,  J ) ,

(iii) Prim(A (8>q B) is non-Hausdorff,

(iv)  The complete regularisation map pa ■ Prim(yl ( g ) a  B)  —)• Glimm(A 0 q  B) is not

open.

Proof. To prove (i), let (A, N, î a ) be the continuous C(N)-algebra constructed in Corol

lary 6.5.5, so th a t the C(N)-algebra {A (8>q 5 ,  N, <8> 1) is discontinuous. We regard B  

as a (continuous) Co(K)-algebra over a one-point space Y  =  {y} as in Remark 6.3.6(ii). 

Then since (^4 0 q  B ,N ,/i/i (8> 1) is discontinuous, it follows from Theorem 6.3.5(iii) 

tha t A ® a  B  does not satisfy property (Fx,y)- Hence by Proposition 6.6.1(ii), it must 

follow that $  7̂  A on Glimm(A) x G lim m (5). (ii) is immediate from (i) and Proposi

tion 6.6.1(i).
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(iii): Note that if Prim(i?) is noii-Hausdorff, then the same is true of Prim (^) x 

Prim(B). Since $  maps Prim(yl) x Prim (5) homeomorphically onto its image in 

Prim(j4(g)a-^?) [59, lemme 16], it tiien follows that the latter must also be non-Hausdorff.

Suppose now that Prim (5) is Hausdorff, then Prim(B) =  Glimm(B). Since 

Prim (^) — Glimm(>l) also, (i) implies that there are {P,Q) S Prim(A) x Prim(fi) 

such that A{P,Q)  C ^{P,Q).  It follows that there is /? e  Prim (^ (8)̂  B)  such that 

R 3  A{P,Q)  but R  7̂  $(P , Q). Since by Theorem 5.5.9, A{P,Q)  is a Glimm ideal of 

A iSia P-, we have R ^{P, Q), so that Prim(>l (g)̂  B)  is non-Hausdorflf.

(iv): If pb : Prim(i?) Glinnn(S) is not an open map, then since A is unital, pa 

is not open by Corollary 5.6.7. Thus we will assimie that ps  is open.

Since >1 0^  B is a discontinuous C(N)-algebra, the continuous mapping : 

Prim(A ®a P) ^  is not open. Moreover, (pa is the unique extension of 

4>a  °  P \  '■ Prim(/1) X Prim(B) ^  N  to Prim(j4 0q  B),  where p \  is the projection 
onto the first factor. We will denote by : Glimm(yl) —> N the canonical homeo- 

morphism, and by 'tpQ : Glimm(/l 0Q B) —> N the map induced by given by the 

universal property of the complete regularisation, so that (f)a = '<Pa ° Pa-

Since Prim(>l) is compact, the complete regularisation of Prim(v4) x Prim(i3) is 

canonically identified with Glimm(/1) x Glimm(-B) with the product topology by Corol

lary 5.3.4. In particular, this implies that : Glimm(A(giQi3) —> Ghmm(yl)xGlimm(i?) 

is a homeomorphism by Theorem 5.5.9. Let pi : Glimm(yl) x Glimm(i?) —> Glimm(/1) 

be the projection onto the first factor and consider now the diagram

Prim(yl B)  —^  Glimm(yl (g)̂  B )  ^  Glimm(A) x Glimm(P)

Pi

N  ---------------------------------------------------- Glimm(^).

Then by Theorems 5.3.3 and 5.5.9(ii) we have = p a ^Pb on Prim(A)xPrim(B),

so that for ah [P,Q) G Prim(^) x Prim(B),

{ipAOPlO'i^ ° Pa){^[P,Q)) =  {i>AOP\){PA{P),PB{Q))

=  { l p AOp A) { P)

= M P )
= {4>a){<̂ {P,Q)),
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the final equality holding by Proposition 6.3.3(i). Since <I>(Prim(y4) x Prini(i?)) is dense 

in Prim(y4 B), it follows by continuity tha t the above diagram connnutes.

Note that and ip a are all open mappings. Thus if pa were open, it would

follow that (pa were, which would imply that {A (8>q B , N , iia ® 1) were a continuous 

C(N)-algebra, a contradiction. □

T h e o re m  6.6.3. The following conditions on a C*-algebra B  are equivalent:

(i) B  is exact,

(ii) A ^ c ,  B  satisfies property (Fqi) for all C*-algebras A,

(Hi) A ^ a  B  satisfies property ( F m p ) for all C*-algebras A.

