
LEABHARLANN CHOLAISTE NA TRIONOIDE, BAILE ATHA CLIATH TRINITY COLLEGE LIBRARY DUBLIN
OUscoil Atha Cliath The University of Dublin

Terms and Conditions of Use of Digitised Theses from Trinity College Library Dublin 

Copyright statement

All material supplied by Trinity College Library is protected by copyright (under the Copyright and 
Related Rights Act, 2000 as amended) and other relevant Intellectual Property Rights. By accessing 
and using a Digitised Thesis from Trinity College Library you acknowledge that all Intellectual Property 
Rights in any Works supplied are the sole and exclusive property of the copyright and/or other I PR 
holder. Specific copyright holders may not be explicitly identified. Use of materials from other sources 
within a thesis should not be construed as a claim over them.

A non-exclusive, non-transferable licence is hereby granted to those using or reproducing, in whole or in 
part, the material for valid purposes, providing the copyright owners are acknowledged using the normal 
conventions. Where specific permission to use material is required, this is identified and such 
permission must be sought from the copyright holder or agency cited.

Liability statement

By using a Digitised Thesis, I accept that Trinity College Dublin bears no legal responsibility for the 
accuracy, legality or comprehensiveness of materials contained within the thesis, and that Trinity 
College Dublin accepts no liability for indirect, consequential, or incidental, damages or losses arising 
from use of the thesis for whatever reason. Information located in a thesis may be subject to specific 
use constraints, details of which may not be explicitly described. It is the responsibility of potential and 
actual users to be aware of such constraints and to abide by them. By making use of material from a 
digitised thesis, you accept these copyright and disclaimer provisions. Where it is brought to the 
attention of Trinity College Library that there may be a breach of copyright or other restraint, it is the 
policy to withdraw or take down access to a thesis while the issue is being resolved.

Access Agreement

By using a Digitised Thesis from Trinity College Library you are bound by the following Terms & 
Conditions. Please read them carefully.

I have read and I understand the following statement: All material supplied via a Digitised Thesis from 
Trinity College Library is protected by copyright and other intellectual property rights, and duplication or 
sale of all or part of any of a thesis is not permitted, except that material may be duplicated by you for 
your research use or for educational purposes in electronic or print form providing the copyright owners 
are acknowledged using the normal conventions. You must obtain permission for any other use. 
Electronic or print copies may not be offered, whether for sale or otherwise to anyone. This copy has 
been supplied on the understanding that it is copyright material and that no quotation from the thesis 
may be published without proper acknowledgement.



V ariational B ayes Inference in D ig ita l R eceivers

V iet H ung Tran

A thesis subm itted  to  the University of D ubhn, T rin ity  College 

in fulfillment of the requirem ents for the degree of 

D octor of Philosophy

June 2014

Supervisor: Assoc. Prof. A nthony Quinn



r z = = = ^
TR!,\'1TY COLLEGE^.

j  5 JA N  2015 

DUBLINJ
/iWbvi



D eclaration

I, the undersigned, declare that this work has not previously been submitted to this or any 

other University, and tha t unless otherwise stated, it is entirely my own work. I agree that 

Trinity College Library may lend or copy this thesis upon request.

Viet Hung Tran

Dated: 14th June 2014



Acknowledgements

Looking back, it seems to  me th a t writing this thesis is a natural consequence of my life;

Firstly, I would like to thank  iny supervisor. Prof. A nthony Q uinn, for all the training and 

encouragem ent during my tim e at Trinity. In fact, he is the  best supervisor I could ever hope 

for. W ithou t his guidance and support, this thesis would never be complete.

I wish to  thank  Prof. Jean-Pierre Barbot and Prof. Pascal Larzabal for encouraging me 

to pursue Bayesian m ethodology when I hnishod uiy m asters in ENS Cachan, Paris.

I also wish to  acknowledge the academic support of IIo Chi M inh City University of 

Technology, of which I was an undergraduate student and currently  am a lecturer.

Regarding my family, I am especially grateful to  my elder brother. Dr, V iet Hong Tran, 

whom I have followed since (he tim e I Wius born - from preliminary, middle, high sc:hool to 

the same college. W ithou t his passion for physics and electronics, I would never have pursued 

them  either. I t is ra the r interesting to  note th a t our sole difference in our pathways is the 

tim e after entering College. W hile he studied telecom m unicaitons as a  undergraduate and 

finished his PhU  thesis on autom atics, I did exactly the opposite, i.e. I studied autom atics as 

a undergraduate and finished this PhD  thesis on telecommunications.

Last, b u t definitely not least, I wish to  dedicate this thesis to  my parents, whom I love 

much more than  myself. Actually, writing this thesis is the  best way I know to make them  

feel proud of me.

V iet H ung Tran

U niversity o f  D ublin, T rin ity  College 

June 2 0 U



Summary

This thesis is primarily concerned with the trade-off between com putational complexity and accuracy 

in digital receivers. Furthermore, because OFDM m odulation is key in 4G systems, there is an 

interest in be tter demodulation schemes for the fading channel, which is the environment th a t all 

mobile receivers must confront. The demodulation challenge may then be divided into two themes, 

i.e. digital detection and synchronization, both of which are inference tasks.

A range of state-of-the-art estim ation techniques for DSP are reviewed in this thesis, focussing 

par(,ic\ilarly on (ho Bayesian minimum-risk (MR) estimator. The la tter l akes accomit of all imcerlain- 

ties in the receiver before returning the optimal estim ate minimizing average error. A key drawback 

is I,hat exact Bayesian inference in the digital detei^tion conl,(!xl, is intractable, since the number of 

possible states grows exponentially w ith incoming data.

In an a ttem pt to design efficient algorithms for these probabilistic telecommunications problems, 

we propose a core principle for computational reduction: Markovianity. In order to  generalize this 

principle to arb itrary  objective functions, we design a novel topology on the variable indices, namely 

the conditionally independent (Cl) structure. We achieve th is by a new algorithm, called the no- 

longer-rieeded (NLN) algorithm, wliich returns a bi-directional C l structure for an arbitrary objective 

function. Owing to the generalized distributive law (GDL) in ring theory, any generic ring-sum oper­

ator can then be distributed across this Cl str\icture, and all the ring-product factors involving NLN 

variables can then be computed via a  novel Forward-Backward (FB) recursion (not to be confused 

with the FB algorithm from conventional digital detection). The reduction in the number of operators, 

when GDL can validly be applied, is g\iarantecd to be strictly positive, bcca\isc of this Cl structure, 

a  fact established by a novel theorem on GDL presented in th is thesis. Note th a t, since the number 

of operations falls exponentially with the number of NLN variables, the FB recursion is expected to 

be attractive in practical telecommunications context. The GDL principle is useful when designing 

and evaluating exact efficient recursive computational flows. Furtherm ore, the application of GDL to 

approximate iterative schemes—as opposed to  recursive schemes— is another focus of this thesis.

W hen applied to a  probability model, the topological Cl structure  th a t NLN returns is shown 

to be equivalent to  one of the Cl factorizations, returned by an appropriate chain rule, for the joint 

distribution. In particular, the FB recursion is shown in this thesis to specialize to  both the state- 

of-the-art FB algorithm  and to  the Vitorbi algorithm (VA)— depending on which inference task (i.e.



operators) we define—in tlie case of tVie M -state hidden Markov chain (HMC), whicli is a  key tnodel 

for digital receivers. Owing to the exponential fall in the com putational complexity of the FB recur­

sion, as explained above, FB and VA can return  exact MR estim ates, i.e. the sequence of marginal 

MAP estim ates and the jo in t MAP trajectory, respectively, w ith a  complexity 0{nM^) in both cases, 

i.e. growing linearly w ith the number, n, of data.

To achieve a trade-off between computational complexity ajid accuracy in HMC trajectory es­

tim ation, the exact strategies are then relaxed via determ inistic distributional approximation of the 

posterior distribution, via the Variational Bayes (VB) approximation. A novel acceleratcd scheme is 

designed for the iterative VB (IVB) algorithm, which leaves out the converged VB-marginal distri­

butions in the next IVB cycle, and hence, reduces the cirective number of IVB cycles lo about one 

on average. This accelerated scheme is then carried over to the functionally constrained VB (FCVB) 

algorithm, wliidi is shown, for the first time, to be equivalent to  the famous Iterated  Conditional 

Modes (ICM) algorithm, returning a local joint MAP estim ate. This new interpretation casts fresh 

liglit on the properties of the ICM algorithm. When applied to  the digital detection problem for the 

quantized Rayleigh fading channel, the accelerated ICM /FCV B algorithm yields attractive results. 

W hen correlation in the Rayleigh process is not too high, i.e. the fading process is not too slow, the 

simulation results show th a t this accelerated ICM scheme achieves almost the same acciiracy as FB 

and VA, bu t with much lower computational load, i.e. 0(nM) instead of These properties

follow from the newly-discovered VB interpretation of ICM.

In an a ttem p t to  deal w ith Bayesian intractability  in more general contexts, VB seeks the inde- 

pcndence-constraincd approxim ation th a t minimizes the Kullback-Lcibler divergence (KLD) to  the 

true but intractable posterior. The novel transform ed Variational Bayes (TVB) approximation is 

proposed as a  way of reducing this KLD further, thereby improving the accuracy of the deterministic 

approximation. The param eters are transformed into a m etric in which coupling between the trans­

formed paramcl.ers is weakened. VB is applied in this transformed m etric and the transformation is 

then inverted, yielding an approximation w ith reduced KLD.

As an application in telecommunications, the synchronization problem in demodulation is then 

specialized to  the frequency-offset estim ation problem, whose accuracy is critical for OFDM systems. 

When the frequency offset of the basic single-tone sinusoidal model is off-bin, the accuracy of the 

DFT-based maximum likelihood (ML) estim ate is shown to  be far worse than  th a t of the Bayesian 

MR estim ate, (he la tte r being the continuous-valued posterior mean estim ate. As stated  above, the 

Bayesian MR estim ate is often not available in more general contexts, e.g. joint synchronization and 

channel decoding, because the posterior distribution is not in closed-form in these cases. W hen applied 

to the single frequency estim ation problem, TVB achieves an accuracy far greater than  th a t of VB, 

slightly better than  th a t of ML, and comparable to  th a t of the marginal MAP estimate, as shown 

in sinmlation. This experience encourages the exploration of the TVB approxim ation in the general 

contexts above.
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Chapter 1 

Introduction

In the early years of this decade, 4G mobile systems have been widely deployed around 
the world, in response to the complete dominance of smartphones over traditional 
telephone. Then, in order to maintain the timescale of ten years between each mobile 
generation, the 5G system standard awaits a comprehensive specification in the next 
year or two. 5G systems are currently expected to be about ten times faster than 4G 
systems, much more energy-efficient, and moving towards massive machine-to-machine 
communication [Thompson ct al. (2014a,b)|. This urgent challenge in mobile systems 
reflects the rapid development of information technology, which will be looking for better 
methodologies and faster computing algorithms from digital signal processing (DSP) in 
coming years.

In order to propose new methods, we need a deeper understanding of available 
techniques. This is the philosophy we will adopt in this thesis.

1.1 M o tiv a tio n  for th e  th esis

Unlike fixed-line communication, the major challenge in the mobile receiver is to main­
tain high Quality of Service (QoS) in the face of challenging and rapidly changing 
physical environment. For the same QoS, the mobile receiver requires more computa­
tional load than a fixed-line one. Yet, the energy resource from a mobile’s battery is 
highly constrained resource. The trade-ofF between accuracy and computational load 
favours the reduction in computational load. This motivates our research into cfficicnt 
inference scheme in mobile receivers. In this thesis, we seek new trade-ofF possibility for 
digital receiver algorithm be on those provided by conventional solution.

The formal proof of central limit theorem (CLT) in the early twentieth century 
eTicourages the focus on probability tiiodeliiig aiid random processes. Particularly, 
the point estimation via Maximum Likelihood (ML), after the Fisher’s work in the 
early 1920s. ML has become the state-of-the-art estim ator in DSP systems, owing 
to good accuracy. In the late 1960s, the Viterbi algorithm (VA) wai> designed as a 
computationally efficient recursive technique for ML sequence estimation (MLSE) for
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digital sequence. While not achieving the highest accuracy for digital detection, VA is 
still the state-of-the-art algorithm, owing to its computational efficiency.

For a long time, Bayesian inference was not focusod on the delivery of practical 
systems, despite its consistency and ability to exploit known prior structure. Being 
a probabilistic framework, the normalizing constant is required for evaluating any 
posti^rior distribution, as well a.s associated moments and interval probabilii.y. This 
normalizing constant is usually intractable because it must account for all states whose 
number increases exponentially with the number of data in digital detection, i.e. curse 
of dimensionality.

The Bayesian techniques were revived in the 1980s, owing to tractable Markov Chain 
Monte Carlo (MCMC) simulation and other stochastic approximations for posterior 
distributions. Because this stochastic approach is not favoured in energy- and space- 
constrained mobile devices, the main impact of Bayesian results is mostly in offline 
contexts. Particle filtering is making an impact in online processing, but its various 
implementations are computationally expensive. Therefore, their impact in mobile 
receiver design lias been slight up to date. More recently, deterministic distributional 
approximation methods, e.g. Variational Bayes (VB), have shown great promise in 
providing principled Bayesian iterative designs that are accurate/robust, while also 
incurring far smaller computational load. Indeed, it is timely to investigate how deter­
ministic approximations in Bayesian inference can furnish principled designs for iterative 
receivers.

Note tha t, the above historical review highlights the interesting role of recursion 
and iteration techniques in signal processing in telecommunications. In particular, we 
focus on exact recursive schemes like VA and approximate iterative techniques like VB. 
Hence, on one hand, the technical aim of this thesis is to design computationally efficient 
iterative schemes, which are applicable to 4G mobile receivers. On the other hand, the 
theoretical aim is to synthesize new exact recursive computational flows, which have 
the potential to be used in 5G mobile receivers. The effective combination of these two 
techniques, i.e. recursion within iteration and vice versa, will also be considered.

1.2 Scope of the thesis

The thesis falls into the area of statistical signal processing for telecommunications. 
In common with other areas of mathematical engineering, we seek trade-off between 
accuracy and computational load in the devices and algorithms. Then, from motivation 
above, the natural questions arc (i) whether there is a general principle guaranteeing 
faster computation in the exact case and (ii) whether we can find attractive trade-off 
between accuracy and speed in approximate computation.

This thesis will resolve these two questions via two approaches, one in computational 
management and one in Bayesian methodology. In turn, theses are applied to two tasks 
of interest in telecommunications, firstly inference for Hidden Markov Chain (HMC),
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and, secondly, iterative receiver design. We will now summarize these two questions 
and these two applications.

1.2.1 Com putational m anagement for objective function

Regarding the first question (i) above, a reasonable answer is to exploit conditionally 
independent (Cl) structure. The trade-off can be seen intuitively as follows: If the 
objcctivc function involves factors exhibiting full dependence on variables, then wo 
expect the exact valuation of the objective function has a maximum computational 
complexity. Instead, it may be possible to factorize the objective function so that the 
factor exhibits various degree of independence from variables, in which case we shotild 
expect the computational load to be reduced. The minimum complexity should occurs 
when no variables are shared between factors.

The (ask we set. ourselves is to verify this intuition via a niatliernatical tool, namely 
the generalized distributive law (GDL) in ring theory. In computer science, the GDL has 
recently been applied to computation on graphical models of arbitrary order and, also, 
a similar trade-off was expressed using a graj)hical language. However, a t.hcoretical 
result guaranteeing tha t the GDL always reduces the computational load has not yet 
be^n derived. Furthermore, we would like to derive such a result from the perspective 
of set theory (i.e. set of variable indices consistent with DSP culture) rather than the 
graph-theoretic culture of machine learning. Addressing this problem is the principle 
task of the thesis.

1.2.2 Bayesian m ethodology

Regarding the second question (ii) above, we will confine ourselves to the area of proba­
bilistic inference. As we know, the optimal point estimate is obtained by relaxing from 
minimum bit-error-rate (BER) criterion to minimizing the average BER, corresponding 
to Bayesian minirrmrn risk (MR) estimate. Although the performance of this Bayesian 
estimate is only optimal in the average sense, it is nevertheless the most robust solution 
because it incorporates all the imcertainties actually present in the system.

The posterior distribution is often not, tractable. Its stoclimstic approximation via 
MCMC is typically slow, as mentioned previously. In order to address this computa­
tional intractability, the zero-order Markovian model (i.e. independent field) can be 
adopted, not as an approximating model, but as a deterministic approximation of the 
posterior distribution. It is important to recognize tha t the original model is unchanged 
in this case: only the inference technique is changed from exact computation to an 
independent approximation (tlie so-called naive mean field approximation). The most 
important technique in this context is the iterative Variational Bayes (VB) approx­
imation, which guarantees convergence to a local minimum of the Kullback-Leibler 
divergence (KLD) from the approximate to the exact posterior. The complexity of this 
converged iterative scheme is usually lower than tha t of stochastic sampling methods.
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The accuracy of VB is, intuitively, dependent on how small the KLD minimum is, and, 
in turn, how close the original posterior distribution is to an independent field. In this 
tluisis, this inspires a new VB variant—which wc call transformed VB (TVB)—in which 
we transform the original model into one closer to an independent structure, reducing 
KLD in this transformed metric. This implies that KLD is also reduced in the original 
mol.ric. This is the sccond (,a.sk of this t hesis.

1.2.3 A p p lica tio n  I - H idden  M arkov C hain

In theory, the most popular model of Markov model in DSP is the first-order hidden 
Markov chain (IlMC). The challenge is to compute the Bayesian maximum a posteriori 
(MAP) estimate efficiently. Currently, there are three well-known algorithms for the 
HMC, namely the Forward-Backward (FB) algorithm, Viterbi algorithm (VA) and 
Itc!rat{;d Conditional Modes (ICM) algorithm, which computes exac:tly the soqiience of 
maximum marginal likelihood, the (joint) ML estimate, and a local (joint) ML estimate, 
respectively. Using the GDL, we would like to explain why these three estimation 
strategics achievc a computational load that is linear in the number of Mamjjlcs. Also, 
we want to adopt the Bayesian perspective, and verify tha t they return estimate based- 
on posterior distribution. Using the VB approximation, we would also like to verify 
whether ICM is a special case of VB, and, if so, to imderstand why the accuracy of ICM 
is inferior to  tha t of VA.

Finally, from an understanding of GDL and VB, the challenge in computation is to 
design a novel accclcrated algorithm, not for recursion within one iterative VB (IVB) 

cycle, but for iteration between IVB cycles. The third task of this thesis is, therefore, 
to achieve a better trade-off between accuracy and speed using accelerated VB scheme 
and to determine if this trade-off is better than that of the state-of-the-art VA.

1.2.4 A p p lica tion  II - D ig ita l receiver

The main application interest of this thesis is the telecommunications system, partic­
ularly the mobile digital receivers, where the emphasis is on computational reduction 
rath(;r than on impioving a«:uiacy. Because tlie digital demodulator is the critical 
inference stage in the receiver. It will be our main application focus in this thesis.

For a digital demodulator, there are three cases of inference problem to be consid­
ered: unknown cairicr^ but known data (pilot symbols), known (synchronized) carrier 
with unknown data  and both unknown. For each case, we examine a specific demod­
ulator problem, as follows: \msynchronized carrier frequency estimation, synchronized 
symbol detection, and symbol detection for the Rayleigh fading channel, respectively. 
Despite their ideality, these problems address key challenges in current 4G mobile 
systems. We will provide simulation evidence demonstrating the enhanced trade-off

^In C hapter 3 we will take care to distinguish between carrier and the channel.
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for these demodulator problems using the techniques in this thesis. This is the fourth 
task of this thesis.

1.3 Structure of the thesis

The inner chapters (2-8) of thesis will be divided into three main parts. In Chapter 2, we 
seek to  map the current landscape of DSP for telecommunications, motivating the aim 
of the thesis (Scction 2.1). In Chapters 3-5, which are three methodological chapters 
of the tlicsis, wc address the computational management issue, raised iti Scction 1.2.1 
above. The third main part of the thesis, consisting of Chapters 6-8, will apply these 
methods to the three tasks, described in sections 1.2.2-1.2.4.

The summary of each of the forthcoming chapters now follows.

• C h a p te r  2 - L ite r a tu re  review ; This chaptcr is divided into three sections in 
order to  review, briefly but thoroughly, the history and challenges of telecommuni­
cations systems, state-of-the-art inference techniques in DSP, and applications of 
these techniques in current telecommunications system. Because digital demodu­
lation is the main practical application of this thesis, it is specifically addressed in 
the last section of this chapter. Another aim of this chapter is to clarify and show 
evidence that the Markov principle is ubiquitous in t.elecomm unicatioTis systems.

• C h a p tc r  3 - O b se rv a tio n  m odels fo r th e  d ig ita l rece iver: There arc three 
purposes in this chapter. Firstly, this chapter can be regarded as a technical 
review of demodulation, focussing particularly on conventional techniques, such 
as the matched filter and frequency-offset estimation. Secondly, it establishes 
three practical digital receiver models for later considerations and simulations in 
the thesis. Thirdly, this chapter aims to present the brief, but insightful derivation 
of the Rayleigh model for the fading channel.

• C h a p te r  4 - B ay esian  p a ra m e tr ic  m odelling : The purpose of this chapter is 
two-fold. On one hand, this chapter reviews the technical foundation of Bayesian 
methodology. On the other hand, we emphasize the im portant role of the loss 
f\mct,ion in designing optimal Bayesian point estimates, particularly mininnim 
average BER estimator. 'Phe VB approximation and its variant, FCVB, will also 
be introduced in this chapter.

• C h a p te r  5 - G e n e ra liz ed  d is tr ib u tiv e  law  (G D L ) fo r co n d itio n a lly  in d e­
p e n d e n t (C l)  s t ru c tu re :  The aim of this chapter is to solve the first task of 
the thesis (see Section 1.2.1). A new theorem will be derived, tha t guarantees the 
reduction in computational load in evaluating the objective function via GDL, in 
those cases where GDL is applicable. An algorithm, namely the no-longer-needed 
(NLN) algorithm, for applying GDL to general ring-products of objective functions 
is then established. Also, a generalized FB recursion for computing that objective
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function via GDL is designed. The appHcation of GDL to computational flow for 
Bayesian estimation in Chapter 4 will also be provided. Leistly, the technique for 
optimal computational reduction via GDL will be considered.

• C h a p te r  6 - V a ria tio n a l B ayes v a ria n ts  o f  th e  V ite rb i  a lg o rith m : The
aim of this chapter is to solve the third task of the thesis (see Section 1.2.3), by 
applying the GDL’s computational flow to an inference of HMC. The insight of 
computational reduction in state-of-the-art FB and VA is clarified by showing 
that, in this chapter, they are special cases of FB recursion. Furthermore, the FB 
is shown to return an inhomogcncous HMC, which is the posterior distribution 
of a homogeneous HMC. The VA is then re-interpreted as a certainty equivalent 
(CE) approximation of the inhomogeneous HMC. This re-interpretation motivates 
the design of VB approximation for HMC, together with an accelerated scheme 
for VB in this case. By specializing VB to FCVB, the FCVB is shown to be 
equivalent to ICM algorithm, and hence. Accelerated FCVB is a faster version of 
ICM, while maintaining exactly the same output, i.e. local joint MAP estimate.

• C h a p te r  7 - T h e  tra n s fo rm e d  V aria tio n a l B ayes (T V B ) a p p ro x im a tio n :
The aim of this chapter is to solve the second task of the thesis (see Section 1.2.2), 
by improving the accuracy of the naive mean field approximation, produced by 
VB (Chapter 4), via TVB. As a theoretical application, the TVB algorithm is 
applied to the spherical distribution family. As a practical application, TVB is 
then applied to the frcq\icncy-ofTset synchronization problem, defined in Chapter 
3,

• C h a p te r  8 - P e rfo rm a n c e  ev a lu a tio n  o f V B  v a ria n ts  fo r d ig ita l d e tec tio n : 
The aim of this chapter is to resolve the fourth task of the thesis (see Section 1.2.4), 
by applying the results in Chapter 6 to Markovian digital detectors, established in 
Chapter 3. Firstly, a homogenous Markov source transm itted over AWGN charmel 
is studied. The simulations will show the superiority of Accelerated ICM/FCVB 
to VA. The possibility tha t Accelerated ICM /FCVB can run faster than the 
currently-supposed fastest ML algorithm are also illustrated and disc\isscd in this 
case. Secondly, an augmented finite state Markov model, constructed by Markov 
source and quantized Rayleigh fading process, are considered. The sinmlations 
will illustrate three regimes that Accelerated ICM /FCVB is superior, compatible 
and inferior to VA, corresponding to low, middle and high correlation between 
samples of Rayleigh process. The KLD is also plotted in this case, in order to 
explain those three regimes via VB ajiproximation perspective.

• C h a p te r  9 - C o n tr ib u tio n s  o f th e  th e s is  an d  fu tu re  w orks: The contri­

butions, proposal for future works, and overall conclusion are provided in this 
chapter.
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Chapter 2

Literature review

Tlie facts used for thesis’ inotivation in Chapter 1 will be verified in this chapter 
via a brief literature review, which focuses on three themes - the telecommunications 
systems, the available inference techniques, and the application of those techniques in 
telecommunications - corresponding to three sections 2.1, 2.2 and 2.3 below.

2.1 The roadmap of telecom munications

The ultimate aim of a telecommunications system is reliably to transfer information 
over a noisy physical channcl. These transmission systems can be categorized into two 
domains: analogue and digital, although the latter completely dominates the former in 
telecommunications nowadays [Ha (2010)].

In order to motivate the research on digital receivers in this t.hcsis, some historical 
milestones and evolution of telecommunications will be briefly reviewed in this section.

2.1.1 A nalogue com m unication system s

The origin of telecommunications is perhaps the discovery of the existence of electro­
magnetic waves, as theoretically proved and experimentally demonstrated firstly by 
Maxwell in 1873 [Maxwell (1873)] and Hertz in 1887 [Hughes (1899)], respectively.

Following the discoveries in physics, an analogue system was experimented for radio 
transmission around mid-1870s [Tucker (1971)]. In early history, the most popular 
methods were Amplitude Modulation (AM) and Frequency Modulation (FM), firstly 
appeared in ]Mayer (1875)j and [Armstrong (1933)|, respectively. Some of their break­
through applications were radio and television transmission (via AM), mobile telephone 
and satellite communication (via FM), firstly experimented by P ittsburgh’s radio station 
in 1920, Zworykin in 1929, American public service in 1946 and pro ject SCORE in 1958, 
respectively [Du and Swamy (2010)[.

The first analogue cellular mobile system was also introduced by AT&T Laboratories 
in 1970 [MacDonald (1979)]. Based on radio transmission techniques, the analogue 
telephone systems in 1980s could only offer speech and related services. The first
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international mobile communications at the time were NMT in Nordic countries, AMPS 
in USA, TARCS in Europe and J-TACS in Japan [Dahlman et al. (2011)]. The mobile 
system in this era is often callcd ‘ih e  first-generation ( IG)  - Analogue transm is­
sion” in the literature.

In general, the key task of analogue receiver is to reconstruct the original waveform 
from noisily modnlal.ed signal |IIa (2010)|. However, (.his analogue sysi.ern only produces 
a modest performance, compared with later invented digital system, in whicli the 
information is extracted directly without the need of reconstructing carrier waveform. 
Hence, different from analogue system, where roaming is not possible ajid frequency 
spectrum of channel cannot be used efficiently [Mislira (2004)], the digital system is 
capable of providing flexibly multiplexing and computable bit stream, which efficiently 
exploits the channel capacity.

2.1 .2  D ig ita l com m u nication  sy stem s

The earliest digital form of telecommunications is perhaps the Morse code, developed 
by Samuel Morse in 1837 for telegraphy |Proakis (2007)|. However, the modern digital 
communication only became practical in 1924 when Nyquist sampling-rate, i.e. a 
sufficient condition for fully reconstruc;ting continuous signal from its digital samples, 
was firstly introduced in ]Nyquist (1!)24)|. Following Nyquist’s work, Harley also sttidied 
the issue of maximal data-rate that can be transmitted reliably over a band-limited 
channel in [Hartley (1928)]. Finally, in 1948, Shannon synthesized both Nyquist’s 
and Harley’s works and provided existence proof for reliable transmission scheme, i.e 
the Shannon’s limit theorems, which serve as mathematical foundation for information 
theory.

2 .1 .2 .1  G e n e ra tio n a l ev o lu tio n  o f  d ig ita l co m m u n ica tio n  sy s te m s

• 2G  - D ig ita l tran sm ission :

In the 1990s, although the analogue voice-centric system was still dominant, the digital 
packet system gradually became popular. Internet evolved from a low rate of 9.6 kbits/s 
with very few online people, to a fixed-line dial-up modem of 56 kbits/s with graphical 
webpages [Sauter (2012)]. The concept of Internet Protocol (IP) and Domain name 
servers (DNS) for digital data transmission were also introduced [Mishra (2004)].

In digital mobile system, the second-generation (2G) was also developed in this 
decade. The circuit-switched data connection enabled text-based communication like 
Short Messages Service (SMS) and emails at the rate 9.6 kbits/s (Dalilmaii et al. (2011)]. 
At the time, two well-known systems achieving that speed by assigning multiple slots 
to users were GSM project of Europe, which exploited Time-Divi.sion Multiple Access 
(TDMA), and IS-95 of Qualcomm in USA, which exploited Code-Divisioii Multiple 
Access (CDMA) jDahlman et al. (2011)].
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By incorporating both analogue voice band and digital data packet into single air 
interface, the GSM and IS-95 became the well-known GPRS and IS-95B systems (also 
referred to as 2.5G systems), respectively |Cox (2012)].

• 3G - M ultim ed ia  com m unication:

In 2000s, the major breakthrough was broadband Digital Subscriber Lines (DSL) and 
TV cable inodein, which increased the Internet speed from 56 kbits/s in dial-up modem 
to 1 M bits/s and higher (e.g. 15 M bits/s with ADSL 2+) [Sauter (2012)]. The Internet 
users were not only passive receivers but suddenly became creators on (,he so-called 
Web 2.0 version. Since 20Q5, the effective Voice over Intiirnet Protocol (VoIP) has 
also become a high trend, while the traditional fixed-line network telephone has seen a 
steady decline in number of customers [Sauter (2012)].

In mobile system, the UTMS and CDMA2000 systems have evolved from GSM 
and IS-95 in Europe and USA, owing to the Third Generation Partnership Project 
(3GPP) and 3GPP2 in International Telecommunications Union (ITU), respectively 
jCox (2012)]. Although the core network of the 3G  sy s te m  is almost the same a.s 
2G, except the variant air-iiiterfaces of CDMA like Wideband CDMA (WCDMA) [Cox 
(2012)], the standard data rates has reached 1 M bits/s and higher [Du and Swamy 
(2010)1, owing to optimizing operational proccss. Other 3G air-interfaces can also be 
designed via microwave links like WiMAX and Mobile WiMAX, developed on the basis 
IEEE 802.16 and 802.16e, respectively. Owing to high transfer speed, both digital video 
and online multimedia streaming bccame widely available. Hence, the 3G was also called 
tlie multimedia communication era [Mislira (2004)].

The digital broadcasting system also dominated the analogue communication grad­
ually. As of 2009, ten countries had shutdown analogue TV broadcast ]Du and Swamy 
(2010)]. Based on the state-of-the-art H.264/MJPEG4 compression codec, the DVB-S2 
and DVB-T2 (Digital Video Broadcasting - Satellite and Terrestrial Second Generation, 
respectively) were standardized in 2007 and 2009 respectively [Du and Swamy (2010)[.

Anotlier application of satellite coiniriuiiication is USA Global Positioning Systein 
(GPS) service, which provides relatively accurate user position. By using spread- 
spectrum tracking code circuitry and triangulation principle, mobile devices can track a 
propagation delay between transm itted and received signal to  four GPS satellites from 
any position on the earth  [Du and Swamy (2010)].

• 4G  - A ll-IP  networks:

In order to  keep mobile system competitive in timescale of ten years, 3G PP organized 
a workshop to study the long term evolution (LTE) of UTMS in 2004 ]Cox (2012)] 
and then released a technical report [3GPP (2005)[. Afterward, the standardization of 
the fo u r th  genera tion  (4G -LTE ) sy s te m  was an overlapped and iterative process 
[Dahlman et al. (2011)], which took a lot of consideration on available technology, testing 
and verification.
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Since air interface is the interface that mobile subscriber is exposed to, its fre­
quency spectrum usage is crucial for mobile network success [Mishra (2004)). Hence, 
although the core shared-channcl transmission scheme of 4G is still the same as that 
of previous generation, i.e. dynamic time-frequency resource should be shared between 
users [Dahlman et al. (2011)|, 4G system employed the Orthogonal Prequency-Division 
Multiple Access (OFDMA) air interface and other variants, in i>lace of WCDMA in 
3G. Owing to small latency in OFDMA, the data packet switching in 4G are smooth 
enough for continuous data connection (e.g. speech communication and video chat), 
which could not work seamlessly via busty data transmission of previous generations 
|Du and Swamy (2010)|.

For that reason, 4G is also known as All-IP generation [Mishra (2004)], in which both 
voice and data transmission can be divided and rc-mcrged via individual packet routing 
(e.g. VoIP). The voice calls, although enjoying the same Quality of Service (QoS), 
will be processed via packet-switching circuit on mobile receivers, which is completely 
difforent from voice-switching circuit requiring contimiously physical connection during 
the call [Sauter (2012)] in previous generations.

In 2008, ITU published requirement sets for 4G system under the name International 
Mobile Telecommunications - Advanced (IMT-Advanced) jCox (2012)], which targets 
peak data rates of 100 M bits/s for highly mobility access (i.e. with speeds of up to 
250 km /h) and 1 G bit/s for low mobility access (pedestrian speed or fixed position) 
[Du and Swamy (2010)], together with other requirements on spectral efficiency, user 
latency, etc. W ith th a t target, the High definition (IID) TV programs is expected to 
be delivered soon on 4G netw'orks ]Wang et al. (2009)]. In 2010, both UTE-Advanced 
and WiMAX 2.0 (IEEE 802.16m) systems were announced to meet IMT-Advanced 
requirements ]Cox (2012)]. The deployment of 4G is also expected to be around 2015 
[Du and Swamy (2010)].

•  5G  (u n d efin ed ):

Currently, the 4G standard was properly set up. Hence the current trend is to define 
and set up the 5G  s tandard,  just like ten years ago. In 2012, the UK’s University of 
Surrey sccured £35 million for new 5G research ccntre [UK (2012)|. In 2013, European 
Commission announced €50 million research grants for developing 5G technology in 
2020 |EU (2013)]. Although there is not any standard definition for 5G yet, a call for 
submission on tliis toj)ic has been circulated in digital signal processing (DSP) society 
]IEEE (2014)].

2 .1 .2 .2  C h a llen g es  in  m o b ile  sy s te m s

For very long time, the mobile system had been dominated by voice communication. 
Together with 4G launching, however, mobile data trafTic dramatically increased by a 
factor of over 100 and completely dominated voice calls around 2010 ]Ericsson (2011); 
Cox (2012)). In the same trend, about half of mobile phones sold in Germany in 2012 was
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actually smart-phones [Sauter (2012)]. The increase of network capacity is now critically 
demanded by the growing use of smart-phones and IP-based service. Nevertheless, 
the channcl capacity in mobile sysl,(!m is Ihcorotically bounded by Shannon’s channcl 
capacity theorem (also known as Shannon-Hartley theorem), which can be written in 
the simplest form as follows (Cox (2012)]:

C = B\og2{l + S I N R )  (2.1.1)

where C  is the channcl capacity (bit/s) representing the inaxinmm data  rate of all 
mobiles th a t one station can control, B  is the bandwidth of communication system 
in Hz and S IN E ,  is the signal to interference plus noise ratio, i.e. the power of 
rcccivcr’s desired signal divided by the power of noise and network interference. Based 
on Shannon’s channel capacity theorem (2.1.1), there are three main ways to increase 
the data transmission rate in practice [Cox (2012)], as explained below.

The first and natural way is to increase S I N R .  By construct,ing more base stations, 
we can increase the maximum data rate tha t mobile system can handle. However, this 
way is not always efficient because of energy and economical cost.

The second and fairly good way is to increase the bandwidth D. Nevertheless, this 
method is rather limited since there is only finite amount of radio spectrum, which is 
allocated and managed by ITU.

The third and current way is to approach closer t.o channel capacity C, determined 
by B  and S I N R  (2.1.1), via communication technology. Overall, there are three phases 
in mobile system th a t digital technology can assist to improve traffic performance:

• The first phase is the transinitt.er: By applying multiplexing techniques and/or 
by inserting reference header and error control packets, the bandwidth can be 
efficiently exploited via user-sharing scheme. The header normally consists of 
network information and Automat,ic-ropeat request (ARQ), which helps reducing 
the noise and interference effect [Du and Swamy (2010)]. For example, the 
overhead in 4G-LTE is about 10% of transm itted data  [Cox (2012)]. Nevertheless, 
too high overhead will cause latency and slow down the overall da ta  rate in mobile 
system. The challenge is to keep a low overhead ratio while maintaining the overall 
QoS.

• The sccond phase is physical channel: a dynamic wireless channcl is more chal­
lenging than stationary guided channel or optical channel [Du and Swamy (2010)]. 
A typical phenomenon is the so-called fading channel, in which the received signal 
is disturbed by Doppler cfTect. Such an effect might happen because of receivers’ 
mobility or of environment reflection. For example, a challenge in users location 
is to maintain the quality of GPS, which is recognized to be less accurate in rural 
region and in building area [Sayed et al. (2005)]. In 4G system, the required peak 
data rate for high-speed receiver is also much less than that of stationary receiver, 
as shown above.

11
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• The third phase is receiver’s performance: Owing to current popularity of sm art­
phones, the computational capability of mobile devices is improved significantly. 
By incorporating more complex processors (e.g. VLSI), mobile rc(;civcr nowadays 
can compute more complicated operators. Hence the most notable challenge is to 
optimize decoding algorithm such tha t the number of operators can be reduced 
significant,ly.

From the history of mobile system above, we can rccognizc a common trend: the 
iiiaxirnum data  rate of inobile generation (e.g 9.6 kbits/s in 2G, 56 kbits/s in 3G and 
1 M bits/s in 4G) was set almost the same as th a t of previous fixed-line generation 
(c.g 9.6 kb its/s in early internet, 56 kbits/s in dial-tip modem and 1 M bits/s in DSL). 
Therefore, the  challenges in inobile system are more about efficient operation in different 
environment, rather than breaking the record of possible maximum data  rate of fixed- 
line communication. In other words, optimizing the latency and computational load is a 
more serious issue in mobile system than increasing the limit of decoding performance.

2 .1 .2 .3  T h e  layer s tr u c tu r e  o f  te le co m m u n ica tio n s

In practice, the design of telecommunications system is separated into hierarchical 
abstraction levels. Each level hides unnecessary details to  higher levels and focuses 
on essential tasks driven by features of lower levels. In general, parts of a system can 
be catcgorizcd into two structures: hardware and software.

In a hardware system, the typical levels are: physical level for physical laws in 
semiconductor; circuit level for basic components like resistors and transistors; element 
level for gates and logical ports; module level for complex entities like CPUs and logic 
units; etc. [Bregni (2002)].

In a software system, communication protocols can be considered as software mod­
ule. The most popular model is the ITU ’s Open System Interconnection (OSI) reference 
protocol model, which consists of seven stacked abstraction layers [Mishra (2004)]. From 
the lowest to highest level, those seven layers are:

- The Piiysical Layer represents interface connections (e.g. optical cable, radio, 
satellite transmission, etc.), which are responsible for actual transmission of data;

- The D ata Link I^ayer implements data packaging, error correction and protocol 
testing;

- The Network Layer provides network routing services;
- The Transport Layer provides How control, error detection and multiplexing for 

transporting sei"vices through a network;
- The Session Layer enables application identification;
- The Presentation Layer prepares the data  (e.g compression or de-compression);
- Th(! Applicat ion Layer acts as an interface of services provided to the end users. 
The inference algorithms for digital receivers in this thesis (Chapters 6-8) can be

regarded belonging to Physical Layer of software system, although some asi>ects on

12
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running-time in Physical Level of hardware system are also taken into account (e.g. 
Section 6.6.2.2). Nevertheless, as discussed in Chapter 9, those algorithms can be 
feasibly extended and appliiid to problems in higher layers, e.g. dcjcodiiig in D ata Link 
Layer and network transmission in Network and Transport Layer.

2.2 Inference m ethodology

FVoiri the brief review in j>revious section, it is clear t.hat, c:oininunicatioii tct^inology 
must rely on mathematical solutions in order to increase both transmission speed and 
accuracy, particularly in the current digital era. Because the ultim ate aim is reliably to 
transm it a message over a noisy channcl, as mentioned before, the original transm itted 
message is considered as unknown, as far as the receiver is concerned. Hence, a 
methodology for inferring unknown quantities is obviously critical in communication. 
In this section, state-of-the-art inference techniques in digital signal processing will be 
briefly reviewed, while their application in communication system will be presented in 
next section.

2.2.1 A b rief h isto ry  o f  inference techniques

In liistory, the Least Squares (LS) method was firstly presented in prim  by Legendre in 
1805 and quickly became standard tool for astronomy in the early nineteentli century 
[Stiglor (1986)]. Bcc<ausc LS relies on inner product concept, which is considered to 
underly most of applied matliematics aTid statistics [Ramsay and Silverman (2005)], LS 
and its variant minimum mean square error (MMSE), proposed firstly by Gauss [Gauss 
(1821)1, have been the most popular criterions for inference technique since then.

Earlier in 1713, the Bernoulli’s book [Bernoulli (1713)[, w'hich introduced the first 
law of large number (LLN), is widely regarded as the beginning of mathematical prob­
ability theory [Stigler (1986)|. FYom Bernotilli’s results, De Moivre presented the 
first form of central limit theorem (CLT) in 1738 [do Moivre (1738)[ via Stirling’s 
approximation [Stirling (1730)]. Following De Moivre, the first atteiripts on dealing with 
inference problem were presented separately in [Simpson (1755)[ and [Bayes (1763)[, 
via the concept of inverse probability at the time [Stigler (1986)[. The latter work was 
later called Bayes’ theorem, firstly generalized by Laplace in [Laplace (1774, 1781)[. 
Those memoirs of Laplace were the most influential work of inference probability in the 
eighteenth century [Stigler (1986)[.

Nevertheless, probability theory only became widely recognized in twentieth century, 
owing to the formal proof of CLT in [Lyapunov (1900)[. The maximum likelihood, which 
is perhaps the most influential inference technique in freqtientist probability [Aldrich 
(1997)], was introduced by Fisher in [Fisher (1922)[. However, Fisher strongly rejected 
Bayesian inference techniques [Aldrich (1997)], which he treated as the same as inverse 
probability concept. The Bayesian theory has only revived and become pop\ilar since

13
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1980s [W olpert (2004)|, owing to  the famous Markov Chain Monte Carlo (M C M C ) 

a lgorithm  invented in physicaJ statistics [M etropolis et al. (1953)].

2 .2 .2  In fe re n c e  fo r m a l is m

Given observed data, x  € A", the aim o f m athem atical estim ation is to  deduce some 

in form ation, under a form  o f function ^ =  ^ ( x ) ,  about unknown quan tity  ^ 6 Q. A 

typ ical inference method can be implemented via the follow ing stages;

( i)  The very firs t stage is to  impose models on x  and Those models are called either

param etric or non-parametric, i f  they only depend on either a set of parameters 6 € 

n  or the whole spaces { X ,  Q} ,  respectively. Hence, loosely speaking, a param etric 

model is designed specifically for x  and ^ (via 9), w hile a non-param etric model 

is defined specifically for the spaces X  and Q (w ithou t any 9).

( i i )  The second stage is to  choose a criterion in order to  design the function h (•) G 'H.

The most common criterion is to  pick the optim al function ^ =  /i(x )  m in im izing 

loss function £ ( f , x )  (also known as error function). Note tha t, for determ inistic 

param etric model x  =  g{9) ,  the loss £{^ , 9 )  can be used instead. In some cases, 

such a function h (■) is fixed and imposed by physical system. Then, the remaining 

option is to  study the behavior o f function h (x ). Such a study is s till useful, since 

we m ight be able to  transm it the x  tha t minimizes the loss.

( i i i )  The th ird  stage, which is optional bu t m ostly preferred, is to impose a p robab ility  

model dependent on both x  and Hence, the value o f loss function £  is a random 

variable, whose moments can be extracted. Because the com putation o f statistica l 

momc^nl.s is oft(ui more feasible in  pract ice, t he opl.imized crK.erion in second st age 

can be relaxed and loss function C is required to  be m inim ized on average.

( iv )  The last stage, which is again optional bu t often applied in practice, is to  design 

good approxim ation for d ifficu lt com i)\itations in  above stages. The approxima­

tion  techniques are vast and varied from numerical com putation, d is tribu tiona l 

approxim ation to  model approximation. In  th is  thesis, however, d is tribu tiona l 

ap jjrox im ation  is of interest the most.

Based on the above procedure, some concrete inference methods w ill be reviewed sub­

sequently in the following, from the method involving the least number of stages to  the 

one w ith  most o f stages.

2 .2 .3  O p t im iz a t io n  te c h n iq u e s  fo r  in fe re n c e

In practice, when we know nothing about the model of x , a reasonable choice is to 

consider non-param etric approach. F'or a fast a lgorithm , however, there are two choices: 

e ither a rtif ic ia lly  assuming a param etric model for x  or imposing an estim ation model 

(either linear or non-linear) for The la tte r case w ill be considered in th is  subsection.

14
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N ote th a t, the optim ization techniques here only involve th e  first two stages (i-ii), 

because there is no probabilistic model assum ption a t the  moment.

2 .2 .3 .1  E s tim a tio n  v ia  lin ear m o d e ls

Regarding optim ization’s criterion, although the to ta l variation (i.e. L i-norm ) has 

gained popularity  recently (e.g. in comprcsscd sensing |Goyal et a). (2008)1), only 

Euclidean distance (i.e. L'2 -norm) for th e  loss £ (^ ,x )  will be reviewed here. T he reason 

is th a t, th e  la tte r  is still the  dom inant criterion in DSP, owing to  the  Least Square (LS) 

m ethod and its variants |Kay (1998); Proakis and M anolakis (2000)].

In the sim plest linear form, the unknown quantity  can be w ritten  in vector calculus 

f  =  A6,  where m atrix  A  is assum ed known. The o u tp u t of LS m etliod is, therefore, the 

optim al value of param eter 0 th a t minimizes the square error function ||x  — ^(|2 - Note 

th a t, in th is case, th e  loss has taken into account bo th  model design error for ^ and 

unknown noise em bedded in x . Owing to  linear property, the  m inim um  point of loss 

function can bo found feasibly by se tting  derivative equal t.o zero, which yields th(! set of 

linear norm al equations [Kay (1998)]. Such a technique is also called linear regression. 

In more general form, where the m atrix  A  can be replaced by im pulse response of a 

linear filter, the LS m ethod is also called adaptive filter m ethod in D SP |IIayes (1996)|.

The linear form also yields recursion form for LS in two causes [Kay (1998)]:

- In spatial dom ain, if dp =  {^i, O2 , ■ ■ ■, dp}, where p  is the  order of j)aram eter model, 

the order-recursive least square (Order-llLS) m ethod re tu rns the optim al Op rec\irsively 

from the LS optim al Op^i.

- In tem poral dom ain, if x„ = { x i , x 2 , ■ ■ ■ ,Xn},  where n  is the  num ber of received 

data , the sequential LS (SLS) m ethod can return  the optim al 0 for x„ recursively from 

the  one for x „ _ i. Owing to  im portan t onliTie property, the  SLS has several variants, such 

as the  weighted LS m ethod [Kay (1998)] or Recursive LS (RLS) m ethods [Hayes (1996)]. 

The la tte r eases are special cases of the former, in which the weights are designed in 

order to  either decrease the  dependence of 6 on p ast values Xjg(_oo exponentially 

down to zero from the  {jresent tim e n  (exi)onential weighted RLS m ethod), or truncate 

th a t dependence by a window (sliding window RLS m ethod) [Hayes (1996)].

T he LS m ethod can also be extended to  decision problem  under constraints. In 

C onstrained LS m ethod, the param eter 6 is subject to  some linear constrain ts, which 

can be solved feasibly via Lagrange m ultiplier technique [Kay (1998)]. In Penalized LS 

m ethod, the square error function is added by a sm oothly penalized function dependent 

on d [Green and Silverm an (1994)].

2 .2 .3 .2  E s tim a tio n  v ia  n o n -lin ea r  m o d e ls

The LS criterion in linear case can also be applied to  non-linear model ^ = g (0),  which is 

also called non-linear regression [Bard (1974)|. Because the m inim ization of square error
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is often difficult in th is case, a common solution is to  convert th e  non-linear problem 

back to  a linear problem . T here are th ree popular techniques for th a t purpose.

T he first t(!chiiique is transform ation of param eters 4> — qW i such th a t { =  Acj) is a 

linear model. A lthough th is m ethod can be applied successfully to  sinusoidal param eter 

estim ation v ia  trigonom etric formula [Kay (1998)], only few non-linear cases can be 

solved by I,his way.

T he sccond tcchiiiquc is nuinerical approxim ation. A rmmerical grid scarcli on non­

linear function can be im plem ented via N ew ton-Raphson iteration , which returns a  local 

m inim um  for loss function. A nother approxim ation is to  linearize the loss function a t 

a  specific p a iam e te r value of 6 a t each iteration . Such a technique is called Gauss- 

Newton m ethod, which om its the  second derivatives from N ew ton-Raphson iteration  

|Kay (1998)|.

T he th ird  technique is to  solve the non-linear loss function via linear regression 

in augm ented space, nam ely Reproducing Kernel H ilbert Space (RKHS). By Riesz 

rcpresenl ation  theorem , a non-linear function can be represented as an inner product 

between designed kernels in RKHS [Ramsay and Silverman (2005)], although the  kernel 

form is not always feasible to  design.

2 .2 .4  P r o b a b ilis t ic  in feren ce

As a relaxation, we can consider x  and ^ as realization of unknow n quantities. Based on 

Axioms of Probability, firstly formalized in [Kolmogorov (1933)|, the  unknown quantity  

can be regarded cither as random  variable, which is a ftinction m apping a  realization 

event w G in a probability  space of triples (H, 5 , P)  to  (possibly vector) real value 

[Bernardo and Sm ith (1994)], or more generally £is random  elem ent, which m aps th a t uj 
to  m easurable space ( E, £) ,  firstly defined in [Prechet (1948)]. By th is  way, probabilistic 

model can be applied to  x  and instead of determ inistic model.

2.2.4.1 E stim ation  techniques for station ary  processes

Firstly, let us regard a sequence of observed d a ta  x „  =  { x i , x 2 , ■ ■ ■ , Xn}  as a stochastic 

process of n  random  quantities. A lthough the  jo in t probabilistic model will no t be 

specified, such a stochastic process will be confined to  be e ither stric t- or wide-sense 

sta tionary  in th is subsection. By definition, th e  strict-sense sta tio n ary  process requires 

th a t th e  jo in t d istribu tion  of any two d a ta  only depends on th e  difference between their 

tim e points, while th e  wide-sense relaxes th e  jo in t d istribu tion  constrain  w ith th e  first 

two orders of m om ents only.

Because th e  covariance function of wide-sense sta tionary  (W SS) signal only depends 

on the lagged tim e, which, in turn , can be represented as a power spectral density 

(PSD) in frequency dom ain, the  coiriputation in th a t  linear param etric  model greatly 

facilitates th e  inference task. Hence, the W SS property  is widely assum ed in DSP 

m ethods. Similarly, the  additive w hite Gaussian noise (AWGN) is the  m ost popular
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noise assumption in the literature, because a WSS Gaussian process, solely characterized 
by the first two orders moment, is also a strict-sense stationary process [Madhow (2008)].

In theory, the famous Wold’s representation tlieorcm, firstly presented in his thesis 
[Wold (1954)], guarantees tha t any WSS process can be w ritten as a weighted linear 
combination of a lagged innovation sequence, which is a realization of white noise 
process. In other words, given innoval.ion siuiiicnce a.s the iii])ul,, any WSS discrete 
signal can be expressed either as the output of a causal and stable innovation filter (i.e. 
an infinite impulse response (HR) filter) in frequency domain, or as Moving Average 
(MA) model with infinite order in time domain ]Proakis and Manolakis (2006)|. The 
latter is also called Wold decomposition theorem, which decomposes the current value 
of any stationary time series into two different parts; the first (deterministic) part is 
a linear combination of its own past and the second (indcterministic) part is a MA 
component of infinite order [Bierens (2004, 2012)].

In practice, because the MA order can only be set finite, another linear model 
with finite order, namely Auto-Regressive Moving-Average (ARMA), is wildly applied 
to ^ as an approximation for Wold’s representation of WSS signal x. The popular 
criterion in this case is the Least Mean Square (LMS) error, in which the parameters 
9 of the ARMA model of ^ has to be designed such that the mean square error (MSE) 
function ^'/(x„)(ll4 ~  ^n]]^) minimized. Owing to the similar form of square error, 
LMS criterion can be solved efficiently via LS optimization techniques. Note that, 
although the distribution form /(x „ )  is undefined, the WSS assumption for x„ has 
greatly facilitated the computation of miniinuni MSR (MMSE) criterion, which only 
requires the first and second order moments of /(x „ )  [Kay (1998)].

•  W ie n e r  F ilter:

The MMSE estim ator in this linear model is the well-known Wietier filter, proposed in 
[Wiener (1949)]. The engineering term ’filter’ is used because it often refers to a process 
taking a mixture of separate elements from input and returning manipulated separate 
elements at the output [Farliaiig-BoroujeTiy (1999)]. Such elements T t i i g l i t  be frequency 
components or temporal sampling data.

Wiener filter can be applied in three scenarios: filtering, smoothing and prediction:
- In filtering scenario, the underlying process value at current time is estimated 

from x„ by solving the set of linear normal equations, which is called Wiener-Hopf 
filtering equations because the normal matrix in this case is the Toeplitz autocovariance 
matrix [Kay (1998)[. In frequency domain, such a correlation-based estim ator can be 
considered as a time-varying finite impulse response (FIR) filter. When the past data is 
considered as infinite, the FIR filter becomes an IIR Wiener filter [Proakis and Manolakis 
(200fi)|.

- In smoothing scenario, the underlying value at any time point i is estimated 
from a theoretically infinite length signal x. Owing to the infinite length assumption.
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Fourier transform  is applicable and can be used to  re tu rn  th e  spectrum  of estim ator, 

which is called infinite W iener sm oother [Kay (1998)] in th is case.

- In prediction  scenario, the unknown ftiture d a ta  is estim ated  from the current 

batch  of d a ta  x „ . In o ther words, the  unknown quantity  in th is  case is ^ =  ! ;> „  rather 

th a n  underlying process values. T he norm al equations in th is case are called W iener- 

IIo])f e(jua1,ions for /-stej) i>r('dict,ion [Kay (1998)|. If / =  1, t hose norm al (Hiual.ions of 

linear prediction are identical to  Yule-Walker equations [Yule (1927); W alker (1931)], 

which is used for finding Auto-Regressive (AR) param eters in A R process [Kay (1998)].

Because the  norm al m atrix  has an ex tra  Toeplitz property  in th is case, m any efficient 

algorithm s were proposed to  solve those normal equations. Among them , Levinson- 

D urbin [Levinson (1947); D urbin (I960)] and Schur algorithm s [Schur (1917); Gohberg 

(1986)], which exploit recursive lattice filter structu re , are the  m ost well-known ]Proakis 

and M anolakis (2006)]. In linear prediction, th a t tw o-stage forward-backward lattice 

filter is also applied in forward and backward linear prediction for the  right-next future 

and right-previous p ast d a ta  [Proakis and M anolakis (200G)], respectively.

N ote th a t the  W iener filter requires the  tru e  value of first and second moments, i.e. 

th e  param eter of W SS / ( x „ ) ,  in order to  com pute th e  estim ators 6 for linear param eter 

0 of If those two m om ents are unknown a priori, they also need to be estim ated. For 

th a t  purpose, a  triv ial m ethod is to  use em pirical sta tistics, ex tracted  from available 

data , as the ir estim ators. This m ethod relies on assum ption of ergodic process, in 

which the  m om ents of d a ta  a t arb itra ry  tim e point are equal to  tem poral s ta tistics of 

one realization of th e  process [Proakis and Maiiolakis (2006)). Nevertheless, a good 

em pirical approxim ation for sta tistica l moments requires a  lot of observed data , which 

might cause latency and energy consuming in practice.

•  A d a p tiv e  filters:

In cases where the  block of d a ta  is too  short or the  first two m om ents of W SS x„ are 

not known a priori, a  popular approach is to  consider those two m om ents as unknown 

nuisance paian ie te rs. In DSP literature, th is approacli is iitipleinented via variants of 

W iener filter, nam ely adaptive filters, where finite blocks of observed d a ta  are trea ted  

sequentially and adaptively.

Instead  of using the  Levinson-Durbin algorithm  for solving the  norm al equations 

in W iener filters, adaptive filters exploit variants of the  recursive LMS algorithm s. 

