
Towards a Formal Method for
Distributed Object-Oriented Systems

Malcolm Tyrrell

A thesis submitted to

the University of Dublin

for the degree of

Doctor in Philosophy.

2003

Department of Computer Science, University of Dublin.

Declaration

This thesis has not been submitted as an exercise for a degree at any other

University. Except where otherwise stated, the work described herein has

been carried out by the author alone. This thesis may be borrowed or copied

upon request with the permission of the Librarian, University of Dublin,

Trinity College. The copyright belongs jointly to the University of Dublin

and Malcolm Tyrrell.

Malcolm Tyrrell

2

Acknowledgements

I would first like to express my gratitude to Andrew Butterfield, my super-

visor, for his advice and support. I am grateful for the guidance given to me

by Alexis Donnelly during the early stages of my research. Arthur Hughes

also devoted time and effort to reading my work and I would like to thank

him here.

I am grateful to Enterprise Ireland for their generous funding.

I would like to thank my colleges in the Foundations and Methods Group

for many interesting discussions about almost everything (including, occa-

sionally, foundations and methods).

Finally, I would like to thank my family and friends for their patience.

3

Summary

We present two components of a special purpose formal method intended to

support the modelling and development of distributed object-oriented sys-

tems. The first component is a language, called Oompa, in which designs for

these systems can be expressed. The second is a behavioural specification

language called sequential process specifications.

Oompa is a strongly-typed class-based object-oriented language. Its ob-

jects have private state and support multiple concurrent invocations. The

primitive operations of its methods support both object-based and channel-

based behaviour. We provide two operational semantics for Oompa; a re-

duction relation, which is intuitive, and a labelled transition system, which

is superior for reasoning. We define a type system for Oompa which is stat-

ically checkable. We also give thorough consideration to issues of naming in

Oompa.

Sequential process specifications allow abstract behaviour to be specified

and incrementally refined. The language has two binary operators, similar to

CSP’s internal and external choice, which assert that a system may or must

have certain behaviour. We use sequential process expressions, which form

the core of CCS, to describe specific patterns of behaviour and we define

what it means for one to satisfy a specification. In terms of this notion of

satisfaction, we define a semantics and a refinement relation for the language.

Although similar to CSP, we show that our language is semantically different.

We demonstrate how our formal method currently supports development

by deriving two designs for a concurrent dictionary object.

4

Contents

1 Introduction 14

1.1 Distributed Object-Oriented Systems 16

1.1.1 CORBA . 17

1.1.2 The CORBA Object Model 19

1.1.3 Our Use of the CORBA Object Model 20

1.2 Our Method . 22

1.2.1 The Formalism: Oompa 22

1.2.2 The Specification Language: Sequential Process Spec-

ifications . 25

1.2.3 The Approach . 26

1.3 Contributions . 26

1.4 How to Read this Thesis . 27

1.5 Synopsis . 28

2 The State of the Art 30

2.1 State-Based Approaches to Concurrency 31

2.1.1 The Rely/Guarantee Approach 32

2.1.2 The Refinement Calculus and Action Systems 33

2.2 Process Calculi . 35

2.2.1 CCS . 35

5

CONTENTS

2.2.2 CSP . 36

2.2.3 π-Calculus . 37

2.2.4 Pict . 39

2.2.5 Join Calculus . 39

2.3 Concurrent Object-Oriented Approaches 41

2.3.1 POOL . 42

2.3.2 πoβλ . 43

2.3.3 TyCO . 44

2.3.4 concς . 45

2.3.5 OC . 47

2.3.6 BOOM and ODAL . 47

2.4 Evaluating the Methods . 48

2.4.1 State-Based Methods 48

2.4.2 Process Calculi . 49

2.4.3 Concurrent Object-Oriented Approaches 50

2.5 Our Work in Context . 51

2.6 Summary . 52

3 Static Oompa 54

3.1 Syntax . 54

3.1.1 The Syntax of the π-Calculus 55

3.1.2 Names . 56

3.1.3 Code . 57

3.1.4 Definitions . 59

3.1.5 Types . 60

3.1.6 Example of Oompa’s syntax 62

3.2 Issues in the design of Oompa 63

3.3 Well-Formedness . 65

6

CONTENTS

3.4 Renaming . 66

3.4.1 Permutations of N . 68

3.4.2 How to Pick New Names 69

3.4.3 Shoves . 70

3.4.4 The Action of a Renaming on Code 70

3.4.5 The Definition of Substitution on Code 73

3.5 α-Equivalence for Code . 74

3.6 Summary . 78

4 Dynamic Oompa 79

4.1 Agent-Based Dynamic System 80

4.1.1 Syntax . 80

4.1.2 Renaming . 84

4.1.3 Equivalence . 86

4.1.4 Semantics . 89

4.2 Configuration-Based Dynamic System 95

4.2.1 Syntax . 96

4.2.2 Renaming . 99

4.2.3 Equivalence . 102

4.2.4 Semantics . 106

4.2.5 Weak Bisimulation . 114

4.3 Relationship . 115

4.3.1 The Flatten Algorithm 115

4.3.2 Properties of Flatten and the Relationship Theorem . . 118

4.4 Summary . 120

5 The Type System 122

5.1 Typing, Type Violations and Type Safety 124

7

CONTENTS

5.1.1 The Typing System . 125

5.1.2 Type Violations . 126

5.1.3 Type Safety . 127

5.2 Oompa Type Trees . 130

5.2.1 Trees and Subtrees . 130

5.2.2 Interpreting Types as Trees 132

5.2.3 Expanding Definitions 135

5.3 Subtyping . 136

5.3.1 Tree Simulation . 138

5.3.2 The Subtyping Algorithm 139

5.4 Soundness of the Type Safety System 142

5.4.1 Dynamic Type Safety 143

5.4.2 Preservation of Dynamic Type Safety 145

5.4.3 Configurations and the Type System 145

5.5 Comparison with Other Work on Type Systems 147

5.6 Summary . 149

6 Sequential Process Specifications 150

6.1 Expressing Abstract Behaviour 151

6.2 CCS . 153

6.2.1 Nondeterminism in CCS 157

6.3 Some Theory of Sequential Process Expressions 161

6.4 Sequential Process Specifications 164

6.4.1 Structural Equivalence 166

6.4.2 Satisfaction . 167

6.4.3 Semantics . 173

6.5 Refinement . 175

6.5.1 Simple Refinement Laws 176

8

CONTENTS

6.5.2 Refining Simulation . 178

6.6 Example: A Scheduler . 182

6.6.1 Informal Requirements 182

6.6.2 Model . 182

6.6.3 Specification . 183

6.6.4 Further Requirements 185

6.6.5 Respecifying the Scheduler 186

6.7 Using Sequential Process Specifications with Oompa 187

6.8 Related Work . 189

6.9 Summary . 191

7 A Development in Oompa 193

7.1 Behavioural Requirements of a Concurrent Dictionary 194

7.1.1 Abstract Data Type for a Dictionary 194

7.1.2 Sequential Object-Oriented Dictionary 195

7.1.3 Concurrent Object-Oriented Dictionary 198

7.2 Behavioural Specification for a Concurrent Dictionary 200

7.2.1 Specification . 200

7.2.2 Alternative Specification 207

7.3 Designs for a Concurrent Dictionary 210

7.3.1 A Standard Design . 211

7.3.2 Justifying the Standard Design 212

7.3.3 An Alternative Design 218

7.3.4 Justifying the Alternative Design 220

7.3.5 Further Development 225

7.4 Summary . 226

9

CONTENTS

8 Conclusions and Future Work 228

8.1 Overview . 228

8.2 Future Work . 230

A Isolated Sum 234

A.1 Definition . 234

A.2 Some Properties of Isolated Sum 236

A.3 n-Ary Isolated Sum . 239

B Technical Results for Oompa 242

B.1 Results about Code . 242

B.2 Results about Agents . 251

B.3 Results about Configurations 253

B.3.1 Configuration Renaming 254

B.3.2 α-Equivalence for Configurations 257

B.3.3 Structural Equivalence for Configurations 265

B.3.4 Labelled Transition System 278

B.4 Flatten and the Relationship 282

C Technical Results for the Type System 315

C.1 Type Tress . 315

C.2 The Subtyping System . 322

C.2.1 Termination . 323

C.2.2 Completeness . 325

C.2.3 Soundness . 327

C.3 Soundness of the Type Safety System 330

C.3.1 Preservation of Dynamic Type Safety 332

C.4 Configurations and the Type System 341

10

CONTENTS

D Simulations 347

D.1 Refining Simulations for the Scheduler Example 347

D.2 Satisfying Simulations for the Scheduler Example 350

D.3 Refining Simulations for Chapter 7 355

Bibliography 361

11

List of Tables

3.1 Equivalence Rules for Code α-Equivalence 75

3.2 Congruence Rules for Code α-Equivalence 76

3.3 Change of Bound Name Rules for Code α-Equivalence 77

4.1 Rules for Agent Structural Equivalence 87

4.2 Rules for Agent α-Equivalence 88

4.3 Rules for Agent α-/Structural Equivalence 89

4.4 General Rules for the Agent-Based Operational Semantics . . 92

4.5 Channel Rules for the Agent-Based Operational Semantics . . 92

4.6 Object Rules for the Agent-Based Operational Semantics . . . 93

4.7 Reflexive Transitive Closure of the Operational Semantics . . . 95

4.8 Rules for Configuration α-Equivalence 103

4.9 Rules for Configuration Structural Equivalence 105

4.10 General Rules for the Labelled Transition System 109

4.11 Local Rules for the Labelled Transition System 109

4.12 Labelled Rules for the Labelled Transition System 110

4.13 Interaction Rules for the Labelled Transition System 110

4.14 Rules for Experiments . 113

5.1 Rules of the Typing System 125

5.2 Rules for the Type Safety of Code 129

12

LIST OF TABLES

5.3 Rules for the Type Safety of Definitions 130

5.4 Rules for the Subtyping Algorithm 141

5.5 Rules for the Dynamic Type Safety of Code 144

6.1 Labelled Transition Rules for Sequential Process Expressions . 154

6.2 Labelled Transition Rules for CCS 155

6.3 Rules for Equivalence . 166

13

Chapter 1

Introduction

The ultimate aim of this research is to provide a formal method to support

the modelling and development of distributed object-oriented systems.

Individual formal methods can be identified as either general purpose or

special purpose. A general purpose formal method seeks to be applicable to

the modelling and development of diverse systems. It will be semantically

neutral, so it will not be focused on any particular type of system, and should

avoid implementation bias, so it will promote development that is strictly

defined by the problem. Perhaps the most significant advantage to a general

formal method is a practical one: familiarity for users. Good examples of

general formal methods are VDM [Jon90] and Z [Spi92].

On the other hand, general purpose formal methods have an intrinsic

disadvantage. This is the divide, or semantic gap, between the level at which

the method’s elements operate and the level at which the target system

operates. This divide means that much of the effort of building a model might

be expended on creating higher-level constructs in which the model proper

can be built. Furthermore, real world systems are not totally distinct. The

development of similar systems will involve solving the same problems and

14

CHAPTER 1. INTRODUCTION

often developing the same solutions. This repetition of work is exacerbated

in the case where there is a wide semantic gap between the method and

systems being developed1.

A special purpose formal method [Sch94] seeks to tackle a specific type of

system only and, by doing so, can be much semantically closer to a target

system than a general purpose formal method can. Assumptions about the

target systems can be built into the method, bridging the semantic gap,

so the user can start modelling and developing at the level at which the

target system is most suitably considered. The main disadvantage of using

special purpose formal methods is that a new method must be learnt for

each problem domain. Another disadvantage is that a special purpose formal

method is likely to have a smaller community of developers and users than

a general purpose formal method.

An analogy is the field of programming languages where a distinction be-

tween general purpose languages and special purpose languages can also be

drawn [LR88]. There exist many programming languages touted as general

purpose (such as C++ [Str91]), i.e. suitable for developing any type of soft-

ware. While the obvious advantage is that users only need to become familiar

with a single language, there can be little doubt that work is frequently dupli-

cated within and between these languages2. An example of a special purpose

programming language would be the database query language SQL [vdL89].

1This problem can be somewhat mitigated by techniques which promote reuse. For

example, Object-Z [Smi99] uses object concepts as a structuring mechanism primarily to

improve reuse between specifications.
2As with formal methods, techniques for reuse can help, for example the development

of user libraries for certain problem domains. However, given the complexity of some

libraries (e.g. Microsoft Foundation Classes [SWM96]) we might argue that learning a

library can be as difficult as learning a new language.

15

CHAPTER 1. INTRODUCTION

In general, developers have a choice between using a suitable language for

each problem or forcing a single language to cope with all problems.

We are considering distributed object-oriented systems, so our problem

domain is fixed. We have decided to provide a special purpose formal method

to provide support for developing and modelling these systems. This thesis

presents the two components of such a method: a language for expressing

designs, called Oompa, and a behavioural specification language, called se-

quential process specifications. Our first task will be to classify the problem

domain.

1.1 Distributed Object-Oriented Systems

A distributed system is a computational system consisting of several interact-

ing components residing at separate locations. Actual distributed systems

may differ dramatically: in particular, the concept of a location and the

mechanisms supporting interactions may be quite different. Nevertheless, we

can delimit them with a broad definition, as above.

Unfortunately, object-oriented systems are not so easy to classify. There

is no real agreement over what exactly constitutes object-orientation [III97].

Most would agree that it structures code into uniquely identified objects and,

within objects, into methods ; the act of causing the computation described in

a method to be performed is almost always referred to as invocation. Beyond

these necessary properties, insufficient to classify even the broadest definition

in use, there is little common ground.

This difficulty in defining object-oriented systems leaves us with two op-

tions. The first option is to remain agnostic about the particular interpreta-

tion and provide a meta-model within which a variety of interpretations can

16

CHAPTER 1. INTRODUCTION

be described. An example of this approach is [Öve00]. Naturally, a semantic

gap will remain when we try to discuss actual systems. The second option is

to choose a single interpretation and target our formal method at it. This is

in line with our decision to provide a special purpose formal method and we

follow this second path. However, when choosing our single interpretation of

“object-orientation”, we will deliberately choose a general one.

A typical approach describes how to build an object-oriented system from

the bottom up using a specific definition of object. An example is [Mey97].

An alternative and more general approach is to fit object concepts onto exist-

ing systems as unobtrusively as possible. This is the approach of the CORBA

object model [OMG98]3, from which we take inspiration.

1.1.1 CORBA

Modern distributed systems can have astounding complexity, the Internet

being the prime example. There are substantial difficulties involved in de-

signing software which avails of the facilities these systems provide yet oper-

ates correctly and efficiently under the conditions to which these systems are

subject. To help make the complexity manageable, software known as mid-

dleware was introduced. Middleware, at the very minimum, provides a high-

level protocol for participating in distributed communications. The purpose

of the high-level protocol is to hide the complexity of the underlying system-

level protocols. Some examples of middleware are Remote Procedure Call

(RPC) [BN83], Remote Method Invocation (RMI) [WRW96], Enterprise Java

Beans (EJB) [MH99], Distributed Component Object Model (DCOM) [EE98]

3Since its introduction in 1991 [OMG91], CORBA has undergone continual refinement

and expansion. To discuss CORBA consistently, we need a single slice through its devel-

opment history. We fix [OMG98] as our reference document for CORBA.

17

CHAPTER 1. INTRODUCTION

and Common Object Request Broker Architecture (CORBA) [OMG98]. All

of these enable a distributed communication to be performed in a fashion

similar to that of a language level function call or method invocation.

A feature of RPC, RMI and EJB is that their implementations tend

to support a single programming language; a feature of DCOM is that it

primarily supports a single operating platform. However, to benefit most

from the power of distributed systems, multi-language and multi-platform

development must be supported. As well the obvious argument that certain

programming languages are better suited to certain software, which obvi-

ously suggests such multi-language development, another force which acts

on distributed software development is due to legacy software [BS95]. Large

distributed software systems are not always built from scratch and often in-

volve the reuse of older software, possibly by wrapping it with distribution-

aware code. This saves on the expense of redeveloping and retesting the

software, migrating data to newer formats and retraining staff. A conse-

quence of bringing this legacy software into the distributed environment is

that we cannot assume that the components of our distributed system are

written in any particular language or run on any particular platform. The

middleware protocols should therefore be supported across the various lan-

guages and platforms typically used.

CORBA is a middleware solution which uses object-orientation to enable

these disparate software entities to interact. It consists of standards which

specify protocols, and software to implement them, which are usable from

many of the languages and platforms a modern distributed system might

involve. The principle which makes CORBA work is that, regardless of how

a piece of software is implemented, it participates in the distributed system

by acting like an object (or collection of objects). Object-oriented concepts

18

CHAPTER 1. INTRODUCTION

are mapped onto each programming language and CORBA uses method

invocation to expose its middleware protocol.

1.1.2 The CORBA Object Model

For software entities to act as objects, or issue method invocations, there

must be a common notion of what these concepts are — a shared ontol-

ogy. According to the OMG (Object Management Group, the industry body

which provides the CORBA standards), an object model “provides an or-

ganised presentation of object concepts and terminology” [OMG98]. The

CORBA Object Model establishes the shared view of object-orientation el-

ements of the system must have to interact effectively. We present a brief

(and mildly simplified) description of that model here.

The object model takes a very abstract view of a distributed system. The

parts that make up the system are identified as belonging to one of the fol-

lowing categories: data, code and execution engines. Many different forms

of computation may actually be taking place in the system but, for the pur-

poses of the object model, we can ignore the details beyond the interaction

of these three kinds of entity. As usual, code is a description of some com-

putations to perform and data is some state component of the system or the

real world. The work is done by the execution engines which interpret the

code and perform the computations, possibly altering some of the data. It is

not required that all code be meaningful to all execution engines but, rather,

that each piece of code is meaningful to some execution engine.

A powerful abstraction comes from viewing the process of code being

performed by an appropriate execution engine as providing a service. The

behaviour of a distributed system can now be seen in terms of the performing

of services. Communication between elements of the system can be seen as

19

CHAPTER 1. INTRODUCTION

requests that specific services be performed. Code which provides a service is

called a method and, unsurprisingly, the notion of communication allows val-

ues to be exchanged, so a method may require parameters and produce return

values. Method activation is the term used when a method is performed.

Next, we associate methods which share some relationship, such as the

ability to alter a specific piece of data, into an entity called an object . The

significance of an object is that it has a unique identifier, a value called an

object reference, and that it provides access to its services in a standard

way: in a syntactic form called an interface. An interface lists the object’s

methods, providing their name and their signatures . An object may have

several interfaces associated with it, each exporting different sets of services.

In fact, the CORBA object model does not insist that all the computational

entities in the system belong to objects; a client is any computational entity

which is capable of requesting that an object performs one of its services.

1.1.3 Our Use of the CORBA Object Model

A fundamental design goal behind CORBA was to facilitate distributed com-

puting. A fundamental design goal behind the CORBA object model was to

allow diverse systems, whether implemented in an object-oriented language

or not, to participate in object-oriented systems. It seems that the CORBA

object model is an ideal way to establish a general definition of “distributed

object-oriented systems”.

We now have a classification of our problem domain but find that, for our

work, it allows too general a class of systems. There are many facilities within

such a system that could make our goal extremely difficult. Consequently,

we make some simplifying assumptions.

Firstly, we assume that all data in the system belongs to some object

20

CHAPTER 1. INTRODUCTION

and that all running code in the system belongs to a method of some object.

Under this assumption, we can still discuss systems where state and code

can exist separate from objects: we view them as belonging to some trivial

wrapper objects which need have no structural significance.

Secondly, we assume that all state is private to some object. This assump-

tion also seems reasonable since, if we really want to expose an object’s state,

we can provide the object with unrestricted update and access methods.

Thirdly, we choose a single approach to dealing with concurrent invoca-

tions. If an invocation arrives when there are processes already running at

the object, a choice must be made between making the invocation wait or

creating a new process to deal with it. CORBA allows this choice, called

an activation policy , to be made in an object dependent way. The default

policy is to create a new process4 and we choose to follow this since it is

the most general and other policies can be modelled within it. For example,

single-threaded objects could be built using locking.

Fourthly, we consider systems to be class based. This might seem a strong

assumption but it really just clarifies an aspect of system we have not yet

discussed: how code is described and the way in which objects are introduced

into the system.

Lastly, we prohibit two features which give rise to richer, but far more

complex, systems: we exclude function passing and code mobility. The earlier

assumptions do not significantly affect the class of systems under discussion

although, were we to model an actual CORBA system, they might induce a

mild semantic gap. This last assumption does impact the class of systems

4Using the terminology of [Nie93], which presents a partial categorisation of concurrent

object systems, we can say that synchronisation is “orthogonal to encapsulation” and

objects have “client-driven concurrency”.

21

CHAPTER 1. INTRODUCTION

we can discuss but we defend it on two grounds: these features are quite rare

in real systems and they could make our goal infeasible.

1.2 Our Method

What does a special purpose formal method for distributed object-oriented

systems look like? All formal methods will consist of at least the following

two things: a language in which concepts can be expressed and a system

for reasoning about expressions in the language. A formal method focused

on distributed object-oriented systems should also provide ready-made ob-

ject concepts and support behaviour consistent with a distributed computing

environment.

Although our formal method is in an early stage of development, our re-

search has lead to the development of two components, Oompa and sequential

process specifications. Oompa is a language in which designs for distributed

object-oriented systems can be expressed. Sequential process specifications

allow abstract descriptions of behaviour to be specified and refined.

1.2.1 The Formalism: Oompa

We wish to provide a language in which designs for distributed object-

oriented systems can be expressed. To minimise the semantic gap between

the language and these systems, the language should possess many of the

features of our object model: it should have uniquely identified objects with

attributes and methods. It should support method invocation and object

creation. Objects in the language should allow multiple concurrent invoca-

tions. Lastly, to describe real world systems, the language should be compu-

tationally powerful. Based on these requirements, we developed Oompa, an

22

CHAPTER 1. INTRODUCTION

object-oriented process algebra.

Oompa’s syntax is based upon the π-calculus [Mil99], a computationally

powerful process calculus which can describe systems of parallel processes

engaged in highly dynamic channel-based communication. In Oompa, we

extend the language of the π-calculus with primitives for creating objects,

invoking methods and accessing and updating state. This gives a syntax

for code which we embed in a syntax for methods, attributes, interfaces and

classes. We use this syntax for statically defining Oompa programs.

Before discussing Oompa’s semantics, we need to draw an important dis-

tinction between two aspects of certain types of formalisms. For many formal

languages where an operational semantics is given, the semantics applies to

a term in that language and describes the reduction of that term, perhaps in

some context. This is true of the λ-calculus and the π-calculus, for example.

However, in languages where structures are defined in advance there is

an important difference: here the operational semantics do not apply to the

terms of the syntax of definitions but, rather, to the terms of some other

syntax. For example, in a class-based object-oriented language, a program is

defined in classes which do not themselves have behaviour — it is the objects

created during the execution of the program which have the behaviour.

For this second type of language, we group the syntax of definitions and

their associated theory under the heading “static systems”. Those parts

which participate in the operational semantics, we group under the slightly

more awkward heading “dynamic systems”5.

We provide Oompa with two operational semantics and, hence, Oompa

5The distinction can be also seen in CORBA, where a construction model describes

how objects are implemented in code whereas an execution model describes the parts of

the system which participate in computation.

23

CHAPTER 1. INTRODUCTION

has two dynamic systems. Each consists of a syntax for the “running” sys-

tems, some associated theory of equivalences and an operational semantics.

Each offers a different way of modelling the behaviour of an Oompa program.

The first of Oompa’s dynamic systems we call the agent-based dynamic

system. This views a distributed object-oriented system as consisting of four

parts: the static definitions of classes and interfaces, a global dictionary of

type information, a global dictionary of state information and a set of running

processes. We might call this a flat model of a distributed object-oriented

system, as it ignores any structure due to distribution. The semantics of

this dynamic system is a reduction relation that describes how the global

structure evolves. The role of this dynamic system is to provide a simple and

intuitive model of running Oompa programs. Unfortunately, the semantics

is non-compositional in the sense that it only applies to complete closed

systems. This makes reasoning awkward.

The second of Oompa’s dynamic systems we call the configuration-based

dynamic system. This models a distributed object-oriented system as a hi-

erarchy of subsystems. As before, some information can be global but, this

time, type and state information can also be local to subsystems. The seman-

tics of this dynamic system is a labelled transition relation which can apply to

subsystems as well as to the complete system. The labels on the transitions

allow us to describe how a subsystem interacts with its environment. We can

compose such descriptions of behaviour to describe the behaviour of a set of

parallel subsystems and, hence, the semantics is compositional. Because of

this, it will be our primary semantics for reasoning. Its disadvantage, when

contrasted with the agent-based dynamic system, is its relative complexity.

Another of the components often defined for a formal language, neither

part of its static system nor its dynamic system, is a type system. The

24

CHAPTER 1. INTRODUCTION

purpose of a type system is to avoid a set of undesirable behaviours that

occur when a value is used in an inappropriate context. The exclusion of

these errors gives us confidence in the meaningfulness of our programs. For

Oompa we give a statically checkable type system. This means we can check

Oompa’s class and interface definitions for type safety. We prove, for both

dynamic systems, that a running system derived from checked definitions

will never give rise to type errors.

1.2.2 The Specification Language: Sequential Process

Specifications

Oompa is a language for expressing actual designs of distributed object-

oriented systems. To talk about whether such designs are, in some sense,

“correct” we will need a way to reason about their behaviour. The labelled

transition relation of the configuration-based dynamic system provides a very

simple language for describing the behaviour of Oompa programs. Unfortu-

nately, its expressions are limited to statements of the form “configuration

A can perform action a and become configuration B”.

To allow us to express more sophisticated statements of behaviour, we

provide another language called sequential process specifications. We base

this on a very simple language called sequential process expression, which

forms the core of CCS [Mil80], and extend it with a non-deterministic choice

operator similar to internal choice in CSP [Hoa84].

We use sequential process specifications as specifications of sequential

process expressions and we provide a satisfaction relation which formalises

this relationship. We can view sequential process expressions as describing

the behaviour pattern of a given Oompa configuration. Therefore, we can

view sequential process specifications as indirectly specifying Oompa config-

25

CHAPTER 1. INTRODUCTION

urations.

1.2.3 The Approach

Our current approach to system development operates as follows, although it

should be noted that our formal method is still a work in progress. After re-

quirements capture, a stepwise refinement in sequential process specifications

is used specify the abstract behaviour we require of our system. The next

development stage is reached with an “invent and verify” step, whereby an

Oompa class (or classes) is proposed as giving rise to the specified behaviour.

This claim is then formally verified using our implementation relation.

Although it was one of our stated goals, we have not yet evaluated the

usefulness of our method for modelling distributed object-oriented systems.

1.3 Contributions

In this section, we briefly describe the key contributions of the thesis.

The formalism Oompa, which combines class-based object-orientation

with concurrency, is our main contribution. It differs from other compa-

rable languages in either the level of its object-orientation or its approach to

concurrency. We discuss these differences further in Chapter 2.

Oompa’s type system can be considered a minimal type system for lan-

guages with channels and objects since we use recursive types to handle both

features. Our work on the type system also led to the development of an

approach to making types independent of the definition set, called the ex-

pansion function. However, a similar function can be found in [AC91].

Our other main contribution is sequential process specifications. These

allow specifications of abstract behaviour to be developed and, for this task,

26

CHAPTER 1. INTRODUCTION

represent an alternative to both CCS and CSP.

One further contribution is found in Appendix A. Our naming system

requires a way to apply two renamings (kinds of permutation) simultaneously

and without interference. We have devised a technique, called isolated sum,

which allows this to be done.

1.4 How to Read this Thesis

This thesis is structured as eight chapters and four appendices. The chapters

constitute the body of the thesis and their role is to introduce the material

in an accessible manner. The role of the appendices is to accommodate the

more technical work we have done which, if placed within the body, might

unnecessarily encumber the presentation. In particular, many of the proofs

of results we present are deferred until the appendices.

Given that many results in the thesis appear twice, once in the body

and once, coupled with a proof, in the appendices, we need an approach to

numbering that handles this duplication sensibly. Our approach is to give

each occurrence of such a result a separate number so as to preserve the

numbering sequences in both body and appendices. When a result is proved

in an appendix, a small box in the margin will contain a reference to the like

thisresult and page number of that occurrence. When a result in an appendix

has a counterpart in the body of the thesis, it will also be given a reference

back to that result and its page number. Results which have neither a proof

nor a reference are considered straightforward and their proofs are not given.

One significant consequence of the division of material between body

and appendices is that there are two different ways to read the thesis. One

approach is to read from start to finish. The presentation of the material

27

CHAPTER 1. INTRODUCTION

should flow smoothly and the more technical material will be deferred until

the end. Alternatively, the body and the appendices can be read concurrently.

This means that the justification for a result will be available when the result

is stated.

1.5 Synopsis

After this introduction, Chapter 2 considers existing formal approaches to

the problem. We discuss various methods, from traditional general purpose

formal methods to special purpose object calculi.

Chapters 3, 4 and 5 present our formalism, Oompa. In Chapter 3 we

define Oompa’s static system. This involves the definition of its syntax and

some discussion of the properties of that syntax, such as renaming issues.

Chapter 4 defines Oompa’s two dynamic systems: the agent-based dynamic

system and the configuration-based dynamic system. Each dynamic system

has a syntax, some theory and an operational semantics. Chapter 5 gives the

definition of Oompa’s type system.

We introduce our simple specification language in Chapter 6. We provide

its syntax, a semantics based on a notion of satisfaction and a refinement

relation between specifications. Chapter 7 indicates how we might use our

formal method by showing the development a simple system. We provide

our conclusions and speculate on future work in Chapter 8.

There are four Appendices. Appendix A defines a technical construction

we call isolated sum. This is used throughout Appendix B to simplify proofs.

In Appendix B, we provide the proofs of most of the results of chapters 3

and 4, which predominantly involve renaming and equivalence properties.

Appendix C similarly provides the proofs for many of the results concerning

28

CHAPTER 1. INTRODUCTION

the type system of Chapter 5. Lastly, Appendix D defines the simulations

used to justify satisfaction and refinement statements in chapters 6 and 7.

29

Chapter 2

The State of the Art

In order to clarify the contribution offered by our system, we need to place

it in context. In this chapter, we present a survey of those formal methods

with which one might tackle our problem. Such a survey cannot hope to be

complete but we will attempt to touch on the key approaches available. An

alternative but similarly motivated survey can be found in [BD01].

We divide the methods into three categories: state-based approaches,

process calculi and concurrent object-oriented approaches1. The methods

of the first category model a system in terms of how it transforms state.

We consider two methods here: the Rely/Guarantee approach and action

1There are two other categories of methods which we might have included: “sequential

object-oriented approaches” and “approaches for mobility”. There are several methods

of both kinds that would provide useful context for our work but would not be suitable

approaches for tackling our problem (for example, the object calculi of [AC96] or the

ambient calculus [CG98]). While object-orientation is something that could, arguably,

be added as a sugaring to existing formalisms, the same cannot be done for concurrency.

This means that sequential approaches would not offer a suitable way of tackling our

target systems. On the other hand, given that we have excluded mobility from our target

systems, using an explicitly mobile formalism would add needless complexity.

30

CHAPTER 2. THE STATE OF THE ART

systems. The second category groups a set of special purpose formal methods,

called process calculi, which focus on the communication events that occur

in concurrent systems rather than on state change. Here we consider CCS,

CSP, the π-calculus, Pict and the join calculus. The methods of the third

category are concurrent approaches which are intrinsically object-oriented.

We consider the following methods in this section: POOL, πoβλ, TyCO,

concς, OC and ODAL.

Once the methods have been described, we will have an opportunity to

discuss their suitability for our problem. We separate their presentation from

their evaluation since, irrespective of their suitability for our problem, these

methods provide the context within which our method lies.

The chapter is structured as follows. We consider state-based approaches

in Section 2.1, process calculi in Section 2.2 and concurrent object-oriented

approaches in Section 2.3. In Section 2.4, we evaluate how these methods

offer an approach to our problem. Section 2.5 identifies the role we wish

our formalism to play and contrasts it with the methods of the survey. We

summarise the chapter in Section 2.6.

