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Summary

We begin in Chapter 2 with an introduction to the various notions of a bundle of
C*-algebras that have appeared throughout the literature, and clarify the definitions
of upper- and lower-semicontinuous C*-bundles not explicitly defined in a formal way
elsewhere. The definition of Cy(X)-algebra, introduced by Kasparov [38], and its re-
lation to C*-bundles is discussed in this chapter also. The purpose of this chapter is
to bring together concepts that we will refer to in subsequent sections and which are
described using various notations by different authors. Most of this is implicitly under-
stood elsewhere, though Theorem 2.3.12, relating sub-modules of Cy(X)-modules and
subbundles of C*-bundles, is a new result.

Chapter 3 concerns the study of the multiplier algebra M(A) of a non-unital C*-
algebra A. When A is the section algebra of a C*-bundle over a space X, we consider
two approaches to representing M (A) as the section algebra of a bundle over fX. Our
first approach involves extending the evaluation homomorphisms from A to M(A),
using properties of the strict topology on M(A), and is similar to the construction
of Akemann, Pedersen and Tomiyama [1]. This gives M(A) the desired structure of
a C*-bundle which we describe in Theorem 3.1.6. Moreover, we show that lower-
semicontinuity of A as a C*-bundle passes to M(A) under this construction (Corol-
lary 3.1.9).

The second approach is due to Archbold and Somerset [8]; when A is the section
algebra of a C*-bundle arising from a Cy(X)-algebra, we describe how M(A) carries
naturally the structure of a C(3X)-algebra (hence an upper-semicontinuous C*-bundle
over AX), where X is the Stone-Cech compactification of X. We then investigate
conditions under which these bundle representations of M (A) coincide.

Central to this is the study of the relationship between the spaces Prim(A),
Prim(M(A)), X and fX. Further, we relate the different types of bundle represen-
tations of M(A) with the question of ‘spectral synthesis in the multiplier algebra of
a Cp(X)-algebra,” as studied by Archbold and Somerset in [9] and [11]. Some of the
principal results of section 3.4, namely Corollaries 3.3.6, 3.4.7 and 3.4.8, and The-
orem 3.4.10,were obtained independently by Archbold and Somerset, and have been

published in [11]. Theorem 3.4.6 is a new result and has not appeared elsewhere.



In Chapter 4, we examine the relationship between sheaves and bundles in the
category of C*-algebras. In the case of a sheaf of C*-algebras over a locally compact
Hausdorff space X, this relationship is described in detail in Theorem 4.2.10. As
a consequence, we establish a Stone-Cech type theorem for C*-bundles over locally
compact Hausdorff spaces in Corollary 4.2.11. In section 4.3 we consider the particular
case of a sheaf arising from the multiplier algebra of a Cy(X)-algebra A. We show in
Theorem 4.3.7 that this sheaf is in fact equivalent to the ‘sheaf of local sections’ of the
bundle defined by the C(SX)-algebra M(A) considered in Chapter 3.

Chapters 5 and 6 concern the study of tensor products of C*-bundles, primarily the
case of the minimal (or spatial) tensor product A ®, B of two C*-algebras A and B.
Our approach is focused on the related problem of determining the ideal structure of
A ®q B in terms of those of A and B. We give a complete description in Chapter 5
(Theorems 5.3.3 and 5.5.9) of the topological space of Glimm ideals of A ®, B in terms
of the ideal spaces of A and B, without additional assumptions on A and B, extending
earlier results of Kaniuth [37]. As a consequence, we determine in Theorem 5.4.3 the
centre ZM (A ®, B) of the multiplier algebra of A ®, B in terms of these spaces.

Under some additional assumptions on the ideal structure of A ®, B, we show
in Theorem 5.6.2 that if the Dauns-Hofmann representations of A and B give rise to
well-behaved C*-bundles, then the same is true of A®, B, sharpening earlier results of
Kaniuth [37] and Archbold [6]. The results of this chapter have been published in [45].

Finally, Chapter 6 is dedicated to the investigation of the stability of important well-
behaved classes of C*-bundles, the quasi-standard C*-algebras and continuous Cp(X)-
algebras, under the operation of taking tensor products. Our approach differs from
that considered previously by Kirchberg and Wassermann [40], who studied analogous
problems for fibrewise tensor products of C*-bundles. Indeed, we show in Theorem 6.4.4
that continuity of the tensor product bundle we study here is a strictly weaker property
than continuity of the fibrewise tensor product.

Our main results of this chapter, Theorems 6.5.6, 6.6.6 and 6.6.10, show that neither
the class of quasi-standard C*-algebras nor the continuous Cy(X)-algebras are stable
under tensor products, and identify the largest subclass of each which is tensor stable.
In the case of the minimal (respectively maximal) tensor product, this is the subclass
of exact (respectively nuclear) C*-algebras. As a related result we give several new

characterisations of exact C*-algebras in Theorem 6.6.3.
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C,(X)-structure in C*-algebras, Multiplier Algebras and

Tensor Products

David McConnell

Abstract

Our general theme concerns topological decompositions of C*-algebras and the inter-
actions of these decompositions with multiplier algebras, tensor products and module

structures. A primary focus is placed on modules known as Cy(X)-algebras.

Bundle structures, specifically C*-bundles, for a C*-algebra A (not usually unital) over a
suitable base space X, are closely related to Cy(X )-algebras, and a natural consideration
is to relate such structures on A to bundle representations of the multiplier algebra M (A)
of A over the Stone-Cech compactification 32X of X. We discuss how the strict topology
on M(A) can be used in this context, and in the case of a Cy(X)-algebra A, relate it to
the induced C(5X)-algebra structure on M(A). Further preliminary results concern the
ideal structure of M(A) when A is a Cy(X)-algebra.

Sheaves of C*-algebras over X provide another approach which is partially equivalent to
bundles when the topological space X is locally compact and Hausdorff. As a corollary,
we show that a C*-bundle over a locally compact Hausdorff space X defines naturally a
C*-bundle over X in such a way that their algebras of continuous sections are naturally
isomorphic. These results are applied to the particular case of the sheaf of multipliers
of a Cp(X)-algebra A, which is shown to be canonically isomorphic to the sheaf of local

sections arising from the C(SX)-structure on M (A).

For our main results we consider the minimal tensor product A ®, B of two C*-algebras
A and B. Extending earlier results of Kaniuth [37], we obtain a complete description
of the topological space of Glimm ideals of A ®, B in terms of those of the factors
(results published in [45]). As a consequence, we construct the Dauns-Hofmann bundle
representation [21] of A ®, B in terms of the corresponding representations of A and
B, and describe the structure of the centre of the multiplier algebra of A ®, B in this
setting.

Given a Cp(X)-algebra A and a Cy(Y)-algebra B, we demonstrate how A ®, B carries
naturally the structure of a Cy(X x Y)-algebra. We study the associated C*-bundle
decomposition of A ®, B over this space, and in particular we compare its structure to
the fibrewise tensor product studied elsewhere. As a consequence, we obtain several new
characterisations of the property of exactness in terms of the stability of certain classes

of Cy(X)-algebras under the operation of forming tensor products.
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Chapter 1

Introduction

Bundles or fields of C*-algebras are an important aspect of the topological decomposi-
tion theory of C*-algebras, and have lead to significant advances in the field. The prob-
lem of representing a C*-algebra A as the algebra of sections of a bundle of C*-algebras
over a suitable base space may be regarded as that of finding a non-commutative
Gelfand-Naimark Theorem, which represents a commutative C*-algebra A as the alge-
bra of continuous complex-valued functions vanishing at infinity on a locally compact
Hausdorff space. A number of non-commutative decomposition theorems have been
obtained, notably by Fell [27], Dauns and Hofmann [21], Lee [44], and Archbold and
Somerset [7]. Often, however, these constructions give rise to bundles of a very general
type, the structure of which can be difficult to study.

The focus of this thesis is the investigation of certain structural properties of these
bundle decompositions of C*-algebras, and the interaction of these properties with
constructions such as forming multiplier algebras and tensor products. Central to
the theory is the study of important topological spaces of ideals of the C*-algebra A
under consideration, namely the space of primitive ideals Prim(A) (with its hull-kernel
topology) and its complete regularisation, the space of Glimm ideals. These spaces may
be regarded as non-commutative analogues of the character space of a commutative C*-
algebra.

We begin in Chapter 2 with an account of these topological spaces of ideals of
C*-algebras. We introduce also various notions of a bundle of C*-algebras that have
appeared throughout the literature, and clarify the definitions of upper- and lower-

semicontinuous C*-bundles not explicitly defined in a formal way elsewhere. The defi-
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nition of Cp(X)-algebra (that is, a C*-algebra A which is also a Banach Cy(X )-module),
introduced by Kasparov [38], and its relation to C*-bundles is discussed in this chapter
also. The purpose of this chapter is to bring together concepts that we will refer to in
subsequent sections and which are described using various notations by different au-
thors. Most of this is implicitly understood elsewhere, though Theorem 2.3.12, relating

sub-modules of Cy(X )-modules and subbundles of C*-bundles, is a new result.

In Chapter 3, we consider the multiplier algebra M (A) of a (non-unital) C*-bundle
A, and the different approaches to obtaining a bundle decomposition of M(A). Our
first approach involves extending the evaluation homomorphisms from A to M(A),
using properties of the strict topology on M(A), and is similar to the construction
of Akemann, Pedersen and Tomiyama [1]. This gives M(A) the desired structure of
a C*-bundle which we describe in Theorem 3.1.6. Moreover, we show that lower-
semicontinuity of A as a C*-bundle passes to M(A) under this construction (Corol-
lary 3.1.9).

The second approach is due to Archbold and Somerset [8]; when A is the section
algebra of a C*-bundle arising from a Cy(X)-algebra, we describe how M (A) carries
naturally the structure of a C(SX)-algebra (or a C*-bundle over X)), where X is
the Stone-Cech compactification of X. By contrast, this construction preserves upper-
semicontinuity of the bundles under consideration. We then investigate conditions

under which these bundle representations of M(A) coincide.

Central to this is the study of the relationship between the spaces Prim(A),
Prim(M(A)), X and fX. Further, we relate the different types of bundle representa-
tions of M(A) with the question of ‘spectral synthesis in the multiplier algebra of a
Co(X)-algebra,” as studied by Archbold and Somerset in [9] and [11]. We remark that
some of the main results of Section 3.4 were obtained independently by Archbold and
Somerset, and have been published in [11]. In particular, Corollary 3.3.6 corresponds
to [11, Proposition 2.6(i) and (iii)], and Corollary 3.4.7 to [11, Corollary 4.3]. Stronger
versions of Corollary 3.4.8 and Theorem 3.4.10 were also given in [11, Corollary 4.4]

and [11, Theorem 4.6] respectively. Theorem 3.4.6 is a new result.

As is the case for objects studied in algebraic and differential geometry, the notion of
a sheaf of C*-algebras is closely related to that of a C*-bundle. The connection between
these notions has been studied by Hofmann [33] (in the case of sheaves and bundles of

Banach spaces), and more recently by Ara and Mathieu [3] (in the particular case of
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Cr-algebras). However, in general, the theory of sheaves is less well-developed than that
of bundles in the category of C*-algebras. In Chapter 4, we examine the relationship
between these two notions. In the case of a sheaf of C*-algebras over a locally compact
Hausdorft space X, this relationship is described in detail in Theorem 4.2.10. As
a consequence, we establish a Stone-Cech type theorem for C*-bundles over locally
compact Hausdorff spaces in Corollary 4.2.11. In Section 4.3 we consider the particular
case of a sheaf arising from the multiplier algebra of a Cy(X)-algebra A. We show in
Theorem 4.3.7 that this sheaf is in fact equivalent to the ‘sheaf of local sections’ of the
bundle defined by the C(3X)-algebra M (A) considered in Chapter 3.

Chapters 5 and 6 concern the study of tensor products of C*-bundles, primarily the
case of the minimal (or spatial) tensor product A ®, B of two C*-algebras A and B.
Our approach is focused on the related problem of determining the ideal structure of
A ®q B in terms of those of A and B. We give a complete description in Chapter 5
(Theorems 5.3.3 and 5.5.9) of the topological space of Glimm ideals of A®, B in terms
of the ideal spaces of A and B, without additional assumptions on A and B, extending
earlier results of Kaniuth [37]. As a consequence, we determine in Theorem 5.4.3 the

centre ZM (A ®, B) of the multiplier algebra of A ®, B in terms of these spaces.

Using these results we construct the Dauns-Hofmann C*-bundle associated with
A ®q B in terms of the corresponding bundles of A and B. Under some additional
assumptions on the ideal structure of A ®, B, we show in Theorem 5.6.2 that if the
Dauns-Hofmann representations of A and B give rise to well-behaved C*-bundles, then
the same is true of A®, B, sharpening earlier results of Kaniuth [37] and Archbold [6].
The results of this chapter have been published in [45].

Finally, Chapter 6 is dedicated to the investigation of the stability of important well-
behaved classes of C*-bundles, the quasi-standard C*-algebras and continuous Cp(X)-
algebras, under the operation of taking tensor products. Using similar techniques
to those considered in Chapter 5, we describe how the minimal tensor product of a
Co(X)-algebra A and a Cy(Y)-algebra B carries the structure of a Cy(X x Y')-algebra,
and investigate the structure of the associated C*-bundle over X x Y. Our approach
differs from that considered previously by Kirchberg and Wassermann [40], who studied
analogous problems for fibrewise tensor products of C*-bundles. Indeed, we show in
Theorem 6.4.4 that continuity of the tensor product bundle we study here is a strictly

weaker property than continuity of the fibrewise tensor product.
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We show in Section 6.6 that for an inexact continuous Cp(X)-algebra A, one can
always construct a continuous Cy(Y')-algebra B such that A @, B is discontinuous as
a Co(X x Y)-algebra. As a consequence it is shown in Theorem 6.5.6 that stability of
continuity is in fact equivalent to exactness of A. Thus our tensor product construc-
tion identifies exactness in precisely the same way as the fibrewise tensor product of
Kirchberg and Wassermann [40, Theorem 4.5].

We apply these results in particular to those Cp(X)-algebras arising from C*-
algebras A with Hausdorff primitive ideal space, and the quasi-standard C*-algebras
introduced in [7]. Until now, it appears that there were no known examples of a pair of
quasi-standard C*-algebras whose minimal tensor product fails to be quasi-standard.
Our main results of this section, 6.6.6 and 6.6.10, show that neither of these classes are
stable under tensor products, and identify the largest subclass of each which is tensor
stable. In the case of the minimal (respectively maximal) tensor product, this is the
subclass of exact (respectively nuclear) C*-algebras. As a related result we give several
new characterisations of exact C*-algebras in Theorem 6.6.3, in terms of short exact

sequences arising from Glimm and minimal primal ideals.



Chapter 2

Preliminaries on Cj(X )-algebras,

C*-bundles and ideal spaces

In this section we introduce elements of topological decompositions of C*-algebras, in
particular, the decomposition of a given C*-algebra A into the algebra of (continuous)
sections of a bundle of C*-algebras. Central to these decomposition theories is the
structure of certain topological spaces of ideals, the primitive and Glimm ideal spaces,
of the algebra under consideration, which we introduce in Section 2.1.

There are numerous different definitions of C*-bundles appearing throughout the
literature. In many cases these definitions turn out to be essentially equivalent, though
the reasons for this are by no means obvious. Thus it will be convenient for us to give
an account of these equivalences, in order to conveniently reference results regarding
C*-bundles published elsewhere. Most of this chapter is therefore expository in nature.

In Section 2.2, we relate two of the main definitions of C*-bundles. The first, a (H)-
C*-bundle by our terminology (Definition 2.2.1), is the more traditional in some sense;
we consider a (locally compact Hausdorff) base space X, a total space A consisting of
a collection of C*-algebras {A, : z € X'}, and algebras of continuous sections I'(X, A).
The second, which we call simply a C*-bundle (Definition 2.2.7), is closer to that of an
‘algebra of operator fields,” and frequently offers a simpler framework in which to work.
Results of Fell and Hofmann show that, under the assumption that the norm functions

of sections are upper-semicontinuous on X, these constructions are in fact equivalent.
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A more recent bundle-type decomposition is that of Cpy(X)-algebras (Defini-
tion 2.3.1), that is, a C*-algebra A which is an essential Cy(X)-Banach module for
some locally compact Hausdorff space X. We introduce Cy(X)-algebras in Section 2.3,
and give an account of how Cy(X)-algebras are equivalent to the C*-bundles in the
previous section. The advantage of Cy(X )-algebras is that many more technical results

concerning C*-bundles have convenient formulations in the language of Cy(X)-algebras.

Most of the results of this section are known, or at least implicitly understood,
elsewhere in the literature. Theorem 2.3.12, relating sub-Cy(X )-modules of a Cp(X)-

algebra with sub-bundles of the associated C*-bundle, is new.

For a topological space X, C'(X) will denote the continuous complex valued func-
tions on X, and C?(X) will denote those functions in C'(X) that are bounded, which
is a C*-algebra with pointwise operations and supremum norm. Similarly, Cy(X) will
denote the C*-subalgebra of C*(X) consisting of those functions that vanish at infinity
on X. If in addition X is compact, then we shall frequently identify Co(X) and C*(X)

with C(X), since all three are equal in this case.

If X is locally compact, non-compact and Hausdorff, then X will denote the one-
point compactification X U {oco} of X, and X the Stone-Cech compactification of
X

For a Hilbert space H, B(H ) will denote the C*-algebra of bounded linear operators
on H, and K(H) the ideal of compact operators. For C*-algebra A, by a representation
of A we mean a *x-homomorphism 7 : A — B(H). A representation 7 is said to be
irreducible if H contains no nontrivial proper closed subspaces invariant under 7(A),
and factorial if the closure of m(A) in the weak operator topology on B(H) has trivial

centre.

For a locally compact Hausdorff space X and a C*-algebra A, C?(X, A) will denote
the bounded norm-continuous A-valued functions on X, which is a C*-algebra with
pointwise operations and supremum norm. We define Cy(X, A) and C(X,.A) analo-
gously. When X = N, we shall often write /*°(A) and ¢y(A) to denote C*(N, A) and
Co(N, A) respectively.

A state on a C*-algebra A is a linear functional ¢ : A — C which is positive (in the
sense that ¢(a*a) > 0 for all @ € A), and satisfies ||¢|| = 1. Other definitions will be

introduced as they arise.
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2.1 The primitive and Glimm ideal spaces of a C*-algebra

In this section we describe certain topological spaces of ideals of a C*-algebra A, which
will be of interest to us in subsequent sections.

By a primitive ideal of a C*-algebra A we mean ker(7), where 7: A — B(H) is an
irreducible representation of A on some Hilbert space H. We will denote by Prim(A)
the set of primitive ideals of the C*-algebra A.

We now describe how Prim(A) is regarded as a topological space with the hull-kernel
(or Jacobson) topology. For T' C Prim(A), we define the kernel of T', k(T') via

Ty =[PP T}
For an ideal J of A, we define its hull, hull(J) as

hull(J) = {P € Prim(A) : P 2 J}.

Definition 2.1.1. Let A be a C*-algebra. Then the hull-kernel topology on Prim(A)
is defined by the closure operation cl(T") = hull(k(T")) for all ' C Prim(A).

The following proposition lists some well-known properties of the topological space

Prim(A) in the hull-kernel topology, which shall be used frequently in the sequel.

Proposition 2.1.2. Let A be a C*-algebra. Then the topological space Prim(A) has

the following properties:
(i) Every open subset U C Prim(A) is of the form
U={Pe€Prim(A): P21}
for some ideal I of A. [24, Proposition 3.1.2]

(i1) For every ideal I of A, the map P — PNI (resp. P+ P/I) is a homeomorphism
of the open subset {P € Prim(A) : P 2 I} (resp. the closed subset { P € Prim(A) :
P D I}) onto Prim(I) (resp. Prim(A/I)). [24, Proposition 3.2.1]

(iii) Prim(A) is a To-space. [24, Proposition 3.1.1]

(iv) Prim(A) is locally compact in the sense that every P € Prim(A) admits a compact
neighbourhood. [24, Corollaire 3.3.8]
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(v) If A is unital then Prim(A) is compact. [24, Proposition 3.1.8]

Elementary examples show that we cannot expect Prim(A) to admit stronger sep-
aration properties than 7Ty in general. Indeed, it follows from the definition of the
hull-kernel topology that a one-point subset {P} C Prim(A) is closed if and only if P
is a maximal ideal of A. Note that when Prim(A) is non-Hausdorff, it is not necessarily
true that compact subsets of Prim(A) are closed.

When A is a commutative C*-algebra, the Gelfand-Naimark Theorem asserts that
A = Cp(X) for some locally compact Hausdorff space X. In this case, the irreducible
representations of A are precisely the characters on A, and thus we may identify
Prim(A) with X, where z € X is identified with the maximal ideal {f € Cp(X) :
f(z) = 0} of A. Moreover, the hull-kernel topology on Prim(A) corresponds to the
usual topology on X under this identification. In particular, Prim(A) is Hausdorff
whenever A is a commutative C*-algebra.

Often when working with non-Hausdorff spaces such as Prim(A), it is convenient to
construct a related space satisfying stronger separation axioms but preserving certain
information about the original space. The complete reqularisation of a topological space
X is a procedure for associating a completely regular space pX to X in such a way
that their algebras of (bounded) continuous functions are isomorphic. We describe this
construction below for general spaces X, and then return to the particular case of the

complete regularisation of Prim(A).

Definition 2.1.3. A topological space X is said to be completely reqular (or a Ty-
chonoff space) if it is a Hausdorff space, and given any closed subset F' C X and

a point z € X\F, there is a continuous function f : X — R with f(z) = 1 and
f(F) ={0}.

Theorem 2.1.4. [29, Theorem 3.9] Let X be a topological space. Then there exist
a completely reqular space pX and a continuous surjection px : X — pX with the
property that the map f — f o px, where f € C*(pX), is a x-isomorphism of C*(pX)
onto C°(X).

We give the details of the construction of pX and px below, since we will refer to
it in subsequent sections.
For f € C(X), let coz(f) = {x € X : f(x) # 0}, the cozero set of f. Replacing

f with min(|f|,1), we may assume that any cozero set in X is the cozero set of some
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continuous function f: X — [0,1].

Define an equivalence relation on X as follows: for zy,z9 € X write z; =~ x9 if
f(x1) = f(z) for all f € C¥(X). Let pX = X/ ~ and let px : X — pX be the
quotient map. Each f € C®(X) defines a function f# on pX by setting f#([z]) = f(z),
where [z] denotes the ~-equivalence class of z. Denote by 7, the weak topology on pX
induced by the functions {f” : f € C®(X)}. Then the space pX with the topology 7er

has the required properties.

Definition 2.1.5. The triple (pX, 7., px) constructed in Theorem 2.1.4 is called the

complete regqularisation of the space X.

We shall often refer to pX as the complete regularisation of X when px and 7., are
understood.

An alternative construction of pX is as follows: let I denote the closed unit interval
and I the set of all continuous maps f: X — I. Let P(X) = [[{I; : f € I}, where
I;=1forall fe€IX andlet 7: X — P(X) be defined via 7(z) = (f(x))perx-

Defining I°X, P(pX) and 7' : pX — P(pX) analogously, it is clear that I*X = {f7 :
f € I} and hence P(pX) = P(X). The definition of f#, where f € I, ensures that
7" 0 px = 7, hence 7(X) is equal to 7/(pX). On the other hand, it is well-known that
7' is a homeomorphism onto its image [55, Lemma 1.5], so that 7(X) is homeomorphic
to pX.

Now let X and Y be topological spaces and ¢ : X — Y a continuous map. Then

setting ¢?(px(z)) = (py o ¢)(x) gives a map ¢ : pX — pY such that the diagram

v % oy

commutes. To see that ¢ is continuous, let U = coz(f) be a cozero set in pY. Then
(py 0 #)~1(U) is precisely the cozero set in X of the continuous function f o py o ¢. It
follows that (¢?)~}(U) = coz(f o py o ¢)? is open in pX by the definition of ;.

Thus the assignment of pX to X and ¢” to ¢ defines a covariant functor from the
category of topological spaces to the subcategory of completely regular spaces, called
the Tychonoff functor. The term Tychonoff functor was first used by Morita in [47, p.
32},
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Now let A be a C*-algebra and Prim(A) the space of primitive ideals of A with the
hull-kernel topology. We define Glimm(A) as the complete regularisation pPrim(A) of
Prim(A), and denote by p4 : Prim(A) — Glimm(A) the complete regularisation map.

Let p € Glimm(A) and choose P € Prim(A) with pa(P) = p. We associate to the
point p the norm closed two sided ideal G, of A given by

Gp=[{Q € Prim(A) : Q ~ P} = {Q € Prim(A) : pa(Q) = p} = k([P]).

Note that since [P] is closed in Prim(A) and G, = k([P]), each equivalence class in
Prim(A)/ ~ is of the form

[P] = hull (k([P])) = hull(G,),
by the definition of the hull-kernel topology.

Definition 2.1.6. The ideals {G), : p € Glimm(A)} are known as the Glimm ideals
of A. The space Glimm(A), with the topology 7. is called the Glimm space of the
C*-algebra A.

Since the assignment p — G, is injective, we will regard elements of Glimm(A) as

either points of a topological space or as ideals of A, depending on the context.

Example 2.1.7. [7, p. 358] Let £>°(My(C)) denote the C*-algebra of bounded se-
quences of 2x 2 matrices over C (with pointwise operations and supremum norm). Let
A C ®(My(C)) consist of those sequences x = (xy,) with the property that, as n — oo,

the subsequences (x2n) and (Tan+1) satisfy
xon — diag(Ai(z), A2(z)), xons1 — diag(Aa(z), Az(z))

for some complex scalars A\i(z) (1 < i<3). Then A is a C*-subalgebra of £>°(M(C)).
The irreducible representations of A consist of the evaluation maps e, : A — My(C),

where en(x) = xp, for all x € A,n € N, together with A\; : A — C fori=1,2,3. Hence
Prim(A) = {ker(ep) : n € N} U {ker(\;) : 1 < i< 3}.
The topology on Prim(A) is as follows:

(1) the points ker(ey,) are isolated for alln € N,
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(ii) the point ker(\;) (respectively ker(A3)) has a neighbourhood basis consisting of
sets of the form {ker(ea,) : n > ng} U {ker(A;)} (respectively {ker(ean4+1) : n >
no} U {ker(\3)}) for some ng € N.

(iii) the point ker(\2) has a neighbourhood basis consisting of sets of the form {ker(ey) :
n > no} U {ker(\2)} for some ng € N.

It is easily seen that the equivalence classes of the relation ~ on Prim(A) satisfy
[ker(ep,)] = {ker(en)} for n € N, while ker(A;) =~ ker(\a) ~ ker(\3). Hence
3
Glimm(A) = {ker(ey,) : n € N} U {ﬂ ker(A;)}

=1

with topology homeomorphic to N.

2.2 C*-bundles

There are many different definitions of bundles or fields of C*-algebras appearing
throughout the literature, although it is often the case that they are in fact equivalent.
In this section we give two definitions of C*-bundles that will appear in subsequent
sections, and give a short description of the relations between the two.

In the most general sense, a bundle is simply a surjective mapping p : £ — X,
where X is called the base space and E as the total space. For each z € X we regard
p!(x) as the fibre of E over X, and thus think of E as the disjoint union of fibres
E=]l,ex p~(z). In our case, we will require that E carries a topology and algebraic
operations in such a way that each fibre p~!(z) is a C*-algebra.

Definition 2.2.1 below is essentially due to Dauns and Hofmann [21], generalising an
earlier definition of Fell [28]. Our terminology ‘(H)-C*-bundle’ was used first by Dupré
and Gillette [26].

Definition 2.2.1. Let A be a topological space and X a locally compact Hausdorff
space. An upper semicontinuous (H)-C*-bundle over X is a triple (A, X, p) consisting
of a continuous, open surjection p : A — X together with -algebraic operations and
norms making each fibre A, := p~!({z}) into a C*-algebra such that the following

conditions are satisfied:

(i) The map a + |lal[4, is upper semicontinuous A — R,
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(ii) Involution a + a* is continuous A — A,

(iii) The maps (a,b) — ab and (a,b) — a + b are continuous from A, := {(a,b) €
Ax A:pla) =p(b)} to A,

(iv) For each A € C, the map a — Aa is continuous A — A,

(v) If {ai} is a net in A such that [|a;|| = 0 and p(a;) = x in X, then a; — 0, the

zero element of A,.

If we replace ‘upper semicontinuous’ with ‘continuous’ in (i) then A is called a contin-
uous (H)-C*-bundle over X.

Remark 2.2.2. Fell’s definition [28, p. 10] of a C*-bundle required that the norm
functions in (i) be continuous. Our definition of a continuous (H)-C*-bundle is called
an (F)-C*-bundle by Dupré and Gillette [26, p. 8], who reserve the term (H)-C*-bundle

for upper-semicontinuous bundles.

For an open subset U C X, a (local) section 7 of (A, X, p) is amap v : U — A such
that p(y(y)) = y for all y € U, i.e. y(y) € Ay for all y € U. The set of all bounded
continuous sections U — A is denoted by I'*(U, A). The set of those v € I'*(U, A) that
vanish at infinity on U, in the sense that {y € U : ||y(y)|| > €} is compact for all € > 0,
is denoted by I'g(U,.A). Then I'’(U, A) and I'o(U, A) are C*-algebras with pointwise

operations and supremum norm, see e.g. [58, Proposition C.23| or [3, Lemma 5.2].

Lemma 2.2.3. Let (A, X,p) be an upper-semicontinuous (H)-C*-bundle and K C X

an open, compact subset. Then every continuous section v : K — A is bounded.

Proof. Since the map A — R, sending a +— |la||,,, where a € A, is upper-
semicontinuous on A, it follows that the map K — Ry, z — |y(z)| is upper-
semicontinuous on K. But then since K is compact, it follows that z — |[|y(z)| is

bounded, i.e. v is bounded. O

Example 2.2.4. (i) Let X be a locally compact Hausdorff space and B a C*-algebra.
Setting A= X x B and p: A — X the projection onto the first factor, the triple
(A, X,p) is a continuous (H)-C*-bundle over X, with constant fibre A, = B. A
bundle of this type is called the trivial bundle over X with fibre B.
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It is easily verified that the section algebras in this case are canonically *-
isomorphic T'o(X, A) = Co(X, B) and T*(X, A) = C®(X, B) (where the latter are

considered as C*-algebras with pointwise operations and the supremum norm,).

(ii) With A as in (i), fir xo € X and a C*-subalgebra By C B. Let Ay be the subspace
of A given by
A = {(T,b)EA:bEBO if:L‘—_-.’Ifo}.

Setting po = p|A0, the triple (Ao, X, po) is again a continuous C*-bundle over X,

whose section algebras satisfy
Fo(X,.A()) = {f & CQ(X, B) : f(l‘()) € Bo},
and similarly for T®(X, Ap).

Beyond trivial cases, it is not immediately obvious how C*-bundles arise. Suppose
that we are given a locally compact Hausdorff space X and a collection of C*-algebras
{A; : z € X}. Setting A = [[{A; : x € X} gives a well-defined surjection p: 4 — X
via p(a) = x whenever a € A,. We wish to determine under what conditions does this
construction equip the triple (A, X, p) with the structure of an upper-semicontinuous
(H)-C*-bundle.

Theorem 2.2.5 below asserts that given a sufficiently large collection I' of sections
X — A with suitable properties, there is a unique topology on A such that (A, X, p)
is an upper-semicontinuous (H)-C*-bundle, such that every section in I' becomes a
continuous section X — A. The original result, for continuous (H)-C*-bundles, is due
to Fell [28, Proposition 1.6]. The fact that the analogous result holds in the upper-
semicontinuous case was observed by Dupré and Gillette [26, Proposition 1.9], though
no proof was given. A self-contained proof of the general (i.e. upper-semicontinuous)

case may be found in [58, Theorem C.25].

Theorem 2.2.5. (Fell) Let X be a locally compact Hausdorff space and A = {A; : x €
X} a collection of C*-algebras. Define p: A — X via p(a) = x for a € Ay. Let T
be a *-algebra of sections X — A (with pointwise operations), such that the following

conditions hold:
(i) the map x — ||y(x)| is upper semicontinuous on X for ally € T,

(ii) for each xo € X, the set {y(zo) : v € I'} is dense in Ag,.
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Then there is a unique topology on A such that (A, X,p) is an upper-semicontinuous
(H)-C*-bundle over X with I' C T®(X, A). If we replace ‘upper-semicontinuous’ with
‘continuous’ in (i), then (A, X,p) is a continuous (H)-C*-bundle.

In fact, under some additional conditions on the family I' of sections, Proposi-
tion 2.2.6 shows that we may conclude I' = I'y(A). Again, this result was shown orig-
inally by Fell [28, Proposition 1.7] in the continuous case, the upper-semicontinuous

analogue may be found in [58, Proposition C.24].

Proposition 2.2.6. Suppose that (A, X,p) is an upper-semicontinuous (H)-C*-bundle
over X, and that I' C T'o(X, A) is a subspace such that

(i) vy €T and f € Co(X) implies that f -~ :x— f(x)y(x) belongs to T, and
(ii) for each xo € X, {y(xo) : v € T'} is dense in Ayz,.
Then T is dense in I'g(X, A).

As a consequence of Theorem 2.2.5 and Proposition 2.2.6, we see that it is possible in
certain cases to construct a (H)-C*-bundle by specifying the base space X, fibre algebras
A, and a suitable C*-algebra of sections A. In particular, it is possible to avoid making
reference to the topology on the total space (since this is uniquely determined by the
section algebra by Theorem 2.2.5). We shall favour this approach throughout much of
this work for simplicity.

Motivated by these considerations, we make the following definition of a C*-bundle:

Definition 2.2.7. A C*-bundle is a triple & = (X, A, 7, : A - A;) where X is
a locally compact Hausdorff space, A a C*-algebra, and n, : A — A, surjective *-

homomorphisms for all z € X satisfying
(i) the family {7, : € X} is faithful, i.e., () ¢ x ker(m;) = {0}, and

(ii) for each f € Cy(X) and a € A there is an element f -a € A with the property
that
7z (f - a) = f(z)mz(a) for all z € X.

If in addition the functions N(a) : X — R4, z — ||mz(a)| where a € A, belong to
Co(X) for all a € A then we say that &7 is a continuous C*-bundle over X. If for

all @ € A the functions N(a) are upper-semicontinuous (resp. lower-semicontinuous)
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on X, and if for each ¢ > 0 the set {z € X : N(a) > ¢} has compact closure in X,

then we say that &/ is an upper-semicontinuous C*-bundle (resp. lower-semicontinuous
C*-bundle).

Remark 2.2.8. A continuous C*-bundle in the sense of Definition 2.2.7 was called a
‘maximal full algebra of operator fields’ by Fell [27, §1.1]. Similarly, our notion
of a semicontinuous C*-bundle corresponds to Rieffel’s ‘semicontinuous fields of C*-
algebras’ [52, Definition 1.1]. The terminology ‘bundle’ has mostly replaced ‘field’ in

more recent literature, e.g. [40], [48], [6].

The following Theorem makes precise the equivalence between upper-semicontinuous
(H)-C*-bundles and C*-bundles.

Theorem 2.2.9. Let X be a locally compact Hausdorff space.

(i) Let (A, X,p) be an upper-semicontinuous (H)-C*-bundle over X. Then setting
A =TyX,A), A, = p~'(z) and 7, : A = A, the evaluation mapping for all
x € X, the triple (X, A, 7, : A — A,) 1s an upper-semicontinuous C*-bundle over

X. Moreover if (A, X,p) is continuous then so is (X, A, 7y : A = Az).

(ii) Let (X,A,mp : A = A;) be an upper-semicontinuous C*-bundle over X. Set
A=[[{Az v € X}, p: A— X the surjection sending each a € A, to x, and for
each a € A define a section a : X — A via a(x) = mz(a). Then there is a unique
topology on A such that (A, X, p) is an upper-semicontinuous (H)-C*-bundle over
X and such that the map a — a is a *-isomorphism of A onto I'o(X,A). If
(X, A,z : A — Ay) is continuous then so is (A, X, p).

Proof. (i): Since the norm on I'g( X, A) is the supremum norm, it is clear that condition
(i) of Definition 2.2.7 is satisfied. For all v € T'o(X,.A) and f € Cy(X), the section
f-v:z f(z)y(z) belongs to T'o(X,.A) by [58, Lemma C.22]. It follows from the
definition of f -« that 7, (f-v) = f(x)y(z) = f(x)mz(y) for all z € X, hence condition
(ii) of Definition 2.2.7 is satisfied also.

For each v € I'y(X,.A), the norm function N(v) is the composition z — ~(z) —
|lv(z)|| of a continuous function and an upper-semicontinuous function, hence is upper-
semicontinuous on X. Moreover, N(v) vanishes at infinity on X by definition of
Fo(X, A).

The final assertion follows from the fact that in a continuous (H)-C*-bundle, the

map y(z) — ||y(z)| is continuous.
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(ii): By Theorem 2.2.5, there is a unique topology on A such that (A, X, p) is an
upper-semicontinuous (H)-C*-bundle over X with {a:a € A} C I'’(X,.A). Moreover,
by assumption the former is in fact contained in I'g( X, .A).

Using condition (ii) of Defintion 2.2.7, we have

(f - a)"z) = ma(f - @) = f(2)ma(a) = f(z)a(x)

for all @ € A and f € Cp(X). In particular, the hypotheses of Proposition 2.2.6 are
satisfied, so that {a : a € A} is dense in I'g(X, A). Being closed, we must have equality.

The continuous case follows from the continuous cases of Theorem 2.2.5 and Propo-
sition 2.2.6. O

In subsequent sections, we shall mostly make use of C*-bundles, rather than (H)-
C*-bundles. One exception is Chapter 4, where it will be necessary to consider the
local section algebras I'*(U, A) for open subsets U of X. The fact that these sections
do not necessarily vanish at infinity on U means that we are unable to make use of the

equivalence given in Theorem 2.2.9(ii), which only applies to I'g(—,.A).

Definition 2.2.10. Let (X,A,m, : A - A;) and (X, B,o, : B = B;) be C*-bundles

over X. Suppose that the following conditions are satisfied
(i) B is a C*-subalgebra of A,
(ii) for each z € X, 0, = mg|p.

Then (X, B,o, : B — B,) is said to be a C*-sub-bundle of (X, A, 7, : A = A;).

2.3 Equivalence of Cy(X)-algebras and C*-bundles

Definition 2.3.1. Let X be a locally compact Hausdorff space. A Cy(X)-algebra is
a C*-algebra A together with a *-homomorphism py : Co(X) — ZM(A) with the
property that pa(Co(X))A = A.

It follows from the Dauns-Hofmann Theorem [21] which we will discuss below (The-
orem 2.3.6), that there is a *-isomorphism 64 : C®(Prim(A)) — ZM(A) with the
property that

04(f)a+ P = f(P)(a+ P), for a € A, f € C*(Prim(A)), P € Prim(A4). (2.3.1)
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This gives an equivalent formulation of Definition 2.3.1: a Cy(X )-algebra is a C*-algebra
A together with a continuous map ¢4 : Prim(A) — X. The maps p4 and ¢ 4 are related
via pa(f) = 0a(f o ¢a) for all f € Cy(X) [58, Proposition C.5]. We call ¢4 the base
map and pa the structure map.

For clarity we will denote any Cy(X)-algebra A by the triple (A, X,¢4) or
(A, X,pa). For z € X we define the ideal J, via

Jo = pa({f € Co(X): f(x) =0}) A= (P € Prim(4) : pa(P) =z},  (232)

see [48, Section 2] for example.

Remark 2.3.2. We do not require that the base map ¢4 : Prim(A) — X be surjective,
or even that ¢4(Prim(A)) be dense in X. It is shown in [8, Corollary 1.3] that ¢4 has
dense range if and only if the structure map p4 is injective.

