
1

Evaluation of a Time Radio Signal as Wireless
Sensor Synchronization Beacon

Dr. Meriel Huggard, Alessandro Vaccaro, Dr. Ciarán Mc Goldrick
School of Computer Science and Statistics

Trinity College Dublin, Dublin, Ireland
huggardm@scss.tcd.ie, vaccaroa@tcd.ie, ciaran.mcgoldrick@scss.tcd.ie

F

Abstract—Clock synchronization and universal time knowledge is a
feature of which Wireless Sensor Networks are still in need. Reliable
synchronization is necessary for applications involving distributed tasks,
such as medium access control to sleep cycles for smart power man-
agement, precise sensor sampling, data sequencing and aggregation.

Signal processing of samples from multiple nodes is a practical
application which benefit from a common time knowledge. In a scenario
of Structural Health Monitoring is very important that all sensor sample
the accelerometer data at the same time, to take a state snapshot of the
monitored structure.

This article evaluates the MSF60 time broadcasting signal as a mean
to synchronize the nodes of a WSN. A signal reception delay is observed
and its impact of the system synchronization is evaluated through an
experiment set. The experiment is based on an actual hardware and
software implementation of the system. The article will conclude with an
analysis of a possible application of the system to monitor low frequency
events in sparse networks.

1 INTRODUCTION
Wireless sensor networks (WSN) mostly suffer from lack of
time information therefore synchronization and knowledge
about the exact sample acquisition time over several nodes
is in many cases inaccurate. Timekeeping is on many WSN
platforms performed through the micro-controller’s hardware
timers, which suffer from clock variations and are completely
unrelated to time on other nodes of a network.

Hence, due to the lack of universal time information, the
retrospective data samples correlation to time, during post
processing, is challenging. Each data-set collected from the
nodes of a WSN are hardly related to each other in time, in
such conditions is impossible to have a real-time view of the
evolution of a physical event over time and space.

As samples are correlated in time the sampling devices have
to agree on a common clock source and converge their local
clocks to it. Clock agreement is necessary for many distributed
tasks, the aforementioned correlated sampling, time slotted
media access, co-ordination of sleep cycles to prolong the
battery life of sensor nodes. Time synchronization is therefore
of paramount importance for a wireless sensor network. The
new requirements posed by WSN deployments have raised
interest in the research community into clock synchronization.
As WSN nodes mostly run on batteries research has focused
on simple, low bandwidth and low power synchronization
techniques that roughly can be categorized in packet based
synchronization and external source synchronization. Packet
based synch diffuse the clock offset and time skew via network
packets. Each node of the network evaluates its offset with a

master clock by message passing. Several iteration might be
necessary to achieve coordination and it can be maintained
only with frequent re-synchronization. These techniques are
effective on small well connected graphs, however do not
scale well on big, sparse networks and to work properly the
radio link must be available at all time. Are examples of
this family protocols like RSB [1], TPSN [2] and FTSP [3].
The second family of synchronization approaches relies on an
external (to the wireless node) reliable clock source. This may
be a GPS receiver, the FM RDS signal [4], power lines AC
electromagnetic pulses [5] and the national radio time signals
such as DCF-77 [6]. These approaches have the non negligible
advantage to allow synchronization without message passing,
allowing their deployment on sparse networks or, excluding
GPS based nodes, systems with very tight power requirements
so that they need to reduce the wireless communications. The
work

The hypothesis is that measurement data can be acquired
simultaneously together with accurate universal time informa-
tion on each wireless sensor, using the MSF60, a low frequency
clock radio signal transmitted from the United Kingdom, as a
sync beacon. This article aim to evaluate the quality of clock
synchronization achieved on regular Arduino Duemilanove
boards couples with cheap MSF60 receivers. We have run three
set of experiments to evaluate the MSF60 signal precision, a
second set to measure drift of two Atmega328 micro-controllers
clocked at 16 MHz and a third set where the MSF60 receiver
fed the Arduino Duemilanove boards as a clock sync source.