2.1 State-Based Approaches to Concurrency

State-based formal methods model the behaviour of a program in terms of

how it transforms state. In this section, we consider extensions to some

primarily sequential state-based approaches which enable them to handle

concurrent systems.

31

CHAPTER 2. THE STATE OF THE ART

2.1.1 The Rely/Guarantee Approach

In VDM2 [Jon90], an operation is described in terms of how it transforms

the system state. More precisely, an operation ensures that the system state

will satisfy a predicate, the post-condition, as long as it is performed when

the system state satisfies another predicate, the pre-condition. There are

two particularly important advantages to this approach. Firstly, it is compo-

sitional . So the specifications of two operations can be naturally combined

to give the specification of their sequential composition. Secondly, it sup-

ports refinement . So abstract descriptions of operations and data can be

replaced by more concrete descriptions. This method successfully supports

the development of sequential programs.

Operations performed in parallel can potentially interfere with each other.

Unfortunately, in the presence of interference, this method fails to be fully

compositional and refinement becomes problematic. There is no general way

of combining the specifications of operations, defined in terms of pre- and

post-conditions, to give the specification of the operations’ concurrent com-

position. Consequently, the method is no longer fully compositional. Re-

finement also encounters difficulties: an operation refined into several se-

quentially or concurrently composed operations may not satisfy its original

specification in a concurrent context.

An extension to this approach [Jon81, XdRH97] allows it to take account

of interference by augmenting specifications with two more predicates. A

rely-condition describes the assumptions an operation needs to make about

2The description of VDM we give approximately fits two other well-known state-based

methods: Z [Spi92] and the B method [Abr96]. In fact, the extension we describe, al-

though defined specifically for the VDM, should be applicable to any system which defines

operations in terms of pre- and post-conditions.

32

CHAPTER 2. THE STATE OF THE ART

its concurrently executing environment. A guarantee-condition describes as-

sumptions that the environment can make about the effect of the operation

on concurrent operations. Using this technique, the method can function

as before but with a significantly higher burden on the development — a

set of coexistence proof obligations must be discharged. Some relief can be

obtained by delimiting the dependencies and effect of an operation with syn-

tactic markings such as “read-only” and “private” [CJ95].

2.1.2 The Refinement Calculus and Action Systems

Another formal method concerned with how an operation transforms system

state is the refinement calculus [BvW98]. Operations, both program and

specification statements, are modelled by predicate transformers, which are

functions from sets of terminating states to sets of initial states3. When a

predicate transformer models an operation, the initial states it returns are

just those in which the operation must start in order for it to reach one of the

given terminating states. The justification for using predicate transformers

comes from viewing programs as contracts: “Very simple contracts with no

choices (deterministic programs) can be modelled as functions from states to

states. More complicated contracts may be modelled as relations on states,

provided that all choices are made by only one agent. General contracts,

where choices can be made by two or more agents, are modelled as predicate

transformers” [BvW98]. As above, the key methodology is refinement from

abstract specifications to concrete programs.

The refinement calculus manages concurrency via action systems [Bac90].

An action system consists of a set of atomic operations, called actions , which

3When thought of as predicates, the sets of terminating and initial states correspond

to post-conditions and pre-conditions respectively.

33

CHAPTER 2. THE STATE OF THE ART

can be run in parallel and can access global state. The behaviour of an

action is described using a predicate transformer behind a boolean guard.

Actions need not always be enabled but, when enabled, they can be executed

arbitrarily with a single restriction: only those actions which access disjoint

parts of the system state are allowed to run concurrently.

The most significant assumption is that the effect of an action is atomic.

If input-output behaviour is the only concern, it means that an action system

is equivalent to a sequential system where actions are non-deterministically

interleaved. We can model these in the sequential refinement calculus using

an iterated choice statement. For action systems where reactive behaviour

is also important, the refinement calculus must be extended. Simulation

refinement [Bac90] and trace refinement [Bac92] are two relations which can

establish refinement between action systems in these cases.

The action system approach has been used to give a model for concur-

rent objects [BBS97, BKS97, BS99]. In all three approaches, objects have

attributes, methods and an associated action system. In [BBS97] a object-

oriented language called Action-Oberon (an extension of the Oberon 2 lan-

guage) is defined. Here, object-orientation is introduced by making action

systems type-bound , i.e. when a value of a certain type is created, the asso-

ciated type-bound action system is also created. The focus is on the input-

output behaviour of parallel programs so, as above, an Action-Oberon pro-

gram can be translated down to the sequential refinement calculus. [BKS97]

defines OO-action systems. These have class-based object-orientation where

objects are special kinds of action systems. Refinement rules between classes

are considered and justified by translating OO-action systems into ordinary

action systems. Finally, [BS99] defines a model of object-orientation similar

to OO-action systems but with the addition of an inheritance mechanism. A

34

CHAPTER 2. THE STATE OF THE ART

notion of atomicity refinement is introduced by allowing early returns.

2.2 Process Calculi

Process calculi are formalisms which focus on the behaviour of a system in

terms of the communications that occur rather than on state change. The

decision of what to view as a communication is not clear cut and, conse-

quently, many process calculi have emerged. Typically, a process calculus

will have a syntax of processes which describe behaviour entirely in terms

of abstract communication events called actions . An intuitive view of their

semantics is as “an unstructured collection of autonomous agents communi-

cating in arbitrary patterns over channels” [PT95] — a concept sometimes

called process soup.

Process calculi are often referred to as process algebras. Milner [Mil89]

suggests that the former term might be preferred (in his case for CCS but it

applies to most) as it suggests the use of mathematical tools beyond algebra.

2.2.1 CCS

An action in CCS (the Calculus of Communicating Systems) [Mil80] models

an indivisible synchronous communication between exactly two participants.

This turns out to be sufficiently general to allow systems to be modelled at

various levels of abstraction. Beyond its syntax for performing actions, CCS

has primitives which describe parallel composition, choice between actions

and scope restriction. According to Milner, “there is nothing canonical about

the choice of the basic combinators, even though they were chosen with great

attention to economy. What characterises our calculus is not the exact choice

of combinators, but rather the choice of interpretation and of mathematical

35

CHAPTER 2. THE STATE OF THE ART

framework” [Mil89]. The primary semantics is a labelled transition system

over which a notion of equivalence called bisimulation is defined.

Bisimulation is a coinductive reasoning technique which distinguishes two

processes when a third process communicating with them could find some

difference in how they behave. Two particularly important bisimulations

are given for CCS: strong and weak bisimulation (the latter is also called

observational equivalence). As well as these semantic views of equivalence, a

system of equational reasoning is defined over processes which can establish

bisimulation and is complete on finite-state processes. Milner also defines

a formal logic, PL (process logic), whose formulae can be used to express

properties of processes. This allows an incremental method of specification

but can guarantee only partial correctness.

2.2.2 CSP

Hoare’s CSP (Communicating Sequential Processes) [Hoa84, Ros98] is a pro-

cess calculus whose actions are indivisible and synchronous but, unlike CCS,

may involve many participants. Furthermore, CSP’s syntax is richer than

that of CCS and has constructs which allow processes to be specifications

of behaviour — for example, the synchronous parallel operator and internal

choice. The primary semantics of CSP is not an operational semantics (al-

though it has one) but three denotational semantics in terms of sets: the

traces model , the failures model and the failures and divergences model . As

well as these, the algebra for equational reasoning in CSP can be viewed as

an axiomatic semantics.

One of the key advantages for using CSP in system development is its

fundamental support for refinement. Reasoning in the models is possible, for

example by specifying a system property in terms of traces, but [Ros98] em-

36

CHAPTER 2. THE STATE OF THE ART

phasises “process-based specification”, i.e. refining from a non-deterministic

process expression. Several industrial strength tools exist which can model

check [For00a] and animate [For00b] CSP specifications.

2.2.3 π-Calculus

CCS and CSP share the property that the systems they describe have a

largely static communication network4. This can become a problem when

modelling or developing modern systems which can dynamically change their

communication network. The π-calculus [Mil99, SW01] overcomes this lim-

itation by allowing processes to generate new names which can be sent as

values and then used as communication channels5. With a very spartan syn-

tax, it succeeds in being both elegant and computationally complete — a

π-calculus encoding of the λ-calculus is given in [MPW89a].

The π-calculus is a descendent of CCS and inherits much of its semantic

theory. The primary semantics for the π-calculus are operational: a reduc-

tion relation and a labelled transition system [MPW89b]. The notion of

4In fact, in both CCS and CSP, the communication network can change in a limited

respect. Connections can be lost and processes can split into two newly communicating

parts. However, for a truly dynamic network, it must be possible for new connections to

arise between previously separate subsystems. In CCS, this cannot happen since channel

names cannot be communicated. In CSP, the model of communication does not allow new

names to be received.
5The facility for new communication possibilities to arise during execution has been

called mobility but it is arguable whether the π-calculus is suitable for modelling mobile

systems. An toy example of a mobile phone system is given in [Mil91], where a mobile

phone switches base as it travels into a different region. However, since the π-calculus has

no concept of location or domain, the regions are completely outside the model. Examples

of languages with a true notion of mobility would be the ambient calculus [CG98] or the

programming language Obliq [Car94].

37

CHAPTER 2. THE STATE OF THE ART

equivalence used for the reduction relation is barbed bisimulation which uses

a predicate (called a barb) to detect whether communication is possible on

a given channel name. For the labelled transition system, strong and weak

bisimulation are defined, as in CCS. Several other notions of equivalence be-

tween π-calculus terms are considered in [SW01] and an algebraic theory has

also been developed [PS95].

The π-calculus is a name-passing calculus and names are a primary fea-

ture of object-orientation. For this reason, and others, the π-calculus has

been used several times as a model of object-orientation [Mil99, SW01,

Wal95, San96, KS98]. The π-calculus has also been used to give concur-

rent object-oriented language a semantics in [Jon93b] and [Öve00]. More-

over, encodings of concurrent objects have been given in extensions of the

π-calculus, for example the form calculus [SL00] and Pict [PT95, SL96] (see

the next section).

Many variants of the π-calculus have been proposed; three interesting

cases are Aπ, HOπ and Dπ. In the asynchronous π-calculus [HT91, SW01],

Aπ, two simple restrictions on the syntax of the π-calculus give a model of

concurrent systems where communication is asynchronous. Firstly, a pro-

cess cannot follow a send operation with any other operation and, secondly,

a send operation may not occur in a summation. In the higher-order π-

calculus [San92], HOπ, abstractions (processes which require parameters)

may be the objects of a communication. In fact, this extension does not

provide extra power; HOπ can be naturally encoded in the π-calculus by

communicating access to processes rather than the processes themselves. Dis-

tributed π-calculus [RH98], Dπ, places π-calculus-like terms at locations and

introduces a notion of location failure. This gives a more accurate model of

systems where distribution is important.

38

CHAPTER 2. THE STATE OF THE ART

2.2.4 Pict

Pict [PT98] is a formally defined programming language which rests upon the

π-calculus much in the way a functional language rests upon the λ-calculus.

Specifically, its core language is asynchronous π-calculus without summation

but augmented with records and pattern matching. Upon this small core

language more sophisticated programming constructs are built as encodings.

“The goal in Pict is to identify and support idioms that arise naturally when

[π-calculus] primitives are used to build working programs — idioms such as

basic data structures, protocols for returning results, higher-order program-

ming, selective communication and concurrent objects” [Pie98]. So the focus

in Pict is support for programming over support for reasoning. Nevertheless,

it is likely that much of the theory of the π-calculus carries over to Pict.

Pict has been used as an “experimental testbed” to explore different ways

of modelling objects: various options are considered in [PT95] and [SL96].

Typically, an object will be encoded as a record of channels — each channel

provides access to a process managing a single service. Although π-calculus’

summation (i.e. choice) is not present in the core language, it can be in-

troduced as a sugaring and is available to users as a library module. Using

choice, Pict could also support the object encodings for the π-calculus that

we mentioned in the previous section.

2.2.5 Join Calculus

The join calculus [FG02] is a name passing process calculus designed for dis-

tributed and mobile programming. The syntax can be seen either as an asyn-

chronous π-calculus extended with pattern matching or as a small (ML-like)

functional programming language extended with concurrency and message

39

CHAPTER 2. THE STATE OF THE ART

passing. The intention is to provide a language which models distributed

programming6.

The processes of the join calculus are hierarchically structured into sites

(locations) and communication is by asynchronous channel-based message

passing. Contrasted with more typical process calculi, there are two inter-

esting features of the join calculus communication model. Firstly, channels

are “defined” at a single site; all messages sent on that channel get deliv-

ered to that one site. Consequently, all processes waiting to receive on the

same channel must reside at the same site. Secondly, processes can consume

several messages atomically. This is expressed, syntactically, with a join pat-

tern. Until all the messages a process wishes to receive have arrived, and that

process consumes them, those messages remain available for other processes.

From the perspective of modelling and implementation, the significant con-

sequence of this is that any contention between processes can be resolved

locally.

The join pattern is sufficiently expressive to allow many standard pro-

gramming idioms to be naturally encoded. “The join calculus gives us a

general language for writing synchronisation devices; devices are just com-

mon idioms in that language. This makes it much easier to turn from one

type of device to another, to use several kind of devices, or even combine

devices” [FG02]. Encodings of asynchronous and synchronous π-calculus

channels, actors, objects and Ada rendez-vous are given. Although the con-

sideration of object encodings is brief, several different styles of concurrent

6It is also worth mentioning the distributed join calculus [FGL+96] which extends the

join calculus with an explicit notion of location and a primitive for process migration. The

intention here is to provide a model and basis for mobile programming. An extension of

the Objective CAML programming language, JoCAML [FFMS01], embodies this model

of distribution and mobility.

40

CHAPTER 2. THE STATE OF THE ART

objects are considered.

The join calculus is given a semantics in terms of a computational model

called the Reflective Chemical Abstract Machine. It defines an operational se-

mantics based on three relations between processes: reduction steps, heating

steps and cooling steps. This model relies on the metaphor of computational

systems as chemical solutions, as in the Chemical Abstract Machine [BB90].

The join calculus is intended to be the basis of a programming language so

an important advantage of this computation model is that it can be refined

into an efficient implementation. A labelled semantics is defined with the

Open Reflective Chemical Abstract Machine which allows us to consider the

interactions a process may have with its environment. A simple and intuitive

semantics, based on an equivalence and a reduction relation, is also defined.

For reasoning about the join calculus, no one notion of program equiv-

alence will satisfy all requirements: “finding the ‘right’ equivalence for con-

current programs is a tall order” [FG02]. Consequently, a hierarchy of five

equivalences is defined7, each striking a different balance between precision

and the richness of the generated identities. In increasing order of precision,

they are: may testing, fair testing, coupled-similarity equivalence, bisimilar-

ity equivalence and labelled bisimilarities.

2.3 Concurrent Object-Oriented Approaches

We now consider some concurrent formalisms which are intrinsically object-

oriented. The richer of these formalisms are full object-oriented languages;

the others are object calculi .

7In fact, the equivalences and techniques of the hierarchy are not restricted to the join

calculus. “In principle, they can be applied to any calculus with a small-step reduction-

based semantics, evaluation contexts, and some notion of observation” [FG02].

41

CHAPTER 2. THE STATE OF THE ART

2.3.1 POOL

The first we consider is the POOL (Parallel Object-Oriented Language) fam-

ily of programming languages due to Pierre America [Ame87, AdBKR89,

Ame89, Ame91]. This family includes POOL, POOL-I, POOL-S, POOL-T,

POOL2 and a sequential version called SPOOL. For brevity, we will con-

sider this collection of languages as if it was a single language so some of

the comments need not be thought to apply to all of them. POOL “aims at

the systematic construction of reliable and maintainable software” [Ame87].

America views object-orientation primarily as a protection mechanism; he

“considers [the] principle of protection of objects against each other as the

basic and essential characteristic of object-oriented programming” [Ame91].

Consequently, state is private to an object and can only be accessed by the

object’s methods.

One novel feature of POOL is the way in which concurrency is achieved.

POOL is class based and each class defines for its objects a section of code

called a body . At object creation, the code in the body is started in parallel

with the code already running in the system. The object is allowed only a

single process so the body must, at some time, execute an answer statement

in order to service requests on the object. This answer statement can choose

to service certain requests only; those requests which are not serviced are

queued.

An important contribution of POOL is the complete separation of in-

heritance from subtyping8. Most object-oriented languages conflate the two

8In fact, subtyping in POOL is more than just interface conformance — methods and

classes have an attached property which asserts that the tagged entity satisfies a cer-

tain specification. Unsurprisingly, the checking of code against its specification is not

automated but, if the tags are believed to be correct, then it can be used to make the sub-

typing relationship more discriminating. For example, in many object-oriented languages

42

CHAPTER 2. THE STATE OF THE ART

ideas, which can be useful since they often coincide. On the other hand,

by insisting that they occur together, desirable inheritance relationships can

be frustrated and undesirable subtyping relationships established [Ame87].

POOL decouples the two concepts and, along with its subtyping interface, a

class can export an interface specifically to let other classes inherit from it.

Several semantics have been provided for POOL but the two signifi-

cant ones are a denotational semantics in terms of complete metric spaces

[AdBKR89] and an operational semantics in terms of an unlabelled transition

relation [Ame89]. Walker [Wal95] gives a translation into the π-calculus and,

in doing so, gives POOL a new operational semantics in terms of a labelled

transition relation.

2.3.2 πoβλ

In [Jon93a], Jones came to see “language restrictions as a way of taming in-

terference”. πoβλ [Jon92] is not intended to be a full programming language

but rather as a design notation which can be used for the development of con-

current programs in an actual implementation language. It has class-based

object-orientation and is “heavily influenced” by POOL. One similarity be-

tween POOL and πoβλ is the restriction that only one method can be active

in each object at any one time9. One difference is how parallelism arises in

a πoβλ program. Rather than POOL’s bodies, πoβλ has synchronous invo-

Bag, Queue and Stack would be interchangeable since they all satisfy the same simple

container interface. In POOL, Queue and Stack fail to be subtypes of each other because

Queue has the property FIFO (first in, first out) but Stack has the property LIFO (last

in, first out). Since Bag doesn’t specify an ordering policy, both Stack and Queue can

subtype from it.
9πoβλ does have a parallel statement but it is not made clear whether it can be used

to override this restriction.

43

CHAPTER 2. THE STATE OF THE ART

cations whose receiver may issue a reply, yet continue working (a technique

called early returns).

The development method associated with πoβλ proposes sequential de-

velopment followed by the introduction of concurrency using rules which can

commute code statements under certain conditions. These rules are justified

by arguments in the semantics [Jon94]. Reasoning requires a mixture of pre-

conditions, post-conditions and invariants together with assumptions about

the interference of the environment using a version of rely-condition. In the

development of certain programs, arguments about the object graph (which

records the interconnection of object references) can be used to make the

reasoning easier. Another aid is marking state variables in terms of whether

they can be read or written by the environment [Jon93c].

Although πoβλ is a design notation, it still needs a semantics to fix

the meaning of its terms. The primary semantics is a mapping into the

π-calculus [Jon93b]: “It would be possible to argue that this semantics is

[. . .] giving too fine a level of granularity”. So the behaviour of an encoded

πoβλ construct may take several steps to accomplish what might be thought

to be an atomic πoβλ operation and, moreover, this stuttering may lead to

two parallel operations overlapping or enclosing each other. However, “the

π-calculus has an algebra which makes it easy to reason about equivalence

of processes”.

2.3.3 TyCO

Another object-oriented formalism with concurrency is Vasconcelos’ Typed

Concurrent Objects (TyCO) [Vas94a]. The motivation for TyCO is to “cap-

ture basic features present in most notions of objects and to give precise

(operational) semantics and type inference systems to object-oriented con-

44

CHAPTER 2. THE STATE OF THE ART

current programming languages” [Vas94b]. The name TyCO is used both for

a calculus and a programming language [VB98] built on top of the calculus,

using sugarings. TyCO was originally presented as an object calculus10 but

later it was described as “a form of the asynchronous π-calculus featuring

first class objects, asynchronous messages and template definitions” [LSV99].

Objects in TyCO are, in general, ephemeral, i.e. invocation acts like a

destructor11 of the object. We can create persistent objects by using recursion

but we can also create objects which change behaviour and even change

interface. So, although class-like definitions can be introduced as a sugaring,

the system allows for much more flexible object behaviour than a class based

language would typically allow.

Aside from its work on the foundations of object-orientation, TyCO is be-

ing put to one other interesting use: at the University of Lisbon, students are

using TyCO as training in concurrent object-oriented programming [Vas01].

2.3.4 concς

In [AC96], Abadi and Cardelli present several sequential object calculi which

are “at the same level of abstraction as the λ-calculus”. Instead of function

application, their computational power comes from method invocation and

method update. An object is a labelled record of methods and a method

10This change in presentation is associated with an improved syntax that makes the

relationship with the π-calculus clearer. First, augment the π-calculus’ send primitive with

a label, e.g. l in x!l[ẽ], and its receive primitive with a labelled record, as in x?{l1(ẽ1) =

P1, . . . lk(ẽk) = Pk}. Then, with an appropriate rule in the operational semantics, we do

indeed get object-like behaviour.
11By destructor we mean in the sense of constructed data types, not to be confused with

a distinguished method that manages object deletion in certain object-oriented program-

ming languages.

45

CHAPTER 2. THE STATE OF THE ART

can contain a value which, upon invocation, is substituted by the containing

object (by value or reference depending on the object calculus). The presence

of method update make their calculi somewhat unusual since few object-

oriented languages support this behaviour. Nevertheless, method update is

simple to formalise and it allows them to illustrate various forms of reuse.

The most primitive language they present is the ς-calculus, a tiny func-

tional object-based language. This is already sophisticated enough to encode

the λ-calculus. Other languages considered include impς, a similarly founda-

tional imperative object calculus, and three programming languages, called

O-1, O-2 and O-3. Although predominantly object-based, class structures

for some of their languages are given. The main contribution of the study is

the development of type systems for various object-oriented features.

Gordon and Hankin have taken the imperative object calculus impς and

given it a concurrent form concς [GH98]. As in its parent object calcu-

lus, objects in concς are labelled records which support method update and

invocation, where self-substitution is by reference. Here, however, object

references can have local scope and in this regard concς resembles TyCO.

Concurrency is achieved by adding parallel composition and a particu-

larly interesting feature of this system is that this operator has has a non-

symmetric form, (a � b), which can evaluate to a result. The operational
semantics of concς is an unlabelled transition relation which describes how

objects and processes invoking, updating methods or cloning interact.

The distributed object calculus, an extension of concς with explicit dis-

tribution and mobility, is presented in [Jef00].

46

CHAPTER 2. THE STATE OF THE ART

2.3.5 OC

In [Nie92], Nierstrasz proposes OC, an object calculus which is “a merge of

the π and λ calculi” extended with a prioritised choice operator and pattern

matching12. Communication has two forms: local communication, which

resembles function application, and remote communication, similar to that

of a typical process calculus. Interestingly, the function composition that

is available enables a kind of inheritance where an object can be built out

of more primitive objects. Two features of OC’s object orientation are that

multiple requests on an object can be serviced simultaneously and objects

need not have a fixed set of requests which they are willing to service.

In fact, OC’s object-orientation has a problem: the pattern matching can

violate strict object encapsulation. This has lead Threet, Hale and Shenoi to

develop a modified version of the calculus called Robust Object Calculus, or

ROC [THS96]. In ROC, values can be marked as unbindable. A wild card

in a pattern cannot match an unbindable value and, used appropriately, this

guarantees full object encapsulation.

2.3.6 BOOM and ODAL

The BOOM framework [Öve00] is a meta-modelling approach whose aim is

to provide object-oriented modelling languages, in particular UML [OMG01],

with precise definition. Because the intended users will be familiar with ob-

ject technology, the framework itself uses a concurrent object-oriented lan-

guage, called ODAL, as its specification language. Our work is not a meta-

modelling exercise so we consider ODAL, rather than the BOOM framework,

to be of interest here.

12Unfortunately, the name OC has also been used to refer to Abadi and Cardelli’s object

calculi, for example in [San96].

47

CHAPTER 2. THE STATE OF THE ART

ODAL is a relatively rich language when compared to some other object-

oriented formalisms. It has classes with inheritance, assertions, invariants,

dynamic type support and a strong static type system. It is given a semantics

primarily by a translation into the π-calculus which, given the richness of the

language, is predictably complex. Of course, the primary purpose of BOOM

and ODAL is to give concepts a standard meaning, not to reason about their

behaviour, so the complexity of this semantics is not a particular problem

for their work. Fortunately, a simpler operational semantics in terms of a

labelled transition system is also given.

2.4 Evaluating the Methods

Our intention is to provide a special-purpose formal method to support the

modelling and development of distributed object-oriented systems. In this

section, we discuss how the approaches we have considered could be used to

this end.

2.4.1 State-Based Methods

In the first category, we considered state-based methods:

“The state-based paradigm is characterised by the explicit

specification of states and the implicit specification of system be-

haviour [. . .]. This is in contrast to process algebra approaches,

where the behaviour is explicit and states are implicit.” [Smi01].

For our purposes, we feel that behaviour should be given primacy over state.

The distributed object-oriented systems of our problem domain are not just

state-based systems where some concurrency occurs; they are primarily con-

current systems. More significantly, these systems are interactive systems:

48

CHAPTER 2. THE STATE OF THE ART

we experience them by communicating with them, not by inspecting their

current and possibly distributed state.

Other aspects of our target systems suggest that a state-based approach

is not a good fit. We would, for example, need to provide data structures to

explicitly encode the life-cycle of objects and the network of object references.

Although these notions can be added, this represents a clear semantic gap.

Considering the Rely/Guarantee approach first, we can identify two ways

in which it is unsuitable. Firstly, there is a lack of object concepts, necessitat-

ing an encoding. Secondly, the rely/guarantee approach can generate huge

proof obligations in a system where there is a lot of concurrency. In theory,

every possible combination of concurrently executing operations must have

its predicates checked to ensure that those operations can execute together

safely.

In the Refinement Calculus we are provided with a model of concurrent

objects. Unfortunately, we find that its computational model is not appropri-

ate for our target systems. Within this model, the methods of an object ex-

ecute atomically. However, the methods of the objects of our target systems

are not just atomic transitions between states but involve communication

events and take time.

2.4.2 Process Calculi

The process calculi we considered are designed specifically to tackle concur-

rent systems. They emphasise behaviour over state and we believe that this

is appropriate for the systems of our problem domain. The general drawback

of these methods, given our stated objective, is the lack of object concepts.

Encodings for objects are defined in many of the process calculi we dis-

cussed. This means that many properties of objects, such as encapsulation,

49

CHAPTER 2. THE STATE OF THE ART

would exist only algorithmically in the encoding. Another possible issue with

encodings is that an object-level operation might be encoded as a sequence

of several lower-level actions. This allows the possibility of behaviours, such

as strange interleavings, which are not appropriate in the object model. To

discount such behaviours requires extra reasoning.

Considering CCS and CSP, we find that their static communication net-

works are too limiting. The interconnections in our target systems are likely

to change significantly over time and CCS and CSP cannot accurately model

this kind of system. Although aspects of high-level application logic or low-

level system protocols might be usefully modelled using these methods, we

do not believe they offer a general approach to our problem.

In contrast, the π-calculus, PICT and the join calculus all support dy-

namic communication networks. Moreover, their rich communication actions

could offer interesting ways of modelling our target system. The only fac-

tor that counts against their use is that object-orientation is available only

indirectly.

2.4.3 Concurrent Object-Oriented Approaches

Those methods of the third category seem close to our intended aim. They

are formally defined, support concurrency and all possess a set of object

concepts. Given that we are proposing an alternate formalism, we must

respond to the important question of whether it is needed: are none of the

formalisms and languages of the third category suitable for our purposes?

There are two ways these methods can be a bad fit for our target systems:

The first way is that their model of concurrency can be inappropriate. The

second way is that their object model can be a poor match to ours.

POOL and πoβλ seem, in many respects, ideally suited to our needs.

50

CHAPTER 2. THE STATE OF THE ART

Unfortunately, their model of concurrency is not quite right. In both these

languages, only one of an object’s methods can be active at one time13. Given

this restriction, there would be no way to model our target systems’ objects

at the right granularity.

TyCO, concς and OC, on the other hand, all support objects with arbi-

trary concurrency. Unfortunately, we feel that they are a little too founda-

tional for our purposes. They are intended to be minimal models of object-

oriented computation and have very economical syntaxes. We believe, how-

ever, that such foundational languages are more suited to experimentation

than a practical formal method. As is often the case, it would be possible to

build suitable high-level constructs in these languages via encodings.

ODAL allows concurrency within objects and is richer than TyCO, concς

and OC. The problem with using ODAL for our purposes is the fact that its

semantics is based on an encoding. Reasoning with such a semantics is likely

to be highly complex.

2.5 Our Work in Context

Our approach seeks to provide a special-purpose formal method to support

the modelling and development of distributed object-oriented systems. We

intend there to be a narrow semantic gap between our method and these

target systems. In this light, our decision to use a formally-defined concurrent

object-oriented language becomes clear. So our formalism, Oompa, belongs

to the third category.

The significant difference between Oompa and other methods we have

13An object with this style of concurrency can be called a monitor or a synchronised

object [FG02]. We will occasionally refer to one as a single-threaded object.

51

CHAPTER 2. THE STATE OF THE ART

discussed is that Oompa has been designed to be a close fit to the target

systems we are considering. Firstly, the model of concurrency matches that

of the target systems: there is no limit on the number of concurrent processes

running at an object. Restrictions can be built within Oompa but none are

imposed by Oompa. Secondly, Oompa’s objects operate at the right level to

model the target systems. Invocations can send and receive several values and

the language of code is relatively rich: the methods of an Oompa object can

participate in channel based communication as well as object style behaviour.

There is one other aspect of Oompa’s design which, we believe, make it

especially suited to our work. Oompa’s semantics are operational semantics

which directly embody our intuitions about object behaviour. They do not

depend on encodings or sugarings which means that we can develop intu-

itions about behaviours and create idioms that are appropriate to our target

systems. In doing so, we need not worry about avoiding behaviours which

are expressible in the language but meaningless as real systems.

2.6 Summary

This chapter set out to examine various methods that exist in the literature

and establish a useful context for our work.

The first type of methods we considered were state-based methods which

make system state explicit and leave system behaviour implicit. We believe

the behavioural aspects of our target systems are the more important and

we discounted these methods for this reason. Next, we discussed process

calculi which model systems in terms of the communication actions they

can perform. These were not directly object-oriented so there is a semantic

gap between them and our target systems. Lastly, we discussed concurrent

52

CHAPTER 2. THE STATE OF THE ART

object-oriented approaches. These have concurrency, modelled in terms of

communications, and are intrinsically object-oriented. With regard to tack-

ling our problem, these methods had either an inappropriate concurrency

model, an inappropriate object model or an overly complex semantics.

We concluded the chapter by considering our own formalism. We identi-

fied it as belonging to the third category of methods. Its advantage is that it

has been designed specifically to be a close fit to the systems of our problem

domain. Our next task is to provide its formal definition.

53

Chapter 3

Static Oompa

In this chapter, we begin the presentation of our formal language, Oompa. As

a consequence of being a class-based language, there is a separation between

the structures which define Oompa programs and those that participate in

the operational semantics. This chapter defines the former: static Oompa.

In Section 3.1, we provide the formal definition of Oompa’s syntax and

give an example of an Oompa class. We discuss some of the less typical

features of Oompa’s syntax in Section 3.2. In Section 3.3, we describe the

well-formedness conditions that an Oompa program is required to satisfy.

Section 3.4 describes how names operate in Oompa and how Oompa programs

undergo changes of names. In Section 3.5, we provide an equivalence system

which identifies code that differs only in the choice of bound names. We

summarise the contents of the chapter in Section 3.6.

3.1 Syntax

In this section we give the formal definition of the syntax of Oompa’s static

system. We present the syntax in a style of BNF frequently used in the

54

CHAPTER 3. STATIC OOMPA

process calculus literature. This permits a trick where a meta-variable rep-

resenting an element of syntax is allowed to stand for its syntactic class.