Owing to  the  quadra tic  form of MSE, the LMS algorithm s always converge faster to  

the unique niinim uni of MSE [Proakis and M anolakis (2006)[. T he stan d ard  LMS 

algorithm , proposed in [Widrow and Hoff (1960)[, is a  stochastic-gradient-decent al­

gorithm . Its com plexity can be reduced via other gradient-based LMS m ethods, such 

as averaging LMS or norm alized LMS algorithm s [Proakis and M anolakis (2006)]. For 

faster convergence, adaptive filters exploit the class of variant Recursive Least Square 

(RLS) algorithm . T he th ree m ajor RLS algorithm s are s tan d ard  RLS [Widrow and 

Iloff (1960)[, sq u a ro ro o t RLS [Bicrman (1977); IIsu (1982)[ and Fast RLS [Falconer

18



CH A PT ER  2. ITERATliRF RFViF

and Ljung (1978); Carayannis et al. (1983)], which exploit the eigenvalues of covariance 
matrix, the m atrix inversion via matrix decomposition and lattice-ladder filters via 
Kalman gain, respectively |Farhang-Boroujeny (1999); Proakis and Manolakis (200G)|.

Note that, the adaptive filters are also applicable to non-stationary process. In that 
case, adaptive filters are merely parametric estimators, which are artificially imposed 
on non-paramol.ric modol of data  process x„.

• P o w er S p e c tra l  D e n s ity  (P S D ) e s tim a tio n :

The autocovariance function can also be estimated via its PSD in the frequency domain. 
In the literature, the three m ajor PSD estimations are noii-parainetric approac:h via the 
periodogram, a parametric approach via ARMA modelling and a frequency-detection 
approach via filter banks [Proakis and Manolakis (2006)]:

- By definition, the periodogram is the discrete-time Fourier transform (DTFT) of 
the autocorrelation sequence (ACS) of sampled da(,a. Because of frequency leakage in 
windowing approaches, the periodogram does not converge to the true PSD, although 
the sample ACS does converge to the true ACS in the time domain [Proakis and 
MaTiolakis (2006)). For th is  non-paraTuetric approach, the proposed solution is to 
apply averaging and smoothing operations upon the periodogram in order to achieve 
a consistent estim ator of the PSD. Such operations decrease frcqucncy resolution, and 
hence, reduce the variance of the spectral estimate. The three w ell-know n methods 
are Barllett [Bartlett (1948)], Barlett-Tukey [Blackman and Tukey (1958)] and Welch 
]Welch (1967)].

- For the parametric approach, the solution is to estimate the parameters of an 
ARMA model representing the WSS process. Those parameters can be estimated via 
linear prediction methods like Yule-Walker (for AR model) or via order-RLS algorithms 
above. In the latter case, the maximum order can be prc'-defincd via some asymptotic 
criterion like Akaike information criterion (AIC) [Akaike (1974)]. In special csises, where 
the underlying signal is a linear combination of sinusoidal components, the parameters 
can be detected via subspace techniques like MUSIC [Schmidt (1986)] or rotational- 
invariance technique like ESPRIT [Roy et al. (1986)].

- In the filter bank method, as proposed in [Capon (1969)], the main idea is tha t the 
temporal signal can be processed in parallel by a sequence of FIR filters, which serve as 
a spatial windows truncating the spectrum in the frequency domain.

2.2 .4 .2  F re q u e n tis t  e s tim a tio n

In above random process, a parametric model is defined for whose purpose is to 
approximate data  x. In this subsection, let us consider the other way around; a 
probabilistic model /(x |0 )  will be defined for x, whose param eter 9 can be estimated 
via

In the frequentist viewpoint, probability relates to the frequencies of possible out­
come in an infinite number of realization of random variable. The repeatability is.
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obviously, the  basic requirem ent for random  variable in th is philosophy. T he frequentist 

litera tu re  often replaces th e  no ta tion  /(x |(? ) of conditional d istribu tion  w ith no tation 

/ ( x ;  0) of likelihood if the unknown param eter 0 is regarded as fixed an d /o r  unrepeatable 

value [Kay (1998)|.

•  C o n s is te n t  e s t im a to r :

A popular criterion for frequentist’s estim ator ^ of p aram eter 6 is consistency condition, 

which sta te s  th a t ^ =  /i(x„ ) converges to  6 in probability  as n  —> oo. In th is asym ptotic 

approach, th e  M axim um  Likelihood estim ator (M LE), which maxim izes the  likelihood, 

can be shown (o be consistent. Owing to feasibility and constructive definition, MLE is 

perhaps th e  m ost popular estim ator in frequentist approach.

•  U n b ia s e d  e s t im a to r :

A nother popu lar frequentist’s criterion is unbiased condition, h(d) =  0, where h{9) = 

E{^)  — 6 and th e  conditional mean is taken via likelihood / ( x |0 ) .  If th e  loss function 

L(^ , 0)  is chosen as Euclidean distance (i.e squared error), the  m otivation of unbiased 

condition is rooted  from Mean Square E rror (MSE) mse(^|6>), which is the sum  of 

variance war(4|0) and squared bias b{6)^ [Bernardo and Sm ith, 1994).

For m inim um  MSE (M M SE), the desired estim ator in frequentist lite ra tu re  is Mini­

mum Variance Unbiaised (M VU), in which unbiased condition b{6) =  0 is assum ed first, 

and M inim um  Variance (MV) condition for var(^lO) is sought afterw ard. The im portan t 

restilt for th is MVU apj)roach is the Cram cr-R ao bound (CRB) [Cramer, 194G; Rao, 

1945[, which provides th e  bound for MVU estim ator under regularity  conditions.

Nevertheless, the  unbiased estim ators m ight not exist in practice, and hence, the 

applicability of CRB estim ator is very lim ited. Moreover, in term  of MMSE, tliis 

unbiased approach is too  constrained. A direct com putation of MMSE estim ator, 

regardless of biassed or not, should be the  u ltim ate aim after all.

2 .2 .4 .3  B a y e s ia n  in fe re n c e

In Bayesian viewijoiiit, the  probability  is regarded as quantification of belief, while 

Axioms of P robability  are m athem atical foundation for calculating and m anipulating 

th a t  belief’s quantification. In th is sense, Bayesian inference m ust involve two steps:

- Firstly, th e  jo in t probability  model / ( x ,  9) m ust be im posed, via e.g. em pirical 

evidence in th e  p ast, uncertain ty  model for unrepeatab le physical system , our belief on 

frequencies of repeatab le outcom e in future, or quantification of ignorance, etc.

- Secondly, th e  posterior d istribu tion  / ( 0 |x ) ,  which quantifies our belief on param eter 

9 given observed d a ta  x , has to  be derived from / ( x ,0 )  via probability  chain rule. This 

second step  is also called Bayes’ rule if /  (x, 9) is factored fu rther into observation 

/ ( x |6 )  and prior f {9)  d istributions. In the past, the form / ( ^ |x )  was also called inverse 

probability, because conditional order between param eters and d a ta  is reverse to  th a t 

of likelihood / ( x |0 ) .
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In practice, different from Frequentist approach, the aim of Bayesian point estimator 
is to minimize expected value of loss function E{L{^,9)),  but with respect to posterior 
/(0 |x )  instead of likelihood /(x |^ ) . Nevertheless, the main difficulty of Bayesian tech­
niques is th a t posterior distribution in practice is often intractable, in the sense that 
the regular normalizing constant is not available in closed-form. In th a t case, the 
distributional api)roximal.ion for ])osterior can be applied. In fact., as ment.ioncd above, 
the availability of multi-dimensional distributional approximations like MCMC is the 
main reason for reviving Bayesian techniques in 1980s [Wolpert (2004)].

For convention, the pdf /(■) in this thesis is used for both pdf and pmf distribution. 
The pmf is simply regarded a special case of pdf and represented by probability weights 
of Dirac-delta functions 6(6 —9i) located at corresponding singular points Oi. Note that, 
in this case, 6{d — Oi) has to be regarded as a Radon-Nikodym probability measure, 
Sg{A), for arbitrarily small cr-algebra set A  in the sample space ft, such th a t 9i 6 A, 
and the integral involving J( ) needs to be understood as a Lebesgue integral.

In an attem pt (o derive equivalence bcl.ween Bayesian and Frequent,isl I.echniques, 
the following two models for prior distribution are often considered:

• Uiiifunn -prior: If the prior f {6)  is uiiifonii over sample space H, the posterior 
distribution for 9 is proportional to  the likelihood. The Bayesian and Frequentist 
computational results for MAP and ML estimates are then the same, although 
their philosophy n^rnains different. However, when t.he measure of sample space 
fl for 9 is infinite, such a uniform prior will become an improper prior.

• Singular (Dirac-delta) function for prior: If the prior is aasigned as 6(9 — 9q) at 
a singular value Oq, the likelihood becomes /(x |^o ) owing to sifting property of 
Dirac delta function and, hence, justifies the philosophy of notation /(x;6^o) in 
frequentist. This prior is, however, not a model of choice for Bayesian technique, 
because the posterior for a Dirac-delta prior is exactly the same as th a t prior, 
by the sifting property. In other words, once the prior belief on 0 is fixed at 
9o, regaidless of 9q being kTiown or unkiiowti, there is no observation or evidence 
that can alter th a t belief a posteriori. Hence, this singular function is not a good 
prior model because it ignores any contrary evidence under Bayesian learning. In 
application, the Dirac-delta function is mostly used in Certainty Equivalent (CE) 
estimation, i.e. the plug-in method, for a nuisance param eter subset of 9 or in 
sampling distribution, as explained in Section 4.5.1.1.

Hence, care must be taken when interpreting Frequentist result as special case of 
Bayesian result. For technical details of Bayesian inference and its comparison with 
Frequentist, please see Chapter 4 of this thesis.
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Figure 2.3.1: Conventional stages of a digital communication system

2.3 R ev iew  of d ig ita l com m unication system s

In 1948, Shannon published his foundational paper [Shannon (1948)], which guaranteed 
the existence of reliable transmission in digital systems. By quantizing the original 
messages into a bit stream, the digital system can feasibly m anipulate the bit sequence, 
e.g. extracting or adding redmidant bits. The result is an encoded bit stream, which is 
ready to  be modulated into a robust analogue waveform transm itted over noisy channel. 
The key advantage of digital receiver is tha t it only has to extract the original bit stream 
from noisy modulated signal, without the need of reconstructing carrier or ba^seband 
waveform [Ha (2010)). Hence, the aim of digital receiver can be regarded as relaxation 
of tha t of analogue receiver.

In its simplest form, a typical digital system can be divided into several main 
blocks, as illustrated in Fig. 2.3.1. Note that, owing to advances in methodology 
and I.echnology nowadays, l.he interface between t,hosc; bloc;ks becomes mon; and more 
blur. This unification process is a steady trend in recent researches, as noted below. 
In following subsections, both historical origin and state-of-the-art inference techniques 
for telecom system will be briefly reviewed.

2 .3 .1  A /D  and D /A  converters

At the input, an analogue message will be converted into a digital form as binary 
digits (or bits). Such a conversion is implemented by the so-called Analogue-to-Digiial 
(A /D) converter. At the output, the Digital-to-Analogue (D /A) converter is in charge 
of reverse process, which converts digital signal back to continuous form. In practice, 
the A /D  and D /A  arc used in both sampling and quantizing methods upon temporal 

axis and spatial axis, respectively. Those two methods will be briefly reviewed in this 
subsection.

2 .3 .1 .1  T em p o ra l sa m p lin g

The most im portant criterion in sampling process is invertible mapping, which guaran­
tees p>;rfect recoristrtu:tion of original signal at the output. A sufficient condition for
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successfully reco ns truc tin g  signal from  its  samples is th a t  the  sam p ling  frequency a t A /D  

is kept h igher th a n  N y q u is t ra te  (i.e. tw ice  the  highest frequency) o f analogue message, 

as f irs t ly  in tro du ced  in  |N yq u is t (1928)| and la te r proved in |Sha iinon (19'19)|. Note 

th a t, the  S hannon -N yqu is t sam pling  theorem  is, however, n o t a necessary cond ition  

[Landau (1967)]. Because non-aliased sam pled signal in  frequency dom ain  is a sequence 

o f shift,nd rep licas o f o rig in a l signal, I hc reconstrucl.ion a t D /A  is s im p ly  an ideal low- 

pass f ilte r , w h ich  crops o rig in a l signal ou t o f replicas. In  t im e  dom ain , such an ideal 

f i l te r  is ca lled sync f ilte r ,  w h ich  is o ften  replaced by  pole-zero low-pass (sm ooth ing) 

f ilte rs  like  B u tte rw o rth  o r Chebyshev filte rs  [H ayk in  and M oh cr (2006)|.

Since 1990s, the  compressed sensing (CS) technique (also called com pressive sam­

p lin g ) has been proposed fo r sam pling  sparse signal (Goyal e t al. (2008)]. E x p lo itin g  

the  sparsity, compressed sensing p ro jec ts  message signa l fro m  o rig in a l spacc in to  much 

sm alle r subspace spanned by  general waveforms (instead o f s inuso ida l waveform s in 

classical techn ique ), w h ile  exact recovery is s t i l l  guaranteed under some cond itions 

]Donoho (200G)]. Nevertheless, a drawback o f CS is th a t the  reco ns truc tio n  has to 

re ly  on g loba l convex o p tim iz a tio n  v ia  linea r p ro g ra m m ing  (L P ) ]Goyal et al. (2008)], 

instead o f d e te rm in is tic  so lu tion  like  tra d it io n a l filte rs . In  p ractice , th is  technique has 

been app lied  to  suh -N yq u is t ra te  o f m u lti-b a n d  analogue signa l ]M isha li and E ld a r 

(2009); T ropp  et al. (2010)].

2 .3 .1 .2  S p a t ia l q i ia n t iz a i io n

In  ty p ic a l qu an tiza tio n , the re  are th ree issues to  be considered: vertices o f quantized 

cells, the  quan tized level w ith in  each cell and the  b in a ry  codeword associated w ith  each 

level. T he  f irs t tw o issuas, w h ich  are re levant to  q u a n tiz a tio n ’s perform ance, w ill be 

reviewed here, w h ile  the  th ird  issue, w h ich is re levant to  p ra c tica l com pression ra te , w ill 

be m entioned in  ne x t subsection on source encoder.

T he  s im p lest technique in  qu an tiza tio n  is to  trunca te  and rou nd  analogue value to  

the  nearest bo u n d a ry  in  a (e ithe r un ifo rm  or no n -u n ifo rm ) g r id  o f cells o f a m p litu de  

axis ]P roakis and M ano lak is  (2006)]. Each quantized level (i.e. the  nearest bo im d ary  

value in  th is  case) w i l l  the n  be assigned by a specific b lock o f b its , w h ich  is o ften  called 

a codew ord o r sym bo l. For m u lti-d im e ns iona l case, each d im ension o f analogue signal 

can be quan tized separately. Such a technique is com m on ly  called scalar qu an tiza tio n  

in  the  lite ra tu re  (e.g. ]Gersho and G ray (1992)]). In  some cases, a tra n s fo rm  coding, in 

w h ich  a linea r tra n s fo rm a tio n  is app lied  to  message signa l before iin p le m e n tin g  scalar 

q u an tiza tio n , as f irs t ly  in tro du ced  in  ]K ram er and M athew s (1956)], m ig h t y ie ld  b e tte r 

perfo rm ance th a n  d ire c t scalar quan tiza tion , e.g. J lluang  and Schultheiss (1963)].

I f  we regard d a ta  as a vecto r in m u lti-d im e ns iona l space, th e  vec to r qu an tiza tio n  

(V Q ) can be used as genera liza tion  o f scalar qu an tiza tio n  (see e.g. [Lookabaugh and 

G ray (1989)] fo r th e ir  com parison). Instead o f us ing pa ra lle l cells in  scalar version, 

V Q  d iv ides da ta  spacc i i i to  m u ltip le  po ly topes po in ted  to  by  bo u n d a ry  vectors. Then,
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VQ maps each message vector within polytope cell into a quantized vector (often being 
the nearest boundary vector) within that polytope. The virtue of VQ is tha t any 
(cither linear or non-linear) quantization mapping can be repros(!nt('d equivalently as a 
specific VQ mapping [Gersho and Gray (1992)). Hence, VQ is definitely among the best 
quantization mappings tha t we can design. In history, original idea of VQ was scattered 
in the literature. For example, VQ wfis firstly studied for ;isymi)l,ot,ic behaviour of 
random signal in [Zador (1963)], although a version of VQ was used earlier in speech 
coding [Dudley (1958)). In computer science, VQ is also known as k-means method, 
which is named after jMacQueen (1967)) and regarded a.s duster classification or pattern 
recognition method [Jegou et al. (2011)].

Different from sampling, quantization is an irreversible mapping. Hence, the state- 
of-the-art reconstruction in D /A  converter is simply sample-and-holding (S/H) or higher- 
ordered interpolation operator jProakis and Manolakis (2006)).

2.3.2 Source encoder and decoder

The purpose of source encoder/decoder is to provide a compromise between compression 
rate (i.e. number of representative bits per signal symbol) and distortion measure (i.e. 
error cjuantity between reconstructed and original signals). Given one of them, the ideal 
criterion is to minimize the other.

In history, the purely theoretical concept for compression rate was Kolmogorov 
complexity [Solomonoff (1964); Kolmogorov (1965); Chaitin (1969)), which can be re­
garded as the smallest number of bits representing the whole data. Because of analysis 
difficulty, Kolmogorov complexity was subsequently replaced by minimum length de­
scription (MDL) principle [Rissanen (1978)), in which the criterion weis shifted from 
finding shortest rejiresentative bit-block length to finding an approximate model such 
that: the total number of bits representing both approximate model and the original 
signal described by tha t model is minimal. However, the com |)utation for MDL is still 
complicated and a subject for current researches [Gnmwald et al. (2005)).

The historical breakthrough was a relaxation form of MDL in asymptotic sense, 
which is the asym ptotic bound of rate-distortion function, firstly introduced and proved 
in foundational papers [Shannon (1948)) and jShannon (1959)), respectively. On one 
extreme of this bound, where desired rate is as small as t i u I I ,  we achieve the best 
compression, but distortion would be high. On other extreme where desired distortion 
is null, we achieve the so-called lossless data compression scenario, but minimized com­
pression rate is still modest. Compromising those two cases, the lossy data  compression 
scenario, whose purpose is to reduce compression rate significantly within tolerated 
small loss of distortion, has been widely studied in the literature, as briefly reviewed 
below.
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2 .3 .2 .1  L o ssy  d a ta  co m p ressio n

This scenario is sometimes called fixed-length code in the literature. Given a fixed 
compression rate, its popular criterion is to minimize the distortion measure (often 

chosen as mean square error (MSE)). The research on lossy compression is vast, but 
currently it can be roughly divided into (hree domains: A /D  converter, transform coding 
and wavelet-based compression. Note th a t their separation border might be vague, 
e.g. Compressed sensing (CS) can be regarded as a hybrid method of the first two 
methodologies.

In information theory, the A /D  convertor can be regarded as special case of lossy 
data compression (e.g. [Goyal et al. (2008); Duhamel and Kieffer (2009)]):

• For a fast sampling scenario, CS has been applied to speed-up medical imaging 
acquisition [Vasanawala et al. (2010)] or compressive sensor network ]Haupt et al. 
(2008)] with acceptable loss from sparsity recovery. Hence, CS is very \iseful in 
the context of expensive sampling, although its compression performance is quite 
modest jGoyal et al. (2008)).

• In quantization, the Lloyd-Max algorithm jJ.Max (1960); Lloyd (1982)] and its 
generalization Linde-Buzo-Gray algorithm jLinde et al. (1980)] (also known as k- 
iiieaiis algorithm) are well-known algorithms for scalar and vector quantization, 
respectively. Given initial quantized vectors (or quantized levels in scalar case), 
the k-means algorithm iteratively computes and assigns quantized vector as cen­
troid of probability density function (pdf) of the source signal within quantized 
cells jSayood (2006)]. At the convergence, the algorithm returns both boundary 
values of the cells and quantized levels such tha t MSE is locally minimized JSayood 
(2000)]. In the case of discrete source, if probability mass function (pmf) of the 
source is unknown, it can be approximated by clusters of input source signal 
vectors (i.e. similarly to histogram in scalar case) in offline basis, or by adaptive 
algoritrhms jPanchanat.lian and Goldberg (1991)] in onliiK; basis.

• Another quantization technique resembling Vector Quantization (VQ) is Trellis 
Coded Quantization (TCQ), introduced in ]Marcellin and Fischer (1990)]. The 
main purpose of TCQ is to  minimize the MSE of entire sequence of quantized 
source samples, instead of individual MSE of each quantized source sample. In 
order to avoid the exponential cardinality of trajectory of quantized levels for 
entire source sequence, TCQ imposes Markovianity—local dependence structure— 
on those trajectories (i.e. the quantized levels of current source sample will 
depend on quantized values of previous source sample) jSayood (2006)]. Then, 
the trajectory th a t minimizes MSE can be found via recursive Viterbi algorithm 
for trellis diagram ]Forney (1973)]. In practice, this TCQ scheme was used in 
standaid  image compression JPEG  2000 part II ]Marcellina et al. (2002)].
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Before applying A /D  converter, a pre-processing step involving transform coding might 
be preferred in order to exploit both temporal and spatial correlation in source signal, 
'^rhe main idea of transform coding is to project source signal vcctor onto the basis 
capturing the most im portant features [Duhamel and Kieffer (2009)].

• The earliest transform coding is a de-correlation technique, namely Principal 
Components Analysis (PCA), firstly proposed for discrete and continuous signal 
in |Hotelling (1933)| and [Karhunen (1947); Loeve (1948)], respectively. The 
main idea of FCA is to ininitriize tlie geometric mean of variance of transformed 
components [Sayood (2006)] by using eigenvectors of autocorrelation m atrix as a 
transform matrix. Then, only components with largest variances can be retained 
as im portant features of source signal.

• l^he continuous version of PCA, whicJi is also callcd Karhuncn-Loevc lYansform 
(KLT), is the optimal transformation under MSE criterion, yet its computational 
load is pretty  high [Ahmed (1991)].

• Discrete Cosine Transform (DCT), firstly proposed in [Ahmed et al. (1974)], 
is another transformation method, with similar performance to KLT but much 
faster in operation [Ahmed (1991)]. In data  compression, the DCT also yields 
much better performance than Discrete Fourier Transform (DPT), particularly 
for correlated sources like Markov source, since DCT mirrors the windowed signal 
and avoids the distorted high frequency effect of sharp discontinuities a t the edges 
[Sayood (2006)]. In practice, DCT is widely used in current standard image 
compressions, e.g. JPEG , and video compressions, e.g M PEG [Sayood (2006)].

Another pre-processing step is the so-called subband coding, which can be generalized 
(,o be wavelet-based compression. The main idea of subband coding is to separate source 
signal into different bands of frequencies via digital filters, before pushing the outputs 
through downsampling, quantization and encoding steps [Sayood (2006)]. A drawback 
of traditional subband method is tha t the Fourier transform is only perfectly local in 
frequency domain and none in time, i.e. we cannot indicate when a specific frequency 
occurs. A trivial method to  work around this issue is the short temp Fourier transform 
(STFT), which divides signal into separate block before applying Fourier transform to 

each block. However, by uncertainty principle, a fixed window in STFT cannot provide 
the localization in both time and frequency domains. The wavelet method addresses this 
problem by re-scaling the window such th a t low frequencies (longer time window) has 
higher frequency resolution and high frequencies (shorter time window) has higher time 
resolution. The wavelet kernel can also be designed with various orthogonal waveforms, 
instead of strictly sinusoidal waveform in Fourier transform. In practice, wavelet-based 
method is still not a standard compression technique at the moment [Duhamel and 
Kieffer (2009)], although there were several applications in image compression, e.g. in 
JPEG2000 standard.
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For recons truc tion , since b o th  trans fo rm  cod ing and wavelet technique are reversible 

representation o f da ta , the  recons truc tion  in  source decoder is s tra ig h tfo rw a rd . Note 

th a t, in  those eases, the  lossy t.errn cornos from  the  fac t that, some in fo rm a tio n  is 

tru n ca te d  by n u llify in g  a subset o f coefficients, w h ich does n o t affect the  inverse m apping 

process. For A / D  converter, the  recons truc tion  is s im ila r to  D /A  converter above, 

alt,hough t.he r<H:onsl,ruc(,(Ki dat a is rnorely an approxim at ion o f o r ig in a l dat a in  t.his 

ease.

2 .3 .2 .2  Lossless d a ta  co m p ress io n

In  m any cases, lossless compression is required; e.g. in  te x t  com pression, a w rong 

character in  the  reconstruc ted message m ig h t lead to  a c o in ijle te ly  w ro ng  m ea tiiiig  

fo r the  w ho le  scntcncc. S incc d is to rtio n  is cissumcd nu ll, the  u lt im a te  a im  o f lossless 

com pression is to  m in im ize  the  to ta l num ber o f representative b its  o f the  source message. 

Hence, in  the  d a ta  com pression process, lossless com pression is o ften  app lied  as the  last 

step in  o rder t,o reduce fu rth e r the  code length. In  th a t ease;, the  in p u t o f lossless 

com pression is d iscrete source and its  p .m .f w il l be used as an a p p ro x im a tio n  o f the 

p .d .f. o f th e  o rig in a l source.

In  practice , a re laxed c rite rio n , w h ich  on ly  requires th a t m in im u m  message leng th 

in  an average sense be achieved, is w ide ly  accepted. For the  sake o f s im p le  com p u ta tio n  

in t.hat average erii.erion. Shannon’s cod ing t,lieorem fu r th e r  im jjoses a fa ir ly  s tr ic t  

assum ption, where the  message source is iid . I t  shows that, no lossless code ma]>ping can 

produce sho rte r average compression leng th  than  its  en tropy, w h ich  is a fu n c tio n  o f the 

p .m .f o f th a t  iid  source [Shannon (1948)]. Fo llow ing th a t  resu lt, the  cu rre n t th ree sta te- 

o f- th e -a rt a lgo rithm s , nam ely Huffm an-code, a r ith m e tic  code and Le m p e l-Z iv  code, 

were designed fo r th ree p ra c tica l re laxa tions o f S liam io n ’s assum ption , respective ly : iid  

source w ith  know n  p .m .f; iid  source w ith  unknow n p .m .f and corre la ted  source. These 

are now reviewed next:

•  H u ffm an  code [H u ffm an (1952)]: G iven the  p .m .f o f a d iscrete iid  source, the 

fam ous H u ffm an  code is the  o p tim a l (and p ra c tica l) code m app ing , w h ich  y ie lds 

the  absolute m in im a l average code leng th  fo r the  g iven iid  source. H u ffm a n ’s 

m in im a l average leng th  d iffe rs from  Shannon’s en tropy  by  one com pression b it  per 

source sam ple, sincc th a t is the  difference between the  in tege r value o f m in im a l 

le ng th  and th e  continuous values o f en tropy [Sayood (2006)]. For fas t compression, 

the  H u ffm an  code is designed as a p re fix  code, in  w h ich  no code w ord  is a p re fix  

to  ano the r codew ord [Sayood (2006)]. A  p re fix  code, in  tu rn , can be constructed 

fo r H u ffm an  code as a b in a ry  tree  and fa c ilita te  the  com p u ta tio n . T he  H u ffm an  

decoder is, ow ing to  th is  b in a ry  tree, fast and feasible since i t  can traverse th rou gh  

the  tree in  the  same m anner as H u ffm an encoder [Sayood (2006)]. In  practice, 

va rian ts  o f H u ffm an  code have been used in  s tandard  im age com pression, e.g. 

JP E G  [Chen and P ra t t  (1984); Sayood (2006)].
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• Arithm etic code [Rissanen and Langdon (1979)]: The absolute minimal rate of 
Huffman code can be further reduced by applying Huffman code to  joint p.m.f 
of irnill.iplo block iid sourcc symbols, instead of p.m.f of a single symbol [Cover 
and Thomas (2006)]. However, despite the fast reciprocal rate reduction, the 
computation of the joint p.m.f grows exponentially with th a t number of symbols. 
In onh'r l,o avoid that, computat ion, (he arillimet.ic code makes use of two key 
ideas: Firstly, it quantizes joint cumulative distribution function (c.d.f), instead 
of joint p.m.f. Secondly, those quantized intervals are refined recursively in an 
online Markovian fashion (i.e the “child” c.m.f sub-interval of current trajectory 
divides its “parent” c.m.f interval of previous trajectory). Because the range of 
c.m.f is the unit interval of real axis, this arithmetic code is capable of representing 
infinite mimber of trajectories. Each of them can be assigned as a rational number, 
with possibly long fractional part (hence the name “arithm etic”), within this unit 
interval. Owing to  Markovianity, the arithmetic code is able tractably to produce a 
good code rate (within two bits of entropy [Cover and Thomas (200G)|), compared 
to the minimal rate (within one bit of entropy) of Huffman code above. For 
decoding, the arithm etic coded sequence in binary ba^e needs to  be converted 
back to its original base value. This conversion raises two issues: the decoding 
complexity and the rounding of converted values. The former can be solved in a 
similar manner to the arithmetic encoder, owing to the Markovianity. The latter 
can be solved in two ways: either the length of original sequence is set a priori, or 
a pilot syiribol is included as the end-of-transmission [Sayood (2006)[

• Leinpel-Ziv code [Ziv and Lempcl (1977, 1978)[: For correlated source symbols 
from a set of alphabet, there are two key issues to  be solved; firstly, the design for 
codeword corresponding to each alphabet and, secondly, the design for allocation 
indic,(\s of apix^arance of t.hat alphabet in a source t rajecl.ory. For t he first, issue, 
a reasonable approach is to find the p.m.f of alphabet and design a codebook 
based on tha t p.m.f. For the second issue, the allocation indices need to be 
feasible to look up. The famous Lempel-Ziv (LZ) codes solved both issues in an 
adaptive (i.e online) fashion: the alphabet p.m.f is approximated by sequentially 
counting the frequency of appearance of the alphabet, while allocation indices can 
bo updated by either sliding window approach (LZ77 algorithm [Ziv and Lempcl 
(1977)]), or a tree-structure approach (LZ78 algorithm [Ziv and Lempel (1978)]). 
The LZ77 algorithm was proved to be asymptotically optimal in [Wyner and Ziv 
(199^)[, by showing that the compression rate of LZ77 converges to entropy for 
ergodic source [Cover and Thomas (2006)[. Hence LZ77 has been used in many 
compression standards, e.g. ZIP, and in image compressions, e.g. PNG [Sayood 
(2006)[. The LZW algorithm, proposed in [Welch (1984)[ as a variant of LZ78, is 
widely used in many compression standards, e.g. GIF [Sayood (2006)], owing to 
its similar performance to LZ78 and feasible implementation [Duhamel and Kieffer
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(2009)]. The LZ codes also belong to the class of dictionary code, because of its 
alphabet-frequency-index (hence the name dictionary) technique. The decoding 
proccss for dictionary code is similar to table-lookup proccss, where the table is 
the constructed dictionary and the look-up process is implemented via allocation 
indices sent to the receiver.

In the literature, the types of lossless compression technique can also be divided in 
several ways, such as: fixcd-lcngth-code (c.g Huffman code) versus variablc-lcngth- 
code (e.g. arithmetic and T̂ Z codes), static code (i.e. offline) versus adaptive code (i.e. 
online), or entropy code (i.e. for a known sourcc p.m.f like Huffman codc and arithmetic 
codes) versus universal codc (i.e. for an unknown sourcc p.m.f like arithmetic and LZ 
codes), etc.

The early history of data compression is interesting and involves the generation of 
students in the era after Shannon: Shannon and Fano, who were among the first pioneers 
of information theory, proposed the theoretical Shannon-Fano coding in order to exploit 
c.d.f of the source [Cover and Thomas (2006)], although it had never been used until 
arithmetic code wa.s invented. In Fano’s class of information theory at MIT, his two 
students, Huffmaii and Peter Elias, also designed two recursive lossless coinpression 
techniques, the Huffman and Shannon-Fano-Elias coding, respectively, although the 
later was never published [Sayood (2006)].

Similarly to data compression, the early history of channel coding, as briefly reviewed 
below, is just as interesting: Hamming was a colleague of Shannon at Bell Labs when he 
invented the Hamming code [Hamming (1950)], which was also mentioned in [Shannon 
(1948)]. Soon after, Peter Elias invented convolutional codc ]Elias (1955)], which, much 
later, subsequently led to the invention of the revolutionary Turbo code [Berrou et al. 
(1993)]. Gallager, a PhD student of Elias, invented another revolutionary code, namely 
low-densii.y-parii.y-check (LDPC) code, in his doctoral thesis [Gallager (1962)[.

2.3 .3  C hannel en cod er and decoder

Wlien transm itted through a noisy channel, the bit stream can become corrupted and 
unrecoverable. A reasonable sohition is to strengthen the transm itted message by adding 
in some extra bits, whose purpose is to protect against the noise effect on message 
bits. Together, the message and extra bits construct the so-called code bits, which are 
transm itted through the channel. When the original message bits are corrupted, those 
extra bits will be a valuable reference for the channel decoder at a receiver to recover 
the message bits (hence the name error-correcting-code in the literature).

Nevertheless, too many ext ra bits requires too much redundant energy in the t.rans- 
m itter and thereby increases the operational cost of communication devices. The 
purpose of the channel encoder, therefore, is to maximize the code rate (i.e. the 
ratio between number of message bits and number of code bits), while maintaining the 
possibility of acceptable distortion at the receiver. There exists, however, a limit for the
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code rate. In the foundational paper of information theory [Shannon (1948)], Shannon’s 
channel capacity theorem introduced the asymptotic upper bound of channel code rate, 
which is callcd channcl capacity and is solely dependent on the channel characteristics, 
provided th a t the asymptotic average distortion is zero. Since then, a lot of effort 
has been made to design the optimal channel codes, whose code rate is close to  that 
upper bound. Becau.so of analysis difficulty in optimal ca.se, a rohixed criterion, where 
distortion is not zero but very small, has been widely accepted in practice.

In summary, a good channel code should satisfy three practical requirements: high 
code rate, low computational load and sufficiently large Hamming distance between any 
two codewords. The first atid second ones represent the requirement of low operational 
cost and speed of the communication system, respectively. The third one is a conse­
quence of the channel characteristics (e.g. large Hamming or Euclidean distance between 
codewords would reduce the uncertain error in binary symmetric channel (BSC) and 
additive white Gaussian noise (AWGN) channel, respectively). In order to  facilitate the 
analysis of this requirement, all linear codes currently make use of a max-min criterion: 
maxiniizing the itiinitiiuin codeword weight (i.e. its Hamming distance to the origin). 
Because the sum of any two linear codewords in the finite field is also a codeword, that 
criterion is equivalent to the task of maximizing the minimum distance between any 
two codewords [Moon (2005)[. At the moment, non-linear chatuiel codes have not been 
much investigated or applied in practice [Ryan and Lin (2009)[

The first codes satisfying all three requirements arc two capacity-approaching codes: 
LDPC and Turbo codes, which also reflect two main research domains of channel code, 
namely block code and stream code, respectively. We review this domain next.

2 .3 .3 .1  B lo c k  co d e

A typical block code is a bijective linear mapping from the original message space 
into a larger space, namely codeword space, over the binary finite field. Owing to the 
tractability of linearity and the availability of Galois field theory, research over channel 
codes has been mostly focusscd on this algebraic coding type in the early decades, see 
e.g. [Berlekaitip (1968); Peterson and E. J. Weldon (1972)|. Four liistorical milestones 
of block code in this period will be briefly reviewed below.

• Hamming code [Hamming (1950)|: The first practical channel code is Hamming 
code, whose minimum Hamming distance is three. Hence, it is capable of cor­
recting one error bit with a hard-information decoder [Mooi\ (2005)| and it is 
also callcd the class of single-error-correcting code [Costello and Forney (2007)[. 
However, the performance of Hamming is pretty modest in the AWGN channel, 
even with soft-decoder.

• Reed-Muller code [Muller (1954); Reed (1954)]: Reed-Muller codes were the first 
codes providing a mechanism to design a code with desired minimum distance 
[Moon (2005)]. Another attractive property is speed of decoding, which is based
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on fast H adam ard transform  algorithm s [Moon (2005)]. A lthough it was soon 

replaced by slightly b e tte r  perform ance codes (e.g. BCII code), it is still the  best 

binary  codc for short-length  block codes and is currc^ntly being revisit,cd in the 

literature , owing to  its good trade-off between perform ance and com plexity via 

trellis decoder [Costello and Forney (2007)].

•  Cyclic codes [Prange (1957)]: In cyclic codes, any cyclic shift of a codeword yields 

ano ther codeword. Hence, its efficient encoding via cyclic shift-registcr implemen­

ta tion  is of advantage over o ther block codes. T he m ajor class of cyclic codes 

w ith large m inim um  distance is the  BCH codes, which was firstly introduced in 

[Bose and R ay-C haudhuri (1960); Hocquengbem (1959)]. However, th e  asym ptotic 

perform ance of BCH is not good (indeed, when its code length a t a fixed code 

ra te  becomes longer, the fraction of errors th a t is possible to  correct is close to  

zero [Moon (2005)[). Eventually BCH was dom inated by its non-binary  version, 

nam ely Rced-Soloirion codc |Reed and Solomon (1960)[. T he ability  of correcting 

burst-error in RS makes it su itable for disk storage system s, and hence, RS was 

widely used in com pact disk (CD) w riting system  [Costello and  Forney (2007)]. 

T lic im portan t p roperty  of bo th  BCH and RS is tlia t they can be efficiently 

decoded v ia  finite field arithm etic [Moon (2005); Costello and F'orney (2007)|.

•  L D PC  code [Gallager (1962)]: Instead of designing tlie encoder directly, LDPC 

code relies on the  design of sparsity  in the parity-check m atrix , which imposes 

sum -to-zcro constra in t on m ultiple linear com binations of codewords. LD PC codc 

had been forgotten for over tliirty  years, until it was re-discovered in [MacKay 

and Neal (1995)], which dem onstrated the capacity-approaching perform ance of 
LD PC  code. Indeed, LD PC has excellent m inim um  distance, which increases 

w ith th e  block code length (i.e. as the  parity-check m atrix  becomes more sparse) 

[Moon (2005)]. As the  code length goes to  infinity, LD PC  codes have been shown 

to rcach channcl capacity  [MacKay (1999)|. Owing to  miich lower error floor 

than  T urbo code, LD PC  code has been cliosen in Tiiaiiy stan d ard  coin muni cation 

system , e.g. in DVB-S2 for digital television or sa tellite com m unication system  in 

N A SA -G oddard Space Flight C enter [Chen et al. (2004)]. However, a drawback of 

LD PC is th e  com plicated encoding. Although the  iterative decoding complexity 

via message-passing algorithm  only grows linearly w ith block code length, owing 

to  th e  sparsity, its  dual encoder com plexity grows quadratically  in block length. 

By some prc'-proccssing steps, the LD PC encoding com plexity can be reduced 

significantly, and close to  linear in some cases, as proposed in [Richardson and 

U rbanke (2001)]. Applying finite geometry, a class of qnasi-cyclic LD PC codes 

WHS recently proposed in order to  Hchieve linear encoding via cyclic shift-registers 

[Chen ct al. (2004); Ryan and Lin (2009)]. A nother draw back of L D PC  is th a t its 
efficient decoding is only an approxim ation, not an exact arithm etic  solution.
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Following the success of LDPC code, many researchers have focussed on improving its 
decoding approximation, rather than designing a new class of block encoder. Neverthe­
less, block c:odes have b(;<!ii received riiort; att.entioii rcccntly. Owing to the availability of 
algebraic methodologies for finite field, the current trend is to  design a good performance 
code with shorter block length [Costello and Forney (2007)|, since Shannon’s channel 
limit, is oidy valid for asyni])toti(; case afl.er all.

2 .3 .3 .2  S tre a m  C o d e

By general definition, a stream code is a block code with infinite length. In practice, 
the distinction between block code and stream code is tha t the la tte r can continuously 

operate on a stream  of source bits (i.e. online case) and produce the same code bits as 
if it operates on divided blocks of sources bits (i.e. offline case). The key advantage of 
stream code is low complexity and delay of encoder. However, its key drawback is the 
lack of a mathematical framework for evaluating the encoder’s performance. Currently, 
all good stream  codes have to be designed via trial-and-error simulation [Moon (2005); 
Costello and Forney (2007)|. For a brief review, two state-of-the-art stream codes will 
be introduced below:

• CoiivoluLional code [Elias (1955)|: The first practical streairi code is Convolutional 
code, which maps source bits to code bits via linear filtering operators (hence 
the name “convolution”) [Richardson and Urbanke (2008)]. In the encoder, the 
filtering j)rocess is very fast, owing to (,hc deployment of shift-rogist.er memory 
circuits. In decoder, the changing of shift-register value can be represented via the 
trellis diagram, whose transitions, in turn, can be inferred jointly or sequentially 
via state-of-the-art Vitorbi [Viterbi (11)G7)[ or Bahl-Cocke-Jelinek-R.aviv (BCJR) 
[Bahl et al. (1974)[ algorithms, respectively. Owing to Markovianity, the transm it­
ted sequence can be recursively traced back via those inferred transitions, provided 
tha t the pilot symbol at the beginning-of-transmission is known a priori.

• Turbo code [Berrou et al. (1993)[: The first practical stream  code approaching 
Shannon limit is Turbo code, which was initially designed as a parallel concatena­
tion of two Convolutional codcs coniicctcd by a perm utation operator. T hat initial 
proposal for Turbo code, although designed via trial-and-error process [Berrou 
(201 ])[, has revived the study of ncar-Shannon-limit channcl codes and is still the 
best performing method for the Turbo code class at the moment [Moon (2005)]. 
For Turbo decoding, the output of the Convolutional decoder in each branch 
arc iteratively fed as input to the other brach imtil convergence. This iterative 
decoding (hence the tiaine ’Turbo’ ) is, however, not guaranteed to converge, 
although empirical studies show tha t it often converges in practical applications 
[Moon (2005); Richardson and Urbanke (2008)[. A drawback of Turbo code is that 
its error-floor of bit-error-rate (BER) is rather high at 10“ ^, owing to low minimuin 
codeword distance. For high quality transmission, whose BER requirement is
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much lower than 10 the LDPC code with BER error-floor around 10' -10 is 
much preferred [Ryan and Lin (2009)]. Currently, Turbo code is being applied 
in many standard systems (e.g. CDMA2000, WiMAX IEEE 802.1C, etc. |Benou 
(2011)]), although telecommunications systems have gradually shifted from Turbo 
code to LDPC code, owing to LDPC’s good performance, as explained above.

2.3.4 D igital m odulator

The primary purpose of the digital modulator is to map a set of bits to a set of sinusoidal 
bandpass signals for transmission. In the design process of this mapping, there are 
three practical criteria to bo considered: power efficiency, spectral efficiency and bit 
detection performance. In practice, if one of them is fixed, tlie other two are reciprocally 
dependent on one another.

Hence, there exists a natural l.radooff in modulal.ion d(?sigii. Loosely speaking, 
a modulation scheme is called more power efficient and/or more spectral efficient if 
it needs less SNR-per-bit Ei,/No (also called bit energy per noise density) and/or it 
can transfer more bit-rate 7? a.s a ratio of the ideal channel’s bandwidth D (also called 
spectral-bit-rate or spectral efficiency R /B )  , respectively, to achieve the same bit-error- 
rate (BER) i)erformarice. Note that the maximinn bil.-rate i? for reliable transmission is 
the Shannon channel capacity C while the maximum sampling rate for zero intersymbol 
interference (ISI) is the Nyquist rate 2B. The spectral efficiency R /B ,  therefore, reflects 
the ratio between transmitter’s bit rate and receiver’s sampling rate in a reliable and 
zero ISI transmission. In the ideal scenario, where BER average is asymptotically zero, 
the reciprocal dependence between power and spectral efficiency is given by equation 
(2.1.1), owing to Shannon channel capacity theorem [Ha (2010)].

Despite the similarity in mathematical formulae and performance criteria, the chan­
nel encoder and digital modulator are basically different in the choice of the fixed term 
in three way trade-ofT above. Indeed, the study of ( he channel encoder often neglects 
the spectral efficiency issue, while digital modulation is mostly designed for reliable 
transmission only (i.e. BER performance is kept fixed and small). Hence, the channel 
encoder, whose main purpose is to achieve low BER at low SNR, can be regarded 
as a pre-processing step for digital modulation, which focuses on trade-ofT between 
power efficiency and spectral efficiency. This is a reasonable division of tasks, because 
modulation involves a D/A step and, hence, requires the study of signal spectrum, 
while encoding only involves digital bits. Nevertheless, the interface between them is, 
sometiines, not specific ]Schulze and Lueders (2005)]. This vague inlerfact; also happens 
between channel decoder and digital demodulator, as we will see in Section 2.3.G.2.

As stated above, the purpose of digital modulation is to map information bits to 
amplitude and/or frequency and/or phase of a sinusoidal carrier, such that the tradc'- 
off between power efficiency and spectral efficiency in a reliable transmission schcme is 
optimal. The solution for that trade-ofT can be divided into two modulation schemes:
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either “memoryless mapping” or “mapping with memory”, i.e. either on a symbol-by- 
symbol basis or via a Markov chain, respectively (Proakis (2007)].

2.3.4.1 M em oryless m odulation

When bandwidth is the premium resource, modulation on the carrier amplitude and/or 
phase is preferred to carrier frequency. In the memoryless scheme, each block of k  bits, 
called symbol, is separately mapped to M  = 2^ bandpass signals, whose characteristic 
is represented by constellation points, as follows:

• Binary (bit) modulation: In this case, the carrier’s amplitude, phase or frequency 
can be modulated via Amj)litude, Phase or Frequency Shift Keying, i.e. ASK, 
PSK and FSK scheme, respectively. Regarding ASK, also called on-ofT keying 
(OOK), it is mostly used in fiber optic communication, because it can produce 
a bias threshold for turning on-off the light-emitting diode (LED) |Chow et al. 
(2012)]. Regarding PSK, which is perliaps the most popular binary modulation 
|Ha (2010)], it simply exploits the antipodal points to represent the binary bits. 
T hat simple implementation, however, might introdiice phase ambig\uty at the 
receiver. Regarding FSK, which is a special and discrete form of Frequency 
M odulation (FM), the bit is represented by a pair of orthogonal carriers, whose 
frequencies are integer multiple of the bit rate 1/T(,. T hat bit rate is also the 
minimum frequency spacing required for preserving orthogonality [Ha (2010)]. 
Despite its simplicity, binary modulation has, however, low spectral efficiency.

• M -ary modulation: In this case, the spectral efficiency can be greatly improved 
at the expense of power efficiency. The popular criterion in this case is average 
Euelid('an distance betweciii constellation points and origin, which reflects both 
error vulnerability and power consumption of a transm itter. Hence, the M -ary 
ASK, which produces M -ary pulse amplitude modulation (PAM), uses more power 
to achieve the same BER performance as ASK, owing to the increase of average 
Euclidean distance. Inheriting the high spectral efficiency of M -aiy  ASK, the M - 
ary PSK provides higher power efficiency by increasing the symbol’s dimension 
from a line in M -ary ASK to a circle in the Argand plane.
For large M , however, M -ary PSK is not power efficient, because the Euclidean 
distance of adjacent points in the circle of M -ary PSK becomes small with in­
creasing M . The M -ary Quadrattire Amplitude Modulation (QAM) resolves this 
large M  issue by placing the constellation points throughout the Argand plane, 
also known as in-phase and quadrature (I-Q) plane, corresponding to real and 
imaginary axis in this case. Furthermore, QAM often employs the Gray code, 
in which two neighbour points differ only by one bit, in order to  decrease the 
uncertainty error between neighbour points. Owing to those two steps, QAM is 
widely used in high spectral efficiency communication, e.g. in current standard
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ITU-T G.hn of broadband power-line, wireless IEEE 802.11a.g or WiMAX IEEE 
802.16 [Iniewski (2011)],

For further increasing spectral efficiency with small loss of power efficiency, a solution is 
to introduce orthogonality between carriers. In this way, the correlator at the receiver 
can recover transm itted information without interference, even when the set of possible 
carriers is ovorlaf)ped at the same time and/or frequency (hence l.ho increa.se in spectral 
efficiency). Because scaling does not affect the orthogonality [Ha (2010)], the amplitude 
of orthogonal carriers can be normalized such th a t the transm itted power average is kept 
unchanged (hence small loss in power cfTiciency). In pract ice, there arc two approaches 
for designing such orthogonality, either via digital coded signals or via analogue multi­
carriers, respectively, as reviewed next;

• Code Shift Keying (CSK): The simplest method of orthogonal coded modulation 
is CSK, which bijectively maps M  information symbols to M  orthogonal coded 
signals, notably Walsh fuTictions ]Ha (2010)]. In practice, the number of orthog­
onal coded signal can be limited, given a fixed symbol period. The orthogonal 
condition of coded streams can be relaxed to a low cross-conelation condition of 
pseudo-random or pseudo-noise (PN) code streams. Depending on the modulation 
scheme (FSK or FSK) th a t the PN code is applied to, the result is called direct 
sequence (DS) or frequency hopped (FII) spread spectrum  signal, respectively 
[Proakis (2007)]. The name spread spectrum comes from the fact th a t the rate is 
higher than unity, i.e. the coded symbol period Tc is smaller than the information 
symbol period Tg. The signal bandwidth is, therefore, iiicre;ised from 1/Ts to 1/T<; 
[Schulze and Lueders (2005)].
In multiple-aecess communication systems, where multiple users share a single 
carrier, a similar orthogonal coding scheme is implemented via Code Division 
Multiplexing (CDM), which multiplexes different user bit stream s orthogonally 
onto one carrier. In broader communication networks, where users share the 
same channel bandwidth, CDM is generalized to Code Division Multiple Access 
(CDMA), which is the standard spread spectrum technique in 3G systems [Schulze 
and Lueders (2005)]. The combination of CSK modulation with CDMA system 
is also a research topic, aimed at increasing recovery performance and decreasing 
user da ta  interference [Tsai (2009)].

• Orthogonal Frequency Division Multiplexing (OFDM): OFDM is a key of 4G sys­
tem, as reviewed in Section 2.1.2.1. The key idea of OFDM is to employ orthogonal 
sub-carriers, before multiplexing them into a single carrier for transmission. There 
are, however, two different viewpoints on this concept of multi-carrier modulation 
[Schulze and Lueders (2005)]: (i) in practical viewpoint, each time slot T*. for the 
symbol period is fixed, while a filter bank for K  bandpass filters, whose minimum 
frequency spacing is symbol rate l/T s  to preserve the orthogonality of the sub­
carriers, is employed for K  symbol pulse shapes of parallel data  sub-streams; (ii)
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In the textbook’s viewpoint, the number K  of sub-carrier frequencies is fixed, 
while modulation (e.g. QAM) is employed for sub-carriers in time direction 
(hence, OFDM is also called Discrete Multi-Tone (DMT) modulation if QAM 
is used (Proakis (2007))). Note tha t, because a pulse cannot be strictly limited 
in both time and frequency domains, (i) and (ii) are merely two viewpoints 
of th(i same process: eil.her Iruncaling freiiueucy-ortliogonal t,im<vlimil,(;d i)uls(? 
in frequency domain, or truncating time-orthogonal band-limited pulse in time 
domain, respectively. The method (i) is preferred in practice, because, owing to 
the inverse Fast Fourier Transform (FFT), the OFDM is a fast synthesis of Fo\irier 
coefficients modulated by data sub-streams. Furthermore, before transmission, the 
D /A  converter for th a t synthesized digital carrier can be feasibly implemented via 
oversampling (i.e. padding zero over imused D FT bins) in digital filters, instead 
of via complicated analogue filters [Schulze and Lueders (2005)).
Historically, although the original idea of multi-carrier transmission was first 
proposed in [Chang (19GG); Saltzberg (]9G7)[ via a large number of oscillators, the 
iinpleTrientation via digital circuits for high-speed transm ission was ou t of question 

for a long time [Schulze and Lueders (2005)). By including an extra guard time- 
interval, which adds a cyclic prefix in the DFT block to itself, OFDM was rendered 
suitable for mobile channels [Cimini (1985)). Indeed, the periodic nature of the 
DFT sequence in guarding-interval makes the start of original symbols always 
continuous and greatly facilitatas the time synchronization issue in mobile systems 
[Ila (2010)]. Since then, the main motivation of multi-carrier systems is to reduce 
the effects of intersymbol interference (ISI), although the application is two-fold. 
One one hand, longer symbol period and, hence, smaller frequency spacing makes 
the system more robust against channel-tirne dispersion and channel-spectrum 
variation within each frequency slot, respectively [Proakis (2007)). On the other 
hand, phase and frequency synchronization issues become more severe than in 
traditional systems. Hence, in practice, OFDM has been used in Wireless IEEE 
802.11 and the terrestrial DVB-T standard, while the cable DVB-C and satellite 
DVB-S systems still employ conventional single carrier modulations [Schulze and 
Lueders (2005)). The combinalion of CDMA and OFDM, namely Multi-carrier 
CDMA, is also a promising method for future mobile systems [Hanzo (2003); Fazel 
and Kaiser (2003)[.

2 . 3 .4.2 M od u lation  w ith  m em ory

When power is the prcmiimi resource, modulation of carrier frequency and of phase 
is preferred to carrier amplitude. Because the signal is often continuously modulated 
in this case, it introduces a memory (Markov) effect, in which the current k symbol 
depends on the most recent, say L, symbols. Hence, this modulation with memory can 
be effectively represented via a Markov cliain model, as follows:
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• Differential encoding: The simplest modulation scheme with memory is differential 
encoding, in which the transition from one level to another only occurs when 
a specific symbol is transmit,ted. That k;vel can be a Markov state of eith(;r 
phase or amplitude, corresponding to differential M -ary PSK or Differential QAM 
[Djordjevic and Vasic (2006)], respectively.

• M -ary FSK: In this ca ŝe, the frequency bandwidth can be divided into M  fre­
quency slots, whose minimum frequency spacing is symbol rate l/T^ to preserve 
the orthogonality of M  sinusoidal carriers. Different from linear modulation 
scheme like QAM (i.e. the sum of two QAM signals is another QAM signal), FSK 
is a non-linear modulation scheme, which is more difficult to  demodulate. Another 
m ajor drawback of M -ary FSK is the large spectral side lobes, owing to abrupt 
switching between M  separate oscillators of assigned frequencies [Proakis (2007)]. 
The solution is to consider a continuous-phase FSK (CP-FSK) signal, which, in 
turn, modulates the single carrier’s frequency continuously. In general, CP-FSK 
is a special case of continuous phase modulation (CPM), where the carrier’s time- 
varying phase is the integral of pulse signals, and represents the accumulation 
(memory) of all symbols up to the modulated time ]Proakis (2007); Ha (2010)]. 
In the literature, CPM is an im portant modulation scheme and widely studied 
because of its efficient use of bandwidth jRimoldi (1988); Graell i Amat et al. 
(2009) I.

In order to increase power efficiency further with small loss of spectral efficiency, a 
solution is to  design an effective constellation mapping in higher dimensional space. For 
example, the dimension of a trajectory of n M-sta,lc symbols is M ", wliicli increases 
exponentially with n. Although the constellation design in the I-Q plane can only be 
applied in two dimensions, its design principle can be applied to  a trajectory in M " 
dimensions. Then, the criterion for the trajectory’s constellation mappitig can be chosen 
as a max-min problem, which is to maximize the minimum Kuclidean distance between 
any two trajectories. Note tha t, the Gray code mapping for n  separate symbols may 
fail to achieve th a t criterion and may yield only a small increase in power efficiency ]Ha 
(2010 )].

•  Trellis Coded Modulation (TCM ) jUngerboeck (1982)): The power efficiency, also 
known as coding gain, can be greatly improved via TCM. The trajectory’s con­
stellation ill TCM is designed via a principle of mapping by set partitioning, i.e. 
the minimum Euclidean distance between any two trajectories is increased with 
any partition of I-Q constellation of each new symbol. Hence, the active point in 
current I-Q constellation depends on both current symbol and the active point in 
previous I-Q constellation. In other words, the current symbol does not point to 
a point in I-Q constellation like in QAM, but to a transition sta te  between two 
consecutive I-Q constellation planes (hence the name ÎVellis in TCM) [Proakis 
(2007)]. In the literature, the TCM is mostly designed to map the channel
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stream-code bits (e.g. via Convolutional or Turbo code), instead of original 
bit stream, in order to increase the joint decoder and demodulator performance 
|Moon (2005)]. There is, however, no mapping guaranteed to achieve optimal 
Euclidean distance or BER performance [Anderson and Svensson (2003)]. In 
current standard systems, although TCM is not selected in Wireless IEEE 802.11a 
[Terry and llenskala (2002)[, owing t,o difficulty in design, il, has been applied in 
Wireless lEF^E 802.11b and IEEE 802.15.3 [Progri (2011)]

2.3.5 The com m unication channel

'rhe  communication channel is, by definition, the physical medium for transmission of 
information. In practical channels, the common problem is tha t, owing to unknown 
characteristics of the channel and transmission devices, random noise will be added 
(,o the transniittc;d signal. These unknown quantities yields an uncertain signal, whose 
original form can be inferred from the channel’s probability model. Two m ajor concerns 
in the channel model are transm itted power and available channel bandwidth, which 
rei)resent.s the robustness against, noise effect and the physical limitations of the medium, 
respectively. Corresponding to those two concerns, the characteristics of three major 
models in the literature, namely AWGN, band-limited and fading channels, resjjectively, 
will be briefly reviewed below. Those three channels represent the former concern, the 
latter concern and both of them, respectively.