• The precision of the MSF60 signal is evaluated in two
phases: first in subsection 4.1 was measured the actual du-
ration of a second, then in subsection 4.1.1 were measured
the timing differences between two independent MSF60
receivers.

• The clock drift of two non synchronized Arduino was
measured over several rounds for up to half day, showing
a growing offset up to 180ms between the two boards, see
section 5.

• The Arduino clock is then corrected with a MSF60 time
receiver and is shown how the errors measured in the
previous experiments actually combine together, the result
and discussion is in section 6.

In the next session is given an account on related work in
the area followed by a description of the MSF60 universal time
signal. Afterwards will follow three sections each describing
in detail the mentioned experiments on said time sources. A
conclusion will summarize the results of the experiments.



2

2 RELATED WORK

The research described in [6] analyses the geographical avail-
ability of the broadcasted WWVB and DCF-77 signal and the
power requirements needed to make the receiver module work.
The radio signals are two time diffusion transmissions operated
at low frequency in the USA and Germany respectively. They
measure an inter-node synchronization skew variable between
1 mS and 11 mS. Their conclusion is that this technique lacks
from good quality hardware which is not able to provide
microsecond precision. However is still a good clock source
to synchronize sparse networks to allow time slotted medium
access for nodes with very tight power requirements.

Another work in the area [4] proposes to use the widely
available RDS message broadcasted by most FM radio stations
as a common time reference. Their main point is to avoid
the poor signal reception of DCF-77 or similar technologies
in indoor WSN deployments. The experiment was run on
purposely designed hardware and a calibration algorithm has
been implemented which can keep the offset between two
nodes under 1,5 mS with an average of 0,4 mS. The calibra-
tion algorithm proposed could be of inspiration for a similar
approach on Universal Time Signal Receiver based systems,
given that the error feature a similar configuration.

Central time reference based synchronization solutions usu-
ally performs poorly compared to packet based synchroniza-
tion protocols in terms of mere offset reduction. However ac-
cording to [4] the trade off is on power consumption, converg-
ing delay, network size scalability and link availability. RBS [1],
FTSP [3], TPSN (>20 mS precision) [2] achieve their accuracy
with many repeated packet exchange or time flooding. These
come at a power cost and they greatly limit the bandwidth
available to applications for which the WSN is deployed.
One of the main advantage of using a Universal Time Signal
Receiver based synchronization system is the availability of
global time, while even the RDS based solution gives only
information about the relative offset between a set of nodes.
The universal time information, would ease the correlation
of signals from multiple sources without introducing further
processing delays to infer event sequence out of relative offsets.
Also the concept of universal time is useful to sparse networks
that are then able to timestamp their tasks without to be
physically linked to the other nodes of the network. Another
work in the area uses constructive interference to facilitate
network flooding [7] with the side effect of obtaining implicit
time synchronization, reducing the offset to 0.5µS.

3 RADIO TIME SIGNAL PROTOCOLS

Global time keeping is necessary to synchronize the operations
of several events. For this reason most countries have created
a national institution to build and maintain a radio signal
transmitter to broadcast time and other related information.
In Europe the most common are the German DCF-77 signal
and the British MSF-60 other European nations have their
own transmitters. Other continents have some equivalent tech-
nology and a quick look at the technical documentation will
show that most of them consist of an analogical signal that
span for the length of a minute, transmitting a bit per second.
These signals are therefore easy to decode also with simple
hardware and software routines. Indeed time signal receivers
are implemented in wall clocks as well as time keeping server.