Proof. (i)=J>(ii) and (iii): if B  is exact then A B  satisfies property (F) for all A, 

hence A<S>a B  satisfies properties (Fqi) and (Fmp) for all C*-algebras A.

To see that (ii) (resp. (iii)) implies (i), note tha t if B  is inexact then there is 

by Proposition 6.6.2(i) (resp. (ii)) a C*-algebra A  for which A  (8)q B  does not satisfy 

property ( F g i ) (resp. ( F m p )) .  □

It was shown in [6] that if A ^ ^ ^ B  satisfies property ( F m p ), then A (equivalently, $) 

maps Min-Priinal(A) x Min-Primal(i3) homeomorphically onto Min-Primal(A i8)q B). 

The following corollary shows that if B  is inexact and quasi-standard then this map 

may fail to be a homeomorphism.

C o ro lla ry  6 .6 .4 . Let B  be an inexact, quasi-standard C*-algebra. Then there is 

a quasi-standard C*-algebra A for which the restriction of A to Min-Primal(v4) x 

M in-Prim al(5) is not a homeomorphism of this space onto Min-Primal(j4 (g)̂  B).

Proof. Again, let A  be the C*-algebra constructed in Corollary 6.5.5, so that A ^ a  B  is 

not quasi-standard by Proposition 6.6.2(iv). Since both A  and B  are quasi-standard,

we have G lim m (^) =  Min-Primal(yl) and G lim m (5) =  M in-Prim al(5), both as sets

and topologically [7, Theorem 3.3 (iii)]- By Corollary 5.3.4 and Theorem 5.5.9, A is a 

homeomorphism of Glim m (^) x Glim m (5) onto Glimm(^i8)Q5). Thus if A were also a 

homeomorphism of Min-Primal(j4) xM in-Prim al(B) onto Min-Primal(74ig)Q5), it would 

follow that Glimm(^(8iQi?) =  Min-Primal(A®Qi?), both as sets and topologically. This 

would imply that A 5  is quasi-standard by [7, Theorem 3.3 (iii)=^(i)], which is a 

contradiction.
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□

E xam ple 6 .6 .5 . Let B  be a primitive, inexact C*-algebra, for example B  = B{H ) [57] 

or B  = C *(F 2 ) [56] (the full group C*-algebra of the free group on two generators), 

so that M in-Primal(i?) =  {0}. Then Corollary 6.6.4 gives a C*-algebra A with 

Prim(yl) =  Min-Primal(yl) =  {/„ : n G N} for which A is not a homeomorphism of 

Miii-Priinal(v4) x Miii-Primal(i?) onto Min-Primal(yl (8>q B).

We remark that by Theorem 6.3.2(iii), A (/„, {0}) =  $ (/„ ,{0 } ) fo r  all n G N, so 

that A{ln , {0}) G Prirn(yl (8)q B) for all such n. By [5, Proposition 4-5], A (/„, {0}) G 

M iii-Prim al(^ <8>o B) for all n  G N. On the other hand, it is not clear whether or not 

the Glimm ideal A{Ioo, {0}) is a primal ideal of A  (8>q B.

T heorem  6.6 .6 . Let B  be a C*-algebra. Then

(i) I f  pb  ■ P rim (5) —> Glimm(i?) is an open map, then B  is exact if  and only 

*/ Pa '■ Priin(yl (8iq B) C liinin(^ i8>q B) is open for every C*-algebra A with 

Pa '■ Prim(/1) —> Glimm(/1) open.

(ii) I f  B  is quasi-standard, then B is exact i f  and only if  A (8>q B  is quasi-standard 

for every quasi-standard C*-algebra /I.

(iiij //P rim (i3 ) is Hausdorff, then B is exact if  and only i/Prim(A(8)Q 5 )  is Hausdorjf 

for every C*-algebra A with Prim(.4) Hausdorff.

Proof, (i): If B  is exact then A ^ a B  satisfies property (F), hence property (Fqi), for all 

C*-algebras A. Hence pa is open for all C*-algebras A  with pA open by Theorem 5.6.2.

