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“I could tell you my adventures—beginning from this morning,”

said Alice a little timidly; “but it’s no use going back to

yesterday, because I was a different person then.”

— LEWIS CARROLL,

Alice in Wonderland





Summary

For genomes, phenotypes, and organisms to evolve, a necessary prerequisite is

genomic variation. The work described in this thesis examines the effect of ancient

and persistent gene product constraint on permissible copy number and expression

variation affecting dosage-sensitive genes.

Copy number variants (CNVs) are regions of the genome that are duplicated

or deleted in some individuals in a population. Often this variation does not

produce a phenotype as CNVs, however, CNVs have previously been associated

with human conditions, most notably neurodevelopmental disorders, making its

study and understanding important. With the prevailing hypothesis that CNV

pathogenicity is due to dosage-sensitivity of the enclosed genes, the evolutionary

history of genes in benign and pathogenic CNVs were contrasted with the aim

of creating a deeper understanding of how evolutionary patterns relate to CNV

pathogenicity. We found through comparative genomic methods that mammalian

orthologues of human genes found in pathogenic CNV regions are rarely duplicated

or lost. Conversely, genes overlapped by benign CNVs displayed much higher

variability in mammalian copy number. Furthermore, we found that genes with

conserved copy number across mammals are depleted among CNVs in non-human

healthy mammals, mirroring the pattern observed in humans.

In chapter 4, we examined the relationship between CNV pathogenicity and

acquisition route of variants. Firstly, we found that our trained CNV pathogenic-

xvii



ity classifier could accurately predict pathogenic variants using simple genomic

characteristics. Applying our prediction tool to independent datasets of control

variants from healthy individuals and case variants from patients with rare disor-

ders, we found a large difference in the proportion of variants being classified as

pathogenic, enabling us to accurately distinguish between the groups. Finally, we

observed significantly different levels of pathogenicity between de novo variants

and inherited variants. We found evidence, consistent with previous findings, that

de novo CNVs are more likely to be pathogenic than inherited variants.

Expression quantitative trait loci (eQTLs) are genomic regions harbouring

sequence variants that influence the expression level of one or more neighbour-

ing genes. Exploring expression variation, in the form of eQTLs, we tested the

hypothesis that dosage-sensitive genes are refractory to such variants in a similar

way to their depletion among benign CNVs. To test this we used ohnologues,

genes with conserved copy number across mammals from chapter 3, and haploin-

sufficient genes as groups of genes displaying dosage-sensitivity. Contrary to our

expectation, we found that dosage-sensitive genes display enrichment for eQTLs,

however they show non-random biases. Notably, eQTLs affecting dosage-sensitive

genes are biased towards influencing expression in fewer tissues, whereby eQTL

affecting expression in many tissues are likely removed by purifying selection.

These results provide evidence of persistent, ancient dosage constraints in

place for many human protein-coding genes. These constraints are a major force

in shaping and defining permissible copy number and expression variation for

these genes.

xviii



Chapter 1

Introduction

Variety’s the very spice of life,

That gives it all its flavour.

— WILLIAM COWPER,

‘The Task’ (1785)

For genomes, phenotypes, and organisms to evolve, a necessary prerequisite

is genomic variation. Kan and colleagues began to reveal the extensive variation

that pervades our genomes, discovering individuals with multiple copies of the α-

globin genes (Kan et al., 1975; Goossens et al., 1980). Around the same time, they

also discovered the first single nucleotide variants (SNVs) in the HpaI restriction

site downstream of the gene producing β-globin (Kan and Dozy, 1978). With

variant presence differing between African and non-African populations and an

association with sickle cell disease, the importance of this discovery to medical

and population genetics cannot be understated. In the years following, the study

of SNVs grew rapidly but research of structural variation involving inversions,

deletions, duplications, insertions and translocations, lagged behind until the turn

of the 21st century.

1



2 Introduction

1.1 Copy number variation

Copy number variants (CNVs), a form of structural variation, are regions of the

genome that are duplicated or deleted in individuals of a population and account

for an order of magnitude more variation than SNVs in terms of base pair length.

CNVs have been widely characterised in many species (Völker et al., 2010; Liu

et al., 2010; Nicholas et al., 2009; Li et al., 2012; Pezer et al., 2015; Debolt, 2010;

Bai et al., 2016), but most extensively in humans, where they are found to be

abundant. In 2010, it was estimated that each individual has on average 1,000

CNVs of 450 bp with respect to the human reference genome (Conrad et al., 2010).

Several estimates suggest that ∼10% of the genome experiences recurrent CNV

events (Conrad et al., 2010; Zarrei et al., 2015). These repeatedly affected regions

are called CNV hotspots and their architecture predisposes them to recurrent

CNVs (Lupski, 1998).

1.1.1 Mechanisms of copy number variant generation

Genomic regions that are highly similar in sequence similarity can induce non-

allelic homologous recombination between each other (Pâques and Haber, 1999).

Non-allelic homologous recombination occurs during meiosis when regions with

high similarity align with each other and cross-over occurs. This results in the

generation of two new alleles: one allele missing the sequence flanked by the

aligned repeats, and another allele with the intermediate sequence duplicated.

With about half of the human genome comprising repetitive elements (Treangen

and Salzberg, 2012), there is ample opportunity for regions to misalign and give

rise to a CNV.

Segmental duplications are one such type of genomic repeat and are rela-

tively young, being younger than 35 million years old (Eichler, 2001). With >95%
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sequence identity, these repetitive DNA regions longer than 5 kilobases are dis-

tributed non-randomly throughout the genome and have genic biases (Bailey et

al., 2002). Duplications often are located within pericentromeric and subtelom-

eric regions (Eichler, 2001) but this varies by chromosome (Bailey et al., 2002).

Additionally, gene-rich chromosomes are enriched for segmental duplications and

conversely gene-poor chromosomes display fewer duplications. This distribution

has caused certain regions of our genome to experience accelerated rates of evolu-

tion that played an important role during primate evolution (King and Wilson,

1975; Wilson et al., 1975; Samonte and Eichler, 2002; Bailey and Eichler, 2006;

Marques-Bonet et al., 2009).

Patterns of genic biases within these regions suggest that the function of the en-

closed genes may be a factor in the copy number evolution of these regions. Some

genes are observed to have undergone recent rapid adaptation in the primate

lineage (Johnson et al., 2001), while other genes with disadvantageous loss-of-

function phenotypes appear to be depleted within duplication hotspots (Dang

et al., 2008). The morpheus gene family within a segmental duplication, LCR16a,

has experienced recent duplication and positive selection for many amino acid

substitutions (Johnson et al., 2001). This two step process of gene family ex-

pansion through duplication and subsequent rapid sequence evolution may be

an important reservoir for the emergence of hominoid genes. Conversely, after

extensive manual curation of genes with haploinsufficient phenotypes, Dang et al.

(2008) demonstrate that these genes are less likely to be situated between pairs

of neighbouring segmental duplications on the same chromosome. This depletion

suggests that selection has acted on the location of these genes or repeats in order

to avoid the deleterious scenario arising of deletion alleles being created, reducing

the gene product dosage of these haploinsufficient genes. Creating both positive

and purifying selective pressure on the contained genes, CNV arising from non-



4 Introduction

allelic homologous recombination occurring between segmental duplications has

shaped the genes within these regions.

Besides these recurrent CNVs, there are additional mechanisms of CNV gener-

ation that give rise to non-recurrent CNVs. Break-induced replication that occurs

at short sites of homology (microhomologies of 2-15 bp) can be error prone, joining

a pair of proximal homologous DNA single strands (Bauters et al., 2008; Hast-

ings, Ira, et al., 2009, reviewed in Hastings, Lupski, et al., 2009). This erroneous

product is similar to the results of non-allelic homologous recombination with

the potential to create deletions and duplications. Additionally, non-homologous

end joining can generate CNVs as double-strand breaks in DNA are repaired by

annealing microhomologies exposed in single-stranded overhangs (Lee et al., 2007;

Lieber, 2008). This mechanism does not require pre-existing homology in the

region affected, only in the exposed overhangs, hence the term non-homologous

end joining.

These non-recurrent CNVs have the ability to alter the copy number of genes

in any region of the genome, not just in regions flanked by repeats. Millions of

years of CNV occurrence between segmental duplications have shaped the genes

within these regions, but only weakly as the occurrence of CNVs within segmental

duplications still have the capacity to cause disease and disorders (Emanuel and

Shaikh, 2001; Shaw and Lupski, 2004; Sharp et al., 2006; Miller et al., 2009;

Girirajan et al., 2013).

1.1.2 Contribution to disease

Often the occurrence of a CNV does not produce a phenotype, as CNVs are

frequently small, intergenic or encompass genes that can tolerate a change in

copy number. Some genes can even be completely deleted with no apparent ef-

fect (Zarrei et al., 2015). However, CNVs have previously been associated with
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a number of human conditions, most notably neurodevelopmental disorders in-

cluding autism spectrum disorders, schizophrenia, intellectual disability, attention

deficit hyperactivity disorder, developmental delay and epilepsy (Sebat et al., 2007;

Stefansson et al., 2014; Stefansson et al., 2008; Walsh et al., 2008; Mefford et al.,

2008; Lesch et al., 2011; Helbig et al., 2009; Cooper et al., 2011).

Other neurological conditions have been associated with CNVs, including bipo-

lar disorder (Green et al., 2016), Alzheimer’s disease (Rovelet-Lecrux et al., 2006;

Heinzen et al., 2010; Brouwers et al., 2012), amyotrophic lateral sclerosis (Morello

et al., 2017), and Parkinson’s disease (Miller et al., 2004). There is a growing

number of studies implicating the role of CNVs on body weight, particularly

those leading to obesity (Bochukova et al., 2010; Jarick et al., 2011; Falchi et al.,

2014). In Jacquemont et al. (2011), one region on chromosome 16 is observed

to give rise to extreme over- or underweight phenotypes, depending on whether

the region is deleted or duplicated, respectively. Additionally, CNVs have been

associated with metabolic conditions such as diabetes (Jeon et al., 2010), car-

diovascular traits such as familial hypercholesterolemia (Wang et al., 2005), and

autoimmune disorders including Crohn’s disease (Fellermann et al., 2006) and

rheumatoid arthritis (McKinney et al., 2008). Due to these implications in disease,

CNVs are subject to increasingly intense scrutiny to understand and characterise

their genetic and phenotypic effects.

Determining the effect that a CNV will have at the phenotypic level is chal-

lenging. An understanding of the function of the genes affected by the CNV is

required, how those genes interact with other genomic components, and how a

change in copy number could perturb the function and interactions of the genes

affected. These obstacles are not simple to overcome as identical CNVs can give

rise to a range of phenotypes in different individuals due to different genetic

backgrounds and environmental factors. For example, presence and severity of
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phenotypes can vary for individuals with Down’s syndrome, caused by trisomy

of chromosome 21 (Roper and Reeves, 2006), and individuals with CNVs in the

q11 region of chromosome 22 (Hiroi et al., 2013). Therefore, there is a need to

understand the genes affected by CNVs and how a copy number change can be

the basis for pathogenesis.

1.1.3 Causes of pathogenicity

One of the first well-characterised cases of CNV pathogenicity was Charcot-Marie-

Tooth neuropathy. Charcot-Marie-Tooth neuropathy is one of the most commonly

inherited neurological disorders, affecting ∼1 in every 2,500 people. The disorder

has been specifically linked to changes in copy number of the dosage-sensitive gene

peripheral myelin 22 (PMP22, Lupski et al., 1991). Dosage-sensitivity provides

a model whereby a 50% increase or decrease in gene copy number is deleteri-

ous (Veitia, 2002; Papp et al., 2003a; Birchler et al., 2001; Birchler and Veitia,

2012). When the dosage of these genes is changed by an overlapping CNV, the

function of the gene is disrupted in a way that we may observe as disease. More

acutely dosage-sensitive genes may never be observed in CNVs, even in pathogenic

ones, if they are so disruptive as to result in inviability (Chen et al., 2017). Thus

duplication and/or loss CNVs of dosage-sensitive genes are not expected to be

observed in healthy individuals (Makino and McLysaght, 2010).

Haploinsufficiency

Genes can be dosage-sensitive in a number of ways, for example some genes, termed

haploinsufficient, have a minimum required concentration to achieve functional-

ity (Figure 1.1). Haploinsufficient genes include many transcription factors and

developmental genes (Fisher and Scambler, 1994). A CNV deletion will half the

copy number of the genes contained within its breakpoints. This will typically
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Figure 1.1 | Mechanism of pathogenicity - Haploinsufficiency
A loss-of-function mutation reduces gene dosage in half resulting in insufficient
gene product concentration to effectively carry out function.
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AGGREGATION-PRONE PROTEINS

Misfolding

Aggregation
at high

concentrations

Degradation

Figure 1.2 | Mechanism of pathogenicity - Protein aggregation
Protein misfolding occurs spontaneously and usually results in degradation, how-
ever at high concentrations misfolded proteins can aggregate.

result in a reduction of messenger RNA (mRNA) expression levels produced from

these genes (Henrichsen et al., 2009) and likely a reduction in final gene product

concentration. If functionality cannot be achieved with this decreased concen-

tration and absence of function decreases fitness, the copy number change will

be disadvantageous. As already mentioned, haploinsufficient genes are depleted

within segmental duplications (Dang et al., 2008), and it is likely the selective pres-

sure of CNV deletion alleles being created at these loci by non-allelic homologous

recombination that lead to this non-random genic bias.

Aggregation, toxicity, & overexpression phenotypes

Dosage-sensitivity can also manifest for gene products at high cellular concentra-

tions (Figure 1.2). One such example gene is SNCA which encodes the α-synuclein

protein. This protein is aggregation-prone at high concentrations and can result

in rapid onset Parkinson’s disease (Singleton et al., 2003; Miller et al., 2004).

Aggregation-prone proteins have been linked to other neurodegenerative diseases

such as Alzheimer’s and Huntington’s disease but also systemic amyloidosis and

localised diseases e.g. type II diabetes and cataracts (Chiti and Dobson, 2006).
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Uncontrolled increases in the concentration of aggregation-prone proteins would

likely lead to more interactions and more opportunity for potentially deleterious

aggregates to form. This could explain why aggregation-prone proteins are seen to

be more tightly regulated compared to non-aggregation-prone proteins, showing

lower transcription rate and abundance, higher translation regulation and lower

translation efficiency and also both lower protein abundance and shorter pro-

tein half-life (Gsponer and Babu, 2012). All these regulatory differences between

aggregation-prone and non-aggregation-prone proteins suggests that the reduction

in availability of monomers for these potentially deleterious aggregates has likely

been selected for over evolutionary time.

More generally, genome-wide screens have been conducted systematically in

Saccharomyces cerevisiae to investigate genes with overexpression phenotypes,

that is where overexpression reduces fitness and growth (Gelperin et al., 2005;

Sopko et al., 2006). In yeast, ∼80% of genes tested can be overexpressed in this

way without significantly reducing growth rate. The remaining 20% are dosage-

sensitive in part due to producing proteins that localise in membranes and that

contain regions of structural disorder (Österberg et al., 2006; Vavouri et al., 2009)

Intrinsic disorder in protein structure promotes off-target promiscuous interactions

that can be deleterious and is an additional potential cause of pathogenicity.

Dosage balance

In some instances, dosage-sensitive genes may not give rise to deleterious conse-

quences exclusively from under- or over-abundance but from any stoichiometric

change relative to other cellular components (Figure 1.3). This is observed for

protein complex members that are in stoichiometric balance with their respective

complex partners (Papp et al., 2003a). Here as part of the dosage balance hypoth-

esis (Veitia, 2002), it is hypothesised that genes that encode heteromer complex



10 Introduction

DOSAGE BALANCE
Wild-type

Subunit imbalance - subunit B dosage increase

Subunit A

Subunit B

Subunit C

Assembled
protein complex

Subunit A

Subunit B

Subunit C

Misassembled
protein complex

Figure 1.3 | Mechanism of pathogenicity - Dosage balance
For heteromeric protein complexes, stoichiometric balance is important for correct
complex assembly. In cases where imbalance occurs, such as the duplication of a
bridging subunit, here subunit B, incomplete complex formation can occur as the
overabundant subunit sequesters other complex subunits with reduced chance of
forming a complete complex.



Introduction 11

subunits must be balanced in concentration to their respective partner(s). If a

trimeric complex subunit is produced in excess, a reduction in fully assembled

complexes may result due to the other subunits being bound and sequestered by

the abundant subunit. As many incomplete dimeric complexes result there are

two reasons why this can be disadvantageous: firstly, these partial products will

at best be wasteful or worse actively deleterious (e.g. toxic), and secondly, there

are fewer than required complete functional complexes to carry out their cellular

function(s).

A systematic screen in yeast has not only confirmed deleterious consequences

of overexpressing some genes producing complex subunits, but also has demon-

strated that simultaneously overexpressing partner subunits negates the reduction

in fitness and rescues the phenotype (Makanae et al., 2013). This screen found

that only ∼2% (115/5,806 genes) of yeast protein-coding genes were sensitive

to overexpression. In more recent work this group have attributed such a small

proportion of the genome displaying sensitivity to dosage compensatory buffer-

ing at the protein-level (Ishikawa et al., 2017). They found that ∼10% of genes

tested are dosage-compensated and that these genes are enriched for subunits

of multi-protein complexes. This suggests that perturbations to protein complex

stoichiometry is sufficiently deleterious to warrant widespread compensation. How-

ever, it is important to note that post-translational compensation is not universal

for dosage-sensitive genes as some complex members still demonstrate sensitivity

to overexpression. This perhaps hints that a balance must exist between cellular

robustness to variation and the ability to evolve. If a phenotype is too robust this

could limit the effect of selective forces on underlying genetic variation (Kitano,

2004).
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CONCENTRATION-DEPENDENT MORPHOGENS

Dorsal

Ventral

PosteriorAnterior

Protein distribution

Wild-type

Inactive receptor
Activated receptor

Overexpression
Dorsal

Ventral

PosteriorAnterior

Protein distribution

Underexpression
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Ventral

PosteriorAnterior

Protein distribution

Figure 1.4 | Mechanism of pathogenicity - Concentration-dependent
morphogen
Concentration-dependent morphogens pattern embryos in a highly specific manner
during development to create differential gene expression at opposite embryonic
poles. If increased gene dosage occurs, constitutive receptor activation can result
and no transcriptional differences result at opposite poles. Conversely, underex-
pression will fail to active any receptors and body plan development will fail to
proceed.
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Specific absolute dosages

Dosage-sensitive genes may operate in a concentration-dependent fashion (Fig-

ure 1.4). An example of how some developmental genes are affected by a con-

centration change can be seen during embryonic development where morphogens

establish concentration gradients. These gradients pattern the embryo in a highly

specific manner to regulate transcription (Rogers and Schier, 2011). In some cases,

receptors for these transcription factors have low binding affinity, requiring high

concentrations of the morphogen to activate transcription of downstream elements.

Alternatively, a scenario where a high number of binding sites are present and

a significant proportion must be bound to activate transcription also requires

high concentration. By contrast, other receptors could have high affinity and so

responding to even very low levels of transcription factor. Similarly low levels of

transcription factor may suffice if the number of binding sites is low and transcrip-

tion can readily be activated. Concentration changes on such a precise system

of regulation can greatly alter the response seen, where increased concentration

would cause low binding affinity receptors to exhibit a constitutively active-like

state. Conversely, a reduction in morphogen could be insufficient to activate some

types of receptors at all.

Specific concentrations of gene product can also influence splicing of mRNAs

as seen with pyruvate kinase M (PKM, Chen et al., 2012). PKM has two splic-

ing forms, an adult form and an embryonic form. Which form is produced at

a given time is regulated by the concentration of hnRNPA1, a heterogeneous

nuclear ribonucleoprotein that functions as a splicing repressor. High hnRNPA1

concentration yields the embryonic from of PKM and low concentration results

in adult PKM. In cancer cells however, hnRNPA1 is upregulated by MYC and

erroneously gives rise to splicing of the embryonic form in adult tissue. Therefore,

it is important to note that CNVs can not just give rise to more or less of a



14 Introduction

TOPOLOGICALLY ASSOCIATED DOMAINS
Wild-type

TAD a TAD b TAD a TAD bneo TAD

TAD interaction
loops

Duplication of TAD boundary

Figure 1.5 | Mechanism of pathogenicity - Topologically associated do-
mains (TADs)
Duplication or deletion of TAD boundaries can result in different interactions
between genomic regions. Shown here is a duplication of a TAD boundary that
disrupts one TAD, TAD b, and leads to the creation of a second TAD, neo TAD.
This altered genomic context means that genes are exposed to alternative regula-
tory elements and changes to gene expression occur.

gene product and the downstream regulatory effects that can have, but also the

functional effects of alternative splice forms that can arise.

Chromosomal structure & topologically associated domains

While the prevailing hypothesis on CNV pathogenicity is that it is due to dosage

sensitivity of the included genes, there is more than one possible mechanism

by which a CNV can disrupt gene function and cause a phenotype, including

disruption of chromosome structure and uncoupling of regulatory elements from

their downstream genes (Zhang, Gu, et al., 2009). There is evidence that a CNV at

a given locus can affect more than just the expression of its contained genes by also

influence neighbouring genes’ expression level as well (Reymond et al., 2007). In

fact this extended influence can reach as far as 2–7 Mb beyond a CNV’s boundaries,

making it more difficult to elucidate causative elements of pathogenicity.

CNVs can disrupt the three-dimensional organisation of the genome in the
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nucleus (Figure 1.5, Franke et al., 2016). Topologically associated domains (TADs)

are megabase size regions of the genome defined as physically interacting and

proximal in nuclear three-dimensional space (Dixon et al., 2012; Nora et al., 2012;

Stevens et al., 2017). They operate as regulatory units where enhancers and

promoters interact and their genomic boundaries appear to be conserved across

species and cell types (Lupiáñez et al., 2015). Duplications within a TAD, intra-

TAD duplications, appear to leave TAD structure unaffected (Franke et al., 2016).

However, inter-TAD duplications that enclose a boundary and extend into the

neighbouring domain create new domains (neo-TADs) that isolate that region from

the rest of the genome. If only non-coding, non-functional regions are incorporated

into this new domain this can result in a neutral phenotype, but if any genes or

regulatory elements are included they will experience a different genomic context

potentially giving rise to a deleterious phenotype.

From these examples it is clear that CNVs affecting dosage-sensitive genes

can give rise to pathogenicity and how that might occur. As much of the genome

remains incompletely characterised functionally, it is not easy to say with a great

degree of certainty what the phenotypic affect of a CNV at a given genomic locus

will be.

1.1.4 Copy number variant inheritance

When a CNV in an individual’s genome originates in one of their progenitor

cells as a germline mutation, its origin is said to be de novo. About 50% of this

individual’s own germline cells will also have the allele with the CNV and the

potential to be inherited by his/her offspring. This means that for a CNV to be

inherited from a parent already affected by it in their own genome, its resulting

phenotype cannot be sufficiently deleterious to completely reduce fecundity, the

ability to produce offspring. Therefore, CNVs that greatly impact fecundity and
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fitness can be observed as part of de novo variation but these mutations will be

absent among inherited variants. CNVs that are incompatible with life will still

be unobserved in both de novo and inherited variation in individuals.

These extreme selective pressures acting on segregating CNVs should have

an impact on which CNVs are permissible and differentiate them from de novo

variants. Indeed, distinct patterns have been observed. Recurrent de novo CNVs

are observed as occurring in a similar distribution to segregating CNVs in the

genome of Plasmodium falciparum, being predominantly located in the telomeric

or subtelomeric regions (Samarakoon et al., 2011). However, non-recurrent, rare

de novo variants are randomly distributed throughout the genome, arising with

about equal frequency across chromosomal regions. This suggests that selection

has removed some variation outside of telomeric or subtelomeric regions that arose

but never achieved segregation within the population.

The type of variants that are acquired by different routes, inherited or de novo,

appear to play different roles in human conditions also. It has been observed

that the genomes of individuals with autism spectrum disorder have a four-fold

enrichment for de novo CNVs compared to their unaffected siblings (Sebat et al.,

2007; Itsara et al., 2010; Levy et al., 2011). Also, patients with intellectual disability

and/or multiple congenital anomalies categorised as having severe phenotypes,

including organ malformations, were enriched for more de novo CNVs (Vulto-van

Silfhout et al., 2013). In contrast, patients with more moderate phenotypes had a

mix of inherited and de novo CNVs affecting their genomes. Additionally, de novo

CNVs are observed to contribute to schizophrenia and have 8-fold enrichment in

sporadic, non-familial cases compared to controls (Xu et al., 2008). Rare, inherited

CNVs were only moderately enriched in sporadic schizophrenia cases. It is apparent

from this evidence that de novo CNVs can be highly pathogenic and some of which

likely affect fecundity which leads to a reduction in their frequency segregating
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in the population.