If z € X\Im(¢p4), then we may still define the ideal J, of A via
Jr = pa({f € Co(X) : f(z) = 0}) A; it is shown in [8, §1] that J, = A for all such
x. This is consistent with our second definition of J, in (2.3.2), when we regard the

intersection of the empty set {P € Prim(A) : ¢p4(P) = x} of ideals of A as A itself.

The relationship between Cy(X)-algebras and C*-bundles is well known, see [48]
or [58, Appendix C] for example. We give details in the following proposition, which

will be used frequently in what follows.
Proposition 2.3.3. Let A be a C*-algebra and X a locally compact Hausdorff space.

(1) If (A, X, pa) is a Co(X)-algebra, then with Ay = A/Jy and 7y : A — A, the quo-
tient x-homomorphism, the triple (X, A, 7, : A — A,) is an upper-semicontinuous
C*-bundle [48, Theorem 2.5].

(i) If (X,A,mp : A = Ay) is a C*-bundle, then setting ua(fla = f-a for f €
Co(X),a € A defines a *x-homomorphism py : Co(X) — ZM(A) such that
(A, X, pa) is a Co(X)-algebra. Moreover, (X, A,y : A — Ag) is an upper-
semicontinuous C*-bundle if and only if ker(ny) = Jp for all z € X [40, Lemmas
2.1 and 2.3].

(1it) The Co(X)-algebra (A, X, ua) gives rise to a continuous C*-bundle (X, A, 7y :
A — Az) if and only if the corresponding base map ¢4 : Prim(A) — X is an open
map [44, Theorem 5.
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As a consequence of Proposition 2.3.3, we will regard Cy(X)-algebras and upper-
semicontinuous C*-bundles as being (essentially) equivalent. Moreover, we may unam-
biguously speak of a Cy(X)-algebra (A, X, pua) being continuous if the corresponding
C*-bundle (X, A, 7, : A — A;) is continuous.

For clarity, we give the (H)-C*-bundle analogue of Proposition 2.3.3 below.

Corollary 2.3.4. Let (A, X,ua) be a Cy(X)-algebra. Then there is an upper-
semicontinuous (H)-C*-bundle (A, X,p) over X such that:

(1) for each x € X the corresponding fibre algebra is given by Ay = A/ J,,
(ii) the map v: A — T'o(X,.A), where
y(a)(z) =a+ Jy foralla€ A,z € X
s a *-isomorphism.

Example 2.3.5. [2/, 4.7.19] Let A be the C*-algebra of sequences a = (a,) C M2(C)
that converge as n — oo to a diagonal matriz, denoted by diag(A;(a), A2(a)), where
Ai(a) are complex scalars for i = 1,2. Then Z(A) consists of those a € A such that
an is a scalar multiple of the identity matriz for all n € N, so that A\j(a) = A2(a) and
Z(A) may be identified with C(N). It follows that A is a C(N)-algebra.

The corresponding ideals {J, : n € N} of (2.3.2) are given by J,, = {a € A : a, = 0}
forn € N and Jo = {a € A : M(a) = A2(a) = 0}. The corresponding C*-bundle
(A,N,wn : A = Ap) has fibres Ap, = M2(C) forn € N and Ao = COC, with my(a) = an
forn € N and moo(a) = Ai(a) ® Xao(a) for all a € A. Moreover, (A,N,m, : A — Ay) is

a continuous C*-bundle since the sequences (an) converge in norm.

Given a C*-algebra A, it is natural to ask how one may construct a space Y and fibre
algebras A, in such a way that (Y, A, 7, : A = Ay) is a C*-bundle. Of course, taking
Y = {y} to be a one-point space and 7, : A - A, = A the identity *-homomorphism
gives a continuous C*-bundle decomposition of A in a trivial way.

At the other extreme, if Prim(A) is Hausdorff, then being also locally compact, we
may take the identity map on Prim(A) as a base map. It then follows that the triple
(A, Prim(A), 04|, (prim(a))), where 04 is the Dauns-Hofmann *-isomorphism of (2.3.1),
is a continuous Cy(Prim(A))-algebra. Thus by Proposition 2.3.3 we get a continuous
C*-bundle (Prim(A), A, 7p : A — A/P) over Prim(A), and it is easily verified that the
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fibre algebras are simple C*-algebras in this case. This result was obtained originally
by Fell in [27].

The most general decomposition Theorem of this type was given by Dauns and
Hofmann in [21], who showed that any C*-algebra A may be decomposed as an upper-

semicontinuous C*-bundle over its space of Glimm ideals.

Theorem 2.3.6. (J. Dauns, K.H. Hofmann) Let A be a C*-algebra. Then A is a
Co(Y)-algebra, and hence the section algebra of an upper-semicontinuous C*-bundle
(Y, A,mp: A = Ay), where

(i) if Gimm(A) is locally compact, Y = Glimm(A), A, = A/Gp and mp = qp : A —
A/G,, the quotient x-homomorphism for all p € Glimm(A),

(ii) if Glimm(A) is not locally compact, Y = fGlimm(A), and

o for p € Glimm(A), Ay = A/Gp and 1, = ¢, : A = A/G, the quotient

x-homorphism, and

e for p € fGlimm(A)\Glimm(A), 4, = {0}.

If Prim(A) is Hausdorff, then being locally compact, it is necessarily completely
regular. Thus Prim(A) = Glimm(A), both as sets of ideals and topologically. In
this case the Dauns-Hofmann bundle associated with A is precisely the continuous
C*-bundle over Prim(A) obtained by Fell [27, Theorem 2.3]. More generally, Lee’s
theorem [44, Theorem 4] implies that the Dauns-Hofmann bundle of a C*-algebra A is
a continuous C*-bundle if and only if the complete regularisation map is open. Note

that if this is the case then necessarily Glimm(A) is locally compact.

Example 2.3.7. Let A be the C*-algebra of Example 2.1.7. Then since Glimm(A) is
homeomorphic to N, A is a C(N)—algebm by Theorem 2.3.6. The fibre algebras of the
corresponding C*-bundle are given by A, = M3(C) forn € N and Aooc = C®Ca C,
where mp(a) = an for n € N and 1 (a) = A1(a) ® A2(a) ® A3(a) for all a € A.

This bundle is upper-semicontinuous but fails to be continuous. To see this, consider
the sequence a = (an) with az, = diag(1,0) and agn+1 = 0 for all n € N. Then clearly
a € A, and for all n € N we have ||mon(a)|| = ||7eo(a)|| = 1, while |Ton+1(a)]| = 0 for

all n € N. It follows that n v ||m,(a)| is discontinuous at infinity.
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In the following example, from [21, Example 9.2], we give a C*-algebra A for which
the local compactness of Prim(A) does not pass to Glimm(A). In particular, we describe

how (A, Glimm(A), p4) fails to be a Cp(Glimm(A))-algebra in this case.

Example 2.3.8. Let H be a separable infinite dimensional Hilbert space, {e, : n =
1,2,...} a fized orthonormal basis for H, and let K(H) denote the compact operators
on H. The subset D(H) of all compact operators that are diagonal with respect to the
basis {en} is a C*-subalgebra of K(H). Let

A={F e C(-1,1],K(H)) : F(t) € D(H) for ali t > 0}.

With pointwise operations and norm ||F| = sup{||[F(t)| : t € [-1,1]}, A is a C*-
algebra. Each element F' of A is given by an infinite matriz of continuous functions
Fij: [-1,1] = C, such that

Fllley= > {Bevi=18..}
The set Prim(A) consists of the ideals

Pit) = {FeA:F(t)=0} fort<0
{FeA:Fon(t)=0} fort >0,neN

e,
=
o

[

The topology on Prim(A) is as follows:

e Fort <0, a neighbourhood basis for P(t) is given by the sets

N(t,e) :={P(q): ¢<0,|g—t| <e},0<e <[t

e Fort=0 andn € N, P(0,n) has a neighbourhood basis of sets

M(0,n,e) :={P(q): —e < ¢<0}U{P(g,n):0<g<e},0<e<]1

e Fort >0 and n € N, a neighbourhood basis for P(t,n) is given by the sets

Mit.ne) ={Plgnl ;9 >0, lg=t<e},0cext
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For each n let I, = [0,1] x {n}, and for t € [0,1] let '™ = (t,n) € I,. Then

o0

Prim(A) = [-1,0) U (U L)
n=1
where each point 0 has a neighbourhood basis of intervals (—e,0) U [0, (). Tt is
easy to see that for a pair of points 0 and 0™ with n # m, any open neighbourhood
of 0 will intersect every open neighbourhood of 0™ in the subset [-1,0).
The complete regularisation map p : Prim(A) — Glimm(A) fizes the sets [—1,0)
and (00, 1M)] for all n. The set {0™ : n € N} is mapped to a single point which we

will denote by O for convenience. Hence

(0(“)’ 1(")]’

s

Glimm(A) = [-1,0] U

=1

where a neighbourhood basis of 0 is given by the sets (—dg, 0] U UEOZI(O(”),&(,M) where
0 <0; <1 forallj>0. All other points of Glimm(A) have a neighbourhood basis
consisting of intervals. Moreover, the point 0 does not have a compact neighbourhood
in Glimm(A). For a proof of these facts, see [21, Ezamples 3.4 and 9.2].

Consider the x-homomorphism 14 : Co(Glimm(A)) — ZM(A) obtained from the

restriction 04 o p% |~ where 04 is the Dauns-Hofmann *-isomorphism and
PAlCy(Gt Tp

imm(A))’
e C*(Glimm(A)) — C?(Prim(A)) the x-isomorphism f + f o pa of Theorem 2.1.4.
Since the point 0 does not have a compact neighbourhood in Glimm(A), it follows

that every f € Co(Glimm(A)) satisfies f(0) = 0. Hence for alla € A and P € hull(G)),
pa(fla+ P = (fopa)(P)(a+P)=0,

by (2.3.1). In particular, pua(Co(Glimm(A))) - A C Go, a proper ideal of A, so that the
triple (A, Gimm(A), ua) fails to be a Co(Glimm(A))-algebra.

Remark 2.3.9. Our definition of a Cyp(X)-algebra (Definition 2.3.1) requires that X be
a locally compact Hausdorff space. While the space Glimm(A) of Example 2.3.8 fails to
be locally compact, it is necessarily true that the non-unital commutative C*-algebra
Co(Glimm(A)) may be identified with Co(X) for some locally compact, non-compact
Hausdorff space X (where X is the maximal ideal space of Cp(Glimm(A))). It is easily
seen that X is homeomorphic to the subspace Glimm(A)\{0} of Glimm(A) in this case,
but that we still have pa(Co(X)) - A C Gy, so that A fails to be a Cy(X)-algebra with

respect to this construction.
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If A is unital, then since Prim(A) is compact, the same is true for Glimm(A), and

so the pathology of Example 2.3.8 cannot occur.

Definition 2.3.10. A C*-algebra A is called quasi-central if P 2 Z(A) for any P €
Prim(A).

Clearly every unital C*-algebra A is quasi-central, since the unit of A belongs to
Z(A). Moreover, when A is a quasi-central C*-algebra, Glimm(A) is necessarily locally
compact. This fact is well known, we give a proof in Proposition 2.3.11 below for

completeness.

Proposition 2.3.11. Let A be a quasi-central C*-algebra, and denote by 64
Ct(Prim(A)) — ZM(A) the Dauns-Hofmann x-isomorphism and by p* : C*(Glimm(A)) —
CY(Prim(A)) the x-isomorphism induced by the complete reqularisation map pa :
Prim(A) — Glimm(A). Then Glimm(A) is locally compact, and the restriction of the
mapping 64 o p% to Co(Glimm(A)) is a x-isomorphism of Co(Glimm(A)) onto Z(A).

Proof. Let p € Glimm(A) and denote by G, the corresponding Glimm ideal of A. Then
since Z(A) € Gp there is some z € Z(A) with ||z 4+ Gp|| = 1. Since Z(A) C ZM(A),
there is f, € C®(Glimm(A)) such that 84 o p*%(f.) = z.

For any P € Prim(A) and a € A, (2.3.1) ensures that

(z+ P)(a+ P) = f:(pa(P))(a + P).
Since z + P € Z(A/P) it follows that
2+ Pl = [f2(pa(P))]

for all P € Prim(A).

Now, since z € A, the set
1
K = {PePrim(A):|z+P| > 5}

}

B | =

= {P € Prim(A) : |f.(pa(P))| >

is compact by [24, Proposition 3.3.7]. Moreover, it is easily seen that ps(K) = {q €
Glimm(A) : |f.(g)| > 3}, which is again compact. Since

|£:(P)] = 2+ Gpll = llz + Pl = 1,
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and f, is continuous on Glimm(A), it follows that p4(K) is a compact neighbourhood
of p in Glimm(A). Hence Glimm(A) is locally compact.

It is shown in [22, Proposition 1] that for a quasi-central C*-algebra A,
04(Co(Prim(A))) = Z(A). We will show that p% maps Co(Glimm(A)) onto
Co(Prim(A)), from which the second assertion will follow.

Let f € Co(Prim(A)), then there is f* € C®(Glimm(A)) with p%(f?) = f. For any
e > 0, the set

K. := {P € Prim(A) : |f(P)| > €}

is compact. Moreover, its image under p4 is compact and is precisely the set

pa(K:) = {p€ Glimm(A):|f(P)|> e for all P € hull(Gy)}
= {p € Glimm(A) : |[f°(p)| > €}.
It follows that f” € Co(Glimm(A)). Thus we have shown that p%(Co(Glimm(A))) 2

Co(Prim(A)).
Since Z(A) is an ideal of ZM (A), the identifications

04(Co(Prim(A))) = Z(A) € (64 © pi3)(Co(Glimm(A))) € ZM(A)

ensure that (p%)~'(Co(Prim(A))) is a closed ideal of Co(Glimm(A)). If this inclusion
were strict, it would follow that there exists a nonempty closed subset F' C Glimm(A)

with the property that
(p}2) " (Co(Prim(A))) = {f € Co(Glimm(A)) : f| = 0}.

Take z € Z(A) and again denote by f. € Cp(Glimm(A)) the unique function with
(640 p%)(f:) = z. Then for any P € Prim(A) with psa(P) € F and any a € A, we

would have

(z+P)a+P) = (8a0p3)(f:)(a+P)
= f(pa(P))(a+ P)
= 0+ P

In particular, z € P for all such P, so that P D Z(A), a contradiction. O

The following Theorem identifies when a subalgebra of a Cy(X)-algebra can be

identified with a subbundle of the associated upper-semicontinuous C*-bundle.
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Theorem 2.3.12. Let (B,X,ug) be a Cy(X)-algebra, and + : A — B a *-
monomorphism with the property that pg(f)iu(a) € t(A) for alla € A and f € Cy(X).
Then

(i) There is a x-homomorphism pa : Co(X) — ZM(A) with the property that

Wpa(f)a) = pp(f)ua). (2.3.3)
Hence (A, X, ua) is a Co(X)-algebra, and v is a Co(X)-module map,

(ii) For x € X we let I, = pa({f € Co(X) : f(z) =0})A and
Je =u({f € Co(X) : f(z) =0})B. Then we have (I;) = Jy Nt(A),

(i1i) If B is a continuous Co(X)-algebra then so is A.

Proof. (i) Denote by C' the C*-subalgebra of M (B) generated by ¢(A) and pup(Co(X)).
Since ¢(A) is closed under multiplication by ug(Co(X)) by assumption, ¢(A) is a closed
two-sided ideal of C. Then by [20, Proposition 3.7(i)], there is a x-homomorphism
o :C — M(A) extending :~! on «(A). Moreover, for f € Co(X) and a € A, we have

(00 ug)(fla=o(us(f)a)) = o((a)us(f)) = alo o up)(f),

since oot is the identity on A. Asin [45, (3.1)], we see that (coup)(Co(X)) C ZM(A).
Thus we get a *-homomorphism pugq = oo ug : Co(X) - ZM(A). To see that py is
non-degenerate, let (fy) be an approximate identity for Cp(X ). Then since upg is non-

degenerate, up(f\)b — b for all b € B. In particular, for all a € A we have

pa(fr)a=o(us(fr)(a)) = o(ia)) = a,

which shows that p4(Co(X))A is dense in A. By the Cohen-Hewitt factorisation The-
orem, 14(Co(X))A = A.
To see that (2.3.3) holds, note that for f € Cp(X) and a € A, we have

Upa(fla) = w((oopp)(fa)
t(o(uB(f)i(a)))
= uB(f)ua)

Thus (A, X, pua) has the required properties.
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(ii) The inclusion ¢(1;) C J, N¢(A) follows from (2.3.3). Now let a € J, N¢(A) and
e > 0. By upper-semicontinuity there is a neighbourhood U of x in X, with compact
closure U, such that ||c(a) + J,|| < ¢ for all y € U. Choose a continuous f: X — [0,1]
such that f(z) =1 and f(X\U) = 0, then f € Co(X) since U is compact. Then

(1 -palfat+lz=(a-f(z)a) + I, =0+ L,

so that (1 — pa(f))a € I,.

Now we have

I(X = pa(f))a = all = [|pa(fal = llo(us(f)u(a)ll = llns(f)a)l,

since o is injective on ¢(A). Moreover,

s (f)e(a)|l = sup [[us(f)ila) + Jy|l sup || f(y)(c(a) + Jy)|
yeX yeX

= sup|f(y)llle(a) + Jy|l
yeU

A

sup ||e(a) + Jy|| < e.
yeU

Combining these facts, we see that

lla+ L[l < I(1 = pa(f))a —all = lua(f)ua)]| <e.

Since € > 0 was arbitrary and I, closed, a € I,.
(iii) By [24, Corollary 1.8.4] and by part (ii) we may identify

A_ W4 b)) A+ e & B
I ol JSiidd) ™ 5 -
Hence for a € A and z € X, [|a + I;| = ||¢(a) + Jz||. Since norm functions of elements

of B are continuous on X, the same is true for A. O



Chapter 3

Multipliers of Cjy(X )-algebras

In this chapter, we consider the problem of obtaining a C*-bundle decomposition of
the multiplier algebra M(A) of a C*-bundle (X, A, 7, : A — A;). Central to this is
the notion of the ‘strict topology’ on M(A), and how it relates to the embedding of
Prim(A) as an open subset of Prim(M (A)).

We examine two different approaches to obtaining such a bundle representation
of M(A) over X, the Stone-Cech compactification of X. The first approach (Theo-
rem 3.1.6) depends on extending each *-homomorphisms 7, : A — A, to a (strictly
continuous) *-homomorphisms 7, : M(A) — M(A;). Indeed, this may be interpreted
as a generalisation of a theorem of Akemann, Pedersen and Tomiyama [1, Theorem
ol

In the case that the bundle (X, A,m, : A — A;) arises from a Cy(X)-algebra
(A, X, pa), then Archbold and Somerset have shown in [8] how M (A) carries naturally
the structure of a C'(SX)-algebra. It follows that M(A) may be decomposed as an
upper-semicontinuous C*-bundle over X

A natural question that arises from these constructions is that of determining when
these bundle decompositions of M(A) agree. The final two sections of this chapter are
dedicated to the study of this question. We give a partial characterisation of those
C*-algebras for which this occurs in Section 3.4.

We remark that some of the main results of Section 3.4 were obtained indepen-

dently by Archbold and Somerset, and have been published in [11]. In particular,

26
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Corollary 3.3.6 corresponds to [11, Proposition 2.6(i) and (iii)], and Corollary 3.4.7
to [11, Corollary 4.3]. Stronger versions of Corollary 3.4.8 and Theorem 3.4.10 were
also given in [11, Corollary 4.4] and [11, Theorem 4.6] respectively. The results of

Theorems 3.1.6 and 3.4.6, and Corollary 3.1.9, are new.

3.1 The strict topology on M(A)

Definition 3.1.1. Let A be a C*-algebra. The strict topology on M(A) is the locally

convex topology generated by the seminorms
{b— ||abl[,b+> ||bal : a € A}.

If A is unital then M(A) = A and the strict topology is equal to the norm topology.
In general, M(A) is the strict completion of A [20, Proposition 3.5 and 3.6].

Notation 3.1.2. For a subset S C M(A) we will denote by S its closure in the strict
topology on M(A).

Proposition 3.1.3. (/20, Proposition 3.8/ and [8, Proposition 1.1(i)]) Let A and B be
C*-algebras and m : A — B a x-homomorphism. Then 7 extends uniquely to a strictly

continuous x-homomorphism 7 : M(A) — M(w(A)) defined via
7(m)m(a) = n(ma) and m(a)T(m) = m(am)
for alla € A and m € M(A). Moreover, the kernel of T satisfies
ker 7 = (ker(w))~ = {b € M(A) : bA+ Ab C ker(m)}.

Note that Proposition 3.1.3 allows us to identify the strict closure in M(A) of an
ideal J of A. Indeed, letting 7 : A — A/J be the quotient *-homomorphism, its
extension 7 : M(A) - M(A/J) has kernel

J={be M(A):bA+ AbC J}. (3.1.1)
Proposition 3.1.4. Let A be a C*-algebra.

(i) If P € Prim(A) then P € Prim(M(A)), and P is the unique primitive ideal of
M(A) whose intersection with A is P.
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(ii) The map Prim(A) — Prim(M(A)), P — P is a homeomorphism of Prim(A) onto

the dense open subspace
{Q € Prim(M(A)): Q 2 A}
of Prim(M (A)).

Proof. (i): By [24, Proposition 2.11.2(ii)] there is a unique @ € Prim(M(A)) with
QN A= P. The fact that Q = P is shown in [20, Lemma 6.1]. (ii): Is shown in [20,
Proposition 6.2]. O

Remark 3.1.5. In the commutative case, the embedding map of Proposition 3.1.4(ii) is
well understood. Indeed, let B be a non-unital commutative C*-algebra. Then by the
Gelfand-Naimark Theorem, B = Cy(X) where X is a locally compact, non-compact
Hausdorff space. Then M(B) = C%X) = C(BX). For z € X, let M, = {f €
Co(X) : f(z) = 0}, and for z € BX, let M* = {f € C(BX) : f(z) = 0}. Then
Prim(B) = {M, : z € X} = X and Prim(M(B)) = {M®* : z € X} = fX. Prim(B)
is embedded in Prim(M (B)) via M, — M*(z € X), and it is easily seen that for each
z € X, M* is the ideal M, of Proposition 3.1.3.

Theorem 3.1.6. Let (X,A,m, : A = A;) be a C*-bundle. For x € X set M, =
7o (M(A)), and for ¢ € BX\X let My = {0} and let 7y be the zero x-homomorphism.
Then the triple (BX, M(A), 7y : M(A) — M;) is a C*-bundle. If in addition A is
o-unital, then My = M(Ay) for allx € X.

Proof. We show that conditions (i) and (ii) of Definition 2.2.7 are satisfied. To see that
Neepx ker(7z) = {0}, let m € M(A) and suppose that m € [,cgx ker(7z). Then for
all z € X and a € A we have

To(m)ma(a) = me(mae) = 0 and ny(a)7.(m) = nwelam) = 0.

It follows that ma,am € ker(m;) for all z € X. Since (X,A, 7, : A = A;) is a
C*-bundle, this implies that ma = am = 0 for all a € A, so that m = 0.

To see that condition (ii) is satisfied, we first note that by Proposition 2.3.3(ii) there
is a *-homomorphism g4 : Co(X) = ZM(A) such that pa(f)a = f-afor all f € Co(X)
and a € A. By Proposition 3.1.3, 4 extends to a strictly continuous *-homomorphism
fia : M(Co(X)) = C(BX) = ZM(A). For g € C(BX) and m € M(A), define g - m to
be fia(g)m.
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We claim that 74(g - m) = g(q)74(m) for all g € C(BX),m € M(A) and ¢q € BX.
Note that if ¢ € X\ X there is nothing to prove. Let 2 € X and a € A, and note
that a factorises as @ = f - b for some f € Cyo(X) and b € A by the Cohen-Hewitt

factorisation theorem [25, Theorem 16.1]. Then since

(g-m)(f-b) = fia(g)mpa(f)b= pa(gf)(mb) = (gf) - (mb),

we have

Te(g - m)Tz(a) = Te(g - m)me(f-b) = w((gf) - (mb))

for all z € X. Thus for all a € A,z € X, we have

(T2(g - m) — g(x) 7z (m)) 7o (a) = 0.

Since A, is an essential ideal of M, [8, Proposition 1.1(ii) and (v)], it follows that

Tz(g - m) = g(x)Tz(m)

for all z € X, so condition (ii) follows.
Finally, if A is o-unital then the *x-homomorphisms 7, : M(A) — M(A,) are

necessarily surjective by [49, Theorem 10]. O

Remark 3.1.7. Note that if (X, A, 7, : A — A;) is a C*-bundle and z € X is such that
A, = {0}, then 7, is the zero *-homomorphism, and hence M, = 7,(M(A)) = {0}

also.

Theorem 3.1.6 makes no reference to continuity of the bundles under consideration.
The following example shows that when (X, A, 7, : A = Ay,) is a continuous C*-bundle,
(BX,M(A), 7, : M(A) — M,) may fail to be continuous.

Example 3.1.8. Let H be a separable infinite dimensional Hilbert space and A =
C(N,K(H)), regarded as a C*-bundle (N, A, 7, : A = Ay) where A, = K(H) and
Tn : A = A, the evaluation mappings for alln € N. Then M(A) = C(N, B(H)s),
where B(H)q. denotes B(H) with the strong-x topology [1, Corollary 3.5].
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In the C*-bundle (N, M(A),7, : M(A) = M,), we have M, = B(H) and the
maps T, are again the evaluation mappings for all n € N. To see that (N,AI(A),%,, :
M(A) — M,) is not a continuous C*-bundle, let {e,} be an orthonormal basis for H

and let p, be the projection onto the one-dimensional subspace corresponding to e, for

f(n):{pn n €N

0 = 60

all n € N. Setting

then f is strong-*-continuous from N — B(H), hence f € M(A). But the norm
function of f fails to be upper-semicontinuous at oo, hence (N, M(A), 7, : M(A) —

M(A;)) is not an upper-semicontinuous C*-bundle.

The C*-bundle (N, M(A), 7, : M(A) = M(A),) of Example 3.1.8 is in fact lower-

semicontinuous. This is a special case of Corollary 3.1.9 below.

Corollary 3.1.9. Let (X, A, 1, : A = Ay) be a lower-semicontinuous C*-bundle. Then
the bundle (M(A),BX, 7z : M(A) — M) of Theorem 3.1.6 is lower-semicontinuous.

Proof. We remark that for a C*-algebra B and m € M (B), it always holds that
Im|| = sup{[|bm| : b € B, ||b]| < 1} = sup{|/mb]| : b € B, [|b]| <1},

see [20, §2].

Now let (X, A, 7, : A — A;) be a lower-semicontinuous C*-bundle and take m €
M(A). Denote by N(m) : BX — Ry the function N(m)(z) = ||7z(m)]|, and note that
for all a € A and z € X we have N(a)(z) = ||7.(a)|| since 7, extends 7.

We first show that N(m) is lower semicontinuous on X. Note that for all z € X,
M, C M(A;) and so

sup{[|7z(m)b| : b € Aq, [[b]] < 1}
sup{||7z(m)mz(a)|l : a € A, [|mz(a)l| <1}

177 (m)|

sup{||mz(ma)l| : a € A, [ja] <1},

since m, maps the unit ball of A onto the unit ball of A,. It follows that the norm
function N(m) restricted to X is the pointwise supremum of the collection {N(ma) :
a € A,|lal]| <1}, which are lower-semicontinuous on X since ma € A for all a € A. It

follows that N(m) is lower-semicontinuous on X [19, Theorem IV.6.2.4].
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If € BX\X, then N(m)(z) = 0, hence N(m) is trivially lower-semicontinuous at
these points. The fact that the sets {z € X : N(m)(x) > €} have compact closure in
BX for all m € M(A),e > 0 is immediate from the fact that X itself is compact. [J

Remark 3.1.10. We now describe how Proposition 3.1.4 allows us to construct
Glimm(M (A)) in terms of Glimm(A) (as a topological space). By applying the Dauns-
Hofmann isomorphism to M(A), we get a x-isomorphism 0y;(4) : C(Prim(M(A))) —
ZM(A), again satisfying

Ora)(f)m+Q = f(Q)(m+Q),
for f € C(Prim(M(A))),m € M(A),Q € Prim(M(A)). Thus C®(Prim(A)) and

C(Prim(M(A))) are *-isomorphic, and it follows that their structure spaces are home-
omorphic. Together with the universal properties of the complete regularisation and
Stone-Cech compactification, there is a commutative diagram of #-isomorphisms:

=1

M (A
Ct an

C(Prim(M(A)))

\ y
ZM(A

C?(Glimm(A

|

C(AGlimm(A))<-------—— C(Glimm(M(A)))
Since Prim(M (A)) is compact, the same is true of Glimm(M(A)), and thus the

Ph(a)

*-isomorphism C(Glimm(M(A)) — C(fGlimm(A)) is dual to a homeomorphism ¢ :
FGlimm(A) — Glimm(M (A)). Moreover, it is shown in [8, Proposition 4.7] that the
map ¢ satisfies pM(A)(P) =10 pa(P) for all P € Prim(A). In particular the diagram

Prim(A) Prim(M(A))
Jos
Glimm(A) PM(A)

|

BGlimm(A) — Glimm(M (A))

commutes. The advantage of this fact is that, as a topological space, Glimm(M (A))
depends only on the topological space Glimm(A) (which in turn is defined uniquely by
Prim(A)), and may thus be constructed without knowledge of Prim(M (A))\Prim(A).
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3.2 The C(pX)-algebra associated with the multiplier al-
gebra of a Cy(X)-algebra

In this section we describe how the multiplier algebra of a Cy(X)-algebra A may be
regarded as a C(fX)-algebra in a natural way. This may be regarded as the Cp(X)-
algebraic analogue of Theorem 3.1.6, although the upper-semicontinuous C*-bundle
over X defined by the C(fX)-algebra structure on M(A) over X (via Proposi-
tion 2.3.3) does not agree in general with that of Theorem 3.1.6.

If (A, X,pa) is a Cy(X)-algebra with structure map ¢4 : Prim(A) — X, then as
in the proof of Theorem 3.1.6 we get a *-homomorphism 4 : C(BX) — ZM(A).
This construction gives M(A) the structure of a C'(5.X)-algebra, whose properties we

describe in the following proposition.

Proposition 3.2.1. [8, Proposition 1.2] Let (A, X,pa) be a Co(X)-algebra with base
map pa and structure map ¢a. Then selting ppya)(f) = 0a(f o a) for f € C(BX),
the triple (M(A), BX, upr(a)) is a C(BX)-algebra. Moreover, we have the following

properties:
(i) for f € Co(X), upay(f) = na(f),
(1) parcay(1) = Lag(ay,

(iii) Denoting by ¢pr(a) : Prim(M(A)) — BX the base map associated with pipg(ay, we
have ¢pr(a)(P) = ¢pa(P) for all P € Prim(A).

Remark 3.2.2. It is not immediately evident that the *-homomorphism ppsa)
C(BX) — ZM(A) of Proposition 3.2.1 agrees with the strictly continuous extension
fia: C(BX) — ZM(A) of ua from Proposition 3.1.3. Indeed, for g € C(8X), fta(g) is
defined by the action

fa(g)pa(f) = pa(gf) for all f € Co(X).

But then for any such f, we have

tara)(@palf) = 0a((glx) o da)fa(foda)
= 0a((gf) o 0a)
= palgf),

so that necessarily ppr(4)(9) = f1a(g) for all g € C(BX).
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Returning to the case of a Cjy(X)-algebra (A, X, u4) and the C(SX)-algebra
(M(A),BX, prr(a)), we now describe the relationship between their associated (upper-
semicontinuous) C*-bundles. By analogy with the ideals J;, of A defined in (2.3.2), we
define for y € X the ideals Hy of M(A) via

Hy = pya) ({f € C(BX : f(y) = 0}) M(A) (3.2.1)
N{Q € Prim(M(A)) : dpy)(Q) = v} - (3.2.2)

Il

We remark that for x € X, the quotient morphism ¢, : A — A/J, gives rise to a
strictly continuous *-homomorphism ¢, : M(A) — M(A/J,), whose kernel is the ideal
Jp of (3.1.1). Thus we may identify M(A)/.J, canonically with G,(M(A)) C M(A/J,)
and write M(A)/J, € M(A/J,), with equality holding whenever A is o-unital, as in
Theorem 3.1.6.

One might expect that for z € X the ideals H, and J, are equal; however, this is
not true in general. The following proposition lists some of the known relations between
the ideals J,, H, and J,.

Proposition 3.2.3. [8, Proposition 1.3] Let (A, X, pa) be a Co(X)-algebra. Then for
each x € X the ideals J,, Hy and J, satisfy the following relations:

) e 0
(ii) HHNA=J,NA=J,, and
(iii) Jp = Hy if and only if H, is strictly closed in M(A).

With (A, X, pua) a Co(X)-algebra and (M(A), BX, ppa)) the C(BX)-algebra of
Proposition 3.2.1, we get upper-semicontinuous C*-bundles over X and X respectively
by Proposition 2.3.3(i). The following theorem describes the relationship between the
two, and in particular, we compare the bundle associated with (M(A), BX, pipr(4)) and
the bundle (8X, M(A), 7, : M(A) — M) of Theorem 3.1.6.

Theorem 3.2.4. Let (A, X,pa) be a Co(X)-algebra and (M(A),BX, pupra)) the

C(BX)-algebra of Proposition 3.2.1. Denote by (X, A,z : A > Ag) and (BX,M(A), 0y :
M(A) — M(A)y) the upper-semicontinuous C*-bundles of Proposition 2.3.3(i) associ-

ated with (A, X, pa) and (M(A), BX, upra)) respectively. Then (X, A, 7y : A = Ag)

and (BX,M(A),oy : M(A) — M(A),) satisfy the following relations:
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(i) The fibre algebras of (BX, M(A),0y : M(A) = M(A)y) are given by M(A), =
M(A)/Hy and the x-homomorphisms o, : M(A) — M(A), are the quotient -
homomorphisms for all y € BX.

(ii) Extend (X,A,mz : A = A;) to a bundle (BX,A,my : A = Ay), where for y €
BX\X, we set Ay =0 and let 7y : A — Ay be the zero x-homomorphism. Then
(BX,A,my: A— Ay) is a subbundle of (6X,M(A),0y : M(A) = M(A)y).

(iii) For x € X, A, is an essential ideal of M(A), if and only if H, is strictly closed
in M(A). Hence we may regard M(A), C M(A;) if and only if H, is strictly
closed in M(A).

If in addition A is o-unital, then assertion (iii) becomes

(iii)’ for x € X we may make the identification M(A), = M(A,) if and only if H, is
strictly closed in M(A).

Proof. Assertion (i) follows from the fact that (M(A), BX, ups(a)) is a C(BX)-algebra,
and the construction of the upper-semicontinuous C*-bundle (X, M(A),0, : M(A) —
M(A)y) in Proposition 2.3.3(i).

By construction, the image of ps(4) is contained in ZM(A), and thus we have
unr(a)(C(BX)) - A C A. Assertion (ii) then follows from Theorem 2.3.12.

Since for each z € X we have H, N A = J, N A = J, by Proposition 3.2.3(ii), [24,
Proposition 1.8.4] shows that we may identify

A A+LqMM)

FA 7
and
A_A+H, p M(A)
de = iy He
Thus by [20, Proposition 3.7], we get x-homomorphisms
M(A) A M(A) A
g - M(—)and 7: — — M(—),
H, (Jz) I (Jz)

extending the identity on the (copies of ) A/J, in each case. Moreover, since by [8,

Proposition 1.1(v)], A—}fil is an essential ideal of %’4), 7 is injective.

Since by Proposition 3.2.3 we have H, C J,, it follows that there is a surjective

*-homomorphism 7 : %;4—) - %’4—). Together with the fact that 7 and o extend the
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identity on JA, we thus get a commutative diagram :
T

M(A) T _ M(A)

Thus o is injective if and only if 7 is, i.e. if and only if H, = J,. This occurs if and only
if H, is strictly closed in M(A) by Proposition 3.2.3(iii). Again, using [20, Proposition
3.7], we see that o is injective if and only if A/J, is an essential ideal of M(A)/H,

If A is o-unital then the canonical mapping ¢, : M(A) - M(A/J;) is necessarily

surjective [49, Theorem 10], so that (iii)’ follows. O

One might expect that in well-behaved cases, the bundle decompositions of M(A)
defined in Theorem 3.2.4 agrees with that of Theorem 3.1.6. This is of particular interest
in the case that (A, X, ) is a continuous Cp(X)-algebra, since the former is upper-
semicontinuous, and the latter is lower-semicontinuous by Corollary 3.1.9. However,
we cannot expect the fibre algebras to agree at points of Im(¢ps(a))\Im(¢a).

Indeed, when x € Im(¢s(4))\Im(¢4a), then H, is a proper ideal of M(A) by Re-
mark 2.3.2. But since x & Im(¢,), it follows that every @ € PrimM(A) with Q 2 H,
satisfies ) O A. In particular, H, O A, so that H, cannot be strictly closed since A
is strictly dense in M(A). By contrast, the fibre algebras of Theorem 3.1.6 at these
points are {0} by definition.

The following corollary shows that for a continuous Co(X)-algebra (A, X, p4) with
surjective base map, the assumption that J, = H, for all z € X is enough to ensure
continuity of (M (A), BX, pupr(a))-

Corollary 3.2.5. Let (A, X, jua) be a continuous Co(X)-algebra and (M (A), BX, pirr(a))
the C(BX)-algebra associated with its multiplier algebra. Suppose that the base map
¢ : Prim(A) — X associated with (A, X, pua) is surjective, and that J, = Hy for all
x € X. Then (M(A),BX, ur(a)) is a continuous C(BX)-algebra.

Proof. For all ¢ € M(A), the map = — Hc+ Je|| is lower-semicontinuous on X by

Corollary 3.1.9, and the map z + ||c + H,|| is upper-semicontinuous on X by Propo-
sition 2.3.3(i). Since J, = H, for all z € Im(¢4) by assumption, it follows that z —
e+ H.|| is continuous on X for all ¢ € M(A). By [8, Proposition 2.8], it follows that
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T+ |le + He|| is continuous on 3X, whence the C(3X)-algebra (M(A), BX, fips(ay) is
continuous.
O

Remark 3.2.6. Archbold and Somerset observed in [11] that for a o-unital continuous
Co(X)-algebra (A, X, p4) with surjective base map, the condition J, = H, for all
x € X implies continuity of (M (A), BX, upr(a)). Moreover, if A is separable, then the
converse holds. This observation follows from comparing the results of [8, Theorem
3.8] with those of [11, Corollary 4.7]. However, we believe the argument given in
Corollary 3.2.5 sheds more light on the relation between these two notions, in particular
regarding the different bundle representations of M(A) considered in Corollary 3.1.9
and Theorem 3.2.4.

3.3 Strict closures of the ideals H,

In this section we examine a natural question that arises as a consequence of The-
orem 3.2.4(ii), that is, when are the ideals J}C and H, equal. We begin with some
general results regarding the connection between strictly closed ideals of M(A) and the

hull-kernel topology on Prim(M(A)).

Notation 3.3.1. To allow for the identification of Prim(A) as an open subset of
Prim(M(A)), we fiz some notation in order to avoid ambiguity regarding hulls and
kernels. We shall write hullpyim4)(I) to denote the hull of an ideal I of A in Prim(A),
and ka(S) the kernel of a subset S C Prim(A). Analogously we define hullpimar(ay(J)
(J an ideal of M(A)) and kpr(a)(S) (S a subset of PrimM(A)).

