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A simple formula for the estimation of surface tension from
two length measurements for a sessile or pendant drop
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ABSTRACT

We present a very simple formula for the determination of surface
tension from only two length measurements for pendant or sessile
liquid drops (together with knowledge of their density). The formula
is derived from an analytic theory of Morse and Witten for the shape
of a drop under a small applied force. We show that, asymptotically,
the theory is exact in the limit of small deformation. We also discuss
its validity in the presence of measurement accuracy.
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1. Introduction

The history of the measurement of the surface tension of a liquid by the observation of the
shape of a liquid drop in equilibriumunder gravity (or the conditions for its instability) goes
back well into the nineteenth century. The most notable milestone was the contribution
of Bashforth and Adams [1] which is still widely cited, in both the present context and the5
methodology of the numerical solution of ordinary differential equations. Their objective
was to provide extensive and accurate tables, bymeans of which the value of surface tension
could be extracted from shape measurements.

Many methods follow the same general approach, later translated into modern compu-
tational form. While reliable, they are still elaborate and somewhat obscure, since they10
generally involve ‘black box’ commercial or open software for computation of shape
using image analysis. Here we offer a complementary method – an extremely simple
and transparent alternative, grounded in analytic theory.

This shouldprove to be auseful and instructive adjunct to the principal currentmethods.
It yields an immediate value for the surface tension, bymeans of a simple formula, requiring15
only two lengthmeasurements related to the drop profile. The samemethod can be applied
to both sessile and pendant drops, and also bubbles.

The new formula is based on the theory of Morse and Witten [2], which provides an
explicit analytic formula for drop shape, in a linear approximation. That is, it is exact in
the limit of high surface tension (or small drop size). We will indicate the regime in which20
this approximation is reasonably accurate.

Evaluation of surface tension of a sessile drop, based on a simple formula which only
involved a pair of lengthmeasurements (maximumdrop diameter and height of drop from
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top to equator), appears to date back to Worthington in 1885 [3]. He improved upon an
initial (cruder) formula by Quincke (1858) [4], which only involved one length. Various
further simple formulae were suggested, and are reviewed in the book by Rusanov and
Prokhorov [5], but all these approximations have one thing in common: that they only
apply for wide (flat) sessile drops, corresponding to drop diameters exceeding 1.5 cm in the5
case of water. Rusanov and Prokhorov proceed to state that in order to calculate surface
tension for the case of sessile drops of smaller dimensions, ‘one needs to use numerical
methods’ [5].

The analysis ofpendantdrops using apair of lengthmeasurements dates back toAndreas
et al. [6] in 1938, who used the maximum drop diameter and the drop diameter, as10
measured at that distance away from the apex. Surface tension may then be computed
from tabulated values obtained from numerical solutions of the Laplace-Young equation
[7,8], together with numerical approximations and interpolations [9]. (The table initially
provided by Andreas et al. [6] was based on experimental measurements of drop shapes.)

For a sessile drop the above choice for measurements of drop dimensions is not15
possible. The maximum drop diameter (measured at a horizontal plane), and the distance
of this plane from the apex provides an alternative pair of dimensions, suitable for the
characterisation of both pendant and sessile drops. The pair features in the (cumbersome)
second order perturbation solutions of the Laplace-Young equation, as derived by O’Brien
and van den Brule [10] for the computation of surface tension. It is also used in ourmethod20
described below.

None of the abovemethods, we believe, have the transparency and analytic basis of what
is described here. Our method can be applied in either two or three dimensions for both
pendant and sessile drops. The 2d case may be of limited practical value, but we will also
present the resulting equation for line-tension in that case.25

All of what we present applies equally well to the case of a bubble in a liquid under
gravity, with obvious changes.

2. Application of theMorse–Witten theory to pendant and sessile drops

To demonstrate the essence of the method, Figure 1 shows examples of both sessile and
pendant liquid drops. We will derive a formula for their values of surface tension γ in30
terms of the two distances Lx (maximum ‘equatorial’ drop radius) and Ly (distance of
this equator to the drop apex), which are indicated in Figure 1. This assumes knowledge
of �ρg , the product of density difference and acceleration due to gravity. The boundary
condition at a contacting plane or nozzle outlet is irrelevant, provided it is not such as to
break the rotational symmetry of the drop.35

To this we apply the analytic results of Morse andWitten [2]. These were not motivated
by our present objective: rather they were aimed at developing a method of simulating the
interactions of multiple bubbles (or drops) and exploring the form of that interaction in
the limit of slight contact [12]. To our knowledge, their results have never been adduced to
provide insights or methods for surface tension methods, as below, or indeed introduced40
into the general theory of sessile and pendant drops. Thismay be attributed to the difficulty
of the theoretical framework presented byMorse andWitten [13]. Despite this, its essential
results are simple, compact, and easily applied.
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Figure 1. Examples of profiles of sessile and pendant drops (computed by integrating the Laplace
equation using standard numerical methods [11]) with relevant notation. Measurements of both Lx and
Ly are sufficient to obtain an estimate of surface tension (for given value of �ρg). (Left) Sessile water
drop: �ρg = 9810 kg/m3, volume 4π/3(3mm)3 and surface tension of water, γ = 72mN/m result
in values Lx = 2.645mm and Ly = 2.235mm. Using Equation (5) we arrive at an estimate of surface
tension as 71.7mN/m, underestimating the exact value by about 0.4%. (Right) For a pendant water drop
of volume 4π/3(2mm)3 measurements of Lx = 1.474mm and Ly = 1.593mm result in an estimate
of surface tension as 71.9mN/m, using Equation (5). The exact value is thus underestimated by about
0.2%.