3.1.1 The Syntax of the π-Calculus

The core of Oompa’s syntax is based on the polyadic π-calculus. We provide

here a brief overview of the syntax of that language1.

We will presuppose an infinite set, N , of names, a, b, c, . . . ∈ N . The
two syntactic classes of the untyped polyadic π-calculus are prefixes and

processes:

π ::= c!〈a1, . . . an〉 | c?(b1, . . . bn) | τ

P ::=
∑
i∈I πi.Pi | (P1 | P2) | new c P | ∗P

Prefixes represent the communication actions that a π-calculus process

can perform. The first type of prefix is send , c!〈a1, . . . an〉, where a name
c is used as a channel to send a tuple of names a1, . . . an. Next is receive,

c?(b1, . . . bn), where a name c is used as a channel to receive some tuple of

names, for which b1, . . . bn stand as parameters. Lastly, τ is the silent action

which represents an internal private action within a process.

A process can be in one of four forms. The first form is summation,
∑
i∈I πi.Pi, which describes a process willing to do any of the actions πi —

if it actually performs action πj then its subsequent behaviour is described

by Pj . The second form is composition, (P1 | P2), which describes a process

consisting of two processes in parallel. Next, restriction, new c P , restricts

the scope of the name c to that process. Lastly, replication, ∗P , represents
infinitely many copies of P in parallel.

1There are variations in the notations used for the π-calculus. For the syntactic forms

which we use in Oompa, we choose those variants which can be written in ASCII characters.

55

CHAPTER 3. STATIC OOMPA

An example of a π-calculus process is:

(c!〈y〉.k?(r).0) | (c?(i).k!〈c〉.0 + k!〈y〉.0)

3.1.2 Names

As in the π-calculus, names, drawn from some infinite set, N , play a vital role
in Oompa. A name will often be written as n. Sometimes, however, we will

know that a given name denotes a specific semantic entity, such as a channel,

and in these cases we will use more suggestive meta-names. In particular,

parameters and channel , object and attribute names are, syntactically, just

names but we will typically write them r, c, o and a respectively. An example

of a name would be marmalade.

There may also be sets containing literal expressions, P0, . . . Pn. These

must be syntactically distinct from names and from each other. They will

typically be written �. Examples of literal expressions would be 144 and ‘h’.

A value is either a name or a literal:

v ::= n | �

We can ask for the free names of a value.

FN(n) = {n} FN(�) = ∅

There are two reserved names: return, which is a special channel name, and

this, which is a special object name.

56

CHAPTER 3. STATIC OOMPA

3.1.3 Code

The following table gives the syntax of code. The first five forms are borrowed

from the π-calculus, the next four support Oompa’s object-orientation.

p ::= end stop

| fork{p0} p1 fork

| new c: ChT p create a new channel

| c!〈v1, . . . vn〉 p send on a channel

| c?(r1:T1, . . . rn:Tn) p receive on a channel

| create o: ClT p create an object

| o.m!〈v1, . . . vn〉?(r1, . . . rn′) p invoke a method

| a!v p update an attribute

| a?r p access an attribute

where T1, . . . Tn, ChT and ClT are types whose syntax is given in Sec-

tion 3.1.5.

It is easy to see the influence of π-calculus on the syntax of Oompa’s

code — the first five primitives above all have analogues in the π-calculus

(end corresponds to the empty sum). Note, however, that the behaviour

of their forms in the π-calculus is not quite the same as their behaviour in

Oompa. One important difference in behaviour is that, in Oompa, only the

first primitive in a piece of Oompa code can be executed. This is not the

case in the π-calculus, where reductions can occur within a term2.

Two primitives of the π-calculus which are not present in Oompa are

replication and summation. Replication can be easily encoded in Oompa

using method invocation. Summation, on the other hand, is not directly

encodable in Oompa. We choose not to support it because, for distributed

2In the π-calculus, reductions can occur in the components of a parallel expression or

underneath a restriction.

57

CHAPTER 3. STATIC OOMPA

systems, we believe it to be too strong an operation. Summation allows con-

tention between distributed communications to be resolved instantaneously.

This is unlikely to be a feature of the systems we wish to design or model, so

it would be inappropriate for our language to support it. One consequence

of not having summation is that Oompa does not need a distinct syntac-

tic class of prefixes. In the π-calculus, this separation is essential to ensure

summations are well-formed.

We now provide some intuition for the primitives. Naturally, their be-

haviour is formally defined by the semantics, which is given in Chapter 4.

The first two primitives are essentially structural. The role of end is

simply to terminate pieces of Oompa code — all other primitives take a

continuation. The fork primitive causes its contained code to be run in

parallel with its continuation3. Syntactically, a piece of code can be viewed

as a binary tree whose nodes are labelled with primitives. Leaves are labelled

end and branching occurs beneath nodes labelled fork.

The new primitive creates a new channel of the given type. The parameter

c can be used in the continuation to refer to this new channel. The sending

and receiving forms, c!〈v1, . . . vn〉 and c?(r1:T1, . . . rn:Tn) respectively, behave

like their corresponding forms in the π-calculus, sending and receiving values

on the provided channel name. When the create primitive is executed, a

new object of class ClT is created. Occurrences of the parameter o can be

used in the continuation to refer to this new object.

The invocation primitive executes in two phases. The first phase invokes

the method m of the object o, sending it the tuple of values v1, . . . vn. Also

in the first phase, a new channel name is created, say x, and the invocation

3Although fork is asymmetric, this is not semantically significant. The asymmetric

form makes fork syntactically consistent with the other Oompa primitives.

58

CHAPTER 3. STATIC OOMPA

primitive becomes a receive on that channel of the form x?(r1:T1, . . . rn′:Tn′).

In the second phase, channel-based communication is used to return values

from the invoked method to the continuation along x.

The attribute update primitive sets the current value associated with the

attribute a of the containing object to be v. When the attribute access

primitive is executed, the current value of the attribute a is substituted in

place of the parameter r in the continuation.

Several of Oompa’s primitives, namely channel creation, receive, object

creation, invocation and attribute access, introduce local bound names. We

can find the free names in a piece of code using the following function.

FN(end) = ∅
FN(fork{p0} p1) = FN(p) ∪ FN(p1)
FN(new c: ChT p) = FN(p)� {c}

FN(c!〈v1, . . . vn〉 p) =


 FN(p) ∪ {c} ∪
FN(v1) ∪ . . . ∪ FN(vn)




FN(c?(r1:T1, . . . rn:Tn) p) = (FN(p)� {r1, . . . rn}) ∪ {c}
FN(create o: ClT p) = FN(p)� {o}

FN(o.m!〈v1, . . . vn〉?(r1, . . . rn′) p) =




(FN(p)� {r1, . . . rn′})
∪ {o} ∪
FN(v1) ∪ . . . ∪ FN(vn)




FN(a!v p) = FN(p) ∪ FN(v)
FN(a?r p) = FN(p)� {r}

3.1.4 Definitions

Code resides in method definitions and method definitions reside in class

definitions. As well as the syntax of code, we need a syntax which describes

how these definitions are written.

59

CHAPTER 3. STATIC OOMPA

Oompa classes and interfaces are defined in a definition set which, in

practical terms, corresponds to a file. Class definitions hold attribute decla-

rations, which associate attribute names with attribute types, and method

definitions , which consist of a signature and a piece of code. Interface defi-

nitions just contain a list of signatures. A signature has a method name and

two lists, one specifying input parameters and one specifying output param-

eters.

sig ::= m?(r1:T1, . . . rn:Tn)!〈s1:S1, . . . sn′:Sn′〉 signature

mdef ::= sig{p} method definition

adecl ::= a : Attr{T} attribute declaration

Idef ::= interface I {sig∗} interface definition

Cdef ::= class C {adecl∗ mdef∗} class definition

Γ ::= (Idef | Cdef)∗ definition set

where T1, . . . Tn, S1, . . . Sn′ are types and I and C are type variables (see Sec-

tion 3.1.5). Note that the return parameters, s1, . . . sn′, in a signature have

no semantic significance. They serve as a convenient form of documentation.

The code in a method can return values to the code which invoked it by

performing a send on the special channel name return. It can refer to its

containing object by using the special object name this.

3.1.5 Types

Oompa is a statically type checked language, so an Oompa program can be

checked for a certain class of misbehaviours called type violations. Support-

ing this procedure is a formal system, separate from Oompa’s syntax and

semantics, called a type system [Car96]. Although a certain amount of in-

dependence exists between a language and a type system for that language,

60

CHAPTER 3. STATIC OOMPA

types can occur in Oompa’s syntax and thus we need to provide their syntac-

tic forms here. We leave a full consideration of Oompa’s type system until

Chapter 5.

The syntax of Oompa’s type system is as follows:

PrT ::= Long | Char primitive types

ChT ::= Chan〈T1, . . . Tn〉 channel type

| InCh〈T1, . . . Tn〉 readable channel type

| OuCh〈T1, . . . Tn〉 writable channel type

SgT ::= m?(T1, . . . Tn)!〈S1, . . . Sn′〉 signature type

InT ::= Intf{SgT1, . . .SgTn} interface type

GrT ::= InT | ChT guarded type

T ::= PrT | GrT | t | rec t.GrT value type

AtT ::= Attr{T} attribute type

where t is a type variable.

The type system has several kinds of types. We think of primitive types

to be sets of literals and, for this thesis, we restrict consideration to long

integers and characters. Channel types have three forms corresponding to

channel access that permits reading, writing or both. A signature type holds

the type of a method signature. Oompa objects have interface types which

are lists of signature types describing the types of the available methods. The

Guarded types are those type forms which have an outer type constructor (e.g.

“Chan”). They simplify issues when using recursive types introduced with

the rec operator. Value types are those type forms meaningful for values

and parameters — these include all the type forms except attribute and

signature types. Type variables have two roles, referring either to the type of

an element of the definition set or to the rec binder in an enclosing recursive

type. Attribute types are used to distinguish attributes from values.

61

CHAPTER 3. STATIC OOMPA

We will sometimes refer to class types and represent them with ClT. A

class type will be an occurrence of a free type variable that is the name of

some class in the definition set. In fact, we do not consider classes to be types

but permit the use of class names in type positions as we know how to obtain

the unique interface type that corresponds to a class (see Section 5.2.1).

An example of an expression generated by this syntax is:

rec t.Intf{m?()!〈t〉}

which would be the type of an object which has a single method m. The

method takes no arguments but returns a value which is the name of an object

of that same type. Note that the syntax disallows unguarded recursions, such

as rec t.t, and recursions on recursive types, such as rec t.rec s.Chan〈t, s〉.
These limitations simplify proofs in Chapter 5.

3.1.6 Example of Oompa’s syntax

Here is a simple example of an Oompa definition set. There is a class for

simple cell objects, which manage a single long integer value. There is also

a client, which creates a cell object, sends it a value and then inspects that

value.

class Cell

{

contents:Attr{Long}

read?()!<val:Long>

{

contents?c

return!<c>

62

CHAPTER 3. STATIC OOMPA

end

}

write?(val:Long)!<>

{

contents!c

return!<>

end

}

}

class Cell_Client

{

main?()!<>

{

new cell:Cell

cell.write!<5>?()

cell.read!<>?(r)

end

}

}

3.2 Issues in the design of Oompa

Some discussion of Oompa’s syntax is in order.

Oompa does not have an expression language. We have deliberately post-

poned a consideration of this issue since evaluating expressions in a dis-

63

CHAPTER 3. STATIC OOMPA

tributed environment is non-trivial and we do not wish to disguise that fact.

An approach based on sugarings might still be useful and we discuss the

possibility of this development in Chapter 8. In terms of the syntax, there

are two main consequences of this.

Firstly, there is no atomic assignment for attributes. In many other

object-oriented languages, such as Java, an attribute name can appear on

the left and right of an assignment. In Oompa, the value of the attribute

must be explicitly obtained and the attribute then updated; both separate

actions. This is appropriate as it exposes important concurrency control is-

sues. Furthermore, it works towards a style of refinement where local state

is replaced by a remote object.

Secondly, there is no distinguished return value from an invocation. In-

stead, invocation binds a tuple of names to a tuple of return values when

they arrive. As we will see in the semantics in Chapter 4, when an invoca-

tion occurs, a new channel is created and the calling code is blocked behind

a receive on that channel. A method returns values to its caller by using the

special channel name return.

Some programming languages have type inference algorithms [Car96].

This is a procedure which can automatically deduce the types in a program

and allows some, or all, of the types to be omitted from the program text. As

we currently do not provide a full type inference algorithm, Oompa’s syntax

must contain some type annotations. The parameters of a channel receive

must be decorated with types but, on the other hand, we do not require type

annotations for the parameter of an attribute access. An attribute’s type is

declared in the containing class and is therefore known statically.

64

CHAPTER 3. STATIC OOMPA

3.3 Well-Formedness

There are a number of properties we wish to require of a definition set be-

yond mere syntactic conformance yet which do not belong to the semantically

stronger concept of type correctness defined in Chapter 5. We call this some-

what disparate set of properties the well-formedness properties of a definition

set. A definition set is well-formed if it satisfies the following conditions:

• Class names and interface names are all distinct.

• Within each class, attribute names are distinct and none are either
return or this.

• Within each class, method names are distinct.

• A parameter may not occur twice in a parameter list.

• In the methods of a class, none of that class’ attribute names may be
used in a value or parameter position.

Ultimately, we imagine a predicate “WellFormed”, easily implemented as a

recursive function acting on the elements of Oompa’s syntax.

An example of a syntactically correct class which violates well-formedness

is:

class Ill_Behaviour

{

// Two attributes with the same name!

a:Attr{Long}

a:Attr{Char}

// Badly named attribute!

65

CHAPTER 3. STATIC OOMPA

this:Attr{Chan<>}

// Method has repeated parameter names!

meth?(l:Long, l:Long)!<k:Long>

{

// Attribute name used as a channel

a!

// Attribute name used as a value!

return!<a>

end

}

}

3.4 Renaming

The definition of Oompa requires a careful approach to the issue of name

management. The approach we will use serves two main functions. Firstly,

it will allow us to give a proper definition for substitution. Substitution

is needed by Oompa’s semantics and involves replacing names by values.

Secondly, our approach to names will be used in Chapter 4 to relate Oompa’s

two dynamic systems. In order to do this, we will need to be able to change

the bound names in various Oompa structures.

Issues of naming arise in many formalisms and the most common ap-

proach (used, for example, in [Bar80]) abstracts away the choice of bound

names. An equivalence relation, called α-equivalence4, is defined which iden-

4We will define an α-equivalence relations for several of Oompa’s syntactic structures.

See sections 3.5, 4.1.3 and 4.2.3.

66

CHAPTER 3. STATIC OOMPA

tifies terms which differ only in their choices of bound names. Once this is

done, α-equivalence classes of terms can be used instead of terms themselves.

The advantage of this approach is that bound names can be changed

as needed and name clashes never need not occur. An aspect of Oompa’s

dynamic systems means that choice of names, even bound names, cannot be

ignored in this way. Thus, the α-equivalence-class approach is not suitable

for Oompa.

Another common approach is the de Bruijn approach [dB72]. This re-

places bound names by numbers which act as indices to their binder. The

disadvantage of this approach is that the indices are unintuitive to work with.

We elaborate on why we choose neither of these approaches in Sec-

tion 4.2.2. We will also have an opportunity there to discuss some new

approaches to naming ([GP99], [Hon00] and [FPT99]).

As we do not abstract away the choice of bound names, we will need

a way of dealing with name clashes should they arise. We handle these

using permutations on the name space and define their action on the various

elements of Oompa’s syntactic system. Although partial maps have been

used in this way (one example is a capture-avoiding substitution defined in

[Hen87]), we choose permutations since their composition behaves better and

they are invertible.

The notion of “action” we employ is similar to, but usually weaker than,

the standard notion of group action [Dur00]. A group action of a group,

(G, ∗), on a set, S, is an association of each element of the group with a
function from the set to itself, such that

e(s) = s ∀s ∈ S
g1(g2(s)) = (g1 ∗ g2)(s) ∀g1, g2 ∈ G, ∀s ∈ S

where e is the group identity. The application of our renamings will satisfy

67

CHAPTER 3. STATIC OOMPA

the first property but may only satisfy the second property up to some form of

equivalence (i.e. not necessarily equality). Nevertheless, it seems acceptable

to use the terms “act” and “action” and we will do so without mention.

In this thesis, statements of disjointness occur so frequently that we found

it necessary to introduce an abbreviation for them. For sets A and B, we

will write A � B to mean A ∩ B = ∅.

3.4.1 Permutations of N
A permutation of a set is a bijection from that set to itself. Given a permu-

tation α of the set of names, N , we will write its application using postfix
form: nα. We will write the composition of α2 after α1 as α2 ◦ α1 and use

the symbol 1 for the identity permutation. The set of permutations of a set

with composition forms a group.

For us, an important property of a permutation of N will be its set of

changes :

Change(α) = {n ∈ N | nα �= n}

A renaming is a permutation α of N such that Change(α) is finite. We will

usually use the symbol ρ for a renaming.

Lemma 3.4.1

1. Change(ρ2 ◦ ρ1) ⊆ Change(ρ1) ∪ Change(ρ2)

2. Change(1) = ∅

3. Change(ρ−1) = Change(ρ)

Corollary 3.4.2 The set of renamings with composition forms a subgroup

of the group of permutations of N .

68

CHAPTER 3. STATIC OOMPA

We will use renamings to act on the various syntactic classes of our sys-

tem. A renaming acts on a set of names point-wise:

Aρ = {nρ | n ∈ A}

The following lemma means that the action of renamings on the set of sets

of names is, in fact, a group action.

Lemma 3.4.3 If A is a set of names and ρ1, ρ2 are two renamings, then

Aρ1ρ2 = A(ρ2 ◦ ρ1).

A few more definitions are needed. Two renamings ρ1 and ρ2 are disjoint

if Change(ρ1) � Change(ρ2). A transposition is a permutation which maps

two elements of a set to each other and maps all other elements of the set to

themselves. Clearly, a transposition of N is a renaming. We will write the

transposition which swaps the names n and n′ as (n n′).

3.4.2 How to Pick New Names

Several of the functions we will define on Oompa structures involve choosing

new names. A new name is a name which does not occur anywhere in

the current context. Although the particular choice of this name may seem

unimportant provided that it is new, the choice cannot be made arbitrarily.

This is because we wish our functions to be pure5 (a pure function always

returns the same result when given the same arguments).

Formally, when a function involves the choice of a free name, our general

procedure is to find the lexicographically highest name in its arguments and

pick the next one. Informally, however, we shall pick arbitrary names for the

sake of readability.

5In fact, this property is only required by a single result — Lemma 4.1.6.

69

CHAPTER 3. STATIC OOMPA

3.4.3 Shoves

A feature of our renamings, which change only a finite number of names, is

that there are always countably many names left unchanged. Occasionally

we will want to protect certain names from the effect of some renaming by

“moving them out of harms way”. This is the role of shoves.

If A is a finite set of names, then a renaming is a shove of A, or shoves

A, if it is built from disjoint transpositions swapping the elements of A with

new names. We will usually use the symbol δ for a shove.

Lemma 3.4.4 If δ is a shove then δ−1 = δ.

In the following section, we see how shoves are used to protect bound

names from interfering with the operation of changing free names in a piece

of code.

3.4.4 The Action of a Renaming on Code

Although renamings are primarily used to change bound names, when we

define how a renaming acts on code, we are primarily concerned with how

it affects free names. The occurrences of a bound name occur free in the

code beneath its binder; when we wish to change that name, it is those free

occurrences that must be renamed.

A subtle danger, called variable capture, lies in changing free names. This

occurs when a free name, falling under the scope of a binder, is changed and

becomes bound. We will avoid this by using shoves to ensure the bound

names are safely renamed before applying a given renaming.

70

CHAPTER 3. STATIC OOMPA

The action of a renaming on code is defined as follows:

endρ = end

(fork{p0} p1)ρ = fork{p0ρ} p1ρ
(new c: ChT p)ρ = new (cδρ): ChT (pδρ)

(c!〈v1, . . . vn〉 p)ρ = cρ!〈v1ρ, . . . vnρ〉 (pρ)
(c?(r1:T1, . . . rn:Tn) p)ρ = cρ?(r1δρ:T1, . . . rnδρ:Tn) (pδρ)

(create o: ClT p)ρ = create (oδρ): ClT (pδρ)

(o.m!〈v1, . . . vn〉?(r1, . . . rn′) p)ρ = oρ.m!〈v1ρ, . . . vnρ〉?(r1δρ, . . . rn′δρ)
(pδρ)

(a!v p)ρ = a!vρ pρ

(a?r p)ρ = a?rδρ pδρ

where, in the five cases where shoves are introduced, they satisfy, respectively

• δ shoves {c} ∩ Change(ρ)

• δ shoves {r1, . . . rn} ∩ Change(ρ)

• δ shoves {o} ∩ Change(ρ)

• δ shoves {r1, . . . rn′} ∩ Change(ρ)

• δ shoves {r} ∩ Change(ρ)

We give an example to illustrate how a renaming acts on code. Say ρ is

the renaming (v c) ◦ (z r). Then

(new c:T a?r z!〈c〉 r?(v) end)ρ
= 〈choosing the shove (c k) to move c out of the way of ρ〉

new (c(c k)):T (a?r z!〈c〉 r!〈v〉 end)(c k)ρ
= 〈apply the renaming (c k)〉

new k:T (a?r z!〈k〉 r!〈v〉 end)ρ

71

CHAPTER 3. STATIC OOMPA

= 〈choosing the shove (r s) to move r out of the way of ρ〉
new k:T a?r(r s) (z!〈k〉 r!〈v〉 end)(r s)ρ

= 〈apply the renaming (r s)〉
new k:T a?s (z!〈k〉 s!〈v〉 end)ρ

= 〈renaming procedure〉
new k:T a?s r!〈k〉 (s!〈v〉 end)ρ

= 〈renaming procedure〉
new k:T a?s r!〈k〉 s!〈c〉 (end)ρ

= 〈renaming procedure〉
new k:T a?s r!〈k〉 s!〈c〉 end

The following lemma reassures us that the renaming procedure succeeds in

changing the free names appropriately. We include its proof since it provides

useful intuition for how renaming operates.

Lemma 3.4.5 For a piece of code p and a renaming ρ,

FN(pρ) = FN(p)ρ

Proof: We use induction on the construction of p. The only interesting

cases occur when there are bound names and the case for channel creation

illustrates the reasoning in these. Say p = new c:T p1. Then

FN((new c:T p1)ρ)

= 〈the renaming procedure, choosing δ appropriately〉
FN(new (cδρ):T (p1δρ))

= 〈definition of FN(·)〉
FN(p1δρ)� {cδρ}

= 〈induction hypothesis twice and set theory〉
FN(p1)δρ� {c}δρ

72

CHAPTER 3. STATIC OOMPA

= 〈ρ and δ are bijective〉
(FN(p1)� {c})δρ

= 〈choice of δ〉
(FN(p1)� {c})ρ

= 〈definition of FN(·)〉
FN(new c:T p1)ρ

�

3.4.5 The Definition of Substitution on Code

Substitution can occur in two ways in Oompa: when values are received by

channel based communication, method invocation or attribute access and

when a new channel or object is created. The simultaneous substitution of

values v1, . . . vn for names n1, . . . nn is written {|v1/n1, . . .
vn/nn|}. The effect

of a substitution on a value is given by:

v{|v1/n1, . . .
vn/nn|} =



vi if v is ni

v otherwise

We will typically use the symbol σ for a substitution.

When we consider the effect of a substitution on code, we must be as wary

of variable capture as we were when considering renaming — names can be

substituted by other names. As in the case with renamings, we use shoves

to change offending bound names in advance of applying the substitution.

The effect of a substitution σ = {|v1/n1, . . .
vn/nn|} on a piece of code is

73

CHAPTER 3. STATIC OOMPA

given as follows:

endσ = end

(fork{p0} p1)σ = fork{p0σ} p1σ
(new c: ChT p)σ = new (cδσ): ChT (pδσ)

(c!〈v1, . . . vn〉 p)σ = cσ!〈v1σ, . . . vnσ〉 (pσ)
(c?(r1:T1, . . . rn:Tn) p)σ = cσ?(r1δσ:T1, . . . rnδσ:Tn) (pδσ)

(create o: ClT p)σ = create (oδσ): ClT (pδσ)

(o.m!〈v1, . . . vn〉?(r1, . . . rn′) p)σ = oσ.m!〈v1σ, . . . vnσ〉?(r1δσ, . . . rn′δσ)
(pδσ)

(a!v p)σ = a!vσ pσ

(a?r p)σ = a?rδσ pδσ

where, in the five cases where shoves are introduced, they satisfy, respectively

• δ shoves {c} ∩ ({v1, . . . vn} ∪ {n1, . . . nn})

• δ shoves {r1, . . . rn} ∩ ({v1, . . . vn} ∪ {n1, . . . nn})

• δ shoves {o} ∩ ({v1, . . . vn} ∪ {n1, . . . nn})

• δ shoves {r1, . . . rn′} ∩ ({v1, . . . vn} ∪ {n1, . . . nn})

• δ shoves {r} ∩ ({v1, . . . vn} ∪ {n1, . . . nn})

3.5 α-Equivalence for Code

As we discussed in Section 3.4, we regard the particular choice of names to be

important. Consequently, we cannot consider two pieces of code, which differ

only in their choices of bound names, to be equal. Yet for many purposes,

equality is overly discriminating and a coarser relation will be preferable.

74

CHAPTER 3. STATIC OOMPA

Table 3.1: Equivalence Rules for Code α-Equivalence

EQV-RFL: p ≡α p

EQV-SYM:
p1 ≡α p2
p2 ≡α p1

EQV-TRN:
p1 ≡α p2 p2 ≡α p3

p1 ≡α p3

Two pieces of code, p1 and p2, are said to be α-equivalent , written p1 ≡α
p2, if they differ only in their choices of bound names. This is formalised

with the proof system given by the sixteen rules in tables 3.1, 3.2 and 3.3.

The three rules in Table 3.1, EQV-RFL, EQV-SYM and EQV-TRN, mean

that ≡α is an equivalence relation. The eight rules in Table 3.2, CONG-
FRK, CONG-NEW, CONG-SND, CONG-RCV, CONG-CRT, CONG-INV,

CONG-ACC and CONG-UPD, mean that it is a congruence relation over

code. The five rules in Table 3.3, CHNG-NEW, CHNG-RCV, CHNG-CRT,

CHNG-INV and CHNG-ACC, permit bound names to be changed.

The following three lemmas describe some desirable properties of code

α-equivalence. We defer their proofs until Appendix B and annotate them

with a forward reference to their proofs. We see by Lemma 3.5.2 that the

action of renamings on code is not a full group action.
B.1.1

p242Lemma 3.5.1 For two pieces of code p1 and p2,

p1 ≡α p2 ⇒ FN(p1) = FN(p2)
B.1.2

p244Lemma 3.5.2 For a piece of code p and two renamings ρ1 and ρ2,

pρ1ρ2 ≡α p(ρ2 ◦ ρ1)
B.1.3

p248Lemma 3.5.3 For two pieces of code p1 and p2 and a renaming ρ,

p1 ≡α p2 ⇒ p1ρ ≡α p2ρ

75

CHAPTER 3. STATIC OOMPA

Table 3.2: Congruence Rules for Code α-Equivalence

CONG-FRK:
p1 ≡α p2 p′1 ≡α p′2

fork{p1} p′1 ≡α fork{p2} p′2

CONG-NEW:
p1 ≡α p2

new c: ChT p1 ≡α new c: ChT p2

CONG-SND:
p1 ≡α p2

c!〈v1, . . . vn〉 p1 ≡α c!〈v1, . . . vn〉 p2

CONG-RCV:
p1 ≡α p2

c?(r1:T1, . . . rn:Tn) p1 ≡α c?(r1:T1, . . . rn:Tn) p2

CONG-CRT:
p1 ≡α p2

create o: ClT p1 ≡α create o: ClT p2
CONG-INV:

p1 ≡α p2
o.m!〈v1, . . . vn〉?(r1, . . . rn) p1 ≡α o.m!〈v1, . . . vn〉?(r1, . . . rn) p2

CONG-UPD:
p1 ≡α p2

a!v p1 ≡α a!v p2

CONG-ACC:
p1 ≡α p2

a?r p1 ≡α a?r p2

76

CHAPTER 3. STATIC OOMPA

Table 3.3: Change of Bound Name Rules for Code α-Equivalence

CHNG-NEW: new c: ChT p ≡α new cρ: ChT pρ
where ρ is any renaming such that FN(new c: ChT p) � Change(ρ).

CHNG-RCV: c?(r1:T1, . . . rn:Tn) p ≡α c?(r1ρ:T1, . . . rnρ:T1) pρ

where ρ is any renaming such that:

FN(c?(r1:T1, . . . rn:Tn) p) � Change(ρ)

CHNG-CRT: create o: ClT p ≡α create oρ: ClT pρ
where ρ is any renaming such that FN(create o: ClT p) � Change(ρ).

CHNG-INV:

o.m!〈v1, . . . vn〉?(r1, . . . rn) p ≡α o.m!〈v1, . . . vn〉?(r1ρ, . . . rn′ρ) pρ
where ρ is any renaming such that:

FN(o.m!〈v1, . . . vn〉?(r1, . . . rn) p) � Change(ρ)

CHNG-ACC: a?r p ≡α a?rρ pρ
where ρ is any renaming such that FN(a?r p) � Change(ρ).

77

CHAPTER 3. STATIC OOMPA

3.6 Summary

The primary goal of this chapter has been to present the theory of Oompa’s

static system. Defining this system involved a formal definition of the syn-

tax of Oompa programs and an accompanying discussion of well-formedness.

Within the scope of this chapter was the provision of formal support for ma-

nipulating and reasoning about the structures of the static system. Thus, we

provided procedures for both substitution and renaming and an α-equivalence

system for code.

78

Chapter 4

Dynamic Oompa

Oompa’s static system, covered in Chapter 3, defines how Oompa programs

are built out of class and interface definitions. Our intention is to consider

systems of interacting objects but we have not yet defined the form or be-

haviour of a running Oompa system. Using the terminology of the CORBA

object model (see Section 1.1.2) we have explained how code is written but

not provided an execution engine to interpret it. This is the role of Oompa’s

dynamic system.

In this chapter, we actually provide Oompa with two dynamic systems.

Both have advantages and disadvantages and we will want both. Fortunately,

we can show that they are semantically compatible. For both dynamic sys-

tems, we provide an operational semantics.

The first of the dynamic systems, Oompa’s agent-based dynamic system,

can describe the state and behaviour of a complete closed Oompa system.

It has the advantage of being fairly intuitive but suffers from being non-

compositional. The second, Oompa’s configuration-based dynamic system,

can consider the parts of an Oompa system independently and describe how

parts interact with their environment. This is good for reasoning, since it is

79

CHAPTER 4. DYNAMIC OOMPA

compositional, but it is much more complex and less intuitive.

Sections 4.1 and 4.2 define Oompa’s agent-based and configuration-based

dynamic systems, respectively. In both cases, this involves defining their

syntax, discussing renaming, defining equivalence relations and giving their

semantics. For the configuration-based dynamic system, we also define a

semantic equivalence called weak bisimulation. We relate the two dynamic

systems, in Section 4.3, by defining an algorithm which translates from one

to the other and using it to provide a kind of simulation between the them.

Finally, Section 4.4 summarises the chapter.

4.1 Agent-Based Dynamic System

Oompa’s agent-based dynamic system considers a running Oompa program

to be a triple consisting of the currently executing object code, a dictionary

of type information and a dictionary of state information. The operational

semantics for this dynamic system is a reduction relation which describes the

evolution of this triple in the context of the definition set. We can view this

dynamic system as corresponding to a natural intuition of how a system of

objects behaves.

4.1.1 Syntax

First, we consider the syntax of the agent-based dynamic system.

