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Abstract
The software PLAT, for the simulation of two-dimensional foams, has never been
fully exploited, particularly in the wet limit, where it has difficulty converging.
Present computer resources have enabled us to circumvent this problem. Using a
dataset of 600 000 simulations, we are able to compute the polydisperse foam excess
energy all the way from the dry to the wet limit. We also present data and a sim-
ple empirical function for the number distribution of n-sided bubbles for all values
of the average contact number Z. Furthermore we show that, starting from a dry
foam, incremental increases in liquid fraction bring with them a steadily increasing
number n of bubbles involved in rearrangements. The size distribution of these re-
arrangements is found to be exponential, p(n) ∼ exp (−λn), where the mean, 1/λ,
increases in the wet limit.
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1. Introduction

In the late 20th century, considerable progress was made in the theory of liquid foams,
but it was largely confined to relatively dry foams, i.e. foams with low liquid volume
fraction ϕ [1]. For these we can benefit from both straightforward models and reliable

CONTACT F.F. Dunne. Email dunneff@tcd.ie

Page 1 of 14

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

numerical methods. More recently, attention has moved to the case of wet foams [2, 3],
which pose new challenges.

In the wet limit, the shear modulus goes to zero (smoothly in the case of disordered
foams with polydisperse bubble sizes), as was first confirmed from experiments by
Princen and Kiss [4] and tentatively identified in the early two-dimensional (2D) PLAT
simulation of Bolton and Weaire [5, 6, 7, 8] as well as in the 2D Bubble Model of Durian
[9]. Also, the yield stress goes to zero. Again, Princen may be credited with this finding
[10]. This trend was also reproduced in the early simulations of Bolton and Weaire [8]
and Hutzler et al. [11]. An associated phenomenon was noted, which may be considered
to be a third aspect of the critical behaviour associated with the wet limit: it might be
termed fragility. This is the occurrence of cascades of topological changes, in response
to a small stress increment above the yield stress [11].

The size of the cascades was found to increase with the liquid fraction [11], possibly
tending to infinity, but it was not feasible to fully explore the wet limit, at which point
the size was expected to diverge. In the present paper we return to this phenomenon,
using a progressive increase of liquid fraction, rather than stress, as the small pertur-
bation. In doing so, we also revive the PLAT program, which has scarcely been used
in the intervening years, due to the problems of maintaining a functioning graphical
interface in an ever changing software environment, and a tendency to stall in the wet
limit. We do not use the Surface Evolver program [12] which is commonly used in
foam physics, since the 2D version currently requires a finite contact angle which has
a strong effect in the wet limit. The implications of this will be discussed in a future
paper [13].

2. Simulations of 2D foams using PLAT

2.1. The PLAT Software

PLAT [5, 6, 7, 8], as the name suggests, is a software package for the simulation of
a foam in 2D based on the direct implementation of Plateau’s Laws, rather than an
energy minimisation routine.

In a 2D foam, cell walls and liquid–gas interfaces are circular arcs which are con-
strained to meet smoothly at vertices, see Fig 1. The radius of curvature of each arc,
r, is determined by the Laplace law: r = γ/(pi − pb) for liquid–gas interfaces and
r = 2γ/(pi − pj) for cell walls between bubbles. Here, pi and pj are the pressures in
bubbles i and j and pb is the Plateau border pressure, set equal in all Plateau borders
for a given value of liquid fraction ϕ. Surface tension is denoted by γ.

The simulations are initialised as follows: samples are generated by filling a square
box (see Fig. 2) with a random Delauney tessellation of triangles, which is inverted to
obtain its dual graph – a Voronoi network. The Delauney tessellation is constructed
by first randomly scattering n points in the simulation box. The randomness of bubble
areas is controlled by specifying a minimum separation between points, the so-called
hard disk parameter as described by Weaire and Kermode [14]. We characterise the
polydispersity of our samples by µA

2 , the variance of the cell areas, normalised by
dividing by the square of the mean cell area. For the data presented here µA

2 = 0.02±
0.004.