Theorem 3.3.2. Let A be a C*-algebra and let J be a proper norm-closed two-sided
ideal of M(A). The following are equivalent:

(1) J s strictly closed in M(A)
(ii) J = (JNA)
(iii) hullprimA[(A)(J) N Prim(A) is dense in hullprim(M(A))(J)

Proof. If A is unital then the strict topology on M(A) = A is the norm topology and
(i),(ii) and (iii) are trivially satisfied for any norm closed two sided ideal J of A. So we

may assume that A is non-unital.
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Note that (i) to (iii) are satisfied if J = {0}. On the other hand, no proper ideal J
of M(A) with J DO A can be satisfy conditions (i),(ii) or (iii). Indeed, since A is strictly
dense in M (A), if J O A then clearly (7) and (ii) are impossible. Moreover, identifying
Prim(A) = {Q € Prim(M(A)) : Q 2 A}, hullpyim(ar(a))(J) N Prim(A) = 0 in this case,
so (i7i) cannot hold either. So we may assume without loss of generality that J N A is
a nonzero proper ideal of A.

(i) = (i) is obvious. To see that (i) = (i7), note that by (3.1.1) it always holds that
J C (JNA)™, since if z € J then for any a € A, ax,za € JN A, so that z € (JNA)™.
Suppose this inclusion were strict. Then there would be a net (ay) in J N A strictly
converging to € (J N A)~\J. Since this net is contained in J, J cannot be strictly
closed.

To see the equivalence of (ii) and (iii), let F' = hullpjn,as(a))(J) and Fop = F N
Prim(A), note that ky;4)(F) = J. For P € Prim(A), it is clear that P D J if and only
if P D J, which occurs if and only if P 2 J N A by (3.1.1). Hence the kernel kp;(4) of
Fy, regarded as a subset of Prim(M(A)), satisfies

kM(A)(FQ) = ﬂ{IBPePrlm(A),IBQJ}
= ({P:PePrim(4),P2J
= LA

where the final equality follows from [8, Proposition 1.1(iv)].
Thus if J = (JN A)™, then

cl prim(am(a)) (Fo) = hullprim(aray) (Karca)(Fo)) = hullprimar(ay (J) = F,

so (i) implies (4i). Conversely, if cl prim(nrs(a))(Fo) = F, then

J = knr(a)(F) = karcay(cl primar(a) (Fo)) = kar(ay(Fo) = (JN A)7,
so (#ii) implies (i7). O
Example 3.3.3. If A = Cy(X) is commutative, then any ideal J of M(A) = C(BX)
is of the form
J={f€C(BX): flp =0}
for some closed subset F' C X . Thus by Theorem 3.3.2, J is strictly closed if and only
if FN X is dense in F.
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Corollary 3.3.4. Let (A, X,¢4) be a Co(X)-algebra and denote by épra)
Prim(M(A)) — [X the unique extension of ¢4 : Prim(A) — X, where we re-
gard Prim(A) as a dense open subset of Prim(M(A)). Then for each x € Im(¢a), H,
is strictly closed in M(A) if and only if ¢' ({x}) is dense in (bXIl(A)({:I)}).

Proof. By Theorem 3.3.2, H, is strictly closed in M (A) if and only if hullpyim s ay) (Hz)N
Prim(A) is dense in hullpym(ar(a))(Hz). But then
llullPrim(l\](A ( ¢]\[ {1'}

and since @py(4) extends ¢4,

hullp i ar(a)) (Hz) N Prim(A) = ¢;11(A)({I}) N Prim(A) = ¢ ({z}),
from which the conclusion follows. O

Let I be a norm-closed two-sided ideal of a C*-algebra A. Then I is said to be
modular if the quotient C*-algebra A/I is unital (obviously if A is unital this is true
for every proper ideal). The relationship between modular ideals and the topology on
Prim(A) has been studied in [23, Section 3|, where a result similar to Lemma 3.3.5
below was obtained for the primitive ideal space of the minimal unitisation A; of a
C*-algebra A.

Lemma 3.3.5. Let A be a C*-algebra and I a norm closed, two-sided modular ideal of
A. Then A/I is isomorphic to M(A)/I, and we can identify

hullpyim(ar(ay (1) = {P : P € hullpyimay(I)}-
In particular, no @ € PrimM (A) with Q 2 A has Q 2 L.

Proof. By [24, Theorem 1.8.4], A/I = (A + I)/I, and by [8, Proposition 1.1(v)], the
latter is an essential ideal of M(A)/I. Being unital, they must be equal.
Since Prim(A/I) = hullpyima)(I) and Prim(M(A)/I) = hullprim(ar(ay (1), the *-

isomorphism A/I = M(A)/I gives rise to a commutative diagram of homeomorphisms

Prim(%) W ilait Prim(@)

PHP/I’ TQ»—)Q/i

P—P =
hullpyim(a)(I) = = > hullpim(ar(ay) (1)
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Thus every @ € hullprim(M(A))(f) satisfies Q = P for some P € hullpyim(4)(1). In
particular we may regard hullprim(,\,m))(f) C Prim(A), so that there is no Q €
Prim(M (A))\Prim(A) with Q D I. O

Part (i) of Corollary 3.3.6 below was shown in [8, Proposition 2.2].

Corollary 3.3.6. Let (A, X, jua) be a Cy(X)-algebra with base map ¢4 and structure
map pa, and let x € Ime.

(i) If pa(Co(X))NA L J,, then J, is a modular ideal of A and H, is strictly closed
in M(A).

(i) If pa(Co(X))NAC Jy and J, is a modular ideal of A, then Hy is not strictly
closed in M(A).

Proof. As in the remark preceding the corollary, part (i) was shown in [8, Proposition
2.2].

To prove (ii), note that since J, is modular, ¢,'(z) is closed in PrimM (A) by
Lemma 3.3.5. Then together with Corollary 3.3.4, we see that H, is strictly closed
in M(A) iff qbXI](A)(r) = ¢,'(z). Since ¢;'(z) is contained in Prim(A), it follows
that H, will be strictly closed if and only if no R € Prim(M(A)) with R O A has
énr(a)(R) = x. But then [8, Lemma 2.1] shows that since pu4(Co(X)) N A C J;, there
is some R € Prim(M(A)) such that R O A and ¢p;(4)(R) = x. Thus H, is not strictly
closed in M(A).

O

Corollary 3.3.7. Let A be a quasi-central C*-algebra and denote by (A, Glimm(A), p4)
the Co(Glimm(A))-algebra associated with the Dauns-Hofmann representation of A.
Then Hp is strictly closed in M(A) for all p € Glimm(A).

Proof. Since A is quasi-central, Glimm(A) is locally compact and p4(Co(Glimm(A))) =
Z(A) by Proposition 2.3.11. Since no P € Prim(A) contains Z(A), it follows that
Z(A) € Gp for all p € Glimm(A). In particular, {p € Glimm(A4) : pa(Co(Glimm(A)))N
A Z G,} = Glimm(A), so that H), is strictly closed in M (A) for all p € Glimm(A) by
Corollary 3.3.6(i). O

Example 3.3.8. Let A C C°(N, My(C)) be the C*-subalgebra of sequences x = ()

such that x, — diag(A(z),0) for some complex scalar A(xz). Then A is a continuous
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C(N)-algebra, where for f € C(N), pa(f)(n) = f(n)laxa for alln € N. For alln € N,
the ideals Iy satisfy Jy = {2 = {2m) € 4 : £, =10}.
M (A) may be identified with those sequences y = (yn) € C*(N, Mo(C)) such that

(i) y,(ll’Q) — 0 and ySIQ’l) -0,

(i1) y,(zl’l) — M (y) and

(iii) the sequence (yg‘?))nzno 1s bounded,

see e.g. [4, Example 4.5].
Note that for all n € N, A/ Jy, is unital, and the set

{neN:ua(CN)NAZ Jn)

is identified with N. In particular we have J, = H, for alln € N, while Joo 2 Hu by
Corollary 3.3.6.

In fact, it is straightforward to verify that we have J, = {y € M(A) : y, = 0}
for all n € N, while Hy = {y € M(A) : yp — 0}. Thus M(A)/Js = C while
M(A)/Ho = C & £%°/cy.

We remark that the C*-algebra A of Example 3.3.8 shows that the question of
whether or not H, is strictly closed in M(A) is not determined by the base map
¢4 : Prim(A) — X alone in general. To see this, let B = C(N), regarded as a C(N)-
algebra in the obvious way. Then Prim(A) is homeomorphic to Prim(B) = N, and thus
we may identify the base maps ¢4 and ¢p, being the identity map in each case. Since
M(B) = B, it follows that H, = J, = J, for all n € N (these are the maximal ideals

A~

of C(N)), and in particular H, is strictly closed in M(B).

3.4 Strict closures and spectral synthesis

We now give an account of how the question ‘when is H, = J,’ may interpreted as one
of ‘spectral synthesis’ for the multiplier algebra of a Cy(X)-algebra. The main ideas
and techniques in this section were developed by Archbold and Somerset in [9] and [11].

For a topological space X denote by Cgr(X) the ring of continuous real valued
functions on X, and for f € Cr(X) let Z(f) = {x € X : f(z) = 0}. We say that a
subset Z C X is a zero set if Z = Z(f) for some f € Cr(X).
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Definition 3.4.1. Let X be a topological space and denote by Z(X) the collection of

all zero sets of continuous functions on X. A nonempty subfamily F of Z(X) is called
a z-filter on X if

(i) 0¢F,
(ii) If Z1,Z2 € F then Zy N Zy € F, and
(ili) If Z' € Z(X) such that Z’' O Z for some Z € F then Z' € F.

Let I be an (algebraic) ideal in Cr(X). Then the collection

zM=A{2(f):fe1}

defines a z-filter on X. We say that I is a z-ideal if Z(f) € Z[I] implies f € I.

Conversely if F is a z-filter on X then the set
IlF] = {f € Cr(X) : Z(f) € F}

is an (algebraic) ideal in Cr(X). Moreover, there is a bijective correspondence between
the set of z-ideals of Cr(X) and z-filters on X given by I — Z[I] (so that I = I[Z[I]]).
For a proof of these facts see |29, Section 2.2 to 2.7).

Now let A be a Cy(X)-algebra with base map ¢4. For b € M(A), define

Z(b)={zcImpy:be J,} = {x € Imgy : ||b+ Jz| = 0},

and note that Z(b) is not a zero-set (that is, of a continuous function) on Im¢,4 in
general, since the norm function of b need not be continuous.

In what follows let X, = Im¢,4. To each z-filter F on X, (hence to each z-ideal
I[F] in Cr(Xy)) we define an algebraic ideal of M(A) given by

L% = {be M(A) : Z(b) 2 Z for some Z € F}, (3.4.1)

and let Lx be its norm closure. In [9, Theorem 3.2] it is shown that the map F +— Lr
is an injection whenever J, is non-modular for all z € Xj.

With M, = {f € Cr(Xy) : f(p) = 0}, let Z[M,] be the collection of zero sets of
functions in M)y, i.e.

Z[M,) = {Z € Z(Xy) : p € Z}.
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Let O, be the (not necessarily closed) ideal of f € Cr(X,) such that f vanishes in a
neighbourhood of p. Then

Z[0,) = {Z € Z(X,) : p € int(Z)}

When M, = O,, p is called a P-point in X4. If ¢ € Xy is a P-point in X then ¢ is a
P-point in Xy [29, 4L].

Our interest in the ideals M, and O, is as follows:

Theorem 3.4.2. [9, Theorem 4.3] Let (A, X,¢p4) be a o-unital Cy(X)-algebra with
base map ¢4 and let Xy =Im¢pa. Then the map F — L of (3.4.1) has the following

properties:
(i) for z € Xy, Lzjp,) = Ja,

(i) for p € clgx(Xs), Lz0,) = Hp.

The following example exhibits a non-o-unital Co(X)-algebra (A, X, p4) and a P-
point x € X, (so that M, = O,) with the property that Jy # H,. In particular, this
shows that the conclusion of Theorem 3.4.2 may fail when the assumption that A is

o-unital is dropped.

Example 3.4.3. Let w, be the first uncountable ordinal and X = [0,w;]| with the
order topology. Let A be the C*-subalgebra of C*(X, My(C)) consisting of those f €
C®(X, M5(C)) such that f(w)) is a matriz with zeros everywhere except in the (1,1)-
entry.

Then Prim(A) is easily seen to be homeomorphic to X, and thus (A, X,¢4) is a
continuous C(X)-algebra where ¢4 : Prim(A) — X is the canonical homeomorphism.

Now, the centre of A may be identified with Cy([0,w1)), acting as scalar multiples
of the 2x 2 identity matriz. Moreover, the structure map pus : C(X) — ZM(A) is
precisely the Dauns-Hofmann isomorphism of (2.3.1), and so

sa(C(X))NA = ZM(A) N A= Z(A) = Co([0,w1)).

Thus for x € X, we have J, D Z(A) if and only if x = wy. Since A/J,, =C, Jy, is a
modular ideal of A, and so H,, is not strictly closed by Corollary 3.3.6.

On the other hand, w; is a P-point in X by [29, 50], and so the z-ideals M,, and
O., of Cr(X) are equal. Since J,, # H,,, this shows that either Lzm,,) # Juy OT
Lz(o,,] # Hu, -
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Returning to the case of a o-unital Cy(X)-algebra (A, X, ¢4), Theorem 3.4.2 shows
that the question of identifying those points € X, for which J, = H, may be
interpreted as one of ‘spectral synthesis.” More precisely, an element b € M (A) belongs
to H, if and only if b may be approximated in norm by elements vanishing on a
neighbourhood of z. Since b is zero as a multiplier of A/.J, if and only if b € J,, we
will regard M(A) as admitting ‘spectral synthesis at z’ if and only if Jy = Hy.

In the case that the ideals J, are not modular for any x € X then injectivity of the
map F — Lr [9, Theorem 3.2] shows that the ideals J, and H, (z € Xy) are equal if
and only if z is a P-point in X4. While Theorem 3.4.2 does not require this assumption,
without it, the map F + Lz need not be injective. In particular, for z € Xy, it is
possible that M, # O, (x not a P-point in Xy) but Lza,) = Lz(o,]-

We will show that for certain Cp(X)-algebras and open subsets £ C X, the exis-
tence of a dense subset of E consisting of points x with J, non-modular is enough to
show M), # Op implies Lz} # Lz|0,) for p € E.

The following theorem relates zero sets of bounded continuous functions on X4 with
elements of M(A). It is the main technical tool used in [10] to prove injectivity of the

embedding map.

Theorem 3.4.4. [10, Theorem 3.2] Let (A, X,¢4) be a o-unital Co(X)-algebra with
base map ¢4 and let X, = Impa. Let u € A be strictly positive with ||ul| = 1. Let
f€CYXy) with0 < f <1, and Z be the zero set of f. Then there exists b € M(A)
with 0 < b <1 such that

(i) be A+ J; for allz € X,\Z,
(ii) 1—be J, forallze Z

Moreover, denoting by sp(u + J) the spectrum of u+ Jy in A/Jy and by V = {z €
Xg\Z : 2min sp(u + J;) < f(x)}, then Hy is not strictly closed in M(A) for all
T € clx¢(V) M2

We will need a slight modification of [10, Corollary 3.1]:

Lemma 3.4.5. Let (A, X, ¢4) be a o-unital Co(X)-algebra with Xy = Im¢4. Then for
each zero set Z in X, there exists an element bz € M(A) with 0 < bZ <1 such that

(i) |62+ Jo|| =0 forallz € Z,
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(i) ||b% + Jo|| = 1 whenever x € X4\Z and J, is not a modular ideal of A.

Proof. Apply Theorem 3.4.4 to get an element b € M(A), 0 < b < 1 satisfying condi-
tions (i) and (ii) of Theorem 3.4.4. Set b% = 1 — b. Then by (ii), ||b% + Jz|| = 0 for all
T E L

Recall that A/J, = (A + J,)/J, is an essential ideal of the unital C*-algebra
M(A)/J, [8, Proposition 1.1(v)]. In particular, if J, is not modular then necessar-
ily A+ J, # M(A).

By (i) of Theorem 3.4.4,b=1-b% € A+ J, forallz € Xy\Z. If J, is not modular,
then this implies that |b% 4+ (A + J;)|| = 1, and hence

L= b7 + (A+ L) < b7 + J|l < ||p?]| < 1,
which completes the proof. O

Theorem 3.4.6. Let (A, X, ¢4) be a o-unital Co(X)-algebra with base map ¢4 and let
Xy = Imoa. Suppose that E C Xy is a relatively open subset of Xy such that the set
{y € E : Jy is not modular } is dense in E. Then for any x € E, Jz = Hy if and only
if x is a P-point in Xg.

Proof. If z is a P-point in X4 then J, = H, by [10, Theorem 4.3].

Suppose z is not a P-point in Xy, so there exists a zero set Z of X, with z € Z but
x ¢ intx,(Z). Then E\Z is open in E, hence open in Xy. Let ¢ € L;l[gor]. Then there
is a zero set W € Z[O,] such that

Z(c):=={y € Xp: |lc+ Jy| =0} D W.

Let O be an open neighbourhood of z in X4 with O contained in W. Then O € Z
(since otherwise z € inty,(Z)). Hence (E\Z) N O is open in Xy, nonempty and
contained in E. Hence there is a point y € (E\Z) N O such that J, is not a modular
ideal of A. For this y, the element b7 of M(A) of Lemma 3.4.5 satisfies ||b% + J, || = 1,
while [|c + Jy|| = 0. In particular,

167 — cll > [1(5% =€) + Jyll = 1,

and since our choice of ¢ € L;}[goz] was arbitrary, b2 ¢ H,. On the other hand, b% € J,
by Lemma 3.4.5(i). It follows that H, is not strictly closed in M(A). O
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We investigate the conditions that ensure that the hypothesis of Theorem 3.4.6 are
satisfied by the set E = X4\U, where

U={zreX:pa(Co(X))NALZJ,}. (3.4.2)

Note that since J, = A whenever x € X\ Xy, the set U is contained in X,. We have
seen already in Corollary 3.3.6 that for all x € U, H, is strictly closed in M(A).

Under the additional assumption that the Cp(X)-algebra A is continuous, Theo-
rem 3.4.6 characterises the set of points x € X¢\U such that H, is strictly closed in
M(A):

Corollary 3.4.7. Let (A, X, ¢4) be a o-unital continuous Cy(X)-algebra with base map
da, let Xy =Im(¢a) and

U={zeX:plCo(X))NALZ J.}.

Then for x € E = X,\U, H, is strictly closed in M(A) if and only if x is a P-point in
X,

Proof. By [8, Lemma 3.6], the set of € Im¢ such that J, is not a modular ideal of A

is dense in X,4\U. Hence the conclusion follows from Theorem 3.4.6. O

A straightforward application of Theorem 3.4.6 is the case where (A, X, ¢4) is a o-
unital Co(X)-algebra with Z(A) = {0}. Indeed, in that case we have p4(Co(X))NA C
ZM(A)N A= Z(A) = {0}, so that U = 0.

As we have seen, if in addition (A, X, p4) is continuous, then the set of x € X,
with J; not modular is dense in X4. Hence for z € Xy, the equality J; = H, holds if
and only if z is a P-point in X, by Corollary 3.4.7.

There are however other conditions on a Cp(X)-algebra (A4, X, ¢4) with Z(A) = {0}
which ensure that this characterisation is still valid. In [23], it is shown that the
existence of a set of modular primitive ideals with nonempty interior in Prim(A) is
sufficient in certain cases to imply Z(A) # {0}.

Let T be a T space. A point x € T is said to be separated if given any y € T' with
y & clp({z}), x and y have disjoint neighbourhoods. For F' C T, let S(F') be the set
of separated points of F. If for every closed nonempty F' C T, the interior of S(F) is

nonempty, then 7" is said to be quasi-separated [23, Definition 7.
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Corollary 3.4.8. Let (A, X,¢4) be a o-unital Cy(X)-algebra with base map ¢4,
Z(A) = {0}, and suppose that at least one of the following conditions hold:

(i) A is a continuous Cy(X)-algebra with respect to the base map ¢4,
(ii) A is liminal, or

(iii) A is separable and Prim(A) is quasi-separated.

Then J, = H, if and only if z is a P-point in X :=Imdy.

Proof. In case (i) U = () and so Corollary 3.4.7 gives the result. For cases (ii) and (iii),
by [23, Propositions 11 and 12|, Z(A) # {0} if and only if the set of modular primitive
ideals has nonempty interior. So if Z(A) = {0}, the set of non-modular primitive ideals
is dense in Prim(A).

Take z € X4 such that J; is a modular ideal of A, and suppose P € Prim(A) with
¢(P) = z. Then by [23, Lemme 4 and Proposition 9], P must be a modular ideal of
A (since otherwise P € Prim(/) for every modular ideal I of A, while we know that
P ¢ Prim(J,)).

Now suppose V is an open subset of X, such that J, is modular for all z € V.
Then ¢,' (V) would be an open subset of Prim(A) consisting of modular ideals, which
is impossible. Hence the set of x € Xy such that J, is non-modular is dense in X.

The conclusion thus follows from Theorem 3.4.6. O

Let (A, X, ¢4) be a o-unital, continuous Cy(X )-algebra with base map ¢4 and let
X4 =Im¢p,. Then Corollaries 3.3.6 and 3.4.7 characterise the set of z in U and X,\U
(where U denotes the closure of U in X,) such that H, is strictly closed in M(A). All
that remain are points on the boundary of U. We have been unable to characterise
those points x on the boundary of U such that H, is strictly closed in general. However,
when M(A) is a continuous C(SX )-algebra, the following Lemma allows us to give a

full characterisation.

Lemma 3.4.9. /8, Lemma 3.3] Let (A, X, ¢4) be a o-unital Co(X)-algebra, u a strictly
positive element of A with ||u|| = 1, and suppose that M(A) is a continuous C(BX)-
algebra. Define f : X — [0,1] as

f@)= 1 - |l - u) + H|))z.

Then
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(i) f is continuous on X,
(ii) U is the cozero set of f,

(i) If x € X and 0 < f(z) < %, then 2min sp(u+ Jz) < f(z) (hence x belongs to the
set V. of Theorem 3.4.4).

The following Theorem characterises completely the set of points x € X4 such that
H, is strictly closed in M(A) when M(A) is a continuous C(SX )-algebra:

Theorem 3.4.10. Let (A, X, ¢4) be a o-unital Cy(X)-algebra with base map ¢4 such
that M(A) is a continuous C (38X )-algebra, let Xy = Im¢p and

U={zreXy: u(Co(X))NALZ Jz}.
Then for any x € X, H, is strictly closed in M(A) if and only if either
(i) x €U, or
(ii) z € Xs\U and  is a P-point in X,
where U = clx,(U).

Proof. If z € U then H, is strictly closed by Corollary 3.3.6.

If (ii) holds then, since A is necessarily a continuous Cy(X )-algebra, H, is strictly
closed by Corollary 3.4.7.

Now suppose neither (i) nor (ii) hold. Then z € U\U. Let f be the function given
in Lemma 3.4.9, and note that f(z) = 0. Then any neighbourhood of z contains a
neighbourhood W of = with f(y) < § for all y € W, hence 2min sp(u + Jg) < f(q) for
all g € WNU by Lemma 3.4.9 (iii). In particular, z € clx(V'), so H, cannot be strictly
closed by Theorem 3.4.4. 0

We conclude this section with two examples illustrating the relationship between
the strict topology on the multiplier algebra of a Cy(X)-algebra (A, X, pua) and the
ideal structure of the C'(8.X)-algebra (M (A), BX, ppr(a))-

Example 3.4.11. Let A = C(N, ¢p) = C(N)® o = Co(N x N) be the trivial continuous
C(N)—algebm with fibre ¢o. Then Prim(A) is canonically isomorphic to N x N, and

the base map ¢4 : Prim(A) — N is the projection onto the first coordinate. Since
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M(co) = €°° = C(PN), it follows from [1, Corollary 3.4] that M(A) = C(N,f%o). where
€3 denotes £>° with the strict topology induced by regarding £ as the multiplier algebra
of ¢o.

By Theorem 3.1.6, M(A) may be regarded as a C*-bundle over N(= AN), with fibre
algebras M(A), = € for alln € N. On the other hand, by Proposition 8.2.1, M(A)
is canonically a C(N)-algebm with base map ¢pr(a) @ Prim(M(A)) — N the unique
continuous extension of ¢4 to Prim(M(A)). Regarding A as Co(N x N), it is clear
that Prim(M (A)) = B(N x N), and that dar(a) is the Stone-Cech extension of ¢a [29,
Theorem 6.5(1)].

As in Theorem 3.2.4, the C(N)-algebra (M(A),N,QSM(A)) gives rise to an upper-
semicontinuous C*-bundle (N, M(A),on : M(A) — M(A),), with fibre algebras sat-
isfying M(A), = M(A)/H, for all n € N. Moreover, by [9, Theorem 4.9], we may
make the identifications M(A), = M(A)/J, = M(A,) = £ for all n € N, while
M(A)o = M(A)/Hy, with Hoo C Joo. Moreover, there are uncountably many distinct
norm-closed ideals J of M(A) satisfying Heo C J C Jss

We make some remarks about the structure of the fibre algebra M(A)so:

(i) as a commutative, unital C*-algebra, there is a compact space K with M(A)x =
C(K). Moreover, K may be identified with the subset hull(Hy) of Prim(M(A)),
so that K = ¢;11(A)({oo}).

(ii) Since Hoo C Joo, it follows that M(A)/Je = € is a nontrivial subquotient of
M(A)oo. In particular, K contains a copy of BN as a proper closed subset.

(iii) For each ideal J of M(A) with Hew C J C Joo there is a corresponding closed
subset Fy C K with J/Hoo = {f € C(K) : f|p, = 0}. Thus we get uncountably

many such subsets of K, with K\F; nonempty in each case.

Example 3.4.12 below should be compared with the (non-o-unital) Co(X )-algebra
of Example 3.4.3.

Example 3.4.12. Let wy be the first uncountable ordinal and consider the space X =

[0,w1] with the order topology. Then for a € X, we have
(i) If a is a successor ordinal, then « is isolated in X,

(i1) If o # wy is a limit ordinal, then « is a non-P-point of X, and
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(iii) a = wy is a (non-isolated) P-point of X [29, 50].

If B is any separable, non-unital C*-algebra then the trivial continuous C(X)-algebra
A= C(X,B) has M(A) = C*(X,M(B)g) by [1, Corollary 3.4]. Moreover, since X is
compact and B separable, A is o-unital. Since pa(f) = f - Iypy for all f € C(X),
it is clear that the set U of (3.4.2) satisfies U = (). Thus by Corollary 3.4.7, we have

Jo = Hy if and only if either « is a successor ordinal or a = wy.



Chapter 4

Sheaves of C*-algebras

This chapter concerns the interplay between sheaves of C*-algebras and C*-bundles,
with a particular focus on sheaves arising from Cj(X)-algebras.

Our definition of a sheaf of C*-algebras is due to Ara and Mathieu [3], and is
closely related to the sheaves of Banach spaces studied by Hofmann [33]. When work-
ing in the category of C*-algebras, it is natural to restrict the ‘gluing property’ (Defi-
nition 4.1.1(iv)) of a sheaf to bounded families of local sections. Thus our notion of a
sheaf differs from the ‘classical’ sheaves studied in algebraic and differential geometry.

One advantage of the sheaf theoretic approach is that sheaves may be conveniently
defined over non-Hausdorff base spaces. Indeed, sheaves distinguish between points of a
topological space having distinct open neighbourhoods, i.e., Tp-spaces such as Prim(A).
By contrast, the theory of C*-bundles is not well developed in this setting.

We may regard sheaves of C*-algebras as a generalisation of C*-bundles. Indeed,
given an upper-semicontinuous (H)-C*-bundle (A, X, p) over a locally compact Haus-
dorff space X, we obtain naturally the sheaf of local sections of the bundle. More
precisely, we assign to each open subset U C X the C*-algebra I'°(U,.A), and for a
smaller open subset V' C U, restriction from U to V corresponds to the usual notion of
restriction of a continuous section.

In the other direction, starting from a sheaf A of C*-algebras, one must first con-
struct the ‘stalks’ of the sheaf at each point of the base space. This construction gives

rise to a bundle of a very general type, with the property that sections of the sheaf

50
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2 define continuous sections of the resulting bundle. This construction is due to Ara
and Mathieu [3, Section 5], although the main ideas are similar to those used by Hof-
mann [33]. We will not discuss this approach in its utmost generality, however, we give
some examples (Examples 4.1.6 and 4.1.7) to illustrate the difficulties that arise in the
case of non-Hausdorff base spaces.

Even in the case of a sheaf 2 over a locally compact Hausdorff space X, it is
unknown in general whether or not 2 is isomorphic to the local section sheaf of the
associated bundle. We obtain partial results in this direction in Section 4.2. As a
consequence, we give an interesting ‘Stone-Cech compactification’-type theorem for
upper-semicontinuous (H)-C*-bundles over locally compact Hausdorff spaces (Corol-
lary 4.2.11).

The final section of this chapter concerns the study of the so-called ‘multiplier sheaf’
My associated with a Cy(X)-algebra (A, X, us). We show that, with no additional
restrictions on A or X, My is canonically isomorphic to the local section sheaf of the
associated bundle (Theorem 3.1.6). Moreover, this bundle may be identified with that
arising from the C(BX)-algebra (M(A), BX, pps(a)) of Proposition 3.2.1 in a natural

way.

4.1 Sheaves of C*-algebras

Let X be a topological space (not assumed to be Hausdorff) and O(X) the collection
of open subsets of X. Then O(X) is a category whose morphisms are inclusions, that
is, for V,U € O(X),V - U if and only if V C U.

Definition 4.1.1. [3], [33] A presheaf of C*-algebras is a contravariant functor 2 :
O(X) — C*; that is, for U,V € O(X) with V. C U we have a *x-homomorphism
Oy - AU) — A(V), such that the maps Py satisfy the following properties:

(i) For all U € O(X), @y is the identity *-homomorphism, and

(ii) For W, V,U € O(X) with W C V C U, the composition relation Py = Py.y o
(I)V,U holds.

A sheaf of C*-algebras 2 is a presheaf satisfying the additional conditions:

(iii) A(0) = {0}, and
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(iv)

For every collection {U; : i € I} C O(X), and {s; : i € I} with s; € A(U;) for
all 4, such that ®y,ny; v, (si) = Pu;nv; v, (s5) and sup{||si|| : i € I} < oo, setting
U = U1 Ui, there is a unique s € A(U) with ®y, y(s) = s; for all i € 1.

We begin with some commutative examples of presheaves and sheaves, in particular

to illustrate condition (iv) of Definition 4.1.1.

Example 4.1.2. (i) Let X be a locally compact, non-compact Hausdorff space and

(i)

(iii)

let A = Co(X). For F C X closed defined the closed ideal I(F) = {f € A :
flp =0}, and for U € O(X) set A(X)(U) = A/I(U). Then it is easily verified
that A(X)(U) = Co(U) for each U € O(X). For V C U € O(X), we have

I(U) C I(V), and hence there is a x-homomorphism

q)V,U : QI(X)(U) = Co(U) = Ql(X)(V) = Co(V)
For f € Co(U), ®vy(f) is precisely its usual restriction fli7- Then it is clear
that A(X), together with these restriction mappings, is a presheaf of C*-algebras

over X.

To see that A(X) is not a sheaf, for each x € X choose an open neighbourhood
Uz of x such that U, is compact. Then {U, : x € X} is an open cover of X, and
A(X)(U) is a unital C*-algebra for allz € X. If we define f, = 1 € A(X)(Us)
for all x € X, then clearly we have the relations fI|U_,nUy = fyIUmUy for all
z,y € X. But there is no f € A(X)(X) for which flg, = ly,_ for all z € X,

since Co(X) has no unit.

With X as in (i), setting €(X)(U) = C*(U) for all U € O(X), together with the

usual restriction mappings, defines a sheaf of C*-algebras over X .

When X is compact, U is compact for all U € O(X) and hence with A(X) as in
(i), A(X)(U) is unital for all such U. However, it is still possible that the presheaf
A(X) fails to be a sheaf. Indeed, take X = N and consider the open subset U = N,
and the open covering {U, = {n} : n € N} of U. Then4(X)(U) = C(U) = C(N),
and A(X)(Uyp) = C for all n. For each n define f, € A(Uy,) via

e { 1 n odd

0 n even.
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Then there is no f € C(N) with flu, = fu(n) for all n, hence A(X) is not a
sheaf.

(iv) Suppose now that X is an extremally disconnected compact Hausdorff space. Then
the presheaf A(X) of part (i) is a sheaf (and in fact equals €(X) of part (ii)).

Indeed, let U € O(X) and {U; : i € I} an open cover of U. Note that U is open
in X, hence U is ertremally disconnected [29, 1H5]. It follows that each U; is
open in U, hence Uy = Uie[Ui is an open subset of U.

Consider a bounded collection {f; : i € I} with f; € A(X)(U;) for all i, such that
fiIUmUjj fJ'lUmUj for alli,j € I. First we define f: Uy — C vza_f(x) = flz)
for x € U;, then f is well-defined and bounded. Moreover, since U; is open for
all i, it follows that for each x € X, f agrees with the continuous function f; on

some neighbourhood U; of x, hence f is continuous on U.

Finally, since Uy is an open subset of U, there is f € C*(U) = C(U) extending
f [29, 1H6]. Hence 7|U = fi for all i € 1, which shows that A(X) is a sheaf.

The fact that A(X)(U) = €(X)(U) for all U € O(X) is evident from [29, 1H6]

also.

Consider now a C*-algebra A and open subsets U,V of Prim(A) with V C U. Then
U and V correspond to closed two sided ideals A(U) and A(V') respectively, such that
A(U) = k(Prim(A)\U) and A(V) = k(Prim(A)\V).

Since V C U, Prim(A)\U C Prim(A4)\V, and so

A(V) =k (Prim(A)\V) C k (Prim(A)\U) = A(U).

In particular, A(V) is a closed two-sided ideal of A(U).

This construction gives non-commutative generalisations of the presheaf 2A(X) and
the sheaf €(X) of Example 4.1.2. Indeed, for open subsets U,V € O(Prim(A) with
V C U, we have Prim(A)\U C Prim(A4)\V, and so A(Prim(A)\U) = k(U) is an
ideal of A(Prim(A)\V) = k(V). Thus k(V)/k(U) is an ideal of A/k(U) and we get a

*x-homomorphism

A A/k(U) A
kU)  k(V)/RU) — k(V)
Setting A(U) = A/k(U) and Qyy : A/k(U) — A/k(V) the quotient -
homomorphisms described above for all U,V € O(X) with V C U, gives a presheaf
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of C*-algebras over Prim(A). We remark that when A = Cy(X) is commutative, 2 is
precisely the presheaf 2(X) of Example 4.1.2(i).

Let A be a C*-algebra and I a norm-closed two sided ideal of A. Then I is also
an ideal of M(A), and hence there is a unique *-homomorphism 7; : M(A) — M(I)
extending the identity on I [20, Proposition 3.7].

Now if we first associate A(U) to U € O(Prim(A)), then for any V € O(Prim(A))
with V C U, A(V) is a closed two-sided ideal of A(U). Thus by [20, Proposition 3.7],
we get a *-homomorphism @y : M(A(U)) - M(A(V)) extending the identity on
A(V).

Definition 4.1.3. For a C*-algebra A, we define the multiplier sheaf M4 of A as
the sheaf over Prim(A) with M 4(U) = M(A(U)) and the restriction mappings @y :
Ma(U) = Ma(V) defined as above [3, Propostion 3.4].

It clear that when A = Cy(X) is a commutative C*-algebra, then for all U € O(X)
we have M4 (U) = M(Co(U)) = C®(U), and that the restriction *-homomorphisms
&y are the usual restriction mappings for all U,V € O(X) with V C U. Thus the
multiplier sheaf generalises the sheaf €(X) of Example 4.1.2(ii).

Definition 4.1.4. Let X and Y be topological spaces, ¥ : X — Y a continuous map
and 2 a presheaf of C*-algebras over X. Then setting (¢¥,)(U) = A(y~1(U)) for all
U € O(Y), and ¥u®yy = ®y-1(v) y-1(y) whenever V,U € O(Y) with V C U, defines
a presheaf 1,2 of C*-algebras over Y. The presheaf 1,2 is called the direct image of
the presheaf 2 under the map 1.

We remark that if the presheaf 2 in Definition 4.1.4 is a sheaf, then the same is
true for ¥, 2.

Let I be a directed set and suppose that {A;}ics is a family of C*-algebras indexed
by I. Suppose that for all 7, j € I with ¢ < j there is a x-homomorphism ¥;; : A; — Aj,
such that whenever i < j < k we have Wy ; o W;; = Wy ;. Then the family (A;, ¥;;) is
called a directed system of C*-algebras.

Denote by

A= {(ai)ie] € HAi : ig € I with aj = ¥;4,(as,) Vi 2 ’éo} : (4.1.1)
i€l

then A’ is a *-algebra in the obvious way. Let p : A" — R be the seminorm p ((a;)) =

inf;>,|la;l|, where ig € I is such that a; = ¥;;,(a;,) whenever j > iy. Observe that
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p has the C*-property p(a*a) = p(a)?, and hence induces a C*-norm on the *-algebra
A’/ ker(p).

We define the direct limit lig, , A; of the directed system (A, ¥;;) as the C*-
completion of A’/kerp.

Definition 4.1.5. Suppose that X is a topological space and 2 a presheaf of C*-
algebras over X. For zyp € X, let {U; : i € I} be the downwards-directed set
of open neighbourhoods of zp in X. Then we get a directed system of C*-algebras

(Ql(Ui), Dy ), and we define

i/

the stalk of A at xg.
We remark that for each U € O(X) and g € U we get a *-homomorphism
(I)IO‘(} 5 Ql(U) = leo (412)

which we regard as the evaluation map at zo. To see this, let 2} be defined as in (4.1.1),
and let py, : ™A, — R be the corresponding seminorm. Then each a € 2A(U) defines
(a;) € A, via
B 0 U gU

{ Oy, u(a) het
and the map a — (a;) is clearly injective. Thus we may regard the quotient mapping
A,/ ker(pz,), when restricted to the image of A(U), as a *-homomorphism @,y :
A(U) = Ay, for all zp € U.

The stalks of a sheaf of C*-algebras are in general difficult to compute. In the
case of the multiplier sheaf 9 of a C*-algebra A over Prim(A), one might expect that
(Ma)p = M(A/P) for all P € Prim(A). However, the following two examples show

that this need not be the case.

Example 4.1.6. Let A be the C*-algebra of sequences x = (x,) C Ma(C) such that
xn — diag(Ai(x), A2(x)). Then the irreducible representations of A are given by e, :
A= My(C), en(z) =2, forneN, and \; : A — C fori=1,2. Thus

Prim(A) = {ker(ey,) : n € N} U {ker()\;) : i = 1,2},
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where the points ker(e,,) are isolated for alln € N, and each ker(\;) has a neighbourhood

basis consisting of sets of the form
Uin, := {ker(en) : n > no} U {ker \;}

for some ng € N,i =1, 2.

For each ng € N, the multiplier algebra M(A(U1n,)) of the ideal A(Ujy,) corre-
sponding to a neighbourhood Uy n, of ker(\1) is given by those sequences y = (yn) €
CP(N, My(C)) such that

(i) y,(ll'Q) — 0 and y,(l?’l) — 0,
(ii) yo"" = Mi(y) and
(iii) the sequence (y,(f’Q))nZnO is bounded,
see e.g. [4, Example 4.5]. It follows that the stalk of M at ker(A;) is given by

(Ma)ker(r) = lim M(A(Uin,)) =C&£°/co = Co C(BN\N).
ng—00
Similarly, (M a)ker(r,) = C(BN\N) & C.
On the other hand, the corresponding primitive quotients A/ ker(A\;) are one-

dimensional for 1 =1,2.

Example 4.1.7. Let H be a separable infinite dimensional Hilbert space and
A = C(N,B(H)), where N = N U {00} is the one-point compactification of N.
Then Prim(A) = N x {{0}, K(H)}. We will compute the stalk of the multiplier sheaf
of A over Prim(A) at each point of Prim(A).

