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Summary 

To data a method has been lacking which allows for the quantitative evaluation of the 

accuracy and precision of dynamic contrast-enhanced (DCE) MRI techniques, as 

implemented at the MR scanner, with results calculated against precisely-known 

‘ground truth’ values.  In this thesis a novel anthropomorphic dynamic phantom test 

device is presented which mimicked the male pelvic-region (in terms of size and 

complexity) within which ground truth contrast agent concentration time-intensity 

curves (CTCs) were generated and presented to the MRI scanner for measurement, 

thereby allowing for an assessment of a particular DCE-MRI protocol’s ability to 

repeatedly and accurately measure a given physiologically-relevant curve-shape.  The 

device comprised of a 4-pump flow system, wherein CTCs derived from prior patient 

prostate data were produced for measurement at chambers placed within the imaged 

volume.  The ground truth was determined using a highly-precise, MRI-independent, 

custom-built optical imaging system.  Initial experiments performed using this system 

measuring prostate-tissue-mimicking CTCs (with a model population-averaged arterial 

input function (AIF)) at various temporal resolutions (Tres: the temporal spacing 

between successive DCE measurements) and revealed significant errors in MRI-

measured pharmacokinetic (PK) modelling outputs, amounting to values of up to 42%, 

31%, and 50% for Ktrans (volume transfer coefficient), ve (extravascular-extracellular 

space volume fraction), and kep (rate constant) respectively.  Further DCE-MRI 

experiments were performed wherein the Tres was varied in the range [2 - 24.4 s] and 

the acquisition duration (AD: the length of time that the CTCs were sampled for) in the 

range [30 - 600 s].  The phenomenological parameter ‘wash-in’ derived from the CTCs 

gave underestimation errors up to 40% when using Tres values  16.3 s; however, the 

measured ‘wash-out’ rate did not vary greatly across all Tres values tested.  Errors in all 

derived PK parameter values were <14% for acquisitions with Tres 8.1s, AD 360s, but 

increased dramatically outside of this range.   

 

The phantom test device was further used to investigate the effects of Tres, as well as 

B1
+-field non-uniformities, on the accuracy and precision of simultaneously-measured 

AIF and prostate-tissue-mimicking CTCs, and derived PK parameters.  A population-

average AIF was established from the mean of 32 prostate patient dataset 

measurements (Tres = 3.1 s), and this formed the basis for the ground truth AIF used.  

The phantom device was modified to allow for a ‘thin slab’ 3D-volume to be acquired 

with a Tres approaching 1 s using a standard spoiled gradient echo sequence.  Five 

repeat intra-session and five inter-session AIF measurements were made 

simultaneously with either prostate ‘healthy’ or ‘tumour’ CTCs, with Tres varied in the 
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range [1.2 – 30.6 s], providing a total of 450 full DCE-MRI datasets for analysis.  Flip 

angle errors deriving from B1
+-field non-uniformities of -29% to -33% were measured.  

Performing voxel-wise flip-angle correction (VFAC) on the data to correct for this effect 

increased the PK parameter estimation accuracy by 12.9%, 9.2% and 20.2% for Ktrans, 

ve and kep respectively, and increased intra-session precision by up to 11.2%.  It was 

also demonstrated that the use of a linear implementation of the standard Tofts PK 

model, rather than the more traditionally-used non-linear form, almost doubled the 

accuracy of Ktrans estimates, caused an increase in Ktrans and kep precision of 4%, and 

relaxed the dependence of the parameter accuracy on the Tres used.   

 

A final set of experiments using the phantom system investigated the effect of under-

sampling the data on the accuracy and precision of the measured CTCs and AIF, and 

the derived PK parameters.  The data was acquired using a continuous golden-angle 

(GA) radial k-space trajectory and subsequently reconstructed using three approaches: 

(i) no parallel imaging (PI) or compressed sensing (CS) (i.e. coil-by-coil (CbC) inverse 

gridding), (ii) PI only, and (iii) PI combined with CS (PICS).  Overall, the PICS 

reconstruction approach was shown to provide the highest accuracy for PK parameter 

estimation, with all errors in Ktrans, ve, and kep parameter values less than 12%, 6.6%, 

and 12%, respectively, for data reconstructed with as little as 3% of the data required to 

fulfil the Nyquist criterion.  This corresponds to a twenty-one-fold gain in acquisition 

speed, compared to a standard fully-sampled Cartesian approach with the same 

acquisition spatial resolution and geometries.  PICS reconstruction was shown to 

provide a gain in accuracy in PK parameter estimations of up to 34% and 42% 

compared with the PI and CbC approaches, respectively.   

 

Across the breadth of this thesis various factor which influence the absolute accuracy 

and precision on PK parameter estimations have been systematically and quantitatively 

investigated, refining the methodologies used, and ultimately arriving at an acquisition 

and data processing protocol which provided PK parameter estimations with mean 

errors all  2%, and with intra- and inter-session precision of  4% . This protocol 

comprises of a continuous GA radial acquisition with 100% radial sampling density, 

VFAC applied, and with linear fitting of the standard Tofts model to the measured data.  

However, the phantom device presented in this thesis allows for the quantitative 

assessment of any DCE-MRI protocols (both existing and emerging), and could be 

used to refine these techniques, for example to maintain errors below a certain level 

deemed to be acceptable for the specific anatomy under investigation. The quantitative 

results presented herein demonstrate the strong reliance of the PK modelling accuracy 

and precision on the DCE-MRI methodologies used. 
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Chapter 1: Introduction 

 

1.1. Context and Motivation 

 

As men age, benign or malignant changes commonly occur in the prostate tissue, with 

prostate cancer (PCa) being one such a malignant disease.  PCa is the second most 

frequently diagnosed cancer among males worldwide [1] and the second leading cause 

of cancer death in men [2].  As with most diseases, the early and accurate diagnosis of 

PCa greatly enhances treatment prognosis.  Currently the main method for PCa 

screening is prostate specific antigen (PSA) testing, with patients who present with 

elevated PSA results generally sent for an invasive transrectal ultrasound (TRUS) 

guided biopsy.  TRUS biopsies are known to be inaccurate , with data suggesting that 

up to 30% of tumours are not detected [3], and repeat random biopsies failing to 

improve tumour detection rates [4-6].  There is thus a need for more accurate and 

precise, preferably non-invasive, technique for the detection and characterisation of 

PCa. 

 

The use of dynamic contrast enhanced (DCE) MRI in the study of PCa began over 20 

years ago. Although early work indicated no additional benefit in using contrast 

enhanced over conventional T2-weighted imaging techniques in the assessment of 
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PCa [7, 8], studies conducted in 1995 found an improvement in tumour localisation when 

imaged early after contrast administration [9], as well as an improvement in the 

detection of minimal seminal vesicle invasion by tumour tissue [10]. Since then, studies 

have repeatable shown the potential of DCE-MRI as a possible non-invasive gold 

standard imaging technique for PCa detection [11], localisation [12, 13], and grading [14, 15].   

 

However, although numerous patient studies over the past twenty-plus years have 

shown the effectiveness of DCE-MRI for PCa imaging, to data no method has been 

proposed which allows for a comprehensive validation and quantification of DCE-MRI 

acquisition, reconstruction, pre-processing, and analysis techniques.  This has 

hindered this potentially-diagnostically-useful technique’s full adoption for routine 

clinical use. 

 

In this thesis a phantom test device is presented that essentially provided a ‘model 

patient’, wherein concentration-time curves (CTCs) were precisely known and 

controlled, and could be repeatedly produced and measured using DCE-MRI.  The 

device addressed two key limitations of patient-based attempts to quantify the accuracy 

and precision of DCE-MRI, namely: knowledge of the ground truth contrast agent (CA) 

CTCs (both tissue and arterial), and repeatability.  The device allowed for the absolute 

accuracy and precision of various DCE methodologies to be quantitatively accessed for 

the first time 

 

 

1.2. Dynamic Contrast Enhanced (DCE) MRI for Prostate Cancer Imaging 

 

Briefly, in DCE-MRI an MRI CA is intravenously administered to the subject, and 

subsequently a series of consecutive MR-images are acquired over time as the CA 

arrives at and perfuses through the tissue of interest, from which CA CTCs can be 

derived at each imaging voxel.  Since the shape of these CTCs is governed by 

physiological factors related to the perfusion conditions of the tissue being imaged, 

pharmacokinetic (PK) modelling can be applied to the data in order to estimate 

physiologically-relevant parameters, such as the volume transfer coefficient (Ktrans) 

[min-1], rate constant (kep), and extravascular-extracellular volume fraction (ve), which 

are known to vary significantly between heathy and tumorous prostate tissue.  (This is 

further discussed at length in the Chapter 2). 
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1.2.1. Tumour Detection 

 

In a 2005 study on men with elevated PSA levels (PSA > 2.5 ng/ml), Hara et al. imaged 

90 patients prior to TRUS-biopsy. Of the 90 patients, 57 patients presented with PSA < 

10.0 ng ml-1, of which the initial TRUS-biopsy had a detection rate of 36.8% and DCE-

MRI was reported as being successful in detecting 92.9% of the clinically significant 

PCa for the first biopsy session, with a specificity of 96.2%.  This study used qualitative 

analysis of the results; a radiologist manually inspected the DCE data and considered a 

lesion with an early enhanced peak and immediate wash-out to be PCa [13].  A 2011 

study by Tamada et al. on 50 men with PSA values between 4 and 10 ng ml-1 reported 

sensitivity and specificity of 74% and 80% respectively, backing up the conclusion put 

forward by Hara et al. that DCE-MRI alone is equivalent or occasionally superior to 6 or 

8 core biopsy protocols in the detection of PCa, even with PSA levels less than 10 ng 

ml-1 [16].  

 

In a clinical setting, DCE-MRI is usually performed as part of a multi parametric (MP) 

MRI imaging protocol, combining various MRI techniques, such as: T2-weighted 

imaging, DCE, diffusion weighted imaging (DWI), diffusion tensor imaging (DTI), and 

MR spectroscopic imaging (MRSI), into a single protocol.  The inclusion of DCE in this 

MP approach has shown great promise for PCa imaging, as discussed in a brief review 

of the literature below.  

 

Kozlowski et al., in a 2006 study on 14 patients, correlated multiple DCE-MRI 

parameters with histology and found that Ktrans, onset time, mean gradient and 

maximum enhancement of the contrast time-intensity curve (CTC) showed significant 

differences between tumour and normal tissue, with overall sensitivity of 59% and 

specificity of 74% when using DCE-MRI alone.  In cancerous prostate tissue the 

normal glandular architecture is replaced by aggregated cancer cells and fibrotic 

stroma, which inhibits the movement of water macromolecules, resulting in restricted 

diffusion and a reduction in the apparent diffusion coefficient (ADC) values, which can 

be measured using DWI-MRI.  Kozlowski also investigated the use of DCE in 

combination with DWI-MRI, and found that when the average values of the ADC and 

DCE parameters were combined there was an increase in sensitivity of 28% over DCE 

alone, to 87% [17].  A study by Tanimoto et al. on 83 patients reported an improvement 

in sensitivity from 73% to 95%, and specificity from 54% to 74% in the detection of 

PCa, when comparing a T2-weighted protocol to a protocol containing T2-weighted, 

DWI, and DCE [18].  In a 2014 study, Li et al. investigated the effectiveness of 
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combining DCE with DTI for the detection of PCa in the peripheral zone.  The study 

compared the MR images to sextant biopsy results by drawing regions of interest 

according to the biopsy zones. They found significant difference in the ADC, Ktrans, and 

kep values between tumorous and non-tumorous sextants.  The area under the curve for 

the combination of DCE and DTI-MRI was also found to be greater than for either DCE 

(0.93 vs. 0.84) or DTI (0.93 vs. 0.86) alone, suggesting better diagnostic performance 

when these techniques are used conjointly [19].  

 

Several other studies [4, 20, 21] have also investigated the additional diagnostic value of 

combining MRSI and DCE-MRI, with reported sensitivities of 29-100%, specificities of 

48-96%, and accuracies of 67-91%.  MRSI detects abnormal metabolism rather than 

abnormal anatomy, differentiating tumorous from healthy prostate tissue by differences 

in the choline-creatine-to-citrate ratio [21].  In a 2010 study on 68 patients, Portalez et al. 

compared T2-weighted, DCE, MRSI, and DWI techniques in guided repeat biopsies. 

They reported that out of the four techniques, DCE had the lowest sensitivity for PCa 

detection of 29%, it did however have high specificity (93%) and accuracy (86%). As 

noted by the authors, their DCE protocol had too low a temporal resolution (Tres = 13 s) 

to accurately apply quantitative pharmacokinetic (PK) modelling to the data [22], instead 

a qualitative approach was employed, which looked at maximum enhancement, wash-

in rate, time-to-peak, and wash-out information, which may have led to such low 

sensitivity [20]. The importance of adequate Tres is well demonstrated by another larger 

study performed the same year by Panebianco et al. on 150 patients. This study was 

conducted in a similar manor to the Portalez study, but with the DCE data being 

acquired at a higher temporal resolution of 3s.  The Panebianco study reported a 

sensitivity of 76.5%, and specificity of 89.5% for DCE alone, and sensitivity of 93.5% 

and specificity of 90.7% for MRSI and DCE combined, with a reported accuracy of 

90.9% in detecting prostate carcinoma [21].  A 2013 study by Perdonā et al. on 106 

patients reported diagnostic accuracy for DCE combined with MRSI of 85%, with 

sensitivity of 71% and specificity of 48% for PCa detection [23].  

 

1.2.2. Accessing Tumour Aggressiveness  

 

DCE has also shown some promise in assessing the aggressiveness of PCa. Chen et 

al., in a study on 43 patients using DCE in combination with DTI found good correlation 

between the wash-out gradient and Gleason score (GS), demonstrating the potential 

use of the wash-out gradient as a marker of GS [15].  A study by Vos et al.  used 



 

5 

phenomenological and PK analysis of high Tres (3 s) DCE data to access the 

aggressiveness of PCa in the peripheral zone, with wash-in, Ktrans, and kep offering the 

best possibility to discriminate low-grade, intermediate-grade, and high-grade PCa [14].  

Conversely, studies by Padhani et al. [24] and Ota et al. [25] found no significant 

correlation between DCE parameters and GS.  Padhani did however report weak 

correlation between local tumour stage and both tumour vascular permeability, and 

maximum tumour Gd concentration [24], and Ota found that both mean blood vessel 

count, and mean vessel area fraction, had significant correlation with kep 
[25]. 

 

1.2.3. Treatment Monitoring and Detection of Recurrence 

 

Approximately 30% of patients diagnosed with PCa will undergo external beam 

radiotherapy treatment (EBRT) as their initial treatment [26].  It has been reported that 

15% of low-risk and 67% of high-risk patients will experience an increase in PSA levels 

within 5 years of EBRT [27].  An increase in PSA level post-treatment (over a threshold 

of 0.2 ng ml-1 [28]) can indicate a relapse of PCa, however PSA levels may fluctuate 

after therapy, and an increase in PSA level does not necessarily indicate recurrence [29, 

30].  In a 2013 meta-analysis of nine previous studies of PCa recurrence detection after 

EBRT, Wu et al. reported pooled sensitivity of 82% and specificity of 74% using DCE 

alone [31].  The addition of DCE-MRI has also been shown to significantly increase 

sensitivity for the detection of recurrent PCa after EBRT, compared with T2-weighted 

imaging alone; with one study reporting increases in sensitivity from 38% to 72%, and 

specificities from 80% to 85% [32].  Kara et al. reported greater sensitivity, specificity, 

and accuracy using DCE (93%, 100%, and 95% respectively), when compared to 

TRUS biopsy (53.3%, 60% and 55% respectively), concluding that TRUS biopsy 

without the use of additional imaging or biochemical modalities was not sufficient for 

the detection of PCa recurrence [33].  A study by Moman et al. also highlighted the 

potential use DCE in the planning of focal salvage treatment, which could reduce the 

adverse effects of radiotherapy [34]. 

 

The detection of recurrence after radical prostatectomy can be difficult, mainly because 

of the postsurgical deformity at the site of the vesicourethral anastomosis.  However, 

DCE-MRI has shown great promise in this regard also. The same meta-analysis study 

by Wu et al. analysed seven studies which looked at the effectiveness of MRI in 

detecting recurrence of PCa after radical prostatectomy, reporting pooled sensitivity of 

85% and specificity of 95% for the use of DCE [31].  A 2012 study by Boonsirikamchai et 
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al. on 47 patients highlighted the potential use of DCE in the detection of recurrence of 

PCa after radical prostatectomy, reporting a high degree of accuracy in the detection of 

sub-centimetre local recurrences within the post-prostatectomy bed. They used a 

spatial resolution of 3mm and reported good sensitivity in detecting local recurrences 

greater than 5mm [35].  Similarly, a study by Cirillo et al. demonstrated an increase in 

sensitivity from 61% to 84% and specificity from 82% to 89%, with the inclusion of 

DCE, compared with T2-weighted imaging alone, in the detection of PCa recurrence 

post-prostatectomy [36]. 

 

Another method used in the treatment of PCa is high-intensity focused ultrasound 

ablation (HIFU), which causes coagulation necrosis in the targeted tissue by converting 

mechanical energy into heat and generating a cavitation effect.  In a 2008 study, Kim et 

al. compared DCE-MRI  to T2-weighted combined with DWI and found higher average 

sensitivity for DCE (84%) compared to T2-weighted with DTI (67%), but higher 

specificity and accuracy using T2-weighted with DTI (76% and 73% respectively), 

compared to DCE (66% and 72% respectively) [37]. Rouviēre et al. investigated the use 

of T2-weighted and DCE-MRI in guiding targeted biopsies after HIFU treatment. They 

found that targeted biopsies detected more cancers than routine biopsies (36 vs. 27 

patients), implying that MRI combining T2-weighted and DCE images could be a 

promising method for post-HIFU guided biopsy [38]. 

.     

1.3. Aims and Objectives of the Thesis 

 

The main aim of this thesis was to develop a model system capable of producing 

highly-repeatable, precisely-known, physiologically-relevant CTCs and arterial input 

function (AIF) curves within an anthropomorphic environment for repeated 

measurement using DCE-MRI.  This degree of DCE-MRI measurement quantification 

has simply not been possible to date for either patient or phantom studies, due to a 

lack of accurate and precise knowledge of the ground-truth conditions within the 

subject / device being imaged, as well as the fact that DCE-MRI, by its very nature, 

intrinsically precludes repeated patient-measurements from being made (since this 

would require repeated injection of Gd-based CA).  Once the device was developed, 

another objective of the current study was to demonstrate its operation in several 

experiments designed to quantify the effects of various DCE-MRI methodologies on the 

absolute accuracy and intra- / inter-session precision of CTC and AIF measurements, 

as well as derived pharmacokinetic (PK) parameters, comparing DCE-MRI-measured 
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values against precisely-known ground truths.  This was all done with the overall goal 

of informing future phantom and patient studies, ultimately with the intention of 

improving the PCa diagnostic capabilities of DCE-MRI, and potentially leading to a 

wider acceptance of the technique for use in routine clinical examinations.   

 

The specific objectives of the thesis can be summarised as follows: 

 

1. Design and build a physical dynamic phantom test device for the validation and 

development of DCE-MRI techniques.  The device must be: 

 able to reproducibly generate arbitrarily-shaped (programmable) and 

precisely-known CTCs which mimic those observed in healthy and 

tumorous prostate tissue, as well as other physiological curve shapes, 

such as the arterial input function (AIF) 

 anthropomorphic in nature, mimicking the male pelvic-region in terms of 

size, image complexity, and sparsity; to allow for comprehensive testing 

of DCE-MRI techniques, provide patient-relevant results, and allow for 

easy clinical translation of protocols developed on the device  

 capable of producing MR-measurable CTCs, i.e. produced in a region 

large enough to accommodate several imaging voxels, while avoiding 

any partial-volume issues 

 capable of producing CTCs at low flow rates, to avoid flow related 

artefacts and minimise CA usage 

 able to produce two distinct curves simultaneously, to allow for different  

tissue CTCs (‘healthy’ and ‘tumour’) and an AIF to be measured 

simultaneously (for the purposes of performing PK modelling on the 

data) 

 

2. Fully validate the phantom test device, as well as accurately and precisely 

establish ground truth values for the system using a modality other than MRI.  

This validation approach had to provide: 

 highly-precise, temporally-stable, high-spatiotemporal resolution 

measurements of the exact CA concentration-change over time  

 measurements which were directly comparable with the DCE-MRI 

results 

 

3. Use the phantom system to quantitatively investigate the effects of various 
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parameters and methodologies related to the acquisition, reconstruction, pre-

processing, and analysis, on the accuracy and precision of DCE 

measurements, namely: 

 temporal resolution (Tres): the temporal spacing between successive 

DCE images 

 acquisition duration (AD): the length of time that the CTCs and AIF are 

sampled for 

 voxel-wise flip-angle correction (VFAC): in order to compensate for non-

uniformity in the B1
+-field 

 PK model fitting regime: non-linear verses linear fitting approaches 

 k-space acquisition trajectory: the order and manner in which the MR 

frequency-encoded data are sampled  

 under-sampling k-space: in order to achieve faster imaging times 

 reconstruction methodologies: using coil-by-coil (CbC) inverse gridding, 

parallel imaging (PI),  and PI combined with compressed sensing (PICS) 

approaches 

 

 

1.4. Thesis Overview 

 

This thesis is divided into seven main chapters, with each chapter thematically related, 

and subsequent chapters being informed by the results of the preceding ones.  The 

outline of the thesis reads as follows: 

 

Chapter 2: Background 

 

Background knowledge that is required in order to understand all subsequent chapters 

is provided in Chapter 2.  Firstly, a classical description of MR theory is concisely 

outlined, as well as an overview of the main components of an MR-imaging system, 

and how such a system forms MR images.  This is followed by a more specific 

description of DCE-MRI, how using this technique relates to the actual prostate 

physiology, as well as various qualitative and quantitative techniques used in the 

analysis of the data.  Finally, some of the confounding factors related to the use of 

DCE-MRI for pelvic imaging are outlined.  Detailed literature reviews are integrated into 

the introductions to later chapters, specific to the contents of each respective chapter.  
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The subject matter of this chapter formed the basis of the following:  

 

Conference Proceeding 

Knight, S.P., Meaney J.F., Fagan A.J., A review of dynamic contrast enhanced MRI for the 

diagnosis of prostate cancer. [poster] Irish Association of Physicists in Medicine (IAPM) annual 

scientific conference, 22nd February, 2014, Dublin, Ireland. Phys Medica 30(6): 721 (2014) DOI: 

10.1016/j.ejmp.2014.06.024 

 
 

Chapter 3: Design, fabrications, and validation of a novel anthropomorphic 

DCE-MRI prostate phantom test device 

 

As previously stated, one of the main factors currently limiting the implementation of 

DCE-MRI as a truly quantitative technique is the lack of a comprehensive validation 

method, stemming from a lack of knowledge of the ground-truth conditions within the 

patient or object being scanned.  In this initial phase of the project a novel 

anthropomorphic phantom test device was designed and built.  The device allowed for 

precisely and accurately known ground truth CTCs to be repeatedly generated within 

an environment with mimicked that of a patient, and presented to the MRI scanner for 

measurement, thereby allowing for a quantitative assessment of the accuracy and 

precision of a particular DCE-MRI approach.  CTC derived from prior patient prostate 

data were produced by means of a custom-built 4-pump flow system.  The ground 

truths for the system was determined using an MRI-independent, highly-precise, 

custom-built optical imaging system.  Preliminary DCE-MRI data for the phantom 

device is also presented in this chapter, demonstrating the operation of the device. 

 

The subject matter of this chapter formed the basis of the following: 

 

Journal Publication 

Knight, S.P., Browne, J. E., Meaney J.F., Smith, D.S., Fagan A.J., A novel anthropomorphic flow 

phantom for the quantitative evaluation of prostate DCE-MRI acquisition techniques. Phys Med 

Biol, 2016. 61(2): p. 7468-7483 (2016) DOI: 10.1088/0031-9155/61/20/7466  

 

Conference Proceedings 

Knight, S.P., Browne, J. E., Meaney J.F., Smith, D.S., Fagan A.J. A Novel Prostate DCE-MRI 

Flow Phantom for the Quantitative Evaluation of Pharmacokinetic Parameters. [oral] International 

Society for Magnetic Resonance in Medicine (ISMRM) 24
th

 Annual Scientific Meeting and 

Exhibition, 7th – 13th May 2016, Singapore. Proc. Intl. Soc. Mag. Reson. Med. 24: 0655, (2016) 
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Knight, S.P., Browne, J. E., Meaney J.F., Smith, D.S., Fagan A.J., Error quantification in 

pharmacokinetic parameters derived from DCE-MRI data using a novel anthropomorphic dynamic 

prostate phantom. [oral] Irish Association of Physicists in Medicine (IAPM) annual scientific 

conference, 2nd April, 2016, Waterford, Ireland. Phys Medica 32(7): 949 (2016) DOI: 

10.1016/j.ejmp.2016.05.012 

 

Knight, S.P., Browne, J. E., Meaney J.F., Fagan A.J. A novel flow phantom for the quantitative 

evaluation of prostate DCE-MRI techniques. [oral] European Society for Magnetic Resonance in 

Medicine and Biology (ESMRMB) annual scientific conference, 1st – 3rd October, 2015, 

Edinburgh, Scotland. Magn Reson Mater Phy 28(Suppl 1): p. S383-384. (2015) DOI: 

10.1007/s10334-015-0489-0 

 

Knight, S.P., Meaney J.F., Fagan A.J., A flow phantom for the quantitative validation of DCE-MRI 

techniques. [oral] Irish Association of Physicists in Medicine (IAPM) annual scientific conference, 

27th February 2015, Dublin, Ireland. Phys Medica 32(2): 417 (2016)  DOI: 

10.1016/j.ejmp.2015.07.016 

 

Knight, S.P., Meaney J.F., Fagan A.J., Rapid prototyping: Offering new opportunities in phantom 

design and construction. [poster] Irish Association of Physicists in Medicine (IAPM) annual 

scientific conference, 27th February 2015, Dublin, Ireland. Phys Medica 32(2): 427 (2016) DOI: 

10.1016/j.ejmp.2015.07.053 

 

 

Chapter 4: Effects of acquisition duration and temporal resolution on the 

accuracy of prostate tissue concentration-time curve measurement and derived 

phenomenological and pharmacokinetic parameter values 

 

This chapter utilises the phantom test device presented in Chapter 3 to investigate the 

effect of the Tres and AD on the measurement accuracy of tissue CTCs, and derived 

phenomenological and pharmacokinetic parameter values.  The Tres and AD values 

tested were representative of the wide-range of values reported in the literature to date 

for DCE studies in the prostate (Tres = 2 - 24.4 s and AD = 30 – 600 s), and the effects 

on the measurement accuracy of the wash-in, wash-out, Ktrans, and ve parameters were 

quantified.  The hypothesis under investigation was whether measurement 

inaccuracies in tissue CTCs deriving from features of the DCE imaging pulse sequence 

itself, namely two of the most widely-varied acquisition parameters: Tres and AD, may 

contribute significantly to the wide divergence in DCE PK modelling results published in 

the literature to date.   
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The subject matter of this chapter formed the basis of the following: 

 

Journal Publication 

Knight, S.P., Browne, J. E., Meaney J.F., Fagan A.J., Quantitative effects of acquisition duration 

and temporal resolution on the measurement accuracy of prostate dynamic contrast enhanced 

MRI data. Magn Reson Mater Phy,. 30(5): p. 461-471 (2017) DOI: 10.1007/s10334-017-0619-y  

 

Conference Proceedings 

Knight, S.P., Browne, J. E., Meaney J.F., Fagan A.J. Quantitative evaluation of the effect of 

temporal resolution and acquisition duration on the accuracy of DCE-MRI measurements in a 

prostate phantom. [poster] International Society for Magnetic Resonance in Medicine (ISMRM) 

25
th

 Annual Scientific Meeting and Exhibition, 22nd – 27th April, 2017, Honolulu, Hawaii, USA. 

Proc. Intl. Soc. Mag. Reson. Med. 25: 2890, (2017) 

 

Knight, S.P., Browne, J. E., Meaney J.F., Fagan A.J. Effects of sampling frequency on the 

accuracy of phenomenological and pharmacokinetic parameters derived from dynamic contrast 

enhanced MRI data. [oral] Irish Association of Physicists in Medicine (IAPM) Annual Scientific 

Conference, 25th March, 2017, Dublin, Ireland  

 

Knight, S.P., Browne, J. E., Meaney J.F., Fagan A.J. Quantitative evaluation of the effects of 

dynamic contrast enhance MRI acquisition parameters on the accuracy of derived prostate 

cancer biomarkers. [poster] Irish Association for Cancer Research (IACR) annual scientific 

conference, 23rd – 24th February, 2017, Kilkenny, Ireland  

 

Knight, S.P., Browne, J. E., Meaney J.F., Fagan A.J. A novel anthropomorphic phantom test 

device for the validation and development of dynamic contrast enhanced MRI protocols. [oral] 

Bioengineering in Ireland²³, 20th – 21st January, 2017, Belfast, Northern Ireland 
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parameter values 

 

Accurate and precise measurement of the AIF is essential for PK modelling to be 

accurately performed using certain PK models, such as the widely-used standard Tofts 

model.  Although a number of population-average formations of the AIF have been 

proposed, acquiring a patient-specific AIF remains the only method that allows for truly 

quantitative patient-specific PK parameters to be derived.  However the measurement 

of the AIF has proved challenging due to several confounding factors, such as the use 

of an inappropriately-long Tres in the acquisition sequence and non-uniformities in the 

B1
+-field.  The aim of this phase of the project was to use the anthropomorphic 

phantom test device presented in Chapter 3 to perform a quantitative investigation into 

the effects of Tres and B1
+-field non-uniformities on the accuracy of AIF (and tissue 

CTC) measurements.  The protocol under investigation used a full-sampled, standard 

Cartesian k-space acquisition trajectory.  The ground truth AIF used in this chapter was 

based on a population-average derived from 32 high-Tres prostate patient datasets, the 

data from which is also presented.  MR-measured tissue CTCs, AIFs, and derived PK 

parameters, taken from five intra-session and five inter-session phantom experiments 

(each measuring a ‘healthy’ and ‘tumour’ CTC simultaneously with the ground truth 

AIF), were compared with precisely-known ground truth values and measurement 

errors were calculated.  Additionally, the data was fit using both non-linear, and more 

recently proposed linear interpretations of the standard Tofts model, and the 

performance of both modelling approaches was accessed. 

 
 

Chapter 6: Effect of golden-angle radial k-space under-sampling and image 

reconstruction methodology on DCE-MRI accuracy and precision 

 

Rapid imaging techniques, such as PI and CS, offer the prospect of greatly reducing 

imaging times with MRI, thereby vastly improving the Tres for DCE-MRI, and possibly 

leading to more accurate characterisation of tissue CTCs and AIF, and by extension 

the derived quantitative PK parameters.  However, as was the case for DCE-MRI in 

general, the lack of a quantitative method for testing and validating these techniques in 

vivo has meant that the actual effect of using PI and CS on the absolute accuracy and 

precision of DCE measurements has remained unknown to date.   

 

In this chapter, again the phantom device presented in Chapter 3 was utilised, this time 

to quantitatively investigate the effects of a continuous golden-angle radial k-space 
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sampling trajectory, with data reconstructed using three approaches, namely: CbC 

inverse gridding, PI, and PICS.  The fidelity of tissue CTC and AIF curve-shape 

measurements, as well as the accuracy and precision of the derived PK parameters, 

were quantified for each reconstruction approach, at a range of different under-

sampling factors from 5% to fully-sampled, with all results compared against the 

precisely-known ground-truth values.  As with the preceding chapter, MR-

measurements were taken from five intra-session and five inter-session phantom 

experiments (each measuring a ‘healthy’ and ‘tumour’ CTC simultaneously with the 

ground truth AIF).  The results from this chapter were also compared with the results of 

the preceding chapter, which was performed using similar methodologies, but using a 

fully-sampled Cartesian k-space sampling trajectory. 

 
 

Chapter 7: Conclusions  

 

Finally, the most important conclusions discussed in the thesis are summarised in 

Chapter 7, and closing remarks are given, as well as possible directions for future 

related work. 
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Chapter 2: Background 

 

 

2.1. Magnetic Resonance Imaging 

 

MRI is a non-ionizing medical imaging technique which is used to non-invasively 

investigate the structure and function of living tissues.  The concept was first proposed 

1972 by Lauterbur, and the following year the first two-dimensional (2D) images were 

published [39, 40].  In 1976 and 1977 Mansfield introduced two new techniques which 

allowed for faster imaging [41, 42], and in 1980 Edelstein and Hutchison introduced the 

first practical implementation of 2D Fourier transformed MR imaging, dubbed ‘spin 

warp’ at the time [43].  Since then, the field of MRI has grown exponentially, with multiple 

different MR imaging techniques proposed for use in many different physiological 

locations, each designed to measure different specific tissue properties or functional 

information.  These developments allow currently for the production of high-quality 

diagnostic images using MRI, for interpretation by a trained eye.  However more 

recently there has been a drive towards developing imaging techniques which provide 

quantitative information about patient-specific physiology, which should allow for more 

rapid, accurate, and specific diagnosis, as well as easier comparison between 

datasets.   
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2.1.1. Nuclear Magnetic Resonance Physics 

Magnetisation and Precession 

The nuclear magnetic resonance (NMR) phenomenon is quantum mechanical in 

nature, however at the macro scale it can be practically described using classical 

mechanics.  In this Chapter a classical interpretation is presented.  

 

Figure 2.1: Schematic representation showing the rotation of the magnetic moment at the nucleus in a 
non-ferromagnetic material, along with a bar magnet illustrating magnetic-field line. 

NMR can be conceptualised by thinking of each nucleus in a non-ferromagnetic 

material as a small independent bar-magnet, rotating around an axis located between 

its magnetic poles, as illustrated in Figure 2.1.  In the absence of an external magnetic 

field the orientations of each nucleus’s magnetic moment is random with respect to one 

another, as shown in Figure 2.2 (a).  If an external magnetic field is applied, B0, a 

portion of the nuclei magnetic moments will align parallel with the field, others will align 

antiparallel, while some will remain misaligned due to Brownian motion, as shown in 

Figure 2.2 (b); producing a small net magnetic moment across the sample, Mz (the 

longitudinal direction of the B0 field is conventionally designated as the z-axis). 

 

 

Figure 2.2: (a) Schematic representation of the random orientation of magnetic moments of a group of 
nuclei in the absence of an externally-applied magnetic field; the vector sum of these magnetic moments 
will be practically zero. (b) Effect of applying a strong magnetic field, B0, on the magnetic moments of a 
group of nuclei; some of the magnetic moments will be aligned parallel or antiparallel with the applied 

magnetic field, with a bias toward aligning parallel with the applied field causing a non-zero net magnetic 
moment for the sample. (Generally speaking the majority of alignments in a sample are due to Brownian 

motion, in the figure alignments with the B0-field are exaggerated for illustrative purposes) 
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In 1946 the NMR phenomenon was mathematically described by Felix Bloch, in what is 

now commonly referred to as the Bloch equation [44], given as: 

 

 
𝜕𝑀⃗⃗ 

𝜕𝑡
= 𝑀⃗⃗  x 𝜔0 − 

𝑀𝑥𝑖̂ + 𝑀𝑦𝑗̂

𝑇2
− 

(𝑀𝑧 − 𝑀0)𝑘̂

𝑇1
, [2.1] 

 

where: 𝑀⃗⃗  is the magnetic moment of a volume, with 𝑀⃗⃗  = (Mx, My, Mx)
T; M0 is the 

magnitude of the longitudinal net magnetisation at thermal equilibrium; T1 and T2 are 

time constants specific to the material being imaged (discussed later in this section); 𝑖̂, 

𝑗̂, and 𝑘̂ are unit vectors in the x, y, and z direction respectively; and 𝜔0 is the angular 

frequency of procession, known as the Larmor frequency (first described by the Irish 

physicist, Joseph Larmor), and given as: 

 

 𝜔0 = 𝛾𝐵⃗ , [2.2] 

 

where 𝛾 is the gyromagnetic ratio (in MHz T-1) and 𝐵⃗  is the strength of the applied 

magnetic field (in T). 

