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Abstract

In this paper we introduce the idea of estimating local togglin wireless networks by means
of crowdsourced user reports. In this approach each userdpeally reports to the serving basestation
information about the set of neighbouring basestationsmiesl by the user. We show that, by mapping
the local topological structure of the network onto statemeoreasing knowledge, a crisp mathematical
framework can be obtained, which allows in turn for the useaofariety of user mobility models.
Using a simplified mobility model we show how obtain usefupapbounds on the expected time for
a basestation to gain full knowledge of its local neighbowdy answering the fundamental question

about which classes of network deployments can effectigelyefit from a crowdsourcing approach.

I. INTRODUCTION

In modern wireless networks there is an increasing needdpoldgy Discovery 1D), partic-
ularly in networks that are deployed in an unplanned, deaks¢d manner like WiFi hotspots
and 3G/LTE Femtocells. Appropriate knowledge of the nekwmpology allows the design
of more efficient routing and interference-avoidance atgors, improved allocation of limited
network resources, etc. In this paper we focus on Local TapoDiscovery (TD), a class of
problems where each wireless basestation only aims at thwl&dge of its first-hop neighbour
basestations.

The first-hop neighbour information provided byp is sufficient to allow implementation of
distributed algorithms for solving a number of fundamemntaburce allocation tasks within wire-

less networks. One example is channel allocation in WiRivogts to minimise interferencel[1];
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another is the allocation of scrambling codes in Femtoastlivorks, where these codes are used

as basestation identifiers and therefore code confusieghlpeuring basestations using the same

code) can jeopardise the functionality of the whole netwede [2] and references therein. More
generally, first-hop neighbour information is sufficient fmoth distributed graph colouring and
routing, and also for problems of joint optimisation of paveend channel allocation.

Importantly, the combination afrb with distributed algorithms also offers a number of useful
benefits:

Incomplete information. The geographic location of small basestations deployedseysu(in
homes, hotspots etc) is typically not known, nor easily @ieced. The network is therefore
constrained to work with partial information.

Scalability. Distributed algorithms requiring only local topology imfoation are inherently
much more scalable than centralised algorithms or algostthat require greater topology
information.

Adaptability. Wireless networks are time-varying e.g. due to the rollduhew basestations,
changes in the radio-propagation environment, changeblerdistribution of traffic load,
etc. Use of local topology information potentially allowaprd adaptation in response to
local changes without a global reconfiguration of the nekwor

In the present paper we focus on the processrofvia crowdsourcing meaning that the task
of detecting and reporting the existence of conflicting hbaurs is delegated to users. Each
user periodically reports to the serving basestation médion about the set of neighbouring
basestations observed. For example, in 3G-femtocell nmksmasers would report both ID and
scrambling code of the basestations that lie within the baedrange, as described in [3].

We address the fundamental question about which classestwbrk deployments can effec-
tively benefit from a crowdsourcing approach, estimatirg ékpected time for a basestation to
gain knowledge of its local neighbourhood.

The requirements on this value can be more or less stringg@ndling on the application; for
example, in joint power and channel allocation problemsery \quick adaptability is required,
because the basestation needs to re-evaluate its neigfoloolievery time a change of power
(and thus of coverage area) occurs. On the other hand, taerdeghbourhood estimation-time
requirement is less tight in the case of channel allocaterabse the network is already deployed

and only few node change in a relatively large time scale.



The use of crowdsourcing famD is appealing because it is easy to implement and virtually
cost-free. For example, in 3G-femtocell networks it is athe the case that users periodically
report the list of basestations within handover range, lustinformation is currently disregarded
by the serving basestation [4, 87.4.1]. However, to the bkestr knowledge, no previous work
has addressed the use of crowdsourcingLfar in wireless networks.

Our main contributions are the following: (i) the problemuser-reports-basedD is stated
for the first time through a crisp mathematical formulati¢ir);the local topological structure of
the network is mapped onto states of increasing knowledgejrathis way the use of a general
user mobility model is naturally allowed for; (iii) we conueate on a specific, simplified mobility
model that is useful for gaining insight into those situaiovhere crowdsourcing via user reports
is likely to yield the greatest benefit; (iv) under certaimdiions, that simplified model is shown
to provide an upper bound on the time of topology discovdmnystit can be used as a design
tool (see Section 1l-E).

