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Abstract Automatic terminology extraction (ATE) is a first step in many terminology
management processes. When applied on content, a linguistic pattern filter and stat-
istical ranker (a “filter-ranker”) produces a ranked list of term candidates to be manu-
ally reviewed and validated by a terminologist. Ongoing content creation demands the
re-application of ATE on each batch of new content. Unfortunately, traditional filter-
rankers cannot learn from previous terminology validation decisions. This paper shows
that it is feasible to replace traditional filter-rankers with a machine-learning termino-
logy extraction method that is able to “self-tune” based on terminologists’ validations
and is thus suitable for ongoingATE as new content is created. Not only does this method
perform better than traditional filter-rankers, but by taking advantage of the manual val-
idation process already in place in terminology extraction workflows, it is possible to
improve on similar machine learning systems that are trained only once on a static corpus
but are used repeatedly on new content.
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1 Introduction

Automatic terminology extraction (ATE) is a first step in the terminology processes associ-
ated with many content creation, curation and translation projects. An ATE system is expected
to extract a list of specialised, technical or corporate key terms from a given corpus or docu-
ment collection. Terminologists then research, validate, define, manage and/or translate these
extracted terms, depending on the actual goal of the ATE effort. The users of the validated
and curated glossary (or terminology) are authors, translators, marketing professionals, and
other content-creation workers who seek to adhere to organisational, corporate, professional
or institutional terminology standards. Style checking and language quality software as well
as machine translation systems can also consume this terminology.
Terminology extraction, however, is rarely a once-off affair. As new content gets created,

new products, services, features, processes, concepts and other pieces of knowledge get cre-
ated, all potentially requiring new terminology. Failing to extract terminology at regular in-
tervals along the content creation life-cycle runs the risk of missing the majority of terms by
the time the content has grown significantly. This can be shown through the ACL RD-TEC1

corpus version 1.0 (QasemiZadeh and Handschuh, 2014; see Sec. 4), a collection of Associ-
ation of Computational Linguistics (ACL) academic papers written between 1965 and 2006,
in which specialised terminology has been manually identified and annotated. Figure 1 shows
⋆ The ADAPT Centre for Digital Content Technology is funded under the SFI Research Centres Programme (Grant 13/RC/2106)
and is co-funded under the European Regional Development Fund.

1 http://atmykitchen.info/datasets/acl_rd_tec/. The ACL RD-TEC corpus itself was built upon the ACL ARC corpus
(Bird et al., 2008) which was in turn derived from the ACL Anthology http://aclanthology.info.

http://atmykitchen.info/datasets/acl_rd_tec/
http://aclanthology.info


the proportion of new terms identified in each year’s worth of ACL papers and the trend of
these proportions across the years. The black dots show the proportion of new terms at each
year whilst the blue continuous line depicts the trend, with shaded areas indicating the trend’s
statistical confidence bounds. For the purposes of this graph, a term is counted as a new term
in a given year, if it occurs in at least one paper written in that year and has not been featured
in any paper written in any prior year2. The proportion of new terms in a given year is the
number of new terms in that year divided by the total number of terms in that year.
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Figure 1. Proportion of new terms per year in the ACL RD-TEC corpus

Notice how the proportion of new terms drops dramatically within the first few years as one
would expect. However, the proportion of terms never reaches zero in the long run. Notice
that since 1981 the proportion of new terms every year remains relatively constant, fluctuating
between 12% and 25%. This implies that failing to do terminology extraction in a subsequent
new year will result in missing a substantial amount of new terms. Within a few years, the
number of new terms missed will have exceeded the number of terms already captured in all
previous years.
As a result, terminology extraction must be conducted repeatedly at appropriate intervals in

