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Abstract  

In-situ observation of crystal growth in transparent media allows us to observe solidification 

phase change in real-time. These systems are analogous to opaque systems such as metals. 

The interpretation of transient 2-dimensional area projections from 3-dimensional phase 

change phenomena occurring in a bulky sample is problematic due to uncertainty of 

impingement and hidden nucleation events; in stereology this problem is known as over-

projection. This manuscript describes and demonstrates a continuous model for nucleation 

and growth using the well-established Johnson-Mehl-Avrami-Kolmogorov model, and 

provides a method to relate 3-dimensional volumetric data (nucleation events, volume 

fraction) to observed data in a 2-dimensional projection (nucleation count, area fraction). A 

parametric analysis is performed; the over-projection phenomenon is shown to be significant 

in cases where nucleation is occurring continuously with a relatively large variance. In 

general, area fraction on a projection plane will overestimate the volume fraction within the 

sample and the nuclei count recorded on the projection plane will underestimate the number 

of real nucleation events. The statistical framework given in this manuscript provides a 

methodology to deal with the differences between the observed (projected) data and the real 

(volumetric) measures. 
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1 Introduction 

In-situ observation techniques have allowed material scientists to observe phase-change 

phenomenon in real time [1,2]. Furthermore, the nucleation and growth in some transparent 

alloy systems are analogous to metallic alloys [3] and are therefore used as model systems. 

For example, early solidification experiments involved the use of transparent materials (such 

as NH4CL/H2O) [4], where the solidifying phase would exhibit greater opacity than the 

transparent liquid phase. Hence, solid could be distinguished from liquid in real-time.  

More recently, synchrotron x-ray imaging techniques have been applied to the solidification 

of metallic alloy systems [5–7]. The requirements for in-situ x-ray radiography in metals are 

that the alloy exhibits partitioning of solute at the solid-liquid interface, and that solute and 

solvent should have significantly different atomic numbers. If these requirements are fulfilled 

the process will provide sufficient contrast between the solid and liquid with areas of 

different compositions observed in the radiographic video sequences. 

In-situ observation experiments have provided complimentary data to the traditional post 

mortem-analyses or ex-situ analysis, however, it is clear that in-situ observation has provided 

insights previously unobtainable through post-mortem characterisation. For example, dendrite 

arm fragmentation was first observed in a transparent alloy system [8] and then confirmed in 

metallic systems using in-situ x-ray radiography [9].  

Synchrotron x-ray experiments have provided a significant advancement in the study of alloy 

solidification for metallurgical purposes; nevertheless, experiments with transparent analogue 

systems continue to find application in the study of metallurgy. For example, Sturz et al. [10] 

have recently conducted a solidification experiment on equiaxed dendrites with in-situ 

observation using the transparent analogue neopentylglycol-camphor on-board the sounding 

rocket TEXUS-47. Microgravity conditions were achieved on this sounding rocket campaign, 

hence the crystal growth could be observed in the absence of gravity-driven convection and 

crystal sedimentation. 

It is important to distinguish the dimensionality differences between the transparent systems 

and the metallic systems for in-situ observation. Metallic systems are necessarily thin 

(typically less than half a millimetre in thickness) and may be considered as, approximately, 

2D specimens in some respects. Whereas transparent samples may have considerable 

thickness and should be considered as 3D samples.  



If a 3D sample is observed in transmission using one camera then the resulting image is a 2D 

projection of a 3D sample. This phenomenon is known as a stereology effect [11], 

specifically, known as over projection [12]. This manuscript proposes a method to relate 

observed events in the 2D projection to actual events in the 3D sample in real-time during 

phase change by solidification (polycrystalline nucleation and growth). We assume that the 

sample is bulky and not a foil, hence, the depth of the sample, D, will be greater than the 

average crystal size. The approach outlined here will have direct application to in-situ 

observations of transparent systems in microgravity experiments, where the transport effects 

associated with gravity-driven convection are suppressed [16]. To simplify the analysis, we 

assume that temperature in the domain is uniform and known a priori.  

2 Method 

Figure 1 shows a system with a transparent initial phase and opaque spherical objects that 

nucleated from seeds. We assume that the positions of the seeds follow an independent 

random (Poisson) spatial distribution. Hence, the presence of seed points within the sample 

occur at any location without bias. If the total number of seeds is given as n then the overall 

density of seeds is given as No=n/V, where V is the volume of the cuboid. The frontal area of 

the cuboid is the projection plane and has area, A. The depth of the cuboid is D. 