2 .3 .5 .1  T h e  A d d it iv e  W h ite  G a u ssia n  N o ise  (A W G N ) ch a n n e l

The simplest model for the communication channel is the additive noise process, which 
often arises from electronic components, amplifiers and transmission interfcrcncc. The 
noise model for the third cause will be discusscd in fading channel model below. For the 
first two causes, the primary type of noise is thermal noise, which can be characterized 
as Gaussian noise process [Proakis (2007)[ (hence the name additive Gaussian channel). 
The noise is often asstimed to be white, that is, it has constant power spectral density 
(PSD), usually denoted N q or N q/2  for one-sided or two-sided PSD, respectively. The 
Gaussian noise process is, therefore, wide-sense stationary and zero mean. In the 
literature, the AWGN channel is perhaps the most widely used model, owing to its 
niatliematicai simplicity.

Nevertheless, the AWGN model is a mathematical fiction, because its total power 
(i.e. the PSD integrated over all frequencies) is infinite [Schulze and Lueders (2005)]. 
Its time sample has infinite average power and, therefore, caimot be sampled directly 
without a filter. In the literature, the ideal output of th a t filter at the receiver is a noise 
model with finite power, namely discrete AWGN, which is an iid Gatissian process with 
zero mean.
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2 .3 .5 .2  B a n d - lim ite d  ch an n el

In some communication channels, the transm itted signals are constrained within a 
bandwidth limitation in order to avoid interference with one another. If the channcl 
bandwidth B  is smaller than the signal bandwidth, the modulated pulse will be distorted 

in transmission. In theory, the Nyquist criterion for zero intersymbol interference (ISI) 
provides the necessary and sufficient condition for a pulse shape to  be transm itted over 
flat response channel without ISI. Such a pulse with zero ISI is also called the Nyquist 
pulse in the literature. The sampling rate 1/T , mtist be greater than or eqtial to the 
Nyquist rate 2B, otherwise the Nyquist pulse does not exist |IIa (2010)|. The Nyquist 
pulse with minimum bandwidth is the ideal sine pulse. However, because the sine pulse 
is idealized, a raised-cosine filter with small excess bandwidth is often used as Nyquist 
pulse in practice.

The band-limited channel is also the simplest form of dispersive channel, which 
responds differently with signal frequency. In practice, a noisy dispersive channel is 
often modeled as linear filter channel with additive noise. Such a noise can be white or 
coloured, depending on whether the channel filter is put before or after the noise. The 
additive colored noise with filtered PSD, which implies correlation between samples, is 
more complicated and, therefore, is typically transformed back l,o white noise model via 
a whitening filter at the receiver.

2 .3 .5 .3  F ad in g  ch an n cl

In the mobile system, the transm itted signal always arrives at the receivers as a su­
perposition of multiple propagation paths, which generally arise from signal reflection 
and scattering in the erivironincnt. This type of fading channel actually appc;ars in all 
forms of mobile wireless communication [Ha (2010)]. The fading process is characterized 
by two main factors, space varying (or frequency selectivity) and /o r tim e varying (or 
Doppler shift):

•  S p a ce  v a ry in g  (or freq u en cy  se le c tiv ity )

In the literature, this issue is characterized by a correlation frequency fcorr (also called 
coherence bandwidth), which is the inverse of the delay spread A t arising from different 
traveling time of multiple paths. The fading channel with or w ithout ISI is called 
frequency selective or flat (non-selective) fading channel, respectively. In practice, flat 
fading can be approximat.ely adiieved if the channel bandwidth B  satisfies B  fcorr- 
Since B  is of the order of T~^  for a Nyquist basis, such a condition is corresponding to 
A t Tg, i.e. the time delay is much smaller than symbol period Tg-

Note that, unlike ISI caused by channel filtering, the ISI in fading channel is caused 
by random arrival time of multi-path signal copies and, therefore, cannot be eliminated 
by pulse shaping in Nyquist criterion for zero ISI |Ha (2010)]. For example, a symbol 
period Tj =  10 /is, leading l,o an approximate data rat(! of 200 khits/n  for QPSK
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m odulation, has th e  sam e order as A t  =  10 u s  of delay tim e corresponding to  3 k m  

difference of traveling  p a th s  a t light speed c [Schulze and Lueders (2005)|. I t  means 

th a t such a d a ta  t.ransmission in practice cannot be free of ISI w ithout sophisticated  

techniques like equalizers, spread spectrum  or m ulti-carrier m odulation . For example, 

the  m ain m otivation  of O FD M  is, intuitively, to  prolong th e  sym bol period and, in tu rn , 

narrow  t he signal bandw idl li. In this way, O FDM  avoids I,he use of a com plex o(jualizer 

in dem odulation , although th e  Doppler spreading effect, as reviewed below, destroys 

the  orthogonality  of O FD M  sub-carriers and results in in tercarrier interference (ICI) 

[Proakis (2007)|.

•  T im e  v a ry in g  (or  D o p p le r  sh ift)

In the  litera tu re , th is issue is characterized by correlation tim e tcorr (also called vari­

a tio n ’s tim escale), which is the  inverse of m axim um  D oppler shift f o  — j  fc  , given 

relative speed v  between tran sm itte r and receiver and carrier frequency fc,. For exam ple, 

the  am plitude m ight be faded up to  —40 d B  a t Doppler shift / o  =  50 H z ,  corresponding 

to  vchicle speed v = GO k m / h  and fretjucncy carrier /g =  900 M I I z  |Schulze and Luoders 

(2005)]. T h e  fading cliaiinel is called slow or fast fading if signal envelope fluctuates 

little  or substan tia lly  w ithin symbol period T,,  respectively. T he condition for slow 

fading is Tg <g tcorr, or equivalently fo T g  1 (hence the nam e norm alized Doppler 
frequency fo T s ) -  In practice, the fluctuation in carrier am plitude and phase is tlie 

superposition  of m ultiple Doppler shifts corresponding to  m ultiple path s, which results 

in the so-called D oppler spectrum  instead of Doppler sharp  spectra l line a t J q .

In a  p robability  m odelling context, each propagation  path  is considered to  contribu te 

random  delay and a ttenua tion  to  the  received signal, whose envelope can be described 

as Rayleigh fading process (no guided line-of-sight p a th ), or R ician fading process (one 

strong  line-of-sight p a th ), or the  m ost general model, Nakagarni fading process. O ut 

of the  three, C larke’s Rayleigh model [Clarke (1968)| is th e  m ost widely used mode! 

for w ide-sensc s ta tio n a ry  fading proccss, owing to  its m athem atical sim plicity and 

tractab ility , com pared to  th e  otlier two general models for real channel [Proakis (2007)]. 

Because th e  power spectral density (PSD) in flat fading w ith  C larke’s model is no t a 

rational function, such a random  process cannot be represented by an auto-regressive 

(AR) model. T his draw back leads to  difficulty in evaluation of channel detection 

[Sadeghi e t al. (2008)] and channel sim ulation [Xiao et al. (2006)].

For feasible evaluation  of channel’s detection, the  fin ite-state  M arkov channel (FSM C) 

was revived in [Wang and  Moayeri (1995)[ for m odeling the fading channel, owing to  its 

com putational sim plicity. Since then, the  first-order FSM C model has been a  model of 

choice for fading channel, although it is more accurate for slow fading ra tes th a n  fast 

fading rates ]Sad(;ghi e t al. (2008)].

For feasible sim ulation, an approxim ate A R model, w ith  sufficiently large order M , 

for C larke’s m odel was j)roposed in [Baddour and Beaulieu (2005)]. Because such an
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AR model is essentially a Markov process with order M,  a high-order FSMC is also 
more accurate for fast fading channel (Sadeghi and Rapajic (2005)].

2.3.6 D igital dem odulator

The purpose of the digital demodulator at receiver is to recover the transm itted symbols 
carried on the modulated signal. The demodulation is, therefore, an inference task based 
on the designed modulation scheme and the noise model of the channel. In the practical 
system, digital demodulation involves two steps, namely a signal processor and digital 
detector [Ha (2010)]. The former, which can be interpreted as the general form of 
A /D  converter, is to convert the noisy signal into a digital observation sequence, such 
that sufficient statistics for transm itted symbols is preserved. The la lter is to infer 
transm itted symbols from this converted digital sequence. Those two steps can be 
implemented sequentially or iteratively, as reviewed below.

2 .3 .6 .1  S ig n a l p ro ce sso r

If the digital detector process is implemented directly in digital software, high sampling 
rate around carrier frequency would be required. To avoid such over-sampling, the 
solution is to obt.ain the lowpass equival(;n(, signal and produce a digii.al sequence from 
this lowpass signal. For this purpose, the most im portant signal processor is the matched 
filter |Proakis (2007)]. Owing to eqtiivalence between coiivolul.ioii and correlation oper­
ator at sampling time point, the matched filter is also equivalent to a correlator, whose 
purpose is to extract the transm itted symbol via correlation between reference and 
received signal. For a noiseless channel, this is obviously a perfect extraction. For an 
additive noisy channel. I,he matched filter, which is linear, can pr(;serve the additivity of 
noise model in digital sequence and, therefore, provide sufficient statistics for inferring 
transm itted symbols.

Nevertheless, there are two major difficulties for t.he matched filter. Firstly, tra­
ditional matched filter requires a coherent demodulation, which assumes tha t local 
reference carrier can be synchronized perfectly with received signal in frequency and 
phase. Secondly, in the band-limited channel, a cascade of a matched filter and an 
equalizer, which is the compensator for reducing intersymbol interference (ISI), is no 
longer a matched filter and might destroy the optimality of the original matched filter 
]Ha (2010)|. Those two i.ssues are also major concern for signal proces.sor in practical 
system.

•  S y n c h r o n iz a tio n

At the receiver, three main parameters, which need to be synchronized between the 
transm itted and received signal, are carrier phase, carrier frequency and symbol timing. 
In practice, the state-of-the-art estimation method for those three issues is Maximum 
Likelihood (ML), although Bayesian tedmiques for synchronization have been proposed 
recently in the literature, as reviewed below.
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For phase synchronization, the M L  phajse estim ator 4)m i , isi typ ica lly  tracked by a 

Phase-Locked-Loop (P LL) c ircu it in  practice. Instead of com puting 4> m l directly, which 

would require a long observed tim e and cause delay in  com putation, the P LL  contiin i- 

ously tunes reference phase 4> v ia  a feedback c ircu it u n til the value o f the like lihood ’s 

derivative against carrier phase becomes zero [Proakis (2007)). Owing to  its  adap tab ility  

1,0 ( he chaniKil’s va ria lion  and non-da(,a-aided (N D A ) scheme, P LL  research is ex(,ensive 

in the lite ra tu re  (see e.g. [Lindsey (1972),BrcgTii (2002)]). Nevertheless, the data- 

aided (D A ) (either pilot-based or non-pilot-based) scheme fo r phase synchronization 

s ign ificantly increases the accuracy. For pilot-based scheme, M L  estim ation can 

be derived feasibly (M eyr et al. (1997)]. For noii-pilot-based scheme, the estimation 

accuracy fo r low SNR is only acceptable v ia channel code-aided (C A ) scheme, although 

it  is only possible to  re tu rn  a local M L  phase estim ator v ia  ite ra tive  E M  a lgorithm  in 

th is  case jlle rze t et al. (2007)]. Recently, in [Quinn et al. (2011)], a Bayesian technique 

was applied to  phase inference in a simple single-tone carrier model, and showing tha t 

the Von Mises d is tr ib u tio n  is a suitable conjugate p rio r for phase uncerta in ty in  this 

case.

For frequency synchronization, three state-of-the-art methods in  the lite ra tu re  are 

the periodogram, phase increment and auto-corrclation methods jPalmer (2009) [. The 

periodogram method is equivalent to  tlie  M L  estim ation method [R ife and Boorstyn 

(1974)], w hile  the other two are low-com plexity sub-optim al methods, which exp lo it the 

ro ta tiona l invariance o f displaced cisoidal signals ]Proakis and M anolakis (2006)]. The 

technical details o f these three methods w ill be presented in Section 3.2. In  practice, 

the accuracy o f frequency estim ation is high and, hence, frequency synchronization is 

much less severe than phase synchronization. For example, in  the AW G N  channel, the 

frequency-offset error in  O F D M  is typ ica lly  around 1% o f the sub-carrier spacing in high 

SNR [Ha (2010)]. Nevertheless, frequency synchronization for O F D M  is more severe 

in practical channels, e.g. low SNR or fading channel [Schulze and Lueders (2005); 

Proakis (2007)), because the error in frequency estim ation w ill destroy o rtliogona lity  

between sub-carriers. Recently, in  [M ore lli and L in  (2013)], the E S P R IT  method was 

proposed for estim ating O F D M ’s frequency offset in low-cost direct-conversion receiver 

(D C R ), which demodulates the received signal in  analogue domain and, hence, is prone 

to frequency-selective I-Q  imbalance. Regarding Bayesian techniques, the posterior 

d is tribu tion  for uncertain frequency is typ ica lly  not in  closed-form because sinusoidal 

signal is a non-linc;ar model of frequency. Hence, Bayesian techniques for frequency have 

not been applied in practice, although, recently, the M C M C  method was proposed in 

the lite ra tu re  [Brom berg and Progri (2005)] fo r approxim ating the frequency posterior 

d is tribu tion .

For symbol tim ing , the typ ica l scenario is data-aided (D A ) synchronization [Bergmans 

(1995)]. Such a scheme is reasonable, since symbol tim ing  involves the symbol data to 

b(;gin w ith . For t,li<! D A  scheme, the M L  delay estim ator can be t,racked v ia  delay-lock<;d 

loop (D LL ) c ircu it, which operates s im ila rly  to  the P LL  fo r phase. Note th a t, a variant of
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DLL, nam ely E arly-gate DLL, can also be applied to  non-data-a ided  (NDA) or low SNR 

scheme, by m arginalizing out assum ed equi-probable sym bols from observation model 

[Proakis (2007) |. C arrier phase and  symbol tim ing can also be estim ated  jo in tly  via joint 

ML estim ator in order to  achieve higher accuracy [Falconer and Salz (1977)]. Similarly, 

the  delay tim e can be estim ated  along w ith phase offset in above CA synchronization 

|II('rzet ot al. (2007)]. In O FD M , the  symbol tim ing issue is loss scivero, owing l.o cyclic 

prefix of sym bols in guard  tim e period (Schulzc and Lueders (2005)].

•  E q u a liza tio n

If U ( f )  is the  p roduct of th e  transm ission filter and known channel response, the 

m atched filter H*  ( / )  for zero ISI a t receiver can be designed such th a t  th e  folded spec­

tru m  X ( f ) ,  i.e. the  new channel spectrum  satisfies the  N yquist criterion

for zero interference. Since the  channel response is typically unknown, a block of digital 

equalization filter for reducing ISI usually consists of two parts. In the  first pari,, a  digital 

noise-whitening filter H^ { z )  is designed such th a t the colored noise, i.e. th e  channel’s 

w hite noise filtered by m atched filter, can be w hitened and, hence, im correlated. In 

the  second p art, a linear digital equalizer, G'(z), can be chosen as one of two popular 
models, nam ely zero-forcing equalizer [ H( z ) H^ ( z ) ) ~^  (for ideally noiseless channel) and 

MMSE equalizer (for imknown noisy channel, b u t w ith W SS sym bol sequence). The 

former filter forces 1ST to  zero, h u t tends to  increase noise power and, hence, reduce 

SNR [Ila (2010)]. T he la tte r  filter, whose coefficients can be estim ated  v ia the LMS 

or RLS algorithm , minimizes the  m ean square error (MSE) betw een random ly WSS 

symbol sequence and the  o u tp u t of equalizer [Proakis (2007)]. T he perforinatice of 

linear filter can be significantly increased via the  data-aided  scheme, also known as 

th e  decision-feedback scheme, when combined with digital detector. These decision- 

fecdback equalizers (DFE) arc, however, non-linear filters [Ha (2010)]. N ote th a t, since 

th e  channel response is not known in practice, adaptive algorithm s need to  be applied 

to  these equalizers in order to  track  channel’s characteristics [Proakis (2007)].

2 .3 .6 .2  D ig ita l d e te c to r

As m entioned earlier in Section 2.3.4, the interface between th e  channel decoder and 

digital detec to r is blurred. In trad itional definition, however, th e  o u tp u t of digital 

detector and, hcnce, of digital dem odulator is hard-inform ation of tran sm itted  sym ­

bol sequence, while th e  channel decoder increases th e  de tec to r’s perform ance further, 

owing to  channel encoding m ethods [Madhow (2008)|. In th e  litera tu re , the  term  

“dem odulation” generally focuscs on the  o u tp u t of th e  digital detector, which relies 

on m odulation scheme and channel characteristics, while th e  term  “decoder” implies the 

channel decoder, which relies on encoding model (see e.g. [Chen et al. (2003)]).

T he s ta te -o f-the-art techniques for digital detector are, therefore, ML estim ator 

and ML sequence estim ato r (M LSE), corresponding to  two detec to r schemes, namely 

sym bol-by-sym bol and jo in t sym bol sequence, respectively. N ote th a t,  for sim plicity in
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study of demodulation, the bit sequence at the input of modulator is often assumed as 
an iid Bernoulli uniform sequence. Although ML and MAP estimators are equivalent 
in this case, the term MAP estimators arc often preserved for more coTriplicatcd input, 
e.g. Markov source or channel encoding sequence.

•  S y m b o l-b y -sy m b o l d e te c to r

In this scheme, eacli transmitted symbol is detected independently from each other. 
This simple scheme is mostly applied to memoryless modulation with AWGN channel. 
For the case of M-ary modulation, the ML estimator simply returns the constellation 
point c:losest in Euclidean distance to obstirvcd symbol in constellation plane. For the 
case of orthogonal modulation, the user streams (in CDMA) and sub-carriers (OFDM) 
are well separated via correlation in the signal processor above [Schulze and Lueders 
(2005)|. Ilcnce, the dctector for each user stream or sub-carrier is similar to M-ary 
case.

•  S y m b o l se q u e n c e  d e te c to r

In this scheme, transmitted symbol sequence is dctcctcd jointly via Markovian model. 
Given transition values in trellis diagram, the MLSE can be found efficiently via Viterbi 
algorithm (VA). This powerful scheme has been applied to all kind of modulation and 
channel models.

For memoryless modulation, the MLSE is applied when ISI occurs and/or symbol 
timing is difficult. Firstly, K  observation samples per overlapped time period will be 
collected into a sequence of length, say n. of M ^-ary symbols. Secondly, assuming 
that two consecutive M ^-ary symbols overlap in L  symbols, an M '" x M '" augmented 
transition matrix with valid transitions can be constructed, where m  =  2K —
L. Thirdly, the soft-information for each state in states arc computed from the 
observation sequence. Finally, the MLSE for those n symbols are returned by VA. For 
high n, such a MLSE is the closest point to the observation sequence in exponentially 
0 (M "'")-ary  constellation plane, while VA’s computational load 0(nM ^’") is always 
linear with n.

Hence, the performance of MLSE is significantly better than that of both symbol- 
by-.symbol detector in AWGN chaimel and equalizer method in band-limited chaimel, 
with modest increase in computational complexity [Froakis (2007)]. A siiriilar result is 
also achieved in the modulation with memory effect and FSMC-fading channel, since 
both of them are Markovian model to begin with.

2.4 Summ ary

In this chapter, we asserted that the challenge for mobile systems is more about efficient 
com]iutation than performance breakthroughs, as we put this insight into the context 
of the generational evolution of tclecomnnmications systems. An interesting remark is
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th a t the standard transmission speed of any mobile generation, from IG to 5G, was 
always set equal to  th a t of fixed-line communication in the previous generation. This 
insight in the mobile generations ilhistrat.es I,he ii(x;d for officiont computation and will 
be used in discussion of future work in Section 9.1.

The fading channel, i.e. the environment th a t all mobile phones must confront, was 
also i)icked out as t.he main cause of pcrforinanco degradal.ioii. This rovic^w also raises (Ik' 
need for better trade-off schcrncs - between accuracy and speed - for symbol detection 
in the receiver. For this reason, the fading channel and the search for new trade-offs 
will receive more attention in this thesis (e.g. sections 3.3 and 8.2, respectively).

To motivate Bayesian inference in this thesis, non-Bayesian techniques were first re­
viewed, along with their drawbacks. The Least Squares (LS), optimal MMSE estimator, 
Wiener filter and ML estim ator are central techniques in non-probabilistic estimation. 
Some m ajor lim itations in DSP for frequentist techniques, e.g. unbiased estimator, and 
Bayesian theory, e.g. subjectivity of the prior model, were explained and clarified. The 
Bayesian methodology introduced in this chapter will be presented in more detail in 
Chapter 4.

All m ajor operational blocks in the telecommunications system were briefly reviewed 
in order to emphasize the significant role of Markovianity. Indeed, Markovianity ap­
pears in every block of telecommunications system and, more importantly, in most 
computationally-efficient schemes for these blocks. By Markovianity, we mean the 
invariant of the neighbourhood structure in each objective functional factor. The 
distributive law for ring theory will be used in Chapter 5 as an a ttem pt to exploit 
further the advantage of this Markovianity, which is also one of the main themes for 
our future work (Section 9.1).
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Chapter 3

Observation models for the digital 
receiver

In this chaptcr, the dcinod\ilatioii task for tlireo cominuiiicatiori scenarios will be briefly 
reviewed. For simplicity, the channel noise will be assumed to be additive white Gaus­
sian noise (AWGN). As explained in Section 2.3.5.1, despite being idealistic, AWGN 
model is a m ajor type of corruption, which serves as basic assumption in many prac­
tical channels [Proakis (2007)]. In this thesis, let us assume further th a t there is no 
intersymbol interference (ISI) and channel time-delay.

As explaiiK'd in Section 2.2.'1.1, analogue form of t he received signal can be rep ro  
sented via the Wold decotnposition as follows:

where w(t)  is AWGN process with PSD =  N q/ 2  (W /H z), si € A m  is the ith  complex 
symbol belonging to  M -ary alphabet A m  — {^i, • ■ • the wave form g{t) represents
both carrier and channel characteristics, u{t) is unit-encrgy Nyquist pulse shape of 
duration T^.

Let us recall th a t the case of non-zero ISI can be arranged to  be close to zero 
via equalization, as explained in Section 2.3.6.1. Hence, for simplicity, the case of 
zero ISI will be assumed in this thesis. Also, as reviewed in the same section, the 
symbol timing can be synchronized jointly with carrier phase olfset. Because the phase 
synchronization issue will be left for future work, let us assume tha t the symbol timing 
can be synchronized perfectly, and th a t the duration is the same for both symbol 
period and sani))ling period in this thesis.

Note tha t, the param eterization 6 of probabilistic observation model f {x{ t ) \ 0 , I )  
depends on design of model X, which, in turn, depends on characteristics of both carrier 
signal over channel g {t) and the source s„ =  {sj, S 2 i  ■ • ■ i S n } .  Then, four possible 
sc(!narios of model X  are:

(3.0.1)
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•  I |  - both  known { 5 ( i ) jS n }

•  I 2 - known g { t ) ,  unknown s„

•  X3  - unknown g { t ) ,  known s„

•  I 4  - both  unknown {g  ( t ) , s„ }

Leaving out the trivial case Xi, three rem aining scenarios w ill b e studied  in th is thesis. 

More specifically, three basic problem s in com m unication w ill be considered respectively:

•  l 2 ’. synchronized sym bol detection  in AW GN channel (i.e. known carrier and 

channel characteristics, but unknown sym bols)

•  I 3 : p ilot-based  frequency offset estim ation in AW GN channel (i.e. unknown  

carrier characteristic, but known channel characteristic and sym bols)

•  I 4 :  synchronized sym bol detection  in quantized fading channel (i.e. unknown  

channel characteristic and sym bols, but known carrier characteristic)

T hose three problem s, in respective order, will be presented in three sections below.

3.1 Sym bol detection in the AWGN channel

As reviewed in Section 2.3.4, the sim plest carrier wave form in th is case is a com plex  

sinusoid, as follows:

9 ( f )  = V ;(0  =  ae^^’̂ =̂‘ (3.1.1)

w here carrier param eters 0  =  { a , / d ,  i.e. am plitude a and carrier frequency fc,  arc 

assum ed known in this section. For sim plicity, the carrier phase is a-ssumed to  be null.

Since 6  is given, th e  baseband signal can be retrieved and sam pled from x{ t )  via  

m atched filter, designed at carrier frequency. A s explained in Section 2.3.6.1, the  

m atched filter is also equivalent to  a correlator, owing to  duality  betw een convolution  

and correlation operators. N ote th a t, th is equivalence is on ly  valid at sam pling point 

t  =  iTs, i  €  { l , 2 , . . . , n }  |H a (2010)], i.e. we have x j i iTg )  =  x j i iTg )  and XQ(iTs) =  

XQ(iTg)  in Fig. 3 .1 .1 . A s explained in Section 2.3.6, th e  correlator is also a general form 

of A /D  converter. T he key difference is that the sam ple in the output of correlator is 

the restilt of a projection, instead o f sam pling values in trad itional A /D . Hence, the  

correlator form will be presented below  for th e  sake o f clarity and intuition.

In order to  exp lo it th e  AW GN assum ption, the key idea is to  construct an orthonor­

mal basis spanning signal space, since the projection of AW GN process in H ilbert space 

y .  onto that orthonorm al basis yields another AW GN process in sub-H ilbcrt space S  

w ith th e  sam e P SD  as th e  AW GN in H  [Madhow (2008)]. For th is purpose, let us 

consider a norm alization constant a  such that the in-phase ipi { t )  =  au { t )  cos{27tf^t)
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Figure 3.1.1: The equivalence between matched filter (a) and correlator (b) in
quadrature demodulator

and quadrature i fqi t )  = au{t) sm(2nfct)  components are orthonormal basis functions 
of signal space. Then, the projections of x{t) and w(t)  onto this signal space can be 
collected as discrete complex variables, as follows:

Xi =  { x{ t ) , i pi { t ) )  +  j  {x{ t ) , i pQ{t ) )  t

w i  ^  ( w { t ) , t p r { t ) )  +  j  { w { t ) , ( f Q ( t ) )

(3.1.2)

whore (•,•) is the inner product in ith  symbol interval, i 6 {1,2, Hence, the
output of quadrature demodulator in this case is the basic discrete complex receiver in 
AWGN channel [Forney and Ungerboeck (1998)], as follows:

Xj =  Si +  Wi, i e  { 1 ,...  ,n} (3.1.3)

where the projection u>i of w{t) via (3.1.2) is a discrete complex AWGN sequence, i.e. 
Wi ~  CAf(0,cr^), with the same variance =  A^o/2 as w(t)  [Madhow (2008)]. Hence, 
the observation model can be written as follows:

/(ii|s.) = C7Vi,(si,cr'-̂ ), i  6 (3.1.4)

In chissical estimation, the Maxiinum Likelihood (ML) estim ator for Gaussian noise 
can be found via the Least Squares (LS) method. In the simplest case where s„ is a uni­
form iid sequence, each symbol can be estimated separately, i.e. si =  argminj^g^j^^ \\xi — Si||^, 
i € {1, 2 , . . .  , n} . For more geii<;ral case where s„ is a Markov source, Bayesian inference

48



.riVA'riOf' i  M O D E L S  F O R  T HE  DiGITAi  R E G E I V ' H

is needed. This Markovian ca.se will be studied in Chapter 8.

3.2 Frequency estim ation in the AW GN channel

W hen carrier param eters 0 =  {a,/c} arc imknown, e.g. owing to offset corruption in 
channel, a common solution for these time-invariant param eters is to  transm it a block 
of n  known symbols (also called pilot symbols), in order to  estim ate 6 before estimating 
true messages coming afterward |Ha (2010)|. Hencc, w ithout loss of generality, let us 
iuisume th a t Sj =  1 for all i G { 1 ,2 , . . . ,  n}.  The carrier frequency fc  in this case becomes 
fc + A f ,  where A /  is the unknown offset frequency. Denoting /s  =  l /Tg  as symbol rate 
and fo =  T g A f  =  ^  6 [—0.5,0.5) as normalized offset frequency, the channel wave 
form g (t) in (3.1.1) now becomes:

g{t )  = (3.2.1)

in whicli the approximation in (3.2.1) is valid if A /  is suffic.ic^ntly smaller than symbol 
rate or equivalently f„ 1. If this assumption is valid, receiver can feasibly operate 
in steady-state condition, i.e. symbol timing is synchronized first before fo is estimated 
[Mengali and D ’Androa ( l ‘J97)|. Ajjplying the matc;hed filter (i.e. correlator) at nominal 
carrier frequency f c  like above, the discrete complex data (3.1.3) now becomes;

Xi = + Wi (3.2.2)

=  + Wi, i e  { I , . .. , n}

where Wi is discrete AWGN sequence with variance = N q/ 2  and Ug digital offset 
frequency, with fio — Stt/o £ [—7r,tt). The observation model can be w ritten as follows:

/(a :i|a ,n o ) =  CAAi.(aeJ“ ‘>',(T )̂, i 6 { l , . . . , n }  (3.2.3)

In the literature, the common concern is to estim ate Qq: while amplitude a is 
regarded as a nuisance paranietw'. Di;spite being classical, single frequency t;stimati(jn 
is still an interesting issue in practice, as revised by [Klein (2006); Morelli and Lin 
(2013)]. The im portant challenge is a trade-off between computational complexity and 
estimation performance, particularly in the case of low signal-to-noise ratio {SNR)  
[Klein (2006)]. For this issue, the periodogram, phase increment and auto-correlation 
are currently three most common techniques in practice [Palmer (2009)] and will be 
briefly reviewed below.
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3 .2 .1  S in g le  f r e q u e n c y  e s t im a t io n  v ia  P e r io d o g r a m

For a batch of data  x „ ,  the classical M axim um  Like lihood (M L ) estim ator fo r frequency 

i lo  is equivalent to the m axim um  o f periodogram [Rife and Boorstyn (1974)|:

i lo  =  a rgm ax

2

.e
i= l

(3.2.4)

In practice, the value o f periodogram a t D P T  bins w ith  m  6 { 0 , . . .  ,n  —

1} can be computed v ia  Discrete Fourier Transform  (D F T ) [Palmer (2009)]. When 

S N R  =  (P' j l a ^  is suffic iently high, the Mean Square E rro r (M SE) of M L  estim ator f2o 

approaches the Cramcr-Rao bound (C R B) for freq\iency estim ators |R ife and Boorstyn 

(1974)]. However, when S N R  is below a certain threshold, the MSE o f n ,, rap id ly  

increases [Brown and Wang (2002)]. Another drawback o f periodogram  is a high 

com putational cost, even w ith  sub-linear com plexity 0 { n \ o g n )  o f F F T  algorithm . 

[Brown and Wang (2002)]. Hence, many sub-optim al estim ators have been proposed to 

reduce the com putationa l com plexity [K le in (2006)].

3 .2 .2  S in g le  f r e q u e n c y  e s t im a t io n  v ia  p h a s e  in c r e m e n t

In  order to  avoid the high com plexity in  non-linear estim ator in  (3.2.4), the noisy model 

for Xi in  (3.2.2) can be approxim ated by a noisy linear form  when S N R  is suffic iently 

high, as follows ["lYctter (1985)|:

Xi »  ae’ ’̂ ' =  i  e { 1 , . . .  ,n }

Hence, the observed data in  th is  c£ise is:

(?l)i =  f io i +  7)i, i  e . , n }  (3.2.5)

where 7/j is discrete AW G N  sequence w ith  variance o'^/2a'*, i.e. var{7ii) =  OJ>/SNR  

[T retter (1985); K ay (1989)]. In  order to  avoid phase unw rapping in (3.2.5), K ay ’s 

method [Kay (1989)] considered the differenced phase data — 4>i — 4>i-i — ~

as follows:

A(/>i =  arg{a:ia:*_i}

=  f lo +  i  e { 2 , . . .  , n }  (3.2.6)

where Arji — rji — Hence, the phase increment method has replaced the  original

non-linear model f { x i \ a ,  fio ) (3.2.3) w ith  its approxim ated linear phase model f{A<j>i\Clo) 

in (3.2.6). The M L  estim ator flo  fo r f{A(f>i\fla) is |Kay (1989); Mengali and D ’Andrea 

(1997)]:
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n

^  A; arg{xix*_i} (3.2.7)
i= 2

where A; =  | j -j- • Because the Kay’s estimator (3.2.7) is a weighted
average of phase increment, its complexity is low, with merely 0(n)  of complex mul­
tiplication. However, its main drawback is the moderate performance, owing to linear 
approximation (3.2.5) . Although Kay’s estimator is unbiased and approaches Modified 
CRB |Mcngali and D’Andrea (1997)], the S N R  value for low error is high |Palmer 
(2009)]. Many variants have been proposed to improve the performance, while main­
taining the low computational cost (see for instance [Brown and Wang (2002); Klein 
(2000)]).

3.2.3 Single frequency estim ation via au tocorrela tion

From (3.2.7), we can see that the phase increment has exploited the underlying rota­
tional invariance of two temporally displaced cisoidal signals [Proakis and Manolakis 
(2006)]. Such a property can also be exploited via discrete autocorrelation function of 
Xi, defined as follows:

1 "R[m] = ---------  ^  m G {1 ,2 ,... ,n  -  1} (3.2.8)
n  — 7ri

Substituting X( (3.2.2) into (3.2.8), we have [Mengali and D’Andrea (1997)]:

J ? H  =  +  m e  { l , 2 , . . . , n - l }  (3.2.9)

whore is a zero-mean random noise. For efficiently estimating SIq in (3.2.9), bccause 
of lacking noise model, Fitz method (Fitz (1994)] considers the time average error for 
the phase of i?[m], as follows:

1 ^ , 1 ^
-  ^  (a rg ( i iH }  -  a rg le J^ ”*}) =  - ^ e m « 0 ,  1< L < n  (3.2.10)

m = l  m = l

where the error 6m is very small if S N R  is high and the range L < | i can be

proj)erly chosen via maximum uncertainty range of Clg |Mcngali and D’Andrea
(1997)]. From linear equation (3.2.10), we can compute the Fitz’s estimator feasibly:

' ■' m = l

The Fitz’s estimator is unbiased in the range of f2o find its MSE achieves the 
Modified CRB at L =  ^. When the range L decreases, the computational load is lighter 
but the accuracy also degrades [Mengali and D’Andrea (1997)]. Hence, there is a trade-
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off between c o m p le x ity  and perfo rm ance again. Some im p roved  versions o f F itz  m ethod  

can be found  in  |Lu ise and R egg iann in i (1995); M enga li and M o re lli (1997)].

3.3 Sym bol detection in the fading channel

As reviewed in  Section 2.3.5.3, in  fad ing  channel, th e  tra n s m itte d  signa l is reflected 

from  su rro un d in gs  (e.g. bu ild in gs , vehicles, e tc .) and d u p lica te d  in to  m u ltip le  copies 

before n;ac:hing m ob ile  rc tx iivcr. Rccausc o f m u lti-p a th  env iro tn nen t, th e  received signal 

is sup e rpos ition  o f those copies, com ing from  d iffe re n t p a th  w ith  various angles. In  th is  

thesis, the  te m p o ra lly  fad ing  effect, w h ich  arises ow ing to  m o tio n  o f m ob ile  receiver, o f 

received signa l w i l l  be considered.

In  f la t fa d in g  channel (F F C ), the  m u lti-p a th  delay spread T^,  w h ich  is th e  m ax im um  

o f d ifference A t  in  de lay tim e  o f a ll pa ths, is assumed to  be sm a ll com pared to  sym bo l 

p e rio d  Tg. N o te  th a t,  because the  coherence b a n d w id th  l / T ^  in  f la t  fad in g  is the re fo re  

la rger th a n  s igna l b a n d w id th  1 /T j,  a ll frequency com ponents o f signa l w i l l  suffer the  

same m ag n itu de  o f fad ing  (hence the  nam e “ f la t” ). In  th is  case, because th e  signa l pulse 

is n o t m uch afl^ec:ted by delay t im e  on any /)th  pa th , i.e. u  ( f  — iTs — A rp )  m u { t  — iTg) 

leavers (2000)|, the  channcl w aveform  g ( t )  o f received signa l in  (3.0.1) can be derived 

v ia  sup e rp os itio n  p rin c ip le , as follows:

fj{t) =
p = i

=  ’4>{t)h{t) (3.3.1)

in  w h ich  th e  fa d in g  ga in h { t )  o f a ll K  a rr iv in g  paths is defined as:

K
h { t )  =  ^ e - j2 7 T /c A rp  

p-1
K

=  ^  (3.3.2)
p = i

T h e  c o m p u ta tio n  fo r de lay phase 4>p{t) in  (3.3.2) can be ca rried  o u t as follows:

D e no ting  v  as v e lo c ity  o f m ob ile  rece iver and tpp as a rr iv in g  angle o f p th  p a th  to  rece iver’s

m ov ing  d ire c tio n  [C la rke  (1968)], as illu s tra te d  in  F ig . 3.3.1, th e  de lay t im e  A rp  caused 

by e a d i p a th  is A xp  =  where c  is lig h t specxl and A x p  =  — (n cos <Pp)t

is the  p a th  le n g th  change ow ing to  rece iver’s m o tio n  (Cavers (2000)]. T hen , w c have:
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building•p'' path

mobile receiver

Figure 3.3.1: Scattered  transm ission paths and receiver’s travelling velocity  V

^  7»
=  - ’̂ T ^ f c ^ T p  =  - 2 n f c — ^  

o _ r
— c
=  2n(fDCOSipp)i ,  p  e  { 1 , 2 , . . .  , K }  (3.3.3)

in which th e  carrier D oppler shift for each path  is f p c o s i pp  cos yjp) and the

frequency f n  is often called m axim um  Doppler shift, since th e  majcimum value cos (fp =  

1 is reached a,t ipp =  0.

In practical com m tm ication system , sincc the cxtrom cly-fast FFC  is im com m on  

[Sadeghi et al. (2008)], it is safe to  assum e that com plex fading gain will stay constant 

during any sym bol period , i.e. h { t )  Ki h i  =  h { i T s ) ,  in which ^  G [1 — 1 , 1) and h i  is 

the constant fading gain  during ith  sym bol period. T hen, the channcl waveform g  (t) 

in (3 .3 .1) now becom es:

g { t )  «  i ’{ t ) h i ,  ^  e [ i - I ,  i )  (3.3.4)
S

A pplying th e  m atched filter at carrier frequency fc,  th e  discrete received data  in 

th is case are:

Xi  =  hi S i  +  Wi

-  | | / i i | |  +  u 't ,  * e  { 1 ,  ■ • • , « }

B ecause th e  fading phase 4>i can be separately estim ated  along w ith  channcl syn­

chronization, am plitude-only fading channel is a popular choice for stu d y in g  fading

phenom enon in the literature |Sadeghi et al. (2008)|. T hen, for th e  am plitude-only

fading scenario, which is our interest in th is thesis, we have:

Xj =  ||/ii|| Sj-h Wi, i e { l , . . . , n }  (3.3.5)
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3.3 .1  S ta tio n a ry  G aussian  p rocess in fading channel

In practice, the sequence of arriving angle ipp can be modeled as uniformly iid random 
variable over the range [—7r,7r) |Sadcghi et al. (2008)|. Therefore, the delay phase 4’p{i) 
in (3.3.3) is also distributed uniformly over [—7r,7r) at anytime t  [Stuber (2011)|. If the 
number K  of scattering paths is sufficiently large, then owing to central limit theorem 
(CLT), the iii-phase and quadrature components of h { t )  =  h j ( t )  + j h Q { t )  in (3.3.2) are, 
respectively:

K
cos <pp(t) (3.3.6)

P = 1

K

p = i

which can be approximated as independent Gaussian random variables 7V(0, Po/2), 
where Pq/2  is called fading power per dimension [Stuber (2011)]. The average fading 
gain is a compl(!X WSS Gaussian i)rocess, who.se autocornilation function (ACF) is 
[Stuber (2011)|:

Rh(r) = Rhjir) + Rĥ {̂r)

=  P ^ M 2 n fD T )  (3.3.7)

where Rh,{T) = B h M )  =  and Jo(-) is zcro-ordcr Bessel function of the
first kind. The result (3.3.7) for Rayleigh fading channel is well known in the literature 
[Clarke (1968); Cavers (2000); Stuber (2011)]. However, for a quick verification, let us 
derive (3.3.7) briefly hero. Substitute (3.3.3) to (3.3.6), wo have [Stuber (2011)|:

R i t j i r )  =  E { h i { t ) h j { t  + T)]
p

=  -y£ 'vp [cos (27r(/DCosv5p)r)]

owing to the central limit theorem (CLT). Then, by definition of zero-order Bessel 
function of the first kind, Jo{x) =  ^ cos(xsin(ip))d(p, we have:

p  rTT

Rh,{T) =  y y  COs(2Tr(fDCOSifip)T)f{tpp)dipp

p  2  r7 T

=  ——  /  c o s { 2 n { f D S i n ( p p ) T ) d i p p  
^ ^  Jo

=  Y  ■^o(27r/dt)
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where f(ipp)  =  ^  for tpp G (—t t , 7r] and zero orthewise. T he com putation  for R h^ {r )  is 

sim ilar to  therefore we have;

f ĥciir) = Rhiir) =  y ô (27t / z;t ) (3.3.8)

T he independence betw een h i { t )  and h , Q { t )  can be verified by first evaluating  th e  cross­

correlation function, as follows (Stuber (2011)]:

owing to  the  central lim it theorem  (CLT). Sincc h j { t )  and I i q I i )  are jointly G aussian 

processes, th e  uncorrelation  (orthogonal) result RhihqiT)  =  0  is sufficient for indicating 

th e  independence of h i { t )  and h Q { t ) ,  i.e.:

which yields (3.3.7). In the  litera tu re , th is model (3.3.7) is oflon calk’d C larke’s model 

for fading channel, which has been widely applied in practice [Sadeghi et al. (2008)] 

since its first appearance in jClarke (1968)].

Becausc fading gain h { t )  is a widc'-sense sta tionary  (W SS) process, it is possible to 

construc t its  Wold represen tation  by infinite-order A R process, as explained in Section 

2 .2 .4.1. A finite-order A R model does not, however, fit th e  above C larke’s model, since 

PSD  of fading gain, as com puted from (3.3.7), is not a  rational function of frequency 

JSadeghi e t al. (2008); S tuber (2011)]. Recently, a  sim ulation of approxim ate C larke’s 

m odel via high order A R  m odel (with memory up to  1000) was considered in [Baddour 

and Beaulieu (2005)|. D espite sm all sim ulation error, th is  A R  approach is prohibitive 

in the  fading channel [Sadeghi e t al. (2008)]

3 .3 .2  R ay leigh  p rocess in  fad ing channel

For com plex s ta tio n a ry  G aussian process in po lar form, i.e. h { t )  =  \ \h,{t )\ \  it is

also well known th a t  th e  squared m agnitude 7  =  ]]/i(<)]]^ is a  random  variable with 

d istribu tion  of two degree of freedoms, as follows ]Cavers (2000); S tuber (2011)]:

R h i h q i r )  =  E \ h i [ t ) h Q { t  +  T) \

=  Y ^ ^ ¥ > p [ s i n ( 2 7 r ( / D C O S ( ^ p ) r ) ]

=  0

Rhir) = Rhiir) +  Rh îr) (3.3.9)

(3.3.10)

in which the m ean of 7  is £ [ 7 ] =  E  y|/t(<)]Pj =  Po, as in (3.3.7). Similarly, bccatise 
th e  square-roo t of x ^~ ran d o m  variable in th is case is a  Rayleigh random  variable, the
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distribution of magnitude ||/i(OII =  can be w ritten as follows [Cavers (2000); Stuber 

(2011)]:

,3 .3 . , ,

in which the Rayleigh squared-average is E  pl/i(OII^] =  From (3.3.10), we have

(Tq =  E['y\/2 =  Pq/2. Note that, bccausc Jq(0) =  1, the power average E  p|/i(<)||^j 

can also be computed by setting r  =  0 in autocorrelation function in (3.3.7), i.e. cTq =  
Rh,(0) = Po/2.

Owing to standard form (3.3.11), the dominant approach in fading channel esti­

mation is to quantize the Rayleigh distribution f  (||/i( i) ||) in (3.3.11) into finite cells 
and approximate /  (||/i(t)||) via probability mass function [Sadeghi et al. (2008)]. For 

representing the correlated Fading jjrocoss, a fin itos ta te  Markov chain (FSMC) is widely 

exploited, as reviewed in Section 2.3.5.3. The tiinc'-iiivariant transition m atrix of that 

FSMC can be designed via quantization of jo in tly  Rayleigh variables, as presented in 

Appendix B.

3.4 Summary

For modelling digital receivers, three fundamental system models were presented in this 
chapter.

In the first case, the synchronized scheme, the matched filte r was shown to be an 
orthonormal correlator and, hence, preserves the sufficient statistics in the data in the 

case of AWGN channel.

In t he sec;ond cast;, the nn-synchronizcd scheme, three state-of-the-art (non-Bayesian) 

techniques for frequency-offset estimation were reviewed.

In the th ird  case, the synchronized fading scheme, the derivation of the Rayleigh 

fading process for the amplitude of the received signal - a derivation based solely on the 

original Gaussian process assumption - was also presented briefly, providing us w ith  the 

insight that i t  is actually the square-root of Chi-square process.

These models w ill be used, later in Chapters 7 and 8, in order to evaluate the 

performance of novel inference methods in this thesis.
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Bayesian param etric modelling

T he purpose of th is  chapter is to  show tlia t Bayesian inference m ethod  is an effective 

tool for system  m odelling in telecom m unication contexts of in te rest in th is thesis. Since 

elTicient com putation  is a  m ajor concern in mobile receivers, trac tab le  Bayesian m ethods 

arc p rim ary  concern in th is  chapter. Moreover, for the  sake of clarity, th e  general form 

of Bayesian inference will be considered here, w ithout any constra in t on model design, 

while specific models of in terest will be studied  in la ter p a rts  of th is  thesis.

4.1 Bayes’ rule

T he aim  of p aram etric  inference is to  infer some inform ation ab o u t unknow n quantity  

0 6 0 ,  given observed d a ta  x . For th a t purpose, th e  probabilistic solution is to  impose 

a  jo in t d istribu tion  f { x , 0 )  on bo th  x  and 0. By probabilistic chain rule, f (x. ,0)  can be 

factorized in to  two equivalent ways, as follows:

Hence, any inform ation that, d a ta  x  can provid(; us about. 0 must, be cont.aincd 

w ithin th e  posterio r d istribu tion  f {6\x) .  Because th e  value x  is known, th e  d a ta  

inference / ( x )  =  J  f{x. , 9)dd,  also known as predictive inference or occasionally as the  

evidence [Bernardo and Sm ith (199'l)|, is regarded as norm alizing constan t for posterior 

d istribu tion  / ( 0 |x ) ,  as follows:

/(6 l |x ) /(x )  =  /(x,6»)

(4.1.2)
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where oc denotes normahzing operator, i.e. the right hand side of oc is normaUzed to be 
sum-to-one over 0. The well-known formula (4.1.2) is called Bayes’ rule in the literature. 
Important, texts on Bayes’ theory and calculus are found in |Bernardo and Smith (I994); 
Jaynes (2003); Robert (2007)].

4.2 Subjectivity versus O bjectivity

Despite siitiplicity, Bayes’ rule raises a philosophical issue on subjectivity of probability, 
which is perhaps the most critical issue in Bayesian inference [Robert (2007)]. The most 
popular criticism is to  regard the prior and posterior distributions objectively, i.e. as 
a measure of a repeatable or gcnerablc quantity, rather than “quantification of belief” 
about 6 in Bayesian philosophy [Bernardo and Smith (1994)].

Putting Bayesian interpretation aside, it can be seen th a t both prior and posterior 
models are simply consequences of joint model / ( x ,  9) design (4.1.1), which is subjective 
per sc. Box’s famous comment that “all models arc wrong, but some arc useful” (Box 
(1979a)[ was also stated  a.s “models are never true, but it is only necessary tha t they 
are useful” [Box (1979b)]. The usefulness is, therefore, a necessary and subjective 
criterion for model design. Hcncc, in order to avoid the philosophical ambiguity betwcx:n 
objectivity and subjectivity of probability (see e.g. ]Lindley (2000)] and discussions 
therein), in this thesis, the impo.sed joint model / ( x ,0 )  is considered as subjective 
belief, while the prior and posteriors are considered as deductive consequences of the 
subjective modelling. The justification is the following:

- Regarding subjectivity: In deterministic model, the purpose of param etric inference 
is to return the optimal estimate 0 such tha t a criterion like loss function C = L(x, 6) 
can be minimized at 9. In probability context, the distribution / ( £ )  is, therefore, 
a transformation of f ( x , 9 ) .  Since joint model regardless of repeatability or 
umcpeatability, is fundamentally imposed by our belief on the system, it is obviously 
subjective and need to  be useful under criterion L{x,9) .

- Regarding objectivity: Note th a t chain rule of factorization in (4.1.1) follows the 
Axioms of Probability jBcrnardo and Smith (1994)], i.e. the com putation of prior and 

posterior would never change the originally set-up joint model / ( x ,0 ) .  Hence, the term 
“Bayesian inference” in this thesis simply refers to com putation of posterior distribution 
in (4.1.2), rather than il,s Bayesian subjectivity meaning. Bayesian inference is, at least 
in this thesis, a m athem atical technique to solve the above subjective problem.

4.3 Bayesian estim ation as a D ecision-Theoretic task

Owing to Bayes’ rule (4.1.2), the data  information about 0 is all contained in posterior 
distribution /(0 |x ) .  In practice, however, the desired output is often a single point 
estimation or decision  ̂ =  6 (x) : A" —> 0  of 0 € 0 .  In this section, Bayesian criteria for 
optimizing value ^ will be reviewed.
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4.3.1 U tility  and loss function

The utility and loss definition was often expressed in different forms in different fields. 
In tliis subsection, let us review some of these forms, before applying the approach to 
Bayesian estim ator in the consequence.

In decision theory, a chosen action a{9) : 0  —> >1, defined as a fimction of event 0, 
is justified by a gain or benefit of tha t action. Tlie rtieasure of th a t benefit is called 
utility, denoted u{a(6)), whose axiomatization is firstly presented in [von Neumann and 
Morgenstern (1944)].

In statistical decision, however, the action a is typically chosen via a loss, i.e. 
negative utility, firstly formalized by Wald [Wald (1949)]:

Lu[a,0) = -u{a{0))  (4.3.1)

where L^(a,9)  : x 0  —> R. The key role of definition (4.3.1) is th a t the action a is
now regarded as independent of parameter event 6 in Lu{a,6).  Moreover, in order to 
guarantee a non-negative loss action, the loss definition in (4.3.1) is further constrained 
into a (regret) loss function, as follows [Parmigiani and Inoue (2009)|:

L (a, 0) = L-u{a, 6) — inf Lu{a, 0) (4.3.2)
aeA

whore L (a,d) : A  x O K>o-
In param etric inference, the action a is to pick a value ^ in param eter space 0 ,  i.e. 

a =  ^ e  =  0 .  By this way, the definition (4.3.2) becomes a loss function £  =  L(^,0) 
for estim ator ^ of 0 such th a t L{^, 9) : fl x Q ^  R>o and L({, 6̂ ) =  0 ^ =  0. In
deterministic scenario, the standard criterion is to pick the value f  of ^ such th a t the 
loss function is minimized, i.e. we have:

f  =  argminZ,(C,6')

Lastly, in probability context, the estim ator ^ is 8;ssigned as a function of data 
^ = 9 (x) : A" —> n  in a functional space ^ G E . In this context, the  value L  =  L(^, 9') =  
L  (x) ,0^ is a deterministic function of two random variables {x, 0}. Then, the aim of 

param etric inference in this case is to  pick the minimum risk (MR) function ^ = 9\]ii{^) 
in functional space H such th a t the expected loss function is minimized, i.e. we have:

9m r (x ) = arg min Ef^c)L (9 ( x ) , (4.3.3)

In general, a loss function C can be designed via definition of gain function (4.3.1), 
via definition of regret function (4.3.2), by system requirement or simply by imposing 
tractably rnathematic form. Then, theoretically, tlie distribution f {C)  in (4.3.3), C € 
R>0 , can be derived via transformation of joint distribution f{-x.,9). However, in
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practice, the exact form  of / ( £ )  is often d ifficu lt to  compute. The most common solution 

is to  confine ourself to  expected loss function L  =  S y(£ )(£ ). For th is  reason, a theory 

o f f\u ic tiona l moan w ill be bric;fly reviewed firs t, before we derive the eom ptita tion o f 

th a t mean value L.

4 .3 .1 .1  E x p e c ta t io n  o f  a fu n c t io n

In  p robab ility  theory, law o f the unconscious s ta tis tic ian  (LO TU S ) is im p o rtan t [Ghahra- 

mani (2005)]. H istorica lly, the te rm  “unconscious” was used because some people forgot 

tha t th is law was no l a de fin ition  |Ross (1970); Schervish (1995)|, a lthough some 

statisticians, e.g. [Casella and Berger (2002)], d id no t find th a t te rm  amusing. The 

v irtue  of IjO T U S  is th a t we can compute the expected value o f a determini.stic function 

Ip =  g {0) from  orig inal d is trib u tio n  f { 0 ) ,  w ithou t the need o f com puting transformed 

d is tribu tion  f{ rp ), which m ight be d ifficu lt to  carry ou t in  practice.

P ro p o s it io n  4 .3 .1 . (Law o f unconscious sta tis tic ian  (L O T U S )) (see e.g. fWong and 

Ila jek  (1985); Ghahramani (2005)] fo r  rigorous proof)

I f  6 is a random, variable w ith probability func tion  f { 6 )  and ip =  g (0) : O M is a 

nitasurable function , then Ef^^'j(7p) =  Ej^g')(g {9)) =  f  g (6) f{d)dO .

Somewhat relevant t.o LO^PUS is the t;oncept of certa in ty equivalent (CE) in decision 

theory, defined as follov.'S'.

D e f in it io n  4 .3 .2 . (C erta in ty Equivalent) [Pannigiani and Inoue (2009)] The certa in ty 

equivalent dcE  £ i f  existent, is a special value of 0 £ 0 ,  such tha t:

g (^) (4.3.4)

The equation (4.3.4) means th a t expectation o f functiona l form  can be evaluated 

by a single CE po in t dcEi i f  th a t CE exists. Note tha t, the  sufficient condition for 

existence of 0c e  is th a t g (9) is linear w ith  9 (4.3.4).

4 .3 .2  Bayes risk

By Proposition 4.3.1, the expected value C in  (4.3.3) can be found v ia  the jo in t d is tr i­

bution / ( x ,  0), as follows:

£ /(^ ,0 )L (e ,0 ) =  £ ;;(x ,e )^ (0 (x ) ,0 )  (4.3.5)

In  the Hterature, the expected loss in  (4.3.5) is ako called Bayes risk [Berger (1985)], In  

practice, because the com putation o f expectation (4.3.5) v ia  jo in t d is trib u tio n  f { x ,9 )  

is often not in closed form, the Bayesian risk (4.3.5) can be e.stimated v ia  em pirical 

(M onte Carlo) sampling of / ( x ,0 ) .
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4 .3 .2 .1  P o s te rio r expected  loss

The M R  estimator Om r  — in (4.3.3) can also be found via posterior expected

loss function, without the need of computing the form / ( x ,  0). By factorization / ( x ,  0) =  

/ ( x ) / ( 0 |x )  in (4.1.1), the Bayesian risk (4.3.5) can also be computed by averaging 

posterior distribution, i.e.: L  =  i^Ef^o\x)L{9 (x) , 0 ) |  . Since / ( x )  >  0 for any x, 

we have an equivalent way to find the optimal estimator Om r  in (4.3.3), as follows:

9m r  =  a rg m in E , ,o\x)L  (0 ( x ) ,& )  (4.3.6)
«(•)  ̂ ^

Hence, an advantage of Bayesian estimation method is that deriving optimal esti­

mator 0m r  via posterior distribution /(0 |x )  is often much more fea.sible than via joint 

distribution / ( x ,  0) [Berger (1985)].

4 .3 .2 .2  M in im u m  risk  estim ators

From (4.3.6), it is feasible to derive the optimal estimators for several well-known loss 

functions. For example, if L{0,0)  is quadratic loss jjo — , zero-one loss S(0 — 0) or

scalar absolute loss —0|| , the mininnim risk estimator Om r  the mean, mode or 

median of posterior distribution /(0 |x ) ,  respectively [Berger (1985)[.

In information theory, the Hamming distance is an important function. Generally, 

a Hamming loss can be defined for continuous case, as follows:

L (e, e'  ̂ =  Q { l e )  =  i - - J 2 ^  (4-3.7)
i = l

where 0 =  { 0 \ , 02, • ■ •, On) is the set of estimates and 6 =  { 0 \ , 02, ■ ■ ■, 0„} is the set of 
parameters. The Hamming loss in (4.3.7) can be minimized via the following Lemma:

L em m a 4 .3 .3 . The minimum risk (M R ) estimate. Om r  =  ( x ) , . . . ,  0n (x)}, which

minimizes E j(^  g^Q{9,0), is the sequence of marginal MAP:

0 i(x ) =  a rg m a x /(0 i|x ), i £ { 1 , 2 , . . .  , n }  (4.3.8)
9i

Proof. From (4.3.7), we can see that the M R  estimate for Hamming loss is:

1.

min =  1 -  -  y ]  max £ ’/(fl|x„)<5 ( ^i(^) -  ẑ)
f f ( - )  ^  0 ( . )  V /

1 ”
=  1 ----- ^ ^ m a x /(0 i|x )  (4.3.9)

i = l  '

which yields (4.3.8). □
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In the h te ra tu re , a  special case of Lem m a 4.3.3, in which 0 is discrete and Dirac-(5(-) 

is replaced by Kronecker-J[-], is proved in (W inkler (1995); Lem ber (2011)1. T he above 

proof is provided in this thesis in order to cover the case of continuous r.v. 0.