order to optimally capture the terminology produced by a content-creating organisation, com-
pany or professional community. Unfortunately, the standard terminology extraction tools,
usually a combination of linguistic pattern filters and statistical rankers (“filter-rankers”), do
not readily lend themselves to ongoing use since they will output old or previously extracted
terms mixed with new terms. One solution is to automatically filter out previously extracted
and/or processed terminology in subsequent runs of a traditional filter-ranker, as proposed by
Warburton (2013). However, the filter-ranker will still not be able to generalise from previous
validation exercises in order to improve on the quality of newly extracted/ranked terms. In
other words, there is no learning (or retraining) feedback loop across successive ATE itera-
tions.
Since terminologists usually review (and validate) the output of terminology extractors, this

paper proposes to use the reviewed/validated list of term candidates as feedback to a machine
learning terminology extractor (MLTE). The manual effort dedicated during a terminology
2 As 1965 is the first year in the corpus, 100% of the terms occurring in this year are considered new. There are some years missing
a dot (1966, 1968, etc.) This is because no ACL conferences were held in those years.



extraction iteration can thus be used to improve the extractor’s performance in the next iter-
ation. By performing simulations of terminology extraction-validation-retraining cycles, this
paper shows (Sec. 5) that an MLTE trained in this manner outperforms MLTEs trained only
once on a static corpus, as well as traditional filter-rankers.
This paper is structured as follows. Section 2 surveys previous work on ATE, especially

on filter-rankers and methods based on machine-learning. It also describes the relationship
between our work and Warburton’s (2013) proposal. Section 3 presents the general method-
ology for an MLTE system exploiting the terminology extraction-validation-retraining cycle
whilst Section 4 describes how this methodology was adapted for the simulation experiments
discussed in Section 5. These simulation experiments were conducted using a subset of the
terminology-annotated ACL RD-TEC corpus. As the papers in this corpus are time-stamped,
it is possible to group papers in chronological batches. In our experiments, terms are extrac-
ted from each chronological batch and compared with the valid terms occurring in the papers
belonging to that batch as per the corpus’ own terminology annotation, thus simulating the
manual validation process. Section 5 also offers conclusions and presents avenues for future
research.

2 Previous work

The de facto standard method for ATE is a two-step approach. The first step, called the lin-
guistic filtering step, involves identifying sub-sentential fragments from text that satisfy a syn-
tactic pattern from a list curated by a terminologist, domain expert or computational linguist
(Nakagawa, 2000; Pazienza et al., 2005). Typical patterns are noun+noun as in terminology
extraction, adj+noun+noun as in statistical machine translation, among others. The second
step, the statistical ranking step, ranks the candidates identified in the first step according to
some statistical score acting as a proxy for their termhood and unithood in the text (Kageura
and Umino, 1996). Statistical scores include mutual information (Church and Hanks, 1990),
log-likelihood ratio of association (Dunning, 1993; McInnes, 2004), Pearson’s Chi-Squared
test, Student’s t-score test, Fisher’s exact test (Pedersen, 1996; Purandare, 2004, pp. 35-48),
TF-IDF (Spärck Jones, 1972), the C-Value/N-Value/NC-Value methods (Frantzi and Anani-
adou, 1996; Frantzi et al., 2000) and even raw term frequency.
There have also been contrastive methods that compare the distribution of a term can-

didate in a domain-specific corpus against its distribution in a general-language corpus or
a corpus from another domain. Methods include relative frequency ratios (Damerau, 1993;
Ahmad et al., 1999), domain consensus, domain relevance (Navigli and Velardi, 2002), lex-
ical cohesion of multi-word term candidates3 (Park et al., 2002; Sclano and Velardi, 2007),
etc. In addition, researchers have created composite rankers based on linear combinations of
several statistical features, reporting performance improvements over single-feature rankers
(Loukachevitch, 2012; Bolshakova et al., 2013).
A third step, often not explored in detail in the ATE literature, consists in manually review-

ing the ranked list of term candidates, usually concentrating on the top n ranking candidates
or those scoring above some threshold. A subset of these term candidates deemed to be valid
terms is then further processed in the terminology pipeline. For the purposes of this paper,
this step shall be called the terminology validation step and is conducted by a terminolo-
gist, a person who is either a professional terminologist or a trained person with sufficient
domain knowledge and linguistic experience to carry out this task competently. Not many
works aim to take advantage of this manual validation step with the view of improving fu-
ture term extraction-validation exercises, despite the development of numerous supervised
machine learning approaches that depend on manually-annotated datasets, such as Pecina and
3 In this work, the lexical cohesion of multi-word term candidates is called term cohesion.