We first describe the neighbourhood bases of the points in Prim(A) and the ideals

of A to which each open neighbourhood corresponds.

(i) For each n € N, the one-point sets {(n,{0})} are open and have closure

{(n,{0})} = {(n, {0}), (n, K(H))}.

It is easily seen that the corresponding ideal A((n,{0})) is identified with those
f € A with f(m) = 0 for m # n and f(n) € K(H). Thus A((n,{0})) is
canonically identified with K(H).
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(i) The points (n, K(H)) are closed, and have a minimal open neighbourhood Oy,
gen by
On = {(n {O})’ (n, K(H))}
A(Oy,) is then identified with those f € A such that f(m) = 0 whenever m # n,
hence A(O,) = B(H).
(i1i) The point (0o0,{0}) has a neighbourhood basis consisting of sets of the form
Uno — {(n’ {O}) n 2 nO}
for some ng € N. Thus
A(Upo) ={f € A: f(n) =0 for n < no, f(n) € K(H) for n > no},
and A(Up,) is identified with C*(N, K (H)).
(iv) The point (0o, K(H)) has a neighbourhood basis consisting of sets of the form
Voo = {{n,{0}); (n, K(H)) : 1 > no}
for some ng € N. Hence
AVp,) ={f € A: f(n) =0 for n < ng},
which is x-isomorphic to A.

It is clear from (i) and (ii) that for each n € N the stalks of M4 satisfy (Ma)n {0}) =
(MA) (n.x (1)) = B(H).

Considering the point (co,{0}), we have M(Uy,) = CO(N, B(H)s) for all ng €
N, where Cb(N,B(H)S*) denotes the C*-algebra of norm-bounded stong-+ continuous
B(H)-valued functions on N, see [1, Corollary 3.4] or [51, Proposition 2.57]. Let
{U; : i € I} be the set of neighbourhoods of (00, {0}) in Prim(A) and (fi)ier € ml(oo,{o})'
Then there is no € N and f € M(Un,) such that fi = f|, for all i with U; C Up,.

With the identification M(Uy,) = C*(N, B(H)), and denoting by p : fm’(oo’{o}) —
R, the canonical seminorm, it is clear that p(f) = limsup||f(n)|| = 0 if and only if

[ £(n)|| = 0. It follows that M 10y) is *-isomorphic to
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The fact that this quotient C*-algebra is not isomorphic to B(H), the multiplier algebra
of the primitive quotient of A at (00,{0}), may be deduced from [9, Theorem 4.9].

For the point (co, K(H)), it is clear that for each ng € N, A(Vy,) is unital and
hence equals M(A(Vy,)). Thus the stalk Mo k(my) is the quotient of A modulo those
sequences converging to zero in norm, which is easily seen to be x-isomorphic to B(H).
Again, this differs from the multiplier algebra of the primitive quotient of A at this
point, which is identified with the Calkin algebra B(H)/K(H).

4.2 Sheaves and C*-bundles

In this section we examine the relationship between (pre-) sheaves of C*-algebras and
C*-bundles. In [33], Hofmann showed that there is a natural equivalence between
sheaves and bundles of certain classes of Banach spaces over hereditarily paracompact
Hausdorff spaces. In the context of C*-algebras, this problem was considered by Ara
and Mathieu in [3], with particular reference to the study of local multiplier algebras.
We shall only consider bundles and sheaves over locally compact Hausdorff spaces.
Many of the constructions in this section are still valid over more general classes of
spaces, although our definition of (H)-C*-bundle (Definition 2.2.1) requires additional
assumptions in these cases, in order to ensure that the (local) section algebra is non-
trivial, for example [33, Definition 3.3] and [3, Definition 5.1]. As a consequence, some
of the results from [33] and [3] quoted in this section are not given in their utmost
generality. In particular, Theorems 4.2.1 and 4.2.3 are both valid over non-Hausdorff
spaces (provided that [3, Definition 5.1] is taken as the definition of a (H)-C*-bundle).
The following Theorem describes how the local section algebras of an upper-

semicontinuous (H)-C*-bundle give rise to a sheaf of C*-algebras over the same space.

Theorem 4.2.1. [8, Theorem 5.3] Let (A, X,p) be an upper-semicontinuous (H)-
C*-bundle over a locally compact Hausdorff space X. Then for each U € O(X), set
A(U) =T%(U, A), and define dyy : T°(U, A) — T8V, A) via

v,y (v)(z) = () for allz €V,

whenever V,U € O(X) with V C U. Then the assignment U — T'®(U, A), together with
these restriction mappings ®v.y7, defines a sheaf T°(—, A) of C*-algebras over X
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Definition 4.2.2. Given an upper-semicontinuous (H)-C*-bundle (A, X, p) over a lo-
cally compact Hausdorff space X, the sheaf I'(—, A) defined in Theorem 4.2.1 is called
the local section sheaf of the bundle (A, X, p).

Conversely, in [3, Theorem 5.6], it is shown how to associate an upper-

semicontinuous (H)-C*-bundle to a presheaf 2:

Theorem 4.2.3. [3, Theorem 5.6] Let X be a locally compact Hausdorff space and
A a presheaf of C*-algebras over X. Then there is a canonically associated upper

semicontinuous (H)-C*-bundle (A, X,p) over X such that
(i) For each x € X the fibre A, of A at x is given by the stalk ™A, of A at z,

(ii) For each U € O(X) we get an injective -homomorphism vy : A(U) — Tb(U, A)
defined via
vy(s)(x) = @, u(s), where z € U,s € A(U).

(iii) For each xg € X, a € Ag,, and € > 0, there is an open neighbourhood U of xq
and s € A(U) such that ||vy(s)(zo) —al| < .

Suppose the sheaf A of Theorem 4.2.3 is the local section sheaf I'*(—, B) of some
upper-semicontinuous (H)-C*-bundle (B, X, ¢) over X. Then the upper-semicontinuous
(H)-C*-bundle (A, X, p) induced by 2 is canonically isomorphic to (B, X,q); that is,
there is a homeomorphism of A onto B whose restriction to each fibre A, is a *-
isomorphism of A, onto B,. In particular, the mapping vy : A — T'*(U, .A) of Theo-
rem 4.2.3(ii) is necessarily a x-isomorphism for all U € O(X). This is discussed in [3,
§5].

Given a presheaf A and U,V € O(X) with V C U, it is clear from the definition
of the x-homomorphisms ®,, ;7 and ®,, v that &,y = @, v 0o Py for all zp € V. It
follows that for all a € A(U) and z € V, we have vy (a)(xzo) = (vv o Py py)(a)(zo). In

particular, the diagram

A(U) —=T4(U, A)

‘b\"UJ lv'—whf

A(V) —2To(V, A)

commutes for all U,V € O(X) with V C U.
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A natural question which arises from this construction is as follows; starting from a
sheaf A of a C*-algebras over X, under what conditions may we make the identification
A(U) = (U, A) for all U € O(X), where (A, X,p) is the associated (H)-C*-bundle
over X? Evidently, this will occur precisely when the maps vy : A(U) — (U, A) are
surjective for all U € O(X).

Definition 4.2.4. Let X be a locally compact Hausdorff space and €(X) the sheaf
E(X)(U) = CYU) for all U € O(X) together with the usual restriction mappings.
A sheaf 2 of C*-algebras over X is said to be a €(X)-sheaf if for every nonempty
U € O(X), A(U) is an essential C*(U) Banach module (1 -a = a for all a € A(U)"),
such that the restriction mappings commute in the following sense: for V,U € O(X)
with V C U, a € A(U) and f € C°(V),

Syu(f-a)=(fly) Pvula)

Most of the sheaves of interest to us are €(X )-sheaves. The following example shows

that one may easily construct sheaves that are not €(X )-sheaves in general.

Example 4.2.5. Let X and Y be locally compact Hausdorff spaces, where Y contains
at least two points, p : X x Y — X the (open) projection mapping, and A a sheaf of
C*-algebras over X, with A(X) # {0}. For U € O(X xY), set (p*A)(U) = A(p(V))
and let p*®yy = Ppv)pw) : @A)U) = (p*A)(V) whenever U,V € O(X x Y) with
V CU. Then p*A is a sheaf> of C*-algebras over X x Y.

We claim that p* is not a €(X xY')-sheaf. Indeed, let V1, Vs be disjoint open subsets
of Y, with disjoint compact closures in'Y, and take f € C*(X x Y) with Flxsy =0
and flxyy, =1. Then (p*A)(X x V1) = (p*A)(X x V2) = A(X).

Let a be a nonzero-element of A(X), then since

P Oxxvy,xxy = P ®xx1p,xxy = ®x,x = idy(x),

it follows that p*®@x xv, xxy(a) # 0 fori=1,2. Thus, if p*A were a €(X xY')-sheaf, it
would follow that there was an element f-a € A(X) = p*A(X xY'). Since the restriction

'Equivalently, C’b(U)Vzl(E): I(lj)_gy [25, Corollary 15.3]
“The sheaf p*2 is the inverse image sheaf of 2 under the map p.
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mappings must commute in the sense of Definition 4.2.4, we would then have

fra=0xx(f-a) = p"Pxxv;,xxy(f-a)

= (flxxv) - @*®xxv,xxy(a)) =0

while also

fra=®xx(f-a)

P*®xxvy xxy(f-a)
== (f!vag) g (p*q)XXVQ,XXY(a))
(1xxw)-a=a#0,

Il

which is clearly impossible.

The following proposition shows that the local section sheaf of an upper-
semicontinuous (H)-C*-bundle is a €(X)-sheaf in a natural way. This fact was

observed in [3, §5], we include a proof for completeness.

Proposition 4.2.6. Let (A, X,p) be an upper-semicontinuous (H)-C*-bundle over a
locally compact Hausdorff space X. Then for each U € O(X), v € I'(U, A) and
f € C*U), the section f -~ :U — A, where

(f - N(x) = f(z)y(x) for allz € U,

belongs to T°(U, A). Moreover, the local section sheaf T'%(—, A) is a €(X)-sheaf with
respect to this action of C®(U) on I'*(U, A).

Proof. With U,~ and f as in the statement of the proposition, then the fact that f -~
belongs to I'’(U, A) is shown in [58, Lemma C.22]. Moreover, it is clear from the
definition of f -~ that

I -l = B If @)v(@)| = GiE |F@)] - ly@)I < NI

and that 1 -+ =« for all v € T%(U, A). It follows that ['*(U, A) is an essential C®(U)-
Banach module.
Given U,V € O(X) with V C U, then for all f € C*(U),y € I°(U, A) and z € V

((F-Dv) (@) = (f - (=) = F@)(2) = (flv) - (v)) (=)

whence (f )|, = (fly/) - (7]y,). Hence I'®(—, A) is a €(X)-sheaf as required. O
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As a consequence of Proposition 4.2.6, starting from a sheaf 2, a necessary condition
for the maps vy of Theorem 4.2.3(ii) to be surjective is that 2 be a €(X)-sheaf. The
following Lemma shows that for any €(X) sheaf 2, the action of C®(U) on A(U)
corresponds precisely to pointwise multiplication by scalar valued functions when we
identify A(U) with vy (A(U)) C I'’(U, A). Again, this fact was observed for unital
€(X)-sheaves in [3, §5].

Lemma 4.2.7. Let 2 be a €(X)-sheaf. Then for s € A(U) and f € C*(U), we have
vu(f - s)(@o) = Pao,u(f - 5) = (o) (vu(s))(xo)
forallxzg e U.

Proof. Let € > 0 be given, then there is an open neighbourhood W of z( contained in
U such that |f(x) — f(zo)| < § for all x € W. In particular, ||(f|y) — f(zo)|lw < &,
and so for any s € A(U),

I®w,u(f-s— f(zo)s)ll

1w, (f - s) — f(xo)Pw,u(s)ll
I (flw) = f(20)) - Pw,u(s)l
I(flw) = f(@o)llw | @w,u(s)l

ell@wu(s)ll < ells|-

IA

A\

It follows that ®,, v (f - s — f(xo)s) =0, and so vy (f - s)(zo) = f(zo)vu(s)(xo). O

If A is a €(X)-sheaf, then A(U) is a C(BU)-algebra for all U € O(X). In particular,
A(X) is a C(pSX)-algebra, and so A(X) is canonically isomorphic to the section algebra
of an upper-semicontinuous (H)-C*-bundle over 5X. We wish to compare this bundle
to that defined by the sheaf 2 in Theorem 4.2.3. First we describe how a sheaf A over
X may be identified with a sheaf over X via the direct image functor.

If we denote by ¢ : X — X the canonical inclusion, then the direct image sheaf
12 over BX is defined via

LAV) = A1 (V) = A(V N X), where V € O(8X),

with restriction mappings (t«®)v.y : (L2A)(U) = (A)(V) for U,V € O(BX) with
V C U defined as

(tx®)vy = Pvnx,unx.
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We will denote by (i4A, 53X, t.p) the bundle over fX defined by ¢, 2, and by (t.v)y :
(L2A)(U) — T°(U, 1, 2A) the injective *-homomorphisms of Theorem 4.2.3(ii) for all
U € O(BX).

The following Lemma shows that when 2 is a €(X)-sheaf, then the stalks of 2 and
12 agree at points of X. Moreover, we show that every element of a stalk is the image

of a global section of the sheaf.

Lemma 4.2.8. Let X be a locally compact Hausdorff space, A a €(X)-sheaf of C*-
algebras over X, and 1,2 the direct image sheaf corresponding to the inclusion mapping
t: X — pBX.

(i) 1.2 is a €(BX)-sheaf, where for all U € O(BX) the action of C®(U) on (1.2A)(U)

s given by
f-a=(flynx)-a, for alla € (LA)U), f € C*(U).

(ii) For each xo € X, the stalks Ay, and (t,A)z, are isomorphic,

(iii) For each xo € X (respectively X ) and a € Uy, there is a global section v €
vx (A(X)) CT%(X, A) (respectively v € (14)5x (1:2A)(BX)) with y(xzo) = a.

Proof. (i) For every nonempty U € O(8X) we have (1,A)(U) = A(U N X) by def-
inition. Since A(U N X) is an essential C®(U N X)-module, and C*(U N X) is
a C®(U)-module with respect to the usual restriction mappings, it is clear that
(t,2)(U) is an essential C?(U)-module. Moreover, for V,U € O(8X) with V C U,
the restriction mappings satisfy

(tx®@)vu(f - a)

Pyrx,unx((flynx) - @)

Il

(flyax) - ®vnx,unx(a)

= (flv) (=®vu(a).

for all @ € L, A(U) and f € C°(V).

(ii) For zg € X denote by {V; : i € I} C O(BX) the directed set of open neigh-
bourhoods of zp in fX. Then we have ¢,2A(V;) = A(V; N X) for all i € I, and
since X is open in X there is an index ig € I with V;; = X, so that V; C X
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whenever i > ig. In particular, {V; : i > ig} € O(X) is the directed set of open

neighbourhoods of g in X. Thus

(1R 1= limg (VD) = limg 1 2(V)
iel 1210

=l A(V)
i>io

= A,

(iii) For € > 0, there is U € O(X) and s € A(U) such that [|vy(s)(zo) — a|| < € by
Theorem 4.2.3(iii). Let f € C®(X) such that f(z¢) = 1 and with f supported on
a compact neighbourhood K of z( contained in U, and set V = X\ K. Then for
any x € U NV, we have

vwev) (Bwavyu (Fly) - 5)) () = fl@)vuav(s) = 0.

Since v(yny) is injective, this implies that ®;ny) v ((fly) - s) = 0.

Now we have open sets U,V with U UV = X and a pair of sections 0 € A(V)
and (f|;;) - s € A(U) whose restrictions to U NV agree. Since 2 is a sheaf, there
is ' € A(X) with &y x(s') = (f|y) - s. In particular, [[vx(s')(z0) — a| < ¢, so
vx (A(X))(zo) is dense in ™A, . Since vx (A(X))(xo) is closed, it must in fact equal
D. .

The case of X follows from applying this result to the C'(5X)-sheaf ¢, .
O

If A is a €(X)-sheaf, then in particular A(X) is a C(BX)-algebra. Denote by
A =2(X) and for g € X let Jp, = {f € C(BX) : f(zo) = 0} - A, which is closed by
the Cohen factorisation Theorem [25, Theorem 16.1].

Proposition 4.2.9. Let A be a €(X)-sheaf of C*-algebras over a locally compact Haus-
dorff space X. Then with the above notation, for any xo € X, the map ®, x : A = Uy,
is surjective with kernel Jy,, so that we have a natural identification Az, = A/ Jy,, such

that for each a € A we have vx(a)(xo) = a + Jyg,-

Proof. We first show that ker ®,, x = Jz,, so that a — a + J,, defines an embedding
of A/Jy, into YAy,. Let a € A with |ja|]| =1 and f € C(BX) with f(zo) = 0, so that
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f-a € Jy. If € > 0 is given, there is an open neighbourhood W of zy such that

| f(z)|| < § for any x € W. In particular, || f|y || < §. Then

Bwx(f-a)l = (flw) Pwx (@)
< N flw 1w, x (@)l
< Zllall <e.

Hence f - a € ker ®,, x, so that J;, C ker ®,, x.
On the other hand, suppose a € ker ®,, x and take ¢ > 0. Then there is an open
neighbourhood W of zg such that [|®w,x(a)|| < 5. In particular, for any x € W we

have

low © 2wx) (@ @) = lvx (@)@ < .

Let f : BX — [0,1] be continuous with f(zo) = 1 and f|x\ = 0. Since vx is

isometric,

la=(1=1)al = swp vx(e~ (1~ ) a)z)
= sup ux(@)(z) ~ (1= Hawx(@)@)]
= sup |f@x(@@)] < 3 <e.
zeX

Since (1 — f) - a € Jy, and Jy, is closed, a € Jg,.
In particular, we now have A/J,, = A/ ker ®,, x C A,,. Equality then follows from
Lemma 4.2.8(iii). O

We remark that, with 2 as in Proposition 4.2.9, a similar identification may be
obtained for the stalks of the €(SX)-sheaf ¢,2. Indeed, let A = (1. 2)(BX) = A(X)
and Jp, = {f € C(BX) : f(zg) = 0}-A for zg € BX. Then we see that (t,A)z, = A/ Jx,

for all ¢ € X also, and that for all @ € A we have the identification
(t+®@)zo,8x (@) = (tav)(BX)(a)(x0) = a + Jzg-

Theorem 4.2.10. Let A be a €(X)-sheaf of C*-algebras over a locally compact Haus-
dorff space X, and (A, X,p) (respectively (1A, BX, 1sp) ) the upper-semicontinuous
(H)-C*-bundle over X (respectively X ) associated with A (respectively 1.2 ).
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(i) The map (t.v)px : (t2A)(BX) — TO(BX, 1. A) is a x-isomorphism. Moreover,
denoting by A = A(X) = (..A)(BX) and by J, = {f € C(BX) : f(z) =0} - A,

where x € X, this isomorphism satisfies

(tav)px(a)(z) =a+ Jp, forallac A,z € BX.

(ii) The bundles (A, X,p) and (1. A, BX, 1.p) satisfy the relations
A= (tp)"HX) and p = ()| 4,

so that the total space A of (A, X,p) is precisely the subspace (1.p) " (X) of 1A
with the relative topology. In particular, for each U € O(X) we may regard
vy (A(U)) C TO(U, 1, A).

Proof. (i): We remark that since X is compact, every continuous section 7 :
BX — t4A is bounded by Lemma 2.2.3, and so we have I'(3X, t.A) = (X, 1, A) =
I'o(BX, tsA). Note also that (t.v)sx is an injective x-homomorphism by Theorem 4.2.3.
We show that the algebra of sections (t4v)5x(A) of the bundle (1. A, BX, t.p) satisfies
conditions (i) and (ii) of Proposition 2.2.6, whence it will follow that (c.v)sx is
surjective.

Take v = (txV)px(a), where a € A, and f € C(SX). Then by Lemma 4.2.7, for

each x € X we have

(Lv)px (f - a)(x) = f(2)(wr)sx(a)(z) = f(z)y(z),

so that in particular the section f-7, where (f-v)(z) = f(x)y(x), belongs to (txv)sx (A).

For z € BX and ¢ € (1.u2A)z = (t.p) '(x), Lemma 4.2.8(iii) gives an element a €
A with (t,v)gx(a)(z) = c¢. Thus we may apply Proposition 2.2.6 to the subalgebra
(txv)px (A) of T(BX, 1, A) = T'o(BX,tsA), and conclude that (t.v)sx(A) is dense in
I'(BX, tA). Being also closed, equality follows, hence (t,v)gx is an isomorphism.

The second assertion is immediate from Proposition 4.2.9 applied to the €(8X)-
sheaf ¢, .

(ii): By Lemma 4.2.8(ii), for each zg € X we have Az, = (t4™)g,, and so A =
(t+p) "1 (X), as a collection of fibre algebras. It is clear from this fact and the definitions
of (A, X,p) and (tsA, BX, tap) that p = (t.p)| 4.

By Proposition 4.2.9, applied separately to the €(X)-sheaf A and the €(5X)-sheaf

1x2 we have

(tev)px (a)(20) = vx (a)(20) = a + Jao,
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for all @ € A and 9 € X. In particular, given v € (t.v)gx (LA(SX)) and a € A
with v = (w.v)gx(a), the restriction of v to X agrees with the continuous section
vx(a) € TY(X, A).

Denote by I' the collection of sections X — [], . x 2 given by

['={7lx : 7 € (L)px ((.A)(B2))}-

Then we have shown that each v € I' is continuous as a section X — A. Moreover,
each v € I' is necessarily continuous as a section X — ¢,.A by definition of (t.v)sx
(being the restriction to X of an element of I'(GX, 1, A)).

It is clear that I" satisfies the hypotheses of Theorem 2.2.5, and so the (H)-C*-bundle
topology on ], x 2, for which each v € I' is continuous is unique. Since both A and
(t«p) (X)), have this property, it follows that A = (1.p)~H(X).

Finally, for U € O(X), vy(A(U)) C I'*(U, A) by definition of vyy. But then since
A = (14p)"1(X), we have (U, A) = (U, 1,.A).

O

In the particular case that the sheaf 2 in Theorem 4.2.10 is the local section sheaf
I'*(—, A) of an upper-semicontinuous (H)-C*-bundle (A, X,p), the direct image sheaf
1,2l gives rise to a bundle over X containing (A, X, p) as a sub-bundle. We show in
Corollary 4.2.11 below that in fact this bundle has certain Stone-Cech compactification-
type properties. While we will not make use of this result in subsequent sections, we

believe that it is interesting in its own right.

Corollary 4.2.11. Let X be a locally compact Hausdorff space and (A, X,p) an upper-
semicontinuous (H)-C*-bundle over X. Then there is an upper-semicontinuous (H)-
C*-bundle (AP, BX,p?) over X with (p°)"1(X) = A and p6|X = p, such that every
v € (X, A) has a unique extension to a continuous section v° € T'(3X, AP).

Proof. Let 2 be the bounded section sheaf A(U) = T°(U, A), U € O(X), associ-
ated with the bundle (A, X, p), which is a €(X)-sheaf by Proposition 4.2.6. It is well
known that the upper-semicontinuous (H)-C*-bundle over X induced by 2 is precisely
(A, X,p), and that vy is the identity *-isomorphism for all U € O(X), see the proof
of [3, Theorem 5.6] for example.

The direct image sheaf 1,2 gives rise to an upper-semicontinuous (H)-C*-bundle
(txA, BX, txp), which we take as (A8, BX,p?). Then it follows from Theorem 4.2.10(ii)
that (p°)~1(X) = A and p°|, =p.
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For v € T%(X, A) = (1,2), define v* € T'(BX, A?) via v’ = (t.v)5x (7). Then with
A=AX) = (t.A)(BX) and J, = {f € C(BX) : f(z) =0} - A for z € X, we have

Y2 (z) = v+ Jp = y(x)

by Theorem 4.2.10(i). Hence 4? is a continuous extension of 7 to a section fX — A%,

and we have a commutative diagram

A(X) = (X, A)

T
(L) (BX) = L*Fb(X,(LA))BT* L(BX, A).

By Theorem 4.2.10(i), (t+v)gx is a *-isomorphism, and it follows that v + 7 is a

s-isomorphism of I'’(X, A) onto I'(X,.A?). In particular 47 is unique. O

4.3 The multiplier sheaf of a Cy( X )-algebra

In this section we consider a Cy(X )-algebra (A, X, ¢ 4) and the associated sheaf of C*-
algebras defined by the direct image ¢ 4,94, where M4 is the multiplier sheaf of A

over Prim(A) of Definition 4.1.3. Our main result states that

(i) the upper-semicontinuous (H)-C*-bundle over X induced by ¢ 4.9 4 agrees with
that defined by the C(BX)-algebra (M (A), BX, ¢pr(a)) (restricted to X), and

(ii) 9My is canonically *-isomorphic to the local section sheaf I'*(—, M) of this bundle.
We begin with the study of the ideals of A corresponding to open subsets of X.

Proposition 4.3.1. Let (A, X, ¢p4) be a Co(X)-algebra with base map ¢4 and structure
map pa. For z € X, denote by J, = ({{P € Prim(A) : ¢a(P) = z} and for U € Ox
let AU)={J::z € X\U}.

(i) Prim(A(U)) is canonically homeomorphic to the open subset ¢, (U) of Prim(A).

(i) (A(U),U,¢aw)) is a Co(U) algebra with base map ¢ oy given by the restriction
of ¢4 to ¢3'(U),
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(i1i) For each x € U, we have A(U)+ J, = A, and the ideal J(U), of A(U) given by
JU)e = (IP € Prim(A(U)) : 4@ (P) =z}
satisfies J(U)x = A(U) N Jy, so that A(U)/J(U)z = A/ Jz.

(iv) Denote by (A, X,p) the upper-semicontinuous (H)-C*-bundle over X defined by
(A, X, 04), and by v4 : A — To(X,.A) the x-isomorphism of Corollary 2.3.4.
Then the restriction of v4 to A(U) is a x-isomorphism of A(U) onto T'y(U, A).

Proof. (i): Note that for P € Prim(A) we have P D A(U) if and only if ¢p4(P) ¢ U.

Thus we may identify
¢:'(U) = {P € Prim(A) : P 2 A(U)},

and so the map P — PNA(U) is a homeomorphism of gbZl(U) onto Prim(A(U)) by [24,
Proposition 3.2.1].

(ii): Note that U is locally compact since it is an open subset of X. (ii) is then
immediate from the fact that Prim(A(U)) is homeomorphic to ¢, (U).

(iii): By [24, Proposition 2.11.5] we have

JU) = [P € Prim(A()) : paw)(P) = x}
= ({QNAWU): Q€ ¢, (U),44(Q) =z}
= [){Q € Prim(4) : $a(Q) =z} N A(U)
= AWU)NJ;.

By [24, Corollary 1.8.4], we identify A(U)/A(U) N Jy = (A(U) + Jz) /Jz, which is an
ideal of A/J,. Now take b € A/J, and a € A such that a + J, = b. Choose f € Cp(X)
with f(z) = 1 and f|y,;; = 0. For any P € Prim(A) such that P 2 A(U) we have
¢a(P) ¢ U and so

pa(fla+ P =0a(foga)a+ P = f(¢a(P))(a+P)=0+P.
In particular pa(f)a € P whenever P O A(U), hence pa(f)a € A(U). Moreover,
pa(fla+Jz = f(z)(a+ ) =a+ Jp = b,

which shows that b € (A(U) + J;) /Jz, and so A(U)/ (A(U)N Jp) = A/ J,.
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(iv): Let (A(U),U,q) denote the upper-semicontinuous (H)-C*-bundle over U de-
fined by (A(U),U,daw)), and yaw) : A(U) — To(U, A(U)) the *-isomorphism of
Corollary 2.3.4. By (ii), for each x € U, the fibres p~!(z) and ¢~ !(z) of A and A(U)
respectively are x-isomorphic. Moreover, the definitions of v4 and <,y ensure that
for all a € A(U) and x € U we have ya(a)(z) = vaw)(a)(z) (via the identification
AlJr = A(U)/J(U), of (ii)). In particular, for all a € A(U), v4u)(a) agrees with the
restriction to U of continuous local section v4(a) of (A, X, p).

It follows from these fact that v4)(A(U)) (= T'o(U, A(U))) may be regarded as a
C*-subalgebra of I'’(U, A). Moreover, by the definitions of v4 and A(U) it is evident
that y4(a)(x) = 0 for each a € A(U) and x € X\U. Since y4(y)(a) vanishes at infinity

on U, for each € > 0 the set

{z€ X :|va(a)(z)| 2 e} ={z € U : ||yaw)(a)(@)| =€}

is compact, so that in fact y4(A(U)) C I'o(U,.A). By (ii) va(A(U)) is closed under
pointwise multiplication by Cy(U), so that y4(A(U)) = I'o(U, .A) by Proposition 2.2.6.
O

Now suppose that (A, X, ¢4) is a Co(X)-algebra, and consider open subsets U, V' of
X with V C U. Then Prim(A)\¢,' (U) C Prim(A)\¢,' (V), so that with the notation
of Proposition 4.3.1,

A(V) = k (Prim(A)\¢*(V)) C k (Prim(A)\é3' (1)) = AUV).

In particular, A(V) is a closed two-sided ideal of A(U). Thus we get a x*-homomorphism
Sy M(AU)) - M(A(V)) extending the identity on A(V') by [20, Proposition 3.7].

Definition 4.3.2. The multiplier sheaf of A over X, which we denote by MM x is defined
by assigning to each open subset U of X the C*-algebra M (A(U)), with the restriction

mappings ®y. 7, whenever V C U, defined as above.

If we denote by 9 4 the multiplier sheaf of A over Prim(A), then it is clear that Mx
is precisely the direct image sheaf ¢ 4,94 defined via (¢4.9M4)(U) = M4 (¢, (U)) for
all U € O(X). It is evident from this fact that 9 x satisfies the gluing condition of a
sheaf.

We have seen already in Proposition 3.2.1 that the multiplier algebra of a Cy(X)-
algebra (A, X, ¢4) defines a C(BX)-algebra (M(A), BX, ¢pr(a)). In particular, M(A)
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is an essential C®(X)-module. Applying this fact together with Proposition 4.3.1 to
each of the algebras M (A(U)) for U € Ox, we show that the multiplier sheaf is in fact
a (X )-sheaf.

Lemma 4.3.3. Let A be a Co(X)-algebra. Then the multiplier sheaf Mx of A over X
is a €(X)-sheaf.

Proof. Let U € O(X), then A(U) is a Cy(U)-algebra by Proposition 4.3.1(i). It then
follows from Theorem 3.2.4 that Mx(U) = M(A(U)) is a C(pU)-algebra, i.e. an
essential C*(U)-module. For V,U € O(X) with V C U, we claim that

Qv (parawy)(f) = paay (fly)

for all f € C*(U). Note that it is sufficient to show that

(emaey (fFlv) — Pvu(earawy(f))) a € PNA(V)

for all f € C®(U),a € A(V) and P € {Q € Prim(A(U)) : Q 2 A(V)}.
Note that since A(V) is an ideal of M(A(U)), and since ®y; is the identity on
A(V), we have

Svu(umaw)(f))a+PNAV) = upmaw)(fla+ PNAV).

Denoting by ¢ 4 : Prim(A(U)) — U and ¢ 4(v) : Prim(A(V)) — V the relevant base
maps, it is clear that ¢A(U)|Prim(A(V = ¢4(v)- Regarding A(V)/(PNA(V)) C A(U)/P,

we may thus identify

pmawy(fla+ P

pmawy(fla+PNAWV) )
f(@aw)(P))(a+ P).

Il

Thus it is clear that

f(@aw)(P)) (a+ PN A(V))
= (fly)(@aw)(PNA(V)))(a+ PN AV))
= umaw))(fly)a+ PN AWV),

Svu(pumawy(f))a+PNAWV)

as required. O
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We have seen in Theorem 3.2.4 that for a Cy(X)-algebra (A, X, u4), the C(SX)-
algebra (M (A), BX, pupr(a)) gives rise to an upper-semicontinuous (H)-C*-bundle over
BX with global section algebra canonically isomorphic to M (A). Considering the direct
image sheaf 1,9 x, where My is the multiplier sheaf of A over X, we get an upper-
semicontinuous (H)-C*-bundle over fX by Theorem 4.2.3. Via Theorem 4.2.10, we

now show that both bundles are in fact equivalent.

Theorem 4.3.4. Let (A, X, ua) be a Co(X)-algebra, (M(A), BX, ppr(a)) the C(BX)-
algebra defined by its multiplier algebra, and My the multiplier sheaf of A over X.
Denoting by ¢ : X — BX the inclusion mapping, then the upper-semicontinuous (H)-

C*-bundle over BX associated with 1. Mx may be naturally identified with that associ-
ated with the C(B8X)-algebra (M (A), BX, upr(ay)-

Proof. Denote by (M, 3X,p) the bundle defined by the C'(5X )-algebra (M (A), BX, ppr(a))
in Corollary 2.3.4, and by (M’,BX,p’) that defined by the sheaf (,9x in Theo-
rem 4.2.10, with total spaces M = {M,, : p € BX} and M' = {M,, : p € X }. For each
p € BX, let H, denote the ideal of M(A) defined in (3.2.1).

By Theorem 3.2.4(i) we have M, = M(A)/H, for all p € X, and by Corollary 2.3.4
the mapping yar(4) : M(A) — T(BX, M), where yp(4)(c)(p) = ¢+ Hp for all c € M(A)
and p € X, is a *-isomorphism.

Since Mx is a €(X )-sheaf by Lemma 4.3.3, t,.9Mx is a C (X )-sheaf by Lemma 4.2.8.
Moreover, since Mx(X) = t.Mx(BX) = M(A) and H, = {f € C(BX) : f(p) =
0} - M(A) for all p € BX, it is clear from Proposition 4.2.9 that M, = M(A)/H,
for all p € BX. The mapping (t.v)px : M(A) — I'(BX, M’) is a x-isomorphism by
Theorem 4.2.10(i), and also satisfies (txv)gx(c)(p) = ¢+ Hp for all c € M(A) and
pE BX.

It follows that we may identify M), = M, = M(A)/H) for all p € X, and thus M
and M’ consist of the same collection of fibre algebras. Moreover, the global section
algebras I'(fX, M) and I'(8X, M'’) are both isomorphic to M(A) via the identifica-
tion of ¢ € M(A) with the section p +— ¢+ H,. Since the (H)-C*-bundle topology on
[,esx M(A)/H,y, for which every ¢ € M(A) defines a continuous section in this man-
ner, is unique by Proposition 2.2.6, it follows that M = M’ as topological spaces. [

Lemma 4.3.5. Let (A, X,¢4) be a Co(X)-algebra and U € Ox. For c € M(A) denote



CHAPTER 4. SHEAVES OF C*-ALGEBRAS 73

by c|; = Py x(c) its restriction to an element of M(A(U)). Then
llely |l = sup [le + jy”»
yeU

where Jy is the ideal of A of (2.3.2), and jy its strict closure in M(A) as in (3.1.1).

Proof. As a consequence of Proposition 4.3.1(ii), we will regard A/J, and A(U)/J(U),
as being equal for all y € U. Denote by my : A = A/Jy and 7y, : A(U) = A/Jy the
quotient mappings, and by 7, : M(A) - M(A/Jy) and 7y, : M(AU)) = M(A/Jy)
their extensions to M(A) and M(A(U)) respectively. We first claim that for all ¢ €
M(A) we have y(c) = Tuy(c|y)-

Note that since ®y x is the identity on A(U), for all ¢ € M(A) and b € A(U) we

have
(c|y)b = Py x(c)Pux(b) = Py x(cb) = cb.

It follows that for all c € M(A),b € A(U),

Tuy(cly)muy(b) = muy((cly)b) = my(cb) = Ty (c)my (b)

and similarly 7y, (b)7yy(cly) = my(b)Ty(c). Now as each a € A/J, may be written
as a = myy(b) = my(b) for some b € A(U), it follows that 7y y(c|;) = Ty(c) for all
ce€ M(A).

Since ({ker(7yy) : y € U} = {0} by Theorem 3.1.6, it follows that for any ¢ €
M(A) we have

lelyll = sup |[Fuy(ely)l
yeU

= sup||my(c)]|
yeU

- plesa]
yelU

O

Proposition 4.3.6. Let (A, X,¢4) be a Co(X)-algebra, (M(A),BX,dprr(a)) the
C(BX)-algebra associated with M(A), and (A,X,p) and (M,BX,q) the upper-
semicontinuous (H)-C*-bundles associated with (A, X,¢a) and (M(A),BX,dnr(a))
respectively. Denoting by va : A — To(X,A) and ypra) : M(A) — T(BX, M) the
x-isomorphisms of Corollary 2.5.4, the bundles A and M satisfy the following relations:
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(i) For each x € X, denoting by A, = p~1(x) and M, = q~'(z) the fibre algebras,
then A, may be identified with an ideal of My in such a way that ya(a)(z) =
'yM(A)(a)(m) for all a € A.

(i) The map v: A — M, where for allx € X, t|,-1(,) : Az = My is the identification

of part (i), is a homeomorphism onto its image.

(iii) For all U € Ox, I'o(U, A) is an essential ideal of T°(U, M), when we identify A
with its image t(A) C M.

Proof. (i): For each z € X, let J, and H, be as defined in (2.3.2) and (3.2.1)
respectively. Then since J, = H, N A by Proposition 3.2.3(ii), we may identify
A/Jy = A/(HzNA) = (A+ H;)/H; by [24, Corollary 1.8.4], which is a closed two
sided ideal of M(A)/H,. Under this identification, the image of a + J, of a € A is
identified with a + H, (regarding a as an element of M(A)).

By Corollary 2.3.4, the *-isomorphisms v4 and v 4) satisfy ya(a)(z) = a+ J; and
Ym(a)(a)(x) = a+ Hy for all a € A and x € X, so that ya(a)(z) = var(a)(a)(x) via the
identification above.

(ii): It is clear that ((A) with the subspace topology inherited from M, satisfies
the conditions of Definition 2.2.1. Moreover, since ya(a) = yps(4)(a) for all a € A, it
follows that y4(A) C I'*(X,:(A)). The family of sections y4(A) satisfy conditions (i)
and (ii) Theorem 2.2.5, hence the subspace topology on ¢(A) is the unique topology
for which these sections are continuous. It follows that ¢ is a homeomorphism onto its
image.

(iii): We first show that I'g(U,.A) is a closed two-sided ideal of I'’(U, M). Let
s € Fb(U,M) and a € I'g(U, A). Since for each z € U, A, is an ideal of M,, we have
s(x)a(z),a(x)s(z) € A; for all such . Thus sa,as € T(U, A).

To see that the norm functions of sa and as vanish at infinity on U, note that for
each x we have ||(sa)(z)| < ||s(2)|| - |la(z)]| < ||s|| - [|a(z)]|- It follows (if s # 0) that for
each € > 0,

{z €U :|l(sa)(2)]| = €}

N

{zeU:|ls|-lla(z)]| > e}
{zeU: |a@) > ”isu},

and the latter is compact since z ~— |la(z)|| vanishes at infinity on U. Hence the set

of {x € U : ||(sa)(z)|| > €}, being closed by upper-semicontinuity of z — |[|(sa)(z)]|, is
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compact for each € > 0. Applying a similar argument to the norm function of as shows
that sa,as € Ty(U, A).

To see that ['g(U,.A) is essential in T®(U, M), let s € T'®(U, M) such that s that
annihilates I'g(U, .A). We claim that s = 0.

For each z¢9 € U, there is m € M(A) such that yp(4)(m)(z0) = s(xo) (that is,
s(xo) = m + Hy,). We will show that yps4)(m)(zo) = 0, from which the claim will
follow. Denote by m’ = ’Y!\I(A)(m)‘u = (vy o Py x)(m), and let € > 0 be given. Since
(m' — s)(zg) = 0 and z — ||(m’ — s)(z)|| is upper-semicontinuous on U, there is an
open neighbourhood W of zq contained in U with ||[(m' —s)(z)|| < § for all z € W. It
follows that
/

||(m < E.