 

Magnetic resonance 

Magnetic resonance (MR) occurs when a radiofrequency (RF) pulse, B1, is applied 

orthogonal to the B0 field at the Larmor frequency.  If we visualise this using a frame of 

reference rotating at the Larmor frequency [45], this causes M0 to tilt away from B0, and 

it forms a magnetisation component on the transverse plane (Mxy), as illustrated in 

Figure 2.3.  The precession of the Mxy component induces a current, which when 

amplified can be detected, and this is called the NMR signal or free-induction decay 

(FID).  If a B1 pulse is applied in the presence of a uniform B0 field then a signal is 

induced inside everything that receives the RF power, this is called non-selective 

excitation.   

 

Selective Excitation  

Since the frequency at which the nuclei spin (the Larmor frequency, 𝜔0) is directly 

related to the strength of the applied B-field, 𝐵⃗ , if a magnetic gradient, G, is applied 

along one of the axes, producing a spatially-varying B-field, this causes the nuclei to 

process at different rates depending on their spatial location along that axis, as shown 

in Figure 2.4  Using a RF pulse (B1) of a particular frequency will only excite nuclei 
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processing at that frequency, and hence a volume, or ‘slice’, can be selected in the 

subject.  The thickness of the volume is dictated by the RF bandwidth and strength of 

the applied magnetic gradients used, also illustrated in Figure 2.4  Selective excitation 

allows for the imaging field of view to be reduced, and thereby the acquisition time to 

also be reduced. 

 

 

Figure 2.3: (a) Schematic representation of the precession of an isolated magnetic moment, , in a static 
magnetic field B0 (static frame of reference). (b) The net magnetisation, M0, in the equilibrium state, and (b) 

in the presence of an RF pulse (B1) where the spins are tipped toward the xy-plane, producing 
magnetisation components, Mz and Mxy (frame of reference rotating at the Larmor frequency) 

 

Relaxation  

During the applied RF pulse the system is in an excited state, however once the RF is 

stopped the spin system return back to an equilibrium state, through a process called 

relaxation.  There are two mechanisms by which it does this: longitudinal relaxation of 

the Mz component and transverse relaxation of the Mxy component.  

 

Longitudinal relaxation is related to how quickly the net magnetisation returns to 

thermal equilibrium by means of the nuclear spins exchanging energy with their 

surroundings (known as the lattice).  It is described by the – (Mz – M0) 𝑘̂ / T1 term in 

Equation [2.1].  Assuming 𝐵⃗  is entirely in the z direction, Equation [2.1] simplifies to: 

 

 
𝜕𝑀𝑧

𝜕𝑡
= − 

(𝑀𝑧 − 𝑀0)𝑘̂

𝑇1
, [2.3] 

the solution to which is: 

 

 
 

𝑀𝑧(𝑡) = 𝑀0 + (𝑀𝑧
𝑖 − 𝑀0)exp (−

𝑡

𝑇1
), [2.4] 
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Figure 2.4: Illustration of selective excitation, showing: the static B0 field (shown at 3T); the applied 

spatially-varying magnetic gradient, Gz; the combined magnetic fields, 𝐵⃗ ; and the effects on the procession 

frequency, .  The diagram also illustrates the dependence of the thickness of the excited ‘slice’ on the B1 
RF bandwidth and the strength of the applied magnetic gradient, Gz. 

 

where t is the time relative to the initial magnetisation and 𝑀𝑧
𝑖  is the initial longitudinal 

magnetisation. This longitudinal relaxation of the Mz component (spin-lattice relaxation) 

is characterised by the time constant T1. 

 

The second mechanism, transverse relaxation (spin-spin relaxation), does not involve 

an exchange of energy with the lattice, but rather relates to a loss of phase coherence 

between spins in the transverse plane.  It is characterised by the time constant T2, and 

is described by the term – (Mx𝑖̂ – My𝑗̂ ) / T2 term in Equation [2.1].  Only considering this 

term, the Bloch equation (Equation [2.1]) becomes: 

 

 
𝜕𝑀⃗⃗ 

𝜕𝑡
= −

𝑀𝑥𝑖̂ + 𝑀𝑦𝑗̂

𝑇2
, [2.5] 

 

the solution to which is a simple exponential decay, give as: 
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 𝑀⃗⃗ 𝑥𝑦(𝑡) =  𝑀⃗⃗ 𝑥𝑦
𝑖 exp (−

𝑡

𝑇2
), [2.6] 

 

where 𝑀⃗⃗ 𝑥𝑦 = 𝑀𝑥𝑖̂ + 𝑀𝑦𝑗̂ , and 𝑀⃗⃗ 𝑥𝑦
𝑖  is the initial magnetisation in the transverse plane at 

t = 0.  In practice the 𝑇2
∗ time constant is often reported, and this takes into account the 

both the effects of T2 decay and magnetic-field non-uniformity. 

 

2.1.2. Hardware 

 

In this section the main hardware components of an MR imaging system will be 

introduced.  The scanner manipulates the magnetisation of a sample though the use of 

three types of magnetic fields, namely the static B0 field, the RF B1 field, and the linear 

magnetic field gradients, Gx, Gy, and Gz. as illustrated in Figure 2.5. 

 

The Static Magnetic Field (B0)  

Generally the static longitudinal magnetic B0 field is generated in a clinical scanner 

using a superconducting solenoid electromagnet, which allows for a homogenous field 

to be produced along the axis of the scanner bore.  The field strength of clinical 

scanners typically ranges from 0.3T to 7T (as of 2017); the stronger the magnetic field, 

the larger the partial alignment of nuclei along the direction of B, and hence the larger 

the longitudinal magnetisation in the sample with correspondingly higher signal to noise 

ratio (SNR). 

 

 

Figure 2.5: Schematic representation of the MR scanner hardware (section removed) showing the 
locations of the shielding and respective Magnet, gradient, and RF coils, as well as the three types of 

magnetic fields that these coils produces. 
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The Radio Frequency Field (B1) 

The transverse RF B1 field is produced using a specialised coil that is tuned to the 

Larmor frequency, with a typically body coil produces a field strength  1.6 x 10-5 T.  

The B1-transmit field, generally given as B1
+, is used to excite the magnetisation from 

an equilibrium state by perturbing, or tipping, the magnetisation from a longitudinal 

direction to the transverse plane, as previously described.  The amount by which the 

magnetisation is perturbed is given as the flip angle, and is dictated by the amount of 

RF energy supplied to the subject. 

 

The Linear Magnetic Field Gradients (Gx, Gy, and Gz)  

Spatial information, which is used in image formation, is generated through the 

application of three additional spatially-varying magnetic fields.  Three gradient coils 

are used, Gx, Gy and Gz, to create three linear gradients oriented orthogonal to each 

other, producing variations in the longitudinal magnetic field strength as a function of 

spatial position.  This causes the resonance frequency of the magnetisation to likewise 

vary proportionally with the gradient fields, and this variation is used to resolve the 

resonance signal spatial distribution. 

 

2.1.3. MR Image Formation 

k-Space Trajectory 

The spatial information that the magnetic gradients of an MR system provides is 

acquired encoded in the time-domain, and this time-domain is known as k-space 

(sometimes also referred to as Fourier space).  The order in which the k-space data is 

acquired is known as the trajectory.  One way to acquire k-space is to scan it line-by-

line in a Cartesian fashion.  Data sampled this way can be reconstructed into an image 

fast and reliably using the inverse fast Fourier transform (iFFT).  Its fast and simple 

implementation, coupled with the fact that this method of acquisition and reconstruction 

has proven robust to systemic errors, with remaining artefacts being well documented 

and understood, has meant that Cartesian k-space sampling is currently the mostly 

widely used approach for clinical imaging.   

 

Various other 2D and 3D k-space trajectories have also been proposed however, such 

as radial 2D multi-slice ‘stack-of-stars’, radial 3D ‘koosh-ball’, and 2D multi-slice ‘stack-

of-spirals’.  These trajectories have some advantages over a Cartesian approach, for 

example radial acquisitions have been shown to be less susceptible to motion artefacts 
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than Cartesian trajectories [46], while spiral trajectories make very efficient use of the 

gradient coils, and have been shown effective for rapid and real-time imaging 

applications [47, 48].   Radial trajectories also lend themselves well to certain rapid under-

sampled imaging techniques, such as compressed sensing [49]; this will be discussed at 

length in Chapter 6.  Reconstruction of data acquired using these non-Cartesian 

trajectories is more complex, requiring the use of k-space interpolation schemes, such 

as Cartesian gridding, where the data samples are weighted for sampling density and 

convolved with a finite kernel, before being combined into a Cartesian grid, and the 

iFFT used to complete the reconstruction [50]. 

 

In-plane localisation: Frequency Encoding (1D) 

Frequency encoding is one method of deriving the strength of signal being produced at 

a particular spatial position. It works by applying a constant and continuous magnetic 

gradient during the readout that causes a variation in magnetic field strength across the 

subject being imaged.  If we take the case of a magnetic gradient being applied along 

the z-axis, Gz, then the magnetic field will vary spatially along that axis, and by 

extension the angular frequencies of procession will also vary as follows: 

 

 𝜔(𝑧) =  𝛾(|𝐵0| + 𝐺𝑧𝑧), [2.7] 

 

where (z) is the angular frequency at spatial position z.  Due to this linear variation in 

processional frequancy with respect to spatial position, a spectral decompostion can be 

applied to the data in order to derive the spatial magnetisation distribution.  As 

mentioned previously, the most widely-used method for converting this raw k-space 

data into spatially-encoded information is by using the Fourier transform.  The Fourier 

transform works by decomposing the various spatially-varying signal frequencies into 

their constituent parts, and providing a measure of the magnetisation magnitude 

(signal) at a particular spatial position.  However, this process only allows for spatial 

information to be acquired in one dimension; the following section describes how phase 

encoding is used to spatially resolve the other one or two orthogonal dimensions. 

 

In-plane Localisation: Phase Encoding (2D and 3D) 

Phase encoding works on a similar principle to frequency encoding, however here the 

gradients are applied before the acquisition at a fixed amplitude and duration, instead 

of continuously during the acquisition.  Since a magnetic field gradient causes the 
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nuclei to process at different frequencies depending on locations along the axis it is 

applied, the processions of the nuclei increasingly go out of phase with one another 

while the gradient is applied.  By precisely controlling the timing and amplitude of the 

applied gradient field, different spatial frequencies can be encoded prior to acquisition.  

Iterating this process at different gradient amplitudes and / or durations, allows for the 

spatial frequency information to be calculated in that dimension.  Phase encoding is 

applied in one dimension for 2D imaging, and in two dimensions for 3D imaging. 

 

We can investigate the Fourier relationship mathematically by taking the general case 

of a gradient-induced variation in the normal frequency of procession causing the 

development of a location (r) dependant phase dispersion.  The additional frequency 

contributions from the gradient field can be adapted from Equation [2.7] as: 

 

 𝑓(𝐫) =  
𝛾

2π
𝐺(𝑡) ∙ 𝐫, [2.8] 

 

where G(t) is a vector giving the gradient fields’ amplitudes.  The phase of 

magnetisation can be formulated as a intergral of the frequencies starting at t = 0, 

given as: 

 

 ∅(𝐫, 𝑡) =  2π∫
𝛾

2π
𝐺(𝑠) ∙ 𝐫

𝑡

0

𝑑𝑠 = 2π ∙ 𝑘(𝑡), [2.9] 

where: 

 𝑘(𝑡) =  
𝛾

2π
∫ 𝐺(𝑠)

𝑡

0

𝑑𝑠, [2.10] 

 

where k(t) is the spatial frequency at time t.  Since the receiver coil integrates over the 

entire imaging volume, a spatially-dependant signal equation can be formulated as: 

 

 𝑆(𝑡) =  ∫𝑀(𝐫)exp (−𝑖2π𝑘(𝑡) ∙ 𝐫)𝑑𝐫
𝑅

, [2.11] 

 

that is, the signal at time t, S(t), is the Fourier transform of the transverse magnetisation 

at position r, M(r), sampled at the spatial frequency k(t). 

 

Resolution and Field-of-View (FOV) 

Image resolution is proportional to the size of the sampling region of k-space, with a 
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larger region giving higher resolutions, and the field-of-view (FOV) is determined by the 

k-space sampling density, traditionally such that the Nyquist criterion is met.  With 

traditional acquisition and reconstruction techniques, breaking the Nyquist criterion 

leads to artefacts in the reconstructed images, however some emerging under-

sampling techniques propose methods to negate this constraint [49].  

 

Spin and Gradient Echo Sequences 

The time between successive phase-encode steps is known as the repetition time 

(TR).  The NMR signal is not generally measured directly in MR-imaging, instead 

‘echoes’ are created and measured, and the time between the excitation pulse and the 

peak of the echo is known as the echo time (TE).  Two types of echoes are used; spin 

echoes (SE) and gradient echoes (GE).  In a SE sequence the spins are left to 

dephase naturally after the application of the initial 90 excitation pulse, after a period 

of time a second pulse 180 is then used to flip all the spins through 180, this reverses 

the spins phase angles but does not modify the processional frequencies.  After the 

same period of time has passed as was left between the 90 and 180 pulses the spins 

come back into phase and form the spin echo.   

 

A pulse sequence diagram (PSD) is a useful way to visualise the timing of the pulses, 

applied gradient fields, and acquisition window used in MRI.  A PSD for the basic SE 

sequence is shown in Figure 2.6. 

 

Figure 2.6: Pulse sequence diagram (PSD) for the basic spin echo sequence.  Figure illustrates the timing 
of the B1 radiofrequency (RF) transmit field, as well as the gradients used for slice selection (Gss), phase 

encoding (GPE), and frequency encoding (GFE). 
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Figure 2.7: Pulse sequence diagram (PSD) for the basic gradient echo sequence.  Figure illustrates the 
timing of the B1 radiofrequency (RF) transmit field, as well as the gradients used for slice selection (Gss), 

phase encoding (GPE), and frequency encoding (GFE). 

 

 

Figure 2.8: Pulse sequence diagram (PSD) for the basic spoiled gradient echo sequence.  Figure 
illustrates the timing of the B1 radiofrequency (RF) transmit field, as well as the gradients used for slice 

selection (Gss), phase encoding (GPE), and frequency encoding (GFE). 

 

GEs are created using the gradient fields.  After the application of the excitation pulse a 

negative gradient lobe is immediately applied, causing rapid dephasing of the 

transverse magnetisation.  Subsequently a positive magnetic gradient is applied, 

causing spins which were previously dephasing to rephase, and after a certain time all 

spins come back into phase along the axis the gradient was applied along, forming the 
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gradient echo.  One limitation with this method of echo formation is that the positive 

gradient only compensates for dephasing caused by the negative gradient lobe, and 

does not take into account dephasing caused by non-uniformities in the B0 field or T2 

spin-spin relaxation.  As such, we must define the height of the echo (SGE) is terms of 

𝑇2
∗, which is a composite relaxation time which includes contributions from T2 

relaxation, non-uniformities in the B0 field / tissue susceptibility, and protons diffusion.  

A PSD for the basic GE sequence is shown in Figure 2.7. 

 

When a regularly-spaced train of pulses are used with a GE sequence, the TR can be 

less than T2, leading to a portion of the transverse magnetisation supplied by one RF 

pulse remaining when the next RF pulse is applied.  This results in additional signal 

components from previous excitations (known as ‘Hahn’ or partial echoes) in addition 

to the FID signal generated by the current excitation.  There are three main ways that 

these partial echoes are dealt with, namely by: (i) ‘spoiling’ to remove the transverse 

coherence, ideally measuring signal from the FID only; (ii) ‘rewinding’, which utilises the 

signal from both the partial echoes and FID; and (iii) ‘time-reversed’, which utilises the 

signal from the partial echoes only.  Each of these techniques affects the contrast of 

the resulting images differently. 

 

The spoiled gradient echo (SPGR) pulse sequence is the most common sequence 

used for DCE-MRI [51]; a PSD for this sequence is shown in Figure 2.8.  Since a short 

TR is used with SPGR sequences, a number of repetitions are required before a 

steady state is reached.  If we assume that the spoiling is perfect, Equation [2.4] can be 

modified to give the longitudinal magnetisation just before an RF pulse is applied, given 

as [52]: 

 

 𝑀𝑧((𝑛 + 1)𝑇𝑅) =  𝑀0 (1 − exp (−
𝑇𝑅

𝑇1
)) + 𝑀𝑧(𝑛𝑇𝑅)cos (𝛼)exp (−

𝑇𝑅

𝑇1
)  , [2.12] 

 

with all data acquisition taking place once a longitudinal magnetisation steady state 

(Mz,ss) has been established, defined as: 

 

 𝑀𝑧,𝑠𝑠 = 𝑀𝑧((𝑛 + 1)𝑇𝑅) =  𝑀𝑧(𝑛𝑇𝑅). [2.13] 

 

Mz,ss is related to the measured signal (S) by: 
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 𝑆 ∝ 𝑀𝑧,𝑠𝑠sin (𝛼)exp (−
𝑇𝐸

𝑇2
∗ )  , [2.14] 

 

where the exponential term derives from the signal decay which occurs between the 

excitation and the echo (TE).  Combining Equations [2.12] and [2.14], and assuming 

that a steady state has been reached, gives us the signal equation for the SPGR pulse 

sequence: 

 

 𝑆 ∝  𝑀0sin𝛼 exp (−
𝑇𝐸

𝑇2
∗ )(

1 − exp (−
𝑇𝑅
𝑇1

)

1 − cos(𝛼) exp (−
𝑇𝑅
𝑇1

)
). [2.15] 

 

Contrast Mechanisms 

The choice of TE and TR (and flip angle () in the case of GE sequences) affects the 

contrast in the acquired image, and MR pulse sequences are generally stratified into 3 

groups: proton-density-weighted, T1-weighted, and 𝑇2
∗-weighted images, so-named 

because the image contrasts are respectively dominated by three parameters: proton 

density (PD), T1 relaxation, and T2 relaxation.  MRI has proved to be a very powerful 

diagnostic tool, since many diseases cause changes in tissue which affect at least one 

of these three parameters.  PD-weighted images, as the name suggests, give signal 

magnitudes correlated to the density of protons in that region, and are acquired with 

long TRs and short TEs (though a short TR can also be used to image more rapidly, 

but only if a small enough flip angle is used).  For T1-weighted contrast, images are 

acquired with short TR and short TE, with the subject T1 values inversely proportional 

to the measured signal.  𝑇2
∗-contrast weighting is achieved using with long TR and long 

TE, with the subject 𝑇2
∗ values proportional to the measured signal. 

MRI Contrast Agents (CAs) 

From very early in NMRs conception, it was realised that the NMR signal of water can 

be modified by the addition of a small quantity of a paramagnetic material [44], with such 

substances commonly referred to as contrast agents (CAs).  By far the most commonly 

used CAs today are gadolinium (Gd) based [53], however numerous other materials 

have been proposed for use as MRI CAs, such as  Iron oxide [54], manganese chloride 

[55], and nanoparticles [56].  In 1988 Gd-DTPA (gadopentetate; Magnevist; Berlin, 

Germany) [57] was the first gadolinium-based MR CA to receive clinical approval and 

since then several other Gd-based molecules have been approved for use in patients 
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as CAs.  All of these Gd-based CAs have a similar effect, namely reducing the T1 and 

T2 relaxation times of adjacent nuclei.  However the magnitude of this effect varies from 

CA to CA, and is quantified as the relaxivities, r1 and r2, of that particular CA, as 

defined in a particular environment.  This linear relationship can be described simply 

as: 

 𝑅1 =  𝑅10 + 𝑟1𝐶, [2.16] 

 

 

and: 

 𝑅2 =  𝑅20 + 𝑟2𝐶, [2.17] 

 

where R1 and R2 are the relaxation rates (1/T1 and 1/T2, respectivly), R10 and R20 are 

the initial relaxation rates of the target prior to the addition of the CA, and C is the CA 

molar concentration used. 

 

2.2. Dynamic Contrast Enhanced (DCE) MRI 

 

In DCE-MRI a series of consecutive T1-weighted MR images are acquired after the 

administration of a bolus of CA.  As the CA arrives at the tissue of interest it modifies 

the inherent relaxation rates of the of the hydrogen nuclei in that region, resulting in a 

change in the measured signal intensity, as discussed previously.  By collecting a 

series of images over time a signal-time curve (STC) is produced at each imaging 

voxel, from which the effective longitudinal relaxation rate (R1 = 1/T1) can be derived by 

means of the signal equation for SPGR sequence (Equation [2.15]), which can be 

written as: 

 

 𝑆(𝑡) =  𝑆(0)sin𝛼
1 − exp[−𝑅1(𝑡)𝑇𝑅]

1 − cos (𝛼)exp[−𝑅1(𝑡)𝑇𝑅]
 [2.18] 

 

 

 

where S(t) is the signal, and R1(t) the effective longitudinal relaxation rate, both as a 

function of time, t. 𝑅2
∗ decay is generally ignored for T1-weghted DCE-MRI, on the 

assumption that the TE used is much shorter than 𝑇2
∗.  The concentration of CA in the 

tissue (Ct) can then be calculated at each imaging voxel from the effective relaxation 

rate using Equation [2.16], which can be rewritten as: 

 

 𝐶𝑡(, 𝑡) =  
𝑅1(𝑡) − 𝑅1(0)

𝑟1
 [2.19] 
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where Ct(t) is the tissue CA concentration as a function of time, R1(0) is the longitudinal 

relaxation rate at t  =  0, and r1 is the relaxivity of the CA used.  Since the shape of the 

resultant CTCs is related to the perfusion conditions of the tissue being imaged; 

pharmacokinetic (PK) modelling can be used to estimate physiological parameters, 

such as the volume transfer coefficient (Ktrans) [min-1], extravascular-extracellular 

volume fraction (ve), and rate constant (kep) [min-1], providing quantitative information 

about the vascular properties of the tissue being imaged.   

 

 

2.2.1. Contrast Enhancement Prostate Physiology 

 

The prostate gland is a component of the male reproductive system located just below 

the bladder, in front of the rectum.  Its main function is to excrete prostatic fluid, one of 

the three components of semen.  The prostate is generally divided into four histologic 

zones, namely: (i) the peripheral zone (PZ), (ii) the central zone (CZ), (iii) the transition 

zone (TZ), and (iv) the anterior fibromuscular stroma; the PZ, CZ, and TZ zones are 

illustrated in Figure 2.9. 

 

Benign or malignant changes commonly occur in the prostate tissue as a man ages, 

with PCa being one such a malignant disease and the most frequently diagnosed 

cancer type in men from North and South America; Northern, Western, and Southern 

Europe; and Oceania [58].  Generally, when a tumour in the prostate grows to a 

diameter of 200 µm or greater, it induces angiogenesis (the formation of new blood 

vessels) through the sprouting of capillaries from pre-existing micro-vessels [59], which 

causes an increase in microvasculature [60].  This microvasculature tends to be more 

heterogeneously distributed and have higher permeability when compared to the 

microvasculature of healthy tissue [61].  Since the small molecular weight of certain 

commonly used Gd-based MR CAs allows them to permeate in and out of the blood 

vessels into the tissue, the signal measured over time at a particular location provides 

a measure of the rate at which materials within the blood are absorbed and distributed, 

which differs between healthy and tumorous tissue.  One major challenge however that 

is faced when using DCE-MRI to investigate this microvasculature is relates to the 

relatively low spatial resolution (millimetre scale) at which MR images are acquired, 

whereas micro-vessels in the capillary bed have an average internal diameter of 

approximately 8 m [62].  This discrepancy in scale means that the signal measured 

from a single voxel, the bulk concentration, is actually a measure of the contribution 
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from several ‘compartments’, as illustrated in Figure 2.9, which shows micro-vessels, 

cells, and extravascular extracellular space (EES), all of which are usually contained 

within a single voxel. 

 

 

Figure 2.9: (a) Illustration of the prostate gland, showing the peripheral zone (PZ), central zone (CZ), and 
transition zone (TZ) as well as a schematic representation of the contrast agent exchange process, taking 

place on the micro-vessel scale. (b) An example bulk signal-time curve (STC). 

 

2.3. Image Analysis 

 

Various different qualitative and quantitative methods have been proposed for use in 

the analysis of STCs and CTCs derived from DCE-MRI data of the prostate; in this 

section some of the more commonly used techniques are outlined. 

 

2.3.1. Phenomenological Modelling 

 

Phenomenological parameters can be extracted directly from the STC data, such as; 

wash-in, wash-out, and time to peak, or more advanced model-free parameters such 

as the integral area under the curve after 60 seconds (IAUC60), as illustrated in Figure 

2.10.  The use of this type of analysis has shown promising result in PCa detection, 

with reported sensitivities of 29%-96% and specificities of 82%-96.2% [13, 20, 63-66].  For 

example, a 2005 study by Kim et al. on 53 patients reported an increase in sensitivity 

and specificity using the wash-in rate from 65% to 96% and 60% to 82% respectively in 

the detection and localisation of PCa, compared to T2-weighted images alone [64].   
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Figure 2.10: Signal-time curve (STC) time curve showing examples of phenomenological parameters, 
namely: wash-in, wash-out, time-to-peak, and integral area under the curve after 60 seconds (IAUC60). 

 

Although this type of model-free analysis has been shown to be useful in differentiating 

normal from tumour prostate tissue, the functional information it provides about the 

tissue is limited, since the enhancement curve is dependent on multiple factors, such 

as; contrast dosage, micro-vessel density, flow in vessels, vessel wall permeability, 

structure of the extracellular space, and venous outflow, which are all considered 

together in this type of semi-quantitative analysis. 

 

2.3.2. Quantitative Pharmacokinetic (PK) Modelling 

 

Pharmacokinetics describes the behaviour of substances, such as CAs, after they have 

been introduced into a living organism, including the mechanisms by which they are 

absorbed and distributed.  The factors governing these mechanisms are physiological 

(as discussed in section 2.2.1), and therefore modelling these parameters can provide 

quantitative, sub-voxel information on physiological parameters, such as tumour 

perfusion, microvascular vessel wall permeability, and extravascular–extracellular 

volume fraction, allowing for a more accurate and complete description of tissue 

behaviour [67]. 

 

Various pharmacokinetic (PK) models have been used for the analysis of prostate DCE 

data, most commonly conventional compartmental (CC) models such as, the Tofts [68-

72], Extended Tofts [73, 74], and Brix [14, 75, 76] models, as well as combinations of these [11, 

15].  Other more complex models have also been used with prostate DCE data, such as 

the Shutter Speed model [77, 78] and the Adiabatic Approximation of Tissue Homogeneity 

model [79-82].  
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Most CC PK models used in DCE-MRI are extensions of the general open two-

compartment model, in which the first compartment serves as input to the second 

compartment, as proposed by Brix et al. [83] (as schematically-illustrated in Figure 2.11 

(a)).  The majority of these models are considered ‘open’ because the main blood 

circulation is not modelled as a third compartment, but as an input and output to and 

from the system, governed by the apparent plasma flow (F).  The exchange between 

compartment one, the capillary blood plasma compartment, and the second 

compartment, the extravascular-extracellular space (EES), is governed by KPS, the 

permeability surface area product (PS).  From the general open two-compartment 

model one can derive the following mass balance equations: 

 

 𝑉𝑐
𝑑𝐶c(𝑡)

𝑑𝑡
= 𝐹(𝐴𝐼𝐹(𝑡) − 𝐶c(𝑡)) − 𝐾PS(𝐶c(𝑡) − 𝐶e(𝑡)) 

[2.20] 

 

and         

 𝑉e
𝑑𝐶e(𝑡)

𝑑𝑡
= 𝐾PS(𝐶c(𝑡) − 𝐶e(𝑡)), 

[2.21] 

 

where Cc(t) is the CA concentration in the capillary plasma volume (Vc); Ce is the 

concentration in the EES volume (Ve); and AIF(t) is concentration entering the capillary 

bed on the arterial side, otherwise known as the arterial input function (AIF); all as a 

function of time, t.  Adapting this model to meet the convention as proposed by Tofts et 

al. [84], we introduce a new parameter, Ktrans, the volume transfer coefficient, where: 

 

 𝐾trans = 𝐹𝐸𝜌, [2.22] 

 

where ρ = tissue density and E is the extraction fraction, given as: 

 

 𝐸 =
𝑃𝑆

𝐹 + 𝑃𝑆
. [2.23] 

 

Using this convention, we can derive the following mass balance equations: 

 

 𝑣𝑒

𝑑𝐶e(𝑡)

𝑑𝑡
= 𝐾trans

(𝐴𝐼𝐹(𝑡) −
𝐶t(𝑡)

𝑣e

), [2.24] 

 

and 
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 𝐶t(𝑡) ≈ 𝑣e𝐶e(𝑡), [2.25] 

 

where Ct(t) is the measured tissue bulk CA concentration and ve is the extravascular-

extracellular volume fraction (ve = Vc / Vt).  Combining Equations [2.24] and [2.25] we 

arrive at the following differential equation describing the kinetic behaviour of the CA in 

the tissue of interest: 

 

 
𝑑𝐶𝑡(𝑡)

𝑑𝑡
= 𝐾trans

𝐴𝐼𝐹(𝑡) −
𝐾trans

𝑣e
𝐶t(𝑡). 

[2.26] 

 

 

 

Figure 2.11: Schematic diagrams showing: (a) the general open two-compartment model and (b) the 
standard Tofts model. 

 

Similar implementations of this type of adapted model have been suggested by 

Larsson et al. [85] and Tofts et al. [68, 73, 84], with the differences between these models 

being mainly due to their respective measurement schemes.  Since the conventions 

proposed by Tofts et al. are the most widely used, this type of model is generally 

known as the standard Tofts model, illustrated in Figure 2.11 (b).  For this model the 

solution to Equation [2.26] becomes a convolution of the AIF with the impulse response 

function (IRF) [73], where: 

 

 IRF =  𝐾transexp (−
𝐾trans

𝑣e
𝑡). [2.27] 

 

Solving Equation [2.26], with the assumption that the initial conditions are zero, the 

total tissue concentration thus becomes: 

 

 𝐶t(𝑡) =  𝐾trans ∫ 𝐴𝐼𝐹(𝜏) exp [−(
𝐾trans

𝑣e
) (𝜏 − 𝑡)]  

𝑡

0

𝑑𝜏. [2.28] 
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The ratio of Ktrans and ve is sometimes reported as kep, the rate constant between the 

EES and the capillary plasma fraction [84], such that: 

 

 𝑘ep =
𝐾trans

𝑣e
. [2.29] 

 

By fitting Equation [2.28] to CTCs derived from DCE-MRI data, one can estimate 

values for Ktrans, ve, and kep.  This is generally performed using a non-linear fitting 

approach, such as using the non-linear least-squares (NLS) method [86], however using 

a linear least-squares (LLS) method has been shown to have several advantages over 

an the NLS approach, which include: faster computational time, better model fitting 

under low SNR conditions, and less sensitivity to temporal resolution (Tres; the rate at 

which the data is sampled) 
[87, 88], as well as not requiring initial estimates of the 

parameters to be provided prior to the fitting [86].  The use of LLS for PK modelling of 

DCE data is investigated in Chapter 5.  In 2004, Murase et al. introduced a linear 

interpretation of the Tofts model, [88], as outlined below.   

 

Integrating both sides of Equation [2.26] with the assumption that the initial conditions 

are zero [89] and giving the result in a discrete form we have: 

 

 
𝐶t(𝑡𝑘) =  (𝐾trans + 𝑘ep) ∙ ∫ 𝐴𝐼𝐹(𝜏) − 𝑘ep

𝑡𝑘

0

𝑑𝜏 ∙ ∫ 𝐶t(𝜏)
𝑡𝑘

0

𝑑𝜏   

(𝑘 =  1, 2,∙ ∙ ∙ , 𝑛), 

[2.30] 

 

which can be written in matrix form as: 

 

 𝐶 = 𝐴 ∙ 𝐵⃗ , [2.31] 

 

where: 

 𝐴 =  

[
 
 
 
 
 
 
 ∫ 𝐴𝐼𝐹(𝜏)

𝑡1

0

𝑑𝜏    −∫ 𝐶t(𝜏)
𝑡1

0

𝑑𝜏

∫ 𝐴𝐼𝐹(𝜏)
𝑡2

0

𝑑𝜏 −∫ 𝐶t(𝜏)
𝑡2

0

𝑑𝜏

⋮ ⋮

∫ 𝐴𝐼𝐹(𝜏)
𝑡𝑛

0

𝑑𝜏 −∫ 𝐶t(𝜏)
𝑡𝑛

0

𝑑𝜏
]
 
 
 
 
 
 
 

, [2.32] 
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 𝐵⃗ =  [
𝐾trans + 𝑘ep

𝑘ep
], [2.33] 

And 

 

 𝐶 =  [

 𝐶t(𝑡1)

𝐶t(𝑡2)
⋮

𝐶t(𝑡𝑛)

]. [2.34] 

 

When Ct and the AIF are known, Equation [2.32] can easily be solved for 𝐵⃗  using the 

LLS approach, and PK parameter values obtained from the resulting matrix elements. 

 

2.3.3. The Arterial Input Function (AIF) 

 

The AIF is a measure of the intra-arterial contrast medium over time feeding the tissue 

of interest, and is a critical component for PK modelling of DCE‐MRI data [77, 84, 90]. 

However, measurement or estimation of the AIF to date has proven challenging, 

making it a major source of error in PK parameter estimates [91-93].  

 

The AIF curve-shape profile differs from that of the tissue CTCs, as it is characterised 

by an initial sharp uptake, followed by a short-lived second peak, and subsequently a 

longer wash-out period, as illustrated in Figure 2.12.  Current methods to quantify the 

AIF can be stratified into four main approaches: (i) subject-specific direct blood 

sampling; (ii) subject-specific MR-measurement; (iii) estimation from a population 

average; and (iv) indirect calculation / estimation, for example using a reference-tissue-

based method; these four methods are outlined below. 

 

 

 

Figure 2.12: Example of an arterial input function (AIF). 
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Direct Blood Sampling  

The most direct way to measure the AIF, and considered by some the ‘gold standard’ 

method [94], is by directly collect blood samples during the DCE-MRI acquisition from an 

arterial catheter inserted into the subject, and subsequently analysing the samples to 

extract a CA concentration at each time point [57, 85, 95].  The main advantage of this 

technique is the high accuracy by which the CA concentration can be determined from 

the blood samples, providing excellent characterisation of the actual patient-specific 

AIF.  However, this is an invasive and inconvenient method, and is still reliant on the 

Tres at which the blood samples are collected, as well as where in the patient the 

samples are acquired from.  