Schlesinger (2006), Pecina (2010) and QasemiZadeh et al. (2012), who built linear classifiers
based on either logistic regression or support-vector machines (SVMs). A notable exception
is Warburton (2013), who proposes to curate exclusion lists of several kinds such as a gen-
eral lexicon list, a list of already known valid terms, a list of noisy items, etc. These lists are
created by a terminologist from the terms automatically extracted using a filter-ranker during
the validation of such terms. A computer program keeps track of the validation decisions for
each candidate made by the terminologist and thus adds each candidate to the appropriate list.
In a subsequent extraction-validation cycle, the terminologist can use these exclusion lists to
automatically filter out term candidates produced by the filter-ranker, thus considerably redu-
cing the amount of manual work associated with the validation step. The present paper seeks
to combine Warburton’s approach with the machine learning classification approach. Instead
of curating exclusion lists, we only ask the terminologist to label each extracted candidate as
either a valid or a non-valid term via some user interface. The set of labelled term candidates
is then used as training data for an SVM classifier.

3 Methodology

The self-tuning ongoing MLTE method sketched at the end of Section 2 can be described
more formally as follows. A set of term candidate n-grams Ct = {c1, . . . , cn} are extracted
and counted from a given batch (set) of documents bt = {d1, . . . , dm} available at some
point in time t. For each extracted n-gram ci ∈ Ct, a record of its part-of-speech (POS)
pattern as returned from some parser4 is also kept: POSt = {pos(ci), . . . , pos(cn)}. Given
a classifier f(Vp) trained on a set of past validations Vp = Vt−k ∪ · · · ∪ Vt−1 from the last
k recent batches bt−k to bt−1, each term candidate n-gram ci is predicted to be a valid term
or not by yi = f(Vp; ci), where each yi is a binary label indicating whether term candidate
ci is a valid term (1) or not (0). Those candidates selected (i.e. predicted to be valid) by
the classifier are then presented to a terminologist who based on his/her expertise will either
confirm or change the validity status of these candidates. This is the so-called validation step.
The values confirmed and changed by the terminologist constitute the validations Vt for the
current batch bt, whichwill be used, alongwith other recent validationsVn = Vt−k+1∪· · ·∪Vt

to train a new classifier f(Vn) to be used to select term candidates from a batch bt+1 to
be available at a future time t + 1. The collected POS patterns are used to filter out term
candidates automatically5. Those ci candidates that have a POS pattern pos(ci) not shared
with at least one valid term from the recent batches bt−k to bt−1 are automatically excluded
before prediction.
Notice that this method does not require to curate term lists and does not require that ter-

minologists craft any POS pattern filters a priori. Notice as well that the number of recent
batches to consider, k, for training the classifier makes old data expire automatically. In addi-
tion, the method still allows the usage of supplementary filters, for example, excluding terms
that are present in the current batch but that are already captured in the terminology database.

4 Experimental setup

4.1 Extraction-validation simulation
The terminology extraction-validation methodology presented in Section 3 is simulated by
dividing a subset of the ACL RD-TEC corpus in separate chronological batches following
4 In this work we use the Stanford Parser (Chen andManning, 2014) which is applied to full sentences where each candidate n-gram
appears.