Conversely if B  is inexact, then l)y Proposition 6.6.2(iv) there is a C*-algebra A 

with P rim (^) Hausdorff, hence pA =  id open, such tha t pa is not open.

(ii): If B  is exact, then it follows from [37, Corollary 2.5] th a t A B  is quasi

standard for every quasi-standard A.

Conversely, if B  is inexact then by Proposition 6.6.2(iv) there is a quasi-standard 

C*-algebra A  for which A <Sia B  is not quasi-standard.

(iii): We will make use of the fact that if 4̂ is a C*-algebra such tha t either Prim(yl) 

or Fac(A) is Hausdorff, then Prim(yl) =  Fac(yl) =  Prime(yl), see e.g. [17, p. 474].

Suppose that B  is exact and that ^  is a C*-algebra with P rim (^) Hausdorff. Then 

since A^cx B  has property (F), [42, Proposition 5.1] shows tha t A is a homeomorphism
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of Fac(^) X Fac(i?) =  Priin(A) x Prini(B) onto Fac(>l (8iq B). Hence Fac(yi (8>q B) is 

Hausdorff, and thus the same is true of P rim (^  B).

Conversely, if B  is inexact then by Proposition 6.6.2(iii) there is a separable C*- 

algebra A  with Prim(/1) Hausdorff for which Prini(yl B) is non-Hausdorff.

□

E x a m p le  6 .6 .7 . Let M  = rin> i so that M  is quasi-standard as in Theo

rem 6.4.4- Moreover, M  is inexact by [39, Theorem 1.1]. Then by Proposition 6.6.2(iv), 

there is a separable unital O'-algebra A with Hausdorff primitive ideal space Prini(yl) 

homeomorphic to N such that A  (8>q M  is not quasi-standard. In particular, the as

sumption that the zero ideal of the C*-algebra B  of Theorem 6.4-4 prime cannot be 

dropped.

VVe will give an analogous result for maximal tensor products of (unital) C*-algebras 

in Theorem 6.6.10. We first recall the definition of A iŜ max B.

D efin itio n  6 . 6 . 8 .  Let A  and B  be C* algebras, and for c G O 5  let 

l |c |lm a x  =  S 'i p { l |c | | - ,  : IMÎ  a  C*-norm on A Q B } .

Then l|-||,„ax ^ C*-norm on A Q B, and we denote by A  ®max B  the completion of

A Q  B  with respect to this norm, the maximal tensor product of A  and B.

The following proposition gives some (known) properties of the Dauns-Hofmann 

representation of the maximal tensor product of two unital C*-algebras.

P ro p o s it io n  6 .6 .9 . Let A  and B  be unital C*-algebras, then

(i) the map {G, H) ^  G ®max B  -\- A  ®max H is a homeomorphism of Glimm(yl) x  

Glimm(B) onto Ghmm(yl (gimax B),

(ii) the Glimm quotients of A  (8)max B  are canonically *-isomorphic to {A/ G)  <8>max 

[ B / H)  for {G, H)  G Glimm (^) x  Glimm(i?),

(Hi) The Dauns-Hofmann representation of A  Simax B  defines canonically an upper- 

semicontinuous C*-bundle

(Glimm(A) X Glimm(i?), A 0 m a x  B,TTg 0 m a x  ^  <2>max B  ( A/ G)  (8)max { B / H ) ) ,

where for [G, H)  G Ghmm(yl) x  G lim m (5) , -kq '■ A ^  A /G  and an  ■ B  ^  B / H  

are the quotient maps.
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Proof, (i) is shown in [37, p. 304], and (ii) follows from (i) and [14, Proposition 3.15]. 

Since A  and B  are unital, Glinnn(i4) x Glimm(B) is compact, and so (iii) is then

immediate from the Danns-Hofmann Theorem (Theorem 2.3.6). □

T heorem  6.6.10. Let B  be a unital quasi-standard C-algebra. Then B  is nuclear if  

and only if A  B  is quasi-standard for every quasi-standard C*-algebra A.

Proof. If B  is nuclear, then B  is exact, so tha t for any C*-algebra A  we have tha t 

A  0max B  = A B  lias property (F). Thus for all quasi-standard A, A  <8>max B  is 

quasi-standard by [37, Corollary 2.5].