The relationship between pathogenicity and CNV acquisition route is inves-

tigated in chapter 4 – ‘Prediction of pathogenic copy number variation yields

insights into variant inheritance’.

1.2 Evolution through gene gain and loss

When CNVs arise they have two ultimate fates: loss or fixation. If a CNV nega-

tively affects fecundity it will have reduced chances of being inherited and likely

removed from the population. An advantageous CNV that increases an organ-

ism’s fitness, is more likely to be inherited and eventually reach high frequency

in the population becoming fixed in all individuals of a subsequent generation.

How quickly a variant reaches one of these fates is determined by a number of

factors, including population size and selective pressure (Whitlock, 2003). It has

been about 15 million years since humans and great apes shared a common an-

cestor (Moorjani et al., 2016), and this has been enough time for some CNVs to

reach fixation, with a number of studies observing gene copy number differences

between the genomes of human and other primates (Locke et al., 2003; Fortna

et al., 2004; Newman et al., 2005; Goidts et al., 2006; Wilson et al., 2006). In

fact, these fixed copy number differences appear to be extensive and common,

encompassing more than 20 Mb and two hundred genes. Which variants reach

fixation and which regions of the genome are affected are important questions to

investigate both for understanding genome evolution and human conditions.

1.2.1 Gene duplication

In 1970, Susumu Ohno championed the importance of evolution by gene duplica-

tion, whereby new gene function originates after a gene duplication event (Ohno,
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1970; Ohno, 1973). After duplication, two identical gene copies, called paralogues,

exist and this genetic redundancy releases the paralogues from functional con-

straints (Lynch and Conery, 2000). Now, because a “backup” gene copy is present,

one of the paralogues is free to acquire a mutation that would render it unable

to carry out its ancestral function without deleterious effect. This paralogue can

continue to accrue mutations that will either lead to its eventual loss or acquire a

different, new function altogether. The “backup” gene copy will continue to carry

out ancestral function but has functional constraints reimposed on it. Which of

the two paralogues becomes evolutionarily restricted again is determined by which

copy first acquires a mutation that prevents it carrying out ancestral function.

Gene duplications provide a basis for genomic innovation. Protein-coding

genes are complex, comprised of an open reading frame, typically spread across

multiple exons divided by introns, upstream and downstream regulatory elements,

protein domains, etc. (He and Zhang, 2005). Gene duplication and mutation

provide a mechanism to attain complex gene function without having to repeatedly

evolve such complexity . Lynch and Conery (2000) provide a conservative average

estimate of 0.01 gene duplicates per gene per million years, with a species range

of ∼ 0.002− 0.02. This means that in a 35-350 million year time period, ∼50% of

protein-coding genes are expected to undergo a duplication event and reach high

frequency in a population. Such abundance of raw material provides an excellent

basis for genomic innovation and adaptation.

An issue arises, however, when a gene being duplicated is dosage-sensitive,

specifically if it is sensitive to increased expression. Here, only one or several genes

are being duplicated and this process is called small-scale duplication (SSD). In

this case, a gene duplication will be deleterious and selected against. We would

expect dosage-sensitive genes to have less fixed duplications over evolutionary

timescales due to selection arising from these deleterious effects. This can be
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tested by looking for signatures of natural selection. This hypothesis is tested in

chapter 3 – ‘Dosage sensitivity is a major determinant of human copy number

variant pathogenicity’.

1.2.2 Whole genome duplication

Ohno (1970) also proposed that vertebrates had experienced two whole genome

duplication (WGD) events. As opposed to SSD, WGD is the complete doubling of

genomic content resulting in cells that have four sets of chromosomes and are in

a state of tetraploidy. Polyploidy may arise due to abnormal cell division during

meiosis. As chromosomes accrue mutations, they gradually return to diploidy as

they fail to retain enough sequence similarity to line up at metaphase during

meiosis (Wolfe, 2001), i.e. instead of four alleles aligning at a given locus, the

genome returns to two aligned alleles. How long the process of reploidisation takes

likely varies between genomes but recent evidence from the salmonid-specific

autotetraploidisation gives us some indication as rediploidisation is still ongoing

after 80 million years (Lien et al., 2016).

The vertebrate WGD events are often called the 2R hypothesis, a name de-

rived from two rounds of duplication, and have been extensively studied in the

advent of sequence data (Holland et al., 1994; Ohno, 1999; McLysaght et al., 2002;

Hokamp et al., 2003; Dehal and Boore, 2005). These events are estimated to have

occurred at least 450 million years ago (Mya) and are seen as fundamental to the

development and innovation of vertebrate evolution that has since taken place

by providing extensive raw material upon which to select (Freeling and Thomas,

2006). Extensive genomic rearrangement and massive gene loss took place in the

aftermath of the WGD events. Prior to the salmonid-specific duplication event

already mentioned, a teleost-specific WGD occurred also (Jaillon et al., 2004;

Meyer and Van De Peer, 2005). In fact, WGD events while rarely observed fixed
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have occurred a number of times across phyla, particularly in the plant king-

dom (Jiao et al., 2011; Chalhoub et al., 2014). While the majority of duplicated

genes post-WGD are observed to return to single copy, this is a non-random

process.

1.2.3 Duplicate fixation or loss?

Gain of a new function, termed neofunctionalisation (Force et al., 1999), is only

one of a number ways gene duplicates can be selectively retained in the genome

and persist (Conant and Wolfe, 2008; Innan and Kondrashov, 2010). An issue

with this model of duplicate retention through gain of function proposed by Ohno

(1970) is that the paralogue not carrying out the ancestral gene function has

a high probability of losing all functionality due to random mutation prior to

achieving a new function that ensures its retention (Bergthorsson et al., 2007).

This means that it will likely become a non-functional pseudogene before the

process of “mutation during non-functionality” will have time to give rise to a new

function. Bergthorsson et al. reconcile Ohno’s hypothesis with the lack of a non-

functionality phases through a model called innovation-amplification-divergence

(IAD).

In the IAD model some pre-existing innovation is present. An example of

this would be an enzyme that typically catalyses one reaction but occasionally

partakes in another (Gancedo and Flores, 2008; Gancedo et al., 2016). The enzyme

is optimised for its primary substrate but perhaps under certain conditions, e.g.

high concentration of secondary substrate, is coerced to catalyse a reaction upon

this secondary substrate. Upon gene duplication, amplification can take place

in one gene copy, that is mutations arise that favour the promiscuous activity

on the secondary substrate. This optimises the reaction and it takes place with

higher frequency, likely at the cost of reduced affinity for the primary substrate.
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Finally, divergence occurs where mutations continue to take place, the reaction

on the secondary substrate becomes the main function for one gene copy. As

both paralogues now undertake two different functions, they experience different

selective pressures and are set upon separate, divergent evolutionary trajectories.

In this model, there is no period where one of the paralogues is nonfunctional and

provides an explanation for persistence of both copies until neofunctionalisation

can occur.

A second reason for duplicate retention is subfunctionalisation, where the an-

cestral pre-duplication gene carries out several functions, perhaps via multiple

protein domains (Force et al., 1999; Conant and Wolfe, 2008). Given duplication of

a gene with two domains and functions, redundancy is present allowing mutations

to inactivate a domain in one copy. At this point, subsequent mutations can lead

to the loss of the second domain in the same copy, at which point pseudogeni-

sation will likely occur for this paralogue. This would return this gene back to

its single copy pre-duplication state. Alternatively, mutations can result in the

inactivation of the second domain in the other paralogue. This would result in

the two paralogues each carrying out one of the ancestral functions. This model is

call “duplication-degeneration-complementation” (DDC), as neutral degeneration

of function occurs after duplication and the resulting paralogues complement each

as they have subfunctionalised. Both paralogues are now preferentially retained as

the removal of either gene will likely be deleterious due to absence of its specific

function.

A second subfunctionalisation model that explains duplication retention has

been proposed called “escape from adaptive conflict” (EAC; Hittinger and Carroll,

2007). This model is very similar to the DDC model however the functions of

the pre-duplication gene are not highly optimised for either function. Potential

exists for adaptive mutations to refine both functions but at the cost of limiting
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the other i.e. a conflict exists between adaptation of either function. Duplication

provides the freedom for the two subsequent paralogues to specialise, optimising

both functions independently having escaped the competitive situation prior to

duplication. In the EAC model mutations that accumulate aren’t solely neutral

as in the DDC model. The potential for positive selection to act on adaptive

mutations is assumed to occur once duplication provides the necessary redundancy

to escape conflict.

Subfunctionalisation can refer to the division of multiple functions but also of

expression in multiple tissues (Li et al., 2005). The DDC model can be applied to

promoters in addition to functional protein domains. Ohno (1970) proposed such

a scenario , which was investigated by Ferris and Whitt (1979) . After duplication,

neutral mutations can accumulate in upstream or downstream regulatory motifs

and inactivate expression in one or more tissues. (Papp et al., 2003b, see Figure

1). This leaves the duplicates expressed each in a distinct subset of the original

ancestral tissues. Both genes are on independent evolutionary paths and will

experience different selective pressures likely leading to further divergence.

Gene product dosage is another reason for duplicate retention. Gene duplica-

tion gives rise to increased gene copy number which in the absence of feedback

mechanisms will increase mRNA level and protein product. If increased protein

product is beneficial then gene duplication will immediately result in an advan-

tageous scenario. Upon the creation of two paralogues, no additional processes

are required to take place for both duplicates to be retained, their existence is

sufficiently beneficial alone. An example of such a case occurs in Plasmodium

falciparum (Price et al., 2004). Increased copy number of pfmdr1 in P. falciparum

confers resistance against mefloquine, a drug used to treat malaria. If mefloquine is

a present selective pressure, duplications of pfmdr1 will be immediately beneficial

and retained. In human, another potential example has been characterised (Gon-
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zalez et al., 2005). A segmental duplication contains CCL3L1, a gene that encodes

a suppressive chemokine of human immunodeficiency virus (HIV) and a ligand

for the HIV co-receptor CCR5. Increased copy number of CCL3L1 reduces HIV

susceptibility and likely is favoured in areas such as regions in Africa where HIV

prevalence is high. This is supported by observations of CCL3L1 copy number

where individuals in non-African populations have a median copy number of three

compared to median copy number of six for individuals in African populations.

As evident in section 1.1.3, ‘Causes of pathogenicity’, genes can be dosage-

sensitive meaning that for these genes a copy number change is harmful. Specif-

ically for genes in stoichiometric balance with other genomic components, any

aberration outside of a permitted expression range is deleterious. This raises the

question under what conditions, if any, the process of gene duplication takes place

for these genes? SSD will be deleterious as, unless the respective interacting genes

are neighbouring and also included in the region duplicated, dosage imbalance

will occur. The duplicates will be selected against, removed from the population

and never reach fixation. However, a WGD event duplicates all genes and stoichio-

metric relationships together maintaining balance throughout the genome (Veitia,

2004; Veitia, 2005). Therefore, for even dosage-sensitive genes, WGD will be neu-

tral as all genes are equally duplicated. However, after duplication, gene loss due

to loss-of-function mutations or copy number losses (CNLs) will disrupt stoichio-

metric balance again and be deleterious. Hence, gene loss for dosage-sensitive

genes should have distinct patterns after WGD events.

1.2.4 Biased retention of ohnologues

Only ∼30% of human protein-coding genes are ohnologues, genes duplicated and

retained following the vertebrate WGD events (Nakatani et al., 2007; Makino

and McLysaght, 2010). A number of studies have noted differences between small-
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scale duplicates (SSDs) and ohnologues. Davis and Petrov (2005) found that

ohnologues in S. cerevisiae were enriched for catalytic proteins and depleted for

binding proteins and enzyme regulators, while SSDs were enriched for enzyme reg-

ulators and depleted for transcriptional regulators. However there was no observed

difference in codon bias or evolutionary rate. Additional studies in vertebrates

have supported this, showing enrichment of binding, signalling, transcription reg-

ulation, and development functional classes amongst ohnologues (Blomme et al.,

2006; Hufton et al., 2008). This functional enrichment is apparent in the genomes

of teleost fish as well (Brunet et al., 2006).

Guan et al. (2007) investigated differences between duplicates arising from SSD

and WGD in S. cerevisiae, and found that paralogues formed through WGD had

more shared interaction partners and biological functions than SSDs . Furthermore,

ohnologues were less likely to be essential but more likely to be synthetic lethal,

that is where loss-of-function of either gene is neutral but loss-of-function of both is

lethal. Hakes et al. (2007) also observed lower essentiality of ohnologues compared

to SSDs.

However, the relationship with essentiality is not as simple in multicellular

organisms (Makino et al., 2009). Ohnologues in mammals are as essential as sin-

gleton genes and therefore more essential than SSDs. Further, paralogues involved

in development are more likely to be ohnologues than SSDs (Makino et al., 2009).

This suggests preferential retention after the vertebrate WGD events, possibly due

to dosage balance. In subsequent work Makino and McLysaght (2010) demonstrate

that ohnologues are in fact often dosage-balanced and refractory to benign CNVs

and SSD. Additionally they are found to be enriched for protein complex subunits.

It seems that ohnologues have been retained in the human genome for ∼400 MYs

due to their loss causing stoichiometric imbalance and being deleterious. They

are observed less on benign CNVs and therefore their fixation as SSDs are also
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less likely. Ohnologues are seen to be enriched for genes involved in disease when

perturbed and among genes found on pathogenic CNVs (McLysaght et al., 2014).

This provides evidence that aberrations to their balance with respect to other

genomic elements causes deleterious phenotypes and disease.

In chapter 3, ‘Dosage sensitivity is a major determinant of human copy num-

ber variant pathogenicity’, we examine the patterns of duplication and loss across

mammalian genomes for human genes that are found within benign and pathogenic

CNV regions. We explore the prevailing hypothesis that CNV pathogenicity is

frequently due to the copy number change of one or more dosage-sensitive genes or

regions found within a variant (Riggs et al., 2012). Using what we have learned of

ohnologues that they are likely under an ancient, persistent expression constraint

that predates the vertebrate WGD events we predict that this constraint should

be evident in their copy number evolution across mammalian genomes. Specifi-

cally, we predict that copy number changes that give rise to human pathogenicity

should have a reciprocal evolutionary trend and this trend should be shared across

mammals.

1.3 Expression evolution

As early as the start of the 20th century, it was becoming apparent that there was

a high degree of similarity between human and great ape blood proteins (Nuttall,

1904), with some human proteins having almost identical sequence to chimp or

gorilla (Washburn, 1963). King and Wilson (1975) described the extraordinary

and unexpected similarity of human and chimp protein sequences, comparing 44

structural proteins and establishing that they shared more than 99% sequence

identity. In this seminal comparative genomics paper, the authors propose that

due to such a high degree of similarity, differences in gene regulation may account
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for the phenotype differences between human and chimp rather than extensive

differences in protein function. Mechanisms of controlling how and when genes

are expressed as an important factor in phenotypic evolution has gain empirical

evidence in the advent of abundant gene expression data (Romero et al., 2012).

1.3.1 Phenotypic evolution by expression change

Numerous examples of phenotypic evolution by gene regulatory changes have

now been identified. One such example is pelvis structural changes in threespine

stickleback fish (Gasterosteus aculeatus, Shapiro et al., 2004). Freshwater stickle-

backs have lost all or almost all of the prominent pelvic skeleton found in marine

sticklebacks after less than 10,000 generations since divergence. Crosses between

marine and freshwater stickleback identified a gene Pitx1 in a region responsi-

ble for much of the pelvic size variation observed. The Pitx1 protein sequence

showed no sequence substitutions suggesting regulatory changes were responsible

for the phenotypic difference. Altered pattern of Pitx1 expression accounted for

differences in pelvic formation with no expression in the prospective pelvic region

and reduced expression in the caudal fin in freshwater sticklebacks. Other re-

gions where expression is observed were unaltered. These gene regulatory changes

suggest mutations in cis-acting regulatory elements of Pitx1.

Rewiring of developmental gene regulatory networks has been witnessed also

in sea urchin (Hinman et al., 2003). Sea urchin (Strongylocentrotus purpuratus)

and starfish (Asterina miniata) diverged from a common ancestor ∼500 Mya and

share similar endomesodermal embryonic development with the exception that

starfish lacks a skeleton during embryogenesis. A three-gene feedback loop has

been independent conserved in both lineages for half a billion years yet a regulatory

gene involved in sea urchin skeletogenesis, tbr, is used entirely differently in the

starfish embryo. Tbr expression has newly acquired regulators that lead to its
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involvement in formation of the primary digestive tube in the starfish embryo.

Predicted cis-regulatory elements are likely responsible for the altered pattern of

expression for a member of this important conserved gene regulatory network.

Another example of regulatory changes resulting in body plan evolution was

revealed upon sequencing of several snake genomes (Kvon et al., 2016). The Zone

of Polarizing Activity Regulatory Sequence is a limb-specific enhancer of the Shh

gene and is highly conserved across vertebrates. Enhancer activity is present across

vertebrates except in snake species where it has progressively lost its function

through the accumulation of SNVs during snake evolution. After synthetic intro-

duction of a single ancestral transcription factor binding site lost after the snake

divergence, in vivo function was fully restored. This single enhancer’s sequence

evolution is potentially the primary element responsible for snake limb loss.

A number of notable examples of expression evolution impacting human gene

regulation exist. The Duffy blood group locus contains the human gene DARC

that encodes a chemokine receptor that localises in the membrane of red blood cells.

This receptor acts as a point of invasion for malarial parasites. An allele responsible

for the absence of the receptor on red blood cells has been positively selected for

in most sub-Saharan African populations but is rare elsewhere (Tournamille et al.,

1995; Hamblin and Di Rienzo, 2000). A single nucleotide substitution upstream

of DARC disrupts a binding site, consequently impairing promoter activity in

red blood cells. Abolishing expression in this manner confers increased protection

against malarial infection.

In most mammalian species, lactase, the enzyme used to digest lactose sugar

found in milk, has reduced expression after weaning (Swallow, 2003). However, in

some human populations a recent adaptation has meant that the downregulation

of lactase does not occur and expression persists into adulthood (Bersaglieri et al.,

2004). In Europeans, a SNV within the gene encoding lactase, LCT accounts for
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the persistence observed but in Tanzanian, Kenyan and Sudanese populations

three SNVs instead enhance LCT expression (Tishkoff et al., 2007). This is a

remarkable example of positive selection for expression evolution rather than

functional changes to converge on the same phenotype.

In 2002, divergences in gene expression between primate species were quan-

tified (Enard et al., 2002). A large number of tissue-specific expression changes

were revealed between these closely related species, particularly so in human brain

tissue. Additionally in 2005, Rockman et al. found cis-regulatory changes of the

human gene prodynorphin expressed in the brain (Rockman et al., 2005). Pro-

dynorphin is a precursor of opioids and neuropeptides, notably endorphins, and

is implicated in pain perception, memory, learning, and social attachment and

bonding. The peptide sequence of prodynorphin is identical between chimp and

human but a 68 bp tandem repeat in the human promoter has been selected for

and increases transcript inducibility.

Given these examples of substantial phenotypic changes it is therefore reason-

able to investigate the interplay between gene expression evolution and evolution

by duplication.

1.3.2 Expression divergence of gene duplicates

Gu et al. (2002) compared synonymous substitution divergence and correlation in

expression profile between duplicates in S. cerevisae. Using synonymous substitu-

tions as a measure for evolutionary time, they found that only a small fraction of

ancient gene pairs have conserved expression patterns. Largely they observed that

expression profile divergence between duplicate genes are correlated with their

synonymous sequence divergence and thus evolutionary time. This data suggests

that conservation of duplicate expression profiles is not a common or widespread

phenomenon at least in yeast.
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Analysis of ohnologues produced from polyploidy events in the evolutionary

history of the multicellular organism, Arabidopsis thaliana, yielded insights into

functional divergence through expression changes (Blanc and Wolfe, 2004). Im-

mediately after duplication through a WGD event, duplicates share identical

transcriptional profiles and over time they can evolve and diverge in expression

patterns. In a comparison of the most recent ohnologues within A. thaliana, more

than half of the ohnologue pairs had diverged in expression from one another.

More interesting is that this expression divergence is non-random and groups of

ohnologues diverge similarly to form parallel networks each containing one ohno-

logue from the duplicate pair. Expression is seen to be highly correlated within

each network but not with its corresponding ohnologue partner. These patterns

provide both a method of functional divergence and duplicate gene retention after

WGD events, similar to a scenario proposed by Force et al. (1999).

Similar trends were observed by Haberer et al. (2004) in A. thaliana, whereby

duplicate pairs had highly similar expression characteristics. Expression divergence

is common however, and the authors propose that the DDCmodel of duplicate gene

retention acting on cis-regulatory elements could explain how frequently divergence

in expression occurs. Further work in A. thaliana suggests that divergence likely

takes place either at or shortly after duplication (Ganko et al., 2007). In contrast

to Gu et al. (2002) however, Ganko et al. (2007) find no evidence of relationship

between expression divergence and synonymous substitutions. However, they find a

strong association between nonsynonymous substitutions and expression evolution

in duplicates from WGD events, suggesting correlation between purifying selection

on sequence and expression.

Remarkable expression divergence has been observed in another plant, cotton

(Gossypium raimondii, Renny-Byfield et al., 2014). Expression in petal, leaf, and

seed tissues were measured and differential expression was found between 99.4%
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of ohnologue pairs in at least one of the tissues. Strikingly, 85% of ohnologue pairs

displayed divergence in all three tissues tested suggesting that either neofunction-

alisation or subfunctionalisation of expression is responsible for their retention

rather than a constraint to maintain a specific gene product dosage. This is con-

sistent with other analyses in plants (Duarte et al., 2006; Throude et al., 2009;

Guo et al., 2013), which raises questions about how stoichiometric balance relates

to this trend and if dosage-sensitive genes are enriched among the remaining 15%

of ohnologues pairs that have conserved expression in at least one tissue.

The orthologue conjecture puts forward the idea that orthologues are more

similar functionally than paralogues (Koonin, 2005), and forms the basis for pro-

jection of function identified in one species to orthologues of unknown function

in other related species. Numerous studies have rejected the hypothesis (Nehrt

et al., 2011; Yanai et al., 2004) but there is more evidence that the conjecture

holds true (Liao and Zhang, 2006; Brawand et al., 2011; Huerta-Cepas et al.,

2011; Altenhoff et al., 2012; Chen and Zhang, 2012). Recently, a study among

vertebrate species and Drosophila melanogaster confirmed strongly conserved or-

thologue tissue-specificity (Kryuchkova-Mostacci and Robinson-Rechavi, 2016),

however could not distinguish between ohnologues and SSDs, hampering insights

into dosage balance constraints.

Gout and Lynch (2015), however, specifically investigated ohnologues and

expression divergence in several Paramecium species. They found a strong corre-

lation between the most recent ohnologues in Paramecium biaurelia for absolute

expression level, that is that ohnologue pairs show signs of constraint for maintain-

ing expression level post-WGD. In the model of post-WGD evolution proposed,

they posit that expression level of individual duplicates are free to vary and evolve

neutrally provided that combined they maintain a summed absolute dosage that is

within a tolerable threshold. This model goes some way to reconciling expression
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divergence and dosage-sensitivity of retained duplicates after WGD.

1.3.3 Expression variation

Expression quantitative trait loci (eQTLs) are genomic regions harbouring se-

quence variants that influence the expression level of one or more genes (Albert

and Kruglyak, 2015). While mapping of eQTLs affecting single genes has been

conducted for decades, genome-wide eQTL mapping is about 15 years old (Brem

et al., 2002; Schadt et al., 2003). Since then many mapping experiments have been

undertaken in various species (Morley et al., 2004; Cheung et al., 2005; Stranger

et al., 2005; Stranger et al., 2007; West et al., 2007; Dimas et al., 2009; Kelly

et al., 2012; Massouras et al., 2012; GTEx Consortium, 2015). A range of positive

and negative expression effect sizes, that is increased and decreased expression,

are observed. These eQTL effects can occur in a tissue-specific manner or across

a number of tissues, however, tissue-specific influence is more typical (Gerrits

et al., 2009). In human, the expression of thousands of genes is affected by eQTLs

making them a significant contribution to the genetic variation of expression and

in turn phenotypic variation and complex disease.