Syntax of Agents

Syntactically, we represent the running object code as an agent expression

or just agent . The basic form of an agent is a piece of code associated with

an object name. Since all attributes are private in Oompa, we need to mark

80

CHAPTER 4. DYNAMIC OOMPA

agents with the objects to which they belong in order to control access to

state. The code will be the (modified) body of some method belonging to

the object’s class. Agents can also be nil or consist of two agents in parallel.

g ::= nil null agent

| o[p] code p running at object o

| g0 | g1 two agents in parallel

where the syntax of the code, p, is as defined in Section 3.1.3. The free names

in an agent are found using

FN(nil) = ∅
FN(o[p]) = FN(p) ∪ {o}
FN(g0 | g1) = FN(g0) ∪ FN(g1)

An example of an agent is:

(o1[contents?r x!〈r〉 end] | o2[x?(r) end]) | (o1[end] | nil)

Its free names are o1, o2 and x.

The Type and State Dictionaries

A type dictionary holds a sequence of typings for values. Its most important

role is in holding the class type of an object so that, when an invocation is

made upon the object, its class can be looked up in the definition set1.

tAss ::= v:T

Φ ::= {tAss1, . . . tAssn}
We will want to know the set of values typed by a type dictionary and, on

occasion, those object names typed by a type dictionary.

Dom(Φ) = {v | v:T ∈ Φ}
OBJECTS(Φ) = {o | o: ClT ∈ Φ}

1A secondary role of the type dictionary is to support run-time typing. Oompa can

also support a typecase primitive which we have chosen not to discuss in this thesis.

81

CHAPTER 4. DYNAMIC OOMPA

Lemma 4.1.1 For a type dictionary Φ, OBJECTS(Φ) ⊆ Dom(Φ).

A state dictionary manages the state of objects. For each object name in

its domain it has a dictionary of attribute assignments.

aAss ::= a �→ v

oAss ::= o := [aAss1, . . . aAssn]

∆ ::= {oAss1, . . . oAssn}
The domain of a state dictionary is the set of objects to which it assigns

state.

Dom(∆) = {o | (o := [aAss1, . . . aAssn]) ∈ ∆}

A state dictionary can have free names, which are the objects in its domain

and the free names of the values it assigns to attributes.

FN(a �→ v) = FN(v)

FN(o := [aAss1, . . . aAssn]) = {o} ∪ FN(aAss1) ∪ . . . ∪ FN(aAssn)
FN({oAss1, . . . oAssn}) = FN(oAss1) ∪ . . . ∪ FN(oAssn)
We will occasionally use type, state or attribute dictionaries as if they

were partial functions. This explains our use of the term domain. Moreover,

we will occasionally use function application notation on dictionaries, writing

Φ(v) for the type assigned to value v by the type dictionary Φ.

An example of a type dictionary is:

{o1: Cell, o2: Cell Client, x: Chan〈Long〉}

Here Cell and Cell Client are class types, i.e. the names of classes in the

definition set (see the example in Section 3.1.6). Its domain is {o1, o2, x} and
its objects are {o1, o2}. An example of a state dictionary is:

{o1 := [contents �→ 5], o2 := ∅}

Its domain and its set of free names are {o1, o2}.

82

CHAPTER 4. DYNAMIC OOMPA

Agent System

The dynamic part of the agent system is an agent, a type dictionary and a

state dictionary. We will call this triple an agent configuration and write it

g{Φ∆

An agent system consists of an agent configuration in the context of a defi-

nition set, Γ. This is written

Γ � g{Φ∆
The syntax of definition sets is given in Section 3.1.4.

An example of an agent configuration would be:

o1[contents?r x!〈r〉 end]
| o2[x?(r) end]
| o1[end]
| nil







o1: Cell,

o2: Cell Client,

x: Chan〈Long〉






o1 := [contents �→ 5],

o2 := ∅




In fact, this agent configuration isn’t strictly valid. According to the syntax

of agents, the parallel operator is a binary operator but we have used it to

group four agents. We don’t consider the grouping of agents to be signifi-

cant and the basic equivalence relation for agents, structural equivalence (see

Section 4.1.3), justifies our use of a generalised parallel operator here.

Initial System Convention

We need a way to populate our system with objects. We adopt a convention

that allows a definition set to imply a specific agent system to be the starting

state of the system. Usefully, we allow this initial agent system to have global

channel names.

83

CHAPTER 4. DYNAMIC OOMPA

Let {C1, . . . Cn} be those classes in the definition set Γ which have a

method with signature main?()!〈〉. Say the bodies of these methods are

p1, . . . pn and none of the pi uses either this, return or an attribute. Say

that OBJECTS(Φ) = ∅. Then

Γ � dummy1 [p1]| . . . dummyn [pn]{Φ∅

is an initial agent system. We will sometimes use the notation gΓ to denote

the agent involved.

As an illustration, we will consider the initial agent system specified by the

definition set in Section 3.1.6. There is only one class which has a method

of the appropriate signature: Cell Client. The code of its main method

doesn’t use return, this or an attribute so an initial agent is created for

this agent. There are no names free in the definition set, so we won’t need

any global channel names to be typed by the type dictionary. Therefore, the

agent configuration of the initial agent system is the following.

dummy1 [new cell: Cell cell.write!〈5〉?() cell.read!〈5〉?(r) end]


∅
∅

The initial agent system is just this agent configuration in the context of the

definition set.

4.1.2 Renaming

We consider here how a renaming acts on the elements of the agent-based

dynamic system. Although not necessary for the agent-based dynamic system

itself, we will need to be able to rename these structures when we consider the

relationship between the two dynamic systems. The following table describes

84

CHAPTER 4. DYNAMIC OOMPA

how a renaming acts on an agent, a type dictionary and a state dictionary.

nilρ = nil

(o[p])ρ = (oρ)[pρ]

(g0|g1)ρ = ((g0ρ)|(g1ρ))

{tAss1, . . . tAssn}ρ = {(tAss1ρ), . . . (tAssnρ)}
(v:T)ρ = (vρ):T

({oAss0, . . . oAssn})ρ = {(oAss0ρ), . . . (oAssnρ)}
(o := [aAss0, . . . aAssn])ρ = (oρ) := [(aAss0ρ), . . . (aAssnρ)]

(a �→ v)ρ = a �→ (vρ)

Some useful results about the action of renamings on agents are the fol-

lowing. By Lemma 4.1.4 we see that the action of a renaming on type or

state dictionaries is, in fact, a group action. This follows from the fact that

dictionaries have no local bound names.

Lemma 4.1.2 For an agent g and a renaming ρ,

FN(gρ) = FN(g)ρ

Lemma 4.1.3 For a renaming ρ, type dictionary Φ and state dictionary ∆:

Dom(Φρ) = Dom(Φ)ρ

OBJECTS(Φρ) = OBJECTS(Φ)ρ

Dom(∆ρ) = Dom(∆)ρ

FN(∆ρ) = FN(∆)ρ

Lemma 4.1.4 For two renamings ρ1, ρ2, a type dictionary Φ and state

dictionary ∆:

Φρ1ρ2 = Φ(ρ2 ◦ ρ1)
∆ρ1ρ2 = ∆(ρ2 ◦ ρ1)

85

CHAPTER 4. DYNAMIC OOMPA

4.1.3 Equivalence

We consider three equivalence relations for the agent-based dynamic system.

These are structural equivalence, α-equivalence and α-/structural equiva-

lence. Having three relations allows us to be quite discriminating when de-

scribing properties — some results can be proved up to structural equivalence,

some up to α-equivalence and others only up to α-/structural equivalence.

The operational semantics of the agent-based dynamic system uses structural

equivalence to manipulate the structure of agents. The other two equivalence

relations are necessary for the theory developed later.

Structural Equivalence

The structural equivalence relation between two agents, g1 and g2, written

g1
�≡ g2, identifies agents which differ only in the reordering and regrouping

of sub-agents and the presence and absence of nils. It is defined by the seven

rules2 in Table 4.1.

The three rules, EQV-RFL, EQV-SYM and EQV-TRN, mean that
�≡ is

an equivalence relation. The single rule, CONG-PAR, means that it is a

congruence over agents. The three rules, PAR-ID, PAR-ASS and PAR-ABL,

mean that, with respect to
�≡, | forms an Abelian monoid.

We can show that
�≡ has the following properties.

Lemma 4.1.5 For two agents g1 and g2,

g1
�≡ g2 ⇒ FN(g1) = FN(g2)

2Note that we allow rule names to be reused between proof systems, e.g. α-equivalence

for code and structural equivalence for agents both have a rule called EQV-RFL. In cases

of possible ambiguity, we will make explicit which rule is meant.

86

CHAPTER 4. DYNAMIC OOMPA

Table 4.1: Rules for Agent Structural Equivalence

EQV-RFL: g
�≡ g

EQV-SYM:
g1

�≡ g2
g2

�≡ g1

EQV-TRN:
g1

�≡ g2 g2
�≡ g3

g1
�≡ g3

CONG-PAR:
g1

�≡ g2 g′1
�≡ g′2

(g1|g′1)
�≡ (g2|g′2)

PAR-ID: (g|nil) �≡ g
PAR-ASS: ((g1|g2)|g3) �≡ (g1|(g2|g3))
PAR-ABL: (g1|g2) �≡ (g2|g1)

Lemma 4.1.6 For two agents g1 and g2 and a renaming ρ,

g1
�≡ g2 ⇒ g1ρ

�≡ g2ρ

α-Equivalence

The α-equivalence relation between two agents, g1 and g2, written g1 ≡α g2,
merely lifts α-equivalence on code to agents. It is defined by the five rules in

Table 4.2.

The three rules, EQV-RFL, EQV-SYM and EQV-TRN, mean that ≡α
is an equivalence relation. The single rule, CONG-PAR, means that it is a

congruence over agents. The rule, ALPHA-COD, means that it inherits code

α-equivalence.

The following lemmas describe some of the desirable properties of ≡α.

Lemma 4.1.7 For two agents g1 and g2,

g1 ≡α g2 ⇒ FN(g1) = FN(g2)

87

CHAPTER 4. DYNAMIC OOMPA

Table 4.2: Rules for Agent α-Equivalence

EQV-RFL: g ≡α g

EQV-SYM:
g1 ≡α g2
g2 ≡α g1

EQV-TRN:
g1 ≡α g2 g2 ≡α g3

g1 ≡α g3

CONG-PAR:
g1 ≡α g2 g′1 ≡α g′2
(g1|g′1) ≡α (g2|g′2)

ALPHA-COD:
p1 ≡α p2

o[p1] ≡α o[p2]

Lemma 4.1.8 For an agent g and two renamings ρ1 and ρ2,

gρ1ρ2 ≡α g(ρ2 ◦ ρ1)

Lemma 4.1.9 For two agents g1 and g2 and a renaming ρ,

g1 ≡α g2 ⇒ g1ρ ≡α g2ρ

α-/Structural Equivalence

The α-/structural equivalence relation between two agents, g1 and g2, written

g1
�≡α g2, encompasses both α- and structural equivalence3. It is defined by

the six rules in Table 4.3.

The three rules, EQV-RFL, EQV-SYM and EQV-TRN, mean that
�≡α

is an equivalence relation. The single rule, CONG-PAR, mean that it is a

congruence rule over agents. The two rules, ALPHA and STRUCT, mean

3We show in Appendix B, Lemma B.2.4, that an instance of α-/structural equiva-

lence can be split into an instance of α-equivalence followed by an instance of structural

equivalence or vice-versa.

88

CHAPTER 4. DYNAMIC OOMPA

Table 4.3: Rules for Agent α-/Structural Equivalence

EQV-RFL: g
�≡α g

EQV-SYM:
g1

�≡α g2
g2

�≡α g1

EQV-TRN:
g1

�≡α g2 g2
�≡α g3

g1
�≡α g3

CONG-PAR:
g1

�≡α g2 g′1
�≡α g′2

(g1|g′1)
�≡α (g2|g′2)

ALPHA:
g1 ≡α g2
g1

�≡α g2

STRUCT:
g1

�≡ g2
g1

�≡α g2

that it inherits α-equivalence and structural equivalence. We can show that

it has the following properties.

Lemma 4.1.10 For two agents g1 and g2,

g1
�≡α g2 ⇒ FN(g1) = FN(g2)

Lemma 4.1.11 For two agents g1 and g2 and a renaming ρ,

g1
�≡α g2 ⇒ g1ρ

�≡α g2ρ

4.1.4 Semantics

In order to give meaning to the terms of our formalism, we need to provide

a semantics. The semantics assigned to formalisms and programming lan-

guages typically fall into three categories: Denotational semantics, algebraic

semantics and operational semantics.

89

CHAPTER 4. DYNAMIC OOMPA

Denotational semantics map the terms of a formalism into structures in

some mathematical space. The mathematical properties of those structures

capture the intended properties of the terms. Denotational semantics are

particularly useful for systems where input/output behaviour is key (e.g.

pure functional languages). When denotational semantics are applied to

languages with interactive behaviour they tend to be quite “operational”.

For example, CSP’s denotational semantics are defined partially in terms of

sequences of actions.

Algebraic semantics consist of an axiomatic system from which facts

about the meanings of terms can be derived. Typically, the facts will have

the form of equations and assert that the meanings of two terms are equiv-

alent in some way. Undoubtedly, an algebraic semantics for Oompa would

be useful but, for such a complex system, it is not obvious how to define one

without first establishing an operational intuition.

Operational semantics give meaning to terms by defining how they be-

have, typically by describing how they execute a single operation and trans-

form into other terms. This is particularly useful for programs with inter-

active behaviour since the way a program interacts with its environment

depends not just on the terms it can reach but also on the execution path

it followed to reach them. Operational semantics are usually more intuitive

than the other semantics as they supply an operational intuition for the be-

haviour of terms. For Oompa’s two dynamic system, we choose to define

operational semantics.

The semantics we define for the agent-based dynamic system is a reduc-

tion relation describing the internal global behaviour of an agent configura-

tion g{Φ∆ in the context of a definition set Γ. It is a reaction system where

agents attempting corresponding actions (e.g. a send and a receive) evolve

90

CHAPTER 4. DYNAMIC OOMPA

together4. The reduction relation is defined by the proof system whose eleven

rules are given in tables 4.4, 4.5 and 4.6.

There are three general purpose inference rules given in Table 4.4, EQV-

LFT, EQV-RHT and PAR, and eight axioms, which we briefly discuss here.

The four rules in Table 4.5 deal with the primitives which form the π-

calculus core of Oompa. The END rule allows agents which have finished

their work to be removed from the agent expression. The FRK rule splits

an agent into two parallel agents. The NEW rule chooses a new channel

name and adds it to the global type dictionary. The COM rule allows two

agents attempting to send and receive on the same channel to communicate,

provided their tuple lists are the same length.

The four rules in Table 4.6 deal with Oompa’s object-orientation. The

CRT rule introduces a new object by choosing a new name and adding an

entry to both the type and state dictionaries. The INV rule creates an agent

for the invoked method, chooses a new channel name for returning values

and blocks the invoking agent behind a receive on that name. The UPD rule

updates the value of the attribute or, if there is no appropriate entry in the

state dictionary, adds one. The ACC rule accesses the value of the attribute

if there is one, substituting the stored value in place of the given parameter.

Example of a Reduction

We consider a few steps of a reduction of the initial system given in Sec-

tion 4.1.1, in the context of the definition set given in Section 3.1.6.

4Internal actions of this sort are sometimes called intraactions [SW01].

91

CHAPTER 4. DYNAMIC OOMPA

Table 4.4: General Rules for the Agent-Based Operational Semantics

EQV-LFT:
g1

�≡ g′1 Γ � g1{Φ1
∆1
−→ g2{Φ2

∆2

Γ � g′1{Φ1
∆1
−→ g2{Φ2

∆2

EQV-RHT:
g2

�≡ g′2 Γ � g1{Φ1
∆1
−→ g2{Φ2

∆2

Γ � g1{Φ1
∆1
−→ g′2{Φ2

∆2

PAR:
Γ � g1{Φ1

∆1
−→ g2{Φ2

∆2

Γ � (g1|g){Φ1
∆1
−→ (g2|g){Φ2

∆2

Table 4.5: Channel Rules for the Agent-Based Operational Semantics

END: Γ � o[end]{Φ∆−→ nil{Φ∆
FRK: Γ � o[fork{p0} p1]{Φ∆−→ (o[p0]|o[p1]){Φ∆
NEW: Γ � o[new c: ChT p]{Φ∆−→ o[p{|c′/c|}]{Φ∪{c′:ChT}

∆

where c′ is a new name.

COM:

Γ �


 o1[c!〈v1, . . . vn〉 p1] |
o2[c?(r1:T1, . . . rn:Tn) p2]






Φ

∆

−→

 o1[p1] |
o2[p2{|v1/r1, . . . vn/rn|}]






Φ

∆

92

CHAPTER 4. DYNAMIC OOMPA

Table 4.6: Object Rules for the Agent-Based Operational Semantics

CRT: Γ � o[create o′: ClT p]{Φ∆−→ o[p{|o′′/o′|}]{Φ∪{o′′:ClT}
∆∪{o′′:=∅}

where o′′ is a new name.

INV:

Γ � o[o1.m!〈v1, . . . vn〉?(r1, . . . rn′) p]


Φ

∆

−→

 o[x?(r1:T1, . . . rn′:Tn′) p] |
o1[p1{|v1/s1, . . . vn/sn, o1/this, x/return|}]






Φ′

∆

where x is a new name, o1’s class in Φ has a method whose signature

has the form m?(s1:S1, . . . sn:Sn)!〈d1:T1, . . . dn′:Tn′〉
and Φ′ = Φ ∪ {x: Chan〈T1, . . . Tn′〉}.

UPD: Γ � o[a!v p]{Φ∆−→ o[p]{Φ∆′

where o ∈ Dom(∆) and ∆′(o′)(a′) = ∆(o′)(a′)

if o′ �= o or a′ �= a and v otherwise.

ACC: Γ � o[a?r p]{Φ∆−→ o[p{|v/r|}]{Φ∆
where o ∈ Dom(∆), ∆(o)(a) is defined and ∆(o)(a) = v.

93

CHAPTER 4. DYNAMIC OOMPA

dummy1 [new cell: Cell

cell.write!〈5〉?()
cell.read!〈〉?(r)
end]




∅

∅

−→ 〈create a new Cell object, choosing name cell1 〉
dummy1 [cell1 .write!〈5〉?()

cell1 .read!〈〉?(r)
end]




{cell1 : Cell}

{cell1 := ∅}
−→ 〈invoke cell1 ’s write method, choosing return channel x〉

dummy1 [x?()

cell1 .read!〈〉?(r)
end]

| cell1 [contents!5

x!〈〉
end]







cell1 : Cell

x: Chan〈〉




{cell1 := ∅}

−→ 〈update the contents attribute〉
dummy1 [x?()

cell1 .read!〈〉?(r)
end]

| cell1 [x!〈〉
end]







cell1 : Cell

x: Chan〈〉




{cell1 := [contents �→ 5]}

−→ 〈return an acknowledgement〉

dummy1 [cell1 .read!〈〉?(r)
end]

| cell1 [end]







cell1 : Cell

x: Chan〈〉




{cell1 := [contents �→ 5]}
−→ 〈garbage collection〉

94

CHAPTER 4. DYNAMIC OOMPA

Table 4.7: Reflexive Transitive Closure of the Operational Semantics

Γ � g{Φ∆=⇒ g{Φ∆

Γ � g1{Φ1
∆1
=⇒ g2{Φ2

∆2
Γ � g2{Φ2

∆2
−→ g3{Φ3

∆3

Γ � g1{Φ1
∆1
=⇒ g3{Φ3

∆3

dummy1 [cell1 .read!〈〉?(r)
end]







cell1 : Cell

x: Chan〈〉




{cell1 := [contents �→ 5]}

The Reflexive Transitive Closure of the Reduction Relation

We generalise the one-step system to its reflexive transitive closure “=⇒”,
which allows us to describe sequences of behaviour. It is defined by the two

rules in Table 4.7.

4.2 Configuration-Based Dynamic System

The configuration-based dynamic system offers an alternative to the global

internal view of systems given by the agent-based dynamic system. Here,

a running program is represented by an expression which has a hierarchical

structure carrying local state and local type information. The operational

semantics of this dynamic system is a labelled transition relation which is

capable of describing the external interactive behaviour of a system as well

as the internal reactive behaviours of subsystems.

95

CHAPTER 4. DYNAMIC OOMPA

4.2.1 Syntax

Syntax of Configurations

Syntactically, configuration expressions, or just configurations, are like nested

agent configurations. Their basic form is that of an agent but they can also

carry local type and state dictionaries.

K ::= Nil null configuration

| o[p] agent

| K0 | K1 parallel configurations

| K{Φ∆ scoped configuration

The scoped form, K{Φ∆, causes occurrences of the names in Dom(Φ) to be-
come bound in both K and in ∆. The free names of a configuration can be

found using the following function.

FN(Nil) = ∅
FN(o[p]) = FN(p) ∪ {o}
FN(K0 | K1) = FN(K0) ∪ FN(K1)

FN(K{Φ∆) = (FN(K) ∪ FN(∆))�Dom(Φ)

Rather than having two global dictionaries which manage type and state

information respectively, we can now have many at various positions in a

configuration expression. A configuration is the manager of an object’s state

when it contains a state dictionary whose domain contains that object’s

name and the name is free in the configuration. Note that we don’t consider

a configuration to be the manager of its locally bound objects (some proper

sub-configuration will be their manager). The following function determines

96

CHAPTER 4. DYNAMIC OOMPA

what object state is being managed by a specific configuration.

STATE(Nil) = ∅
STATE(o[p]) = ∅
STATE(K0|K1) = STATE(K0) ∪ STATE(K1)

STATE(K{Φ∆) = (STATE(K) ∪ Dom(∆))�Dom(Φ)

Lemma 4.2.1 For a configuration K, STATE(K) ⊆ FN(K).

Given that there is no one manager for state and type information, a

concern over the well-formedness of a configuration may arise. The two main

problems that may occur are, firstly, that two parallel or nested configura-

tions may be managing state for the same object and, secondly, that a local

object may have no state manager at all. The following predicate ensures

that a configuration is well-formed.

WF(Nil) = true

WF(o[p]) = true

WF(K0|K1) =




WF(K0)

∧ WF(K1)

∧ (STATE(K0) � STATE(K1))




WF(K{Φ∆) =




WF(K)

∧ (STATE(K) � Dom(∆))
∧ (OBJECTS(Φ) ⊆ (STATE(K) ∪ Dom(∆)))




A configuration system consists of a configuration in the context of a defini-

tion set and a global type dictionary. We write this as Γ,Φ � K.

97

CHAPTER 4. DYNAMIC OOMPA

An example of a well-formed configuration is the following:




o2[x?(r) end]



{o2: Cell Client}
{o2 := ∅}∣∣∣∣∣∣∣∣∣




o1[contents?r x!〈r〉 end]
| o1[end]
| Nil



∅
{o1 := [contents �→ 5]}










{
x: Chan〈Long〉

}

∅

Its set of free names and its state are both {o1}. If we wished to make

this configuration ill-formed we could remove the state manager for the local

object o2 or, alternatively, add another state assignment for the object o1

into the leftmost or rightmost state dictionary. Say Γ is the definition set

given in Section 3.1.6 and K is the configuration above. An example of a

configuration system would be

Γ, {o1: Cell} � K

The object name o1 would be considered global.

Initial System Convention

We take the same approach to starting the system off as we did with the

agent-based dynamic system. Given that gΓ is the initial agent of a definition

set Γ and that OBJECTS(Φ) = ∅, then

Γ,Φ � gΓ

is an initial configuration system of Γ.

98

CHAPTER 4. DYNAMIC OOMPA

4.2.2 Renaming

In the agent-based dynamic system, all entities (except local names in agent

code) are uniquely named. Freshness side conditions on the semantics ensure

that all values created in the system are given new names, so variable cap-

ture can never occur. A naive approach to substitution and naming would

therefore be sufficient to manage names for the agent-based dynamic system.

The configuration-based dynamic system gives up global notions, so we

lose this nice property and we are forced to deal with the typical problems

associated with bound names. For the purpose of managing the variable

capture issue, a standard technique would suffice. However, there is one

further requirement we wish to put on our naming system: we will want to

view an agent configuration as an instance of a configuration.

As we indicated in Section 3.4, the two most common approaches to nam-

ing either use α-equivalence classes of terms instead of terms themselves or

abandon names altogether. We cannot use these techniques for the following

reason: if we view an agent configuration as an instance of a configuration,

all its names would be considered bound. Since the operational semantics we

apply to agent configurations is an unlabelled relation, the names in the sys-

tem are vitally important and should not be changed or abstracted away. For

example, the reduction relation would lose much of its descriptive power if an

object could change name across the reduction arrow. The approach we take

to naming means the choice of bound names in an agent configuration can

be preserved but still supports correct name management for configurations.

In one sense, our management of names could be called traditional; we

explicitly change bound names to avoid name clashes. Recently, the conse-

quences of having local bound names in syntax has come under scrutiny and

we give a brief consideration of some of these new approaches here.

99

CHAPTER 4. DYNAMIC OOMPA

Related Work on Names

The ν-calculus [PS93b] and λν [Ode94] are extensions of the λ-calculus de-

signed to study the effect of local state on reasoning. The key property of

state in both these systems is that it has a name and these names can be

compared. As usual, both approaches identify terms which differ only in the

choices of bound variables and bound names.

Gabbay and Pitts [GP99] consider bound names in systems more general

than just extensions of the λ-calculus. Using Fraenkel-Mostoski set theory

they study set-like structures which have a notion of free names (called finite

support) attached and an associated concept of renaming based on permu-

tations. One advantage of their system is that notions of free names, bound

names, renaming and fresh names are directly accessible. Also, there is no

need to take the quotient space of terms over α-equivalence classes, so in-

duction and recursion over terms is unhindered5. Moreover, they propose a

reasoning system, Nominal Logic [Pit01], and a language, FreshML [PG00],

for implementing systems with local names.

Kohei Honda’s rooted p-sets [Hon00] offer an approach similar to Gabbay

and Pitts’. A rooted p-set is a set of structures with associated free name

and renaming operations. Honda’s aim is “to articulate the common abstract

structures of processes with names in diverse process formalisms”. Within

his framework, operations in process algebra can be seen as homomorphisms

from product rooted p-sets to rooted p-sets.

Fiore, Plotkin and Turi [FPT99] provide a (categorical) algebraic view

of syntax with variable binding. From an algebraic point of view, abstract

5If we take a quotient over a set of inductively defined terms, the resulting equivalence

classes are no longer inductively defined structures. This fact is often ignored when using

α-equivalence to avoid issues of naming.

100

CHAPTER 4. DYNAMIC OOMPA

syntax can be regarded as the initial algebra of its constructors. Here, they

replace algebras over sets with binding algebras over variable sets. Their

system seems to offer some of the same properties of the two previous ap-

proaches.

The approaches of [GP99], [Hon00] and [FPT99] may offer an alternative

to our technique. Unlike other approaches, such as de Bruijn notation or

α-equivalence classes, names in their system are not abstracted away —

they are present but handled in a logical way. The three systems define

general frameworks in which results about structures with bound names can

be proved in general. It is possible that many of the results we need to

make individually explicit might, in their systems, simply be instances of the

general properties of structures.

The Action of a Renaming on Configurations

A renaming acts on a configuration as follows:

Nilρ = Nil

o[p]ρ = (oρ)[pρ]

(K1|K2)ρ = (K1ρ|K2ρ)

(K{Φ∆)ρ = Kδρ{Φδρ∆δρ

where, in the last case, δ shoves Dom(Φ) ∩ Change(ρ).
B.3.1

p254Lemma 4.2.2 For a configuration K and renaming ρ,

FN(Kρ) = FN(K)ρ

B.3.2

p254Lemma 4.2.3 For a configuration K and a renaming ρ,

STATE(Kρ) = STATE(K)ρ

101

CHAPTER 4. DYNAMIC OOMPA

B.3.3

p255Lemma 4.2.4 For a configuration K and a renaming ρ,

WF(Kρ)⇔WF(K)

4.2.3 Equivalence

We give two equivalence systems for configurations: α-equivalence and struc-

tural equivalence.

α-Equivalence

The α-equivalence relation between two configurations, K1 and K2, written

K1 ≡α K2, inherits α-equivalence for code and also allows the bound names

from the type dictionary of a scoped configuration K{Φ∆ to be changed. It is
defined by the seven rules in Table 4.8.

The three rules, EQV-RFL, EQV-SYM and EQV-TRN, mean that it is

an equivalence relation. The two rules, CONG-PAR and CONG-SCP, mean

that it is a congruence relation over configurations. By the rule, ALPHA-

COD, it inherits code α-equivalence. The last rule, CHNG-SCP, mean that

the names bound by a local type dictionary may be changed.

Configuration α-equivalence has the following properties.

B.3.4

p257Lemma 4.2.5 For two configurations K1 and K2,

K1 ≡α K2 ⇒ FN(K1) = FN(K2)

B.3.5

p257Lemma 4.2.6 For two configurations K1 and K2,

K1 ≡α K2 ⇒ STATE(K1) = STATE(K2)

102

CHAPTER 4. DYNAMIC OOMPA

Table 4.8: Rules for Configuration α-Equivalence

EQV-RFL: K ≡α K

EQV-SYM:
K1 ≡α K2

K2 ≡α K1

EQV-TRN:
K1 ≡α K2 K2 ≡α K3

K1 ≡α K3

CONG-PAR:
K1 ≡α K2 K ′

1 ≡α K ′
2

(K1|K ′
1) ≡α (K2|K ′

2)

CONG-SCP:
K1 ≡α K2

K1{Φ∆≡α K2{Φ∆

ALPHA-COD:
p1 ≡α p2

o[p1] ≡α o[p2]
CHNG-SCP: K{Φ∆≡α Kρ{Φρ∆ρ

where ρ is any renaming such that FN(K{Φ∆) � Change(ρ).

103

CHAPTER 4. DYNAMIC OOMPA

B.3.6

p258Lemma 4.2.7 For two configurations K1 and K2,

K1 ≡α K2 ⇒WF(K1)⇔WF(K2)

B.3.7

p259Lemma 4.2.8 For a configurations K and two renamings ρ1 and ρ2,

Kρ1ρ2 ≡α K(ρ2 ◦ ρ1)
B.3.8

p261Lemma 4.2.9 For two configurations K1 and K2, and a renaming ρ

K1 ≡α K2 ⇒ K1ρ ≡α K1ρ

Structural Equivalence

The structural equivalence relation between two configurations, K1 and K2,

written K1
�≡ K2, allows the restructuring of configurations and also incor-

porates α-equivalence. It is defined by the twelve rules in Table 4.9.

The three rules, EQV-RFL, EQV-SYM and EQV-TRN, mean that
�≡ is

an equivalence relation. The two rules, CONG-PAR and CONG-SCP, mean

that it is a congruence relation. The three rules, PAR-ID, PAR-ASS and

PAR-ABL, mean that, with respect to
�≡, | forms an Abelian monoid. By

the ALPHA rule, it inherits α-equivalence. The EMPTY rule allows empty

dictionaries to be removed.

Its two most important rules are the flatten rule and the scope extrusion

rule, both of which allow the dictionaries in a scoped configuration to be

repositioned. The FLATTEN rule flattens the structure of nested dictionar-

ies and the EXTRUDE rule allows local scope to be extended over other

configurations. EXTRUDE is named after the scope extrusion rule of the

π-calculus.

104

CHAPTER 4. DYNAMIC OOMPA

Table 4.9: Rules for Configuration Structural Equivalence

EQV-RFL: K
�≡ K

EQV-SYM:
K1

�≡ K2

K2
�≡ K1

EQV-TRN:
K1

�≡ K2 K2
�≡ K3

K1
�≡ K3

CONG-PAR:
K1

�≡ K2 K ′
1

�≡ K ′
2

(K1|K ′
1)

�≡ (K2|K ′
2)

CONG-SCP:
K1

�≡ K2

K1{Φ∆
�≡ K2{Φ∆

PAR-ID: (K|Nil) �≡ K
PAR-ASS: ((K1|K2)|K3)

�≡ (K1|(K2|K3))

PAR-ABL: (K1|K2)
�≡ (K2|K1)

ALPHA:
K1 ≡α K2

K1
�≡ K2

EMPTY: K{∅∅
�≡ K

FLATTEN: K{Φ1
∆1
{Φ2
∆2

�≡ K{Φ1∪Φ2
∆1∪∆2

where Dom(Φ1) � Dom(Φ2), Dom(∆1) � Dom(∆2)

and Dom(Φ1) � FN(∆2).