  

Subject-Specific MR-Measurement 

The arterial supply to the prostate is primarily from the inferior vesical artery, originating 

from the iliac artery [96], which is generally contained within the imaging volume for 

prostate DCE-MRI, thus the patient-specific AIF can be determined by measuring the 

time-dependent contrast concentration within this aortic region.  This approach is non-

invasive and is expected to closely approximate the true AIF at the prostate.  However, 

accurate measurement of the AIF in vivo has proved challenging to date, due in part to 

the high Tres 
[22, 97, 98] and signal-to-noise ratio (SNR) [99] requirements, as well as other 

effects such as inflow, partial volume, and non-uniformity of the B1-field across the 

volume of interest [99-102].  Investigating the accuracy and precision with which a patient-

specific AIF can be measured using a standard Cartesian DCE MR protocol is the 

subject of Chapter 5, and using a novel golden-angle continuous radial protocol with 

compressed sensing and parallel imaging, the subject of Chapter 6. 

 

Population Averaged 

Due to the confounding factors influencing patient-specific AIF measurement, various 

parametrised forms of the AIF have been proposed which are based on average 

patient measurements [57, 103-107].  The most widely-used AIF models are the 

biexponential function proposed by Weinmann et al. in 1984 [57] and the more complex 

10-paramater function outlined by Parker et al. in 2006 [105].  In the Weinmann study the 

population-based AIF was derived from low temporal resolution arterial blood samples 

[57], with the parametrised form given as: 

 

 𝐴𝐼𝐹(𝑡) = 𝐷[𝑎1 exp(−𝑚1𝑡) + 𝑎2 exp(−𝑚2𝑡)], [2.35] 
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where D is the CA dose in mM kg−1 of body mass, a1 and a2 are amplitudes of the 

exponentials, and m1 and m2 are their rate constants.  Parker’s parameterised form of 

the AIF was derived from data measured with a Tres of 5 s from patients' aortas or iliac 

arteries following a standard bolus administration of a Gd-based CA (dose = 0.1 mM 

kg-1) [105], and is given as: 

 

 𝐴𝐼𝐹(𝑡) = ∑
𝐴𝑛

𝜎𝑛√2
exp [−

(𝑡 − 𝑇𝑛)2

2𝜎𝑛
2

] +
𝛼 exp[−𝛽𝑡] 

1 + exp[−𝑠(𝑡 − 𝜏]

2

𝑛=1

 , [2.36] 

 

where: A1 and A2 are the scaling constants; T1 / T2, and 1 / 2 are the centres and 

widths of the 1st and 2nd Gaussians respectively;  and  are the amplitude and decay 

constants of the exponential respectively; and s and  are the width and centre of the 

sigmoid, respectively.  

 

Population-based AIFs are widely used in DCE-MRI, and their use has been shown 

effective with low Tres data sets [98, 108], however, due to inter- and intra-patient 

variations in cardiac output, organ function, contrast injection rate, body fat, etc., and 

their influence on the AIF profile [107, 109], the use of a general population average AIF is 

known to adversely affect the accuracy of patient-derived PK parameters and weaken 

patient-specific physiological assessment [103, 104].  As such, the measurement of a 

patient-specific AIF during the DCE-MRI acquisition is desirable. 

 

 

Indirect AIF Derivation 

Several other novel approaches have been suggested to overcome the limitation 

associated with the measurement of the AIF, including the use of either a reference 

tissues to obtain the AIF [67, 91, 110], and techniques which remove the need to estimate 

the AIF altogether, such as through the use of independent component analysis [111].   

 

Extracting a reference tissue-based AIF overcomes some of the limitations of the direct 

subject-specific AIF measurement, as well as inaccuracies deriving from using a 

population-based AIF approach.  Instead of measuring the MRI signal in a feeding 

artery, or assuming a particular form of the AIF, the reference-region model presumes 

prior knowledge of the PK parameter values for a well-characterised healthy reference 

tissue (e.g., muscle), and uses these values in conjunction with the reference tissue 

CTC to inversely derive the AIF [110].  This model makes a number of assumptions 
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which affect the accuracy and reproducibility of the derived AIF [112], most notably: no 

inter-patient variation for the set ‘known’ reference tissue PK parameters values, and 

that the AIF is the same for the reference tissue and the tissue of interest. 

 

 

2.4. Sources of Error in Quantitative DCE-MRI 

 

Many factors influence or limit the accuracy and precision of measurements made 

using DCE-MRI; in this section some of the main sources of these errors are outlined. 

  

2.4.1. Sampling Limitations 

 

The speed at which MR images are acquired is fundamentally limited by physical (e.g. 

gradient amplitude and slew-rate) and physiological (e.g. peripheral nerve stimulation) 

constraints.  Additionally, when k-space is greatly under-sampled and the Nyquist 

criterion violated, this leads to aliasing artefacts in images reconstructed using the 

Fourier transform.  In an effort to negate some of the temporal limitations intrinsic to 

MRI, as well as provide a means to reconstruct high-quality images from limited data, 

various different rapid imaging methods have been proposed.  These can be stratified 

into three main groups: (i) techniques which generate less-visible, incoherent artefacts, 

at the expense the SNR [48, 113]; (ii) techniques which exploit redundancies in k-space, 

such as parallel imaging (PI) [114, 115]; and (iii) techniques which exploit redundancies in 

either the temporal or spatial domain (or both) [116, 117].  Other more recently proposed 

methods combine these approaches such as compressed sensing (CS) [49] or methods 

which use both CS and PI techniques in combination [118].  These rapid imaging 

methods potentially allow for more accurate modelling of the DCE-MRI data, however 

further validation work is needed in order to access how these techniques affects the 

accuracy and precision of the quantitative PK parameters extracted from the data.   

 

2.4.2. Temporal Resolution (Tres) and Acquisition Duration (AD) 

 

In DCE-MRI the time-spacing between subsequent image volumes is known as the 

temporal resolution (Tres) and the length of time that the curves are sampled for from 

the start of the CA enhancement is known as the acquisition duration (AD).   

Whether phenomenological or PK analysis is performed, it has been shown that the 
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Tres at which the data are sampled affects the accuracy and precision of the derived 

parameter values, since rapid sampling is required in order to properly characterise the 

high-frequency components of the curves (such as the wash-in phase) [119, 120].  

Additionally, the use of a MR-measured AIF for use in PK analysis of the data requires 

even faster sampling of the data [22, 121], as discussed in section 2.3.3.  However, even 

when the Nyquist criterion is met, high sampling rates usually result in compromised 

image quality, as with current clinical protocols there is a trade-off between Tres, spatial 

resolution, SNR, and / or imaging field of view [122].  

 

Adequate AD is also required for accurate PK model fitting, as too short an AD may not 

accurately measure the low-frequency features of the curves (such as the wash-out 

phase of certain tissue CTCs).  Long ADs can also introduce motion artefacts when 

imaging patients, which can be an addition source of measurement errors, as 

discussed below [120], while conversely, inadequate ADs can lead to underestimation of 

PK parameters [119].   

 

2.4.3. B1-Transmit Field Non-Uniformity 

 

Spatially selective excitation pulses are typically used in MRI to limit the field of view 

and reduce scan times [123], as discussed in section 2.1.1.  However, variations in the 

actual flip angle across the excitation volume due to non-uniformities in the B1 transmit 

field (B1
+) will inevitably lead to variations in signal intensity, and by extension errors in 

the measured AIF and tissue CTCs, as well as the derived parameters.  In fact, B1
+ 

non-uniformity is probably the largest source of systematic error in T1 measurements, 

and therefore CA concentration measurements which are essential for accurate DCE-

MRI [121, 124].  This effect is particularly pronounced with abdominal and pelvic imaging, 

due to the large dielectric load imposed on the scanner producing a non-uniform RF 

distribution across the FOV caused by variations in the RF wave deriving from the 

formation of standing waves in the tissue [125]. 

 

Voxel-wise flip-angle correction (VFAC) can be performed by acquiring a B1
+ map of the 

subject at the same geometry as used for the DCE acquisition, and subsequently using 

this data to correct the flip angles used in the voxel-wise T1 calculations for the DCE 

data.  In this thesis the term ”B1
+ mapping” refers to both techniques which estimate the 

B1
+ field strength directly, or indirectly by estimating the flip angle, which is a function of 

the transmit B1 field.  The general idea behind B1
+ mapping is to acquire data using a 
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pulse sequence that varies with respect to the B1
+ only.  To this end, at least two 

images are usually acquired, and a mathematical operation is used to cancel out all 

other undesired features in the image. 

 

There are two general categories of B1
+-mapping techniques: magnitude-based, such 

as the dual-angle method proposed by Insko and Bollinger in 1993 [126] and the actual 

flip-angle imaging method Yarnykh introduced in 2007  [127]; and phase-based, such as 

the spin echo phase-sensitive  technique introduced by Oh et al. in 1990 [128], and 

Morrell’s phase-sensitive method [129]. 

 

In Chapter 5 of this thesis the actual flip-angle imaging (AFI) B1
+-mapping method 

proposed by Yarnykh et al. is used to investigate the effects of flip angle correction on 

the measured CTCs and AIF, as well as the derived PK parameters.   

 

2.4.4. Partial Volume  

 

Due to the relatively low spatial resolution of MRI (typically millimetre scale), and the 

structural-complexity of the human body, imaging voxels often contain more than one 

tissue type.  This can negatively affect measurements, since affected voxels will 

contain signal-components deriving from tissues other than the tissue-of-interest [130].  

Fortunately it is not too difficult to minimise this partial volume effect, or remove it 

altogether by using a high enough spatial resolution to resolve the tissue-of-interest 

from any surrounding tissue, as well as ensuring that any ROIs defined in the data only 

contain the tissue-of-interest.   

 

One example where careful consideration needs to be taken to avoid partial volume 

effects is in the measurement of the AIF using DCE-MRI.  As outlined previously in 

section 2.3.3, the AIF is measured in an artery feeding the tissue-of-interest, with the 

objective of measuring the signal change in the blood plasma only, deriving from the 

arrival and passage of the bolus of CA.  If too low a spatial resolution is used and / or 

too large an ROI defined in the artery, this can cause the signal from voxels at the edge 

of the ROI to be contaminated with signal deriving from the vessel wall, thereby 

reducing the accuracy of the measured AIF [100, 131]. 
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2.4.5. Inflow  

 

Another factor that can have an effect on the accuracy of DCE-MRI measurements, 

specifically in the measurement of the AIF, is the inflow effect [100, 102].  This effect is 

caused by fresh blood flowing into the imaging volume with fully-relaxed spins, falsely 

increasing the signal and resulting in an apparent shortening of the measured T1 

values, leading to over-estimation errors in the derived CA concentrations. 

 

One way to compensate for this effect is by using a nonselective inversion pulse to 

drive the longitudinal magnetisation of the inflowing blood toward an equilibrium level 

prior performing the measurements; however this correction method is limited to a 

single slice acquisition [132].  Several other simple considerations can be taken into 

account to minimise this effect, such as assuming a literature value for the T10 of the 

blood (this initial T1 value for the blood plasma prior to the arrival of the CA bolus), 

ignoring errors due to variations in hematocrit, temperature, and blood oxygen, and 

removing / minimising potential error in the T10 measurement deriving from the inflow 

effects [100].  Additionally, the ROI where the AIF is measured can be defined in a 

central slice, so that the inflowing blood will have received a sufficient number of RF 

pulses prior to measurement to drive the magnetisation to an equilibrium state [102]. 

 

2.4.6. Motion 

 

Motion artefacts are a particular issue with DCE-MRI, since a complete DCE scan may 

take up to ten minutes, during which time any patient motion will cause the tissue at a 

particular imaging voxel to shift spatially at that time point, replaced with tissue from a 

different spatial location in the patient.  This causes errors in the measured CTCs since 

the signal measured at each time-point does not necessarily originate from the same 

tissue source.  Gross patient motion is one of the most common causes of artefacts in 

MRI, producing a range of ghosting effects in the images.  Unfortunately there’s no way 

to completely remove this source of error, however careful preparation before the scan 

to ensure the patient discomfort is minimised can help with reduce this effect.  Motion 

artefacts may also derive from patient organ motion, however this can be minimised by 

administering a muscle relaxant prior to the DCE scan, such as butylscopolamine 

bromide (Buscopan; Boehringer-Ingelheim, Ingelheim, Germany) [133]. 
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2.5. Conclusions  

 

As highlighted in this chapter, DCE-MRI is overall a very complex technique to 

implement correctly, with a whole plethora of possible confounding factors influencing 

the accuracy and precision of tissue / arterial DCE-MRI-measurements, and by 

extension the derived PK parameter values.  The following chapter outlines new 

phantom-based methodologies designed to allow for the absolute quantification of the 

accuracy and precision of DCE-MRI measurements, with subsequent chapters 

demonstrating the phantoms use, presenting quantitative results which will be of great 

use informing current and emerging clinical DCE-MRI protocols, as well as future DCE 

studies.  
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Chapter 3: Design, fabrication, and 

validation of a novel anthropomorphic DCE-

MRI prostate phantom test device 

 

 

3.1. Introduction 

 

As discussed in the previous chapter, the technique of DCE-MRI with pharmacokinetic 

(PK) modelling of the contrast agent uptake curves has been shown effective for 

prostate cancer (PCa) detection, monitoring PCa therapy, as well as shown 

considerable potential as a quantitative marker of tumour malignancy.  However, its 

adoption into routine clinical practice has been hindered by uncertainties surrounding 

the most appropriate or optimum acquisition protocol to use to measure the contrast 

agent (CA) uptake curves.  Although DCE-MRI has been qualitatively validated by 

various studies, that show good correlation between modelled parameters derived from 

the DCE data and histologically measured parameters, such as microvascular density 

[134], a gold-standard DCE-MRI quantitative validation technique is still lacking. This is 

mainly to do with difficulties associated with determining the accuracy of measured 

parameters in a validation study, since the actual parameter values are generally not 

precisely known in the patient or object being scanned.  This has resulted in the 

reported use of a plethora of in vivo DCE protocols and processing methodologies in 
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the published literature, with a commensurate wide divergence in published data, such 

as Ktrans, ve, and kep values, which has diminished the discriminative potential of the 

technique.     

     

The temporal resolution (Tres) used for the data acquisition has been shown to affect 

the accuracy of derived PK parameters [135, 136]; however, in previous DCE studies of 

the prostate that used PK modelling, temporal resolutions varied widely from 2 to 30 s 

[137].  Advances in phased array detector technology, which implement various forms of 

accelerated imaging, such as k-t SENSitivity Encoding (SENSE) [114], SiMultaneous 

Acquisition of Spatial Harmonics (SMASH) [115], and GeneRalized Autocalibrating 

Partially Parallel Acquisitions (GRAPPA) [138], faster gradient coils, coupled with novel 

acquisition techniques, such as compressed sensing [49], show potential to greatly 

improve Tres without sacrificing image quality, allowing for more accurate modelling of 

the data.  However, as discussed previously in section 2.4.2, there is always a trade-off 

between acquisition speed and image quality, and to date a gold standard method to 

quantitatively evaluate this ‘trade-off’ is lacking.  There is thus a need for a physical 

device to quantitatively and prospectively test these new DCE techniques in situ in the 

scanner, and various phantom designs have been proposed to this end.  

 

One such design type utilises the hollow fibres found commonly in commercial 

haemodialysis cartridges to produce ‘leaky’ phantom devices, which physically mimic 

permeable microvasculature.  Heilmann et al. demonstrated the usefulness of this type 

of phantom design in the classification of the permeability characteristics for CAs with 

different molecular weights [139].  In a study by Mehrabian et al., a similar phantom 

design was used to test an independent component analysis technique for separating 

the AIF and extravascular space signals using the signal that is measured in the target 

tissue [140].  However, since these phantom designs physically mimic the behaviour of 

blood vessels, the CA concentration-time curves (CTCs) produced are dependent on 

the porosity and perfusion conditions of the system and hence it is not possible to 

theoretically calculate actual parameter values against which to check the accuracy of 

the PK modelling results.  Furthermore, the inevitable retention of CA in the gel space 

surrounding the hollow fibres limits the use of such devices for multiple experiments, 

further limiting their usefulness in, for example, determining reproducibility.  Other 

designs include ‘lesion’ phantoms, which produce an enhancement curve within single 

or multiple compartmentalised spaces.  In a study by Freed et al., a single 10 mm 

spherical measurement chamber was mounted into a breast phantom, and the 

phantom’s ability to produce measurable CTCs was demonstrated [141].  The behaviour 
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of the system was characterised using a high spatial resolution X-ray system, although 

its Tres was poor (2.6 – 24.7 s).  Additionally, the MR data was acquired at a very low 

temporal resolution (79 s), making it difficult to access the CTCs measured using MRI.  

Ledger et al. presented a phantom which consisted of a 40 mm spherical object divided 

into four inter-linking compartments, for use in quality assurance and the development 

of DCE-MRI breast protocols [142].  Good repeatability was reported for MR 

measurements made in the phantom, however the curves produced by the system 

were not independently verified or characterised by a modality other than MRI, 

meaning that the system’s utility was limited to the relative comparison between MR 

measurements.  A further limitation of the above-described studies was that none 

allowed for measurements to be made in an environment which realistically challenges 

prostate DCE-MR imaging by closely emulating conditions observed in vivo, in terms of 

physical size, image complexity, and sparsity.  

 

The aim of this initial phase of the project was to develop a novel anthropomorphic 

phantom device in which precisely and accurately known ‘ground truth’ CTCs were 

generated and thus could be presented to the MRI scanner for measurement, thereby 

allowing for a quantitative assessment of the scanner’s ability to accurately measure 

the CA wash-in and wash-out curve-shapes.  The hypothesis under investigation was 

that measurement inaccuracies in these ‘tissue’ curves-shapes, whether slowly or 

rapidly-varying, deriving from features of the DCE imaging pulse sequence themselves, 

contribute significantly to the wide divergence in DCE PK modelling output parameter 

values in the published literature.     

 

 

3.2. Materials and Methods 

 

3.2.1. Phantom Device Design 

 

The phantom contained two measurement chambers, the geometry of which (illustrated 

in Figure 3.1(a)) was optimised in a previous study using computational fluid dynamical 

modelling to allow for optimal uniform distribution of liquids at low flow rates [143].  

Measurement chambers with a wall thickness of 0.3 mm were produced using an Eden 

250 3D-printing system (Stratasys, USA) and VeroClear polymer (FullCure-GD810; 

Stratasys, USA): for further information see Appendix A, section A 1.1.  The 12 mm 
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diameter of these chambers was selected specifically so that several DCE imaging 

voxels, of a size typically used in prostate DCE, could be positioned within, minimising 

any partial volume effects due to the chamber walls.  These two measurement 

chambers were set within a larger prostate-sized object (manufactured using a rapid 

prototyping system) containing a further arrangement of chambers, as shown in Figure 

3.1(b). Liquid containing the Gd-DTPA CA (Multihance; Bracco, USA) was pumped into 

each measurement chamber through the two inputs and subsequently flowed out 

through the central output (illustrated in Figure 3.1 (a)) and then through the larger 

prostate ‘volume’, before leaving via a single waste output, as shown in Figure 3.1(b). 

This larger volume was designed to mimic the enhancement profile typical of the entire 

prostate, imitating the reduction in sparsity in the temporal domain observed in in vivo 

scans. 

 

(a)  (b)  

Figure 3.1: (a) Schematic representation of the geometry of the one measurement chamber’s input/output 
configuration, and (b) photographs of the final prostate-mimicking object (left: complete, and right: 

sectioned) containing the two measurement chambers, with inputs into chambers 1 (red) and 2 (blue) 
highlighted. 

 

Table 3.1: Composition of tissue mimic materials (TMMs) used in construction of anthropomorphic 
phantom 

 Agar [wt. %] Gd-DTPA [mM] MnCl2 [mM] NaCl [wt. %] 
Benzalkonium 

Chloride [wt. %] 

Bone 2.5 - 0.085 0.5 0.046 

Muscle 4.0 - 0.026 0.5 0.046 

Fat 2.7 0.35 - 0.5 0.046 

Bladder 3.0 - - 0.5 0.046 

 

 

This prostate was set into a large custom-built anthropomorphic phantom device 

(shown in various stages of construction in Figure 3.2, and completed in Figure 3.3; 

phantom size = 280(w) x 390(l) x 200(h) mm3). Agar-based tissue mimic materials 
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(TMMs) were developed and used to mimic the T1 and T2 properties of bone, muscle, 

fat, and bladder tissue [144] (details of TMM composition are presented in Table 3.1). 

Latex moulds were produced and used to shape certain components, such as the 

femur bones and bladder.  

 

 

Figure 3.2: (a–f) Photographs showing various stages during construction of the large anthropomorphic 
phantom, with: (a) an initial layer of fat TMM; (b) a layer of muscle TMM (red dye used to differentiate from 
other TMMs); (c) latex moulds used to cast the ‘femur bones’; (d) cast physiologically-shaped components 
for the phantom, composed of various different TMM materials; (e, f) the prostate mimicking object in situ 

prior to surrounding TMM being deposited, as well as two ‘femur bones’ composed of bone TMM, and 
deposition of a heterogeneously distributed fat / muscle layer.  

 

 

Figure 3.3: Photograph of the final phantom device.  Dimensions: 280(w) x 390(l) x 200(h) mm
3
. 

 

3.2.2. Fluid Pump System Design and Operation 

 

A computer-controlled multi-pump system was designed to produce two simultaneous 

CTCs within the two separate measurement chambers.  The pump system consisted of 
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four gear pumps (Reglo-Z; Ismatec, Switzerland), and was designed to produce CTCs 

by varying the relative flow rates of two pumps feeding a given measurement chamber 

in parallel over time, one pumping a lower concentration, the other a higher 

concentration of the CA (pumps 1 and 2 feeding measurement chamber 1, and pumps 

3 and 4 feeding measurement chamber 2, as illustrated in Figure 3.4 and shown in 

Figure 3.5).  This configuration ensured a constant volumetric flow rate so that any 

potential flow-related artefacts would be constant across the concentration range.  The 

inlet tubing placement within the phantom was designed such that, for imaging fields of 

view typical of DCE protocols, the inflowing liquid was driven to a steady-state prior to 

entering the measurement chambers, thereby eliminating inflow artefacts.  

Concentrations of CA (0.15mM and 1.5mM) were selected to give a similar relative 

peak enhancement to that observed in vivo.  The flow rate produced by the pumps was 

controlled by a time-varying voltage signal produced via a 12-bit analog output module 

(USB-DA12-8A; ACCES, USA), controlled using code custom-written in the Delphi 

programming language (Embarcadero Technologies, USA): for further information see 

Appendix A, sections A 1.2 and A 1.3.  The fluid from both pumps flowed through 8 m 

of 6.4 mm internal diameter (ID) tubing (Tygon-R; Saint-Gobain, France) before mixing 

together via a ‘Y’ connection, following which the fluid travelled a further 1.2 m down a 

single 6.4 mm ID tube before bifurcating to two 3.2 mm ID tubes and traveling into the 

phantom.  After passing through the mixing chambers and prostate object the liquid 

was output to a waste container through a single 6.4 mm ID tube (for further details 

related to the tubing configuration used see Appendix A, section A 1.4).  The phantom 

device and various system components are shown in situ in Figure 3.5. 

 

 

 

Figure 3.4: Schematic diagram of complete pump system (red and blue traces are representative of the 
change in flow rate at each pump over time, with the overall flow-rate kept constant) 
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Figure 3.5: Photograph of the phantom system set up in situ in the MR centre.  Shown are the (a) the 
contrast agent reservoirs, (b) the 4-pump system, (c) a custom built control box connecting (d) the analog 
output module to the pumps, (e) the laptop used to control the phantom system, and (f) the phantom test 

device in situ at the MR scanner bore. 

  

 

3.2.3. Tissue Concentration-Time Curves (CTCs) 

 

Realistic ‘physiological’ curves mimicking both healthy and tumour tissues were 

artificially generated via an inversion of the standard Tofts model using specific PK 

parameter values taken from a representative patient data published in an earlier work 

[145].  This was performed using code developed in Matlab (R2015b; MathWorks, USA).  

The values used were:   

 

 Ktrans = 0.126 min-1 (healthy) and 0.273 min-1 (tumour),  

 ve = 0.292 (healthy) and 0.412 (tumour) 

 

A model AIF was also artificially generated using the method and model parameter 

values reported by Parker et al.[105].  These curves were used to control the output of 

the pumps in order to produce the desired CTCs within the measurement chambers 

within the phantom in the magnet.  For each experiment, the CTCs thus generated 

consisted of 120 s of baseline flow and a 300 s physiological curve (representing either 

tumour or healthy tissue). 
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3.2.4. Characterising CTCs and Establishing the Optimal Flow Rates  

 

In order to characterise the response of the phantom system, and hence the actual 

shape of the CTCs produced in the measurement chamber (the ‘ground truth’) after the 

fluid has been pumped through 11 m of tubing and several tubing connectors, an 

optical imaging system was designed and set-up as shown in Figure 3.6.  This optical 

imaging system was also used to establish a threshold minimum flow rate, above which 

CTC curve-shape distortions were minimised and uniform distribution of dye within the 

measurement chambers was achieved. 

 

 

 

Figure 3.6: Schematic diagram of optical imaging system setup used to establish minimum flow rates and 
ground truth measurements for the CTCs produced by the system. 

 

In this system, a single measurement chamber was connected to two pumps, with the 

same tubing configuration and lengths as for the main phantom device, and set within a 

custom-built light-sealed enclosure.  An endoscopic light source (Fujinon Eve Σ400; 

Fujifilm Corp, Japan) was used in conjunction with a high resolution CMOS camera 

(Canon EOS 50D; Canon Inc, Japan) with a 4752 x 3168 array for detection, giving 4 x 

4 µm2 pixels, and a Tres of 1 s.  A region of interest (ROI) was defined across 

approximately the same spherical region of the measurement chamber as used in the 

ROI analysis of the MR data.  The temporal stability of measurements made using the 

optical scanner was measured over a thirty-minute period by imaging the chamber 

without liquid flow every second and calculating the variation in mean signal over that 

period.  Black dye was used as a CA surrogate in the system, which caused a change 

in the measured intensity at different concentrations due to the attenuation of incident 

photons.  Imaging known concentrations of dye in the chamber across a range of 

concentrations used for the CTC runs produced a calibration curve.  The calibration 

curve was fitted using a non-linear least squares method with a model adapted from 
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the Beer-Lambert equation [146], given as: 

 

 𝐶(𝑡) = 𝑎𝑒𝑏𝑆(𝑡) + 𝑐, [3.1] 

 

where: C(t) is the dye concentration, and S(t)  in the average intensity measured at a 

region of interest (ROI), at time-point t; and a, b , and c are constants derived from 

fitting the model to the calibration curve data.  Very good agreement was observed 

between the model and the calibration data (R2 =  0.998).  An example calibration 

curve, as used for the optical measurements, is shown in Figure 3.7.  

 

 

Figure 3.7: Example optical calibration curve with the calibration model fit to the data. 

 

The calibration curve was used to derive the black dye CTCs from the optical signal-

time curves (STCs), which were subsequently converted to Gd CTCs (for comparison 

against the DCE-MRI data).  Since the concentration of dye in the chamber is 

controlled by varying the relative flow rates of two pumps in parallel, one pumping the 

higher concentration of CA, the other the lower, we can model the contribution from 

each pump to the overall concentration of CA in the chamber using the following: 

 

 𝐶dye(𝑡) = 𝐶Hdye𝐹1(𝑡) + 𝐶Ldye𝐹2(𝑡), [3.2] 

and 

 𝐶Gd(𝑡) = 𝐶HGd𝐹1(𝑡) + 𝐶LGd𝐹2(𝑡), [3.3] 

 

where Cdye(t) is the concentration of dye in the measurement chamber, and CGd(t) is the 

concentration of Gd in measurement chamber, at time t.  CHdye and CHGd are 

respectively the concentrations of dye and Gd used in reservoir one, the higher CA 

concentrations; and CLdye and CLGd are respectively the concentrations of dye and Gd 
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used in reservoir two, the lower CA concentrations. F1(t) and F2(t) give the normalised 

instantaneous flow rate for pumps one and two respectively at time t. Since F1(t) and 

F2(t) are varied relative to one another across the full dynamic range of the pumps, we 

have: 

 𝐹1(𝑡) + 𝐹2(𝑡) = 1. [3.4] 

 

Substituting Equation [3.4] into Equations [3.2] and [3.3] and rearranging yields: 

 

 𝐶dye(𝑡) = (𝐶Hdye − 𝐶Ldye)𝐹1(𝑡) + 𝐶Ldye, [3.5] 

and 

 𝐶Gd(𝑡) = (𝐶HGd − 𝐶LGd)𝐹1(𝑡) + 𝐶LGd. [3.6] 

 

Combining Equations [3.5] and [3.6], one can then easily derive the following linear 

relationship: 

 

 𝐶Gd(𝑡) =
𝐶HGd − 𝐶LGd

𝐶Hdye − 𝐶Ldye
𝐶dye(𝑡) +

𝐶LGd𝐶Hdye − 𝐶HGd𝐶Ldye

𝐶Hdye − 𝐶Ldye
. [3.7] 

 

Equation [3.7] provides a general model for the conversion of measured dye 

concentration to Gd concentration, which is only dependent on the reservoir 

concentrations used, which were constant.  

 

In order to establish the minimum flow rate for the system, full CTC runs of the tumour 

curve were measured at flow rates from 0.5 to 3.5 ml s-1, in 0.5 ml s-1 increments.  Two 

criteria were accessed when selecting the minimum threshold flow rate, namely:  

 

(i) how well the measured curves fit those expected based on the pump voltage 

input (programmed), assessed by calculating the percentage root mean square 

error (%RMSE) between the programmed and measured CTCs (RMSE 

reported as a percentage of the overall enhancement of the tumour CTC);  

(ii) the uniformity of CA distribution measured within the chamber, calculated by 

subtracting a static image with no-flow from several images with flow, taken 

from different experimental runs during the most rapidly changing portion of the 

CTC (i.e. ‘wash-in’ region on tumour curve), with percentage uniformity across 

the resultant images calculated.   
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Once a minimum flow rate had been established, five full CTC runs were measured for 

each curve (tumour and healthy).  Intraclass correlation coefficient (ICC) analysis was 

performed on the data to access the repeatability of CTCs produced by the system, 

and the mean CTCs values taken as the measured ground truth, for comparison with 

the MR data.   

 

3.2.5. MRI Measurements 

 

To demonstrate the operation of the phantom, DCE-MRI data were acquired using a 3T 

multi-transmit scanner (Achieva; Philips, Netherlands) using a 32-channel detector coil.  

A 3D spoiled gradient echo imaging sequence was used, with the following scan 

parameters: TR = 3.8 ms, TE = 1.4 ms, flip angle () = 10, FOV = 224 x 224 x 

80 mm3, spatial resolution = 1 x 1 x 4 mm3, and number of slices = 20.  The parallel 

imaging factor (SENSE) and number of signal averages (NSA) were varied to give Tres 

values from 1.9 s to 21.4 s, as shown in Table 3.2.  Two manually-selected ROIs were 

used in the analysis of the data, each containing 24 voxels and set within the 

respective measurement chamber.  The relaxivity (r1) of the CA in aqueous solution 

was calculated using a multi-flip-angle approach ( = 2 to 20 in increments of 2) by 

imaging a phantom containing vials with known concentrations of CA.  This phantom 

was deliberately kept small (60 x 60 x 120 mm3), and positioned at the centre of the 

bore in order to minimise any effects of B1 non-uniformity on the measurements.  

 

Table 3.2: MRI scan parameters, adjusted to achieve temporal resolutions (Tres) from 1.9 s to 21.4 s. 

Scan Number R-factor (AP / FH) NSA Tres [s] 

1  1.8 / 2 1 1.9 

2 1.4 / 1.6 1 3.4 

3 1.2 / 1.4 1 5 

4 1 1 7.1 

5 1 2 14.3 

6 1 3 21.4 

 

 

3.2.6. Data Analysis  

 

The AIF was generated using the method proposed by Parker et al. [105] with code 

developed in Matlab at Tres values matching those used in the optical and MR studies, 
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to simulate measurement of the AIF, and was then subsequently used in the analysis 

of all optical and MR data.  All PK modelling was performed using the DCEMRI.jl toolkit 

[147].  The standard Tofts model was used to derive Ktrans, ve, and kep values for the 

ground truth CTCs (i.e. as measured in the optical experiments) and the MR-measured 

CTCs, and the percentage differences calculated.  The optical data were analysed 

using a ROI approach (i.e. PK parameters were derived from single mean CTCs, 

averaged from multiple pixel measurements), and the MR data using both ROI and 

voxel-wise methods (i.e. PK parameters calculated for multiple CTCs taken from each 

voxel within the ROI, and mean PK parameter values and standard deviations 

calculated).  The flow diagram presented in Figure 3.8 visually illustrates the steps that 

were implemented in the acquisition and analysis of the data. 

 

 

 

 

Figure 3.8: Flow diagram illustrating the steps implemented in the analysis of the DCE-MRI and optical 
data. 
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3.3. Results 

 

3.3.1. Optical Experiments 

 

The system was demonstrated to be stable, with signal-variation measured to be  

0.4% over a 30-minute period.  The %RMSE values between the optically-measured 

and programmed CTCs were lowest (< 4%) with flow rates  1.5 ml s-1, with no further 

decrease in the %RMSE values observed at flow rates greater than 1.5 ml s-1, as 

shown in Figure 3.9.  At a flow rate of 1.5 ml s-1 the uniformity of CA distribution across 

the chambers was measured to be 96%, with uniformity decreasing at lower flow rates, 

and not changing significantly at flow rates higher than this.  This analysis revealed a 

clear threshold minimum flow rate for the phantom setup of 1.5 ml s-1, and as such this 

flow rate was used for all subsequent experiments.  Excellent reproducibility was 

demonstrated by the very good correlation measured between the five consecutively-

measured CTCs for both curve shapes (tumour and healthy) as illustrated in Figure 

3.10, with high ICC values of 0.996 and 0.998 for healthy and tumour CTCs 

respectively.  Average values from each of the five measured CTCs were converted to 

Gd concentration (using Equation [3.7]), and used as the measured ground truth CTCs 

in subsequent MRI experiments.  PK parameters values were also calculated from 

each of the optically-measured CTCs, with the mean values taken as the ground truths.  

Ground truth Ktrans values were measured to be 0.123 ± 0.001 min-1 and 0.233 ± 0.002 

min-1, and ve 0.355 ± 0.001 and 0.461 ± 0.002, for healthy and tumour CTCs 

respectively (errors are given by the standard deviation across repeated optical-

measurements).  

 

 

(a)  (b)  

Figure 3.9: Graphs showing: (a) the % root mean square error (%RMSE) values calculated between the 
programmed and optically-measured CTCs at different flow rates (presented as a percentage of the overall 

programmed CTCs amplitude); and (b) the programmed and optically-measured ground truth tumour 
CTCs (measured with 1.5 ml s

-1
 flow rate). 
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(a)  (b)  

Figure 3.10: Graphs showing five repeated measurements of the (a) tumour and (b) healthy CTCs used in 
this study, using the optical imaging system at 1.5 ml s

-1
 flow rate. 