1.3.4 Role in disease

Most human protein-coding genes are influenced by eQTLs in the general pop-

ulation (GTEx Consortium, 2015). Therefore, the majority of the genome must

be able to tolerate some amount of mRNA level change without obvious deleteri-

ous consequences. However, in combination with genome-wide association studies

eQTLs have been used to elucidate further the pathophysiology of many disease

phenotypes. To date eQTLs have been associated with numerous human diseases

including asthma, autoimmune disorders, diabetes, numerous cancers, Parkinson’s

disease, and other brain disorders (see Table 1 in Albert and Kruglyak, 2015).
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Additionally, eQTLs have been shown to undergo increased purifying selection

with gene age where young, primate-specific genes are enriched for eQTLs, having

higher effect size and influencing expression in more tissues (Popadin et al., 2014).

Therefore, the effect of eQTLs on gene expression and association with important

traits makes them worthy of study especially in the context of genes with known

expression constraints.

Dosage-sensitivity genes are refractory to other types of variation, e.g. CNVs,

and due to strong gene product constraints we expect that dosage-sensitivite

genes are also constrained for variants within promoters and enhancer regions

that affect expression level. We wished to investigate further the evolution of

expression for dosage-constrained genes and test the patterns of human eQTLs

affecting dosage-sensitive genes in chapter 5 – ‘Expression quantitative trait loci

of dosage-sensitive genes have narrow tissue specificity bias’.

1.4 Aim

This thesis is, as far as current data allows, an examination of the evolution of

copy number and expression variation of human dosage-sensitive protein-coding

genes. In chapter 3, copy number evolution of human genes affected by benign and

pathogenic CNVs is analysed through a comparative genomics study of mammalian

genomes. In chapter 4, a CNV pathogenicity classifier is constructed and used to

gain insights into CNV inheritance. Finally in chapter 5, evolution of expression

variation is analysed by examining the patterns of human expression quantitative

trait loci found in healthy individuals.
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Materials & Methods

This chapter provides an introduction and detailed explanation to some of the

methods used throughout this thesis.

2.1 Filtering dbVar CNV data

dbVar is the National Center for Biotechnology Information’s (NCBI’s) database

of genomic structural variation (Lappalainen et al., 2013).

A combination of different studies from dbVar were used to form a dataset

of germline CNVs with clinical interpretations that are used in the analysis of

chapter 3 and the training and testing of the classifier in chapter 4. CNVs and

the studies from which they originate are listed in Table 2.1.

CNVs submitted for human GRCh37 genome assembly were taken as is and

CNVs from earlier human genome assemblies were remapped automatically in db-

Var. Both the GRCh37 submitted and remapped germline dbVar datasets released

on 31st Oct 2013 were filtered for clinical assertions of benign and pathogenic.

CNVs longer than a tenth of their respective chromosome were removed from the

final dataset.

The python script used to implement dbVar filtering is available online at https:
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https://github.com/alanrice/paper-dosage-sensitivity-copy-number-variation/blob/master/analysis/dbVarFilter.py
https://github.com/alanrice/paper-dosage-sensitivity-copy-number-variation/blob/master/analysis/dbVarFilter.py
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Table 2.1 | dbVar studies included in CNV analysis

Study Number of
CNVs included

Miller et al. (2010) 7,586
Kaminsky et al. (2011) 2,507
Wapner et al. (2012) 1,773
Mitsui et al. (2010) 173
Riggs et al. (2012) 67
dbVar user submitted curated variants from OMIM,
GeneReviews, or ClinVar (Lappalainen et al., 2013) 34

Sharp et al. (2008) 9
Zhang, Davis, et al. (2009) 6
Sharp et al. (2007) 4
Lopez-Herrera et al. (2012) 1
CNVs lacking study IDs in 2016 (Lappalainen et al., 2013) 211

//github.com/alanrice/paper-dosage-sensitivity-copy-number-variation/blob/

master/analysis/dbVarFilter.py.

2.2 Counting mammalian gene gain and loss events

We wished to identify and count copy number changes during mammalian evolu-

tion for as many human protein-coding genes as possible. Identifying homology

is complex, and although this is often achieved through comparisons of sequence

similarity, homology is a state of shared common ancestry and not just similarity

in sequence (Reeck et al., 1987). Adaptive and purifying selective pressures, func-

tional convergence, fission/fusion events, and other influences can impact sequence

similarity and complicate our attempts to decipher ancestry. For these reasons it

can be difficult to determine homology through sequence similarity.

https://github.com/alanrice/paper-dosage-sensitivity-copy-number-variation/blob/master/analysis/dbVarFilter.py
https://github.com/alanrice/paper-dosage-sensitivity-copy-number-variation/blob/master/analysis/dbVarFilter.py
https://github.com/alanrice/paper-dosage-sensitivity-copy-number-variation/blob/master/analysis/dbVarFilter.py
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2.2.1 Homologues and trees

We inferred gene duplications and losses from Ensembl Compara annotations (Her-

rero et al., 2016). The Compara pipeline, uses automated and manually curated

gene annotations from species included in the Ensembl database (Cunningham

et al., 2015) to determine homologies (Vilella et al., 2009). At the start of this

pipeline, a representative protein isoform is chosen for each annotated protein-

coding gene. BLAST is run to identify similarity (Camacho et al., 2009) and

protein sequences are clustered using Hcluster_sg from Treefam (Li et al., 2006).

A multiple protein sequence alignment is constructed for each cluster using either

M-Coffee (Wallace et al., 2006) or MAFFT (Katoh and Standley, 2013), depend-

ing on cluster size. The original coding DNA sequences are fit into the protein

multiple alignment to create a codon alignment which is input to TreeBeST to

create a phylogenetic tree. At this point, orthologue and paralogue relationships

are identified through pairwise gene relationships within the phylogenetic tree.

For example, for genes of different species and where an ancestral node is a speci-

ation event the gene pairwise relationship will be orthologous. Similarly, for genes

within the same species and where an ancestral node is a duplication event the

gene pairwise relationship will be paralogous.

We wished to calculate the number of mammalian genomes where gene copy

number differed to copy number in human. Thirteen mammalian genomes (Bos

taurus, Callithrix jacchus, Canis lupus familiaris, Equus caballus, Felis catus, Go-

rilla gorilla, Macaca mulatta, Mus musculus, Oryctolagus cuniculus, Ovis aries,

Pan troglodytes, Rattus norvegicus, Sus scrofa) were used in the analysis as they

were of sufficiently high quality. Gene duplications and losses in these 13 genomes

were calculated for all human gene families inferred to be present in the mam-

malian common ancestor. In this way, all families have an equal time to undergo

gene duplication or loss events since the mammalian divergence. Presence in the
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mammalian common ancestor was determined using Ensembl ‘gain/loss gene trees’.

These differ from phylogenetic trees as they are estimates of gene family evolu-

tion given gene family sizes in extant species and are calculated by CAFE (Han

et al., 2013). The CAFE program infers gene family sizes at internal nodes of

the species tree using birth and death rates. Using these ‘gain/loss gene trees’,

it was possible to estimate gene family size at the tree node of the mammalian

ancestor. Only gene families with at least one gene at this node, i.e. a copy number

of at least one, were included in subsequent analysis steps. This step excluded

373 protein-coding genes. Additionally, 307 human protein-coding genes were not

included in an Ensembl gene tree, and a further 374 genes did not have a ‘gain/loss

gene tree’. These genes were also excluded as homologous relationships could not

be inferred. Therefore, mammalian copy number could be calculated for 19,260

human protein-coding genes.

2.2.2 Analysis workflow

For counting the number of species where copy number is (un)changed, most genes

can be considered independently, this is because they predate the mammalian

divergence and do not change in copy number on the lineage leading to human.

An example would be a species-specific duplication event in mouse with all of

the other genomes having one orthologue. Here, 12 species would be counted as

having unchanged copy number and one species as having a duplication. In this

simple case, Ensembl pairwise homologies are used where orthologues are labelled

as having a one-to-one orthologous relationship or a one-to-many relationship.

One-to-one orthologues are counted as having ‘unchanged’ copy number. One-to-

many orthologues are counted as ‘duplicated’ and if no orthologue for that species

is present it is considered as having ‘no orthologue’.
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Copy number changes along human lineage

For genes that have undergone a copy number change since the mammalian

divergence on the lineage leading to human, a more complex approach is required.

In this scenario, duplicated genes belonging to the same duplication event are

grouped as one unit and compared to the other mammalian genomes. To achieve

this, the copy number status in other mammalian genomes is determined for genes

unaffected by copy number changes along the human lineage first. Overlaps in

orthologues of ‘affected’ human genes are then examined and ‘affected’ genes are

grouped where they share at least one orthologue. These grouped human genes are

assumed to be duplicates from the same duplication event. Each group is treated

as having a copy number of one and the genes within the group are assigned the

same copy number counts for the other mammalian genomes. These counts are

determined by counting the number of grouped orthologues for each species. If

one orthologue is present for a species then that species is counted as showing

‘unchanged’ copy number. If more than one orthologue is present that species is

counted as a ‘duplicated’ and if no orthologue for that species is present in the

group it is counted as having ‘no orthologue’.

2.2.3 Annotation and error

As this analysis is performed genome-wide, it is not possible to manually verify

the results for all genes. A number of error sources are possible. Firstly, if a gene

is present, but not annotated, in one of the 13 mammalian genomes used, it will

be considered a gene loss event. Secondly, errors in gene trees and ‘gene gain/loss

trees’ will affect the homologies determined prior to counting of genomes affected

by a copy number change. Thirdly, errors in our analysis for counting, particular

if a complex evolutionary history have given rise to a number of copy number

changes occurring on the branch leading to human. In this scenario, our analysis
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may overestimate or underestimate the number of genomes showing copy number

changes. While manual curation of all human protein-coding genes is not possible,

it is possible to manually assign members of some gene families a copy number

count by hand and compare the performance of our analysis. Doing so we find

that 86.7% (176/203) of genes are correctly assigned the correct counts for number

of species with unchanged copy number, duplications, and missing orthologues.

Excluding cases where it was not possible to determine copy number by hand

(due to highly complex gene trees that do not follow clear species tree topology),

97.4% (185/190) of cases were between +/ − 1 of the manually assigned copy

number counts. Additionally, 9 of the 27 incorrect estimates seem likely caused

by annotation and homology errors rather than errors in our analysis, e.g. a gene

split over over two contigs in pig, an unlabelled gorilla duplication, a duplication

in dog that isn’t an annotated orthologue of the human gene, several genes being

considered older than mammalian divergence but likely only annotated as such

due to spurious orthologues in distant species. Therefore, we have reasonably high

confidence that our analysis can show clear evolutionary signal given some noise

introduced by these errors.

2.2.4 Analysis code

The python script used to count mammalian gene gain and loss events is available

online at https://github.com/alanrice/paper-dosage-sensitivity-copy-number-

variation/blob/master/analysis/copyNumberAnalysis.py.

https://github.com/alanrice/paper-dosage-sensitivity-copy-number-variation/blob/master/analysis/copyNumberAnalysis.py
https://github.com/alanrice/paper-dosage-sensitivity-copy-number-variation/blob/master/analysis/copyNumberAnalysis.py


Chapter 3

Dosage sensitivity is a major

determinant of human copy number

variant pathogenicity

The research described in this chapter has been published in Nature Communica-

tions (Rice and McLysaght, 2017).

3.1 Introduction

Copy number variants (CNVs) are regions of the genome that are duplicated or

deleted in some individuals in a population. CNVs are most intensely studied

in human but have been observed and characterised to a lesser extent in other

species (Völker et al., 2010; Liu et al., 2010; Nicholas et al., 2009; Li et al., 2012;

Pezer et al., 2015; Debolt, 2010; Bai et al., 2016). Accounting for more variation

than single nucleotide polymorphisms in terms of base pair length, CNVs are

abundant in human genomes. Each individual has on average 1000 CNVs of

greater than 450bp with respect to the reference genome (Conrad et al., 2010).

CNVs segregate in the population but also arise de novo (Conrad et al., 2010;

39
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Zarrei et al., 2015). Some regions in the genome are CNV hotspots – approximately

10% of the human genome experiences recurrent CNV events (Mefford and Eichler,

2009).

Often this variation does not produce a phenotype as CNVs are frequently

small, intergenic or encompass genes that can tolerate a change in copy number.

Some genes can even be completely deleted with no apparent effect (Zarrei et al.,

2015). However, CNVs have previously been associated with a number of human

conditions, most notably neurodevelopmental disorders including autism spectrum

disorders, schizophrenia, intellectual disability, attention deficit hyperactivity dis-

order, developmental delay and epilepsy (Sebat et al., 2007; Stefansson et al.,

2014; Stefansson et al., 2008; Walsh et al., 2008; Mefford et al., 2008; Helbig et al.,

2009; Cooper et al., 2011). Due to this implication in disease, CNVs are subject

to increasingly intense scrutiny to understand and characterise their genetic and

phenotypic effects.

There is more than one possible mechanism by which a CNV can disrupt gene

function and cause a phenotype, including disruption of chromosome structure,

interference with regulatory elements, and perturbation of relative amounts of

dosage sensitive genes (Zhang, Gu, et al., 2009). Several recent studies have shown

a relationship between topologically associated domains (TADs) and genomic

duplication effects (Xie et al., 2016; Franke et al., 2016). Still, the prevailing

hypothesis on CNV pathogenicity is that it is due to dosage sensitivity of the

included genes. One of the first well-characterised cases of CNV pathogenicity

was Charcot-Marie-Tooth neuropathy which was specifically linked to CNV of

the dosage-sensitive gene peripheral myelin 22 (PMP22 ) (Lupski et al., 1991).

Dosage-sensitivity provides a model whereby a 50% increase or decrease in gene

copy number is deleterious (Veitia, 2002; Papp et al., 2003a; Birchler et al., 2001;

Birchler and Veitia, 2012). There are a number of reasons for dosage-sensitivity,
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firstly, dosage-sensitive genes may be in stoichiometric balance with other genes, for

example as in protein complex members (Papp et al., 2003a). Secondly, dosage-

sensitive genes may operate in a concentration-dependent fashion as observed

for developmental morphogens (Rogers and Schier, 2011) or some splicing co-

factors (Chen et al., 2012). Thirdly, dosage-sensitive genes may produce proteins

that are aggregation-prone at high concentrations as in the case of the SNCA

protein (Miller et al., 2004). Additionally, dosage-sensitivity may arise due to a

minimum required concentration to achieve functionality, observed for haploinsuffi-

cient genes, including many transcription factors and developmental genes (Fisher

and Scambler, 1994). When the dosage of these genes is changed by an overlap-

ping CNV the function of the gene is disrupted in a way that we may observe

as disease. More acutely dosage-sensitive genes may never be observed in CNVs,

even in pathogenic ones, if they are so disruptive as to result in inviability. Thus

duplication and/or loss CNVs of dosage-sensitive genes are not expected to be

observed in healthy individuals (Makino and McLysaght, 2010).

As dosage-sensitivity is linked to relative abundances rather than absolute

amounts, whole genome duplication (WGD) is tolerable because, by definition, all

genes are duplicated equally. Unlike CNVs and small-scale duplications (SSDs),

WGD events preserve gene stoichiometry. Two such events occurred early in the

vertebrate lineage and were followed by extensive genome rearrangement and

massive gene loss (Ohno, 1999; McLysaght et al., 2002; Dehal and Boore, 2005;

Nakatani et al., 2007). Duplicated genes retained from these events (ohnologues)

are found to be refractory to CNVs and SSDs, that is, they evolve in a pattern

that suggests ancient and persistent dosage-sensitivity (Makino and McLysaght,

2010). Ohnologues are depleted among CNVs found in healthy individuals (Makino

et al., 2013), and are found to be overrepresented among genes on pathogenic

CNVs (McLysaght et al., 2014) providing further supporting evidence that they
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are under dosage constraint.

Here the evolutionary history of genes in CNVs with different clinical inter-

pretations is examined with the aim of creating a deeper understanding of the

predictive power of evolutionary patterns for understanding CNV pathogenicity.

We explore the prevailing hypothesis that CNV pathogenicity is frequently due to

the copy number change of one or more dosage-sensitive genes or regions found

within a variant (Riggs et al., 2012) and predict that this dosage-sensitivity will

similarly constrain their evolution in mammals in characteristic ways. Consistent

with this hypothesis, we find that orthologues of human genes found in pathogenic

CNV regions are rarely duplicated or lost in the mammalian lineage. Conversely,

genes overlapped by benign variants have highly variable copy number across the

tested species. Furthermore, we find that genes with conserved copy number across

mammals are depleted among CNVs in non-human healthy mammals, mirroring

the pattern observed in humans. These results demonstrate the role of dosage sen-

sitivity in shaping the human genome and point to the usefulness of evolutionary

metrics in refining the lists of candidate causative genes on pathogenic CNVs.

3.2 Materials & Methods

3.2.1 CNV Data with clinical interpretation

Human autosomal germline copy number variants with clinical interpretations of

‘benign’ and ‘pathogenic’ were obtained from dbVar release dated 31st October

2013 for genome assembly GRCh37 (Lappalainen et al., 2013). CNVs longer than

a tenth of a chromosome were discarded and the included CNVs coordinates are

and summarised in Table 3.1. For more information on filtering and the specific

dbVar studies included in this analysis see section 2.1, page 33.
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3.2.2 CNV coverage

CNV coverage (number of CNVs overlapping a given region of genome) was calcu-

lated genome-wide using Bedtools (Quinlan and Hall, 2010). Within each CNVR,

peak regions were calculated as any local maximum in CNV coverage, defined

as any subregion with higher coverage than its flanking regions. Multiple peak

regions were permitted within a CNVR. Where a given region has only one CNV,

the entire CNV is counted as the peak region. Protein-coding gene annotations

and gene ontology (GO) terms were obtained from Ensembl GRCh37 (Cunning-

ham et al., 2015). A gene was considered to be intersecting with a CNV if the

any of the gene sequence was overlapped by 1 or more bases on either strand.

3.2.3 Gene category enrichment

Median RPKM values by tissue were obtained from GTEx V6 (GTEx Consor-

tium, 2015). The tissue with the maximum RPKM value was used for each gene.

Probability of loss-of-function mutation intolerance values for genes were obtained

from ExAC Release 0.3 (Lek et al., 2016) as a proxy for haploinsufficiency scores.

Protein complex member genes were sourced from the Uniprot KB/Swiss-Prot

database (The UniProt Consortium, 2015) by filtering for keywords in the ‘Subunit

structure’ annotation field.

3.2.4 Mammalian copy number analysis

Gene duplications and losses in 13 mammalian genomes (Bos taurus, Callithrix

jacchus, Canis lupus familiaris, Equus caballus, Felis catus, Gorilla gorilla,Macaca

mulatta, Mus musculus, Oryctolagus cuniculus, Ovis aries, Pan troglodytes, Rat-

tus norvegicus, Sus scrofa) were calculated for all human genes inferred to be

present in the mammalian common ancestor. Gene duplications and losses were
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inferred from Ensembl Compara annotations(Cunningham et al., 2015; Herrero

et al., 2016). For each of the 13 species a given human gene was considered to be

duplicated in that genome if the annotation was one-to-many. We also counted

the number of instances were the Ensembl Compara annotation reports no or-

thologue in that genome as presumed gene loss events. Genes with a one-to-one

orthologous relationship were counted as unchanged in that genome. Where a

gene has undergone a duplication event since the mammalian divergence and

two duplicates have persisted to present in human, both genes cannot be treated

independently during analysis. Doing so could potentially confound the number

of copy number change counts because all mammalian genomes tested not sharing

the duplication would be counted as being changed with respect to human. Thus

these recent human paralogues were grouped and their ancestral copy number of

one was compared to the copy number of each other species. For a more detailed

explanation see section 2.2, page 34.

3.2.5 22q11 conserved synteny analysis

For Figure 3.9b, grey dashed outlines show orthologue groups that are neighbouring

on their respective chromosome/scaffold in each species. When no orthologue is

present for a gene but orthologues exist for flanking genes and are neighbouring,

one bounding outline groups all genes. This permits grouping in cases where

additional genes are annotated within orthologous sequence in one of the genomes

or where pseudogenisation has occurred. Neighbouring groups are broken when

chromosome/scaffold changes, region inversion occurs breaking gene collinearity,

or where position shifts substantially on the same chromosome/scaffold to a non-

neighbouring region.
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3.2.6 CNV data for comparative genomics

For comparative analysis of CNVs between species, human CNV data without

clinical interpretation (presumed healthy) were obtained from the inclusive map

provided in Zarrei et al. (2015). Mouse CNV data for wild-caught mice from four

populations were obtained from Pezer et al. (2015). There is no pathogenicity

information explicitly listed, but they are presumed to represent healthy control

variation. CNVs are identified on every mouse chromosome. Mouse orthologues

of human genes with one-to-one relationships in all 13 mammalian species tested

were intersected with mouse CNVs. Genes overlapped by 1 or more bases were

considered to be affected by CNVs.

3.2.7 Gene ontology (GO) enrichment analysis

Developmental genes were defined as those with GO term “developmental pro-

cess" (GO:0032502). GO term enrichment of solitary non-passenger pathogenic

genes was examined using g:Profiler (Reimand et al., 2011) with genes within full

pathogenic CNVRs as a custom background gene list. The significance threshold

was adjusted by Bonferroni correction. Genes that show one-to-one orthology in

all 13 mammalian species were tested for GO enrichment compared to the full list

of human protein-coding genes using g:Profiler.

3.3 Results

3.3.1 Identification of pathogenic CNV peak regions

We obtained human autosomal germline copy number gains (CNGs) and losses

(CNLs) with clinical interpretations of ‘benign’ or ‘pathogenic’ from dbVar (Ta-

ble 3.1). The operational definition of a CNV varies between studies, but in the
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data used here the minimum length of a CNV is 50 bp. Furthermore, we excluded

CNVs that were greater than 10% of the length of the respective chromosome, as

these dramatically increase the number of genes included and potentially confound

the analysis. Although benign CNVs outnumber pathogenic CNVs by about 2:1,

the proportion of genome covered by any pathogenic CNV (74.4%) is much larger

than that covered by benign CNVs (8.3%), due to the substantially longer average

length of pathogenic CNVs.

CNVs are described by their start and end points and whether they are gain

or loss events (CNG and CNL respectively). A given region of genome may be

overlapped by multiple CNVs with different start and end points, of different types

(gain or loss), and of different clinical interpretations. Sets of partially overlapping

CNVs are grouped together into CNV regions (CNVRs). By contrast other regions

have no observed CNVs at all, or only have rare CNVs.

The number of genes included in pathogenic CNVs seems implausibly large

for them all to be causative of disease (Figure 3.1 and 3.2). Rather, it is probable

that only a subset of the genes in the pathogenic CNV regions are responsible

for the associated phenotypes. We observe that 87.1% (223.8 Mb/256.9 Mb) of

benign CNVR is overlapped by pathogenic CNVs. Thus, we wanted to refine the

CNVs to home in on likely causative genes.

Even in well-characterised pathogenic CNV regions such as 22q11, the start

and end points of the CNV region are variable between patients. However, a

“critical" 1.5 Mb region has been identified which is common to most cases and

it is usually inferred that the primary causative genes are present within this

region (Karayiorgou et al., 2010). Similarly, Down’s Syndrome is caused by trisomy

of chromosome 21, but a short segment of the chromosome has been linked to most

symptoms and is considered the Down’s Syndrome Critical Region (Antonarakis et

al., 2004). Mirroring this approach, we identified recurring subregions of pathogenic
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Table 3.1 | Summary of human CNVs used in CNV analysis

#
Average

length
(kbp)

Combined
length
(Mbp)

Genome
coverage

PC
genes

PC devel-
opmental

genes

Contain 1+
developmental

genes

B
en

ig
n

C
N

V
s Full 8,005 388.5 3,110.1

8.9% 1,802 318
28.0% (2,242)

Regions 769 334.0 256.9 27.1% (208)
Peaks 993 128.3 127.4 4.4% 1,108 223 18.8% (187)

C
N

G
s Full 4,306 400.1 1,723.0

6.2% 1,369 216
26.5% (1,139)

Regions 494 362.0 178.9 28.7% (142)
Peaks 619 82.9 94.9 3.3% 875 159 20.4% (126)

C
N

L
s Full 3,699 375.0 1,387.1

4.2% 822 148
29.8% (1,103)

Regions 445 271.6 120.9 21.1% (94)
Peaks 506 143.9 72.8 2.5% 555 112 17.2% (87)

P
at

h
og

en
ic

C
N

V
s Full 4,366 3,503.0 15,294.2

80.3% 16,343 3,742
95.4% (4,166)

Regions 167 13,856.3 2,314.0 92.8% (155)
Peaks 923 545.0 503.1 17.5% 4,234 1,117 58.2% (537)

C
N

G
s Full 1,097 3,985.1 4,371.6

48.4% 11,217 2,512
97.2% (1,066)

Regions 178 7,840.5 1,395.6 92.1% (164)
Peaks 300 1,861.6 558.5 19.4% 4,365 1,025 76.7% (230)

C
N

L
s Full 3,269 3,341.3 10,922.6

67.7% 13,128 3,058
94.8% (3,100)

Regions 212 9,196.1 1,949.6 92.0% (195)
Peaks 699 669.7 468.1 16.3% 3,653 999 63.7% (445)

Figure 3.1 | Number of genes per copy number variant (CNV) in dataset
Histogram of the number of genes per CNV separated by CNV clinical interpre-
tation (benign/pathogenic). Bin width set to 5.