EXTRUDE: K1|(K2{Φ∆)
�≡ (K1|K2){Φ∆

where FN(K1) � Dom(Φ).

105

CHAPTER 4. DYNAMIC OOMPA

The first two side conditions of the flatten rule prevents the merging of

dictionaries with overlapping domains. The third side condition prevents any

free names of ∆2 becoming bound by Φ1. The side condition of the scope

extrusion rule prevents free names in K1 becoming bound by Φ. The real

work of the
�≡ system is done by these two rules, yet it is often the case that

an application of these rules will need to be preceded by some use of the ≡α
relation. This is why we do not consider a structural equivalence separate

from α-equivalence, as we did for agents.

We can show that
�≡ has the following properties.

B.3.13

p265Lemma 4.2.10 For two configurations K1 and K2,

K1
�≡ K2 ⇒ FN(K1) = FN(K2)

B.3.14

p267Lemma 4.2.11 For two configurations K1 and K2,

K1
�≡ K2 ⇒ STATE(K1) = STATE(K2)

B.3.15

p268Lemma 4.2.12 For two configurations K1 and K2,

K1
�≡ K2 ⇒WF(K1)⇔WF(K2)

B.3.16

p272Lemma 4.2.13 For two configurations K1 and K2, and a renaming ρ

K1
�≡ K2 ⇒ K1ρ

�≡ K1ρ

4.2.4 Semantics

We now give an operational semantics for the configuration-based dynamic

system by defining a labelled transition system [Plo81] for configurations.

This describes the behaviour of a configuration K in the context of a defi-

nition set Γ and a global type dictionary Φ. Unlike the reduction relation

106

CHAPTER 4. DYNAMIC OOMPA

we defined for the agent-based dynamic system, this semantics can describe

how a subsystem interacts with its environment.

The labelled transition system is a directed graph whose nodes are config-

urations and whose edges (called transitions) are the different actions their

source configuration can perform. There are five kinds of transition:

1. The first kind asserts that the configuration K can perform an internal

(unobservable) action and reach configuration K ′.

Γ,Φ � K �� K ′

2. Next, we have a form that asserts that K can send values v1, . . . vn on

channel c.

Γ,Φ � K c!〈v1,...vn〉 �� K ′

3. The third kind asserts that K can receive values v1, . . . vn off channel c.

Γ,Φ � K c?〈v1,...vn〉 �� K ′

4. The fourth kind of action asserts that the configuration K can issue an

invocation on method m of object o with values v1, . . . vn, where x:T

is the name and type of a newly created return channel.

Γ,Φ � K o.m!〈v1,...vn〉
x:T

�� K ′

5. The last form of transition asserts that the K can accept an invocation

on method m of object o with values v1, . . . vn, where x:T is the name

and type of a newly created return channel.

Γ,Φ � K o.m?〈v1,...vn〉
x:T

�� K ′

107

CHAPTER 4. DYNAMIC OOMPA

The labelled transition system is defined by the sixteen rules in tables 4.10,

4.11, 4.12 and 4.13.

There are four general purpose rules given in Table 4.10: the EQV-LFT

rule, the EQV-RHT rule, the PAR rule and the SCP rule. The side condition

on the SCP rule prevents local (and hence private) information from being

exposed.

The six rules in Table 4.11 describe how a single agent can evolve silently

in a minimal local environment. Reasoning with structural equivalence is

needed to use these rules for more complex systems. The rules are: END,

FRK, NEW, CRT, UPD and ACC.

The four rules in Table 4.12 define the labelled transitions. These can

be thought of as describing the willingness of a subsystem to participate

in a communication. The SND and RCV rules deal with channel based

communication. The next two rules are the INV and ACT rules. These are

the only rules which involve the choice of a new name, for which a typing

is put beneath the transition arrow. This is essentially a free name but its

free status is local to the subsystem whose behaviour we are considering (see

below).

The two rules in Table 4.13 describe how a system consisting of two paral-

lel subsystems can silently evolve when those subsystems interact. The COM

rule supports channel-based communication between two subsystems which

can perform appropriate send and receive actions. The INV rule supports

method invocation between subsystems which can perform appropriate invo-

cation and activation actions. When these subsystems are brought together,

their local name becomes bound in the resulting system6.

6The behaviour of this local name is reminiscent of a bound-output action in the π-

calculus [SW01].

108

CHAPTER 4. DYNAMIC OOMPA

Table 4.10: General Rules for the Labelled Transition System

EQV-LFT:
K1

�≡ K2 Γ,Φ � K1
l1

l2
�� K ′

1

Γ,Φ � K2
l1

l2
�� K ′

1

EQV-RHT:
K ′

1

�≡ K2 Γ,Φ � K1
l1

l2
�� K ′

1

Γ,Φ � K1
l1

l2
�� K2

PAR:
Γ,Φ � K1

l1

l2
�� K ′

1

Γ,Φ � K1|K2
l1

l2
�� K ′

1|K2

SCP:
Γ,Φ ∪ Φ′ � K l1

l2
�� K ′

Γ,Φ � K{Φ′
∆

l1

l2
�� K ′{Φ′

∆

where FN(l1),FN(l2) /∈ Dom(Φ′).

Table 4.11: Local Rules for the Labelled Transition System

END: Γ,Φ � o[end] �� Nil

FRK: Γ,Φ � o[fork{p0} p1] �� o[p0]|o[p1]
NEW: Γ,Φ � o[new c: ChT p] �� o[p]{{c:ChT}

∅

CRT: Γ,Φ � o[create o′: ClT p] �� o[p]{{o′:ClT}
{o′:=∅}

UPD: Γ,Φ � o[a!v p]{∅{o:=f} �� o[p]{∅{o:=f†[a�→v]}
ACC: Γ,Φ � o[a?r p]{∅{o:=f} �� o[p{|v/r|}]{∅{o:=f}
where a ∈ Dom(f) and f(a) = v.

109

CHAPTER 4. DYNAMIC OOMPA

Table 4.12: Labelled Rules for the Labelled Transition System

SND: Γ,Φ � o[c!〈v1, . . . vn〉 p] c!〈v1,...vn〉 �� o[p]

RCV:

Γ,Φ � o[c?(r1:T1, . . . rn:Tn) p]
c?〈v1,...vn〉 �� o[p{|v1/r1, . . . vn/rn|}]

INV:

Γ,Φ �

o[o′.m!〈v1, . . . vn〉?(r1, . . . rn′) p] o′.m!〈v1,...vn〉
x:Chan〈T1,...Tn′ 〉

�� o[x?(r1:T1, . . . rn′:Tn′) p]

where x is a new name and o′’s class in Φ has a method whose signature

has the form m?(s1:S1, . . . sn:Sn)!〈d1:T1, . . . dn′:Tn′〉{p′}.
ACT:

Γ,Φ � Nil o.m?〈v1,...vn〉
x:Chan〈S1,...Sn′〉

�� o[p{|v1/r1, . . . v1/rn, o/this, x/return|}]

where x is a new name and o’s class in Φ has a method whose signature

has the form m?(r1:T1, . . . rn:Tn)!〈d1:S1, . . . dn′:Sn′〉{p}.

Table 4.13: Interaction Rules for the Labelled Transition System

COM:
Γ,Φ � K1

c!〈v1,...vn〉 �� K ′
1 Γ,Φ � K2

c?〈v1,...vn〉 �� K ′
2

Γ,Φ � K1|K2
�� K ′

1|K ′
2

MTH:
Γ,Φ � K1

o.m!〈v1,...vn〉
x:ChT

�� K ′
1 Γ,Φ � K2

o.m?〈v1,...vn〉
x:ChT

�� K ′
2

Γ,Φ � K1|K2
�� (K ′

1|K ′
2){{x:ChT}

∅

110

CHAPTER 4. DYNAMIC OOMPA

Example of the Labelled Transition System

We now give an example of how the labelled transition system is used. In

what follows we will omit the definition set and global type dictionary from

statements. This example show how the configuration
(
o2[x?(r) end]{{o2:Cell Client}

{o2:=∅}
)

|
(
o1[contents?r x!〈r〉 end]{∅{o1:=[contents �→5]}

)

can reach the configuration

(
o2[end]{{o2:Cell Client}

{o2:=∅}
)
|
(
o1[end]{∅{o1:=[contents �→5]}

)

with two unlabelled transitions.

The first transition is due to the agent at object o1 accessing the attribute

contents:

o1[contents?r x!〈r〉 end]{∅{o1:=[contents �→5]}
�� 〈ACC〉
o1[x!〈5〉 end]{∅{o1:=[contents �→5]}

So, (
o2[x?(r) end]{{o2:Cell Client}

{o2:=∅}
)

|
(
o1[contents?r x!〈r〉 end]{∅{o1:=[contents �→5]}

)

�� 〈using the above with EQV-LFT, EQV-RHT and PAR〉(
o2[x?(r) end]{{o2:Cell Client}

{o2:=∅}
)

|
(
o1[x!〈5〉 end]{∅{o1:=[contents �→5]}

)

The second transition will be a communication on the channel x. The

following two proof trees show that the two configurations can perform the

appropriate send and receive actions:

o1[x!〈5〉 end] x!〈5〉 �� o1[end]

o1[x!〈5〉 end]{∅{o1:=[contents �→5]}
x!〈5〉 �� o1[end]{∅{o1:=[contents �→5]}

111

CHAPTER 4. DYNAMIC OOMPA

and

o2[x?(r) end]
x?〈5〉 �� o2[end]

o2[x?(r) end]{{o2:Cell Client}
{o2:=∅}

x?〈5〉 �� o2[end]{{o2:Cell Client}
{o2:=∅}

Thus, the two configurations can communicate as follows:

(
o1[x!〈5〉 end]{∅{o1:=[contents �→5]}

)
|
(
o2[x?(r) end]{{o2:Cell Client}

{o2:=∅}
)

�� 〈using above with COM〉(
o1[end]{∅{o1:=[contents �→5]}

)
|
(
o2[end]{{o2:Cell Client}

{o2:=∅}
)

Properties of the Labelled Transition System

The next two lemmas show that the labelled transition system preserves the

state and well-formedness of a configuration.

B.3.17

p278Lemma 4.2.14 Say K1 and K2 are configurations such that

Γ,Φ � K l1

l2
�� K ′

for any labels l1 and l2. Then

STATE(K) = STATE(K ′)

B.3.18

p279Lemma 4.2.15 Say K1 and K2 are configurations such that

Γ,Φ � K l1

l2
�� K ′

for any labels l1 and l2. Then

WF(K)⇒WF(K ′)

112

CHAPTER 4. DYNAMIC OOMPA

Table 4.14: Rules for Experiments

Γ,Φ � K �� K

Γ,Φ � K1
�� K2 Γ,Φ � K2

�� K3

Γ,Φ � K1
�� K3

Γ,Φ � K1
�� K2 Γ,Φ � K2

l1

l2
�� K3

Γ,Φ � K1
l1

l2
�� K3

Γ,Φ � K1
L1

L2

�� K2 Γ,Φ � K2
�� K3

Γ,Φ � K1
L1

L2

�� K3

Γ,Φ � K1
L1

L2

�� K2 Γ,Φ � K2
l1

l2
�� K3

Γ,Φ � K1
L1 l1

L2 l2
�� K3

Experiments

The labelled transition system describes how a configuration can perform a

single operation. We also provide a generalisation of that system in order

to allow us to describe sequences of behaviour. These sequences are called

experiments because they can be used to test the possible visible behaviour

of a configuration.

The rules of this system are given in Table 4.14. To define the rules, we

use the following notation: l1 is either a send, receive, invoke or activate label

and l2 is a return channel typing or a blank space. L1 and L2 are sequences

of the above two label types where, in L2, the blank space occupies a position

in the sequence.

113

CHAPTER 4. DYNAMIC OOMPA

4.2.5 Weak Bisimulation

The labelled transition system we have defined provides an operational se-

mantics for Oompa’s configuration-based dynamic system. In order to reason

usefully about configurations, however, we will need to go further7. We will

want a relation over configurations to identify those configurations whose

behaviour is “the same” in some respect. Unlike the equivalence systems we

have already defined, which were primarily concerned with syntactic struc-

ture, this will be a semantic equivalence.

There are many criteria we could use for this notion of sameness but a

suitable starting point would be weak bisimulation [Mil89]. The function

of weak bisimulation is to abstract away details of internal behaviour; only

observable behaviour is considered. Despite its name, it is quite a strong

equivalence and it is unlikely that we would ever want to be more discrimi-

nating.

A binary relation S between configurations is a weak bisimulation in the

context Γ,Φ if (K1, K2) ∈ S implies

• whenever Γ,Φ � K1
l1

l2
�� K ′

1 then, for some K
′
2, Γ,Φ � K2

l1

l2
�� K ′

2 and

(K ′
1, K

′
2) ∈ S.

• whenever Γ,Φ � K1
�� K ′

1 then, for some K
′
2, Γ,Φ � K2

�� K ′
2 and

(K ′
1, K

′
2) ∈ S.

• whenever Γ,Φ � K2
l1

l2
�� K ′

2 then, for some K
′
1, Γ,Φ � K1

l1

l2
�� K ′

1 and

(K ′
1, K

′
2) ∈ S.

7It would also be possible to define a semantic equivalence for the operational semantics

of the agent-based dynamic system. As the reductions of that operational semantics are

unlabelled, we would need to use a barbed equivalence which examines agents to observe

their willingness to communicate. We do not consider such an equivalence necessary since

the agent-based dynamic system is primarily intended to establish intuitions.

114

CHAPTER 4. DYNAMIC OOMPA

• whenever Γ,Φ � K2
�� K ′

2 then, for some K
′
1, Γ,Φ � K1

�� K ′
1 and

(K ′
1, K

′
2) ∈ S.

If there exists a weak bisimulation which contains the pair (K1, K2) then we

say K1 andK2 are weakly bisimilar in the context Γ,Φ and write K1 ≈Γ,Φ K2.

4.3 Relationship

Semantics are what gives meaning to a language and we have given Oompa

two (operational) semantics. This suggests an important question: do the

two semantics give Oompa programs compatible or incompatible meanings?

In this section, we identify a relationship between configuration systems and

agent systems and state a result that relates their behaviour. The result

assures us that the meanings are compatible.

4.3.1 The Flatten Algorithm

Structural equivalence allows us to restructure a configuration and, in par-

ticular, enables us to flatten its structure until it has the form of an agent

configuration. Here, we introduce an algorithm which does just that — given

a well-formed configuration it returns a structurally equivalent agent config-

uration. The relationship between configurations and their flattened form

provides the foundation for the relationship between the configuration-based

dynamic system and the agent-based dynamic system.

The Flatten algorithm is defined recursively over configurations, so there

are four cases:

1. Flatten(Nil) = nil{∅∅

2. Flatten(o[p]) = o[p]{∅∅

115

CHAPTER 4. DYNAMIC OOMPA

3. Flatten(K{Φ∆) = (g′δ){(Φ
′δ)∪Φ

(∆′δ)∪∆ where

• Flatten(K) = g′{Φ′
∆′

• δ shoves (Dom(Φ) ∪ FN(∆)) ∩Dom(Φ′)

4. Flatten(K1|K2) = (g1δ1|g2δ2){(Φ1δ1)∪(Φ2δ2)
(∆1δ1)∪(∆2δ2)

where

• Flatten(K1) = g1{Φ1
∆1

• Flatten(K2) = g2{Φ2
∆2

• δ2 shoves FN(g1{Φ1
∆1
) ∩ Dom(Φ2)

• δ1 shoves (FN(g2δ2) ∪ Dom(Φ2δ2) ∪ FN(∆2δ2)) ∩Dom(Φ1)

Note that our presentation of the algorithm is nondeterministic. Never-

theless, we will treat it as deterministic since we could easily make it so. One

obvious way is to put an order on the shoves and insist that the algorithm

chooses “the least such shove”.

Since state dictionaries are joined without a constraining property that

ensures their domains are disjoint, the problem of clashes might suggest itself.

In fact, in the proof of Theorem 4.3.1 (in Appendix B on page 282) we see

that the dictionaries will be disjoint if the configuration is well-formed. We

will restrict our attention to well-formed configurations.

We give an example of a step of the flatten algorithm on following con-

figuration:




o[x?(r) end]



{o: Cell Client}
{o := ∅}∣∣∣∣∣∣∣∣∣




o[contents?r x!〈r〉 end]
| o[end]
| Nil



∅
{o := [contents �→ 5]}







116

CHAPTER 4. DYNAMIC OOMPA

Throughout this example, we will implicitly use the associativity of |.
This configuration is of the form (K1|K2) so the fourth case of flatten

applies. There are two recursive calls, each returning an agent configuration.

Flatten


 o[x?(r) end]



{o: Cell Client}
{o := ∅}




= 〈flatten algorithm — no renaming necessary〉

o[x?(r) end]



{o: Cell Client}
{o := ∅}

and

Flatten


o[contents?r x!〈r〉 end]
| o[end]
| Nil



∅
{o := [contents �→ 5]}




= 〈flatten algorithm — no renaming necessary〉
o[contents?r x!〈r〉 end]

| o[end]
| nil



∅
{o := [contents �→ 5]}

The algorithm requires us to pick two shoves. None of the free names

of the first agent configuration occur in the domain of the second agent

configuration’s type dictionary. Therefore, there are no names that δ2 need

shove. We can let δ2 = 1.

On the other hand, there is a name free in the second agent configuration’s

agents and state dictionary which occurs in the domain of the first agent

configuration’s type dictionary, namely o. We need to shove this name, so

we let δ1 = (o o1) where o1 is a new name. The agents of the resulting agent

configuration will be:

117

CHAPTER 4. DYNAMIC OOMPA

(o[x?(r) end])(o o1)∣∣∣∣∣∣∣∣∣




o[contents?r x!〈r〉 end]
| o[end]
| Nil


 1

= 〈apply the renamings and use associativity〉
o1[x?(r) end]

| o[contents?r x!〈r〉 end]
| o[end]
| Nil

The dictionaries of the resulting agent configuration will be:

{o: Cell Client} (o o1) ∪ (∅)1
{o := ∅} (o o1) ∪ {o := [contents �→ 5]} 1

= 〈apply the renamings and join the dictionaries〉

{o1: Cell Client}
{o1 := ∅, o := [contents �→ 5]}

Finally, we can give the flattened form of our configuration:

o1[x?(r) end]

| o[contents?r x!〈r〉 end]
| o[end]
| Nil



{o1: Cell Client}
{o1 := ∅, o := [contents �→ 5]}

4.3.2 Properties of Flatten and the Relationship The-

orem

It should be clear that agent configurations are syntactically valid configu-

rations. In fact, we will permit agent configurations to be used directly as

configurations. Strictly, we should provide an injective function which explic-

itly denotes this identification. Instead, we will leave the injection implicit.

118

CHAPTER 4. DYNAMIC OOMPA

B.4.1

p282Theorem 4.3.1 For a configuration K,

WF(K)⇒ K
�≡ Flatten(K)

B.4.4

p288Lemma 4.3.2 For a configuration K and a renaming ρ,

Flatten(Kρ) ≡α Flatten(K)ρ

The Theorems 4.3.3 and 4.3.4 show that the relationship with the flat-

tened form is preserved across ≡α and �≡.
B.4.5

p292Theorem 4.3.3 Say K1 and K2 are configurations such that K1 ≡α K2 and

Flatten(K1) = g1{Φ1
∆1

Flatten(K2) = g2{Φ2
∆2

Then, for some renaming, ρ, such that FN(g2{Φ2
∆2
) � Change(ρ) we have

Φ2ρ = Φ1 ∆2ρ = ∆1 g2ρ ≡α g1
B.4.6

p296Theorem 4.3.4 Say K1 and K2 are configurations such that K1
�≡ K2 and

Flatten(K1) = g1{Φ1
∆1

Flatten(K2) = g2{Φ2
∆2

Then, for some renaming, ρ, such that FN(g2{Φ∆) � Change(ρ) we have

Φ2ρ = Φ1 ∆2ρ = ∆1 g2ρ
�≡α g1

We now give the main result of this section. Intuitively, it can be thought

to say that the internal transitions of a configuration system are realisable

within the operational semantics of the agent-based dynamic system. This

is a desirable result. Because the agent-based dynamic system was designed

119

CHAPTER 4. DYNAMIC OOMPA

to embody our intentions of how we wish Oompa programs to behave, the

result gives us confidence that configuration systems also behave as we would

wish.

There are other results we could show that would bring to light different

aspects of the relationship between the dynamic systems. We chose this

result as the minimum to reassure us of the compatibility of the semantics.

One notable feature of the theorem is that we flatten the scoped config-

urations, K1{Φ∅ and K2{Φ∅ , rather than just the configurations, K1 and K2.

This is necessary to ensure all the typing information available in Φ gets

rolled into the flattened form.

B.4.11

p308Theorem 4.3.5 Say K1 and K2 are configurations such that

Γ,Φ � K1
�� K2

and

Flatten(K1{Φ∅) = g1{Φ1
∆1

Flatten(K2{Φ∅) = g2{Φ2
∆2

then there is some renaming ρ such that FN(g2{Φ2
∆2
) � Change(ρ) and

Γ � g1{Φ1
∆1
−→ g2ρ{Φ2ρ

∆2ρ

4.4 Summary

This chapter set out to define Oompa’s two dynamic systems: the agent-

based dynamic system and the configuration-based dynamic system. For

both of these dynamic system we presented the material in four sections.

First we defined their syntax, then some theory of renaming, then their

equivalence relations and lastly their semantics. For the configuration-based

120

CHAPTER 4. DYNAMIC OOMPA

dynamic system, we also defined a semantic equivalence called weak bisimu-

lation. The relationship between the two dynamic systems was established by

defining an algorithm which converts configurations into structurally equiv-

alent agent configurations. We proved a simulation-like result which shows

that this relationship is preserved, up to renaming, by internal actions.

121

Chapter 5

The Type System

Oompa’s operational semantics are defined purely in terms of pattern match-

ing. No limitations are put on the behaviour of an agent beyond syntactic

conformance to some rule. As a consequence of this, the operational seman-

tics permit behaviours we never intended and do not want. Many of these

behaviours fall into two groups.

An example of the first kind would be an attempt to perform an invocation

on an object which lacks a matching method. No rules of the operational

semantics will apply to the agent responsible, so we can think of this be-

haviour as “stalling” the agent. This is an example of a “round hole/square

peg” error — a square peg will not fit in a round hole.

An example of the second kind would be the assignment of a temperature

reading in Fahrenheit to an attribute intended for temperature in centigrade.

Some rule of the operational semantic applies to the agent responsible but

the transition leads to the propagation of bad data. This belongs to what we

might call a “round hole/finger” error — a finger may actually fit in a round

hole but it may then get stuck or electrocuted.

We prevent these misbehaviours by providing Oompa with a type sys-

122

CHAPTER 5. THE TYPE SYSTEM

tem [Car96]. Oompa’s types, whose syntax we defined in Chapter 3, provide

a way of describing the appropriate values a context can accept and the ap-

propriate contexts a value can be used in. The role of Oompa’s type system is

to identify and exclude those programs whose behaviour will be inconsistent

with their types. We will require a definition set to be syntactically correct,

well-formed and type safe.

One important aspect of our type system is that it supports subtyping.

The types we give to objects are interface types, which describe the names

of the methods the objects must support and the arity of their input and

output parameter lists. When we mark a context with an interface type, we

require that any object used in the context support the methods described

by that type. But an object which supports those methods and others should

also be acceptable. Rather than requiring exact matches between the types

of values and contexts, we allow a certain flexibility in the type system. This

is formalised by a relation between types called subtyping . For Oompa, we

define subtyping relations on both interface types and channel types.

Another important feature of our type system is that it supports recur-

sive types. There are two different reasons why we need them. Firstly,

without recursive types our channels would be limited to carrying “simpler”

values. This severely limits a system’s dynamic behaviour, as the most com-

plex channel types in the system would form a static infrastructure — there

would be no channels which could be used to transmit their names. Sec-

ondly, in an object-oriented system, interface types will often be found to be

inter-referential. For example, the following two interfaces have this interde-

pendency:

123

CHAPTER 5. THE TYPE SYSTEM

interface A interface B

{ {

m?()!<d:B> m?()!<d:A>

} }

Consequently, we acknowledge these two kinds of recursion in our type

system. The first kind we consider to be explicit recursion and results from

the use of the rec operator. For example, the type rec t.Chan〈Long, t〉 which
advertises its recursivity. The second kind we consider to be implicit recur-

sion and results from the use of class or interface names in a type position,

as in the interface A, above.

Oompa’s type system is based upon [PS93a], which considers a type sys-

tem for the π-calculus, and [AC91], which gives a type system with subtyping

and recursive types for the lambda calculus. The work we present in this

chapter has been published as a technical report [TB02].

In Section 5.1, we formally define type violations and give the rules of

the type safety system. Section 5.2 gives the semantics of types, which are

a kind of infinite tree. We define Oompa’s subtyping system in Section 5.3.

In Section 5.4, we prove that a type safe program never commits a type

violation. We compare our type system with some others in Section 5.5 and

Section 5.6 summarises the chapter.

5.1 Typing, Type Violations and Type Safety

In this section, we give the typing system, define the notion of type violation

and give the type safety system.

124

CHAPTER 5. THE TYPE SYSTEM

Table 5.1: Rules of the Typing System

TAS-ASS: Γ,Φ ∪ {v:T} � v:T
TAS-LIT: Γ,Φ � �P :P
where �P is a literal of primitive type P .

TAS-SUB:
Γ � T1 ≤ T2 Γ,Φ � v:T1

Γ,Φ � v:T2

5.1.1 The Typing System

An assertion that a value v is of type T is called a typing and is written v:T .

Syntactically, values in Oompa are either literal expressions or names. The

types of literal expressions are unambiguous since their syntactic classes are

required to be disjoint, e.g. 5 is always a Long. The types of names, however,

will depend on a context consisting of a type dictionary and a definition set.

It is the role of a type dictionary to record a list of assumptions about the

types of names, although a definition set may be required so that the interface

types associated with class or interface names may be looked up.

The typing system is a proof system that establishes typing judgements

of the form Γ,Φ � v:T where Γ is a definition set, Φ is a type dictionary, v
is a value and T is a type. The statement can be read as “v is a T in the

context Γ,Φ”. It is defined by the three rules in Figure 5.1.

The first two rules are TAS-ASS and TAS-LIT, which are the axioms

from which other statements are derived. Oompa’s type system supports

subtyping, so deciding whether a value has a certain type may require the

use of the subtyping system. This is the role of the third rule, TAS-SUB,

which incorporates a subtyping statement of the form Γ � T1 ≤ T2 (see

Section 5.3).

125

CHAPTER 5. THE TYPE SYSTEM

5.1.2 Type Violations

We now formalise the notion of type violation by listing the uses of a value

which are not compatible with that value’s type. Our choice of these deter-

mines the properties we expect of the type system.

In an agent system, Γ � g{Φ∆, an agent o[p] ∈ g is type violating if any of
the following conditions hold:

• Feature Mismatch. The agent attempts to use a feature which doesn’t

exist by:

– invoking a method, m, of an object, o′. o′:C ∈ Φ and p begins

o′.m!〈v1, . . . vn〉?(r1, . . . rm) but either C is not a class or C’s defi-

nition in Γ has no method m.

– accessing an attribute, a, that o doesn’t possess. So o:C ∈ Φ and
p begins a?r but C’s definition in Γ has no attribute a.

– updating an attribute, a, that o doesn’t possess. So o:C ∈ Φ and
p begins a!v but C’s definition in Γ has no attribute a.

• Arity Mismatch. The agent attempts to use a tuple of the wrong length

by:

– receiving on a channel, c. So c: Chan〈T1, . . . Tn〉 ∈ Φ but p begins
c?(r1:T

′
1, . . . rm:T

′
m) where n �= m.

– sending on a channel, c. So c: Chan〈T1, . . . Tn〉 ∈ Φ but p begins

c!〈v1, . . . vm〉 where n �= m.
– invoking a method, m, of an object, o′. So o′:C ∈ Φ and C’s def-
inition in Γ gives m the signature type m?(T1, . . . Tn)!〈T ′

1, . . . T
′
m〉.

However, p begins o′.m!〈v1, . . . vj〉?(r1, . . . rk) where either j �= n
or k �= m.

126

CHAPTER 5. THE TYPE SYSTEM

• Value Mismatch. The agent attempts to use a value which is of the

wrong type by:

– sending on a channel, c. So c: Chan〈T1, . . . Tn〉 ∈ Φ and p begins

c!〈v1, . . . vn〉 but, for some i, we have Γ,Φ � vi:Ti.

– invoking a method, m, of an object, o′. So o′:C ∈ Φ, C’s definition
in Γ gives m the signature type m?(T1, . . . Tn)!〈T ′

1, . . . T
′
m〉 and p

begins o′.m!〈v1, . . . vn〉?(r1, . . . rm). However, for some i, we have
Γ,Φ � vi:Ti.

– updating an attribute, a. So o:C ∈ Φ, C’s definition in Γ gives a
the type Attr{T} and p begins a!v. However, Γ,Φ � v:T .

An agent system, Γ � g{Φ∆, is type violating if any agent in g is type

violating. It is useful to note that type violations are only associated with

channel, method or attribute use.

Another situation to beware of occurs when an agent attempts to create

an object of a type that is not a class. This is certainly an error but we

choose not to call it a type violation since it does not actually represent the

misuse of a value. We enable our type system to detect these errors at the

cause, even though it would detect any invocation on such an object as a

type violation.

5.1.3 Type Safety

The Type Safety System is a proof system that establishes type safety judge-

ments of the form Γ,Φ � x where Γ is a definition set, Φ is a type dictionary
and x is some Oompa expression1. We are saying that x is well-behaved in

1Notice that the form of these judgements is different from that of the typing system.

In fact, an alternative approach to type safety actually gives an okay type to all expres-

127

CHAPTER 5. THE TYPE SYSTEM

the context of Γ and Φ. It is defined by the twelve rules in tables 5.2 and 5.3.

The nine rules in Table 5.2 establish the type safety of a piece of code.

Each of the rules is concerned with a single code primitive. The TSS-END,

TSS-FRK, TSS-NEW, TSS-SND, TSS-RCV and TSS-CRT rules deal with

ends, forking, channel creation, sending, receiving and object creation re-

spectively. The TSS-INV rule only checks the outgoing part of an invocation

for safety. It converts the invocation into a receive on a new channel name

and allows the TSS-RCV rule to check the safety of its receipt of values. This

matches the operational semantics and facilitates convenient proofs later on.

The TSS-ACC and TSS-UPD rules check attribute access and update, re-

spectively.

The three rules in Table 5.3 establish the type safety of the definitions in

a definition set. The TSS-MTH rule checks method definitions and considers

them safe if their code will be safe in the context of an invocation, e.g. when

there are appropriate input values and a return channel. The TSS-CLS rule

checks class definitions and makes sure that their definitions will be type safe

in the context of that class, i.e. with the attributes and special value this

of the appropriate type.

To rule for checking a definition set requires that all class definitions in

the system are type safe with respect to each other. A definition set can

contain references to global channel names and the types of these names

are not contained within the definition set. Therefore, the type safety of

a definition set depends on a type dictionary Φ. This is why we write the

particular type safety judgement that asserts the type safety of the complete

definition set as Φ � Γ.
sions which are well-behaved in this way, e.g. Γ,Φ � x: ok in [PS93a]. The difference is

essentially notational and we prefer the more concise form as used, for example, in [San96].