A. Related Work

TD has been investigated because of its applications to geloiged position discovery [5],
routing protocols problems|[6], and ad-hoc networks coméigan in general [7].

Although some papers on wireless optimisation (el g. [¥])drrelax, at the expense of perfor-
mance, the hypothesis that each basestation has local étgevbf the network topology, many
decentralised schemes do assume!it [8—11]. Our work imass when that assumption holds
if a crowdsourcing approach is taken on, while the subsdagstep of devising an optimisation
scheme falls out of the scope of this project.

Crowdsourcing approaches have been investigated foreliff@pplications, e. g. for estimating
both density and number of attendees of large events [12}eMer, to the best of our knowledge,
the effects of crowdsourcing on neighbours discovery ciipalinave never been studied in
the literature so far. This function is already available ammmercial femtocells_[3] and its

implementation for interference reduction is recommenidef2] and [13].

[I. LocAL TOPOLOGY DISCOVERY MODEL

Given a set of wireless basestatiads= {aq,...,ax}, let A(a;) C R? denote the coverage

area of access point. Please note that(a;) generally depends on the transmission power of



Figure 1: Example of a scenario in which the access pajnhas three interfering neighbours;, a2, as. The

coverage areal(ag) can be tessellated with the sets, Az, A3, Ao, A13, Aas, Ajas.

a; and on the radio propagation properties of the medium. Wesf@n serving access poidag
and letB denote the neighbouring basestations that have non-vtedsettion withA(aqy), i.e.

B={a; € Ai>0:A(ap) N Ala;) # 0}.

We will hereafter use the symbdV to denote the cardinality oB, i.e. N = |B|.
Let P(B) denote the powerset &. A tessellationof the areaA(qay) is the collection of tiles
{A;}iep) such that

Aao) = |J 4, 1)

icP(B)



where

A =(A(a;) N Alao), i #0,

Jj€EL
Ap=Ala)\ | A 2)
i€P(B)\B

In what follows each elememt; composing the tessellation is referred to adeg and we will
use the vector notation to represent a set of neighbouring basestations. Let usdsoni®r
examplei = {a,, a2 }; then, the tile4; is the portion ofA(q) that is covered by:,; anda, only,
see Figuréll. For simplicity of notation, we will writé, := Ay.

Whenever a user is id;, it will report 5 to access poing,. In other wordsg, will be aware
of the existence of those neighbouring basestatigrs 5. The rate of these reports depends on
the mobility model assumed (see Section IlI).

To keep the model as conservative as possible, and to enssntipa frequent case of half-
duplex basestations, we assumecannot detect the existence of any neighbour even thaggh
lies in one of the neighbours coverage area.

Let K, denote theknowledge sebf access point, at timet, i.e. the set of neighbours that
ap is aware of. Given a sequence of repoftg, ..., '}, we have thatC, = | J'_, j°. K; is a
growing set, i.e.|K;| is non-decreasing in. Clearly, the knowledge state at timeK;, take

values inP(B).

Definition 1 (Full Knowledge) Given an integef” and a finite sequence of repoftg', ..., 57},

the basestation, is said to havd-ull Knowledge(FK) of its neighbours at timé& if
T
Kr=|]Ji*=8B
s=1

Remark 1. If ay has Full KnowledgeHRK) of its neighbours at timd’, so it has at all times

T +t for ¢t > 0. In other words, once, has reached#k, it cannot lose it.

Definition 2 (First time ofFK). Given a sequence of reporfg!, 72, ...}, thefirst time ofFK T

for the basestation, is the first time the latter reacheg of its neighbours, i. e.