5 Whilst this filtering is optional, it is recommended as data points will be highly skewed towards the non-valid class (y = 0). This
filtering reduces this skewness somewhat.



the corpus’ own time-stamping encoded in the paper filenames. Such paper filenames include
C04-1001_cln.xml, J04-1003_cln.xml and P04-1027_cln.xml, where the first letter is
a code for the ACL journal or conference (i.e. “the venue”) where the paper was published
and the following two digits indicate the year of publication (2004 in these cases). This is
a convention established in the original ACL Anthology. The subset used in the simulation
experiments are the 2,781 papers published from 2004 to 2006, gathering a total of 9,114,767
words with each paper tallying an average of 3,300 words. To better simulate extraction-
validation iterations conducted at regular intervals, these papers are divided in chronological
batches of comparable sizes. Each batch contains at most 40 papers from a single year and
venue. On average each batch contains 36.6 papers. This yields a total of 69 separate batches.
The simulation is started by extracting all n-grams (1 ≤ n ≤ 7) from batch b1 papers. These

n-grams are thenmatched against the valid term6 annotation in ACLRD-TEC. Non-valid term
n-grams that do not share a POS pattern with at least one valid term are automatically filtered
out. This set of valid terms and retained non-valid terms constitute the training set for the SVM
classifier (actual features described in Sec. 4.2). Then, n-grams are extracted from batch b2
papers. Those b2 n-grams that also occurred in b1 are automatically filtered out. Those b2 n-
grams that do not share a POS pattern with b1 valid terms are also removed. The remaining
set of b2 n-grams is the test set for the classifier. The classifier trained on b1 data is then
used to predict the validity of each term in the b2 test set. Evaluation is done by comparing
the annotation of each term in the test set with its predicted value (Sec. 4.4). This process is
repeated for b3, except the training data used includes terms from b1 and b2. In general, the
training data for batch bt will be the union of terms from batches bt−k to bt−1, where k is
the history size, the number of past batches we want to consider as training data. It should be
pointed out that regardless of the value of k, terms that occurred in all previous batches (from
b1 to bt−1) are always excluded from bt’s test set as we want to extract new terms only.

4.2 Features

Combinations of several of the statistical features presented in Sec. 2 were explored in pre-
liminary experiments. Based on these, the features selected for the final experiments are two
formal binary features, POS pattern and character 3-gram7, aimed at making the classifier
sensitive to the typical syntactic patterns and morphological shapes of valid terms, as well
as two sets of domain contrastive features aimed at detecting terms that are typical of the
specialised domain of interest (computational linguistics in this case) and atypical of other
(contrastive) domains. These domain contrastive features are:

– Domain relevance (DR) (Navigli and Velardi, 2002) measures the degree to which a term
t is relevant to domainDi. It is defined by (1) where P (t|Di) is estimated by (2).

DR(t,Di) =
P (t|Di)∑n

j=1 P (t|Dj)
(1) P (t|Di) =

f(t,Di)∑
s∈Di

f(s,Di)
(2)

– Term cohesion (TC) (Park et al., 2002; Sclano and Velardi, 2007) seeks to measure the
degree of cohesion of multi-word term candidate t in a domain Di:

LC(t,Di) =
l(t)f(t,Di) log f(t,Di)∑

wj∈t f(wj , Di)
(3)

where l(t) is the length (number of words) of term candidate t, wj are the individual
words making up t and f(x,Di) is the frequency of word or term x in domain Di.

6 ACL RD-TEC distinguishes between technology and non-technology valid terms. This distinction is not made here.
7 Notice these character 3-grams are only used as features for the classifier. The extracted term candidates are word n-grams of sizes
1 ≤ n ≤ 7. This word n-gram size is a parameter set by the user.



In practice, Di is some corpus belonging to a particular domain. In this work we model do-
mains from two sources. One is a 2009 dump of Wikipedia8 clustered into 500 clusters using
CLUTO (Karypis, 2003). Each cluster is interpreted to be a topical domain of Wikipedia from
which DR and TC scores are computed for a term candidate, yielding two real-valued sub-
vectors of 500 dimensions each. The other source is the history of batches up to the current
batch (b1 to bt) from the same ACL RD-TEC sample, which is also clustered using CLUTO
into c clusters, where c is 2.5% of the number of papers in the history. For each of these
clusters DR and TC scores are also computed, yielding another set of real-valued subvectors
of c dimensions each.
For each term candidate, the different feature subvectors computed (POS patterns, character

3-grams, Wikipedia and batch-history DR and TC) are concatenated to form a single vector,
which is then L2-normalised.