Conversely, suppose that B  is non-nuclear. For each q e  Glimm(i?) let Gg be 

the corresponding Glimm ideal of B  and denote by {G\imm{B), B , aq : B  —>■ Bg) 

the corresponding continuous C*-bundle over Glimm(i?), where Bg = B/Gg  for all 

q e  G lim m (5). By [14, Proposition 3.23], there is p G Glimm(A) for which Bp is

non-nuclear. As in the proof of [40, Theorem 3.2], one can construct a Hilbert space

H, a unital C*-subalgebra C  C B{H)  and t =  <8> Sj € C 0  Bp such that

max

Denote by A  the C*-algebra of sequences (T„) C B{H)  such that Tn converges 

in norm to some element T  ^  C.  Then, as in the proof of [7, Proposition 3.6], A  is 

quasi-standard, Glimni(/1) is homeoniorphic to N, and the Glimm quotients An of A  

are given by
f B{H)  if n G N

[ C if n =  DO

We denote by (N, yl,7r„ : A  —̂ An) the corresponding continuous C*-bundle over N. 

By Proposition 6.6.9 we may identify Glimm(yl (gimax B)  with N x Glimm(fi), and the 

Glimm quotients of ^0niax B  are isomorphic to  An^max Bp for (n,p)  G N x Glinmi(B).

For 1 <  i <   ̂ choose rl E A and sj £ B  such that nn{fi) =  rj for all n  G N, 

and Up{'sl) =  Sj. Then setting t =  Yl\ = \ ^  ^  G >1 O B ,  we have ttqc (8) = t-

Then we have | | ( 7 t „  (gi^ax c T p ) ( ^ ) | |  =  ¥\\b {h )® ^ ^ ,b  ^  "^hile [ [ ( t T o o  <8max ( ^ p ) ( i ) | |  =

(^)P) ^  (oo,p) in N X Glimm(i?), it follows that {n,q) h4- 

[[(TTn <8>max CTgjlOII discoutinuous at (oo,p). In particular, A B  is not quasi

standard. □
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C o(X )-structure in C*-algebr£is, M ultiplier A lgebras and

Tensor P roducts

David McConnell 

Abstract

Our general theme concerns topological decompositions of C*-algebras and the inter
actions of these decompositions with multiplier algebras, tensor products and module 
structures. A primary focus is placed on modules known as Co(.X')-algebras.

Bundle structures, specifically C*-bundles, for a C*-algebra A (not usually unital) over a 
suitable base space X,  are closely related to Co (A”)-algebras, and a natural consideration 
is to relate such structures on A to bundle representations of the multiplier algebra M{A)  
of A over the Stone-Cech compactification P X  of X.  We discuss how the strict topology

I
on M{A)  can be used in this context, and in the case of a Co(A')-algebra A,  relate it to 
the induced C(/3X)-algebra structure on M{A).  FXirther preliminary results concern the 
ideal structure of M{A)  when i4 is a C'o(^)-algebra.

Sheaves of C*-algebras over X  provide another approach which is partially equivalent to 
bundles when the topological space X  is locally compact and HausdorfT. As a corollary, 
we show that a C*-b\mdle over a locally compact HausdorfT space X  defines naturally a 
C*-bundle over f iX  in such a way that their algebras of continuous sections are naturally 
isomorphic. These results are applied to the particular case of the sheaf of multipliers 
of a Co (A’)-algebra A, which is shown to be canonically isomorphic to the sheaf of local 
sections arising from the C(/5X)-structure on M{A).

For our main results we consider the minimal tensor product A ig)„ B  of two C*-algebras 
A and B.  Extending earlier results of Kaniuth [37], we obtain a complete description 
of the topological space of Glimm ideals of A B in terms of those of the factors 
(results published in [45]). As a consequence, we construct the Dauns-Hofrnann bundle 
representation [21] of A B  in terms of the corresponding representations of A and 
B,  and describe the structure of the centre of the multiplier algebra of A B  in this 
setting.

Given a Co(A’)-algebra A and a Co(i^)-algebra B,  we demonstrate how A B  carries 
naturally the structure of a Co{X x y)-algebra. We study the fissociated C*-bundle 
decomposition of A B over this space, and in particular we compare its structure to 
the fibrewise tensor product studied elsewhere. As a consequence, we obtain several new 
characterisations of the property of exactness in terms of the stability of certain classes 
of Co(X)-algebras under the operation of forming tensor products.
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