To describe the profile of a deformed drop we use spherical coordinates R and θ (the
third coordinate being irrelevant on grounds of symmetry). The analysis of Morse and
Witten [2] gives the radius R(θ) as

R(θ) = R0 + �R(θ), (1)

where R0 is the radius of the unperturbed drop and �R(θ) is its displacement in response5
to an applied force F, acting at θ = 0.

To linear order in F the displacement is given by [2]

�R(θ) = F/γ

4π

{
1
2

+ 4
3
cos θ + cos θ ln

[
sin2 (θ/2)

]}
. (2)

In the case considered here, F is the gravitational (or buoyancy) force of the undeformed
sphere in the Morse and Witten theory given by F = ± 4

3R
3
0π�ρg , where the ‘+’ sign10

is for sessile and the ‘−’ sign for pendant drops. We note that Morse and Witten [2]
only considered the case in which F ≥ 0, corresponding to a sessile drop (or a drop
contacting another drop). The possibility of also studying pendant drops appears to be a
new application of the theory.

Note also that the theory is framed in terms of an applied point force, which is in itself15
unphysical and introduces a divergence in the profile, associated with the logarithmic
term in Equation (2), and visible in Figure 2. However, this force may be replaced by the
distributed force at a flat boundary in either case of Figure 2, without affecting the solution
away from the boundary. The remaining solution for the displacement �R(θ) is small for
all angles θ , for small F.20

In general our method can be applied in various situations, such as Figure 1(a) or
Figure 1(b) which feature finite contact angles, provided an equator exists. In this case, the
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Figure 2. Examples of profiles of sessile and pendant drops, obtained from the result of Morse and
Witten, Equations (1) and (2). Only the parts indicated by thick solid lines represent the physical drops
of Figure 1. Note that our derived equation for surface tension, Equation (5), applies regardless of the
boundary conditions imposed within the other part of the profiles (and also regardless of the volume
that is enclosed).

configuration can be extended past the contact plane to create the standard Morse-Witten
setup as shown in Figure 2 with a small force F = ± 4

3πR
3
0�ρg .

In the following we adopt the Morse-Witten result, Equation (2), to arrive straightfor-
wardly at a method of estimating surface tension γ .

At the equator (point P in Figure 1) the profile of the drop is vertical for our chosen5
coordinate system. The corresponding angle θP is thus determined from

d
dθ

(R(θ) sin θ)|θ=θP = 0, (3)

where R(θ) is given by Equation (2). Solving for θP , where we write θP = π/2 + δθP and
Taylor expand cosine and sine terms to first order in δθP , we can compute the location of
P=(Px ,Py). We thus obtain Lx = Px and Ly = R(π) − Py , with the following expression10
for Lx and Ly ,

Lx = R0
(
1 + F/(γR0)

8π

)

Ly = R0
(
1 − F/(γR0)

4π
( ln 2 − 1/2)

)
. (4)

We proceed by computing the sum and difference of Lx and Ly , resulting in Lx − Ly =
( ln 2/4π)F/γ and Lx + Ly = 2R0 − ( ln 2 − 1)/(4π)F/γ . Setting F = ± 4

3R
3
0π�ρg , as15

above, we can eliminate R0 to arrive at the following exact expression for surface tension,
which we denote by γMW , since it is based on Morse-Witten theory,
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Figure 3. (a) Variation of the difference of our two length measurements (Lx − Ly ) as a function of their
sum (Lx + Ly ) for numerical solutions, carried out over a range of values of surface tensions equal to and
below that of water. Dashed lines mark the respective accuracy of the estimate γMW . (b) Slope of the
lines of constant accuracy as a function of accuracy, see Equation (6). For details, see text.

γMW = �ρg ln 2
24

(Lx + Ly)3

|Lx − Ly|
[
1 ∓ 3c + 3c2 ∓ c3

]
, (5)

with c =
(
1−ln 2
ln 2

) |Lx−Ly |
Lx+Ly (∓: − for sessile drop, + for pendant). There are no terms with

order higher than c3. This expression is accurate in the limit γ −1 → 0, as will be shown
below. For practical purposes the c2 and c3 terms are negligible.