The resulting Voronoi network is converted to a relatively dry foam, not yet equi-
librated, by “decorating” its vertices with small three-sided Plateau borders at equal
pressures. This initialisation procedure is provided by PLAT and is based on the pro-
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Figure 1. Schematic of a single bubble (or cell) in the PLAT representation of a foam. (xn, yn) is the position
of vertex n, γ the interfacial surface tension, pb the Plateau border pressure, pi the gas pressure of bubble i,
and ai the area of bubble i.

cedure described by Kermode and Weaire [15].
The decorated Voronoi network is equilibrated into a 2D foam by adjusting cell

pressures and vertex positions in order to fulfil the constraints of fixed cell areas and
smoothly meeting arcs. Convergence is determined from the magnitude of the max-
imum change in the vertex positions. For a more detailed discussion of the PLAT
representation of a foam and the equilibration process see [6].

There are two types of topological changes implemented during equilibration. Cells
loose contact when the vertices at either end of their shared cell–cell arc come within
a minimum of each other, or pass each other. Cells come into contact when their
corresponding cell–border arcs overlap across a Plateau border.

If a three-sided cell looses a contact, it does not turn into a ‘rattler’, but remains
attached to its remaining neighbours. This procedure has been chosen because in this
case the bubble remains part of the foam network and can be dealt with easily. Even
towards the wet limit the fraction of one and two sided bubbles combined is less than
4%.

The present simulation progresses by increasing the liquid fraction in steps of ∆ϕ =
0.001 and equilibrating at each step. Increases in liquid fraction are performed by
proportionally reducing bubble areas. This involves decreasing the cell pressures in
order to reduce the curvature of the liquid–gas interfaces, followed by the equilibration
of vertex positions. The pressure of every cell undergoes one iteration before each
vertex position undergoes one iteration, and the two are converged together in the
equilibration process. Calculations of foam energy or average coordination number are
made after each equilibration.

Examples of structures simulated by PLAT are shown in Fig. 2. It is the natural
extension to wet foam of the earlier 2D-FROTH simulation method of Weaire and Ker-
mode [16, 14, 15] for dry foam. Doubts were expressed at the time of the inception of
FROTH as to whether the method might encounter anomalous equilibrium configura-
tions not representative of a real 2D foam, but there is no evidence that this is the case
in practice. However, PLAT exhibits a tendency to no longer succeed in equilibrating
the foam structure at high liquid fractions for systems larger than about 20 bubbles.

3
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Figure 2. Example of initial (dry, ϕ = 0.002) and final (wet, ϕ = 0.165) stages of a sequence of PLAT
simulations for a foam with 60 bubbles. Note the periodic boundary conditions.

As Plateau borders tend to become semicircular, it is increasingly difficult to fit an arc
of the correct curvature between its end points and the system no longer converges.
This is indeed the potential difficulty that was anticipated by Weaire and Kermode
[16, 14]. In very wet foams, large many-sided Plateau borders are much more likely to
be susceptible to involve such anomalous arcs. We have not yet definitively identified
them, or attempted a refinement of the program.

To reduce size effects we would prefer to use samples that are as large as possible.
However, the frequent failure of PLAT made it impractical to simulate a full range of
liquid fraction for samples exceeding about 100 bubbles. We thus decided that each
simulation would consist of only 60 bubbles, and the properties of the simulations would
be averaged over multiple simulations. For the purposes of this paper, all simulations
are included in the averaged results, regardless of the liquid fraction reached. For details
of averaging and statistics, see Appendix A.

Up to a liquid fraction of approximately 0.06, we have at least 500 000 successful
simulations, while after this point this number decreases roughly linearly towards zero
at the wet limit ϕ = 0.16 (see A).

Before proceeding to the analysis of rearrangements we shall present results for var-
ious basic quantities of interest, complementing and completing previously published
data from PLAT [8, 5, 6, 11, 17].

2.2. Variation of Energy with Liquid Fraction

The energy E(ϕ) of a 2D foam with given bubble area distribution is simply the sum
of the line length of all the bubbles in the foam times the (constant) line (surface in
3D) tension γ (counting each side of a contact line separately). The wet limit energy
E0 of a 2D foam with a contact angle of zero corresponds to the sum of the perimeters
of circular disks having the same area distribution.