The MSF-60 signal is transmitted from Anthorn Radio Sta-
tion in Cumbria on the 60 kHz frequency. It consists of a one
minute time frame modulated similarly to the DCF-77 protocol,
each second of signal carries one bit. At the beginning of each
second the carrier is switched off for 100 mS to encode a logical
0, for 200 mS for a logical 1. The switch to a new minute
is signaled by a carrier drop of 500 mS. The relevant time

Fig. 1. This map roughly represents the area within which
the MSF60 (orange) and the DFC77 (red) can be clearly
received. This are the values reported by the documen-
tation provided by the organizations responsible for the
maintenance of the time signal broadcasts. However by
our experience, using a cheap receiver, in Ireland the
DCF77 signal is received with a lot of noise. For this
reason our experiments are based on the MSF60 signal,
which due to the geographical proximity of the transmitter,
was received without any noise by our cheap receivers.

information, as well as the parity and control bits, are BCD
encoded in bits 17 to 59.

The DCF-77 protocol describes an analogical signal broad-
casted from Mainflingen near Frankfurt, Germany. The signal
is AM modulated on the 77,5 kHz frequency. It has a 59 seconds
frame, one bit transmitted each second. The carrier amplitude
is dropped of about 25% at the beginning of each second, a
drop duration of 100 mS represents a logical 0 while a drop
of 200 mS is a logical 1. The calendar day, day of the week,
month, year, hour and minute information is encoded in BCD
(binary coded decimals) in bits 20 to 59. Frame bits 28, 35 and
59 are three parity bits to check the correctness of the received
frame.

Although the two protocols share the same BCD encoding
they are not compatible and is necessary to write a specific
decoder for each signal. However as demonstrated in this
paper, it is not necessary to completely decode the bit stream
to perform a clock synchronization. Indeed it is sufficient
to identify the new minute pulse to have fairly stable clock
reference. The experiment described in this paper was run in
Ireland so the choice for the MSF-60 signal, being stronger than
DCF-77 due to geographical proximity to the transmission site.

3.1 Geographical availability
The MSF-60 signal can be received at a distance of 1000 Km
from Anthorn with a field strength of at least 100 µV/m.
The radius is extended enough to cover the United Kingdom,
Ireland, Denmark, Belgium, Nederland, south west Norway
and northern parts of France and Germany. In figure 1 is
sketched map of Europe with the estimated signal availability
radius. A few times during the year the signal is switched
off for maintenance [8], but the British Physics Laboratory
provides notices for the scheduled temporary shutdowns.

The DCF77 radio signal, can be received from a distance of
2000 Km, it covers most of Europe and within 500Km the signal
is received with a field strength of 1 µV/m [9]. This signal can



3

Fig. 2. Exists a variability in the second duration in the
MSF60 signal. The plot shows the variability, in millisec-
onds, of the duration of each second. The error mostly
fluctuates between ±2ms and does not seems to follow a
predictable pattern.

be used effectively, as stable and reliable time source at over
1600km from the transmitter [10].

As is common for all long wave signals the range and quality
of reception varies from night and day, the signal strength is
higher at night time and in general in good weather conditions,
however light rain has negligible effect on the long radio waves
used by this technology.

4 MSF60 TIME SIGNAL PRECISION
Some of the main limitations of packet based synchronization
techniques are network size scalability, data traffic overhead
and power consumption. By adopting a central time reference
is possible to dramatically reduce the number of packages
transmitted to synchronize the nodes of a WSN. Consequently
reducing the CPU time dedicated to process the protocol and
maintaining idle the radio modem for longer periods, therefore
power consumption is expected to decrease. However this
should not happen at the expense of time accuracy.

Multiple experiments have been executed on different set-
tings and configurations, to evaluate the suitability of Universal
Time Signal Receiver in general, and of MSF-60 in particular,
as providers of a common time reference. These experiments
are described in the following sections.

4.1 MSF60 Signal Precision
The experiment was split in two parts dealing mainly with
different methods of sampling the time samples directly off a
couple of MSF-60 receivers and through a couple of Arduino
Duemilanove. It is important to know the quality of the clock
source that will be used to build a synchronization system.
Therefore in this chapter are described the details of the two
experiments executed to analyze the stability and predictability
of the MSF60 signal.