7 = min{7T" > 0 such that; = B} . (3)
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Figure 2: Hypercube representation of the tessellationNor= 4. There is one zeroth order tile, namelf,
four first order tiles,A;, A5, A3 and A4, six second order tilesd1o, A13, A14, Aag, Aoy, A3y, four third order tiles,

A123, A124, A134, A234 and a fourth order tile, i.eA1234.

Remark 2. The characterisation of the first time Bk generally depend on the realisation of a
sequence of user reports; this means that a random variable. More precisely, by (3)js a

stopping timesee e.g. [14].
We end the section with a note on the tessellation:

Remark 3. A generic tessellation o8 can be represented as an hyperciibe= {0, 1}V by
identifying the vertices off with the tilesA; that the tessellation is composed of. The number
of tiles of a generic tessellation & is 2V as well as the vertices of an hypercube, represented as
vectors of sizeV. The tiles of the tessellation can be mapped onto the vertatéhe hypercube

by identifying thei-th component of the vertices € H with a; € B. In other words,
Aj<—>l’ = l’i:]l{aiej},i:L...,N,

wherel is the indicator function. We define tleder of a tile as the number of neighbours a
report from that tile would give knowledge of; the numberketh order tiles is(f). A report

from a k-th order tile is equivalent t@ first-order reports. In particulark is attained with a



report from theN-th order tile, or at least two reports from two disti{ét — 1)-th tiles, etc.
This property can be graphically represented by what wetballLine of Full Knowledgesee
Figure[2. The line ofrk is clearly not uniqL@ the aim of Figurd R is only to illustrate that
a sequence of reports{j!,..., 57} is a path on the hypercub#, and thatFk is attained
whenever a line ofK is reached at a time smaller thédn

Sincel;, the knowledge state at tintetakes on values in the same $&t3), we can map also
the knowledge states on the hypercubeln other word, a sequence of repofts', 52, ..., 7'}

is equivalent to a single report from tilgizljs = K.
We can now define the main problems of this work.

Problem 1 (Expected first time of Full Knowledge)Given an access poini,, a set3 of
neighbours with given position and coverage area, and a eecgl of user reports, we want to
characterise the expectation of tffiest time of FK, i.e.
E(r) =) tP(r=t).
t>1

Obviously, the way the user(s) moves inside the coverage dfe,) heavily affects the
difficulty of the problem and its answer. However, the foratidn of Problenill has the great
advantage of decoupling the notion B from the user mobility model; addressing the mean
value of the first time ofK is also an enabler to the estimate of the tail of the distigoudf 7 —
through Markov’s inequality, for example. Further, fromamerical point of view, the expected
time of FK may be achieved via a Monte Carlo simulation once thdssatd the mobility model
in use are fixed.

There may exist situations where we are content to charsetre first time in which only
partial knowledge of the local topology is attained. Forrapée, we may be interested in the
first moment when the neighbouring basestations that hage blEeady discovered, i.e. the
elements of the knowledge skt, are enough to describe a given fraction of the local topplog

This idea motivates the following

Problem 2 (Expected first time ofj-knowledge) Let o be a measure oveP(B) and fixed

d € (0,1]. Given an access pointy, a setB of neighbours with given position and coverage

1For example, there ar® tiles of orderN — 1, but only 2 are part of a given line ofK.



area, and a sequence of user reports, we want to charactémsexpectation of thérst time
of d-knowledgeE(rs), where

> o(Ax)

. keP(Kr)
75 = ming 7" > 0 such that—————— > ¢
> o(4;)

JEP(B)

Whend = 1 andp(A;) > 0 for eachj € P(B), Probleni 2 is equivalent to Probldm 1. Indeed,

2 elAk)/ s o(a;) > 1if and only if K7 = B.
keP(Kr) FEP(B)

We will hereafter consider the measuredx) = | Ag|. This leads to the following interpreta-
tion: 6-knowledge is attained when the knowledge Setdefines for the first time a tessellation
that covers a fraction ofl(ao) larger or equal thaa. Equivalently,rs is the first time when the

tiles that would give new informatigrcover a fraction ofA(a) that is smaller than — 4.