Figure 1 shows examples of the application of Equation (5) to estimate surface tension5
for test cases representing sessile and pendant water drops. Shown are accurate solutions of
the Laplace-Young equation, computed by standard numerical methods [11], for �ρg =
9810 kg/m3, volume 4π/3 × (3mm)3 and surface tension of water, γ = 72mN/m.
Determination of Lx and Ly from these solutions results in estimates of surface tension
from Equation (5) as γMW = 71.7mN/m (sessile drop) and γMW = 71.9mN/m (pendant10
drop), corresponding to 0.4 and 0.2% errors, respectively.

To investigate the variation of accuracy of our estimate γMW compared to the exact
result, we have carried out simulations for a range of drop volumes and surface tensions
(γ ) (for a fixed density of water). We present our results in Figure 3(a) in terms of the
variation of Lx−Ly with Lx+Ly , the relevant combinations in Equation (5). Drop volumes15
for the simulations were chosen such that γMW (Equation 5) was within either 0.5%, 1%,
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Figure 4. A dimensionless plot of the data in Figure 3(a). Solid lines are obtained from Equation (5), with
the sessile case in red and pendant case in blue. The dashed line is the prefactor of Equation (5). The
percentages indicated refer to the percentage error in the estimate of γ using the measured Lx and Ly .

1.5%, or 2% of the value of γ set in the simulation. From Figure 3, we find that, for data
with the same percentage accuracy ε, Lx − Ly varies roughly linearly with Lx + Ly i.e.

(Lx − Ly)
(Lx + Ly)

= cε (6)

where the constant c = 0.11 ± 0.01 (sessile drop), and c = −0.06 ± 0.01 (pendant drop).
Given values for Lx and Ly , this allows the computation of the accuracy of the estimate of5
γ from Equation (5).

Figure 4 shows Equation (5) and the data from Figure 3(a) in the form of a plot of the
dimensionless ratios �ρg/γ (Lx + Ly)2 versus |Lx − Ly|/(Lx + Ly). The small deviations
between the theory based on the Morse–Witten result and the exact numerical values is
an indication of the accuracy of the Morse–Witten approximation, Equation (5), for both10
sessile and pendant drops. As expected, theMorse–Witten result is asymptotically exact in
the limit of small deformation.

Having established the accuracy of the theory, what accuracy can we expect from apply-
ing Equation (5) to actual physical measurements? Images obtained with digital cameras
result in a length resolution of at best 0.001mm per pixel. It is straightforward to see that15
Lx can be determined to within ± 1 pixel, but there has been some discussion as to the
accuracy of determining,Ly [5,14], which,when treated in the framework of random errors,
is greatlymagnified.When looking at a pixelated image, it is obvious that the accuracy in Ly
is also±1 pixel. This systematic error is due only to the coarse-graining of the picture. The

error in γMW is then given by�γMW (Lx , Ly) =
((

∂γMW
∂Lx

)2 +
(

∂γMW
∂Ly

)2)1/2
�Lwhere�L20

is the accuracy in Lx or Ly .
To test our result we have applied Equation (5) to photographs of a pendant water drop

published by [15]. Values for Lx and Ly were obtained using ImageJ, resulting in γMW =
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69mN/m. Note that in the published version of the image, the pixel resolution is only
�L = 0.01mm. Evaluating �γMW we get ±6mN/m. Our value of γMW = 69 ± 6mN/m
is then in agreement with the value of 72mN/m given by the authors [15]. We intend to
carry out our own experiments in due course.

3. Conclusion5

Following the work of Rotenberg et al. [16] and Huh and Reed [17] in 1983, many papers
were published that describe the evaluation of surface tension based on the comparison of
an image of the entire drop profile with numerical solutions (see for example [15,18,19]).
While such an approach will be more accurate for numerical evaluation, we believe that
the method described here offers complementary advantages. It is based on an analytically10
tractable theory which is exact in the limit of small drop deformation, the mathematical
procedure is brief and transparent, and it results in an equation for surface tension,
Equation (5), which has a very simple form.

The formula can also be generalised to other pairs of measurements (e.g. the pair used
by [7], see Section 1), by using non zero values on the RHS of Equation (3). This might15
mitigate measurement error, and it will also allow for an extension of our formula to
the case of a sessile drop with contact angle greater than π/2 (where Lx doesn’t exist).
We will examine this in future work, in which we will apply our result to the analysis
of experimental data for pure water and surfactant solutions, requiring a computational
scheme to extract values of Lx and Ly from high resolution drop images. As we have shown20
above, the determination of these lengths is high accuracy is important for an accurate
estimation of surface tension.

Finally, the derivation shown in Section 2 can also be carried out for two-dimensional
drops, using the corresponding 2d equations of theMorse–Wittenmodel [20]. This results
in the following expression (exact for the model),25

γ̃MW2d = (π − 2)
4

�ρ̃g
L3

|Lx − Ly| . (7)

Here L = Lx for a pendant drop and L = Ly for a sessile drop, ρ̃ denotes a 2d density
(mass/area) and γ̃MW is a line tension (with dimension of a force).
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