4.4 Bayesian inference

As explained in subsection 4.3.2.1, although th e  u ltim ate  aim  of estim ation  task  is to 

tniniinize the Bayesian risk £  (4.3.5) v ia  jo in t model / ( x ,  6), the  M inimum Risk (MR) 

estim ated  decision (4.3.6) can be found equivalently via posterio r d istribu tion  f {9\x) .  

T he trac tab le  com putation  of posterior is, therefore, th e  m ain in terest in th is  thesis.

Becausc th e  jo in t model f ( x , 6 )  depends on th e  design of observation p a r t / ( x |0 )  

and tlie prior p a r t f ( 0 ) ,  th e  technical issues w ith those two p a rts  will be reviewed first 

in th is  section. T he role of posterior p a rt / ( 0 |x ) ,  which is a  m ere consequence of the 

chain rule (4.1.1), will then  be reviewed.

4 .4 .1  O b s e r v a t i o n  m o d e l

In contrast to  the  determ inistic approach, the  probabilistic  approach considers the 

observed d a ta  x  as one  realization of observation d istribu tion  / ( x |0 ) ,  given a shaping 

param eter 0. In o ther words, the param etric  model / (  |0) is a  quan tiza tion  model of 

th e  observer’s /m o d elle r’s belief about th e  possible realization x , of X , when observed.

For clarifying po ten tia l concision, let us em phasize again th a t, in th is thesis, the 

d a ta  X  is regarded as one and only one realization, draw n from f { x \ 9) .  Owing to  

th is convention, it does not m a tte r w hether the  random  q u an tity  x  is repeatab le or 

unrepeatable. In stochastic case w here there are n  observed d a ta , th e  no ta tion  x  will 

be specialized to  x „  =  { x i , x 2 , ■ ■ ■ ,Xn}-
In practice, the  observation model / ( x |0 )  is often im posed by physical laws. In 

m athem atical m odels, / ( x |0 )  can be flexibly param eterized  by exploiting exchangeabil­

ity, invariance or sufficiency properties of d a ta  x  |B crnardo and S m ith  (1994)|. In th a t 

theoretical context, / ( x |0 )  often belongs to  s tan d ard  d istriln itions, which are derived 

from experim ents or defined in probability  tex tbooks [Kotz c t al. (1997, 2004a,b, 2005)].

For com putational efficiency, the  d a ta  sufficiency is th e  m ost im p o rtan t p roperty  

for us to  exploit. If a s ta tistic , i.e. a  function of da ta , ex trac ts  inform ation on its 

param eter partially , a sufficient s ta tis tic  is much m ore efficient since it can ex trac t th a t 

inform ation fully. Furtherm ore, sufficient s ta tis tics  can repr(;sent th e  whole d a ta  in 

a param etric  model and, hence, m ight reduce th e  d a ta  com plexity significantly. For 

th a t  reason, th e  param eterization  technique v ia  sufficient s ta tis tic s  and its typical class, 

nam ely Exponential Family, is the key in th is thesis and will be briefly reviewed in this 

chapter.
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4 .4 .1 .1  S u ffic ien t s ta t is t ic s

T he sufficient s ta tis tics  of an observation model / ( x |6 )  can be identified via a well-known 

criterion, as follows:

P r o p o s it io n  4 .4 .1 . (F is h e r - N e y m a n  f a c t o r i z a t i o n  c r i t e r i o n )  The s ta lis lic s  t {'x ) 

is called sufficien t i f  and on ly i f  the observation  d is tribu tion  can be fa c to r ized  as IR em ardo  

and S m ith  (1994)]:

f {x \e )  = h  (t (x ), e) g  (x) (4.4.1)

fo r  som e fu n ctio n s h  (•) >  0 and g  (•) >  0.

Because the  p aram eter 9 only in teracts w ith d a ta  x  via fim ction h ( r ( x ) ,0 )  in (4.4.1), 

all the inform ation of d a ta  x  regarding is sum m arized in t (x ), hcncc its nam e sufficient 

s ta tistic .

In history, th e  notion  of sufficient s ta tis tics was firstly defined in [Fisher (1922)], 

while the  factorizatioi\ (4.4.1) is explicitly established in [Neyman (1935)|. In classi­

cal inference, th e  sufficient s ta tis tics  plays an im p o rtan t role, m ostly owing to  Rao- 

Blackwell-Kolmogorov theorem  [Blackwell (1947); Kolmogorov (1950); Rao (1965)], 

which establishes th a t  unbiased estim ators based on sufficient s ta tis tic  are the best 

es tim ators. In Bayesian inference, however, sufficient s ta tis tics  are sim ply regarded as 

a consequence of the  Bayesian m ethod [Bernardo and Sm ith (1994)]. Owing to  Bayes’ 

rule ('1.1.2) and N eym an factorization ( 'l.d .l), the  posterior inference normali7.es out 

any d a ta  factor g (x )  irrelevant to  param eter and, hence, always exploits the  minimal 

sufficient s ta tis tics  [Lehmann and Casella (1998)].

N evertheless, the sufficiency principle plays a  central role for d a ta  siinplificatiori 

of two m ajo r observation classes: transform ation  family (TF) and exponential family 

(EF). Indeed, m ost s ta n d a rd  d istribu tions, see e.g. jKotz e t al. (1997, 2004a,b, 2005)], 

belong to  ju s t these two classes [Lehmann and Casella (1998)[. T he form er ex tracts  

sufficient s ta tis tics  of in teresting  param eters v ia  a group of transform ations, such as 

scaling or location shift, while, on the  o ther hand, preserving th e  original d is trib u tio n ’s 

s tru c tu re  [Cox (2006)[. T he la tte r  reduces d a ta  complexity, regardless of sam ple size, 

to  a  fixed (usually sm all) num ber of sufficient sta tistics w ithou t loss of inform ation 

[Lehmann and C asella (1998)]. Since EF  class is widely exploited in signal processing 

for trac tab le  com putation , it will be reviewed in this chapter. Some d istribu tions in T F  

class, nam ely spherical d istribu tions, th a t  also belong to  EF  class will be presented as 
an application  in Section 7.3.

4 .4 .1 .2  E x p o n e n t ia l F a m ily

In the class of d istribu tions param eterized via sufficient s ta tistics , the  m ost im portan t 

is the exponential fam ily (EF), firstly pioneered by [Darrnois (1935); Koopirian (193(i); 

P itm an  and W ishart (1936)]. T h e  first m otivation of th e  EF  class is to  exploit the
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fixed-dimension p roperty  of sufficient sta tistics, as s ta ted  v ia D arm ois-K oopm an-P itm an 

theorem  [Andersen (1970)]: “U nder regularity  conditions, a  necessary and  sufficient con­

dition for (,hc <;xist.(;nco of a  sufficient s ta tis tic  of fixed dim ension is th a t  the  probability  

density belongs to  th e  exponential family”. Following up th a t  result, th e  sufficient d a ta  

reduction in th e  E F  class was then  studied  thoroughly  in [Andersen (1970); Brown 

(1986)[. T he m ain m otivation for E F ’s usage nowadays is sim ply the  cornputal.ional 

trac tab iiity  engendered in th e  posterior d istribu tion  [Robert (2007)[.

D e f in it io n  4 .4 .2 . (E x p o n e n t ia l  F a m ily )  T he observatioti model / ( x |0 )  is a  m em ber 

of EF  if and only if the re  is a separability  between param eters and d a ta  kernels, as 

follows [Brown (1986)]:

/(x [0 )  =  C[d)h  (x) exp ( /? ,(6) t ( x ) )  (4-4.2)

Iti a more relaxed form, the  scalar p roduct R{d)T(x)  in (4.4.2) m iglit be replaced by a 

scalar p roduct ( /? (0 ) ,r (x ) )  th a t  is linear in the second argum ent (such as th e  Euclidean 

inner p roduct in th e  ease where R{d)  and r ( x )  arc vector s tru c tu re s  of equal dimension) 

[Smidl and Quimi (2006); Nielsen and G arcia (2009)|.

C om paring (4.4.1) w ith (4.4.2), wc rccognize th a t the d a ta  kernel t (x ) is a  sufficient 

s ta tis tic  in EF. Moreover, t (x ) is also invariant w ith  increasing num bers of observation. 

For exam ple, given an iid sequence x „  =  EF  observation (4.4.‘2)

becomes f { x n \ 0 )  =  11?= i ~  C{ 0) ^ h{ xn ) cx p{ R( 0 ) T{ Xn) ) ,  where th e  sufficient 

s ta tis tic  r (x ,i)  =  preserves th e  dim ension of initial s ta tis tic s  r{x \ ) .

N ote th a t,  if we regard th e  em pirical m ean as a  m om ent constra in  of iid

scqu(^nce x „  =  [ x \ , x 2 , ■ ■. , 'Xn), the EF  form (4.4.2) can also be found via m;ucimuni 

entropy (M axE nt) principle [Wainwright and Jo rdan  (2008)[.

4.4.2 Prior d istribution

As c:xplained above, the pri<jr design f {9)  c:annot be separated  from th e  design of joint, 

model / ( x ,  6),  which, in tu rn , depends on the  d a ta  characteristics. Hence, th e  goodness 

of estim ation does no t only rely on inference techniques, b u t also on the  quality  of 

model design. For any optim al decision, th e  first and forem ost question is w hether wc 

have considered all possible options, since too narrow  a se t of options m ight lead us to  

a sub-optim al solution a t best [Box (1979b)|. T he aim  of prior design is, therefore, to  

em brace all possibilitias of param eter for the  d a ta  set in the jo in t model.

In practice, the re  are th ree  scenarios for prior design:

- If we have no inform ation on 0 a  priori, a  non-inform ative approach will be applied 

to  prior design (sec e.g [Kass and W asserm an (199G)[ for full review and bibliography of 

th is approach). T he m ost well-known priors in th is case are uniform  prior (also known 

as Laplace’s prior) [Laplace (1814)], Jeffreys’ prior [Jeffreys (1946)[ and  reference prior 

[Bernardo (1979)|, as reviewed below.
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- If we have all information on 6, i.e. the prior distribution is already given along 
with joint model, there is nothing for us to do. However, if only the form of prior 
is defined, the prior design becomes a tuning problem on sliaping param eters of that 
form. An example of this case is a conjugate prior, as explained below. Another example 
is the multinomial distribution, which is the uniquely available form for any discrete 
compact-sup] )orlr random variable. This rnull.inornial prior will b(; (rorisidcrcd in Section 
6 . 2 .

- If we have access to  partial information on 6, such as moments or some constraints, 
a distributional optimizer can be sought. For this case, some approximation methods, 
e.g. M axEnt or moments matching, can be applied [Robert (2007)]. These approxima­
tions will be explained in Section 4.4.2.5.

In this subsection, the typical priors for those three eases will be briefly reviewed. 
Laplace’s prior, which is ignorant to data characteristics, will be presented first in order 
to recall the ignorance principle in prior design.

4 .4 .2 .1  U n ifo r m  p rior

The earliest principle, dated back to [Laplace (1814)], in prior design is the “principle 
of indiff<;rence” (also called “principle of insufficient reason” or Laplace’s rult; ]Kass and 
Wasserman (1996)]), which imposes a uniform prior. This principle, however, receives 
some serious criticism. Firstly, the imiform distribution is inipro]>er for non-compact 
sup])ort 0. Secondly and more fundamentally, the principle of indifference ignores the 
re-parameterization issue in observation model, wliich contains all the inforniation of 
data about param eter. W ithout taking th a t issue into account, the non-informative 
prior f {6)  for a posteriori estimation on 0 might become an informative prior f (ip)  for 
a posteriori estimation on tp, where xl> = g(6)  \s a. one-to-one mapping.

4 .4 .2 .2  J e ffr e y s ’ p r ior

In order to preserve the non-informative property in the re-parmeterization issue, a 
criterion, namely “invariance under re-parameterization”, was originally required in 
Jeffreys’ prior |Jeffreys (1946)].

Given observation model f {x\0) ,  the Fisher information is defined as follows: I  {9) =  

^/(x|g) • Owing to Jacobian transformation, the Fisher information is

actually invariant under re-parameterization, as follows: I  [6) =  I  (ip) (dip/d&)^, where 
tp = g {0) is Si one-to-one mapping. Because square-root of I  (0) yields a distributional 
transformation, the Jeffreys prior is defined as /(&) oc \ / I  {6). In the case of multi­
dimensional param eter, the Jeffrey prior becomes f {6)  oc i/d c t{ 7  (0)}, where I  {9) is 
the Fisher information matrix.

Nevertheless, Jeffreys’ prior is often imjiroper, particularly in the inulti-dimensional 
case. For this reason, Jeffreys’ prior is considered as intuitive proposal, rather than a 
practical approach [Bernardo and Smith (1994)|.
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4 .4 .2 .3  R e fe re n ce  p r io r

A  Bayesian, and somewhat objective, approach for p rio r design is to  consider the 

relationship between posterior and p rio r d is tribu tions, given a fixed observation model. 

The crite rion  for optim a l estim ation is, as explained above, to  maxim ize the range of 

possibilil.ies th a t the p rio r can contribute to the posterior d is tribu tion . The reference 

prio r, f irs t ly  proposed in [Bernardo (1979)], solved th is problem v ia  a variational ap­

proach, as follows:

f { 6 )  =  a rgmax  { E j ^ ^ ) K L D  (9) ) }

where K L D  dcnotos K tillback-Lcib lo r divergence |Covcr and Thomas (200G)|:

K L D  [ m w m )  ^  ^  >  0 (4.4.3)

I f  6 is scalar and continuous, the reference p rio r is identical to  Jeffreys’ p rio r |Bcrnardo 

and Sm ith (1994)], bu t th is  is not true  in  the m ulti-d im ensional case.

4 .4 .2 .4  C o n ju g a te  p r io r

Another method for p rio r design is conjugate principle, which preserves the p rio r and 

posterior w ith in  the same functional class, as follows:

D e f in it io n  4 .4 .3 . (Conjugacy) jRobert (2007)] A  p rio r d is tr ib u tio n  f {6\ r i )  6 in 

d is tribu tiona l clfiss J- is called conjugate to an observation / ( x ]0 )  i f  its  posterior dis­

tr ib u tio n  also belongs to  T ,  i.e. the d is tribu tiona l form  is closed under Bayes’ rule 

(4.1.2).

Owing to  conjugacy, the data update for posterior param eter can be computed 

d irec tly  w ith in  dal,a s{)aco it,self, w hile the d is tribu tiona l form  stays unchanged.

In  particu la r, th is  invariance property  under Bayes’ ru le plays a central role in 

tractab le  and efficient com putation for the EF class. Indeed, because the EF obser­

vation model (4.'1.2) preserves data dimension, the dimension of its  conjugate p rio r ’s 

parameters, which arc defined w ith in  the same data space, is also preserved a posterioTi.

D e f in it io n  4 .4 .4 . (C EF class) The conjugate p rio r fo r EF observation model, which 

we call the C EF d is tribu tion , can be defined as follows:

f {0\vo)  =  C(er exp {R{e)vo)  (4.4.4)

where t?o =  {^'o,t'c)} >s the shaping parameter.

Obviously, the in itia liza tio n  of rjo makes conjugate p rio r somewhat in form ative, al­

though spccial values o f t/q can make conjugate EF p rio r identical to  the non-in fonnative 

Jeffrey p rio r in  some standard d istributions.
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4 .4 .2 .5  M a x E n t P r io r

Let u.s a.ssiime tha t, a priori, there is a set of mean constraints on the param eter, as 
follows:

f ( 9 )  G T m  : Ef^e)gi{6)  =  rrii (4.4.5)

where all m i  are known and is the set of constrained distributions. The Maximum 
Entropy (MaixEnt) principle, implied by [Jaynes (1980, 1983)], chooses the prior f { 9 )  e  

T m  whose entropy ^/(e) is maximized, i.e. }{6)  =  arg m a t x y ^ ^ j g ( o n c e  again, a 
variational principle).

For defining entropy, however, there are two distinct cases. In the discrete case, the 
entropy is traditionally defined as: ^/(o) =  f ( 6 k ) .  In the continuous
case, the relative Entropy is preferred, i.e. £f{e) =  I^D{ f {9) \ \ f o{0) ) ,  where fo{9)

is a reference distribution. In practice, f o(9)  might be designed as reference prior 
above. The differential entropy, i.e. integration form of discrete Entropy €/[o) =
— Jg f { 9 ) l o g  f { 9 ) d 0 ,  is not always applicable in continuous ease since it is sometimes 
negative.

The MaxEnt solution f { 9 )  for discrete and continuous cases are f { 9 )  oc exp (— Yl i  9 i {9) K)  

and f { 9 )  oc exp (— Pt(^)-^i) fo{9) ,  respectively, where Aj are Lagrange nmltipliers of 
the mean constraints (4.4.5). W ith those forms, we can recognize tha t M axEnt prior 
f { 9 )  is also a member of CEF class (4.4.4).

4 .4 .3  P o ster io r  d istr ib u tio n

Given both observation and prior above, the joint model / ( x ,  0) is already properly 
defined, and, hence, the computation of posterior distribution in (4.L2) is straight 
forward. In this subscction, the nuiin advantages of posterior distribution as an inference 
object will be briefly reviewed and compared with other inference techniques.

4 .4 .3 .1  P re d ic t iv e  in fe ren ce

Firstly, let us recall th a t, the jjredictive model / ( x )  on observable x  can be repjresented 
by marginalization over all possible values of its param eter, as follows:

/ ( x )  =  I  f { x \ 9 ) f { 9 ) d 9

Similarly, the posterior predictive model /(y |x )  on observable y,  given da ta  x , can 
be represented via marginalization over posterior distribution, as follows:

f { y \ x )  =  J  f { y \ x , 9 ) f { 9 \ x ) d e  (4.4.6)

From (4.4.6), we can see th a t posterior /(^ |x )  can be used as intermediate step to 
derive the inference /( j/ |x )  for unknown quantity y.  This simple, yet elegant, form of 
Bayesian prediction (4.4.6) has been used extensively in density estimation [Aitchisoii
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and Dunsmore (1980)], data  classification [Lavine and West (1992); K le in  and Press 

(1992)], model checking JGelman et al. (1996, 2003)], model averaging JRaftery et al. 

(1995)], ctc.

Note tha t, in  the frequentist approach, because p rio r pa rt f { 9 )  is missing, the 

p red iction (4.4.6) has to  re ly on p lug-in approxim ation / ( 6 |x )  =  5(6 — 6), sometimes 

rc^forred to a.s a CE api)roxima(,ion:

/(?y]x) =  I  f { y \ ^ , 9 ) S { 9 - 6 ) d e

=  /( jy |x ,0 )  (4.4.7)

where 0 is often chosen as the M axim um  Likelihood (M L ) estimate, i.e. 6 =  

a rg m a x o g e /(x |0 ) (see e.g. (Aitchison and Dunsmore (1980)] for the details). In  the 

model-selection problem, such a substitu tion  is also popular, i.e. param eter model is 

often clioseri firs t, before the prediction step is carried ou t, a lthough th is approach is 

often critic ized for neglecting model uncerta inty (see e.g. [R aftery et al. (1995)] and 

discussion therein),

4 .4 .3 .2  H ie ra rch ic a l and nuisance param eters

In  the case o f b inary p a rtit io n  d =  where is the  param eter of interest and

0^, is tiiu  iiuisaucc parameter, the Bayesian inference for Oj can be readily derived via 

posterior / ( 0 |x ) ,  as follows:

/(^ ,|x )  =  I
oc I  f i ^ \ 0 ) f { 9 ) d 9 \ i  (4.4.8)

By subs titu ting  the chain rule f ( 9 )  =  f { 9 \ i \9 i ) f ( 6 i )  in to  (4.4.8), we can also derive 

a Bayes’ ru le for 6, d irectly, as follows:

f {Oi \x)  oc f { y i \9 i ) f {0 i )

where:

f { x \9 , )  =  I  f { x \9 ) f { 9 \ i \ 9 , ) dd \ i

=  J f i x ,  9\,\9i)d9\,  (4.4,9)

Note th a t th is nuisance parameter issue is more difficult, to  solve w ith  frequentist 

method. Since p rio r f { 9 )  is missing in th is case, the m arg ina lization in  (4.4.9) has to 

he approxim ated. The common solution is to ap[)ly ph ig-in  m ethod, i.e. the niiisance
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9\̂ i is replaced by its po in t estim ation  whicli yields th e  so-called profile likelihood 

(Bernardo and Sm ith  (1994)], as follows:

w here again, 6̂  ̂ is typically  chosen v ia ML principle. Prom (4.4.8) and (4.4.9), 

we can see th a t  th e  Bayesian inference for any subset of param ete rs can be fo\ind 

by m arginalizing ou t all nuisance param eters. However, th is  approach often yields a 

com plicated conditional d istribu tion  which is often in tractab le  [Liseo (2006) |. From 

(4.4.9), note th a t  / ( x | 0 j )  is an infinite m ix ture of full observation m odel / ( x | 0 ) ,  with 

mixing density  f{9\ i \di ) .

A nother approach is to  produce an asym pto tic  in tegrated  likelihood via reference 

p rior [Berger and B ernardo (1992); Liseo (1993)]. A m ajor difficulty is th a t  th is  approach 

depends strongly  on an order of param eters, which is rek^vant to  the  ordered grouping 

problem  [Bernardo and Sm ith (1994)].

In th e  n -ary  p artitio n  0 =  {0i,O'2, ■ ■ ■ ,9n},  the  d irect com putation  of (4.4.8) is not 
feasible in general [Gelman et al. (2003)]. This case is called hierarchical p aram eter in 

th e  lite ra tu re  and will be stud ied  in Section 6.2.

4 .4 .3 .3  S u ff ic ie n t s t a t i s t i c s  a n d  s h a p in g  p a r a m e te r s

From Fisher-N eym an factorization (4.4.1), it is feasible to  recognize th a t,  owing to 

norm alizing opera to r in Bayes’ rule (4.1.2), the  posterior inference for 9 only depends 

on sufficient s ta tis tic , ra th e r than  the whole da ta , as follows:

Hence, r ( x )  now becomes a shaping p aram eter for th e  posterior d istribu tion  f {9\x) .  

In a  slightly  m ore general case, where th e  prior f(9\rj) depends on known hyper­

p aram eter Tj (also called shaping param eter in th is thesis), the  posterio r form can be 

w ritten  as follows:

T he m ain challenges for posterio r trac tab ility  are, therefore, to  identify the  sufficient 

s ta tis tic  and to  design a prior such th a t th e  com putation  of r ; ( x )  is feasible. B oth of 

them  can be feasibly solved via definition of E F  class. M ultiplying the  conjugate prior 

(4,4.4) w ith  E F  observation (4.4.2), the conjugate posterior can be feasibly derived, as 
follows:

fp{x\9i)  =  /(x|6»i,6>\i) (4.4.10)

/ ( 6>|t (x )) oc f { x \ 9 ) f { 9 )

where r / ( x )  =  { t ( x ) , ? / }  is called (data-updatcd) shaping param ete r for the  posterior.

/ ( 0 | t 7 i ( x ) )  oc C { 9y ^  e x p  ( /? (< ? )« !  ( x ) ) (4.4.11)

69



1 LSiAN F>ARAK.” CELLING

w here i>\ =  i/q  +  1 , i ’ i ( x )  =  wo +  t ( x ) and J?i(x) =  { j / i ,w i(x )} . N ote th a t, because  

tlie  dim ension o f E F sufficient sta tis tic  r (x „ )  =  '^(^0 preserved in iid case

x „  — { x \ , x 2 , ■. ■ ,^’n }, I'hc coiriputation of posterior’s shaping param eter ? /i(x) is always 

tractable. Hence, the E F class plays an im portant role in tractab le B ayesian inference. 

In the online schem e, th e  com putation  of r (x „ )  can be carried out recursively [Smidl 

and CJninn (2005) |.

4 .4 .3 .4  A s y m p t o t ic  in fe r e n c e

Let us consider the negative logarithm  o f posterior d istribution  h{6) =  — lo g / ( 0 |x n )  

expanded up to  second order of Taylor approxim ation, as follows:

L (0) =  L(0o) +  { 0 -  9 o )V L (e o )  -  !(</. -  </>o)'H(0o)(0 -  ^o) +  ■ ■ ■ (4.4.12)

where VL(Oo) and II(Oo) -  -V 2 L (0 o ) an; the gradient, vector and Hessian m atrix  

evaluated at vector point 0 =  6q, respectively, assum ing regularity conditions on L(0) 

[Bernardo and Sm ith  (1994)]

In the special case o f the iid observation m odel, th e  first tw o orders o f the Taylor 

ex[)ansion y ields an asym ptotica lly  converged form for posterior d istribution , as follows:

P r o p o s it io n  4 .4 .5 .  (A sym p to t ic  p oster ior  n on n a li ty )  iHernardo and S m ith  (1994)1  

Given ltd observation model f ( x „ \9 )  =  ^ " = 1  o.nd m a x im u m  a posterior i  (M A P )

0, i.e. VL(<^) =  0, then u n der  regularity conditions, the pos te r io r  d is tribution  /(6^|x„) 

converges to the norm al dis tribution N o  ^ 0 ,H “ *(0)^ , when n  —>• oo.

Th(! asym p totic  posterior norm ality was firstly proposed and rigorously proved in 

[Laplace (1810)] and [Le Cam  (1953)|, respectively. N ote th at, given the iid observation  

m odel, we also have a special converged form n T { 9 \ j i )  as n  —> oo, where

9m l  ~~ a r g n ia x e /(x „ |0 )  |G elm an ot al. (2003); Bernardo and Sm ith  (1994)[. How­

ever, unless the prior is uniform, the posterior / ( 0 |x )  does not necessarily converge to  

N e { 9 M L , ^ ^ \ e M L ) ) -

4.5 D istributional approximation

T he com putation  o f posterior distribution /(6*|x) is obviously th e  m ain focus of Bayesian  

theory. However, th e  com putation  of th e  posterior form  v ia  B ayes’ rule (4 .1 .2) is 

often intractable in practice. A com m on solution is, therefore, to  use distributional 

approxim ation / ( 0 |x )  o f / ( 0 [ x ) ,  in which th e  form / ( 6 |x )  is tractable. T he tractab ility  

m eans th at th e  com putation  can be carried out v ia  a closed-form  form ula a n d /o r  can  

be determ ined analytically  in polynom ial time.

T he stu d y  of such approaches was the main reason for th e  revival o f Bayesian  

m ethodology in th e  1980s. In th is subsection , the m ost im portant approxim ations will 

be briefly reviewed.
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4.5.1 D eterm in istic  approxim ations

4 .5 .1 .1  C e r ta in ty  eq u iv a len ce  (C E ) a p p r o x im a tio n

When moments of / (^ |x )  are needed, but posterior form is hard to derive, we can confine 

the posterior distribution into a single point 0 (x), as follows:

/ ( 0 |x )  =  <5(0 -  0(x)) (4.5.1)

Note that, by the sifting property, the functional moments g {()) — E  

be approximated via substitution, as follows:

c m  ^  (4.5.2)

= <) p ( x ) )  (4.5.3)

In the literature, this approximation (4.5..3) is widely known as the plug-in substi­
tution technique [Robert (2007)). However, it will be called the Certainty Equivalent 

(CE) approximation in this thesis, owing to its expectation form in (4.5.2) and the fact
that it encodes all the uncertainty about 0 a p o s l m m i  by a single value ^(x) (4.5.1).

Although this CE approximation concept (4.5.2) is different from the exact solution via 

CE principle (4.3.4), they will coincidc if we can assign the CE, i.e. 0(x) =  9c e {'^)i 

(4.5.1) tliat satisfies (4.3.4). The name CE hence reflects the concept of distributional 

representation via a representative value. In practice, 0(x) is often chosen as the mean, 

mode, median of posterior distribution f {0 \x ) ,  or as other minimum risk estimates 

(4.3.6).

4 .5 .1 .2  L ap lace  a p p r o x im a tio n

Owing to asym ptotic posterior normality in Proposition 4.4.5, the posterior / ( 6 |x ) can 

be approximated via its asym ptotic form, i.e. / ( 0 |x )  =  Afy ^0, H~^(<?)^, where 9 is the 

MAP estim ate (mode) of / ( 0 |x ) .  The quality of this approximation obviously depends 

on the number of observations and is typically poor in small samples.

4 .5 .1 .3  M a x E n t a p p r o x im a tio n

The posterior / ( 0 |x )  can also be approximated via MajcEnt technique in Section 4.4.2.5, 

if distributional class f {0 \x )  G (4.4.5) is already given. Similarly to derivation of 

MaxEnt prior, the MaxEnt posterior /(^ |x )  G J'm is also a member of CEF class, as 

follows;

/ ( 6l|x) o c c x p ( - ^ ( 7i(6))Ai(x)) (4.5.4)
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where Lagrangre multipliers Ai(x) depend on da ta  x  in this case. Note tha t, MaxEnt is 
a free-form variational technique, since CEF form (4.5.4) of f ( 0 \ x )  is not fixed during 
approximation, but merely a solution of frcc'-form Entropy maximization process.

4.5.2 Variational Bayes (V B ) approxim ation

In this thesis, the main deterministic approximation is the free-form (variational) VB 
approximation. Let us provide a brief review of VB and its variants in this subscction.

4.5 .2 .1  M ean field th eory

The term  ‘Variational” originates from the term  “calculus of variations” [Clioudrey 
(2002)], in which the (optimum) value of a definite integral (or a functional) deter- 
ministically depends on the function in the argument of tha t integral [Stephenson and 
Radmore (lf)90)|. The idea of the VB approximation has its roots in mean field theoiy 
(M FT), which is originally a statistical quantum  mechanics term , although the definition 
of M FT was not specific in th a t early era [Callcn (1985)]. Loosely speaking, the M FT 
originally represents a technique for approximating an interacting particle model by 
another non-interacting particle model, such th a t the Helmholz free-energy is corrected 
up to the first order [Callen (1985)]. The M FT was later defined as a deterministic 
approximation for the expected value of individual quantities in a generic statistical 
model, as firstly introduced in neural networks in [Peterson and Anderson (1987)].

In Bayesian learning, the M FT weis called “ensemble learning” [MacKay (1995)] and 
re-defined a« an approximate distribution, from a cla.ss of “separable” (i.e. independent) 
variables, to an arbitrary  distribution, such th a t the “variational free-energy” from the 
approximate distribution to original distribution is minimized. The MF'T was then, 
once again, re-definod as the Variational Bayes method [Attias (1999); .laakkola and Jor­
dan (2000)], which minimizes the variational free-energy via the iterative Expectation- 
Maximization (EM) and an iterative EM-like algorithm, called the VB EM algorithm 
[Beal (2003)[. Note tha t, the methods based on variational free-energy above mostly 
focus on point estim ates and neglect the optimization of the distributional form within 
the class of approximate distributions of independent variables.

Finally, the VB methodology was properly defined in [Smidl and Quinn (2006)[ 
as a free-form distributional approximation in the class of independent variables, such 
th a t the Kullback-Leibler divergence (KLD) from the approximate distribution to  the 
original distribution is minimized. An Iterative VB (IVB) algorithm was also proposed 
in [Smidl and Quinn (2006)[ iti order to reach the local minimum of the KLD via an 
iterative gradient-based method. Because this free-form definition of VB approximation 
is more consistent with Bayesian methodology, this thesis will adopt this VB approach.

72



CHAPT R 4. BAYFSiAN "  ̂"''AWFTRIC yO D Fl i ING

4.5.2.2 I te ra tiv e  V B a lgorithm

Let iis consider a binary partition of parameters 0 = where denotes the
cornplemont of in 0, i.e. the joint model /(x , 0) has the following form:

/(x , = / (x ,  6>\,) (4.5.5)

Then, the purpose of VB method is to seek an approximated distribution f{0\x) £ 
Tc in independent distribution class Tc : /(^ |x )  =  /(<^i|x)/(<?yj|x), for which the

Kullback-Leibler divergence KLDj^^j =  K LD (f{9 \x)\\f{0 \x)) =  £'^jg|^^log  ̂ is
minimized.

T heorem  4.5.1. (Iterative VB (IVB) algorithm) iSrnidl and Quinn (2006)j Given an 
arbitrary initial distribution / l ‘̂ l(0|x) =  /^®k^t|x)/l'^^(6̂ \i|x), the IVB algorithm updates 
VB-marginals in iterative cycle v  =  1 ,2 ,...  until KLDj^^j  is converged to a local 
minimum, as follows:

/ l ‘''(6l,lx) cx exp(£yi^_,|(g^j^)log/(x,6l)) (4.5.6)

/M (e\i|x ) oc exp(£^>ng^|^jlog/(x,6i))

Note that, because /l'^l(0|x) in IVB algorithm (4.5.6) results from a gradient-based 
teclmique, convergence to the global miniiinnn is not guaranteed |Smidl and Quinn 
(2006)]. Hence, /l°°l(0 |x) is a local minimizer of KLDj^^j.

In practice, the computation of expectation in IVB algorithm (4.5.6) might be 
prohibitive or intractable. Tlicre are, however, some cciscs in which this intractability 
can be avoided, as presented below.

4.5.2.3 S ep arab le -in -p a ram ete r (SE P) fam ily

From IVB cycles (4.5.6), it is feasible to recognize that there exists a tractable class of 
joint distribution, such that the IVB algorithm is tractable, as follows:

D efinition  4.5.2. (Separable-in-parameter (SEP) family) |Smidl and Quirm (2006)| 
The joint distribution / (x ,  9) is said to belong to SEP family if its sub-parameters can 
be split between separated kernels p(-)and h[-), as follows:

lo g /(x ,0 ) = 5 (6>i,x)/i (6>\i,x) (4.5.7)

Substituting the joint model (4.5.7) back into (4.5.6), the IVB scheme now becomes:

/■‘"i(0i|x) oc exp ^g(6»i,x)/i(0\i,x)* (4.5.8)

oc exp ^fl(6li,x)* '/i (6>\i,x)^
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where the ite ra tive  functiona l moments (called the V B  moments) are defined as:

 ------   [r/-l]
h x )  ^  x )

 -
g { B i , x )  =

FVom (4.5.8), we can see th a t V B  marignals are available i f  the V B  moments can 

be compuLcd. The advantage o f the separability constant is th a t these com putations 

remain invarian t (i.e. the integral in each V B  moinent is not a function  o f i/). In 

th is  thesis, we are only interested in SEP fam ily  for the IV B  a lgorithm , owing to  this 

tra c ta b ility  property.

Note tha t, s im ila r to  the Exponentia l Fam ily (4.4.2), the key m otiva tion  o f the SEP 

fam ily  is to exp lo it the separability between functional variables in  order to  achieve tiie  

tra c ta b ility  in  in tegra l com putation. In  the former case, the com putation in norm alizing 

constant is solved v ia  separability between parameters and observed data. In  the la tte r 

case, the com putation in  IV B  expectation is feasible owing to  separab ility  between 

sub-parameters, given observed data.

4 .5 .2 .4  F u n c t io n a lly  c o n s tra in e d  V B  (F C V B )  a p p ro x im a t io n

Another solution fo r trac tab ly  com puting (4.5.6) is to p ro ject one or a ll o f the V B - 

m argiiials functiona lly  constrained classes /]*^H ^\t|x), /^'^^(0j|x),

in particu la r the CE class (4.5.1), before they are used in the expectation step o f the 

IV B  cycle (4.5.6). Th is approxim ation scheme is called the FC V B  approxim ation.

In t liis  way, the well-known Expectatiori-M axirn ization (E M ) a lgorithm  can be 

recognized as a special case of FC VB, in which /^'^^(6^\t|x) is projected to  its  local M A P  

po in t 6\i, i.e. / ] ‘̂ ^(0\i|x) =  S{9\i — \  while / l ‘^l(0j|x) is kept unchanged |Smidl and

(Jtiinn (20QG)|.

S im ilarly, another form  o f FC V B  is when both VB-m arg ina ls / l ' ' l ( 0 \ i |x ) ,  /M (0 j|x )  

are each projected in to  the ir local M A P  po in t /]'^^(9 \t|x) =  ^ (^ \ i — 9\i ') ,  —
' ' M5{0i — di ), respectively, as follows:

L e m m a  4 .5 .3 . (Iterative FC V B  algorithm) Given an arbitrary initial value =  {o}  \  

^}, the distribution f j ' \ 6 \ x )  £ : fs(0) =  S{()i — 0j)<5(0\j — 9\i) that locally

minimizes KLD{fs{9\'x.)\\f{9\x.)) can be found via Iterative F C V B  algorithm at cycle 

1/ =  1 ,2 , . . .  , as follows:
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argmax(exp(£'^l.. "(flvlx) / ( x ,  0) ) )

1]
argmax/(x,6/i,6»w =  6/w )

" t

argmM(cxp(£'^M^g_l^j log / ( x ,  6) ) )  

argmax/(x,6>i =
^ \ t

(4.5.9)

Proof. By definition, we have:

K L D { M 0 \x ) \ \ f { 0 \x ) )  =

owing to the sifting property of /i(6 |x )  =  S(9 — 6). The local minimization can bo soon
intuitively by comparing (4.5.9) with (4.5.5). The value of posterior at any 6, i.e. f ( 9  =

K LD {f s {0 \x ) \ \ f  (0\x)) is locally minimized at a local MAP 0 a t the convergence. □

Note tha t, the Iterative F'CVB is not a double approximation, i.e. it is not an 
approximation of VB approximation. Both IVB and H.crativo FCVB schoiiuis arc local 
minimizers of KLD distance from an independent class, namely Ĵ c. and respectively, 
to the original distribution. However, because of similarity between (4.5.G) and (4.5.9), 
the Iterative FCVB approximation is considered as variant, of IVB af)proximation in 
this thesis.

It can be seen th a t the iterative CE updates (4.5.9) in FCVB algorithm is identical 
to Iterated Conditional Modes (ICM) algorithm |Bosag (198G)|, which is well known 
to yield a local joint MAP estim ate 6 =  of original distribution / (6 |x )  at
convergence [Dogandzic and Zhang (2006)]. Nevertheless, the name “Iterative FCVB 
algorithm” is preferred to “ICM algorithm” in this thesis, sincc performance of this 
scheme is easier to  explain via independence property of distributional VB approxima­
tion.

4 .5 .2 .5  N o n - i te ra t iv e  V B -re la te d  a p p ro x im a tio n s

In the literature, there are other non-iterative approximations th a t can be considered as 
variants of the VB scheme. Although they will not be used in this thesis, let us briefly 
review three typical cases for the sake of completeness.

- If the purpose of the approximation is to minimize K L D m r  — K L D { f  (0 |x ) | |/(6 |x)) 
instead of in the VB scheme, the minimizer in this case is /((?|x) =  /(0 j |x )
/(0 \j |x ) , i.e. the product of true posterior marginals. This scheme is widely known as 
Minimum Risk (MR) approximation.

0|x) =  / ( x , 0  =  0 ) / / (x ) ,  does not decrease at any step in (4.5.9). Hence, the value of
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- Obviously, the above M R  approxim ation may not be interesting, since those 

posterior marginals may be hard to  compute in the firs t place. However, i f  one posterior 

marginal, say / ( 0 \ j |x ) ,  is given, the VB-m arg ina l / ( 0 j|x )  can be found by a single step 

of IV B  a lgorithm  (4.5.6), w ith  / ( 0 \ i |x )  replaced by the true  m arginal / ( 0 \ j |x ) .  This 

non-ite ra tive  scheme is called the Quasi-Bayes approxim ation in  the lite ra ture .

- I f  I,he tr>u; m arginal in  above Quasi-Bayes scheme is not given, wi; can

s till replace / ( 0 \ , |x )  w ith  a restricted form  /(0 y j|x )  , which can be imposed v ia  some 

constraints on 6\i. Such a single-step V B  scheme is called Restricted V B  approxim ation.

4 .5 .3  S to c h a s t ic  a p p r o x im a t io n

A wide class o f d is tribu tiona l approxim ation is the stochastic approxim ation, in which 

the posterior / ( ^ |x )  can be em pirica lly approximated, as follows;

1
/(f il |x) =  —  ^ ( 5 ( 6 / -  (4,5.10)

k— 1

where . . . ,  is an iid  sample set (random sample), i.e. ~  / (0 |x ) ,

w ith  /c G { 1 , 2 , . . . , m} .

In  low dimensions, the: generation of can be implemented v ia  a wide range of 

sampling techniques, no tab ly  inversion, rejection and im portance sampling. In  inversion 

sampling, the value of cum ulative function density (c .d .f) F (6 ) e [0,1] is generated 

firs t, w h ile  the scalar random variable 0 can be found v ia  inverse function  F~^, i.e. 

Q(k) _  In re jection sampling, the sample 6̂ ^̂  Jo{6) is generated from

the so-called dom inated d is trib u tio n  fo{6) >  f{9),  V0 6 © and, then, each sample 

0̂ '̂  ̂ is a,c('(;pt,('(l w ith  ])robab ility  pk =  f  or else nyecXed. In  im ixn lance

sampling, we have f {6)  =  ^  Wfci5(0 — 0̂ *̂ )̂ , where each sample ~  tt{9) is 

generated from  a reference d is tribu tion  7r(0) and the weights are computed as Wk =  

/(6 lW )/7 r(6 lW ),

In  high dimensions, the set . . . ,  can be generated dependently v ia  a

homogeneous M arkov process /(^fc |0 fc-i). A fte r a trans ition  period kc, the set . . . ,

k >  fcc. is converged to iid  sampling set o f fs{9), where fs{0) is, under m ild  regu­

la r ity  conditions, the sta tionary  d is tribu tion  of homogeneous M arkov process f{dk\9k-i)- 
This convergence in d is tr ib u tio n  is independent of in it ia liza tio n  ^^^^of th is  Markov 

process, known as the fo rge tting  property. B y careful design o f M arkov transition  

kernel f{9k\^k-i),  we can achieve the equality fs{9) =  f{9) .  Th is  is the basic princip le 

of Gibbs sam pling in M arkov Chain Monte Carlo (M C M C ) method [Geman and Geman 

(1984)). A no ther well known technique for designing trans ition  kernel in  M C M C  is 

M etropo lis-H astings a lgorithm  [M etropolis et al. (1953)], wliose s ta tionary d is tribu tion  

is the objective d is tr ib u tio n . The key advantage of M C M C  is th a t an in trac tab ly  high­

dimensional d is tr ib u tio n  can be trac tab ly  generated from  m u ltip le  sampling steps of 

low-dimensional conditiona l d istributions.

76



CHAPTER 4, BAYESIAN nARAMETRiC yODE!.LI^^;

T he m ost im p o rtan t condition of th is technique is obviously th e  repeatab ility  of 

0 . T hen, owing to  th e  sifting p roperty  of th e  D irac-J function, all functional m om ents 

of the em pirical approxim ation, / ( 0 |x ) ,  in (4.5.10) can be point-w ise evaluated  and, 

hence, are always trac tab le . In prediction or online schemes, w here the  cu rren t posterior 

becomes prior of nex t Bayesian inference step, th e  em pirical form  (4.5.10) also satisfies 

the  conjugacy principle, and, hence, is always (ract.able. This idea is at, th e  h eart of 

particle filtering for stochastic  approxim ation of the  nonlinear filtering problem  for tiinc'- 

varian t param eters [Smidl and Quinn (2008)). For reducing com putational load, some 

varian ts of particle filtering, which do not require a re-sam pling step , were recently 

proposed in th e  telecom m unications context [Yua and Zhengb (2011); G liinriai (2013)].

4.6 Summary

A brief, b u t thorough, review for Bayesian techniques was given in th is  chapter. It 

began w ith em phasis on the jo in t model, ra th e r th an  the  posterio r d istribu tion , along 

w ith  clarification on th e  issue of sub jectiv ity  in belief quantification.

Initially, the  expectation  of the  loss fimction was taken w ith respect to  th e  joint 

itiodcl of param eters and d a ta , via the  axioms of decision theory, and no t w ith rcspect 

to  the  posterio r d istribu tion . T he law of the  unconscious s ta tis tic ian  (LOTUS) then 

showed th a t  th e  m ean of loss function for the jo in t m odel, i.e. Bayesian risk, can be 

approxim ated by M onte C arlo sam pling and presented in sim ulation (e.g. as averaged 

B ER ). Since Bayesian risk can be minimized equivalently v ia  th e  m inim um  risk (MR) 

estim ato r for posterio r expected  loss fimction, th is m otivated  the review of th e  posterior 

d istribu tion , which, in tu rn , m otivated  th e  reviews of prior and observation models, 

particu larly  th e  conjugacy p roperty  in th is chapter.

Some d istribu tional approxim ations, bo th  determ inistic and stocha»stic, were sur­

veyed, w ith  a  thorough review of VB and its special case, functionally  constrained VB 

(FC VB ), for reducing Kullback-Leibler divergence (KLD) associated w ith  approxim ate 

d istribu tion . These V B-based m ethods will be used for designing novel algorithm s in 

th e  contex t o f the h idden M arkov chain for digital receivers, in C hap ters (i.
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Chapter 5

Generalized distributive law (GDL) 
for Cl structure

A typical scenario in Bayesian inference is the marginalization over liierarchical and 
nuisance param eters, â j shown in Section 4.4.3.2. Such a computation can be efficiently 
computed via the generalized distributive law (GDL), as explained in this chapter. This 
GDL scheme will also reveal efficient algorithms for Markovian model, i.e. a special case 
of conditionally indepiendent (Cl) model, in Chapter 6.

5.1 Introduction

Wlien cunriputing a scKjuence of operators upon a product of m ultivariate functions 
(factors), the generalized distributive law (GDI..) [Aji and McEliece (2000)] has been 
proposed for reducing the computational load. Nevertheless, the proposed computa­
tional flow of GDL has to  be designed via a graph representation of those factors.

In this chapter, we will propose a novel topology representation, namely conditional 
independent (Cl) structure, for those factors. This topology divides the factors into 
separate partitions, across which the operators can be freely distributed via GDL. 
Because two design stages, one for factors and one for operators, are isolated in this 
scheme, the to tal number of arithm etic operators can be tuned feasibly. This flexibility 
is useful for designing an optimal reduction in computational complexity.

5.1.1 O bjective functions

In order to be consistent with the literature, the standard notation for a
set with separated partitions will be applied throughout this chapter. Then, let Xq be 
m-tuples variables within X q space, i.e. xq  = { x i , . . .  G Xu,  where O is the total 
index set (universe), as follows:

fi =  { 1 , . . . ,  A:,. . . ,  m} (5.1.1)
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and dimension is equal to  its cardinality. For simplicity, let us assume here th a t all i/t 
belong to  the same finite set X ,  i.e. Xk ^  = X , k = . ,m,  and hence:

xn  6 A-f) =  A'X . . .  X A-"* (5.1.2)
m  tim es

We also denote:

M  = lA"! (5.1.3)

m  =  |n |

where | • | is the cardinal number of a finite set. Note th a t all the results in this chapter 
can be generalized feasibly to the ease of different sets and/or the case of continuous 
variables [Pakzad and Anaiitharain (2004)].

Throughout this chapter, let us define g : —> R as a generic (i.e. wildcard)
function g over index set w C of variables x^j. Then, as an imposed model, the main
function, ^(xn), is assumed to be a product of n  known factors, as follows:

n

i/(xn) = (''’■̂■4)
i=l

where index sets are defined a s W i C n  =  { l , . . . ,  m} and uj{ /  0, i =  1 , 2 , . . . ,  n, such 
that;

n  =  U • • • U (5.1.5)

For shortening notation in (5.1.4), let us also denote gi:„ =  5 (xn) and p, =  p(X(jJ, 
which yield a neater form:

n

gl:n =  ! !■ '? '=  (5.1.G)
1 = 1

Finally, if wc define a generic operator ring-product 0  from ring t heory (see D(;firii- 
tion 5.3.4) instead of product f]i the model (5.1.6) can be treated generally as follows:

Si-.n =  Oi=i9i = a{x.n) (5.1.7)

For illustration, several examples of (5.1.6) in this thesis are (4.5.7), (6.2.8) (see e.g. 
|Moon (2005)1 for more examples in telecommunication context).

For later use, let us propose the following definition:

D e f in it io n  5 .1 .1 .  (Index of variable and index set of factor)
The index k € fl in (5.1.1) is called index of variable (or variable index). In (5.1.4-5.1.5), 
u>i is called the index sot of the factor (or the factor index set of gi) in (5.1.6-5.1.7).
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5.1 .1 .1  S ingle o b jectiv e  function

In practice, it is often required to compute a sequence of operators upon a sequence 
of factors gi:„ (5.1.6). For example, the objective function might be the output of 
summation:

or maximization:

m axgi:„ =  max(?(xn) =  5 (x 5 ')  
x s x s

where xq  =  {x^<?c,x5 } and:
n = { > S ^ 5 }  (5.1.8)

Nevertheless, a generic operator ring-sum fflx.s from ring theory (Definition 5.3.3) 
over x s  is not necessarily the sinn or max. The objective function g(x.sc)  is then defined 
aa the output of th a t operator upon gi:„ in (5.1.7), as follows:

fflxs gi:n =  fflx5 ^ (x n )  =  g { x s c )  (5.1.9)

When dimension m  (5.1.2) is too high, the ta.sk (5.1.9) leads to  a heavy computational 
load in practice |Aji iuid McEliece (2000); Moon (2005)|.

For later use, let us propose the following definition:

D efin ition  5 .1 .2 . (Index set of operator S  and objective set S'^)
In (5.1.8), the set 5  C n  is called the index set of operators (or operator index set) and 
the compliment — i~l\S is called the objective set (of objective function).

5 .1.1.2 Sequentia l ob jective  functions

In practice, it is more often required to compute a sequence of objective functions, 
rather than a single objective function. In this case, the  sequential objective functions 
can be defined as:

gi:n  =  fflx*v5(xn) =  g (x5 |), j  =  l , 2 , . . . , / t ,  (5.1.10)

in which:
n  =  { 5 f,5 i}  =  . . .  =  {5^,5«} (5.1.11)

I I I  a naive approach, we irierely apply tlie computation (5.1.9) /t tiines, each time 
with different operator index set <Sj. The computational load is, loosely speaking, about 
«;-fold the computational cost in (5.1.9). Becausc we often have k  = n  , this approach 
becomes impractical for high n.

For efficient computation, we confine ourselves to  a special topological case, de­
fined below (Definition 5.2.8) as the non-overflowed condition for the objective .sets 

The results of the k formulae in (5.1.10) can be extracted, in a
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single sweep, from computational memory of a single objective function (5.1.9) upon a 
union of operator index sets, iS =  5 iU . . .U>Sk (hence the name “sequential functions”), if 
that extraction docs not require any rt'-comp\itation stop and docs not yield overflowed 
memory (hence the name “non-overflowed”) . Note that, as shown below, the case of 
scalar objective sets Sj =  j ,  which is widely required in practice, always satisfy this 
condition.

5.1.2 G D L  - th e  s ta te -o f- th e -a rt

If the two operators, EB and O, satisfy distributive law of ring theory (Definition 5.3.2), 
the total number of these operators in sequential objective functions (5.1.10) can be 
reduced significantly, as firstly formalized in [Aji and McEliece (2000)] for the case 
of scalar objective sets = j .  Such a proposal motivated practical studies of the 
generalized dist.ributive law (GDL) in ring theory in order to design efficient algorithms 
[Glazek (2002)]. Nevertheless, the use of GDL in the literature is still modest. The 
main effort in the literature so far is to re-interpret known efficient algorithms for sum 
and max oj)erators into ring theory, which, in turn, can generalize those algorithms for 
all operators ffl satisfying GDL, as briefly reviewed below.

In the early days, the main interest is to generalize some probabilistic computational 
algorithms on the jo int distribution / ( x j j)  into ring theory. For example, two well-known 
algorithms (in Chapter 6) in Markov Cliairi decoder context - the Viterbi algorithtn (VA) 
for joint maximuni-a-posteriori (MAP) and the Forward-Backward (FB) algorithm (also 
known as BC.IR algorithm in channel decoder context) for sequence of marginal MAP 
JMoon (2005)] - were generalized in [Fettweis and Meyr (1990)] and [Wiberg (1996); 
McEliece (1996)], respectively. In Bayesian networks, the generalized forms of belief 
propagation and message-passing algorithms for a seqtience of marginals were proposed 
in [Nielsen (2001); Kschischang et al. (2001)].

Recently, the primary interest in GDL comes from gra{)h theory. The trend can 
be considered as having begun with the semi-tutorial paper [Aji and McEhece (2000)], 
which migrated tlio early results into graphical learning language. GDL for graph 
was also applied in other fields, like circuit design [Tong and Lam (1996)], automatics 
]Hardouin et al. (2010)] and entropy computation in probability (Ilic et al. (2011)]. 
However, a drawback for GDL development in graph tficory has been the inconsistency 
of the semiring concept, which is still under development in modern algebra JGlazek 
(2002)]. Only recently, an attempt at unifying the ring concepts for graphs was proposed 
in [Gondran and Minoux (2008)].

5.1.3 T h e  a im s o f  th is  ch a p te r

From the above review, we can feasibly grasp the reason for emergence of GDL in 
graph theory: the key poin(, is that the graph provides a structure rejjresentatiou of the 
original model (5.1.7). From that structure, the operators are then distributed directly
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into factors gi  v ia  GDL. T he com putational flow, therefore, rehed on ex tra  concepts and 

algorithm s in graphical topology. For exam ple, application  of GDL requires the  notion 

ofj\n ic tio ii tree  in |Aji and McElicce (2000)|, factor g raph in [K sdiischang e t al. (2001 )| 

or elim ination process [Nielsen (2001)] in Bayesian networks. This ind irect approach 

leads to  am biguity  and m isleading in counting num ber of arithm etic  operators and, 

cvt'nl.ually, in nHlucl.ion of c.onipul ational load.

For a m ore d ircct approach, there arc th ree key steps in th is  chapter:

- A novel rep resen ta tion  of (5.1.7), nam ely th e  conditionally independent (Cl) struc­

ture, will be designed via the set algebra on the factor index sets { ( jJ \ , u j2 , ■ ■ ■, w„}. All 

factors in (5.1.6-5.1.7) will be partitioned  into “bins” beforehand, such th a t  the  variable 

indices are conditionally  separated  (Fig. 5.2.1). A fterwards, th e  o p e ra to r’s set S  in

(5.1.8.5.1.11) will be divided and d istribu ted  into these “bins”, v ia  GDL. This scheme 

does not only sep ara te  th e  stage of factor design (5.1.5) from th e  stage of o pera to r design

(5.1.8.5.1.11), b u t it also separates factors (a concept rela ting  to  m odel representation), 

from GDL (a concept relating  to operators).

- For a b e t te r  understand ing  of GDL, th e  basic ab s tra c t algebra in ring theory  

will be provided from  a com putational perspective. A novel theorem  (Theorem  5.3.7), 

which guaran tees com ijutational reduction in GDL, will also be proved. Owing to  this 

com putational approach, the  insiglit of inatiy inference ta.sks in p robability  and, tlieir 

com putational load, will also be unified w ith respect to  th e  com putational flow of GDL.

- In the  jirobability  context, which is th e  m ain application of GDL in th is thesis and 

in curren t research, th e  equivalence between Cl s tru c tu re  and C l factorization of the 

jo in t d is tribu tion  will be shown. This equivalence also reveals a hidden consequence of 

GDL: it does no t only facilita te inference com pulations, b u t also im plicitly re-factorizes 

the original jo in t d istribu tion . These developm ent will be im p o rtan t in explaining the 

trac tab ility  of Bayesian inference in HMC model in Section 6.4 of th is thesis.

5.2 C onditionally independent (Cl) topology

From (5.1.1,5.1.5) and  (5.1.8,5.1.11), we can see th a t there arc th ree  different ways 

to  construc t th e  universe f2: variable indices, factor indices and opera to r indices, 

respectively.

In th is  section, the  toi)ology of variable indices will be exploited in two tasks:

- For factor indices: an algorithm  will be designed for exploiting th e  conditionally 

independent (C l) s tru c tu re  em bedded in the  sequence w i , . . . ,  (5.1.5) and represent­

ing the universe f l  in two sequence of C l partitions, which we call no-longer-needed 

(NLN) and first-appearance (FA) variable indices.

- For o p era to r indices: a sequence of d istribu ted  sets over those two C l partitions 

will be defined. T his task  se ts up  recursive com putation  of GDL in th e  sequel.

T he topology resu lts of these tasks are illustrated  in Fig. 5.2.1 and  will be explained 

in step-by-step  below.
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F igu re  5.2.1: T h e  to p o lo g y  o f n  =  5 fa c to r index sets w i , . . . , w „  in  (5 .1 .5), toge the r 
w ith  the  o p e ra to r index  set <S C in  (5.1.8)

5.2 .1  S ep ara ted  indices o f  factors

5 .2 .1 .1  N o - lo n g e r -n e e d e d  ( N L N )  a lg o r i t h m

In  C l s tru c tu re , the  a im  is to  d iv id e  the  universe in to  n  p a r tit io n s  (o r “ bin.s” ) o f 

variab les. F rom  (5.1.5), we can define tw o  ways to  p a r t i t io n  i l ,  one backw ard and one 

fo rw a rd , as fo llows:

w here th e  N L N  index sets [ i ]  (D e fin it io n  5.2.1) and th e  F A  index  set ( i )  (D e fin it io n  

5.2.2) are (j)oss ib ly  e m p ty ) subsets o f n ,  i  =  1 , . . . ,  n.