Fig. 3 shows the variation of the reduced excess energy ε(ϕ), defined as

ε(ϕ) =
E(ϕ)− E0

E0
, (1)

4
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Figure 3. Variation of reduced excess energy ε(ϕ) with liquid fraction ϕ. The function given by Eqn. 2 is
shown as the solid line with a small added constant. Inset shows the wet limit.

as a function of liquid fraction. Close to the wet limit this is well fitted by a quadratic
function and a cubic component, with a small added constant (see Eqn. 2). This gives
a critical liquid fraction of ϕc = 0.166± 0.005 for the wet limit.

ε(ϕ) = 0.31(ϕc − ϕ)2 + 3.7(ϕc − ϕ)3 + 2× 10−4. (2)

This value of ϕc is consistent with other numerical results for 2D foams [8, 18], and ex-
perimental [19, 20] and numerical [9, 21] results for random packings of disks. However,
this is a 4 parameter fit. A more accurate fit involving only 2 parameters is obtained
from considering the variation of average coordination number with ϕ (see Sec. 2.3.1).
This results in ϕc = 0.159 ± 0.001 [18] and it is this value that we will use when dis-
cussing large scale rearrangements in Sec. 3. The very small offset (the last term in
Eqn. 2) is barely visible on the scale of the main plot of Fig. 3. Further calculation
with tighter criteria for convergence have indicated that this small discrepancy is due
to limited convergence. Given the extensive nature of these calculations, as described
above, we have not repeated them in full to investigate this further.

2.3. Coordination Numbers

2.3.1. Average Coordination Number

A quantity of general interest for packing problems is the coordination number Z, i.e.
the average number of contacts of a particle, or a bubble, in our case. For a foam, this
is a function of liquid fraction (void fraction). It decreases from Z = 6 for the dry limit

5
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Figure 4. Simulation data for the fraction of n-sided bubbles as a function of average coordination number
Z (symbols) can be approximated by the functional form of Eqn.(3) (dashed lines), with only a single fit
parameter σ ≃ 0.684± 0.004 for all the data.

(ϕ = 0) to Z = 4 for the wet limit (ϕ = ϕc) of an infinite system. The former value
is essentially exact (from Euler’s Theorem), the latter almost so (see [18] for details),
with possible correction for occasional “rattlers” (i.e. bubbles that are free to move
within the cage formed by their neighbours).

Surprisingly, Z(ϕ) varies linearly close to ϕc, in contrast with the square root vari-
ation obtained from simulations and experiments of dense packings of soft disks [9]. A
detailed discussion of this matter is presented in a further paper [18].

2.3.2. Distribution of Coordination Number

We now turn to the distrubution of coordination numbers and present an empirical
procedure inspired in part by the analysis of van Hecke [22]. Fig. 4 shows distributions
for the fraction of n-sided bubbles as a function of average coordination number Z.
Here we propose the following function f(n), involving only a single free parameter σ,
as an adequate description of the data,

f(n) =
1

σ
√
2π

exp

(
(Z − n)2

σ2

)
, (3)

where Z is the contact number, as above, and the value of σ used in Fig. 4 is 0.684.
One notable feature of these statistics that is not represented in the simple fitting

function is the steep variation of the curves as Z tends to 6. This may be understood as
follows. It relates to variations close to the dry limit, where all of the Plateau borders
are three-sided, “decorating” single vertices of the dry foam. As the liquid fraction
ϕ is increased, rearrangements are progressively triggered as the borders come into
contact, forming four-sided borders. In a nearly dry foam, these immediately trigger
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Figure 5. Example of a T1 transition where the mean contact number Z is unchanged, but the distribution
f(n) does change. The numbers indicate the number of neighbours of each bubble.

further rearrangements to complete T1 changes [6]. Such combined changes have no
effect on the mean contact number Z, which remains at the value 6, but do affect the
distribution f(n), see Fig. 5. Accordingly, the derivatives df

dZ are infinite at the dry
limit.

3. Statistics of Bubble Rearrangements

We have also performed a study of rearrangements, or topological changes, that take
place as the liquid fraction is increased, especially as the wet limit is approached.