 

Figure 1 Continuous nucleation and growth of 3D 

spheres in a cuboid and the corresponding 2D 

observation on the projection plane. 

Spherical growth is assumed at active seed points, hence, under continuous nucleation 

conditions, and at any point in time, we shall get a distribution of different sphere sizes in 3D 

space. These spheres may represent a single solid phase or, as is more likely, an envelope 

containing a mixture of phases (e.g., a mush-containing envelope or a spherule of eutectic). 



The bulk sample is observed from one side only; hence, giving us a 2D projected image of 

the spherical objects formed. We assume that the depth of field of any magnification 

instrument is sufficient to allow observation of objects formed at all depths. Two issues arise 

with the 2D projected image: 

1) As the transformation progresses, distinct and separate spherical objects that have not 

impinged may appear to overlap in the 2D projected image. This phenomenon gives 

the impression that adjacent objects have impinged but it is difficult to confirm if the 

objects have indeed impinged. Figure 1 shows overlapping areas on the projection 

plane, but it is clear that no spheres within the volume have impinged. 

2) Nucleation events may be obstructed from view by larger solid objects. These new 

nucleation events may have occurred in front of or behind pre-existing solid and will 

go undetected or uncounted in any nucleation density or rate estimation. Hence, some 

nucleation events are observed, others are unobserved. This phenomenon has occurred 

for two spheres in the upper half of Figure 1. 

It is interesting to think of the problem from two perspectives. The first perspective is from 

the experimentalist who is recording the measurable data. Areal data (2D) such as counting of 

nucleation events and area coverage are measured on the projection plane. But, for posterity, 

we require volumetric data in 3D. Hence 2D information must be translated into 3D data. 

The second perspective is from the modeller, who is modelling the system in 3D but wishes 

to compare the model’s output with 2D data gathered on the projection plane. Here, the 

inverse problem applies, where 3D information must be translated into 2D data. This is the 

viewpoint taken in this manuscript. Table 1 provides a list of important parameters that may 

have an areal (2D) interpretation or a volumetric (3D) interpretation. 

Table 1 

Description Symbol Unit Areal or volumetric 

Total number of potential seed sites n [-] - 

Density of all potential seeds  NO [m-3] Volumetric 

Nucleation density 𝑁 [m-3] Volumetric 

Nucleation rate  𝑁̇ [m-3s-1] Volumetric 

Area fraction  𝜁A [-] Areal 

Volume fraction  𝜁𝑉 [-] Volumetric 

Nucleation density of real nuclei 𝑁𝑅𝐸𝐴𝐿 [m-3] Volumetric 

Nucleation density of observable nuclei 𝑁𝑂𝐵𝑆 [m-2] Areal 

Observable nucleation events 𝑛𝑂𝐵𝑆  [-] Areal 

 



The nucleation density at any time is given by N(t) having units of [m-3]. The nucleation 

rate, 𝑁̇(𝑡), is the time rate of change of the nucleation density given as 

𝑁̇(𝑡) =
𝑑𝑁(𝑡)

𝑑𝑡
.  (1) 

The nucleation rate has units of [m-3s-1].  

In Classical Nucleation Theory (CNT) the rate of formation of homogeneous nuclei (which is 

the rate of formation of viable clusters with a critical radius) follows an Arrhenius-type 

relationship 

𝑁̇(𝑡) = 𝐶 𝑒𝑥𝑝 (−
∆𝐺𝑛

𝑘𝐵𝑇
) , (2) 

where C is a constant, Gn is the free energy barrier to homogeneous nucleation, kB is the 

Boltzmann constant, and T is the absolute temperature.  

Homogeneous CNT predicts nucleation undercooling values of the order of 100K, which are 

impractical and rarely realised in the majority of solidification cases. Instead heterogeneous 

nucleation, which occurs on pre-existing substrate surfaces such as container walls or on 

particles/inclusions within the melt, is expected. In heterogeneous CNT the wetting 

conditions on the substrate surface are taken into account; hence, the free-energy barrier to 

nucleation is reduced by a factor f(), where 0<f()<1 and the heterogeneous nucleation rate 

has the form  

Heterogeneous CNT leads to lower nucleation undercooling values (typically, <15 K). 