BN ™

= 8)|ywll = sup [[(m' - s)(z)|| <
zeW

Now take a € I'g(W, A) with |la|| = 1. Since W C U, we have A(W) C A(U)
and so I'o(W, A) C I'y(U,.A) by Proposition 4.3.1(iv). In particular this implies that
(sly)a = 0. Then

||(m'|”.)a|| = ” ((ml—8+8)|u')a“
< N =)y Nl - llall + (sl )all
= H(T”/ o S)lvy“ < % < E- (431)

Since vy : M(A(W)) — I'(W, M) is injective, it is isometric, and since restriction

is transitive,

f (7A1(A)(m)|u) ‘W = Y4y (M|, = vw o Pw,x(m),

so that in particular ||m/|, || = [|®w,x(m)||. By [20, §2], the norm of (®w, x)(m) is
given by
1(@w,x)(m) || = sup{[|(®w,x)(m)b]| : b € A(W), ||b]| = 1}.

Now vy restricted to A(W) is a *-isomorphism of A(W') onto I'o(W,.A) by Propo-
sition 4.3.1(iv), so for any a € I'o(W, A) with |la]| = 1 there is b € A(W) with
vw (b) = vaw)(b) = a and [|b]| = 1. Thus

I

l@wx)m)ll = sup{l| (w o Bwx)(m)) vw (B)]| : b€ AGW), [ll] = 1}
= sup{|(m'|yy ) (B)]] : b€ A(W),|[bl| = 1}

= sup{H(m’|w)a|| :a € To(W, A), |lal| = 1} < &,
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where the inequality on the last line follows from (4.3.1).

By Lemma 4.3.5, we have

1(®@w,x)(m)|| = sup [Ib+ Jo|,
zeW

while [|yar(a)(m)(zo)|l = [|m + Hg,||- But then by [8, Lemma 1.5] this gives

s (ay(m)(zo)ll = llm + Hyol| = inf (Sup |Im+jy||>
zoeV \ yev
= inf ||(®w,x)(m)|| <e,
o€V

the infimum being taken over all open neighbourhoods V' of 2y in X. Since £ > 0 was
arbitrary, this gives ||yy;(4)(m)(xo)|| = 0, and so s(xg) = 0.
We conclude that sa = 0 for all a € I'g(U, A) implies s = 0, so that I'((U,.A) is an
essential ideal of T*(U, M).
O

Theorem 4.3.7. Let (A, X, pua) be a Co(X)-algebra, Mx the associated multiplier
sheaf of A over X (Definition 4.1.8), and (M, X, p) the upper-semicontinuous (H)-
C*-bundle over X associated with 1, Mx by Theorem 4.2.10. Then for each open
U C X, the map vy : Mx(U) — I'®(U, M) of Theorem 4.2.3 is a x-isomorphism. In
particular My may be identified with the local section sheaf U — T°(U, M).

Proof. The restriction of vy to A(U) is a *-isomorphism by Proposition 4.3.1. By
Proposition 4.3.6(iii), I'o(U,.A) is an essential ideal of I'*(U, M), so there is a *-
isomorphism 7 : T®(U, M) — M(I'4(U,.A)) extending the identity on I'o(U,.A). Thus

we get a commutative diagram

M(A(U)> T (U, M) —> M(To(U, A))

e

AU) Lo(U, A)

vu

Note that since 7 o vy extends the x-isomorphism vy | A(U)» it must be surjective. But

then since 7 is injective, vy must be surjective. O

In certain cases Theorem 4.3.7 allows us to construct the multiplier sheaf of a
Co(X)-algebra as sections of a bundle depending only on A, as the following corollary

shows.
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Corollary 4.3.8. Let (A, X, pa) be a o-unital Co(X)-algebra and denote by (A, X, p)
the associated upper-semicontinuous (H)-C*-bundle over X. If for all x € X we have
pa(Co(X))NALZ Jy, then with the identification of Theorem 4.3.7, the multiplier sheaf
of A over X satisfies Mx(U) = I'°(U, A) for all U € O(X).

Proof. Since pua(Co(X))NA & J, for all x € X, A/J, is unital for all z € X by [8,
Proposition 2.2], and thus the ideal H, of (3.2.1) is strictly closed in M (A) by Corol-
lary 3.3.6. It then follows from Theorem 3.2.4(ii)’ that M (A)/H, = M(A/J;) = A/ J,
for all z.
Together with Proposition 4.3.6(ii), this last fact shows that (A, X,p) = (M, X, q),
and so My (U) = I'*(U, A) by Theorem 4.3.7.
O

Recall that by Proposition 2.3.11 any quasi-central C*-algebra A is a Co(Prim(Z(A)))-
algebra, where the structure map is the inclusion mapping Cy(Prim(Z(A))) = Z(A) —
ZM(A).

Corollary 4.3.9. Let A be a quasi-central C*-algebra, (A, Prim(Z(A)), pa) its canoni-
cal representation as a Co(Prim(Z(A)))-algebra, and (A, Prim(Z(A)),p) the associated
upper-semicontinuous (H)-C*-bundle over Prim(Z(A)). Then, with the identification of
Theorem 4.3.7, the multiplier sheaf of A over Prim(Z(A)) satisfies Mprim(z(a)(U) =
(U, A) for all U € O(Prim(Z(A))).

Proof. Note that pa(Co(Prim(Z(A))) = Z(A) in this case, and since P 2 Z(A) for any
P € Prim(A), it follows that J, 2 Z(A) for any x € Prim(Z(A)). Thus Corollary 4.3.8
applies. O



Chapter 5

The Glimm space of the minimal

tensor product

In this section we study the space of Glimm ideals of the minimal tensor product
A ®, B of two C*-algebras A and B. We show that there is a natural open bijection of
Glimm(A) x Glimm(B) onto Glimm(A ®, B), and identify a large class of C*-algebras
A for which this map is a homeomorphism for all B. In the case that the map fails to
be a homeomorphism, we show that the topology on Glimm(A ®, B) depends only on
that of the product space Prim(A) x Prim(B). In particular, Glimm(A ®, B) may be
constructed in all cases without knowledge of those ideals of A ®, B which do not arise
from a pair of ideals of A and B.

This result, together with the Dauns-Hofmann Theorem, allows us to construct the
centre ZM (A ®q B) of the multiplier algebra of A ®, B in terms of these spaces. We
obtain a precise characterisation of those C*-algebras A and B for which ZM (A®4B) =
ZM(A)® ZM(B), and show that this may occur even when M(A) ®, M(B) is strictly
smaller than M (A ®4 B).

When the Glimm spaces are regarded as sets of ideals, we show that the map sending
(G H)» G®, B+ A®, H

implements the above bijection. This extends an earlier result of Kaniuth [37], who

obtained a similar result under the assumption that A ®, B satisfies the property (F)

78
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of Tomiyama [54]. Our approach is similar to that of Kaniuth, in that we use an
alternative definition of the Glimm space based on the complete regularisation of the
space of factorial, rather than primitive, ideals. The reasons for this are discussed in
Section 5.5.

Finally, we apply these results to the study of the Dauns-Hofmann representation
of A®4 B over Glimm(A @, B). We discuss conditions under which the resulting C*-
bundle depends only on the corresponding bundles associated with the Dauns-Hofmann
representations of A and B. Moreover, we investigate the stability of the properties
of continuity and quasi-standardness of these bundles under the operation of taking
minimal tensor products.

Sections 5.1 to 5.7 have appeared in the article [45].

5.1 Introduction

The focus of our work is the relationship between a C*-algebra A and its collection
of primitive ideals Prim(A), a topological space in the hull kernel topology, the as-
sociated complete regularisation space Glimm(A) of Prim(A), and in particular how
Glimm(A ®, B) relates to Glimm(A) and Glimm(B). Here A ®, B is the minimal (or
spatial) tensor product of two C*-algebras A and B (Definition 5.3.1) and our work is
motivated by a desire to extend earlier work such as [37], [6], [42].

As described in Theorem 2.3.6, Dauns and Hofmann showed in [21] that any C*-
algebra A may be represented as the section algebra of an upper semicontinuous C*-
bundle over Glimm(A) if this space is locally compact, or over its Stone-Cech compacti-
fication otherwise. Under this representation the fibre algebras are given by the Glimm
quotients of A. Thus in the case of the minimal tensor product of C*-algebras A and
B, a natural question that arises is to determine Glimm(A®, B) in terms of Glimm(A)
and Glimm(B), both topologically and as a collection of ideals of A ®, B. A related
problem (over more general base spaces) was studied by Kirchberg and Wassermann
in [40], and later by Archbold in [6], by considering the fibrewise tensor product of the
corresponding bundles of A and B.

We will denote by Id’(A) the set of all proper norm-closed two sided ideals of A.
By Fac(A) we mean the space of kernels of factor representations of A, which is a
topological space in the hull-kernel topology (Definition 5.5.1).

There is a natural embedding of Id’(A) x Id'(B) into Id' (A ®, B) sending (I, J)
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ker(q; ® qy), where g; and ¢; are the quotient maps. The restrictions of this map
to the spaces of primitive and factorial ideals are known to be homeomorphisms onto
dense subspaces of Prim(A ®, B) and Fac(A ®,, B) respectively, see [59], [42]. Recently
A.J. Lazar has shown in [42] that any continuous map f : Prim(A) x Prim(B) = Y,
where Y is a T space has a continuous ‘extension’ to Prim(A ®, B), where we identify

Prim(A) x Prim(B) with its image under the above embedding.

We begin in Section 5.2 with considerations of the complete regularisation of a
product X x Y of topological spaces, gathering together and extending results on
this theme from the literature. Central to this is the theory of w-compact spaces,
introduced by Ishii in [35]. We establish (Proposition 5.2.9) conditions on a C*-algebra
A that ensure that the complete regularisation of Prim(A) x Prim(B) is homeomorphic
to the product space Glimm(A) x Glimm(B) for any C*-algebra B. In the presence of a
countable approximate unit for A, a necessary and sufficient condition for this to occur
is that Glimm(A) be locally compact. In the general case, sufficient conditions include
compactness of Prim(A) (e.g. if A is unital), or that the complete regularisation map of
Prim(A) is open (e.g. if A is quasi-standard, see [7]). Local compactness of Glimm(A)

is always a necessary condition.

Using the extension result of Lazar together with the universal property of the
complete regularisation of a topological space described in Section 5.2, we show (The-
orem 5.3.3) that as a topological space Glimm(A ®, B) is the same as (or can be
identified in a natural way with) the complete regularisation of Prim(A) x Prim(B).
We investigate conditions under which the latter coincides with the cartesian product
space Glimm(A) x Glimm(B), while showing that the underlying sets always agree. In
Corollary 5.3.4 we give some rather general conditions on A or on B for this coincidence

but show an example in Section 5.7 where it fails.

An equivalent formulation of the Dauns-Hofmann isomorphism (2.3.1) identifies
Z M (A) with the C*-algebra of bounded continuous functions on Glimm(A). We show in
Theorem 5.4.3 that for any C*-algebras A and B, ZM (A®,B) can be identified with the
bounded continuous functions on (the complete regularisation of) Prim(A) x Prim(B),
and give necessary and sufficient conditions (Theorem 5.4.6) for ZM(A) @ ZM(B) =
ZM(A ®q B).

In Section 5.5, we determine the set of Glimm ideals of A ®, B in terms of the

Glimm ideals of A and B. In order to do this, we use an alternative construction
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of Glimm(A) based on the complete regularisation of Fac(A) (rather than Prim(A))
first considered by Kaniuth in [37]. The reason for this is the fact that there exists a
continuous surjection Fac(A ®, B) — Fac(A) x Fac(B), while it is not known if the

restriction of this map to Prim(A ®, B) has range Prim(A) x Prim(B).

We show in Theorem 5.5.9 that the map Glimm(A) x Glimm(B) — Glimm(A®, B)
sending (G, H) — G @4 B + A ®, H determines the homeomorphism of these spaces
when considered as sets of ideals. This extends Kaniuth’s result [37, Theorem 2.3],

which was proved under the assumption that A ®, B satisfies Tomiyama’s property
(F), defined below.

In Section 5.6 we consider the problem of determining conditions for which the
canonical upper semicontinuous bundle representation of A ®, B over Glimm(A ®, B)
of [21] is in fact continuous (i.e. A®, B defines a maximal full algebra of operator fields
in the sense of Fell [27]). The main result of this section (Theorem 5.6.2) shows that,
under the assumption that ker(¢c ® qy) = G ®4 B + A ®, H for all pairs of Glimm
ideals (G, H) of A and B, this representation of A ®, B is continuous precisely when
the corresponding bundle representations of A and B (over Glimm(A) and Glimm(B)
respectively) are continuous. We also show that, under a different assumption that does
not require that these ideals be equal, continuity of A and B is a necessary condition

for continuity of A @, B (Proposition 5.6.4).

Let o and [ be states of A and B respectively. Then the product state a @ 3 of
A®q B is defined via (a®@ /) (a®b) = a(a)B(b) on elementary tensors a®b and extended
to A ®4 B by linearity and continuity. If I,.J € 1d'(A ®, B) with I € J, then we say
that a state vy of A ®, B separates I and J if v(J) = {0} and there exists ¢ € I\J
with y(¢) = 1. The minimal tensor product A ®, B is said to satisfy Tomiyama’s
property (F) if given any pair I, J € I1d'(A ®, B) with I # J, there is a product state
of A®, B separating I and .J. There are many equivalent characterisations of property

(F), see [42, Proposition 5.1] for example.

If « : X — Y is a continuous map between topological spaces we will denote by

o : C(Y) = C(X) the unique x-homomorphism given by o*(f) = foa for f € C(Y).
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5.2 The complete regularisation of a product of topologi-

cal spaces

In this section we relate the complete regularisation p(X x Y) of the product of two

topological spaces X and Y to the product space pX x pY.

Lemma 5.2.1. Let X and Y be topological spaces. Then there is an open bijection
p(X) x p(Y) = p(X xY)

sending (px(x), py (y)) = pxxy(z,y).

Proof. We first show that (X/ =) x (Y/ =) = (X xY)/ = as sets; specifically that
(z1,91) = (x9,y2) if and only if 1 =~ x5 and y; ~ y2. Indeed, if (z1,y1) = (z2,y2) and
f € C®(X) then fomx € C*(X x Y), hence f(z1) = f o mx(z1,11) = f o mx(22,42) =
f(z2), and z; =~ z5.

On the other hand if both z; ~ x5 and y; & y», take ¢ € C°(X xY); then g(z1,y1) =
g9(z2,y1) = g(x2,y2). It follows that the mapping (px(z),py (y)) — pxxy(z,y) is a
well-defined bijection.

In order to show that the above map is open we use the fact that in a completely
regular space, the cozero sets of continuous functions form a base for the topology [29,
3.4]. Consider a basic open set coz(f?) x coz(gP) in pX x pY, where f € C*(X),g €
C*(Y). Then h(z,y) = (f? o px)(z)(g” o py)(y) defines an element of C*(X x Y), and
hence gives h? € Ct(p(X x Y)) with h? o pxxy = h. Then coz(h?) = coz(f) x coz(g),
so that coz(f?) x coz(g”) is an open subset of p(X x Y). O

In view of Lemma 5.2.1, for any topological spaces X and Y we identify p(X) x p(Y)
and p(X xY) as sets. This canonical map is not a homeomorphism in general, however
(see Example 5.7.1). Thus in what follows, we will denote by pX x pY this product
space with the (possibly weaker) product topology 7, and by p(X x Y) the space with
the topology 7., induced by the functions in C?(X x Y).

The following result was obtained originally in [34]:

Theorem 5.2.2. (Hoshina and Morita) /36, Theorem 2.4]
Let X and Y be topological spaces. The following are equivalent:

(i) pX x pY = p(X xY),
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(ii) For any cozero set G of X x Y and any point (z,y) € G there are cozero sets U
and V of X and Y respectively with (z,y) € U x V CG.

Definition 5.2.3. Let (X,7) be a topological space. For a subspace Y C X denote
by 7y the topology on Y generated by {coz(f): f € C(Y)}.

For a topological space (X, 7T) and a subset U C X we denote by 7 [y the subspace
topology on U inherited from 7. For two topologies 71,72 on X we write 73 < Tz to
say that 77 is weaker than 7s.

For any subset U C X, we denote by U the T-closure of U and by cl,, (U) the Tx-
closure of U. The following lemma establishes some basic properties of the 7-topologies

on subspaces of a topological space (X, T):
Lemma 5.2.4. Let (X,T) be a topological space and let U C X. Then:
(i) v <T It
(ii) U is 7x open if and only if U = p;\,l(W) for some open subset W C pX,

(i1i) If U is Tx-open then U is saturated with respect to the relation ~ on X (hence
X\U is saturated also),

(i) ol () = p)_(l (pX(U)). where px (U) is the Ter-closure of px (U) in pX,
(v) IfUCV C X then v [u< 10

Proof. (i) Every basic 77-open set is of the form {z € U : f(z) # 0} with f : U — [0,1]
continuous, hence is open in T [;.

(i) Note that for every continuous f : X — [0,1], coz(f) = py'(coz(f*)) by the
construction of fP. Hence U C X is 7x-open if and only if there exist continuous

functions f; : X — [0,1] for all i in some index set I such that

= Ucoz(fl Up (coz(fF)) (Ucoz fp)

i€l i€l i€l

Since the 7.,-open subsets of pX are unions of cozero sets, the conclusion follows.

(iii) Suppose U is 7x-open and x € U. Then there is a cozero set neighbourhood
coz(f) of x contained in U, where f: X — [0,1] is continuous. Thus for any y € X\U,
f(y) =0 and f(z) # 0. Hence x % y for any such y, and so [z] C U.
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(iv) By (ii) p}l (px—(U)> is 7x closed. Now suppose F' C X is 7x closed and U C F.
Then px (F) is closed in pX by (ii), and contains px(U), hence contains px(U). By
(iii), this gives F = py' (px(F)) 2 py' (W), as required.

(v) U CV C X, then every f € C(V) has f [y€ C(U). Hence coz(f)NU =

coz(f [u) is a cozero set of U, so that the subspace topology 7y [y is weaker than

TiT - |

Definition 5.2.5. A topological space (X, 7)) is said to be w-compact if given any T-
open covering {Ua }aeca of X, then there exist a,...a, € A such that X = cl;, (Uy, U
vl S b

It is shown in [36, Proposition 3.3] that X is w-compact if and only if any family
{Qa} of Tx-open subsets of X with the finite intersection property has () Qs # 0.
The class of w-compact spaces was introduced by Ishii in [35] to characterise the

topological spaces X for which p(X x Y) = pX x pY, for any topological space Y:

Theorem 5.2.6. [36, Theorem 4.1] For a topological space X the following are equiv-

alent:
(i) p(X xY) =pX x pY for any space Y,

(ii) For each x € X there is a cozero set neighbourhood U of x such that U is w-

compact.

We will show in Proposition 5.2.9 that condition (ii) of Theorem 5.2.6 is satisfied by
Prim(A) for a large class of C*-algebras A. The following Lemma gives a sufficient con-
dition for a point z in a general topological space X to have a cozero set neighbourhood

with w-compact closure.

Lemma 5.2.7. Let (X,T) be a topological space and suppose that px(x) € pX has a
compact neighbourhood K such that there is a compact C C X with px(C) = K. Then

x has a cozero set neighbourhood U in X with U w-compact.

Proof. Choose f € C(pX) with f(px(z)) = 1 and f(pX\intK) = {0}. Let U =
p}l(coz( f)) = coz(f o px), a cozero set neighbourhood of z in X. We claim that UNC
is Ty-dense in U.

Let V be a cozero set of U, then V is also a cozero set of X by [36, Lemma 3.9].
Choose g € C(pX) such that V = coz(g o px). Note that for any v € px(V) = coz(g)
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there is y € C such that px(y) = v, hence gopx(y) = g(v) # 0. So VNC is non-empty,
and since every 7y open subset of U is a union of cozero sets such as V, U NC is
T7-dense.

If Q C U is a nonempty m7-open subset, then it is relatively open (in the subspace
topology T [7) by Lemma 5.2.4 (i). In particular, @ NU is nonempty, and moreover is
7y open by Lemma 5.2.4 (v).

Take a collection {Qq} of T-open subsets of U with the finite intersection prop-
erty. Then for every finite subcollection {Qq,}7_;, the intersection (\;_;(Qa, NU) =
(ﬂ;‘: " Qa]) NU is nonempty. It follows that {Q,NU} is a collection of 7/-open subsets
of U with the finite intersection property. Since U N C' is 7y-dense,

ﬂQQJﬂUﬂC ﬂQa il late

is nonempty for every such subcollection. Thus {Q,NU NC} is a collection of subsets
of C with the finite intersection property. Since C' is compact, () (QaNUNC)NC # 0.
As

(QaNUNC)NC C Qa

for each a, this implies that Q4 # 0. Hence U is w-compact. O

Lemma 5.2.8. Let X be a topological space and suppose that every x € X has a cozero

set neighbourhood with w-compact closure. Then pX is locally compact.

Proof. If A C X is w-compact, then px (A) is w-compact by [36, Proposition 3.10]. But
then since px (A) is completely regular it is homeomorphic to its complete regularisation
p(px(A)), hence is compact by [36, Proposition 3.4].

For each point z € X, let U, be a cozero set neighbourhood of = with U, w-compact.
Then px(U,) is compact, and is a neighbourhood of px(x) since px(Us) is open by
Lemma 5.2.4(iv). O

Proposition 5.2.9. Let A be a C*-algebra such that one of the following conditions
hold:

(i) Prim(A) is compact,

(ii) the complete reqularisation map p : Prim(A) — Glimm(A) is open, or
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(i1i) A is o-unital and Glimm(A) is locally compact.

Then every P € Prim(A) has a cozero set neighbourhood with w-compact closure. Hence
for any C*-algebra B, the complete regularisation p(Prim(A) x Prim(B)) of Prim(A) x
Prim(B) is homeomorphic to the product space Glimm(A) x Glimm(B).

Conversely, if Glimm(A) is not locally compact then there is P € Prim(A) that does

not have a cozero set neighbourhood with w-compact closure.

Proof. Note that if (i) holds then Glimm(A), being the continuous image of the compact
space Prim(A), is compact. The proposition is then immediate by Lemma 5.2.7 with
C = Prim(A) and K = Glimm(A).

In cases (ii) and (iii), take P € Prim(A) with p4(P) = z and let K" be a compact
neighbourhood of x in Glimm(A). By [43, Theorem 2.1 and Proposition 2.5], K’ is

contained in a compact subset of Glimm(A) of the form
K :={G € Glimm(A) : |la+ G|| > a} = pa({P € Prim(A) : |la + P| > a}),

for some a € A and o > 0, and the set {P € Prim(A) : |[a+ P|| > a} is compact by [24,
Proposition 3.3.7]. Then K is a compact neighbourhood of z, and the conclusion thus
follows from Lemma 5.2.7.

It then follows from Theorem 5.2.6 that if any of the conditions (i) to (iii) hold,
p(Prim(A)xY) = p(Prim(A))x p(Y) for any space Y. In particular, if B is a C*-algebra

then we have
p (Prim(A) x Prim(B)) = p (Prim(A)) x p (Prim(B)) = Glimm(A) x Glimm(B).

On the other hand if Glimm(A) is not locally compact, then by Lemma 5.2.8 there
is P € Prim(A) for which no cozero set neighbourhood of P has w-compact closure.
O

Remark 5.2.10. Suppose that A is a C*-algebra such that Prim(A) does not sat-
isfy condition (ii) of Theorem 5.2.6. Then there is a topological space Y for which
p(Prim(A) x Y) # Glimm(A) x p(Y). It is not immediately evident whether this
space Y can be chosen as Prim(B) for some C*-algebra B. Thus the partial converse
in Proposition 5.2.9 does not preclude the possibility that p (Prim(A4) x Prim(B)) =
Glimm(A) x Glimm(B) for all C*-algebras A and B.
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We will show in Example 5.7.1 however that p(X x Y) # p(X) x p(Y) is indeed
possible when X and Y are primitive ideal spaces of C*-algebras. Specifically, we
construct a C*-algebra A for which p(Prim(A) x Prim(A)) # Glimm(A) x Glimm(A)

Remark 5.2.11. Another natural topology on the complete regularisation pX of a space
X is the quotient topology 7, induced by the complete regularisation map px; that is,
the strongest topology on pX for which py is continuous. Since px is continuous as
a map into (pX,7e), it always holds that 7. < 7,. However, there is an example due
to D.W.B. Somerset of a space X for which 7 # 74 on pX, and a C*-algebra A with
Prim(A) homeomorphic to X [41, Appendix].

It follows from [7, p. 351] and [41, Theorem 2.6] that if A is a C*-algebra satisfying
one of the conditions (i) to (iii) of Proposition 5.2.9, then necessarily 7., = 74 on
Glimm(A).

5.3 The Glimm space of the minimal tensor product of

Cr-algebras

In this section we show that, as a topological space Glimm(A ®, B) can be naturally
identified with Glimm(A) x Glimm(B), when the latter space is considered as the
complete regularisation of Prim(A) x Prim(B). We first recall the definition of A ®, B
and discuss the canonical embedding of Prim(A) x Prim(B) in Prim(A ®, B).

Definition 5.3.1. Let A and B be C*-algebras and let A © B denote their *-algebraic
tensor product. For representations 7 : A — B(H) and 0 : B — B(K) of A and B on

Hilbert spaces H and K respectively, there is a unique (algebraic) *-homomorphism
T®o:A®B— B(H)® B(K) C B(H®K),

where H®K denotes the Hilbert space tensor product of H and K.
Setting

lell, =sup ||(r @ a)(c)||,ce A® B

where 7 and o range over all representations of A and B respectively, defines a C*-norm
|-ll, on A® B. The completion A®, B of A® B in this norm is called the minimal or

spatial tensor product of A and B.
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Let7: A — A’ and o : B — B’ be »-homomorphisms of C*-algebras. Then there is a
unique *-homomorphism 7®0 : A®,B — A'®,B’, such that (1®c)(a®b) = w(a)®0c(b)
for all elementary tensors a ® b € A® B. In particular let (1,J) € Id'(A) x Id’(B) and
denote by q; : A — A/I,q; : B— B/J the quotient homomorphisms. Then we have a
*-homomorphism q; ® ¢ : A®qy B = (A/I) ®q (B/J).

For more details on the constructions of A ®, B, HOK and m ® o we refer the
reader to [31] and [53][Chapter IV].

We now define two natural maps ®, A : 1d'(A) x Id'(B) — 1d'(A ®, B) via

O(1,J) = ker(qr ®qy) (5.3.1)
The following Proposition lists some known properties of the map ®.

Proposition 5.3.2. Let A and B be C*-algebras and A @, B their minimal C*-tensor
product. Then the map ® defined by (5.5.1) has the following properties:

(i) If I,K € 1d'(A) and J, L € 1d'(B) are such that I 2 K and J 2 L then ®(I,J) 2
®(K,L) [42, Lemma 2.2],

(1) The restriction of ® to Prim(A) x Prim(B) is a homeomorphism onto its image

which is dense in Prim(A ®, B) [59, lemme 16],

(111) The restriction of ® to Fac(A) x Fac(B) is a homeomorphism onto its image which
is dense in Fac(A ®, B) [42, Corollary 2.7],

(iv) For I,J € 1d'(A) x 1d'(B), ® (hull(I) x hull(J)) is dense in hull(®(Z,J)) [42,
Corollary 2.3],

(v) For I,J € 1d'(A) x Id'(B), we have
o(1,7) = ({®(P,Q) : (P,Q) € hull(I) x hull(J)}
(42, Remark 2.4]

Theorem 5.3.3 below identifies the complete regularisation of Prim(A) x Prim(B)
with that of Prim(A ®, B). As discussed in the remarks following Lemma 5.2.1, we
need to take into account the appropriate topology on the former space. Thus we will
refer to p (Prim(A) x Prim(B)) as (Glimm(A) x Glimm(B), 7), and p (Prim(A)) x
p (Prim(B)) as (Glimm(A) x Glimm(B), 7)



CHAPTER 5. THE GLIMM SPACE OF A®, B 89

Theorem 5.3.3. Let A and B be C*-algebras, let A ®, B be their minimal C*-
tensor product and denote by pa,pp and p, the complete regularisation maps of
Prim(A), Prim(B) and Prim(A @, B) respectively. Then there is a homeomorphism
¥ : Glimm(A ®y B) — (Glimm(A) x Glimm(B), 7.r) given by

(¢ 0 pa) (2(P, Q) = (pa(P), pB(Q)) -

It follows that v defines a continuous bijection Glimm(A ®, B) — (Glimm(A) x
Glimm(B), 7).

Proof. The map pa X pp : Prim(A) x Prim(B) — (Glimm(A) x Glimm(B), 7,) is the
complete regularisation map of Prim(A) x Prim(B) by Lemma 5.2.1. For the remainder
of the proof we will consider Glimm(A) x Glimm(B) with this topology (from which
the second assertion will follow since 7, is weaker).

By [42, Theorem 3.2], the map (pa x pp) o ® ! : @ (Prim(A) x Prim(B)) —
Glimm(A) x Glimm(B) extends uniquely to a continuous map (p4 X pg) : Prim(A4 ®4
B) — Glimm(A) x Glimm(B).

Since Glimm(A) x Glimm(B) is completely regular, m induces a continuous
(surjective) map 1 : Glimm(A®,, B) — Glimm(A) x Glimm(B) with the property that
Yo py = m [55, Corollary 1.8].

Prim(A) x Prim(B)C—(D—> Prim(A ®, B)

PAXPB
PAXPB Pa

Glimm(A) x Glimm(B) ;A Glimm(A ®, B)

To show that %) is in fact a homeomorphism, it suffices to show that the x-
homomorphism ¢* : C®(Glimm(A) x Glimm(B)) — C%(Glimm(A®q B)), ¥*(f) = fov
is surjective [29, Theorem 10.3 (b)].

To this end, let f € C*(Glimm(A ®, B)), so that f o p, € C? (Prim(A ®, B)) and
hence fop,o® € C? (Prim(A) x Prim(B)). Denote by g € C°(Glimm(A) x Glimm(B))
the unique function such that go (pa X pg) = fopao®. Then fop, and ¢ om
are both continuous extensions of g o (pa x pg) o ®~! to Prim(A ®, B), hence must
agree by [42, Theorem 3.2].
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Take m € Glimm(A ®, B) and M € Prim(A ®, B) such that p,(M) = m. Then

P*(g)(m) = (gov)(m) = (g0¢opa)(M)
= (g0 (pa x pB))(M)
= (fopa)(M)
= f(m)
It follows that ¢*(g) = f, hence ¢* is surjective. O

Note that Theorem 5.3.3 shows that p, o ® is surjective. In particular, given any
M € Prim(A ®, B) there exist (P, Q) € Prim(A) x Prim(B) such that M ~ ®(P, Q).

Corollary 5.3.4. Let A and B be C*-algebras such that either A or B satisfies one of
the conditions (i)-(iii) of Proposition 5.2.9. Then T, = 7, on Glimm(A) x Glimm(B),
and hence Glimm(A ®, B) is homeomorphic to (Glimm(A) x Glimm(B), 7,) via the
map ¢ of Theorem 5.3.3.

Proof. Immediate from Proposition 5.2.9 and Theorem 5.3.3. U

5.4 The central multipliers of A ®, B

In this section we apply Theorem 5.3.3 to determine the centre of the multiplier algebra
of A®, B in terms of the topological space (Glimm(A) x Glimm(B), 7). We show
in Theorem 5.4.3 that ZM (A ®, B) is *-isomorphic to the C*-algebra of continuous
functions on the Stone-Cech compactification of (Glimm(A) x Glimm(B), 7). Further
in Theorem 5.4.6 we give necessary and sufficient conditions on this space for which
ZM(A)® ZM(B) = ZM(A Q4 B).

The embedding of M(A) ®, M(B) C M(A ®, B) is discussed in [1], we include a
proof in Lemma 5.4.1 below for completeness. It is shown in [32, Corollary 1] that for
C*-algebras C and D we have Z(C ®, D) = Z(C) ® Z(D) (where Z(C) ® Z(D) is the
unique C*-completion of the algebraic tensor product Z(C) ® Z(D) by nuclearity). In
particular it follows that for any C*-algebras A and B we may identify Z(M(A) ®q
M(B)) = ZM(A) ® ZM(B). Thus in this section we are concerned with relating the
centre of the larger algebra M(A ®, B) with that of M(A) ®, M(B).

Recall that an ideal I of a C*-algebra C is said to be essential in C' if given any
nonzero ideal J of C, J NI # {0}. Equivalently for any c € C, cI = Ic = {0} implies
c—.0:
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Suppose that C' is a C*-algebra and z € M(C) such that zc = cz for all ¢ € C.
Then it is easily verified that (zm — mz)C = C(zm — mz) = {0} for all m € M(C).

Since C' is an essential ideal of M (C'), we conclude that
ZM(C)={z€ M(C) : zc = cz for all c € C}. (5.4.1)

Lemma 5.4.1. There is a canonical embedding © : M(A) ®q M(B) - M(A ®, B)
such that

(O(z®y))(e@b) =2a@yb and (a ®b) (O(z @ y)) = ax ® by

for all a € Ab € B,x € M(A),y € M(B). Moreover, ©(ZM(A) ® ZM(B)) C
ZM(A ®q B).

Proof. Clearly M(A) ®, M(B) contains A ®, B as a two-sided ideal. Suppose J is a
nonzero ideal of M(A) ®, M(B). Then by [2, Proposition 4.5, J contains a nonzero
elementary tensor x ® y where x € M(A),y € M(B). Since A is essential in M(A),
there is a € A with either az # 0 or za # 0. Suppose w.l.o.g. that za # 0, so that
|(za)*za|| = ||zal/* # 0. Setting @’ = (za)*, we then have an element a’ € A with

a’za # 0. Similarly there are b, b’ € B with b'yb # 0. It follows that
dra®byb=(d @b)(z®@y)(a®b)

is a nonzero element of J N (A ®, B). Hence A ®, B is essential in M(A) ®, M(B).

By [20, Proposition 3.7 (i) and (ii)], there is a unique *-homomorphism © : M(A)®,
M(B) — M(A ®, B) extending the canonical inclusion of A ®, B into M(A ®4 B),
which is injective since A ®, B is essential in M (A) ®, M (B). For elementary tensors
r®Yy € M(A)®y, M(B) and a® b e A®, B we have

O(z®y)) (a®b) =O(zR®y)O(a ®b) = O(ra R yb) = za ® yb,

(since © is the identity on A ®, B), and similarly (a ® b) (O(z ® y)) = az ® by.
For elementary tensors z; ® zp € ZM(A) ® ZM(B) and a ® b € A ®, B we have

O(21 ® 22)(a ® b) = 210 ® 22b = az1 ® bza = (a ® b)O(21 ® 22),

from which it follows that for any z € ZM(A)®ZM (B) and ¢ € ARy B, O(2)c = cO(z).
Hence by (5.4.1) we see that O(ZM(A)® ZM(B)) C ZM(A ®, B). O
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We remark that it was shown in [1, Theorem 3.8] that if A is o-unital and non-
unital, and B is infinite dimensional, then © is not surjective. In what follows, we will
suppress mention of © and simply consider M(A) ®, M(B) C M(A ®, B).

The following result gives an equivalent formulation of the Dauns-Hofmann isomor-

phism of equation (2.3.1).

Corollary 5.4.2. [21, III Corollary 8.16] For any C*-algebra A, there is a
homeomorphism of Prim (ZM(A)) onto BGlimm(A), and hence a x-isomorphism
pa: C(BGlimm(A)) - ZM(A). Moreover, puy satisfies

pa(f)a— f(p)a € Gy, for all f € C(BGlimm(A)),p € Glimm(A),a € A,
where G, = (\{P € Prim(A) : pa(P) = p} is the Glimm ideal of A corresponding to p.

Applying this identification to A ®, B together with the homeomorphism 1) of The-
orem 5.3.3 allows us to determine ZM (A ®, B) in terms of Glimm(A) and Glimm(B):

Theorem 5.4.3. Let A and B be C*-algebras and denote by ¢ the homeomorphism
of Theorem 5.3.3. For each point p € Glimm(A ®, B) let G, denote the Glimm
ideal of A ® B corresponding to p. Then there is a canonical x-isomorphism O, :
C(B(Glimm(A) x Glimm(B), 7)) = ZM(A ®q B) with the property that

@a(f)c i (f % w)(p)c € Gp7
for all f € C(B(Glimm(A) x Glimm(B), 7)), p € Glimm(A ®, B) and c € A ®, B.

Proof. Since 1) is a homeomorphism the induced map v* is a *-isomorphism. Denote by
o the *-isomorphism of Corollary 5.4.2 applied to A®, B, and by ©, the composition

of the *-isomorphisms

C (B(Glimm(A) x Glimm(B), 7)) —> C (BGlmm(A @4 B)) “2~ ZM(A g, B).
Then ©, clearly has the required properties since p, does. O

On the other hand, applying the identification of Corollary 5.4.2 to A and B sepa-
rately gives *-isomorphisms
C (BGlimm(A) x BGlimm(B)) —= C (3Glimm(A)) ® C (8Glimm(B))
l/-‘A®IIB

ZM(A) ® ZM(B),
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where v is the canonical identification satisfying v=1(f ® g)(z,y) = f(z)g(y) for all
elementary tensors f @ g and (x,y) € SGlimm(A) x SGlimm(B).

Let X and Y be completely regular spaces. Then since the product X x Y is
compact, the universal property of the Stone-Cech compactification [29, Theorem 6.5
(I)] ensures that the inclusion ¢ : X x Y — X x Y has a continuous extension to
P B(X x Y) — BX x3Y. Moreover, since ¢ has dense range, compactness of 3(X xY’)
implies that ¢# is necessarily surjective.

Considering Glimm(A) C AGlimm(A) and Glimm(B) C fGlimm(B), Lemma 5.2.1

gives a continuous map

¢ : (Glimm(A) x Glimm(B), 7¢;) — (Glimm(A) x Glimm(B), 7p)

{

AGlimm(A) ;ﬁGlimm(B),

and ¢ is a homeomorphism onto its range if and only if 7, = 7, on Glimm(A4) x
Glimm(B). Again by the universal property of the Stone-Cech compactification, ¢

extends to a continuous surjection
B (Glimm(A) x Glimm(B), 7or) — AGlimm(A) x SGlimm(B).
Dual to this map is an injective *-homomorphism
(%) : C (BGlimm(A) x AGlimm(B)) = C (8 (Glimm(A) x Glimm(B), 7)),

sending f — f o ¢”.

The situation is summarised in the following diagram:

C (BGlimm(A) x ﬁGlimm(B))ﬂ C (B(Glimm(A) x Glimm(B), 7))

J lw.

C (BGlimm(A)) ® C (fGlimm(B))— C (fGlimm(A ®, B))

ﬂA@NBl luo

ZM(A) ® ZM(B)¢ ZM(A®, B)

Corollary 5.4.4. For any C*-algebras A and B, ZM(A)® ZM (B) = ZM(A®q4 B) if

and only if the canonical map

¢? : B (Glimm(A) x Glimm(B), 7,,) = AGlimm(A) x AGlimm(B)
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is injective. Moreover, when this occurs we have 7, = 7o on Glimm(A) x Glimm(B).

Proof. We first show that the preceding diagram commutes; that is, for any h €
C(SGlimm(A) x fGlimm(B)) the multipliers z; and 29 of A ®, B given by

21 = (Ha 0 ¥* 0 (¢°)*)(h), 22 = ((a ® ug) o v) (h)

are equal. By linearity and continuity it suffices to check equality for functions of the
form h = v~ (f ® g), where f € C(BGlimm(A)), g € C(BGlimm(B)).