 

3.3.2. MRI Experiments 

 

Initial scans of the large anthropomorphic phantom show similar visual appearance to 

in vivo patient prostate scans, as shown in Figure 3.11.  Figure 3.12 shows preliminary 

data comparing the CTCs derived from the MR data with those from the ground truths.  

All protocols (except for the 5 s Tres protocol) measured the healthy-shaped CTC with 

R2 > 0.95, however only two protocols measured the tumour-shaped CTC with an R2 > 

0.95 (Tres of 7.1 and 14.3 s).  

 

Given the ability to generate and characterise any arbitrary CTC-shape, it was possible 

to quantify errors in PK output parameter estimation deriving exclusively from the DCE 

acquisition protocol.  Using specific Ktrans and ve values (taken from prior prostate 

patient studies) to generate CTCs, using the optical imaging system to determine the 

actual CTCs arriving in the phantom, and finally performing a PK analysis on the 

optically-measured CTCs (and hence re-deriving the actual ‘ground truth’ Ktrans and ve 

values that would give rise to this curve-shape); differences between the ground truth 

PK parameter values and those derived from the MR-measured CTCs could be used to 

quantify errors in the DCE acquisition protocol.  Ktrans, ve and kep values derived from 

the MR data were found to differ from the ground truths by up to 42%, 31%, and 50% 

respectively; details of the specific PK parameter errors as a function of the Tres used 

for the DCE acquisitions are presented in Figure 3.13, for both a voxel-wise and ROI 

analysis of the data.  PK parameters derived using these two different methods (voxel-

wise versus ROI) differed by < 4%, with all PK parameter values derived using the ROI 

method within the standard deviations of those derived using the voxel-wise approach.  

The lowest errors in the measurement of both tumour and healthy Ktrans, ve and kep 

values occurred using the 7.1-, 21.4-, and 1.9-second Tres protocols respectively.   
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Figure 3.11: Axial T1-weighted image of the anthropomorphic phantom with the ‘prostate’ and 

measurement chambers highlighted. Regions mimicking subcutaneous fat, muscle, and bone are also 

visable. 

 

  
  

  
  

  
  

Figure 3.12: Plots presenting tumour and healthy CTCs derived from DCE-MRI data at 1.9 to 21.4 s 
temporal resolutions, compared with the ground truths derived from optical scanner data. 
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(a)  (b)  

(c)    
 

 
 

Figure 3.13: Percentage errors in (a) K
trans

, (b) ve, and (c) kep values derived from the DCE-MRI data using 
the standard Tofts model.  Values shown for both a voxel-wise and ROI analysis of the data.  Error bars 

shown for voxel-wise results taken from the standard deviation in the data. 

 

3.4. Discussion 

 

There is currently a lack of standardisation of clinical prostate DCE-MRI image 

acquisition protocols, particularly in relation to the trade-off which must be made 

between spatial and temporal resolution, with studies in the prostate tending to give 

preference to either spatial resolution [148, 149] or temporal resolution [14, 15].  The 

European Society of Urogenital Radiology presented guidelines which recommend a 

Tres of ≤ 15 s and spatial resolution of ≤ 0.7 x 0.7 x 4 mm3 [135];  however, there is 

growing consensus that Tres values much lower than 15 s are required when PK 

models are used to analyse the data [22].  The effect on measurement accuracy of 

pushing the temporal resolution to these values remains unclear, and to date it has not 

been possible to quantitatively assess measurement errors deriving from acquisition 

protocol-related factors.  It has rather been assumed that such protocols accurately 

measure slowly-changing CTCs, such as those in healthy tissue and most tumours, 

whereas only rapidly-changing tumour CTCs, and AIFs in particular, pose a problem for 

MRI measurement.  However, the results presented herein using the novel quantitative 
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phantom system demonstrate the significant influence the acquisition protocol has on 

the measured shape of even slowly-changing CTCs.   

 

Key to this determination of accuracy was a precise and accurate knowledge of the 

ground truth CTC presented to the MRI scanner for measurement.  In attempts to 

characterise the CTCs produced by their phantom systems, previous studies have 

used repeated MR measurements [150], prediction models [151, 152], and X-ray 

measurements [141]; however, these system designs do not allow for a true 

determination of the ground truth against which DCE-MRI measurements can be 

compared.  In the current study the ground truth CTCs were independently determined 

using a high spatial and temporal resolution, calibrated optical imaging system.  The 

use of a ‘ground truth’ descriptor for the CTCs in this context was considered 

reasonable due to the low measurement error associated with the optical imaging 

system (±0.4% measurement accuracy; ICC > 0.996 for consecutive runs, both tumour 

and healthy CTCs).  Concentration values were derived via a calibration curve, the 

data for which was acquired by imaging known concentrations of black dye with no 

flow; however, the same known concentrations were also imaged with flow of 1.5ml s-1, 

with no measurable differences observed between the two datasets.  Differences 

between the programmed and optically-measured CTCs translated to an 18% 

maximum difference between the programmed and optically-measured ground truth PK 

parameters values, for the CTCs used in the study.  However, the resultant ground 

truth PK parameters values were still well within the range of patient-derived values for 

tumour and healthy prostate tissue reported in the literature [145].  Furthermore, repeat 

optical experiments demonstrated the ability of the phantom system to precisely 

reproduce contrast curves with these PK parameter values, with low standard 

deviations of <1.2% recorded for all optically-measured ground truth PK parameter 

values. 

 

The choice of flow rate used in the phantom device struck a balance between 

minimising discrepancies between the programmed and optically-measured CTCs 

(which imposed a lower limit on the flow rate that could be used) and reducing the 

potential for flow artefacts in the MR images (which mitigated against using very high 

flow rates).  Discrepancies between the programmed and measured CTCs occur at 

lower flow rates due to two principal factors: (i) excessive longitudinal mixing along the 

length of the tubing caused by diffusional and turbulent flow effects which adversely 

affected the shape of the CTCs produced;  and (ii) an incomplete flushing of the 

solution within the entire volume of the measurement chamber at each time-point within 
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a DCE run, resulting in undesired dye (and hence MR contrast agent) concentration 

variations within the chambers. This latter effect was noted in an earlier study involving 

computational fluid dynamics of flow profiles in measurement chambers of similar 

design to that used herein [143].  In the current study, a flow rate of 1.5 ml s-1 was found 

to be sufficient to eliminate this effect, as determined by the highly-uniform (> 96%) dye 

distribution measured within the measurement chambers.  This flow rate also marked 

the threshold at which the %RMSE between the programmed and measured CTCs 

was minimised (< 4%).   

 

There were minor differences between the two modalities (optical and MRI) in where 

and how the signal was measured; for example, the ROI used for the optical 

experiments encompassed data from approximately 90% of the measurement 

chamber’s volume, whereas with the MRI experiments the ROI analysis was performed 

on voxels measured in a 4 mm slice taken through the centre of the chambers.  

However, since the phantom system provided highly-uniform distribution of CA within 

the measurement chambers at the flow rate used, one may assume that the 

concentration measured at a particular voxel in the MR data is representative of the 

overall concentration within the chamber, and since the optical experiments also 

provide a measure of the overall CA concentration within the measurement chamber, 

direct comparison between the two modalities was possible. 

 

The anthropomorphic phantom design that was developed had an internal complexity 

and physical dimensions sufficient to present a clinically-realistic challenge to the 

image acquisition protocols under test, with a specific emphasis herein on prostate 

imaging although the principal is valid for other body areas.   Thus, protocols 

developed and validated using the phantom can be easily translated to patient studies 

in the clinic.  A visual comparison of the CTCs presented in Figure 3.12 shows 

discrepancies between the measured and ground truth curve-shapes, and this is 

reflected in the calculated R2 values.  An apparent bias was observed in the MR-

measured curves in the form of an underestimation of the concentration values in the ~ 

20 – 100 s time range (see Figure 3.12).  This was possibly caused by differences 

between the ‘set’ and ‘actual’ flip angle used for the spoiled gradient echo sequence, 

deriving from non-uniformities in the B1-transmit field, this is further investigated in 

Chapters 5 of this thesis.  Of the acquisition protocols tested, it was found that Ktrans 

was most accurately measured using a protocol with a Tres of 7.1 s.  As the parallel-

imaging factor was increased with resultant improvement in temporal resolution, the 

accuracy of Ktrans measurements decreased by up to 15%, which may be related to 
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decreased SNR in the images, although other parallel imaging-related factors may also 

have contributed to these increased errors.  Furthermore, as the NSA was increased in 

subsequent experiments, causing a deterioration in temporal resolution, the accuracy 

of the measured Ktrans values also decreased by up to 31%, as one would expect due 

to the reduced number of sampling points leading to a loss of fidelity in the shape of the 

measured CTCs, particularly in rapidly changing portions of the curves such as the 

initial wash-in (on which Ktrans is strongly dependant), as well as the resampled AIF 

used for the PK modelling.  ve was measured with the lowest error at Tres = 21.4 s, 

possibly due to more accurate measurement of the CTCs’ wash-out section for which 

ve is most sensitive.  Errors in measured kep were lowest using Tres = 1.9 s, and 

increased at Tres > 1.9 s.  These preliminary data highlight the need to further refine 

acquisition protocols to identify the source of and hence to reduce these errors.  These 

data also demonstrate the critical dependence of the accuracy of PK output parameter 

values on the quality of the data inputted to the models, whether that be adequate 

temporal sampling of the uptake curves, or adequate data quality to ensure faithful 

fitting of the model.   

 

In the preliminary data presented in this chapter, no B1 corrections to the measured 

data were performed; however, as previously mentioned, it is likely that any 

inhomogeneity present may have contributed to errors. Other factors, such as 

inadequate acquisition duration, inaccuracies in the AIF measurement, and the choice 

of model fitting regime, may also have contributed to the errors in the MR-

measurements.  The anthropomorphic nature of the phantom facilitated further 

investigation of these deviations in ideal performance of the spoiled gradient echo 

imaging sequence, and is the focus of the work presented in Chapters 4 and 5 of this 

thesis.  The phantom device developed herein was also used in chapter 6 to 

investigate further potential errors which may arise specifically from the use of rapidly-

accelerated techniques such as parallel imaging and compressed sensing.  These 

initial results nevertheless serve to demonstrate the difficulties in performing 

quantitative measurements using what is substantially a qualitative instrument, that is, 

a clinical MRI scanner.  Precise and accurate knowledge of the ground truth CTC 

values in the phantom design presented herein, absent in other phantom designs, 

facilitated a more quantitative approach to DCE-MRI by providing a test-bed on which 

new and existing acquisition protocols can be quantitatively assessed. 
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Chapter 4: Effects of acquisition duration 

and temporal resolution on the accuracy of 

prostate tissue concentration-time curve 

measurements and derived 

phenomenological and pharmacokinetic 

parameter values 

 

4.1. Introduction 

 

Tissue properties are known to vary significantly between malignant and benign 

prostate tissues [134], and as such phenomenological curve-shape analysis and 

pharmacokinetic (PK) modelling of DCE-MRI data shows great promise as a potential 

non-invasive gold standard imaging technique for prostate cancer (PCa) detection [11], 

localisation [12, 13], and grading [14, 15].  However, the widespread acceptance of DCE-

MRI has been hindered by discrepancies in the published results, mainly as a result of 

methodological differences between studies.  The quality of MR-derived parameters is 

known to be influenced by the experimental settings governing the data acquisition and 

hence the measurements [153], with adequate acquisition duration (AD) and temporal 

resolution (Tres) being required for accurate PK model fitting [119, 120] (described in further 

detail in section 2.4.2).  Considering the range of DCE-MRI acquisition and analysis 
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protocols reported in the literature, and the large variability in data deriving from these 

varied approaches, it is apparent that a reliable ‘gold standard’ method is required for 

determining the measurement accuracy of the contrast agent (CA) concentration-time 

curves (CTCs), as well as derived parameters, with errors calculated against known 

ground truth values [119, 154, 155].  

 

As discussed in the preceding chapter, there have been previous attempts to 

investigate DCE-MRI measurements using model phantom systems [140, 156], however, 

in none of these systems were the ‘ground truth’ values known, additionally none of 

these previous designs have allowed for MR-measurements to be made in an 

environment which realistically challenges the prostate DCE-MR imaging protocol by 

closely mimicking conditions observed in vivo.  Theoretical approaches have also been 

used to investigate the effects of Tres and AD on PK parameters measurement [22, 119]; 

however, although beneficial in the planning of MRI protocols, a purely theoretical 

approach does not allow for the full assessment the MR scanner’s ability to accurately 

measure known reference CTCs using a particular protocol.  Other studies have used 

retrospectively resampled patient prostate data to investigate the effects of reduced AD 

and Tres 
[154, 157, 158], but again the ground truth values are not known and hence the 

measurement accuracy of the resampled data (or even the fully-sampled data) cannot 

be assessed.  Previous DCE-MRI studies have reported using a wide range of both Tres 

[2  30 s] and AD [90   760 s] values for the acquisition of data in the prostate [74, 137, 

159, 160].  The aim of the work presented in this chapter was to use the novel DCE-MRI 

prostate phantom test device described in Chapter 3 to quantitatively investigate the 

effects of Tres and AD on the accuracy of MR-measured prostate tissue CTCs (which 

mimic those observed in patient prostate data), and on the phenomenological and PK 

parameters derived from these CTCs, across a range of Tres and AD values used in 

previously published prostate DCE-MRI studies. 

 

4.2. Materials and Methods 

4.2.1. MRI Measurements 

 

DCE-MRI data were acquired using a 3T multi-transmit scanner (Achieva; Philips, 

Netherlands) using a 32-channel detector coil.  A 3D spoiled gradient echo imaging 

sequence was used, with the following scan parameters: TR = 4.3 ms; TE = 1.4 ms; flip 

angle () = 10; FOV  = 224 x 224 x 80 mm3; spatial resolution = 1 x 1 x 4 mm3; no 
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parallel imaging (R-factor); and number of signal averages (NSA) = 1; resulting in a Tres 

of 8.1 s.  This protocol was then modified by applying parallel imaging (PI; SENSE) to 

produce protocols with Tres values of 2, 3.8, and 5.3 s (R-factor (AP / FH) = 2 / 2, 1.8 / 

1.3, and 1.3 / 1.3 respectively).  Additionally, the NSA was increased to produce 

protocols with Tres = 16.3 and 24.4 s (NSA = 2 and 3 respectively).  This resulted in six 

scanning protocols, with Tres values across a range which was in line with those used in 

previously published prostate DCE-MRI studies.  Each 720-second experimental run 

consisted of at least five dynamic scans measured at the baseline CA concentration 

and with the remaining dynamics measured for a further 600 s (i.e. AD = 600 s).  The 

fully-sampled MR data thus acquired was then retrospectively truncated to produce 

sub-sets of data at AD = 480, 360, 240, 180, 120, 60, and 30 s.  

 

4.2.2. Concentration-Time Curves (CTCs) 

 

‘Healthy’ and ‘tumour’ tissue-mimicking CTCs were generated using an inversion of the 

standard Tofts model [84], a population-average AIF as proposed by Parker et al. [105], 

and input PK parameters taken from representative published patient data (Ktrans = 0.14 

(‘healthy) and 0.36 (‘tumour’); ve = 0.47 (‘healthy) and 0.55 (‘tumour’)) [74, 161].  The 

CTCs consisted of 120 seconds of baseline data, followed by a 600-second 

physiological CTC shape mimicking those typically observed in healthy or tumour 

tissue.  Ground truth CTCs were established from repeated measurements made using 

the highly precise, high spatiotemporal-resolution optical imaging system described in 

Chapter 3.  Concordance correlation coefficient (CCC) analysis was performed on the 

repeat optical measurements, using SPSS (v. 22.0, IBM Corp, USA), with high 

reproducibility calculated between repeat optical experimental CTC runs (CCC = 0.992, 

95% confidence intervals = 0.990, 0.993).   

 

4.2.3. Data Analysis 

 

A population average AIF [105] was used in this chapter for the analysis of all optical and 

MR data, which was generated using code developed in Matlab (R2015b, MathWorks, 

USA) at temporal resolutions matching those used in the optical and MR studies.  CCC 

values were calculated between the MR-measured and ground truth CTCs (AD = 600 

s); the CTCs were temporally-aligned (MR-measured and ground truth), and ground 

truth CTC temporally-resampled to match the MR data-points prior to analysis.  CCC 
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values were used as a metric for both the precision (ρ, the Pearson correlation 

coefficient, a measure of the degree of scatter) and accuracy (Cb, a bias correction 

factor, the degree of systematic location and scale shifts) of the full CTC 

measurements [162].  The wash-in (the maximum slope between the time of onset of 

contrast inflow and the time of peak intensity) and wash-out (the maximum slope of the 

late-wash phase of the curve) rates [14] were calculated from the CTCs at two manually-

selected regions of interest (ROI), each containing 26 voxels and set within the 

respective measurement chamber (voxel-wise analysis), as illustrated in Figure 4.1.  

Voxel-wise PK modelling using the standard Tofts model was also performed at the 

same ROIs using the DCEMRI.jl toolkit [147].  Wash-in, wash-out, Ktrans, and ve values 

were derived from the MR-measured CTCs and compared with the ground truth values 

(derived from the optically-measured CTCs), with the percentage differences 

calculated.  

(a)  

(c)  (b)  

Figure 4.1: Representative T1-weighted (a) axial and (b) coronal scans of the phantom during peak 
enhancement within the ‘prostate’ region.  The white box in (a) outlines the region shown in (c). (c) 
Example pharmacokinetic parameter map (K

trans
) showing the ROIs placed within the measurement 

chambers which were used to measure the ‘healthy’ (ROI 1) and ‘tumour’ (ROI 2) parameter values 

 

SNR values were calculated in the same ROIs used for the CTC analysis using a 

‘difference method’ [163], based on the evaluation of a difference between two repeated 

acquisitions at baseline concentration, given as: 

 

 SNRdiff(𝑏1, 𝑏2) =

1
2

𝑆𝐫̅∈ROI(𝑆N(𝐫, 𝑏1) + 𝑆N(𝐫, 𝑏2))

1

√2
σ𝐫∈ROI(𝑆N(𝐫, 𝑏1) − 𝑆N(𝐫, 𝑏2))

 , [4.1] 

where 𝑆𝐫̅∈ROI is the mean signal value and σ𝐫∈ROI is the standard deviation, for 

calculations performed at each imaging voxel (r) in the ROI, and SN(r,bn) is the signal 
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at each imaging voxel in the ROI for each respective baseline measurement (b1 and 

b2).  A difference method was chosen for the SNR calculations, instead of one of the 

more commonly used ‘2-region’ approaches, since parallel imaging (PI) was employed 

in this study which is known to influences the spatial noise distribution, and as such 

only methods of SNR measurement remain valid that determine the noise at the same 

spatial position as the signal [163]. 

 

4.3. Results 

 

Figure 4.2 shows representative images from approximately the same time-point within 

the dynamic series at the ‘tumour’ CTC peak at each of the Tres values tested.  The 

measured SNR values derived from the DCE-MRI data are indicated in each image, 

showing how the SNR increased as the Tres was decreased.   

 

 

Figure 4.2: Representative images from approximately the same time-point within the dynamic series at 
the CTC peak (tumour) at each of the temporal resolution (Tres) values tested.  SNR values derived from 
the DCE-MRI data are also presented.  (SNR results presented herein should be treated as relative, for 

the purpose of highlighting relative behavioural trends in the data) 

 

Furthermore, this increase in SNR was evident in the MR-measured CTCs as a 

decrease in signal variation across the ROIs, resulting in a reduction in the calculated 

uncertainties, as shown in Figure 4.3.  Figure 4.3 also shows an underestimation in the 

measurement of the ‘tumour’ CTC peak using protocols with Tres < 8.1 s, as well as an 
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overestimation of the wash-out phase of the tumour CTC for all protocols tested.  

Ground truth CTCs are shown in this figure as solid red (‘tumour’) and blue (‘healthy’) 

lines.  

 

 

Figure 4.3: Graphs showing the MR-measured CTCs at different temporal resolution (Tres) values, with 
error bars derived from the standard deviation across the ROI.  The larger error bars for shorter Tres times 

reflect the decreased SNR in these datasets.  Ground truth CTCs are also shown as solid lines. 

 

Figure 4.4 shows the correlation plots comparing the MR-measured and ground truth 

CTCs, as well as the CCC values with 95% confidence intervals.  Inaccuracies in the 

measurement of the wash-in phase of the ‘tumour’ CTC were evident as outlying data 

points, when using Tres values  8.1s.  Using the fastest protocol (Tres = 2 s), there was 

an overestimation of the MR-measured healthy CTC at higher concentration (> 0.3 
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mM), and these measurement inaccuracies were also apparent in the relatively low 

CCC value of 0.906 (95% C.I = 0.889, 0.920).  There was a general trend for higher 

CCC values for the lower-Tres data.  
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Figure 4.4: Correlation plots of the MR-measured versus ground truth CTCs for full 600-second CTC 
measurements. The diagonal line indicates equality, with divergence from this line indicating discrepancies 

between the MR-measured and ground truth values.  The CCC values are also shown, along with their 
95% confidence intervals. 

 

Errors in the measured wash-in and wash-out parameter values are presented in 

Figure 4.5.  For the measurement of the wash-in, despite the fact that the standard 

deviation across the ROI was reduced with increased Tres (as evident by a reduction in 

the size of the error bars), large underestimation errors of up to 40% were measured 

using protocols with Tres values  16.3 s.  Errors in the measurement of the tumour 

CTC wash-out did not vary greatly across all Tres values tested, with all errors < 15%; 

however there was large variation in the wash-out values calculated across the ROI for 

the ‘healthy’ CTCs (as evident by the large uncertainties of up to ±65%, see Figure 

4.5), indicating that all protocols struggled to measure this portion of the ‘healthy’ CTC 

accurately. 
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Figure 4.5: Percentage errors in wash-in and wash-out parameter values derived from the DCE-MRI data 
at different temporal resolutions (Tres) using the standard Tofts model. Error bars derived from the standard 

deviation of the data. 

 

 

 

Figure 4.6: Percentage errors in K
trans

 values derived from the DCE-MRI data at different temporal 
resolutions (Tres) and acquisition durations using the standard Tofts model. Error bars were derived from 

the standard deviation of the data. 

 

Figures 4.6 and 4.7 present the percentage errors in the PK parameter values derived 

from the DCE-MRI data at different Tres and AD values using the standard Tofts model.  
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Ktrans and ve values derived from the MR data differed from the ground truth values by 

up to 230% and 98% respectively.  Errors of < 14% were found for all MR-

measurements of Ktrans made at AD  360 s and Tres  8.1 s.  The 24.4-second protocol 

was the least accurate in the measurement of Ktrans, with errors of up to 172% using the 

full 600-second acquisition: these errors increased as the AD was reduced, as shown 

in Figure 4.6 (bottom-right graph).  For the measurement of ve, errors of < 12% were 

measured at Tres  16.3 s, with AD  360 s.  As with the measurement of Ktrans, the 

greatest errors in the measurement of ve were observed in data measured at Tres = 

24.4 s.  The lowest overall errors (< 10%) in the measurement of both ‘tumour’ and 

‘healthy’ Ktrans and ve values occurred using: Tres = 2 s, with AD  360 s. 

 

 

 

Figure 4.7: Percentage errors in ve values derived from the DCE-MRI data at different temporal resolutions 
(Tres) and acquisition durations using the standard Tofts model. Error bars derived from the standard 

deviation of the data 
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4.4. Discussion 

 

The results of this chapter demonstrate the trade-offs which arise from modifications of 

a prostate DCE acquisition protocol involving two of the most widely varied acquisition 

parameters: temporal resolution and acquisition duration.  This was possible through 

the use of a novel phantom device wherein precisely-known ground truth CTCs could 

be repeatedly produced and presented to the MRI scanner for measurement, and 

hence the accuracy of the measured CTCs, as well as phenomenological and PK 

parameter values derived from these CTCs, could be determined. 

 

The data presented herein for a standard 3D SPGR DCE imaging sequence (with a Tres 

of 8.1 s) demonstrates that non-negligible errors in wash-in, wash-out, Ktrans and ve 

parameters occur for both tumour and healthy tissue-like regions.  The measured CCC 

values increased with decreasing Tres, indicating greater precision and accuracy in the 

point-by-point measurement of the CTCs; however, further parametric analysis of the 

CTCs showed that the reduced number of data points, resulting from larger Tres values, 

hindered the accurate measurement of certain important curve-shape features.  Prior 

studies have reported that model-free phenomenological parameters, such as the 

wash-in and wash-out rates, increase the specificity and sensitivity for prostate cancer 

detection compared with other diagnostic techniques, even when using Tres values as 

high as 30 s [13, 64].  However, the actual wash-in and wash-out rates were not known in 

these studies, but rather a relative comparison of the measured rate values across the 

prostate area was performed.  The current work demonstrates that a Tres value  8.1 s 

is, in fact, required for accurate measurement of the absolute wash-in rate.   

 

Conflicting data has been published in the literature regarding the effect of Tres on PK 

parameter measurements.  For example, in a theoretical simulation study, Aerts et al. 

reported that the Tres requirements were strongly related to the actual PK parameter 

values being measured, with higher Tres required for the precise measurement of larger 

Ktrans values [119].  The physical data from the current study corroborates these 

theoretical findings, with up to 50% greater precision in the measurement of the lower 

(healthy) versus higher (tumour) Ktrans values observed, as well as twice to ten-times 

higher accuracy in the measured Ktrans values (using Tres of  8.1 s).  At lower Tres K
trans 

accuracy decreased significantly due to inadequate sampling of the wash-in portion of 

the curves.  Tres had less effect on the accuracy of ve measurements, with errors found 

to be fairly consistent at up to approximately 10% for Tres values  16.3 s (AD = 600 s), 
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increasing moderately to approximately 20% using Tres = 24.4 s; in this case, a 

variation in the number of sampling points due to modified Tres did not cause a major 

hindrance in the measurement of the final peak value of the CTCs, a key component 

for the accurate measurement of ve.  This is in line with the recent findings of Ginsburg 

et al., where it was reported that the effect of temporal resolution was significantly 

different for estimates of Ktrans than for ve 
[154].  Another recent study reported no 

significant effect of varying Tres on PK parameter values [158]; however, Tres values of 5 - 

30 s in this study were obtained by a retrospective resampling of the original Tres = 5 s 

data set, with a relative comparison among datasets used to explore any PK parameter 

changes, without knowledge of the absolute ground truth values. 

 

Reported acquisition duration (AD) values have also varied widely in published DCE-

MRI studies, again with conflicting results presented.  In one theoretical study,  AD 

values greater than 420 s were found to offer no improvement in PK parameter 

estimation for Tres values of less than 10 s, whereas below 420 s the precision in the 

measurement of higher Ktrans values was found to decrease [119].  Conversely, another 

study investigated the effect of retrospectively reducing the AD of patient prostate DCE 

data on the measured Ktrans and ve values reported no statistical difference using 

acquisition lengths as short as 150 s for the former and 50 s for the latter [157].  

However, these results were based on a ‘full-acquisition’ length of only 250 s, against 

which the PK parameter values measured from retrospectively-reduced data sets (AD 

= 50, 100, 150, and 200 s) were compared in a relative sense, and hence any potential 

CTC truncation effects (particularly on ve measurements) are unknown.  In the current 

study, large errors in ‘healthy’ ve values were measured for AD values ≤ 240 s, which 

may be attributed to the appearance of the peak in the ‘healthy’ CTC at approximately 

345 s:  the ve parameter estimation from PK model fitting is critically dependent on the 

CTC reaching a clearly-identifiable peak, with some degree of subsequent wash-out, in 

order for the model fit to produce an accurate ve value.  For instance, this explains why, 

in the current study for the ‘tumour’ CTC used (where the peak of the CTC appeared at 

approximately 35 s), a reasonably good ve measurement accuracy was maintained to 

AD values as low as 180 s (< 13% error using all Tres values tested).  Thus the findings 

in reference [157] that ADs as low as 50 s did not significantly change the measured ve 

values may only be valid for certain CTC shapes with peaks occurring at early time 

points (for example, as found typically in malignant tumours with fast wash-in / wash-

out profiles) and hence cannot be generalised.   

 

Indeed, this critical dependence on an adequate AD for the accurate measurement of 
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ve for different tissue / tumour types may explain the wide discrepancy in published ve 

values and the consequent perceived lack of diagnostic sensitivity and specificity to 

prostate cancer detection.  One such example is provided by a study by Chen et al., 

which reported no significant difference for ve values measured in tumour verses 

healthy prostate tissue which, in the light of the present study’s results, may have been 

strongly influenced by the short 120 s AD used for the measurements [15].  On the other 

hand, the authors did report that the measured Ktrans values were significantly higher in 

tumour tissue compared with healthy tissue, even at the short 120 s AD [15], and this 

was also seen in the present work where the AD was not found to exert a strong 

influence on the accuracy of Ktrans measurements for AD values  120 s and for Tres  

8.1 s.  Considering the critical dependence of the accuracy of the Ktrans parameter 

estimation on the initial wash-in slope of the CTC, this result is perhaps not surprising.  

Indeed, the results presented herein, along with those of certain previous patient 

studies, suggest that acquisition times as low as 120 s could be justified if Ktrans is the 

sole object of any PK modelling exercise.  On the other hand, if ve is also to be 

measured, longer acquisition durations are required.  In establishing an optimum AD, 

clinical studies will also need to consider the potential detrimental effect of patient 

movement with longer dynamic scan times [120].  However, various image registration 

techniques, specific to DCE, are being developed which may go some way to 

mitigating these effects [164, 165].  Such effects could be investigated using the current 

phantom system, using techniques similar to previous phantom studies where motion 

was simulated [166].   

 

The phantom used in the present study was designed to be anthropomorphic in both 

size and complexity, mimicking the conditions associated with abdominal patient 

imaging; as such, the protocols tested herein faced the same challenges, such as B1 

and B0 inhomogeneity, and potential inadequate spoiling and off-resonance effects, all 

of which may have contributed to the errors in the MR-measurements.   Although some 

of these homogeneity issues were compensated for in the data presented in this 

chapter, further work using this quantitative phantom-based approach (presented in the 

following chapters) probed these effects in more detail.   
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Chapter 5: Effects of temporal resolution, 

voxel-wise flip-angle correction, and model-

fitting regime on the accuracy and precision 

of arterial and prostate-tissue contrast-time 

curve measurements and derived 

pharmacokinetic parameter values 

 

5.1. Introduction 

 

5.1.1. AIF Measurement 

 

The arterial input function (AIF) is a measure of changes of the contrast agent (CA) 

concentration over  time  in  a  blood  vessel  feeding  the  tissue  of  interest before, 

during, and after intravenous bolus injection of a CA, and is critical to retrieve 

pharmacokinetic (PK) perfusion parameters using certain models in quantitative DCE-

MRI [77, 84, 88, 90], with the choice of AIF affecting the accuracy of derived PK parameters  

[92, 93, 167].  Various methods have been proposed for estimating the AIF which include: 

direct measurement in each individual patients [57, 85, 95]; indirectly deriving the AIF for 

each individual patient from a well characterised reference tissue, such as muscle [67, 91, 
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110]; or mathematically-formulating a population-average AIF  [57, 103-107], as discussed 

previously in Section 2.3.3.   

 

Although various population-averaged parameterised forms of the AIF have been 

proposed and are widely used, both in scientific studies and clinically, these do not take 

into account inter-patient physiological variability, and as such derived PK parameter 

values may not be accurate to the actual patient-specific values.  Furthermore, the use 

of a population average AIF has also been shown to greatly increase sensitivity to B1-

transmit (B1
+) field non-uniformity, since the AIF and tissue concentration-time curves 

(CTCs) are not affected by the same B1
+ errors, considering that the AIF is not 

measured from the acquired DCE-MRI data in this case [168, 169].   Additionally, the 

manner in which the original data were acquired, on which these population average 

AIF are based, has an impact on the physiological relevance of these AIFs for use in 

prostate DCE-MRI data analysis.  For example, the popular biexponential Weinmann 

plasma curve (Equation [2.35]) [57], which has been utilised in a number of prostate 

DCE-MRI studies [103, 170, 171], was derived from blood samples acquired at low temporal 

resolution, which impeded the ability to correctly measure the intrinsic features of the 

AIF curve, such as the bolus first pass and recirculation; in fact, these features are not 

even represented in this model, as shown in Figure 5.1.  Further, the blood samples 

were collected from the right cubital vein (a superficial vein located in the arm), and as 

such this AIF is not representative of the actual CA concentration input function feeding 

the prostate, and hence it is not an appropriate model to use for PK analysis in the 

prostate.   

 

 

Figure 5.1: Graph showing the empirical mathematical formulations for the arterial input function (AIF) as 
proposed by Weinmann et al. and Parker et al. 

 

Another widely used mathematical formulation of the AIF is the 10 parameter model 

proposed by Parker et al. (given previously as Equation [2.36]) [105].  This more complex 
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model of the AIF was derived from relatively higher temporal resolution DCE-MRI 

datasets (temporal resolution (Tres) = 5 s), and in this case the AIFs were measured in 

either the descending aorta or iliac arteries (the data was taken from patients with 

either abdominal or pelvic tumours).  Although this model may be a reasonable 

approximation of the AIF as measured in the iliac artery that feed the prostate, the fact 

that this model is a derived from data taken from various sites in the patients means 

that it is not possible to affirm that this is indeed the case.  Further, as with any 

population averaged  AIF proposed in the literature, the AIF profile proposed by Parker 

was strongly influenced by the methodologies employed in its formulation, such as the 

CA dose and injection rate [107, 109], and as such only holds relevant when the same 

methodologies are employed in the study it is applied to.  Additionally, other patient-

specific physiological factors such as cardiac output, organ function, and body fat also 

influence the AIF profile, further limiting the usefulness of a population averaged 

formation with regards extracting truly patient-specific information from the data. 

 

Other methods for indirectly deriving the AIF, such as variations of the reference region 

model, have been proposed as a possible alternative to direct measurement in an 

artery, as these methods relax the requirements on the Tres and signal-to-noise ratio 

(SNR) of the acquisition sequence [67, 91, 110].  However, the patient-specific accuracy of 

this method is heavily influenced by the choice of ‘known’ PK parameter values for the 

reference tissue, usually taken from the literature.  Due to this assumption, i.e. that the 

perfusion conditions for the reference tissue, usually muscle, are the same for all 

patients, this method cannot provide a true patient specific AIF. 

 

Certain considerations need to be taken into account when designing DCE-MRI 

protocols, such as choosing an appropriate Tres for the anatomical region of interest, 

correcting for differences between the set and actual flip angle due to non-uniformities 

in the B1
+ field, and choosing an appropriate technique for analysing the data.  To date 

a method has been lacking which allows for repeated acquisitions of a known ‘ground 

truth’, physiologically-relevant AIF in an anthropomorphic environment which replicates 

the challenges faced in patient abdominal / pelvic imaging.  This has hampered a 

comprehensive investigation into the absolute accuracy and precision of various DCE-

MRI approaches, as implemented at the scanner.  There have been previous attempts 

to investigate the measurement of the AIF using phantom devices, probing effects such 

as: in-flow, RF spoiling and field non-uniformity, as well as magnitude verses phase 

derived measurements [102, 172, 173].  However, none of the devices proposed to date 

were able to produce a physiologically relevant AIF containing all the features observed 
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in patient-measured curves, with precisely known ground truths established using a 

modality other than MRI, and in an anthropomorphic environment which mimics the 

patient’s physiology: the phantom device presented in Chapter 3 of this thesis allowed 

for this. 