Because Wj m ig h t be overlapped w ith  each other, le t us denote:

T hen  the  task is to  e x tra c t ( t )  and [ i ]  from  { w i , . . . ,  w „ } ,  as fo llows:

D e f in i t io n  5 .2 .1 . (No-longer-needeA (N L N ) ind ices)

L e t us consider n  backw ard nested sets =  (jJn-,n Q <*’n - i :n  Q • • • Q ^

and e x tra c t n  j)a r tit io n s  o f f2, as fo llows: [ i]  =  V i 6  { l , . . . , r t }  (upper-

r ig h t schem atic in  F ig . 5.2.1). W e call [ i]  a set o f no-longer-needed  ind iccs fo r set uii,

i  =  n , . . .  ,1 , ow ing  to  th e  fa c t th a t  [ i ]  C u>i and [ i ]  <f.

D e f in i t io n  5 .2 .2 . (F irs t-appearance (F A ) ind ices)

L e t us consider n  fo rw a rd  nested sets u>i =  a ; i: i C  ■ ■ ■ C C u ji n =  wc

(5.2.1)

U3i-j =  U i U ■ ■ ■ U (jJj, 1 <  i  <  J <  n .
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can also extract other n  pa rtitions  of n , as follows: ( t )  =  V i £ { 1 , . . .  ,n }

(upper-left schematic in  Fig. 5.2.1). We call ( i )  a set o f first-appearance indices at 

po in t i  — 1 , . . .  ,n , owing to the fact th a t ( i )  C uji and ( i )  ^

For deriv ing  a sequence of [ i]  and ( i ) ,  induced by (5.2.1), we can d irec tly  apply 

the D e fin ition  5.2.1, 5.2.2, respectively. However, an extraction  a lgorithm  can also be 

designed, a;s presented below.

F irs tly , le t us design an rn x  i i  occupancy m a trix  flm xn  for the universe f2 =  w i U 

• • • U ui„, as follows:

( ^ m x n )  . . . U>i

rn
(5.2.2)

1 [  <5l,n <5l,i <5l,l

where:

- the whole m a trix  is, for convenience, labelled (rim xri);

- n  columns, from  the firs t to  the last column, are labelled by . . . ,  w i, respectively 

(i.e in the reverse order);

- m  rows, from  the firs t to  the last row, are labelled by variable indices k =  m , . . .  ,1, 

respectively (i.e in  the reverse order) in the universe H;

- denotes b inary ind ica tor (i.e. a Kronecker function): Sk̂ i =  1 i f  € Wi, and

=  0 otherwise, i  <  k <  m, 1 <  i  <  n.

The reason for the reverse order in labelling is to  preserve the band-diagonal property  

for the case o f the M arkov chain, as illus tra ted  in Example 5.2.5, w hat follows shortly.

From (he occupancy m a trix  (5.2.2), we can sec th a t the necessary and sufficient

condition fo r k G [i ] =  is th a t - in row k - value 1 appears at column i

and value 0 appears at a ll columns { i  -|- 1 , . . . ,  n }  , i.e. =  1 and 5k j  =  0, w ith

j  =  i  +  1 , . . .  , n  . Hence, tfie  set [ i] ,  i  =  l , . . . , n ,  consists o f all those row indices

containing value 1 at column w,.

S im ilarly, we can take the indices o f rows for which the first-1 from  the righ t occurs 

at colunm i , as cons titu ting  the i th  first-appearance (FA) set, ( i ) .

We can design an a lgorithm  for construction o f the n  no-longer-needed (N LN ) sets, 

[i] ,  as illus tra ted  in A lg o rith m  5.1.

The N LN  a lgorithm  (A lgo rithm  5.1) fo r sets ( i )  arc can be designed s im ilarly, but 

tak ing  the the values i  =  1 , . . .  , n  (i.e. from  the last to  the firs t column).

Note th a t, the NTjN a lgorithm  (A lgo rithm  5.1) is merely a s tra igh tfo rw ard  design 

from  D efin ition  5.2.1, w ith o u t considering any sorting technique. Hence, the computa­

tiona l com plexity of the N LN  algorithm  is not optim ized and ranges from  lower bound 

0 { m ]  to  upper bound 0 { m n ) .  I f  sorting techniques are also applied, we can conjecture 

tha t (,h(! ('xpectation o f N L N ’s com plexity w ill be close to rn.
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A lgorithm  5.1 Nolonger-needed (NLN) algorithm 
In itia lization:
- Constructing occupancy matrix i r̂nxn (5.2.2) for wi , . . . ,
- Initialize [i] =  0, Vi =  1, 2, . . .  , n
- Initialize n +  1 counter matrices, Cn+\ =  f^mxn and Cj =  0, Vi =  1, 2 , . . . ,  n 
R ecursion:
For each i =  n , . . . ,  1 (i.e. from the first to the last column), do: { Cj <— Cj-i-i;
For each row k at colunm uji in matrix Ci, do; { 
if 5k,i =  1, do: {
- add value k to the set [i]
- delete row k from C{
}} Stop if Ci =  0 }
R eturn: the sets [i], i =  1 , 2 , . . . ,  n
C om plexity: 0(m ) < 0{m{n  — ic +  1)) < 0{mn)  of Boolean comparison for m 
rows and (n — ic +  1) columns, until stopping at column 1 < ic <  n.

In the probability context, the output of NLN algorithm (Algorithm 5.1) exactly 
corresponds to a valid probability chain rule factorization for joint distribution, as 
explained in Section 5.5.3.

Remark 5.2.3. The two-directional topological NLN partition [i] and FA partition (i) 
of the universe index set n , defined in (5.2.1), are novel. Likewise, the NLN algorittiin, 
whose purpose is to ident.ify NLN and FA partitions of n  iii<hu:ed by the factor index 
set algebra (5.1.5), has not been proposed elsewhere in the literature. These partitions 
will be important for our proposal to reduce computational load in evaluating objective 
functions, later in the thesis.

A related algorithm to the NLN algorithm is the topological sorting algorithm 
IConncn et al. (2001)|, which returns a topological ordering of a directed acyclic graph 
(DAG) (i.e. a valid probability chain rule order). The key difference is that, the 
topological sort permutes the order of factors until a valid chain rule
order is achieved, while NLN algorithm maintains the same order of factors u>i, . . . ,  w„, 
b\it identifies a new probability chain rule order via [t], i = 1, 2 , . . .  , n, extracted from 
u)i,. .. ,cjn (see Section 5.5.3)

E xam ple 5 .2 .4 . Let us assume that m =  5, n =  4 and =  {5 ,3 ,1 }, =  {4,3},
LJ2 =  {3,2}, =  {2,1}. I ’hen, we can write down the occupancy matrix, as follows:

( ^ ^ 5 x 4 ) UJ4 U>3 U>2 W l

5 ([ID 0 0 0

4 0 ( [ 1 ] ) 0 0

3 [1] 1 ( 1 ) 0

2 0 0 [1] ( 1 )

1 [1] 0 0 ( 1 )
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where [•], (•) and ([•]) indicating  elem ents belonging to  no-longer-needed (NLN) 

indices [i], first-appearance (FA) indices ( i )  and bo th  of these sets, respectively.

For ilhistral.ion, th e  counter iriatriccs, C;, for NLN algorithm  scquoritially are: C 5 =  

^ 5 x4 and:

(C4 ) W4 W3 UJ2

4 0 [1] 0 0

0 0 1 1

(C 3 ) W4 UI3 U)2 U}\ {C2 ) UJ4 CJ3 U>2

2 0 0 [1] 1

-  -  -  -

- -  -  -  - - -  -  -  -

Ilencc, th e  NLN algorithm  stops a t C 2 =  0 and re tu rns th e  no-longer-needed (NLN) 

sets, as follows: [4] =  =  {5, 3 ,1}, [3] =  {4}, [2] =  {2} and [1] =  0.

E x a m p le  5 .2 .5 . For la ter use, let us consider a  canonical (and sim pler) exam ple for 

a first-order M arkov chain, w ith  m  =  5, n  =  4, i.e. we have W4 =  {5,4}, W3 =  {4,3}, 

<^'2 =  {>^i2}, Wi =  {2,1}. T hen, sim ilarly to  Exam ple 5.2.4, wc can w rite  down the 

occupancy m atrix , as follows:

( $ ^ 5 x 4 ) U14 W3 U 2

5 (W) 0 0 0
4 [1] (1) 0 0

3 0 [1] (1) 0

2 0 0 [1] (1)
1 0 0 0 ( [ 1 ] )

where [•], (•) and ([•]) indicating  elem ents belonging to  no-longer-needed (NIjN) 

indiccs [i], first-appcarance (FA) indices ( i )  and b o th  of these  sets, respectively.

For illu stration , the  counier m atrices, Cj, for NLN algorithm  sequentially  arc: C 5 =  

f2r)x4 and:

Ci) W4 UJ3 W2 Wl (C 3 ) W4 W3 W2 (C 2 ) W4 CJ3 0J2 Wl

3 0 [1] 1 0

— — — -- --- — — —

2 0 0 1 1 2 0 0 [1] 1

1 0 0 0 1 1 0 0 0 1 1 0 0 0 [1]

Hence, th e  NLN algorithm  stops a t Ci =  0 and re tu rn s th e  no-longer-needcd (NLN) 

sets, as follows: [4] =  ui  ̂ =  {5,4}, [3] =  {3}, [2] =  {2} and [1] =  {1}.
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5 .2 .1 .2  Ternary psirtition and in-process factors

.Let us denote [i : j]  =  { [t] ,. . . ,  [j]}, ( i : j )  = { ( i ) , . . . ,  ( j)} , 1 <  i <  j  <  n. Then we 
have the following proposition:

P rop osition  5 .2 .6 . (Ternary partition)
For any i = 1 , . . .  ,n , we can divide U u)\-i into ternary partitions:

n = {(z +  1 : n),77[j],[l : i]}

in which the (possibly empty) set t̂ î ] is called the set of common indices (Fig

-  ^i+ hn  n  wi:i =  (1 : i) \[ l  : i]

Also, the left and right complement sets in (5.2.5), respectively, are:

(i +  1 : n )  =  (5.2.7)

[1 : i] =  (5.2.8)

Proof. Firstly, let us recall the notation of the intersection part: 77[j| =  ti’i+hn H Ui, 
i =  1 , . . .  ,n . Then, the proof is carried out via following three steps:
S te p  1: For proof of (5.2.8): by Definition 5.2.1 for NLN indices, we have [j] =

hence:

[i +  1 : n] =  U'‘=,+ i[j] =  +

where the last equality was derived via a sequence of merging, e.g. {wi „ \a ;2 :n} U
{< 2̂ ;Ti\‘*’.'!:n} =  <*̂1:71 • Then, since [i +  1 : n] =  we also have:

[1 : i] =  n \ [ i  +  1 : n] =  0 \w i+ i:„  =  Ui:i\r]m

where the last equality is a conscquence of two basic set operators, intersection and
union, i.e.: = Wi+i:n H LJi-i and ft =  U wi:i, respectively.
S te p  2: Similarly, for the proof of (5.2.7): by Definition 5.2.2 of FA indices, we have:

(1 : i)  =  U}=i(j)  =  + =  Uu i

=> (z +  1 : n) = n \( l  : i) =  n\u;i:i = w,+i:„\T/[i]

S te p  3: Frotri above proofs of (5.2.7) and (5.2.8), the ternary partitions for in (5.2.5) 
can be proved as follows:

(5.2.5) 

. 5.2.1):

(5.2.6)
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n  =  U W ,: i  =  {LJ t+i :n \V[ i \ yV[ i ]<^\ : i \V[ i ]}

=  { (i +  1 : n),77[i],[l : z]}, t =

□
Proposition  5.2.6 also m otivates a definition for in-process vaxiable indices, as fol­

lows. These will be im portan t in recursive com putation  later:

P r o p o s it io n  5 .2 .7 . (In-process indices)

In-process indices are defined as tri-parlitioned index-sets, A i ,  associated with the ternary 

partition  Cl in  (5 .2 .5), as follows:

A  =  { (i +  l),^ [i],[* ]}  (5.2.9)

Then, frn m  (5 .2 .5) and (5.2.9), we have:

n  =  > l i U - - - U A i  (5.2.10)

Proof. From D efinition 5.2.1, 5.2.2 and (5.2.6), we have:

A i = { (i +  l),r/[.) ,[i]}

=  fl Wi;i,

=  Wj+i U Wi, i = 1 , . . .  , n

as illu stra ted  in lower-left schem atic m Fig. 5.2.1 for th e  case i =  3. □

From (5.2.5), we can see th a t, in general, the  in-process index sets A i  in (5.2.10) are 

not separated  p a rtitio n s of $2. Note th a t, since fl Wi:i, it m ight be em pty

(e.g. when u) \ , . . .  ,w„ are separated  partitions of f2 =  { wi , . . .  ,o;„}). In con trast, the 

set Ai,  defined by (5.2.9), cannot be em pty, since Wj /  0, i =  l , . . . , n ,  by definition

(Section 5.1.1). Moreover, different from union of tri-partitioned  sets A i  in (5.2.10), the

union of com m on sets ?7[i] U . •. U ?7[„] is not necessary equal to  il.

For these  reasons, we prefer to  com pute the  opera to rs in (5.1.10) v ia  tri-partitioned  

.sets A i  instead  of com mon sets r/[j].
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5.2.2 Separated indices o f operators

5.2 .2 .1  B in ary  partition

From (5.1.8) and (5.2.1), we can distribute the single operator index set S  and objective 
index set across two n  alternative partitions, as follows:

^ ■ I *(n)}

~  ( ^ [ 1] ’ • • ■ > '*[^1}

=  { * ( ! ) >  • • •

where, i =  1, . . .  ,n,  and:

*(i) <Sn ( i)

•S[il A [i]

S(l)

S[i]

as illustrated in lower-right schematic in Fig. 5.2,1,

5 .2 .2 .2  Ternary partition  and in -process operators

Proceeding as in Section 5.2.1.2, then, from (5.1,8) and (5.2.5), the ternary partitions 
of S  and can be defined, respectively, as follows:

^  ~  {^ (i+ l:n ) I 1 S[i]} (5.2.12)

where, i =  1 , . . . ,  n, and:

S7,|j| =  ‘5nr?(j] (5.2.13)

8.S illustrated in lower-right schematic in Fig. 5.2.1.

5 .2 .2 .3  N on-overflow ed (N O F ) condition

For sequential objective f\mctions (5.1.11), let us consider a sequcncc of subsets Sj ,  such 
th a t =  <Si U • • • U S k, and Sj C S  C il, j  = 1, k . Denoting objective set 0 as 
complement of Sj  in S,  we will consider a special case of Sj,  as follows:

D efin ition  5 .2 .8 . {Non-overflowed (NOF) set and N OF condition)
A  set Sj ,  with j  6 {1, . . .  , k}, is called non-overflowed (NOF) set if the following NOF'
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co n d itio n  is satisfied:

3 i e  { 1 , . . .  , n }  : S j C S A i =  {s ( i+ i) '« T ) | j|> * [ t ] }  S  i  €  { 1 , . . .  , k }  (5.2.14)

O therw ise, S j is ca llod an overflowed set.

T he  m eaning o f the  nam e is as follows: g iven a tr i-p a r t i t io n e d  set A i  (5.2.9) be ing

in  process /m em ory  a t p o in t i  G { 1 , . . .  , n } ,  the  o b je c tive  set S j C can be ex trac te d

w ith in  cu rre n t p rocess /m em ory  A t  and does n o t cause e x tra /o v e rflo w e d  w ork.

For la te r  use, le t us also define the  com plem ent o f S j in  , as fo llow s:

S X  =  S a , \S j (5.2.15)

=  S A , n S j  

-  /cV ? ' o\j

in  w h ich  the  in te rsec tio n  is ca rried  o u t e lem ent-w ise. F in a lly , le t us consider the  m ost 

special case o f non-overflow ed  set, which is sca lar set, as fo llows:

P r o p o s i t io n  5 .2 .9 . (O bjective sca lar sets)

The s ing le ton sets, S j =  { j }  e  S  =  Q, j  =  I , . . .  , k , where k  =  m , are non-overflow ed  

sets.

Proof. F irs t ly , by  d e fin itio n  o f w;, the re  always exists i  G { 1 , . . .  , n }  such th a t:

=  { i }  ^  ‘̂ i+ i  =  A i,  e  { 1 , . . .  , r t } , V j  €  { 1 , . . .  , / t }  (5.2.16)

where the hust (x iu a lity  is ow ing  to  (5.2.9).

Secondly, ow ing  to  the  assum ption  k  =  m , we have S  =  =  U ^ i { j }  =  f i .

T h ird ly ,  by  d e fin itio n s  in  (5.2.9,5.2.14), we have:

A r ^  { ( i  +  l ) ,7 ? [ i ] , [ i ] }  =  =  5 ^ ^ , V i e  { 1 , . . .  , m }  (5.2.17)

ow ing to  =  f i  above and (5.2.11-5.2.13).

F in a lly , from  (5.2.16) and (5.2.17), we have S j C S^^ C S  =  Q, 3 i £  { l , . . . , n } ,  

w h ich  satisfies th e  N O F  c o n d itio n  (5.2.14), V j €  { 1 , . . . ,  / t }  and k  =  m . □

N ote  th a t,  the  assum ption  k  =  m  is useful in  P ro p o s itio n  5.2,9, since i t  fa c ilita te  

the  v e rific a tio n  o f (5.2.17) in  the  proo f. In  Bayesian analysis, th e  a.ssum ption k  =  m  is 

o ften  va lid  w hen a sequence o f a ll m arg ina ls  needs to  be com pu ted  (e.g fo r co m p u tin g  

m in in m m  ris k  e s tim a to r co m p u ta tio n  (4 .3 .8 )). For the  case k  =  kq <  m  b u t kq is close 

enough to  m , we m ay consider the  augm ented case k  =  m , i.e. S =  Q,, like  above, b u t 

o n ly  re tu rn  the  resu lts  correspond ing to  the  N O F  sets S j,  j  6  n \{« ;o  +  1, ■ ■ • ,Tn}.
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5.3 Generalized distributive law (GDL)

In th is section, let us recall th e  ab s trac t algebra and  exploit th e  d istribu tive  law 

associated  w ith ring theory. For clarity, let us firstly em phasize th a t  ring  (heory can be 

applied feasibly to  a  set of e ither variables or functions, i.e.;

- In ab s tra c t algebra [Hazewinkel (1995)] and in graph theory  [Aji and McEliece 

(2000)1, the  s tan d ard  definitions of a group and  a ring begin w ith  a  s ta n d a rd  se t 7?., 

associated w ith  b inary  operators.

- Because the  point-w ise value of any function g : X  ^  TZ can be considered as a set 

TZ, for each ;;; €  X ,  th e  above st andard  definition of group and ring can he api)li<;d (,o 

a  set of function values g{x)  in the  sam e way as s tan d ard  set TZ [Gillrnan and Jcrisoii 

(I960)]. Hence, the  GDL in ring theory  can be applied directly  to  all functions Qi in 

(5.1.7) jC ondran  and M inoux (2008)], w ithout the need of re-definition.

W ith o u t loss of generality, le t us avoid the former approach, which is used in ]Aji 
and McEliece (2000)], and begin w ith la tte r  approach, i.e. a b s tra c t algebra for a set of 

functions. As shown below, the  la tte r  is more general and  act\ially  an im p o rtan t step 

in algorithm  design, because th e  set of functions will clarify th e  num ber of operators 

required in com puting the  objective functions (5.1.7).

5.3.1 A bstract algebra

Let us consider a set 7?.''"“ of functions g : X q TZ. Then we have following definitions: 

D e f in it io n  5 .3 .1 .  (C om m utative sem igroup of functions)

A com m utative sem igroup (TZ."̂ ” ,® ) is a se t of 7?.-value functions on dom ain  X ^ ,  

associated w ith closure b inary  opera to r 1̂  : TẐ ^  ̂ x  TZ^^ —> 7Z‘̂ ^ : f { x . ) ^ g { x )  r/(x) =

( /  S  3)(x ) , such th a t  following two properties hold:

A ssociative Law: /  B  (p K /i) =  ( f  ^  g) ^  h 

C om m utative Law: f  ^  g =  g ^  f  

for any x  € X q and / ,  g , h , q  €  TZ^'^.

D e f in it io n  5 .3 .2 .  (C om m iitative pre-sem iring of ftmctions)

A com m utative pre-sem iring (7^'^f^,ffl, O) is a set TẐ ^  ̂ of 7?.-value functions on domain 

X q , associated  w ith two com m utative sem igroups (7 '̂'^“ ,ffl) and  (72.''^'^,©), such th a t 

following two p roperties hold:

P rio rity  order of operation: f Q g S h  — { f Q g ) S h ^ f O { g S h )

D istribu tive law: /  O (g ffl /i) =  ( /  © g) ffl ( /  © /i) 

for f , g , h  € 7Z^‘̂ .

N ote th a t, in ab s tra c t algebra, the  above concept of pre-sem iring (Definition 5.3.2) 

and trad itional sem iring, w hich additionally  requires the  existence of two iden tity  el­

em ents (one for ffl and one for ©), are not equivalent [Hazewinkel (1995)]. In graph
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theory, the de fin ition  o f semiring together w ith  the iden tity  elements is w ide ly used in 

many papers [Fettweis and M eyr (1990); A ji  and McEliece (2000); I l ic  et al. (2011)). 

Therefore, wc: use the name “prcvsemiring” , as proposed in [M inoux (2001); G ondra ii and 

M inoux (2008)], and consider semiring as a special case o f a pre-semiring. In  contrast to 

a sem iring structure, the pre-semiring is more relaxed and does not require the existence 

o f t he ideni.ity (elements.

5.3.2 R ing-sum  and ring-product

Let us denote C X n  as a subspace o f X q , w ith  w C f i ,  as in  Section 5.1.1. By

generalizing the range from  the set o f real number R to  an a rb itra ry  set TZ, the  functions 

in our model (5.1.7) become gi : —> TL. Moreover, i t  is feasible to  recognize th a t

gi € TZ^^, since C TZ^^. Consequently, wc can apply the abstract algebra above

in the pre-semiring (7?.'*̂ ” , f f l ,0 )  to  all functions, gi. Note th a t, by the above defin itions 

from  ring  theory, the closure p roperty  of any operators BB, O applied to  gi is guaranteed 

w ith in  the space b u t no t guaranteed w ith in  its  sub-space TZ^'^i.

For com putation o f our specific model (5.1.7), we need, however, to  define some

specific ring-stim  and ring-product o])crators properly. These dcfin ilions also c la rify  the

number of required operators in the sequel.

D e f in it io n  5 .3 .3 . (R ing-sum)

Le t us consider g €  . Given i  € w C and X  =  { x i , . . . ,  x m ) ,  then the i th  ring-

sum is defined as:

f f l< 7 (X a ;)  =  Ox, f f l  .1712 f f l • • • f f l gxM

where =  g{xi  =  x j,:x .^ \i)  w ith  Xi £ X , j  =  I , . . . ,  M  and, as before, M  =  \X\  (5.1.3) 

1 ti th is way, we chti define a ])ro jec tio ii function: ffl : TZ '̂^ —> , ViS =  { . s i , . . . ,  .S1 5 1 }  C

cu, 8 .S follows:

ffl <;(xtj) =  ffl •• • ff lfy (X ij)  (5.3.1)
Xs I,,1̂1 X,]

D e f in it io n  5 .3 .4 . (R ing-product)

R ing-product is an augmented function: o { _ j  : 7Z‘̂ ‘̂ ‘ x  x  TZ^'^i —> 7?.'^", where

w =  w; U • • • U Wj, defined as follows:

© i= i .9fc =  9 j © ,9 j- i O • • • O gi (5.3.2)

From the defin itions above, we w ill apply the d is tribu tive  law assumption o f pre- 

■semiring in  D e fin ition  5.3.2 to  our ring-operators, as follows:

D e f in it io n  5 .3 .5 . (Generalized D is tribu tive  Law)

By defin ition o f d is tr ib u tive  law of pre-semiring in D e fin ition  5.3.2, the generalized 

d is tr ib u tive  law (G D L) fo r  elements can be defined as (from  le ft to  righ t):
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P2 © ( f f l p i )  =  f f l ( P 2  © 3 i), VS ẑ! (5.3.3)
Xs xs

T h o ii, the  reverse flow  (fro m  right, to  le ft)  o f (5.3.3) is eallcid the  g(;iiera liz(!d d is tr ib u tiv e  

law  (G D L ) f o r  operators, i.e.:

ffl (92 ©  91) =  .92 ©  ( ffl.9 i) , VS u)2  (5.3.4)
xs Xs

N o tice  th e  in te re s tin g  d ifference in  n o ta tio n  between (5.3.3) and (5.3.4). In  “ G D L

fo r elem ents”  (5.3.3), i t  seems th a t  the  elem ent Q2 is d is tr ib u te d  across the  opera to rs

FFI, w h ile  in  “ G DTj fo r  opera to rs”  (5.3.4), i t  looks like  the  op e ra to r Ffl is a c tu a lly  th e  one
Xs

be ing d is tr ib u te d .

T h e  “ G D L  fo r elem ents”  (5.3.3) - fo r exam ple, 03(01  +  02 ) =  asu i +  0302 -  is m ore 

consis ten t w ith  the  traditioTial d istributive law iri m athem atics  te x tb o o ks . However, in 

p rac tice , the “ G D L  fo r  opera to rs ”  (5.3.4) - fo r exam ple, 5^^= 1(0301) =  03 Oj j  -  is

Tnore p o p u la r and c o n s titu te s  t he d e fin itio n  o f the  GDTj fo rm , e.g. in [A ji  and M cE liece  

(2000); N ielsen (2001)]).

In  th is  thesis, th e  la t te r  is pre fe rred , i.e. “ G D L  fo r opera to rs”  (5.3.4) w i l l  be defined 

as G D L , a lth o u g h  b o th  te rm s “ G D L  fo r elements”  and “ G D L  fo r op e ra to rs ”  are ob v io us ly  

equiva lent.

5.3.3 C om putationa l reduction via the G D L

L e t tis inves tiga te  th e  c o m p u ta tio n a l load below  by cou n tin g  the  num ber o f opera to rs

ffl and 0  invo lved  in  th e  rir ig -sum  (5.3.1), r in g -p ro d u c t (5.3.2) and  G D L  (5.3.4).

In tu it iv e ly ,  th e  c o m p u ta tio n a l reduc tion , fro m  le ft hand side to  r ig h t hand side in

G D L  (5.3.4), comes fro m  th e  o rder o f the  c o m p u ta tio n  o f p ro je c tio n  (i.e. rin g -sum ), and

a ugm enta tion  (i.e. r in g -p ro d u c t) . O n the  le ft hand side o f (5 .3 .4), the  au gm e n ta tio n  is

im p lem ented  f irs t, fo llow ed by j)ro je c tio n , w h ile  the  o rder is reversed on th e  r ig h t hand

side o f (5 .3 .4), i.e p ro je c tio n  is im p lem ented  firs t, fo llow ed by  augm e n ta tio n . There fore ,

th e  r ig h t hand  side o f (5.3.4) is m ore e ffic ien t because i t  rules o u t the  nuisance variab les

Xs  u p fro n t (i.e. im m e d ia te ly  a fte r recogn iz ing  th a t x s  is no-longer-needed). In  con trac t,

th e  le ft hand side o f (5.3.4) is less e ffic ien t because the  nuisance variab les x s  are dragged

along in  the  au gm e n ta tio n  opera to r, <72 ©  .91, and increases the  nu ir ib e r o f com p u ta tio ns

requ ired  fo r th e  fin a l resu lt.

In  p ra c tice , however, th is  red uc tio n  does n o t always im p ly  an ac tu a l red uc tio n  in

co m p u ta tio n a l load. For exam ple, the  qu an titie s  invo lved in  the  left, hand side, E ( ( j 2 ©
xs

f f l )  m ig h t bo know n be forehand and re trieved  v ia  tab le -looku p , w h ile  the  r ig h t hand 

side q u a n titie s  m ig h t be unknow n and hence requires c o m p u ta tio n . Nevertheless, the  

general in te res t is to  coun t th e  num ber o f opera tors, because th a t  num ber is ty p ic a lly  

assumed to  be i)ro i)o rt,iona l to  co m p u ta tio n a l load it i practicc;.
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5 .3 .3 .1  C o m p u ta tio n a l load  in  r in g -su m  an d  r in g -p r o d u c t

For convenience, le t us denote 0[-\ as a counting procedure re tu rn ing  th e  order of th e  

Muinbcr Og) of operators, S ,  applied on function in brackets, [•].

L em m a  5 .3 .6 . (C om putational load in  ring-sum  and ring-product)
a) The com putational load o f a ring-sum  only depends on dim ension m  o f its fu n c tio n  

g e  :

0 [ f f l5 ( i „ ) ]  = O a ](A /l“ l), V 5 C  w

b) The com putational load o f ring-product depends on the combined d im ension  o f its two 

functions:

0 [ 5 2 © ' 7 i ]

Proof, a) F'or ring-sum , ffl, in Definition 5.3.3, we need O h(A /I‘*'I) of o p era to r ffl. Hence,
Xi

for ffl, we need of opera to r ffl.

b) Because th e  result of b inary  ring-product g i(x ;jj)  © g2 { ^ 2 ) function w ith

iniion dom ains of opera to r © for com puting th e
A/I"'U^2 | values of □

5 .3 .3 .2  C o m p u ta tio n a l load  in G D L

From Lem m a 5.3.6, we c:an [)rove the  m ain theorem  of th is  chapter, a.s follows:

T h eo r em  5 .3 .7 . The GDL fo r  operators (5.3.4), t f  applicable, always reduccs the 

num ber o f operators; i.e.:

C>[ffl(g2 O  9i)] >  0[q2  © (ffl.gi)], V5 ^  UJ2 (5.3.5)

Proof. From (5.3.4) and Lem m a 5.3.6, we have:

C’[ffl(fl2 0 < 7 l)] =  C’[fflgl:2] +  C)['/2 ©  </l]

=  -h Oo(m I“ ‘'̂ “ "I)

where g i ;2 = 9 2 O 9i is regarded as a  point-w ise function g i ;2 : ^uiiUui-2 Likewise,
we have:

0[<72 O  (fflfll)] =  +  0[(72 © i ? ( x ^ , \ 5 ) ]
Xs Xs

Since |wi UW2 I >  |wi| and  |wi UW2 I >  |{wi\<S} UW2 I, the  following non-stric t inequality  

follows:

94



CHAPTE R n E N t  RALIZED DI STRi BUTIVl  LAW (CD j f  O :  ‘ '  3 V - i i ; r , u

C’[ffl(52 © 9 i)]  >  0152 O (fflt/i)] (5.3.6)
X 5  X^s

Equality requires b oth  |o;i U W2 I =  |w i| and \cji U W2 I =  |{w i\iS }  UW 2 I, i-«- W2  C wi 

and iS C wi r\u>2 , respectively. However, because the condition  for G D L is S  u>2 , or, 

equivalently S  C  w i\{ a ;i r \ 0J2 } ,  the equality in (5.3.6) only happens if th e  GDL (5.3.4) 

is invalid. □

In T heorem  5.3.7, th e  G D L  is recognized, for th e  first tim e, as always  reducing  

th e  num ber of operators in any pre-semiring. In the literature, there is no result 

guaranteeing such a reduction in GDL for all cases in ring theoretic class. T he GDL is 

only exp licitly  recognized to  reduce the number of operators in the trivial cases, such as 

a{b  +  c) =  ab +  ac  in m athem atica l textbooks, and is instead applied to specific m odels 

in order to  evaluate th e  reduction on a case-by-case basis [Aji and M cEliece (2000); 

M oon (2005); C ortes et al. (2008); Ilic et al. (2011)].

Moreover, Lem m a 5.3 .6  provides an explicit form ula for counting th e  number of 

operators in G D L  (5 .3 .5) v ia  se t operators, rather th an  v ia  a com plicated  graphical 

topology  in (Aji and M cE liece (2000); M oon (2005)].

5.4 GDL for objective functions

In th is section , we will propose a novel recursive technique, called forward-backward 

(F B ) recursion, for com puting th e  objective fim ctions in (5 .1 .9) and (5 .1 .10). Wc call 

th is technique F B , ow ing to  its sim ilarity w ith  well known F B  algorithm  for Hidden

Markov C hain in th e  literature. T his sim ilarity will be clarified in Section  6.2.2 of this

thesis.

5.4.1 FB recursion for single objective function

A fter se ttin g  up th e  pre-sem iring, (72.̂ '̂ ”* ,ffl,© ), our aim is to  com pute the single 

objective function  (5.1.9):

ffl gl:n =  ffl(©ILl5i) (5.4.1)

w ith  S  C  i i .  From Lem m a 5.3 .6 , wc can sec th at the cost o f dircct com putation  on 

the right hand side of (5 .4 .1) is exponentially  increasing w ith  m , i.e. 0 (M '" ) , which  

is im practical. B ecause th e  G D L  (5.3.5) always reduces the cost, we will exploit the 

conditionally  independent (CT) structure in (5.4.1) and apply the GDL, as shown below.

5 .4 .1 .1  B in a r y  tr e e  fa c to r iz a tio n

T he jo in t ring-products (5 .1 .7) can be written as;

gl;n =  g i l  l:ri O g l i i ,  I £  {1 , • . ■ , n  -  1} (5.4.2)
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w here g i:j =  and gi „ =  O ’j-^gj ,  together w ith  forward and backw ard recursions:

g i:j =  £ f jO g i: j - i i  j  =  2, . . . , i  (5.4.3)

gj:n =  9 jO Sj+ v . n ,  j  =  n  -  1 , . . .  , i  + I (5.4.4)

The dom ains of the  functions in (5.4.2-5.4.4) are, respectively:

dom{gi: j )  =  (5.4.5)

d(mi{gj+i,n) =  { x (j+ i.„ ) ,x ,„ .,}  

c^om(gi:„) =  x n  =  {x(j_|_i.„),x^|.,,x[i.j-]}

using th e  no ta tion  defined in P roposition  5.2.6. T hen , we will see below th a t  operators, 

ffl, upon the  joint g i:„  can be d istribu ted  into the  b inary  tree s tru c tu re  (5.4.2), owing 

to  th e  G D L-for-operators form (5.3.4).

5 .4 .1 .2  D e r iv a t io n  o f  th e  F B  recu rsion

Let us deno te gi;n =  E g i m  =  5 (x.si;). Owing to  th e  separable dom ains in (5.4.5), we

can app lv  th e  C D L (5.3.4) to  com putation  of opera to r ffl on (5.4.2), as follows:

gl:„  =  ffl (g i+ l:„ O g l:i) ,  i 6 {1, . . . , Tl -  1} (5.4.6)

where gi:i =  ffl gi:i and gj „ =  E  gi-n , together w ith  forward and backward

recursions:

g i : j  =  ffl {9j Q s u j - i ) ,  j  =  2 , . . . , i  (5 .4 .7 )
’‘ ■'[jl

Sj :n  =  ffl (.9j O g j + l : n ) ,  j  =  n  -  1, . . . , I +  1 (5 .4 .8 )
’' ’(j)

T he dom ain of functions in (5.4.6-5.4.8) are:

dom{ei. , j)  = (5.4.9)

dom (gj+i;„) =  { x ,c  }

c i o m ( g i : „ )  =  X5C =  { x ^ C  ,X ^c X^C }
( t+ l :T i )  ''[»] [1:«]

Exam ining (5.4.5) w ith  (5.4.9), we can see th a t the  variable indices in tlu;se dom ains 

can be feasibly derived v ia the  set algebras in (5.2.5) and (5.2.12), respectively. I t is also 

im p o rtan t to  em i)hasize th a t, for com puting a single objective function, g i;„  in (5.4.6),
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the value i £ — 1} can be chosen arbitrarily, since each yields the same result
gi:„. These choices, however, may differ in computational load.

5 .4 .1 .3  In te rm e d ia te  s te p s

Note th a t, when computing FB recursion (5.4.6-5.4.8), we have already computed the 
following intermediate results:

7i =  g i+ i:n O g i (5.4.10)

9i-.j = 9 j Q g v . j - \ ,  foTj  = l , . . . , i

9j:n =  5 jO g j+ i:n , for j  =  n , . . . ,  i +  1

with respect to  the chosen index, i G { 1 . . . ,  n}. The domains of the functions in (5.4.10)
are, respectively:

dom(~fi) = (5.4.11)

dorn(g^ + i,„) = +  , x ^ , }

which arc set combinations of the two sets (5.4.5) and (5.4.9).
These interm ediate results (5.4.10) will be useful for evaluating the computational 

load of FB rec\irsion. They are also valuable re.so\irces for efTicient comp\ita(,ion in 
sequential objective functions, which we will consider in Section 5.4.2.

5 .4 .1 .4  C o m p u ta tio n a l  load  fo r a  sing le  o b je c tiv e  fu n c tio n  v ia  F B

From (5.4.6-5.4.8), we can see th a t the computational load for a specific i € {1, . . .  ,n} 
deiiends on three steps, one forward recursion (5.4.7), one backward recursion (5.4.8) 
and one combination of these (5.4.6). Then, the numbers of ring-sum ffl and ring- 
product O via the FB recursion (5.4.6-5.4.8) are both equal to 0[fflgi:„] =  where

4>s{i) is noted explicitly to  be a function of z € {1, . . .  ,n} ,  as follows:

n i

= 0 { M ^ ' ) +  ^  + (5.4.12)
j = i + l  j  =  l

where W{, Dj, Fj  denote the domain dimensions of functions 7j, Th-.p (5.4.11), 
respectively, and, as before, M  = \X\ (5.1.3). Note tha t, in practice, we often have 
IV, B j, Fj m, j  =  1 , . . . ,  n, which yields a significant reduction in the total cost:

05 <  O(M^)
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A lthough we only need to  pick up one value i from { 1 , . . .  ,n }  in o rder to  com pute 

g i:„ , th is choice of i can greatly  influence th e  com putational load, as no ted  above.

For (,his geiu;ral ease, a crit<!rion for optim al choice of i has not yet, been established in 

th e  literature . T he discussion on th is optim ization  issue will be given in Section 5.4.3.

5.4.2 FB recursion for sequential objective functions

Lot us now s tudy  an efTic:icnt scheme for com ptiting sequential ob jcctivc functions 

in (5.1.10). F urtherm ore, for simplicity, let us confine ourselves to  th e  case of non­

overflowed (N O F) sets in Definition 5.2.8. T he m ain advantage of N O F condition is 

th a t  the  resu lt of any N O F objective function g(Sj )  =  ffl gn can be ex trac ted  from

th e  FB  recursion for evaluating  the  union objective function g(S'^) =  where

5  =  5 i U • • • U >Sk and  $2 =  {S' ,̂ 5} , j  e  { 1 , . . .  ,«;}.

Indeed, if N O F condition (Definition 5.2.8) is satisfied, m ust belong to  union 

dom ain of two recursive functions g j.;, pj.,, in (5.4.11), for a specific z 6 { 1 , . . .  ,n } , say 

i =  i j .  T hen, given th a t  specific value i , ,  th e  result ffl gn for any j  =  1 , . . . , k ,  can

be ex tracted  from  a single FB recursion fflgn over S,  w ithou t the need to  recom pute 

FB recursion fflgn for each S j .  We will divide th e  com pu tation  in to  two stages, ais 

presented below.

5 .4 .2.1  F B  r e c u r s io n  s ta g e  fo r  u n io n  o b je c t iv e  f u n c t io n

In the  first stage, defining the  union set S,  where S  =  >Si U • • • U 5^ , we com pute one 

com plete forward recursion (5.4.7) and one com plete backw ard recursion (5.4.8) for S,  

i.e. until i =  n  — 1 in forward recursion (5.4.7) and  until t =  0 for backw ard (5.4.8). 

A fter finishing (his step , we have access to  all forward and backw ard functions g i;i, gi-.n, 

V? =  1 , . . .  , n ,  owing to  cquations (5.4.7-5.4.10). T his is th e  end of first stage. 

N ote th a t, because the re  is no need to  evaluate th e  coinbiiiatioii s tep  (5.4.6) in this 

stage, th e  values 7, in (5.4.10) are not com puted either.

5 .4 .2 .2  F B  e x t r a c t i o n  s ta g e  fo r  s e q u e n t ia l  o b je c t iv e  f u n c t io n s

In th e  second stage, it is possible to  ex trac t two results, th e  union objcctivc function 

giS'^) — fflgi-n and the  sequence of N O F objective ftm ctions g(Sj )  =  fflgn, from
X S  ^ S j

mem orized values Pi-i, 3;.„,Vz =  1 , . . . ,  n , of th e  first stage. For clarity  an d  com pleteness, 

let us consider th e  <!xtract,ion steps for t.he union and sequential cases, respectively. The 

special case of non-overflowed (N O F) sets, nam ely scalar se ts (P roposition  5.2.9), will 

also be discussed.

•  F o r  u n io n  s e t  S:
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In  order to  compute the value g i : „  =  fflg im , we can extract values „  a t any
xs

i €  { 1, . . .  ,n }  in current memory and compute:

gi:n =  fflgl:7i =  ffl f fA i (5.4.13)

where A i is an in-processing tr i-p a rtitio n e d  set, defined in  (5.2.9), <5^  ̂ are the associated 

in-process operator index set (5.2.14) and 5^ . is a new object, defined £is follows:

9 A i  =  9 i+ \ - .n  o  Sl:i

A pp ly ing  the G D L (5.3.4) and substitu ting  the three pa rtitions  o f At in (5.2.9) in to

the righ t hand side o f (5.4.13), we retrieve equation (5.4.6) for f f lg i „ .  Hence, the step
x.s

(5.4.13) can be considered as extraction  step from  FB  recursions (5.4.7-5.4.8).

•  F o r n o n -o v e rf lo w e d  (N O F )  sets Sy.

Given non-overflowed (N O F) sets { iS j, . . . ,  iS^}, le t us pick up the index i satisfying 

condition Sj C in D efin ition  5.2.8 and retrieve th a t in-processing tr i-p a rtitio n e d  

set A i- F'or com puting the sequence ffl gi-n =  ffl g im  the set in (5.4.13) can be

replaced w ith  , defined in (5.2.15), as follows:

f f lg i : „  =  ffl (5.4.14)

ffl i^Ai)
’ >1 *1

in  which j  £ and gAi is a new objcct, defined as follows:

9Ai =  i ffl 9i+i:n) ©  ( ffl 9hi)  (5.4.15)
V + i )

Hence, subs titu ting  the memorized values 9 i-i,g i-rn ''^ '^  =  1 , . . .  , n  o f the firs t stage in to  

(5.4.15), i t  is stra igh t-fo rw ard  to  compute (5.4.14) in one step (i.e. w ith o u t recursion) 

for any j  G {1 , . . . , k : } .

•  F o r a sequence  o f  sca la r sets Sj =  { j }  G S =  ft:

Let us recall, from Proposition 5.2.9, the scalar sets =  { j }  G 5  =  f2 are indeed 

non-overflowed (N O F) sets. This special case is o f pa rticu la r interest in practice. For 

example, the task o f com puting a ll scalar functions g ( x j )  =  fflg ,,, j  =  l , . . . , m ,  is a

m ajor concern in applications o f G D L [A ji and McEliece (2000)). Because the number 

o f variables m  is very high, k is also very high, since «; =  m  in th is case. Hence, the 

above scheme often s ign ifican tly  reduces the cost in  th is  case o f scalar N O F sets.
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5 .4 .2 .3  C o m p u ta t io n a l lo a d  fo r  s e q u e n tia l o b je c t iv e  fu n c t io n s

The to ta l com putationa l load of FB  recursion in th is  case can be evaluated as in (5.4.12), 

w ith  K extraction  steps (5.4.14) in the second stage and a single step of fu lly  FB  recursion 

in firs t stage, aii follows:

<^5.. =  +  f ^ ( O ( A / ^ 0  +  0 ( M ^ - ) )  (5.4.16)
j —1 i= l

where W j is the  dimension o f domain of the in (5.4.14). Com paring (5.4.14,5.4.16) 

w ith  (5.4.6,5.4.12), respectively, we can see th a t W; —|<Sj| <  W j <  W i, w ith  i , j  satisfying 

tlie  N O F  condition in (5.2.14).

In  practice, the two-step FB  recursive scheme o f the firs t stage in  (5.4.7-5.4.8) , i.e. 

w ith  one fu ll forward recursion and one fu ll backward recursion, is rough ly double the 

cost o f the one-step FB  recursion in (5.4.12). Also, the cost o f the firs t stage in the 

two-step FB  recursion often dom inated the cost of the second stage (extraction  stage), 

i.e. W i,W j  w ilh  i , j  satisfying the N O F condition in (5.2.14). In  th a t case,

we can expect th a t 4>S\,̂  ^  > e. the to ta l cost o f com puting the sequence B3 g „ ,

is on ly  double the cost of the single task FHgn. Those costs are, therefore, o f the same 

order.

5.4.3 C om putational bounds and optim ization  for F B  recursion

By Theoreiri 5.3.7, we know th a t G D L always reduces the to ta l number o f operators, 

and, hence, com putationa l load in FB  recursion. A  well-posed question is to  ask which 

choice o f jie rm u ta tion  order o f factors Qi in g i: „  m inim izes the number of operators in 

FB  recursion. Th is optim a l choice is an open problem in the  lite ra tu re  [A ji and McEIiece 

(2000)]. W ha t we can achieve here is specification o f some com putationa l bounds, and 

wc w ill discuss some d ifficu lties o f th is op tim iza tion . Several p ractica l approaches w ill 

also be provided.

5 .4 .3 .1  B o u n d s  on  c o m p u ta t io n a l c o m p le x ity

F irs tly , le t us consider the upper and lower bounds o f the rmmber o f operator in original 

model (5.1.7). The derivation o f these bounds w ill illu s tra te  the  d ifficu lties involved in 

find ing  an optim a l GDL-based com putational reduction later.

P ro p o s it io n  5 .4 .1 . The lower and upper bound o f operator’s number in  o rig ina l model 

g i;n  =  “ A' dejincd in  (5.1.7), is:

0 { M ’^) <  C>0[gi:„] <  0 { n M ^ )  (5.4.17)

where M  =  \X\ ,  as defined in  (5.1.3) and O© is defined as in  Section 5.3.3.1.
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Proof. For a product gi:„ =  ©"=i3ii we have many ways to compute gi:„ via parenthe- 
sization, owing to commutative property. For example, the following two forms may 
yield different costs:

gl:n  =  9w{l) O {9n{2) O  (* * * (57r(n)))) (5.4.18)

Sl:n (p7r(l) ©  57t(2)) O ’ * * O  (57r(n—1) ®  9n{n)^  (5.4.19)

where tt, again, is a permutation of the set { l , . . . , n } .  From Lemma 5.3.6, the com­
putational load for (5.4.18) is ’'(■)!), with u>jr{iy.-K{j) — T̂r(i) U • ■ • U
while the cost for (5.4.19) is 0(Er=i^

In general, we can construct a binary tree corresponding to this tsisk of recursive 
parenthesization [Lam et al. (1997); Cormen et al. (2001 )|. Because we have n  leaf 
nodes for this binary tree, corresponding to n  functions gi, the total number of binarily 
combined nodes (internal nodes and root node) is n . At the root of the binary tree is an 

arbitrary binary partition of g i : „ ,  i.e. =  g ^ ( i ) : , r ( i )  and 4>Right =  g 7 r ( t + i ) : , r ( n ) >  where
Sn(i):n{j) =  9n(i) © ‘ '' ©5^(j)- Since we always have Uu;^(i+i).„(„)| =  |n| =  m ,

Vi e  { 1 , . . .  ,n},  the computation cost for (5.4.19) at the root is fixed:

0\<t>Left © 4>Right] =  O ( M ^ )  (5.4.20)

Because the computation of g^(i):,r(i) .̂nd g 7r(i+i):7r(u)i 'n turn, can be recursively 
parenthesized into other binary sub-partitions, respectively, this scheme constructs a 
binary tree, in which each binarily combined node represents the result of ring-product 
4>Lejt © 4>Right of two multiplied functions coming up from the left and right of that 
combined node. In a bottoni-up manner, the cost of any internal node is, therefore:

0 <  0 [ ( P u f t  © 4>Right] -  < o { M '^ )  (5.4.21)

where 0 C Right-. ^ Because we have n — 1 internal nodes with varied
cost (5.4.21) and one root node with fixed cost (5.4.20), the number of ring-products 
Oo[gi:n] is therefore bounded by (5.4.17). □

5 .4 .3 .2  M in im iz in g  c o m p u ta tio n a l load  in  F B  recu rs io n

As shown in the proof of Proposition 5.4.1 above, the total number of commutative 
ring-products in gi;„ =  ©"_jgi depends on two issues: (i) the n \ permutations and (ii) 
the choice of parenthesization between them. By investigating those two issues, the 
optimization scheme for fflg^n was proven to be an NP-complete problem [Lam et al.

Xs
(1997); Aji and McRliece (2000)]. Hence, a tractable techiii(]ue for finding the optiniuni 
is not available. Nevertheless, we still have some other options to consider, as follows:

101



^AW i GDl.) f o r  Cl STRUCTURE

- The FB recursion for GDL waa originally inspired by two topological sets, one 
forward (NLN) and one backward (FA), in Definition 5.2.1,5.2.2. For this reason, a 
reasonable solution is to extend the FB to irmlti-directioii approach, instead of two 
directions, NLN and FA. Such a multi-direction scheme is actually a merit of graph 
theory, which facilitates the visual representation of the model. Nevertheless, a topo­
logical Cl structure via set, algebra in this chaijter is still useful. Because l.he o])erat.ors 
in prc'-seiniring , ffl, Q) are both  binary, all com binatorial of operators Tnust consist 

of binary relationship. Hence, in multi-direction scheme, the Cl structure above may be 
still applicable to a general Bayesian networks, which concerns about chain rule order 
of factors in distribution.

- In the probability context, we can design the permutation tt in the joint distribution 
(5.5.9) such that /(x n )  is factorized into a chain rule order. Then, the product of
can be computed in a reverse order to the chain rule. In this way, the total number of 
product will be M'’) = 0 { M ”), where M ' =  — 1, i.e. it always
reaches the lower bound in (5.4.17). Such a value of t t  can always be found in linear 
time via topological sorting algorithm [Cormen et al. (2001)].

- In Bayesian inference, the permutation t t  also has an important role. In Section 
5.5.3, we will see that perm>itations of the f\dl conditional distributions (5.5.8) yield 
different factorization forms for the GDL. Hence, although the form for re-factorized 
conditional distribution is not computed in FB recursion, the computation cost of FB 
recursion will vary, based on that imj)lieit re-factorization form (5.5.18). In this sense, 
a re-factorizatioii with the iriiriimal imiiiber of neighbour variables might be preferred, 
in order to reduce the dimension of intermediate functions in FB recursion via the 
GDL. This scheme is consistent with the minimum message length problem in model 
representation.

5.5 GDL in the probability context

Note that, the first step in computing fflgi n is to identify three elements in the pre- 

semiring (7?.'̂ ‘̂ ,ffl,0), i.e. the functional set and two binary operators ffl,©, which 
satisfy all properties in Definitions 5.3.1-5.3.2. This general framework is very flexible 
in practice. For example, [Aji and McEliece (2000); Moon (2005)] gives examples of 
semirings that are useful in graph theory and decoding context.

In this section, we present application of GDL in the probability context. For this 
purpose, we will define and apply some practical prc'-semirings, which are summarized 
in Table 5.5.1.

5.5 .1  Jo in t d istr ib u tio n

Without loss of generality, let us assume that m — n, i.e. the number of factors and 
variables are the same in this section. Then, let us consider a joint distribution, / ( x q ).
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7̂ Oi ffl O ®  ( © r = i< ? i) sh o rt nam e Purpose

[0,1] f i ) X E x , sum -p rod uc t M a rg in a liz a tio n

[0.1] f i m ax X m axxn / ( x j j ) m a x -p ro d u c t J o in t mode

( - 0 0 ,1 ] log/, m ax + m a x x n ( l0 g / ( x n ) ) m ax-sum J o in t mode
D f i Z \ o g q i + X D u a l num ber E n tro p y

T ab ic  5.5.1: Some c o m m u la tiv c  pre-sem irings fo r the  p ro b a b il ity  con text,
w ith ,  f i  =  f{xi \xr,^),  Qi =  q{xi \x^.)  and <S C =  { 1 , . . .  r t }

o f n  d iscre te  random  variab les x q  €  Xn  =  ^  =  { l i  • ■ • i ^ } -  B y  th e  cha in  ru le  o f

p ro b a b ility , th e  d is tr ib u tio n  / ( x q ) can be fac to rized  in to  a cha in ru le  o rder, as follows:

n

/ ( x n )  =  (5.5.1)
1 =  1

where f ( x i \ x n J  =  / ( x j | x i _ i )  is co n d itio n a l d is tr ib u tio n  o f Xi  g iven its  ne ig hbo r variab les 

Xjj., i  =  S im ila r to  o tir  un ive rsa l m odel (5.1.G), we assume th a t  the  value o f

fun c tions  f { x i \ x ^ . )  and ne ighbour sets r]i in  (5.5.1) are know n.

5.5.2 G D L  for p robab ility  calculus

G iven  the  jo in t  d is tr ib u tio n  (5.5.1), we are in te rested in  th ree k in ds  o f in ference: (i) 

th e  sequence o f sca lar m arg ina ls , ( ii)  jo in t  m ode and ( i i i)  fu n c tio n a l m om ents. W e w ill 

e xp la in  b r ie f ly  how to  deploy G D L  in  each o f these con texts, nex t.

5 .5 .2 .1  S eq u en ce  o f  sc a la r m a rg in a ls

L e t us spec ify  p re -sem iring , (T?.'^", hH, 0 ) ,  as ,([0 , l] " ^ " , - !- ,  x ) ,  where TZ =  [0 ,1 ] (th e  im it  

line  segm ent in  R ), and where -I-, x  are t ra d it io n a l sca lar a d d itio n  and r im lt ip lic a t io n  for 

rea l num bers. Because 9i =  f i  — /(^ ^ ilx ^ .)  £  [0 ,1 ]"^" is a d is tr ib u tio n , we can com pute 

a sequence o f m a rg ina ls  f { x i )  =  w here xy ; is the  com p lem ent o f X j in  x q ,

as fo llows:

n

X\i X\j i=l

fo r i  =  1 , . . . ,  n . T hen , the  sequence o f n  sca lar sets in  (5.5.2) can be com puted 

feasib ly  v ia  F B  recurs ion fo r sequentia l ob je c tive  fun c tions , as in  Section 5.4.2.

A n  a p p lica tio n  o f (5.5.2) fo r H M C  m odel, nam ely  F B  a lg o rith m , w i l l  be presented 

in  th e  Section 6.2.2.
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5.5.2.2 Joint mode

The elements in joint mode x q  =  { x i , . . . ,  £„}, defined as X q  =  a r g m a X x o  / ( x q ) ,  can 

be found via cither one of two forms, as follows:

Xi =  argm ax(m ax /(xs;)) (5.5.3)
X i

=  argm ax(m ax(log /(xs;)))
X i

for i =  n. (Corresponding to two ways of computing xi (5.5.3), we liave two

ways to assign prc'-scmiring (7?,''“' ,® ,© ) , either with ([0, l]'^",m ax, x )  or ([—00, 0]"̂ ", 

m a x ,+ ) , respectively, as follows:

n

m a x f ( x i i )  =  m a x (]T g j), with = / i  (5.5.4)
x\.

n

m a x (lo g /(x u ))  =  m a x ( ^ ,9i), with ,9i =  lo g /i

for i =  Once again, both sequences of n  scalar sets in (5.5.4) can be
coinpnted feasibly via FR recursion for setjuential objective functions in Section 5.4.2. 

Substituting the results (5.5.4) into (5.5.3), we can retrieve the joint mode.

An application of (5.5.3-5.5.4) for HMC model, namely bi-directional Viterbi algo­

rithm, will be presented in Section 6.3.3.1.

5.5.2.3 Entropy

Consider another joint reference distribution of x q  £  A"", i.e. q{x.a) =  n"=i 

where qi =  q{xi\x^^) is the associated full conditional distribution of Xi given its 

neighbour variables .t^., i =  1 , . . .  , n.  Consider the following functional moment:

Ef{y.n)^og{q{-x.n)) =  £ / (x n ) (^  log 9.) (5.5.5)

Comparing (5.5.5) with our GDL model (5.4.1) , the task is to transform the sum 

in (5.5.5) into some form of real value products f l iL i ’ ^ special case of ring- 
product in order to achieve a computational load reduction via GDL. Such a

transformation can be effected via the so-called dual number in matrix form [Cheng 

(1988)), as follows:

gi =  /.Zlog^i = fi 1 log qi 
0 1

(5.5.6)
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for i =  1 , . . .  ,n . The dual number, originally proposed in [Clifford (1873)], belongs to a 

ring D, not a field like complex numbers C [Veldkamp (1975)]. However, it shares with 

complex numbers the property of magnitude f i  and angle Zlogf/; (see Appendix A). 

Therefore, gi belongs to the ring (D"'̂ ", + , -)i a special case of pre-semiring (7̂ "̂ *̂ , ffl, ©), 

where +  and • are the usual matrix summation and matrix multiplication. Note that, in 

t.ho above special matrix form (5.5.G), it is feasible to verify l.hal, matrix mullii)licat,ion 

is commutative.

Substituting (5.5.6) into (5.5.5), we have;

X]si:n =
X JI X(1 1 = 1

t = l

For the purpose of reducing the number of traditional sum and product operators,

we can apply the GDL to the right hand side of (5.5.7). Tlieti, tiie value of the angle

is extracted from the result of 5]]gl.n â nd reported as the value of Ey(xj,) log(<j(x5j)) in
xn

(5.5.5).