Consider an elementary tensor a ® b € A ®, B, and a pair (P,Q) € Prim(A) x
Prim(B). We will show that (21 —22)(a®b)+®(P,Q) = 0. Set (p,q) = (pax pB)(P,Q),
and note that by Theorem 5.3.3 ()0 pa 0 ®)(P, Q) = (p, q). In particular it follows that

(¥* 0 (6°)*)(h)(pa(@(P,Q))) = (¢°)*(h)(¥ 0 pa 0 ®(P,Q)) = h(p,q) = f(p)g(q)-

Firstly by applying the *-isomorphism of Corollary 5.4.2 to the element (¢* o
(#°)*)(h) of C(B(Glimm(A ®, B)) see that

(Ba o ¥* 0 (¢°)*)(h)(a ® b) + &(P,Q)
f(p)g(q) (a®b) + (P, Q)
f(p)a® g(q)b+ @(P,Q).

z1(a®b) + (P, Q)

On the other hand, applying Corollary 5.4.2 to f € C(SGlimm(A)) gives pua(f)a —
f(p)a € P, so that

(ra(fla — f(p)a) ® g(q)b = pa(f)a® g(q)b — f(p)a® g(q)b € ker(gp ® qq) = ®(P,Q),

from which it follows that pa(f)a®g(q)b+®(P, Q) = f(p)a®g(q)b+P(P, Q). A similar
argument applied to B gives pa(f)a ® g(q)b+ ®(P,Q) = pa(f)a® up(g)b+ (P, Q),

and we conclude that

21(a®b)+2(P,Q) = pa(fla®pus(g)b+2(P,Q)
= (pa@upp)(f@g)(a®b)+2(P,Q)
= (a®ppov)(h)(@®b) +B(P,Q)
= 2(a®b)+ Q(P,Q).

In particular (21 —22)(a®b) € ®(P,Q) for alla € A,b € B and (P,Q) € Prim(A) x
Prim(B). Since ({®(P,Q) : (P,Q) € Prim(A) x Prim(B)} = {0}, it follows that
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(21 —22)(a®b) =0 for all @ € A,b € B. Thus (21 — 22) (A ®, B) = {0}, that is,
B = &y

Since the vertical arrows of the diagram all describe *-isomorphisms, the inclusion
ZM(A) ® ZM(B) C ZM(A ®, B) will be surjective if and only if (¢%)* is. By [29,
Theorem 10.3], (¢?)* is surjective if and only if ¢? is a homeomorphism.

But then ¢?, being a continuous surjection from a compact Hausdorff space to a
Hausdorff space, is thus a homeomorphism if and only if it is injective.

The final assertion follows from the fact that ¢? is the identity on Glimm(A) x
Glimm(B).

O

Let X and Y be completely regular spaces. The question of establishing conditions
on X,Y and X x Y for which canonical surjection /% : (X xY) — BX x BY is injective
(and hence a homeomorphism) has been studied by several authors. If either X or Y is
finite, then this is trivially true. The most well-known characterisation in the infinite

case is due to Glicksberg [30].

Definition 5.4.5. Let X be a completely regular space. We say that X is pseudocom-
pact if every f € C(X) is bounded.

Glicksberg’s Theorem [30, Theorem 1] states that, for infinite completely regular
spaces X and Y the canonical map 3(X xY) — X x Y is a homeomorphism if and

only if X x Y is pseudocompact.

Theorem 5.4.6. For any C*-algebras A and B, ZM(A)® ZM(B) = ZM (A ®4 B) if

and only if one of the following conditions hold:
(i) Glimm(A) or Glimm(B) is finite, or
(ii) Tp = Ter on Glimm(A) x Glimm(B) and Glimm(A) x Glimm(B) is pseudocompact.

Proof. 1f (i) holds, w.l.o.g. Glimm(B) is finite, hence discrete and compact. In particu-
lar pp is an open map, so by Proposition 5.2.9(ii), 7, = 7 on Glimm(A) x Glimm(B).
Then by [55, Proposition 8.2] the map ¢” is a homeomorphism and hence ZM(A) ®
ZM(B) = ZM (A ®4 B) by Corollary 5.4.4.

If Glimm(A) and Glimm(B) are infinite then by [30, Theorem 1],
S ((Glimm(A) x Glimm(B),7,)) is canonically homeomorphic to AGlimm(A) x



CHAPTER 5. THE GLIMM SPACE OF A®, B 96

AGlimm(B) if and only if (Glimm(A) x Glimm(B),7,) is pseudocompact. Hence
in the infinite case, Corollary 5.4.4 gives ZM(A) ® ZM(B) = ZM (A ®, B) if and only
if (ii) holds. O

Clearly if M(A) ® M(B) = M(A ®q B) then ZM(A) ® ZM(B) = Z(M(A) ®a
M(B)) = ZM(A ®, B). We will show in Example 5.7.2 that the converse is not true;
we construct C*-algebras A and B such that ZM(A) ® ZM(B) = Z(M(A®q B)), but
M(A) ®, M(B) C M(A®q B).

Remark 5.4.7. It is easily seen that the continuous image of a pseudocompact space
is pseudocompact. In particular if X and Y are completely regular spaces such that
X x Y is pseudocompact, then since the projection maps mx and 7wy are continuous
we have necessarily that both X and Y are pseudocompact.

In the other direction, it is not always true that a product of pseudocompact spaces
is pseudocompact; see [29, Example 9.15] for a counterexample. However, for a product
of pseudocompact spaces X and Y, one of which is also locally compact, then X x Y

is pseudocompact by [55, Proposition 8.21].

5.5 Glimm ideals

We now turn to the question of determining the Glimm ideals of A ®, B in terms of
those of A and B. More precisely Theorem 5.5.9 shows that, when the Glimm spaces
are considered as sets of ideals of A,B and A®, B, then the map A of Equation (5.3.2)
satisfies A = ¢~L.

We define a new map ¥ : Id'(4A ®, B) — Id’(A) x Id'(B), which is a left inverse of
the map ® of Equation (5.3.1). For M € Id'(A ®, B) we define closed two-sided ideals
M4 and MPB of A and B respectively via

MA={acA:a® BC M} MB={becB:AQbC M}. (5.5.1)

The assignment W(M) = (M#, M?B) gives a map V¥ : Id' (4 ®, B) — Id'(A4) x Id'(B).
We define the topological space Fac(A) analogously to Prim(A) (Definition 2.1.1).

Definition 5.5.1. For a C*-algebra A, we denote by Fac(A) the set of kernels of
factorial representations of A. For I € I1d'(A) we let

hullf(I) = {M € Fac(A) : M D I},
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and for T C Id’(A) we let
KT)=({1:1eT},
the kernel of T'.

The hull-kernel topology on Fac(A) is defined via the closure operation cl(7) =
hully(£(T")) for all T' C Fac(A).

Proposition 5.5.2. Let A and B be C*-algebras and A ®, B their minimal C*-tensor
product. Then the map V : 1d'(A ®, B) — 1d'(A) x I1d'(B) satisfies the following

properties:
(i) Wo® is the identity on 1d'(A) x Id'(B),
(i) ¥(Fac(A ®4 B)) = Fac(A) x Fac(B),

(iii) The restriction of ¥ to Fac(A ®4 B) is continuous in the hull-kernel topologies,
(iv) For any M € Fac(A ®, B), the inclusion M C ® o W(M) holds.

Proof. (i) and (iii) are shown in the proof of [42, Theorem 2.6]. To prove (ii), [31,
Proposition 1] shows that ¥(Fac(A®, B) C Fac(A) x Fac(B). Surjectivity then follows
from Proposition 5.3.2(iii) and part (i).

As for (iv), it is shown in [17, Lemma 2.13(iv)] that for any prime ideal M of A®, B
we have M C ® oW (M). But then [12, Proposition I1.6.1.11] shows that every factorial
ideal of a C*-algebra is prime, from which (iv) follows.

(]

We remark that Proposition 5.5.2 (ii) shows that ¥ maps Prim(A®, B) to Fac(A) x
Fac(B). It is not known in general whether ¥ maps Prim(A ®, B) onto Prim(A) x
Prim(B). For this reason, we will need to use an alternative construction of the space
of Glimm ideals of a C*-algebra, which was first considered by Kaniuth in [37].

It is shown in [37, Section 2] how for any C*-algebra A, Glimm(A) can be con-
structed as p(Fac(A)). For I,J € Fac(A) we write I ~; J if f(I) = f(J) for all
f € C%(Fac(A)), and denote by [I] the equivalence class of I in Fac(A). We remark
that when A is separable the spaces Fac(A) and Prim(A) coincide [12, Propositions
11.6.1.11 and I1.6.5.15].

Proposition 5.5.3. Let A be a C*-algebra. Then the relation ~; on Fac(A) has the

following properties:
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(i) For I € Fac(A) and P € hull(I) we have

[1); N Prim(A) = [P] and k ({T]y) = k ([P),

(ii) Fac(A)/ ~; is homeomorphic to Prim(A)/ ~ wia the map [I|; — [P], where
P € hull(I), when both spaces are considered with the quotient topology,

(iii) Each Glimm ideal of A is of the form G = k([I]f) for some I € Fac(A).
(iv) The equivalence classes of ~ satisfy

[I]f = hull{(Gy).

Proof. Parts (i) and (ii) are shown in [37, Lemma 2.2]. (iii) is immediate from (i).
To prove (iv) take I € Fac(A). It follows from the definition of ~ that the equiva-
lence class [I]; is a closed subset of Fac(A). By the definition of the hull-kernel topology

and by part (iii) we then have
[I]y = hully (k([I]f)) = hullf(Gy).
]

As a consequence of Proposition 5.5.3(ii), we shall consider the set of equivalence
classes Fac(A)/ ~; as Glimm(A), and denote by p’; : Fac(A) — Glimm(A) the cor-
responding quotient map. Moreover, we may unambiguously speak of the quotient
topology 7, on Glimm(A) as the strongest topology on this space for which either p4
or pﬁ is continuous.

For C*-algebras A and B and two pairs of ideals (P, Q), (R, S) € Fac(A) x Fac(B),
we will write (P, Q) ~ (R, S) when g(P,Q) = g(R, S) for all g € C®(Fac(A) x Fac(B)).
By Lemma 5.2.1, this is equivalent to saying P ~; R and Q ~; S.

Lemmas 5.5.4, 5.5.5 and Proposition 5.5.6 below relate equivalence classes of the

relation ~; in Fac(A) x Fac(B) with those in Fac(A ®, B), via the maps ® and W.

Lemma 5.5.4. Let (I, J) € Fac(A)xFac(B), and let G; = k ([I]5) and Gy = k ([J]y) be
the corresponding Glimm ideals of A and B respectively. Then G ) =k ([®(I,J)]y),
the Glimm ideal of A ®q B corresponding to [®(1,J)]y, satisfies Gy(r,5) C ®(G1,G ).
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Proof. The fact that ®(I,J) € Fac(A®, B) follows from Proposition 5.3.2 (iii). Taking
(P,Q) € hull(Z) x hull(J) we have ®(P, () € hull (®(I,J)) by Proposition 5.3.2 (i). In

this case Proposition 5.5.3(i) gives

k({15) = k([P), k([J]y) = k([Q]) and k ([®(1, J)]f) = k ([2(P, Q)]),

and so we may replace (I, J) with (P, Q).

Note that if (R,S) € Prim(A) x Prim(B) such that (R,S) ~ (P,Q), and f €
C®(Prim(A®,B) then fod® € C*(Prim(A) x Prim(B)), hence f(®(R,S)) = f(®(P,Q)),
so that ®(R,S) ~ ®(P, Q). It then follows from Proposition 5.3.2(v) that

®(G1,Gy) = @ (k([P]), k([Q))) (W®(R,S): (R, S) € hull(k[P]) x hull(k[Q])}
(®(R,S): (R, S)~ (P,Q)}
[J{M € Prim(A @4 B) : M ~ ®(P,Q)}

k([@(P,Q)]) = Gor.)

Il

iy

(l

O

Lemma 5.5.5. For any M € Fac(A ®, B), ® o U(M) € Fac(A ®, B) and M =~y
®oW(M).

Proof. The fact that ® o (M) € Fac(A ®, B) follows from Propositions 5.3.2(iii)
and 5.5.2(ii). By Proposition 5.5.2(iv), we have M C ® o U(M). Hence ® o ¥(M) €
hullf(M) = {M}, so that M ~; ® o U(M).

O

Note that the proof of Proposition 5.5.6 below requires that we base the definition
of Glimm ideals on the complete regularisation of the space of factorial ideals (since ¥

maps factorial ideals to factorial ideals).

Proposition 5.5.6. Let (I,.J) € Fac(A) xFac(B), M € Fac(A®,B) and let (M4, MP)
denote W(M). Then M ~; ®(1,J) if and only if (M4, MB) ~; (I,J). Hence with
G1,Gy and Gy ) as defined in Lemma 5.5.4, we have

M € hully (Gg(r.p)) if and only if (M4, MB) e hull;(Gy) x hullf(G)
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Proof. Suppose M ~¢ ®(I,J), and take g € C?(Fac(A) x Fac(B)). Using Proposi-
tion 5.5.2 (ii) and (iii), we have go ¥ € C? (Fac(A ®, B)). Hence

g(M*, MP) = (go ¥)(M) = (g0 U)(®(I, J)) = g(1,J),

since W o @ if the identity on Fac(A) x Fac(B) by Proposition 5.5.2 (i). It follows that
(M4, MB) ~; (1,J).

Since Gg(z,5y = k ([2(I, J)]y), Proposition 5.5.3(iv) shows that [®(,J)]; =
hullf(Gg(s.y). Similarly [I]; = hull;(G) and [J]; = hullf(G ).

To prove the converse, suppose that (M4, MB) ~ 7 (I, J). Then by Lemma 5.2.1,
MA ~¢ I and MB ~y J,so that MA D Gyand MB O G . Together with Lemma 5.5.4,

this gives the inclusion
Do U(M)=dM* MP)2®(G1,Gy) 2 Gar.1),

and since by Proposition 5.3.2(iii) ® o (M) € Fac(A ®4 B), it follows from Proposi-
tion 5.5.3(iv) that ® o W(M) ~; ®(I,J). Then by Lemma 5.5.5 we have M ~; ®(1, J).

The final assertion of the statement follows from Proposition 5.5.3(iv). O

In what follows we make use of the map A : Id'(A) x Id'(B) — 1d'(A ®, B) defined
via (5.3.2). For (I,J) € prime(A) x prime(B), (¥ o A)(I,J) = (I,J) [17, Lemma
2.13(i)]. We will extend this to general (I,.J) € Id’(A) x Id’(B) in Lemma 5.5.7 below.
On the other hand, if K € Id’(A ®, B) then

(AoU)(K)=KA®,B+A®,KBECK (5.5.2)
by the definition of K4 and KZ in (5.5.1).
Lemma 5.5.7. Let I and J be proper ideals of A and B respectively. Then
(i) hull;A(I, J) = U~ (hull(I) x hullg(J)).
(4] To T, J)=(1,J]

Proof. To show (i), take F € hull;A(1, J), then ¥(F) = (F4, FB) € Fac(A) x Fac(B)
and FA D I, FB D J. Hence W(F) € hull;(I) x hullf(.J).

On the other hand, suppose F' € Fac(A ®4 B) and V(F) € hullg(I) x hully(J).
Then using (5.5.2), A(I,J) C A(F4, FB) C F, as required.
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To prove (ii), let K = A(I,J) and (K4, KB) = ¥(K). Thenifa € I, a® B C
I %4 BCK,s0oae K and hence I C K4. On the other hand, suppose a € K4 and
be B\J, so that a@ b € K. Choose a bounded linear functional A on B vanishing on
J such that A\(b) = 1. Let L) : A®, B — A be the corresponding left slice map defined
via Ly(a' @ ') = A(b')d’ on elementary tensors and extended to A ®, B by linearity
and continuity [54, Theorem 1]. Then Ly(A ® J) = {0} and Ly(I ® B) C I, so that
Ly(K) C I. In particular Ly(a ®b) = a € I, hence K4 C I and so K4 = I. A similar

argument shows that K8 = J, which completes the proof. O

Corollary 5.5.8. Let (I,J) € Fac(A) x Fac(B). Then with G1,G; and Gg(; 5y defined

as in Lemma 5.5.4, we have
Gq>(1“]) :GI[X)QB+A®QGJ

Proof. Take M € Fac(A ®, B). By Proposition 5.5.6, M 2 Gg(;, ) if and only if
M e ¥~ (hullf(G) x hull;(G)). Hence by Lemma 5.5.7(i), M 2 Gg(; ) if and only
lfAfQA(G]GJ),SO Gq,(].J):A(G].GJ). O

As a consequence of Corollary 5.5.8, we are now in a position to prove a similar

result to [37, Theorem 2.3]:

Theorem 5.5.9. Let A and B be C*-algebras and denote by v : Glimm(A ®, B) —
(Glimm(A) x Glimm(B), 7¢,) the homeomorphism of Theorem 5.3.3. Then identifying

the Glimm spaces with the corresponding sets of ideals we have

(i) A =~ on Glimm(A) x Glimm(B), hence A is a homeomorphism of
(Glimm(A) x Glimm(B), 7.,) onto Glimm(A ®, B),

(ii) 1 is given by the restriction of ¥ to Glimm(A ®, B).

Proof. Following the notation of Theorem 5.3.3, Proposition 5.5.3(i) and Corollary 5.5.8

show that the diagram

Prim(A) x Prim(B)L—qD——> Prim(A ®, B)
PAXPB 100

Glimm(A) x Glimm(B) B Glimm(A ®, B)
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commutes, i.e., that Ao (py X pg) = pa 0 ®. Therefore if we can show that ¢~! o
(pa X pB) = pa © @ also, then it will follow necessarily that A =~ (since pa x pp is
surjective).

From Theorem 5.3.3, the extension (p4 x pg) of pa x pp to Prim(A ®, B) satisfies

(pa x pg)o® = pa x pg and ¢ 0 p, = (pa X pB), so we have

Yl o(paxpp) = ¥ lo(paxpp)od
= ¢ lo(opy)o®
= pa©®,

which proves (i).

Assertion (ii) is then immediate from (i) and Lemma 5.5.7(ii). O

Suppose that A and B are C*-algebras such that A ®, B satisfies Tomiyama’s
property (F). Under this assumption, Kaniuth’s result [37, Theorem 2.3] shows that
the map A : (Glimm(A),7,) x (Glimm(B),7,) — (Glimm(A ®, B),7,) is an open
bijection, where 7, denotes the quotient topology on the Glimm space as discussed in
Remark 5.2.11.

In order to extend this to arbitrary minimal tensor products, we first need some

Lemmas:

Lemma 5.5.10. Suppose that the complete reqularisation maps pa and pg are open

with respect to either 74 or 7, on Glimm(A) and Glimm(B) respectively. Then
(1) 7q = Ter on each of Glimm(A) and Glimm(B),

(it) Tq = Ter = 7p on Glimm(A) x Glimm(B), where 7, is the topology induced by the
product map pa X pg,

(iii) T4 = Ter on Glimm(A ®, B).

Proof. (i) is shown in the discussion in [7, p. 351].
(ii) As a consequence of (i), we may consider 7, as the product of the quotient
topologies. Since p4 x pp is necessarily 7, continuous, 7, is always weaker than 7.
Consider a 7, open subset U of Glimm(A) x Glimm(B) and let (z,y) € Y. Choose
(P,Q) € Prim(A) x Prim(B) with (pa x pg)(P, Q) = (z,y). Then since (pa x pg) 1 (U)
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is an open subset of Prim(A) x Prim(B), we can find open neighbourhoods W of P
and S of @ such that W x S C (pa x pg) (). Then we have

(pa x pB)(P,Q) = (z,y) € pa(W) x pB(S) C U,

and pa(W) x pg(S) is mp-open since py and pp are both 74-open. In particular (z,y)
is a 7p-interior point of I, and hence U is Tp-open.

The fact that 7, = 7., follows from condition (ii) of Proposition 5.2.9.

As for (iii), it is always true that 7, is stronger than 7., thus we need to prove that
any 74 open subset U of Glimm(A ®, B) is Te-open. By part (ii) and Corollary 5.3.4,
1 is a homeomorphism of (Glimm(A ®4 B), 7.r) onto (Glimm(A) x Glimm(B), 7). So
given a 74-open subset U of Glimm(A®, B), it will suffice to prove that (i) is 74-open,
that is, that (p4 x pg) " (¥(U)) is open.

Let W = (pa x pB)~ ' (¥(U)). We will show that W = @~ (p;'(U)). Since U is
Tq-open and @ is continuous on Prim(A) x Prim(B) by Proposition 5.3.2(ii), this will
imply that W is open. For any (P, @) € Prim(A) x Prim(B), Theorem 5.3.3 gives

Popao®P,Q)=(paxpp)(PQ),

so that (P,Q) € W if and only if p, o ®(P,Q) € ¥~ (4(U)) = U. It follows that
W =& (p;'(U)), so that ¥(Y) is 7;-open and hence U is Te-open.
]

Lemma 5.5.11. Let p{‘. pé and p£ denote the complete regularisation maps of Fac(A),
Fac(B) and Fac(A @, B) respectively, and let ¢ : Glimm(A ®, B) — Glimm(A) x
Glimm(B) be the map of Theorem 5.3.3. Then it holds that

boplo®=plxpp

on Fac(A) x Fac(B).

Proof. Let (I,J) € Fac(A) x Fac(B) and (p,q) = (p{q X pr)(I,J). Take (P,Q) €
hull(I) x hull(J), so that (pa x pB)(P,Q) = (p,q) by Proposition 5.5.3(1). Then by
Proposition 5.3.2(i), ®(P,Q) € hull (®(I, J)), so that (ps 0 ®)(P,Q) = (pk o ®)(I,J)

by Proposition 5.5.3(i) applied to A ®, B.
Finally, Theorem 5.3.3 gives

(Y0 pao®)(P,Q) = (pa x pB)(P,Q),
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so that
(o pl o ®)(I,J) = (o x ph) (I, J),

as required. [

We are now in a position to extend [37, Theorem 2.3], which required the assumption
that A ®, B satisfies property (F).

Theorem 5.5.12. The map 1 of Theorem 5.3.8 defines a continuous bijection of
(Glimm(A ®q B),74) onto the product space (Glimm(A), 74) x (Glimm(B), 74), where
74 denotes the quotient topology induced by the complete regularisation map. It follows
that its inverse A is an open bijection. Moreover, A is a homeomorphism whenever the

complete reqularisation maps pa and pp are open with respect to the quotient topologies
on Glimm(A) and Glimm(B).

Proof. Let U x V be a basic open subset of the product space (Glimm(A),7,) x
(Glimm(B), 7;). Then by Proposition 5.5.3(ii), the preimages W := (pﬁ)_l(U) and
S = (pf )~1(V) are open subsets of Fac(A) and Fac(B) respectively. We claim that
Y1 (U x V) is a 14-open subset of Glimm(A ®, B), that is, that (pcf,)_1 (v U x V)) is
an open subset of Fac(A®, B). Since the map W is continuous by Proposition 5.5.2(iii),

it will suffice to show that
()™ (@ U x V) =T (W x S).

Let M € U~Y(W x S). By Lemma 555 M ~; ® o U(M), so that ph(M) =
pé(cb oW(M)). Then Lemma 5.5.11 gives

b0 pli(M) = (0 pl, 0 B)(T(M)) = (py x ph)(W(M)) €U x V.

Hence pl(M) € %=1 (U x V), and we have U~} (W x 8) C (ph)~! (v~ (U x V)).
To show the reverse inclusion, let M € (pf)_1 (v~' U x V)), and (p,q) = (¥ o
pﬁ)(M) €U x V. Choose (I,J) € W x S with (pﬁ X P{B)(I’ J) = (p,q). Then invoking

Lemma 5.5.11 again we have

(W0 pL)(@(I, ) = (o x p5)I,J) = (p,q).

Since v is injective and (¢ o pL)(M) = (p, q), it follows that pcf,(M) = p{;(q)(I, J)) and
hence M ~; ®(1,J). By Proposition 5.5.6, this implies that W(M) ~ (I, J), so that
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(p/f4 i pg)(\ll(]\[)) = (p,q). In particular ¥(M) € (pﬁ X pr)—l(u xV) =W xS, so that
M € U1 (W x 8) and hence (pf)~" (¢~ (U x V)) € T1(W x S), as required.

If in addition the complete regularisation maps p4 and pp are open, then by
Lemma 5.5.10 we have 7, = 7., on each of Glimm(A), Glimm(B) and Glimm(A ®, B).
Applying Corollary 5.3.4 and Theorem 5.5.9 it follows that A is a homeomorphism of
(Glimm(A), 74) x (Glimm(B), 74) onto Glimm(A ®, B). O

5.6 Sectional representation

In this section, we study A @, B as the section algebra of the canonical upper-
semicontinuous C*-bundle over Glimm(A ®,, B) defined by the Dauns-Hofmann Theo-
rem (Theorem 2.3.6). In particular, we relate this bundle to the corresponding bundles
over Glimm(A) and Glimm(B) associated with A and B respectively.

As a consequence of Theorems 2.3.6 and 5.5.9, we can see that for any C*-algebras
A and B the canonical bundle associated with A®, B has base space homeomorphic to
(Glimm(A) x Glimm(B), 7.) (or its Stone-Cech compactification), and fibre algebras
x-isomorphic to the quotient C*-algebras

AR®. B
A(Gy, Gy)
for (p,q) € Glimm(A) x Glimm(B), and zero otherwise.

Lee’s Theorem [44, Theorem 4] implies that this bundle is a continuous C*-bundle
if and only if the complete regularisation map p4 is open (see also Proposition 2.3.3(iii)
and [7, Theorem 2.1]). Thus in the case of the minimal tensor product of C*-algebras,
it is natural to ask whether p, being open is equivalent to pa and pp being open. It
follows from (37, Lemma 2.2 and Theorem 2.3] that this is indeed the case when A®, B
satisfies property (F). We now consider this question under more general hypotheses.

It is well known that A @, B satisfies property (F) if and only if (7, J) = A(Z,J)
for all (1,J) € 1d'(A) x 1d'(B); see [54, Theorem 5 (2)] for example. The assumption
that ®(G, H) = A(G, H) for all Glimm ideals of A and B is weaker in general. For
example, if H is an infinite dimensional Hilbert space then B(H) ®, B(H) does not
satisfy property (F) [57, Corollary 7]. However, Glimm(B(H)) is a one point space
consisting of the zero ideal, and clearly ®({0},{0}) = A({0},{0}). It appears to
be unknown whether there exist C*-algebras A and B and Glimm ideals (G,H) €
Glimm(A) x Glimm(B) such that A(G,H) C ®(G, H).
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The condition that A = ® on Glimm(A) is equivalent to requiring that the fibre
algebras of the canonical bundle associated with A ®, B are given by the minimal

tensor products of the corresponding fibres of the bundles of A and B, that is
{(A/G)p) ®a (B/Gy) : (p,q) € Glimm(A) x Glimm(B)}, (5.6.1)

(with topology inherited from (Glimm(A) x Glimm(B), 7¢) by Theorem 5.5.9). Indeed
one may always consider an element ¢ € A ®, B as a cross-section of the fibred space
given by (5.6.1) via (p,q) — ¢+ ®(Gp, Gy) for (p,q) € Glimm(A) x Glimm(B) [6,
p. 136-137]. In the case that the bundles of A and B are continuous, it follows
from [6, Corollary 3.1] that this representation of A ®, B defines a continuous C*-
bundle over (Glimm(A) x Glimm(B),7,) in the obvious way if and only if A = ® on
Glimm(A) x Glimm(B).

Theorem 5.6.2, together with Lee’s Theorem quoted above, asserts that under the
assumption A = & on Glimm(A) x Glimm(B), the Dauns-Hofmann representation of
A ®, B defines a continuous C*-bundle over Glimm(A ®, B) if and only if A and B

define continuous C*-bundles over Glimm(A) and Glimm(B) respectively.

Lemma 5.6.1. Let A and B be C*-algebras such that A(G,H) = ®(G,H) for all
(G,H) € Glimm(A) x Glimm(B), and let U C Prim(A ®, B) be open. Then

pa(U) = pa (U N P(Prim(A) x Prim(B))).

Proof. Let m € po(U) and choose M € U such that po(M) = m. Let Gy, = k([M])
be the corresponding Glimm ideal of A ®, B. Then there exist (p,q) € Glimm(A) x
Glimm(B) and corresponding Glimm ideals G, and G4 of A and B respectively with
Gm = ®(Gp, Gq) = A(Gp, G¢) by Theorem 5.5.9.

Now M € hull(G,,) NU, which is a nonempty relatively open subset of hull(G,,).
By Proposition 5.3.2(iv), @ (hull(G,) x hull(Gy)) is dense in hull(Gn,) = py'({m}).
Hence there exists (P, Q) € hull(Gp) x hull(G,) such that ®(P,Q) € hull(G,,) N U. In
particular ®(P, Q) € UNP(Prim(A) x Prim(B)), and p, 0 ®(P, Q) = m. It follows that
pa(U) € po (U N P(Prim(A) x Prim(B))), and the reverse inclusion is trivial.

[l

Theorem 5.6.2. Let A and B be C*-algebras such that A(G,H) = ®(G,H) for all
(G,H) € Glimm(A) x Glimm(B). Then the following are equivalent:
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(i) pa is an open map with respect to 7. on Glimm(A ®, B),
(ii) pa is an open map with respect to 7, on Glimm(A ®, B),

(iii) pa and pp are open maps with respect to 1o on Glimm(A) and Glimm(B) re-

spectively,

(iv) pa and pp are open maps with respect to 7, on Glimm(A) and Glimm(B) respec-

tively.

Proof. Note that by Lemma 5.5.10(i), (i) is equivalent to (ii), and (iii) is equivalent to
(iv). We will show that (i) implies (iv) and that (iii) implies (i).

Suppose that (i) holds. We first claim that ps x pp is open as a map into
(Glimm(A) x Glimm(B), 7). Take an open subset & C Prim(A) x Prim(B). Then
since the restriction of ® to Prim(A) x Prim(B) is a homeomorphism onto its image by
Proposition 5.3.2(ii), there is an open subset &’ C Prim(A®, B) with «'N®(Prim(A) x
Prim(B)) = ®(U). By Lemma 5.6.1 po(U') = pa(®(U)). Then by Theorem 5.3.3

(pa x pB)(U) = (Y 0 pa o ®)U) = (¢ 0 pa)U'),

which is 7.--open since p, is an open map and 1) is a homeomorphism.
As in the proof of |7, p.351], 7., must agree with the quotient topology 7, on
Glimm(A) x Glimm(B) induced by the map pa x pg. In particular ps x pp is a T4-open

map. To see that p4 is open, let W C Prim(A) be open. Then
(p4 % ps) (W x Prim(B)) = pa(W) x Glimm(B)
is 7-open, hence (pa x pp) ! (pa(W) x Glimm(B)) is open. By Lemma 5.2.1 we have
(pa x pB) " (pA(W) x Glimm(B)) = p,;' (pa(W)) x Prim(B),

so that in particular, pzl (pa(W)) is open. It follows that ps is a 7,-open map. A
similar argument shows that pp is 7,-open, hence (i) implies (iv).

Assume that (iii) holds and take an open subset 4 C Prim(A ®, B). Then U N
¢ (Prim(A) x Prim(B)) is a relatively open subset of ®(Prim(A) x Prim(B)). Again
by Proposition 5.3.2(ii), there is an open subset V C Prim(A) x Prim(B) such that
(V) =UNP(Prim(A) x Prim(B)). By Theorem 5.3.3 we then have

(Y0 pa) U N P(Prim(A) x Prim(B))) = (¢ 0 pa 0 ®)(V) = (pa x pB)(V),
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which is 7..-open since p4 X pg is a 7-open map by Lemma 5.5.10(ii). Together with

Lemma 5.6.1, this shows that
paU) = pa (U N ®(Prim(A) x Prim(B))) = ¢! ((pa x pg)(V)),

which is open since 9 is a homeomorphism. Hence p, is an open map.
O

Following a suggestion of R.J. Archbold, below we give a similar result to (6, Propo-
sition 4.1]. Under the assumption that A and B each have at least one Glimm quotient
containing a nonzero projection, we show in Proposition 5.6.4 that the implication
(i)=>(iii) of Theorem 5.6.2 does not require A = ® on Glimm(A) x Glimm(B). We
establish as a corollary that under the same assumptions on A and B, if A ®, B is

quasi-standard then A and B must be quasi-standard.

Lemma 5.6.3. Let X and Y be topological spaces. Then for any yo € Y, the map
sending px () = pxxy(z,y0) is a homeomorphic embedding of pX into p(X xY),

with respect to the corresponding 7. -topologies on each space.

Proof. By Lemma 5.2.1 we may identify p(X x Y) with (pX X pY,7.) under the
canonical mapping pxxy(z,y) — (px(z),py(y)). Clearly the map sending px(z) —
(px(x), py (y0)) is a homeomorphic embedding of pX into pX x pY with the product
topology 7,. Thus we must show that the restrictions of the 7, and 7., topologies to
the subspace pX x {py(yo)} are equal. Since 7, < 7, it will suffice to show that for
any T-open subset O of pX X pY and zp € X such that (px(zo), py(yo)) € O, there
is a cozero set neighbourhood U of px(zg) in pX such that U x {py(yo)} C O.

Since O is Te-open there is g € CP(X x Y) such that coz(g”) is a neighbourhood
of (px(z0), py (yo)) contained in O. Define f € C*(X) via f(x) = g(z,yo), then fP €
Ct(pX) and f* (px(z)) = ¢ (px (@), py (y0)) for all z € X. In particular , f*(px(z)) =
0 if and only if g” (px (z), py (v0)) = 0, so that

coz(f?) x {py (y0)} = coz(¢”) N (pX x {py (%0)}),

as required.
O

Proposition 5.6.4. Suppose that A and B are C*-algebras such that the complete
regularisation map pa : Prim(A ®4 B) — Glimm(A ®, B) is open. If there exists a
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point qo € Glimm(B) (resp. po € Glimm(A)) such that the quotient C*-algebra B /Gy,

resp. A/Gy,) contains a nonzero projection, then pa (resp. pgp) is open.
Po ¥

Proof. Let e € B such that e 4+ Gy, is a nonzero projection in B/Gy,. Then the map
Op: A= (A®q B)/A(Gp,Gy,) defined by

Op(a) =a®e+ A(Gp, Gy)

is a x-homomorphism for each p € Glimm(A). We first claim that ker®, = G,,.

Indeed, it is clear that if a € G}, then a®e € A(Gyp, Gy,), so that Gy, C ker©,. Now
choose a state A of B vanishing on G, such that A(e) = 1, and consider the associated
left slice map Ly : A ®, B — A defined on elementary tensors via Ly(a ® b) = A(b)a,
and extended to A ®, B by linearity and continuity. Then since Ly(A ® Gg,) = {0}
and Ly(Gp ® B) C Gy, we have Ly(A(Gp,Gg,)) € Gp. In particular, if a € ker®,, then
a® e € A(Gp, Gy,), so that

Ly(a®e) = Ae)a=a € Gp,

hence ker®, = G). It follows that for any a € A and p € Glimm(A), |la + G,|| =
104(a)]l

By [7, Theorem 2.1 (i) = (ii)] the function on Glimm(A ®, B) sending z + |la ®
e + G| is continuous. Since by Theorem 5.5.9, A : (Glimm(A) x Glimm(B), 1) —
Glimm(A ®4 B) is a homeomorphism, the map sending (p,q) — |la ® e + A(Gp, Gy)||
is Ter-continuous on Glimm(A) x Glimm(B) for every a € A.

Finally, by Lemma 5.6.3 the map p — (p,qo) is a homeomorphic embedding of
Glimm(A) into (Glimm(A) x Glimm(B), 7). It follows that for each a € A the func-

tion p — |la + G| agrees with the composition of continuous maps given by
P (p,q0) = A(Gp, Ggo) = lla ® e+ A(Gp, Goo )|
Glimm(A) —— (Glimm(A) x Glimm(B), 7o) — Glimm(A ®, B) — R,
hence is continuous. By [7, Theorem 2.1 (ii) = (i)], this implies that p4 is open.  [J

Definition 5.6.5. An ideal I of a C*-algebra A is said to be primal if given n > 2
and ideals Jp, ..., J, of A such that J;Js...J, = {0}, then there is an index 1 <i<n
with J; € I. A C*-algebra A is called quasi-standard if
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(i) the Dauns-Hofmann representation of A is a continuous C*-bundle over
Glimm(A), and

(ii) For each p € Glimm(A), the Glimm ideal G} is a primal ideal of A.

For separable A, quasi-standardness of A is equivalent to the condition that A is
a continuous Cp(X)-algebra such that there exists a dense subset D of X with J,
primitive for all € D. There are several other equivalent definitions of quasi-standard

C*-algebras, see [7, Theorems 3.3 and 3.4] for example.

Corollary 5.6.6. Suppose that A and B are C*-algebras such that A ®, B is quasi-
standard. If there ezists a point qo € Glimm(B) (resp. pp € Glimm(A)) such that the
quotient C*-algebra B/Gy, (resp. A/Gp,) contains a nonzero projection, then A (resp.

B) is quasi-standard.

Proof. Since A ®, B is quasi-standard, the Glimm ideals of A and B are primal by (6,
Lemma 4.1]. The fact that p4 and pp are open under the respective hypotheses then

follows from Proposition 5.6.4. (]

Corollary 5.6.7. Let A and B be C*-algebras such that Z(A) and Z(B) are nonzero.
(i) If po is open then pa and pp are open,
(ii) If A®q B is quasi-standard then A and B are quasi-standard.

Proof. Since Z(B) # {0}, there is gy € Glimm(B) such that Z(B) € G, (otherwise
Z(B) C ({{Gy : ¢ € Glimm(B)} = {0}). It then follows from [8, Proposition 2.2(ii)]
that B/Gy, is in fact unital, and in particular contains a nonzero projection. Similarly,
there is po € Glimm(A) for which A/G,, is unital. Assertions (i) and (ii) then follow
from Proposition 5.6.4 and Corollary 5.6.6 respectively. )

We remark that the condition Z(B) # {0} is not necessary to ensure that B has a
Glimm quotient containing a nonzero projection. This can be seen by taking B = K (H)
for a separable infinite dimensional Hilbert space H. Then Glimm(B) consists of the
zero ideal, so that B is a Glimm quotient of itself. We have Z(B) = {0}, while B

contains all of the finite rank projections on H.
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5.7 Examples

Our first example shows that the topologies 7, and 7., can indeed differ for the complete
regularisation of a product of primitive ideal spaces when condition (ii) of Theorem 5.2.6
fails. We show that the primitive ideal space of the (separable) C*-algebra A of [21,
11, Example 9.2] admits a point Py for which no cozero set neighbourhood of Py in
Prim(A) has w-compact closure. Further we exhibit a cozero set neighbourhood U of
(Po, Py) in Prim(A) x Prim(A) which does not contain a product ¥V x W of cozero sets
V, W C Prim(A). Thus pa x py(U) is a Ter-open subset of Glimm(A) x Glimm(B) which
is not 7,-open. In particular we deduce that Glimm(A ®, A) is not homeomorphic to
(Glimm(A) x Glimm(A), 7).

Example 5.7.1. Let A be the C*-algebra constructed in Example 2.3.8. We claim that
none of the points 0" have a cozero set neighbourhood in Prim(A) with w-compact
closure. Since Glimm(A) is not locally compact, it follows from Lemma 5.2.8 that there
is a point in Prim(A) for which no cozero set neighbourhood has w-compact closure.
(00, 10M)] has such a neighbourhood, it must be the

case that there is some m € N such that 0™ does not.