 

As discussed in the preceding chapters, the Tres values reported in previous prostate 

DCE-MRI studies vary widely, from 2 - 30 s [137].  The optimal value to use is unknown 

and likely to depend on several factors.  Even recommendations from simulation 

studies differ, with some studies reporting that a Tres  1s is required to accurately 

capture the rapid changes during the initial bolus passage, and thus was felt to be 

essential for reliable DCE-MRI quantification of the AIF [22, 174], while another study 

recommends a Tres of 2 – 3 s as adequate to characterise the AIF [121], with further 

published guidelines specifying that a Tres  15 s is sufficient for performing PK analysis 

in the prostate  [135, 136].  As with the measurement of the tissue CTCs, which was the 

subject of Chapter 4, to date a method has been lacking to quantitatively investigate 

the sampling requirements for the accurate and precise measurement of the AIF in 

vivo.  With this in mind, in this chapter methodologies were further developed for use 

with the phantom device presented in Chapter 3 to allow for the production of a 

precisely-known, physiologically-relevant AIF with a high level of repeatability. Further, 

phantom modifications also allowed for the field of view (FOV) to be reduced in the z-

direction, while still negating any inflow effects by ensuring that an appropriate length of 

the input tubing was contained within the imaging slab [102].  This allowed for rapid 3D 

imaging to be performed (Tres 1 s) without the need to use of any accelerated imaging 

techniques, such as parallel imaging, as was used in the preceding chapter.  This AIF 

could then be measured across a range of Tres values from 1 – 30 s, and the effects of 

Tres on the accuracy, as well as intra- and inter-session precision, quantified. 

 

Advances in MR hardware, acquisition and analysis techniques, as well as 

computational processing power over the last decade or so, and the subsequent gain 

in Tres and SNR this has provided to DCE-MRI, mean that measurement of an accurate 

patient-specific AIF in vivo is now feasible.  One of the aims of the work presented in 

this chapter was to use a modified version of the phantom test device presented in 

Chapter 3 to quantitatively investigate the accuracy and intra- / inter-session precision 

of MR-measured AIFs, as well as to investigate their effects on the derived PK 

parameter values 
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5.1.2. Effects of B1
+ Non-uniformity 

 

Despite the fact that B1
+-field non-uniformity is thought to be one of the main sources of 

systematic error in CA concentration measurements [121, 124], and it being known that the 

B1
+-field homogeneity can vary by 30 % for abdominal imaging at 3T [168, 175], the 

reported use of B1
+ correction for DCE-MRI studies in the prostate is rare, with a few 

exceptions [176, 177], although none of these provided a comprehensive evaluation for 

how the flip angle correction affected the accuracy of DCE-MRI measurements in vivo.  

However several studies have investigated the use of such correction strategies for 

DCE in other anatomical regions, such as in the breast, reporting large discrepancies 

between the set flip angle (set) and actual flip angle (act) of up to 55% [178-180].  It is 

known that these differences between the set and actual flip angles have a strong 

effect on the accuracy of the PK parameters derived from the data [168]; for example in a 

simulation study by Buckley and Parker, which was based on patient prostate DCE-

MRI data, it was reported that a -30% deviation in flip angle resulted in PK parameter 

estimation errors of up to 40% [168].  Another recent simulation study by Park et al. 

estimated B1
+

 -inhomogeneity-induced flip angle variation using a water phantom and 

images taken from the brains of three healthy volunteers using a head coil.  This data 

was subsequently used to simulate the effects of B1
+ non-uniformities on derived PK 

parameters, reporting that a -23 to +5% fluctuation in flip angle resulted in errors of up 

to 49% in the derived PK parameter values [181].  In this chapter, the Actual Flip-angle 

Imaging (AFI) method, as proposed by Yarnykh et al., was used to estimate the act at 

each imaging voxel [127].  The AFI method allows for a rapid 3D implementation, with 

minimal post-processing requirements facilitating fast computational time, and 

providing accurate act measurements that are highly insensitive to off-resonance and 

physiological effects, as well as T1 
[127, 182].  This technique is based on a T1-weighted 

fast-field echo (FFE) sequence with an arbitrarily set flip angle, α, and two alternating 

repetition times, where TR1 < TR2.  Here two assumptions are made, namely: (i) that 

the relaxation effect is non-negligible, and a fast repetition rate of the sequence results 

in establishing a pulsed steady state of magnetisation; and (ii) that the sequence is 

ideally spoiled.  Below the mathematical formulation used in the AFI method to 

estimate the act is derived, as first outlined in reference [127]. 

 

In the pulsed steady state, a consecutive solution of the Bloch equation (Equation [2.1]) 

for the AFI sequence results in the following expression for the longitudinal 

magnetisations, Mz1 and Mz2, before each excitation pulse: 
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 𝑀𝑧1 = 𝑀0

1 − E2 + (1 − E1)E2cos𝛼

1 − E1E2cos2𝛼
, [5.1] 

and 

 𝑀𝑧2 = 𝑀0

1 − E1 + (1 − E2)E1cos𝛼

1 − E1E2cos2𝛼
, [5.2] 

 

 

where M0 is the equilibrium magnetisation, 

 

 E1 = exp (−
𝑇𝑅1

𝑇1
), [5.3] 

and 

 E2 = exp (−
𝑇𝑅2

𝑇1
). [5.4] 

 

The observed signals, S1 and S2, are proportional to the above magnetisations, Mz1 

and Mz2, and the ratio, r, of the measured signals can be expressed as a function of α, 

TR1, TR2, and T1, given as: 

 

 𝑟 =
𝑆2

𝑆1
=

1 − E1 + (1 − E2)E1cos𝛼

1 − E2 + (1 − E1)E2cos𝛼
. [5.5] 

 

For short TR1 and TR2, the first-order approximation can be applied to the exponential 

terms, such that: 

 exp (−
𝑇𝑅n

𝑇1
) ≈ 1 −

𝑇𝑅n

𝑇1
,   (n = 1, 2) [5.6] 

 

and thus Equation [5.5] can be simplified to: 

 

 𝑟 ≈
1 + 𝑛cos(𝛼)

𝑛 + cos(𝛼)
, [5.7] 

 

where 

 𝑛 =
𝑇𝑅2

𝑇𝑅1
. [5.8] 

 

Therefore, we can use the signal ratio, r, to approximate the act independent of T1 as: 
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 𝛼𝑎𝑐𝑡 ≈ arccos (
𝑟𝑛 − 1

𝑛 − 𝑟
), [5.9] 

 

allowing for the act to be estimated at each imaging voxel.  This information can then 

be used to correct the DCE data for the effects caused by non-uniformity in the transmit 

B1 field. 

 

5.1.3. Linear Versus Non-Linear Least-Squares Model Fitting 

 

In the majority of DCE-MRI studies reported in the literature, kinetic parameters were 

estimated by fitting the PK model using a non-linear least-squares (NLS) approach [86].  

However, using a linear least-squares (LLS) method has several advantages, which 

include: faster computational time, better model fitting under low SNR conditions, and 

less sensitivity to Tres 
[87, 88].  For both the NLS and LLS approaches, finding the ‘best fit’ 

of a model to the data involves the minimisation of a merit function, which in the case of 

this study is the sum of the squares of the differences between the measured data 

points and the model estimated points.  However, results from NLS fittings of the Tofts 

model are highly dependent on the initial estimates of the constants to be calculated 

[86], which is not the case for LLS fitting, as this method does not require any initial 

parameter estimation.   In 2004, Murase et al. introduced a linear version of the Tofts 

model and used simulations to demonstrate its advantages over a NLS approach [88].  

Since then this linear interpretation of the Tofts model has been used in many DCE-

MRI studies of several anatomies, including the prostate [183, 184], breast [185, 186], liver 

[187], and brain [188].  However, to date no study has been able to properly quantify the 

performance of this PK modelling approach, owing to a lack of knowledge of the 

ground truth curves; in this chapter data from the DCE-MRI phantom device was used 

to this end. 

 

There were three main aims to the work presented in this chapter, namely to use a 

modified version of the phantom device presented in Chapter 3 to quantify the effects 

of (i) Tres, (ii) voxel-wise flip-angle correction (VFAC), and (iii) the use of a linear verses 

non-linear version of the standard Tofts model, on the accuracy and intra- / inter-

session precision of the MR-measured AIFs and CTCs, as well as the derived PK 

parameters. 
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5.2. Materials and Methods 

 

5.2.1. Phantom 

 

One limitation of the phantom described in Chapter 3 was that it did not allow for the 

use of an imaging protocol with a FOV smaller than the width of the prostate section 

without artefacts corrupting the data, due to the inflowing spins not reaching a steady-

state by the time they entered the measurement chamber (see Section 2.4.5).  In order 

to facilitate the use of an ultra-fast 3D protocol the phantom was modified to include an 

additional measurement section.  These modifications, shown at various stages of 

construction in Figure 5.2 (b) and (c), allowed for a thin FOV to be placed through the 

phantom in the axial plane, as illustrated in Figure 5.2 (a), which encompassed enough 

of the feeding tubing (150mm) to ensure the spins reached a steady-state before 

entering the measurement chamber.  This was informed by a simple set of experiments 

performed using the unmodified phantom, wherein the phantom was imaged several 

times using the same protocol used for the phantom DCE experiments in this chapter, 

but with varying imaging volume widths in the z-direction (i.e. with different lengths of 

the feeding tubing encompassed by the imaging volume [across the range: 20 - 100 

mm]), while pumping baseline CA concentration at the flow rate used in all experiments 

(1.5 ml s-1).  This revealed that > 50 mm of both of the 3.2mm internal diameter tubes 

(which feed each measurement chamber) were required to be contained within the 

imaging volume in order to negate any inflow effects 

 

 

 

Figure 5.2: (a) Diagram of modified section of the phantom, showing the input tubing set within the imaging 
volume, with direction of flow indicated.  Photographs showing (b) the additional 2 chambers added into 

the phantom device and (c) the two chambers and tubing in situ in the phantom. 
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The modified phantom device allowed for the simultaneous production of two distinct 

CTCs, each produced within a separate measurement chamber, the geometry of which 

was the same as the measurement chambers previously described in Chapter 3 for 

use in the ‘prostate’ section.  The chambers were surrounded with heterogeneously 

distributed tissue-mimicking materials with T1 and T2 properties similar to that of the 

tissue found in the abdomen, as described in Chapter 3.  The CTCs were produced 

using the same computer-controlled four-pump system previously described, pumping 

liquid containing the Gd-DTPA CA (Multihance; Bracco, USA), and at the same low 

flow rate previously used (1.5 ml s-1).   

 

5.2.2. Extraction of in vivo AIF Data 

 

In order to establish an appropriate, physiologically-relevant curve-shape for the AIF 

used in this phantom study, prostate DCE data from an earlier in vivo patient study was 

used, acquired with Tres = 3 s, and with AIFs measured close to the prostate gland in 

the feeding artery (the internal iliac artery).  In this retrospective study, DCE data from 

81 patients with clinical suspicion of PCa (abnormal results from prostate specific 

antigen (PSA) screening and / or digital rectal exam) who were recruited onto a clinical 

research study were analysed.  These research subjects underwent a multi-parametric 

prostate examination prior to a 12-core biopsy.  The MR protocol included:  including 

high-resolution T1-weighted and T2-weighted imaging, diffusion-weighted imaging, 

spectroscopic imaging, and DCE imaging using a Philips 3T MR imaging system 

(Achieva; Philips, Netherlands) with an 8-channel phased array detector coil coupled 

with an endorectal coil.  Inclusion criteria included the patient’s ability to undergo 

endorectal coil prostate MRI and exclusion criteria included any contraindication to MRI 

using Gd-based CAs.   

 

Of the 81 research subjects recruited onto this study, it was only possible to accurately 

extract AIF data from 32 of these for the following reasons: 

 41 patients were excluded due to gross motion during the DCE scan; the lack of 

use of a muscle relaxant such as butylscopolamine bromide (Buscopan; 

Boehringer-Ingelheim, Ingelheim, Germany) [133] in the study was likely the 

reason for this high degree of motion artefacts encountered 

 8 patients were excluded due to the size/orientation of the vessel, i.e could not 

place an ROI with voxels  4 and completely avoid signal contamination from 

the vessel walls (see Section 2.4.4) 
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The presence or absence of PCa in each of these 32 patient datasets ultimately used 

was irrelevant for this retrospective study, since only the AIF data measured in the 

internal iliac artery was used from the DCE data, which was assumed to not be 

influenced by the presence or absence of cancer in the prostate. 

 

The in vivo patient DCE data were acquired using a 3D spoiled gradient echo imaging 

sequence with the following scan parameters: TR = 5.5 ms, TE = 2.0 ms,  = 15, FOV 

= 256 x 265 x 60 mm3, spatial resolution = 1 x 1 x 6 mm3, number of signal averages 

(NSA) = 2, and number of slices = 10.  A SENSE parallel imaging factor (R-factor) of 2 

was used, which gave a Tres of 3.1 s, with 116 dynamics being acquired giving an 

acquisition duration 360 s.  0.1 mM kg-1 of Gd-based CA (Gadovist; Bayer, Germany) 

was administered in an antecubital vein using a syringe pump (rate 4 ml s-1), followed 

by 20 ml saline flush.  The protocol included a minimum of 5 baseline scans prior to 

contrast injection for estimation of baseline signal intensities.  An ROI (4-8 voxels) was 

manually defined at a central slice in the internal iliac artery and AIFs derived from the 

measured STCs using Equation [2.18].  Care was taken when defining the ROIs to 

avoid the vessel walls, ensuring that the measured signal originated from the blood 

plasma only, thereby avoiding any partial volume effects.  All 32 MR-measured AIFs 

were then temporally aligned and the mean taken as the representative patient 

population-average AIF (AIFPA) for use in this study. 

 

5.2.3. Ground Truth AIF  

 

Firstly, the AIFPA was converted from Gd to black dye concentration using an inverted 

form of Equation [3.7].  The pumps used in the phantom system were intrinsically 

limited with regards how rapidly they could effect a change in concentration at the 

phantom.  As such, in order to produce the smooth, rapidly-changing curve-shape of 

the patient-data-derived AIFPA, the natural slew rates of the pumps used in the system 

was exploited.  First a string of square wave pulses at the maximum voltage for the 

required flowrate, and at widths of 5, 10 , 15, 20,  25, and 30 s, were programmed and 

the change in black dye concentration over time was measured using the optical 

imaging system (as described in section 3.2.2).  A pulse width of 10 s was chosen as a 

starting point for the 1st peak of the AIF, with a shorter, lower-amplitude pulse chosen 

for the 2nd peak, and the ‘wash-out’ phase of the AIF was programmed using the data 

from this section of the patient derived data.  Though a set of iterative, empirical 

experiments, where the programmed voltage-time profile was slightly modified between 
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consecutive runs and the black dye concentration measured, a programmed voltage-

time profile was developed which produced an AIF curve-shape which closely 

correlated with the MR-measured population average (concordance correlation 

coefficient (CCC)  0.99).  The ‘ground truth’ AIF, AIFGT, was then established from 9 

repeat-optical measurements: five measured consecutively on the same day, and a 

further four measured on separate days, with CCC and root mean square error (RMSE) 

values also calculated in order to establish the accuracy and intra- / inter-session 

precision of the phantom system.  All statistical data analyses were performed using 

SPSS (v.22.0, IBM Corp, USA). 

 

5.2.4. Ground Truth Tissue CTCs 

 

As with the work presented in Chapters 3 and 4, ‘healthy’ and ‘tumour’ tissue-

mimicking CTCs were generated using the standard Tofts model [84], and in the case of 

this study, the optically-measured AIFGT, and input PK parameters representative of 

those observed in patient data (Ktrans = 0.13 (‘healthy) and 0.70 (‘tumour’); ve = 0.29 

(‘healthy) and 0.34 (‘tumour’)) [145, 189].  CTCs consisted of 120 seconds at baseline 

concentration, followed by a 360-second physiological CTC.  Ground truth tissue CTCs 

were again established from nine repeated optical measurements (five intra-session, 

five inter-session), as outlined previously.     

 

5.2.5. MRI Phantom Data Acquisition 

 

DCE-MRI phantom data were acquired using a 3T multi-transmit scanner (Achieva; 

Philips, Netherlands) using a 32-channel detector coil.  A ‘thin-slab’ 3D spoiled gradient 

echo imaging sequence was used, with the following scan parameters: TR = 3.5 ms, 

TE = 1.6 ms,  = 23, FOV = 224 x 224 x 18 mm3, spatial resolution = 1.75 x 1.75 x 

6 mm3, and number of slices = 3.  450 consecutive MR images were acquired at a Tres 

of 1.2 s.  A flip angle of 23 was chosen in order to ensure that every concentration in 

the range used in this study was measured with the lowest possible uncertainty, by 

optimising the SNR of the measurements while providing a good dynamic range to the 

measurement based on the TR and concentration ranges used, calculated using the 

method outlined by Da Naeyer et al. [190].  Each experiment consisted of two 

measurements of the AIF and either the ‘tumour’ or ‘healthy’ CTC, each repeated on 5 

separate days, and 5-times within the same scanning session, in order to measure the 
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inter- and intra-session precision of measurements.  Each dataset was then 

retrospectively averaged with using a number of signal averages (NSA) ranging from 2 

to 25 (in increments of 1) to give a range of Tres values, from the original starting value 

of 1.2 s, to 30.5 s: this provided a total of 450 DCE-MRI dataset.   B1
+ maps were also 

acquired using a dual-steady-state sequence with the same geometry and spatial 

resolution as above and with: TR1 / TR2 / TE = 30 ms / 150 ms / 2 ms, flip angle = 60. 

 

5.2.6. Voxel-wise Flip-Angle Correction (VFAC) 

 

Actual flip angles were calculated at each voxel using the B1
+ mapping data and 

Equation [5.9].  CA concentrations were then derived from the data using both the 

programmed and corrected flip angles, for comparison. 

 

5.2.7. Data Analysis 

 

RMSE and CCC values were calculated between the MR-measured and ground truth 

AIFs and CTCs; curves were aligned, and ground truths temporally-resampled to 

match MR data prior to analysis.  CCC and RMSE values were calculated for the entire 

CTC and AIF, and the RMSE is reported as a percentage of the maximum CA 

concentration change (%RMSE).  SNR values were calculated as per the same 

method outlined in section 4.2.4. 

 

PK analysis was performed by fitting the data with standard Tofts model using both 

linear least squared (LLS; implemented in Matlab) and non-linear least squared 

approaches (NLS; using DCEMRI.jl toolkit [147], as previously used in Chapters 3 and 4) 

on two manually-selected regions of interest, each containing 12 voxels and set within 

the respective measurement chamber.  Ktrans, ve, and kep values were derived from the 

MRI-measured CTCs and AIFs, compared with the ground truth values (derived from 

the optically-measured data), and the percentage differences calculated.  PK analysis 

was performed on all datasets, i.e. Tres values from 1.2 s to 30.6 s, with and without flip 

angle correction, for each of the five intra- and five inter-session datasets.   
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5.3. Results 

5.3.1. Patient Population Average AIF 

 

Figure 5.3 shows the MR-measured AIFs taken from the 32 patients, and Figure 5.4 

the mean AIF, taken as the AIFPA, with the standard deviation across all 32 patients 

represented by the error bars.  The AIFPA was fit with the Parker model using a NLS 

fitting approach (R2 = 0.98), as also shown in Figure 2.4, with the fit parameters given 

in Table 5.2. 

 

 

Figure 5.3: Graph showing the arterial input functions (AIFs) derived from 32 patient DCE-MRI datasets. 

 

 

Figure 5.4: Graph showing the population-average arterial input function (AIF), taken as mean of the 32 
measured AIFs, with error bars showing standard deviation from the mean, with the Parker model fit also 

shown. 

 

5.3.2. Ground Truth AIF 

 

The range of CA concentration-time waveforms produced by the phantom pump 

system at 5 to 35 second square-wave voltage input widths are shown in Figures 5.5 

and 5.6.   
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Figure 5.5: Graph showing the intrinsic pump response to square wave voltage inputs of varying widths 
from 5 to 60 s in increments of 5 s. 

 

 

 

Figure 5.6: Graph the normalised pump response curves all transposed to the same temporal starting 
position. 

 

 

 

Figure 5.7: Graph showing the patient derived population average AIF (blue plot) and the intrinsic pump 
response to 10 s square wave input (dashed black plot). 
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Figure 5.8: Graph showing the patient derived population average AIF (AIFPA; dashed black plot), the 
empirically-derived input curve required to produce the desired AIF shape (light blue plot), and the 

resultant optically measured ‘ground truth’ AIF (AIFGT; green data points). 

 

A 10 s square wave was selected as a starting point when empirically deriving a 

voltage waveform to produce the AIF, as this waveform produced a response which 

closely approximated the initial rapidly-changing portion of the AIF curve, as shown in 

Figure 5.7.  The empirically derived ‘programmed’ waveform used to produce the 

required AIF shape is shown in Figure 5.8 (cyan plot), along with the AIFPA, which was 

the target AIF waveform of this experiment, and the resulting optically measured AIFGT.   

 

The AIFGT was taken as the average of nine optical experiments, five from within the 

same experimental session, and a further four measured on different days.  Each 

individually-optically-measured AIF was then compared with the mean (AIFGT), with all 

nine measurements having a CCC > 0.995 and %RMSE  1.1%, as shown in Table 

5.1.  The AIFGT was then also fit with the Parker model (R2 = 1.00), with the resulting 

parameters given in Table 5.2. 

 

 

Table 5.1: The concordance correlation coefficient (CCC) and pecentage root mean square error 
(%RMSE) results from repeat intra- and inter-session optical experiements. 

Optical Measurements 

 

CCC (95% CI) %RMSE 

Session 1 0.997 (0.997, 0.998) 0.8 

Session 2 0.995 (0.993, 0.996) 0.6 

Session 3 0.996 (0.995, 0.997) 0.9 

Session 4 0.998 (0.998, 0.999) 1.1 

Session 5A 0.998 (0.997, 0.998) 0.9 

Session 5B 0.999 (0.999, 0.999) 0.7 

Session 5C 0.997 (0.996, 0.998) 1.1 

Session 5D 0.995 (0.992, 0.996) 0.9 

Session 5E 0.998 (0.997, 0.998) 0.6 
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Table 5.2: Parker AIF function parameter values for the MR-measured population average AIF (AIFPA) and 
the optically-measured ground truth AIF (AIFGT) used in this study. 

 
A1 A2 T1 T2 s1 s2 a b s t 

AIFPA 0.329 0.262 0.188 0.370 0.075 0.128 1.020 0.130 29.239 0.468 

AIFGT 0.454 0.132 0.194 0.467 0.092 0.091 1.065 0.166 9.788 0.446 

 

5.3.3. Ground Truth Tissue CTCs 

 

The final AIFGT used in this study is shown in Figure 5.9, given as Gd concentration, 

with the AIFGT Parker model fit also shown, along with the Parker model fit of the AIFPA.  

The tissue CTCs generated using the PK parameter values given previously are shown 

in Figure 5.10 as the respective ‘programmed’ plots, along with the optically-measured 

‘ground truth’ tissue CTCs for both ‘healthy’ and ‘tumour’ tissue.  Ground truth PK 

parameter values were derived by fitting the standard Tofts model using both the LLS 

and NLS approaches, and the resulting values are presented in Table 5.3. 

 

 

Figure 5.9: Graph showing the mean patient-data derived AIF, the established ground truth AIF, with the 
Parker AIF model fit also shown 

 

Figure 5.10: Graph showing the programmed and ground truth (optically-measured) tissue CTCs 
(generated using the standard Tofts model with the ground truth AIF and PK parameters representative of 

reported patient values). 
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Table 5.3:  Programmed and optically-established ground truth PK parameter, derived by fitting the 
standard Tofts model using LLS and NLS approaches (± the standard deviation across all 9 experiments)  

 

K
trans 

[min
-1

] ve kep [min
-1

] 

Programmed   
Healthy 0.13 0.29 0.45 

Tumour 0.70 0.34 2.06 

LLS fit Tofts model   
Healthy 0.112 ± 0.001 0.293 ± 0.001 0.379 ± 0.001 

Tumour 0.711 ± 0.001 0.350 ± 0.001 2.028 ± 0.002  

NLS fit Tofts model   
Healthy 0.118 ± 0.001 0.291 ± 0.001 0.388 ± 0.001 

Tumour 0.719 ± 0.002 0.358 ± 0.001 2.021 ± 0.002 

 

5.3.4. MRI Phantom Experiments 

 

The act at the ROIs where the AIF and tissue CTCs were measured differed from the 

set value by between -29% and -33% for all experiments, with inter-session standard 

deviation in act calculations of 2% at any particular voxel, and a maximum recorded 

standard deviation in act across any individual ROI (used for the measurement of 

either the AIF or tissue CTC) of 3%.  AIFs and tissue CTCs derived from the MR-

measured STCs with no flip angle correction applied to the data showed large 

underestimations in the derived Gd concentrations, as shown in Figure 5.11, with 

correspondingly low CCC values of > 0.42, and %RMSE of up to 14% for the 

measurement of the AIF (see Table 5.4).  These errors were greatly reduced when a 

VFAC map was calculated and applied to the data, as illustrated in Figure 5.12, with a 

corresponding gain in the CCC (> 0.83) and %RMSE ( < 8%) values, for both intra- and 

inter-session measurements (see Table 5.4).   

 

 

Figure 5.11: Graph showing the MR-measured AIF and tissue contrast contrast-time curves (CTCs) for the 
non-flip-angle corrected MR data for a single experimental run, with error bars showing the standard 

deviation across the ROIs. 
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Figure 5.12: Graph showing the MR-measured AIF and tissue contrast contrast-time curves (CTCs) for the 
voxel-wise flip angle corrected data for a single experimental run, with error bars showing the standard 

deviation across the ROIs. 

 

 

Table 5.4: The concordance correlation coefficient (CCC) with 95% confidence intervals (CI) and 
percentage root mean square error (%RMSE) results from repeat intra- and inter-session DCE-MRI 

experiments (given with and without voxel-wise flip-angle correction (VFAC). 

MRI Measurements 

  
Without VFAC With VFAC 

  
CCC (95% CI) %RMSE CCC (95% CI) %RMSE 

Session 1 0.528 (0.480, 0.573) 12.1 0.882 (0.855, 0.904) 6.2 

Session 2 0.505 (0.457, 0.549) 11.8 0.893 (0.868, 0.914) 5.8 

Session 3 0.518 (0.472, 0.561) 12.3 0.920 (0.901, 0.935) 5.2 

Session 4 0.464 (0.416, 0.509) 12.6 0.867 (0.837, 0.892) 6.5 

Session 5A 0.429 (0.383, 0.473) 14.1 0.839 (0.805, 0.868) 7.4 

Session 5B 0.431 (0.382, 0.477) 13.8 0.829 (0.791, 0.860) 7.6 

Session 5C 0.449 (0.403, 0.494) 13.6 0.861 (0.830, 0.887) 6.8 

Session 5D 0.438 (0.391, 0.483) 13.7 0.847 (0.813, 0.875) 7.2 

Session 5E 0.420 (0.373, 0.465) 14.1 0.826 (0.788, 0.857) 7.7 

 

 

 

Table 5.5: Measured signal-to-noise ratio (SNR) values across the range of temporal resolution (Tres) 
values used in this study. 

NSA Tres SNR 

 

 
NSA Tres SNR 

 

 
NSA Tres SNR 

 

 
NSA Tres SNR 

                  

1 1.2 30.9 
 
 8 9.8 73.7 

 
 15 18.4 116.8 

 
 22 26.9 143.9 

2 2.4 52.0 
 
 9 11.0 81.1 

 
 16 19.6 128.4 

 
 23 28.2 173.5 

3 3.7 59.5 
 
 10 12.2 89.6 

 
 17 20.8 111.5 

 
 24 29.4 195.2 

4 4.9 59.2 
 
 11 13.5 115.2 

 
 18 22.0 131.0 

 
 25 30.6 224.7 

5 6.1 71.0 
 
 12 14.7 126.4 

 
 19 23.3 153.2 

 
 

   
6 7.3 77.7 

 
 13 15.9 138.1 

 
 20 24.5 157.7 

 
 

   
7 8.6 67.6   14 17.1 133.3   21 25.7 152.2 
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Table 5.5 shows that, overall, SNR values increased from 20.9 up to 224.7 as the Tres 

values were reduced by averaging the data in the temporal dimension.  Figure 5.13 

show the absolute PK parameter values derived from the non-flip-angle corrected MR 

data, along with known ground truth values (shown as dashed lines).  The error bars in 

these graphs show the intra- (black error bars) and inter-session variation (red / blue 

error bars).  Figure 5.14 shows the VFAC MR-data similarly presented.  Both Figures 

show a drop in accuracy in the measurement of Ktrans and kep when using Tres values > 

15 s; in this Tres region, both parameter values were overestimated using the LLS 

fitting approach and underestimated using NLS fitting.  ve values did not vary greatly 

across the range of Tres values tested.   

 

Performing VFAC on the data increased the accuracy of the derived PK parameters by 

up to 12.9%, 9.2% and 20.2% for Ktrans, ve and kep respectively using the base 1.2 s 

protocol, as well as an increase in inter-session precision of up to 11.2%, as shown in 

Table 5.6, and illustrated by the error bars in Figures 5.13 and 5.14.  With the VFAC 

data, the LLS fitting approach almost doubled the accuracy of the Ktrans estimates, and 

affected an increase in the precision of Ktrans (intra-session) and kep (intra- and inter-

session) of 4%.  These trends were seen across the range of Tres values tested in this 

study, the results of which are presented in Appendix B.   

 

Table 5.7 presents the Tres values which resulted in derived PK parameter values with 

errors  5, 10, 15, and 20% for both the LLS and NLS approaches, based on the 

results from 9 experimental runs (five intra-session and five inter-session, VFAC 

applied to all data).  kep was estimated with errors  5% using both the LLS and NLS 

methods at Tres  11.5 s and 9.8 s respectively, and only the LLS method provided 

estimates of Ktrans with errors  5%, at a Tres  7.3 s.  Neither fitting approach could 

estimate ve with errors   5%.  To achieve PK parameter errors of  10% the NLS 

approach required a Tres  8.6 s and the LLS method a Tres  11 s.  Both approaches 

had similar Tres requirements in order to achieve PK parameter errors   15%.  For 

rough PK parameter estimated with errors  20% the LLS and NLS fitting regimes 

required Tres  17.1 s and 23.3 s respectively.  As previously mentioned, ve values were 

not strongly affected by the Tres, with  7% and  11% errors in PK parameter 

estimations at all Tres values tested, using the LLS and NLS fitting approaches 

respectively.  
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LLS Tofts Model Fitting  
(without VFAC correction) 

NLS Tofts Model Fitting  
(without VFAC correction) 

 
Figure 5.13: Graphs showing the mean absolute pharmacokinetic parameter values derived from both the 
intra- and inter-session datasets without voxel-wise flip-angle correction (VFAC) applied to the data. Black 
error bars show the intra-session standard deviation from the mean, and the red / blue error bars show the 

inter-session standard deviation from the mean. 

 

Table 5.6: Absolute maximum % error and % standard deviation (S.D.) in the measurement of 
pharmacokinetic parameters using the base 1.2 s temporal resolution (Tres) acquisition protocol, with and 

without voxel-wise flip-angle correction (VFAC). 

 
Accuracy 

 
Intra-session 

Precision  
Inter-session 

Precision 
      

 

NLS 
Fitting 

LLS 
Fitting 

 NLS 
Fitting 

LLS 
Fitting 

 NLS 
Fitting 

LLS 
Fitting 

Max 
%Error 

Max 
%Error 

 Max  
%S.D. 

Max  
%S.D. 

 Max  
%S.D. 

Max  
%S.D. 

         

                Without VFAC  

K
trans

 18.9 15.9  7.6 0.9  17.9 13.6 

ve 15.4 15.5  2.4 2.5  15.4 15.5 

kep 23.1 19.9  9.1 2.2  8.9 4.9 

                        With VFAC 

K
trans

 6.0 3.3  5.1 0.8  6.7 6.2 

ve 6.2 6.9  2.8 2.9  7.6 7.6 

kep 2.9 3.3  6.7 2.1  6.3 2.8 

LLS Tofts Model Fitting  NLS Tofts Model Fitting  
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(with VFAC correction) (with VFAC correction) 

 
 

Figure 5.14: Graphs showing the mean absolute pharmacokinetic parameter values derived from both the 
intra- and inter-session datasets with voxel-wise flip-angle correction (VFAC) applied to the data. Black 

error bars show the intra-session standard deviation from the mean, and the red / blue error bars show the 
inter-session standard deviation from the mean. 

 

 

Table 5.7: Temporal resolution (Tres) requirements in order to achieve errors   5%, 10%, 15%, and 20% in 
pharmacokinetic parameter estimates.  Data taken from all 9 experimental runs (five intra-session and five 

inter-session), with voxel-wise flip-angle correction (VFAC) applied. 

  
LLS Tofts Model Fitting  
(with VFAC correction)  

NLS Tofts Model Fitting  
(with VFAC correction) 

  
All K

trans
 ve kep 

 
All K

trans
 ve kep 

Errors 
 

Tres 
 

Tres 

 5% 
 

-  7.3 s -  11 s 
 

- - -  9.8 s 

 10% 
 

 11 s  11 s  30.6 s  14.7 s 
 

 8.6 s  8.6 s  28.2 s  14.7 s 

 15% 
 

 14.7 s  14.7 s  30.6 s  15.9 s 
 

 14.7 s  14.7 s  30.6 s  19.6 s 

 20% 
 

 17.1 s  17.1 s  30.6 s  19.6 s 
 

 22 s  23.3 s  30.6 s  22 s 
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5.4. Discussion 

 

In this chapter MR-data derived PK parameter values were compared with precisely 

known ground truth values and errors of up to 47% were found in parameter 

estimations, when an inappropriate Tres was used and no flip angle correction was 

performed on the data.  By optimising the Tres these errors reduced to 20%, and 

further, by applying VFAC to the data the maximum error in PK parameter estimations 

dropped further to  7%.  The data presented in this chapter demonstrate the strong 

dependence of PK modelling accuracy and precision on both the DCE-MRI acquisition 

and analysis methodologies used, and further emphasises the need for quantitative 

studies such as that described herein to inform appropriate DCE-MRI protocols.  

Improved reproducibility and standardisation for how DCE-MRI is performed at the 

prostate, along with how PK analysis is performed on the data, should lead to greater 

acceptance into a clinical setting of this potentially powerful diagnostic tool. 

 

Simulation studies can be very informative, particularly when based on patient 

datasets, however they are limited as they cannot fully simulate the plethora of factors 

which influence the implementation of a particular protocol at the scanner, such as 

scanner-specific features (e.g. B1
+-field non-uniformities), inter-session variation 

deriving from patient positioning, inter-session scanner performance, to name but a 

few.  The phantom device used in the present study allowed, for the first time, for a 

physiologically-relevant, known AIF to be precisely reproduced and repeatedly 

measured using DCE-MRI in an environment which mimics that of an actual patient.  