There are two types of elementary rearrangements in a 2D foam of finite liquid
fraction, in which a contact between two bubbles is gained or lost - see Fig. 6. In
what follows we will count the fraction of bubbles involved in rearrangements in any
given step, rather than the rearrangements themselves. Another alternative would be
to measure changes in the energy of the system, as did Durian for the more rudimentary
bubble model [9, 23].

As the wet limit is approached it becomes particularly evident that more elementary
rearrangements are provoked by a small increment of ϕ.

The number of rearranged bubbles in one step is computed from the change of the
adjacency matrix (which has unit elements ij where bubbles i and j are in contact, zero
otherwise) between two equilibrium states. Shown in Fig. 7 is the fraction of bubbles
involved in rearrangements (as averaged over all our simulations) when increasing liquid
fraction from ϕ to ϕ+∆ϕ in small increments ∆ϕ = 0.001. Since this average depends
on the size of ∆ϕ we have repeated the calculation for a range of values of ∆ϕ and used
this data to extrapolate to the limit ∆ϕ → 0. The result of this is shown as dashed
line in Fig. 7; see Appendix B for details.

We also generate histograms of the number of rearranged bubbles per step for all our
simulation data at each liquid fraction. Viewing these histograms on a semi–log scale
reveals that the tail of the distribution can be well approximated by an exponential
distribution (see Fig. 8, top) of the form:
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Figure 6. Two alternative illustrations of rearrangements due to a small increase in liquid fraction. Top row
– Red bubbles lose contacts, blue bubbles gain contacts, and gray bubbles both gain and lose contacts. Bottom
row – Red is the previous configuration, blue is the new configuration, and black is unchanged. Left: in a dry
foam (ϕ = 0.006), an increase in liquid fraction ∆ϕ = 0.001 only leads to localised rearrangements. Centre:
example of extensive rearrangements in a moderately wet foam (ϕ = 0.112). Right: Rearrangements involving
nearly 2/3 of all bubbles in a foam (ϕ = 0.149) close to the critical liquid fraction. Note that the regions in
which changes occur appear spatially connected.
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Figure 7. Fraction of rearranged bubbles in a sample due to an increase in liquid fraction by ∆ϕ as a
function of liquid fraction ϕ. Data points are an average of 105 simulations containing 60 bubbles each, with
∆ϕ = 0.001. The dashed line corresponds to an extrapolation to the limit: ∆ϕ → 0. See Appendix B.

p(n) = λ exp(−λn). (4)

Here λ is called the decay parameter, for an exponential distribution 1/λ equals the
mean of n. Instead of fitting 15 different exponentials (corresponding to the 15 datasets
shown in Fig. 8 (top)), resulting in 15 values for λ as a function of ϕ we have chosen to
rescale both the x and y axis. This leads to a collapse of the data, as shown in Fig. 8
(centre). This rescaled dataset is fitted to Eqn. 4, resulting in a decay parameter of
λ0 = 17±2. To get λ(ϕ) we divide λ0 by the square of the scale factor as a function of ϕ.
Fig. 8 (bottom), shows the variation of 1/λ with liquid fraction ϕ. In the wet limit the
inverse decay parameter tends quadratically to a constant of 1/λ(ϕc) = 0.150± 0.001,
whose value or origin is as yet unclear.

Rather than describing our data with an exponential, we have also probed for a
power law. However, the limited resolution of our data makes this difficult. Regardless,
preliminary analysis indicates that the exponent would decrease in the limit ϕ → ϕc,
making us believe that the exponential distribution is a more appropriate model for
the data.

There is a variety of physical systems which exhibit avalanches, ranging from earth-
quakes [24] and random fuse networks [25] to piles of rice [26]. However, their statistics
are usually described by power-laws of the form p(n) ∼ n−α, where the exponent α has
a value between 1 and 2. Indeed, power-laws are often seen as a signature feature of
complex systems [27], which also include foams [28] and have been found, for example,
in the statistics of particle rearrangements in flowing colloidal suspensions [29] and the
statistics of popping bubbles in collapsing foams [30].