48 Dosage sensitivity underlies human CNV pathogenicity

Figure 3.2 | Number of genes per CNV region (CNVR)
Histogram of the number of genes per CNVR separated by CNV clinical interpre-
tation (benign/pathogenic). Bin width set to 10.

CNVRs as we consider them more likely to contain the causative genes.

We refined pathogenic CNVRs into “peak regions” defined as local maximums

of CNV coverage. This approach has the advantage of promoting recurrent CNV

subregions for special attention while also avoiding discriminating against rare

CNVs in the dataset; in cases where there is only one CNV in a region, the

entire CNV is the local “peak” (with a coverage of 1). We preferred this method

to selecting an arbitrary genome-wide coverage threshold, as such an approach

would exclude rare CNVs and low coverage regions, and would fail to refine high

coverage regions. This is important as some rare CNVs have been implicated in

disease (Kirov et al., 2014; Walsh et al., 2008), and there are likely to be more,

as yet uncharacterised, rare CNVs that are causative of disease.

Using this peak region approach, 167 CNVRs (composed of 4,366 individual

CNVs, and grouping duplication and deletion CNVs) which cover over 74% of the

genome and encompass 16,343 protein-coding genes were broken into 923 peak
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regions (a CNVR can have multiple local peaks) covering 16.2% of the genome and

4,234 genes (Table 3.1). Some of these peak coverage pathogenic regions overlap

benign CNVs, intersecting with 16.7% (42.9 Mb/256.9 Mb) of benign CNVR.

A similar analysis can also be applied to benign CNVs (shown in Table 3.1 for

comparison), but it makes little sense to analyse the benign CNVs in this way as

we presume that the entire region is benign.

3.3.2 Pathogenic CNVs are enriched for developmental genes

CNVs have been associated with diverse conditions such as heart disease, cancers,

immunodeficiency, hearing loss, and obesity (Cooper et al., 2011; Jacquemont et

al., 2011; Conrad et al., 2010; Craddock et al., 2010; Walters et al., 2010; Greenway

et al., 2009; Zhang, Gu, et al., 2009; Orange et al., 2011; Glessner et al., 2014;

Shearer et al., 2014). However, they are most often associated with developmental

conditions with over 14% of developmental delay and intellectual disability cases

caused by CNVs (Cooper et al., 2011). This makes intuitive sense as development is

considered to be a finely-balanced, dosage sensitive process (Fisher and Scambler,

1994; Rogers and Schier, 2011). Nonetheless, one must be careful to consider

the possibility of an ascertainment bias: it is not possible to know if a given

individual will develop heart disease later in life so they will be noted as healthy,

whereas developmental conditions are early onset by definition and so should

always be observed when present. Thus, it is not currently clear if the apparent

enrichment for developmental conditions reflects a detection bias or a greater

inherent vulnerability in developmental processes.

We found that 95.4% of full pathogenic CNVs in the current dataset contain at

least one developmental gene, compared to only 28.0% of benign CNVs. However,

as pathogenic CNVs are typically longer and cover such a large proportion of the

genome it is expected that they will contain more genes and in turn are more likely
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Figure 3.3 | Percentage of CNVs containing at least one developmental
gene for 1000 randomised sets
Pathogenic CNV positions were shuffled randomly 1000 times, after each the
percentage of CNVs that contain at least one developmental gene was calculated.
The observed value for dbVar pathogenic CNVs is overlaid as a black line. Bin
width set to 0.3.
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to contain a gene involved in any given Gene Ontology (GO) category. Thus it is

necessary to correct for differences in CNV length. We did this by calculating the

proportion of genes on each CNV that are developmental genes. When we consid-

ered individual pathogenic CNVs that were not overlapped by benign CNVs (i.e.,

exclusively pathogenic regions) a mean of 37.3% of the genes were developmental

genes compared to 24.2% of benign CNV genes (medians 28.4% and 0% respec-

tively), a highly significant difference (P < 1.0×10-16, Mann-Whitney U test). As

an alternative correction for length difference we randomised the location of the

pathogenic CNVs and counted the number containing at least one developmental

gene. We repeated this simulation 1000 times. Over these simulations the mean

percentage of CNVs that overlapped at least one developmental gene was 74.8%

and the highest percentage found in any simulation was 76.9%, significantly less

than observed in the real data (P < 1× 10-16; Z-score: 37.2; Figure 3.3).

Comparing pathogenic peak regions to benign CNVRs (full merged CNVs),

pathogenic regions that have no benign overlap were significantly enriched for

containing at least one developmental gene (58.5% of 684 pathogenic regions vs.

27.1% of 769 benign regions, P < 1.0 × 10-16, χ2 test). Although the lengths of

full benign CNVRs (mean 334.0 kb; median 151.5 kb) and pathogenic peak region

CNVRs (mean 545.6 kb; median 184.0 kb) are more similar than the full regions

compared with each other (full pathogenic CNVRs: mean 13.9 Mb; median 8.3 Mb),

the pathogenic regions still contain more genes on average. Thus we corrected for

gene number and found a mean of 33.7% developmental genes when we considered

pathogenic peak CNVRs that were not overlapped by benign CNVRs compared

to 24.5% of benign CNV genes (medians 20.0% and 0% respectively), a highly

significant difference (P < 1.0× 10-16, Mann-Whitney U test).

Clustering of developmental genes may contribute to their pathogenicity (An-

drews et al., 2015). There is a significant enrichment of the proportion of de-
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Figure 3.4 | Percentage of developmental genes overlapped by each ran-
domised CNV set
Pathogenic CNV positions were shuffled randomly 1000 times, after each the per-
centage of developmental genes overlapped was calculated. The observed value
for dbVar pathogenic CNVs is overlaid as a black line. Bin width set to 0.01.

velopmental genes in pathogenic peak regions compared to pathogenic regions

outside of peaks (pathogenic peak regions: 24.5% of 3,452 genes exclusive to these

regions; remaining pathogenic regions: 18.1% of 15,978 genes; P < 1.0× 10-16, χ2

test). We confirmed that this is not due to clustering of developmental genes in

general in the genome because upon randomising CNV location as above, the

proportion of developmental genes covered by CNVs was consistently lower than

observed in simulation (Supplementary Fig. 3.4). That the peak regions are en-

riched for developmental genes with respect to the remainder of the the pathogenic

CNVR is strong evidence that developmental genes are consistently implicated in

CNV-related disease phenotypes across different CNVs in the genome.
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Figure 3.5 | Illustration of CNVRs and intersection with genes.
Illustrative CNVs are shown with benign CNVs above the genomic region and
pathogenic CNVs below (blue and pink lines respectively). Shaded boxes bound
CNVRs with local peak coverage regions indicated by darker shading. Genes
overlapped by both benign and pathogenic CNVs are termed Class X ‘passenger’
genes here (yellow). Where only a single non-passenger pathogenic gene is within
a region, it is termed a ‘solitary Class P’ gene (orange).

3.3.3 Class P genes display features of dosage sensitive

genes

A particular region of genome can be overlapped by multiple CNVs and these may

differ in both their type (gain or loss) or their clinical interpretation (benign or

pathogenic). We consider genes that are in CNVs with opposite clinical interpre-

tations unlikely to be causative, particularly when the CNV is of the same type.

That is, a gene found in a benign CNV gain region and a pathogenic CNV gain

region is unlikely to be driving the pathogenic phenotype (Figure 3.5).

We refined the gene lists by considering all CNVs simultaneously. Fig. 3.6a

shows counts of genes according to CNV type and clinical interpretation. For

benign CNVs we considered the full CNV, whereas for pathogenic CNVs we consid-

ered only peak regions as above. We identify 6367 genes found only in pathogenic

CNVs (shaded blue in Fig. 3.6b), we label these “Class P genes". By contrast, 524

genes were inconsistent, reported in both benign and pathogenic CNVs, and are
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Figure 3.6 | Patterns of gene duplication and loss across mammals for
orthologues of human genes in CNVs.
(Continued on the following page.)
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Figure 3.6 | Patterns of gene duplication and loss across mammals for
orthologues of human genes in CNVs.
(a) Venn diagram showing the number of protein-coding genes overlapped by
different combinations of CNV types (blue, benign CNGs; yellow, benign CNLs;
green, pathogenic gain peak coverage regions; red, pathogenic loss peak regions).
(b) Genes that are covered exclusively by benign CNVs are labelled as ‘Class
B’ (shaded red), those exclusive to pathogenic CNVs as ‘Class P’ (shaded blue)
and those falling in CNVs with both clinical interpretations for gain or loss are
considered as likely to be passenger genes and labelled ‘Class x’ (shaded grey).
It is noteworthy that the classification refers to the CNVs that the genes fall
within rather than the genes themselves. (c) Phylogenetic tree of 13 mammalian
species used for gene conservation analysis and examples of human genes from
each CNV overlap pattern type (Venn diagram segment) showing the orthologue
distribution in the mammals. A dash indicates no change. (d) Box plot of the
number of mammalian species where copy number is unchanged (black), duplica-
tion has occurred (green) and no orthologues (orange) for different categories of
CNV overlap, as indicated below the boxplots. Upper and lower hinges of boxes
correspond to the first and third quartiles. The median is shown within each box.
Whiskers extend to values 1.5 interquartile range. These data were calculated per
gene as illustrated in c. The sample size is shown below each boxplot.

deemed to be benign “passengers" (shaded grey in Fig. 3.6b; referred to as “Class

X"). We refer to the 1075 genes that were consistently found in benign CNVs

(shaded red in Fig. 3.6b) as Class B genes.

We tested these groups for enrichment of developmental genes, haploinsuf-

ficiency (Lek et al., 2016), protein complex members (Uniprot complex sub-

units (The UniProt Consortium, 2015)), ohnologues, and high gene expression (GTEx

Consortium, 2015) (Table 3.2), all being features of genes previously associated

with dosage sensitivity. We found Class B to be depleted for involvement in

development and we found the opposite for Class P genes (14.3% vs. 25.2%,

P = 2.5× 10-11, χ2 test). Using the probability of loss-of-function mutation intol-

erance as a proxy for probability of haploinsufficiency (Lek et al., 2016), we found

Class B genes to be less likely to be haploinsufficient compared to Class P genes

(median probability of loss-of-function intolerance: 0.014 vs 0.028, P = 0.005,

Mann-Whitney U test). Additionally, considering only the subset of genes with
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Table 3.2 | Genes included in different types of CNV have different
genetic and functional characteristics

Class B
genes1
(1,075)

Class P
genes2
(6,367)

Class X
genes3
(523)

BL/PG
genes4
(94)

BG/PL
genes5
(110)

P-value
(χ2 test)6

P-value
(Mann-

Whitney U
test)7

Developmental
genes

14.3%
(154)

25.2%
(1,606)

22.4%
(117) 20.2% (19) 25.5% (28)

2.7×10-11

Protein complex
members

23.4%
(251)

33.9%
(2,156)

28.7%
(150) 33.0% (31) 35.5% (39) 7.5× 10-9

Ohnologues 26.9%
(289)

37.6%
(2,395)

30.4%
(159) 29.8% (28) 41.8% (46)

4.1×10-10

Haploinsufficient
genes8

12.0%
(104)

19.5%
(1,138)

13.9%
(63) 13.4% (11) 14.9% (15) 4.3× 10-6

Haploinsufficiency
score (median)9

0.014 0.028 0.009 0.002 0.001
• • 0.005

Maximal
expression in
RPKMs
(median)

9.6 19.6 12.6 20.4 14.1
• • < 1.0×10-16

• • 0.005
• • 4.5× 10-13

1 Genes exclusively observed in benign CNVRs
2 Gene exclusively observed in pathogenic CNVRs
3 Genes observed in contradictory CNV types and clinical interpretations
4 BL/PG - genes exclusively overlapped by benign loss CNVRs & pathogenic gain peak CNVRs
5 BG/PL - genes exclusively overlapped by benign gain CNVRs & pathogenic loss peak CNVRs
6 All p-values are Bonferroni corrected. Values in bold have adjusted residuals greater than ± 2 in the χ2

test.
7 Pairwise comparisons are indicated with dots. All p-values are Bonferroni corrected
8 Genes with probability of loss-of-function mutation intolerance >90% inferred in ref (Lek et al., 2016)
9 Probability of loss-of-function mutation intolerance inferred in ref (Lek et al., 2016)

high haploinsufficiency scores (3,230 genes with probability of loss-of-function

intolerance >90%), we find Class P genes enriched (19.5%) relative to Class B

and Class X genes (12.0% and 13.9%, respectively, P = 4.3× 10-6, χ2 test).

Protein complex members are expected to have constrained relative dosages (Veitia,

2010; Veitia and Birchler, 2010). While only 23.4% of Class B genes have products

functioning as subunits in protein complexes, 33.9% of Class P genes are in com-

plexes, a significant difference (P = 7.6× 10-9, χ2 test). Additionally, ohnologues

(paralogues generated by whole genome duplication) are over-represented in Class

P genes (37.6% vs. 26.9%, P = 3.9 × 10-10, χ2 test), consistent with previous

observations that ohnologues are frequently associated with disease (OMIM classi-

fication) (Makino and McLysaght, 2010). There is evidence that highly expressed

genes are not only strongly constrained with respect to sequence evolution (Sharp,
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1991; Duret and Mouchiroud, 2000; Pal et al., 2001; Rocha and Danchin, 2004)

but also have greater dosage constraint (Gout et al., 2010). Consistent with this

we found that Class P genes have higher expression than Class B genes (medians:

19.6 RPKM and 9.6 RPKM respectively, P < 1.0× 10-16, Mann-Whitney U test).

Furthermore, Class P genes are more highly expressed than Class X genes (me-

dians: 19.6 RPKM vs 12.6, P = 4.7× 10-13, Mann-Whitney U test). The trends

observed here are consistent with the notion that genes in pathogenic CNVs are

dosage-sensitive.

3.3.4 Solitary Class P genes are enriched for neurodevelop-

ment

When we consider the genomic distribution of the Class P genes we observe that

seven of 390 CNVRs (178 pathogenic CNG regions and 212 pathogenic CNL re-

gions) do not contain any genes exclusive to pathogenic CNVRs. In these cases,

pathogenicity may be due to genes of reduced penetrance, position effects of the

CNV, or a different type of dosage sensitivity (for example, if the gene is haploin-

sufficient, or conversely if the gene is aggregation prone at higher concentration,

then these genes could be in both pathogenic loss and benign gain CNVs or vice

versa, respectively, and would not be designated as exclusively pathogenic by us).

Table 3.3 | 199 Solitary Class P genes

Ensembl Gene ID Chromosome
Gene

Start (bp)

Gene End

(bp)
Strand

Associated

Gene Name

ENSG00000067606 1 1981909 2116834 1 PRKCZ

ENSG00000215912 1 2567415 2718286 -1 TTC34

ENSG00000142611 1 2985732 3355185 1 PRDM16

ENSG00000130762 1 3370990 3397677 1 ARHGEF16

ENSG00000116288 1 8014351 8045565 1 PARK7

ENSG00000116731 1 14026693 14151574 1 PRDM2

ENSG00000117154 1 18434240 18704977 1 IGSF21
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ENSG00000117425 1 45285516 45308735 -1 PTCH2

ENSG00000162599 1 61330931 61928465 1 NFIA

ENSG00000184005 1 76540404 77100286 1 ST6GALNAC3

ENSG00000188641 1 97543299 98386605 -1 DPYD

ENSG00000060718 1 103342023 103574052 -1 COL11A1

ENSG00000174827 1 145726918 145764074 1 PDZK1

ENSG00000117262 1 145764411 145827103 -1 GPR89A

ENSG00000152042 1 146032647 146082765 -1 NBPF11

ENSG00000188092 1 147400506 147465753 1 GPR89B

ENSG00000162687 1 196194909 196578355 -1 KCNT2

ENSG00000080910 1 196788898 196928356 1 CFHR2

ENSG00000066279 1 197053258 197115824 -1 ASPM

ENSG00000081237 1 198607801 198726545 1 PTPRC

ENSG00000092978 1 217600334 217804424 -1 GPATCH2

ENSG00000143507 1 221874766 221915518 -1 DUSP10

ENSG00000077585 1 236305832 236385165 1 GPR137B

ENSG00000198626 1 237205505 237997288 1 RYR2

ENSG00000133019 1 239549865 240078750 1 CHRM3

ENSG00000182901 1 240931554 241520530 -1 RGS7

ENSG00000117020 1 243651535 244014381 -1 AKT3

ENSG00000162849 1 245318287 245872733 1 KIF26B

ENSG00000185420 1 245912642 246670614 -1 SMYD3

ENSG00000134324 2 11817721 11967535 1 LPIN1

ENSG00000119888 2 47572297 47614740 1 EPCAM

ENSG00000095002 2 47630108 47789450 1 MSH2

ENSG00000179915 2 50145643 51259674 -1 NRXN1

ENSG00000082898 2 61704984 61765761 -1 XPO1

ENSG00000168702 2 140988992 142889270 -1 LRP1B

ENSG00000169554 2 145141648 145282147 -1 ZEB2

ENSG00000121989 2 148602086 148688393 1 ACVR2A

ENSG00000204406 2 148778580 149275805 1 MBD5

ENSG00000168280 2 149632819 149883273 1 KIF5C

ENSG00000144285 2 166845670 166984523 -1 SCN1A

ENSG00000168542 2 189839046 189877472 1 COL3A1

ENSG00000064933 2 190649107 190742355 1 PMS1

ENSG00000115896 2 198669426 199437305 1 PLCL1

ENSG00000119042 2 200134223 200335989 -1 SATB2

ENSG00000116117 2 205410516 206484886 1 PARD3B

ENSG00000116106 2 222282747 222438922 -1 EPHA4



Dosage sensitivity underlies human CNV pathogenicity 59

ENSG00000153820 2 228844666 229046361 -1 SPHKAP

ENSG00000134121 3 238279 451090 1 CHL1

ENSG00000196277 3 6811688 7783215 1 GRM7

ENSG00000168016 3 36868311 36986548 -1 TRANK1

ENSG00000088538 3 50712672 51421629 1 DOCK3

ENSG00000183662 3 68053359 68594776 1 FAM19A1

ENSG00000114861 3 71003844 71633140 -1 FOXP1

ENSG00000169855 3 78646390 79816965 -1 ROBO1

ENSG00000175161 3 85008132 86123579 1 CADM2

ENSG00000183770 3 138663066 138665982 -1 FOXL2

ENSG00000181449 3 181429714 181432221 1 SOX2

ENSG00000145012 3 187871072 188608460 1 LPP

ENSG00000138670 4 82347547 82965397 -1 RASGEF1B

ENSG00000152208 4 93225550 94695707 1 GRID2

ENSG00000196159 4 126237554 126414087 1 FAT4

ENSG00000151623 4 148999913 149365850 -1 NR3C2

ENSG00000198589 4 151185594 151936879 -1 LRBA

ENSG00000171560 4 155504278 155511918 -1 FGA

ENSG00000174473 4 172733405 173962710 1 GALNTL6

ENSG00000151718 4 184020446 184241930 1 WWC2

ENSG00000164342 4 186990306 187009223 1 TLR3

ENSG00000170561 5 2745959 2752969 -1 IRX2

ENSG00000170549 5 3596168 3601517 1 IRX1

ENSG00000154162 5 21750782 22853731 -1 CDH12

ENSG00000113100 5 26880709 27121257 -1 CDH9

ENSG00000164190 5 36876861 37066515 1 NIPBL

ENSG00000049860 5 73935848 74018472 1 HEXB

ENSG00000081189 5 88013975 88199922 -1 MEF2C

ENSG00000155324 5 125695824 125832186 1 GRAMD3

ENSG00000138829 5 127593601 127994878 -1 FBN2

ENSG00000186314 5 144851362 145214932 -1 PRELID2

ENSG00000070814 5 149737202 149779871 1 TCOF1

ENSG00000113327 5 161494546 161582542 1 GABRG2

ENSG00000120149 5 174151536 174157896 1 MSX2

ENSG00000165671 5 176560026 176727216 1 NSD1

ENSG00000054598 6 1610681 1614127 1 FOXC1

ENSG00000153046 6 4706393 4955785 1 CDYL

ENSG00000145979 6 13266774 13328815 -1 TBC1D7

ENSG00000124813 6 45295894 45632086 1 RUNX2
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ENSG00000146085 6 49398073 49430904 -1 MUT

ENSG00000079841 6 72596406 73112845 1 RIMS1

ENSG00000188580 6 124125286 125146803 1 NKAIN2

ENSG00000196569 6 129204342 129837714 1 LAMA2

ENSG00000049618 6 157099063 157531913 1 ARID1B

ENSG00000185345 6 161768452 163148803 -1 PARK2

ENSG00000112530 6 163148164 163736524 1 PACRG

ENSG00000112531 6 163835032 163999628 1 QKI

ENSG00000182095 7 5346421 5465045 -1 TNRC18

ENSG00000155034 7 5470966 5553429 -1 FBXL18

ENSG00000175600 7 40174575 40900362 1 SUGCT

ENSG00000106571 7 42000548 42277469 -1 GLI3

ENSG00000158321 7 69063905 70258054 1 AUTS2

ENSG00000009950 7 73007524 73038873 -1 MLXIPL

ENSG00000164692 7 94023873 94060544 1 COL1A2

ENSG00000158528 7 94536514 94925727 1 PPP1R9A

ENSG00000001626 7 117105838 117356025 1 CFTR

ENSG00000106025 7 120427376 120498456 -1 TSPAN12

ENSG00000179603 7 126078652 126893348 -1 GRM8

ENSG00000174469 7 145813453 148118090 1 CNTNAP2

ENSG00000130675 7 156786745 156803345 -1 MNX1

ENSG00000183117 8 2792875 4852494 -1 CSMD1

ENSG00000147316 8 6264113 6501144 1 MCPH1

ENSG00000175445 8 19759228 19824769 1 LPL

ENSG00000029534 8 41510739 41754280 -1 ANK1

ENSG00000104331 8 57870492 57906403 -1 IMPAD1

ENSG00000171316 8 61591337 61779465 1 CHD7

ENSG00000175073 8 67540722 67579452 -1 VCPIP1

ENSG00000104447 8 116420724 116821899 -1 TRPS1

ENSG00000178685 8 145051321 145086940 -1 PARP10

ENSG00000107099 9 214854 465259 1 DOCK8

ENSG00000107104 9 470291 746105 1 KANK1

ENSG00000107249 9 3824127 4348392 -1 GLIS3

ENSG00000153707 9 8314246 10612723 -1 PTPRD

ENSG00000171843 9 20341663 20622542 -1 MLLT3

ENSG00000169071 9 94325373 94712444 -1 ROR2

ENSG00000185920 9 98205262 98279339 -1 PTCH1

ENSG00000214645 9 110539471 110540419 -1 AL162389.1

ENSG00000197070 9 140500106 140509812 1 ARRDC1
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ENSG00000181090 9 140513444 140764468 1 EHMT1