128

CHAPTER 5. THE TYPE SYSTEM

Table 5.2: Rules for the Type Safety of Code

TSS-END: Γ,Φ � end

TSS-FRK:
Γ,Φ � p0 Γ,Φ � p1
Γ,Φ � fork{p0} p1

TSS-NEW:
Γ,Φ ∪ {c: ChT} � p
Γ,Φ � new c: ChT p

TSS-SND:

Γ,Φ � c: OuCh〈T1, . . . Tn〉 Γ,Φ � v1:T1 · · ·Γ,Φ � vn:Tn Γ,Φ � p
Γ,Φ � c!〈v1, . . . vn〉 p

TSS-RCV:
Γ,Φ � c: InCh〈T1, . . . Tn〉 Γ,Φ ∪ {r1:T1, . . . rn:Tn} � p

Γ,Φ � c?(r1:T1, . . . rn:Tn) p

TSS-CRT:
Γ,Φ ∪ {o:C} � p

Γ,Φ � create o:C p

where C is defined as a class in Γ.

TSS-INV:




Γ,Φ � o: Intf{m?(T1, . . . Tn)!〈T ′
1 . . . T

′
n′〉}

Γ,Φ � v1:T1 · · · Γ,Φ � vn:Tn
Γ,Φ ∪ {x: Chan〈T ′

1, . . . T
′
n′〉} � x?(r1:T ′

1, . . . rn′ :T
′
n′)p




Γ,Φ � o.m!〈v1, . . . vn〉?(r1, . . . rn′) p
where x is new.

TSS-ACC:
Γ,Φ � a: Attr{T} Γ,Φ ∪ {r:T} � p

Γ,Φ � a?r p

TSS-UPD:
Γ,Φ � a: Attr{T} Γ,Φ � v:T Γ,Φ � p

Γ,Φ � a!v p

129

CHAPTER 5. THE TYPE SYSTEM

Table 5.3: Rules for the Type Safety of Definitions

TSS-MTH:
Γ,Φ ∪ {r1:T1, . . . rn:Tn, return: OuCh〈T ′

1, . . . T
′
n′〉} � p

Γ,Φ � m?(r1:T1, . . . rn:Tn)!〈d1:T ′
1, . . . dm:T

′
n′〉{p}

TSS-CLS:




Γ,Φ ∪ {a1: AtT1, . . . an: AtTn, this:C} � mdef1
...

Γ,Φ ∪ {a1: AtT1, . . . an: AtTn, this:C} � mdefm




Γ,Φ � class C {a1: AtT1 . . . an: AtTn mdef1 . . . mdefm}

TSS-DEF:
Γ,Φ � Cdef1 · · · Γ,Φ � Cdefn

Φ � Γ
where Cdef1 . . .Cdefn are all the class definitions in Γ.

5.2 Oompa Type Trees

The traditional semantics for a type is as a set of values, so v:T can be read as

v ∈ T . However, in the presence of recursive types, well-founded sets do not
form a model of a type system (not in the standard way, at least). Following

[AC91], we will instead use infinite trees as a semantics for Oompa’s types.

5.2.1 Trees and Subtrees

The nodes on an Oompa type tree are labelled with symbols from the fol-

lowing ranked alphabet . The superscript of the symbols denotes the number

of children the node it labels should have and the symbols corresponding to

signature types carry a method name.

{Long0, Char0}
L = ∪ {Sig2(m) | m ∈ N}

∪ {Intfn,Chann, InChn,OuChn, InParamn, InParamn | n ∈ N}

130

CHAPTER 5. THE TYPE SYSTEM

We will use ln to stand for a general member of L. We take the view that

the set of natural numbers, N, includes 0 and we will use the symbol N
+ for

the set of strictly positive natural numbers.

We can descend a tree from its root by specifying, at each node, the child

we next want to visit as “the ith child from the left”. Therefore, we can view

a sequence of positive natural numbers as a path through a tree and represent

trees as partial functions from paths to the label on the node reached by that

path. We will use ↓ to mean “is defined”, πσ for the concatenation of π and
σ and Λ for the empty sequence.

We define an Oompa type tree, A, to be a partial function from N
+∗
to

L, which satisfies the following conditions:

• A(Λ) ↓

• A(πσ) ↓ =⇒ A(π) ↓

• A(π) = ln =⇒ A(πj) ↓ where j ≤ n

• A(π) = Intfn =⇒ A(πj) = Sig2(m) where j ≤ n and
if A(πi) = Sig2(m′) for i �= j then m �= m′

• A(πj) = Sig2(m) =⇒ A(π) = Intfn, some n ∈ N such that n ≥ j

• A(π) = Sig2(m) =⇒ A(π1) = InParamn, some n ∈ N and

A(π2) = OutParamn
′
, some n′ ∈ N

• A(πj) = InParamn =⇒ A(π) = Sig2(m), some m

• A(πj) = OutParamn =⇒ A(π) = Sig2(m), some m

Although formally useful, it is not very intuitive to think of trees as the

partial functions defined above. A simple example of an Oompa type tree

131

CHAPTER 5. THE TYPE SYSTEM

represented in a traditional style is the following.

Chan3

������
�� ������

Char0 Char0 InCh1

��
Long0

Say that A is an Oompa type tree and π is a sequence from N
+. Then

the subtree of A at π, written A[π], is the partial function such that

A[π](σ) = A(πσ) ∀σ ∈ N
+∗

Lemma 5.2.1 If A is an Oompa type tree and A is defined at π, then A[π]

is also an Oompa type tree.

Proof: Easy to show by contradiction. �

5.2.2 Interpreting Types as Trees

We are going to use Oompa type trees as a semantics for Oompa’s types, so

we need to define how to interpret a type as a tree. Since type trees never

involve type variables, when interpreting a type as a tree, we will recursively

look up the corresponding definition for each type variable and expand it

into the tree.

Say sig is a method signature. Then let sig− be sig with all its parameter

names removed. This simple syntactic step gives the signature type of the

signature. For example,

m?(r1:T1, . . . rn:Tn)!〈s1:S1, . . . sn′:Sn′〉− = m?(T1, . . . Tn)!〈S1, . . . Sn′〉

We define the look-up function eΓ(·) to perform this operation of looking-

up and expanding definitions as:

eΓ(t) = Intf{sig−1 , . . . sig−n }

132

CHAPTER 5. THE TYPE SYSTEM

if Γ contains either an interface of the form

interface t {sig1 . . . sign}

or a class of the form

class t {adecl1 . . . adecln′ sig1{p1} . . . sign{pn}}

We now define the interpretation function, TreeΓ, which takes an Oompa

type and a definition set Γ and gives its corresponding Oompa type tree.

The free type variables in the type are completely expanded using the eΓ(·)
function repeatedly.

TreeΓ(Long)(Λ) = Long0

TreeΓ(Char)(Λ) = Char0

TreeΓ(Chan〈T1, . . . Tn〉)(Λ) = Chann

TreeΓ(Chan〈T1, . . . Tn〉)(iπ) = TreeΓ(Ti)(π)

TreeΓ(InCh〈T1, . . . Tn〉)(Λ) = InChn

TreeΓ(InCh〈T1, . . . Tn〉)(iπ) = TreeΓ(Ti)(π)

TreeΓ(OuCh〈T1, . . . Tn〉)(Λ) = OuChn

TreeΓ(OuCh〈T1, . . . Tn〉)(iπ) = TreeΓ(Ti)(π)

TreeΓ(Intf{SgT1, . . .SgTn})(Λ) = Intfn

TreeΓ(Intf{SgT1, . . .SgTn})(iπ) = TreeΓ(SgTi)(π)

TreeΓ(m?(T1, . . . Tn)!〈S1, . . . Sn′〉)(Λ) = Sig2(m)

TreeΓ(m?(T1, . . . Tn)!〈S1, . . . Sn′〉)(1) = InParamn

TreeΓ(m?(T1, . . . Tn)!〈S1, . . . Sn′〉)(2) = OutParamn

TreeΓ(m?(T1, . . . Tn)!〈S1, . . . Sn′〉)(1iπ) = TreeΓ(Ti)(π)

TreeΓ(m?(T1, . . . Tn)!〈S1, . . . Sn′〉)(2iπ) = TreeΓ(Si)(π)

TreeΓ(rec t.T)(π) = TreeΓ(T{|rec t.T/t|})(π)
TreeΓ(t)(π) = TreeΓ(eΓ(t))(π)

133

CHAPTER 5. THE TYPE SYSTEM

The function is undefined in all other cases. Substitution on types is as

expected.

We use this function to define a notion of type equivalence. Two types

are equivalent if their trees are equal. So we write Γ |= A = B if and only if

TreeΓ(A) = TreeΓ(B).

We give two pictures of the trees of complex types. The type of the inter-

face A, given on page 124, is implicitly recursive, so its tree will be infinite. It

will look like this, where the dotted line indicates that the structure repeats

following the obvious pattern.

Intf1

��
Sig2(m)

�������
��������

InParam0 OutParam1

��
Intf1

��
Sig2(m)

��������
���������

InParam0 OutParam1

�
�
�

The tree of the explicitly recursive type rec t.OuCh〈t, Long〉 will also be infi-
nite. It will look like this:

OuCh2

�������
������

OuCh2

�������
�����

��
Long0

OuCh2

	
	

	
�����

��
Long0

Long0

134

CHAPTER 5. THE TYPE SYSTEM

5.2.3 Expanding Definitions

We now introduce the expansion function, E∅
Γ(·), which completely expands

an Oompa type so that it no longer depends on the definition set. It does

this by converting implicit recursion, which is due to recursive look-ups, into

explicit recursion, which uses the rec operator. E∅
Γ(·) is just a specific case

of the recursive function EVΓ (·) which looks-up all the variables it encounters
other than those in V .

EVΓ (Long) = Long0

EVΓ (Char) = Char0

EVΓ (Chan〈T1, . . . Tn〉) = Chan〈EVΓ (T1), . . .E
V
Γ (Tn)〉

EVΓ (InCh〈T1, . . . Tn〉) = InCh〈EVΓ (T1), . . .E
V
Γ (Tn)〉

EVΓ (OuCh〈T1, . . . Tn〉) = OuCh〈EVΓ (T1), . . .E
V
Γ (Tn)〉

EVΓ (Intf{SgT1, . . .SgTn}) = Intf{EVΓ (SgT1), . . .E
V
Γ (SgTn)}

EVΓ (m?(T1, . . . Tn)!〈T ′
1, . . . T

′
n′〉) = m?(EVΓ (T1), . . .E

V
Γ (Tn))

!〈EVΓ (T ′
1), . . .E

V
Γ (T

′
n′)〉

EVΓ (t) =



t if t ∈ V
rec t.E

V ∪{t}
Γ (eΓ(t)) otherwise

EVΓ (rec t.T) = rec t.E
V ∪{t}
Γ (T)

In the last of these cases, we must be careful to avoid inappropriate variable

capture. We use α-substitutability to rename t different to any other name

in the system before applying this step of the expansion function.

We can view the definition set as a set of simultaneous equations and the

expansion function as an algorithm for solving them for a particular type

variable. As an example, say that Γ contains the two interfaces given on

135

CHAPTER 5. THE TYPE SYSTEM

page 124. If we apply the expansion function to the interface name A we get:

E∅
Γ(A) = rec A.E

{A}
Γ (Intf{m?()!〈B〉})

= rec A.Intf{E{A}
Γ (m?()!〈B〉)}

= rec A.Intf{m?()!〈E{A}
Γ (B)〉}

= rec A.Intf{m?()!〈rec B.E{A,B}
Γ (Intf{m?()!〈A〉})〉}

= rec A.Intf{m?()!〈rec B.Intf{E{A,B}
Γ (m?()!〈A〉)}〉}

= rec A.Intf{m?()!〈rec B.Intf{m?()!〈E{A,B}
Γ (A)〉}〉}

= rec A.Intf{m?()!〈rec B.Intf{m?()!〈A〉}〉}
C.1.1

p315
Lemma 5.2.2 EVΓ (T) is a finite type expression and can be calculated with

finite applications of the look-up function eΓ(·) for any finite Γ, T and V .

The next result validates the expansion function, by showing that the

type it generates is equivalent to the first, in the context Γ.

C.1.3

p318Theorem 5.2.3 Γ |= S = E∅
Γ(S)

5.3 Subtyping

In a system without subtyping, a value of type T can only be used in a

context which requires values of type S when T = S. Subtyping defines a

relation between types, T ≤ S, and allows values of type T to be used in

contexts intended for values of type S when T ≤ S. Subtyping increases the
flexibility of a type system while preserving type safety

Our type system will support two general subtype relationships. Interface

subtyping allows an object to be used in a context so long as it supports

all those methods required by the context’s type — it may also support

other methods. Channel subtyping allows an input/output channel name to

be used where an input channel name or output channel name is required.

136

CHAPTER 5. THE TYPE SYSTEM

However, to properly support subtyping, we need to take account of the fact

that values of channel and interface types are also contexts for other values.

A channel is a context for those values which can be sent along it and a

method of an object can receive and send values.

For example, let’s say that T is a subtype of S and that c is a channel of

type Chan〈T 〉. Then c should also be useable as a channel of type InCh〈S〉
since, if the values we receive values off c are of type T , the values we receive

off c are useable as values of type S. Where there are recursive types, the situ-

ation is even more complex. For example, values of type rec t.Chan〈InCh〈t〉〉
can be used as values of type rec s.InCh〈s〉.

The complexity of these relationships is such that it is appropriate to

consider the subtyping relationship in the semantics2. We introduce a rela-

tion between Oompa type trees that captures the notion of subtyping. As

the trees are possibly infinite structures, the relation is a simulation which

compares their structure in terms of labelling and subtrees.

In theory, to test whether two types are subtypes, we could construct their

trees and find a simulation between them. This would not be practical so we

provide an algorithm, based on one in [PS93a], which operates on types and

confirms whether their trees lie in an appropriate tree simulation. Our work

differs from the reference in that our types can contain external references,

i.e. names of classes and interfaces in the definition set. We manage this

by closing the types using our expansion function E∅
Γ(·). We prove that the

algorithm terminates and is sound and complete with respect to the tree

simulation.

2In fact, our main motivation for providing a semantics for the type system was to

enable us to give meaning to the subtyping relation.

137

CHAPTER 5. THE TYPE SYSTEM

5.3.1 Tree Simulation

A relation R between Oompa type trees is an Oompa tree simulation if

(A,B) ∈ R implies:

• If B(Λ) = Long0 then A(Λ) = Long0.

• If B(Λ) = Char0 then A(Λ) = Char0.

• If B(Λ) = Chann then A(Λ) = Chann and for each 1 ≤ i ≤ n both

(A[i], B[i]) ∈ R and (B[i], A[i]) ∈ R.

• If B(Λ) = InChn then A(Λ) = InChn or Chann and for each 1 ≤ i ≤ n,
(A[i], B[i]) ∈ R.

• If B(Λ) = OuChn then A(Λ) = OuChn or Chann and for each 1 ≤ i ≤
n, (B[i], A[i]) ∈ R.

• If B(Λ) = Intfn then A(Λ) = Intfm where m ≥ n and there exists an
injective function f : [1..n] → [1..m] such that for each 1 ≤ i ≤ n,

(A[f(i)], B[i]) ∈ R.

• If B(Λ) = Sig2(m) then A(Λ) = Sig2(m) and for each 1 ≤ i ≤ 2,

(A[i], B[i]) ∈ R

• If B(Λ) = InParamn then A(Λ) = InParamn and for each 1 ≤ i ≤ n,
(B[i], A[i]) ∈ R.

• If B(Λ) = InParamn then A(Λ) = InParamn and for each 1 ≤ i ≤ n,
(A[i], B[i]) ∈ R.

We use the notation A ≤ B to indicate that (A,B) ∈ R for some tree

simulation R. For two types S and T , we use the notation Γ |= S ≤ T if and
only if TreeΓ(S) ≤ TreeΓ(T).

138

CHAPTER 5. THE TYPE SYSTEM

As an example, we now show that

|= rec t.Chan〈InCh〈t〉〉 ≤ rec s.InCh〈s〉

Let A = Tree(rec t.Chan〈InCh〈t〉〉) and let ⊥ stand for undefinedness. It is

not difficult to see that

A(π) =




⊥ if π /∈ {1}∗

Chan1 if |π| even
InCh1 if |π| odd

Let

A′(π) =




⊥ if π /∈ {1}∗

InCh1 if |π| even
Chan1 if |π| odd

Then A[1] = A′ and A′[1] = A. Let B = Tree(rec s.InCh〈s〉). Then,

similarly,

B(π) =



⊥ if π /∈ {1}∗

InCh1 otherwise

and B[1] = B. Then {(A,B), (A′, B)} is a tree simulation which contains
the pair (Tree(rec t.Chan〈InCh〈t〉〉),Tree(rec s.InCh〈s〉)).

5.3.2 The Subtyping Algorithm

We now define the algorithm which determines whether the subtype relation-

ship holds between two closed types, i.e. types which contain no free type

variables.

The subtyping algorithm is a proof system whose statements have the form

Σ �a S ≤ T , where S and T are closed types and Σ is a set of assumptions,

which have the form U1 ≤ U2. It is defined by the eleven rules in Table 5.4.

The proof system is considered an algorithm by putting an order on the

139

CHAPTER 5. THE TYPE SYSTEM

rules — when more than one rule are applicable, choose the first as they are

presented. We will write Σ �a S ≷ T if Σ �a S ≤ T and Σ �a T ≤ S.
There are two axioms: SUB-RFL and SUB-ASS. Next we have the rules

for channel subtyping. These are SUB-CHCH, SUB-ININ, SUB-CHIN, SUB-

OUOU, SUB-CHOU. The SUB-SIG rule supports signature subtyping and

is used by the SUB-INT rule to compare interface types. There are two rules

for explicitly recursive types, SUB-RECLFT and SUB-RECRHT.

We extend the subtyping algorithm to all Oompa types by using the

expansion function to close types. We write Γ � S ≤ T if and only if

∅ �a E∅
Γ(S) ≤ E∅

Γ(T) is provable from the subtyping algorithm.

The subtyping algorithm is called terminating if any application of the

algorithm to a pair of types generates a finite proof tree. It is called complete

if Γ |= S ≤ T implies Γ � S ≤ T and called sound if Γ � S ≤ T implies

Γ |= S ≤ T . The following results mean we can apply the algorithm to two

Oompa types to establish that the simulation relationship holds between the

Oompa type trees they represent.

C.2.2

p323Theorem 5.3.1 (Termination) The subtyping algorithm is terminating.

C.2.5

p326Theorem 5.3.2 (Completeness) If Γ |= S ≤ T then Γ � S ≤ T .
C.2.10

p330Theorem 5.3.3 (Soundness) If Γ � S ≤ T then Γ |= S ≤ T .

As an example, we give the proof tree of the following:

� rec t.Chan〈InCh〈t〉〉 ≤ rec s.InCh〈s〉

140

CHAPTER 5. THE TYPE SYSTEM

Table 5.4: Rules for the Subtyping Algorithm

SUB-RFL: Σ �a T ≤ T
SUB-ASS: Σ ∪ {S ≤ T} �a S ≤ T

SUB-CHCH:
Σ �a S1 ≷ T1 · · · Σ �a Sn ≷ Tn

Σ �a Chan〈S1, . . . Sn〉 ≤ Chan〈T1, . . . Tn〉

SUB-ININ:
Σ �a S1 ≤ T1 · · · Σ �a Sn ≤ Tn

Σ �a InCh〈S1, . . . Sn〉 ≤ InCh〈T1, . . . Tn〉

SUB-CHIN:
Σ �a S1 ≤ T1 · · · Σ �a Sn ≤ Tn

Σ �a Chan〈S1, . . . Sn〉 ≤ InCh〈T1, . . . Tn〉

SUB-OUOU:
Σ �a T1 ≤ S1 · · · Σ �a Tn ≤ Sn

Σ �a OuCh〈S1, . . . Sn〉 ≤ OuCh〈T1, . . . Tn〉

SUB-CHOU:
Σ �a T1 ≤ S1 · · · Σ �a Tn ≤ Sn

Σ �a Chan〈S1, . . . Sn〉 ≤ OuCh〈T1, . . . Tn〉
SUB-SIG: 

 Σ �a T1 ≤ S1 · · · Σ �a Tn ≤ Sn
Σ �a S ′

1 ≤ T ′
1 · · · Σ �a S ′

n′ ≤ T ′
n′




Σ �am?(S1, . . . Sn)!〈S ′
1, . . . S

′
n′〉 ≤ m?(T1, . . . Tn)!〈T ′

1, . . . T
′
n′〉

SUB-INT:

Σ �a SgTf(1) ≤ SgT′
1 · · · Σ �a SgTf(n) ≤ SgT′

n

Σ �a
Intf{SgT1, . . .SgTn, SgTn+1, . . .SgTn+m}
≤ Intf{SgT′

1, . . .SgT
′
n}

if there is such an injective function, f , from [1..n] to [1..(n+m)].

SUB-RECLFT:
Σ ∪ {rec s.S ≤ T} �a S{|rec s.S/s|} ≤ T

Σ �a rec s.S ≤ T

SUB-RECRHT:
Σ ∪ {S ≤ rec t.T} �a S ≤ T{|rec t.T/t|}

Σ �a S ≤ rec t.T

141

CHAPTER 5. THE TYPE SYSTEM

For the sake of readability, we do not give the sets of assumptions in full.

Σ2 �a rec t.Chan〈InCh〈t〉〉 ≤ rec s.InCh〈s〉
Σ2 �a InCh〈rec t.Chan〈InCh〈t〉〉〉 ≤ InCh〈rec s.InCh〈s〉〉

Σ1 �a InCh〈rec t.Chan〈InCh〈t〉〉〉 ≤ rec s.InCh〈s〉
Σ1 �a Chan〈InCh〈rec t.Chan〈InCh〈t〉〉〉〉 ≤ InCh〈rec s.InCh〈s〉〉

Σ0 �a Chan〈InCh〈rec t.Chan〈InCh〈t〉〉〉〉 ≤ rec s.InCh〈s〉
∅ �a rec t.Chan〈InCh〈t〉〉 ≤ rec s.InCh〈s〉

5.4 Soundness of the Type Safety System

We need to show that if a definition set passes our type safety test, then

the running Oompa systems which can evolve from its initial system will

never commit a type violation. This is usually called the soundness of a type

system. It is useful to have a concept of the state of the type system “at run

time”. We augment the type safety system to give the dynamic type safety

system, which allows us to check that a running Oompa system is obeying

the type discipline.

We use this concept to prove the soundness of our type safety system

in three stages. First, we show that dynamically type safe systems are not

committing a type violation. Then, we show that a type safe definition set

gives rise to a dynamically type safe initial system. Finally, we show that

dynamic type safety is preserved by the operational semantics.

This technique is a version of subject reduction [WF91], which considers

“each intermediate state of a program is itself a program [. . .]. Thus, proving

type soundness reduces to proving that well-typed programs yield only well-

typed results.” There are two details to consider when applying this approach

to Oompa. First, our programs are written in static definitions, which are

type checked, and our agents are not of the same form (this is why we will

142

CHAPTER 5. THE TYPE SYSTEM

need a separate dynamic type safety system). Second, it is not useful to

consider an Oompa expression reducing to a result, so we merely require all

the systems arrived at by the operational semantics to be dynamically type

safe.

5.4.1 Dynamic Type Safety

Given an agent system Γ � g{Φ∆, we use the notation Γ ��d g{Φ∆ to mean that

the system is type safe in a dynamic sense, i.e. all values in the system are

being used appropriately. To speak about the type safety of agent code (as

opposed to static method code) we need to modify the original type safety

system slightly to take account of naming issues.

The dynamic type safety system for code is like that of the type safety

system for code except four rules, TSS-NEW, TSS-CRT, TSS-RCV and TSS-

ACC, have changed. It is given by the nine rules in Table 5.5.

The dynamic type safety of an agent system is defined in terms of its

parts, as follows:

• We say Γ ��d g{Φ∆ if and only if Γ,Φ ��d g and Γ,Φ ��d ∆.

• We say Γ,Φ ��d g if and only if g = nil or g = o1[p1]| . . . on[pn] where
Γ,Φ ��d oi[pi] for all i.

• We say Γ,Φ ��d o[p] if and only if Φ(o) = C for some class C where

class C {a1: AtT1 · · · an: AtTn mdef1 . . .mdefn′} ∈ Γ

such that Γ,Φ ∪ {a1: AtT1 . . . an: AtTn} ��d p.

• We say Γ,Φ ��d ∆ if and only if for all o ∈ Dom(∆) we have Φ(o) = C
for some class C where

class C {a1: Attr{T1} · · · an: Attr{Tn} mdef1 . . .mdefn′} ∈ Γ

143

CHAPTER 5. THE TYPE SYSTEM

Table 5.5: Rules for the Dynamic Type Safety of Code

DTS-END: Γ,Φ ��d end

DTS-FRK:
Γ,Φ ��d p0 Γ,Φ ��d p1
Γ,Φ ��d fork{p0} p1

DTS-NEW:
Γ,Φ ∪ {c′: ChT} ��d p{|c

′
/c|}

Γ,Φ ��d new c: ChT: p

DTS-SND:

Γ,Φ � c: OuCh〈T1, . . . Tn〉 Γ,Φ � v1:T1 · · ·Γ,Φ � vn:Tn Γ,Φ ��d p
Γ,Φ ��d c!〈v1, . . . vn〉 p

DTS-RCV:

Γ,Φ � c: InCh〈T1, . . . Tn〉 Γ,Φ ∪ {r′1:T1, . . . r
′
n:Tn} ��d p{|r

′
1/r1 . . .

r′n/rn|}
Γ,Φ ��d c?(r1:T1, . . . rn:Tn) p

DTS-CRT:
Γ,Φ ∪ {o′:C} ��d p{|o

′
/o|}

Γ,Φ ��d create o:C: p

where C is defined as a class in Γ.

DTS-INV:


Γ,Φ � o: Intf{m?(T1, . . . Tn)!〈T ′
1 . . . T

′
n′〉}

Γ,Φ � v1:T1 · · · Γ,Φ � vn:Tn
Γ,Φ ∪ {x: Chan〈T ′

1, . . . T
′
n′〉} ��d x?(r1:T ′

1, . . . rn′:T
′
n′)p




Γ,Φ ��d o.m!〈v1, . . . vn〉?(r1, . . . rn′) p
where x is new.

DTS-ACC:
Γ,Φ � a: Attr{T} Γ,Φ ∪ {r′:T} ��d p{|r

′
/r|}

Γ,Φ ��d a?r p

DTS-UPD:
Γ,Φ � a: Attr{T} Γ,Φ � v:T Γ,Φ ��d p

Γ,Φ ��d a!v p

144

CHAPTER 5. THE TYPE SYSTEM

such that for all a ∈ Dom(∆(o)) we have a = ai for some i and Γ,Φ �
o(a):Ti.

A key property of dynamic type safety is that an Oompa system which is

dynamically type safe is not type violating.

C.3.1

p331Lemma 5.4.1 If Γ ��d g{Φ∆ then Γ � g{Φ∆ is not type violating.

Another important property is that the initial system of a statically type

safe definition set is dynamically type safe. Recall that gΓ is the initial agent

derived from a definition set (see page 83).

C.3.3

p332Lemma 5.4.2 If Φ0 � Γ then Γ ��d gΓ{Φ0

∅ .

5.4.2 Preservation of Dynamic Type Safety

We know that a dynamically type safe system is not type violating and we

know that a statically type safe definition set gives rise to an agent system

which is dynamically type safe. To guarantee that this agent system will not

become type violating, it is sufficient to show that the operational semantics

preserve dynamic type safety.

C.3.6

p333Theorem 5.4.3 If Φ0 � Γ and Γ ��d g{Φ∆ and Γ � g{Φ∆−→ g′{Φ′
∆′ then

Γ ��d g′{Φ′
∆′

C.3.7

p341Theorem 5.4.4 (Type Safety) If Φ0 � Γ and Γ � gΓ{Φ0

∅ =⇒ g{Φ∆ then

Γ � g{Φ∆ is not type violating.

5.4.3 Configurations and the Type System

A type checked Oompa program has been shown to be type safe for the agent-

based operational semantics. We make use of this result and the results of

145

CHAPTER 5. THE TYPE SYSTEM

Section 4.3 to establish the corresponding result for the configuration-based

operational semantics.

The concept of type violation for an agent system can be used to identify

the same class of unwanted behaviour for a configuration system. Simply

flatten Γ � K to give the agent system Γ � Flatten(K) and test it for

a type violation. Similarly, an Oompa configuration system, Γ,Φ � K, is
dynamically type safe if

Γ ��d Flatten(K{Φ∅)

We write this Γ,Φ ��d K.
We may want to consider the dynamic type safety of a subsystem which

has received values by interacting with other subsystems. Consequently, we

need to express the fact that the values exchanged by these interactions were

correctly typed.

A type safe reception in Γ,Φ is either a receive c?〈v1, . . . vn〉 or an activate
o.m?〈v1, . . . vn〉 where, in the first case we require

Γ,Φ � c: InCh〈T1, . . . Tn〉
Γ,Φ � vi:Ti ∀i

for some Ti, and in the second case we require

Γ,Φ � o: Intf{m?(T1, . . . Tn)!〈S1, . . . Sn′〉}
Γ,Φ � vi:Ti ∀i

for some Ti, Si.

C.4.6

p343Theorem 5.4.5 Say Φ � Γ and Γ,Φ ��d K then

1. If Γ,Φ � K �� K ′ then Γ,Φ ��d K ′.

2. If Γ,Φ � K c!〈v1,...vn〉 �� K ′ then Γ,Φ ��d K ′.

146

CHAPTER 5. THE TYPE SYSTEM

3. If Γ,Φ � K c?〈v1,...vn〉 �� K ′ and c?〈v1, . . . vn〉 is a type safe reception in

Γ,Φ, then Γ,Φ ��d K ′.

4. If Γ,Φ � K o.m!〈v1,...vn〉
x:T

�� K ′ then Γ,Φ ��d K ′.

5. If Γ,Φ � K o.m?〈v1,...vn〉
x:T

�� K ′ and o.m?〈v1, . . . vn〉 is a type safe reception
in Γ,Φ, then Γ,Φ ��d K ′.

C.4.7

p346Corollary 5.4.6 (Type Safety) If Γ,Φ ��d K1 and Γ,Φ � K1
L1

L2

�� K2 and

all the receptions in L1 are type safe, then Γ,Φ ��d K2.

5.5 Comparison with Other Work on Type

Systems

We have taken the type system of [PS93a] as a basis for our work. This

presents a type system for the π-calculus with recursive channel types and

which is statically type checkable. Thus, this type system is similar to the

subset of ours where primitive types and interface types are dropped. Our

proofs of the termination, soundness and completeness of our subtyping sys-

tem are based directly upon their technique. For a formal definition of trees

we choose an approach based on the definitions in [AC91], which considers

recursive function types.

Several of the systems we discussed in Section 2.3 have associated type

systems and we consider some here.

The type systems of the various object calculi in [AC96] can be related to

the one we are using. In particular, the type system of the language Ob1<:µ

seems similar, as it uses recursion to bind object self-references. A side-

effect of the use of method update in their languages is that some seemingly

147

CHAPTER 5. THE TYPE SYSTEM

desirable subtype relationships cannot be established. Within their system

methods can be made non-writable and then, like Oompa, these subtype

relationships can be derived.

Although predominantly object-based, class structures for some of their

languages are given. However, class and interface definitions are used infor-

mally and no equivalent notion to our expansion is described. This means

there is no explicit way of dealing with inter-referential definitions in the

context of subtyping.

Another system whose type system is worth considering is TyCO [Vas94a],

which has a statically checked type system. Objects are primitive in TyCO

but class-like entities may be defined using a “let” construction. A corre-

sponding notion of subclassing can similarly be defined. TyCO doesn’t have

an explicit subtyping system but a similar effect is achieved by making the

rule which type checks invocation apply to any object which has an appro-

priate method of the correct arity. Thus an object of one type may stand for

an object of another as the receiver of an invocation.

A number of approaches to the typing and subtyping of object systems

are considered in the literature. Four approaches are compared in [BCP97].

One uses recursion to deal with interface types and resembles our approach to

typing objects. The other approaches use existential types or a combination

of existential and recursive types.

The approach to subtyping object languages using existential types to

bind object self-references rather than recursive types is illustrated in [PT94].

The advantage is put forward as a simplification of the underlying theory.