00
n=1

Since every point in [—1,0) UJ

For m,n € N the bijection 6, : Prim(A) — Prim(A) ezchanging t'™ and t™
for 0 <t < 1, and fizing every other point, is clearly a homeomorphism. Thus if
coz(f) were a neighbourhood of 0™ with w-compact closure, coz(f o 0ym.n) would be a
neighbourhood of 0™ with w-compact closure. Hence 0™ does not have a cozero set
neighbourhood with w-compact closure for any n.

We now show that the product topology 7, on Glimm(A) x Glimm(A) is strictly
weaker than 7... Note first that

Prim(A) x Prim(A) =[-1,0) x [-1,0) U ([—1,0) X D In)
=L

u([j 1,,,><[—1,0))u G L.% I
1

m=1 m,n=

The neighbourhood basis of the following types of points will be of interest:

o (0™ 0(M): sets of the form

((—5.0) U [0, <5<’">)) x ((—5,0) u o™, s<">))
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where §,e > 0.

o (z,y) € {00} x (0 1] neighbourhoods of the form

(8,0 u0™,8) x (1™, (y+e)™))
where 0 < 6 < 1,0 < e < |y|.

o (z,y) € (0™ 10M)] x {0} : neighbourhoods of the form
(2= ™, (2 +8)™) x ((~e,0)u 0™, )
For each m,n € N define frpn : Im X In — [0, 1] via

fmn(z,y) = max(1 — mnz,1 — mny, 0).

Then fmn(z,y) > 0 when £ < == ory < —=, i.e. coz(fmn) = [0, (L)(m)) X

mn mn’ mn

[0, (%)(n)) Now define f : Prim(A) x Prim(A) — [0, 1] via

f(l?,y) — { f'm,n(l‘,y) Zf (‘T’y) € Im X ]n

1 otherwise

Then f is continuous since fmn(0™,00) = fi (0™, y(™) = fr o (x(™,0M) = 1,

and by the neighbourhood bases of these points constructed above. Moreover, the cozero

set of f is
[-1,0) x [-1,0) U ( G )U(Glmx[—l,0)>

( L) %, (L [0<">,($)(")))

mn—

We show that coz(f) is not a union of cozero set rectangles. To this end, leti,j € N
and let U and V be cozero set neighbourhoods of 0 and 09) respectively. Then U =
p L(W), where W is a cozero set neighbourhood of 0 in Glimm(A), hence U is also
neighbourhood of 0%) for all k € N. In particular, for every k € NU{0} there is e > 0
such that

o0
U := —£9,0 U U

n=1
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Thus we get open sets U' C U and V' CV defined via

o0

50, U [0 m) 7;,” and V = E(), U O(n
m=1 n=1

where 6j,¢; > 0 for all j > 0. If U x V C coz(f) then it would follow that U' x V' C

coz(f). In particular this would imply that

00m), 65M) % o™, M) ¢ [otm), (L)) x jom), (L.)™)

mn

for all m,n > 1. In other words, 6y, < —— for alin > 1 and g, < —— L for allm > 1.
But then 6, = €, =0 for all m,n > 1.
Together with Theorem 5.2.2, this shows that Ter # 7, on Glimm(A) x Glimm(A).

In what follows we denote by wq the first infinite ordinal and by w; the first un-
countable ordinal. For i = 0,1 we let [0,w;) be the space of all ordinals v < w; and
[0,w;] = [0,w; +1). These spaces will be considered with the order topology, with basic
open sets given by

(a,8) := {7 € [0,wi] :x <y < B},

where o, § € [0,w;] for i =0, 1.

It follows from [29, 5.11(c) and 5.12(c)] that the space [0,w;) is a non-compact
pseudocompact space. On the other hand [0,wp) is homeomorphic to N, which being
infinite and discrete cannot be pseudocompact.

Our second example is a nontrivial application of Theorem 5.4.6. First we de-
scribe the C*-algebra A of [41, Appendix|, which has the property that Glimm(A)
is pseudocompact but non-compact. We then construct a (non-unital) o-unital C*-
algebra B with Glimm(B) compact, such that M(A) ®, M(B) # M(A ®4 B), while
ZM(A)® ZM(B) = ZM(A ® B).

Example 5.7.2. Let Y = [0,w;] x [0, wo]\{{w1} X {wo}} and S = {w1} x [0,wp) and
T = [0,w;) X {wo}. Define a new space X =Y U {y}, where y ¢ Y with topology such
that Y is embedded homeomorphically into X, and {y} is an open set whose closure is
SU{y}.

Let C = Cy(Y), D = Co(S) and let m; : C — D be the restriction map. Let H be an
infinite dimensional separable Hilbert space and {p,} a sequence of infinite dimensional

mutually orthogonal projections on H. Define an injective x-homomorphism X\ : D —
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B(H) via X(f) = Y2, f(n)pn (identifying S with N in the obvious way), and note
that \(D) N K (H) = {0}.

Set E = A(D)+ K(H) and let mo : E — D be the quotient map. Let A= {c® e €
C & E :m(c)=mae)}. Then Prim(A) is homeomorphic to X.

The complete regularisation map pa maps Y\S to itself, and S U {y} to a single
point which we will denote by z. Thus Glimm(A) = (Y'\S)U{z}, where a neighbourhood
basis of z is given by the collection of sets of the form (|J;2(an,w1) x {n}) U{z}, for
some ordinals 0 < ap, < wy for all 1 < n < wy.

Note that Y\S = [0,w;) x [0,wp], being the product of a pseudocompact space and a
compact space, is necessarily pseudocompact. It follows that Glimm(A) is pseudocom-
pact.

Consider the C*-algebra B of sequences (T,,) € B(H) such that T,, » T, € K(H),

with pointwise operations and supremum norm. Then Prim(B) consists of the ideals
Pno = {(Tn) : Tno S 0}7Kn0 = {(Tn) : Tno € K(H)}

for ng € N, and Py, = {(T,,) : Too = 0}. The ~-equivalence classes in Prim(B) then
consist of pairs {Ppy, Kny} for ng € N, and {Px}. As in the proof of [7, Proposi-
tion 3.6/, the complete regularisation map pp : Prim(B) — Glimm(B) is open and
Glimm(B) is homeomorphic to NU {oc}, with Gg = P, for all 1 < ¢ < oc.

We claim that B is a o-unital C*-algebra. Fiz an orthonormal basis {en, : m € N}

of H. For each n € N let 1,, denote the projection onto the n-dimensional subspace of

H spanned by ey, ...,e,. Then {1, : n € N} is an increasing approzimate identity for
K(H).
Now define sequences E™ = (Eﬁ,?)) in B via
E,(,?) y 1 if m<n
1, if m>mn

for each n € N. We will show that the sequence {E(")}n is an approrimate identity for
B. Take T = (T,,) € B and let € > 0 be given. Note that for each n, |T — E™T|| =
Sup,> [|Tm — Egl)TmH = sup,on || Ton — 1nTmll, by definition of E™. Then

o there exists mo > 1 such that ||, — Teol| < § whenever m > mg, and

o there exists n; > 1 such that ||To — 1,Teol| < § whenever n > ny (since Teo €
K(H) ).
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Set ng = max(mg,n;). Then if n > ng and m > n we have

||Tm =i 17?T771|| S “Tm o TOO“ e “TOO - 1nTm“

1Tin = Tooll + 1 Too = 1nTooll + 110 Too = 1nTonl|

3e
T — Tl + [|Teo — LnTsoll + | Toa — Tenl] < i

IA

IN

In particular, for alln > ng we have |T — EMT|| = sup,sn [T — 1nTm|l < ¥ <,
so that {E™},, is a countable approzimate identity for B.

Now take the tensor product A ®, B. Since B is o-unital, the inclusion M(A) ®q
M(B) C M(A ®, B) is strict by [1, Theorem 3.8]. Since pp is open, Proposi-
tion 5.2.9 (i) shows that 7, = 7, on Glimm(A) x Glimm(B). Hence by Theo-
rem 5.3.3 Glimm(A ®, B) is homeomorphic to Glimm(A) x Glimm(B) with the prod-
uct topology. Moreover, as a product of a pseudocompact space and a compact space,
Glimm(A) x Glimm(B) is pseudocompact [55, Proposition 8.21]. It then follows from
Theorem 5.4.6 that ZM(A) ® ZM(B) = ZM(A ®4 B).



Chapter 6

Exact C*-algebras and
Cy(X)-structure

This chapter is concerned with the study of tensor products of a Cy(X)-algebra
(A, X, ua) and a Cy(Y)-algebra (B,Y,up). We describe how their minimal tensor
product A ®, B gives rise to a Cy(X x Y)-algebra (A ®q4 B, X X Y, uq ® ug), and we
investigate the structure of the associated upper-semicontinuous C*-bundles.

Our approach differs from the usual notion of ‘fibrewise tensor products’ of C*-
bundles introduced by Kirchberg and Wassermann [40]. Indeed, we show in Section 6.4
that continuity of the bundles we describe here is a strictly weaker property than
continuity of the corresponding fibrewise tensor product bundle.

Given a fixed continuous Cy(X)-algebra (A, X, i), we seek conditions on A for which
(A®q B, X x Y, ua ® pupg) is continuous for all continuous Cy(Y)-algebras (B,Y, up).
We show that this occurs precisely when A is an exact C*-algebra (as was the case for
the tensor product bundles considered in [40]).

Finally, we apply these results to the study of quasi-standard C*-algebras and those
C*-algebras A with Prim(A) Hausdorff. We show that neither of these classes are stable
under taking minimal tensor products; in each case, the subclass of exact C*-algebras
is the largest class that is stable under this operation. As a consequence, we obtain
some new characterisations of exact C*-algebras.

Sections 6.1 to 6.6 have appeared in the article [46].

116
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6.1 Introduction

Tensor products of continuous bundles of C*-algebras are known to exhibit pathologi-
cal behaviour. The earliest examples of this were given by Kirchberg and Wassermann
in [40], who showed that continuity of a C*-bundle was in general not preserved by
tensoring fibrewise with a fixed C*-algebra B. Moreover, it was shown that such an
operation preserves continuity for all C*-bundles precisely when B is exact. Archbold
later obtained a localisation of this result in [6], where continuity at a point was char-
acterised in terms of a weaker exactness-type condition. Similar questions have been
studied extensively by Blanchard and coauthors in [14], [13], [16], [15] and [18].

Here we are concerned with the stability of certain well-behaved classes of C*-
bundles under the operation of forming tensor products. In particular, we study
this question for continuous Cy(X)-algebras, the quasi-standard C*-algebras (Defini-
tion 5.6.5) introduced by Archbold and Somerset (7], and C*-algebras with Hausdorff
primitive ideal space (maximal full algebras of operator fields, using Fell’s terminol-
ogy [27]).

In Chapter 5, we constructed the Glimm ideal space of the minimal tensor product
of two C*-algebras in terms of those of the factors. As a consequence, it is possible to
construct the Dauns-Hofmann bundle of A%, B in terms of that of A and B, although
the fibre algebras of this bundle remain difficult to describe without additional assump-
tions on A and B. In particular, it is not immediate from our results in Section 5.6
whether or not this bundle agrees with the fibrewise tensor product of Kirchberg and
Wassermann. Moreover, it remains difficult to show in general whether or not certain
classes of C*-algebras with well-behaved Dauns-Hofmann representations, for example

the quasi-standard C*-algebras, are stable under minimal tensor products.

In Section 6.3 we study a natural construction which equips the minimal tensor
product A®, B of a Cy(X)-algebra A and a Cy(Y')-algebra B the structure of a Cp(X x
Y)-algebra. It has been observed previously that this bundle representation of A ®, B
may differ from the fibrewise tensor product [40], [15], and that exactness of A or B
(Definition 6.3.1) plays a decisive role in these considerations.

While the results of Kirchberg, Wassermann and Archbold give necessary and suffi-
cient conditions for the continuity of the fibrewise minimal tensor product, less is known

regarding the tensor product bundle that we study in this work. Indeed, we show in
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Section 6.4 that there are quasi-standard C*-algebras A and B such that A ®, B is
quasi-standard, while the fibrewise tensor product of A and B gives rise to a discontin-

uous C*-bundle.

Related work of Blanchard [15] (concerning the amalgamated Co(X)-tensor product
of two Cp(X )-algebras A and B) indicated that continuity may fail for the tensor prod-
uct bundle that we define in Section 6.3 also. However, the argument used in [15, §3]
relies on specific properties of the C*-algebras involved. We show in Section 6.6 that for
an inexact continuous Cy(X )-algebra A, one can always construct a continuous Cp(Y')-
algebra B such that A®, B is discontinuous as a Cp(X x Y)-algebra. As a consequence
it is shown in Theorem 6.5.6 that stability of continuity is in fact equivalent to exact-
ness of A. Thus our tensor product construction identifies exactness in precisely the
same way as the fibrewise tensor product of Kirchberg and Wassermann [40, Theorem
4.5).

In Section 6.6 we investigate the question of stability of the property of quasi-
standardness under the operation of taking tensor products (in particular with respect
to the minimal C*-norm). One consequence of this is the observation that, in general,
the C*-bundle associated with the Dauns-Hofmann representation of such a tensor
product is not given by the fibrewise tensor product of the corresponding bundles of

the factors.

Until now, it appears that there were no known examples of a pair of quasi-standard
C*-algebras whose minimal tensor product fails to be quasi-standard. It was shown by
Kaniuth in [37] that if A ®, B satisfies Tomiyama’s property (F), then A ®, B is
quasi-standard if and only if A and B are quasi-standard. In particular this is the case
whenever either A or B is exact. The assumption of property (F) was weakened in [45]

to an assumption involving exact sequences related to Glimm ideals.

We show in Theorem 6.6.6 that if A is a quasi-standard C*-algebra which is not
exact, then one can always construct a quasi-standard C*-algebra B for which A ®, B
is not quasi-standard. In particular it follows that a quasi-standard C*-algebra A is
exact if and only if A®, B is quasi-standard for all quasi-standard B. This is consistent
with the characterisation of exactness obtained by Kirchberg and Wassermann in [40],
though perhaps surprising in light of the results of Section 6.4. Similarly, in the unital
case we show in Theorem 6.6.10 that stability of the property of quasi-standardness

under taking maximal tensor products (Definition 6.6.8) is equivalent to nuclearity.
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6.2 Preliminaries on (/;( X )-algebras and C*-bundles

For a C*-algebra A we will denote by Min-Primal(A) its set of minimal (w.r.t. inclusion)
primal ideals. The canonical topology 7 on Min-Primal(A) is the weakest topology such
that the norm functions I + ||a + I|| on Min-Primal(A) are continuous for all a € A. If
A is a C*-algebra for which every G € Glimm(A) is a primal ideal of A, then necessarily
we have Glimm(A) = Min-Primal(A) as sets. From [7, Theorem 3.3], a C*-algebra A
is quasi-standard if and only if (Glimm(A), 7.,) = (Min-Primal(A),7) (i.e., as sets of
ideals and topologically).

The Glimm space of a C*-algebra appears as an intermediate step in any representa-
tion of a C*-algebra as a Co(X)-algebra, due to the functorial property of the complete
regularisation of a topological space (see the remarks following Definition 2.1.5). In-
deed, if X is a completely regular space and ¢ : Prim(A) — X a continuous map, then

¢ induces a continuous map ¢ : Glimm(A) — X with ¢ =1 o py, i.e.,

Prim(A)

S

Glimm(A) L ¥

commutes. Conversely, starting with a continuous map ¢ : Glimm(A) — X, we may
set ¢ =10 py, so that ¢ : Prim(A) — X is continuous.

If in addition X is locally compact, then A is a Cy(X) algebra if and only if there is
a continuous map 4 : Glimm(A) — X. This fact is useful when working with tensor
products of C*-algebras, since by Theorem 5.5.9 we may always construct Glimm(A ®,,
B) in terms of Glimm(A) and Glimm(B). The same is not true in general for the spaces
Prim(—) and Fac(—).

In the remainder of this section we give some technical results on the structure of
Co(X)-algebras and Glimm spaces of C*-algebras which we will make reference to in

subsequent sections.

Lemma 6.2.1. Let A be a Cy(X)-algebra with base map ¢4 : Prim(A) — X, and
denote by Y4 : Glimm(A) — X the induced continuous map with the property that
Yaopa=¢a. Then for each x € X, the ideal J, of (2.3.2) is given by

g == m{G € Glimm(A) : Y4(G) = z}.
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Proof. Let F = UJZ]({I}) C Glimm(A), so that for P € Prim(A), we have ¢4(P) =z
if and only if pa(P) € F. Thus

Jx

Il

(){P € Prim(A) : pa(P) € F}
ﬂ {ﬂ{P € Prim(A) : pa(P) = p}}

peF

({G € Glimm(A) : 94(G) = z}.

Il

O

As was the case in [37] and Chapter 5, we will make use of the space Fac(A) of
factorial ideals of A, in order to define a Cy(X)-algebra structure on A. Lemma 6.2.2
and Proposition 6.2.3 below generalise parts of (37, lemmas 2.1 and 2.2 from Glimm

ideals to the ideals J, defined in the Cy(X)-algebra case.

Lemma 6.2.2. Let A be a C*-algebra and X a locally compact Hausdorff space. Then
any continuous map ¢4 : Prim(A) — X has a unique extension to a continuous map
¢’ : Fac(A) — X. For I € Fac(A) and P € hull(I) we have ¢,(I) = ¢a(P).

Proof. By [42, Lemma 3.1] there is a unique continuous map ba : prime(A) — X
extending ¢4. Set d)ﬁ = da _— then qﬁﬁ is continuous since ¢, is. Uniqueness
follows from the fact that Prim(A) is dense in Fac(A).

Take I € Fac(A) and P € hull(/), so that P € cl{}. Then since ¢£ is continuous
and extends ¢4, we necessarily have that qﬁﬁ([) — ¢{4(P) = ¢a(P): O

Proposition 6.2.3. Let A be a C*-algebra and X a locally compact Hausdorff space.

(i) A is a Co(X)-algebra if and only if there exists a continuous map ¢£ : Fac(A) —»
X,

(i) For x € Im¢ 4, J, = [{I € Fac(A) : ¢/f4(1) =
(i1i) For I € Fac(A) and x € X, we have I D J, if and only if ¢£(I) =

Proof. (i) If A is a Cy(X)-algebra with base map ¢4 : Prim(A) — X then ¢4 has a
unique continuous extension to a map qbﬁ : Fac(A) — X by Lemma 6.2.2. Conversely,

if such a map exists then setting ¢4 = qﬁfx i defines a base map.
rm
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(ii) For € Im¢ 4, we have
Jo = (P € Prim(A) : 6(P) = x} 2 ({1 € Fac(A) : ¢/, () = «}

since ¢{4 extends ¢4. Take I € Fac(A) such that qbﬁ(]) = z. Then for all P € hull(]),
¢A(P) = z, hence P D J, for all such P. Hence J, C k (hull(J)) = I for all I € Fac(A)
with ¢{4(I) =z, so that

e £ ﬂ{] € Fac(A) : qﬁﬁ(I) =zl

as required.
(iii) It follows from (ii) that if gbﬁ(]) = z then I D J,. Now suppose that I D J;
and take P € hull(I). Then P D J, and so ¢4(P) = z by [8, p. 74]. It then follows

from Lemma 6.2.2 that
¢l = (P =m

6.3 Tensor Products of C*-bundles
Definition 6.3.1. A sequence of x-homomorphisms between C*-algebras of the form
| PR, PN PR W} PR, (6.3.1)

where J is an ideal of B, ¢ the inclusion of J into B, and g the quotient -
homomorphism, is called a short ezact sequence of C*-algebras. We say that a

C*-algebra A is ezxact if the sequence

0—> ARy J 9% Ay B8 A&, (B/J)—0 (6.3.2)

is exact for every short exact sequence of the form (6.3.1).

A C*-algebra A is exact if and only if A®, B has property (F) for all C*-algebras B.
Clearly if A is such that A®, B satisfies (F) for all B, then for any short exact sequence
of the form (6.3.1), exactness of (6.3.2) follows from the fact that A({0}, J) = ({0}, J).
The converse is shown in [17, Proposition 2.17]. We will make use of this equivalence
repeatedly in the sequel.

The following theorem lists some of the known properties of tensor products of

C*-bundles, and their relation to the maps ® and A.
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Theorem 6.3.2. Let o = (X,A,my : A = A;) and B = (Y,B,0y : B = By) be

C*-bundles over locally compact spaces X and Y respectively. Then
(i) the fibrewise tensor product & o B of & and A defined via
AR B=(XXY, ARy B, 1z ®0y: A®q B = A; ®q By)
is a C*-bundle over X x Y [6, p.136,137].
If in addition &/ and B are continuous, then
(i1) o @a B is lower-semicontinuous over X x Y [40, Proposition 4.9/, and
(i1i) for (xo,y0) € X X Y, the function
(z,9) = [[(m2 ® ay)(c)|
is continuous for all c € A ®q B at (x0,y0) if and only if
ker(mz, ® 0y,) = ker(mz,) ®a B + A ®q ker(oy,),

that is, if and only if ®(ker(my,), ker(oy,)) = A(ker(my,), ker(oy,)) [6, Theorem
8.3

We now introduce an alternative approach to defining a C*-bundle structure on the
tensor product of two (upper-semicontinuous) C*-bundles, based on the ideal structure
of A ®, B rather than the fibrewise tensor product. This construction was considered
previously in [15], in the case where the base spaces are compact, however, we will need
additional information on the interplay between the base and structure maps involved.

Suppose that (A4, X, ¢4) is a Cy(X)-algebra and (B,Y, ¢p) a Cy(Y)-algebra, where
¢4 : Prim(A) - X and ¢p : Prim(B) — Y are their base maps. Then we get a
continuous map ¢4 X ¢p : Prim(A) x Prim(B) — X x Y. By a theorem of Lazar [42,

Theorem 3.2], we get a unique continuous map ¢, : Prim(A ®, B) — X X Y such that

Prim(A) x Prim(B)2— Prim(A ®, B)

da

X XY

commutes, that is, ¢o 0 ® = ¢4 X ¢p. Thus, taking ¢, as the base map, A ®, B
becomes a Co(X x Y)-algebra, (A ®q B, X X Y, dq).
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The structure maps pg : Co(X) - ZM(A),up : Co(Y) - ZM(B) and pq :
Co(X xY) = ZM(A ®, B) are then uniquely determined by ¢4, ¢p and ¢,. We will
show in Proposition 6.3.3 that in fact p, may be identified with the map pus ® up :
Co(X)®Co(Y) > ZM(A)® ZM(B) C ZM(A ®4 B).

For z € X,y € Y we shall fix the following notation for the ideals defined in
equation (2.3.2):

I. = pa({f €Co(X): f(x)=0})A
= [P € Prim(A) : $4(P) = x}
Jy = pp({g€Co(Y):9g(y)=0})B

({Q € Prim(4) : $5(Q) = y}
Kew = Bal{heColX xY):hiz,y) =0} (A8, B)

[{M € Prim(A ®4 B) : ¢a(M) = (z,y)}.

I

l

By [1], there is a canonical injective x-homomorphism ¢ : M(A)®,M(B) - M(A®,
B), and by Lemma 5.4.1 this map satisfies

iz ®y)(a®b) = (za) ® (yb) and (a ® b)(v(zx ® ¥)) = (az) ® (by),

for all elementary tensors  ® y € M(A) ®, M(B),a ® b € A®, B, so that the image
(ZM(A)® ZM(B)) is contained in ZM (A ®4 B). We will suppress mention of ¢ and
simply consider ZM(A) ® ZM(B) C ZM (A ®q B).

Proposition 6.3.3. Suppose (A, X,¢4) is a Co(X)-algebra and (B,Y,¢p) a Co(Y)

algebra. Then with the above notation:

(i) A ®q B is a Co(X x Y)-algebra with base map ¢o : Prim(A ®y, B) - X x Y
satisfying ¢o 0 ® = da x ¢,

(ii) The structure map pq : Co(X xY) = ZM(A ®4 B) corresponding to ¢, may
be identified with (g @ pp)on, wheren : Co(X xY) = Co(X) ® Co(Y) is the
canonical *-isomorphism and we identify ZM(A) ® ZM(B) with its canonical
image in ZM(A ®, B) .

(iii) Denoting by ¢£,¢{3 and qu({ the extensions of ¢a,¢p and ¢, to Fac(A), Fac(B)
and Fac(A ®, B) respectively, we have ¢lod = d)ﬁ X (25{3 on Fac(A) x Fac(B),
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(iv) For any M € Fac(A ®, B) and (z,y) € X x Y, d)(f,(]tl) = (z,y) if and only if
(6 x 9p)(L(M)) = (z,y),

(v) For all (z,y) € X xY we have Kz = A(Iz, Jy).

Proof. (i) is shown in the remarks preceding the proposition.

(ii) For f € Co(X x Y), we have ua(f) = 0a(f 0 ¢a), where 6, : C°(Prim(A ®q
B)) - ZM(A ®, B) is the Dauns-Hofmann isomorphism of equation (2.3.1). For
f®ge Cy(X)®Co(Y) and (z,y) € X x Y, the *-isomorphism 7 satisfies n~!(f ®
g9)(z,y) = f(x)g(y). Thus by linearity and continuity, it suffices to show that for all
f®geCy(X)®Co(Y)and a ® b € A®, B we have

o (f®9))(a®b) = (ua® pp)(f ®g)(a®b) = pa(f)a® up(g)b.

Take (P,(Q) € Prim(A) x Prim(B), then the Dauns-Hofmann x-isomorphism 6,
of (2.3.1) gives

(Baon™)(f @ g)(a®b) + &(P,Q) b (7' (f @ g) 0 da) (a®b) + (P, Q)
17 (f ®9) 0 $a(®(P,Q)) (a® b+ &(P,Q))

(feo¢a)(P)(godB)(Q)(a®b+ ®(P,Q)),

and since A ®, B/®(P,Q) = (A/P) ®q (B/Q), the last line becomes

((f o ¢4)(P)(a+ P)) @ ((g0¢8)(Q)(b+ Q).

On the other hand, applying the isomorphisms 64 and 0p of (2.3.1) associated with A

and B respectively we get

(a®@uB)(f®g)(a®b)+P(P,Q) = (pa(fla+P)® (us(9)b+ Q)
= (0a(foda)at P)® (0p(90¢B)b+ Q)
= ((foga)(P)a+P))®((go¢5)(Q)(b+Q))-

Thus for all (P, Q) € Prim(A) x Prim(B) we have

(raon™)(f@9) - (na®pp)(f®9)) (a®b) € (P,Q),

and since ({®(P,Q) : (P, Q) € Prim(A4) x Prim(B)} = {0}, it follows that

(Baon N(f®g) = (ua®us)(f®g).
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(ii) Let (I,J) € Fac(A) x Fac(B) and (P,Q) € hull(I) x hull(J). Then by (i) we
have (¢4 x ¢)(P,Q) = (¢pa 0 ®)(P,Q). By [42, Corollary 2.3] we have ®(P,Q) €
hull(®(7, J)), so that Lemma 6.2.2 gives

(¢ x ¢5)I,J) = (¢4 x $5)(P,Q) = (¢ 0 ®)(P, Q) = (¢ 0 ®)(L, J).

(iv) By Propositions 5.3.2 and 5.5.2, (® o ¥)(M) € Fac(A ®, B) with M D (® o
U)(M), so that (& o ¥)(M) € cl{M} and hence

oL (M) = ¢ (2 0 U)(M)).

By (iii), the latter is precisely (qﬁﬁ X qbé)(\l!(bl)).

(v) By (iv) and Proposition 6.2.3(iii), we have M € hull;(K,,) if and only
if ¥(M) € hullf(I;) x hullg(Jy). But then since ¥~!(hullf(I;) x hullf(Jy)) =
hullf (A (I, Jy))
by Lemma 5.5.7(i), it follows that K, , = A(I;, Jy). O

Definition 6.3.4. For a Cp(X)-algebra (X, A, u4) and a Co(Y)-algebra (B,Y, ug) we
will denote by (A ®4 B, X x Y,ua ® pup) the Co(X x Y)-algebra defined by Propo-
sition 6.3.3, and we will consider this construction as the natural (minimal) tensor

product in the category of Co(—)-algebras,
(A, X, p4) ®a (B,Y,up) = (A®a B, X XY, ups ® up).

The tensor product construction of definition 6.3.4 does not agree in general with
the fibrewise tensor product bundle studied by Kirchberg and Wassermann in [40]. This
fact may be deduced from [40, Lemma 2.3 and Proposition 4.3], and is demonstrated
explicitly in [15, Proposition 3.1].

We now introduce some properties which characterise when these two notions of
the tensor product of a pair of C*-bundles coincide. For C*-algebras A and B we define

the properties (Fg)) and (Fyp) on A ®, B as follows:

®(G,H) = A(G, H) for all (G,H) € Glimm(A) x Glimm(B) (Fa)
®(I,J) = A(I,J) for all (I,J) € Min-Primal(A) x Min-Primal(B). (Fymp)
If in addition (A, X,pu4) is a Cy(X)-algebra and (B,Y,up) a Co(Y)-algebra, we will

say that the Cp(X x Y)-algebra (A ®, B, X X Y, ua ® upg) satisfies property (Fx y) if

the equation
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®(Iz, Jy) = A(lg, Jy) for all (z,y) e X x Y (Fxy)

holds. For convenience, we will refer to (Fx y) as a property of A ®, B, rather than
(A®q B, X XY, ua ® up), when the context is clear.

We remark that if A ®, B satisfies Tomiyama’s property (F) then clearly A ®, B
satisfies properties (Fx y), (Fa1) and (Fump), cf [37, Theorem 1.1 and Theorem 2.3]. The
converse is not true in general; indeed, let A and B be C*-algebras such that A®, B does
not satisfy property (F), and let X = {z} and Y = {y} be one-point spaces. Regarding
A as a Cp(X)-algebra and B as a Cy(Y )-algebra in the obvious (trivial) way, we have
I = {0} and Jy = {0}. Then it is evident that A(Iy, Jy) = ®(I;, Jy) = {0}, so that
A ®4 B satisfies property (Fx y), hence this property does not imply (F).

To see that (Fyp) and (Fg) do not imply (F), let A= B = B(H), where H is a sep-
arable infinite dimensional Hilbert space. Then Glimm(B(H)) = Min-Primal(B(H)) =
{0}, so that as before, B(H) ®, B(H) satisfies (Fyp) and (Fg)), but does not satisfy
(F) by [57]. Other examples are discussed in [6, p. 140-141].

The following Theorem relates the Cy(X x Y)-algebra (A ®o B, X X Y, g ® pup),
its corresponding upper-semicontinuous C*-bundle, and the fibrewise tensor product of

the bundles associated with A and B.

Theorem 6.3.5. Let (A, X,ua) be a Co(X)-algebra and (B,Y,up) a Co(Y)-algebra,
and let of = (X, A,z : A = A;) and B = (Y,B,0y : B = By) be the associated

upper-semicontinuous C*-bundles over X and Y respectively. Then

(i) the Co(X xY)-algebra (A®q B, X XY, ua®@pup) defines an upper-semicontinuous
C*-bundle

(X XY A®s B»'Y(z,y) : ARy B = (A®q B)(z,y)) ;

where (A ®q B)(zy) = A ®a B/A(Iy, Jy) for all (z,y) € X XY,
(it) the bundle (X X Y,A®q B,Yzy) : A®e B = (A®q B)(I,y)) agrees with the fi-

brewise tensor product bundle &/ ®o A if and only if A ®, B satisfies property
(Fxv),

(iii) If & and % are continuous C*-bundles and A @ B satisfies property (Fxy),
then (A®q B, X XY, ua @ ug) is a continuous Co(X x Y)-algebra.
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Proof. (i) is immediate from Proposition 6.3.3(v) and the equivalence of Cy(X)-algebras
(resp. Co(Y)—,Co(X x Y)—) and upper-semicontinuous C*-bundles over X (resp.
YXxY).

By definition of the maps ® and A, for all (z,y) € X x Y we have ®(I,,Jy) =
A(Iy, Jy) if and only if (A ®q B)(gy) = Az ®a By, from which (ii) follows.

If ®(1,Jy) = Al Jy) for all (z,y) € X x Y, then (iii) follows from (ii) and
Theorem 6.3.2(iii). O

Remark 6.3.6. (i) Given continuous Cy(X )-algebras (A, X,p4) and (B,Y,up), it is
natural to ask whether or not the converse of Theorem 6.3.5(iii) holds; that is, is
property (Fx y) a necessary condition for the Cy(X x Y)-algebra (A ®4 B, X x
Y, pua ® pg) to be continuous. The analogous result for the fibrewise tensor
product is true by Theorem 6.3.2(iii). We will show in Section 6.4 that this is not
the case; we can construct such pairs (A, X, ua) and (B, Y, ug) such that A®, B
does not satisfy property (Fxy) but (A ®, B, X X Y, us ® pug) is a continuous
Co(X x Y)-algebra. One interesting consequence of this fact is that continuity
of the associated fibrewise tensor product is a strictly stronger property than

continuity of (A ®q B, X XY, uq ® up).

(ii) A special case of Proposition 6.3.3 arises as follows; let A be a Cy(X)-algebra
and B any C*-algebra. Then we may regard B as a C(Y)-algebra where Y =
{y} is a one-point space, so that X x Y = X and A ®, B is also a Cy(X)-
algebra. The base map ¢, : Prim(A ®, B) — X is the extension of ¢4 o p; :
Prim(A) x Prim(B) — X to Prim(A ®, B), where p; is the projection onto
the first factor. The corresponding structure map is given by pg ® 1 : Co(X) —
ZM(A)®ZM(B) C ZM(A®,B), where pa®1(f) = pa(f)®1 for all f € Co(X).

Thus by Corollary 6.3.5(i) we get an upper-semicontinuous C*-bundle (X, A ®,
B,y : AQy B - (A®q B);), where (A ®q B)z = (A ®qy B)/(Iy ®« B) for
all z € X. The analogous construction in the fibrewise tensor product case is
as follows: for a C*-bundle & = (X, A, 7, : A — A;) and a C*-algebra B, we
define the C*-bundle & ®4 B = (X,A ®q B,7, ®id : A ®q B = Ay ®q B).
The two bundles agree precisely when ®(I,,{0}) = A(I;,{0}) for all z € X,
by Corollary 6.3.5(ii). We will make use of this special case as an intermediate

step in the construction of the tensor product of two C*-bundles in subsequent
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sections.

6.4 Comparison with the fibrewise tensor product

In this section we show that the assumption of property (Fyy) in Theorem 6.3.5(iii)
is not necessary in general. More precisely, we show that for any inexact C*-algebra B,

there is a continuous Cy(X)-algebra (A, X, pa) such that

(i) the fibrewise tensor product & ®, B, where & is the continuous C*-bundle

associated with (A, X, p4), is discontinuous, while
(ii) the Cp(X)-algebra (A ®y B, X, pua ® 1) is continuous.

This shows that the analogue of Archbold’s result [6, Theorem 3.3 for the bundles
constructed in Section 6.3 is untrue. In particular, we deduce that for continuous
Co(X)-algebras (A, X, u4) and (B, Y, up), the assumption that the Cp(X x Y)-algebra
(A®q B, X x Y, ua® pupg) is equal to the fibrewise tensor product (i.e. A ®, B satisfies

property (Fy y)), is not a necessary condition for continuity.

Lemma 6.4.1. Let (A, X,pua) be a Co(X)-algebra, and denote by qﬁ{q : Fac(A) - X
the base map. For any closed subset FF C X, setting

Ir=(|{L : 2 € F},
we have
(i) For M € Fac(A) M D I if and only if ¢%,(M) € F.
(ii) For any C*-algebra B we have

Ir®B= () (I: ® B).
zeF

Proof. (i) Let m = ¢£(M) and suppose first that m ¢ F. Choose a € A with
la+ M| =1and f € Co(X) with f(m) =1 and f(F) = {0}. Then

na(fa+M = f(gh(M))(a+ M) = f(m)(a+ M) = a+ M,
so that pa(f)a ¢ M. On the other hand, for all z € F,

pa(fla+ I = f(z)(a+I) =0,
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so that pua(f)a € Ip. In particular, M 2 Ip.

Now suppose that m € F. Then by Proposition 6.2.3(iii), M D I, and so M 2
mzeF Iy = Ip.

(ii) We will regard A ®, B as a Cy(X )-algebra as in Remark 6.3.6(ii); the base map
¢a : Prim(A ®, B) — X being the unique extension to Prim(A ®, B) of ¢4 0p; :
Prim(A) x Prim(B) — X, with p; the projection onto the first factor.

Let M € Fac(A®, B) and let (M4, MB) = ¥(M). We first show that M D Ir®, B
if and only if M4 D Ir. By Lemma 5.5.7(ii) we have ¥(Ir®4 B) = (Ir, {0}), and since
U is order-preserving, it is clear that if M O Ir ®, B then M4 D Ir. On the other

hand, since A is also order-preserving, if M4 D Ir then using (5.5.2) we see that
M D AMA, MB) D A(Ip, {0}) = Ir ®, B.

By (i) M4 D Ip if and only if ¢£(A1A) € F. But then by Proposition 6.3.3(iv), we

have

¢L(M) = (¢ x o) (MA, MB) = (¢])(M4)

and the conclusion follows.

]

Lemma 6.4.2. Let X be an extremally disconnected compact Hausdorff space. Then

any C(X)-algebra (A, X, pu4) is continuous.

Proof. For each x € X we have

lla+ L]l = nf{[|(1 — pa(f) + f(z))all f € C(X)}

by [14, Lemme 1.10]. Moreover, it is easily seen that for a given f € C(X) and
a € A, the norm function z — ||(1 — pa(f)+ f(z))a|| is continuous on X. Since X is
extremally disconnected and compact, C(X) is monotone complete, and so the above
infimum belongs to C'(X). O

Proposition 6.4.3. Let B be a C*-algebra, M a von Neumann algebra and
(M, Glimm(M),0y) the C(Glimm(M))-algebra associated with the Dauns-Hofmann
representation of M. Then (M@ ,B, Glimm(M), 0p;®1) is a continuous C(Glimm(M))-

algebra.
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Proof. Since Z(M) is a von Neumann algebra, Glimm(M) = Prim(Z(M)) is
an extremally disconnected compact Hausdorff space. Continuity of (M ®4q
B, Glimm(M), 0y @ 1) then follows from Lemma 6.4.2. O

Theorem 6.4.4. Let B be an inexact C*-algebra. Then there is a von Neumann
algebra M, whose Dauns-Hofmann representation (M,Glimm(M),6ys) and associated
continuous C*-bundle (Glimm(M), M, 7, : M — M,) satisfy

(i) (M ®q B,Glimm(M), 0y @ 1) is a continuous C(Glimm(M))-algebra, and
(it) (M®qB,Glimm(M), m,®idp : M®oB — M,®4B) is a discontinuous C*-bundle.

If in addition B is a prime C*-algebra (e.g. if B primitive), then M ®4 B is quasi-

standard.

Proof. Let M = T[>, M,,(C). Then M is a von Neumann algebra, hence it is quasi-
standard by [5, Section 5|. Moreover, Z(M) consists of the sequences (A,1,)5%, € M,
where A\, € C and 1, is the n x n identity matrix. It follows that Glimm(M) =
Prim(Z(M)) is canonically homeomorphic to SN.

Since B is inexact, the sequence
0= Io® B = M&aB— (M/I) @ B—0 (1)

is inexact by [39]. We claim that there is some g € SN for which G;®,B C ker(m,®idp).
Suppose not. By [42, Lemma 2.2]

ker(mo®idp) = [ ker(r, ®idp),
geBN\N
and by Lemma 6.4.1

hy@s B= ([ L8uE
g€BN\N

Thus if I; ®, B = ker(my ®idg) for all ¢ € SN\N, the above intersections would agree,
which would imply that () was exact, which is not the case.

Thus (M ®q B, BN, 7y ® idp : M ®q B = M, ®, B) is discontinuous at some point
p € BN\N by [40, Proposition 2.7].