ENSG00000150275 10 55562531 57387702 -1 PCDH15

ENSG00000183230 10 67672276 69455927 -1 CTNNA3

ENSG00000156110 10 75910960 76469061 1 ADK

ENSG00000107779 10 88516407 88692595 1 BMPR1A

ENSG00000075891 10 102495360 102589698 1 PAX2

ENSG00000166167 10 103113820 103317078 1 BTRC

ENSG00000068383 10 134351324 134596979 1 INPP5A

ENSG00000214026 11 1968508 2005752 1 MRPL23

ENSG00000109911 11 31531297 31805546 1 ELP4

ENSG00000007372 11 31806340 31839509 -1 PAX6

ENSG00000110090 11 68522088 68611878 -1 CPT1A

ENSG00000187240 11 102980160 103350591 1 DYNC2H1

ENSG00000149571 11 126293254 126873355 -1 KIRREL3

ENSG00000060237 12 861759 1020618 1 WNK1

ENSG00000151067 12 2079952 2802108 1 CACNA1C

ENSG00000110841 12 27676364 27848497 1 PPFIBP1

ENSG00000089225 12 114791736 114846247 -1 TBX5

ENSG00000123066 12 116395711 116715143 -1 MED13L

ENSG00000102452 13 101706130 102068843 -1 NALCN

ENSG00000100888 14 21853353 21924285 -1 CHD8

ENSG00000092054 14 23881947 23904927 -1 MYH7

ENSG00000139865 14 38065052 38510647 1 TTC6

ENSG00000100592 14 59655364 59838123 1 DAAM1

ENSG00000021645 14 78708734 80330762 1 NRXN3

ENSG00000182979 14 105886159 105937066 1 MTA1

ENSG00000128739 15 25068794 25223870 1 SNRPN

ENSG00000114062 15 25582381 25684128 -1 UBE3A

ENSG00000104044 15 28000021 28344504 -1 OCA2

ENSG00000128731 15 28356186 28567298 -1 HERC2

ENSG00000166664 15 30653443 30686052 -1 CHRFAM7A

ENSG00000187951 15 30916697 31065196 1 ARHGAP11B

ENSG00000169918 15 31775329 32162992 -1 OTUD7A

ENSG00000166147 15 48700503 48938046 -1 FBN1

ENSG00000213614 15 72635775 72668817 -1 HEXA

ENSG00000169371 15 75890424 75918810 -1 SNUPN

ENSG00000169752 15 76228310 76352136 -1 NRG4

ENSG00000269360 15 93749295 93751277 1 AC112693.2

ENSG00000140443 15 99192200 99507759 1 IGF1R
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ENSG00000168904 15 99791567 99930934 1 LRRC28

ENSG00000188536 16 222846 223709 1 HBA2

ENSG00000086506 16 230452 231180 1 HBQ1

ENSG00000005339 16 3775055 3930727 -1 CREBBP

ENSG00000078328 16 6069095 7763340 1 RBFOX1

ENSG00000140743 16 22357257 22448486 -1 CDR2

ENSG00000140945 16 82660408 83830204 1 CDH13

ENSG00000051523 16 88709691 88717560 -1 CYBA

ENSG00000167693 17 702553 883010 -1 NXN

ENSG00000108953 17 1247566 1303672 -1 YWHAE

ENSG00000070366 17 1963133 2207065 -1 SMG6

ENSG00000127804 17 2308856 2415185 -1 METTL16

ENSG00000007168 17 2496504 2588909 1 PAFAH1B1

ENSG00000170425 17 15848231 15879060 1 ADORA2B

ENSG00000205309 17 17206649 17250977 1 NT5M

ENSG00000108557 17 17584787 17714767 1 RAI1

ENSG00000196712 17 29421945 29709134 1 NF1

ENSG00000214226 17 54869274 54916134 -1 C17orf67

ENSG00000154217 17 65373575 65693372 1 PITPNC1

ENSG00000161533 17 73937588 73975515 -1 ACOX1

ENSG00000196628 18 52889562 53332018 -1 TCF4

ENSG00000130158 19 11309971 11373157 -1 DOCK6

ENSG00000141837 19 13317256 13734804 -1 CACNA1A

ENSG00000072071 19 14260750 14316999 -1 LPHN1

ENSG00000131848 19 56732681 56879752 -1 ZSCAN5A

ENSG00000125845 20 6748311 6760927 1 BMP2

ENSG00000196132 20 62783144 62873604 1 MYT1

ENSG00000215193 22 18560689 18613905 1 PEX26

ENSG00000184979 22 18632666 18660164 1 USP18

ENSG00000128185 22 20301799 20307603 -1 DGCR6L

ENSG00000161133 22 20704868 20745048 -1 USP41

ENSG00000185651 22 21903736 21978323 1 UBE2L3

ENSG00000186575 22 29999545 30094587 1 NF2

ENSG00000133424 22 33558212 34318829 -1 LARGE

ENSG00000100425 22 50166931 50221160 -1 BRD1

ENSG00000251322 22 51112843 51171726 1 SHANK3

The remainder of CNV regions contain at least one protein-coding gene that is
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Figure 3.7 | Number of Class P genes per copy number gain (CNG)
peak region
Histogram of the number of Class P genes per CNG peak region. Bin width set
to 1.

Figure 3.8 | Number of Class P genes per copy number loss (CNL) peak
region
Histogram of the number of Class P genes per CNL peak region. Bin width set
to 1.
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never observed in a benign CNV. We found that 21/390 pathogenic CNVRs contain

exactly one such Class P gene, and 300/999 pathogenic peak regions contain

exactly one (199 unique genes out of 321 solitary genes intersecting with regions,

Table 3.3, Figure 3.7 and 3.8). These latter cases have suggested pathogenicity by

exclusion: they are only found in pathogenic CNVs and no other gene in the peak

region is exclusively pathogenic. The observation that peak regions are enriched

for solitary pathogenic genes suggests that analysing peak regions is a useful

way to refine the analysis of CNVRs. Note that we consider sets of overlapping

duplication CNVs separately from deletion CNVs when building these CNVRs

and their peak regions. This allows for the possibility of the mechanistic basis

of pathogenicity being different between duplication and deletion CNVs, though

frequently it is the same gene that is the sole Class P gene: 122 out of 199 solitary

Class P genes are the solitary Class P gene for a duplication and a deletion CNV

peak region.

Thus, of the 4234 genes overlapped by pathogenic peak region CNVs, 199

are the solitary candidate pathogenic gene in the region. These are promising

candidates for causing the pathogenicity of the CNV. With all pathogenic peak

CNVR genes as a background list, we find that solitary candidate pathogenic

genes are enriched for “anatomical structure development” (GO:0048856; P =

8.4× 10-12), especially “embryonic morphogenesis” (GO:0048598; P = 1.0× 10-10)

and “neurogenesis” (GO:0022008; P = 3.1 × 10-8), “regulation of multicellular

organismal process” (GO:0051239; P = 3.7×10-9), “adult behavior” (GO:0030534;

P = 4.7× 10-9), and “signaling” (GO:0023052; P = 3.4× 10-8) (Table 3.4). These

199 genes are also significantly enriched for localization within axons and dendrites

(cellular component term “neuron projection”, GO:0043005; P = 8.9×10-6) and are

overrepresented for genes associated with an “abnormality of the nervous system”

(HP:0000707; P = 4.7× 10-30) in the Human Phenotype Ontology (Köhler et al.,
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Table 3.4 | Most enriched functional classes of solitary Class P genes
Full table available in supplementary information of Rice and McLysaght (2017)

Term ID Term name P-value (Bonferroni-
adjusted)

Biological process GO terms

GO:0032501 multicellular organismal process 6.53× 10-12

GO:0048856 anatomical structure development 8.37× 10-12

GO:0048731 system development 1.80× 10-11

GO:0007275 multicellular organismal development 9.33× 10-11

GO:0048598 embryonic morphogenesis 1.02× 10-10

GO:0044707 single-multicellular organism process 1.49× 10-10

GO:0009653 anatomical structure morphogenesis 4.77× 10-10

GO:0032502 developmental process 6.24× 10-10

GO:0044767 single-organism developmental process 1.01× 10-09

GO:0048468 cell development 1.48× 10-09

GO:0007399 nervous system development 1.61× 10-09

GO:0051239 regulation of multicellular organismal process 3.69× 10-09

GO:0009790 embryo development 3.75× 10-09

GO:0030534 adult behavior 4.68× 10-09

GO:0030154 cell differentiation 9.03× 10-09

GO:0009887 organ morphogenesis 1.99× 10-08

GO:0022008 neurogenesis 3.12× 10-08

GO:0023052 signaling 3.37× 10-08

GO:0044700 single organism signaling 3.37× 10-08

... ... ...

Cellular component GO terms

GO:0043005 neuron projection 8.85× 10-06

GO:0097458 neuron part 3.81× 10-05

GO:0044464 cell part 2.93× 10-04

GO:0005623 cell 2.96× 10-04

GO:0044463 cell projection part 4.61× 10-04

GO:0042995 cell projection 5.55× 10-04

GO:0030425 dendrite 1.66× 10-03

GO:0030424 axon 4.37× 10-03

Human Phenotype Ontology

HP:0000118 Phenotypic abnormality 4.58× 10-31

HP:0000707 Abnormality of the nervous system 4.73× 10-30

HP:0000005 Mode of inheritance 9.98× 10-29

HP:0011842 Abnormality of skeletal morphology 2.34× 10-27

HP:0009121 Abnormal axial skeleton morphology 5.81× 10-27

HP:0000924 Abnormality of the skeletal system 1.48× 10-26

HP:0012638 Abnormality of nervous system physiology 4.10× 10-26

HP:0000006 Autosomal dominant inheritance 1.23× 10-25

HP:0000929 Abnormality of the skull 4.26× 10-25

HP:0012759 Neurodevelopmental abnormality 1.11× 10-24

HP:0000234 Abnormality of the head 2.03× 10-24

HP:0000152 Abnormality of head and neck 5.04× 10-24

HP:0002011 Morphological abnormality of the central nervous system 1.36× 10-23

HP:0000271 Abnormality of the face 4.54× 10-23

HP:0012372 Abnormal eye morphology 1.71× 10-22

HP:0000598 Abnormality of the ear 1.86× 10-22

HP:0000478 Abnormality of the eye 2.24× 10-22

HP:0012374 Abnormality of the globe 2.95× 10-22

HP:0012639 Abnormality of nervous system morphology 6.08× 10-22

... ... ...
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2014).

While representing only a small portion of all genes overlapped by pathogenic

CNVs, solitary non-passengers are overrepresented for clinically relevant functional

categories.

3.3.5 Class P genes have high evolutionary copy number

constraint

Under the hypothesis of CNV pathogenicity being caused by the dosage-sensitivity

of enclosed genes, we expect to see characteristic patterns of evolution of genes

within pathogenic CNVs, namely a dearth of gene duplication and loss events. We

investigated gene duplication and loss within the mammalian tree by counting the

number of genomes in which there are copy number changes. For a given human

gene that was inferred to have been present in the mammalian common ancestor

(i.e., excluding newer genes, and genes where the orthologue is not identifiable).

We looked across 13 genomes and noted whether there was a gene duplication,

absent orthologue, or no change in that genome (for examples, see Figure 3.6c).

We performed this for all human genes present in the mammalian ancestor,

and grouped the results according to the presence of the human gene in benign

or pathogenic, gain or loss CNVs as before. The box plots of these distributions

are shown in Figure 3.6d. Panels 2, 3, 4, and 5 show that the conservation of copy

number for genes in pathogenic regions is high across the genomes surveyed (the

copy number is mostly unchanged, black points; median 12, with upper and lower

quartiles at 13 and 11 species). By contrast for the genes in benign, presumably

less dosage-sensitive regions, the copy number is more variable, with a greater

proportion of genes having copy number changes in more genomes (lower quartile

ranging between 8 and 4 species). These genes show more duplications and missing

orthologues across the mammalian tree. Variance significantly increases from
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pathogenic groups to benign groups (P < 1×10-16, Fligner-Killeen test) indicative

of lower copy number constraints in the latter. We also compared the counts of

genes with conserved copy number in all tested species in each CNV-classification

group (Figure 3.6d panels 3-11) and found a highly significant difference (P <

1× 10-16, χ2 test).

This evolutionary analysis provides an independent measure of gene dosage

sensitivity and is not dependent on CNV classification, yet the patterns match the

expectations based on CNV clinical interpretations, namely, genes with evolution-

ary patterns suggestive of dosage sensitivity are more associated with pathogenic

CNVs.

3.3.6 Evolutionary copy number conservation in pathogenic

CNVRs

If we imagine a simplified scenario where there is a single dosage-sensitive gene

in a region, the observed peak CNV region may nonetheless repeatedly contain

multiple genes. This will be particularly true in the case of CNV hotspots (Mefford

and Eichler, 2009) which may be located at several genes’ distance, repeatedly

generating multi-gene CNVs. In this scenario neither the dosage-sensitive gene

nor the closely linked non-dosage-sensitive genes will be observed in benign CNVs.

Similarly, as evolutionary gene duplication events have the same mechanistic ori-

gins as CNVs, linked non-dosage-sensitive genes may have patterns of duplication

and loss that somewhat track the pattern of the dosage-sensitive gene. However, if

the linkage is broken by genome rearrangement events this incidental constraint on

the non-dosage-sensitive gene will be broken. Thus, genes with the most consistent

patterns of gene copy number conservation are the most interesting.

We applied the evolutionary constraint metric to genes within 14 well-charact-

erized pathogenic regions associated with neurodevelopmental disorders. Fig-
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ure 3.9a shows the copy number variation across mammals of genes in each of

these regions along with some flanking genes. The flanking regions are included as

a proxy indicator of any potential local duplication or loss biases. In some cases,

such as 1q21.1 deletion and the 17q12 deletion, the pattern of gene conservation

across mammals fits expectations in that the genes within the pathogenic CNV

region are much more conserved than the genes in the flanking regions. Other

regions have patterns of conservation that are close to expectations, and others

show no obvious gross pattern. There is no significant difference between the total

pathogenic CNV and the flanking region. However, when we compare the medians

of number of “unchanged" gene copy number inside the critical region (shaded dark

grey, when present) with the medians in the remainder plus the flanking region,

we find that the genes in the critical region are significantly more evolutionarily

conserved (Mann-Whitney U test, Bonferroni-corrected P = 0.0028).

One of these is the region associated with 22q11 deletion syndrome which

is shown in detail in Fig. 3.9b. Even though Fig. 3.9a shows several genes with

multiple loss events, the detailed view shows that ten of the genes in this region

have no duplication or loss events in any of the mammalian genomes tested (dark

red shading). Of the 28 genes present in the critical region of this CNV (1.5Mb

deletion that presents the same symptoms as the 3Mb deletion (Karayiorgou et

al., 2010)), 16 have consistently detectable orthologues in all mammalian genomes,

and three are missing an orthologue in only one of the 13 genomes. We chose these

13 genomes for analysis based on the high quality of the available data, but even so,

we cannot exclude that some of these differences are due to missing data or poor

annotation. Nonetheless, the subset of 22q11 genes that are completely conserved

across mammals are good candidates for disease causation. Interestingly, TBX1,

a candidate disease gene in this syndrome (Gao et al., 2013) is not completely

conserved, not being detected in cow, sheep and pig. This is consistent with a
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Figure 3.9 | Mammalian copy number changes for genes within known
pathogenic CNV regions.
(Continued on the following page.)
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Figure 3.9 | Mammalian copy number changes for genes within known
pathogenic CNV regions.
(a) Copy number changes across mammalian species for genes within known
pathogenic CNV regions associated with schizophrenia and other neurodevelop-
mental disorders obtained from (McLysaght et al., 2014). The minimal (min)
CNV region (shaded dark grey) is typically the smallest region associated with
the disease phenotype while the maximal (max) CNV region (shaded light grey) is
typically observed. Ten flanking genes on each side are also plotted where possible.
Each region is labelled above with the chromosomal band, and position along
chromosome in megabases is shown on the x-axis. Genes are plotted by start
position. Each point represents for one human gene the number of duplications
(green) and losses (orange). Genes within regions are listed in a table available in
supplementary information of Rice and McLysaght (2017). (b) For each protein-
coding gene within the 22q11 region, copy number changes across 13 mammalian
species are shown. Green circles indicate where orthologues are duplicated, orange
circles where orthologues are missing. Genes highlighted in light red are genes
were at least one orthologue is present in all species and genes highlighted in dark
red are genes with conserved one-to-one orthology across the mammalian species
tested (completely conserved genes). Grey dashed outlines group orthologues that
are neighbouring on their respective chromosome/scaffold in each species. Genes
with greyed-out names were not included in copy number analysis and so no data
is displayed for them.

single loss event in this more distant mammalian lineage, which may indicate

differing constraints in these mammals.

3.3.7 Conserved genes reveal ancient and persistent con-

straints

We identified 7,014 human genes that have conserved copy number across all 13

mammalian genomes (List available in supplementary information of Rice and

McLysaght, 2017). Even though this definition is independent of CNV status, this

evolutionary information is suggestive of dosage constraint. Over 28% of these are

involved in development, consistent with genes identified via pathogenic CNVs.

Overall we found that the evolutionarily conserved genes are strongly enriched

for “anatomical structure development” (GO:0048856; P = 1.7 × 10-31) as part
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Table 3.5 | Most enriched functional classes of genes with conserved copy number
Full table available in supplementary information of Rice and McLysaght (2017)

Term ID Term name
P-value
(Bonferroni-
adjusted)

Biological process GO terms

GO:0044699 single-organism process 7.18× 10-65

GO:0044763 single-organism cellular process 8.37× 10-64

GO:0009987 cellular process 3.31× 10-41

GO:0008150 biological_process 1.23× 10-34

GO:0048856 anatomical structure development 1.65× 10-31

GO:0007154 cell communication 3.38× 10-31

GO:0023052 signaling 4.43× 10-31

GO:0044700 single organism signaling 4.43× 10-31

GO:0044707 single-multicellular organism process 6.25× 10-31

GO:0032502 developmental process 2.17× 10-30

GO:0044767 single-organism developmental process 7.92× 10-30

GO:0032501 multicellular organismal process 1.09× 10-28

GO:0009653 anatomical structure morphogenesis 2.69× 10-27

GO:0006793 phosphorus metabolic process 4.33× 10-27

GO:0006796 phosphate-containing compound metabolic process 9.69× 10-27

... ... ...

Cellular component GO terms

GO:0005737 cytoplasm 3.82× 10-40

GO:0044444 cytoplasmic part 6.25× 10-29

GO:0044424 intracellular part 6.76× 10-20

GO:0005622 intracellular 2.10× 10-18

GO:0042995 cell projection 1.82× 10-16

GO:0044422 organelle part 8.93× 10-16

GO:0044446 intracellular organelle part 1.09× 10-14

GO:0098588 bounding membrane of organelle 2.24× 10-12

GO:0043226 organelle 2.81× 10-12

GO:0044464 cell part 3.13× 10-12

GO:0005623 cell 3.50× 10-12

GO:0097458 neuron part 5.04× 10-12

GO:0012505 endomembrane system 6.26× 10-12

GO:0031090 organelle membrane 1.65× 10-11

GO:0016020 membrane 1.50× 10-09

... ... ...

Molecular function GO terms

GO:0005515 protein binding 7.61× 10-36

GO:0003824 catalytic activity 7.91× 10-23

GO:0005488 binding 5.09× 10-17

GO:0016740 transferase activity 2.65× 10-14

GO:0043168 anion binding 4.88× 10-13

GO:0016773 phosphotransferase activity, alcohol group as acceptor 5.09× 10-13

GO:0016772 transferase activity, transferring phosphorus-containing groups 8.87× 10-12

GO:0016301 kinase activity 2.35× 10-11

GO:0004672 protein kinase activity 6.96× 10-11

GO:0036094 small molecule binding 2.44× 10-10

GO:0097367 carbohydrate derivative binding 4.76× 10-08

GO:0004674 protein serine/threonine kinase activity 1.19× 10-07

GO:0032559 adenyl ribonucleotide binding 2.26× 10-07

GO:0032553 ribonucleotide binding 4.28× 10-07

GO:0030554 adenyl nucleotide binding 8.47× 10-07

... ... ...
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Figure 3.10 | Distance to nearest developmental gene for developmental
genes grouped by number of genomes where orthologue has unchanged
copy number
For each developmental gene, distance to the closest upstream or downstream de-
velopmental gene in base pairs was calculated, ignoring strand. For developmental
genes that overlap a distance of 1 base pair was assigned. Developmental genes are
grouped by the number of genomes where orthologue copy number is unchanged
(13 where a gene has a one-to-one relationship with all 13 mammalian genomes
tested). Width of each box is proportional to sample size in each group and the
median is shown within each box. Upper and lower hinges of boxes correspond to
the first and third quartiles. Whiskers extend to values 1.5 * interquartile range.

of developmental processes (GO:0032502; P = 2.2× 10-30), “cell communication”

(GO:0007154; P = 3.4 × 10-31), “phosphorus metabolic process” (GO:0006793;

P = 4.3×10-27), and “macromolecule modification” (GO:0043412; P = 5.3×10-23)

specifically “protein modification process” (GO:0036211; P = 2.5× 10-23).

Additionally, conserved genes are also enriched for “localization” (GO:0051179;

P = 2.8 × 10-23), “regulation of biological process” (GO:0050789; P = 3.3 ×

10-21), and “response to stimulus” (GO:0050896; P = 3.5× 10-21), encompassing

“response to organic substance” (GO:0010033; P = 6.7 × 10-16), “response to



Dosage sensitivity underlies human CNV pathogenicity 73

endogenous stimulus” (GO:0009719; P = 7.0 × 10-12), and “response to oxygen-

containing compound” (GO:1901700; P = 1.8× 10-10) (Table 3.5). We confirmed

that the enrichment for developmental genes is not due to clustering of those

genes on the genome because we observe no effect of distance to the nearest

developmental gene in the human genome and the conservation across mammalian

genomes (Figure 3.10). Furthermore we observed that genes conserved across the

mammalian tree are enriched for OMIM disease genes (18.2%;P < 1.0× 10-16, χ2

test) relative to genes with copy number changes (13.4%). We find a similar trend

for candidate haploinsufficient genes (genes with probability of loss-of-function

mutation intolerance >90% inferred in Lek et al. (2016)) with conserved genes

enriched (22.8%) compared to genes with copy number changes (15.0%;P <

1.0×10-16, χ2 test). Clearly, conserved genes are functionally distinct and involved

in biologically important processes.

We tested genes with conserved copy number for representation among genes

overlapped by benign CNVs and genes overlapped by an independent human

CNV map (Zarrei et al., 2015). We found them to be underrepresented among

benign CNV genes with 5.8% (393/6,809) of conserved genes overlapped by benign

CNV compared to 10.9% (1,272/11,632) of genes not conserved in all 13 genomes

tested (P < 1.0 × 10-16, χ2 test). Similarly conserved genes are overlapped less

in a control CNV map (35.6% of 7,014 conserved genes overlapped) compared to

genes not conserved in the genomes tested (38.4% of 13,300 genes, P = 0.0001, χ2

test). This is consistent with our expectation that these genes are under copy

number constraint and with previous work that has shown comparatively more

duplications of genes in benign CNVRs (Nguyen et al., 2008) and of haplosufficient

genes (Huang et al., 2010).

The pattern of conservation across the mammalian tree suggests an ancient

and persistent dosage constraint, and as such we expect that CNVs encompassing
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orthologues of these genes would also be deleterious in other mammals. We tested

mouse orthologues of genes with conserved copy number and we found them to be

depleted among mouse CNVs compared to other protein-coding genes (23.6% of

mouse orthologues of conserved genes are overlapped by mouse CNVs compared

to 27.3% of other mouse genes, P = 3.0 × 10-9, χ2 test). This indicates that

these genes are constrained compared to other genes within mouse. These results

suggest that evolutionary trends are informative in the identification of dosage

sensitive genes.

3.4 Discussion

Though the phenotypes resulting from CNVs at different genomic locations can

differ quite widely, there are certain commonalities that allow a deeper insight into

the genetic and biological mechanisms of CNV pathogenicity. That we observe

trends in function and evolutionary patterns for genes within pathogenic CNVs

supports the hypothesis that gene dosage sensitivity is a predominant causative

factor. In particular, CNV subregions that recur frequently in pathogenic cases,

or CNV regions that are rare but associated with pathogenicity, are biased with

respect to the genes they contain both in terms of function and evolution.

In particular, the observation that genes with constrained evolutionary patterns

of gene duplication and loss are usually found within pathogenic CNVs strongly

supports the model whereby dosage-sensitivity of individual genes enclosed by a

CNV is responsible for pathogenicity. This pattern is not predicted by any other

model (though does not exclude the co-existence of other mechanisms of CNV

pathogenicity). Furthermore, the identification of genes with such evolutionary

patterns supplies a shortened list of candidate genes for further inspection. Peak

regions of pathogenic CNVs that contain only one gene that is exclusively found
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in pathogenic CNVs are of particular interest. Based on an admittedly simplistic

logic, these 199 genes are candidate causative disease genes. Consistent with this,

these genes are rarely found to be duplicated or lost in other mammals (Fig. 3.6d,

panel 2).