In fact, the existential quantifier can be encoded using a universal quantifier

which seems an obvious simplification in languages with polymorphism where

the universal quantifier is already present. Due to the presence of recursive

148

CHAPTER 5. THE TYPE SYSTEM

channel types and the absence of this kind of polymorphism in our system,

however, it seems desirable to use the recursive quantifiers for dealing with

self-references. Abadi and Cardelli [AC96] use a combination of recursive

and existential operators to give what they call the self quantifier . This has

interesting subclassing properties.

5.6 Summary

In this chapter we defined Oompa’s type system. We identified a class of be-

haviours, called type violations, that we would not wish an Oompa program

to perform. We defined a type safety system which can test a definition set

to see if it will ever perform a type violation. Those programs which fail the

test are excluded.

We gave our type system a sophisticated subtyping system and an al-

gorithm which can test whether two types lie in the subtype relation. We

defined a semantics for types in terms of infinite trees and used this semantics

to justify the soundness of the subtyping algorithm. We proved that the type

safety system was sound for both the agent-based and configuration-based

operational semantics.

149

Chapter 6

Sequential Process

Specifications

We intend our formal method to support the modelling and development

of distributed object-oriented systems. So far, we have defined a formal

language, Oompa, which can be used to express designs for these systems.

Although we can use the semantics to describe the behaviour of Oompa pro-

grams, as yet we have no formal way of ensuring this behaviour is suitable.

We need some additional theory for discussing and manipulating such be-

haviour.

In this chapter we introduce a simple language which allows us to express

specifications of abstract behaviour. Primarily targeted at supporting a de-

velopment process, it allows us to develop specifications incrementally using

a form of refinement. We demonstrate its use by taking an example from the

literature, a scheduler, and incrementally developing its specification.

In Section 6.1, we discuss the issue of how abstract behaviour is expressed.

Section 6.2 gives a brief introduction to CCS, including a definition of sequen-

tial process expressions whose theory we explore further in Section 6.3. We

150

CHAPTER 6. SEQUENTIAL PROCESS SPECIFICATIONS

introduce our specification language in Section 6.4, providing its syntax and

semantics. Section 6.5 defines a notion of refinement for the language. In

Section 6.6, we demonstrate the use of our approach by developing the speci-

fication of a simple scheduler. Section 6.7 describes how we use the language

for specifying the behaviour of Oompa systems. We consider some related

work in Section 6.8 and summarise the chapter in Section 6.9.

6.1 Expressing Abstract Behaviour

Oompa is a language for expressing designs for distributed object-oriented

systems. The designs it expresses are primarily structural — they describe

how the system should be built. The requirements of the system, however,

are most likely to be properties of the behaviour of the system rather than

properties of its structure. It is appropriate, then, to have some intermediate

development step between the requirements and the designs for managing this

behavioural information. We will provide a simple behavioural specification

language for expressing this type of behaviour. There are three features we

will require of this language.

Firstly, we will want this language to be able to express the behaviour of

the systems we are to develop. The designs of these systems will be specified

in Oompa, so the language will need to express behaviour that corresponds to

the actions of Oompa programs. Those actions are precisely the transitions of

the labelled transition system defined for the configuration-based operational

semantics.

Secondly, we will want it to be quite abstract. We will use this language

in the development stage before design, so it is important for it to express

behaviour without inadvertently biasing the development towards certain

151

CHAPTER 6. SEQUENTIAL PROCESS SPECIFICATIONS

designs. It should focus on behaviour patterns and have only limited support

for expressing structure.

Thirdly, we will want to be able to refine the expressions of our language.

Refinement, in general, is the process of evolving an abstract description of

a system into a more concrete one. We will use refinement in a more specific

way. When a system has to satisfy several requirements, it is difficult to

account for them simultaneously. If the development process is incremental,

one can allow each of the requirements to influence the specifications sep-

arately. It is then much easier to justify the complete specification as the

result of a sequence of individually justified steps. A language which supports

refinement allows its expressions to be developed incrementally.

In terms of the first requirement, Oompa’s labelled transition system re-

sembles the labelled transition system of the π-calculus. Although, the tran-

sitions are slightly different, Oompa programs, like π-calculus expressions,

can communicate newly created names. With respect to the second require-

ment, the π-calculus seems like it would have the right level of abstraction.

In fact, it seems likely to us that a language similar to the π-calculus would

make a suitable language for specifying the abstract behaviour of Oompa

programs.

Unfortunately, the π-calculus fails the third requirement; there is no real

support for developing abstract descriptions of behaviour. The formal theory

of the π-calculus is dominated by equivalences, i.e. symmetric relationships

which assert that two processes can be considered the same with respect to

some criteria. This kind of reasoning can be useful in development: starting

with a specific pattern of behaviour, the π-calculus allows us to consider

how more detailed systems can have that behaviour up to various levels of

exactness. However, for specification purposes, we also need to justify the

152

CHAPTER 6. SEQUENTIAL PROCESS SPECIFICATIONS

initial pattern of behaviour. This question seems outside the scope of the

π-calculus.

The language we present is our first step towards a π-calculus-like lan-

guage which supports a form of refinement. The π-calculus is based on CCS;

our language extends CCS with an extra level of nondeterminism for sup-

porting this kind of refinement.

6.2 CCS

In this section, we give a brief introduction to CCS (the Calculus of Com-

municating Systems) [Mil89].

Let Act be the set of atomic actions, represented by a, b, c. These will be

the smallest units of behaviour we wish to discuss. Let Pid be a set of process

identifiers, represented by s. The core of CCS is a sequential language called

sequential process expressions. The syntax of sequential process expressions

and their definitions are given by1:

p ::= s〈v1, . . . vn〉 | ∑
i∈I ai.pi

Def ::= s(r1, . . . rn)
def
= p′

where p′ is a summation and I is a finite index set.

The expression
∑
i∈I ai.pi describes a process which can perform any of

the actions ai, after which it behaves according to the sequential process ex-

pression pi. When s has definition s(r1, . . . rn)
def
= p, an expression of the form

s〈v1, . . . vn〉 has the same behaviour as the expression p{|v1/r1, . . . vn/rn|}. Re-
1We use a form of summation that is defined over prefixed processes as found in [Mil99].

In older presentations of CCS, such as [Mil89], summation was between any process ex-

pressions.

153

CHAPTER 6. SEQUENTIAL PROCESS SPECIFICATIONS

Table 6.1: Labelled Transition Rules for Sequential Process Expressions

∑
i∈I
ai.pi

aj→ pj
s(r1, . . . rn)

def
= p p{|v1/r1 . . . vn/rn|} a→ p′

s〈v1, . . . vn〉 a→ p′

peated behaviour can be achieved with recursion on definitions. We will use

the symbol 0 for the empty sum and often abbreviate a.0 as just a.

The semantics of sequential process expressions is given by the labelled

transition system defined by the two rules in Table 6.1.

To extend the language of sequential process expressions to give the full

CCS language, we first need to put some structure on the set of actions. We

assume that Act = A ∪ A ∪ {τ} where A is a set of names and A is an

isomorphic set of co-names . We will use a, b, c for elements of A and a, b,

c for elements of A. Together, the elements of A and A are the observable

actions and we will use λ to represent an observable action. The action τ is

called the silent action. We will use α to represent an element of Act.

The syntax of CCS is given by:

p ::= s〈v1, . . . vn〉 | ∑
i∈I αi.pi | p | q | p\L | p[f]

Def ::= s(r1, . . . rn)
def
= p′

Here L is a set of names and f is a relabelling function from names to names.

The new expression, p | q, describes the behaviour of the two processes, p
and q, when placed in parallel. The expression p\L makes those actions of L
which occur in p unobservable. The expression p[f] describes a process which

behaves like p except that the actions it performs are changed according to

f .

The significance of the addition of concurrent process expressions is not

154

CHAPTER 6. SEQUENTIAL PROCESS SPECIFICATIONS

Table 6.2: Labelled Transition Rules for CCS

∑
i∈I
αi.pi

αj→ pj
s(r1, . . . rn)

def
= p p{|v1/r1 . . . vn/rn|} α→ p′

s〈v1, . . . vn〉 α→ p′

p
α→ p′

p | q α→ p′ | q
q
α→ q′

p | q α→ p | q′
p
λ→ p′ q

λ→ q′

p | q τ→ p′ | q′

p
α→ p′

p[f]
f(α)→ p′[f]

p
α→ p′

p\L α→ p′\L
where, in the last rule, α, α /∈ L.

just that we can express interleavings of the processes’ behaviours. Also, we

can describe the ways in which they can interact: two concurrent processes,

one which can perform an action λ from the set of names and another which

can perform the action λ from the set of co-names can interact by performing

both actions together. To an observer, the details of this private interaction

are not clear and it appears as though the complete system has performed

the silent action τ .

The semantics of CCS is given by the labelled transition system defined

by the seven rules in Table 6.2.

In order to determine whether two structurally different processes de-

scribe the same behaviour, we compare them in the labelled transition sys-

tem. CCS uses two different equivalence relations for this: strong bisimula-

tion and weak bisimulation. The idea is to distinguish two processes only if

some third party interacting with them could distinguish them2. The differ-

2However, the distinctions made by these equivalences are finer than any third party,

expressed as a process in CCS, could make. “In order to distinguish observationally in-

equivalent processes like a.b.c+a.b.d and a.(b.c+b.d) one has to make fargoing assumptions

155

CHAPTER 6. SEQUENTIAL PROCESS SPECIFICATIONS

ence between strong and weak bisimulation is that with strong bisimulation,

the third party treats silent actions like any other action whereas, with weak

bisimulation, the third party doesn’t observe them. Because it is designed to

be sensitive only to observable differences, weak bisimulation is also called

observational equivalence.

A binary relation S between processes is a strong bisimulation if (p, q) ∈ S
implies, for all α ∈ Act,

• whenever p α→ p′ then, for some q′, q α→ q′ and (p′, q′) ∈ S.

• whenever q α→ q′ then, for some p′, p α→ p′ and (p′, q′) ∈ S.

If there exists a strong bisimulation which contains the pair (p, q) then we

say p and q are strongly bisimilar and write p ∼ q.

If there is a sequence of zero or more silent actions that will take p to p′,

then we write p⇒ p′. We write p α⇒ p′ if p⇒ α→⇒ p′.

A binary relation S between processes is a weak bisimulation3 if (p, q) ∈ S
implies, for all α ∈ Act,

• whenever p α→ p′ then, for some q′, q α⇒ q′ and (p′, q′) ∈ S.

• whenever q α→ q′ then, for some p′, p α⇒ p′ and (p′, q′) ∈ S.

If there exists a weak bisimulation which contains the pair (p, q) then we say

p and q are weakly bisimilar (or observationally equivalent) and write p ≈ q.
For example, given the following two definitions:

s1(a, b)
def
= a.s1〈a, b〉+ b.s2〈b, a〉 s2(a, b)

def
= a.s2〈b, a〉+ b.s1〈a, b〉

on the power of observation. In any case, it cannot be done by any of the CCS opera-

tors.” [vG97]. We will consider this issue further in the next section.
3This definition is compatible with that defined in Section 4.2.5. The differences are

due to the context needed by configurations and the labels used in the labelled transition

system of the configuration-based dynamic system.

156

CHAPTER 6. SEQUENTIAL PROCESS SPECIFICATIONS

we can show that s1〈a, b〉 ∼ s2〈a, b〉. The following relation is a bisimulation
which contains that pair:

S =
{ (s〈w, x〉, s′〈y, z〉) | s, s′ ∈ {s1, s2}, (w, x), (y, z) ∈ {(a, b), (b, a)} }
∪ { (x.s〈w, x〉+ w.s′〈w, y〉, y.s′〈z, y〉+ z.s〈y, z〉) | s, s′ ∈ {s1, s2},

(w, x), (y, z) ∈ {(a, b), (b, a)} }

6.2.1 Nondeterminism in CCS

CCS allows non-determinism to be expressed using a combination of its sum-

mation operator and its silent action. The expression
∑
i∈I αi.pi describes

a process which can perform any of the actions αi, after which it behaves

according to the CCS expression pi. Although we know it can perform these

actions, an ambiguity exists about which action it will perform. Perhaps the

process will allow its environment to select any of the actions; perhaps it

will insist on performing only αi for some i. These two behaviours differ in

their degree of nondeterminism and, for interactive systems, this difference

is significant.

The approach CCS takes to this issue is to use the silent action to rep-

resent an internal action taken by a process independent of, and unobserved

by, its environment. Summations which only involve names and co-names

allow their environment to choose and hence are deterministic. If there is a

silent action in a choice, then the process can choose to perform that silent

action without cooperation from the environment. In this case, the process

is nondeterministic since the environment cannot rely on its behaviour.

We find this way of expressing nondeterminism somewhat unintuitive.

157

CHAPTER 6. SEQUENTIAL PROCESS SPECIFICATIONS

Consider the following eight processes:

a.(b+ c) a.(τ.b+ c) a.(b+ τ.c) a.(τ.b+ τ.c)

a.b+ a.c τ.a.b+ a.c a.b+ τ.a.c τ.a.b+ τ.a.c

All of these processes can perform the same traces (sequences of observable

actions), namely ab and ac, but they all behave differently. For example,

the first process performs an a action and then offers the environment the

choice of whether it performs a b action or a c action. The second performs

an a action and reaches a state where it can allow the environment to choose

between b and c or it can decide to only allow c. The fourth performs an a

action and then decides to perform either a b or a c.

Observational equivalence is the most important of the equivalences for

CCS. When we apply it to the above eight processes, we find that it dis-

tinguishes all of them. This is appropriate if we are considering how these

processes might represent the abstract behaviour of some more detailed pro-

cesses. It is less appropriate as a way of specifying their behaviour in terms

of how it is experienced by another process.

Lets consider the behaviour of the above eight processes and ask how a

CCS process in parallel with them would experience their differences. This

approach corresponds to the idea of testing equivalence [dNH84]. The most

powerful way such a process could discriminate between the above processes

would be to try to force them to perform one of their traces but not the

other. In order to distinguish between the processes, then, we will consider

how they behave when we put them in parallel with one of the following

processes: a.b.w and a.c.w. If the composed system can perform a w action

then we say that the test has succeeded; otherwise, the test has failed. In

order to have the best chance of differentiating between them, we will assume

158

CHAPTER 6. SEQUENTIAL PROCESS SPECIFICATIONS

that we are allowed to repeatedly perform the tests.

The following table gives the results of the tests, asserting whether the

each of the two tests always succeeds or only sometimes succeed.

a.b.w a.c.w

a.(b+ c) always always

a.(τ.b+ c) always sometimes

a.(b+ τ.c) sometimes always

a.(τ.b+ τ.c) sometimes sometimes

a.b+ a.c sometimes sometimes

τ.a.b+ a.c sometimes sometimes

a.b+ τ.a.c sometimes sometimes

τ.a.b+ τ.a.c sometimes sometimes

We discover that, from an observer’s point of view, the last five processes

are indistinguishable. However, an observer can distinguish each of the first

three from each other and the rest.

Beyond merely asserting information about equivalences, the table also

suggests an ordering. Say that we have some situation for which we know

that the fourth process is suitable. The above table suggests that any of the

eight processes can successfully occupy that role because, where the other

processes differ, they differ by being more reliable. Now say that we have

some context where we know the second process is suitable. This time we

can only assume that the first two processes will be suitable.

This suggests that the eight processes might stand in some kind of refine-

159

CHAPTER 6. SEQUENTIAL PROCESS SPECIFICATIONS

ment relation, i.e. one which includes4:

a.(τ.b+ τ.c) % a.b+ a.c % τ.a.b+ a.c % a.b+ τ.a.c % τ.a.b+ τ.a.c

τ.a.b+ τ.a.c % a.(τ.b+ τ.c)

a.(τ.b+ τ.c) % a.(τ.b+ c) % a.(b+ c)

a.(τ.b+ τ.c) % a.(b+ τ.c) % a.(b+ c)

This is close to the sort of refinement we are looking for but we find

the way CCS expresses nondeterminism makes the refinements hard to see.

Instead, we take inspiration from CSP [Hoa84], which expresses this kind of

nondeterminism in an alternative way. Rather than using + and τ , CSP has

two binary choice operators that make the party responsible for the choice

explicit. These are external choice (�) and internal choice (&). Under the
standard interpretation, P � Q is a choice between behaviours P and Q over
which the environment has control, whereas P & Q is a similar choice over

which the environment has no control.

The language we introduce is called sequential process specifications. The

intention is to support a kind of refinement close to that present in CSP, but

describe CCS-like behaviour. The expressions of our language are specifica-

tions because we think of them specifying ranges of behaviour rather than

being descriptions of behaviour themselves.

Our system has operators � and & which are similar, but not identical,
to their CSP counterparts. P � Q specifies a system which is committed

to behave according to both of the specifications P and Q. This resembles

external choice, since in both cases we can rely on both behaviours. P & Q
specifies a system which is only committed to behave according to one of P

and Q (although it may allow both). This resembles internal choice, as we

4In fact, this is precisely what we find if we express the eight processes in CSP and use

CSP’s failure semantics.

160

CHAPTER 6. SEQUENTIAL PROCESS SPECIFICATIONS

can only rely on one of the behaviours actually occurring.

6.3 Some Theory of Sequential Process Ex-

pressions

Our system will be built upon sequential process expressions, as defined in

Section 6.2, which we will use to expresses specific patterns of behaviour. In

this section we define some theory of this simple language that we will need.

From this point on, we will assume that p, q, etc. stand for sequential process

expressions (i.e. not expressions of full CCS).

Lemma 6.3.1 ∼ is reflexive, symmetric and transitive.

It follows from this that strong bisimulation is an equivalence relation.

We will be considering sets of sequential process expressions and will often

consider the quotient set over ∼. We will write the ∼-equivalence class of a

sequential process expression p as [p].

We will need the following useful representative for ∼-equivalence classes

of strongly bisimilar sequential process expressions. A sequential process

expression is said to be in normal form if:

1. It is in summation form.

2. Any two summands with the same action prefix have non-bisimilar

continuations.

3. All continuations in the summation should be in definition form, where

the bodies of those definitions are in normal form.

161

CHAPTER 6. SEQUENTIAL PROCESS SPECIFICATIONS

For example, a.s1〈a, b, c〉+ c.s2〈c〉+ a.s3〈b, b〉 is in normal form, where

s1(a, b, c)
def
= a + c s2(c)

def
= 0 s3(b, c)

def
= b+ c.s3〈c, b〉

In order to give a concise definition of satisfaction (in Section 6.4.2) we

will consider a sequential process expression to be in near normal form if it is

either in normal form or in definition form where the body of the definition is

in normal form. For the purpose of proving the Lemma 6.3.3, we will define

pseudo-normal form to be normal form where instead of condition 3 we insist

that continuations be either in definition form or pseudo-normal form.

Lemma 6.3.2 Every sequential process expression is strongly bisimilar to a

sequential process expression in pseudo-normal form.

Proof: A sequential process expression is clearly strongly bisimilar to some

sequential process expression in summation form p1. Let p2 be obtained from

p1 by checking the continuations of summands with the same action prefix.

If any are found to be strongly bisimilar then remove all but one. Repeat

this process at all the remaining continuations not in definition form. The

result is a process in pseudo-normal form which is strongly bisimilar to the

original process. �

Lemma 6.3.3 Every sequential process expression is strongly bisimilar to a

sequential process expression in normal form.

Proof: The body, p, of every definition is strongly bisimilar to a process

in pseudo-normal form by Lemma 6.3.2. Starting at the innermost subterms,

and working outwards, we can replace the continuations by definition forms,

all of whose bodies are in normal form. This process finally gives us a new

body which is in normal form and which is strongly bisimilar to p.

162

CHAPTER 6. SEQUENTIAL PROCESS SPECIFICATIONS

We can apply this procedure to a given sequential process expression and,

since all definition bodies are strongly bisimilar to a normal form, this given

expression will be in normal form. �
As it stands, normal forms are not necessarily unique. However, there

are many ways we could choose a unique normal form, so we do not concern

ourselves with this issue here. Thus, we write the normal form of a sequential

process expression p as p and, given an equivalence class [p], we will use p as

its representative.

Syntactically, the + operator separates prefixed processes, not processes

themselves. Thus, if we want to describe a process which can behave as

described by the sequential process expression p and behave as described

by the sequential process expression q, we cannot use + directly to join the

two expressions. Instead, we define an operator, 4, on sequential process

expressions in summation form to be:

�i∈I
∑
j∈Ji

aij.p
i
j =

∑
i∈I, j∈Ji

aij .p
i
j

We can extend its definition to sequential process expressions of the form

s〈v1, . . . vn〉 by looking-up definitions.

Lemma 6.3.4

1. 4 is associative and has 0 as an identity up to equality.

2. 4 is symmetric up to ∼.

Lemma 6.3.5 Say p and q are strongly bisimilar sequential process expres-

sions. Then

1. If r is a sequential process expression, then p 4 r ∼ q 4 r.

2. If a is an action, then a.p ∼ a.q.

163

CHAPTER 6. SEQUENTIAL PROCESS SPECIFICATIONS

3. p 4 p ∼ q.

Proof: Say R is a strong bisimulation containing the pair (p, q).

1. Everything is bisimilar to itself, so let R′ be a strong bisimulation

containing (r, r). Then {(p 4 r, q 4 r)} ∪R∪R′ is a strong bisimulation

containing the pair (p 4 r, q 4 r).

2. In this case, {(a.p, a.q)} ∪ R is a strong bisimulation containing the

pair (a.p, a.q).

3. {(p 4 p, q)} ∪ R is a strong bisimulation containing the pair (p 4 p, q).

�

6.4 Sequential Process Specifications

The role of the language we introduce in this section is to allow patterns of

behaviour to be developed in several steps. We are using sequential process

expressions to express specific patterns of behaviour, so our language can be

thought to specify sequential process expressions.

The actions of sequential process specifications are drawn from the same

set, Act, as for sequential process expressions. They will, however, use dif-

ferent process identifiers for which we will use the symbol S. The syntax of

sequential process specifications and their definitions is given by:

P ::= S〈v1, . . . vn〉 | a.P |
i∈I
Pi |

i∈I
Pi

Def ::= S(r1, . . . rn)
def
= P ′

where P ′ is not in definition form.

164

CHAPTER 6. SEQUENTIAL PROCESS SPECIFICATIONS

We call the � and & operators choice and meet respectively. Notice that,
syntactically, they separate process specifications (unlike + for sequential

process expressions). We reuse the symbol 0 for the empty choice and use

the symbol ' for the empty meet. An important algebraic point about �
and & is that they are not idempotent (see page 172). This means we must
be careful with how elements i are drawn from the index sets I in the indexed

forms of these operators. We will assume that such elements are drawn from

the set only once.

The intention is to allow us to specify a process by asserting that it must

have certain behaviour and describing other behaviour that it may or may

not have. So a process described by
i∈I
Pi must be capable of behaving

according to all the sequential process specifications Pi and a process de-

scribed by
i∈I
Pi must be capable of behaving according to one or more of

the sequential process specifications Pi.

We now give some examples of sequential process specifications. The

specification a � b is intended to specify the process which offers a choice of
a and b, i.e. a+b. The specification a&b is intended to specify processes which
can do an a or do a b or offer the choice of both an a and a b; i.e. any of the

sequential process expressions a, b and a + b. A more complex specification

illustrates the interplay between the two operators: a � (b& (c � d)). Three
sequential process expressions which satisfy this specification are a+b, a+c+d

and a + b + c + d. Some similar sequential process expressions with do not

satisfy the specification are a+ c and a+ b+ d.

We primarily use the & operator to allow decisions to be deferred, so we
can use a & b to describe a system which we know will offer an a or a b

or perhaps offer the choice of both. If desired, we can use our specification

system to develop processes with the kind of nondeterminism present in CCS.

165

CHAPTER 6. SEQUENTIAL PROCESS SPECIFICATIONS

Table 6.3: Rules for Equivalence

P ≡ P P ≡ Q
Q ≡ P

P ≡ Q Q ≡ R
P ≡ R

P ≡ Q
a.Q ≡ a.P

P ≡ Q
P � R ≡ Q � R

P ≡ Q
P & R ≡ Q & R

(P � Q) � R ≡ P � (Q � R) (P &Q) & R ≡ P & (Q & R)
P � Q ≡ Q � P P &Q ≡ Q & P
P � 0 ≡ P P & ' ≡ P

P � ' ≡ '

S(r1, . . . rn)
def
= P

S〈v1, . . . vn〉 ≡ P{|v1/r1, . . . vn/rn|}

This can be done simply by using τ as we would any other action. For

example, a & τ.b specifies any of the behaviours a, a+ τb or τ.b. The second
of these is nondeterministic.

6.4.1 Structural Equivalence

Structural equivalence for sequential process specifications is defined by the

fourteen rules in Table 6.3.

We will discover in the next section that certain other equivalences which

may initially seem believable are not true in general (with respect to our

notion of satisfaction).

166

CHAPTER 6. SEQUENTIAL PROCESS SPECIFICATIONS

6.4.2 Satisfaction

We now precisely define the relationship between specifications and the se-

quential process expressions which satisfy them.

Say Q is a binary relation between sequential process specifications and

sequential process expressions in near normal form. We say that Q is a

satisfying simulation if, for all (P, p) ∈ Q, we have:

• if p = s〈v1, . . . vn〉 where s(r1, . . . rn) def
= p′

then (P, p′{|v1/r1 . . . vn/rn|}) ∈ Q.

• else if P = S〈v1, . . . vn〉 where S(r1, . . . rn) def
= P ′

then (P ′{|v1/r1 . . . vn/rn|}, p) ∈ Q.

• else if P = a.P ′ then p = a.p′ and (P ′, p′) ∈ Q.

• else if P =
i∈I
Pi then p = �j∈Jpj and there exists some bijective

function f : J → I such that for all j ∈ J , (Pf(j), pj) ∈ Q.

• else if P =
i∈I
Pi then p =�j∈Jpj where J �= ∅ and there exists some

injective function f : J → I such that for all j ∈ J , (Pf(j), pj) ∈ Q.

If p is in normal form and there exists a satisfying simulation which

contains the pair (P, p) then we say that p satisfies P and write p sãt P . We

extend the definition to all sequential process expressions, writing p sãt P if

p sãt P .

The following lemma provides a useful intuition for the meaning of ':
it is the “impossible specification” which no process can satisfy. This also

makes sense when considering that ' is the identity of &. If we specify a
process with P &', we require it to behave according to P or ' or both. As
no process can behave as ', it follows that we are just requiring it to behave
according to P .

167

CHAPTER 6. SEQUENTIAL PROCESS SPECIFICATIONS

Lemma 6.4.1

1. If p sãt 0 then p ∼ 0.

2. There is no sequential process expression p such that p sãt '.

Lemma 6.4.2 Say p ∼ q. Then p sãt P iff q sãt P .

Proof: This is trivial since p and q will have the same normal form. �

Lemma 6.4.3

1. Say s(r1, . . . rn)
def
= p.

Then s〈v1, . . . vn〉 sãt P iff p{|v1/r1 . . . vn/rn|} sãt P .

2. Say S(r1, . . . rn)
def
= P .

Then p sãt S〈v1, . . . vn〉 iff p sãt P{|v1/r1 . . . vn/rn|}.

3. p sãt a.P iff p ∼ a.p′ where p′ sãt P .

4. p sãt
i∈I
Pi iff p ∼�i∈Ipi where for all i ∈ I, pi sãt Pi.

5. p sãt
i∈I
Pi iff p ∼ �j∈Jpj where ∅ �= J ⊆ I and for all j ∈ J ,

pj sãt Pj.

Proof:

1. Say s(r1, . . . rn)
def
= p. Then s〈v1, . . . vn〉 = p{|v1/r1 . . . vn/rn|}. Obvi-

ously, then, s〈v1, . . . vn〉 sãt p iff p{|v1/r1 . . . vn/rn|} sãt P as required.

2. Say S(r1, . . . rn)
def
= P .

(⇒) Say p sãt S〈v1, . . . vn〉. Then p sãt S〈v1, . . . vn〉. Therefore, there
exists a satisfying simulation Q such that (S〈v1, . . . vn〉, p) ∈ Q. But

168

CHAPTER 6. SEQUENTIAL PROCESS SPECIFICATIONS

then, (P{|v1/r1 . . . vn/rn|}, p) ∈ Q. So p sãt P{|v1/r1 . . . vn/rn|} and
hence p sãt P{|v1/r1 . . . vn/rn|}, as required.

(⇐) Say p sãt P{|v1/r1 . . . vn/rn|}. Then p sãt P{|v1/r1 . . . vn/rn|}. So
there exists a satisfying simulation Q such that (P{|v1/r1 . . . vn/rn|}, p)
∈ Q. Let Q′ = Q∪(S〈v1, . . . vn〉, p). Then Q′ is a satisfying simulation.

Therefore p sãt S〈v1, . . . vn〉 and hence p sãt S〈v1, . . . vn〉 as required.

3. (⇒) Say p sãt a.P . Then p sãt a.P . Therefore, there exists a satisfying

simulation Q such that (a.P, p) ∈ Q. Then p = a.p′ and (P, p′) ∈ Q.
So p′ sãt P . Well, p ∼ p = a.p′ as required.

(⇐) Say that p ∼ a.p′ where p′ sãt P . Then p′ sãt P . Therefore,

there exists a satisfying simulation Q such that (P, p′) ∈ Q. Let Q′ =

Q∪(a.P, a.p′). Then Q′ is a satisfying simulation and a.p′ sãt a.P . But

p ∼ a.p′ ∼ a.p′, so p sãt a.P as required.

4. (⇒) Say p sãt
i∈I
Pi. Then p sãt

i∈I
Pi. Therefore, there exists a

satisfying simulation Q such that (
i∈I
Pi, p) ∈ Q. This means that

p = �j∈Jpj and there exists a bijective function f : J → I such that,

for all j ∈ J , (Pf(j), pj) ∈ Q. So, for each j ∈ J , pj sãt Pf(j). For each

i ∈ I, let p′i = pf−1(i). Then p ∼ p =�i∈Ip′i and, for all i ∈ I, p′i sãt Pi,

as required.

(⇐) Say p ∼�i∈Ipi where, for each i ∈ I, pi sãt Pi. Then, for each i ∈
I, pi sãt Pi. Therefore, for each i ∈ I, there exists satisfying simulations
Qi such that (Pi, pi) ∈ Qi. Let Q =

⋃
i∈I Qi ∪ (

i∈I
Pi,�i∈Ipi). Then

Q is a satisfying simulation and �i∈Ipi sãt
i∈I
Pi. But p ∼ �i∈Ipi,

so p sãt
i∈I
Pi as required.

5. (⇒) Say p sãt
i∈I
Pi. Then p sãt

i∈I
Pi. Therefore, there exists

169

CHAPTER 6. SEQUENTIAL PROCESS SPECIFICATIONS

a satisfying simulation Q such that (
i∈I
Pi, p) ∈ Q. This means

that p = �j∈Jpj where J �= ∅ and there exists an injective function
f : J → I such that, for all j ∈ J , (Pf(j), pj) ∈ Q. So, for each j ∈ J ,
pj sãt Pf(i). Let K = f(J). Then ∅ �= K ⊆ I. For all k ∈ K, let
p′k = pf−1(k). Then, p ∼ p = �k∈Kp′k and, for all k ∈ K, p′k sãt Pk as

required.

(⇐) Say that p ∼ �j∈Jpj where ∅ �= J ⊆ I and, for all j ∈ J ,

pj sãt Pj. Then, for all j ∈ J , pj sãt Pj . Therefore, for all j ∈ J ,
there exists satisfying simulations Qj such that (pj , p′j) ∈ Qj . Let

Q =
⋃
j∈J Qj ∪ (

i∈I
Pi,�j∈Jpj). Then Q is a satisfying simulation

and �j∈Jpj sãt
i∈I
Pi. But p ∼ �j∈Jpj ∼ �j∈Jpj, so p sãt

i∈I
Pi

as required.

�
We will need a result which shows that satisfaction is not sensitive to

equivalence.

Lemma 6.4.4 Say that Q is a satisfying simulation containing the pair

(P, p). Say that Q ≡ P . Then there exists a satisfying simulation, Q′, such

that Q ⊆ Q′ and (Q, p) ∈ Q′.