An alternative to CNT is to consider thermally activated nucleation conditions as a 

continuous distribution on preferential nucleation sites, described by dN/d(T). The 

undercooling is T=TL–T and TL is the equilibrium liquidus temperature. 

The nucleation rate can be determined if the cooling rate, 𝑇̇, is known, that is, 

𝑁̇(𝑡) =
𝑑𝑁

𝑑(∆𝑇)
 
𝑑(𝑇𝐿 − 𝑇)

𝑑𝑡
= −𝑇̇

𝑑𝑁

𝑑(∆𝑇)
, (4) 

In 1966, Oldfield [14] was the first to propose an athermal distribution law for dN/d(T). In 

1989, Rappaz [15] reviewed the use of standard statistical distributions to describe the 

nucleation conditions, where generally  

𝑁̇(𝑡) = 𝐶 𝑒𝑥𝑝 (−
∆𝐺𝑛

𝑘𝐵𝑇
𝑓(𝜃)) . (3) 



𝑑𝑁

𝑑(∆𝑇)
= 𝑁𝑜𝑝(∆𝑇) . (5) 

No is the volumetric density of all potential nucleation sites and p(T) is a probability density 

function. A Gaussian distribution probability density function, 𝑝𝐺𝑎𝑢𝑠𝑠.(∆𝑇), may be applied 

as follows  

𝑑𝑁

𝑑(∆𝑇)
= 𝑁𝑜𝑝𝐺𝑎𝑢𝑠𝑠.(∆𝑇) =

𝑁𝑜

∆𝑇𝜎√2𝜋
𝑒𝑥𝑝 [−

1

2
(

∆𝑇 − ∆𝑇𝑜

∆𝑇𝜎
)

2

] . (6) 

Here To is the overall average nucleation undercooling and T is the standard deviation of 

the undercooling distribution.  

The use of statistical distributions to describe nucleation conditions was lacking credible 

physical explanation until, in 2000, Greer and co-workers [13] provided much-needed 

insight. They showed that for potent nucleating particles, the heterogeneous nucleation stage 

itself was not the controlling factor. The free-energy barrier to heterogeneous nucleation is 

reduced on a substrate particle surface, but there is a further barrier to free-growth of solid 

due to the finite geometry of the substrate particle. This free growth barrier depends on 

particle size. Free growth on a particle occurs at the undercooling value where the nucleated 

solid (described by the heterogeneous cap model) reaches hemi-spherical proportions on that 

particle. It was shown that the undercooling required for free-growth is inversely proportional 

to the particle size. Greer et al. argued that particle sizes should follow a distribution and, 

therefore, initiation undercooling values will also follow a distribution. In their case, a log-

normal distribution of particle sizes was assumed for convenience, thus leading to an 

athermal grain nucleation theory described by a statistical distribution on undercooling.  

The suitability of using statistical distribution to describe nucleation conditions is well-

established, and indeed, the CNT is largely redundant in the specialised field of grain 

refinement.  

Our analysis proceeds on the basis of application of a Gaussian distribution to determine the 

nucleation conditions. We assume that the free-growth or initiation stage defines the 

nucleation of an active seed. Hence, the nucleation rate is given as 

𝑁̇(𝑡) =
−𝑇̇𝑁𝑜

∆𝑇𝜎√2𝜋
 𝑒𝑥𝑝 [−

1

2
(

 (𝑇𝐿 − 𝑇) − ∆𝑇𝑜

∆𝑇𝜎
)

2

] . (7) 

At any given time, t, the density of active nuclei, NACTIVE, is obtained by integrating with 

respect to nucleation time, tn, where 



𝑁𝐴𝐶𝑇𝐼𝑉𝐸(𝑡) = ∫ 𝑁̇(𝑡𝑛)
𝑡

0

𝑑𝑡𝑛 . (8) 

The nucleation time variable is an independent time variable that is required for integration 

purposes. The number of active nuclei may be estimated (assuming uniform conditions) by 

𝑛𝐴𝐶𝑇𝐼𝑉𝐸(𝑡) = ∫ 𝑁𝐴𝐶𝑇𝐼𝑉𝐸

 

𝑉

𝑑𝑉 = 𝑉𝑁𝐴𝐶𝑇𝐼𝑉𝐸 . (9) 

At any given time, the remaining inactive seed particles are passive because they have not 

reached their nucleation temperature. The passive seeds will have a density given by  