Importantly, this analysis of gene duplication and loss is restricted to genes

where we can infer presence in the common ancestor to all 13 mammalian genomes

examined. Thus we avoid any problems associated with the increased difficulty in

detecting quickly-evolving genes (Elhaik et al., 2006; Wolfe, 2004). Genes which

we cannot infer to be present in the common ancestor are either new genes or older

genes that are difficult to detect because of gene loss or extensive sequence evolu-

tion, and it is not possible to distinguish these without more detailed inspection

of the loci. However, we found that genes that were not inferred in the ancestral

mammal are enriched in benign CNVRs compared to the rest of the genome (7.6%

(137/1,802) vs 4.8% (852/17,628) respectively, P = 4.7× 10-7, χ2 test), suggesting

lower evolutionary constraint, consistent with having less phenotypic effect upon

disruption.

Haploinsufficient genes are genes where there is a minimum amount of gene

product required to attain a wild-type phenotype. Logically, these are distinct

from dosage-balanced genes where any significant disruption in amount of prod-

uct, be it increased or decreased, will induce a phenotype, however in practice

the two may overlap (if, for example, one tests only for a phenotype in heterozy-

gote knockouts). Interestingly, in their analysis of haploinsufficiency, Huang et al.

(2010) observed fewer paralogues of haploinsufficient genes, even though this is not

predicted by haploinsufficiency, but which would be expected of general dosage

sensitivity or dosage balance. We would expect that the genes showing the pattern

indicated by the yellow segment in Fig. 3.6b, that is benign gain but pathogenic

loss, should naturally be haploinsufficient genes. Conversely, genes present in
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pathogenic gain CNVs but benign loss CNVs (green segment in Fig. 3.6b) may

be aggregation-prone at high concentration. Whereas we lack well-curated data

on aggregation-prone genes to test the latter relationship, we can use the recently

available haploinsufficiency data to test the former. We observed the expected en-

richment for haploinsufficiency among genes found within benign gain, pathogenic

loss regions. These might be considered “simple" haploinsufficient genes. How-

ever, the enrichment among class P genes described above suggests that many

haploinsufficient genes are also dosage sensitive in other ways.

There is great interest in the relationship between development and dosage

sensitivity and CNVs in general. As we noted, there is a potential bias in the

annotation of disease CNVs due to this interest and due to the fact that develop-

mental disorders are expected to be more reliably identified at the time of sample

collection. Therefore, the enrichment for developmental genes in pathogenic CNVs

must normally be interpreted in that light. However, the evolutionary measures

based on conservation of copy number across mammalian species are independent

of disease annotation and have no such reporter or study bias. Our finding that

these evolutionarily constrained genes are indeed enriched for developmental genes

confirms the view of development as an inherently dosage sensitive process.

This is the first comparison of the genome evolutionary trends of genes in be-

nign and pathogenic CNVs. We have revealed distinct functional and evolutionary

trends for the two classes of CNVs. This points to the usefulness of evolutionary

metrics in the interpretation of CNVs.



Chapter 4

Prediction of pathogenic copy

number variation yields insights

into variant inheritance

4.1 Introduction

Human copy number variants (CNVs) are an order of magnitude more common

than single-nucleotide polymorphisms (Conrad et al., 2010). Much of this varia-

tion has no phenotypic consequence, as CNVs are frequently small, intergenic or

encompass genes that can tolerate a change in copy number (Zarrei et al., 2015).

However, CNVs have previously been associated with a number of human con-

ditions, most notably neurodevelopmental disorders including autism spectrum

disorders, schizophrenia, intellectual disability, attention deficit hyperactivity dis-

order, developmental delay and epilepsy (Sebat et al., 2007; Stefansson et al., 2014;

Stefansson et al., 2008; Walsh et al., 2008; Mefford et al., 2008; Lesch et al., 2011;

Helbig et al., 2009; Cooper et al., 2011). Due to this implication in disease, there

is a need to understand and characterise the genetic and phenotypic effects of

77
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CNVs.

Multiple mechanisms can account for and explain aberration of gene function

and phenotypic changes due to the presence of a CNV at a given locus. These

are detailed in 1.1.3, page 6. Dosage sensitivity of the included genes remains

the prevailing hypothesis for CNV pathogenicity and here we investigate whether

pathogenicity can be predicted by examination of the genes enclosed in a CNV.

The ability to accurately predict pathogenicity of a given CNV would be a powerful

tool to increase understanding of the impact of CNVs and to aid clinical diagnosis

of patient variation. Previously, several attempts have been made to develop

automated learning and interpretation of CNV pathogenicity (Hehir-Kwa et al.,

2010; Engchuan et al., 2015; Erikson et al., 2015; Foong et al., 2015). However, these

methods used information about overlaps with other reference data sets, features

such as CNV length, or phenotype-specific variants. Overlaps with reference data

sets and CNV length does not aid in elucidating a specific method of pathogenicity

for a region at a given locus. Additionally, while the phenotypes from CNVs vary

greatly, the underlying general mechanisms of dosage-sensitivity at the cellular

level are probably more common.

A discipline of computer science is machine learning, the use of general al-

gorithms that enable computers to learn how to achieve specific tasks without

explicit programming. Machine learning is often used to solve a problem for which

it is difficult to write algorithmic rules, for example recognising handwriting, fil-

tering spam emails, identifying tumours in medical images, etc. The learning

algorithms used determine useful features or patterns of features that best aid in

solving a problem. A wide range of learning algorithms and protocols exist. To

accurately predict pathogenicity, classification algorithms would be useful, that is

where a labelled dataset of known examples is used and patterns are learned that

accurately describe the difference between groups in the dataset, in this instance
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benign and pathogenic variants.

Typically before attempting classification, the labelled dataset is split into

a set of samples that the classifier can use to learn and a held-out set that the

classifier never sees during learning. Splitting the data in this way enables testing

of classifier performance on the unseen held-out data after training has taken place.

Allowing the classifier to learn on all available data would not allow independent

testing of accuracy as the classifier would have already witnessed every sample and

adjusted its knowledge and response to each sample in the dataset. Accuracy will

be overestimated and so splitting the dataset and holding back a set of samples

for testing is recommended to best estimate accuracy.

Decision trees are one form of machine learning classifier where classification

is determined by passing a sample through a tree-like structure of branching

decisions. The various values of the sample determine its path through the tree

until it reaches a leaf of the tree, at which a classification has been assigned during

learning. However, decision trees suffer from high variance, that is, constructing

decision trees on random subsets of the same data yields very different trees

and are also prone to overfitting. Overfitting is the when the model too closely

describes noise and random error in the training dataset instead of generalising

on the underlying relationship in the data. When a classifier is overfit, it performs

very well on the training data but has comparably worse performance on additional

data.

A method of countering high variance and overfitting in decision trees is to

construct a number of decision trees, each on bootstrap subsamples of the data.

Bootstrap samples have the same number of samples as the total dataset but are

generated randomly with replacement. During classification, samples are passed

down all decisions trees and each tree votes for a class. The class with the most

votes overall is the final classification. This type of classifier is called a bagged
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tree. If multiple features are correlated then variance will not be reduced in a

bagged tree classifier. However, an alternative method exists called a random

forest classifier. Random forests are similar to bagged trees, however, during the

construction of trees only a random subset of features are considered at node

splits. In a bagged tree classifier, during the decision of which feature to use at

a tree split all features are considered before one feature is chosen. In random

forest classifiers a limit is placed on the number of features to pick from at any

given split. Employing this approach, a random forest both decorrelates trees and

reduces variance and performs very well for many classification tasks.

Here, we fit a random forest classifier to a dataset of CNVs with clinical interpre-

tations of benign or pathogenic using mostly genic features including evolutionary

conservation, intolerance to mutations, and expression. We find that the trained

classifier is highly accurate at predicting pathogenicity among test samples. As

an independent validation, we predicted CNVs from healthy controls and a group

of CNVs from individuals with rare disorders and observed significantly different

proportion of CNVs being classified as pathogenic between the two groups. This

difference is still evidence even when CNVs are grouped by length. Additionally,

we find a relationship between the proportion of pathogenic patient CNVs and how

a CNV is inherited, with de novo CNVs in patients being pathogenic more often

than CNVs inherited from a healthy parent. These results demonstrate that CNV

pathogenicity can be predicted by the genes contained within CNV breakpoints

and that pathogenicity varies with CNV inheritance context.
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4.2 Materials & Methods

4.2.1 Data

dbVar CNVs with clinical interpretations were filtered so that no two CNVs over-

lapped the same set of protein-coding genes (Lappalainen et al., 2013). For CNVs

that overlapped the same set of genes, only the first CNV encountered was in-

cluded. This filtering step left 637 benign CNG variants, 403 benign CNL variants,

709 pathogenic CNG variants and 1,756 pathogenic CNL variants. Classifier input

features listed in Table 4.1 were calculated for variants using a custom Python

script. The order of CNV samples was randomly sorted, and the dataset was split

into training and test datasets with 80% and 20% of samples in each respectively.

4.2.2 Classifier training

Scikit-learn’s random forest classifier implementation (Pedregosa et al., 2011) was

used with default parameters except for specifying a maximum tree depth of 5

and a minimum of 10 samples per leaf. A random forest classifier with these

parameters was fit on the CNVs in the training set, and out-of-bag error estimates

were measured with the addition of each new tree to the forest (Figure 4.1). A

suitable number of trees was chosen for the final classifier with a balance between

the point where the out-of-bag error stabilised and a low number of trees to

optimise classifier performance. A final classifier with 200 trees, maximum tree

depth of 5, a minimum of 10 samples per leaf and classes weighted inversely

proportional to class frequencies was trained on the training dataset. Out-of-bag

error and 10-fold cross-validation accuracy were measured.
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4.2.3 Classifier testing

CNV samples in the 20% held-out test set were predicted by the classifier and

output predictions were compared to true labels in a confusion matrix (Figure

4.2A). A ROC curve was plotted and area under the curve measured (Figure 4.2B).

4.2.4 Classifier validation

This study makes use of data generated by the DECIPHER community. A full

list of centres who contributed to the generation of the data is available from

http://decipher.sanger.ac.uk and via email from decipher@sanger.ac.uk. Funding

for the DECIPHER project was provided by the Wellcome Trust. Case CNVs from

DECIPHER database (Firth et al., 2009) and control CNVs from DGV (MacDon-

ald et al., 2014) both without clinical interpretations were classified as independent

validation of the CNV pathogenicity classifier. CNVs that do not intersect at least

one protein-coding gene and those that match dbVar CNVs exactly were removed.

4.2.5 Inheritance types

DECIPHER CNVs were grouped by inheritance type and classified using the CNV

pathogenicity classifier (Table 4.2).

4.3 Results

4.3.1 Random forest classifier accurately predicts variant

pathogenicity

Identification of regions of the genome that contribute to pathogenicity when

affected by a copy number variant is desirable, yet remains difficult. A subset of

dbVar CNVs (Lappalainen et al., 2013) have associated clinical interpretations of
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benign or pathogenic that were assigned manually, typically based on patterns

of inheritance and characteristics of known syndromes (Miller et al., 2010). For

example, a CNV inherited from a parent with a similar phenotype implicates

that CNV as a driver of the phenotype. Similarly, a CNV containing an OMIM

disease gene that when disrupted by other kinds of mutations (e.g. a heterozygous

inactivating mutation) produces a similar phenotype adding further endorsement

of conferring a pathogenic label.

Here, genomic features were enlisted in combination with machine learning

techniques to attempt to distinguish between benign and pathogenic CNVs and

enable their accurate and quick prediction. The selection of mostly genic features,

listed in Table 4.1, were chosen as potential indicators of dosage-sensitivity. The

features include involvement of gene products in protein interactions and com-

plexes (Guan et al., 2007; Papp et al., 2003a; Veitia, 2004), observed frequency of

deletions and duplications in exome data relative to expected frequency (Ruderfer

et al., 2016), haploinsufficiency (Veitia, 2002; Dang et al., 2008), expression level in

multiple tissues, percentage GC content, genic evolutionary information (Makino

and McLysaght, 2010; Rice and McLysaght, 2017) and density of long interspersed

nuclear elements (LINEs,Cardoso et al., 2016) on CNV.

As the dataset of dbVar CNVs with clinical interpretations has numerous

overlaps, we filtered samples to avoid CNVs that overlapped the same set of protein-

coding genes. For these CNVs, we removed all but the first CNV encountered.

After this filtering step, the dataset contained 636 benign CNG variants, 401

benign CNL variants, 709 pathogenic copy number gain (CNG) variants and

1,756 pathogenic copy number loss (CNL) variants. Classifier input features were

calculated for these remaining variants. The order of samples was randomised and

the dataset was split into training and test datasets with 80% and 20% of samples

in each respectively.
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A random forest classifier was chosen as a suitable machine learning algorithm

to distinguish between benign and pathogenic CNVs due to its high accuracy in

other datasets and its robustness against overfitting. Random forest classifiers are

meta estimators, consisting of multiple decisions trees. Input vectors are passed

through all trees and in binary classification, each tree votes for a class. The

vector is finally classified as the class with the most votes across all trees. To

encourage generalisation in our classifier and reduce the potential for overfitting

to the training data, we specified that decision trees could not have more than

five levels of nodes and that a minimum of 10 samples was required per tree leaf.

These parameters will reduce excessive tree rules being created e.g. exceptions

being made for individual samples.

While many trees can be added to a random forest without penalty to accuracy

or overfitting, speed of classification slows with additional trees. To estimate the

number of trees necessary for a given forest, out-of-bag (OOB) error estimates can

be used. OOB error is an internal estimate of classifier performance on the training

data. Each tree in the forest is constructed from a different random sample of

the data as a random bootstrap sample is taken during construction of a given

tree. Respective omitted cases are passed through each tree for classification and

this allows internal estimation of error as training takes place. Starting with two

trees and increasing to 1000 trees, OOB error was measured for the training set of

CNV samples (Figure 4.1). OOB error estimation was conducted for two classifiers

with the previously specified parameters of tree depth and minimum samples per

leaf but different limits on the number of features that can be considered when

determining the best split in data at any tree node. First, a true random forest

classifier where the square root of the number of input features are considered and

second, a random forest classifier where all features are available for consideration,

essentially a bagged tree classifier. A maximum limit on features considered mostly
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Figure 4.1 | Out-of-bag error with increasing number of trees in random
forest
Out-of-bag (OOB) error can be estimated during training with the addition of
each new tree. Here, OOB error is measured at the addition a new tree for two
classifiers each with two trees at the outset. The first case (orange) is for a classifier
limited to considering a random subsample of features, here the square root of
the number of total features, when determining the best split in data at any node.
The second case (green) allows all features to be considered for comparison. This
case is a bagged tree classifier rather than a random forest as all features are
available for consideration instead of a random subset. It is clear that OOB error
quickly drops with the addition of just a few trees and stabilises before reaching
100 trees.
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Figure 4.2 | Classifier performance on test dataset
A, Normalised confusion matrix showing performance of the CNV pathogenicity
classifier predicting the held-out test set. A confusion matrix shows the true
positive and false negative rate of the classifier for each class, and the number of
CNV samples in parenthesis for each scenario. B, Receiver operating characteristic
(ROC) curves allow the prediction quality of a classifier to be evaluated. With false
positive rate on the x axis and true positive rate on the y axis, good predictive
binary classification from a classifier will have a ROC curve further in the upper
left corner. A dashed line is shown for a curve with area 0.5, where prediction in
a two class dataset is no better than random chance.

affects forests with very few trees, but we observe that both classifiers converge

on similar minimum error rates stabilising with less than 100 trees. Therefore,

we selected 200 trees as the number of estimators for our random forest moving

forward as this remained efficient computationally and gave probability resolution

of 0.005.

As there are more than twice as many pathogenic samples than benign samples

in our dataset, it is important to balance their effect on the classifier. To achieve

balance, we adjusted class weight during training to be inversely proportional

to the frequency of each class in the input data. Ten-fold cross-validation of

the classifier was performed on the training set achieving a mean accuracy of

90.4% with a standard deviation of 3.1%. After training the classifier on the full

training dataset, an internal OOB error rate of 9.7% was observed. Using this
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trained classifier to predict pathogenicity of samples in the 20% of samples set

aside as the test dataset we achieved an accuracy of 90.4%. Examining benign

and pathogenic classes separately, we saw slightly higher accuracy for pathogenic

samples with a true positive rate of 91.3% compared to 88.1% for benign samples

(Figure 4.2A). This prediction imbalance of over-predicting pathogenicity occurred

despite balancing class weights to the frequency found of each in the training

dataset and should be taken into consideration when interpreting output. A

receiver operating characteristic (ROC) curve is a test of classifier quality and

examines the increase in true positive rate with a corresponding increase in false

positive rate. An area below a ROC curve of 0.5 for binary classification suggests

that classifier performance is no better than random chance. Here for our CNV

pathogenicity classifier, we found an area of 0.96, a satisfactory score indicating

good classifier performance (Figure 4.2B).

4.3.2 Dosage-balanced ohnologues, conserved mammalian

genes, and gene interactions are important determi-

nants of CNV pathogenicity

Random forest classifiers provide an estimate of input feature importance, in

the form of mean impurity decrease or Gini importance. Impurity decrease is a

measure of how effective an input variable is at separating different classes to

improve the purity of a tree node split. A random variable will not aid separation

of classes and decrease impurity for a node split, however, a good predictive vari-

able will describe differences between classes well and be useful in distinguishing

between them. Mean impurity decrease was calculated for our CNV pathogenicity

classifier, and this is scaled to 1 to give relative importances (Figure 4.3A). We

found that the proportion of dosage-balanced ohnologues, proportion of mam-
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Figure 4.3 | Feature importance and correlation in CNV classifier
(Continued on the following page.)
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Figure 4.3 | Feature importance and correlation in CNV classifier
A, Feature importance is measured by the mean impurity decrease from each
feature and the features are ranked according to this measure. Mean impurity
decrease, or Gini importance, is a measure of how effective a variable is at sep-
arating different classes to improve the purity of tree node splits. Red bars are
relative feature importances of the forest, and standard error bars show inter-trees
variability. B, Pearson correlation between input features calculated for dbVar
dataset. Only significant correlations are shown after Bonferroni correction.

malian conserved copy number (CCN, as identified in 3.3.7, see page 70) genes

and mean number of protein interactions were the three most useful features in

our classifier. Involvement in protein complexes and expression level were also

informative features. This is consistent with previous findings of dosage-balanced

ohnologues and mammalian CCN genes being enriched on pathogenic CNVs and

depleted on benign CNVs (McLysaght et al., 2014; Rice and McLysaght, 2017).

It is important to note that mean impurity decrease can be affected by correla-

tion between features. In the case of two features that are highly correlated these

features may be interchangeable when deciding best node splits. This interchange-

ability causes their relative feature importance to be shared and neither feature to

stand out as useful. Therefore, it is important to consider feature correlations also

when evaluating importance. For our input features we see that the two expression

features (r = 0.96), chimp dN and dS (r = 0.91) and ohnologue proportion and its

dosage-balanced subset (r = 0.67) are all highly correlated (Figure 4.3B). Given

this, summing both expression features a combined expression importance (of

0.10) would still not match the three most important features. Chimp dN and dS

values both score poorly as useful features (0.013 and 0.003, respectively) and so

their correlation is inconsequential. As dosage-balanced ohnologues are a subset of

ohnologues, they are naturally correlated, but it is clear that the dosage-balanced

group can distinguish between benign and pathogenic samples better. It is possible

that the ohnologue proportion feature may even mask the full importance of the
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dosage-balanced ohnologue feature.

4.3.3 Control and case CNVs can be accurately distinguished

by classifier

We expect that some of the CNVs in the genomes of patients with rare disorders

are contributing to their phenotype. Therefore, when pooled a higher proportion

of patient CNVs are likely pathogenic when compared to CNVs of healthy con-

trol individuals. If our classifier can correctly distinguish between benign and

pathogenic CNVs, it should be able to make a distinction between two sets of

CNVs: one from healthy controls and one from patients with disorders. To validate

this, we used case CNVs from patients in the Database of Genomic Variation and

Phenotype in Humans using Ensembl Resources (DECIPHER) (Firth et al., 2009)

and control CNVs from healthy individuals in Database of Genomic Variants

(DGV) (MacDonald et al., 2014). Initially, we examined all CNVs that overlap

at least one protein-coding gene that did not have identical start and end break-

points with any CNV in the dbVar dataset used in classifier construction. Our

classifier labelled case CNVs as pathogenic far more often than control CNVs

with 57.2% (11,203/19,581) of case CNVs labelled pathogenic compared to 1.4%

(34,819/2,514,857) of control CNVs (P < 1× 10-16, χ2 test; Figure 4.4A, left). We

do not expect all case CNVs to be pathogenic as patients should have healthy

variants in addition to one or more causative CNVs. Furthermore, due to reduced

penetrance of some pathogenic variants we may see some ‘pathogenic’ variants in

healthy, control individuals.

As a large difference in CNV length exists between the two groups (median

length of 2,527 bp for control CNVs and 602,616 bp for case CNVs), it was impor-

tant to ensure that CNV length did not play a role in pathogenicity determination.

Longer CNVs are more likely to encounter a given gene of any kind and potentially
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Figure 4.4 | Classified control and case CNVs
Control CNVs from DGV and case CNVs from DECIPHER were classified by
our CNV pathogenicity classifier. Sample size are shown below each panel. A,
Classification results of all CNVs that overlapped at least gene. Left, proportions
of case and control CNVs classified as benign or pathogenic. Right, proportions
of variants classified as benign or pathogenic for case and control (Con.) CNVs
grouped by CNV length. Bonferroni-adjusted χ2 test P values shown above. B,
Classification results of CNVs filtered to remove duplicates to give CNVs with
unique gene overlaps.



Pathogenic CNV prediction yields inheritance insights 93

then include a feature set that will lead to a pathogenic classification. To cor-

rect for this, case and control CNVs were grouped by CNV length and compared

within each group (Figure 4.4A, right). While control CNVs between 125-250 kb

in length have a relatively high level of pathogenicity (10.8%), it is clear that a

greater proportion of case CNVs are pathogenic (26.7%). A significant difference

between case and control CNVs is observed for all five groups with CNVs longer

than 15 kb after Bonferroni correction. The proportion of case CNVs classified as

pathogenic increases with length, reaching a maximum for case CNVs longer than

a megabase with 90.6% being labeled as pathogenic.

The case and control CNV datasets each include duplicate CNVs with identical

coordinates from different individuals and additionally include CNVs that have

significant overlaps (i.e. different breakpoints but overlap the same set of genes).

Within each dataset, we filtered case and control CNVs to remove duplicates that

overlapped the same group of protein-coding genes. For example, if multiple CNVs

overlap three genes, gene A, gene B, and gene C, only one CNV is included. If

another CNV only overlaps gene A and gene B or gene B and gene C it is not

removed. This filtering step removes 37.0% of case CNVs and 98.6% of control

CNVs. After filtering, we still see a significant difference in the proportion of

CNVs classified as pathogenic between case and control datasets (64.9% of 12,339

case CNVs and 13.1% of 34,666 control CNVs; P < 1× 10-16, χ2 test; Figure 4.4B,

left).

When CNVs with unique gene overlaps are grouped by length, the proportion

of control CNVs classified as pathogenic increases moderately with length but

plateaus at about 30% (Figure 4.4B, right). For CNVs longer than 250 kb, case

CNVs are significantly more pathogenic as the proportion classified as pathogenic

continues to increase with length. Comparing the full and filtered control CNV

dataset in Figure 4.4, it is notable that the proportion of pathogenicity is higher
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Table 4.2 | Pathogenicity classification of CNVs by inheritance types in DECI-
PHER database

Inheritance type % classified ‘pathogenic’
χ2 test
standardised
residuals

Biparental 5.9% (1/17) -3.9
de novo constitutive 83.9% (3,685/4,395) 45.4
de novo mosaic 94.6% (35/37) 5.0
Imbalance arising from a balanced parental
rearrangement 90.9% (140/154) 9.4

Inherited from a normal parent 37.1% (1,055/2,842) -18.5
Inherited from parent with similar phenotype
to child 64.9% (421/649) 6.0

Inherited from parent with unknown
phenotype 44.9% (87/194) -2.4

Maternally inherited, constitutive in mother 35.8% (656/1,835) -15.7
Maternally inherited, mosaic in mother 58.8% (10/17) 0.5
Paternally inherited, constitutive in father 31.6% (498/1,574) -17.9
Paternally inherited, mosaic in father 50.0% (2/4) -0.1
Unknown 49.9% (5,165/10,349) -9.4

for the filtered set of CNVs. In the filtered dataset, rare variants are given equal

weight to common variants after filtering. For example, 99 CNVs might overlap

gene A and one CNV might overlap gene B. The CNVs overlapping gene A are

classified as benign and the CNV overlapping gene B is classified as pathogenic.