4.3 Experiments

Three types of experiments are conducted: two baselines and our approach.

– Baseline 1: Standard single-feature filter-rankers. We extract term candidates from
each batch bi using the rankers implemented in the JATE Toolkit9 (Zhang et al., 2008),
using n-gram extraction. This baseline follows the same protocol described in Sec. 4.1,
except that instead of using a classifier, we use a single-feature statistical ranker. The
filtering described in that simulation is also taking place in this baseline. So, essentially,
this baseline simulates the process suggested by Warburton (2013) by keeping exclusion
lists of previously extracted valid terms and terms with a POS pattern not associated with
valid terms.

– Baseline 2: SVM trained on first batch.We train the SVM classifier on the first batch
and use that classifier to extract terms for all subsequent batches. This baseline simu-
lates the case of an extractor trained once and re-used in all subsequent batches with no
retraining.

– Our approach: SVM trained on last k batches. We conduct the extraction-validation
simulation as described in Sec. 4.1 while trying different history sizes k exhaustively.

The SVM experiments employ the LIBLINEAR SVM classifier (Fan et al., 2008).

4.4 Evaluation

Performance is assessed using precision and recall, which are the standard measures of clas-
sifier performance evaluation:

P =
valid terms selected

total selected terms
× 100% (4) R =

valid terms selected

total valid terms
× 100% (5)

A term is deemed to be selected (or extracted) if it is predicted to be a valid term by the
classifier. Recall measures the coverage of our extractor (i.e. the percentage of valid terms in a
batch that were selected). A low recall value indicates that the extractor is missingmany terms.
Precision on the other hand measures the percentage of true valid terms from the selected
terms. A low precision value indicates that our extractor has produced many false positives.
In ATE, we want to identify as many true valid terms as possible, potentially at the risk of
having a relatively high number of false positives. So we are interested in achieving high
recall at the expense of a moderate precision.
8 Wikipedia dump kindly cleaned, pre-processed and made available by the Web as a Corpus initiative (Baroni et al., 2009) at

http://wacky.sslmit.unibo.it/doku.php?id=corpora
9 https://code.google.com/archive/p/jatetoolkit/ and https://github.com/ziqizhang/jate

http://wacky.sslmit.unibo.it/doku.php?id=corpora
https://code.google.com/archive/p/jatetoolkit/
https://github.com/ziqizhang/jate


Filter-rankers, like those used in the Baseline 1 experiments, cannot be evaluated directly
by precision and recall. However, by considering the top N ranked candidates as valid term
predictions and all other candidates as non-valid term predictions, one effectively converts
a ranker into a classifier that can be evaluated using standard precision and recall (Pecina,
2010). The problem then becomes finding an appropriate valueN . If a batch test set contains
v valid terms a perfect ranker will return all of these valid terms in the first v positions. So,
by setting N = v we will achieve a precision and a recall of 100%. In reality however, the
ranker will be expected to be less than perfect. A solution could be to setN = 2v, giving the
ranker twice the chance of finding all of the valid terms. Notice though that while a ranker
will still be able to score a maximum of 100% recall under these conditions, it can only expect
to obtain a maximum of 50% precision. Results for four rankers implemented by JATE (C-
Value, GlossEx, Raw Term Frequency and Weirdness10) are presented in Figure 2. The plots
on the left show Precision and Recall when using the conversion N = 2v and the plots on
the right show the same performance measures but for the N = 7v conversion strategy. In
all plots, the x axis represents the batch being evaluated. Trend lines are also included in the
plots. Section 5 discusses these results.
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Figure 2. Performance of filter-rankers implemented in JATE (Baseline 1) using N = 2v (left) and
N = 7v (right)