𝑁𝑃𝐴𝑆𝑆𝐼𝑉𝐸(𝑡) = 𝑁𝑜 − 𝑁𝐴𝐶𝑇𝐼𝑉𝐸(𝑡) . (10) 

Because we assume a Poisson spatial distribution, we should realise that not all seed 

nucleation events (active seeds) are real events. Strictly, the Poisson distribution will permit 

phantom nucleation. Phantom nucleation is described as the nucleation of a seed occurring 

within an already transformed volume (i.e., engulfment of seeds), hence we do not physically 

observe the phantom nucleation event . The Johnson-Mehl-Avrami-Kolmogorov (JMAK) 

approach is an established method based on Poisson statistics and it is derived by accounting 

for phantom growth and impingement during a change of state (reviewed in [16,17]). It is 

well-known that phantom nucleation is a strict mathematical requirement for the JMAK 

equation given as 

𝜁𝑉 = 1 − 𝑒𝑥𝑝(−𝜁𝑉,𝐸𝑋) . (11) 

Where 𝜁𝑉 is the volume fraction and is defined as the union of all discrete transformed 

volumes, Vi, divided by the total volume, V,  

𝜁𝑉 =
⋃ 𝑉𝑖

𝑛
𝑖=1

𝑉
. (12) 

On the other hand, 𝜁𝑉,𝐸𝑋 is known as the extended volume fraction and may be calculated two 

ways as follows, 

𝜁𝑉,𝐸𝑋 =  
∑ 𝑉𝑖

𝑛
𝑖=1

𝑉
= ∑ 𝑁𝑖𝑉𝑖

𝑛

𝑖=1

. (13) 

The term Ni is the nucleation density at the time of nucleation: tni (of any given seed i). 

In the continuum limit, the extended volume is given as  

𝜁𝑉,𝐸𝑋(𝑡) =
4𝜋

3
∫ 𝑁̇(𝑡𝑛) [∫ 𝑣𝑡𝑖𝑝𝑑𝑡′

𝑡

𝑡𝑛

]

3

𝑑𝑡𝑛

𝑡

0

, (14) 



where 𝑣𝑡𝑖𝑝 is the growth velocity and time variable t’ is another intermediate integration time 

variable. 

Kolmogorov is accredited with the application of Poisson statistics for the derivation of the 

JMAK equation (cited in [17]). The probability that a nucleation event is real (i.e., that it 

occurred in an untransformed region) is given by 𝑃𝑅𝐸𝐴𝐿 = (1 − 𝜁𝑉) and the nucleation rate 

for real nuclei is expanded as follows, 𝑁̇𝑅𝐸𝐴𝐿(𝑡) = 𝑁̇(𝑡) ∙ (1 − 𝜁𝑉) − 𝑁(𝑡) ∙ 𝜁𝑉
̇ . The first term 

on the right side in this equation represents the nucleation rate of independent real nucleation 

events occurring in untransformed regions. The second term represents a reduction rate due to 

previously nucleated real events that are subsequently consumed by the growth of the 

transforming region (a transfer rate of real nuclei to phantom nuclei). In our framework, we 

are only concerned with the establishment of real nuclei on the basis that real nuclei should 

remain real. Hence, we ignore the second term to get 𝑁̇𝑅𝐸𝐴𝐿(𝑡) = 𝑁̇(𝑡) ∙ (1 − 𝜁𝑉) and, over 

time, the nucleation density of real nuclei is obtained by integrating the first term only 

𝑁𝑅𝐸𝐴𝐿(𝑡) = ∫ 𝑁̇(𝑡𝑛) ∙ (1 − 𝜁𝑉)
𝑡

0

𝑑𝑡𝑛 . (15) 

The probability of a nucleation event being phantom is 𝑃𝑃𝐻 = 𝜁𝑉  and the expanded rate 

equation for phantom nucleation is 𝑁̇𝑃𝐻(𝑡) = 𝑁̇(𝑡) ∙ 𝜁𝑉 + 𝑁(𝑡) ∙ 𝜁𝑉
̇ . The first term represents 

the nucleation rate of phantom nuclei occurring within previously transformed regions. The 

second term is the transfer rate of real nuclei to phantom nuclei due to growth of the 

transforming region. Following a previous argument, we ignore the second term to give 