4.1.1 Single MSF60 receiver setup
A single MSF60 Receiver, sampled at the output signal over a
few hours to calculate the average length of a second and a
minute.

std dev: 0,0022492[s]

Error of the MSF60 over 1Hz period, [s]

D
en

si
ty

 [a
.u

.]

-0.006 -0.004 -0.002 0.000 0.002 0.004

0
50

10
0

15
0

Fig. 3. This plot show the error on the duration of each
second on the MSF60 signal, the vast majority of the sam-
ples lie ±2ms, the error although substantial, averages
out on the long term.

The first experiment was run using one MSF-60 receiver
and a logic analyzer connected to the output pin of the
MSF-60 receiver itself. The output signal was sampled with
a frequency of 25KHz for 3600 seconds. The collected data
was then processed to calculate the average length of each
second and minutes in the form of output of the receiver board.
This test was particularly useful to evaluate the precision and
repeatability of the MSF-60 time signal.

The experiment results showed a variability and unpre-
dictability of the length of a second (1000ms) in the range of
±2ms for the vast majority of the samples as is possible to
appreciate in figure 2. The time signal encodes the beginning
of each second as a raising edge, but the frequency of this event
is not 1Hz as expected although it is very close. The error is
probably introduced by noise due to the cheap radio receiver
used. In figure 3 is plotted the time length distribution of the
sampled signal, showing that the duration of the signal follows
almost a normal distribution.

4.1.2 Two MSF60 receivers setup
The time signal was sampled in parallel on the two devices
for 3600 seconds. The objective of the experiment was to
evaluate the average (and standard deviation) output line state
transition skew between the two receiving devices. From the
data collected has emerged that the output signal from the
two MSF-60 receivers has a median skew of 0.00172 s with a
standard deviation of 0.00229 s. Over the sampling period the
highest delay registered was of 0.02536 s and the minimum
0.00004 s. The plot in figure 4 represent the delay between two
receivers and it visually shows that the it is not predictable and
does not seems to follow any repetitive pattern. Probably the
imperfect correlation is due to imperfections in the electronics
of the receiver boards, as well as not perfectly tuned crystals.
However a set of wireless sensor nodes equipped with this
receivers would still be able to synchronize accurately enough



4

Fig. 4. Reception delay of the MSF60 signal from two
different receivers. The plot show the difference between
the second pulse as received by the radio. It show how
the signal output from the two receivers has a random
and unpredictable offset. However it is stable inside ac-
ceptable margins and if considering a 1 minute period the
error averages out.

for most low frequency operations and also to schedule the
sleep cycles of the nodes.

4.2 Time-stamping Procedure
The MSF60 bit stream is a composed of 59 bit and it is BCD
encoded. It contains information about the current hour, day
of the year, day of the week, month and year. There are some
special bits to report a following leap second and if Summer
Time is in effect. All these information are not relevant to
the objective of providing a WSN with a clock source and to
demonstrate that it is indeed a reliable source.

The experiment is run on two Arduino Duemilanove, both
keep a local clock that every 1000 ms raises an interrupt served
by the routine sketched in algorithm 1. This routine counts
how many seconds have elapsed since the board was powered
on, it also counts the number of minutes and execute a clock
synchronization task every ten minutes. The main event loop
running on each Arduino is a finite state machine sketched in
algorithm 2. Every ten minutes the system clock routine will
move the state machine to a state called MINSIG which will
start waiting for a new minute pulse coming from the MSF60
receiver.

The whole code is very compact and simple, to time stamp
events is provided a simple C macro that produce a time stamp
reading the variables tm sec, tm min and the current system
timer value.