On the other hand, by Proposition 6.4.3, the C(Glimm(M ))-algebra
(M ®4 B, Gimm(M), 0 ® 1) is continuous.
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Under the additional assumption that the zero ideal of B is prime, then necessarily
we have Glimm(B) = {0} by [7, Lemma 2.2], and so Glimm(M ®, B) is homeomorphic
to AN in the obvious way. In particular, (M ®, B, Glimm(M),0y; ® 1) corresponds
to the Dauns-Hofmann representation of M ®, B, and the fibre algebras are prime
throughout a dense subset of Glimm(M &, B), namely the points of N. By [7, Theorem
3.4 (iii)=(i)], M ®4 B is quasi-standard.

O

6.5 Continuity and exactness of the Cy(X xY )-algebra A®,
B

In this section we investigate the relationship between exactness of a continuous Co(X)-
algebra (A, X, u4) and its minimal tensor product with an arbitrary continuous Cy(Y)-
algebra (B,Y,up). The corresponding result regarding continuity of fibrewise tensor

products of C*-bundles was obtained by Kirchberg and Wassermann in [40]:

Theorem 6.5.1. (E. Kirchberg, S. Wassermann [40, Theorem 4.5]) The following con-

ditions on a C*-algebra B are equivalent:
(i) B is ezxact,

(i) For every locally compact Hausdorff space X and continuous C*-bundle &/ =

(X,A, 1z : A— A;) over X, the fibrewise tensor product & ®q B is continuous,

(iii) For every separable, unital continuous C*-bundle & = (N, A, mp : A = A,) over

N, the fibrewise tensor product & ®q B is continuous.

While Theorem 6.4.4 shows that continuity of a Cy(X x Y)-algebra of the form
(A®qy B, X XY, us ® up) is a strictly weaker property than continuity of the cor-
responding fibrewise tensor product, a discontinuous example was already exhibited
by Blanchard in [15]. The construction of this counterexample depends heavily on
the specific properties of the algebras involved. Our main result of this section, Theo-
rem 6.5.6, shows that this pathology is in some sense universal; more precisely, we show
that (A4, X, ua) is exact if and only if the Co(X x Y)-algebra (A®qy B, X XY, us ® up)
is continuous for each continuous Cy(Y)-algebra (B,Y, ug).

The following two lemmas are known, we include a proof for completness.
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Lemma 6.5.2. Let A and B be C*-algebras and (I,J) € 1d'(A) x 1d'(B). Then the
quotient C*-algebra A @4 B/A(1,J) is naturally isomorphic to (A/1) ®~ (B/J), where
I[I, is a C*-norm on (A/I) ® (B/J). Moreover, |||, = |||, if and only if ®(1,J) =
AL J).

Proof. Let n; : A — A/I and 7y : B — B/J be the quotient maps. We remark that if
(rromy): A® B — (A/I)® (B/J) denotes the canonical algebraic *-homomorphism,
then the closure of its kernel in A ®, B is ker(7; ® 75) = A(I, J).

Takez = Y 1" | ;®y; € (A/I)©(B/J) and choose ay, ...,a, € Aand by,...,b, € B
such that 77(a;) = z; and 7y(b;) = y; for 1 <i < n and set ¢ = > | a; ® b;, so that
(mr ® my)(c) = z. Define v : (A/I) ® (B/J) — [0,00) via y(z) = |[c+ A(Z, J)||. Then
v is well-defined since if ¢ € A ® B also satisfies (77 ® 77)(¢/) = z, then ¢ — ¢’ €
ker(m; ® m5) € A(I, J), hence

y(d)=7v(c —c+ec) = ||c' —c+c+ AL )| = lle+ A, I)|| = ¥(c).
Clearly ~ is a seminorm, and since z*z = (77 ® 7;)(c*c), we have
7(z°2) = I+ AL )| = (e + AT, D) (e + AL D) = lle+ AU D) = 7(2)?,

(by the C*-condition on the quotient norm), so 7 is a C*-seminorm. Finally, if y(z) = 0
then c€ A(I,J)NA® B = ker(n; ® 7y), so that 2 =0 in (A/I) ® (B/J). It follows
that v is a well-defined C*-norm on (A4/1) ® (B/J).

It follows that 7y ® 7y : A®q B — (A/I) ® (B/J) is a bounded, surjective -
homomorphism of normed *-algebras, and hence extends to a *-homomorphism 7; @
7y : A®q B = (A/I)®, (B/J). Since the range of 7; ®, 7, is closed and contains the
dense set (A/I) ® (B/J), it is surjective. We claim that ker(n; ®+ my) = A(L, J).

Since ker(m; ®., my) is closed and contains I ® B + A ® J, it must also contain
A(1,J). To show the reverse inclusion, let d € ker(n; ® 7;) and € > 0. Then there is
c € A® B with |c — d|| < §. By the definition of |-||.,,

5

lle + AL D) = (mr ®y wy)(e)ll = l[(71 @y m)(e = d)l| < 3

(since d € ker(m ®~ 7)). It follows that

ld+ AU Dl = lld=c+ e+ A I < ld—cll +lle+ AT < 5 +5 =
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Since € was arbitrary, d € A(1,J). We have shown that ker(r; ®, 7;) = A(Z,J), and
hence we can conclude that (4 @, B)/A(I, J) is canonically *-isomorphic to (4/1) ®,
(B/J).

For the final assertion, note that ||-[|, = [|||, if and only if 7; ® 7, is the canonical
*-homomorphism 7; @ 7; : A®q B — (A/I) ®4 (B/J), whose kernel is by definition
®(1,J). Hence the two norms are equal if and only if ker(7; @~ ) (=A(, J)) is equal
to ®(1I, J). O

Lemma 6.5.3. Let A = (X, A, 7, : A — Az) be a C*-bundle and o € X. Then for
each a € A

lla + Izo|| = inf sup [|mz(a)|l,
W zew
as W ranges over all open neighbourhoods of xo in X.

Proof. Fix an open neighbourhood U of g in X. We first claim that
sup [la + I || = sup ||z (a)]].
relU el

It is clear that ker(m;) 2 I, hence we have ||7;(a)|| < |la + I.|| for all z € U and so
the supremum on the left is always greater than or equal to that on the right.

Let ; € U and choose f € Cyp(X), 0 < f <1, with f(z;) =1 and f(X\U) =0,
then |la + I, || = ||f - a + I.,]||. Moreover,

If - all = sup ||[m2(f - a)|| = sup [|7=(f - a)|| = sup |f(2)] - [|7=(a)|| < sup [|7=(a)],
zeX zeU zeU zeU

whence

lat Loyl = If - at Lea| < || - all < sup flme(a)]
ze

It follows that

sup [la + I || < sup [|7z(a)],
€U zeU

and so

sup [la + I || = sup |7z (a)]|-
zeU

zeU

Suppose for a contradiction that

a := inf sup ||mz(a)|| > |la + Iy |-
W ozew
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Then since z — |[|a + I,|| is upper semicontinuous on X, we could find an open neigh-

borhood U of z( such that

i
lla + || < (M“;——ZOH> for all x € U.
But this would then imply that
+|la+1
sup a-+ 1) < (2EIE L) <o < sup @
zeU zeU

contradicting the fact that these suprema must be equal for all open neighbourhoods
U of xg. O

Proposition 6.5.4. Let B be an inexact C*-algebra. Then there is a separable unital
C(N)-algebm (A, N, ia) such that the C(N)—algebm (A®q B, N, pua®1) is discontinuous

at oo.

Proof. Since B is inexact, by [40, Proposition 4.2] there is a separable, unital continuous
C*-bundle C = (C, N on : C — Cy) with the property that the minimal fibrewise tensor
product C @, B = (C ®4 B, N,0n,®id: C ®q B = Cyp, ®q B) is discontinuous at oc.

Since C is continuous, for each n € N we have I,, = ker oy,. By [6, Theorem 3.3],
we have I, ®4 B C ker(os ®id), while I, ®, B = ker(o, ® id) for all n € N. It follows
in particular that (C ®, B)/(Ix ®q B) is canonically *-isomorphic to Coc ®- B, where
[[[I, is @ C*-norm on Cx ® B distinct from ||-||, by Lemma 6.5.2.

There is thus y = Zle ¥ @ b® € Coo ® B with the property that [ly[, > [|ly||,-
Choose c1), ..., ¢ € C such that oo (c)) = W for 1 < < ¢, and set 5 = Zle V@
b) € C ® B. Then

9+ Too @a Bl = [|yll, > [lylly = (000 @ id) (@),

by the definitions of ||-[|., and oo ® id.
Now let D = C(N) @4 Cso be the trivial (hence continuous) bundle on N with fibre
Cw, and denote by e, the evaluation maps, where n € N. Let A be the pullback

ZE

C*-algebra in the diagram
St
-

—= C
€oo
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that is, the C*-subalgebra of C' & D given by
A={c®ddeC®D:ox(c) =ex(d)}

Then we have a well-defined *-homomorphism 7y, : A = Cy sending ¢ & d to 0 (c) =
Eco(d) [50, 2.2].

For n € N we may extend (keeping the same notation) o, and €, to A by setting
Un((’ ©® d) = O'n(C), En(C ) d) — En(d)

A defines a continuous C*-bundle (A, N ™ A — A;) as follows: for n € Nset Ao, =
Cn and mon—1 = op, Aon = Cx and mo, = €y, and 7y : A = A = Cx as above.
Continuity of A follows easily from that of C and D: for ¢® d € A we have ||o,(¢)||
and ||en(d)| both converge to ||Teo(c @ d)||, it follows that ||m,(c @ d)|| = ||7eo(c ® d)||.

A A

Regarding A as a C'(N)-algebra, let u4 : C(N) — Z(A) be the structure map; where
fe C(N) acts by pointwise multiplication. Now A® B is a C(N)—algebra with structure
map pa ®1:C(N)®C — ZM(A®, B). For each n € N we let K, be the ideal

(u®1) ({feC(N):f(n)z()}@C)A@aB

of A®, B, so that n +— ||z + K, || is upper-semicontinuous on N. Again it follows from [6,
Theorem 3.3] that for n € N we have K, = ker(m, ® id), and by Proposition 6.3.3(v)
we have Ko = I, ®q B.

On the other hand the (lower-semicontinuous) C*-bundle A®, B = (N VARLB, 1, ®
id: A®o B — A, ®qy B) has fibres A, ®, B = C%i ®qB fornodd, A,®qy B = Coo®a B

for n even, and Ay = Coo ®q B.

For 1 < i < ¢ let d) € D be the constant section e,(d®¥) = D set a®) =
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D ad e A, and let z = Zle a ® b, Then for n € N we have

¢
(mp ®id)(z) = (m, ®1id) (Z HOR b(”>

i=1
14

= ) m(a®) @b

i=1

Zle orn_;_l(c(i)) ®b® if nodd

Yo, s%(d(i)) @b® if 7 even
(anT+1 ®id)(y) if nodd

Zf:] D @b® if neven

It then follows that
H(a% ® id)(f/)” if nodd

||(7rn @ 1d>(T)H ==
(IR

= if n even.
ooy = Il

Finally, note that by Lemma 6.5.3 we have

|z + Kol = max (Hm sup || (7 @ id)(2)] , [| (7o ® id)(l‘)ll)
n
Il = 17+ Fo 0 Bl = max (1imsup (o 8 )@ o 8 D)
n
Since we know that [loe ®id)(¥)| = [[yll, < [[y]l, the second equality becomes

lyll,, = limsup [|(on ® id)(@)] -
n
In particular, we conclude that

2+ Keof| = limsup ||(m, ® id)(z)
n
lim sup{||(mn ® id)(z)|| : n odd}
= limsup{H(a% ®id)(§)” :n odd }

v

191l -
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Thus for all even n (since K, = ker(m, ®id) for n € N by continuity at these points)
2 + Knll = [|(m @ id)(2)]| = llyll, < llll, < llz+ Kool

and it follows that n — ||z + K| is discontinuous at oco.
&

Corollary 6.5.5. Let B be an inexact C*-algebra. Then there is a separable unital,
continuous C(N)-algebra (A, N, ), with Prim(A) homeomorphic to N, such that the
C(N)-algebra (A®q4 B, N, i ® 1) is discontinuous at oo. Moreover, Prim(A) is canon-

ically homeomorphic to N, and p; agrees with the Dauns-Hofmann x-isomorphism

6; : C(Prim(A)) — Z(A).

Proof. Let (A,N, ia) be the separable, unital continuous C(N)—algebra of Proposi-
tion 6.5.4. Then by [16, Corollary 4.7] there is a unital continuous C(N)—algebra
(A, N, 1 ;) with simple fibres and a C(N)-module *-monomorphism ¢ : A — A. By injec-
tivity of the minimal tensor product we get a *-monomorphism (®id : AR, B — AR, B.

Now, A ®, B is a C(N)-algebra with base map p; ® 1. To show that + ®id is a

C(N)-module map, take a ® b € A®, B and f € C(N). Then we have
(g )(Hl@id)a®b) = (ui(f)a)) ®b
= (t®id)(ua(fla®b) € (t®id)(A ®q B).
In particular it follows from Theorem 2.3.12(iii) that (A ®4 B,N,,u/i ® 1) is discon-
tinuous, since it contains the discontinuous C(N)-algebra (A ®o B,N, a4 ® 1) as a

C(N)-submodule.
Denote by ¢ ; : Prim(A4) — N the base map uniquely determined by p > and by

In=pz ({f € C): f(n) = 0}) A= ("{P € Prim(4) : 95(P) = n}

for each n € N. Then since each fibre A / I, is simple, it follows that I,, is maximal (and
in particular primitive) for all n € N. Moreover, since every P € Prim(A) contains a
unique I, for some n € N, we see that I, — n is a bijection. The fact that this map is

a homeomorphism then follows from Lee’s theorem [44, Theorem 4]. O
Theorem 6.5.6. The following conditions on a C*-algebra B are equivalent:

(i) B is exact,
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(ii) for every separable, unital continuous C(N)-algebra (A,N, jun), the C(N)—algebm
(A®q B, N, pa @ 1) is continuous,

(iii) for every separable, unital C*-algebra A with Prim(A) Hausdorff, the C'(Prim(A))-
algebra (A ®q B, Prim(A), 6;®1) is continuous, where 0 ; : C(Prim(A)) — Z(A)

is the Dauns-Hofmann x-isomorphism,

(iv) for every locally compact Hausdorff space X and continuous Co(X)-algebra
(A, X, pa), the Co(X)-algebra (A ®q B, X, ua ® 1) is continuous.

Proof. (i)=(iv): Suppose that B is exact and let (A, X, pu4) be a continuous Cp(X)-
algebra. Then since A ®, B has property (F), we have A(1,, {0}) = ®(,,{0}) for all
z € X. It then follows from Corollary 6.3.5(iii) that (A ®4 B, X, ua ® 1) is continuous.

(iv)=>(iii) and (iv)=(ii) are evident.

(ii)=(i): Suppose that B is inexact, then by Proposition 6.5.4 there is a separable,
unital continuous C' (N)—algebra (A, N, pAa) such that (A®, B, N, puA®1) is discontinuous,
so that (ii) fails.

(iii)=(ii): This follows similarly from Corollary 6.5.5.

O

Corollary 6.5.7. The following conditions on a Co(Y')-algebra (B,Y,ug) are equiva-

lent:
(i) B is ezact,

(i) For every separable unital Co(X)-algebra (A, X, ua), with X = N | the Co(X xY)-
algebra (A®q B, X x Y, ua @ up) satisfies property (Fxy),

(i1i) For every Co(X)-algebra (A, X, pa), the Co(X xY)-algebra (A®q B, X XY, ug®
uB) satisfies property (Fxy),
If in addition (B,Y, up) is a continuous Co(Y')-algebra, then (i) to (iii) are equivalent

to:

(v) for every separable, unital continuous C(N)-algebra (A,N, p4), the C(N x Y)-
algebra (A ®4 B, NxY,ua® WUB) s continuous,

(v) for every continuous Cy(X)-algebra (A, X, pa), the Co(X x Y)-algebra (A R4
B, X xY,jua® pup) is continuous.
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Proof. The equivalence of (i),(ii) and (iii) is shown in the proof of [15, Proposition 3.1].

To see that (iv) implies (i), we argue by contradiction. Indeed, suppose that B is
inexact, then by Proposition 6.5.4 there is a separable unital C(N)—algebra (A, N, HA)
with the property that the C(N)-algebra (A ®4 B,N, s ® 1) is discontinuous. We will

show that the C(N x Y )-algebra (A ®4 B,N X Y, ji4 ® pug) must also be discontinuous.

Let ¢4 : Prim(A) — N and ¢p : Prim(B) — Y be the base maps corresponding to
ita and pp respectively, which are open since both A and B are continuous. We will
denote by ¢q : Prim(A ®q B) = N x Y and ¢, : Prim(4 ® B) — N the base maps
associated with 4 ® g and p4 @ 1 respectively. Note that ¢4 is not an open mapping
since the C(N)-algebra (A ®4 B, N, u4 ® 1) is not continuous, and that

$a0®=pjo(paxdp)=popso®

on Prim(A) x Prim(B) by Proposition 6.3.3(i).

Consider now the diagram

A
I
dAXPB A

NxY - e N

where p; is the (open) projection onto the first factor. To see that the lower triangle of
this diagram commutes, note that since pjog, agrees with ¢4 on ®(Prim(A)xPrim(B)),

both maps must agree on Prim(A ®, B) by the uniqueness part of [42, Theorem 3.2].

Then if ¢, were open, this would imply that ¢4 = p; o ¢, were open, which is
impossible since (A ®4 BN, pa @ 1) is discontinuous. In particular, it follows that

(A®qy B, N x Y, pa ® pp) is discontinuous.

The fact that (v) implies (iv) is evident. To see that (i) implies (v), note that if
(i) holds then (A @, B, X x Y, jua @ upg) satisfies property (Fx y) by the equivalence
of (i) and (iii). Then by Theorem 6.3.5(iii), (A ®q B, X x Y, ua ® pupg) is a continuous
Co(X x Y)-algebra.
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6.6 Quasi-standard C*-algebras and Hausdorff primitive

ideal spaces

This section is concerned with stability of the class of quasi-standard C*-algebras under
tensor products. This question was first studied by Archbold in [6], where it was shown
that if A and B are quasi-standard and A ®, B satisfies property (Fgi), then A®, B is
quasi-standard. We gave a partial converse to this result in Theorem 5.6.2. However, it
is clear from Theorem 6.4.4 that property (Fg;) is not a necessary condition for A®, B
to be quasi-standard.

We will show in Theorem 6.6.6 that a quasi-standard C*-algebra A is exact if and
only if A®, B is quasi-standard for all quasi-standard B. As a related result, we show
that a (not necessarily quasi-standard) C*-algebra A is exact if and only if A ®, B
satisfies property (Fgj) for all C*-algebras B, if and only A ®, B satisfies property
(Fump) for all C*-algebras B. The existence of C*-algebras A and B such that A ®, B
does not satisfy properties (Fg;) and (Fyp) was previously unknown, thus our result

answers a question posed by Archbold [6, p. 142] and Lazar [42, p. 250].
Proposition 6.6.1. Let A and B be C*-algebras.
(i) If A®q B satisfies (Fpmp), then A ®4 B satisfies (Fg)),

(ii) If (A, X, pa) is a Co(X)-algebra and (B,Y,ug) a Co(Y)-algebra, then A ®, B
satisfies property (Fg1) implies that A ®, B satisfies property (Fxy).

Proof. (i): We first show that for any C*-algebra A and G; € Glimm(A),
Gy =("){P € Min-Primal(A) : P 2 G,}.
Indeed, since each primitive ideal of A is primal, we necessarily have
Gy =(){P € Primal(4) : P 2 G1} C (| {P € Min-Primal(A) : P 2 G,}.

Denote by H the ideal on the right, then if the above inclusion were strict, there would
be some @) € Prim(A) such that @ O G; but Q 2 H. Let R be a minimal primal
ideal of A contained in @, then by [7, Lemma 2.2] there is a unique Glimm ideal G2
contained in R. Note G; # G4 since otherwise R, and hence (), would contain H. This

in turn implies that @) 2 G, a contradiction.
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Since A ®, B satisfies (Fyp), we have & = A on Min-Primal(A) x Min-Primal(B),
and so [6, Theorem 4.1] shows that A is a homeomorphism of Min-Primal(A) x
Min-Primal(B) onto Min-Primal(A ®, B). For (G, H) € Glimm(A4) x Glimm(B) we
have A(G,H) € Glimm(A ®, B) by Theorem 5.5.9, which together with the above
remarks gives
A(G,H) = (){R € Min-Primal(A®, B) : R 2 A(G, H)}

= ﬂ {A(I,J) : (I,J) € Min-Primal(A) x Min-Primal(B),A(I,J) 2 A(G, H)}

On the other hand by [42, Lemma 2.2] and the first part of the proof,

(G H) = @ (ﬂ {I € Min-Primal(4) : I 2 G},({J € Min-Primal(B) : J 2 H})
= ({®{,J): (I,J) € Min-Primal(A) x Min-Primal(B),1 2 G, J 2 H}

ﬂ {A(1,J):(I,J) € Min-Primal(A4) x Min-Primal(B),I D G,J 2 H}.

Finally, since W o A is the identity on Id’(A4) x Id’(B) and since V¥ is order preserving,
we see that
A(I,J) 2 A(G,H) ifand only if I D G and J D H,

from which we conclude that ®(G,H) = A(G,H) for all (G,H) € Glimm(A)
Glimm(B). Hence A ®, B satisfies property (Fg).

X

(ii): We will use the notation of Proposition 6.3.3. Note that for all (z,y) €
X xY, we have K, , = A(I,, J,) by Proposition 6.3.3(iv), so we will show that K, =
®(1y, Jy). Let 14,1 p and 1, denote the continuous maps on the Glimm spaces of A, B
and A ®, B induced by the base maps ¢ 4. ¢p and ¢, respectively. We first show that
Yo 0 A =14 x Y. Indeed, for all (P, Q) € Prim(A) x Prim(B) we have

(94 X ¢B)(P,Q) = (¢a 0 D)(P, Q)
by Proposition 6.3.3(i). Hence by the definitions of 14,9 p and vy,
(Ya x ¥B) o (pa x pB)(P, Q) = (Ya © pa 0 2)(P, Q).

Following the first paragraph of the proof of Theorem 5.5.9, we see that p, o & =

Ao (ps x pp), which shows that

(Va x¥B)(pa(P), pp(Q)) = (Ya 0 B)(pa(P), pB(Q))
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for all (P, Q) € Prim(A) x Prim(B).
By Lemma 6.2.1,

o = ﬂ{G € Glimm(A ®q B) : ¥a(G) = (x,y)}-

Any such G € Glimm(A ®, B) is the image A(Gp, G4) of a pair of Glimm ideals of A
and B by Theorem 5.5.9. Together with the fact that 1, 0 A = 14 X ¢g, this gives

Kry = [ WA(Gy, Gy) : (p.q) € Glimm(A) x Glimm(B),¥4(p) = z and ¥5(g) = y}.
Using ® = A on Glimm(A) x Glimm(B), [42, Lemma 2.2] shows that

Ky = [{®(Gp,Gy) : balp) = z,98(q) = y}
@ (N{Gp : Yalp) = 2},N{Gq : ¥8(q) = y})
= (I)(Isz)7

where the final equality follows from Lemma 6.2.1. Hence A ®, B satisfies property
(Fxy). O

Proposition 6.6.2. Let B be an inexact C*-algebra. Then there is a separable C*-
algebra A with Prim(A) Hausdorff such that

(i) there is a pair (G, H) € Glimm(A) x Glimm(B) with A(G,H) C ®(G, H),
(ii) there is a pair (I,J) € Min-Primal(A) x Min-Primal(B) with A(I,J) C ®(I,J),
(iii) Prim(A ®q B) is non-Hausdorff,

(iv) The complete regularisation map pq : Prim(A ®4 B) — Glimm(A ®, B) is not

open.

Proof. To prove (i), let (A, N, ju4) be the continuous C (N)-algebra constructed in Corol-
lary 6.5.5, so that the C(N)-algebra (A ®4 B, N, 4 ®1) is discontinuous. We regard B
as a (continuous) Cp(Y')-algebra over a one-point space Y = {y} as in Remark 6.3.6(ii).
Then since (4 ®, B,N, s ® 1) is discontinuous, it follows from Theorem 6.3.5(iii)
that A ®, B does not satisfy property (Fx y). Hence by Proposition 6.6.1(ii), it must
follow that ® # A on Glimm(A) x Glimm(B). (ii) is immediate from (i) and Proposi-
tion 6.6.1(i).
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(iii): Note that if Prim(B) is non-Hausdorff, then the same is true of Prim(A) x
Prim(B). Since ® maps Prim(A) x Prim(B) homeomorphically onto its image in
Prim(A®q B) [59, lemme 16], it then follows that the latter must also be non-Hausdorff.

Suppose now that Prim(B) is Hausdorff, then Prim(B) = Glimm(B). Since
Prim(A) = Glimm(A) also, (i) implies that there are (P,Q) € Prim(A) x Prim(B)
such that A(P,Q) € ®(P,Q). It follows that there is R € Prim(A ®, B) such that
R DO A(P,Q) but R # ®(P,(Q). Since by Theorem 5.5.9, A(P,Q) is a Glimm ideal of
A ®q B, we have R ~ ®(P, (), so that Prim(A ®, B) is non-Hausdorff.

(iv): If pp : Prim(B) — Glimm(B) is not an open map, then since A is unital, p,
is not open by Corollary 5.6.7. Thus we will assume that ppg is open.

Since A ®, B is a discontinuous C (N)—algebra, the continuous mapping ¢, :
Prim(A ®, B) — N is not open. Moreover, ¢, is the unique extension of
¢4 0 p1 : Prim(A) x Prim(B) — N to Prim(A ®, B), where p; is the projection
onto the first factor. We will denote by 14 : Glimm(A) — N the canonical homeo-
morphism, and by ¥, : Glimm(A ®, B) — N the map induced by ¢q given by the
universal property of the complete regularisation, so that ¢, = 14 © pq.

Since Prim(A) is compact, the complete regularisation of Prim(A) x Prim(B) is
canonically identified with Glimm(A) x Glimm(B) with the product topology by Corol-
lary 5.3.4. In particular, this implies that ¥ : Glimm(A®, B) — Glimm(A)x Glimm(B)
is a homeomorphism by Theorem 5.5.9. Let p; : Glimm(A) x Glimm(B) — Glimm(A)

be the projection onto the first factor and consider now the diagram

Prim(A ®4 B) —22> Glimm(A ®, B) P Glimm(A) x Glimm(B)

ld’n 151
N Glimm(A).

Ya

Then by Theorems 5.3.3 and 5.5.9(ii) we have Wop,o® = ps xpp on Prim(A)xPrim(B),
so that for all (P, Q) € Prim(A) x Prim(B),

(YaopioWop)(®(P,Q) = (Yaop)(pa(P),ps(Q))
= (Yaopa)(P)

¢a(P)

= (¢a)(2(P,Q)),
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the final equality holding by Proposition 6.3.3(i). Since ®(Prim(A) x Prim(B)) is dense
in Prim(A ®, B), it follows by continuity that the above diagram commutes.

Note that W, p; and 14 are all open mappings. Thus if p, were open, it would
follow that ¢, were, which would imply that (A ®, B, N, pa ® 1) were a continuous

C(N)-algebra, a contradiction. O
Theorem 6.6.3. The following conditions on a C*-algebra B are equivalent:

(i) B is exact,

(ii) A®q B satisfies property (Fa)) for all C*-algebras A,

(11i)) A ®qs B satisfies property (Fymp) for all C*-algebras A.

Proof. (i)=>(ii) and (iii): if B is exact then A ®, B satisfies property (F) for all A,
hence A ®, B satisfies properties (Fg)) and (Fyp) for all C*-algebras A.

To see that (ii) (resp. (iii)) implies (i), note that if B is inexact then there is
by Proposition 6.6.2(i) (resp. (ii)) a C*-algebra A for which A ®, B does not satisfy
property (Fg)) (resp. (Fump)). O

It was shown in [6] that if A®, B satisfies property (Fyp), then A (equivalently, @)
maps Min-Primal(A) x Min-Primal(B) homeomorphically onto Min-Primal(A @, B).
The following corollary shows that if B is inexact and quasi-standard then this map

may fail to be a homeomorphism.

Corollary 6.6.4. Let B be an inexact, quasi-standard C*-algebra. Then there is
a quasi-standard C*-algebra A for which the restriction of A to Min-Primal(A) X
Min-Primal(B) is not a homeomorphism of this space onto Min-Primal(A ®, B).

Proof. Again, let A be the C*-algebra constructed in Corollary 6.5.5, so that A®, B is
not quasi-standard by Proposition 6.6.2(iv). Since both A and B are quasi-standard,
we have Glimm(A) = Min-Primal(A) and Glimm(B) = Min-Primal(B), both as sets
and topologically [7, Theorem 3.3 (iii)]. By Corollary 5.3.4 and Theorem 5.5.9, A is a
homeomorphism of Glimm(A4) x Glimm(B) onto Glimm(A®, B). Thus if A were also a
homeomorphism of Min-Primal(A) x Min-Primal(B) onto Min-Primal(A®, B), it would
follow that Glimm(A®, B) = Min-Primal(A®, B), both as sets and topologically. This
would imply that A ®, B is quasi-standard by [7, Theorem 3.3 (iii)=>(i)], which is a

contradiction.
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O

Example 6.6.5. Let B be a primitive, inezact C*-algebra, for example B = B(H) [57]
or B = C*(F2) [56] (the full group C*-algebra of the free group on two generators),
so that Min-Primal(B) = {0}. Then Corollary 6.6.4 gives a C*-algebra A with
Prim(A) = Min-Primal(A) = {I, : n € N} for which A is not a homeomorphism of
Min-Primal(A4) x Min-Primal(B) onto Min-Primal(A ®, B).

We remark that by Theorem 6.3.2(iii), A(In,{0}) = ®(I,,{0}) for alln € N, so
that A(I,{0}) € Prim(A ®, B) for all such n. By [5, Proposition 4.5], A(I,,{0}) €
Min-Primal(A ®4 B) for all n € N. On the other hand, it is not clear whether or not
the Glimm ideal A(Ix,{0}) is a primal ideal of A ®, B.

Theorem 6.6.6. Let B be a C*-algebra. Then

(i) If pp : Prim(B) — Glimm(B) is an open map, then B is ezact if and only
if pa : Prim(A ®, B) — Glimm(A ®, B) is open for every C*-algebra A with
pa: Prim(A) — Glimm(A) open.

(ii) If B is quasi-standard, then B is exact if and only if A ®4 B is quasi-standard

for every quasi-standard C*-algebra A.

(i) If Prim(B) is Hausdorff, then B is exact if and only if Prim(A®q B) is Hausdorff
for every C*-algebra A with Prim(A) Hausdorff.

Proof. (i): If B is exact then A®, B satisfies property (F), hence property (Fq)), for all
C*-algebras A. Hence p, is open for all C*-algebras A with p4 open by Theorem 5.6.2.

Conversely if B is inexact, then by Proposition 6.6.2(iv) there is a C*-algebra A
with Prim(A) Hausdorff, hence p4 = id open, such that p, is not open.

(ii): If B is exact, then it follows from [37, Corollary 2.5] that A ®, B is quasi-
standard for every quasi-standard A.

Conversely, if B is inexact then by Proposition 6.6.2(iv) there is a quasi-standard
C*-algebra A for which A ®, B is not quasi-standard.

(iii): We will make use of the fact that if A is a C*-algebra such that either Prim(A)
or Fac(A) is Hausdorff, then Prim(A) = Fac(A) = Prime(A), see e.g. [17, p. 474].

Suppose that B is exact and that A is a C*-algebra with Prim(A) Hausdorff. Then
since A®, B has property (F), [42, Proposition 5.1] shows that A is a homeomorphism
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of Fac(A) x Fac(B) = Prim(A) x Prim(B) onto Fac(A ®, B). Hence Fac(A ®, B) is
Hausdorff, and thus the same is true of Prim(A @, B).
Conversely, if B is inexact then by Proposition 6.6.2(iii) there is a separable C*-
algebra A with Prim(A) Hausdorff for which Prim(A ®, B) is non-Hausdorff.
O

Example 6.6.7. Let M = anan(C)v so that M is quasi-standard as in Theo-
rem 6.4.4. Moreover, M is inezact by [39, Theorem 1.1]. Then by Proposition 6.6.2(iv),
there is a separable unital C*-algebra A with Hausdorff primitive ideal space Prim(A)
homeomorphic to N such that A ®, M is not quasi-standard. In particular, the as-
sumption that the zero ideal of the C*-algebra B of Theorem 6.4.4 is prime cannot be
dropped.

We will give an analogous result for maximal tensor products of (unital) C*-algebras

in Theorem 6.6.10. We first recall the definition of A ®max B.
Definition 6.6.8. Let A and B be C* algebras, and for c€ A® B let
llellmax = sup{llcll, : [|I-Il, @ C*-norm on A® B}.

Then |||, 15 @ C*-norm on A ® B, and we denote by A ®max B the completion of

A ©® B with respect to this norm, the mazimal tensor product of A and B.

The following proposition gives some (known) properties of the Dauns-Hofmann

representation of the maximal tensor product of two unital C*-algebras.
Proposition 6.6.9. Let A and B be unital C*-algebras, then

(i) the map (G,H) — G @max B+ A @max H is a homeomorphism of Glimm(A) x
Glimm(B) onto Glimm(A ®max B),

(ii) the Glimm quotients of A @max B are canonically *-isomorphic to (A/G) ®max
(B/H) for (G,H) € Glimm(A) x Glimm(B),

(iii) The Dauns-Hofmann representation of A ®max B defines canonically an upper-

semicontinuous C*-bundle
(Glimm(A) x Gimm(B), A ®max B, ¢ ®max 01 : A ®max B = (A/G) ®max (B/H)),

where for (G, H) € Glimm(A) x Glimm(B) , 7 : A — A/G and oy : B— B/H

are the quotient maps.
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Proof. (i) is shown in [37, p. 304], and (ii) follows from (i) and [14, Proposition 3.15].
Since A and B are unital, Glimm(A) x Glimm(B) is compact, and so (iii) is then

immediate from the Dauns-Hofmann Theorem (Theorem 2.3.6). O

Theorem 6.6.10. Let B be a unital quasi-standard C*-algebra. Then B is nuclear if
and only if A @max B is quasi-standard for every quasi-standard C*-algebra A.

Proof. If B is nuclear, then B is exact, so that for any C*-algebra A we have that
A @max B = A ®o B has property (F). Thus for all quasi-standard A, A ®max B is
quasi-standard by [37, Corollary 2.5].

Conversely, suppose that B is non-nuclear. For each ¢ € Glimm(B) let G, be
the corresponding Glimm ideal of B and denote by (Glimm(B),B,0, : B — By)
the corresponding continuous C*-bundle over Glimm(B), where B, = B/G, for all
q € Glimm(B). By [14, Proposition 3.23|, there is p € Glimm(A) for which Bj is
non-nuclear. As in the proof of [40, Theorem 3.2], one can construct a Hilbert space
H, a unital C*-subalgebra C' C B(H) and t = Ele i ® 8§ € C © Bp such that
1t c@macB, > It B(H)Smax B,

Denote by A the C*-algebra of sequences (7,,) C B(H) such that T;, converges
in norm to some element 7" € C'. Then, as in the proof of [7, Proposition 3.6, A is
quasi-standard, Glimm(A) is homeomorphic to N, and the Glimm quotients A, of A
are given by

An={ B(H) if neN
(64 if n=o0

We denote by (N,A,wn : A — A,) the corresponding continuous C*-bundle over N.
By Proposition 6.6.9 we may identify Glimm(A ®pax B) with N x Glimm(B), and the
Glimm quotients of A @, B are isomorphic to Ay, @max By for (n,p) € N x Glimm(B).
For 1 < i < ¢ choose 7; € A and 5; € B such that m,(7;) = r; for all n € I\QJ,
and o0,(5;) = s;. Then setting t = Zf:ﬂ”—i ®3 € A® B, we have 1o ® og(t) = t.
Then we have ||(m, ®max 0p)(f)|| = [t By fOr 7 € N, while s B o) (E)} =
It cg,,., 8- Since (n,p) = (co,p) in N x Glimm(B), it follows that (n,q) —
[|(7r ®max 04)(t)|| is discontinuous at (co,p). In particular, A ®max B is not quasi-
standard. O
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Notation and definitions

A X’Q B, 87

A ®max B, 146

AQ® B, 87

o* (o a continuous map), 81
s, 55

BX, 6

C(X),6

C(X,A),6

Co(X), 6

Co(X )-algebra, 16
Co(X,A), 6

co(A), 6

GUEX), 6

C%X, A), 6

complete regularisation, 9
completely regular space, 8
(H)-C*-bundle, 11
C*-bundle, 14

direct limit, 55

exact C*-algebra, 121

exact sequence of C*-algebras, 121

property (F), 81

equivalent definition, 105

Fac(A), 96
(Fay), 125

(Fmp), 125
(Fxy), 125

Glimm(A), 10
Glimm ideal, 10

hull(J), 7
hull-kernel topology
on Fac(A), 97
on Prim(A), 7
hully (1), 97

k(T) (T C Prim(A)), 7
=) 6

Ma, 54

maximal tensor product, 146
Min-Primal(A), 119
minimal tensor product, 87

multiplier sheaf, 54

Prim(A), 7

presheaf, 51
stalk, 55

primal ideal, 109

primitive ideal, 7
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quasi-central, 22

quasi-standard, 109

representation, 6
factorial, 6
irreducible, 6

pX, 9

px: 9

sheaf, 51

stalk, 55
state, 6
strict topology, 27

Ters 9
w-compact space, 84
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C,(X)-structure in C*-algebras, Multiplier Algebras and

Tensor Products

David McConnell

Abstract

Our general theme concerns topological decompositions of C*-algebras and the inter-
actions of these decompositions with multiplier algebras, tensor products and module

structures. A primary focus is placed on modules known as Cy(X)-algebras.

Bundle structures, specifically C*-bundles, for a C*-algebra A (not usually unital) over a
suitable base space X, are closely related to Cy(X)-algebras, and a natural consideration
is to relate such structures on A to bundle representations of the multiplier algebra M (A)
of A over the Stone-Cech compactification X of X. We discuss how the strict topology
on M(A) can be used in this context, and in the case of a Cy(X)-algebra A, relate it to
the induced C(S.X)-algebra structure on M(A). Further preliminary results concern the
ideal structure of M(A) when A is a Cy(X)-algebra.

Sheaves of C*-algebras over X provide another approach which is partially equivalent to
bundles when the topological space X is locally compact and Hausdorfl. As a corollary,
we show that a C*-bundle over a locally compact HausdorfT space X defines naturally a
C*-bundle over SX in such a way that their algebras of continuous sections are naturally
isomorphic. These results are applied to the particular case of the sheaf of multipliers
of a Cy(X)-algebra A, which is shown to be canonically isomorphic to the sheaf of local
sections arising from the C(8X)-structure on M (A).

For our main results we consider the minimal tensor product A ®, B of two C*-algebras
A and B. Extending earlier results of Kaniuth [37], we obtain a complete description
of the topological space of Glimm ideals of A ®, B in terms of those of the factors
(results published in [45]). As a consequence, we construct the Dauns-Hofmann bundle
representation [21] of A ®, B in terms of the corresponding representations of A and
B, and describe the structure of the centre of the multiplier algebra of A ®, B in this
setting.

Given a Cp(X)-algebra A and a Cy(Y)-algebra B, we demonstrate how A ®, B carries
naturally the structure of a Cy(X x Y)-algebra. We study the associated C*-bundle
decomposition of A ®, B over this space, and in particular we compare its structure to
the fibrewise tensor product studied elsewhere. As a consequence, we obtain several new
characterisations of the property of exactness in terms of the stability of certain classes

of Cp(X)-algebras under the operation of forming tensor products.
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