Remark 4. The concept ob-knowledge is fundamental in the simulation phase, when aetw
to know whether user reports can effectively be used to ghenkedge of the local topology.
Indeed, it is likely that the neighbours whose coverage area do not overlap witfu,) save
for a nearly negligible portion, will be discovered after ery long time; in other words, the
leading contribution tdE(7) will be represented by the mean first visit time of the usetgs)
A(a;). Discardinga; from the picture, the concept 6fknowledge let us focus on the quantitative

analysis ofLTD, see Section V.

[1l. TELEPORTMOBILITY

The characterisation of, the first time ofFK, depends on the users mobility model that is
assumed. The latter describes how users enter, exit, and mitivin A(ay).

The users evolution can then be represented as ajpair (n;, X;) wheren, is the number
of users that lie inA(ag) at timet¢, and X; = (z},z?,...,x}") is a vector with the position of
then, users. We assume the evolutionlgfto be driven by a discrete-time Markov chamq)
throughout the paper.

The realisation of U, }o<;<7 completely determines the sequence of user regdgtts .., 57}
to the access point,, cf. RemarK 2. SincéC; only depends oik;_; andU;, then the bivariate
process(U;, K;) is aMC.

%In the sense that the cardinality of the knowledge/Setwould increase.



It will prove useful to consider a simplified mobility modeh iwhich a single user can

instantaneously teleport to any tile:

Model 1. (Teleport Mobility) A single user moves withif(a,) according to a discrete-timec
taking on values irP(B). The user cannot exiti(ap) and no other user can enter it. At each
step, the user instantaneously teleports with a probgplbigat is proportional to the measure of
the destination tile. In formulas, the transition probitie are
|4y

Alag)” 4)

P(i ) =

Remark 5. Model[1 greatly simplifies the characterisation gfthe first time offFk. Indeed,
with this mobility modelX; is independent of/;, and the sole process; is hence sufficient
to describe the process of gathering knowledge from the neparts. We will hereafter refer to

K; as theknowledge chain

Assuming Modelll, we can easily describe the process of gath&nowledge from user
reports as a discrete-time random walk on the hyperdiibe {0, 1}V (which we have introduced
in Remark 8); having knowledge af neighbouring basestations is in fact equivalent to rengivi
a report from then-th order tile that give information about all of them.

Let P(-,-) the transition kernel of the knowledge chain.KHfZ I, then P(k,1) = 0 because
such transition would mean a loss of knowledge; in other wold,| is non-decreasing as a
function of t. Conversely, wherk C [, a transition fromk to I happens if the user moves to
a tile that contains the missing informatioh\ k) and do not add more than that information.

Therefore,

Z |A{TZL(JCE$I¢)}| if k C l,

P(k,l) = { mePk) (5)
0 otherwise

The following result holds:
Lemma 1. The matrix P is upper triangular.

Proof: Let us consider the following partial ordering relation argdhe states:

k<l & KkClI.
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By (B), P(k,1) # 0 only if k < 1. Therefore, any mapping
PB)>l <+ 1e{1,2,...,2"}

such that
k=<l & k<I

will put the matrix P into an upper triangular form. In particular, we can ordez Htates by
increasing cardinality and in lexicographic orgler [ ]

The explicit computation of the whole matriX using [5) is expensive in general > is a
2NV x 2N matrix! However, as stated aboveis upper triangular, while in Section TI}C we show
that it is possible to explicitly characterise its spectriior the reader’s reference, Table | shows
the matrix P for N = 3.

| Aol [Ax| [Az2] [As| [Asz] [Aus| [Az2s] [Ar2s]
0 |Ao|+ |A4] 0 0 [Az| 4+ |Arz| |As| + |Axs| 0 |A2s| + [As23]
0 0 [Ao| + |Az| 0 [Ar] + | Asz] 0 |As| + |Azs| |Ass| 4 [A12s]
p— A(t : 0 0 0 [Ao| + |As] 0 |A1s| + A1 [Aa| + | Azs| |Ar2] + [As2s] )

0 0 0 0 [Ao| + |A1| + |A2| + |Arz| 0 0 |As| + |Aws| 4 |A2s| + [A123]

0 0 0 0 0 [Ao| + |A1]| + |As| + |Ass] 0 |Ag| + |Ar2| + |A2s| + |Ai23]

0 0 0 0 0 0 |Ao| + |A2| + |As| + |A2s|  |A1] + |As2| + [A1s] + |A12s]

0 0 0 0 0 0 0 1

Table I: Example of transition matri® for N = 3.