5 Results and conclusions

The terminology extraction-validation simulation presented in this paper requires a parameter
to be set manually: the history size k, i.e. the number of past batches (bt−k to bt−1) to use
as training data for current batch bt. We conducted systematic experiments trying out each
possible history size (1 ≤ k ≤ 68) and found that our method performed quite similarly for
most sizes, except for the smallest (1 and 2) which performed slightly worse.We found that on
average the best performing history size was 16, which yielded an average recall of 74.17%
across all batches. Accordingly, Figure 3 shows results using our method with a history size
of 16 (ONGOING) along with the two baselines described in Sec. 4.3 (B1-CVALUE and B2-
STATIC). For Baseline 1 only the C-Value ranker is plotted in Figure 3 as this is one of the
most widely used rankers.
10 TheWeirdness score (Ahmad et al., 1999) is a relative frequency ratio score closely related to equation
(2).
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Figure 3. Performance of two baseline methods and our self-tuning ongoing method

The first thing to notice from this figure is that precision scores on the left-hand side tend
to be far worse than the recall scores on the right-hand side. This means that all three methods
produce a considerable amount of false positives, unfortunately. Our method (ONGOING),
however produces the highest recall of all three methods by far, and while fluctuating, the
recall trend is slightly on the increase. Compare this performance to that of B2-STATIC, the
SVM trained on the first batch and used to extract terms in all subsequent batches with no
retraining after each validation. Recall in B2-STATIC performs very well at the beginning
(matching ONGOING), but it sinks to the bottom very quickly and largely remains there.
This shows that the retraining conducted after each validation is indeed keeping the ONGO-
ING classifier sensitive to new terms. If this retraining stops, the performance drops. So, a
terminology extractor trained on a static set of data will not be able to perform well in the
long run.
The recall of the C-Value ranker (B1-CVALUE) oscillates between 0 and 30%. Whilst

performing better than B2-STATIC, its performance is far more modest than ONGOING,
despite the usage of filtering/exclusion lists. In fact, this filtering is perhaps detrimental to
the performance of all JATE’s filter-rankers. Notice in Figure 2 that both precision and recall
decrease without exception as we move towards newer batches. It is possible that the rankers
tend to find terms in subsequent batches that are removed by the old term filtering mechanism
employed, leaving few good candidates to report. Since the rankers have no information as
to the terms being filtered out, they are unable to re-weight the remaining term candidates
in order to maintain a high recall level. Whilst filter-rankers can be invaluable in extracting
terminology in a new project, they are not suited for ongoing terminology extraction, even
when automatic filtering of old terms is implemented, because they lack a feedback loop
mechanism.
The results presented in this paper are based on a simulation. In a real terminology valid-

ation process, the terminologist has the discretion and flexibility to examine more or fewer
term candidates depending on their experience, the quality of terms returned by a classifier or
ranker, the size of the batch, among other factors. So, a more realistic, human-based study of a
filter-ranker vs. a retrained MLTE is warranted. However, this work does demonstrate that the



manual validation process already in place (implicitly or explicitly) in virtually all termino-
logy extraction tasks can be used effectively to retrain machine-learning methods to improve
the quality of the extraction itself. In most if not all situations, an extractor based on such
a machine-learning method could be readily used as a drop-in replacement for filter-rankers
already in place in existing terminology workflows.
For future research we plan to conduct human-based benchmarks in order to confirm the

simulations presented here. We also plan to address the low precision scores reported by ex-
ploring new features and post-processing strategies like re-ranking the candidates output by
the classifier using traditional and new terminology ranking algorithms. Whilst the exper-
iments here focused on one particular dataset from one particular domain (Computational
Linguistics academic papers), the method should be applicable to other time-stamped data-
sets from other domains. So future research will also explore whether classifiers can rely on
domain-independent features or whether they must depend on domain-specific features. Fi-
nally, the role of the contrastive corpus should be further investigated. Here we employed
Wikipedia. However, many, very specific terms will not feature in Wikipedia at all. So we
must find a way to cope with those cases. One way would be using a fallback strategy such
as relying on sub-terms that do appear in the contrastive corpus. Another would involve us-
ing language modelling techniques or distributional MWE composition techniques in order
to estimate the values of features of terms missing in the contrastive corpus.
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