5 CLOCK DRIFT BETWEEN TWO ARDUINO
To better evaluate the benefit brought by a global clock syn-
chronization in terms of clock drift reduction, we have sampled
the clocks of two Arduino Duemilanove. The sampling was
executed during a period of over 12 hours by mean of a
portable logic analyzer. Both test boards were placed next to
each other, to minimize the effect of environmental temperature
changes to the individual clocks as the onboard clocks are
not temperature compensated. On the Arduino Duemilanove
is installed an ATmega328, running at 16MHz, on which are
available two 8 bit timers and one 16 bit timer. For this phase
of the experiment was used the 16 bit timer operating in CTC
mode the pre-scaler register set to 256 to ignite an interrupt
every second. The code executed on the boards was a simple

Algorithm 1 This interrupt routine is called with a
frequency of 1Hz and handles the system timer. It keeps
track of the elapsed seconds and moves the state ma-
chine into synch state every 10 minutes.

function TIMER HANDLER . interrupt every second
tm sec← tm sec+ 1
if (tm sec mod 60) = 0 then

tm min← tm min+ 1
end if
if (tm min mod 10) = 0 then . synch every 10

min
state←MINSIG

end if
end function

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

4.75

4.8

4.85

4.9

4.95

5

5.05

∆
 t
im

e
 [
m

s
]

time [min]

time laps for arduino clocks: drift=−0.278ms/min; deviation from line fit= ±0.0278ms

 

 

measurement

linear regression

Fig. 5. A zoomed in plot of a 12 hour sampling of two free
running Arduinos clocks. It is visible a small deviation of
±0.03ms from the linear regression and a drift of 18ms/h.

ISR routine that toggled one of the GPIO and increased an
elapsed second counter used also to toggle another GPIO at
the beginning of each new minute. This part is equal for both
boards. To precisely start both timers at the same time one
Arduino was programmed as a Master that start its clock and
send a start command to the second Arduino programmed as
Slave. The start command is a simple impulse on one of the
available IO pins. An external interrupt ISR on the slave board
detects the pin state change and start its own timer. The initial
clock offset is negligible due to this setup. The offset grew of
about 18 ms/hour. It is possible to notice the drift on one of the
two ATmega328 grows faster and consistently from the other.
The clock offset diverge linearly from the original value, with
an offset of over 180 ms in the last hour of the experiment, in
figure 5 is visible the offset density which is equally distributed
due to the particular environmental conditions in which the
experiment was run. In the next section is shown how the
MSF60 receiver effect the clock offset stability.

6 CLOCK CORRECTION WITH MSF60 SIGNAL
In the previous section was shown how the clocks of two
Arduino drift apart over time to grow the clock offset up to
180ms. In this section we show how it is possible to control the
offset and keep it within a certain threshold. The experiment



5

setup is composed of two Arduino whose clock is regularly
corrected against the signal of an MSF60. The signal is fed
into the Arduino one via one of the digital GPIO. The two
test boards were placed indoor, in a brick building, without
the steel cage of armed concrete that stops the radio waves
[6]. Each board had its own receiver and was completely
independent from the other. In this experiment each board
is programmed to emit a pulse of the duration of 1000 ms
every second and a pulse of 60000 ms every minute. These
pulses have been sampled with a logic analyzer and the offset
evaluated a posteriori.

6.1 Synchronization Code
The clock is synched with the MSF60 at power on and then
every 10 minutes. During the synchronization window the
Arduino waits for a new minute pulse and then reset its
own clock to match the rising edge of the minute pulse. The
pseudocode in 2 describes more accurately the state machine
that handles the timer reset and that looks for the new minute
pulse of the MSF60 signal. The finite state machine is controlled
externally by two interrupt service routines, described in code
3 and 1. The system timer routine (pseudocode 1) is invoked
every 1000 ms, increases the second counter and every 10 min-
utes moves the state machine into the MINSIG state (minute
signal). The MINSIG state enables the external interrupt on
the falling edge of the pin state change and moves the FSM
into WAIT. From now on the FSM is controlled by the external
interrupt routine (pseudocode 3) that is called when a falling
edge is detected on the MSF60 signal stream, starts timer B
and moves the state machine into FALL EDGE state which
sets the external interrupt to react on rising edges. The code so
only detects a logic 0 of about 500 ms between a falling edge
and a rising edge. This operation is justified to catch the bit
with the switch over pulse encoded in the first second of each
new frame of the MSF60 stream, and is encoded switching off
the carrier amplitude for 500 ms at the switch over to the next
frame which also mark the beginning of the next minute.