A. Expected Time of Full Knowledge

Let &* = {1,2,..., N} be the state ofk. By formula [5), P(k*, k*) = 1. This means that
the chain has an absorbing state, and the hitting time ofstaig is justr, the first time ofFk.

Hence, we can compute the expected time&ofsimply by
Elr] = (I -Q)'1, (6)

3For N neighbouring basestations, i.e. with2™ different tiles, this would mean the sequence
{ih{2h . AnvE{L2h . {N-L N} {12, N
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where() is obtained fromP by removing the row and the column relative to stkteand1 is
the column vector of ones [15]. In a similar way it is possitdecompute the other moments
of 7

Even if I — @) is upper triangular and can be block decomposed, the cotnputaf its
inverse may not be affordable when the cardinalitysofrows. In Sectiof III-D we will bound

the probability of the evenfr > t}.

B. Expected Time af-knowledge

Regarding Problein 2, we can easily modify maffito obtain the expected time éfknowledge.
Every statek € P(53) such that

> sz

LeP (k) (ao)

can be aggregated in the absorbing state, summing the pondisg column ofP in the last
column, and then eliminating the column and row correspumndo statek. In this way it is

possible to comput&|7;s] using [6).

C. Eigenvalues

The following result fully characterises the spectrum af thatrix P:

Theorem 2. For k € P(B), the eingenvalues dP have the form

Ak = A(ao <\A0|+ A+ + D JAl+-- -+ Z |A,|>

ick ICk
= |t|=m Il\ \k\

Proof: The matrix P being upper triangular by Lemnid 1, the entriB¢k, k) are the
eigenvalues of the matrix. Let us then imagine to have thevliedge chain in staté. The only
way for the chain to undergo a self-transitidn & k) is that the user reports any combination
of neighbouring basestations that have already been disedvin other words, the knowledge

chain undergoes a self-transition if and onIy if the useorepan element oP (k). Therefore,

leP(k

Last formula is equivalent to the thesis. [ ]
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Since each eigenvalue is a sum of positive elements, thexddamest eigenvalug can be

obtained by maximising over the tiles of ord&r— 1:

k. (7)

A= max
k: |k|=N—1

D. Convergence Properties, Bounds

Using (1), it is possible to obtain the following result:

Lemma 3. Givene > 0, let
_ loge

B log A
Then, S(1—¢) reports are sufficient to achiew& with probability greater or equal than — ).

S(1—e¢)

(8)

Proof: Using Theoreni |1 and Equationl (7) dh
P(r > t) < A (9)
For a small target toleranceof not achievingrk,

it 1> 985 o preip<e (10)

log A

[
d-knowledge Convergence Bounddsing the same manipulation of the mati#k described
in SectionII-B, Corollary{8 can be applied to the modifiedtrato obtain a bound for the
number of steps to haweknowledge with high probability.

E. Numerical Estimation of the Time &fknowledge

Model[1 is equivalent to a single user teleporting instaetaisly to a random point within the
coverage area of the basestation; time is discrete. Theschattime the basestatiap receives a
user report from a point drawn according to the uniform phulitg distribution over the coverage
areaA(aq). Having in mind the numerical characterisation of the finstet of 6-knowledge, the
teleport model is particularly convenient. This task cooddin fact carried out within the Monte
Carlo paradigm by simply throwing sufficiently many pointsandom inside the coverage area
A(ap). In other words, it is possible to numerically study the sscthrough which-knowledge
is achieved by sampling sufficiently many times a probapiiiensity function that is uniform

over the coverage ared(ay).
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Model[1 may prove itself unsatisfactory in a real life scémarhe main problem is that if
we generate a sequence of user reports according to it, anglements of the sequence are
independent, whereas in general they are not. In each ryolmbdel where the trajectory taken
by the user is physically feasible, the user positions comoated by two successive reports
are in fact correlated due to the motion constraints.