𝑁̇𝑃𝐻(𝑡) = 𝑁̇(𝑡) ∙ 𝜁𝑉, and the nucleation density of phantom nuclei is calculated as 

𝑁𝑃𝐻(𝑡) = ∫ 𝑁̇(𝑡𝑛) ∙ 𝜁𝑉

𝑡

0

𝑑𝑡𝑛 . (16) 

The number of real and phantom nucleation events, respectively, are obtained as follows  

𝑛𝑅𝐸𝐴𝐿(𝑡) = 𝑁𝑅𝐸𝐴𝐿(𝑡)𝑉 , (17) 

𝑛𝑃𝐻(𝑡) = 𝑁𝑃𝐻(𝑡)𝑉 . (18) 

Similarly, in 2D, the area fraction, 𝜁𝐴, on the projected plane is defined as 

𝜁𝐴 =
⋃ 𝐴𝑖

𝑛
𝑖=1

𝐴
. (19) 

Which is the union of all projected areas, Ai, divided by the area of the projection plane. 

If the Poisson assumption holds, the 2D form of the JMAK equation is given as 

𝜁𝐴 = 1 − 𝑒𝑥𝑝(−𝜁𝐴,𝐸𝑋) , (20) 



where 𝜁𝐴,𝐸𝑋 is known as the extended area.  Extended area is defined as 

𝜁𝐴,𝐸𝑋 =  
∑ 𝐴𝑖

𝑛
𝑖=1

𝐴
= ∑ 𝑁𝑖𝐷𝐴𝑖

𝑛

𝑖=1

. (21) 

Multiplying the nucleation density Ni by the depth D gives us a volumetric to areal 

transformation (from nuclei per unit volume [m-3] to nuclei per unit area [m-2]). 

In the continuum limit, the extended area fraction is given by 

𝜁𝐴,𝐸𝑋(𝑡) = 𝜋𝐷 ∫ 𝑁̇(𝑡𝑛) [∫ 𝑣𝑡𝑖𝑝𝑑𝑡′
𝑡

𝑡𝑛

]

2

𝑑𝑡𝑛

𝑡

0

. (22) 

Using a similar argument to the previous volumetric case, the JMAK equation is used to 

provide the probability that a nucleation event may be observed on the projection plane. 

At any given time, the probability that a nucleation event is observable is 𝑃𝑂𝐵𝑆 = (1 − 𝜁𝐴). 

The nucleation density of observable nuclei is calculated as 

𝑁𝑂𝐵𝑆(𝑡) = ∫ 𝑁̇(𝑡𝑛) ∙ 𝐷 ∙ (1 − 𝜁𝐴)
𝑡

0

𝑑𝑡𝑛 . (23) 

We should recall that not all active nucleation events are real, because some are phantom, and 

not all real nucleation events are observable. Recognising the relationship: 𝑁̇(𝑡) =

𝑁̇𝑅𝐸𝐴𝐿(𝑡) (1 − 𝜁𝑉)⁄ , we can establish the relationship between observable nucleation events 

(in 2D) and real nucleation events (in 3D). 

𝑁𝑂𝐵𝑆(𝑡) = ∫ 𝑁̇𝑅𝐸𝐴𝐿(𝑡𝑛) ∙ 𝐷 ∙
(1 − 𝜁𝐴)

(1 − 𝜁𝑉)

𝑡

0

𝑑𝑡𝑛 . (24) 

We can give meaning to each of the terms in the integrand of equation (24). 𝑁̇𝑅𝐸𝐴𝐿(𝑡) is the 

nucleation rate of real nuclei. The depth, D, provides a volumetric (3D) to areal (2D) 

transformation. The term (1 − 𝜁𝐴) is the probability that a nucleation event will be observed 

in 2D. The term (1 − 𝜁𝑉) is a correction factor that allows us to use Poisson statistics in the 

analysis. This correction factor is required because real nucleation events can only take place 

in untransformed volume and are, by definition, excluded from the previously transformed 

volume. The application of this correction factor restores randomness to the entire volume 

and hence to the projected area. The application of the correction factor is found elsewhere in 

literature, for example, Tomellini and Fanfoni [18] discuss its application for mixed mode 

nucleation of thin films onto solid surfaces.  



Finally, the number of observable nuclei on the 2D projected plane is given by 

𝑛𝑂𝐵𝑆(𝑡) = 𝑁𝑂𝐵𝑆(𝑡)𝐴 . (25) 

 

 

Figure 2: Flowchart for the calculation of nucleation densities. 