6.2 Offset Reduction
The length of the synchronization window can not be pre-
dicted, in the best case lasts at most 500ms, which is the
duration of the new minute pulse, however in case of bad radio
reception or jammed signal the Arduino might have to wait for
a few minutes. The plotted data shows that synchronizing the
Arduino timer with the MSF60 signal the offset is reduced and
kept within the precision boundaries of the MSF60 receiver. In
figure 6 is plotted the error density of the resulting experiment.
The offset is contained within -10 ms and 5 ms, enough
precision to timestamp events that have a frequency of less
than 100Hz. In figure 7 is plotted the offset over the duration
of the experiment, the spikes are due to hardware issues with
one of the MSF60 receivers that is less stable in receiving the
radio signal. To prove this statement was run a test where both
Arduino boards were fed with the same MSF60 output, the
outcome is visible in figure 8. This test excludes that the sudden
offset growth were due to either the code or the Arduino
boards, also the big offset skew monitored in figure 7 are not
consistent with the measurements results visible in figure 4.

7 RESULTS
We present the results of a set of experiment to evaluate the
precision of radio signal time references in general and of
MSF60 in particular. An experiment is executed to measure
the stability of the time information provided by the signal,
which shows an average oscillation of 0ms±2.2ms on the 1Hz
period. It is also measured, over a period of 3600 seconds, a

Algorithm 2 The main event loop. It is a state machine
to control the two timers and the MSF60 radio receiver.

while true do
if state = MINSIG then . Initial state

ExtInt← fall edge
state←WAIT

end if
if state = E FALL then . Pulse start

ExtInt← rise edge
state←WAIT

end if
if state = E RISE then . Pulse end

if timer b read() = 500 then . Check length
state← RESET

else
state←MINSIG

end if
timer b reset()

end if
if state = RESET then

timer a reset()
ExtInt← Disable
state←WAIT

end if
if state = WAIT then

wait state change()
end if

end while

Algorithm 3 The interrupt routine that looks for the new
minute pulse from the MSF60 receiver. It measures the
pulse length and advances the state machine in the main
loop.

function ISR EXT INT
if ExtInt = fall edge then

timer b start()
state← E FALL

else
timer b stop()
state← E RISE

end if
end function

skew in the output data of two independent MSF60 receivers
of 1.72ms±2.29ms.

In the second set of experiments was evaluated the clock
drift of two Arduino Duemilanove boards. The measurement
lasted for over 12 hours and the Arduinos had no mean to
communicate, apart from the initial synchronized timer start,
during which was measured a drift of 18ms/h±30µs deviation
from the linear regression.

The last test used the radio signal time reference to reduce
the Arduinos clock’s drift. Each Arduino board is connected
to the output of a radio time signal receiver and at regular
intervals the internal clock of each board is adjusted with the
new minute pulse. With this setting is measured that the clock
offset between the two Arduino boards is consistently kept
within 3.2ms±3.5ms.



6

−20 −15 −10 −5 0 5 10 15 20
0

100

200

300

400

500

600

∆ time [ms]

s
a
m

p
le

 d
e
n
s
it
y

Fig. 6. The MSF60 corrected clock offset density plot of
the samples collected from two independent Atmega328
mcu. The offset is contained within 5 and -8 ms.

0 20 40 60 80 100 120 140
−15

−10

−5

0

5

10

∆
 t
im

e
 [
m

s
]

time [min]

−3.2ms ± 3.5ms

Fig. 7. The plot of two hours of samples of the clock of
two Arduinos show that the radio time signal reference
synchronization keeps the offset at 3.2ms±3.5ms from
the linear regression.