In the full dataset, 1% of total CNVs are labelled pathogenic, however in the

filtered dataset, 50% of total CNVs are classified as pathogenic. The increase in

pathogenicity that we see in the actual dataset suggests that control variants that

are subsequently classified as pathogenic are present at low frequency in the full

dataset and may have reduced penetrance. This accounts at least in part for the

increase in pathogenicity observed upon filtering control CNVs in Figure 4.4B.
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Figure 4.5 | Classified DECIPHER case CNVs grouped by inheritance
type
DECIPHER case CNVs from three CNV inheritance types classified by our CNV
pathogenicity classifier. Increasing proportion of variants classified as pathogenic
is clear from left to right.
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4.3.4 De novo variants are more pathogenic than inherited

variants

A subset of DECIPHER CNVs includes information about how a specific CNV

was inherited e.g. inherited from a normal parent or a parent with a similar

phenotype, maternally or paternally inherited, and whether a CNV is present

constitutively or in mosaic. As de novo mutations have been observed to have

increased pathogenicity (Vulto-van Silfhout et al., 2013), we wished to investigate

if pathogenicity trends would be clear from classification results. We grouped DE-

CIPHER case CNVs by their inheritance type and classified each group using our

CNV pathogenicity classifier. We found that the proportion of variants classified

as pathogenic is significantly different across groups by performing a χ2 test on

Table 4.2 (P < 1× 10-16). CNVs inherited from a normal, unaffected parent are

less pathogenic than expected (37.1% pathogenic, standardised residual of -18.5)

and that pathogenicity increases for CNVs inherited from a parent with a similar

phenotype to the child (64.9%, standardised residual of 6.0; Figure 4.5). CNVs

of de novo origin have amongst the highest levels of pathogenicity assigned (de

novo constitutive: 83.9%, standardised residual of 45.4; de novo mosaic: 94.6%,

standardised residual of 5.0).

4.4 Discussion

This study demonstrates the potential to distinguish between benign and pathogenic

human CNVs and subsequently, to utilise this distinction to learn about CNV

inheritance. Most dbVar CNVs with clinical interpretations were assigned their

benign or pathogenic label by rules including their presence in an affected or

unaffected parent and overlap of known syndromes and OMIM disease genes. The

ability to accurately differentiate between these groups demonstrated by our CNV
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pathogenicity classifier using only the genomic features listed in Table 4.1 gives

insights into the biology of permissible variation. Dosage-balanced ohnologues,

mammalian CCN genes and protein interactions largely contribute to informing

the difference between benign and pathogenic CNVs. Dosage-balanced ohnologues

and mammalian CCN genes have evolutionarily constrained copy number by def-

inition, and both have been observed to be refractory to CNVs, being rare in

healthy individuals, but enriched in disease cases. Likely due to this, both features

are informative to class separation. Additionally, the number of protein interac-

tions describes how genes are integrated into pathways or regulatory networks to

which copy number changes can cause perturbations by altering expression level.

Testing our CNV pathogenicity classifier on two datasets of control and case

CNVs as independent validation of performance yields confirmation that our

classifier can accurately distinguish between the two groups. Additionally, we ob-

serve increasing case CNV pathogenicity with CNV length; a trend that is at least

slightly if not much reduced for control CNVs. Minimising any potential bias intro-

duced by duplicate CNVs with identical or similar breakpoints enriches the control

CNV dataset for rare variants as they obtain an equal weight to common varia-

tion in the dataset. These low frequency CNVs appear to be disproportionately

pathogenic, yet we still observe a significant difference in pathogenicity compared

to case CNVs at lengths longer than 250 kb. The enrichment of pathogenicity

among rare control CNVs might be suggestive of a biological explanation rather

than simple classifier error. We would not expect classifier error to be biased in

this manner and could be further evidence of rare deleterious variants present in

apparent healthy control individuals (Männik et al., 2015).

In Vulto-van Silfhout et al. (2013), the authors find that while the genomes of

individuals with mild phenotypes have both de novo and inherited CNVs, genomes

yielding more severe phenotypes are enriched for de novo variants. We observe a
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complementary trend where DECIPHER de novo CNVs are strongly enriched for

being classified as pathogenic. Furthermore, CNVs inherited from a parent with a

similar phenotype to the child have an intermediate proportion of pathogenicity

between de novo CNVs and CNVs inherited from a normal parent. We expect

that some portion of variants inherited by a child from a parent with the same

phenotype may contribute to that phenotype in both individuals and hence are

more likely to be pathogenic than variants inherited from a normal parent. Hence

we see enriched pathogenicity for these CNVs inherited from a parent with a similar

phenotype. Simple genomic features were used here to distinguish between benign

and pathogenic variants that in part were defined as such by their inheritance

patterns. That we observe clear separation of CNV inheritance types by our

pathogenicity classifier, that is unaware of such information, strongly suggests

genomic differences between permissible variants.



Chapter 5

Expression quantitative trait loci of

dosage-sensitive genes have narrow

tissue specificity bias

As part of his final year undergraduate project, Pauric Donnelly, carried out early

analysis that formed the basis of this chapter of work.

5.1 Introduction

Expression quantitative trait loci (eQTLs) are genomic regions harbouring se-

quence variants that influence the expression level of one or more genes (Albert

and Kruglyak, 2015). While mapping of eQTLs affecting single genes has been

conducted for decades, genome-wide eQTL mapping is about 15 years old (Brem

et al., 2002; Schadt et al., 2003). Since then many mapping experiments have been

undertaken in various species (Morley et al., 2004; Cheung et al., 2005; Stranger

et al., 2005; Stranger et al., 2007; West et al., 2007; Dimas et al., 2009; Kelly et al.,

2012; Massouras et al., 2012; GTEx Consortium, 2015). A range of expression

effect sizes, both positive and negative, are observed. These eQTL effects can

99
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occur in a tissue-specific manner or across a number of tissues, however, tissue-

specific influence is more typical (Gerrits et al., 2009). In human, the expression of

thousands of genes is affected by eQTLs making them a significant contribution to

the genetic variation of expression and in turn phenotypic variation and complex

disease.

The Genotype-Tissue Expression (GTEx) project (GTEx Consortium, 2015)

has characterised eQTLs across a diverse range of human tissues. In Release V6,

86.5% (15,757/18,208) of protein-coding genes tested had their expression influ-

enced by at least one eQTL. As such a high proportion of the genome experiences

this type of expression variation in control individuals, the majority of the genome

must be able to tolerate some amount of mRNA level change without obvious

deleterious consequences. However, in combination with genome-wide association

studies, eQTLs have been used to elucidate further the pathophysiology of many

disease phenotypes. To date eQTLs have been associated with human diseases

including asthma, autoimmune disorders, diabetes, numerous cancers, Parkinson’s

disease, and other brain disorders (see Table 1 in Albert and Kruglyak, 2015).

Additionally, eQTLs have been shown to undergo increased purifying selection

with gene age where young, primate-specific genes are enriched for eQTLs, having

higher effect size and influencing expression in more tissues (Popadin et al., 2014).

Therefore, the effect of eQTLs on gene expression and association with important

traits makes them worthy of study especially in the context of genes with known

expression constraints.

Dosage-sensitive genes have a deleterious phenotype if their dosage is per-

turbed (Veitia, 2002; Papp et al., 2003a; Birchler et al., 2001; Birchler and Veitia,

2012), and are often seen to be refractory to variation. Ohnologues, paralogues

retained after whole genome duplication events are enriched for dosage-sensitive

genes. In human, ohnologues produced from polyploidy events at the base of the
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vertebrate lineage have been shown to be depleted on control and benign copy num-

ber variants (CNVs) but enriched among genes on pathogenic variants (Makino

and McLysaght, 2010; Makino et al., 2013; McLysaght et al., 2014). Likewise, mam-

malian copy number conserved (CCN) genes and haploinsufficient genes are also

depleted in benign CNVs and enriched in pathogenic CNVs (Rice and McLysaght,

2017). Constraint on copy number is likely due in part to a constraint on protein

product dosage that has reciprocal effects on expression level and copy number.

When a variant arises such as a CNV or eQTL that causes a deleterious aberration

in expression level, the variant will experience purifying selection and be removed

from the population. Therefore we expect that dosage-sensitive genes have fewer

eQTLs in healthy individuals.

Ohnologues are also thought to be dosage-balanced, that is, they are con-

strained in expression relative to their interaction partners (Makino andMcLysaght,

2010). For genes under dosage-balance, expression variation of individual genes

gives rise to a deleterious stoichiometric imbalance that can lead to incomplete pro-

tein complex formation, affect function and be wasteful. The strong requirement

for balance has shaped three-dimensional nuclear organisation where genomic re-

gions containing ohnologue pairs are organised with higher spatial proximity (Xie

et al., 2016). This nuclear proximity likely ensures similar regulation of gene ex-

pression for both genes in the pair. We expect to see distinct eQTLs patterns that

reflect the shared constraints of stoichiometric balance between ohnologue pairs.

Here, we investigated the patterns of eQTLs affecting dosage-sensitive genes.

Contrary to our expectation that ohnologues and other categories of dosage-

sensitive genes should be depleted for this variation, we found that these genes are

enriched for eQTLs. However, they have fewer eQTL-affected tissues than dosage-

insensitive genes, as the eQTLs that affect these genes are more tissue-specific.

Dosage-sensitive genes are depleted for broad tissue breadth eQTLs which are
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likely removed by purifying selection as they conflict with expression constraints.

We observed that ohnologue pairs have more similar eQTL-affected tissues com-

pared to random ohnologue pairs suggesting a shared constraint between real pairs.

This evidence suggests that dosage-sensitivity shapes the evolution of eQTLs in-

fluencing the expression of these genes whereby deleterious variants in conflict

with constraints experience purifying selection.

5.2 Materials & Methods

5.2.1 Data

eQTLs used in this analysis were significant SNP-gene associations based on

permutations obtained from The Genotype-Tissue Expression (GTEx) project

V6 (GTEx Consortium, 2015). Protein-coding gene annotations were obtained

from Ensembl GRCh37 (Yates et al., 2016). Copy number variant regions were

obtained from the inclusive CNV map in Zarrei et al. (2015) and a gene was

considered to be intersecting with a region if the any of the gene sequence was

overlapped by one or more bases on either strand using Bedtools (Quinlan and

Hall, 2010). Ohnologue annotations were obtained from Makino and McLysaght

(2010) . Haploinsufficient genes were defined as genes with a probability of loss-

of-function mutation intolerance > 0.9 (Lek et al., 2016). Genes unaffected by

CNVs in nearly 60,000 individuals studied in Ruderfer et al. (2016) were defined

as CNV-free genes. Mammalian copy number conserved genes are genes with no

copy number changes in 13 mammalian genomes (Rice and McLysaght, 2017).

5.2.2 eQTL enrichment of dosage-sensitive genes

Ohnologues, haploinsufficient genes, CNV-free genes and CCN genes were tested

for eQTL enrichment. Genes considered were restricted to those tested for eQTLs
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by GTEx i.e. those with at least 6 reads and > 0.1 reads per kilobase of transcript

per million mapped reads (RPKMs) in at least 10 individuals.

5.2.3 Ohnologue tissue similarity

Jaccard index was calculated between tissues for eQTL-affected ohnologues and

nonohnologues using the GeneOverlap R package (Shen and Sinai, 2013).

5.2.4 eQTL effect size

eQTL effect sizes were quantified by the slope of the linear regression model used

in identifying eQTLs in the GTEx project and represents the effect of the alterna-

tive allele on expression relative to the GRCh37/hg19 genome reference allele. The

median effect size for each gene in a tissue was calculated and these medians of

all ohnologues and nonohnologues were compared. This yielded 30,844 and 63,863

median negative effect sizes for ohnologues and nonohnologues, respectively and

30,622 and 61,444 positive effect sizes for ohnologues and nonohnologues, respec-

tively. Standard deviations of eQTL effect sizes were calculated for genes affected

by more than one variant in a tissue, giving 26,223 and 55,918 median negative

effect size standard deviations for ohnologues and nonohnologues, respectively

and 26,140 and 53,359 positive effect size standard deviations for ohnologues and

nonohnologues, respectively.

5.2.5 Ohnologue pair analysis

Ohnologue pairs, from Makino and McLysaght (2010), considered were those on

different chromosomes and those were both were affected by eQTLs, giving 5,415

pairs. For comparison, an equal number of random ohnologue pairs were generated

by randomly sampling two ohnologues with replacement. The number of distinct
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Table 5.1 | Genes within CNVRs and eQTL patterns

Genes affected by
both positive
& negative

eQTLs

negative
eQTLs only

positive
eQTLs only eQTL-free % total

# std. res. # std. res. # std. res. # std. res.

CNVR genes 984 5.2 84 -3.4 80 -3.2 156 -1.7 7.2%
CNGR genes
only 431 -0.5 63 0.8 54 -0.0 85 0.0 3.5%

CNVL genes
only 3790 12.5 367 -4.8 350 -4.4 480 -9.3 27.4%

Genes outside
CNVRs 7361 -14.1 1130 5.9 1063 5.7 1730 9.4 62.0%

% total 69.0% 9.0% 8.5% 13.5%

tissues affected by eQTLs for both genes within a pair (i.e. the union of eQTL

affected tissues) was calculated for both the real and random ohnologue pairs.

5.2.6 Multi-gene eQTLs

Multi-gene eQTLs were defined as variants that significantly affect the expression

of two or more genes irrespective of tissue.

5.3 Results

5.3.1 eQTL enrichment of CNVR genes and dosage sensi-

tive genes

Genes within benign copy number variant regions (CNVRs) tolerate expression

variation through copy number change without strong deleterious consequences

thus we expect other kinds of variants that alter mRNA level to co-occur. One

such type of variation is eQTLs. We obtained human eQTL data affecting the

expression of 15,757 protein-coding genes across 44 tissues from The Genotype-
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Figure 5.1 | eQTL enrichment of CNVR genes and dosage sensitive
genes.
A, Proportion of genes affected and not affected by eQTLs for two sets of CNVs:
Zarrei et al. CNV map and ExAC CNV data; ohnologues, haploinsufficient genes
and mammalian copy number conserved (CCN) genes. P-values shown above each
plot are Bonferroni-adjusted. B, Proportion of ohnologues (O) and nonohnologues
(N) affected by eQTLs per tissue. C, Pairwise overlap between eQTL-affected genes
between tissues measured by Jaccard index. Left heatmap: Brain tissues; right
heatmap: non-brain tissues. Upper triangle: Pairwise overlap of ohnologues; Lower
triangle: Pairwise overlap of nonohnologues.
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Tissue Expression (GTEx) project (GTEx Consortium, 2015). As expected we

found that more protein-coding genes, 89.6% (6,203/6,924), within CNVRs of a

human control CNV map (Zarrei et al., 2015) were affected by eQTLs compared

to 84.7% (9,554/11,284) of genes outside of CNVRs (P < 1 × 10-16, χ2 test,

Figure 5.1A). We see similar eQTL enrichment of CNV-affected genes in data

for 59,898 exomes from The Exome Aggregation Consortium (ExAC) (Ruderfer

et al., 2016). Here, 88.5% of genes affected by CNVs are also influenced by eQTLs

compared to 85.3% of genes without CNVs (P = 0.0004, χ2 test; Figure 5.1A).

Genes that tolerate copy number gain regions (CNGRs) might be more likely

to have positive eQTLs and those within copy number losses regions (CNLRs) to

have negative eQTLs. To check if CNV direction, gain or loss, has a relationship

with positive or negative eQTLs direction, we categorised genes by occurrence

in control CNVR map and whether they are affected by positive or negative

eQTLs. Genes in regions that experience both copy number gains (CNGs) and

copy number losses (CNLs) were grouped as CNVR genes, genes only in gain

regions were grouped as CNGR genes and genes only in loss regions were grouped

as CNLR genes. We examined these groups, along with genes outside of CNVRs,

for enrichment of being affected by positive and negative eQTLs. We found that

genes outside of CNVRs are strongly deficient in having both positive (increased

expression) and negative (decreased expression) effect eQTLs (standard residuals:

-14.1, P < 1× 10-16, χ2 test, Table 5.1). However, we did not see a trend matching

CNV and eQTL direction when we considered positive only or negative only

eQTLs and genes within CNGRs or CNLRs on the CNV map.

As dosage-sensitive genes such as ohnologues, mammalian (CCN) genes, and

haploinsufficient genes, are refractory to benign CNVs and enriched among genes

found on pathogenic CNVs, we expected them to be depleted for eQTLs as expres-

sion variation will likely be deleterious. However, we find the opposite to be the
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Table 5.2 | Haploinsufficient genes and eQTL direction

Genes affected by
both positive
& negative

eQTLs

negative
eQTLs only

positive
eQTLs only eQTL-free % total

# std. res. # std. res. # std. res. # std. res.

Haploinsuffi-
cient 2030 -3.1 329 4.5 312 4.3 315 -3.2 17.6%

Haplosuffi-
cient 9877 3.1 1175 -4.5 1123 -4.3 1767 3.2 82.4%

% total 70.3% 8.9% 8.5% 12.3%

case. We observed that ohnologues are enriched for eQTLs relative to nonohno-

logues (89.6% affected by eQTLs vs. 84.8%, respectively; P < 1× 10-16, χ2 test;

Figure 5.1A). Haploinsufficient genes are also found to be slightly enriched for

eQTLs (89.5% affected by eQTLs vs. 87.3% for haplosufficient genes, respectively;

P = 0.007, χ2 test; Figure 5.1A). Similarly, for CCN genes we found that they

were enriched for eQTLs relative to genes with mammalian gene duplication and

loss events (89.5% affected by eQTLs vs. 76.6%, respectively; P < 1× 10-16, χ2

test; Figure 5.1A). Additionally, we see that haploinsufficient genes are depleted

for being affected by both positive and negative eQTLs and so are enriched for

being affected by either negative or positive eQTLs only (P = 3× 10-10, χ2 test,

Table 5.2). However, we do not see a directional bias for haploinsufficient genes

being strongly depleted for negative eQTLs only.

5.3.2 Ohnologues have more similar eQTL patterns in brain

tissues

We investigated the proportion of genes affected by eQTLs for all genes expressed

per tissue (Figure 5.1B). We observe that ohnologues have a lower proportion of

eQTL-affected genes within each tissue. Given that the trend per tissue is the
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opposite to the trend observed irrespective of tissue, we examined the possibility

that different ohnologues are affected by eQTLs in different tissues. For example,

if one ohnologue is affected by eQTLs in tissue A and another ohnologue is

affected by eQTLs in tissue B, while two nonohnologues are affected by eQTLs

in both tissue A and tissue B. If different ohnologues are influenced by eQTLs in

different tissues that may explain having fewer eQTLs within a tissue but being

more affected by eQTLs overall compared to nonohologues. If cumulatively across

tissues more ohnologues are affected than nonohnologues this account for the

tissue-specific and genome-wide trends we observe.

The Jaccard index is a measure of similarity between sets and is the size

of the intersection divided by the size of the union of the sets. If eQTL-affected

ohnologues are more distinct between tissues compared to eQTL-affected nonohno-

logues then we expect a lower Jaccard index between sets of ohnologues (i.e. less

similar). When we look at the Jaccard index for eQTL affected genes between

GTEx tissues, the most striking difference initially is that the two cell lines of

transformed lymphocytes and fibroblasts have the most distinct eQTL-affected

genes for both ohnologues and nonohnologues (Figure 5.1C). Considering all tis-

sues however, we do not see a difference between the sharing of eQTL-affected

genes for ohnologues and nonohnologues (median Jaccard index 0.936 for both;

P = 0.7, Mann-Whitney U test). Despite this, for all 45 brain tissue pairwise

comparisons we see consistently higher similarity between eQTL-affected ohno-

logues than between eQTL-affected nonohnologues (median Jaccard index 0.973

vs. 0.965, respectively; P = 0.004, Mann-Whitney U test; Figure 5.1C, left). Ex-

cluding brain tissues, there is still no significant difference between ohnologues

and nonohnologue similarity for non-brain tissues (median Jaccard index 0.934

for both; P = 0.8, Mann-Whitney U test; Figure 5.1C, right). Higher similar-

ity among ohnologues for eQTL patterns in brain tissues might be suggestive of



Tissue specificity bias of dosage-sensitive gene eQTLs 109

more similar gene regulation wherein the same genes can or cannot evolve eQTLs

influencing their expression.

5.3.3 eQTLs affecting dosage-sensitive genes have been shaped

by selection

Dosage-sensitive genes are under various constraints (such as haploinsufficiency,

aggregation-susceptibility, concentration-dependency, and dosage-balance) that

restrict their permissible copy number. CNVs will cause the expression of genes

they contain to change across tissues which can be permissible in cases where

the expression change is compatible with the constraint (e.g. a copy number gain

of a gene that is haploinsufficient). However, an incompatible CNV in conflict

with an expression constraint can produce a deleterious phenotype and will

then experience purifying selection. eQTLs, on the other hand, can influence

the expression of genes across a broad range of tissues or within only a single

tissue. Narrow tissue breadth eQTLs can often avoid conflicting with a constraint

that exists within one or a few tissues and neutrally evolve, drifting in population

frequency. eQTLs that affect a dosage-sensitive gene’s expression may arise if: first,

the constraint is not present in all tissues; second, the eQTL affects expression

only in a subset of unconstrained tissues; and third, the altered expression is not

deleterious for reasons other than the preexisting constraint. For these reasons, we

expect eQTLs that influence the expression of dosage-sensitive genes are biased

towards those that affect fewer tissues. We find this to be the case.

We observe that ohnologues have a lower proportion of eQTL affected tissues

where they are expressed than nonohnologues (median % tissues affected by

eQTLs: 11.4% vs. 13.6%, respectively; P < 1 × 10-16, Mann-Whitney U test;

Figure 5.2A). This difference holds true even when genes without eQTLs are

included (median % tissues affected by eQTLs: 9.3% for ohnologues vs. 10.5% for



110 Tissue specificity bias of dosage-sensitive gene eQTLs

Not conserved Conserved
copy number

0.00

0.25

0.50

0.75

1.00

Nonohnologue Ohnologue

P
ro

p.
 o

f t
is

su
es

 a
ffe

ct
ed

 b
y 

eQ
T

Ls

0.00

0.25

0.50

0.75

1.00

Haplosufficient Haploinsufficient
0.00

0.25

0.50

0.75

1.00

Not conserved Conserved
copy number

0.00 0.25 0.50 0.75 1.00

Proportion (not) conserved

Not conserved Copy number
conserved

0.00 0.25 0.50 0.75 1.00

Proportion (non)ohnologue

Nonohnologue Ohnologue

Affected
by broad

eQTLs

Not affected
by broad

eQTLs

0.00 0.25 0.50 0.75 1.00

Proportion haplo(in)sufficient

Haplosufficient Haploinsufficient

0

10

20

30

40

0.00 0.25 0.50 0.75 1.00

Proportion (non)ohnologue

T
is

su
es

 a
ffe

ct
ed

 b
y 

eQ
T

Ls

Nonohnologue Ohnologue

0

10

20

30

40

0.00 0.25 0.50 0.75 1.00

Proportion haplo(in)sufficient

Haplosufficient Haploinsufficient

0

10

20

30

40

0.00 0.25 0.50 0.75 1.00

Proportion (not) conserved

Not conserved Copy number
conserved

10

1,000

Nonohnologue Ohnologue

eQ
T

Ls
 a

ffe
ct

in
g 

ex
pr

es
si

on

10

1,000

Haplosufficient Haploinsufficient

10

1,000

Not conserved Conserved
copy number

A

B

C

D

E P < 1 × 10 -16 P < 1 × 10 -16  P = 0.01

P < 1 × 10 -16 P < 1 × 10 -16 P < 1 × 10 -16

P = 0.01 P < 1 × 10 -16 P = 0.01

P < 1 × 10-16 P < 1 × 10 -16 P = 3.0 × 10-6

Nonohnologue Ohnologue

Figure 5.2 | eQTL tissue specificity of dosage-sensitive genes.
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nonohnologues, respectively; P = 0.003, Mann-Whitney U test). We find the same

trend for haploinsufficient genes, with a bias for narrower tissue breadth (median

% tissues affected by eQTLs: 9.1% vs. 13.6%, respectively; P < 1× 10-16, Mann-

Whitney U test;) and a moderate difference between mammalian CCN genes

and genes with duplication and loss events (median % tissues affected by eQTLs:

11.4% vs. 13.6%, respectively; P = 3.0×10-6, Mann-Whitney U test; Figure 5.2A).

When genes are grouped by the number of tissues affected by eQTLS, we can see

that the proportion of genes that are dosage-sensitive are skewed towards fewer

tissues affected (Figure 5.2B).