Figure 2 shows a flowchart highlighting the mathematical operations required to determine 

the nucleation densities. The rate equations are shown and the integral equations are listed on 

the right hand side. There are two options to determine the nucleation density NOBS: use 

equation (23) or equation (24).  

The terminology used to distinguish between Passive and Active seeds; Real and Phantom 

nucleation; and Observed nucleation events is deemed to be a key aspect of this proposed 

model. 

2.1 Summarising measures  

In the limit, the final density of real nucleation events will be less than No, hence we may 

define the nucleation efficiency as the fraction of all real nucleation events to the number of 

possible nucleation events. The nucleation efficiency is given by 

𝜂𝑅𝐸𝐴𝐿 = lim
𝑡→∞

𝑁𝑅𝐸𝐴𝐿(𝑡)

𝑁𝑜
. (26) 

  

Furthermore, due to viewing obstruction, the number of observed nucleation events will be 

less than or equal to the number of real nucleation events. Hence, we may define the observed 

nucleation efficiency as 

 𝜂𝑂𝐵𝑆 = lim
𝑡→∞

𝑁𝑂𝐵𝑆(𝑡)

𝐷𝑁𝑜
. (27) 



Another consideration is the reduction in average nucleation undercooling values: the real 

average undercooling and the observed average undercooling. 

We require a general method to determine the mean value of undercooling for all real and 

observed nucleation events. In statistics, the ‘expected value’ equation provides a method to 

calculate the mean undercooling, ∆𝑇̅̅ ̅̅ , from a known continuous distribution of nucleation 

events, as follows 

∆𝑇̅̅̅̅ = ∫ 𝑝(∆𝑇) ∙
∞

0

∆𝑇 𝑑(∆𝑇) , (28) 

where 𝑝(∆𝑇) is the probability density function (PDF) of the known distribution. (In our 

case, the known distribution is that output by the model, i.e., the nucleation distribution of 

real or observed nucleation events.) We assume that the integration limits range from zero to 

infinity with negligible consequences. 

The PDF is given by the product of a normalising constant, 𝜑, and the distribution of 

nucleation density (the simulation output) on nucleation undercooling, 𝑁𝑜𝑢𝑡𝑝𝑢𝑡/𝑑(Δ𝑇), as 

follows 

𝑝(∆𝑇) = 𝜑
𝑑𝑁𝑜𝑢𝑡𝑝𝑢𝑡

𝑑(∆𝑇)
. (29) 

The normalising constant is selected to ensure that the integral of 𝑝(∆𝑇) between the limits is 

unity; this is a strict requirement of a PDF [19] and equation (28). Specific PDFs can be 

formulated by selecting the appropriate nucleation density output (either NREAL or NOBS) and 

its normalising constant. 

Recognising that under constant cooling conditions  

𝑑(∆𝑇) = −𝑇̇𝑑𝑡 (30) 

and with a starting condition of ∆𝑇 = 0 at 𝑡 = 0, 

∆𝑇 = −𝑇̇𝑡. (31) 

Substituting equations (29), (30) and (31) into equation (28) gives a general equation for 

average nucleation undercooling in a known distribution of nucleation density, as follows 

∆𝑇̅̅̅̅ = −𝜑𝑇̇ ∫ −𝑇̇
𝑑𝑁𝑜𝑢𝑡𝑝𝑢𝑡

𝑑(∆𝑇)

∞

0

𝑡 𝑑𝑡 = −𝜑𝑇̇ ∫ 𝑁̇𝑜𝑢𝑡𝑝𝑢𝑡(𝑡)
∞

0

𝑡 𝑑𝑡 . (32) 

Hence, with specific application to the real nucleation rate, the real average undercooling is 

given by 



∆𝑇̅̅̅̅
𝑅𝐸𝐴𝐿 =

−𝑇̇

lim
𝑡→∞

𝑁𝑅𝐸𝐴𝐿(𝑡)
∫ 𝑡𝑁̇𝑅𝐸𝐴𝐿

∞

0

𝑑𝑡 , (33) 

  

and the normalisation constant is 𝜑 = 1/ [lim
𝑡→∞

𝑁𝑅𝐸𝐴𝐿(𝑡)]. 