This type of phantom-driven approach allows for a level of protocol quantitative 

validation which is simply not achievable in patient studies, and is essential for 

accurate PK modelling of the data.  A recent multi-centre study illustrates this well: in 

the study, the same set of patient prostate DCE-MRI data was analysed by nine 

separate MR centres, each using their respective AIF calculation strategy, and with 

each yielding significantly different PK parameter estimates from the same data sets 

[167].  Although this study illustrated the dependence of the accuracy of the derived PK 

parameters on the input AIF, because the ground truth AIF for each patient dataset 

was unknown, it is not possible to conclude from the data presented which analysis 

method was the most appropriate or accurate, but rather that the analysis method used 

has a large impact on the final results, i.e. causing a relative variation in derived PK 

parameter values. 
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In the present study, differences between the set and act of up to -33% were 

calculated at the ROI where the AIF was measured.  This is in line the previous 

simulation study by Buckley and Parker, which was based on patient prostate data, 

where a measured flip angle difference as large as -30% was reported [168].  Studies in 

the breast have reported larger underestimation errors of 33 – 55 % [178-180].  Although a 

substantial difference  was calculated between the set and act, this difference 

remained relatively consistent across the entire ROI where the AIF was measured, only 

deviating by a maximum of 3%, with the mean ROI flip-angle-differences fluctuating by 

<2% across all intra- and inter-session DCE-MRI experiments.  Applying VFAC to the 

data resulted in a substantial gain in both the precision and accuracy of the AIF 

measurements, with the range of CCC values increasing from 0.42 – 0.53 to 0.83 – 

0.92, and %RMSE values decreasing from 12% – 14% to 6% - 8%, for both intra- and 

inter-session measurements.   As would be expected, this gain in precision and 

accuracy was also apparent in the PK parameters values calculated from the data. 

 

The 30% difference in flip angle calculated in the present work reduced PK parameter 

estimation accuracy by up to 12.9%, 9.2% and 20.2% for Ktrans, ve and kep respectively, 

and also resulted in a decrease in inter-session precision of up to 11.2% (using the 

base 1.2 s protocol).  This reflects the results from the previously mentioned prostate-

data-based simulation study by Buckley and Parker, where a -30% deviation in flip 

angle was found to produce PK parameter errors of 10% when the AIF was measured 

simultaneously with the tissue CTCs (reported errors increased up to 40% when the 

AIF was not measured simultaneously with the tissue CTCs)  [168], as was the case with 

this present study.  In another simulation study, which this time used B1
+-field non-

uniformity data taken from breast DCE datasets, Di Gionni et al reported that a 

difference between the set and act of 30% resulted in discrepancies in the derived 

PK parameters values of 30 - 40% [178], further highlighting the potentially large errors 

that B1
+-field non-uniformities can introduce into the analysis results.  Variations in flip 

angles are likely due to variety of effects, including hardware imperfections, errors in 

the calculated RF pulse reference voltage values, and dielectric effects / wavelength-

related RF interference effects within patients particularly at field strengths ≥ 3T.  

Performing a truly-quantitative measurement is strongly dependent on actual 

acquisition parameters achieved in the sample (i.e. not just the values set in the 

protocol, but those actually achieved in the patient / sample by the scanner hardware), 

and this is particularly the case for the flip angle, since correct knowledge of the actual 

flip angle directly affects the accuracy of the contrast-agent concentration value 
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calculated from the signal intensity using Equation [2.18].  

 

Published guidelines recommend a Tres  10  for performing PK analysis in the prostate  

[135, 136], whereas simulation studies reported that a Tres of 1 – 3 s is required for 

accurate measurement of the AIF [22, 121].  One of the aims of this study was to 

investigate the influence of Tres on the measurement of the AIF, across a range of Tres 

values from 1 s to 30 s, similar to the range previously reported for DCE-MRI studies in 

the prostate [137].  This was achieved without using any acceleration techniques, such 

as parallel imaging (as was used in the preceding two Chapters) or compressed 

sensing, but rather by reducing the FOV in the second phase-encoded dimension, 

resulting in a ‘thin-slab’ 3D protocol with a Tres of 1.2 s.  This was done in order to 

comprehensively investigate the effects of Tres when using a standard SPGR protocol, 

without the compounding effects that rapid-imaging techniques may introduce (for 

example a reduction in the SNR); an investigation into the use of some of these rapid-

imaging techniques is the subject of Chapter 6.  In the present study it was found that 

errors in PK parameters were  10% at a Tres  8.6 s using the NLS approach, however 

the LLS method was shown to acheive the same accuracy levels with Tres  11 s.  Ktrans 

and kep values were both strongly affected by the Tres, particularly at Tres values > 15 

s, however, ve values did not vary greatly across the range of Tres values tested, and 

this is in line with the results presented in Chapter 4, as well as other published works 

[154, 178], with errors in ve  7% errors at all Tres values tested using the LLS fitting 

approach, and   11% using the NLS fitting. 

 

The use of a LLS regime to fit the standard Tofts model, rather than the more 

traditionally-used NLS approach, was found to almost double the accuracy of Ktrans 

estimates, as well as providing an increase in Ktrans (intra-session) and kep (intra- and 

inter-session) precision of 4%.  The accuracy of the LLS approach also showed lower 

dependence on the Tres used, with all PK parameter errors  10% at a Tres  11 s using 

the LLS approach, with the NLS method requiring Tres  8.6 s to achieve the same 

accuracy.  This may be due to high SNR in the data (SNR range: [31 – 225]; see Table 

5.3.5), since the LLS approach has been previously reported to outperform the NLS 

fitting method when applied to high SNR datasets [88, 191, 192].   

 

Due to its acquisition-time efficiency and low sensitivity to off-resonance and 

physiological effects, the AFI method of VFAC has potential for use in quantitative in 

vivo clinical imaging applications [182, 193], and the results presented herein clearly 
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demonstrate the substantial increase in accuracy and precision that this would provide.  

Overall, the best balance between accuracy, precision, and current clinically-

achievable Tres values for prostate imaging was achieved through the use of a Tres 

value  8.6 s, with VFAC performed, and the resulting CTC data fit using the LLS fitting 

approach; using this acquisition / analysis regime all PK parameters were measured 

with  7% errors,  3% intra-session standard deviation, and  8% inter-session 

standard deviation.  Within these Tres constraints, of the three PK parameters derived, 

kep provided the highest accuracy and precision overall, with  3% error and standard 

deviation across all intra- and inter-session measurements; this is in line with the 

results of  Huang et al., where it was suggested that kep might provide a more robust 

imaging biomarker of prostate microvasculature than Ktrans, due to lower sensitivity to 

AIF variation [167].  

 

Limitations with the pump system used in this study meant that had the AIFs been 

produced by simply programming the desired curve shape directly (as was used to 

produce the slower-changing tissue CTCs) it would have resulted in noise being 

introduced during the initial rapidly-changing portion of the AIF curves.  The source of 

the potential noise is the pump system’s intrinsic voltage stepping constraints, i.e. the 

voltage resolution (the smallest voltage change that would cause a change in the flow-

rate) and the flow-system’s temporal response (how quickly a change in the flow rate at 

the pumps produced a change in CA concentration at the phantom device).  However, 

by exploiting this intrinsic response of the pumps by using square-wave voltage inputs, 

the desired AIF shape could be produced.  One downside to this approach was that it 

required the desired curve-shape to empirically derived through a time-consuming 

iterative experimental process.  However, once established, the AIF curves produced 

by this method gave the same high repeatability as was measured for the tissue CTCs, 

with CCC values of >0.99 and low %RMSE of <1.2% between all nine optical 

experiments, conducted over five days (five intra- and five inter-session 

measurements), providing an accurate and precise ‘ground truth’ AIF for the system.  

 

There were some further limitations of this study.  For example, a population average 

AIF was derived from 32 prostate patient DCE-MRI datasets, and although the data 

was acquired at a Tres of 3.1 s, which according to the results of this present study gave 

adequate Tres for the measurement of the AIF curve-shape, no flip angle correction was 

applied to the data.  However, for the purpose that this data was used for in this study, 

namely to establish a physiologically-relevant shape for the AIF to be produced at the 

phantom, this was accepted as a reasonable limitation.  The ‘tissue’ and ‘AIF’ base-line 
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T1 values (T10) were precisely known from the ground truth optical experiments and 

these values were used in all calculations.  However errors in T10 measurements, which 

are particularly pronounced when flip angle correction is not applied to the data, are 

known to strongly affect the accuracy of the derived PK parameters [168, 169, 178], with 

errors in PK parameters reported to increase by to  465% when T10 is estimated using 

the widely-used variable flip angle approach without flip angle correction [178].  In the 

present study inflow effects, caused non-steady-state spins flowing into the imaging 

FOV, were also avoided.  However this is another factor that needs to be taken into 

account when measuring the AIF in vivo, as the use of an inflow-affected AIF in the PK 

modelling of the data has been shown to introduce additional errors of up to 80% in the 

derived PK parameters [102].  With this in mind, in patient studies it is important to 

carefully choose the location of the AIF measurement, such that the effects of blood 

inflow are avoided.   

 

This chapter quantitatively investigated the accuracy and precision of DCE-MRI 

measurements made using a standard spoiled gradient echo sequence; the further 

effects of using rapidly-accelerated DCE acquisition strategies (using golden-angle 

radial k-space sampling trajectories and compressed sensing image reconstruction) 

are the subject of the next chapter.   
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Chapter 6: Effect of golden-angle radial k-

space under-sampling and image 

reconstruction methodology on DCE-MRI 

accuracy and precision 

 

6.1. Introduction 

 

As discussed in the preceding three chapters, the temporal resolution (Tres) at which 

DCE-MRI data are acquired strongly affects the accuracy and precision of the derived 

phenomenological and pharmacokinetic (PK) parameter values.  For example, it was 

shown that a Tres of 11 seconds was required in order to achieve errors  10% in the 

derived PK parameter values.  This was demonstrated using fully-sampled data, i.e. 

complete k-space data acquisition, while high temporal resolutions were achieved by 

reducing the size of the imaging volume in the z-direction (i.e. reducing the number of 

slices), as well as reducing the in-plane spatial resolution.  For patient prostate DCE-

MRI scanning, however, a larger imaging volume size is required in order to 

encompass the entire prostate, with 12 to 30 slices typically being acquired [194].  

Additionally, the European Society of Urogenital Radiology (ESUR) recommended an 

in-plane resolution of 0.7 x 0.7 mm2 for patient DCE imaging [135].  By adjusting the 

1.2s-Tres protocol used in the previous chapter to match this recommendation, one 

would end up with a Tres of  30s.  When k-space is under-sampled, and the Nyquist 

criterion is violated, the Fourier reconstructions exhibit aliasing artefacts.  Several 
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acquisition and reconstruction strategies have been proposed which aim to reduce the 

sampling requirements for DCE-MRI, while mitigating these under-sampling artefacts, 

such as the well-established parallel imaging (PI) technique [114, 115], and the more 

recently proposed method of compressed sensing (CS) [49, 195, 196].  These rapid imaging 

techniques have the potential to allow for more accurate modelling of the DCE-MRI 

data, by providing a means to image patients with an appropriate Tres, while still 

retaining adequate spatial resolution and tissue coverage.  However quantitative 

validation work is needed in order to access how these techniques affect the resulting 

data.  In this chapter, the phantom device described in Chapter 3 was used to 

quantitatively investigate the effects of data under-sampling on the accuracy and 

precision of DCE-MRI measurements with data acquired using a golden-angle (GA) 

radial k-space trajectory, with reconstruction performed using: coil-by-coil (CbC) 

inverse gridding, PI, and a combination of PI and CS (parallel imaging with compressed 

sensing (PICS)). 

 

 

Figure 6.1: Diagram illustrating the 2D golden-angle (111.25) radial ‘stack-of-stars’ k-space sampling 
scheme which employs golden angle radial sampling in-plane (kx / ky) and Cartesian sampling in the slice 

direction (kz). 

 

Cartesian k-space sampling trajectories are currently the mostly widely used approach 

for clinical imaging.  However, the use of non-Cartesian trajectories can potentially 

provide more rapid coverage of k-space by making efficient use of MR gradient 

hardware, which can reduce scan times, and thereby improve the Tres for DCE-MRI.  

Furthermore, just as with standard Cartesian trajectories, these non-Cartesian 

trajectories can also be under-sampled to achieve even faster scan times.    

Radial k-space trajectories offer several advantages over Cartesian trajectories, which 

include the inherent presence of incoherent aliasing in multiple dimensions [197], making 

this technique particular applicable for use with a CS reconstruction [49], as well as less 

susceptible to motion artefacts [46, 198].  In this chapter the use of a 2D golden-angle 

(GA) radial ‘stack-of-stars’ k-space sampling scheme is investigated [199], which 
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employs golden angle radial sampling in-plane (kx / ky) and Cartesian sampling in the 

slice direction (kz), as illustrated in Figure 6.1.  With this acquisition scheme, the radial 

angle of the in-plane k-space acquisition line is continuously increased by 111.25, as 

illustrated in Figure 6.2; for comparison, a linear radial acquisition trajectory is also 

shown in this figure, where the angle between subsequent k-space lines = 360 / N 

(where N is typically taken as the profile resolution).  One big advantage of GA radial k-

space sampling over linear radial sampling is that it allows for a relatively uniform 

coverage of k-space with high temporal incoherence for any arbitrary number of 

consecutive lines [200, 201], thereby allowing for flexibility with regards the Tres of 

reconstructed datasets (as illustrated in Figure 6.2).  The number of radial k-space 

profiles which are combined together to form each dynamic frame is simply defined in 

the reconstruction process [202].  To date continuous GA radial imaging has been used 

for several dynamic MRI applications, including imaging of the prostate [137, 203], liver 

[204], heart [205],  breast [204, 206], neck [204], joints [207], and the eye [208]. 

 

 

Figure 6.2: Illustration of Linear Angle and Golden Angle radial MRI data sampling trajectories (k-space 
units normalised).  For linear angle, images are typically reconstructed once full radial coverage has been 
acquired.  However, for Golden angle, an approach wherein images may be reconstructed from differing 

consecutive numbers of radial profiles of sampled k-space data, can be employed, thereby giving 
additional flexibility regarding the achievable temporal resolutions (Tres).  (Image adapted from [209]). 

 

In parallel imaging (PI), DCE-MRI data is simultaneously acquired from multiple 

receiver coils, with each coil exhibiting a different spatial sensitivity profile, which acts 

as an additional spatial encoding function.  PI is a well-established technique, however, 

the acceleration it provides is limited by signal-to-noise (SNR) constrictions (since the 

image SNR reduces by square root of the acceleration factor factor)  as well as 

limitations in the coil design, which can lead to a poorly conditioned inverse problem at 

high acceleration factors [204].  PI techniques, such as SENSE [114], SMASH [115], and 

GRAPPA [138], or combinations of these techniques, such as SPITiT [210], and ESPIRiT 
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[211], use the spatial information derived from the sensitivity patterns of multiple receiver 

coils to reconstruct images from under-sampled data, thereby allowing for faster 

imaging, while maintaining image quality.   In this chapter the ESPIRiT approach is 

utilised, which combines both SENSE and GRAPPA methods by restricting the 

solutions from both to a subspace in order to reconstruct the missing data.  SENSE 

realises this by combining the coil images using pre-calculated sensitivity maps, while 

this is achieved with GRAPPA by filtering the data with calibrated kernels in k-space.  

The dominant eigenvector of these k-space operators behave as sensitivity maps, and 

can be rapidly computed, since this algorithm uses an efficient eigenvector-based 

decomposition in image space, providing robust high-quality sensitivity maps, 

estimated directly from the DCE data [211].  Additionally, ESPIRiT combines all the 

advantages of SENSE (e.g. the linear scaling of the computational demand with the 

number of receive coils used, optimal reconstruction quality, and straightforward 

implementation with radial sampling) with a robustness to errors (e.g. known errors 

deriving from field-of-view (FOV) limitations [212]) similar to auto-calibrated methods, 

such as GRAPPA.   

 

Compressed sensing (CS) was first proposed in the literature of Information Theory 

and Approximation Theory as an abstract mathematical idea [195, 196], and its potential 

application to biomedical imaging, in particular MRI, was recognised from the outset 

[195].  MRI is particularly compatible with CS since there is flexibility in the way in which 

it encodes and collects data in the spatial frequency domain.  CS can be used to 

further accelerate the acquisition of MRI data by sampling fewer frequencies than are 

required to satisfy the Nyquist criterion.  The technique works by exploiting spatial and 

temporal correlations by using (pseudo-) random under-sampling schemes to create 

incoherent aliasing artefacts and subsequently using a nonlinear iterative process in 

the reconstruction to enforce sparsity in a suitable transform domain [213-215].  

Mathematically speaking, this iterative reconstruction of the missing data utilises a 

regularised least-squares algorithm in which the gradient of the reconstructed image 

typically serves as a regulariser; that is, the reconstructed image, m, is usually a 

solution to the unconstrained minimisation problem: 

 

 arg𝑚min‖𝑆𝑚‖1 + λ‖𝐹𝑚 − 𝑑‖2
2, [6.1] 

 

where S is a sparsity transform (such as a wavelet decomposition or the gradient), F is 

the partial Fourier measurement operator, d is the measured k-space data from the 

scanner, and λ controls the relative weighting of the l1 and l2 norm terms, defined as 
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 |𝑥|1 = ∑ |𝑥𝑖|
𝑖

, [6.2] 

and 

 

 |𝑥|2
2 = ∑ 𝑥𝑖

2

𝑖
, [6.3] 

 

respectively.  During the CS reconstruction process, missing phase-encode data are 

selected to minimise the isotropic gradient of m, defined as: 

 

 

 ∇𝑚 = √(𝑚𝑖.𝑗 − 𝑚𝑖.𝑗−1)
2
+ (𝑚𝑖.𝑗 − 𝑚𝑖−1.𝑗)

2
, [6.4] 

 

 

with boundaries treated periodically, and each slice treated independently.  For 

quantitative DCE-MRI studies, it is worth noting that this transform does not have a 

simple relationship to the desired PK parameters, and as such it is not clear whether a 

time-independent CS MRI reconstruction will retain the necessary dynamic information 

to accurate and precisely retrieve DCE parameters [216].  

 

In 2007, Lustig et al. published the first MRI study using CS,  demonstrating 

experimentally several 2D and 3D Cartesian implementations of CS in MRI, with 

promising results; such as a 5-fold acceleration of first pass contrast enhanced MR 

angiography (CE-MRA) [49].  Subsequent early studies further demonstrated the 

potential gain in imaging speed that CS could provide, reporting up to a three-fold 

acceleration for dynamic cardiac MRI [213, 214] and eight-fold for 13C 3D MR susceptibility 

imaging [217, 218], while still retaining relatively good image quality (compared with the 

fully-sampled data).  By 2010 CS was being applied to quantitative MRI techniques, 

such as MR apparent diffusion coefficient mapping in the lungs [219] and T1 and T2 

mapping in the brain [220], reporting accelerations of up to five- and six-fold respectively, 

while still preserving the quantitative information.  Also in 2010 a study by Otazo et al. 

combined PI and CS (dubbed ‘PICS’) by merging k-t SPARSE with SENSE 

reconstruction, demonstrating the feasibility of an 8-fold acceleration for high resolution 

in vivo whole-heart imaging [221].  The same year saw the first application of CS to DCE-

MRI; studies by Adluru et al. and Wang et al. achieved under-sampling factors of up to 

5 and 10 times respectively for breast imaging, with both studies reporting good 

preservation of the spatiotemporal characteristics in the data, although no independent 
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verification was presented [222, 223].  Similarly, another study the same year, again in the 

breast, found that PK parameters estimated from six-times under-sampled DCE data 

correlated well with those derived from the fully sampled data (correlations coefficient 

(r) = 0.98 for Ktrans, and r = 0.85 for kep) 
[185].  Since then numerous studies have 

demonstrated the potential of CS to reduce the scan time for imaging of various 

anatomies, such as: brain [224, 225],  spine [226, 227], breast [202, 206, 216, 228-230], muscle [231], 

heart [201, 232-234], liver [118, 235], lung [236], and prostate [137, 203, 237]; with further work also 

done to incorporate CS into various MR techniques, such as: DCE [137, 203, 206, 216, 229, 230, 

238-242], spectroscopic imaging [235, 243], phase contract blood flow [244, 245], black-blood 

imaging [246], and water-fat imaging [247, 248].  Many of these more recent CS studies also 

utilise under-sampled multi-coil data, combining CS with PI, [118, 137, 201, 203, 216, 229, 239, 241, 

247, 248].   

 

The majority of DCE-MRI studies to date which utilise CS have been performed at the 

breast [185, 206, 216, 222, 223, 229, 230, 242], however recently this technique has also been 

applied to DCE in the prostate [137, 203].  In 2015, Rosenkrantz et al. demonstrated the 

feasibility of applying CS to DCE-MRI of the prostate, reporting both high spatial (3.0 x 

1.1 x 1.1 mm) and temporal resolution (2.3 s) [137].  The study reported improvements in 

image quality, clarity of anatomical detail, and spatiotemporal resolution using the GA 

radial acquisition with PICS reconstruction, when compared with a standard fully-

sampled Cartesian DCE acquisition.  In 40% of patients, only the PICS technique was 

reported to have detected the tumour.  However, these results were based on a 

qualitative analysis, i.e. radiologists observations of earlier contrast arrival in tumour 

compared to benign tissue.  Additionally, the results derive from separate DCE 

examinations, performed on the same patient, but on different days.  As such, the 

direct comparison presented is not truly valid.  The same group further demonstrated 

the potential applicability of PICS to prostate DCE imaging in a study the following year 

which investigated the effectiveness of this technique for the detection of local 

recurrence of prostate cancer in patients with elevated prostate specific antigen (PSA) 

after prostatectomy [203].  This study achieved even higher spatial resolution than the 

previous study of 1.0 x 1.1 x 1.1 mm3 using PICS, while still retaining the same low 

2.3 s Tres value.  Substantially better image quality and diagnostic performance was 

reported, when compared with standard DCE acquisition.  However, in addition to the 

same limitations discussed for the previous Rosenkrantz study, in this study the results 

presented (i.e. comparing GA radial acquisition with PICS reconstruction against a 

standard fully-sampled Cartesian DCE acquisition) were not even taken from the same 

patients. 
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It is clear that the technique of GA radial acquisition combined with PICS reconstruction 

has great potential with regards improving the Tres for DCE-MRI, while still retaining 

image quality [137, 203, 206, 208].  However, in studies to date it has only been possible to 

investigate the effects of using this technique by comparing the under-sampled data in 

a relative sense, generally to the fully-sampled data from which it were retrospectively 

derived.  However, as was the case with standard DCE-MRI, no study thus far has 

been able to quantify the effects of using this technique in vivo for the measurement of 

the tissue contrast agent (CA) concentration-time curves (CTCs) or the arterial input 

function (AIF); again deriving from a lack of knowledge of the ground truth (GT) values.  

In vivo validation is particularly important for CS in DCE-MRI, particularly considering 

the uncertainties such non-Cartesian under-sampling trajectories may introduce to  the 

fidelity of the derived CTCs and AIF which, until now has been unknown.  The aim of 

this chapter was to use the phantom test device described in Chapter 3 to quantify the 

effect of under-sampling the data on the accuracy and precision of measured CTCs 

and AIF, and the derived quantitative PK parameters, for data acquired using a GA 

radial k-space trajectory, reconstructed using three reconstruction approaches: (i) no PI 

or CS (CbC inverse gridding), (ii) PI only, and (iii) PICS approaches, and with MR-

results compared against precisely known GT values. 

 

 

6.2. Materials and Methods 

 

The methodological choices used for the experiments described in this chapter were 

informed by the results of the previous chapters, such as: the acquisition duration (AD 

 360 s; see Chapter 4), the Tres (<11 s; see Chapter 5), the use of voxel-wise flip angle 

correction (VFAC; see Chapter 5), and the use of a linear version of the standard Tofts 

model (see Chapter 5).  The same modified phantom test device described in section 

5.2.1 was used in the present work, as well as the same ground truth AIF and ‘healthy’ 

and ‘tumour’ CTCs (see sections 5.2.2, 5.2.3, and 5.2.4 for more information). 

 

6.2.1. MRI Phantom Data Acquisition 

 

DCE-MRI phantom data were acquired using a 3T multi-transmit scanner (Achieva; 

Philips, Netherlands) using a 32-channel detector coil.  A 2D turbo field echo (TFE) 

spoiled gradient echo imaging sequence was employed, with a stack-of-stars k-space 
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sampling trajectory.  The following scan parameters were used: TR = 10.5 ms, TE = 

1.6 ms, flip angle = 38, FOV = 224 x 224 x 18 mm3, spatial resolution = 1.75 x 1.75 x 

6 mm3, and number of slices = 3.  A total of 97,200 (32,400 per slice) radial spokes 

were acquired continuously using the GA scheme with a total acquisition duration of 

470 s.  A single radial spoke was acquired from each of the 3 slices using the same 

trajectory through k-space, before the next 3 spokes (rotated by the GA) were 

acquired, again for each of the 3 slices, and so on (see Figure 6.1.1), effectively tripling 

the TR from 3.5 ms to 10.5 ms.  As with the MR-phantom experiments presented in the 

previous chapter, the flip angle used herein was selected in order to ensure that every 

concentration in the range used in this study had the lowest possible uncertainty [136, 

190].  The flip angle was adjusted in this case to account for the longer effective TR used 

in the GA radial acquisition.  Again, as in the previous chapter, each experiment 

consisted of two measurements of the AIF and either the ‘tumour’ or ‘healthy’ CTC, 

each repeated on 5 separate days, and 5-times within the same scanning session, in 

order to quantify the inter-session and intra-session precision of measurements.  The 

temporal resolutions of the reconstructed DCE datasets were defined during the 

reconstruction process, as outlined in the next section.  B1
+ maps were also acquired 

using a dual-steady-state sequence with the same geometry as above and TR1 / TR2 / 

TE = 30 ms / 150 ms / 2 ms and flip angle = 60.  The GA radial pulse sequence used 

herein was developed in collaboration with Dr Matthew Clemence, from Philips 

Healthcare (UK), compiled locally using the Philips Paradise Environment (Philips, 

Netherlands), and tested on simple phantom to ensure correct data acquisition 

ordering. 

 

6.2.2. Image reconstruction 

 

The amount by which the data were under-sampled was quantified by the radial 

sampling density (RSD), which is reported with respect to the requirement for a 

Cartesian acquisition to fulfil the Nyquist criterion, i.e. for an RDS of 100%, the number 

of radial spokes used to reconstruct each image equals the number of frequency 

encode steps (128 in the case of this study).  This was chosen so as to allow for easy 

comparison with the fully-sampled Cartesian acquisition results presented in Chapter 5, 

and also to facilitate easier comparison with a wider range of previous works (since 

Cartesian trajectories are most commonly used in previous DCE-MRI studies, and 

radial studies often adopt the same convention [200]).  It is worth noting however, that in 

the case of the radial acquisition scheme used in this chapter, the Nyquist sampling 



 

107 

requirement (NSR) is given as 128 * ( / 2)  201 radial spokes per reconstructed 

image.  Both percentage RSD and NSR values are given in Table 6.1 for the data 

presented in this chapter.  The Berkeley Advanced Reconstruction Toolbox (BART) 

was used for all calibration and image reconstruction [249]. Code was developed in 

Matlab (R2015b; MathWorks, USA) which implemented the following step in the 

reconstruction process: 

 

1. RAW radial k-space data (in the Philips data format) imported into Matlab 

2. RAW data indexed and rearranged into a multidimensional array [phase encode 

steps (256), coil channels (32), slices (3), radial spokes (32,400)] 

3. Slice selected (the central slice in the case of this study)  

4. Cartesian k-space coordinates generated corresponding to the GA radial k-

space trajectories, for use with Cartesian re-gridding   

5. The number of radial spokes used to reconstruct each individual image in the 

dynamic sequence defined (i.e. the RSD), and the k-space radial spokes (with 

corresponding Cartesian k-space coordinates) binned together accordingly (e.g. 

for a RSD = 100%, the multidimensional data array outlined in Step 2 becomes: 

[phase encode steps (256), coil channels (32), radial spokes (128), dynamics 

(253)] 

6. CbC inverse gridding reconstruction performed using BART (k-space data, 

Cartesian k-space trajectories, and no coil-sensitivity maps) 

7. Coil sensitivity maps generated using the ESPIRiT calibration method [211] 

8. PI and PICS reconstruction performed using BART (k-space data, Cartesian k-

space trajectories, and ESPIRiT coil-calibration maps) 

 

Step 5 – 8 were repeated at RSDs from 100% to 4.68%, giving a Tres range from 1.85 s 

to 0.09 s, as illustrated in Figure 6.3, with details given in Table 6.1, along with the 

corresponding image reconstruction times.  A total of 7 DCE data-sets were 

reconstructed for each experimental run (9 ‘healthy’ and 9 ‘tumour’ CTCs; with 5 Intra-

session and 5 intra-session experiments runs each), giving a total of 126 DCE-MRI 

data-sets for analysis.  All calibration and reconstruction was performed using a 2.7-

GHz Intel i7 (Intel Corporation, USA) quad-core CPU laptop (ThinkPad W530, Lenovo, 

USA) with 32 GB of RAM. 
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Table 6.1: Parameters used in the reconstruction of the DCE-MRI data-sets, along with the reconstruction 
times. 

 DCE Dataset 

 1 2 3 4 5 6 7 

No. Radial Spokes 128 96 64 32 16 8 6 
RSD [%] 100 75 50 25 12.5 6.25 4.68 
NSR [%] 63.7 47.8 31.8 15.9 7.96 3.98 2.99 
Tres [s] 1.85 1.39 0.93 0.46 0.23 0.12 0.09 
No. of Dynamics 253 337 506 1012 2025 4050 5400 
        

Reconstruction Times:        

CbC [s] 832 1000 1489 2880 5834 11020 15051 
PI [s] 661 804 1154 2182 4451 8417 11528 
PICS [s] 881 1093 1621 3077 6183 12112 16593 

 

 

 

 

 

Figure 6.3: Schematic diagram showing the various steps involved in the Coil-by-Coil (CbC) inverse 
gridding, Parallel Imaging (PI), and PI and Compressed Sensing (PICS) DCE-MRI reconstruction.  

Numbering corresponds to steps outlined in section 6.2.2. 
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6.2.3. Voxel-wise Flip-Angle Correction (VFAC) 

 

As was used in the previous chapter; the actual flip angles were calculated at each 

imaging voxel using the B1
+ mapping data and Equation [5.9] (see section 5.1 for 

further details).  CA concentrations were then subsequently derived from the data using 

the corrected flip angles. 

 

6.2.4. Data Analysis 

 

Root mean square error (RMSE) and concordance correlation coefficients (CCCs) [162] 

values were calculated between the MR-measured and ground truth AIFs and CTCs; 

curves were aligned, and ground truths temporally-resampled to match MR data prior 

to analysis.  RMSE is reported as a percentage of the maximum CA concentration 

change (%RMSE).  PK analysis was performed using the linearised form of the 

standard Tofts model previously described in section 2.3.2, with this model fit to the 

data using the same fit linear least squared (LLS; implemented in Matlab) approach 

used in Chapter 5.  Two manually-selected regions of interest (ROIs) were defined at 

the central slice, one at each of the respective phantom measurement chambers, with 

each ROI containing 12 voxels.  Ktrans, ve, and kep values were derived from the MRI-

measured CTCs, compared with the ground truth values (derived from the optically-

measured CTCs), and the percentage differences calculated.  PK analysis was 

performed on all datasets, i.e. RSD values from 5% to 100%, for each of the five intra- 

and five inter-session datasets (‘healthy’ and ‘tumour’ CTCs, each acquired 

simultaneously with the AIFs).  

  

 

6.3. Results 

 

The act at the ROIs where the AIF and tissue CTCs were measured was found to differ 

from the set value by between -30% and -39% for all experiments, with inter-session 

standard deviation in act calculations of 3% at any particular voxel, and a maximum 

recorded standard deviation in act across any individual ROI (used for the 

measurement of either the AIF or tissue CTC) of 3%.   
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Figure 6.4 Images reconstructed with radial sampling densities (RSDs) from 100% to 4.68% using the 
Coil-by-Coil (CbC) inverse gridding, Parallel Imaging (PI), and PI and Compressed Sensing (PICS) 

reconstruction methods 
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Images reconstructed with RSDs across the range of 100% to 4.68% using the CbC, 

PI, and PICS reconstruction methods are presented in Figure 6.4.   A visual 

comparison of the images revealed that for the CbC reconstruction approach, severe 

artefacts (deriving from the under-sampling of k-space) corrupt the entire image at RSD 

12.5% (i.e. structures, such as the measurement chambers and tubing, are 

indiscernible in the images).  Using the PI and PICS reconstruction approaches, 

artefacts were also observed in the reconstructed images, particularly with RSD 

12.5%, however the effect was much less pronounced using these reconstruction 

approaches.  In fact, images reconstructed with the PI approach using RSD = 6.25%, 

and with the PICS approach using RSD = 4.68%, have a similar visual appearance to 

imaging reconstructed using the CbC method with RSD = 25% (see Figure 6.4). 

 

CCC and %RMSE values between the fully-sampled MR-measured AIFs and the 

ground truth values are presented in Table 6.2.  Calculated CCC values were lowest 

for the AIFs extracted from the CbC-reconstructed MR-data (CCC range: 0.89 – 0.94), 

with the PI and PICS approaches both giving higher CCC ranges of 0.94 – 0.97 and 

0.95 – 0.98 respectively.  The highest %RMSE values in the MR-measured AIFs were 

also calculated in the data reconstructed using the CbC approach (4.0% - 6.0%), with 

the PI and PICS approaches both giving lower %RMSE ranges of 3.1% - 4.1% and 

2.9% - 3.6% respectively.  Overall, the AIFs derived from the data reconstructed using 

the PICS approach gave both the lowest %RMSE and highest CCC values.  

 

 

Table 6.2 The concordance correlation coefficient (CCC) with 95% confidence intervals (CI) and 
percentage root mean square error (%RMSE) results from repeat intra- and inter-session DCE-MRI 

experiments, comparing the fully-sampled (radial sampling density (RSD) = 100%) MR-measured AIF with 
the ground-truth AIF.  Results presented for coil-by-coil (CbC), parallel imaging (PI), and parallel imaging 

with compressed sensing (PICS) image reconstruction methods. 