Let us imagine that a single user travels inside the coveeaga A(a,) according to an
unknown mobility model, and I€f(¢) be the trajectory taken by the user. Sampling the trajectory
at equally-spaced discrete times, we obtain an embeddedeseg of user location, which
correspond to an embedded sequence of user reports. Nextarwanalyse the sequence and
understand after how many stefpsknowledge has been reached. By multiplying this number
of steps by the time lapse between two consecutive repartsr{ieport time), the time of
d-knowledge can be obtained for that particular realisatibthe user-reports sequence. Finally,
the procedure above can be repeated sufficiently many timestimate with a Monte Carlo
method the expected time necessary dgito reachd-knowledge.

As mentioned above, in a general mobility model it is likafyat two successive user reports
are correlated. These correlations may decay as the ipertrtime grows larger and larger. As
an example, let us imagine that a single user travels inkieledverage ared(a,) according to
aMcC. Let 7 be the equilibrium probability measure of the chain and lgtbe the mixing time
of the chain, i.e. the time needed for the chain to reach ibguiin. If the inter-report time is
chosen comparable t@,x then the time lapse between two successive reports will Bieisat
for the MC to forget the past trajectory; in other words, the correladi between consecutive
reports will be negligible. As a consequence, the useriocatwill be independently drawn from

the probability measure, and the matrixP describing the knowledge evolution will become

Emem)ﬂ(fl{mu(l\k)}) ifkcl,

0 otherwise.

P(k,l) = (5"
Therefore, the formulation and the results developed iti@es{III-AHIII-Dlare still valid if
we consider a single-user mobility model based anca provided that the time lapse between
two consecutive reports is of the order of the mixing time led thain. Under the assumption

that user reports are sent at a frequency comparable witimteese mixing time of the mobility

MC, we can compute an upper bound on the timej-tdhowledge. Any reporting rate higher
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thanﬁ will in fact still guarantee that, achieves)-knowledge of its neighbourhood in at most
E[7s] - tmix Seconds on average

We end this section by briefly mentioning a straightforwgpglecation of Mode[l in a multi-
user scenario. Let us imagine thausers may enter, move within, and exita,) according to
a hidden mobility model. We assume thatis a very large number and that it is possible to
statistically characterise the stationary user-densptyrieans of a probability measure over
A(ap). At each time every user may independently send a reportawtéry small probability.
Then, the number of report received by in a given time interval is approximately Poissonian
and the time lapse between two successive report is expaheiith parameter\ = np. Next,
let m = E[r] be the expected time dfk, expressed in number of reports, returned by (5’)
and [6); the expected time to achiemeis the expectation of the first time for a Poisson process

of parameten to hit the staten. We will come back to this scenario in Sectioh V.

V. SIMULATIONS
A. Teleport Model on Random Positioned basestations

In this section we offer a preliminary assessment of the ipti$g to use the machinery
developed so far in real applications. To this purpose, weeldped a simulation framework
in MATLAB and studied a scenario whei® basestations are positioned in a plane uniformly
at random. Each basestation has a circular coverage aréa shtne size. We considerds)
different configurations, with the constraint that the cage area ofi, has non-void intersection
with the coverage area of the remaining basestations, mg#matFk is achieved as soon as all
neighbours are reported tg. We compute the tessellation of each configuration usingssadal
Monte Carlo sampler. For each of thes# configurations, we computed the expected time of
0.9-knowledgeE|[r] together with the number of steps sufficient to guararit®eknowledge
with 90 % confidence, i.eS(0.9). The inter-report time being fixed during this first expenthe
the amount of time in seconds to achigx@-knowledge is directly proportional to the number
of steps just evaluated.