The observed average undercooling is given by  

∆𝑇̅̅̅̅
𝑂𝐵𝑆 =

−𝑇̇

lim
𝑡→∞

𝑁𝑂𝐵𝑆(𝑡)
∫ 𝑡

∞

0

𝑁̇𝑂𝐵𝑆𝑑𝑡 , (34) 

and the normalisation constant is 𝜑 = 1/ [lim
𝑡→∞

𝑁𝑂𝐵𝑆(𝑡)].  

Both the real and observed average undercooling values must be less than or equal to the 

overall average nucleation undercooling, ∆𝑇𝑜 (a simulation input, defined in equation (6)). 

Hence, it is useful to define the following ratios for average nucleation undercooling values 

(real and observed) against the overall average of the full Gaussian distribution, as follows 

𝑅𝑅𝐸𝐴𝐿 =
∆𝑇̅̅̅̅

𝑅𝐸𝐴𝐿

∆𝑇𝑜
, (35) 

and 

𝑅𝑂𝐵𝑆 =
∆𝑇̅̅̅̅

𝑂𝐵𝑆

∆𝑇𝑜
. (36) 

3 Results and discussion 

The model is demonstrated by assuming a cuboid volume with the following dimensions: 

Height, H=10 mm; Width, W=13 mm; and Depth, D=3 mm. The growth rate is assumed to 

follow a growth law, vtip = CTb, where C=6.544×10˗10 m/s/°C4 and b=4. A baseline 

simulation case is provided initially to demonstrate a typical simulation output. The baseline 

nucleation parameters are No=1×1010 /m3, To=8 °C, and T=1 °C. Furthermore, the 

cooling rate is set to a baseline value of Ṫ=0.75 °C/min.  

These simulation inputs are demonstrative. It is noted, however, that the cuboid volume 

dimensions, growth law settings, cooling rate, overall average nucleation undercooling, and 

standard deviation of nucleation undercooling are typical of that used, and observed in, a 

recent microgravity equiaxed crystal growth experiment involving the transparent analogue 

alloy neopentylglycol-camphor [20].  



  

Figure 3 Simulation output for the baseline case: 

nucleation rates and nuclei counts versus time 

Figure 4 Simulation output for the baseline case: 

area fraction and volume fraction versus time. 

Figure 3 shows the overall nucleation rate, Ṅ, and the number of active nuclei, nACTIVE (which 

is a cumulative function). The number of active nuclei saturated at approximately at 3900 

nuclei. This value corresponds to the total number of potential seeds in the volume – under 

the Poisson assumption, all nuclei become active with time. However, due to the increase in 

volume fraction, the real nucleation rate, ṄREAL, was lower than expected and peaked at an 

earlier time than the overall nucleation rate. Hence, the number of real nuclei, nREAL, was 

lower than the number of active nuclei. The numerical difference between these two nuclei 

counts at any time would give the number of phantom nuclei. Finally, the number of 

observed nucleation events on the projected plane, nOBS, was predicted to be lower than the 

number of real nucleation events. This reduction was due to the stereology effect as described 

by either equation (23) or (24). 

Figure 4 shows the corresponding area fraction and volume fraction for the baseline 

simulation case. It is clear that area fraction is greater than volume fraction throughout the 

process of nucleation. 

To demonstrate the model further, a parametric analysis is presented where the cooling rate 

and the average overall undercooling are varied. A range of cooling rates (Ṫ=0.375 °C/min, 

0.75 °C/min, and 1.5 °C/min) and average nucleation undercooling values (To=4 °C, 8 °C, 

and 12 °C), were simulated. The standard deviation of nucleation undercooling was fixed at 

T=1 °C; the seed density in the volume also remained fixed at No=1×1010 /m3.  

Figure 5 shows a matrix of plots obtained during the parametric study of the model. The 

cooling rate increases from top to bottom of the matrix and the nucleation undercooling 

increases from left to right. Each plot, labelled (a) to (i), shows the nucleation rate on the 

primary y-axis, the number of nuclei on the secondary y-axis, and the simulation time on the 



x-axis. Additional output data for each simulation case is presented above each plot. The 

nucleation efficiency (𝜂𝑅𝐸𝐴𝐿), the observed nucleation efficiency (𝜂𝑂𝐵𝑆), and the ratios of 

average undercooling levels (𝑅𝑅𝐸𝐴𝐿 and 𝑅𝑂𝐵𝑆) are provided. 