Power law distributions of changes in energy with an exponential cut–off for high
energies have been observed in simulations by Durian [23] in packings of soft disks
under shear. For this system it has been suggested that a pure power–law distribution
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(0.150± 0.001). Also shown is the mean of the fraction of bubbles involved in rearrangements as a function of
liquid fraction (see text).
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only occurs at the wet limit [31]. Such simulations, where bubbles are modeled as over-
lapping disks, are successful in reproducing many rheological properties of foams, but
recent work points to marked differences regarding the variation of average coordina-
tion number Z(ϕ) in the wet limit [18].

A transition between power law and exponentially distributed avalanches was ob-
served by Ritacco et. al [32] and Frette et. al [26]. The former was for coalescence of
bubbles in a bubble raft, while the latter was observed in sliding grains in rice piles.
In both cases, the statistics were controlled by the dissipative forces in each system,
viscosity and friction respectively. Our simulations are quasi-static and therefore in-
volve no dynamic processes or dissipative forces. We are therefore unable to find an
analogous control parameter for the distribution of our large scale rearrangements and
the reason why the distribution of rearrangements in our simulations follows the expo-
nential form of Eqn. 4 remains elusive at this stage. There have been experiments with
3D foams [33] for which avalanches of rearrangements following an increase in liquid
fraction have been observed, but there is no statistical data available.

4. Conclusions

We have presented a detailed study of the statistics of 2D foams, spanning the entire
range of liquid fraction from the dry to the wet limit. This was based on extensive
computer simulations that were not practical when PLAT was developed in 1990. The
reconstituted program still has difficulty in coping with the wet limit, which should
be addressed in future. However, we have succeeded in calculating the excess energy
of foam, the distribution of cell sides, and the number of rearrangements over the full
range of liquid fraction.

An alternative approach to simulate wet foams with the Surface Evolver software
[34] is associated with different complications. As it stands this software uses finite
contact angles and we show in an upcoming paper [13] that largely suppresses the
large scale rearrangements analysed here.

In addition to providing further possibilities for analysing properties of 2D foams,
we hope that our numerical results stimulate new experiments. These may be realised
in a variety of ways e.g., by placing a monolayer of foam between two glass plates (for
an elegant recent setup see Durian [35]), or by covering a Bragg raft with a glass plate.
Although a 2D liquid fraction is not well defined in any of these cases, such experiments
should give an indication whether large scale rearrangements occur on small increases
of liquid fraction in the wet limit, and increase in the manner suggested here.
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Appendix A. Averaging of simulations and statistics

All the results presented in this paper are calculated and averaged across almost 600 000
simulations. Not all simulation ran to completion, this can be seen in the decline of
the statistics shown in Fig. A1. These statistics nevertheless appear to be more than
adequate for our purposes.

Such a large number of simulations would have been entirely unachievable in the
1990s when PLAT was conceived; the (successful) calculation of one single 60–cell
sample for a range of values of liquid fraction would have taken several hours.
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Figure B1. Fraction of rearranged bubbles due to an increase in liquid fraction by ∆ϕ as a function of liquid
fraction ϕ (data averaged over 105 simulations for (∆ϕ = 0.001) and 103 simulations for all other values of
∆ϕ). Inset: Fraction of rearrangements as a function of stepsize ∆ϕ. Data sampled at liquid fractions indicated
on the main figure. Solid lines mark the interpolations as ∆ϕ → 0.

Appendix B. Extrapolation of ∆ϕ → 0

The main plot of Fig B1 shows the average fraction of rearranged bubbles due to
an increase in liquid fraction from ϕ to ϕ + ∆ϕ for six different values of ∆ϕ. The
dependence of this average fraction on ∆ϕ can be studied by taking vertical slices
through this data. We have done this for four different values of ϕ, indicated by the
lines labeled ‘Liquid fractions for fits’. The result is shown in the inset plot. The
average fraction of rearranged bubbles is seen to decreases to a non–zero value when
we extrapolate ∆ϕ to zero. The straight line fits in the inset all have very similar slopes,
indicating that the linear shift due to non-zero ∆ϕ is constant, so we take an average
of the fits, giving an offset of −(16.4± 0.5)∆ϕ.
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