8 CONCLUSION

It is presented a technique to synchronize outdoor wireless
sensor networks by mean of a global radio signal time ref-
erence, in particular the British broadcasted MSF60 signal. It
is evaluated the precision and consistency of the time signal
showing fluctuations within 0ms±2.2ms on the 1Hz period.
It is also measured the clock drift of two Arduino over a
period of 12 hours. On the last test the Arduinos clock were
regularly synchronized to the radio time signal by a software
routine, measuring that the offset is kept within 3.2ms±3.5ms.
Each experiment was run indoor for a period of 12 hours, in
the future, it is anticipated to test long term deviations. The
results of herein presented experiments demonstrate that time
synchronization better than 10ms can be achieved using radio
broadcasted signal time references and cheap radio receivers.

0 10 20 30 40 50 60 70 80 90
−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

∆
 t
im

e
 [
m

s
]

−0.245ms ± 0.307ms

Fig. 8. If the system clocks are fed with the same MSF60
output their clock offset is contained within 0, 5 ms. This
test was run to exclude as cause of the occasional offset
spikes to either the code or the Arduino boards.

REFERENCES
[1] J. Elson, L. Girod, and D. Estrin, “Fine-grained network time syn-

chronization using reference broadcasts,” ACM SIGOPS Operating
Systems Review, vol. 36, no. SI, pp. 147–163, 2002.

[2] S. Ganeriwal, R. Kumar, and M. B. Srivastava, “Timing-sync
protocol for sensor networks,” in Proceedings of the 1st international
conference on Embedded networked sensor systems, ser. SenSys ’03.
New York, NY, USA: ACM, 2003, pp. 138–149. [Online]. Available:
http://doi.acm.org/10.1145/958491.958508

[3] M. Maróti, B. Kusy, G. Simon, and Á. Lédeczi, “The flooding time
synchronization protocol,” in Proceedings of the 2nd international
conference on Embedded networked sensor systems. ACM, 2004, pp.
39–49.

[4] L. Li, G. Xing, L. Sun, W. Huangfu, R. Zhou, and H. Zhu,
“Exploiting fm radio data system for adaptive clock calibration in
sensor networks,” in Proceedings of the 9th international conference
on Mobile systems, applications, and services. ACM, 2011, pp. 169–
182.

[5] A. Rowe, V. Gupta, and R. R. Rajkumar, “Low-power clock
synchronization using electromagnetic energy radiating from
ac power lines,” in Proceedings of the 7th ACM Conference
on Embedded Networked Sensor Systems, ser. SenSys ’09. New
York, NY, USA: ACM, 2009, pp. 211–224. [Online]. Available:
http://doi.acm.org/10.1145/1644038.1644060

[6] Y. Chen, Q. Wang, M. Chang, and A. Terzis, “Ultra-low power
time synchronization using passive radio receivers,” in Informa-
tion Processing in Sensor Networks (IPSN), 2011 10th International
Conference on. IEEE, 2011, pp. 235–245.

[7] F. Ferrari, M. Zimmerling, L. Thiele, and O. Saukh, “Efficient
network flooding and time synchronization with glossy,” in Infor-
mation Processing in Sensor Networks (IPSN), 2011 10th International
Conference on, April 2011, pp. 73–84.

[8] (2010, 04) National physical laboratory: Msf radio time
signal. [Online]. Available: http://www.npl.co.uk/science-
technology/time-frequency/products-and-services/time/msf-
radio-time-signal

[9] (2010, 3) Physikalisch-technische bundesanstalt
(ptb): Reach of dcf77. [Online]. Available:
http://www.ptb.de/cms/en/fachabteilungen/abt4/fb-44/ag-
442/dissemination-of-legal-time/dcf77/reach-of-dcf77.html

[10] P. Dolea, P. Dascal, T. Palade, and O. Cristea, “Aspects regard-
ing the use of lf radio transmitters for time dissemination,” in
Electronics and Telecommunications (ISETC), 2014 11th International
Symposium on, Nov 2014, pp. 1–4.