In the literature, the above task of computing log(g(xn)) (5.5.5) via GDL waa
specialized to the computation of entropy [Tlic et al. (2011)], Kullback-Tjeibler divergence 

(KLD) [Cortes et al. (2008)], and the Expectation-M aximization (EM) algorithm ]Li 

and Eisner (2009)]. In each ca.se, the derivation relied heavily on complicated operators 

in ring theory, rather than on the simple matrix operator in (5.5.6). Also, a unified 

recursion for implementing GDL— such as is achieved by the FB recursion above— is 

missing in those papers.

Another potential application of (5.5.7) is in the Iterative VB (IVB) algorithm, 

as presented in Section 4.5.2. Notice the similarity between the expectation for log 

functions in (5.5.7) above and in the IVB algorithm (4.5.6) .

5.5 .2 .4  B ayesian com p u tation

Let the role of the joint distribution /(x j; )  in (5.5.1) be a prior in Bayes’ rule, as follows:

/(xj2|yn) «  f i y n \ x n ) f { x ( i )  (5.5.8)
n

t=l
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where / (y n |x n )  =  n r = i 3 / ? t )  ^ given observation distribution (model) with
known (i.e. observed or realized) discrete values y n  €  3^". Because the form (5.5.8) also 
belongs to our generic model str\ictur(! (5.1.6), we can implement the above inference 
schemes for 2n factors (5.5.8) in the same way as for n  factors in the general distribution 
(5.5.1).

5 .5 .3  G D L  for r e -fa c to r iz a t io n

In this subsection, the  role of the Cl topology in Section 5.2 will be explained in the 
probability context. In this way, we will appreciate th a t GDIi is, in essence, a tool for 
exploiting th a t topology.

For this purpose, let us re-consider the joint distributioii / ( x q ) in (5.5.1). Owing 
to com m utativity of product, we have n \  ways to perm ute those n  factors, as follows;

n

/(xa) = n
i=i

where tt is a perm utation over the set f l .  Let u.s define the n  full conditionals % = 
fn[i)  -  together with the sets Wj =  { 7 r ( i ) , }, Vi £ =  { l , . . . , n } .
Consider, further, the following binary parenthesization:

n t

/ ( x n )  =  ( n  f-U))iUM
j = i + l  j = l

=  g .  +  l : n g l : i ,  t e  { 1 ,  • • • , « }

Note th a t, because the perm utation t t  is arbitrary, / ( x q ) in (5.5.9) - for a particular 
perm utation - may not he in j)robability chain rule order. Consequently, the forward 

gi:i =  Yl'j=i f-nU) backward gi n =  YYj=i f-nij)) products, with the same domains 
as in (5.4.5), are merely positive functions and may not be distributions in general. In 
practice, the model (5.5.9) happens very often, since the chain rule order is very often 
not available (e.g in |Aji and McEliece (2000)]).

5.5 .3 .1  C on d ition a lly  in d ep en d en t (C l) factorization

Given the index set w, =  {7r(?’) , } in (5.5.9), we will see below th a t there exists a 
close relationship between topology in Section 5.2 and re-factorization forms of (5.5.9).

P rop o sitio n  5 .5 .1 . The first-appearance (FA) ( i)  and no-longer-needed (NLN) [i] 
sets yield two choices of probabilistic chain rule order, one forward and one backward, 
respectively, fo r  f{x.ii) in (5.5.9), as follows:

n n

/(xn)=nf(i)=rifw (''■>■''■>•11)
i = l  i = l
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where:

^ { i ) - =  / ( ^ ( i ) l ^ ( i ; i - i ) )>  i =  (5.5.12)

^[i] / ( ^ [ z ]  ) / ( ^ [ t ] l ^ [ i + l : n ] ) )   ̂ 71, . . . , 1

Proof. We only need to prove the ease (i), bccausc tlie case [x] follows the same logic. 
Then, the key solution is to prove the following relationship:

/(x (t:„ ) |x (i.i_ i))  =  Vi G {1 ,... ,n} (5.5.13)

because if (5.5.13) is valid for all i, equations (5.5.12) is valid by induction.
For proving (5.5.13), let us exploit the chain rule and the properties (5.2.1,5.2.7) of FA
sets (i), as follows:

/(x n )  = /(x (i:„ ) |x (i ,i_ i)) /(x ( i,i_ i) )  (5.5.14)

/ ( ^ u J i  n )  — / ( X ( i ; n )  ) / ( 3 ^ r ; | i _ ] | )

Then, from (5.5.10), we can compute the joint and marginal distributions in (5.5.14), 
as follows:

/ (X j i )  = gi:n g l: i - l  (5.5.15)

/ ( X ( l : i - 1 ) )  =  =  ( Y1
/ ( x ^ i : „ ) =  f i ^ n )  =  g i n i  g l -*- ' )

St:n)( Y1

in which we have applied the distributive law in (5.5.15), owing to separable domains of 
the functions g (see equations (5.4.5)). Substitute (5.5.15) into (5.5.14), we can evaluate 
both conditional distributions in (5.5.14):

= 7 7 ^ 7 ^  =  (^.5.16)

/(X u ;.:n )  ^  g .:n

Si:n

which yield (5.5.13). □

Note that, even though the ftmction /(xsi) =  gi;„ =  HILi !Ji ^ valid probability 
distribution, the product g j„  =  Y\^=i9j^ arbitrary i, is not necessarily a valid
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distribution, if the functional factors gi, i =  1 , . . .  ,n , do not follow a probability chain 

rule order of / ( x j j ) .  In fact, the function gi may not be a valid probability distribution 

to begin with.

Even so, owing to G D L and C l structure in (5.5.15), the functions g,:n and X^x(i „) Si:n 

in (5.5.16-5.5.17) are not necessarily valid probability distributions in order for equality 

(5.5.18) (,o be valid. In order words, the C l sl.ructure hfus id(!n(,ified a chain rule order, 

and provided a practical method for factorizing arbitrary distribution.

This remark is important and interesting, particularly in probability context. Given 

an arbitrary non-negative fimction gi:„ € [0 ,R +), the issue of computing normalizing 

constant Si n / ( ^ n )  =  where / ( x j i )  G [0,1], is typically prohibitive,&l:n
because of the curse of dimensionality. In contrast, the recursive computation for 

normalizing constant of conditional distributions in (5.5.16-5.5.17) is typically efficient, 

since the number of operators falls exponentially with number of N LN  variables. In 

other words, it is possible to recursively factorize / ( x j j )  and compute its conditional 

distributions form in polynomial time, owing to application of G D L in (5.5.1G-5.5.17), 

without the need of computing the prohibitive normalizing constant Si'" 

whole set of xj;. Similarly, any moments of / ( x q ) can be computed recursively, via that 

Cl factorization form (5.5.11) of / ( x n ) ,  instead of being computed directly over / ( x j i ) ,  

wliich essentially requires computing nornializing cotistant Si "-

This interesting C l factorization form can be verified feasibly via the following 

Proposition:

P ro p o s itio n  5 .5 .2 . The ternary partition of fl in Proposition 5.2.6 yields a ternary 

factorization form fo r  f{'x.ii), as follows:

/ ( x n )  =  /(x (i+ i;„ )|x ^ ,.,) /(x ^ j.,) /(x [i.i] |x ^ (,,)  (5.5.18)

where i 6 { 1 , . . .  ,n }  and:

n

=  n  (5.5.19)
j= i+ l

i
/(x[l:i]|x„H,) = n%]

J=1

Proof. Because the sequences are each in chain rule order, in consequence of

Proposition 5.5.1, both equations in (5.5.19) satisfy the chain rule. For (5.5.18), we 

can sec that 1 f( i)  =  fi'X-{i:i)) — / ( x 7)(i])/(x[i:i]|xT;|i|) satisfies the chain rule, since
(1 : i )  =  [1 : z]}. □

The re-factorized form (5.5.18) for a special case, namely H M C  model, will be 

illustrated in Fig. 6.4.1 in Section 6.4.
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5 .5 .3 .2  C l to p o lo g y  versus C l factorization

N ote th a t,  th e  Cl topological stru c tu re  via FB recursion (5.4.6-5.4.8) is a com putational 

technique, while the  C l factorization  via chain rule (5.5.18) is a p robabilistic m ethod­

ology. In order words, th e  form er involves quan tita tive  values and practical im plem en­

ta tion , while the  la tte r  gives us insights abou t model characteristic. N evertheless, bo lh  

of them  yields the  sam e resu lt under GDL, as shown next.

For illu stration  , let us consider the  pre-sem iring ([0,1]'’̂ ", ffl, ©). T hen, th e  inference 

tasks l± l/(x n ) =  UJ 0 !L i f-wH), ^  siim m arized in Table 5.5.1, can be com puted via
X s X s  *  ̂'

two equivalent forms, th e  original form (5.5.10) and th e  te rn a ry  factorization  (5.5.18). 

A pplying G D L to these two forms, respectively, wc have:

ffl/(XQ) =  E  ( ffl g i+l:nO ffl gl:i) (5.5.20)

and:

B f { x u ) =  ffl ( / (x ( i+ i : „ ) |x , , | , | ) 0 / ( x ^ | , | ) 0 / (x [ i ; i ] |x ^ i , , ) )  (5.5.21)

w h e r e / (x ( i+ i .„ ) |x ^  ) =  ffl / ( x ( j+ i .„ ) |x ^  ) a n d /(x [ i . i ] |x ^  ) =  ffl /(x f i - i j lx ^ ,J .

C om paring (5.5.20) w ith  (5.5.21), we can see th a t  th e  resu lt of GDL applied to  the 

original form (5.5.10) is equivalent to  the result of GDL applied to  the rc-factorizatioii 

form (5.5.18), w ithou t th e  need to  com pute th a t  re-factorization form (5.5.21). This 

equivalence is useful when com puting sequential objective functions f f l  / ( x q ) .  For

exam ple, the  n  scalar m arginals can be com puted directly  v ia  the  original form (5.5.2), 

w ithout the  need to  derive the  re-factorization form (5.5.18).

5.6 Summary

In th is chapter, the  generalized d istribu tive law (GDL) was revisited and new insights 

were gained froTti a  topological perspective. Let us suiniriarize here th ree  m ain achieve­

m ents of th is  new perspective:

F irstly, wc have defined the  G DL via an ab s tra c t algebra for fim ctions, ra th e r than  

the  approach using variables in th e  literature. Hence, it was feasible to  show th a t  the 

GDL always reduces th e  to ta l num ber of operators, when applicable.

Secondly, by separating  the  concept of operator indices from  variable indices, we 

have applied set algebra and set up  a conditionally independent (C l) s tru c tu re  for the 

original model. This topological C l s truc tu re  was also shown to  be equivalent to  Cl 

factorization  in the probability  context. Hence, the GDL is b e tte r  understood  as a 

tool exploiting original C l structu res, ra th e r th an  being a cause of th a t C l str\ict,ure.
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Conversely, the design o f C l structures, embedded in the orig ina l model, can be guided 

by the amount of reduction achieved when applying the G D L.

'^riiirdly, a new com putational s truc tm c, namely FB  recursion, fo r the G D L was also 

designed. W hen applied to  Bayesian inference, the FB  recursion is also a generalized 

form  of well-known algorithm s, such as the Forward-Backward (FB ) a lgorithm  and 

V il.erhi a lgo rilhm  (V A ), bo th  o f which we w ill s tudy in  C h a jitc r fi. Furlhern iore, 

a new in te rp re ta tion  o f entropy com putation v ia  the G D L was also provided. This 

in te rpre ta tion  w ill be useful in  understanding the re la tionship  between the V ite rb i 

a lgorithm  (V A ) and VariaLional Bayes (V B ) approxim ation for the hidden M arkov chain 

(H M C ) in the next chapter.
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Chapter 6

V ariational Bayes variants of the 
V iterbi algorithm

6.1 Introduction

For stalo  inforoncc of a Hidden Markov Chain (IIMC) with known i)aramct,ors, wo will 
study, in this chapter, four well known algorithms in the literature, corresponding to a 
trade-off between performance and computational load:

- Forward-Backward (FB) algorit.hm can comput.o the exa^t marginal posterior 
distributions recursively, yet the cost is typically prohibitive in practice.

- By confining the inference problem to certainty equivalent (CE) estim ate (Section 
4.5.1.1), the Vitorbi algorithm (VA) is able to compute recursiv(!ly tlie <;xact joint 
Maxirnum-a-posteriori (MAP) sta te  trajectory estimate, with acceptable complexity.

- Further restricting CE estim ate to a local joint MAP, the Iterated Conditional 
Modes (ICM) algorithm is even faster than VA, yet ICM ’s reliability is undermined be­
cause of the dependence on initialization and a lack of understanding of the methodology 
currently.

- Maximum Likelihood (ML) is the fastest estimation method, but neglects the 
Markov structure of the hidden field and consequently has the worst performance.

In this chapter, we will re-interpret these methods within a fully Bayesian perspec­
tive;

- FB will be shown to be a consequcncc of FB factorization of the posterior distri­
bution, which is an inhomogeneous HMC.

- VA actually returns shaping parameters of another HMC approximation, whose 
joint MAP estim ate is equal to  the exact joint MAP trajectory of posterior. This novel 
Bayesian interpretation of VA not only reveals the nature of VA, but also opens up an 
approximation framework for HMC.

- As a variant of VA, but further confined to the independent class of hidden 
field posterior, Variational Bayes (VB) approximation is a reasonable choice for the 
conditionally independent (Cl) structure of HMC posterior. Owing to this Cl structure.
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a novel speed-up scheme for iterative VB (IVB) algorithm in VB m ethod will also be 
proposed in the chapter.

- Finally, ICM will bo shown to bo equivalent to the so-called functionally constrained 
VB (FCVB) approximation.

6.1.1 A brief literature review of the Hidden Markov Chain (HMC)

For many decades, the first-ordcr Hidden Markov model (IIMM) has been widely used
a stochastic model for the dependent (dynamic) sequential data. The fundamental 

problems of HMM are to infer both its param eters and the latent variables. For general 
treatm ent of all kind of IJMM, we refer to the textbooks |Cappe et al. (2005); P>uhwirth- 
Schnatter (2006)], wliicli have a thorough review of HMMs in the literature.

Throughout the chapter, we focus on the simplest case of HMM, namely finite 
sta te  homogeneous HMC with known parameters. Despite simplicity, this model has 
been used successfully in various application domains, e.g. speech processing [Rabiner 
(1989)], digital communication jBahl et al. (1974); Moon (2005)] and image analysis [Li 
et al. (2000)].

The label inference of Markov chain became recursively tractable owing to  Forward- 
Backward (FB) algorithm, firstly proposed by Baum et al jBauin et al. (1970)]. In 
their Baum-Welch algorithm (currently known as the Expect,ation-Maximization (EM) 
algorithnv for HMC with unknown transition n\atrix (Cappe et al. (2005))), the FB 
algorithms is used as an Expectation step for label field. FB algorithm was also 
discovered in other fields \mder different names, such as BC.IR algorithm ]Bahl c t al. 
(1974)] in channel decoders (as reviewed in Section 2.3.3.2), Kalman filtering and 
smoothing (two-filters formula) (Fraser and Potter (1969)] in Gaussian linear sta te  space 
model and the sum-product algorithm [Pearl (1988)] in graphical learning.

For HMC, the recursive marginalization in FB, however, are slow and become a 
serious problem in applications re(}uiring a fast estim ation method. Hence, the poinL- 
estimate-based Viterbi algorithm (VA), firstly proposed in [Viterbi (1967)], was designed 
to recursively evaluate the true maximum-a-posteriori (MAP) of joint trajectory. By 
replacing marginalization with maximization, VA can be computed much more quickly 
than P’S, which requires all marginal inference of each label. Owing to  efficient recursive 
computation, the application of VA is vast (see for example the history of VA in [V' îterbi 
(2006)]). VA is often presented via the so-called weighted length in trellis diagram, a 
concept in graphical learning, as firstly formalized in [Forney (1973)]. This approach 
does not, explain its relationship with FB properly, and also lack im portant insight of 
its approximated property.

The fast Iterated Conditional Modes (ICM) algorithm, firstly proposed in [Besag 
(1986)], is widely used in two scenarios. The first o t i c  is Markov randoin fields [Winkler 
(1995); Dauwels (2005); Dogandzic and Zhang (2006)], in which ICM is applied to 
finding local joint MAP of the hidden label field with low com putational load [Stark and
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Pernkopf (2010)]. The second scenario is Expectation Conditional Maximization (ECM) 
algorithm, in which ICM is used to  replace the M-step in the Expectation Maximization 
(EM) algorithm |Zhao and Yu (2008)|. However, ECM has been deployed only for rion- 
closed forms of M-step, with ICM used instead as a closed-form approximation. To 
the best of our knowledge, the material in this chapter is the first to study ICM as a 
c.losed-forni apjjroxitnat.ion for I,ho IIMC with known jiarametcrs, and (o charact.erizo 
ICM as a VB variant.

6.1.2 T he aims o f th is chapter

In this chaptcr, wc will provide a deterministic Bayesian approximation framework 
for label inference in the HMC, and study the trade-ofF between performance and 
computational load.

Firstly, the FB algorithm will be presented as a factorizat.ion scheme for an inho- 
mogeneous IIMC posterior.

Then, we will show th a t VA is a sparse CI5-ba.sed HMC approximation of original 
IIMC, in which their joint MAPs are undisturbed. Because tracking the joint MAP in 
tlia t sparse HMC is much faster than in the original HMC, this Bayesian perspective 
does not only reveal the core-trick of complexity reduction in VA, but also motivates 
another Bayesian approximation, namely a Variational Bayes (VB) approximation from 
iriean field theory.

Fundamentally, VB seeks an approximating distribution within the independent 
functional class, such th a t its Kullback-Lcibler divergence (KLD) to the original distri­
bution is minimized. In the literature, VB methodology has been applied successfully 
to  intractable inference of HMM with unknown param eters [Smidl and Quinn (2008); 
Mcgrory and T itterington (2009)]. Although the Markov chain with known parameter.s 
in this paper is completely tractable, we still use, for the first time, VB for HMC label 
inference as an attem pt to further reduce the computational load.

Furthermore, a novel accelerated scheme will be proposed in order to  reduce com­
putational load of iterative VB algorithm significantly. In Cl structures such as HMC, 
this accelerated scheme can reduce the total number of IVB cycles to a factor of log(n), 
with n  denoting the number of labels.

As a consequence, a functionally constrained VB (FCVB) approximation will be 
developed to  produce a local joint MAP estimate for hidden label field, baaed on iterative 
CE propagation among all of VB marginal distributions. This FCVB scheme will be 
shown to be equivalent to  ICM algorithm. The virt.ue of the FCVB optic will b(! 
helpful to  understand the property of ICM. Moreover, it will allow us to inherit a 
novel accelerated scheme arising in the VB approximation for the HMC model. The 
accelerated FCVB constitutes a faster version of ICM.

In simulation, the performance of FCVB will be shown to be comparable to that 
of VA when the transition probabilities in HMC are not too correlated (i.e. when the
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correlation coefficient between any two simulated transition probabilities for the HMC is 
not too close to  one in magnitude). Note tha t, FCVB is an iterative scheme, while VA is 
not. Notwithstanding this, the indepondcnt structure of FCVB makes its com putation 
per iteration much lower than VA, yielding a much reduced net com putational load.

Finally, we will briefly recall the Bayesian risk theory of Hamming distance criterion, 
whic.li Wrus also reviewed in [Winklc^r (1995); Lcmher (2011)|. This will allow us to (>xi)lain 
the  perfonnaiice ranking we find under simulations in Chapter 8. From best to  worst, 
they are FB, VA, VB and FCVB algorithms.

6.2 T he H idden  M arkov C hain (H M C )

Assume tJiat we receive a sequence of data  x„ =  [x i , . . . ,  x„]' (the observed field), where
Xi = x[i] 6 K are samples at discrete time point i 6 Let us consider two
simple stochastic models for x„, as follows;

• The simplest model for x„ is independent identical distributed (iid) random 
variables. This model, however, is too strict and ncglects the dependent structure 
of interest in data.

• The next relaxation for x„ is the non-identical one, i.e. the independently dis­
tributed (id) ca.se, in which we assume Xi is sampled from one of M  classes 
of known observation distribtitions fk(xi) ,  k € M }. At each time i £ 
{1,2, . . . , n } ,  let us define a soft classification A1 x I vector (an A/-diitiensional 
statistic), as follows:

i ’(xi) =  [fi(xi), . . . , fM{xi)]'  ( 6 .2 . 1)

Furthermore, let us define the label vector li G { e ( l ) , . . .  ,c (M )}  pointing to the
stale, k, of wh(?n; e{k) is the k lh  elc'inenlary vector:

e{k) =  [<5[A :-1],...,J[A ;-M ]]'

and (5[ ] is Kronecker-J function. Owing to the id structure, the observation model, 
given the m atrix =  [Zi,. . . ,  is

n  n

=  '^xp(^/'logV'(a:,)) (6.2.2)
t = i  t = i

where, akin to  M atlab convention, operators such as exp and log are taken element­
wise. Note th a t, we adopt the vector form in right hand side of (6.2.2) in order 
to emphasize its Fjxponential Fairiily (RF) structure, as defined in (4.4.2).

Th(!ii, for the id ease, t he task of inferring the class of Xj is equivalent to inference
task of k  in (G.2.2). For this purpose, let us consider two simple prior models for label
sequence:
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•  Once again, the  sim plest model for discrete U is iid sam pling of th e  m ultinom ial 

d istribu tion  w ith  known probabilities, p =  [ p i , . . .  , Pm ]' in th e  probability  simplex 

(i.e. th e  suin-to-one sim plex), as follows:

f { k \ p )  = Mui . {p)  =  l[p =  exp(/' logp)

where th e  vector form is adopted  in order to  em phasize th e  C E F  form, defined in 

(4.4.4). In th is thesis, th e  no ta tion  Mui^{p)  =  A /u ;.( l ,p )  denotes m ultinom ial dis­

tribu tion  w ith one realization in to ta l. N ote th a t, in th is  case, th e  zth observation 

m odel f { x i )  is a m ix tu re  of M  known com ponents:

/(^«) = '^fi^i\^i)fih\p) = P ‘fP{Xi)
‘i

Owing to  id s tru c tu re  of x „  and conjugacy in E F, th e  posterio r d istribu tion  of li 

also belongs to  id d istribu tion  class, as follows:

f { h \ ^ n , p )  =  f { h \ x i , p )  = Mu i . ( j i )  oc f (Xi \ l i ) f { l i \p)

in which the  leng th -M  vector 7  ̂ is the  shaping p aram eter and 7 i oc xp{xi) o p , i G 

{ 1 , . . .  ,n } . T he norm alization constan t is derived by noting th a t  ')k,i ~  1)

no ta tion  oc dcnott;s a sum-t,o-onc operator and o is the I lad am ard  product.

•  However, th e  above independent m ix ture model is too  s tr ic t in practice, since it 

neglects th e  tem poral dependence. A widely adopted  dependen t model for k  is 

th e  hom ogeneous HMC:

n

f ( L n \ T , p )  =  l [ f { l i \ l i - ^ , T ) f { h \ p )  (G.2,3)
i=2

in which th e  known param eters are A/ x M  transition  m atrix  T  w ith sum -to- 

one colum ns (i.e. a  left stoc:hastic m atrix) and in itial p robability  vector j> in the 

p robability  sim plex, as illu stra ted  by the  D irected Acyclic G raph  (DAG) in Fig. 

6 .2 .1 . B y definition of th e  IIM C, we have:

f i h \ l i - i , T )  =  i e { 2 , . . . n }  (6.2.4)

/(/i|p) = Mui {̂p)

A lthough th e  posterio r p robability  /(Z ,n |x „ ) of individual jo in t tra jecto ries L„ in 

above HM C can be com puted feasibly, the  full inference of is in tractab le  owing
to  th e  exponential m crease in the  num ber M "  of jo in t tra jec to ries w ith  n , a problem  

referred to  as the  curse of dim ensionality [Warwick and K arny (1997)]. This rem ark will 

be clarified in the  sequel. T he discovery of a trac tab le  Bayesian m ethodology for this 
problem  will be central to  th is  chapter. N ote th a t,  th e  key idea beh ind  com putational
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STATE

Figure 6.2.1: Trellis diagram (lop) and DAG (bottom) for HMC. A; are the transition 
metric lengths a t time i.

reduction in this ciisc is simply to continc our inference task to special cases, and to avoid 
computing all M " joint jjosterior [)robabilities /(L „ |x „ ) . Those confined inferences can 
be marginal distributions, point estim ates or distributional approximations.

Throughout (,he chapt('r, t,h(?r(! will b(̂  some convenient, convontions for short<^ning 
notations: {T ,p} will be om itted occasionally, e.g. f{ l i \ l i - \ )  =  /( ii|Z ,_ i, T ), when the 
context is clear. The M  x 1 zero and unity vectors are defined as Om x \ and Im xIi 
respectively. The range of the index will be denoted by subscripts, e.g.: =

. . .  ,XnY, Li+in =  [Zj-i-i,. . . ,  Z„]. When i ^  em pty set convention will
be applied, e.g. Ln+i-n =  0, and L q — 0. The value of arbitrary distribution f{9)  at 
6 will be denoted as f{6)  = f { 0  = 0). For avoiding ambiguity, point estim ates such 
as li or Ln will be re-defined as marginal MAP, joint MAP, etc. separately in each 
section. For computational load, let us denote exponential, multiplication, addition 
and maximization operators as E X P ,  M U L ,  A D D  and M A X ,  respectively.

6 .2 .1  S eq u en ce o f  m arginals for general lab el field

The purpose of this sub-section is to  study the computational load when we confine the 
infcrcncc from the M "-tcrm  joint f{Ln\Xn)  to just n  smoothing inference /(M x n ) = 

f{L„\x.n),  where Ly; is the complement of li in L„, i G The general
(not necessarily Markov-constrained) model / (x „ ,L „ )  for label field L„ will be studied 
in this sub-section, while the HMC model will be studied in next sub-section.
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6 .2 .1 .1  S ca lar  fa c to r iz a tio n  for la b e l field

Firstly, let us investigate why direct marginalization over the joint /(L „ |x „ )  oc /(x „ ,  L„) 
is intractable. By the general chain rule, any general model / (x „ ,  L„) can be factorizcd 
into scalar factors, as follows:

n
f { ^ n , L „ )  =  (6.2.5)

i= 2

Now, let us examine the cost of computing the sequence of posterior matrginals: 
because there are n  multiplication factors in (6.2.5), the probability /(x n ,L „ )  of each 
trajectory Z/„, given x„, needs 0 { n )  of MUL operators. In order to marginalize out 
L\ i ,  for each /( /i |x ,i) , we have to  evaluate all probabilities of trajectories L\j ,

i.e. X 0 { n )  ss 0 { n M ' ^ )  of MULs in total. Finally, for n  smoothings /( / i |x „ ) , we
would need n  x 0 { n M ' ^ ~ ^ )  w 0 { n ^ M " )  of MULs, which increases exponentially with 
n.

6 .2 .1 .2  B in a r y  p a r t it io n s  for lab el field

A part from scalar factors, the general model (G.2.5) can also be factorized into two 
forward and backward sub-trajectories, Lj and Li+i:n, respectively:

} ip^ni ^Ti) ~  f  f  (6.2.6)

where i 6  { l , . . . , n } .  Those two sub-trajectories, in turn, can be binarily factorized in 
the manner of a binary tree:

/ ( x i ,L j )  =  / ( x i , / i |x i _ i , L i _ i ) / ( x i _ i , L i _ i )  (6.2.7)

f  —1) —1) “  f  l^i—1 ? 1 )/(^ i+ l:n j ^ i )

Note tliat, tlie cost of computing the sequence of postei ior iriargitials via FR factor­
ization (6.2.7) is at least the same as tha t cost in scalar factorization in (6.2.5), bccausc 
there is no Cl structure for L„ in original n  factors (6.2.5). Nevertheless, when the 
general model (6.2.6) is specialized to the HMC model, the FB factorization (6.2.7) will 
lead to the  tractable FB algorithm, as explained below.

6.2.2 Sequence o f m arginals for the HM C

By exploiting Markovianity in the HMC model, the FB algorithm, firstly proposed in 
[Baum et al. (1970)], computes all smoothings /( /; |x n )  in a recursive way, without the 
need to computc the M " values of /(L „ |x „ )  explicitly. In this sub-section, the tradi- 
tioTial FB algorithm will be re-interpreted as a recursive update of Bayesian sufficient
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statistics. This fully Bayesian treatm ent will be helpful in understanding the underlying 
methodology, which we will later present in Section 6.3 on point estimation.

l"hc r(!cursivc FB algoril,hm, as shown below, can divide the trajectory L„ into 
sub-trajectories and reduce the complexity down from exponential form 0(jn?M'^) in
(6.2.5) down to linear form 0 { 2 n M ^ )  of MUL. For this purpose, let us study the scalar 
faclorizaiion in our IIMC mod(;l first,.

6 .2 .2 .1  M a rk o v ia n ity

Multiplying the id observation model (6.2.2) by the IIMC prior (6.2.3), the joint distri­
bution for the HMC context is:

/ ( x „ ,L „ |T ,p )  =  f { x „ \ L „ ) f { L n \ T , p )  (6.2.8)
n

= ri ’ T ) / ( x i , /i Ip)
i=2

in which we have exploited Markovianity of The augmented form for Xi and 
i G {1 ,.. . ,n} , is:

/ ( j ; i , i i ip )  =  J{xi \ l i )J{h\p)  (6.2.9)

= f{xi\l i)fik\li_uT)

By comparing the general model (6.2.5) with the IIMC model (6.2.8), we can
recognize the following Markov property, which will be exploited throughout the chapter:

f { x i , l i \ k - i )  =  /(a :i,Z ilx i_ i,L i_ i) (6.2.10)

6 .2 .2 .2  F B  re c u rs io n

Let us substitute Markov property (6.2.10) into (6.2.7) and marginalize the result in
(6.2.6). In this way, we can evaluate the smoothing marginals /( / t |x „ )  oc / (^ m  ^n) 
via generalized distributive law (GDL) (Section 5.4), as follows:

/ ( / j |x „ )  oc / (x ,+ l:„ |/ i) /( / i |X j)  (6.2.11)

in which the two marginalized sub-trajectories f{l i \xi)  oc /(^»>^») f{^i+i:n\h) =
Xi+i:„, L i+i.„|/;), in turn, can be computed recursively:
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/ ( / i |x , )  a  (6.2.12)
^ * - 1

l )  ~  ^  ^ / (^ i>  Ki —1 )/(^i-)-l :n |^i)
I,

where i €  { 1 , . . .  , n } .  B y  replacing direct m arginalizations of L i - i  and Li+i-,n in (6.2.7) 

w ith  th e  chain rule for m arginalization (6 .2 .12), we have greatly  reduced the total 

com ptitational load of 0 ( M " “ *) and 0 ( M ' ~ ^ ) ,  for cach tim e i, dow n to  0 { M ^ )  and 

0 { M ^ ) ,  respectively. Hence, th e  cost for all n  sm ooth ings /(Z j|x „ ) is 0(2 nM^ ) .

Rm nark  6 .2 .1 . N ote th at, recognizing M arkovianity (6 .2.10) is the v ita l stop for this 

schem e. O therw ise, th e  distributive law cannot be applied to  general m odel (6.2.6) 

to  yield  (6 .2 .11). In th is sense, the FB factorization (6 .2 .6-6 .2 .7) is a  natural way to  

exp loit th e  conditional independent (C l) structure in th e  HM C, thereby reducing the  

com plexity  v ia  the generalized distributive law (G DL) (see Sections 5.4, 5 .5 .2 .1).

6 .2 . 2 . 3  F B  a l g o r i t h m

From (6 .2 .4), (6 .2 .9) and (6 .2 .12), the shaping param eters a{  for filtering marginals, 

/ ( / i |x i )  =  Mul^{ai ) ,  as well as th e  un-norm alized length-A f vector sta tis tics  Pi =  

/3j(xj+i:„) governing the backward observations m odel /(x i+ i:„ |Z j) =  i =  l , . . . , n ,  

can be evaluated  recursively and in parallel, as follows;

a i  oc ipi o p  (6.2.13)

ai  oc V’t ° ( T Q ,_ i ) ,  i =  2 , . . . , n

where rpi are the soft-classification  vectors (6 .2 .1), and:

Pn =  i M x l  (6.2.14)

Pi =  T'(^/)j0 ^ i+ i) , i =  n - 1 , . . . , 1

B y siib stitu tin g  (6 .2 .13-6 .2 .14) into (6 .2 .11), the shaping param eters, 7 i, o f the  

sm ooth ing  m arginals, f { l i \ x „ )  =  Mii;^(7 j), can be readily evaluated:

'Ti cc Pi o oii, i =  { l , . . . , n }  (6.2.15)

T he F B  algorithm , firstly proposed in [Baum et al. (1970)), consists of sim ultaneous  

forward (6.2.13) and backward (6 .2.14) recursions for com puting a ; and Pi,  respectively. 

However, the Pi  evaluation (6.2.14) typ ically  incurs a m em ory overflow. Stabilization
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A lg o r it h m  6 .1  FB  algoriChm
S to r a g e :  2n len g th -M  vectors Oi, Pi in (6 .2 .13-6.2.14)
R e c u r s io n :  evaluate (6 .2 .13-6 .2 .14), and norm alize Pi :=  Pi / ^ k = i  
T e r m in a t io n :  E valuate 'yi oc Pi o ni ,  i £  { 1 , . . . ,  n} .
R e tu r n  li =  a rg m a x /j(7 -/i), i =  1 , . . .  , n.

is achieved v ia  a norm alization step , w hich was firstly proposed in [Rabiner (1989)], as 

shown in A lgorithm  6.1.

6.3 Point estim ation for HMC

In practice, it is often  desired to  com pute point estim ate  . . . ,  Z„] for th e  hidden

label field. For those d iscrete labels, th e  m ode is a  reasonable estim ate. However, in 

general, the decision on w hat inference should be used leads to  a tradc'-off betw een  

perform ance and com putational load, as shown below.

6.3.1 H M C estim ation  via M axim um  likelihood (ML)

If th e  IIM C prior / ( L „ |T ,p )  is neglected, we can d irectly  evaluate ML estiTnate L„ =  

argm axz,,, / ( x „ |L „ )  =  argmax/,,^ H iL i f i ^ i l h ) ,  as follows: li =  argm ax;, (Z'V'i), where 

i €  { 1 , . . . ,  7i}. B ecause the m axim ization  operator is very fast and straightforward, the  

com putational coniplexiLy of ML estim ator is very low and no m em ory is required.

6.3.2 H M C estim ation  via the M A P  of m arginals

T he sequence of m arginal M A P can be defined as li — argmax;^ /(^ i|x „ ) , i €  { 1 , . . .  , n} .  

T he sm ooth ing  m arginals, / ( / t |x „ ) ,  arc provided by th e ou tput o f F B  algorithm  (6.2.15), 

i.e. li =  argm ax;^(/-7 i) .

N otice that th e  sequence of m arginal M A P m ay b e a zero-probability trajectory  

|C appe et al. (2005); Fraser (2008)|. Hence, in m any eases, the jo in t M A P  of the 

length-n  trajectory, L „, is preferred, since it is alw ays a non-zero-probability  trajectory. 

We address th is task  next.

6.3.3 H M C estim ation  via the M A P  o f trajectory

B y B ayes’ rule, th e  M A P  of trajectory is =  arg m a x /(L „ |x j i)  =  a r g m a x /(x „ ,Z ,„ ) .
Ln Lji

B ecause m axim izing / ( L „ |x „ )  directly over M "  trajectories is prohibitive, we will 

com pute L„ sequentia lly  v ia  li €  Ln,  i  G { l , . . . , n } .  T h is can b e achieved via  two 

approaches: iiarallel m em ory-extraction  (bi-dircctional VA) and recursive m em ory- 

extractioii (VA). In order to  understand th e  underlying m eth odology  of th e  latter, we 

will i>resent th e  former first.
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6 .3 .3 .1  B i-d ir e c t io n a l V A

The computation of the MAP element l{ S L„. as defined above, will be tractable if 
we cxtract it, not from the joint infcrcnce, /(L n |x „ ) , but from n  profile smoothing 
inferences:

fp ik l^n)  -  oc m a x /(x „ ,L „ )
L \i

whore i G { 1 ,2 , . . . ,n}.  Then, we have:

/j =  arg m ax /p (/i|x „ ), i e { l , . . . , n }  (6.3.1)

Tn the same biiiary-tree apjjroach of the FB algoritliin (6.2.11), applying the Markov 
property (6.2.10) to  the  joint model (6.2.6) and maximizing the result, wc have:

fp{h\xn)  oc /p(x,+ i:„|/,)/p(Z,|x,) (6.3.2)

in which the profile filtering inferences /p(Zj|xj) =  /( / i |L i_ i,  Xj) oc iiiax£,^_j f { x i , L i )  and 

backward profile observations fp{x.i:n\h-l) =  /(Xi:n|-^^i:n> ^i-l) oc maX/,..„ /(Xi:n,^'t:nl^i-l)! 
can be maximized recursively:

/p (/,|x i) oc m a x /(a ;i,/i |/i_ i) /p (/i_ i|x i_ i)  (6.3.3)

f p { x i : n \ h - i )  OC m ax/(x i,/i|Z i_ i)/p (x ,+ i:„ |/i)  (6.3.4)
*»

where i 6 {I , . -  - ,n}. By replacing the marginalizations (6.2.11) in the FB algorithm 
with mfiximizations, we can evaluate profile distributions in (6.3.2) in log domain, 
which reduces the coini)utational load from 0{2nM ^)  irudtiplications for FB, down to 
0 { 2 n M ^ )  additions, with the addition being much faster than multiplication in practice. 
This variant scheme is well known as bi-directional VA in the literature [Viterbi (19f)8)|.
The bi-directional VA is also called soft-output variant of VA [Moon (2005)], because
it produces both hard and soft information, i.e. both Zj and /p(Zi|x„), respectively.

6 .3 .3 .2  T h e  V ite r b i A lg o r ith m  (V A )

In the second approach, which is the traditional VA, wc will, oncc again, exploit Marko- 
vianity and further reduce computational load by establishing titne-variant relations hi', 
l i - i  = hi(li), i G {2, . . . , n } ,  where li £ L„, the joint MAP of trajectory, as before. 
Then, in the HMC, these li can be computed recursively, w ithout the need to evaluate 
the profile distributions /p(Zi|x„), as in (6.3.1).

For motivation, let us evaluate the pair li} via second-order of profile smooth­
ing distributions /p(Zj-i, Zj|x„) =  / ( Z j _ i , j j ,  x„). expanded from the first-order 
profilas (0.3.2), as follows;
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(6.3.5)

with i G {2, . . . , n } .  Hence, the second way to find i, Zj} is a stage wise maximization, 

in which we need to  find one of them first, /j =  argmaxi^(max;;_, /p (/i- i ,/t |x n ))!  and 
then substitute li = li into (6.3.5), from wliicli / j - i  =  hi(li = li), i € { 2 , . . .  ,n} , may be 
computed aa follows:

whore (6.3.6) follows from (6.3.5) and the factor /p(xi+i:„|Zj =  /;) waa excluded in 
argm ax operator in (6.3.6). In this way, hi{li) can be recognized as a conditional 
certainty equivalence (CE): /ii(/j) =  l i-i{li) = axgmaxj. j/p (Z t-i|ii,X n). Moreover, 
comparitig (6.3.6) wil-h (6.3.3), w(; can s(u; that, an; cons(Hiuences of the forward
step and, hence, its values can be stored in the memory in an online manner. Given 
1,1 a t the end of the forward step, i.e. via (6.3.1), we can directly trace back all other 
labc^ls l „ - i , . ■ ■ . li via the stored valura =  /^i(/^), i 6 { 2 ,. . .  ,ri}, w ithout the need 
to evaluate the backward step (6.3.4) and profile smoothing distributions (6.3.1-6.3.2). 
Hence, VA halves the computational load of bi-directional VA by requiring computation 
of the forward step (6.3.3) only.

Now, we can formalize VA via two steps, as detailed next.

V iterb i Forward step

By substituting (6.2.4) into (6.2.9), we can express/(x i,Z i|/i_ i) in (6.3.3) in exponential 
form, as follows:

in which the sufficient statistics Ai, collected into a sequence of n  length-M  vectors, and 
the information measures A; =  At(a:j), being a sequence of n  — 1 M  x M  matrices, can 
be defined as follows:

l i - i  = a rg in a x /p ( / i_ i | / i  =  /j,x „)

=  a rg m a x ( /( i i , / i  =  /i|/i_ i)/p (/i_ i |x i_ i)) (6.3.6)

f { x i , h \ p )  = exp (-/',A i)

/ ( .X i, / , |Z i- i ,T )  =  cx p (-Z 'A i/ j_ i) ,  i = 2 , . . . , n

(6.3.7)

Ai =  -(log(V;i) +  log/^)

=  -( lo g (^ .l 'A ^ x i)+ lo g T ), i =  2 , . . . , n

(6.3.8)

(6.3.9)

122



CHAPTER 6. VARIA:riONAL. B A Y -S  VARiA^JT" - -  TH f Vi r;':,RBl ALGOP ”

where rpi are the soft-cleissification vectors (6.2.1).

Finally, substituting (6.3.7) back into (6.3.3), the shaping parameters a i  of the profile 

filtering distributions /p (/j|x t)  — M ui . {a i )  in (6.3.3), i  € can be ovaluated

in log-domain as follows:

cx oxp(—Ai) (6.3.10)

=  m in(A j(j,A :) +  Afc,_i) (6.3.11)
k

=  a i'gm m (A i(j,/c) +  Afc i_ i)  (6.3.12)
k

where Aj_j and Kj î, j  6 { 1 , . . . ,  M } ,  denote j th  element of vectors Ai and Ki, respectively,

and A i { j , k )  denotes element at j t h  row and fcth column of m atrix A j, I  <  j , k  <  M.

Note tha t the conditional CEs / i_ i( / j)  in (6.3.6) can be found feasibly via (6.3.12); 

hi{ l i )  =  i  € {2, . . . , n } ,  where t { j )  in general denotes the j t l i

elementary vector in

In the literature, A; and A ; arc not given this novel Bayesian perspective. Indeed, 

the term “metric length”  is often assigned to the elements A j( j ,  k) [Forney (1973)|, owing 
to their positive value and representation as an edge in trellis diagram (Fig. 6.2.1).

Moreover, the forward recursions of profile filterings /p (/ j|x i)  in (6.3.3) are often 

considered as maintaining M  “survival” maximal trajectories, reduced from the original 
M * trajectories in /(L^ lx^). The reason for this language is the fact tha t one of the M  

length-i trajectories in /p (/ j|x i)  is the prefix of the global M AP trajectory Hence, 
eadi element Aj_j in (6.3.11) is often called the “weighted length” of the j t h  survival 

tra jectory at time i, j  € { 1 , . . . ,  M }  [Forney (1973)|.

V ite rb i b a c k -tra c k in g  step

From (6.3.6), the jo in t M AP trajectory, L „ ,  can be evaluated via a fast backward 

recursion. The last label estimate is found first, i.e. we have In =  a rgm ax/p(Z„|x„) =

e{kn), where:

k„  =  argmin(Aj_„) (6.3.13)
j

Then, the previous labels Zj_i =  =  l i) =  e(k i - i ) ,  i  =  2, . . . , n ,  leading to

can be recursively traced ba(‘k using the Ki vectors of V iterbi forward step (6.3.12), as 
follows:

fc.-, (6.3.14)

123



-/.v: r; VARIANTS O f Tf iE Vu CRBI ALGQRITi-iM

A lg o r ith m  6.2 Viterbi Algorithm (with similar convention to  [Forney (1973)]) 
S to ra g e : Length-M  vectors Hi, i £ {1, ■ ■ - ,n}, as in (6.3.12)
In itia liz a tio n : evaluate (6.3.8)
R e c u rs io n : For i £ { 1 ,. . .  ,n}: evaluate (6.3.8-6.3.9) and (6.3.11-6.3.12) 
T e rm in a tio n : evaluate (6.3.13- 6.3.14)
R e tu r n  li = e{ki), i = I , . . .  ,n .

Remark 6.3.1. Noticc that, Markovianity is the vital condition, exploited by the VA in 
com putational reduction. W ithout it, the max operators cannot be distributed recur­
sively in (6.3.2). Com putation, both the recursive addition in (6.2.12) and maximization 
in (6.3.2) arc special cases of the generalized distributive law (GDL) (sec Sections 5.4, 
5.5.2.2).

V ite rb i a lg o r itliin

The VA, firstly presented in [Viterbi (1967)] for channel decoding context, was formal­
ized via trellis diagram for the HMC in [Forney (1973)] (Fig. 6.2.1). Note th a t the MAP 
of trajectory  may change entirely based on the last observation x„, owing to  (6.3.13). 
The VA (Algorithm 6.2) is, therefore, an offline (batch-based) algorithm.

6.4 R e-in terp retatio ii o f F B  and VA v ia  C l factorization

In the Bayesian viewpoint, the Markov property (6.2.10) not only reduces the compu­
tational load for inference on the joint model (6.2.6), but fundamentally, also yields a 
Cl factorization (6.2.8) for posterior distribution of label field. In this section, we will 
re-interpret the outputs of FB and VA, and show tha t they are merely a consequcnce 
of Cl structure, i.e. FB returns the shaping param eters of HMC re-factorization, while 
VA returns the shaping param eters of a degenerated HMC.

6.4.1 Inhom ogeneous H M C

In the literature, it has been shown tha t the posterior distribution of hidden label field, 
given id observations (6.2.2) and prior homogeneous HMC (6.2.3), is an inhomogeneous 
HMC [Cappe et al. (2005)|. In this sense, HMC prior (6.2.3) is a conjugate prior of id 
observation model (6.2.2), in the sense defined in Section 4.4.2.4. We will clarify this 
result via the following proposition:

P ro p o s it io n  6 .4 .1 . The -posterior distribution of the homogeneous HM C (6.2.3), given 
conditionally id observation (6.2.2), is an inhomogeneous HMC:

f{Ln\'^n) — (6.4.1)

in which i 6 { 1 ,. . .  ,n}  and:
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STATE

k =  1 

k =  2 

k =  M  Q

B ,i+ 1

d>' ■ ■
i - \ i + r

Figure 6.4.1: Posterior d is tr ib u tio n  o f H M C  in  F ig. 6 .2 .], v ia  FB  a lgorithm : tre llis  
diagram (top) and D AG  (bo ttom ). Symbols are explained in the text.

/ (Z/ j —i X n )  =  y(Z /i—i| / i ,  X i_ i)  =  /(^ jK j+ 1 1 X j)  (6.4.2)
>=i

7 i

f  ~  ^ i + l : n )  — j|̂  1  /  K j —1) ^ j : n )
j= i+ l

P roof. Note th a t (6.4.1) s im p ly follows the p robab ility  chain rule for any general d is tr i­

bu tion  / ( L „ | x „ ) .  For the p roo f o f (6.4.2), substitu ting  M arkov p roperty  (6.2.10) in to 

the jo in t inference (6.2.6), we have:

1 ^ n ) —
/ ( X i _ i , L , )

=  / ( L j _ i | / i , X i _ i ) ,  Vi e { 1 , . . .  ,n }

r / T  IT- „  \  _  / ( X f i ;  L n )  _  / ( X j : n i  L i - n \ l j - i )

=  f  (Z/j;7i[/j_l , X i;^ ), VZ G {1 , . . . , 7 l }

B(;causc the above equations arc valid for all i  € { 1 , . . .  ,n } ,  we can derive the righ t 

hand side o f (6.4.2) by induction. □

Note th a t, the FB  a lgorithm  (A lgo rithm  6.1) is actua lly  im plied by the C l factor­

ization in  (6.4.1), as shown in  Propositions 5.5.1,5.5.2. Then, the  backward transitions
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probabilities:
f i i  i;  V 's _  / ( ^ i i  ^1-1 N i - i )
J  Vn—11̂ 1) J f  j ^i— 1 l^ t  —1) 

and forward transitions probabilities:

i l l  (G.4.2) can be computed v ia  second-order filte ring  marginals: 

and backward observation model:

/ ( ^ i:n  1 1) —  /(^ij l ) / ( ^ i+ l : n  l^i)

extracted from  forward and backward recursions in (6.2.12), respectively. The follow ing 

corollary w ill c la rify  th is fact.

C o ro lla ry  6 .4 .2 . The posterior distributions in  (6.4-2) can be evaluated via FH  algo- 

jithTn (A h jo i i thm  6.1), as follows:

f { h \ ^ n )  =  Mui- i-y i) , i e  n }  (6.4.3)

f ih lh + u 'x ^ i)  =  M u i . { A [ l i+ i ) ,  i  e { 2 , . . . , n }  

f  i h + l \h i ^ i+ l : n )  ~  { 1 , . . . , ^  1}

where A i { k , : )  oc T { k , : )  o a ' and D i{ : ,k )  oc /3j+i o A i { : , k )  are right- and left-stochastic 

matrices o f suff icient statistics, w ith  (fc,:) and ( : ,k )  denoting k th  row and k th  column 

o f a matrix, respectively, as illustrated in  Fig 6.4-1 ■

Proof. By the chain rule, we have:

Notice th a t all o f the terms in righ t hand side (6.4.3-6.4.5) have been derived in 

(6.2.13-6.2.15). □

126



CHAPTER 6. VARiATIONAi.. BAYES VARIAfSiTS OF THF V n  ^RRI ALGORiTHM

6.4.2 Profile-approximated HMC

In order to  find th e  jo in t M A P of trajectory , L„, the  bi-directional VA com puted a 

scqucncc of profile d istribu tions /p(/i|x„) via b i-directional m axim ization (6.3.2-6.3.4) 
on jo in t model (6.2.8). Since jo in t model (6.2.8) can be re-factorized into C l s truc tu re  

(6.4.1), then, applying the  sam e bi-directional m axim ization to  (6.4.1), we can define 

n approxim ated  HM Cs, corresponding to  each choice of i  G { l , . . . , n }  in (6.4.1), as 

follows:

/i(-^n|Xn) — f n \  f p i h l ' ^ n ) f /p(^j Kj+1 j ) 1 (6.4.6)

where i €  { 1 , . . . ,  n}, and;

f ( l i \ x „ )  oc m a x /( L i |x j)  (6.4.7)
^\t

fpih\h+i’^j) «  m a x / ( L j | / j+ i ,X j )Lj-1

Kj —1 j X j ; n )  OC max y(Z/j;n|/j —l , X j ; n )

In com mon w ith th e  F B  algorithm , the  backw ard and forw ard transition  probabili­

ties in (6.4.7) are, respectively:

/(X j:n ; Ij ,  l j - \ )

which can be com puted v ia socorid-ordcr profile filterings and profile backw ard obser­

vation:

y p (X i , / j , / i - ( - l )  / ( ^ i )  Ki—1 )./p(^i—1 jXj—1)

/p(Xi;7i,/j,/i_i) =  f  h \ h —l ) f p { ^ i + l : n \ h )

These, in tu rn , can be ex tracted  from forward and backw ard recursions in (6.3.3-6.3.4), 
respectively.

N ote th a t,  because of norm alization constan ts involved in (6.4.7), applying th e  bi­

directional VA algorithm  (6.3.2) to  (6.4.6) will no t recover the  th ree  m ax term s on the 

right hand  side of (6.4.7). Hence, the jo in t M A P of /j(L „ |x„) is different from the 

original jo in t M A P of /(Z/„|x„) in general. However, th e  sequence of m odes of the 

n  m arginals /p(/i|x„) in th e  n  approxim ations /j(L „ |x„) is ac tua lly  th e  sam e sis the 

original jo in t M A P L „  of f ( L n \ x „ ) .
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If we neglect th e  norm alization in (6.4.7), we can find th e  jo in t M A P m ore quickly 

via VA, as explained below.

6.4.3 CE-based approxim ated HM C

VA avoids th e  norm alizations (6.4.7) in bi-directional VA by keeping only the ir CE 

values in memory. T his scheme yields ano ther n  C E-based approxim ated  HM Cs, as 

follows:

/j(Z /„|x„) — ^  n  fpihl'^n) (6.4.8)

for z 6 { 1 , . . .  , n} and;

/p ( / t |x „ )  =  M u ; ,(7 i) ,  i 6

+ 11 ^ j )  ~  ~

f6{l j \h^i ,^r.n)  =  %  ~ ¥ h - i ) \  =  Mui. iB' j l i )

in which A j  =  = e ( l ) ) ' , . . . , / j( /j+ i =  e (M )) '] ' and B j  =  =  e ( l ) ) , . . . ,

l j { l j - i  = c(A /))] are sparse left,-s(ochastic m atrices, w ith  only one elem ent a t each 

column, as illu stra ted  in Fig. 6.4.2. T he conditional C Es in (6.4.9) are defined as 

follows:

hih+i) = =  a rg in ax /p ( / j , / j+ i |x „ )
h h

hih i) =  a rgm ax /p ( / j | / j  i,Xj:„) =  a rg m a x /p ( / j , i j_ i |x „ )  (6.4.11)
h h

in which th e  right hand  side of (6.4.11) is im plied by C l s tru c tu re  in (6.4.1).

As explained in Section 6.3.3.2, su b stitu tin g  /j+ ^and  I j - i  of original jo in t M A P of 

/ ( L „ |x n )  into (6.4.11), we can also ex trac t Zj(/j+i) and l j { l j - i )  belonging to  th a t  jo in t 

MAP. Hence, given li =  a rg m a x ;,/p ( / i |x „ )  in / i( I /n |x „ )  for any i €  { l , . . . , n } ,  we 

can trace  back th e  original M A P from  stored  conditional C Es in (6.4.11). A lthough 

th is back-tracking scheme works for any i G {1,. . . ,n } , in practice the  trad itional VA 

always assigns i =  n  in /j(L n |x n )  and  m aintains profile filtering d istribu tions fp{ln\^n),  

in order to  achicvc an online forward scheme for new  d a ta  a t  tim e n  +  1, as illu stra ted  

in Fig. 6.4.3.

I t can be proved feasibly th a t  th e  jo in t M AP of / i(L „ |x ,i) ,  for any i €  { 1 , . . . ,  n}, 

are the  sam e as jo in t MAl^ / ( ^ n |x n ) ,  since they  have th e  sam e conditional C Es and the 

saine elem ents U of jo in t MAP. Also, because / ( L „ |x „ )  only has M  non-zero-probability

(6.4.9)

(6.4.10)
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k  =  M

A.., B

Figure 6.4.2: Bi-directional Viterbi algorithm (VA) for HMC posterior in Fig. 6.4.1: 
trellis diagram (top) and DAG (bottom). Dotted lines deiiote zero-probability 
transitions. Note tha t, black circles denote joint MAP of (rajcctory of f(L„\Xn)  in 
(6.4.1), but a sequence of modes of n  marginals /p(/i |x„) for / j (L „ |x „ )  in (6.4.6), 
i 6 { l , . . . , n } .

trajectories, finding the original joint MAP via / ( I /„ |x „ )  is easier than  via the exact 
/ ( i n | x „ ) .

6.5 Variational Bayes (VB) approxim ation for C l structure

In the previous section, we have shown tha t VA involves a CIS-based approximation 
of the smoothing marginals / ( / i |x „ )  in the FB algorithm. The VA reduces complexity 
significantly via two sequential steps:

• The first step is to constrain the infcrcnce problem, replacing the smoothing 
marginals, / ( / t |x „ ) ,  with profile smoothing distributions, /p(/i|x„).

• The second step is further to  constrain these profile smoothing distributions to 
point inferences and directly compute li of the joint MAP within this C& based 
distribution.

In a similar manner, we seek novel variants of VA via two sequential steps:

• The first step is to derive a distributional approximation of / (L „ |x „ )  from the 
class of independent distributions Hr=i via VB (Section 4.5.2).

• The second step is further to impose a CE-based constraint upon the VB marginals, 
via FCVB (Section 4.5.2.4), in order to rcdtice complexity significantly.

For this purpose, we will apply the VB and FCVB methodology to a general multivariate 
posterior distribution in this section, and then to the IIMC in next section.
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Figure C.4.3: Vitcrbi algorilhtn (VA) for HMC posterior in Fig. 6.4.1: trellis diagram 
(top) and UAC (bottom ), with the same convention as Fig 6.4.2. N ote that, black 
circles denote the sam e joint MAP trajectory of both /(L „ |x „ )  in (6.4.1) and  /i(L n |x „ )  
in (6.4.8), for any i €  { l , . . . , n } .  These black circles and q„ in this figure are exactly 
the same as the black circ:le.s and 7 ^ in Fig 6.4.2, respectively, when i =  n.

6 .5 .1  V B  a p p r o x im a t io n  v ia  K o lm o g o r o v -S m ir n o v  ( K S )  d is t a n c e

Let us consider a sequence of n variables 0 =  {6 1̂ , . . . ,  provided that there is an 

arbitrary choice in partition of 0 into (non-empty) sub-vectors 6i. Then, given a joint 

posterior distribution f {0 \x ) ,  the VB method is to seek an approximated distribution, 

/ ( 6l|x), in indc])endenl, distribution class Fc, /(<?|x) =  H i L i t h a t  the 

Kullback-Leibler divergence:

4  K L D ( m x ) W m x ) )  = 

is minimized, a.s explained in Section 4.5.2.