Figure[3 displays the empirical probability mass functidntitese two quantitiesE|[7] is

centered around0 steps, whileS(0.9) is shifted on higher values, as expected being an upper

“Recall thatE[r;] is measured in number of reports.
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bound. Figurél4 shows the empirical cumulative distributionction of E[r] and S(0.9). We
see thatl6 steps are sufficient to achieved-knowledge for nearly all scenario85%), while
we need2 steps using(0.9). We also notice that the bound obtained frém (8) is a consieeva
estimation, because it uses only the second-largest eifyEny. Indeed, it takes into account
only the slowest way to reach the desired knowledge, whéeptioblem has a rich combinatorial

structure that cannot be completely captured[By (9).

B. Random Walk on a Grid

In order to investigate and confirm the ideas of Seciion JllAE simulated the reports sent
with different inter-report times by a random walker thatves within A(a,) under the condition
of reflective boundary, and compared this mobility modehvwhtodel[1 (see Sectionlll) for a
set of 8 basestations positioned as described at the begioithis section.

In Figure[5 we let the inter-report time increase and compheeaverage time to achieve
0.9-knowledge according to both the random walk (green ling) te teleport model (blue).
We see that that, if the inter-report time is sufficientlygkarthe empirical mean time to achieve
0.9-knowledge for the random walk model is well approximatedthwgt of Model[1.

We assume typical femtocell parameters, i.e. that coveradieis is50 m and that the user
do a step in a grid 0.5 m every5 s. FigureLb also shows that when reports are sent €ath
or less, the time of 0.9-knowledge is smaller thiam, but at such high frequency the bound
S5(0.9) (red line) is not valid anymore. The reason why more repdrés tModel 'l are needed
in the case of high-frequency reports is the following: sittlse inter-report time is short, it is
likely that many reports will be sent from the same tile, ittee knowledge chain will undergo
many self-transitions.

It is important to notice that the inter-report time used igufe[3 are far from the theoretical
order of magnitude of the random walk mixing time. Yet Figlresuggests that, for a family
of scenarios, it should be possible to determine the valubeinter-report time such that the
average time to achieve9-knowledge may be well predicted by Modél 1. Once that valub®
inter-report time is found, the value &fr, o] returned by Modelll may serve as an upper bound

to the actual time to achiev&9-knowledge when smaller inter-report times are implemente
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Figure 3: Empirical probability mass function of the exmettime of0.9-knowledge, and the number of steps
to have0.9-knowledge with90 % confidence, for the teleport model on random positione@diations. Since the

inter-report time is fixed, the simulation time is directlyoportional to the number of reports.
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Figure 4: Empirical cumulative distribution function ofettexpected time 06.9-knowledge, and the number of
steps to havé.9-knowledge with90 % confidence, for the teleport model on random positioneddiatons. Since

the inter-report time is fixed, the simulation time is ditggiroportional to the number of reports.

C. A Realistic Scenario

A received power map for 4 basestations in the Hynes cormegegntre have been generated
using the Wireless System Engineering (WISE) [16] softwareomprehensive 3D ray tracing
based simulation package developed by Bell Laboratoresegiations are assumed transmitting
at a frequency of.1 GHz with a power o84 mW. We assume there is a macrocell that covers the
whole building, and we estimate its time of full knowledges Before, a Monte Carlo simulation
has been made to estimate the tessellation, and then theteagane ofé-knowledge has been
computed using a teleport mobility model (Model 1), as eix@d in Sectior III-B.

Figurel6 shows the corresponding coverage areas when pdetexgion threshold is 70 dBm.
Although the shape of the coverage areas and their inteeastmuch more complex than the
simple scenario depicted in Sectibn IV-A, it is still podsilio construct the tessellation by
considering which coverage areas each spatial point liegon example, point lies in the
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Figure 5: Empirical meaf.9-knowledge time (in hours) of a random walk vs. inter-regaetiod, compared with

Model[d and its bound'(0.9) in a femtocell grid of 8 basestations.

coverage area of basestations2, and3, so it belongs to the tiled;y3.