The absolute number of eQTLs affecting a dosage-sensitive gene could also be

reduced if purifying selection is acting on eQTLs removing deleterious variants

that conflict with expression constraints. For genes that are affected by at least

one eQTL, ohnologues have fewer eQTLs per gene compared to nonohnologues

(median eQTLs: 87 vs. 96; P = 0.01, Mann-Whitney U test; Figure 5.2C). This is

also strongly the case for haploinsufficient genes (median eQTLs: 68 vs. 102; P <

1× 10-16, Mann-Whitney U test; Figure 5.2C). However in contrast to ohnologues

and haploinsufficient genes, we found that CCN genes have slightly more eQTLs

affecting their expression per gene compared to genes with mammalian copy

number gain and loss events (median eQTLs: 98 vs. 91; P = 0.01, Mann-Whitney

U test).

eQTLs influencing gene expression in a broad range of tissues are more likely to

come into conflict with constraints in one or more tissues and experience purifying

selection. Therefore we expect to find a narrower breadth of tissues affected per

eQTL influencing a dosage-sensitive gene. We find that eQTLs influencing ohno-

logues affect their expression in fewer tissues per eQTL than their nonohnologue

counterparts (median tissues affected: 1 per ohnologue eQTL, 2 per nonohnologue

eQTL; P < 1×10-16, Mann-Whitney U test; Figure 5.2D). We find this applies to
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both haploinsufficient genes and CCN genes also (median tissues affected: 1 per

ohnologue eQTL, 2 per nonohnologue eQTL; P < 1× 10-16, χ2 test; Figure 5.2D).

Furthermore we find that eQTLs that influence expression in more than ten tissues

(broad tissue breadth eQTLs) are depleted amongst dosage-sensitive genes. For

ohnologues, 9.3% (627/6,727) are affected by broad eQTLs compared to 15.4%

(1,767/11,481) of nonohnologues (P < 1× 10-16, χ2 test; Figure 5.2E). We see a

similarly strong depletion for haploinsufficient genes, (7.0% vs. 14.7% of haplosuf-

ficient genes; P < 1× 10-16, χ2 test) but only a moderate depletion of CCN genes

(12.4% vs. 13.8% of genes with copy number change events; P = 0.01, χ2 test).

5.3.4 Variance and size of eQTL effects is reduced for ohno-

logues

The amount of influence an eQTL has on a gene’s expression level varies; some

eQTLs only moderately increase or decrease mRNA level, while others have large

effects. The direction and size of eQTL effects are quantified by the slope of

the linear regression model used in identifying eQTLs in the GTEx project and

represents the effect of the alternative allele relative to the GRCh37/hg19 genome

reference allele. The median eQTL effect size for each gene in a tissue was cal-

culated and we see that ohnologues are affected by eQTLs with a smaller effect

size than nonohnologues for both positive and negative effect eQTLs (median

positive effect size for genes per tissue: 0.39 for ohnologues vs 0.41 for nonohno-

logues; P < 1×10-16; median negative effect size: -0.38 for ohnologues vs -0.41 for

nonohnologues; P < 1×10-16, Mann-Whitney U test). Additionally, the effect size

of eQTLs that influence ohnologue expression have decreased variance in compari-

son to eQTL effect sizes of nonohnologue eQTLs (median positive effect standard

deviation: 0.035 for ohnologues vs 0.039 for nonohnologues; P < 1×10-16; median

negative effect standard deviation: 0.033 for ohnologues vs 0.037 for nonohnologues;
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P < 1 × 10-16, Mann-Whitney U test). Therefore when ohnologue expression is

affected by eQTLs, it is moderately less perturbed both in size and variability.

5.3.5 Ancient constraint rather than gene age predicts eQTL

patterns

Popadin et al. (2014) find evidence of increased purifying selection acting on older

genes preferentially. They propose that integration into interaction networks, in-

volvement in regulatory networks, and haploinsufficient are constraints on expres-

sion that increase with gene age and so increase selection forces on eQTLs. Using

the same method of defining gene age (Zhang et al., 2010), we test ohnologues

and nonohnologues at the oldest node, node 0, for the proportion of expression

tissues affected by eQTLs. The age of this node is prior to vertebrate radiation

and the majority of ohnologues (80.6%) map here. We still find that ohnologues

have a lower proportion of eQTL affected tissues where they are expressed than

nonohnologues (median % tissues affected by eQTLs: 9.1% vs. 11.4%, respectively;

P = 1.9 × 10-12, Mann-Whitney U test). This difference holds true when genes

without eQTLs are excluded (median % tissues affected by eQTLs: 11.4% for

ohnologues vs. 13.6% for nonohnologues, respectively; P = 2.7 × 10-12, Mann-

Whitney U test). While gene age may be a factor in selection acting on eQTLs,

controlling for age ohnologues are still more constrained than nonohnologues.

5.3.6 Dosage-insensitive gene eQTLs patterns are constrained

when eQTLs are shared

An eQTL can be associated with influencing the expression of more than one

gene. While the majority of eQTLs identified in the GTEx project affect only one

gene’s expression, many affect more than one, and a handful of variants influence
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Figure 5.3 | Shared constraints shaping eQTL patterns.
A, eQTLs affecting two, three and four genes. Dark grey diamonds and the corre-
sponding number show the mean for each group. Bonferroni-adjusted P-values for
pairwise Mann Whitney U tests are displayed above each boxplot along with sam-
ple sizes for each group. B, the union of tissues affected by eQTLs was calculated
for 5,415 ohnologue pairs and for an equal number of random pairs generated by
randomly sampling two ohnologues with replacement.
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the expression of up to 19 genes. As some eQTLs affect both dosage-sensitive and

dosage-insensitive genes, we wished to investigate how the inclusion of dosage-

sensitive genes shaped eQTL patterns. One possibility is that the inclusion of any

dosage-sensitive gene in the group of affected genes sharply constrains the number

of tissues where expression is affected for all genes influenced. An alternative to

this is where with higher proportion of dosage-sensitive genes in the group of genes

affected the more constrained the eQTL becomes for all genes, in a gradient-like

manner. Additionally, the same eQTL can affect expression in different numbers

of tissues for different genes. Given this, it is possible that eQTL constraint

exclusively affects dosage-sensitive genes, leaving patterns for dosage-insensitive

genes to evolve unencumbered. We used eQTLs affecting two, three and four genes

to distinguish between these possibilities (Figure 5.3A).

We observe multi-gene eQTLs that exclusively influence expression of nonohno-

logues affect more tissues per eQTL than multi-gene eQTLs that instead exclu-

sively affect ohnologues (median for two gene eQTLs: two tissues vs. one, respec-

tively; P < 1× 10-16, Mann-Whitney U test; Figure 5.3A). Additionally, we see

intermediate constraints for gene groups that include both dosage-sensitive and

dosage-insensitive genes. The number of tissues affected per eQTL for nonohno-

logues decreases when the eQTL also influences the expression of at least one

ohnologue. Conversely, for ohnologues the number of tissues affected per eQTL

increases when the eQTL also affects at least one nonohnologue. While eQTLs

influencing dosage-insensitive genes affect fewer tissues when the same eQTL also

influences a dosage-sensitive gene, we also observe a difference in the number of tis-

sues affected for ohnologues and nonohnologues influenced by the same eQTL. In

this case, the number of altered tissues is higher for dosage-insensitive genes than

their dosage-sensitive partner (median for two gene eQTLs: two tissues affected

for nonohnologues vs. one tissue for ohnologues; P < 1 × 10-16, Mann-Whitney
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U test). Therefore multi-gene eQTLs have a gradient-like constraint with mixed

eQTLs being intermediate between eQTLs exclusively affecting the expression of

dosage-sensitive genes and those affecting unconstrained genes. Furthermore, the

influence of eQTLs is not equal within a mixed gene group where dosage-sensitive

genes demonstrate additional expression constraint.

5.3.7 Ohnologue pairs demonstrate dosage-balance with mu-

tually absent eQTLs

Genes within ohnologues pairs are dosage-balanced with respect to their coun-

terpart, so this shared constraint will likely affect their eQTL patterns. Genes

within pairs should have a shared absence of eQTLs detected for at least one

common tissue. eQTLs can arise in other tissues and drift in frequency neutrally.

Therefore if we look at all the tissues affected by eQTLs for both genes in a

pair we should see signals of selection removing eQTLs for tissues with a shared

constraint. We had 5,415 ohnologue pairs that met the criteria of each being on

different chromosomes and both being affected by eQTLs. For comparison, we

generated an equal number of random pairs by randomly sampling two ohnologues

with replacement. The union of tissues affected by eQTLs for both genes in a pair

was calculated for both actual and random pairs. As expected actual ohnologues

pairs have fewer combined tissues affected by eQTLs (median: 9 tissues affected

by eQTLs) compared to random pairs (median: 10 tissues affected by eQTLs;

P = 0.008, Mann-Whitney U test; Figure 5.3B).

5.4 Discussion

This study extends our knowledge of the permissible variation of dosage-sensitive

genes. Here we found that dosage-sensitive genes are enriched for eQTLs, contrary
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Scenarios of eQTLs affecting the expression of dosage-sensitive genes and the
selective pressure they experience. Scenario 1, a hypothetical ohnologue that has
constrained expression in a tissue, A, and is not affected by any eQTLs. Scenario
2, an eQTL affecting the expression of an ohnologue in unconstrained tissues,
evolving neutrally neither under positive or purifying selection. Scenario 3, an
eQTL under purifying selection as its effect on expression comes in conflict with
a tissue expression constraint (see Figure 5.2). Scenario 4, an eQTL that is
positively selected as it does not adjust expression in a constrained tissue but
allows the ohnologue to reach a different expression level that is optimum for
another tissue. Scenario 5 and 6, adjacent ohnologue and nonohnologue both
affected by the same eQTL (see Figure 5.3A). In scenario 6 the eQTL violates
expression constraints for the ohnologue in tissue B and so experiences purify-
ing selection. The removal of this variant from the population will shaped eQTL
patterns for both the affected ohnologue and the nonohnologue. Scenario 7, an
ohnologue pair, consisting of ohnologue and ohnologue’ in different loci, that share
expression constraint in tissue B (see Figure 5.3B). eQTLs that change expression
level beyond the permissible range in tissue B for either ohnologue will experience
purifying selection.
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to our expectations. While these constrained genes have previously been shown

to be refractory to other forms of variation, we show here that eQTLs influencing

the expression of dosage-sensitive genes are tolerable when they influence expres-

sion in unconstrained tissues. When variants arise that alter the expression of

neighbouring dosage-sensitive genes a number of outcomes can result (Figure 5.4,

scenarios 2-4). If the eQTL changes expression only in tissues that are free to

vary the sequence variant can neutrally evolve, without selective pressure. Nar-

row tissue breadth eQTLs are less likely to come in conflict with an expression

constraint that exists in one or several tissues compared to broad tissue breadth

eQTLs. Due to this many tissue specific eQTLs can arise and evolve neutrally. In

contrast to this, eQTLs with a broad tissue breadth are more likely to give rise to

deleterious expression levels that will be selected against and removed from the

population. Therefore, we see dosage-sensitive genes are depleted for broad tissue

breadth eQTLs and so the eQTLs remaining that influence their expression are

biased towards having narrow tissue specificity. Additionally, eQTLs can allow

dosage-sensitive genes to circumvent constraints and reach different expression

levels in other tissues that are more optimal. It may be possible to see signatures of

positive selection for some variants influencing the expression of dosage-sensitive

genes by investigating high-frequency derived alleles, long haplotypes and reduced

heterozygosity around variants (Sabeti et al., 2002; Nielsen, 2005; Voight et al.,

2006; Sabeti et al., 2007).

We investigated two types of shared expression constraints that influence eQTL

patterns of dosage-sensitive genes: multi-gene eQTLs and ohnologue pairs (Fig-

ure 5.4, scenarios 5-7). We found that multi-gene eQTLs have graduated constraint,

increasing with larger proportions of dosage-sensitive genes affected. While most

eQTLs identified by GTEx affect a single gene, the inclusion of dosage-sensitive

genes as part the group of genes influenced by multi-gene eQTLs has conse-
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quences on the variation affecting dosage-insensitive genes. Additionally, while

multi-gene eQTLs that affect a mix of ohnologues and nonohnologues display

intermediate constraint, ohnologues are still disproportionately more constrained

than nonohnologues. This result highlights that permissible variation avoids ex-

pression constraints and often consists of random neutrally evolving variants. Here,

multi-gene eQTLs that affect both ohnologues and nonohnologues do not influ-

ence ohnologue expression in constrained tissues that conflicts with restrictions.

Additionally, these eQTLs can alter expression of nonohnologues randomly, neu-

trally evolving where expression restrictions do not exist. A natural limit on the

amount of discordance for multi-gene eQTLs likely exists that places an upper

bound on the number of tissues affected for nonohnologues when the number of

tissues affected for ohnologues is limited to some degree.

Human ohnologues have been retained since the vertebrate whole genome

duplication events approximately 500 million years ago (McLysaght et al., 2002;

Dehal and Boore, 2005). It has been suggested that for ohnologues to persist for

this length of time, their absence must be deleterious and indeed copy number

variation of ohnologues has been association with disease (Makino and McLysaght,

2010). The requirement for relative stoichiometric balance of ohnologue expression

has manifested in part as higher spatial proximity of ohnologue pairs within the

nucleus to ensure similar gene regulation (Xie et al., 2016). eQTLs have the

potential to disturb an ohnologue’s expression level and cause imbalance relative

to its partner hence we found that ohnologue pairs show fewer combined eQTL-

affected tissues. This provides further evidence that some ohnologue pairs are

under strong constraint for similar expression regulation.

Similar eQTL trends presented here should be observed in other mammalian

genomes as dosage-sensitive genes are likely under a persistent ancient constraint

that limits permissible expression variation patterns across genomes (Makino and
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McLysaght, 2010; Rice and McLysaght, 2017). Additionally, if orthologous genes

are functionally conserved across species, similar expression variance constraints

may be witnessed in the same tissues between species.

Our results are largely consistent with previous work that demonstrated that

eQTLs affecting young genes were under less constraint (Popadin et al., 2014).

Similarly, we found ohnologues, a subset of older genes, have more tissue spe-

cific eQTLs and their eQTL effect sizes are smaller. However, notably we show

controlling for gene age, ohnologues still demonstrate fewer tissues affected by

eQTLs compared to nonohnologues. Therefore we propose that constraints on

gene dosage are a more important factor and that these constrains are ancient. An

additional contrast with Popadin et al. (2014) is overall we see that the expression

of more ohnologues are affected by eQTLs. This could be due to increased tissues

and samples tested as part of the GTEx project data analysed here. It is likely

that the categories of dosage-sensitive genes used here are predominantly older

genes (by definition ohnologues and mammalian CCN genes must predate the

vertebrate and mammalian divergences, respectively) however we show that age

cannot solely explain the patterns we observe, especially for shared eQTL patterns

seen within actual ohnologue pairs.



Chapter 6

Conclusions

Intricate biological processes occur within the cells of all organisms. At first glance,

these processes may seem chaotic but are often stringently controlled at many

levels. Evolutionary processes have refined interactions and regulatory mechanisms

to perform efficiently in their respective environments. However, variants, such as

SNVs and CNVs, arise and threaten to perturb these finely tuned cellular activities.

Which genes can tolerate such variants, why other genes cannot, and the role these

variants play in the evolution of our genome are important questions to answer. In

this thesis, the three studies presented attempt to answer, at least in part, these

questions.

Permissible variation can arise across much of the genome, often without any

phenotype at all but for some regions, a deleterious phenotype results. In chapter 3,

I explored the prevailing hypothesis that CNV pathogenicity is caused by dosage-

sensitivity of the genes contained within the CNV and devised a novel test for this

hypothesis using evolutionary metrics. I looked for signatures of natural selection

across mammalian genomes and found that the absence of gene gain and loss

events aligns well with human pathogenic variants. Conversely, genes in benign

CNVRs have more variable copy number. These evolutionary constraints are

121
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characteristic of genes on pathogenic CNVs and can only be explained by dosage-

sensitivity of those genes. These results implicate dosage-sensitivity of individual

genes as a common cause of CNV pathogenicity and suggest that they cannot

tolerate variation without giving rise to a deleterious phenotype.

Variants that yield no phenotype, or a phenotype that is neutral, are at the

whim of genetic drift and can randomly reach fixation or loss in the population. If

a variant is slightly advantageous upon duplication, its chance of becoming fixed

increases as it may experience some positive selective force. Conversely, a variant

that is disadvantageous can impact fecundity, and is less likely to reach fixation

and more likely to be lost.

In many instances, dosage-sensitivity is not likely to be a recent constraint.

Ancestral dosage-sensitivity is one possible explanation for duplicate retention

after WGD events. Persistence of that sensitivity to the present day is an expla-

nation for the enrichment of dosage-sensitive genes for involvement in disease. In

this thesis, I show that this constraint is apparent across mammalian genomes

whereby constraint on dosage-sensitive genes to maintain their gene product level

within a permissible threshold is pervasive and universal across mammals. Human

CNV pathogenicity is predictive of copy number constraint across mammalian

genomes, with the most distantly related genomes compared here sharing a com-

mon ancestor ∼100 Mya (Hedges et al., 2015). Furthermore, I observe that mouse

orthologues of human copy number conserved genes are depleted among mouse

CNVRs, lending further support to the idea that these are conserved ancestral

copy number constraints among mammalian genomes. This work provides evi-

dence that constraint on dosage is ancient, dating back to before the vertebrate

WGD events and is still persistent and common among extant mammals.

The vast majority of CNVs with clinical interpretations used here were as-

signed such labels due to patterns of inheritance and aspects of genic content (e.g.
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presence of a corresponding OMIM disease gene). While this likely introduces

some genic and study bias, we do not expect the same of our evolutionary metrics

which are independent of disease annotation or study bias. Ideally, more CNVs

in the dataset would be labeled as pathogenic due to statistical association with

cases over control individuals and the results presented here would now suggest

manual curation of such variants from the literature to repeat a similar analysis

may be a worthwhile undertaking.

Additionally, with an improved human genome assembly and additional re-

cently released and upcoming high quality mammalian and vertebrate genome

sequences, this analysis could be repeated with increased resolution. Our rudi-

mentary evolutionary metric of mammalian copy number conservation disregards

evolutionary information, specifically the phylogenetic distance between the 13

mammalian species and human. The metric in its current basic form clearly yields

valuable insights, but weighting copy number changes of the 13 genomes with

respect to distance to human could highlight more relevant copy number changes.

A weighted metric would make a copy number change in chimp or gorilla more

significant compared to a similar change in cow or horse. While we provide evi-

dence for constraint on dosage-sensitive genes being ancient and persistent, we

also have the example of TBX1 that is essential in human and mouse but lost

in even-toed ungulates. The potentially diminished importance of this essential

gene by our metric due to a probable single loss event in an ungulate common

ancestor could be somewhat reversed with a weighted score. We propose that a

phylogenetically weighted metric is worthy of investigation in the prioritisation

of candidate genes.

If a variant is sufficiently deleterious as to affect fecundity or severely impact

fitness, this variant will be less inherited and more rare in segregating variation.

In chapter 4, we investigated the relationship between CNV pathogenicity and
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acquisition route. Initially, we confirmed and utilised the genic difference between

benign and pathogenic CNVs to accurately predict CNV pathogenicity. Evolu-

tionarily copy number conserved genes, specifically dosage-balanced ohnologues

and mammalian CCN genes, and protein interactions are highly informative for

differentiating benign and pathogenic variants. These features provide evidence,

consistent with previous findings, for which kinds of genic content can tolerate

CNVs without deleterious consequences and which cannot. Further, we found

a strong relationship between CNV inheritance and purifying selection filtering

pathogenic variants.

De novo variants should be relatively untouched by natural selection, only

being required to be compatible with life for observation and detection. Inherited

variants, on the other hand, should have at least one additional requirement of not

being sufficiently deleterious to entirely reduce survival and fecundity. Therefore,

inherited variants are a subset of de novo CNVs, after some pathogenic variation

has been removed by purifying selection. Our results confirm this to be the

case with lower proportion of pathogenicity found for inherited variants. This

observation supports previous clinical findings of enrichment for de novo variation

among variants of case individuals.

We expect that some portion of variants inherited by a child from a parent

with the same phenotype may contribute to that phenotype in both individuals.

In these cases more of these inherited CNVs are likely pathogenic than variants

inherited from a normal parent as a causative variant is passed on. We do not have

the same expectation for CNVs inherited from a healthy parent. Perhaps some of

these variants are pathogenic in offspring but not in the parent due to increased

penetrance, but this scenario is not specific to healthy parents. Our observation

of a gradient of increasing pathogenicity from variants inherited from a healthy

parent, those inherited from a parent with a similar disorder, to CNVs of de novo
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origin, clearly implicates filtering by purifying selection and its defining role in

permissible variation.

Again, genic and study biases within the initial dataset of dbVar CNVs used

for training probably have an impact on the performance of our classifier, although

it performs well on independent datasets regardless. Quality of training data is

paramount in machine learning and any efforts to improve this, e.g. by manual

curation of variants in the literature, could only be beneficial. While the pheno-

types yielded from CNVs can vary greatly, the underlying general mechanisms of

dosage-sensitivity at the cellular level are probably more common. As we show

that genic features can predict pathogenicity that arises from CNVs, it may be

possible to create either a variant- or gene-level classifier that can predict dosage-

sensitivity upon copy number change in a species-independent fashion. Given

universal evolutionary metrics like ohnologue status, and standardised protein

interaction information (relative node degree distributions) and other features,

mechanisms of dosage-sensitivity could be predicted.

Finally in chapter 5, we tested the expectation that dosage-sensitive genes are

also refractory to dosage changes by evolution of gene expression. We explored

expression evolution of dosage-sensitive genes by comparing expression variation,

in the form of eQTLs, of dosage-constrained genes with other genes in healthy

individuals. Here, we found dosage-constrained genes are biased towards having

eQTLs of narrow tissue specificity, suggesting that broad tissue breadth eQTLs are

likely removed by purifying selection due to conflicts with expression constraints.

Dosage-sensitivity shapes the evolution of these genes by restricting them to a

narrow route of evolution through expression changes in unconstrained tissues.

Additionally, we show that this restriction is likely ancient and is consistent with

constraints present at the vertebrate WGD events.

The effects on dosage by gene duplication and expression variation are not
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necessarily the same, and thus the constraints on permissible variation can be

different. While a CNV has a global effect, altering dosage in every tissue, eQTLs

can have more precise influence allowing avoidance of specific constraints for

dosage-sensitive genes and consequently a tolerable path to vary and evolve. In

this way, dosage-sensitive genes are not static and incapable of evolving, however,

any change must be compatible with dosage constraints to avoid yielding a dele-

terious phenotype. Indeed this can impact variation on genes without constraints,

where eQTLs in a region affect multiple neighbouring genes, one of which has

a dosage constraint. Purifying selection will act on the multi-gene eQTL to re-

move it from the population so in effect, a neighbouring gene without constraints

will have similarities in its variation profile to the dosage-sensitive gene. While

the majority of eQTLs in the dataset here are gene-specific (∼two-thirds), con-

straints radiating from neighbouring dosage-sensitive genes muddle expectations

of permissible variation without considering wider genomic context.

As eQTLs provide a potential avenue for dosage-sensitive genes to circumvent

constraints and optimise expression levels in other tissues, it may be possible to

see signatures of positive selection on some variants. We propose searching for

high-frequency derived alleles, long haplotypes and reduced heterozygosity around

variants as a test for this hypothesis. Additionally, as the constraint in place on

some human genes is ancient, we expect that similar eQTL trends presented here

should be observed in other mammalian genomes. Further, if orthologous genes are

functionally conserved across species, similar dosage constraints may be witnessed

in the same tissues between species elucidating their functional constraints. Exam-

ination of mouse eQTL data may confirm or reject these expectations, although

the data available may not be as extensive as human. A limitation of the work

here is that our analysis only consists of healthy control expression variation. To

fully confirm purifying selection acting on broad tissue breath eQTLs that conflict
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with gene dosage constraints examination of pathogenic variants will be necessary.

Here, we performed the first comparison of genome evolutionary trends of

genes in benign and pathogenic CNVs and provide evidence for the usefulness of

evolutionary metrics in the identification of candidate disease genes. Further, we

show their use in the interpretation of CNVs both as a clinical tool and a method

of gaining insights into genomic trends of permissible variation. Additionally, we

provide evidence that expression evolution by tissue-specific variation is almost

the only route available to evolve gene product levels for dosage-sensitive genes.

For these genes we expect at least one tissue with reduced expression variation

potentially revealing which tissues have constrained gene expression, and thus

providing greater insight into the basis of pathogenicity when these genes are

affected by a CNV.
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