6 .5 .1 .1  I t e r a t iv e  V B  ( I V B )  a lgor it l in i

Given an arbitrary initial distribution 7̂ ‘̂ l(0|x) =  1 1 ^ = 1
algorithm is to update the VB-marginals /^‘'^(^ilx) iteratively, u =  1 , 2 , . . . ,  and cycli­

cally with 6i, until a local miniinuni of KLDj^^j. is reached. This is achieved as follows 

(Theorem 4.5.1):

f^''HOi\x) oc exp ^i;j|,,,(g^,|^jlog/(6»|x)^ , i €  { l , . . . , u }  (6.5.1)

where we recall that 6\i denotes the compleirieiit of in 0, and:
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j = i + l : n  j = l:i—1

Note that, in practice, because the normalized form /(0 |x )  is often unavailable 

(intractable), we can replace f { 0 \x )  with its unnormalized variant f ( x , 9 )  in (6.5.1).

Also, in llic IV B  algorithm, wo can freely permute the sequence . . .  ,^,r(n)}

the update of VB-marginals (6.5.1) in any IV B  cycle, where tt is a fixed permutation of 

the index set { 1 , . . .  ,n} .  Since we have not specified any particular order for the index 

set { 1 , . . .  ,n} ,  let us denote, for convenience, that n{i)  =  i, Vi € { 1 , . . .  ,n) .

6 .5 .1 .2  S to p p in g  ru le  for IV B  a lg o r ith m

Bccausc KLDj^^j  in IV B  algorithm is guaranteed to be non-incrcasing with u in the 

IV B  algorithm (6.5.1), and to converge to a local minimum [Smidl and Quinn (2006)], 
we can propose a stopping r\ile by choosing a small threshold such that Vc =  

lu iiv  1 as in the definition of the converged cycle iiuinber, i/,.. However,

the IV B  algorithm docs not evaluate itself and that evahiation is typically

prohibitive.

Therefore, instead of using the joint KLDj^^^  let us consider individual convergence 

of each VB-marginal via Kolmogorov-Smirnov (KS) distance [Rivchev (1991 )1'.

KS\''^ ^  m ^ ax |F M (0 ^ |x )-F [* '-* l(0 i|x )| (6.5.2)

where F (^ i|x ) denotes the cumulative distribution function (c.d.f) of / (0 i |x ) ,  i 6 

{ 1 , . . . ,  n}.  Because verifying requires only maximization and addition operations,

this informal scheme for verifying convergence of the IV B  algorithm is much faster than 

formal evaluation of itself. Note that, IV B  continues to iterate in order to

decr(;ase KLDj^^j  and I,he KS is only jjroposed for the st.opi)ing rul(\

Indeed, this stopping rule K S i  for each VB-marginal is stricter than that of KLDjy^j  

and may lead to higher value of i/c. This strictness can be compensated by choosing a 

great,er {c- In this thesis, the IV B  algorithm is considered to be converged at cycle Vc if 

the following condition is satisfied:

/•i'S’N  <   ̂ =  0.01, Vi 6 { 1 , . . .  ,n}  (6.5.3)

In simulations, presented in Chapter 8, no gain in performance was achieved with 

threshold  ̂ lower than 0.01. Apart from the cost reduction, this KS-based stopping rule 

will also lead to a novel speed-up scheme for the IV B  algorithm, as explained in Section 

6.5.2.
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A lg o rith m  6.3 IV B  a lg o r ith m  u s in g  K S -d is ta n c e  s to p p in g  ru le  
I te ra t io n :
For u = 1 , 2 , . . do {
For i =  1 , . . .  n, do { 
evaluate either (6.5.1) or (6.5.7) 
if f , { set =  0 }
else: {set Qi =  1}}}}
T e rm in a tio n : stop if fij =  0, Vi € {1 , . . . ,  n}

For later use, let us indicate the status of , i € {1, . . .  , n}, via a sequence of n
Boolean indicators i 6 ■ ,n} , as follows:

f  > 1  =  0, if < i
{ • '  '  i G { l , . . . , n } ,  u = \ , 2 , . . .  (6.5.4)

Then, the KS-based condition (6.5.3) is equivalent to  the following condition:

n

~  equivalently, =  0, Vi € { 1 , . . . ,  n} (6.5.5)
i=l

The IVB algorithm in this case is presented in Algorithm 6.3.

G .5.2 A c c c le r a tc d  IV B  a p i i r o x im a t io n

In general, any joint distribution /(6 |x )  can be binarily factorized in respect of each 
choice of i € {1, . . .  ,n} , thereby exploiting any Cl structure th a t may be present in 
the joint model:

/(i^lx) = /(i9t|6»^,,x)/(6l\j|x), z e { l , . . . , n }  (6.5.6)

where the neighbour set is 6,,̂  C 9\̂ .̂ Then, the key step in accelcrating the IVB 
algorithm is to  exploit the Cl structure of the original distribution f {d\x) ,  as explained 
next.

6 .5 .2 .1  IV B  a lg o r ith m  fo r C l s t r u c tu r e

Owing to  the Cl structure (6.5.6), the IVB algorithm (6.5.1) only involves the neighbour 
set instead of the whole set as follows:

71‘'l(6>i|x) oc exp (^£^„]jg^^l^jlog/(6li,6i;,,|x)^ , i e { l , . . . , n }  (6.5.7)
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Figure 6.5.1: Many-to-one scheme. Left: VB-marginals f{Oi) ,  /(^ s ), /(^? ) and f{On)  
in current IV B  cycle i> are converged (shaded nodes, i.e. rt"! =  0). Therefore, Right: 
/(0g ) is set as converged =  0) in next IV B  cycle. W hite nodes denote unknown
converged state of VB-marginals (unknown Tj).

Figure 6.5.2: Ono-to-many scheme. Left: f{9y)  is not converged in current IV B  cycle 

1/  (thick, black circle node — 1). Therefore, Right: / { (h ) ,  f[0&) and f{Oio)
are set as not converged (i.e. =  1) in the next IV B  cycle. Shaded nodes denote
converged VB-marginals {ti  =  0). Dotted circles denote unknown converged state 
(unknown Ti).

where:

with T] f^  =  r/i U {1 : i — 1}, =  r/j U { i +  1 : n} denoting forward and backward

neighbour index sets, respectively, and T]i =  {T]f^,T]P^}.

6 .5 .2 .2  A c c e le ra te d  I V B  a lg o r ith m

In  IV B  (6.5.7), we have to update all n VB-marginals at any cycle v, since the KS-based 

conditions (6.5.4) needs to be checked all the time. Therefore, if  we can quickly identify 

the converged VB-marginals at current IV B  cycle and exclude them from next IV B  

cycle, the computational load will be reduced.

Hcncc, the ccntral idea of the accelerated scheme is the concept of individual con­

vergence. Novertheloss, although tlie converg(^nce of KLDjy^j  can be prove^d t,o be 

monotone (Smidl and Quinn (2006)), the individual convergence of KsY^ for each 

VB-maxginal is not monotone in general and might vary around the threshold For 

resolving this problem, let us formiilate two remarks about the C l structure (6.5.7):

The first remark, called “many-to-one”, is that the VB-marginal, / l ‘̂ l(Oj|x), is
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regarded as converged and can be ignored a t cycle i/, if all of its neighbour VB- 

inarginals in (6.5.8) already converged a t cycle u — 1.

•  T he second rem ark, called “one-to-m any”, is th a t  th e  V B -m arginal, / l ‘̂ l(0i|x), is 

not yet converged and needs to  be updated  a t cycle i/, if any of its neighbour 

V B-niargiiials / l ‘' “ ^l(0j|x) in (6.5.8) is not yet converged a t cyclc i/ — 1.

Even though bo th  of those rem arks yield, once again, inform al convergence conditions 

for IVB (6.5.7), they  are useful in an accelerated scheme. For th is purpose, le t us 

ind icate which V B -m arginal / l ‘'l(0 i|x ) is converged a t cycle i/ and which is no t, via the 

toggling values =  0 and =  1, respectively, in a  sequence of n  Boolean indicators 

tI' ' \  i G { l , . . . , n } .  Initially, all th e  indicators are set to  one, i.e. th e  in itialization  

71o|(e|x) is regarded as not yet converged, as follows:

=  1, Vi G { 1 , . . .  , n }  (6.5.9)

By convent,ion, th e  first, r<;mark yields the  “m any-to-one” schem e for ind icator u[)- 

dates, i.e. each ind icato r is updated  by its neighbour ind icators, as follows:

^  T f * = 0  (6,5.10)

E ^ r i > o  .  a . . . . , . . }

as illu stra ted  in Fig. 6.5.1.

Equivalently, t he second rem ark yields the “one-to-m any” schem e for ind icato r uj> 

dates, i.e. each ind icator u p d ates  its neighbour indicators, which involves two steps at 

each tim e In th e  first step , a tem porary  Boolean sequence is in itially  se t Cj =  0, 

Vi €  {1, ■.. ,ri} , a t cach tim e u, then  wc iipda te  those <,i by the following relationship:

r f  =  1 => Cj =  1, Vj : T]j B i ,  Vi e  { 1 , . . .  , n}  (6.5.11)

lo th ing  w ith  th e  case r] 

the  V B-m arginal ind icators (Fig. 6.5.2):

in which we do no th ing  w ith  th e  case =  0. T hen , th e  second step  is to  update

^  ^  zfKSl^'U^
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A lgorithm  6.4  A ccelerated  IV B  via  KS d istan ce stop p in g  rule  
In itialization: set T; =  1, Vi G { 1 , . . .  ,n }
Iteration:
For =  1 , 2 , . . do {
For z =  1 , . . .  n, do {
if n  =  1, {
evaluate (6.5.7)
if K s Y  ̂ <  { set Ti 0 }
else: {set Tj =  1, Vj : r]j B i }}}}
T erm ination: stop if Tj =  0, Vi € {1 , . . . ,  n}

in which the  equivalences “<=>” in (6.5.12) are derived from th e  rela tionsh ip  (6.5.11). 

C om paring (6.5.10) w ith  (6.5.12), we can see th a t  the  “one-to-m any” schem e is equiva­

lent to  “m any-to-one” scheme. T he common convergence condition for b o th  of “m any- 

to-one” and “one-to-m any” schemes is:

n

= 0 ,  or equivalently, = 0 , V i  6 { l , . . . , n }  (6.5.13)
t = i

O f the  two, the  “ont'-to-rnany” scheme (6.5.11-6.5.12) is m ore useful, because we 

only need to  u p d a te  one Boolean indicator Tj in  order to  ind icate th e  convergence of 
neighbour V B-m arginals / I ‘̂ l(6;,Jx) a t cycle u (hence th e  nam e “one-to-m any”), ra the r 

th an  verifying all th e  neighbour indicators (hence the  iiairie “iriany-to-one”) in tlie first 
rem ark. For sim pler program m ing, in th is thesis, the  Accelerated IVB algorithm  is 

designed via “one-to-m any” scheme (6.5.12), as presented in A lgorithm  6.4. Also, 

because the tem porary  Boolean are only in troduced in order to  claiify  th e  idea of 

“one-to-]nany” scheme above, there is no need to  evaluate those in A lgorithm  6.4. 

To rccover th e  conventional IVB algorithm  (A lgorithm  6.3), wc only need to  om it the 

ind icator condition “if Tj =  1” in the Accelerated IVB algorithm  (A lgorithm  G.4), i.e. 

we then  u p d a te  all n  V B -m arginals in each IVB cycle u.

T he accelerated sdu;m e can be regarded as another convergence condition for / I ‘̂ l(6/ilx), 

i e  { l , . . . , n } ,  i.e. if we se t ^ >  0. there m ight be some V B -m arginal u p d a tes  are 

excluded in an IVB cycle in A ccelerated IVB, while those V B -m arginal u p d a tes  are 

always u p d a ted  in conventional IVB algorithm . N evertheless, if we se t ^ =  0, th a t 

excluding step  does not yield any difference between Accelerated IV B ’s and conventional 

IV B ’s ou tp u ts , because th e  accelerated indicators (6.5.12) are equivalent to  KS-based 

indicators (6.5.4), as shown in Lem m a 6.5.1.

For 4 >  0, which is a  m ore reeisonable and relaxed case in practice , such an 
equivalence is not tru e  in general, as explained above, although it m ight be tru e  if 

{ is small enough to  ensure no change in (,hc VB-m arginal moment,s in two consecutive 

iterations.
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L em m a  6 .5 .1 . (A c c e le ra te d  I V B  a lg o r ith m )  / /  ̂ =  0, the Accelerated IV B al­

gorithm  (Algorithm 6.4) has exactly the same output /l'^l(0|x) as conventional IVB  

algorithm (Algorithm 6.3), i.e. we have ^ any IVB cycle

!/ =  1 , 2 , . .  where Vc is the sam e number of IV B  cycles at convergence in both cases.

Proof. If wc have , Vi € n }, at any cycle v, the value i>c at convergence

is obviously the sam e for both stopping rules (0.5.5) and (G.5.13). By comparing

(6.5.4) with (6.5.12), it is feasible to recognizc that we only need to prove the following 

relationship:

=  0 => = 0 ,  2 e  { 1 , . . .  , n }  (6.5.14)

in order to i>rove that =  r l‘' \  Vi 6  {1, ■ ■. ,^i}, for the case  ̂ =  0. The relationship 

(6.5.14) can be verified feasibly: Note that T'f' =  0 and C =  0 mean =

0, i.e. /l'^“ ^l(^r).|x) =  7'‘"“ ^1(6',,.|x) (a.s.) in (6.5.8), which yields /l''-*)(6li|x) =  / l ‘̂ l(6>i|x) 

(a.s.), owing to (6.5.7), i 6 { 1 , . . .  , n} .  By definition (6.5.2), we then have =  0,

i € { 1 , . .  • , n} .  □

6 .5 .2 .3  C o m p u ta tio n a l load  o f  A cc e le ra ted  IV B

In the Accelerated IVB algorithm, oil,her via “many-to-ono” (6.5.10) or “ono-to-many” 

schemes (6.5.12), we only need to update VB-marginals being those

that are not yet converged at cycle i/, and leave out n  — converged VB-marginals. 
Alt hough the n\imbcr 0 <  <  n  is varying at each cycle v,  the total number of VB-

marginal updates at convergence (i.e. after Vc IVB cycles) is: <  I'cjn. If we call

'̂ e =  n  effective number of IVB cycles in accelerated scheme, 1 <  t'e <  î c-

Note that, in the first IVB cycle, wc have to update all IVB-marginals from arbitrary 

initial VB-marginals, i.e. 1 <  i>c, before being able to identify their convergence. The 

acceleration rate can be defined eis ^  and its bound is:

I <  — <U c  (6.5.15)
I 'e

Because the indicator condition (6.5.12) is a relajced version of KS-based condition

(6.5.4), the total immber of IVB cycles Uc in Accelerated IVB and IVB may not be 

equal t.o cach ot.hcr wht;n  ̂ >  0, although they arc the same when  ̂ =  0, owing to 

Lemma 6.5.1. In any case, the computational load of Accelerated IVB depends on the 

effective number i/f,, instead of i/c. Hence, if we denote i/c the true number of IVB cycle 

for both accelerated and unaccelcrated schcmes, the value Vg is more important than 

i/c for evaluating the speed of Accelerated IVB algorithm. In simulations in Chapter 8, 

the value of Ug will be shown to be close to one for the HMC model, on average.
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6.5.3 A ccelerated FC V B approxim ation

Let us recall th a t the Iterative FCVB approximation in Lemma 4.5.3 involves projecting 
all VB-rnarginals /(^ i |x )  into their MAP values /i(^ i |x )  =  S{Bi — Oi), i € 

where <5(-) denotes probability distributions singular at di. The IVB algorithm for Cl 
structure (G.5.7) now becomes an Iterative FCVB algoril-hm, as follows.

6 .5 .3 .1  I te r a t iv e  F C V B  a lg o r ith m  for C l s tr u c tu r e

Owing to the sifting property of S{-), the FCVB-marginals can be updated feasibly, as 
follows:

f6^''\0i\x) oc i e  { I , . ..  , n}  (6.5.16)

where  ̂ with the same notation a.s in (6.5.7). From (4.5.9) and

(6.5.16), we only need to update =  Hr=i <5(6i — ) via iterative maximization
steps, as follows:

=  argm ax/5^*'\0i|x) (6.5.17)

—  M=  argm ax/(x,6»j,0„. =  ), i e  { 1 ,. . .  , n}

where 0,,}"'̂  =

6 .5 .3 .2  S to p p in g  ru le  for I te r a tiv e  F C V B  a lg o r ith m

In general, wo can also choose KS distance between FCVB-marginals / j  in (6.5.10), as 
a convergence criterion for FCVB-marginals, as in IVB. However, in a special case of 
discrete 6i, the  KS distances KSg^ will become zero o}  ̂ Vi 6 {1 , . . . ,  n}.
Hence, the la tter form will be used as a stopping rule in this thesis. The convergence 
condition (6.5.3) in IVB now becomes the following convergence condition for Iterative 
FCVB algorithm (Algorithm 6.5):

= e } ' ' \  V i€  { l , . . . , n }  (6.5.18)

6 .5 .3 .3  A c c e le r a te d  F C V B  a lg o r ith m

In common with the com putational flow of the Accelcratcd IVB algorithm (Algorithm
6.4), we can design the Accelerated FCVB algorithm (Algorithm 6.6) by replacing
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A lg o rith m  6.5 I te r a t iv e  F C V B  fo r d is c re te  r .v . 9 
I te ra t io n :
For IV =  1, 2 , . . do {
For 1 =  1 , . . .  n, do { 
evaluate (6.5.17)
if Oi =  Oi , { set (Ji =  0 } 
else: {set Qi =  1}}}}
T e rm in a tio n : stop if ft =  0, Vi € { 1 ,...  , n}

A lg o r ith m  6.6 A c c e le ra te d  F C V B  fo r d isc re te  r .v . 0 
In itia liz a tio n : set Xj =  1, Vi G { 1 ,.. .  ,n}
I te ra t io n :
For IV =  1, 2 , . . . ,  do {
For i =  1 , . . .  n, do { 
if Ti =  1, { 
evaluate (G.5.17)

if =  e}‘' \  { set Ti =  0 }
else: {set Tj =  1, Vj : B i }}}}
T e rm in a tio n : stop if =  0, Vi € { 1 ,. . .  ,n}

the traditional IVB st(^p (G.5.7) and the KS-based convergence condition (G.5.3) with 
traditional FCVB step (6.5.17) and the stopping rule (6.5.18), respectively.

Because the Lemma G.5.1 is applicable to Accelerated VB scheme when converged 
KS (list ance is sd, zt'ro, a similar Lemma can bo propo.sed for Acceleral.etl FCVB scheme, 
as follows:

L em m a 6 .5 . 2 . (A cce lera ted  F C V B  a lg o r ith m ) The Accelerated FCVB algorithm 
(Algorithm 6.6) has the same output d}  ̂ as Iterative FC VB algorithm (Algorithm 6.5), 
i.e. we have gf  ̂ = Vi S {1, • .. ,n } , at any IV B  cycle u = 1 ,2 , . . .

Proof. The Lemma is a simple consequence of Lemma 6.5.1, because the stopping rule 
(6.5.18) is equivalent to the convergimce condition KSo^ =  0, i G { 1 ,. . .  , n}, where KSo^ 

in this case is the KS distance between /s ' and ^(^i|x) in (6.5.16-6.5.17). □

6.6 VB-based inference for the HMC

To the best of our knowledge, the VB methodology for com putation in HMC with known 
param eters (6.2.2,6.2.4) has not been reported in the literature. In this section, we 
elaborate the VB and FCVB approaches for this model, as well as the novel accelerated 
schemes, pre.sented in Section 6.5.2.2 and 6.5.3.3. We empha.size the  novel computation 
flows tha t result, comparing them to VA and confirming th a t the Accelcralcd FCVB
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solution is an improved version o f IC M , bu t now furnished w ith  a Bayesian jus tifica tion  

and perspective.

6.6.1 IV B  algorithm s for the HM C

In  common w ith  the b inary-tree approach in the FB  and VA methods, the V B  approxi­

m ation also explo its the M arkov property (6.2.10) and provides two approxim ations for 

com jju ta tion  on the forward and backward trajectories. The com putationa l load of V B  

for the H M C  is therefore 0 { i ' c n M ^ )  MULs.

Let us define an independent class, of n  variables for the label field: f{Ln\'X-n) =  

n r = i  f i i  j|x„). By subs titu ting  the Markov property  (G.2.10) in to  the general b inary 

factorization (6.2.6) and then applying tlie  IV B  a lgorithm  for C l s tructure  (6.5.7), we 

can find the VB-sm ooth ing  marginals, / ( ^ i |x „ ) ,  feasibly:

7 1 '^ l( / iix „ )o c /I ‘^ -H (x ,+ i: „ | / , ) / l" ’ (^ i|x i), i € { l , . . . , n }  (6.6.1)

where the V B -fo rw ard  filte rin g  d is tribu tions / ( / t | x j )  and VB-backward observation 

models / ( x i^ - i : „ | / i )  can be defined as follows:

7 1 "l(« ilx i) =  7 1 " l(h lx i)  oc f { x , \ h ) f { h \ p )  (6.6.2)

f ^ ' ' \ l i \ X i )  oc e x p (£ '^ „n ,._ ^ |^ ^ jlo g /( .T i, / i | / i_ i,T ) )

^t+v. 7i \k)  oc e x p (£ ^ > .„ ( ; .^ ^ |^ ^ ^ jlo g /( / i+ i| / , ,T ) )

for i  G {2 , Note th a t, although the expectations are taken over / I '^ l( / j_ i|x „ )

and / l " l ( ' i + i | x „ )  in (6.6.2), the no tation Xj and X i+ i;„  in d is tribu tions / l ' 'l(Z i|x i)  and

7 '̂^“ ^ l(x j+ i:„|Z j) are preserved in order to  emphasize the ir forward aTid backward mean­

ing, respectively.

For the discrete label field, the VB-m arginals arc, o f course, always o f m ultinom ia l 

form , i.e. / I ' ' l ( / i | x „ )  =  M u;.(p |^^), i  =  Moreover, subs titu ting  (6.2.2,6.2.4) to

(6.6.1), v ia  (6.6.2), the  ite ra tive  updates for shaping parameters are revealed:

oc exp(logT/)i +  (logT^p^""” '̂ +  p)  (6.6.3)

pj'"' oc exp(logi/>i +  ( lo g T ')p [+ V ' +  ( lo s T )p [ '^ i)

fo r i  6 {2, A t convergence u =  i/c, the V B  inference fo r H M C  state is, from

(6 .6 .1):
n

/>‘'J ( L „ | x „ )  =  n 7 ’"^‘ (^ .|x „) (6.6.4)
i= l
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A lgorithm  6.7  IVB algorithm for the IIMC

Initialization: initialize Vi e 
Iteration:
For 1/ =  1, 2 , . . do {
For 1 =  1 , . . .  n, do { 
evaluate (6.6.3) 
if 7 ^ 5 ^  <  e, { set Qi = 0 }  
else: {set (Ji = 1}}}}
T erm inatiou; s t o p  i f  Qi =  0, Vi € { 1 ,. . .  , t i }

R eturn  /, =  e{ki), with ki = ajgmax*:(pfc^i), i = 1 , . . .  ,n .

A lg o rith m  6.8 Accelerated IVB algorithm for the HMC

In itia liz a tio n : initialize and set =  1, i 6 { 1 , . . . ,  n} 
I te ra t io n :
For (/ =  1, 2 , . . . ,  do {
For i =  1 , . . .  n, do {
if n = 1, {
evaluate (6.6.8)
if < i ,  { set Ti =  0 }
else: {set Tj = 1, Vj : t/̂  3 i }}}}
T e rm in a tio n : stop if Tj =  0, Vi 6 { 1 , . . . ,  n).
R e tu rn  /, =  e[ki), with A:,; =  argmaxfc(pfc,i), i = 1 , . . .  ,n .

'I’ho a.ssociatc VU MAP ostimato is, characteristically, the set of VU-marginal MAP 
estiinates: U = argm ax;, / ( Z i | x „ ) ,  i € {1 ,.. ■ ,n}, which will be used as sta te  estimates 
of IIMC.

6.6.1.1 IV B  sto p p in g  rule for th e  H M C  via  K S d istan ce

The recursive update of shaping param eters (6.6.3) per IVB cyclc requires 0{ 2nM^)  
MULs, ( ) {nM)  EXPs and 0 { 2 n A P )  ADDs. Because the cost of MULs dominates the 
others, the computational load of each IVB cycle is almost the same as th a t of FB 
(6.2.13-6.2.15). Nominally, then, for i/c IVB cycles a t convergence, the VB algorithm 
(AlgoriI.hm 6.7) is i ĉ times slower l.haii I,he FB algorithm. However, with the accelerated 
scheme of Section 6.5.2.2, the Accelerated IVB for the HMC (Algorithm 6.8) is only i/g 
times slower than the FB algorithm, where 1 < i/e <  t'c, as we will show in simulation 
(Chapter 8).

6 .6 .1 .2  IV B  S top p in g  rule for th e  H M C  via  K LD

For comparison in simulations later, let us also consider the traditional stopping rule 
for the IVB algorithms (Algorithm 6.7-6.8) involving com putation of the KLD. By the 
definition, the KIjD for VB in the IIMC case can be evaluated as:
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w here / ( L „ lx „ )  =  H iL i f ih\^n)-  From IVB algorithm  (Section 6.6.1), th e  first te rm  of 
KLDj^^j  is equal to;

Y. fm̂ n) =  logpi
!  =  1

Prom forward factorization  of the posterior IIM C f ( L „ \ x n )  (G.'I.l), the  second term  of 

KLDj^^j  is:

n —1

^ / ( ^ > n | x „ ) ^ ® S / ( - ^ ^ n | X n )  -  +  +  E f  { l n \ X n )
i = \
n - 1

=  ^Pii^ogAi)pi+i+p'„]ogan 
i=l

where Ai  is com puted  via Corollary 6.4.2.

6 .6 .2  F C V B  a lgorith m s for th e  H M C

By definition, the  FC V B -m arginals fs" ^(Zi|x„) =  are of th e  sam e m ultinom ial

form £is th e  V B-m arginals, b u t w ith different shaping param eters, as specified next.

6.6.2.1 Accelerated FCVB for the homogeneous HMC

Sim ilarly to  th e  IVB algorithm  for HMC (6.6.1-6.6.2), the  shaping param eters of 

FCV B-rnargiiials (as illu stra ted  in Fig 6.6.1) can be evahiated  in a  sim ilar way of (6.6.3);

log^j"^^ =  logV’i +  logT(fc 2  ̂ + \ogp  +  cxinst (6.6.5)

log =  log +  log 1? (:, 1 ) +  const

log =  log V’n +  log T  (:, j ) +  const

where T (fc ,:) , T(:,A:) are fcth row, column of T , respectively, and:

=  argm ax(log ;j[ ‘̂ J), i =  { I , . . .  , n }  (6.6.6)

T he M'  ̂ p recornpiited vahies of iJ are defined as;

lo g ,y (: ,fc |;;- 'U ! ': 'i)  =  IogT(fcj:;-*l,;)' +  lo g T ( : ,^ M j)  (6.6.7)

For th e  hom ogeneous HM C, th e  purpose of ex tra  precom puted  step  (6.6.7) is to  

reduce th e  com plexity of FCV B by half of th e  additions. A lthough th is  m ethod  requires
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A lgorithm  6.9 I te ra tiv e  FC V B  for th e  hom ogeneous H M C

Initia liza tion : initiali7,e €. M},  evaluate (6.6.7), Vi € {1, . . .  ,n}
Ite ra tio n :
For 1/ =  1 ,2 ,...,  do {
For i =  I , . . .  n, do { 
evaluate (6.6.5) 
if =  kf'\ { set ft =  0 }
else: {set ft =  1}}}}
T erm ination : stop if ft =  0, Vi 6 { 1 ,.. . ,  n}
R e tu rn  Zj =  e(fc|‘̂‘ )̂, i =  1, . . .  ,n.

A lgorithm  6.10 A ccelera ted  FC V B  for th e  hom ogeneous H M C  

In itia liza tion : initialize kf'̂  G evaluate (6.6.7) and set Ti =  1, Vi 6

Ite ra tio n :
For 1/ = 1 ,2 ,...,  do {
For i =  1 ,.. .  n, do { 
if Ti =  1, { 
evaluate (6.6.5) 
if { .set T; =  0 }
else: {set =  1, Vj : 9 i }}}}
T erm ination : stop if =  0, Vi € {1 ,... , n}
R e tu rn  U =  i =  1 ,.. .  ,n.

extra memory of 0{M^)  for ■d, it is safe to assume that 0{M^) < 0{n),  where 0{n)  is 
the memory requirement of the non-precomputed scheme.

Note that, in the traditional Iterative FCVB (Algorithm 6.9), the total computa­
tional load up for the cycles is 0{i'c.nM). However, in accelerated scheme (Algorithm 
6.10), we only need to update a sub.set, of the n labels in the i/ih cycle, where 
0 < < n. At convergence, the computation cost of accclcratcd FCVB
is therefore 0{uenM),  where 1 < fc'e =    < t'c, as discussed in Section 6.5.2.3.

6.6 .2 .2  F \irther acceleration  v ia  a bub b le-sort-lik e p roced u re

For comparing the computational complexity of above algorithms in the homogeneous 
IIMC, a summary of their computational and memory cost is given in Table 6.6.1. Then, 
from Table 6.6.1, it looks like each FCVB cycle must bo slower than ML, since each 
FCVB cycle seems to always require more operators than ML. In practice, however, 
each FCVB cycle can be implemented more quickly than ML. To achieve this, let us 
consider t.hc computational load in hardware level.
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STATE

k = l  •  
k = 2 O  

•  •

k = M O

O

6
^ ® v . . 9

6

Figure 6.6.1; FCVB-marginals for HMC posterior (Fig. 6.4.1): trellis diagram (top) 
and DAG (bottom). Dotted arrows denote the CE substitutions in the Iterative FCVB 
algorithm. Black circles denote the mode of FCVB-marginal.

ML FCVB VA FB VB
EXP - - - - 0[nMi>r)
MUL - - - 0{2nAP) 0(2nM^Pc)
ADD - 0(nMuc) 0{nM'^) 0(2nM 2) 0{2nM^Uc)
MAX O(nM) 0{nMi>c) 0[nM'^) 0 {nM ) 0 [n M )

Memory - 0 { n  + M'^) (){nM) (){2nM) 0{n M )

Table 6.6.1: Computational and memory cost of algorithms for homogeneous HMC. i/,. 
is the number of IVB cycles at convergence (for accelerated scheme, i>c >s replaced by i/g). 
From the lowest to highest (typical) computational load: ML (Section 6.3.1), FCVB 
(Algorithm 6.9-6.10), VA (Algorithm 6.2), FB (Algorithiii 6.1) and VB (Algorithni 6.7- 
6 .8 ).
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The task of finding the maximum value of length-M  vector requires M  MAX 
operations, in which each MAX involves four steps (i-iv), as illustrated in Algorithm 
(). I I . Similarly, the task of finding the sum of a length-A/ vector requires M  ADD 
operations, in which each ADD requires two steps (a-b), aa illustrated in Algorithm 
6.12. Hence, in practice, one MAX is often considered to be equivalent to 2 ADDs [Wu 
(2001 )|. In I.erms of comi)Ulalional load, if both maxinnini and sum are recjuired, t.hey 
can be computed ttiore quickly via a Max-Suin combination, defined in Algorithm 6.14.

For further speed-up, notice th a t if the step (ii) in one MAX operation (Algorithm 
6 .]]) docs not dctect any higher value than current maximum value, steps (iii) and 
(iv) will then not be implemented in th a t MAX operation. We can, therefore, design 
a pilot-based MAX scheme, which initializes the current maximum value with the pilot 
element in length-M  vector, as illustrated in Algorithm 6.13. The pilot element can be 
chosen as any of the M  vector elements. Therefore, in the  ideal case where the pilot 
element is the true maximum, steps (iii)-(iv) can be avoided completely, i.e. the cost of 
pilot-based MAX (i.e. each iteration in Algorithm G.15) can be as low as half of that 
of conventional MAX (i.e. each iteration in Algoritliiri 6.11). Likewise, in the ideal 
case, one pilot-MAX-ADD (i.e. each iteration in Algorithm 6.15) only needs three steps 
(i)-(ii)-(b), which means its cost is in the range r/ £ [ f i f ]  of the cost of conventional 
MAX (in Algorithm 6.11).

Now, because each iterative FCVB cycle (6.6.5-6.6.6) involves Max-Sum scheme 
and ML requires traditional Max scheme, the considerations above can be applied to 
comparing the relative costs of FCVB and ML. Since the current FCVB cycle relies 
on the label estim ates in the previous cycle, the la tter can be used as pilot elements 
in current FCVB cycle. Therefore, the pilot-Max-Siim scheme (Algorithm 6.15) is 
applicable in FCVB cycles. In contrast, there is no scheme for picking pilot elements in 
MIj, and therefore the ML has to rely on traditional Max scheme. For this reason, the 
cost of cach pilot-based FCVB cycle is in the range t] £ [ | ,  of the cost of traditional 
ML, i.e. it is possible for cacii FCVB cycle to run faster than ML.

Notice tha t, the traditional MAX (Algorithm 6.11) is simply the first step in the 
bubble sort algorithm [Cormen et al. (2001)], in which the maximum value “floats” up 
progressively after each comparison step (ii). Then, the pilot-based MAX procedtire 
above, which requires a priori knowledge on pilot element, can be loosely regarded as 
the first step of a pilot-based bubble sort, i.e. the maximum value will “float” up more 
quickly, given a good pilot clement.

Obviously, we may have more than one way to make FCVB cycle run faster than 
ML. The above procedure is merely to illustrate such a possibility.

6.7 Performance versus com putational load

In this section, we will examine the trade-off between performance and computational 
costs for each of the algorithms above. For comparison of estim ators performance,
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A lg o rith m  6.11 Tradil.ional Max for finding inaxiimini V m a x  of =  [̂ 'ii ■ ■ ■, v m ] '

In itia liz a tio n : set k„iax =  1, k  =  1 and t'max =
I ter a tio n ;
(i) incroaso pointer by 1 (i.e. A: •<— A: +  1) and retrieve Vk
(ii) 1 binary comparison between Vmax and Vk 
If v .n ax  <  Vk in (ii), do: {
(iii) 1 storage for new maxiimirn value (i.e. Vmax f̂c)
(iv) 1 storage for position of new maximnm value (i.e. kmax fc) }
T e rm in a tio n : stop i f  k  =  M
I te tu r n i  and

A lg o rith m  6.12 Traditional Sum for finding sum Vgum o f  v =  [vi , ,  v m \
In itia liz a tio n : set Wgum =  0 and k  = 1
I te ra t io n :
(a) increase pointer by 1 (i.e. k  <— k  +  1) and retrieve Vk
(b) 1 binary addition V g u m  V s u m  +  I ’fc 

T e rm in a tio n : stop if fc =  M
R e tu rn :  Vaum ______  _________  ________  ___________

A lg o r ith m  6.13 Pilot-based Max for finding maximum v„iax o f v  =  [ v i , . . . ,  W a / ] '

In itia liz a tio n : initialize kpHot, set A: =  1, and Vmax =  I’fcpijot
I te ra t io n :
Implement (i-iv) in Algorithm 6.11 
T e rm in a tio n : stop if fc =  M
R e tu rn :  Vmax and kmax ___  _____

A lg o r ith m  6.14 Msix-Sum for finding maximum Vmax and sum Vsum o f  v =
[v \ , . . . , v m ]' _________________________________________________________________________________________________________________

In itia liz a tio n ; set kmax =  1, fe =  1, Umax =  I'l and Vsum =  0 
I te ra t io n :
Implement (i)-(ii)-(b)-(iii)-(iv) in Algorithm 6.11-6.12.
T e rm in a tio n : stop if fc =  M  
R e tu rn :  V r n a x i  k m a x  and V s u m

A lg o r ith m  6.15 Pilot-based Max-Sum for finding maximum Vmax and sum Vgum of
V  =  [?n, ■ ■ ■ , v m ]'___________________________________________________________________________________________________________

In itia liz a tio n : initialize kpHot and set A: =  1, Vmax =  Vgum =  0
I te ra t io n :
Implement (i)-(ii)-(b)-(iii)-(iv) in Algorithm 6.11-6.12.
T e rm in a tio n : stop if fc =  M  
R e tu rn :  Vmaxj ky^idx and Vguni
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the bit-error-rate (BER) is widely adopted in practice [Haykin and Moher (2006)]. 

Since minimizing BER can also be interpreted as minimizing Hamming distance, the 

simulation results can be explained intuitively via the Bayesian risk perspcct,iv<; (Section 

4.3.2).

6.7.1 Bayesian risk for H M C inference

Let >is incorporate Hamming distance into a loss function Q{Ln,  Ln),  that quantifies the 

cost of errors in the estim ated HMC , li G L„, relative to the simulated field, li € Z/„, 

i €  { 1 , . . . ,  n }, as follows:

  1 "
Q(L„,L„) = 1 - - V J [ / , ; - Z , ]

n  ^—'i=\

where Q : M " x M " —> [0 ,1] and Q{Ln,L„)  =  0 L„ =  As shown in Lemma 

4.3.8, the esl-imate Ln*  minimizing expected loss - i.e. the minimum risk (MR) estim ate 

- is:

/* =  a rg m a x /(Z i lx „ )  (6.7.1)u
where/* G !/„*,?' 6 { l , . . . , n } .  This MR risk provides insight into the observed tradc"-off 
in simulations (Chapter 8), as follows:

•  FB can provide MR risk estim ate , being a sequence of marginal MAPs 

(6.7.1), where /( / i |x n )  are the smoothing marginals already computed in FB.

•  The performance of VA is close to that of FB, with low com putational load, for 

two reasons: VA replaces the marginal MAP of the sm oothing marginals, f { l i \^n ) ,  

for FB with the MAP of the CE^bascd profile inferences, /p (/i|x „ ), with typically 

very little difference between these two estimates. However, the computational 

load of /p (/t|xn ) is very low, compared to that of / ( / i |x „ ) .

• ML yields the worst performance because it returns the estim ates based on the 

local observation model, i.e. /j =  argmax;. f {x i \ l i ) ,  without any prior regulariza­

tion, i.e. f { x i \ l i )  is a bad approximation of / ( / i |x „ )  since it does not involve the 

HMC structure into account. However, the local observation structure makes ML 

work so fast.

An important role for the novel VB-approaches to HMC inference is in furnishing new 

l.rade-offs b(;tw(!(!ii comput ational load and ac:curacy, otlicr than the (;xtr(;mes confined 

by ML on one hand, and FB and VA on the other. This flexibility is achieved via the 

following two design steps:

• In the first step, VB can return the MAP estim ates of the respective VB-marginals, 

li =  a rg m a x /; /( /i |x „ )  (6.6.1). Since the VB-marginals are approximated via
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HMC-regularized model (6.2.8), this VB point estimate enjoys far better perfor­
mance th a t tha t of ML.

• The second step is to  reduce the complexity of VB via the CE approach in FCVB 
(6.6.5). Since the FCVB performance is slightly worse than VB, as illustrated 
in simulation (Chapter 8), its performance trade-off can be explained via VB’s 
structure.

6.7.2 Accelerated schemes

The number Uc of IVB cycles in the HMC case will be shown, in simulations in Chapter 
8, as a factor of logarithmic of either n, the number of data, or M ,  the number of state. 
We conjecturc tha t this phenomenon is relevant to the exponential forgetting property 
of posterior marginals /(/j|X n) (Corollary 2.1 in [Lember (2011)]):

l l/(^i |x ,_*:: i+fc) -  / ( / t |X -o o :o o ) | l  <  , k > 0  (6 .7 .2)yK  I

where i; is a constant, w > 1, C is a non-negative finite random variable, x_oo:oo denotes 
an infinite number n  of da ta  and || • || is the total variation distance (i.e. £i-norm ). This 
property states th a t /( / i |x „ ) , with high enough n, only depends on a factor of log(n) 
data. Because cach IVB-cycle updating in HMC (6.6.1) projects one more backward 
datum  into the VB-inarginals /(^i|xn), we conjecture th a t we only need a factor of 
log(n) IVB cycles in order for f{li\x.ji) to  converge, i.e. i/c ~  0 (log(n)).

For the acceleratcd schemes, i/c is replaced by i/g, which we will find is almost a 
constant and close to 1, on average, for any value of n  in simulations (Chapter 8). Hence, 
the accelerated scheme for FCVB and VB reduces significantly the computational load 
of traditional FCVB and VB for the HMC. Perhaps, this is bccause these schemes only 
update the non-converged VB-marginals, whose number decreases in a factor of log(n), 
owing to  (6.7.2). This decrease is, therefore, likely to cancel out the Vc w 0(log(n)).

6.7.3 FCVB algorithm versus VA

By combining the CE approach with the independent class approximatioTi, G Ts,  
FCVB is faster than the non-iterative VA scheme, despite FCVB being an iterative 
scheme. FVom Table 6.6.1, we can see tha t FCVB reduces the computational load from 
O (nM ^) for VA down to 0{nMi/c) .  Hence, the computational load of VA increases 
quadratically with M , while FCVB’s computational load increases only linearly with 
M.  Moreover, from simulations (Chapter 8) for FCVB, it will be shown th a t i/g i/c ~  
0 (log (M )) when M  is large.

A key advantage of the FCVB scheme is applicability in many practical applications. 
Note tha t, VA is mostly applied to finite sta te  HMC, because the conditional CE (6.3.6) 
is very hard to evaluate for contiinions states, other than in the Gaussian context of 
the Kalman filter [Chigansky and Ritov (2011)]. In contrast, since Iterative FCVB
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algorithm  is equivalent to  the IC M  a lgorithm  [Besag (1986)], w ith  application in the 

general H idden M arkov Model (H M M ) context, the Accelerated FC V B  - a faster version 

of IC M  - can also be; appli<;d feasibly to  I,he continuous state; case.

Another app lication o f V B  and F C V B  for the H M C  is the online context. Because 

VB-m arginals only depend on the ir firs t order neighbour in  (6.6.3) and (6.6.5), the V B - 

marginal updates in IV B  cycles can Ix; run (XHisccutivcly and in  parallel, i.<!. 7 ^ '^^ (/i- ilx „) 

can be updated righ t after 7^‘̂ “ ^^ (ii|x „) is updated, w ith o u t the need to  w a it for the 

(i/ — l ) th  IV B  cycle to  be finished. I f  we design a lag-window o f du ra tion  equal to  V c, 

the Vc F C V B  and V B  cyclcs can be evaluated, consccutively and in  paralle l, as an online 

a lgorith iri and re turn  exactly the same results as the offline case.

6.8 S um m ary

In  th is  chapter, fu lly  Bayesian inference and its com putation fo r the H M C  has been 

dcvclopped, revealing a key insight in to  all o f the state-of-thc'-art a lgorithm s, namely 

FB, VA and IC M ; i.e. the M arkov p roperty  o f the H M C  has been shown to  be a necessary 

foundation for the ir efficient recursive com putational flow. In  replacing the exact 

m arginal com putations in FB a lgorithm , the VA has been shown to  produce CE-biiscd 

approxim ate inferences, where CE substitu tion  is used to  reduce the  com putational 

load significantly. Im portan tly , the jo in t M A P  estimate remains invarian t under th is 

CE substitu tion .

Inspired by th is  insight, FC V B , which is a CI5-based varian t of the independent- 

structure V B  approxim ation, has been proposed as a VA variant to  bridge the trade-off 

gap between VA  and M L. A lthough  FC V B  luis previously been reported cis the IC M  

a lgorithm  in the lite ra tu re , th is  novel VB-based derivation and im plem entation yields 

insight in to  the regimes o f operation where the a lgorithm  is expected to  perform  well. 

Indeed, we w ill see in sim ulations in  C hapter 8 th a t when corre lation in  the H M C  is not 

too  high, FC V B  is an a ttrac tive  a lgorithm , since its  performance is then close to  VA, 

w ith  much lower com putationa l load. Em pirica lly, these sim ulations also show th a t the 

ac:celerated scheme, as designed in I his chapter, reduces the num ber o f IV B  cycles to 

about one, on average.

F ina lly, the accelerated IC M /F C V B  a lgorithm — proposed in  th is  chapter— can work 

in  bo th  online and offline modes, w ith  no difference at the final ou tp u t, as noted in 

Section 6.7.3. In  contrast, FB  and VA are exclusively the offline schemes.
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Chapter 7

The transform ed Variational Bayes 
(TVB) approximation

7.1 M otivation

A lthough the  VB approxim ation has been proposed as an efficient approxim ation for 

in tractab le  d istribu tions, the re  is still much room  for im provem ent.

T he VB approxim ation is, of course, a param etric  d istribu tion , fg =  f (0 \s ) ,  where 

•s denotes th e  param eter. For simplicity, lot us consider a  b inary  p artitio n  0 =  {(>i, 0\,},  

where, again, is th e  com plem ent set of 6i in 0, w ith neither 6\i nor 9i is empty. As 

explained in Section 4.5.2, the  VB approxim ation reaches a  local m inim um  of Kullback- 

fyeibler divergence f' ( =  for ai)i)r()xiinate d istribu tions fg e

^c i the  class of factored d istribu tions (being those for which 6/\j and 0i are independent, 
given s).

T he idea behind th e  transform ed VB (TVB) approxim ation is illu stra ted  in Fig. 

7.1.1. T he transform ed d istribu tion  =  /(</>|s'), w ith p aram eter s' (a function of s), 

should be designed to  minim ize the  K L D  of its VB approxim ation. Since KL D {f ^ \ \ f ^ )  <  

J<LD{fg \ \ f e \  it follows th a t  K L D { f J ^ ‘̂ \\fe) <  KLD {f e \ \ f e ) .
Obviously, VB yields an accuratc  representation , i.e. K L D {f g \ \ f e )  =  0, iff Oi, 

9\i are already independent in fg. An illustrative context is th e  m ultivaria te  norm al 

d istriln ition  A/fl(0, E ). T he K L D  of its VB approxim ation is s tric tly  greal.er than  zero 

when Y, ^  D  (diagonal). Let us consider a ro ta tion  opera to r v ia  eigenvectors of 

th e  covariance m atrix , i.e. cp =  w here =  QAQ~^  and A is th e  diagonal

eigenvalue m atrix . T he d istribu tion  of transform ed variables (p is th e  independent 

irn iltivariate norm al 7V^(0, A), and the  VB approxim ation in th is transform ed m etric 
has K L D ( U \ \ U )  =  Q.
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Figure 7.1.1: Transform ed VB (top) and VB (below) approxim ations. T  denotes a 
bijective transfo rm ation , T  : 9 ^  T{9)  = (p.

7.2 Transform ed V B  approxim ation

In tlie litera tu re , Cox-Reid orthogonalization [Cox and Reid (1987)] has been applied 

broadly to  param ete r estim ation  to  achieve robustness, yet very few pap e r consider 

th is approach for Bayesian inference. Based on th e  F isher inform ation m atrix , its 

approacli is to  decouple a jo in t d istribu tion  up to  second order. A slightly m ore general 

transfo rm ation  will be proposed in th is section in order to  increase th e  quality  of the 

VB approxim ation.

7 .2 .1  D istr ib u tio n a l tran sform ation

Let us consider a d istribu tion  f ( 6)  of continuous r.v. 6. T hen , given a bijective m apping 
4> = g (0), we  can derive the  d istribu tion  / ( 0 )  of continuous r.v. (f>, as follows [Freeman 

(19G3); A rnold (20U!))]:

m
where J{6) = |d e t j | th e  Jacobian  determ inan t of th e  transfo rm ation , <f> = g{0),  

and |-| denotes niagnil.nde.

7 .2 .2  L oca lly  d iagon al H essian

As presented in Section 4.4.3.4, let us consider th e  negative logarithm  of th e  tran s­

formed d istribu tion  L{(f>) =  logf{<p), expanded up to  th e  second order of th e  Taylor 

approxim ation a t a  po in t (po '>■*' which L((f>) is infinitely differentiable, as follows:

L i d > )  =  L { 4 > o )  + (0 -  ô)'VL(<^o) -  \ { 4 >  -  -  <̂ o) + • • -

where VZ/(0o) and H{(po) =  — V ^L(0o) are gradient vector and H essian m atrix , respec­

tively, evaluated  a t 0q. In con trast to  th e  F isher inform ation m a trix  approach in [Cox 

and Reid (1987)], we propose to  design th e  transfoririation , g{-), in order to  diagonalize 

th e  Hessian m atrix . Its insight is, actually, a quad ra tic  decoupling up to  second order, 

which yields the  asym pto tic  independence (see P roposition  4.4.5).

Such a transfo rm ation  can be designed via m atrix  decom position. T he transform ed 

Hessian, is desired to  be diagonal locally a.t (p = 4>o =  s(^o)i which a  specific
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value 00 can be chosen freely, typically  a certain ty  equivalent (CE) such as m ean, mode, 

etc. For th is purpose, a  linear transform ation  m atrix  A  can be defined such th a t  g(0) =  

AfJ, where A  is an invertible inat.rix. Tlu; Jacobian  of m atrix  l.ransform ation is also 

feasible to  com pute in th is case: J (0 )  =  det(i4), a constan t. We consider two designs 

for A,  as follows:

•  M e th o d ( / )  - E ig e ii  d e c o m p o s itio n .-  Let A  = Q~^,  w here H{9o) =  QAQ~^  in 

the  original (untransform od) m etric. Then, the  Hessian in the  transform ed m etric 

is H{(f)o) =  A, V</>o G >̂, becomes diagonal a t  (f>o and J{6)  =  d e t((5 ~ ')  =  1.

•  M e t h o d ( / / )  - L D U  d e c o m p o s i t io n ;  Let A  — U,  w here = L D U , and 

L =  f / ' is a  lower triangu lar m atrix  w ith  un it diagonal. T hen , transform ed Hessian 

H{(po) =  D is diagonal by design, V</>o 6 $ , and  J(6 )  =  det(C/) =  L

W hile th e  Eigen decom position is easier to  im plem ent in p ractice, th e  LDU decom po­

sition has one advantage: th e  variable corresponding to  th e  la st row o[ A  =  U  is kept 

unchanged.

7.3 Spherical distribution family

T he spherical d istribu tion  refers to  th e  family of d istribu tions th a t  are closed under any 

diagonalization IvansfoiniaVion IK dker (1970)j. Rec.enlly, in  Bayesian analysis, i t  lias 

been shown to  be an observation model, whose conjugate prior is the  so-called dispersion 

elliptical squared-radial (I)ESR ) d istribu tion  - an extension of nornial-gam rna family 

I Arellano-Valle el al. (200(j)|. T he form of spherical d istribu tion  is defined as

/ ( 0 | m , E ) oc | E | - W ; ( w ( ^ ) )  (7 .3 .1)

w here fi is the  m ean vector and E  is th e  covariance m atrix  for 6, ip is a  function satisfying 

the norm alizing condition for / ( 0 |/ i ,  E ) and

u { 0 )  =  {6 -  -  i i )  (7 .3 .2)

is the  quad ra tic  form  im plied by and S .

Let us, once again, denote L{6) =  — lo g /(0 ) .  T hen , by th e  chain ru le for the 

com posite functions, its Hessian m atrix  can be derived, as follows:

H {e )  =  - v 2l (6») =  ~ ^ ^ ^ ip -V u { e )V u  (9)'  -
O U ^ OU
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7.3.1 M ultivariate Norm al distribution

Since the  first te rm  in (7.3.3) is zero a t the  m ean /i, and in th e  second te rm  is 

diagonaHzablc, II{4>o) can be locally diagonalizcd a t the  m ean Oq = li for any spherical 

d istribu tion  v ia th e  local diagonalization m ethods (I) and (II). In particu la r, H{(f>̂ j) is 

globally diagonal in th e  m ultivaria te  norm al d istribut ion, since, for th is choice of linear 

transform ations, we have =  0, S 0 .  This corresponds to  our se tting  in Section

7.1.

7.3.2 B ivariate power exponential (PE) distribution

Let us s tudy  an o th er illustrative exam ple for th is spherical fam ily (7.3.1), nam ely 

b ivariate power exponential (PE) d istribu tion , defined as follows [Gomez et al. (1998)]:

m f i ,  S ) =  ^  |5 ^ r  ̂  exp (7.3.4)

where 6 and u{9)  is given in (7.3.2). Because it is difficult to  express two tru e

m arginals in closed form  [Gomez e t al. (2008)], let us s tu d y  the  VB approxim ation for 

b ivariate P E  d istribu tion  next.

7 .3 .2 .1  V B  a p p r o x im a tio n  for b iv a r ia te  P E

W ithou t loss of generality, let us assum e th a t  =  0 in the  sequel. Hence, we can
(Ti p(TlCT2

pa\(J2
coefficient. A t cycle i/, th e  V B-m arginals (Theorem  4.5.1) for (7.3.4) can be com puted 

as follows:

w rite / ( 0 |E )  =  =  0, E ), where E = and p  is th e  correlation

/M (0 i)  oc exp ^£'yr|,,_i|(g^_^log/(6'|i:)j , i e { l , 2 }

where eight V B shaping  param eters  ̂ are:
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with d\i, 9̂  ̂ and 9y  denoting first, second and third VB  moments of i.e with respect 

to

7 .3 .2 .2  T V B  a p p ro x im a tio n  fo r b iv a ria te  P E

Tlie transformed distribution of (f) =  Ad are designed as / I  =  Q~^ , where 11“  ̂ =  QKQ~^ 

for (J) and A =  U, where =  L D U  for (U).

For conciseness, only the case ( I )  is presented below, with similar findings for the 

ease ( I I ) .  The transformed distribution of </> =  A6 under ( I )  is:

f{(t>\A) oc |S| 2 exp 

The V B  approximations are derived as follows:

e x p  (

oc exp

where \ , \ \ i  are the two eigenvalues of (i.e. the diagonal elements of A) and 

(jŷ  ̂ is (.he second moment of (j) with resjject to At convergenc:e, tlie VB

approximation for the transformed /(<^|A) distribution are:

n m  = /(<̂ i |a )/(02|a )

« ('xp [(A i <;/>? + A2 + (A202 +  [<̂ i,2 '

Substituting (f) =  Q ^9 into /((/>|A), we will retrieve the T V B  approximation of 

f{6\T,), i.e. / tv b (0 |S ) :  Also, the normalizing constant can be evaluated numerically.

7 .3 .2 .3  C o n to u r p lo t

The res\ilts for /x =  [2.5,1]^, (Tj =  0.5, <T2 =  !■''> and various correlation coefficients, 

p 6 (0 ,1 ), are shown in Fig. 7.3.1 and Fig. 7.3.2. In Fig. 7.3.2, we can see that the 

K L D  of T V B  approximation is ecjual to its minimum value of original VB  and becomes 

invariant with p owing to diagonalization methods. Although the relationship between 

( I )  and ( I I )  is not expressed explicitly, the coincide K L D  values show that they seem 

to be equivalent to each other.
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Figure 7.3.1: Bivariate PE  distribution and its approximations { p  =  —0.5). On the 
right: f g ,  are denoted by (—, —. , : ) respectively; on the loft: and
are denoted by (—, —. ) respectively. For clarity, the VR and TVR approximations are 
shifted to the origin in th a t figure.
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Figure 7.3.2: KLD of VB (above, dotted line) and TVB for bivariate PE distribution

7.4 Frequency inference in the single-tone sinusoidal m odel 
in AW GN

In tliis scction, tlio Bayesian inference for singlc'-tone frequency will be illustrated. De­
spite being simple, this canonical model in digital receivers is non-linear with frequency 
and, hence, intractable for frequency’s posterior computation. The performance of two 
posterior’s approximations, VB and TVB, will also be compared and illustrated.

Based on receiver’s model in equation (3.2.2), let us consider a received sinusoidal 
sequence x„ =  [ x i , . . .  , X n ] '  over the AWGN channel:

=  asin($2i) +  Zj, i e { l , . . . , n }  (7.4.1)

where Z{ 7V’(0, r^). The observed sequence (7.4.1) can be w ritten in vector form, as
follows;

Xn =  a g n +  z„,  i g {1, . . .  ,n} (7.4.2)
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where Zn = [z\, ■. ■, z„]' is the vector of noise samples, and g„ =  [sin(f21),. . . ,  sin(f2n)]'
is the vector of regression function. The implied observation distribution is:

n
/ ( x „ |a ,n )  =  (asin(ni),7’e)

i=l
=  M e,. ( a g n , r e l )

where I  is the identity matrix. For prior knowledge, Q is chosen as uniform over [0, t t ) 

(rad/sam ple) a priori. For amplitude a, the conjugate prior in this sinusoidal model 
is f ( a )  = Ma (/^a,’ a)- This conjugacy was noted in |Bromberg and Progri (2005)| and 
elsewhere.

7.4.1 Joint posterior distribution

The joint posterior for {a, fi} can be derived as follows:

f {aJ l \ Kn)  OC (a sin{m ), re) Afa ifj^a^ra)
i = l

in which:

oc exp ^-------------------------------- j  (7 .4 .3)

oc A/'a(/ i(n),r(n))cxp j y/2nr{n) (7.4.4)

-1- A + l  (7,1.5)
r{n) re ra

re r^

Tk r„

, lia 
Te r„

+ J .
(7 .4 .6)

expressed in term  of Xj{e^^)  =  I m{ X{ e ^ ^ ) }  = x^g„ and in term  of ||gn|| =  gngn • 
From (7.4.4), wo can see tha t Gaussian form is preserved for / ( a |n ,x „ )  =  A/’o(/i {ft) , 

r(f2)), owing to the conjugate prior / ( a )  =  Afa (/iaj^a) defined above, and the itiargiiial 
distribution for can be expressed in closed form as:
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/(n |x „ ) oc exp \ A M  (7-4.7)

However, the distribution (7.4.7) is non-standard and intractable in il, owing to the 
nonlinear dependence on fl, a result that is widely known [Rife and Boorstyn (1974); 
Quinn (1992)]. This sinusoidal model is therefore a canonical candidate for distribu­
tional approximation.