Figure[T displays the expected time®knowledge E[7;] when/ is varied. We notice a step-
function-like behaviour, with a new step that is added eveng a new state become absorbing,
as explained in Sectidn II[1B.

Figure[8 shows the behaviour @], the expected time ofK, when the user detection
threshold varies from a very conservative value-6f) dBm to a more realistic one e6f100 dBm.
When the users are more sensitive, the coverage areas, amdgtirer order tiles in particular,
are bigger, leading to better performances. In particwarsee that an average of 14 steps are
enough to achievek.

These results confirm that the values obtained placing ranisestation with circular cov-

erage in Sectioh IV-A are compatible with real world sceosri
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Figure 6: Coverage areas at Hynes convention centre. Tloureal lines delimit the extension of the coverage

areas. Basestations are transmittin@.atGHz with a power of34 mW. Pointa lies in the tile A;23.

V. USe CASES

In this section we present some use cases that are repitasemiathe possible practical
applications of the results we have presented so far. Givegrtecular wireless application, the
focus is on whether user reports can effectively be usedficiesftly achieve knowledge of the
network local topology.

In the case of femtocell deployment for residential usehdagsestation typically serves a
very small number of devices. Using data of typical resid¢mtensities and coverage areas, a
statistic of the tessellation can be devised. If it is pdssib establish a tim& after which the
user position can be considered as drawn from a uniformiloligion, thenS(6) is an upper
bound of the time of-knowledge for all the inter-report times smaller than ouadgo 7.

Opposite to the previous example, femtocells deployed ngested places like a mall have an

extremely large basin of potential users. However, in sibaa where users main interest is other
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Figure 7: Expected time af-knowledge,E[rs| using Modell in Hynes convention centre for different valudé

the parametef. The inter-report time is set to the very same value used ifpurEs[3 and4.

than connecting to the internet, it is reasonable expethiagingle-user reporting-activity to be
rather sporadic. Therefore, the Poissonian approximahiahwe have mentioned at the end of
Section I[[-E may be applicable. In these case, charaaigritie time to achievé-knowledge

is possible through a statistic of the typical tessellation

VI. CONCLUSIONS

We introduced the problem of user-reports-based Local [égydDiscovery, providing a crisp
mathematical formulation of it in the case of Modél 1.

We showed that Modéll1 can effectively be used as an uppercdbfama wide range of
mobility models when the user reports frequency is lowenttie inverse mixing time of the
McC of the actual mobility model (in practice it can be used ifadp are sent every hour).

In SectionIII-0 we provide an useful method to estimate iheetof J-knowledge when the

problem is too big to solve exactly using Equatiéh (6).
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Figure 8: Expected time ok, E[7], using Mode[l in Hynes convention centre, for differentues of the user-

detection threshold. The inter-report time is set to they\eame value used for Figurek 3 ddd 4.

Simulations on random scenarios with typical femtocellapagters show that the expected
number of reports in order to have an high degree of knowledgele local topology is very
small. Roughly speaking, a user moving (af m/s according to a random walk model, and
providing a report every hour, can guarantee the basestaiibhave 0.9-knowledge with high
probability in less tha h, and in less than two hours if reports are sent every 15 msn@ince
the local topology is not typically expected to change ewday, this are acceptable times.

The simulations on more realistic scenarios (Sedtion I\g®¥ very similar results in term
of time of 0.9-knowledge.

These preliminary results encourage to implement the @ganrts function, corroborating the
heuristic recommendations in [13] and [2]. In the case ofttamlls, such implementation should

be easy, because the hardware and the firmware are alreaalylea® managing user reports.
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A. Future Work

A more extensive study on more realistic scenarios is requivhere the typical topological

properties of a urban area are taken in account (see Secfjon V

Similarly, an analysis of more realistic mobility models dssirable: our work encompass

the simple case of Modél 1, that can be used to estimate amy btarkovian model (i. e. any

mobility model that can be described with a Markov procesth wnique stationary measure

only when the report frequency is sufficiently low, namelpveér than the mixing time of

the Markov Chain. An analysis of the behaviour of the mopititodels during their transient

behaviour is left for future work.
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