  CbC PI PICS 

Session CCC (95% CI) %RMSE CCC (95% CI) %RMSE CCC (95% CI) %RMSE 

1 0.888 (0.865, 0.908) 5.8 0.947 (0.933, 0.958) 4.1 0.968 (0.959, 0.974) 3.2 

2 0.892 (0.868, 0.913) 5.8 0.950 (0.937, 0.961) 4.0 0.960 (0.949, 0.969) 3.6 

3 0.911 (0.887, 0.930) 5.3 0.973 (0.965, 0.980) 3.1 0.973 (0.964, 0.979) 3.1 

4 0.900 (0.878, 0.918) 5.6 0.959 (0.948, 0.967) 3.6 0.975 (0.967, 0.980) 2.9 

5A 0.890 (0.873, 0.905) 6.0 0.941 (0.925, 0.953) 4.3 0.954 (0.941, 0.964) 3.0 

5B 0.917 (0.897, 0.933) 5.1 0.966 (0.957, 0.974) 3.3 0.968 (0.958, 0.976) 3.0 

5C 0.926 (0.908, 0.941) 4.8 0.965 (0.955, 0.973) 3.4 0.968 (0.958, 0.975) 3.3 

5D 0.925 (0.912, 0.936) 4.8 0.967 (0.957, 0.974) 3.3 0.968 (0.958, 0.977) 3.3 

5E 0.940 (0.927, 0.951) 4.0 0.967 (0.956, 0.975) 3.4 0.957 (0.943, 0.967) 3.5 

 

 



 

112 

Figure 6.5 show the absolute PK parameter values (Ktrans, ve, and kep) derived from the 

data reconstructed using the CbC, PI, and PICS approaches at RSDs from 100% to 

4.68%, along with known ground truth values (shown as dashed lines).  The error bars 

in these graphs show the intra- (black error bars) and inter-session variation (red / blue 

error bars).  No results are reported for the CbC data at RSD = 6.23% and 4.68% since 

artefacts in the reconstructed images meant that no discernible AIF or CTCs could be 

extracted from the data, and as such PK model-fitting was not possible.  ‘Healthy’ Ktrans 

values did not deviate greatly from the ground truth value, and had relatively low intra- / 

inter-session variability (as indicated by the small error bars) for all reconstruction 

approaches and at all the RSDs tested.  However, the higher ‘tumour’ Ktrans value 

showed a marked drop in both precision and accuracy when using RSD  25% for the 

CbC reconstruction approach, and RSD  12.5% when using the PI method.  Ktrans 

values derived from the data reconstructed using the PICS approach gave the lowest 

error and intra- / inter-session standard deviation across all the RSDs tested.  For the 

measurement of ve and kep, again both precision and accuracy dropped when using 

data reconstructed with RSD  25% for the CbC approach.  For ve values derived via 

the PI reconstruction method there was a drop in both accuracy and precision when 

using a RSD  12.5%, however kep values did not deviate greatly from the ground truth 

values, and had relatively low intra- / inter-session variation for all RSDs tested.  Using 

the PICS reconstruction method, both ve and kep values deviated relatively diminutively 

from the ground truth values, and had low intra- / inter-session variation, at all RSDs 

tested. 

 

Table 6.3 presents the absolute maximum percentage error and percentage standard 

deviation in the measurement of the pharmacokinetic parameters across the RSD 

range from 100% to 4.68%, using for CbC, PI, and PICS image reconstruction 

approaches (full results for healthy and tumour CTCs are given in an Appendix C).  At 

RSD  75%, all three reconstruction approaches resulted in similar accuracy, with all 

PK parameters measured with errors < 6%.  However, as the RSD was reduced below 

75%, errors in PK parameter estimations increase for all reconstruction methods.  This 

was particularly pronounced with the CbC reconstruction, where PK parameter errors 

of up to 50% were calculated at RSD = 12.5%, compared with errors of 10% – 20% 

and 5% - 8% for the PI and PICS reconstruction approaches respectively, at the same 

12.5% RSD.  Overall the PICS reconstruction approach was found to provide the 

highest accuracy for PK parameter estimation.  When compared the CbC method, 

PICS provided a gain in accuracy of up to 42%, 36%, and 35%, for the measurement of 
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Ktrans, ve, and kep respectively.  PICS also proved a more robust reconstruction method 

than using PI alone, particularly at RSD  12.5% where the PICS approach provided a 

gain in accuracy over the PI-only reconstruction of up to 23% and 34%, for the 

measurement of Ktrans and ve respectively.  The accuracy of kep measurements was 

similar for both PI and PICS for all RSDs tested, with < 5% variation in the measured 

accuracy between the two techniques.   

 

 

 

Table 6.3: Absolute maximum % error and % standard deviation (S.D.) in the measurement of 
pharmacokinetic parameters at radial sampling density (RSD) from 100% to 4.68%, using for coil-by-coil 
(CbC), parallel imaging (PI), and parallel imaging with compressed sensing (PICS) image reconstruction 

approaches.   

 
Accuracy 

 
Intra-session Precision 

 
Inter-session Precision 

         

 

CbC PI PICS  CbC PI PICS  CbC PI PICS 

Max 
%Error 

Max 
%Error 

Max 
%Error 

 Max  
%S.D. 

Max  
%S.D. 

Max  
%S.D. 

 Max  
%S.D. 

Max  
%S.D. 

Max  
%S.D. 

            

 RSD = 100%  

K
trans

 1.7 3.6 1.8  11.0 4.2 3.6  9.3 6.3 3.0 

ve 2.5 4.7 2.2  7.2 3.8 3.2  5.8 4.2 4.2 

kep 2.7 3.0 2.2  6.4 3.3 3.7  5.8 5.9 3.7 

 RSD = 75%  

K
trans

 3.5 4.5 4.1  4.7 5.7 3.6  6.2 8.1 3.8 

ve 5.7 5.4 5.1  2.9 5.2 6.1  5.9 6.0 4.8 

kep 4.4 4.5 3.0  5.0 4.3 3.2  8.2 5.9 3.4 

 
RSD = 50% 

 

K
trans

 14.3 3.6 4.3  1.8 4.6 3.5  9.4 4.8 2.2 

ve 7.3 2.7 4.7  4.0 4.7 3.7  5.8 5.2 5.2 

kep 8.2 2.0 3.0  3.9 5.3 2.7  4.6 3.6 3.4 

 
RSD = 25% 

 

K
trans

 13.1 6.6 5.1  6.7 4.8 1.7  9.1 3.7 3.2 

ve 19.6 4.4 5.4  3.0 5.2 3.9  7.6 10.4 5.7 

kep 18.0 1.9 3.6  8.7 5.7 4.5  4.9 7.4 3.9 

 
RSD = 12.5% 

 

K
trans

 49.6 20.1 8.1  45.7 8.4 6.6  67.3 9.6 3.9 

ve 43.1 10.4 7.6  66.2 4.6 5.5  24.2 7.4 7.4 

kep 40.2 10.3 5.0  50.7 5.6 3.6  60.8 5.1 4.2 

 
RSD = 6.25% 

 

K
trans

 - 17.5 9.4  - 9.9 4.0  - 10.9 5.8 

ve - 9.5 9.7  - 6.8 6.7  - 13.1 5.9 

kep - 7.5 10.0  - 7.1 6.1  - 5.5 6.8 

 
RSD = 4.68% 

 

K
trans

 - 32.9 12.1  - 15.0 2.5  - 21.0 6.8 

ve - 40.7 6.6  - 13.8 10.9  - 16.8 7.3 

kep - 14.3 11.6  - 8.0 5.2  - 15.6 3.7 
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Table 6.3 also shows that the PICS reconstruction method provided an increase in 

intra- / inter-session precision, when compared with both CbC and PI methods.  

Comparing the CbC to the PICS reconstruction method; intra-session precision in the 

measurement of Ktrans, ve, and kep increased by up to 39%, 61%, and 47% respectively, 

and inter-session accuracy by up to 63%, 17%, 57% respectively.  Similarly, when 

comparing the PI approach to PICS; intra-session precision in the measurement of 

Ktrans, ve, and kep increased by up to 13%, 3%, and 3% respectively, and inter-session 

accuracy by up to 14%, 10%, 12% respectively.  The increase in PK parameter 

measurement accuracy that PICS reconstruction provides over the CbC or PI 

approaches with highly-under-sampled datasets is further highlighted in Table 6.4, 

where the % RSD’s required to limit errors below several values (5, 10, 15 and 20%) 

are presented for each reconstruction technique.  In this table, it can be seen that the 

CbC and PI methods require much higher RSDs in order to achieve the same PK 

parameters accuracy as the PICS approach.  For example, in order to achieve an 

overall accuracy of  10%, the CbC and PI reconstruction methods require 75% and 

25% RSDs respectively, however the same accuracy can be achieved using PICS with 

an RSD of only 6.25%.  

 

 

Table 6.4: Radial sampling density (RSD) requirements in order to achieve errors   5%, 10%, 15%, and 
20% in pharmacokinetic parameter estimates.  Data taken from all 9 experimental runs (five intra-session 
and five inter-session), using for coil-by-coil (CbC), parallel imaging (PI), and PI with compressed sensing 

(PICS) image reconstruction approaches. 

  
CbC  PI 

 
PICS 

  
All K

trans
 ve kep 

 
All K

trans
 ve kep  All K

trans
 ve kep 

Errors 
 

RSD [%] 
 

RSD [%]  RSD [%] 

 5% 
 
75 75 75 75 

 
50 50 25 25  25 25 25 12.5 

 10% 
 
75 75 50 50 

 
25 25 6.25 6.25  6.25 4.68 6.25 6.25 

 15% 
 
50 25 50 50 

 
25 25 6.25 4.68  4.68 4.68 4.68 4.68 

 20% 
 
25 25 25 25 

 
6.25 6.25 6.25 4.68  4.68 4.68 4.68 4.68 
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Figure 6.5: Graphs showing the mean absolute pharmacokinetic parameter values derived from both the 
intra- and inter-session datasets at various radial sampling densities (RSDs) for coil-by-coil (CbC), parallel 

imaging (PI), and PI with compressed sensing (PICS) image reconstruction methods.  Black error bars 
show the intra-session standard deviation from the mean, and the red / blue error bars show the 

inter-session standard deviation from the mean.  The dashed horizontal lines show the ground truth values 
in each case. 

 

 

6.4. Discussion 

 

The application of rapid-imaging techniques, such as PI and CS, to DCE-MRI offers the 

prospect of more accurate characterisation of the tissue CTCs, the AIF, and by 

extension the derived quantitative PK parameters, by allowing for high temporal 

resolution imaging while retaining the necessary tissue coverage, the clinically-

appropriate spatial resolution, and good SNR in the data.  These techniques can also 

potentially reduce / or even eliminate existing noise by reducing low-magnitude 

coefficients in the sparse domain during reconstruction, and can add additional true 
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signal if the gain in acquisition time is utilised for the acquisition of additional data [220, 

237].  However, conversely, the use of any under-sampling technique can potentially 

lead to both loss of true signal (e.g. the loss of fine detail, or the introduction of 

compression artefacts) and the addition of false signal (deriving from the aliasing of the 

missing Fourier coefficients that do not get completely eliminated during reconstruction) 

[250]; as such, the addition of techniques such as PI or CS to a clinical imaging protocol 

can potentially introduce unpredictability to the quality of the final data and associated 

quantitative PK parameter values [242, 250].  As is the general case with DCE-MRI (as 

discussed at length in the preceding chapters), the lack of knowledge of the in vivo 

ground truth CTCs and AIF has hampered the true validation of these rapid under-

sampling DCE-MRI techniques.  However, as the above discussion highlights, 

validation studies are particularly necessary in order to quantitatively investigate the 

effects of using such techniques on the quality of the derived data, due to the additional 

possible sources of error that these techniques may introduce.  The phantom test 

device presented in Chapter 3 was once again utilised to this end, allowing for the first 

time for a quantitative investigation into the effects of under-sampling and 

reconstruction methods, performed at the scanner in an anthropomorphic environment, 

with derived CTCs, AIFs, and quantitative PK parameters accessed via a comparison 

with precisely-known GT values.   

 

In this study, mean CCC values of 0.91, 0.96, and 0.97 were calculated for radial data 

reconstructed using the CbC, PI, and PICS approaches, respectively, for RSD = 100%, 

showing an apparent improvement in agreement between the MR-measured and 

ground truth curves for all radial reconstruction methods, when compared with CCC 

results from the fully-sampled Cartesian data reported in Chapter 5, where a mean 

CCC of 0.86 was calculated.  This was also reflected in the lower mean %RMSE 

values of 5.3%, 3.6%, and 3.2% calculated for the CbC, PI, and PICS reconstructions 

respectively (RSD = 100%), compared with mean %RMSE = 6.7% for the fully-sampled 

Cartesian acquisition (see Chapter 5).  At RSD  75% all three reconstruction 

approaches gave similar results for PK parameter estimation, with all PK parameter 

errors  5%.  Overall the continuous GA radial acquisition scheme used in this chapter, 

with RSD  75% (50% Nyquist criterion fulfilled for a Cartesian acquisition, TE = 

1.5ms, Tres = 1.4 s), outperformed the fully-sampled Cartesian acquisition approach 

presented in Chapter 5 (TE = 1.5ms, Tres = 1.2 s), both for the empirical measurement 

of the tissue CTCs and AIFs, and with the accuracy of the derived PK parameters, 

suggesting that a continuous GA radial trajectory may be a more accurate acquisition 

approach for use with DCE-MRI.  This higher accuracy in curve-shape characterisation 
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may be related to the fact that radial trajectories intrinsically over-sample the centre of 

k-space, for example, at RSD = 75%, overall k-space is under-sampled, however, the 

centre of k-space is over-sampled relative to the 100% sampled Cartesian acquisition.  

This possibly provided more accurate measurement of the low-frequency signal 

components (encoded at the centre of k-space), and hence potentially better 

measurement of change in signal over time.  A further advantage that a radial k-space 

sampling trajectory offers over a Cartesian trajectory is a lower susceptible to motion 

artefacts [46], which although not tested for in the present phantom study (since the 

phantom was static),  is nevertheless a consideration for any in vivo patient scanning, 

particularly for a long-scan-time sequences such as DCE.  Traditionally, Cartesian 

trajectories have been favoured over radial trajectories, since they were less 

susceptible to image artefacts (e.g. blurring) relating to B0 non-uniformities, as well as 

gradient nonlinearities, however, advances in modern scanner hardware (i.e. magnet / 

gradient design) have improved these features greatly. 

 

To date, only two preliminary patient studies have been reported in the literature which 

apply CS to DCE in the prostate, and although these studies both report positive 

results regarding tumour detection, image quality, clarity of anatomical detail, and 

improved spatiotemporal resolution, neither study applied quantitative PK modelling to 

the data, and rather only presented a qualitative analysis [137, 203].  Dikolaos et al. 

attempted to investigate the use of CS in the abdomen using a virtual simulation 

phantom, together with retrospectively under-sampled Cartesian DCE data, which were 

derived from a single prostate patient DCE-MRI dataset [251].  Although this study 

reports positive results with regards to the accurate recovery of kinetic parameter maps 

from data retrospectively under-sampled by up to a factor of eight, these result are 

derived either from a very simplified digital data phantom, or from a relative comparison 

of under-sampled patient data with a single fully-sampled MR dataset, from which the 

under-sampled data were derived.  The present study is the first to utilise a physical 

dynamic phantom test device to quantitatively investigate the effects of under-sampling 

and CS reconstruction on the accuracy and precision of PK parameters, specifically for 

DCE-MRI in the prostate.  In fact, this is the first truly quantitative CS DCE-MRI study, 

in which precise ground truth values were known a priori.  Considering that the ground 

truth was not known in previous studies, direct comparisons with the current study are 

challenging.  However, several studies which used PICS to reconstruct under-sampled 

DCE-MRI data in the breast have reported similar errors in derived PK parameters [206, 

216, 242].  For example, Smith et al. reported errors of up to 6.6% and 21% for the 

measurement of Ktrans, with x2 and x4 under-sampling respectively, compared with the 
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maximum errors of 4.3% and 8.1% in the present work at the same under-sampling 

factors (respectively).  Similarly, for ve parameter values, Smith et al. reported errors of 

up to 7.4% and 12%, again for x2 and x4 under-sampled data respectively, compared 

with maximum errors in ve of 4.7% and 7.6% in the present study at the same under-

sampling factors (respectively) [216].  The lower errors in this present study are probably 

a result of the VFAC pre-processing, which was lacking in the Smith study, and which 

was shown in Chapter 5 to have a strong detrimental effect on the accuracy of PK 

parameter estimation.  Additionally, the Smith study was based on the retrospective 

under-sampling of a low temporal resolution initial dataset (Tres = 16.5 s), which 

probably also affected the results.  A recent study by Kim et al., although not giving any 

exact errors in PK parameter measurements, did nevertheless report a relative 

difference in the accuracy of Ktrans estimations depending on the actual Ktrans value 

being measured, with higher ‘tumour’ Ktrans values exhibiting a higher dependence on 

the amount that the data was under-sampled [206], as was also the case with the 

present study.  

 

Some studies have used the qualitative interpretation of radiologists as a metric for the 

effects of CS on the quality of the reconstructed images, accessing image attributes 

such as clarity of prostate capsule, clarity of peripheral zone / transition zone boundary, 

image sharpness, and overall image quality [118, 137].  However the data from the present 

study demonstrates that when the objective of the study is the measurement of 

dynamic changes at a particular location over time (as is the case with DCE-MRI), 

although the apparent image quality may appear to be much diminished at high under-

sampling factors, the quantitative temporal information (i.e. the shape of the CTC or 

AIF) may still be preserved, and retrieved by applying an appropriate model to the data.  

This is illustrated well in the present work by the data reconstructed using PICS with 

RSD = 4.68%, where the apparent image quality was much diminished (see Figure 

6.4), however the PK parameter values were still recovered with mean errors less than 

12%, 6.6%, and 12% for Ktrans, ve, and kep  respectively, across all experimental runs. 

 

Another possible confound with using CS in particular is the potential loss of contrast 

caused by omitting k-space data and the sparsifying constraints [227].  One common 

strategy in order to reduce this effect is to bias the k-space sampling densities toward 

low frequencies in order to mimic the distribution of power in k-space, which for 

anatomic images typically peaks at low spatial frequencies and reduces to a roughly 

constant level at higher frequencies [250].  Another advantage to using a radial sampling 

trajectory, such as the one used in this study, is that there is an intrinsic bias towards 
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the measurement of the centre of k-space (which corresponds to the low frequency 

signal components), and as such, this effects should be minimised with a such an 

acquisition.   

 

Since certain methodologies are shared between this chapter and Chapter 5, with 

regards the phantom operation, VFAC, and PK data analysis, some of the same study 

limitations apply here, such as: limitations with the population patient average AIF used 

(i.e. derived from data acquired with Tres = 3.1 s, and with no VFAC applied to the 

original patient data); the use of a precisely known, rather than measured, base-line T1 

values (T10); inflow controlled for; and patient motion not accounted for.  For further 

details see section 5.4, where these limitations are discussed at length.  

 

In this chapter it was demonstrated that a continuous golden angle radial k-space 

trajectory, combined with PICS reconstruction of the data, holds promise for improving 

the accuracy and precision of the DCE-MRI measurements, while also offering the 

additional benefits associated with using a continuous golden-angle radial acquisition, 

such as, tractability with regards the reconstructed Tres and a lower sensitivity to 

motion.  
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Chapter 7: Conclusions 

 

 

In this thesis research was presented describing the development of a new robust 

phantom-based method for quantifying the absolute accuracy and precision of DCE-

MRI measurements.  A novel anthropomorphic phantom test device was presented, 

and subsequently used to perform a quantitative investigations into the effects of: 

temporal resolution (Tres), acquisition duration (AD), voxel-wise flip-angle correction 

(VFAC), pharmacokinetic (PK) model fitting regime, k-space acquisition trajectory, 

under-sampling k-space, as well as various image reconstruction methodologies. 

 

 

7.1. General Conclusions 

 

After a preliminary general introduction and theoretical background in Chapters 1 and 

2, Chapter 3 describes the development of a novel dynamic anthropomorphic prostate 

phantom test device, and its use in quantitatively determining the measurement 

accuracy of several DCE-MRI acquisition protocols was demonstrated.  The device 

was shown capable of simultaneously producing two distinct, accurate, and 

reproducible contrast agent concentration-time curves (CTCs), representative of those 

observed in DCE-MRI data of the prostate, within two separate MR-measurable 
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regions.  The programmed shape of the CTCs produced by the system can easily be 

modified to simulate any shape CTC, as well as  the arterial input function (AIF), as 

was subsequently demonstrated in Chapters 5 and 6, wherein modified methodologies 

also allowed for the precise and reproducible production of the rapidly-changing AIF 

curve-shape.  The system was also optimised to allow for these curve-shapes to be 

precisely and repeatable produced at the lowest flow rates, thereby minimising CA use 

and any flow-related imaging artefact. 

 

Of critical importance to the truly quantitative operation of the phantom device, and a 

step which has been lacking in previously-proposed phantom designs [139, 140, 142, 150-152], 

was to establish precisely-known ground truths for the CTCs and AIF produced at the 

device using a modality other than MR, where the signal was measured in a more 

direct fashion (i.e. in MRI the contrast agent (CA) concentration is indirectly derived 

from signal).  A high spatiotemporal resolution optical imaging system was designed 

and built specifically for this purpose, providing highly-stable, calibrated, precisely-

known measurements of the temporally-varying concentrations of CA within the 

measurement chambers.  The calibrated manor in which the CA concentrations were 

derived from the optical data, as well and the design of the measurement chambers 

(i.e. to allow for optimal homogenous fluid distribution within the chambers at low flow 

rates) allowed for direct comparison between the optical and DCE-MRI data.  Precise 

knowledge of the actual concentration of CA at a specific time-point and at a specific 

location within the device provided for a level of quantification simple not possible to 

date with patient studies alone or using other previously-proposed phantom designs. 

 

The phantom device was constructed from agar-based tissue-mimicking materials 

(TMMs), which were shown to provide T1 and T2 values close to those of the various 

tissues found in the male pelvic region (muscle, fat, bone, etc.).  Once fully-developed 

and tested, these TMMs were moulded and spatially-arranged to mimic the distribution 

of tissues found in the pelvic-region, providing an anthropomorphic environment 

wherein DCE-MRI measurements could be made which were subject to very similar 

confounding factors as patient measurements.  This anthropomorphic design-

characteristic, absent in previously proposed DCE-MRI phantom devices [139, 140, 142, 150-

152], presents a clinically-relevant challenge to acquisition protocols developed and 

tested using the device, meaning that results from this device can directly inform 

patient imaging protocols.     

 

The DCE-MRI results of Chapter 3 revealed errors in Ktrans, ve and kep values of up to 
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42%, 31%, and 50% respectively resulting from a simple variationof the Tres.  These 

results demonstrated the operation of the phantom device, as well as heretofore 

unappreciated yet significant errors introduced by standard DCE acquisition protocols 

into derived PK output parameter values.  The phantom device provides a system on 

which new and emerging DCE acquisition protocols can be accurately validated. 

 

In Chapter 4 an in-depth study was performed investigating the effects of Tres and AD 

on the accuracy of MR-measured prostate-tissue CTCs (mimicking those typical of 

‘healthy’ and ‘tumour’ prostate tissue), as well as phenomenological and PK 

parameters derived from these CTCs, across a range of Tres and AD values used in 

previously published prostate DCE-MRI studies.  The results of this chapter 

demonstrated the critical dependence of the accuracy of model-free phenomenological 

and PK parameters derived from DCE-MRI data on the Tres and AD used in the 

acquisition.  Ktrans errors were below 14% for acquisitions with Tres  8.1 s and AD  120 

s, but increased dramatically for longer Tres and shorter AD values.  ve errors were 

below 12% for acquisitions with Tres  16.3 s and AD  360 s, and again increased 

dramatically outside of this range.  No major gain in Ktrans, ve, and wash-in parameters 

measurement accuracy was found from the use of AD  360 s, at Tres  8.1 s (all 

measurement errors < 15%).   

 

In Chapter 5 a physiologically-relevant AIF was established from patient prostate data, 

and new methodologies were developed and validated which allowed for the 

production of the rapidly-changing AIF curve-shape at the phantom.  This AIF was then 

simultaneous measured with either a ‘healthy’ or ‘tumour’ CTC using a full-sampled 

Cartesian spoiled gradient echo sequence (five intra-session and five inter-session 

experiments).  Similar to the previous chapters, results from this chapter gave large 

errors up to 47% in PK parameter estimations, when an inappropriate Tres was used 

and no flip-angle correction was performed on the data.  By optimising the Tres these 

errors reduced to 20%, and, by applying VFAC to the data the maximum error in PK 

parameter estimations dropped to  7%.  These results further demonstrated the 

significant effect that Tres, as well as B1
+-field inhomogeneity / flip angle variations, can 

have on the measured PK values, and thus underpins the importance of controlling 

these parameters by careful acquisition sequence optimisation, B1
+-field mapping, and 

the use of an appropriate data pre-processing regime to correct for flip angle 

deviations.  Further to this, the use of a linear least-squares (LLS) fitting approach was 

found to almost double the accuracy of Ktrans estimates, and increased the precision of 
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Ktrans (intra-session) and kep (intra- and inter-session) to 4%, when compared with the 

much-more commonly used non-linear fitting method for the standard Tofts model.  

The LLS fitting method was also shown to be less dependent on Tres: for example, to 

measure PK parameter with errors  10%, the non-linear approach required a Tres  8.6 

s, while the LLS method only required Tres  11 s.  These results demonstrated that a 

further appreciable gain in PK modelling accuracy and precision can be achieved 

through the optimisation of the PK model fitting regime. 

 

Certain methodologies used in Chapter 6 were informed by the results of the previous 

chapters, such as using an appropriately high Tres, applying VFAC to the data, and 

using a LLS approach to fit the PK model.  The aim of this chapter was to use the 

phantom test device described in Chapter 3 to quantitatively investigate the effect of 

under-sampling the data on the accuracy and precision of measured CTCs and AIF, as 

well as the derived PK parameters.  The data were acquired using a golden-angle (GA) 

radial k-space trajectory, reconstructed using no parallel imaging (PI) or compressed 

sensing (CS) (i.e. coil-by-coil (CbC) inverse gridding), PI only, and PI combined with 

CS (PICS) approaches; the MR-results were again compared against the precisely 

known ground truth values.  Overall, the PICS reconstruction approach was shown to 

provide the highest accuracy for PK parameter estimation.  Maximum mean errors in 

Ktrans, ve, and kep parameter values of less than 12%, 6.6%, and 12% respectively were 

calculated from five intra-session and five inter-session phantom experiments, for data 

reconstructed with as little as 3% of the data required to fulfil the Nyquist criterion for a 

radial acquisition, providing a twenty-one-fold gain in acquisition speed when compared 

with a standard fully-sampled Cartesian approach with the same acquisition 

geometries.  The PICS reconstruction was shown to provide a gain in accuracy in PK 

parameter estimations of up to 34% and 42%, compared with the PI and CbC 

approaches respectively, for under-sampled data acquired with a GA radial k-space 

trajectory.   

 

Across the breadth of this thesis the effects of various confounding factor on the 

absolute accuracy and precision on PK parameter estimations have systematically and 

quantitatively been investigated, refining the methodologies used, and ultimately 

arriving at a protocol which was demonstrated is capable of providing PK parameter 

estimations with mean errors  2%, and  4% intra- and inter-session precision (using 

a continuous GA radial acquisition with 100% radial sampling density, RAW data 

reconstructed using the PICS approach, VFAC applied, Tres = 1.85 s, and with LLS 
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fitting of the standard Tofts model).   

 

These results may contribute towards a standardisation of DCE prostate acquisition 

and processing protocols, and thereby improve the consistency of data produced using 

this technique by avoiding known pitfalls.  This could potentially lead to greater clinical 

confidence in the technique as a useful adjunct to existing prostate diagnostic imaging 

techniques, and thereby facilitate DCE’s clinical adoption. 

 

 

7.2. Suggestions for Future Work 

 

Various parameters and methodologies associated with the acquisition, reconstruction, 

pre-processing, and analysis of DCE-MRI data have been shown in this thesis to have 

a strong influence on the accuracy and precision of measurements made of the tissue-

mimicking CTCs and AIF.  Signal-to-noise (SNR) values were presented for the data in 

Chapters 4 and 5, however, a more comprehensive investigation into the effects of 

SNR (with other confounding factors controlled for) using the phantom system (or a 

similar system) would be of interest.  Other hardware-related limitations, such as signal 

linearity across different contrast agent concentration ranges, could also be 

investigated using quantitative, phantom-based methodologies similar to the ones 

outlined herein.  

 

PK modelling shows great potential in correctly characterising prostate tissue 

microvascular behaviour; however, generally speaking, accurate modelling of prostate 

tissue is an area which requires further investigation.  In this thesis PK analysis was 

performed via the widely-used standard Tofts model, however, more complex PK 

models such as the Shutter Speed [77] or the Adiabatic Approximation of Tissue 

Homogeneity (AATH) [79] models have also been proposed for the analysis of prostate 

DCE-MRI data, offering the potential for better tissue characterisation, possibly 

revealing additional (patho-)physiological information [78, 80-82].  However, these more 

complex models are thought to have an increased sensitivity to SNR [252] and Tres 
[22]; 

and as such, further similar phantom-based studies which focus on quantifying the 

requirements of these models would be useful. 

 

In Chapter 6 of this thesis, a continuous GA radial acquisition scheme was used, 

exploiting the intrinsic properties of this trajectory to reconstruct multiple Tres datasets 
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from the same acquisition; a study into the effects of combining these datasets (i.e. a 

‘multi-Tres’ approach) and any possible gain to temporally-varying contrast agent 

concentration measurements that this may provide would be of interest.  Data collected 

with this acquisition trajectory also lends itself to a ‘sliding window’ reconstruction 

approach, where k-space data is shared between a specified number of temporally-

adjacent image frames.  A quantitative investigation in the effects of using such a 

reconstruction approach would also be of interest, since the sliding-window technique 

has shown promise in providing even higher-quality, high-spatiotemporal-resolution 

reconstructed datasets [185, 222, 253].  However, the effect that this k-space data sharing 

has on the dynamic temporal information remains unknown.   

 

The use of the ESPIRiT implementation of PI was investigated in Chapter 6, however a 

further similar phantom-based investigation into the effects of using other PI 

approaches, such as SENSE [114], SMASH [115], and GRAPPA [138], would be very 

informative in establishing the absolute performance of each technique at various 

under-sampling factors.  Further quantitative phantom-based studies investigating the 

optimal reconstruction parameters to use with CS would also be very informative.  For 

example, a recent study by Kim et al. investigated the effects of the reconstruction 

weighting used (given as λ in Equation [6.1]) on the reconstructed data [206].  However, 

as the authors pointed out, the lack of any ground truth values in their study meant that 

a truly quantitative investigation was not possible, only a relative comparison.  

Likewise, the phantom-based approach outlined in Chapter 3  of this thesis (or similar 

approaches) could also be used to investigate the performance of other 

implementations of CS, such as those that also take further advantage of the sparsity 

that exists in the temporal domain, such as k-t-FOCUSS [214, 215], or those which 

estimate PK parameter directly from the under-sampled k-t-space data [251].   

 

In a clinical setting, emphasis is placed on obtaining DCE-MRI data at high spatial 

resolution, since acquiring data at lower spatial resolution can lead to the possibility of 

missing smaller tumours or mischaracterising complex lesions [221, 254, 255].  Further work 

to investigate any possible effects of CS on the ability of a particular acquisition 

strategy to spatially resolve different sized targets would also be very beneficial, as CS 

can potentially loose some of the fine detail and contrast in the data during the 

reconstruction [250], for reasons outlined in the Discussion section of Chapter 6.  This 

could be achieved by the inclusion of spatial resolution targets in possible future 

iteration of the dynamic phantom design proposed in this thesis (or similar design), as 

have been included in previously proposed static validation phantoms [256, 257].   
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Patient motion was not taken into account in the present study (as there was zero 

motion of the phantom); however this in known to effect measurements in vivo.  For 

example, the abdominal aorta, where AIF measurements are generally made, can 

move by as much as 3 mm during a single  DCE-MRI run, which approximates to  

17% of the vessels internal diameter [258], potentially leading to corruption of the data 

due to partial volume effects.  Other phantom devices have included ‘patient motion’ 

mechanisms in their design [166], and future iterations of the phantom device presented 

in Chapter 3 could incorporate such mechanisms.   

 

The methods presented in this thesis were specifically targeted at DCE MR-imaging of 

the prostate. However these methodologies could easily adapted for any anatomy by 

producing a phantom device, possibly using a similar agar-based method as outlined in 

Chapter 3, based on the tissue compositions and distributions at the anatomy-of-

interest.  In this case, the same, or similar, pump system, tubing setup, and validation 

methods could be used. 

 

 

7.3. Outlook 

 

The work of this thesis highlighted the critical dependence of the accuracy and 

precision of DCE-MRI measurements on the methodologies used, as well as 

demonstrated a novel phantom-based method whereby DCE protocols can be refined 

and optimised.  Using this phantom-based method to perform a series of quantitative 

DCE-MRI experiments; absolute errors in PK parameter estimation were reduced from 

50% (using a standard Cartesian acquisition) to  2% (using a continuous GA radial 

acquisition reconstructed using the PICS approach, with VFAC applied, and linear PK 

model fitting), with a similar gain in precision from 18% to 4%.  Although beyond the 

scope of this thesis, future patient studies using highly accurate and precise protocols, 

developed in such a quantitative manner, would be of great interest in order to fully 

investigate the full diagnostic potential of DCE-MRI.  The use of quantitative phantom-

based approaches to access and optimise the accuracy and precision of DCE-MRI 

techniques, offers the prospect of standardising DCE acquisition protocols for the 

prostate and beyond, and ultimately a wider acceptance of the technique for use in 

routine clinical examinations.    
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Appendices 

Appendix A:  Supplementary Information on the development of the DCE-

MRI Phantom Device 

A 1.1: Selection of 3D Printing System and Polymer for the Production of the 

Measurement Chambers 

 

Initial prototypes of the mixing chamber components were produced using several 3D-

printing systems, namely a Form1+ (Formlabs, USA), an  Ultimaker 2+ (Ultimaker, 

Netherlands), and an Eden 250 (Stratasys, USA).  Initial prototype mixing chambers 

produced using the Form1+ and Ultimaker 2+ systems did not have good geometric 

fidelity when compared with the input 3D models.  The models produced using these 

systems also included multiple holes and occlusions in the walls (as illustrated in 

Figure A1.1).  Prototypes produced using the Eden 250 and VeroClear polymer 

(FullCure-GD810; Stratasys, USA) had very good geometric and structural fidelity, 

even with wall thicknesses as low as 0.3 mm.  One thing of note is that during initial 

experiments where MnCl2 was explored as a possible low-cost alternative to use in 

place of a Gd-based contrast agent, the VeroClear polymer absorbed MnCl2 into the 

internal surface, resulting in an irreversible modification to MR signal from those areas.  

In light of this, these models were discarded and only Gd-based contrast agents used 

for all subsequent experiments (Gd-based contrast agents were not similarly absorbed 

by the polymer). 

 

Figure A1.1: Photograph of prototype mixing chambers produced using (left) the Form1+ (Formlabs, USA) 
system and (right) the Eden 250 (Stratasys, USA) system. 
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A 1.2: Shielded Control Box and Cabling 

 

A shielded box was constructed to allow the 25-way d-sub connection from the analog 

output module (USB-DA12-8A; ACCES, USA) to be connected to the individual pumps 

(Reglo-Z; Ismatec, Switzerland) via four 15-way d-sub connections, as shown in Figure 

A1.2.  The box also contained four rocker switches which allowed for easy switching 

between manual control (i.e. with pump-rate set at the pump driver units) or voltage 

control (i.e. flow rates controlled via the voltage outputs from the output module), as 

well as a voltage output connection which allowed the pump-control-voltages of the 

system to be monitored in real-time. The wiring configuration used in the control box is 

shown in Figure A1.3.  The analog output module was connected to the control box via 

a shielded 25-way female-to-female d-sub cable and the control box connected to the 

individual pumps via four shielded 25-way male-to-male d-sub cables. 

 

 

Figure A1.2: Photograph showing the shielded control box used to connect the 25 way d-sub connection 
from the analog output module to the four individual pumps (15 way d-sub), as well as control whether the 
pumps flow-rates were manually set at the driver units or controlled via the output module’s output voltage, 
shown: (a) with control switches and voltage output connection highlighted; (b) open, showing the internal 
wiring; and (c) connected to an oscilloscope via a purpose-built cable for validation of the voltage outputs. 