For later use, let us compute joint MAP estimate {o, fi}. From (7.4.4), we can see 
feasibly that a = /i and, by substituting that a to AAq ( / / ( f i ) , r(n))in  (7.4.4), we 
have:

U = are max exp ■
^ n ^  \ 2r(n) I

=  arff max ^ ^
" 2(llrf + i )

7.4.2 V B  approxim ation

From (7.4.3), the VB approximation (Theorem 4.5.1) for /(a ,n |x n )  is (Fig. 7.1.1):

f v B { a , ^ \ ^ n )  = fvB{a \Xn) fvB{^ \^n)  (7.4.8)
, / 2\ (  (^) +  *̂ 2 oc X ( / ^ i , a O e x p ( ^ ^ - ^ ^

in which the iterative VB’s shaping parameters are:

A*1 -  -̂ /vBCSJIXn) (^)l (7.4.9)

=  % v B (a lx „ )  =  2 m

with 7v//j(n|x„) oc exp and JvB{.a\:x.n) = K i

7.4.3 T V B  approxim ation

The TVB approximation via LDU diagonalization (i.e. Method (II) in Soction 7.2.2) 
will be considered next.

Because the Hessian matrix in this case is a symmetric 2 x 2  matrix, the upper 
off-diagonal element u i2  in matrix U of LDU decomposition for Hessian matrix is u i2 = 

H y ^ /H n  =  r(H) (^"=1 , where / / , ,  =  and Hy,  =
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_  T he transform ed variable [A, $1]' =  [ / [o ,n ] '  in th is case is:

\  =  a +  u i 2 n  (7.4.10)

where wi2 denotes 1 /1 2  evaluated at jo in t M A P estim ate  {a , 12}.

N ote th at, th e  Jacobian in th e  LDU transform ation is always unity, i.e. d e t( t /)  =  1, 

as explained in Section  7.2.2. T hen, by changing a  to  A, the transform ed distribution  

is / ( A ,f i |x „ )  =  / ( « ,  and the V B  approxim ation (T heorem  4.5.1) for

/ ( A ,n |x „ )  is (F ig. 7.1.1);

/ ( A ,f i |x „ )  =  / ( A |x „ ) / ( n |x „ )  (7.4.11)

/ 2  ̂ f  + P2\ f  {fi) -  (ny“ («■»»)“? I' 2,(n)  JkH)-
in which:

fj.0 (̂ )̂ -  fJ- (̂ )̂ + Ui2i^  

and the iterative V B ’s shaping param eters are:

(7.4.12)A‘2 = ^ /(n |x„ ) [/^(«)]

a j  = ^ /(n |x ,.) [^(^)!

Pi = •^7(a|x„) [̂ -̂ 1 “  ^ ^ 2

H2 = % .|x „ )  [-^ ^ ] =  - (M2 +  <̂2 )

2r{H) +  and /( A |x „ )  =w ith /( f2 |x „ )  oc exp

N ote that, the Jacobian in inverse LDU transform ation is, once again, im ity. By

applying the inverse transform ation, i.e. a =  X — u i 2 fl  (from (7 .4 .10 )), the T V B

approxim ation f o r / ( a ,  S2|x„) is /(A ,$ 2 |x „ ) ^ , i.e. (Fig. 7.1.1):
I A=a+ui2fi

f r vB{a , i l \ y^n)  =  /rK B (a |^ ^ x„)/T V B (S 2 |x„ ) (7.4.13)

=  ■A/'a (m2  -  / ( f i |x „ )

w here f r v n i ^ l ^ n )  =  /(f^ |X n ), defined in (7.4.11).

C om paring T V B  approxim ations (7.4.13) w ith  V B  (7.4.8) , w e can see th a t the two 

factors in l^VB are not independent anym ore like those in V B , ow ing to linearization  

(7.4.10) at specific point { a , f i }  in coefficient W1 2 . T h is result show s that T V B  is, in 

th is case, a non-naive m ean field approxim ation.

Ilc.mark 7.4.1. N ote the sim ilarity bet,ween fvsi^M^n) in (7 .4 .8) and frVBi^M'X-n) =  

/ ( f2 |x „ )  in (7 .4 .11 ,7 .4 .13), w hose key difference is the extra factor exp
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Because this extra factor involves the second order /i^ (f2) like the true marginal /( f ] |x „ )  
in (7.4.4), the frequency estim ation of TVB is expected to be better than  th a t of VB, 
whicli only takes into account ( he first order /i ($2).

7.4.4 Sim ulation

All iterative shaping param eters, /i, a, a,  /3 in (7.4.9, 7.4.12) are evaluated numerically 
at DFT-bins of fl. The performance of f2 estim ators for various schomos is shown in 
Fig. 7.4.1. Here, n  =  1024 and $1 =  1.1 DFT-bins, i.e. H =  1 1 ^  rad/sam ple. The 
value 1.1 was chosen so th a t the true digital frequency ft  is always off-bin, no m atter 
how high the resolution of the DFT-bin quantization is. Also, the fact tha t $1 is close to 
one represents a stressful regime for the fl estimator [Rife aiid Boorstyti (1974); Quinn 
(1992)]. The SNR is S N R  = , where the prior param eters were chosen as fia = ^
and Ta =  0.1, repnsienting small variance of normalizod at.I.cnuatioii. The niimber of 
Monte Carlo runs is 10®.

7 .4 .4 .1  P er fo r m a n c e  o f  freq u en cy  e s t im a te s

Because the loss function is the root mean square (RMS) error, the posterior mean 
flMEAN is the minimum-risk estim ator (4.3.6), a.s verified in Fig. 7.4.1. Owing to prior 
infonnation, the joint MAP i^MAP estimator is slightly better than joint ML Um l  ■ 
However, because both of them  can only detect the frequency a t DFT-bins, they are 
much worse than ^Im e a n  in this off-bin case.

For illustration of the VB schemes, both VB f l vB  '"'■nd TVB f t r v B  estimators are 
chosen as the  mean of /vs(f^ |X n) and / 7v/?(f^|Xn), respectively. Because the joint 
distribution of concentratcs around single point at high SNR, the performance of a 
naive mean field approximation like VB does increase but is still not good in this case. 
In contrast, the  performance of the TVB estim ator is much higher and close to  joint 
MAP performance, owing to  its linearization around ^Im a p -

7 .4 .4 .2  E v a lu a tio n  o f  c o m p u ta tio n a l load  v ia  F F T

Since FF T  algorithm was applied to all schemes, their computational load was of the 
same efficient order 0 ( n  logn). Note that, owing to the asymptotic nature of 0 (  ), wc 
do not consider the difference of a factor 0 (1 ) in the computational load of the schemes 
above. In practice, iterative schemes such as VB and TVB may be j/-times slower 
than a standard FFT-based schtirne such as ML, where i/ is the iniinber of iterations 
at convergence. The number of iteration i/ for VB and TVB was fixed at 5, since no 
increase in performance was visible for higher v.

Owing to  FFT, the Bayesian i)ost,erior inference CIm e a n  yields a good trade-off 
scheme, i.e. small loss in speed but high gain in performance, compared to  ML estimator 
via periodogram. However, the iterative VB and TVB methods, although being u 
times slower than Bayesian scheme, do not yield better performance than or
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Figure 7.4.1: R oot mean square (RM S) error in  estim ation o f =  1.1 D FT -b ins  for
the single-tone sinusoidal AW G N , v ia  conventional methods and v ia  V B  variants

^ M A P -  Ilcnce, although they cannot be recommended for th is  single-tone problem, 

the sim ulation has verified the superio rity  of T V B  to  V B  m ethod, which is the main 

m otiva tion  o f designing T V B .

7.5 S u m m a ry

This chapter began w ith  an illu s tra tive  example, which showed th a t ro ta tion  can render 

independent (i.e. decouple) b ivaria te  Gaussian random variables and, hence, reduce 

the Kullback-Tjeibler divergence (KTT)) in the V B  approxim ation to  zero. Th is idea 

cnco\n aged us t o  design ( he rot.at.ion v ia  ( he transform ed Hessian m a trix  in  any posterior 

d is tribu tion  at a desired CE po in t, w ith  the V B  approxim ation then being performed 

in the transform ed m etric. Th is  novel scheme wa.s defined as transform ed V B  (T V B ) 

approxim ation. Thanks to the asym ptotic independence p roperty  o f the transform ed 

posterior d is tribu tion , as previously reviewed in Section 4.4.3.4, th is  ro ta tion  scheme 

achieved a local decoupling (independence), and, hence, the antic ipated reduction in 

K L D  v ia  T V B . The spherical d is tribu tion  fam ily, which is a generalized form  o f Gaussian 

d is tribu tion , is closed under ro ta tion  and, hence, was used aa an illu s tra tive  example 

for T V B  scheme.

F inally, ' I ’V B  wiis applied t.o the frequency carrier offset estim ation problem, a 

s im plified context fo r frequency synchronization in  the AW G N  channel, as explained 

in Chapter 3. As expected, the accuracy of T V B  weis shown to  be much be tte r than 

that, o f V B  in simulat ion. Th is  improvement w ill m otivate  fu rth e r research, which w ill 

be discussed in C hapter 9.
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Chapter 8

Performance evaluation of VB 
variants for digital detection

III  Soctioii 7.4, wc have considered one of th ree basic digital receivers of C h ap te r 3, 

nam ely p ilot-based unsynchronized frequency receiver. In th is  chapter, we will consider 

th e  o ther two receivers, nam ely digital detections in AWGN and quantized Rayleigh 

fading channels.

Firstly, a  toy problem  will be investigated. In th e  com m unication context, we 

consider a  Markov source tran sm itte d  over an AWGN channel, w ith  known jDarameters. 

T he perform ance will he st udied in two scenarios: a fixed numbt^r, M , of st a le  and fixcvi 

tium bcr, n , of com putational tim c-resource.

Secondly, an app rop ria te  model for practical Rayleigh fading channel will be studied. 

Sincc th e  b ivariate  R.aylcigh d istribu tion  is a com plicated function, it is often quantized 

to  yield a closed-form M arkov channel [Sadeghi et al. (2008)j. By way of correlation 

coefficient in the  b ivariate  Rayleigh d istribu tion , we can investigate the  influence of 

correlation v ia  transition  m atrix  of Markov channel over the perform ance of inference 

m ethods.

In th is  chapter, we will apply  th e  FB, VA, VB and FCVB algorithm s in C hapter 

f) to  those two M arkovian digital detection scenarios. T he sim ulation evidence will be 

provided and illu stra te  th e  tradc'-offs between perform ance and com putational load. 

Also, in order to  avoid th e  ambiguity, log(O) =  —oo, and to  p ro tec t th e  convention 

OlogO =  0, wc assign log(O) =  —10^° in the  sim ulations.

8.1 Markov source transm itted over AW GN channel

Using th e  receiver model in equation  (3.1.3), let us consider an AWGN channel w ith 

th e  classical Wold decom position;

X i  =  Si  +  a ,  i =  1 , . . .  n
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where Xi are the complex, observed noisy signal (data) samples; Ci is a realization 

of complex AWGN with variance per dimension N q/ 2  (W atts), and N q (W atts per 

radian/sampl(!s) is the power spectral density (PSD). The source symbol Si is Jtli 

realization of an M  states homogeneous Markov chain. Each state is then mapped 

to a constellation point in a rectangular Gray-code M-QAM .
Becau.s(; l,h(' obs(TVHt.ion model (3.1.4) in t his c.ase corres])oiids l,o the i.d . obscirvHi.ion 

model in (6.2.2) and the distribution for HMC sequence Sj corresponds to HMC prior 

model in (6.2.3), this toy model is recognized as a time-homogeneous HMC (6.2.8) with 

M  known Gaussian components.

In simulation, each element of Ad x M  transition matrix T  for the source was 

generated a.s an iid realization from uniform distributions C/(0,1), and then, the columns 

are normalized to satisfy the stochastic matrix constraint. The length-M  vector with 

uniform elements, 1 /M , was chosen as the initial probability vector p  of the HMC. 

For the channel, M -QAM  constellation point represents a block of log2 M  source bits. 
Therefore, although our label estim ates return a symbol-error-rate (SER), which is a 

Haniniing distance on the sequence of symbols, SER is often converted to bit-error- 
rate (BER) in the literature [Richardson and Urbanke (2008)]. In this section, BER is 

confincd to a range much lower than 1 0 ~ \  reflecting the requirement in practice [Haykin 

and Moher (2006)|. The amplitudes, a;, of the constellation points are also normalized, 

such that the average Energy per bit (Ei,) is unity, i.e. E i  =  — =  1, c.f. [Moon

(200.5)|. I3y this way, we can regard the average SNR per bit, SNR t,  =  Et,/No,  as an 

interpretation of signal-to-noise { S N E )  ratio.

8.1.1 Initialization for V B  and FC V B

For initialization purposes, the initial shaping parameters (6.6.3) and (6.6.5) of 

multinomial distribution for VB and FCVB can be chosen either tuiiform, with =  

=  1 /M , k =  1 , . .  ■, M , Vi =  { 1 , . . . ,  n } or ML-based scheme with oc ipi,
i =  { l , . . . , n } ,  where ipi is defined in (6.2.1). Since the ML estim ate is fast, this 

initialization scheme does not greatly affect the overall com plexity of VB and FCVB, 

as summarized in Table 6.6.1.

In all simulations, the converged performance of these two initializations are similar. 

However, the ML-based initialization often rcduces the total number of IVB cycles, Uc, 

by 1, i.e. one cycle of IVB (for VB and FCVB) with uniform initialization has the 

effect of ML-based initialization (for VB and FCVB). This means that the ML-based 

initialization scheme is slightly faster in the simulations. Hence, for clarity, only the 

curves of Ml^based initialization are shown in the figures.

For convention, the terms t r a d V t r a d F C V and FCVBi^^f^

denote traditional and accelerated VB and FCVB, respectively, with ML-based ini­

tialization. Since, in the first IVB cycle, the traditional and accelerated m ethods are 

identical, let us call them and F C V B ^^ j^ ,  respectively.
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Figure 8.1.1: BRR versus SNR per bit, Eb/No (dB), for 2, 8, 64-QAM (left,riiiddle,right), 
with 10  ̂ Monte Carlo runs.

8.1.2 Perform ance o f HM C source estim ates

In Fig. 8.1.1, the BER performance is plotted versus E\,/Nq, for the competing schemes 
in Chapter 6. In all cases of M  S {2,8,64}, ML is the worst estimator, as anticipated in 
Section 6.7.1, while the performances of all other algorithms are identical. Intuitively, 
this is an expected result for VB approximation and its variant, FCVB, all of which 
seek an approximating distribution in the class Tc and respectively, of independent 
distributions. The reason is that the correlation coefficient, p, implied by a transition 
matrix with uniform elements, is low.

The effect on performance of a constrained running-time is illustrated in Fig. 8.1.2, 
in which we set M =  64 , E^/N q =  14.5 (dB), and we varied the number of data n such 
that BER performance of all methods are convergent to 10“ '̂ . In this scenario of high 
SNR, the algorithms have almost identical performance, but with different running- 
times. Hence, all curves in Fig. 8.1.2 appear as x-shifted variants of each other.

The results show that, given a fixed-time resource, we can run the low complexity 
FCVB wii.h more dat.a t.han is possible? for other algorithms. TIk; maximum gain 
in FCVB’s performance over VA’s is about 12%, with a fixed time resource around 
10 microseconds. The simulation results in Fig. 8.1.2, for the case n  =  50, are 
also extracted in Fig. 8.1.3 in order to illustrate the superiority of the Acceleratcd 
F C V to VA and FB methods.

As explained in Section 6.7.1, the FB algorithm is the most accurate method, since 
it returns the sequence of marginal MAP estimates of the HMC labels, i.e. the exact 
minimum risk (MR) estimate in this case (4.3.8). The VA and FCVBf^ML-^, despite
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Figure 8.1.2: BER versus ruiiiiiiig-tiuie for 64-QAM. with 10  ̂ Monte Carlo ruiis. Froiti 
left to right: n =  {2, 5,10, 20, 50,100, 200, 500,1000}. The running-time is measured by 
C ++ implementation and 3 GHz Core2Duo Intel processor.

of not being MR risk estimators, return the exact global and local MAP trajectory 
estimale for the HMC, respectively. For the weakly correlated HMC model in Fig. 
8.1.3, we can see that these two methods are very close, to the extent that they are 
visually identical to FB in performance.

8.1.3 C om putational load of H M C source estim ates

For brevity, we only consider the accelerated scheme for VB-based inference here. The 
comparison between traditional and accelerated schemes will be studied in Section 8.1.4.

From Table 6,6.1, we can roughly estimate the cost of each algorithm via the number 
of equivalent operators, by normalizing the cost of M L  as 0(1), a.s follows (from the 
lowest to highest anticipated cost):

• For FCVB: By normalizing the cost of M L  as 0(1), the cost of each FCVB cyclc 
and VA should be 0(1) and 0{M) ,  respectively. Because requires at
least one IVB cycle 0{r)Ue) and 0(1) ML-hased initialization, in respect to ML’s 
cost, t he tot.al cost of FCVD^j\^^ should be at least 0(ijVe +  1) > 0(1.75), where 
i/fi > 1 and ij 6 [0.75,1.25], as explained in Section 6.6.2,2.

• For VA: the cost should be 0{M) .

• For FB: b(x:anse t.h<! cost, of MUL is not, det,erminist,ic, we consid(!r FB t,o b(; at, 
least three times slower than VA, as is often noted in the literature [Wu (2000)].
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Figure 8.1.3: BER versus running-time for 64-QAM (extracted from Fig. 8.1.2, with 
the case n  =  50).

• For VB: Each VB cycle is slightly slower than FB, hence tlie total cost of 
is at least i/g-fold slower than FB.

In summary, we can predict the running time of F C V B ( m l )-. F B  and
versus ML's  to be 0{r]v^ +  1) ^  0(1.75), 0(M ),  0{3M)  and 0{3Mi/^),  respectively.

L(;t us verify above computational prediction via the simulation resiilts in Fig. 8.1.2, 
M  =  64. the average ratios of running time of F C V VA, F B  and 
versus M L ’s were found to be 1.83, 57.1, 200.3 and 233.9, respectively. These results 
arc consistent with our estimates of the ratios in the last i>aragraph.

Also, from Fig. 8.1.2, we can see that FCVB is completely superior to VA in 
this case, since they achieve similar performance, given the same number n  of data, 
but FCVB nins much faster. The average gain in FCVB’s speed over VA’s is about 
57.1/1.83 =  31.2 times, i.e. around half of M =  64. This gain in simulation is also 
consitent with the theoretical gain M/{r)i/e +  1) <  36.6 in computational load, with 
M =  64, i'e > 1 and r/ 6 [0.75,1.25], as explained above.

In the same simulation of Fig. 8.1.2, we also found that the average i/p for F C V  
is /7e =  1.01, i.e. FCVBf^i^^  almost converged right after the first IVB cycle. Then, we 
can deduct the average value fj to be y  = =  0.82. This value =  0.82 belongs
to the theoretical range [0.75,1.25].

Re.mark 8.1.1. Note that, if we exclude the relative cost 0(1) of ML’s initialization .step 
in the F C V relative cost 0(TjUe +  1), tlie average computational load of 
Accelerated FCVB algorithm in this case is only = 1.83 — 1 =  0.83 times of M U s
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cost, i.e., in this case, the Accelerated FCVB is faster than the currently-supposed 
fastest algorithm, ML, for IIMC estimate.

8.1.4 E valuation of V B -based  acceleration rate

From two Lemmas 6.5.1-6.5.2, the BER performance for accelerated scheme is expected 
to be the same a.s traditional scheme for VB-based (VB and FCVB) inference, which 
is ind(;(;d (,hc case in simulations in l.his chapl,<;r. For (:om])arison {)uri)()S(;, l,h<; gain 
factor in this ease is the acceleration rate ^  in speed, aa defined in (6.5.15), between 
the effective number i/g and total number i>c IVB cycles.

In Fig. 8.1.1, the overall average values of Vc for t r a d V and tradFCVD(^m l )
and those of Ve for are 2.6±0.7, 1.5±0.3 and 1.6±0.6, l . l iO . l  over
lO'’ Monte Carlo runs, respectively. Hence the acceleration rate vd^e  in this context is 
about 1.5 for these VB and FCVB schcmcs.

In Fig. 8.1.4-8.1.5 (lower panels), we can see that //̂  for both V îJ(ML) â nd F C V  
are very small, 0(1), and independent of n, even at n =  10^. At high values of M  (32
and 04), i/g for increases considerably, while i/g for F C V increa.ses only
slightly.

Compared with tradVB^j^fi^'f and t r a d F C V we can see that the acceleration 
rate of FCVB(^xf;) is approximately linear in the log of n  or M , i.e. O =  0(Iog M)

and O =  0(logn.), with fixed n  and fixed M, respectively. The acceleration rate 
of VB(^m l ) super-linear against a log scale, when n  and M  are high. Ilenco, for 

we have O > O(logM ) and O > O(Iogn), with fixed n  and fixed M,  
respectively. As a consequence, from simulation results of i/g and acceleration rate 
we can deduct that the converged IVB cycles, i/c-, of tradVBf^^iL) tradFCVBi^i^^
are also logarithmically scale against both n  and M.

Overall, this logscale jjlienomenon may be relevant to exponential forgetting proj)- 
erty of IIMC, as explained in Section 6.7.2. The simulations also show that VB requires 
slightly more number of IVB cycles than FCVB, possibly because FCVB circulates 
hard-infonnation, which is likely to converge faster than soft-information used in VB.

8.2 R ayleigh fading channel

Although ( he Rayleigh fading channel was thoroughly reviewed in Section 3.3, sonic key 
points for simulation will be summarized here for clarity.

Let us recall that, in practice, the receiver may be moving with velocity v. Because 
of (,ho Doppler effect,, this movement causes a fading rate iji = ||/ij|| (3.3.4) for the 
amplitude’s average of scattering received signals, as illustrat.ed in Fig. 3.3.1. A 
statistical model for |/ij|, firstly proposed in [Clarke (1968)], is an envelope of a stationary
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FCVB,

_  FCVB

Figure 8.1.4: A cceleration ra te  (above) and  effective num ber Ve of IVB cyclcs
(below) versus num ber of d a ta  n , w ith 10^ M onte Carlo runs.. T hree o irves for each 
algorithm , from  bo tto m  to  top, correspond to  num ber of s ta tes: M  =  {2 ,8 ,64}. Note 
th a t, some curves are alm ost identical to  each other.
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com plex G aussian process, whose autocorrelation  function (ACF) is given by (3.3.7):

p { Ts )  =  a ^ M 2 7 T f D T , )  (8 .2 .1)

where cr  ̂ is th e  variance of th e  complex G aussian process per dim ension, / d  =  (Hz) 

is th e  m axim um  D oppler frequency, A (m) is the  tran sm itted  carrier wavelength, Jo ( ')  's 

th e  zero-order Bessel function of the  first kind and Tj is th e  sam pling period. N ote th a t, 

a t any sam pling tim e i =  the m arginal d istribu tions of gi and gf  for this

G aussian process are Rayleigh [Tan and Beaulieu (2000); W ang aiid ChaTig (1996)] and 

X^(2) [Cavers (2000)] d istribu tion , respectively, as shown in equations (3.3.10-3.3.11). 

Hencc, th is  m odel is callcd a Rayleigh fading channel. Bccause it is prohibitive to 

evaluate gi via ARM A process, a quantized HMC model [Sadeghi e t al. (2008)] for g  ̂ is 

currently  a popular choice for the  decoder over fading channel. In our sim ulation, all 

values of gi are generated from the  quantized HMC, as defined below.

8.2.1 M arkov source w ith HM C fading channel

Prom receiver’s model in equation  (3.3.5), let us consider a fading channel m odel, w ith 

th e  sam e M arkov source Sj and no ta tions in previous section:

X i  =  g i S i  +  6 i ,  i =  , n }  ( 8 .2 .2 )

w here gi is one of quantized  K’-levels of Rayleigh d istribu tion  f {gi ) .  T he traT\sitioii 
m atrix , Tc, of fading HM C is a quantized version of th e  conditional distribution: 

f { y i \9 i - i )  =  where f { g i , g i - \ )  is a tim e-invariant b i-variatc Rayleigh
distribu tion  (see A ppendix. B for details). Then, the  model (8.2.2) can be augm ented 

to  be an HM C w ith  M K  sta tes. Let us then  define M K  x  M K  tran sition  m atrix  

a.s Tcs =  T c ( ^ T s ,  w here denotes Kronecker p roduct for m atrix . Bccause K  = 8 

chantiel quantization  levels are found to  be accurate  enough for f o T s  < 0.01 [Sadeghi 

and R apajic  (2005)]. T hen , in the  sequel, let us consider an M  =  16-QAM signal 

tran sm itte d  over a  Rayleigh channel, which yields an augm ented source-channel HMC 

of M K  =  128 sta tes. T he algorithm s for HM C in C hap te r 6 will infer th e  AIK-st 'dtc  

label of th e  augm ented HM C, giSi, in (8.2.2). We can then  m arginalize out the  K  

channel levels to  com pute th e  M -sta te  M arkovian source. Hence, th e  BER in our 

sim ulations took only the source s ta te  estim ates into account.

For param ete r settings, since gi and Sj are assum ed independent, th e  fading power 

E (g f )  =  2<t  ̂ is norm alized to  un ity  in th is  section, i.e. =  0.5, so th a t  th e  average 

SNR per b it S N R f ,  is still th e  sam e as average energy per b it of th e  source, i.e. S N R i ,  =  

E b /N o  (Section 8.1). Also, as shown in (8.2.1), th e  correlation coefficient, p =  p{Tg),  of 

the  tim e-invariant f ( g i , g i - i )  is a function of th e  norm alized D oppler frequency f oTg,  

wliose m eaning is explained in Section 2.3.5.3. This relationship  is illu stra ted  in in 

Fig. 8.2.1. T hen , we can vary p  via th ree practical regim es of fading channel, i.e. slow.
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Figure 8.2.1: C orrelation coefficient p =  ^o(27t/d7s) versus norm alized Doppler
frequency fnT.s- From left to  right: th ree fading regimes are slow, in term ediate , and 
fast fading regim es, corresponding to  fo T g  < 0.01, 0.01 <  f o T s  <  0.1, and  f o T s  > 0.1, 
respectively.

in term ediate  and fast fading regimes, corresponding to  f p T ,  <  0.01, 0.01 <  f p T f  <  0.4, 

and J d Ts >  0.4, respectively [Sadeghi et al. (2008)). Because th e  exact thresholds for 

those thret! reginu;s arc not clearly defined in the litera tu re , le t us ro d cfin e  (,lie range 

I d T s <  0.01, 0.01 <  fp T g  <  0.1, and  fr>T^ >  0.1 for those th ree  regimes, respectively, 

in th is thesis.

N ote th a t, the correlation in T c is implied by value of p  in (8.2.1). Becau.se the 

correlation in our uniform  sarnples-based is low, the  correlation in T^s m ostly 

depends on p. Hence, by varying p, we are actually  varying th e  correlation  in the 

augm ented HM C model (8.2.2).

8.2.2 Perform ance of source estim ates in H M C channel

For evaluating  perform ance, the sim ulation against variable SN R  per b it, E i / N q, is 

displayed in Fig. 8.2.2. Two values /d 7 «  =  0.01 and f o T s  =  0.1 are considered as slow 

and in term edia te  fading regimes, respectively, in th is  figure.

We can see th a t, in th e  fast fading regime, th e  correlation coefficient p  is not too 

high (less th an  0.9), all the  algorithm s (except ML) have the  sam e perform ance and 

sim ilar to  those for th e  toy HM C exam ple in Fig. 8.1.1. T his resu lt is expected , because 

when the  fast fading channel becomes dom inant, th e  sam ples between two tim e point 

becom es m ore independent. In the  slow fading regime, which is m ore popu la r in practice 

[Sadeghi and R apajic  (2005)], the  perform ances of bo th  FB and  VA are alm ost coiiicide
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in term ed ia te  fading
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FB
tradFCV B,

tradVB,

Figure 8.2.2: BER versus SNR per bit, Eh/No{dB),  for HMC source (M  =  16-QAM)) 
over HMC fading channel {K  =  8 levels), with 10^ Monte Carlo runs.

with oach other and b etter than those in the fast fading regime. However, VB’s and 
FCVB’s performance becoirie closer to ML tlian to FB or VA in high SNR per bit. This 
fact implies th a t VB and FCVB approximations become less and less accurate. In order 
to corroborate this finding, two plots of BRR and vcrstis p are displayed in
Fig. 8.2.3 and Fig. 8.2.4, respectively (for the computation of KLDj^^j ,  see Section 
6 . 6 . 1 .2 ) .

In Fig. 8.2.3, wc focus on the ease Et,/No = 30 dB in Fig. 8.2.2. By varying the 
fading channel from slow to fast regimes, i.e. from foTg < 0.01 up to  fo Ts  > 0.1, we 
can investigate many cases, p > 0.99 down to p < 0.9, respectively. In all cases, ML’s 
performance does not change and remains with the worst performance. For the fast 
regime (p <  0.9), all algorithins (except ML) have virtually the same performance. For 
the  interm ediate regime, 0.9 <  p <  0.99, there is a trade-ofT in performance between 
t.wo groups of cxact and approximate estimates, i.e. bct,w(!(;n FB (and VA) and VB 
(and FCVB). For the slow regime (p > 0.99), although VB and FCVB’s estimates arc 
still better than ML’s, their performance deteriorates compared to  FB and VA.

The dependence of VB’s acctiracy of approximation on p is shown clearly in Fig. 
8.2.4. For fast and interm ediate regimes (p < 0.99), KLDjr^^j. is small, implying tha t 
VB yields a good approximation. For the slow regime (p > 0.99), the KLDjr^^^ increases 
sharply with p, and, hence, VB for the HMC is not a good approximation under this 
fading conditions. Since FCVB is a CE)-based version of VB, the trend of KLDj-^^j in 
Fig. 8.2.4 explains the diminished performance of VB and FCVB compared to FB and 
VA, observed in Fig. 8.2.3. We also see tha t this phenomenon is repeated for many
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F igure 8.2.3: B E R  versus correlation coefficient p  of Rayleigh channel, a t Eb/No = 30 
dB, for th ree  fading regimes in Fig. 8.2.1, w ith lO'’ M onte C arlo  runs.
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F igure 8.2.4: KLD j^^ j ,  for the VB approxim ation of source-channel HM C, versus p,  for 

th e  slow fading regim e in Fig. 8.2.2, w ith lO'* M onte C arlo  runs.
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values of SNR per bit E ij/ N q, although K L D j ^ j  becomes smaller (i.e. VB yields a 
better approximation) in higher SNR regimes, as expected.

The cinpirical results on relationship between digital detect,ion accuracy and corrc>- 
lation coefficient p also proposes a trade-ofl situation in i)ract,ice:

• By increa.sing p, the perfonriarice of Markov-based algorii.hms (i.e. FB and VA), is 
likely to  be increased, but the approximations in class of independent distributions 
(i.e. VB and FCVB) is decreased. The higher p is, the more significant this 
phenomenon becomes. This fact is actufilly rctisonable, sincc the oiiginal model 
become more correlated in this case.

• In simulations, it is shown tha t there are three working regimes for FCVB al­
gorithm. If correlation in transition m atrix of HMC is not high [p < 0.9), 
FCVB can achieve the same performance as VA and FB. When the correlation 
is high (0.9 < p < 0.99), FCVB yields a t.radt'-off bt^t.weeii perfoniiance and 
computational load. And finally, if the correlation is too high (p > 0.99), FCVB 
is not an attractive algorithm, since approximations in independent class for HMC 
are not suitable.

8.2.3 C om putational load of source estim ates in H M C channel

The average running time (over all tested p) of all algorithms in Fig. 8.2.3 are displayed 
in Fig. 8.2.5. I'h is result shows tha t FCVB is an attractive algorithm, with much lower 
complexity than VA. The ratios of averaged running-time of F C V and 

versus M L ' s  are 2.03, 139.7, 399.7 and 575.4, respectivc;ly. For the number 
of IVB cycles, we have i/g = 1.04 ±  0.04, i/c =  1-79 ±  0.54 and i/g = 1-24 ±  0.10, =
2.28 ±  0.64 for t r a d F C V and ^ T a d V respectively.
ITen(x;, tlie acceleration rate  is about 1.25 for both FCVB and VB schtMnes in this 
augmented HMC context. These results arc all consistent with Table 6.6,1, and with 
the explanation in sections 8.1.3-8.1.4.

8.3 Sum m ary

This chapter presents simulation results in the context of two digital receiver models, 
developed in C hapter 3. The first assumes a Markov source, whose transition matrix 
was generated uniformly and simulated as input to a synchronized AWGN channel. In 
the simulations, the accuracy of all state-of-the-art algorithms FB, VA and ICM (i.e. 
FCVB) was shown to be the same, but the accclerated ICM /FCVB algorithm reduced 
the effective immber of iteration cycles to about one, on average.

Secondly, the same Markov source was used as an input to  a synchronized finite 
state Markov fading channel, with number of data, n,  and number of states, A f . In this 
case, although the computational load 0 { n M )  of the accelerated FCVB schoriie was 
still much smaller than  0 ( n M ^ )  of VA, its accuracy was only comparable to VA’s when
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Figure 8.2.5: R u iiii ii ig - tiit ie  averaged over all tested p iTi Fig. 8.2.3, w ith  10^ Monte Carlo 
ruHK. The rnnn ing-tim e  is measured by C i I im plem entation and 3 GHz Coro2Duo Inte l 
processor.

the  corre lation coetficieTvt of Rayleigh fading process was not too  high. T h is  trade-off 

fa c ility  can be applied in other contexts, as discussed in the next chapter.
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Chapter 9

Contributions of the thesis and 
future work

The paLliway cstabhshcd in Chapter 2 has ended. It started  by reviewing the teleeoin- 
munications literature for the purpose of identifying the main challenges th a t we wanted 
to address using Bayesian methodology. The interior chai^ters have provided progress 
with (,his aim. In this closing chapter, wc will snmmarizc the i:ontrib\itions of the thesis 
and offer suggestions for future work, before closing the thesis with concluding remarks.

9.1 Progress achieved by the thesis

In this secl.ion, the strengths and w(!aknesscs of t.he t hesis will b(; r(!fl(̂ ct,(’d by considering 
the m ajor contributions and suggesting future work. In turn, these can be divided into 
four principal themes, corresponding to four key tasks in Chapter 1. For each theme, 
the disoissioii will be presented in three steps; key achievements in this thesis, the 
generalization, and proposals for future work.

9.1.1 O ptim izing com putational flow via ring theory

For this theme, the thesis’ purpose is to reduce the computational load involving the 
evaluation of objective functions arising in inference problems relevant to  telecommu­
nication.

•  M ain  con tribu tions:

The thesis’ original idea is to separate computational flow into two domains: operators 
and variables (Section 5.2). Respectively, two key contributions are; in the former 
domain, a novel theorem (Theorem 5.3.7) on the computational perspective of the 
generalized distributive law (GDL) in ring theory, and in the la tter domam, no-longer- 
needed (NLN) algorithm (Algorithm 5.1). The theorem guarantees computational 
reduction for any valid application of GDL upon operators, while the NLN algorithm 
exploits the conditionally independent (Cl) topology of variables. Together, they open
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up two other contributions. The first one is the efficient Forward-Backward (FB) 
com putational flow (Section 5.4) for distributing the operators over variables when 
iu!(!d(!d, wliik; (,lu! socond one is the discovery of explicit formulae; for count,ing the 
number of operators, ring-sum and ring-products (Section 5.3.3), in tha t FB (low.

In general probability context, there is an increase exponentially of number of 
operators with the number of da ta  in computation of the joint distribution, bocausc 
the number of sta te  increases exponentially (the curse of dimensionality). However, 
the number of operators falls exponentially with the number of NLN variables. In 
hidden Markov chain context, the FB algorithm and VA, two spccial cases of FB 
recursion, exploit the la tte r in combating the former. Hence, the FB recursion and 
GDL helps interpret the linear dependence on data in the complexity of FB and VA, as 
a consequencc of numerical cancellation over the number of operators.

•  G e.neralization:

In principle, the recursive FB flow is applicable to objective functions to which GDL 
is valid. For cxam])lc, it is ai)])licable to c:omi)utation of the message-passing algorithm 
in graphical learning [Aji and McEliece (2000); Moon (2005)] and Markov random field 
[Geman and Genian (1984)], computation of inarginalization, inaxiinization, entropy 
in Bayesian learning, evaluation of Iterative VB algorithm ]Smidl and Quinn (200G); 
Wainwright and Jovdau (2008)1.

•  Future work:

Based on the abov(; generalization, future work can be designed in two din;ctions: 
optimizing the FB flow and finding more applications.

- For the former: the objective is to  find the Cl topology th a t minimizes the 
computational reduction achieved via FB recursion. Although the global minimization 
is an NP-complete problem, as discussed in Section 5.4.3, a local solution can be found 
by extending the computational flow from two-directions in FB recursion to  multi­
directions in a topological graph. Another potential solution is to apply topological 
sorting algoritlinis to the Cl topology before implementing the FB recursion, owing to 
the explicit formulae for determining computational complexity in this case.

- For the latter: the objective is to verify whether GDL is valid for a particular 
objective fuiiction. One key property is Markovianity, owing to  its natural Cl topology. 
Because Markovianity is assumed in many efficient algorithms in telecommunications 
system, as reviewed in Section 2.3, the FB recursion can be applied to studying the 
computational reduction in these algorithms, e.g. in forward-backwaid lattice filters 
and in other scenarios in telecommunications. Another interesting issue is to  explore 
the relationship between recursion (Section 6.4) and iteration (Section 6.6) in Markovian 

objective functions. If the recursion is carried out via GDL, it is likely that the compu­
tational load can be further reduced in two cases: recursion embedded in iteration, and 
iteration embedded in recursion. The first case was considered in Accelerated FCVB
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algorithm in this thesis (Section 6.6.2), while the second case can be explored in future 
online variance of VB scheme.

9.1.2 Variational Bayes (V B ) inference

For this theme, the thesis’ purpose is to extend the VB methodology in order to achieve 
more accurate deterministic distributional approximation. Our aim was not to reduce 
computational load, per se.

• Main contributions

The thesis’ original idea is to weaken the coupling between param eters in the trans­
formed metric by diagonalizing the Hessian m atrix at a specific point. The VB ap­
proximation is then applied to  the transformed posterior distribution. The technique 
is referred to as the transformed VB (TVB) approximation (Section 7.2). Compared 
with VB, the TVB scheme was shown to yield significant iinproveinent in accuracy 
when the Hessian of the transformed distribution is designed to be diagonal at its MAP 
point. Intuitively, this improvement is achieved because the transformed variables are 
asymptotically independent, in which case the VB approximation is exact. Note that, 
the TVB approximation has a fundamental output as an approximate distribution in 
the original metric (Fig. 7.1.1), a novel contribution, when compared to  classical 
orthogonalization approaches, whose purpose is to produce estim ates of transformed 
variables.

• Generalization:

In principle, the TVB approximation is applicable to any multivariate posterior dis­
tribution, whose desired marginalization is intractable. In practice, for tractability of 
Iterative VR algorithm, the transformed distribution shoiild be separable-in-parameters 
(Definition 4.5.2), i.e its logarithm can be factorized into product of functions for each 
param eter separately.

•  Future work:

Based on the above generalization, future work can be designed in two directions; 
optimizing computational load and designing new transformations, such th a t the trans­
formed distribution is separable-in-parameter (Definition 4.5.2).

- For tlie former: the current TVB approximation may involve computational in­
tensive IVB cycles. A potential solution is to replace the involved expectation with 
maximization via the FCVB schcmc (Lemma 4.5.3). However, this schemc rcduces to a 
point estimation and neglects all the moments, which, in tu rn , may significantly reduce 
the quality of distributional approximation (Fig. 8.2.3).

- For the latter: Two potential transformations are global diagonalization of trans­
formed Hessian m atrix and frequentist’s transformation techniques (Box and Cox (1964); 
Sakia (1992); Koekemoer and Swanepoel (2008)). The task is, however, not trivial,
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because of difficulty with each of transformation design. Global diagonalization of the 
Hessian matrix is only feasible for bivariate distribution [Cox and Reid (1987)]. Fur- 
tluirmoro, in frcqucnitist’s t.ransfoniiatioii, the inverse; transformation can be applied in 
the point estimate. In coiitra.st, the inverted distribution, i.e. the TVB approximation, 
may be highly complicated and, in particular, its marginalization is not available.

Those difficulties show ( hat furt her work arc required for TVB. Even in the current 
form, TVB needs to be applied on a case-by-case basis, since the certainty equivalent 
(CE) points, like the MAP point, may not be available at the beginning. Nevertheless, 
the TVB shows the potential for relaxing VB methodology to achieve more accurate 
distributional approximation.

9.1.3 Inference for the H idden M arkov Chain

The previous two themes focus exclusively on computational reduction and enhancing 
accuracy, respectively, but not on both together. The third main theme of this thesis 
is to provide new algorithms which achieves better trade-offs between performance and 
spend for label’s infcrcnc:e in the IIMC.

• Main r.ontrihidions:

The thesis’ idea is to replace the VA with the ICM algorithm for better trade-o(T. Two 
contributions, one for performance and one for speed, were achieved using this approach.

- For performance, a Bayesian interpretation was given for both the ICM (Section 
4.5.2.4) and the VA algorithm (Section 6.4.3). We show that the criteria are to preserve 
the global MAP trajectory and the local MAP trajectory at any recursive and iterative 
step, respectively. This interpretation also explained why the accuracy of VA and ICM 
are comparable when correlation in the HMC is not too high.

- For speed, an accclcrated scheme was designed for the VB scheme, in which any VB 
marginals that have converged are flagged and are not updated in the next IVB iteration. 
We show's that this accelerate scheme provides the saine output a£ original scheme 
(Lemma G.5.1,G.5.2). Since ICM can be re-intcrpreted as the functionally constrained 
VB (FCVB) approximation, the computational load of Accelerated ICM/FCVB was 
rcduced, in simulation, from 0 { vn M)  down to nearly 0{nM) ,  where i/, n  and M  
arc number of ICM iterations, number of time points and number of states in HMC, 
respectively.

• Generalization:

In ])rinciple, the accclcrated scheme for Iterative VB and ICM algorithm can be applied 
to any inference problem involving hidden field of Cl variables, notably the Markov 
random field, when correlation is not too strong.
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• Future work:

Baswl on the above priiidi)le, we may investigate further the computational reduction 
achieved by the accclerated scheme. The simulation in the thesis showed that, in the 
IIMC, the number of iteration for traditional VB and ICM /FCVB is almost linear to 
the logarithm of both n  and M  (Section 8.1.4). Also, the effective number of IVB 
cycle for accelerated VB and ICM /FCVB scheme was close to  one and stayed nearly 
constant witli n  and M  (Scction 8.1.4). This reduction in log-scale suggests IIM C’s 
exponentially-forgetting property, whose influence on the number of IVB cycle should 
be investigated.

9.1.4 Inference in digita l receivers

For this theme, the thesis’ purpose is to  apply the three themes above to practical 
concern in the digital demodulation in digital receivers.

• Main contributions:

The thesis’ idea was to apply the Accelerated ICM /FCVB algorithm and TVB approxi­
mation to demodulation in digital receivers. Two main contributions, one for Markovian 
digital detector and one for frequency synchronization, were given in the thesis.

For Markovian digital detector (Chapter 8), the Accelerated ICM /FCV B algorithm 
was applied to  detecting modulated bit stream transm itted over a quantized Rayleigh 
fading channel. When the fading is not too slow, i.e. correlation between samples is 
not too high, the performance of Accelerated ICM /FCVB is comparable to the state- 
of-the-art VA, but with a greatly reduction of computational load (Scction 8.1.3,8.2.3).

For frequency synchronization, the full Bayesian inference was studied for a toy 
problem, namely frequency inference for the single-tone sinusoidal model in AWGN 
channel (Section 7.4). Note th a t, when the frequency is off-bin, the posterior mean yields 
far more accurate (Fig. 7.4.1) than periodogram-bascd ML estim ate, since posterior 
mean is continuous value while the DFT-based periodograin is not (Section 7.4.4.1). 
The accuracy of the TVB approximation was also found significantly better than tha t 
of the VB approximation (Fig. 7.4.1) from the point of view of posterior mean (Remark 
7.4.1). It is im portant to remember that all of these techniques - VB, TVB, and exact 
posterior mean, as well as ML - are all computed via the D FT (and implemented via 
FFT), and therefore have similar computational load.

• Generalization:

In principle, the  Accelerated ICM /FCVB can be successfully applied to  the finite-state 
Markov channel (FSMC) [Sadeghi et al. (2008)) when correlation is not too high. Also, 
the TVB method is attractive for maintaining accuracy in nonlinear synchronization 
probleiti [Quinn et al. (2011)].

• Future work:
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Based on the above principle, future work can be proposed in two directions; Markovian 
digital decoder and carrier synchronization.

- For Markovian digital decoder (Chapter 8), perhaps t,he most obvious proposal is 
to rejjlace the VA with the Accelerated ICM /FCVB. The evidence su{)porting proposal 
was provided in (Fig. 8.1.2,8.1.3,8.2.5), showing great increase in speed w ithout much 
loss of accuracy. Note tha t, l,he Accolerated ICM /FCVB is more broadly applicable 
than the Markovian context of VA. Furthermore, the Accelerated ICM /FCV B can be 
implemented in both online and offline scenarios, yield the same output in these cases, 
while VA is the offline algorithm.

- For carrier synchronization, the Bayesian inference is mostly preferred when the 
accuracy is a premium. For example, the accuracy in frequency and phase synchroniza­
tion is critical in OFDM scheme for 4G system (Section 2.3.4.1), and in joint decoding 
and synchronization [Herzet et al. (2007)]. In the future, the challenge will to elaborate 
VB and TVB solution for these problems.

9.2 Conclusion

Tlie thesis luis considered both the computational side of VB-based inference method­
ology and its application in digital receivers.

For the inference tasks we considered, the m athem atical tools were Bayesian uiethod- 
ology and ring theory, whose purpose is to update the belief on tmknown quantities 
and to generalize the operators for computing these beliefs, respectively. The required 
com putations were efficiently implemented via two approaches, namely recursive flow 
via (he generalized disl.ributive law (GDL) from ring theory, and iterative deterministic 
approximation via the Variational Bayes (VB) approximation in mean field theory. 
Two key contributions were given for each of the two approaches. For GDL, the first 
contribution was a novel theorem on GDL, guaranteeing the reduction in the number 
of operators and providing the formula for quantifying this reduction. Secondly, a novel 
Forward-Backward (FB) recursion for achieving this reduction was derived. Meanwhile, 
for VB, the first contribution was the lYansformed VB (TVB) scheme for asymptotically 
decoupling the transformed distribution to  which VB is applied. Secondly, we develop 
a novel accelerated scheme for VB, reducing the effective number of iterative VB cycles 
to about one in the case of hidden Markov chain (IIMC) inference.

For digital receivers, the four achievements in inference methodology above were 
then ajjplied to  digital demodulation, which consists of synchronization aTid digital 
detect,ion. Rcs))ectively, a TVB-based frequency synchronizer and a fast digital detector 
for the quantized Rayleigh fading channel were derived in the thesis. Each perforins well 
in specific operating conditions, specified in Section 7.4 and Section 8.2, respectively. 
However, further work is needed to formalize these operating conditions and to achieve 

a robust extension of the algorithms. Nevertheless, these two applications illustrate 
the applicability to telecommunications systems of the novel inference methodologies.
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described in  the previous paragraph. Undoubtedly, these approaches can address the 

technical demands o f d ig ita l decoders in 4G mobile systems, as reviewed in Section 

2 . I . 2 . 2 .

As an outcome o f th is thesis, two related journa l j)aperH, based on Chapter 5 

and Chapter 6 respectively, are about to  be subm itted to  the IE E E  TYansactions on 

Informat.ion Theory. The novel algorithm s derived from  the generalized d is tribu tive  

law (G D L) in  C hapter 5, which w ill be reported in  the  firs t of these papers, should 

have im pact in  the fu tu re  design of optim al com putational flows fo r a rb itra ry  networks, 

part.icularly Bayesian networks. The novel V aria tiona l Bayes (V B ) variants o f the 

V ite rb i a lgorithm , developed in Chapter 6 o f th is  thesis, w ill be published in the second 

o f these forthcom ing jou rna l papers, and were p a rtly  published in [Tran and Q uinn 

(2 0 ]]b )|. As explained in  Chapter 6, these methods lead to be tte r trade-offs between 

com putational load and accuracy than the state-of-the-art V ite rb i a lgorith in , and should 

yie ld more efficient decoders for hidden Markov chains. Note th a t p re lim inary  work on 

Bayesian inference o f hidden discrete fields was published in [TVan and Q uinn (2010)]. 

F inally, C hapter 7 o f th is  thesis, which proposes a novel inference scheme fo r frequency 

inference, was p a rtly  published in [Tran and Quinn (2011a)]. A  fu lle r account o f the 

T V B  methodology in signal processing w ill be s>ibmitted to  the  IE E E  Transactions on 

Signal Processing at the end o f th is year.
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Appendix A  

Dual num ber

A dual Tiuinber d e D) C (Yaglotti (1968); Veldkainp (1975)] inay be defined in two
a b

ways, as cither (i) d =  a l‘2 + be =
0 a

, o 6 K is callcd the real part and 6 € R is

callcd the dual part, or (ii) d — {]l(i(d),hn{d)},  i.e. :

Rc{d)

Im{d)

al2 =  a

bt = b

1 0 

0 1

0  1 ’  

0 0

where the la tte r is a Catersian form representation of d alternatively, writing d = a(l2 +

^e), and I2 =  

of d, as follows:

1 0 A
, e =

0 1

0 1 0 0
We can propose a polar-form, representation

d = aZ  tan  0

with the argument tan  9 = b/a  and a ^  0 . Then, with the sum and product in D defined 
as usual m atrix sum and product, it is easy to verify that:

d\ +  d2 — (fii +  «2) +  +  >̂2)

d]d-2 = (a ia2)Z (tan  61 +  tan  ^2)

where e is called the dual unit, and = 0, corresponding to the m atrix form:

ce =  0
0 0 
0 0
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Appendix B

Quantization for the fading channel

O ur aim is to  derive th e  probability  Tnass function (pirif) induced by quan tiza tion  of the 

am phtude p aram ate r of th e  Rayleigh fading channel. In common w ith th e  litera tu re  

[Tan and Rcanlicn (2000); Kong and Sliwodyk (1999); Sadt-ghi aiid R ai)aji(’ (2005)], w(! 

design th e  quantization  th resholds such th a t each quantized s ta te , j of gi, is equi- 
probable.

At each tim e i, th e  first-order Rayleigh d istribu tion  is quantized to  A'-levels, as 

follows:

I  0 , otherw ise

where E{ gj )  — 2a^ is callcd th e  fading energy and is called th e  variance of underlying 

cottiplex G aussian process per dimension [Sadeghi et al. (2008)] (see Section 3.3.2 for 

details). N ote th a t, th e  fading energy E{ gf )  =  2cr^ can also be found via d istribu tion  

f ( gf ) ,  w'hich is the  d istribu tion  w ith  two degree of freedoms in th is case ]Cavers 

(2000 )]:

2

whose th e  m ean is E{ gf )  =  2a^.

For quantization , an equiprobable partition ing  approach sim ilar to  ]Tan and Beaulieu 

(2000); Kong and Shwedyk (1999)] will be applied. Let us consider the continuous 

d istribu tion  function (c.d.f) of Rayleigh d istribu tion  (B.0.1), as follows;

(B.0.2)
, Otherwise

W  =
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Now we can find K  thresholds Ci i • • • i Ck ^  equiprobable intervals, i.e. f ’ (C fc )  ~  

F{Ck- i )  =  w ith ^0 =  0, which yields:

F{Ck) =  k / K ,  k =  l , . . . , K  (B.0.3)

From  (B.0.2), these Cfc can be expressed in closed form, as follows:

a =  ^ - 2 < r 2 l o g ( l - A ) ,  k = l , . . . K - l

where, for trunca tion  a t A: =  K ,  we set =  5, since F{C,x =  5) »  1 — if

E{gf )  =  2(T̂  =  1. T hen, the s ta te  of quantized fading channel are defined as the  

continuous m ean gf.  ̂ of each interval:

9k,i =  -^ /  9i f(9i )dgi ,  k = l , . . . , K  
JCk 1

which can be com puted num erically |Kong and Shwedyk (1999)]. U nder th is  A’-s ta te  

quantization  procedure, we can define th e  b ivariatc (sccond-order) pm f of the  A '^-state 

samples. T he b ivariate Rayleigh probability  for a pair gi, gj  is also quantized into K  x K  

intervals, as follows:

ra>-Crn rnj-Ck
=  /  /  f(9i ,9j)<igrdgj  (B.0.4)

where the integral of the b ivariate d istribu tion , f (g i , g j ) ,  can be com puted num erically 

via the  following fonri of b ivariate Rayleigh d istribu tion  f ( g i , g j )  [Sadeglii and R apajic 

(2005)]:

/(»,») -  °p '« ( ^ ( T ^ )  (‘*“■5)

in which /q denotes zero-order modified Bessel function of the first kind and p is the 

correlation coefficient between gi and gj.  N ote th a t, when p is very close to  1, then th e  

argum ent of 7o( ) in (B.0.5) is large. For com putation  in th a t  ceise, we can re])lace the 

above /o(-) w ith  its approxim ation /o(3:) «  exp(a:)/\/27rx, for large x  [Bowman (1958)|.

From (B.0.1) and  (B.0.4), the conditional pm f of th e  quantized  Rayleigh fading 

am plitude can be defined as f { l i \ k - i )  =  Mu i . { Tn l i _ i ) ,  w here Zj € { e ( l ) , . . .  , e { K ) ]  is 

label variable pointing  to  K  quantized levels ĝ  =  [fji i, ■ ■ ■ , gK i\' a t  tim e i and T^c >s 

positive K  X K  transition  probability  m atrix  of an homogeneous M arkov chain, with 

elements: ~  I <  k , m  < K . T he colum ns of T^-

are then norm alized to  1, by definition, in order to  avoid any num erical com])uLation’s 

error. Finally, note th a t  all initial probabilities of th is  M arkov chain in th is  equi-pji obable 

scheme are equal to  l / K ,  from (B.0.3).
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A b stract

The digital telecommunications receiver is an important context for inference methodology, the key 
objective being to minimize the expected loss function in recovering the transmitted information. For 
that criterion, the optimal decision is the Bayesian minimum-risk estimator. However, the computa­
tional load of the Bayesian estimator is often prohibitive and, hence, efficient computational schemes 
are required. The design of novel schemes—striking new balances between accuracy and computational 
load—is the primary concern of this thesis.

Because Bayesian methodology seeks to construct the joint distribution of all uncertain paramet­
ers in a hierarchial manner, its computational complexity is often prohibitive. A solution for efficient 
computation is to re-factorize this joint model into an appropriate conditionally independent (Cl) struc­
ture, whose factors are MfWkov models of appropriate order. By tuning the order from maximum to 
minimum, this Markov factorization is applicable tc^all parametric models. The associated computa­
tional complexity ranges from prohibitive to minimal. For efficient Bayesian computation, two popular 
techniques, one exact and one approximate, will be studied in this thesis, as described next.

The exact scheme is a recursive one, namely the generalized distributive law (GDL), whose purpose 
is to distribute all operators across the Cl factors of the joint model, so as to reduce the total number 
of operators required. In a novel theorem derived in this thesis, GDL—if applicable—will be shown 
to guarantee such a reduction in all cases. An associated lemma also quantifies this reduction. For 
practical use, two novel algorithms, namely the no-longer-needed (NLN) algorithm and the generalized 
form of the Forward-Backward (FB) algorithm, recursively factorizes and computes the Cl factors of 
an arbitrary model, respectively.

The approximate scheme is an iterative one, namely the Variational Bayes (VB) approximation, 
whose purpose is to find the independent (i.e. zero-order Markov) model closest to the true joint model 
in the minimum Kullback-Leibler divergence (KLD) sense. Despite being computationally efficient, 
this naive mean field approximation confers only modest performance for highly correlated models. A 
novel approximation, namely Transformed Variational Bayes (TVB), will be designed in the thesis in 
order to relax the zero-order constraint in the VB approximation, further reducing the KLD of the 
optimal approximation.

Together, the GDL and VB schemes axe able to provide a range of trade-offs between accuracy 
and speed in digital receivers. Two demodulation problems in digital receivers will be considered 
in this thesis, the first being a Markov-based symbol detector, and the second being a frequency 
estimator for synchronization. The first problem will be solved using a novel accelerated scheme for 
VB inference of a hidden Markov chain (HMC). When applied to weakly correlated M-state HMCs with 
n samples, this accelerated scheme reduces the computational load from O(nM^) in the state-of-the-art 
Viterbi algorithm to 0(nM), with comparable accuracy. The second problem is addressed via the TVB 
approximation. Although its performance is only modest in siirmlation, it nevertheless opens up new 
opportunities for approximate Bayesian inference to address high Quality-of-Service (QoS) tasks in 4G 
mobile networks.