 

Figure 5 Simulation outputs from the parametric analysis. 

The central plot, Figure 5 (e), is the baseline simulation case that was previously discussed.  

Some general trends from the parametric analysis can be identified. As cooling rate (Ṫ) was 

increased, the nucleation rate tended to increase and peak at earlier time values. Additionally, 

the nucleation efficiency tended to increase with cooling rate. This behaviour is expected 

since at higher cooling rates we expect more particles to nucleate in any given time frame 

compared to that at a lower cooling rate. A short nucleation time frame leads to less 



engulfment and therefore higher nucleation efficiency. In the limit, as cooling rate increases 

we asymptotically approach big-bang nucleation, where all seeds nucleate at once, i.e., 100% 

nucleation efficiency.  

As the overall average undercooling (To) increased, nucleation tended to occur later in the 

simulation; and nucleation efficiencies dropped significantly. This behaviour is due to the 

power law form of the growth law (a function of undercooling to the fourth power). High 

undercooling values give more opportunity for engulfment, since the first seeds to nucleate 

grow rapidly and occupy the majority of the bulk volume, therefore giving lower nucleation 

efficiencies. The reduction in RREAL and ROBS is also explained by this effect since the first 

seeds to nucleate will be those having the lowest nucleation undercooling values within the 

Gaussian distribution.  

 

 

Figure 6 Transformed fraction (areal and volumetric) versus time. 

Figure 6 shows the simulated area fractions, A, and volume fractions, V, for simulation 

cases (b), (e), and (h) (corresponding to the central column of plots in Figure 5 where To=8 

°C). In each case, the area fraction increases ahead of the volume fraction, which is due to 

over-projection in the 2D projection plane before impingement events occur within the 

volume. Considering again Figure 5 (e); the final value of the observable nucleation events 

was 𝑛𝑂𝐵𝑆 = 700. This value is significantly lower than the final number of real nucleation 

events estimated to have taken place (𝑛𝑅𝐸𝐴𝐿 = 1700).  



Figure 7 shows a plot of real and observed nucleation efficiencies plotted against cooling rate 

at the three levels of overall average nucleation undercooling. Generally, increasing the 

cooling rate increases nucleation efficiency. At the lower value of average nucleation 

undercooling (4 °C) the nucleation efficiencies were highest at all cooling rates. Given the 

power law form of the growth law (mentioned above), the growth rate is expected to have a 

stronger effect at the higher levels of undercooling. In the cases where high undercooling 

values were reached, real nucleation rates were lowered significantly. Fast growth effects 

(high 𝜁𝑉) dominated the real nucleation rate equation, 𝑁̇𝑅𝐸𝐴𝐿 = 𝑁̇(1 − 𝜁𝑉).  

 

  

Figure 7 Real and observed nucleation efficiency 

versus cooling rate. (Real, solid lines; Observed, 

broken lines) 

Figure 8 Real and observed ratios of average 

nucleation undercooling versus cooling rate. (Real, 

solid lines; Observed, broken lines) 

Figure 8 shows how the ratio of average undercooling levels changes for each simulation. It 

is clear that in cases with low nucleation efficiencies, the real and observed average 

undercooling levels are less than the overall average.  

Figures 7 and 8 also demonstrate the stereology effects on the results. The stereology effect is 

significant where nucleation is allowed to occur continuously over a finite time frame, for 

example, at the mid-level average nucleation undercooling (8 °C) in both figures.  

4 Conclusion  

In conclusion, when nucleation and growth in the bulk sample is observed in-situ and from 

one side (on a 2D projection plane), and if nucleation is continuous, then area fraction on the 

observed plane will overestimate the volume fraction within the volume (due to the 

stereological effect of over-projection). And, in the latter stages, nucleation and growth 



events may be blocked from view, thus providing an underestimate of the number of real 

nucleation events. A statistical approach to determine the relationships between the 

volumetric data in the bulk sample and the areal data observed on a projection plane has been 

outlined. The theory is presented in detail and demonstrated using realistic input data. Insight 

into the stereological effect and the relationship with cooling rate and nucleation 

undercooling is achieved using a parametric analysis. The stereological effect is seen to be 

significant for several realistic cases of continuous distributions with reasonable values of 

cooling rate. This theoretical analysis will find application in the observation of transparent 

systems, for example, in microgravity solidification experiments. 
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