 

Figure A1.3: Schematic diagram showing the shielded control box wiring configuration. 
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A 1.3: Timing and validation of analog module outputs 

 

Precise timing of the temporally-varying voltage signal produced using the analog 

output module was achieved using a software-implemented, hardware-dependant 

‘dwell timer’ which utilised the Windows Application Programing Interface (API; 

Windows 7 Professional; Microsoft Corporation, USA) and QueryPerformanceCounter 

function.  This method was implemented in the Delphi programming language 

(Embarcadero Technologies, USA), and allowed for high-resolution time stamps to be 

acquired directly from the CPU (2.7-GHz quad-core Intel i7 (Intel Corporation, USA)), 

independent of (i.e. not synchronized to) any external time reference, but instead 

derived directly from the laptop’s hardware. 

 

The timing fidelity of the outputs produced using this method was measured and 

validated by setting the analog output module to produce square wave outputs at 1 Hz, 

10 Hz, and 100 Hz, and measuring the frequency of the resulting voltage outputs 

produced using an oscilloscope (TDS 3032b; Tektronix, USA).  The system was found 

to have very good timing fidelity for the output voltages, with no variation detected at 

1Hz, and small frequency variations of ±0.01% and ±0.03% at 10 Hz and 100Hz 

respectively (all measurements made at high CPU load and with no core affinity set in 

order to test the worst-case scenario). 

 

 

A 1.4: Phantom flow system configuration (tubing and connectors) 

 

The final tubing arrangement and connectors used for the phantom’s flow system are 

shown in Figure A1.4(a).  This configuration was modular in design, allowing the device 

to be easily set-up and removed from the MRI scanner, while still keeping the system 

primed with fluid, as illustrated in Figure A1.4(b). 

 



 

A-4 

 

Figure A1.4: Schematic diagram showing (a) the configuration of tubing and tubing connectors used in the 
phantom flow system and (b) the flow system separated into its modular form. 
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Appendix B: Chapter 5 results: percentage errors and percentage 

standard deviation (S.D.) in DCE-MRI derived PK parameter values 
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24.1 -1.8 26.4 8.4 -14.4 27.0 

11.0 12.4 -4.5 17.9 0.9 -16.5 20.5 
 

25.7 -1.9 28.1 9.5 -14.5 28.4 

12.2 12.7 -4.7 18.5 0.9 -16.7 20.9 
 

27.2 -2.1 30.0 10.8 -14.7 30.2 

13.5 12.4 -5.0 18.4 0.3 -16.9 20.3 
 

27.7 -1.8 30.0 11.9 -14.7 31.5 

14.7 9.8 -5.2 16.0 -1.7 -17.1 18.3 
 

28.8 -1.9 31.3 12.8 -14.8 32.6 

15.9 6.1 -5.3 12.1 -5.4 -17.2 13.9 
 

29.8 -1.7 32.1 13.5 -14.7 33.4 

17.1 1.8 -5.4 7.7 -9.1 -17.4 9.7 
 

31.3 -1.9 33.9 14.6 -14.8 34.8 

18.4 -2.8 -5.1 2.5 -13.4 -17.1 4.1 
 

31.5 -1.3 33.3 15.1 -14.4 34.8 

19.6 -7.0 -5.0 -2.1 -17.3 -16.9 -0.7 
 

31.9 -1.1 33.4 15.8 -14.3 35.5 

20.8 -11.0 -4.9 -6.3 -21.0 -16.9 -5.2 
 

32.2 -1.0 33.5 16.2 -14.2 35.7 

22.0 -14.4 -4.7 -10.1 -24.3 -16.7 -9.3 
 

32.0 -0.6 32.9 16.4 -13.9 35.5 

23.3 -17.6 -4.5 -13.7 -27.3 -16.5 -13.1 
 

31.5 -0.3 31.9 16.0 -13.5 34.5 

24.5 -19.9 -4.9 -15.8 -29.6 -17.0 -15.4 
 

31.7 -0.6 32.5 16.3 -13.8 35.2 

25.7 -22.3 -4.8 -18.3 -31.8 -16.8 -18.2 
 

30.4 0.2 30.1 15.6 -13.2 33.5 

26.9 -24.4 -4.7 -20.7 -33.8 -16.6 -20.8 
 

28.9 1.2 27.4 14.6 -12.6 31.4 

28.2 -26.4 -5.1 -22.3 -35.5 -17.1 -22.3 
 

28.8 0.9 27.7 14.4 -12.7 31.4 

29.4 -28.5 -4.8 -24.8 -37.3 -16.8 -24.9 
 

26.8 2.5 23.8 12.8 -11.6 27.9 

30.6 -30.5 -5.3 -26.6 -39.1 -17.3 -26.5  26.5 2.3 23.7 12.5 -11.7 27.7 



 

A-6 

 

 

 

Precision of LLS Tofts Model Fitting (No VFAC correction) 

 
Tumour 

 
Healthy 

 
Intra-session Inter-session 

 
Intra-session Inter-session 

Tres [s] K
trans 

%S.D. 
ve 

%S.D. 
kep 

%S.D. 
K

trans 

%S.D. 
ve 

%S.D. 
kep 

%S.D. 
 

K
trans 

%S.D. 
ve 

%S.D. 
kep 

%S.D. 
K

trans 

%S.D. 
ve 

%S.D. 
kep 

%S.D. 
1.2 0.9 1.8 2.1 12.9 13.0 4.9  0.5 2.5 2.2 13.6 15.5 2.5 

2.4 1.0 1.8 2.0 13.0 13.0 5.0  0.8 2.5 2.2 13.7 15.5 2.3 

3.7 1.1 1.9 2.3 12.8 13.0 4.9  0.4 2.5 2.4 13.5 15.5 2.5 

4.9 0.7 1.8 1.9 12.8 13.0 5.1  0.7 2.5 2.4 13.7 15.5 2.2 

6.1 1.0 1.9 2.1 12.7 12.9 5.2  1.2 2.3 1.9 13.7 15.4 2.3 

7.3 1.0 1.8 2.2 12.8 13.0 5.1  1.0 2.6 2.5 13.6 15.5 2.2 

8.6 0.9 1.8 2.0 12.6 13.0 5.2  1.2 2.4 2.2 13.9 15.4 1.8 

9.8 1.1 1.8 1.7 12.8 13.0 5.2  1.0 2.5 2.5 13.8 15.5 2.0 

11.0 1.4 1.8 2.0 12.7 13.0 5.7  1.2 2.4 2.3 13.8 15.5 2.1 

12.2 1.5 1.9 1.7 13.1 12.9 5.8  1.4 2.3 2.1 14.0 15.4 1.9 

13.5 1.3 1.8 1.7 13.2 13.0 6.4  1.1 2.3 1.9 13.6 15.5 2.3 

14.7 1.5 1.8 1.8 13.3 13.0 7.1  1.2 2.4 2.2 13.9 15.5 2.1 

15.9 1.6 1.8 1.4 13.3 12.9 7.7  1.1 2.4 1.9 14.0 15.5 2.1 

17.1 2.0 1.9 1.6 13.3 13.0 7.7  1.4 2.3 1.8 14.3 15.4 2.3 

18.4 2.4 1.8 1.7 13.0 12.9 8.4  1.0 2.3 1.2 14.5 15.5 2.4 

19.6 2.1 1.9 1.6 13.1 12.9 8.1  1.1 2.3 1.0 14.6 15.5 2.7 

20.8 2.0 1.9 1.5 13.2 12.9 8.2  1.5 2.2 0.9 14.9 15.5 2.6 

22.0 1.8 1.8 1.7 13.0 13.0 8.3  1.8 2.2 1.4 15.2 15.5 2.8 

23.3 1.8 1.8 1.6 13.3 12.9 8.5  1.8 2.2 1.0 15.0 15.5 2.4 

24.5 2.0 1.8 1.9 13.5 13.0 7.8  2.5 2.0 1.7 15.4 15.3 3.0 

25.7 2.1 1.8 2.2 13.6 13.0 8.4  2.3 2.2 1.8 15.1 15.5 2.9 

26.9 1.8 1.7 2.2 13.6 12.9 9.5  2.5 2.1 1.8 14.7 15.6 3.0 

28.2 1.9 1.8 2.1 14.1 13.0 8.9  2.3 2.1 1.7 15.2 15.4 2.8 

29.4 1.8 1.7 2.2 13.9 13.0 10.0  2.2 2.2 1.5 15.1 15.6 3.0 

30.6 2.1 1.8 2.3 14.1 13.0 9.3  2.3 2.0 1.5 15.2 15.4 3.0 

  
 

 

 

Precision of NLS Tofts Model Fitting (No VFAC correction) 

 
Tumour 

 
Healthy 

 
Intra-session Inter-session 

 
Intra-session Inter-session 

Tres [s] K
trans 

%S.D. 
ve 

%S.D. 
kep 

%S.D. 
K

trans 

%S.D. 
ve 

%S.D. 
kep 

%S.D.  
K

trans 

%S.D. 
ve 

%S.D. 
kep 

%S.D. 
K

trans 

%S.D. 
ve 

%S.D. 
kep 

%S.D. 
1.2 7.6 1.8 9.1 17.9 13.1 8.9  0.7 2.4 1.9 13.9 15.4 2.2 

2.4 8.0 1.8 9.4 18.3 13.1 9.2  1.0 2.4 1.9 14.0 15.4 2.0 

3.7 7.9 1.9 9.5 17.9 13.1 9.1  0.6 2.5 2.0 13.9 15.4 2.1 

4.9 8.2 1.8 9.6 18.3 13.1 9.3  0.8 2.5 2.0 14.0 15.4 1.9 

6.1 7.9 1.9 9.4 18.1 13.0 9.1  1.2 2.2 1.6 14.0 15.3 2.0 

7.3 8.2 1.9 9.8 18.2 13.1 9.4  1.0 2.5 2.2 13.9 15.5 1.9 

8.6 8.4 2.0 10.1 18.5 13.0 9.7  1.2 2.3 1.9 14.2 15.3 1.7 

9.8 8.5 2.0 10.1 18.6 13.0 9.8  0.9 2.4 2.1 14.1 15.5 2.1 

11.0 8.5 2.1 10.3 18.5 13.0 10.0  1.1 2.3 1.9 14.1 15.5 2.1 

12.2 8.3 2.2 10.2 18.6 12.9 9.9  1.3 2.3 1.7 14.2 15.4 2.0 

13.5 8.2 2.2 10.1 18.7 12.9 9.9  1.1 2.3 1.6 13.8 15.5 2.3 

14.7 7.9 2.2 9.9 18.3 13.0 9.5  1.0 2.4 1.9 14.0 15.5 2.0 

15.9 7.3 2.2 9.3 18.1 12.9 9.1  1.0 2.4 1.8 13.9 15.6 2.1 

17.1 6.7 2.3 8.8 17.7 13.0 8.5  1.1 2.3 1.8 14.1 15.5 2.0 

18.4 5.9 2.2 7.8 17.1 12.9 7.6  1.0 2.3 1.7 13.9 15.6 2.2 

19.6 5.6 2.2 7.6 17.0 12.8 7.3  0.8 2.4 1.8 13.8 15.7 2.3 

20.8 5.0 2.2 6.9 16.5 12.9 6.7  0.9 2.4 1.8 13.9 15.7 2.2 

22.0 4.8 2.2 6.6 16.4 13.0 6.5  0.8 2.5 1.8 13.9 15.7 2.2 

23.3 4.5 2.2 6.4 16.3 12.9 6.3  0.8 2.5 1.8 13.7 15.8 2.4 

24.5 4.3 2.2 6.1 16.1 13.0 6.1  1.0 2.3 1.5 14.0 15.5 2.0 

25.7 4.1 2.2 5.9 16.0 13.0 6.0  0.6 2.5 1.9 13.9 15.7 2.4 

26.9 4.0 2.2 5.8 16.0 12.9 6.0  0.8 2.4 1.6 13.7 15.8 2.6 

28.2 3.9 2.2 5.8 15.9 13.0 5.9  0.7 2.4 1.7 14.0 15.6 2.3 

29.4 3.8 2.2 5.6 16.0 12.9 5.8  0.7 2.5 1.9 13.9 15.9 2.8 

30.6 3.8 2.3 5.7 15.9 13.0 5.7  0.9 2.3 1.5 14.0 15.7 2.5 

  
 
 
 



 

A-7 

 

 

 

Accuracy of LLS Tofts Model Fitting (with VFAC correction) 

 
Tumour 

 
Healthy 

 
Intra-session mean Inter-session mean 

 
Intra-session mean Inter-session mean 

Tres [s] 
K

trans 

%Error 
ve 

%Error 
kep 

%Error 
K

trans 

%Error 
ve 

%Error 
kep 

%Error  
K

trans 

%Error 
ve 

%Error 
kep 

%Error 
K

trans 

%Error 
ve 

%Error 
kep 

%Error 

1.2 2.3 4.1 -1.7 -0.8 -2.1 1.4 
 

3.3 6.9 -3.3 -2.7 -1.2 -1.4 

2.4 2.4 4.1 -1.7 -0.9 -2.1 1.4 
 

3.4 6.9 -3.1 -2.6 -1.2 -1.2 

3.7 2.4 4.1 -1.6 -0.6 -2.1 1.6 
 

3.4 6.9 -3.2 -2.7 -1.0 -1.6 

4.9 2.4 4.2 -1.7 -0.5 -2.0 1.7 
 

3.8 7.1 -2.9 -2.5 -1.1 -1.3 

6.1 2.6 4.1 -1.4 -0.2 -2.1 2.0 
 

4.6 6.9 -2.1 -2.3 -1.0 -1.2 

7.3 3.6 4.2 -0.5 0.7 -2.1 2.9 
 

5.3 6.4 -0.8 -1.5 -1.5 0.1 

8.6 4.0 4.2 -0.2 1.3 -2.0 3.5 
 

6.5 6.5 0.2 -1.0 -1.4 0.5 

9.8 4.4 4.2 0.2 2.2 -1.9 4.3 
 

8.1 6.0 2.2 0.2 -1.8 2.2 

11.0 5.4 4.3 1.1 3.5 -1.9 5.7 
 

9.9 5.8 4.2 1.5 -1.9 3.5 

12.2 6.6 4.3 2.2 4.9 -1.8 7.0 
 

12.0 5.2 6.7 3.1 -2.3 5.5 

13.5 7.7 4.4 3.1 7.1 -1.6 9.0 
 

13.2 5.4 7.5 4.6 -2.4 7.2 

14.7 7.4 4.4 3.0 8.1 -1.7 10.2 
 

15.1 4.9 10.0 6.1 -2.7 9.2 

15.9 7.9 4.3 3.4 9.1 -1.6 11.1 
 

17.4 4.7 12.4 7.6 -3.0 11.0 

17.1 9.3 4.3 4.8 10.5 -1.9 12.8 
 

20.4 3.8 16.3 10.0 -3.7 14.3 

18.4 11.4 4.6 6.5 13.4 -1.4 15.2 
 

22.4 4.2 17.5 11.7 -3.4 15.6 

19.6 14.7 4.8 9.4 16.4 -1.2 18.1 
 

24.3 3.9 19.6 13.7 -3.9 18.4 

20.8 18.1 4.9 12.5 19.3 -1.1 20.9 
 

26.0 3.6 21.4 15.7 -4.2 20.9 

22.0 20.8 5.2 14.8 22.4 -0.9 23.8 
 

27.1 3.4 22.8 17.4 -4.4 23.0 

23.3 22.6 5.4 16.3 24.6 -0.7 25.8 
 

28.0 3.3 23.5 18.3 -4.4 23.9 

24.5 24.4 5.2 18.2 24.9 -1.0 26.5 
 

28.8 2.7 25.1 19.5 -5.0 25.8 

25.7 24.6 5.3 18.4 26.4 -0.9 27.7 
 

28.3 3.1 24.1 19.8 -4.9 26.0 

26.9 23.8 5.4 17.5 26.7 -0.6 27.9 
 

27.9 3.3 23.3 19.7 -4.9 25.9 

28.2 23.3 5.0 17.4 25.6 -1.1 27.3 
 

28.6 2.7 24.8 20.1 -5.2 26.7 

29.4 21.5 5.2 15.5 25.6 -0.8 27.0 
 

28.1 3.1 23.8 19.4 -4.9 25.5 

30.6 21.0 4.8 15.4 23.9 -1.2 25.8  29.2 2.7 25.3 20.0 -5.2 26.6 

  
 

 

 

Accuracy of NLS Tofts Model Fitting (with VFAC correction) 

 
Tumour 

 
Healthy 

 
Intra-session mean Inter-session mean 

 
Intra-session mean Inter-session mean 

Tres [s] 
K

trans 

%Error 
ve 

%Error 
kep 

%Error 
K

trans 

%Error 
ve 

%Error 
kep 

%Error  
K

trans 

%Error 
ve 

%Error 
kep 

%Error 
K

trans 

%Error 
ve 

%Error 
kep 

%Error 

1.2 1.3 4.4 -2.9 -1.3 -1.8 0.6 
 

6.0 6.2 -0.1 0.1 -2.1 2.3 

2.4 1.5 4.4 -2.7 -1.2 -1.8 0.6 
 

6.3 6.1 0.2 0.2 -2.1 2.4 

3.7 1.3 4.3 -2.8 -1.2 -1.8 0.7 
 

6.2 6.1 0.1 0.2 -2.0 2.3 

4.9 1.1 4.3 -2.9 -1.3 -1.9 0.7 
 

6.6 6.3 0.4 0.1 -1.9 2.1 

6.1 1.1 4.1 -2.8 -1.4 -2.0 0.7 
 

7.2 6.2 1.0 0.6 -1.9 2.6 

7.3 1.7 4.0 -2.1 -1.0 -2.1 1.2 
 

8.1 5.7 2.4 1.3 -2.3 3.7 

8.6 1.9 3.9 -1.8 -0.9 -2.3 1.5 
 

9.1 5.9 3.1 1.6 -2.1 3.8 

9.8 1.9 3.7 -1.6 -0.5 -2.4 2.0 
 

10.6 5.5 4.9 2.7 -2.4 5.3 

11.0 2.8 3.6 -0.7 -0.2 -2.6 2.5 
 

12.1 5.4 6.4 3.8 -2.5 6.5 

12.2 3.7 3.5 0.3 0.4 -2.8 3.3 
 

13.6 5.1 8.2 5.2 -2.8 8.2 

13.5 4.5 3.4 1.2 0.8 -2.8 3.7 
 

14.0 5.6 8.0 6.1 -2.7 9.1 

14.7 3.2 3.1 0.2 0.1 -3.0 3.2 
 

15.3 5.4 9.4 7.1 -2.8 10.3 

15.9 0.9 3.0 -2.0 -2.4 -3.1 0.8 
 

16.4 5.6 10.2 7.9 -2.6 10.9 

17.1 -2.5 3.0 -5.2 -5.4 -3.4 -2.0 
 

18.3 5.1 12.6 9.4 -3.0 12.9 

18.4 -6.5 3.3 -9.4 -9.5 -2.9 -6.7 
 

18.5 6.2 11.6 9.9 -2.2 12.5 

19.6 -10.2 3.6 -13.2 -12.9 -2.8 -10.4 
 

19.1 6.4 12.0 10.8 -2.2 13.4 

20.8 -13.7 3.8 -16.9 -16.5 -2.6 -14.1 
 

19.5 6.5 12.2 11.4 -2.0 13.8 

22.0 -16.5 4.1 -19.7 -19.5 -2.5 -17.4 
 

19.4 7.0 11.6 11.8 -1.6 13.8 

23.3 -19.1 4.2 -22.3 -22.2 -2.3 -20.3 
 

19.0 7.6 10.6 11.5 -1.0 12.7 

24.5 -21.1 3.8 -23.9 -24.5 -2.9 -22.2 
 

19.6 6.7 12.1 12.3 -1.8 14.4 

25.7 -23.0 3.8 -25.8 -26.6 -2.7 -24.5 
 

18.4 8.1 9.6 11.5 -0.8 12.5 

26.9 -24.9 4.0 -27.7 -28.6 -2.4 -26.8 
 

17.0 9.6 6.7 10.4 0.3 10.2 

28.2 -26.6 3.4 -29.0 -30.3 -3.1 -28.0 
 

17.3 8.8 7.9 10.7 -0.3 11.1 

29.4 -28.6 3.8 -31.2 -32.2 -2.6 -30.4 
 

15.3 11.2 3.7 8.9 1.7 7.3 

30.6 -30.4 3.3 -32.6 -34.0 -3.3 -31.7  15.3 10.6 4.3 9.0 1.2 7.8 

  
 
 
 



 

A-8 

 

 

 

Precision of LLS Tofts Model Fitting (with VFAC correction) 

 
Tumour 

 
Healthy 

 
Intra-session Inter-session 

 
Intra-session Inter-session 

Tres [s] K
trans 

%S.D. 
ve 

%S.D. 
kep 

%S.D. 
K

trans 

%S.D. 
ve 

%S.D. 
kep 

%S.D.  
K

trans 

%S.D. 
ve 

%S.D. 
kep 

%S.D. 
K

trans 

%S.D. 
ve 

%S.D. 
kep 

%S.D. 
1.2 0.8 2.1 1.7 2.3 4.8 2.8 

 
0.8 2.9 2.1 6.2 7.6 1.9 

2.4 0.8 2.1 1.7 2.2 4.8 3.0 
 

1.2 2.9 2.1 6.2 7.5 1.7 

3.7 0.8 2.2 2.0 2.3 4.8 2.9 
 

0.7 3.0 2.3 6.2 7.5 1.7 

4.9 0.9 2.1 1.9 2.2 4.8 3.2 
 

1.0 3.0 2.3 6.2 7.6 1.6 

6.1 1.0 2.2 2.0 2.0 4.8 3.3 
 

1.3 2.6 1.7 6.5 7.3 1.6 

7.3 0.8 2.1 2.1 2.1 4.9 3.2 
 

1.3 3.0 2.4 6.4 7.5 1.4 

8.6 0.7 2.1 1.9 1.8 4.8 3.5 
 

1.5 2.8 2.1 6.6 7.4 1.1 

9.8 0.7 2.1 1.5 1.8 4.8 3.3 
 

1.3 2.9 2.3 6.6 7.6 1.5 

11.0 1.2 2.1 1.5 1.5 4.8 3.8 
 

1.5 2.7 2.2 6.8 7.5 1.4 

12.2 1.7 2.2 1.0 2.1 4.8 3.7 
 

1.7 2.7 2.0 7.1 7.3 1.3 

13.5 1.6 2.2 1.0 2.2 4.8 4.6 
 

1.5 2.7 1.8 6.6 7.5 1.5 

14.7 1.8 2.2 1.2 2.9 4.8 5.6 
 

1.6 2.8 2.2 6.9 7.5 1.3 

15.9 2.1 2.2 0.8 3.1 4.7 6.3 
 

1.6 2.8 2.1 6.9 7.5 1.4 

17.1 2.5 2.2 1.4 3.6 4.8 6.4 
 

1.8 2.7 2.1 7.2 7.4 1.8 

18.4 3.0 2.2 1.7 4.0 4.7 7.3 
 

1.3 2.7 1.7 7.2 7.5 1.9 

19.6 2.7 2.2 1.7 3.9 4.7 6.9 
 

1.2 2.8 1.6 7.1 7.7 2.2 

20.8 2.6 2.2 1.4 3.8 4.7 6.8 
 

1.3 2.7 1.0 7.1 7.7 2.1 

22.0 2.2 2.1 1.4 3.4 4.8 6.8 
 

1.6 2.7 1.3 7.2 7.7 2.3 

23.3 2.1 2.1 1.0 3.4 4.7 6.9 
 

1.6 2.6 0.7 7.1 7.7 1.9 

24.5 2.1 2.1 0.9 3.6 4.9 6.2 
 

2.4 2.4 1.4 7.5 7.5 2.6 

25.7 1.9 2.1 1.0 3.2 4.8 6.6 
 

2.3 2.5 1.7 7.3 7.6 2.6 

26.9 1.8 2.1 0.7 3.6 4.7 7.8 
 

2.7 2.4 1.9 7.2 7.7 2.8 

28.2 2.0 2.1 0.7 3.8 4.8 7.2 
 

2.6 2.5 1.9 7.5 7.5 2.7 

29.4 1.8 2.1 0.8 4.2 4.7 8.4 
 

2.5 2.5 1.7 7.6 7.7 2.8 

30.6 2.1 2.1 1.1 4.2 4.7 7.7  2.6 2.3 1.7 7.6 7.5 2.8 

  
 

 

 

Precision of NLS Tofts Model Fitting (with VFAC correction) 

 
Tumour 

 
Healthy 

 
Intra-session Inter-session 

 
Intra-session Inter-session 

Tres [s] K
trans 

%S.D. 
ve 

%S.D. 
kep 

%S.D. 
K

trans 

%S.D. 
ve 

%S.D. 
kep 

%S.D.  
K

trans 

%S.D. 
ve 

%S.D. 
kep 

%S.D. 
K

trans 

%S.D. 
ve 

%S.D. 
kep 

%S.D. 
1.2 5.1 2.1 6.7 6.7 4.8 6.3 

 
1.2 2.8 1.9 6.2 7.6 2.0 

2.4 5.5 2.1 7.0 7.2 4.8 6.6 
 

1.5 2.8 1.9 6.3 7.6 1.9 

3.7 5.3 2.1 6.9 6.9 4.7 6.2 
 

1.1 2.9 2.1 6.3 7.6 2.1 

4.9 5.7 2.1 7.2 7.2 4.8 6.6 
 

1.3 2.9 2.1 6.3 7.6 1.8 

6.1 5.3 2.1 6.9 6.9 4.8 6.3 
 

1.6 2.5 1.5 6.5 7.4 2.2 

7.3 5.6 2.1 7.3 7.3 4.8 6.4 
 

1.4 2.9 2.2 6.5 7.6 2.0 

8.6 5.9 2.2 7.5 7.6 4.8 6.7 
 

1.6 2.7 1.9 6.7 7.5 1.6 

9.8 6.0 2.1 7.5 7.5 4.8 6.5 
 

1.3 2.8 2.0 6.7 7.7 2.1 

11.0 6.0 2.2 7.7 7.9 4.8 6.7 
 

1.5 2.7 1.9 6.8 7.6 2.2 

12.2 5.9 2.3 7.7 7.9 4.9 6.6 
 

1.7 2.6 1.7 7.0 7.4 2.3 

13.5 6.0 2.2 7.7 8.2 4.8 7.0 
 

1.5 2.6 1.5 6.5 7.6 2.3 

14.7 6.0 2.3 7.8 7.9 4.9 7.1 
 

1.5 2.8 1.9 6.7 7.7 2.0 

15.9 5.6 2.3 7.4 7.6 4.9 7.5 
 

1.5 2.8 1.7 6.7 7.7 2.0 

17.1 5.2 2.3 7.0 7.3 5.1 7.6 
 

1.6 2.7 1.8 6.9 7.7 2.1 

18.4 4.5 2.3 6.2 6.8 5.1 7.2 
 

1.4 2.7 1.6 6.7 7.8 2.2 

19.6 4.4 2.3 6.0 6.5 5.2 6.9 
 

1.3 2.8 1.8 6.5 7.9 2.3 

20.8 3.7 2.3 5.3 5.8 5.3 6.1 
 

1.3 2.8 1.7 6.5 8.0 2.1 

22.0 3.4 2.2 5.0 5.8 5.2 5.6 
 

1.3 2.9 1.9 6.4 8.0 2.1 

23.3 3.3 2.3 4.9 5.8 5.2 5.3 
 

1.3 2.9 1.7 6.3 8.0 2.2 

24.5 3.1 2.3 4.6 6.0 5.2 4.8 
 

1.5 2.6 1.4 6.5 7.7 2.0 

25.7 3.0 2.2 4.5 6.2 5.2 4.7 
 

1.1 2.8 1.8 6.3 7.9 2.2 

26.9 3.0 2.3 4.6 6.3 5.1 4.8 
 

1.4 2.7 1.5 6.1 8.0 2.4 

28.2 2.9 2.3 4.5 6.4 5.1 4.5 
 

1.2 2.8 1.6 6.3 7.9 2.2 

29.4 3.0 2.3 4.6 6.4 5.1 4.8 
 

1.2 3.0 1.8 6.2 8.2 2.6 

30.6 2.9 2.3 4.5 6.3 5.2 4.6 
 

1.3 2.7 1.4 6.3 8.0 2.4 
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Appendix C: Chapter 6 results: percentage errors and percentage 

standard deviation (S.D.) in DCE-MRI derived PK parameter values  

 

 

 

PK Modelling Accuracy 

 
Tumour 

 
Healthy 

 
Intra-session mean Inter-session mean 

 
Intra-session mean Inter-session mean 

RSD 

[%] 

K
trans 

%Error 

ve 

%Error 

kep 

%Error 

K
trans 

%Error 

ve 

%Error 

kep 

%Error  

K
trans 

%Error 

ve 

%Error 

kep 

%Error 

K
trans 

%Error 

ve 

%Error 

kep 

%Error 

 
CbC 

 
CbC 

4.68 - - - - - - 
 

- - - - - - 

6.25 - - - - - - 
 

- - - - - - 

12.5 -35.3 -16.2 -19.6 -49.6 -41.1 -24.8 
 

-14.3 -38.1 39.8 -20.3 -43.1 40.2 

25.0 -9.3 -19.6 13.0 -13.1 -17.1 4.6 
 

-3.5 -18.4 18.0 -5.3 -19.4 17.6 

50.0 -1.8 -4.0 2.5 -0.5 -1.0 0.7 
 

14.0 3.4 8.2 14.3 7.3 6.4 

75.0 -1.2 -4.5 3.6 -1.7 -5.7 4.4 
 

3.5 1.6 2.1 0.9 -0.8 2.0 

100.0 -1.7 -2.5 0.9 -0.4 -1.8 1.5 
 

0.8 0.4 2.7 0.2 2.0 -1.7 

 
PI 

 
PI 

4.68 -32.9 -31.3 -1.9 -29.9 -30.4 -5.2 
 

-25.9 -34.0 14.3 -32.2 -40.7 13.0 

6.25 -3.6 4.7 -7.5 3.1 9.5 -5.4 
 

17.5 9.4 6.0 13.4 5.9 6.5 

12.5 -20.1 -10.4 -10.3 -8.1 -5.4 -2.6 
 

0.1 2.0 -3.1 -4.5 -4.8 -0.1 

25.0 -6.6 -4.4 -1.9 -3.8 -2.3 -0.8 
 

-0.5 -1.6 0.1 -3.1 -2.8 -1.2 

50.0 -2.5 -1.8 -0.5 0.1 1.3 -1.1 
 

3.6 2.7 1.3 0.5 -1.2 2.0 

75.0 -1.1 -1.2 0.0 -1.4 -2.1 0.2 
 

4.5 5.4 -4.5 -2.3 -0.3 -1.8 

100.0 0.9 1.6 -0.6 0.7 0.8 0.1 
 

3.6 4.7 -3.0 0.9 3.2 -1.9 

 
PICS 

 
PICS 

4.68 -12.1 -1.7 -11.6 -4.9 0.4 -3.2 
 

-3.4 -5.7 9.7 2.5 -6.6 8.4 

6.25 -9.4 -2.1 -8.5 -1.6 -0.5 -1.4 
 

5.8 -6.5 10.0 -4.4 -9.7 8.3 

12.5 -8.1 -3.9 -4.3 -5.4 -6.1 1.1 
 

1.8 -5.2 4.1 -4.5 -7.6 5.0 

25.0 -5.1 -4.3 -0.5 -3.0 0.8 -3.6 
 

-2.0 -5.4 3.5 -1.9 -5.3 2.5 

50.0 -4.3 -4.7 0.5 -0.8 -1.0 0.4 
 

-0.6 -2.6 1.2 -1.7 -4.4 3.0 

75.0 -1.4 -2.8 1.6 -2.4 -4.0 1.2 
 

4.1 5.1 -2.9 1.1 1.6 -0.3 

100.0 -1.2 -2.1 1.0 -0.1 -1.5 1.5 
 

-1.2 2.2 -2.2 1.8 0.5 1.4 
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PK Modelling Precision 

 
Tumour 

 
Healthy 

 
Intra-session Inter-session 

 
Intra-session Inter-session 

RSD 

[%] 

K
trans 

%S.D. 

ve 

%S.D. 

kep 

%S.D. 

K
trans 

%S.D. 

ve 

%S.D. 

kep 

%S.D.  

K
trans 

%S.D. 

ve 

%S.D. 

kep 

%S.D. 

K
trans 

%S.D. 

ve 

%S.D. 

kep 

%S.D. 

 
CbC 

 
CbC 

4.68 - - - - - - 
 

- - - - - - 

6.25 - - - - - - 
 

- - - - - - 

12.5 45.7 66.2 50.7 67.3 24.2 60.8 
 

7.0 10.1 4.1 7.3 11.7 4.8 

25.0 6.7 2.8 8.7 9.1 7.6 4.9 
 

1.5 3.0 2.6 2.9 2.0 3.7 

50.0 1.8 3.9 3.9 1.6 4.6 4.2 
 

1.8 4.0 2.1 9.4 5.8 4.6 

75.0 4.7 2.9 3.8 4.8 5.9 5.0 
 

4.1 1.6 5.0 6.2 5.2 8.2 

100.0 4.5 4.0 4.2 3.9 3.8 3.7 
 

11.0 7.2 6.4 9.3 5.8 5.8 

 
PI 

 
PI 

4.68 15.0 13.8 8.0 12.9 16.0 15.6 
 

9.6 4.3 4.9 21.0 16.8 5.7 

6.25 8.0 4.0 7.1 10.9 13.1 5.5 
 

9.9 6.8 4.0 4.9 3.5 4.4 

12.5 5.2 3.1 5.6 5.7 7.4 4.2 
 

8.4 4.6 5.1 9.6 6.7 5.1 

25.0 2.9 5.2 5.7 3.7 10.4 7.4 
 

4.8 3.5 2.0 3.1 4.1 3.6 

50.0 3.5 4.7 5.3 2.6 4.8 3.4 
 

4.6 4.7 1.5 4.8 5.2 3.6 

75.0 5.7 2.6 4.3 5.1 4.6 3.9 
 

3.7 5.2 3.1 8.1 6.0 5.9 

100.0 4.2 2.6 3.3 4.3 4.2 3.6 
 

2.1 3.8 2.4 6.3 2.4 5.9 

 
PICS 

 
PICS 

4.68 2.5 5.0 3.2 6.7 7.3 3.7 
 

1.1 10.9 5.2 6.8 6.9 2.0 

6.25 4.0 5.4 6.1 3.4 5.9 6.8 
 

4.0 6.7 3.3 5.8 3.4 5.1 

12.5 2.0 4.4 3.6 3.9 7.4 4.2 
 

6.6 5.5 3.1 2.0 3.7 3.9 

25.0 1.2 3.9 4.5 3.1 5.7 3.0 
 

1.7 1.7 1.4 3.2 1.9 3.9 

50.0 2.1 3.7 2.7 1.8 5.2 3.4 
 

3.5 2.9 2.0 2.2 2.8 1.4 

75.0 3.3 2.9 3.2 3.8 4.4 3.4 
 

3.6 6.1 2.9 3.1 4.8 2.1 

100.0 3.6 3.2 2.7 3.0 4.2 3.7 
 

3.3 1.8 3.7 1.4 2.6 1.7 

 

 