Proof: We will, in fact, proof the following equivalent result:

Say thatQ is a satisfying simulation containing the pair (P, p).
Say that Q ≡ P or P ≡ Q. Then there exists a satisfying simu-
lation, Q′ such that Q ⊆ Q′ and (Q, p) ∈ Q′.

We use induction on the proof tree of Q ≡ P or P ≡ Q (whichever was used).
We provide four cases which illustrate the arguments needed.

170

CHAPTER 6. SEQUENTIAL PROCESS SPECIFICATIONS

Say that the proof tree ends with the following step:

Q ≡ P
P ≡ Q

where (P, p) was the original pair in Q. By the induction hypothesis, there
exists a satisfying simulation Q′ such that Q ⊆ Q′ and (Q, p) ∈ Q. This
is precisely the satisfying simulation we need. The argument also works if

(Q, p) was the original pair, so this case has been proved. Note that it was

for this case that we needed to use the alternative version of the result.

Say that the proof tree ends with the following step:

P ≡ Q
a.P ≡ a.Q

where (a.P, p) was the original pair in Q. Since Q is a satisfying simula-

tion, p = a.p′ where (P, p′) ∈ Q. By the induction hypothesis, there ex-
ists a satisfying simulation Q′ such that Q ⊆ Q′ and (Q, p′) ∈ Q′. Then

{(a.Q, a.p′)}∪Q′ will be a satisfying simulation with the required properties.

The argument also works if (a.Q, p) was the original pair, so this case has

been proved.

Say that the proof tree is simply an instance of:

(P � Q) � R ≡ P � (Q � R)

where ((P � Q) � R, p) was the original pair in Q. Since Q is a satisfying

simulation, we know that p = p1 4 p2 where either (P � Q, p1), (R, p2) ∈ Q
or (P � Q, p2), (R, p1) ∈ Q. We will consider only the first of these cases,
as the argument is virtually the same for both. Then, since Q is a satisfying

simulation, we know that p1 = p3 4 p4 where either (P, p3), (Q, p4) ∈ Q or

(P, p4), (Q, p3) ∈ Q. Again, we consider only the first case. Let

Q′ = Q ∪ {(Q � R, p4 4 p2), (P � (Q � R), p)}

171

CHAPTER 6. SEQUENTIAL PROCESS SPECIFICATIONS

Then Q′ is a satisfying simulation with the required properties. The argu-

ment also works if (P � (Q � R), p) was the original pair in Q, so this case
has been proved.

Say that the proof tree is simply an instance of:

P � ' ≡ '

In fact, this case cannot occur, since neither (P � ', p) nor (', p) could be
elements of any satisfying simulation. �

Corollary 6.4.5 Say P ≡ Q. Then p sãt P iff p sãt Q.

As a consequence of this, we can “close” a satisfying simulation with

respect to equivalence.

Corollary 6.4.6 Say that Q is a satisfying simulation. Then there exists

a satisfying simulation Q such that Q ⊆ Q and for every (P, p) ∈ Q and

Q ≡ P , we have (Q, p) ∈ Q.

Proof: Say f(Q, (P, p), Q) returns a satisfying simulation as described in
Lemma 6.4.4. Then let

Q =
⋃

(P,p)∈Q
f(Q, (P, p), Q)

This will have the required properties. �
Consider the following candidates for equivalence laws:

P ≡ P � P
P ≡ P & P

P � (Q &R) ≡ (P � Q) & (P � R)
P & (Q � R) ≡ (P &Q) � (P &R)

172

CHAPTER 6. SEQUENTIAL PROCESS SPECIFICATIONS

They all fail under our notion of satisfaction:

a.b+ a.c sãt/ a.(b & c)
a.b+ a.c sãt (a.(b & c)) � (a.(b & c))

a.b+ a.c sãt/ a.(b & c)
a.b+ a.c sãt (a.(b & c)) & (a.(b & c))

a.b+ b+ a.c+ c sãt/ (a.(b & c)) � (b & c)
a.b+ b+ a.c+ c sãt (a.(b & c) � b) & (a.(b & c) � c))

a + b sãt/ a & (b � c)
a + b sãt (a & b) � (a & c)

Some of these may, at first, seem slightly strange; for example, excluding

the expression a.b + a.c from satisfying the specification a.(b & c). However,
if we compare it to other sequential process expressions which do satisfy

the specification, a.b, a.c and a.(b + c), we discover that it has a significant

difference: it is nondeterministic. Furthermore, from a CCS perspective, it

represents nondeterminism that cannot be explained away as the external

behaviour of some internal decision making. Without τs to indicate when

the choice is made, there will be no more complex processes to which this

will be observationally equivalent.

Nevertheless, our sequential process specifications do allow such processes

to be specified. For example, with a specification such as a.b � a.c.

6.4.3 Semantics

Intuitively, the semantics of a sequential process specification is a set of

“acceptable” sequential process expressions — i.e. those expressions which

173

CHAPTER 6. SEQUENTIAL PROCESS SPECIFICATIONS

satisfy it. For technical reasons5, we define the actual semantics in terms of

the quotient set over bisimulation. Thus, the semantics of sequential process

specifications are defined as follows:

[[P]] = {q | q sãt P}/∼

An equivalent definition, explicitly in terms of ∼-equivalence classes, would

be:

[[P]] = {[q] | q sãt P}

Lemma 6.4.7 [[0]] = {[0]} and [[']] = ∅.

Lemma 6.4.8 If P ≡ Q then [[P]] = [[Q]].

The following lemma suggests an alternative definition of the semantics

which would not depend on satisfaction. The difficulty with such an approach

is managing recursive processes. They necessitate fixed point solutions. To

use fixed points would require us to prove various technical results showing

that the fixed points exist and are nontrivial.

Lemma 6.4.9

1. [[S〈v1, . . . vn〉]] = [[P{|v1/r1 . . . vn/rn|}]]
where S(r1, . . . rn)

def
= P

2. [[a.P]] = {a.p | [p] ∈ [[P]]}/∼

3. [[
i∈I
Pi]] = {�i∈Ipi | [pi] ∈ [[Pi]]}/∼

4. [[
i∈I
Pi]] = {�j∈Jpj | ∅ �= J ⊆ I, [pj] ∈ [[Pj]]}/∼

5By considering expressions up to bisimulation, we need only consider normal-forms.

This simplifies proofs.

174

CHAPTER 6. SEQUENTIAL PROCESS SPECIFICATIONS

Proof: Follows from Lemma 6.4.3. �
The semantics of even simple specifications can be surprisingly complex.

For example, consider the recursive sequential process specification:

S(a, b)
def
= a & b.S〈a, b〉

If we allow the sets of process identifiers and definitions to be large enough,

then the cardinality of [[S〈a, b〉]] is at least that of R. To see this, we can

construct non-bisimilar sequential process expressions for every real number

x, all of which satisfy S〈a, b〉. For each x ∈ R, n ∈ N, let xn be the nth digit

of the binary expansion of x and define a sequential process expression

sxn(a, b)
def
=



a+ b.sxn+1〈a, b〉 if xn = 1

b.sxn+1〈a, b〉 otherwise

Then [sx0〈a, b〉] ∈ [[S〈a, b〉]] for all x ∈ R. But if x1 �= x2 ∈ R, we have

sx10 〈a, b〉 � sx20 〈a, b〉, i.e. [sx10 〈a, b〉] �= [sx20 〈a, b〉] .

6.5 Refinement

Our notion of refinement is based on the same intuition as our semantics.

A sequential process specification describes a set of acceptable sequential

process expressions. If this is a set of acceptable expressions, then so is any

subset. Hence we give the following definition.

Say P and Q are two sequential process specifications. We say that Q

refines P if all sequential process expressions which satisfy Q also satisfy P .

We write this as P % Q.

Lemma 6.5.1 P % Q iff [[Q]] ⊆ [[P]].

If (ignoring the quotient) we view specifications as representing sets of

sequential process expressions, then P % Q means that any expression which

175

CHAPTER 6. SEQUENTIAL PROCESS SPECIFICATIONS

satisfies Q is strongly bisimilar to some specification which satisfies P . The

following picture illustrates this:

~

~

P Q

6.5.1 Simple Refinement Laws

We can show that this refinement obeys a number of simple refinement laws.

The first two refinement laws of the following lemma are called minimum

strengthening .

Lemma 6.5.2

1. P &Q % P � (Q & 0)

2. P &Q % (P & 0) � Q

3. P &Q % P

4. P &Q % Q

5. P &Q % P � Q

Proof: These can be proved using the representation of sequential process

expressions satisfying specifications given by Lemma 6.4.3. �

Lemma 6.5.3

6.
P ≡ P ′ P ′ % Q′ Q′ ≡ Q

P % Q

Proof: Follows from the definitions and Lemma 6.4.5. �

176

CHAPTER 6. SEQUENTIAL PROCESS SPECIFICATIONS

Lemma 6.5.4

7. P % P

8.
P % Q Q % R

P % R

Lemma 6.5.5

9.
P % Q

P � R % Q � R

10.
P % Q

P & R % Q & R

11.
P % Q

a.P % a.Q

Proof: These can be proved using Lemma 6.4.3. �
As in other syntactic systems, we can define a syntax of sequential pro-

cess specification contexts — i.e. sequential process specifications which may

contain holes into which other sequential process specifications can be sub-

stituted. We don’t give a definition of contexts here but they are defined as

expected. We can use contexts to elegantly summarises laws 9–11 as follows.

Corollary 6.5.6 (Monotonicity)

12.
P % Q

C[P] % C[Q]
C[·] is a sequential process specification context

177

CHAPTER 6. SEQUENTIAL PROCESS SPECIFICATIONS

We also note that the failed equivalence laws discussed above give rise to

refinement laws.

Lemma 6.5.7

13. P � P % P

14. P & P % P

15. (P � Q) & (P � R) % P � (Q & R)

16. (P &Q) � (P & R) % P & (Q � R)

Proof: Law 14 is a corollary of Lemma 6.5.2 (law 3). For the other cases,

use Lemma 6.4.3. �

6.5.2 Refining Simulation

We would like a way of checking whether two recursively defined sequential

process specifications are in the refinement relation. Although useful, the

simple refinement laws we have established do not support this directly. We

will need a co-inductive approach.

We introduce a simulation, called a refining simulation, to deal with these

cases. We show that it is sound but do not attempt to show that it is com-

plete. Soundness means that it correctly establishes refinement; this is of

course necessary. Completeness would mean that any refinement relation

between sequential process specifications can be found using a refining sim-

ulation. While desirable, we will not need refining simulation to be able to

prove any given refinement statement; only those which are likely to occur

during development. The refining simulation we provide will be adequate for

these cases.

178

CHAPTER 6. SEQUENTIAL PROCESS SPECIFICATIONS

A binary relation R over sequential process specifications is a refining

simulation if for all pairs (P,Q) ∈ R we have

• if P = S〈v1, . . . vn〉 where S has definition S(r1, . . . rn)
def
= P ′ then

(P ′{|v1/r1 . . . vn/rn|}, Q) ∈ R.

• else if P = a.P ′ then Q ≡ a.Q′ and (P ′, Q′) ∈ R.

• else if P =
i∈I
Pi then Q ≡

j∈J
Qj and there exists some bijective

function f : J → I such that for all j ∈ J , (Pf(j), Qj) ∈ R.

• else if P =
i∈I
Pi where I �= ∅, then either:

– Q ≡
j∈J
Qj where J �= ∅ and there exists some injective function

f : J → I such that for all j ∈ J , (Pf(j), Qj) ∈ R.

– Q ≡
j∈J
Qj � (

k∈K
Qk & 0) where J �= ∅, J � K and there

exists some injective function f : J ∪ K → I such that for all

l ∈ J ∪K, (Pf(l), Ql) ∈ R.

• else if P = ' then Q = '.

If there exists a refining simulation which contains the pair (P,Q), then

we will write P 	 Q.
The rule for refining meet terms is complex and needs some justification.

We allow meets to be refined in two ways. Firstly, by a meet that supports

the same or fewer of the optional behaviours. Secondly, by a choice of terms

which have become compulsory (those in J) and terms which are still optional

(those in K).

179

CHAPTER 6. SEQUENTIAL PROCESS SPECIFICATIONS

Theorem 6.5.8 (Soundness) If P 	 Q then P % Q.

Proof: Say that P 	 Q. Clearly, if nothing satisfies Q then P % Q as

required. Alternatively, say that p sãt Q. We will prove that p sãt P , from

which the main result follows.

Let q = p. Then q sãt Q so there must exist a satisfying simulation

Q which contains (Q, q). Then Q (as defined in Corollary 6.4.6) is also a

satisfying simulation which contains (Q, q). Since P 	 Q there must exists

a refining simulation R which contains (P,Q). Let Q′ be the relational

composition of R and Q, i.e.

Q′ = {(R, r) | ∃R′.(R,R′) ∈ R, (R′, r) ∈ Q}

Clearly, (P, q) ∈ Q′. We will prove that Q′ is a satisfying simulation, which

means that q sãt P implying p sãt P as required. In what follows we will

assume that (P, q) is a general pair from Q′ and assume that Q is such that

(P,Q) ∈ R and (Q, q) ∈ Q.
Say q = s〈v1, . . . vn〉 where s is given the definition s(r1, . . . rn) def

= q′. By

the definition of satisfying simulation, we know (Q, q′{|v1/r1 . . . vn/rn|}) ∈ Q.
But then (P, q′{|v1/r1 . . . vn/rn|}) ∈ Q′ as required in this case.

Say P = S〈v1, . . . vn〉 where S is given the definition S(r1, . . . rn) def
= P ′.

By the definition of refining simulation, we know (P ′{|v1/r1 . . . vn/rn|}, Q) ∈
R, thus (P ′{|v1/r1 . . . vn/rn|}, q) ∈ Q′ as required in this case.

Say P is of the form a.P ′. Then Q ≡ a.Q′ where (P ′, Q′) ∈ R. But since
(Q, q) ∈ Q we have (a.Q′, q) ∈ Q. Thus q = a.q′ where (Q′, q′) ∈ Q. It
follows that (P ′, q′) ∈ Q′ as required in this case.

Say P is of the form
i∈I
Pi. Then Q ≡

j∈J
Qj and there exists a

bijective function f : J → I such that for all j ∈ J , (Pf(j), Qj) ∈ R. But
since (Q, q) ∈ Q we have (

j∈J
Qj , q) ∈ Q. Thus q = �k∈Kqk and there

180

CHAPTER 6. SEQUENTIAL PROCESS SPECIFICATIONS

exists a bijective function g : K → J such that for all k ∈ K, (Qg(k), qk) ∈
Q. But then f ◦ g is a bijective function from K to I and for all k ∈ K,
(Pf◦g(k), qk) ∈ Q′. This is as required in this case.

Say P is of the form
i∈I
Pi. First consider the case where Q ≡

j∈J
Qj ,

J �= ∅ and there exists an injective function f : J → I such that for all

j ∈ J , (Pf(j), Qj) ∈ R. Since (Q, q) ∈ Q we have (
j∈J
Qj , q) ∈ Q. Thus

q = �k∈Kqk and there exists an injective function g : K → J such that for

all k ∈ K, (Qg(k), qk) ∈ Q. Well f ◦ g is an injective function from K to I

and for all k ∈ K, (Pf◦g(k), qk) ∈ Q′. This is as required in this case.

Next, we consider the case where Q ≡
j∈J
Qj � (

k∈K
Qk & 0), J �= ∅,

J � K and there exists an injective function f : J ∪K → I such that for all

l ∈ J ∪K, (Pf(l), Ql) ∈ R.
Since (Q, q) ∈ Q we have (

j∈J
Qj � (

k∈K
Qk & 0), q) ∈ Q. Thus

q = q1 4 q2 where either (
j∈J
Qj, q1) and (

k∈K
Qk & 0, q2) are in Q or

(
j∈J
Qj , q2) and (

k∈K
Qk & 0, q1) are in Q. We will only consider the first

case, as the other is virtually the same. Then p1 = �j′∈J ′qj′ where there
exists a bijective function g1 : J

′ → J such that for all j′ ∈ J ′, (Qg1(j′), qj′) ∈
Q. Since g1 is bijective, we note that J ′ �= ∅. Also, p2 = �k′∈K ′qk′ where

there exists an injective function g2 : K
′ → K such that for all k′ ∈ K ′,

(Qg2(k′), qk′) ∈ Q. Here, we account for the 0 by allowing K ′ to be ∅. But
then q = �j′∈J ′qj′ 4�k′∈K ′qk′ = �l∈J ′∪K ′ql. We note that J

′ ∪K ′ �= ∅. Let
g : J ′ ∪K ′ be the function which acts like g1 on J ′ and acts like g2 on K ′.

Then f ◦ g is injective and for all l ∈ J ′ ∪K ′ we have (Pf◦g(l), ql) ∈ Q′. This

is as required in this case. �

181

CHAPTER 6. SEQUENTIAL PROCESS SPECIFICATIONS

6.6 Example: A Scheduler

We demonstrate the use of sequential process specifications by taking an

example from the literature [Mil89, Mil99]: a simple scheduler. We alter the

informal requirements, as given in the references, in order to emphasise the

way a specification can emerge in our system. To motivate the discussion, we

give the problem an anecdotal setting. In what follows we will use a standard

abbreviated notation, leaving out parameter lists in definitions and processes

in definition form.

6.6.1 Informal Requirements

We are hired to design a scheduler for a company which has n machines and

wishes to use them efficiently. The scheduler is responsible for starting the

machines when they are free and acknowledging their request to stop when

have finished working. The company requests two properties of the scheduler

we provide:

Time is money: If possible, the machines should run in parallel so more

work is done is less time.

Electricity costs money: The scheduler should be willing to acknowledge

a machine’s signal to stop at any stage, so that it can be switched off.

This saves electricity.

6.6.2 Model

We will assign each of the n machines a number between 1 and n. Our

scheduler has two responsibilities, issuing some kind of signal to start ma-

chines and acknowledging their signals to stop. We will model these with

182

CHAPTER 6. SEQUENTIAL PROCESS SPECIFICATIONS

actions a1, . . . an, b1, . . . bn, where ai signals machine i to start and action bj

acknowledges machine j’s signal to stop.

An obvious consequence of our model is:

1. The scheduler will only ever perform one of the actions a1, . . . an or

b1, . . . bn.

Let X be the set of machines currently working. Then two similarly obvious

requirements are:

2. The scheduler will only perform action ai if i /∈ X.

3. The scheduler will only perform action bj if j ∈ X.

The above three requirements describe the general class of schedulers the

company is interested in.

Of the two properties the company want the scheduler to have, the second

is obvious and becomes our condition 4.

4. The scheduler should at all times be willing to perform bj actions for

each j ∈ X.

The first property they mention is more difficult to formalise, as it expresses

a optimisation rather than a constraint.

5. Whenever possible, the scheduler should perform some ai action for

i /∈ X.

6.6.3 Specification

We now develop our specification using sequential process expressions. The

simulations involved in this section are given in Appendix D.

183

CHAPTER 6. SEQUENTIAL PROCESS SPECIFICATIONS

We begin by stating the obvious: by requirement 1, any suitable scheduler

will have to satisfy the following specification:

Sched0 def
=

j∈1..n
bj .Sched

0 &
i∈1..n

ai.Sched
0

We can immediately improve on this, using requirements 2 and 3 to give us:

Sched1
X

def
=

j∈X
bj .Sched

1
X−j &

i/∈X
ai.Sched

1
X∪i

where X ⊆ {1..n} and the scheduler is thought to start in state Sched1
∅.

It is easy to show that Sched0 % Sched1
∅. The specification Sched

1
∅ guaran-

tees that at any stage either an appropriate start action or an appropriate

acknowledgement will be performed.

The specification Sched1
∅ will not guarantee requirements 4 or 5. For

example,

design1 def
= a1.a2.b2.b1.design

1

fails requirement 4 since, after the a1 and a2 actions, a request by machine

1 to stop will be ignored. Yet design1 sãt Sched1
∅. Also, the following design

satisfies Sched1
∅, yet fails requirement 5:

design2 def
= a1.b1.design

2

Requirement 4 means that there is, in fact, no freedom for which actions bj

for j ∈ X we perform — we must perform them all. The following represents

the minimum strengthening of the specification to achieve this:

Sched2
X

def
=

j∈X
bj .Sched

2
X−j � (

i/∈X
ai.Sched

2
X∪i & 0)

We have Sched1
∅ % Sched2

∅ and design
1 sãt/ Sched2

∅. Unfortunately, we still

have design2 sãt Sched2
∅ so we must further constrain the specification.

184

CHAPTER 6. SEQUENTIAL PROCESS SPECIFICATIONS

To satisfy requirement 5 we can insist that, in any suitable state, some

available machine is started:

Sched3
X

def
=




j∈X
bj .Sched

3
X−j �

i/∈X
ai.Sched

3
X∪i if X �= {1..n}

j∈X
bj .Sched

3
X−j otherwise

We can easily show that Sched2
∅ % Sched3

∅. In fact, we now have a specifica-

tion for a suitable scheduler. As the company want an implementable design,

we give them the following:

design3
X

def
=




∑
j∈X bj .design

3
X−j + a(minX).design

3
X∪(minX) if X �= {1..n}

∑
j∈X bj .design

3
X−j otherwise

which satisfies Sched3
∅ and, at any stage, will start the lowest numbered

available machine.

6.6.4 Further Requirements

After some time, the company contacts us again. Although they accept that

our scheduler has the properties that they requested, they have encountered a

problem. Over time, our scheduler was placing a heavier load on the lowered

numbered machines. This lead to unpredictable reliability and an expen-

sive maintenance cycle. They requested a new scheduler with the following

property:

Maintenance costs money: In order to have a predictable maintenance

cycle, the work should be shared amongst the machines as evenly as

possible.

By discussing the possibilities with the company, it was decided that condi-

tion 6, below, describes a suitable approach to their new request.

185

CHAPTER 6. SEQUENTIAL PROCESS SPECIFICATIONS

6. A scheduler performs the ai actions in cyclic order only, i.e.

a1, . . . an, a1 . . . an, a1 . . .

If necessary, this requirement may take precedence over condition 5.

6.6.5 Respecifying the Scheduler

To consider how to specify this new scheduler, we return to specification

Sched2
∅. This step backwards is necessary to ensure the correctness condition

6 influences the specification before the optimisation condition 5.

To manage condition 6, our scheduler must keep track of which machine it

is meant to start next. We index its states with the set of working machines,

X, and the number of the machine to start next, i. In the definition, we

consider addition on the integer index to be mod n.

Sched4
i,X

def
=

j∈X
bj .Sched

4
i,X−j � (

(k/∈X,k=i)
ak.Sched

4
k+1,X∪k & 0)

We can show that Sched2
∅ % Sched4

1,∅. However, we now have to take account

of condition 5. The following design satisfies Sched4
i,X but fails to satisfy this

requirement:

design4
i

def
= ai.bi.design

4
i+1

We need to strengthen the specification so that when the scheduler had

an option to perform the ai action, it now must be willing to do so:

Sched5
i,X

def
=




j∈X
bj .Sched

5
i,X−j � ai.Sched5

i+1,X∪i i /∈ X

j∈X
bj .Sched

5
i,X−j i ∈ X

Naturally Sched4
1,∅ % Sched5

1,∅. As this process specification has no meet

subterms, an obvious transformation gives us the following sequential process

186

CHAPTER 6. SEQUENTIAL PROCESS SPECIFICATIONS

expression which satisfies it:

design5
i,X

def
=




∑
j∈X bj .design

5
i,X−j + ai.design

5
i+1,X∪i i /∈ X

∑
j∈X bj .design

5
i,X−j i ∈ X

We deliver this design to the company.

6.7 Using Sequential Process Specifications

with Oompa

Currently, we have considered our set of actions, Act, to contain atomic

actions, written a, b, c etc. The actions of Oompa are much richer and

correspond to the transitions of its labelled transition system. There is a

silent action, a send action, a receive action, an invoke action and an activate

action:

�� c!〈v1,...vn〉 �� c?〈v1,...vn〉 �� o.m!〈v1,...vn〉
x:T

�� o.m?〈v1,...vn〉
x:T

��

In order to discuss these actions, we follow a standard approach. Message-

passing CCS is a variant of CCS that extends the atomic actions of CCS to

communication actions of the form c!〈a〉 and c?(b). Assuming that those

values communicated belong to a finite type, we can build message-passing

into ordinary CCS using the following sugarings:

c!〈a〉.p = c a.p

c?(b).p =
∑
a∈T c a.p{|a/b|}

where for each a, c a is thought to be a single atomic CCS action.

For Oompa’s actions we intend to use the same trick. To allow these

actions to appear in sequential process expressions, we will write transitions

187

CHAPTER 6. SEQUENTIAL PROCESS SPECIFICATIONS

in the style of the labelled transition system and use the following sugarings

to interpret them either as atomic actions or summations.

�� .p = τ.p

c!〈v1,...vn〉 �� .p = c v1 ··· vn.p
c?〈r1,...rn〉 �� .p =

∑
v1∈T1,...vn∈Tn

c v1 ··· vn.p{|v1/r1 . . . vn/rn|}
o.m!〈v1,...vn〉

x:T
�� .p = o m v1 ··· vn x.p

o.m?〈r1,...rn〉
x:T

�� .p =
∑
v1∈T1,...vn∈Tn,x′∈x o m v1 ··· vn x′.p{|v1/r1 . . . vn/rn, x

′
/x|}

Similarly, to allow these actions to appear in sequential process specifications,

we use the following sugarings.

�� .p = τ.p

c!〈v1,...vn〉 �� .p = c v1 ··· vn.p
c?〈r1,...rn〉 �� .p =

v1∈T1,...vn∈Tn

c v1 ··· vn.p{|v1/r1 . . . vn/rn|}
o.m!〈v1,...vn〉

x:T
�� .p = o m v1 ··· vn x.p

o.m?〈r1,...rn〉
x:T

�� .p =

v1∈T1,...vn∈Tn,x′∈x
o m v1 ··· vn x′.p{|v1/r1 . . . vn/rn, x

′
/x|}

Sequential process expressions and specifications do not have a sufficiently

powerful mechanism for the communication of new names (which is why,

ultimately, a language like the π-calculus is needed). To manage the return

channels in method invocations, we will assume that they are generated by

the invoking process and received by the activated process.

Using these sugarings, we can specify processes with sequential process

specifications whose actions correspond to the transitions of an Oompa con-

figuration. To ensure an Oompa configuration actually does have a behaviour

which satisfies a specification, we will show that its behaviour is weakly bisim-

ilar to a sequential process expression which satisfies the specification. We

188

CHAPTER 6. SEQUENTIAL PROCESS SPECIFICATIONS

choose to use weak bisimulation since it allows the configuration to perform

extra internal actions in order to satisfy the specification. Also, it is our

current choice of semantic equivalence for Oompa configurations.

When using weak bisimulation as a semantic equivalence for Oompa con-

figurations, a context consisting of a definition set and a type dictionary is

required (see Section 4.2.5). This is also required for our implementation

relation but we will typically allow this context be left implicit. Thus, our

implementation relation between Oompa configurations and sequential pro-

cess expressions will be ≈sãt :

K ≈sãt P = ∃p.(K ≈ p) ∧ (p sãt P)

6.8 Related Work

Our language is a first step towards a refinable specification language of π-

calculus-like expressions. This is the overriding reason why we have built it

upon (the core of) CCS. Nevertheless, there are potential alternatives to our

approach and we consider them here: CCS itself, CSP and TCCS.

Our prime objection to the π-calculus was its focus on equivalence. Like

the π-calculus, the formal theory of CCS is mainly based on equivalences.

However, other development techniques have been proposed for CCS which

do give support for a incremental development.

Two such methods are discussed in [Mil89]. Process logic is a modal logic

which can express behavioural properties of processes. The method can be

used incrementally: by conjoining expressions of the logic together we get

new, more demanding properties. The other method uses the fact that we

can obtain an abstraction of the behaviour of a process by restricting its

visible actions to a limited set. We can specify a property of a process by

189

CHAPTER 6. SEQUENTIAL PROCESS SPECIFICATIONS

insisting that its behaviour, abstracted in this way, is equivalent to some

other process. By increasing the set of such properties we require, we obtain

a method somewhat like process logic. The similarity of these approaches

to our own is that the outcome of a specification will be sequential process

expression6. One difference is that these techniques are further removed from

the behaviour being specified then ours. This can lead to a problem: with

these approaches it is possible to unknowingly specify unrealisable behaviour.

Theory of testing [dNH84] which considers processes in terms of how they

can interact with an observer. This is achieved by viewing an observer, cou-

pled with a satisfactory notion of successful completion, as a test. Processes

are considered equivalent if they pass exactly the same set of tests. In fact,

this notion of equivalence is defined in terms of two preorders: “the first is

formulated in terms of the ability to respond positively to a test, the second

in terms of the inability not to respond positively to a test”. The intersection

of the two preorders generates a third preorder which might be useable as a

form of refinement relation similar to ours.

CSP does have support for refinement — a process may be refined by

another more deterministic process. The interpretation of CSP’s language is

fixed because the algebra is designed to match a specific set of models. This

makes the meaning of CSP’s expressions very rigid which, for our purposes,

is a disadvantage; we want our language to express behaviour as abstractly

as possible.

Testing CCS (TCCS7) [dNH87], is a variant of CCS8 which is designed

6More accurately, these approaches should be considered as specifying a full CCS ex-

pression. However, the behaviour (as opposed to structure) of that CCS expression would

be describable with a sequential process expression.
7The name TCCS is sometimes used for a different CCS variant called Timed CCS.
8From the perspective of testing equivalence, TCCS is semantically equivalent to CCS

190

CHAPTER 6. SEQUENTIAL PROCESS SPECIFICATIONS

specifically for the notion of testing equivalence. Rather than using CCS’

+ and τ to express nondeterminism, TCCS uses pair of operators � and ⊕
to express internal and external nondeterminism. Its theory is based on the

testing preorders discussed above.

A similarity between sequential process specifications, CSP and TCCS

is the resemblances of their choice operators (syntactically and, to a lesser

extent, semantically). One difference between our method and the other two

is that the laws we reject in Section 6.4.2 are true in both those languages.

One practical advantage of our system over TCCS and CSP is that our

meet operator, which corresponds to their internal choice, has an identity:

'. We regularly make use of this fact. For instance, in the scheduler example
the second specification was given as:

Sched1
X

def
=

j∈X
bj .Sched

1
X−j &

i/∈X
ai.Sched

1
X∪i

If the set X is either empty or full (contains all the indices 1..n) then the

left or right subterm of this expression becomes an empty meet and hence

equals '. Given that ' is the identity of &, that subterm can be viewed

as absent from the complete expression. Without a way of discussing empty

meet expressions, this simple specification would need three cases: one for

when X is empty, one for when X is neither empty nor full and one for when

X is full.

6.9 Summary

In this chapter, we presented sequential process specifications; a new formal-

ism which we will use as a behavioural specification language for Oompa.

itself. This not the case if observational equivalence is used.

191

CHAPTER 6. SEQUENTIAL PROCESS SPECIFICATIONS

We defined sequential process expressions and discussed some of their

theory. These constitute the core of CCS and we consider them to be suit-

able objects for expressing abstract behaviour. We then defined the syntax

of sequential process specifications and defined their semantics in terms of

a notion of satisfaction: a sequential process specification specifies those se-

quential process expressions which satisfy it. In order that our language

allows specifications to be incrementally developed, we defined a refinement

relation between specifications. We demonstrated the use of our method by

deriving the specification of a simple scheduler from informal requirements.

We showed how sequential process specifications can be used to specify the

behaviour of Oompa configurations. We also considered some alternatives to

our specification language.

192

Chapter 7

A Development in Oompa

In this chapter, we give an example which suggests how sequential process

specifications and Oompa might be used in actual development. We apply our

approach to a standard example from the literature, namely the development

of a concurrent dictionary design.

A dictionary is a structure which allows information to be stored and

retrieved based on an index1. A dictionary provides its service to clients by

providing two operations: get, which returns the current value associated

with an index, and set, which associates a new value with an index. We will

develop an Oompa object which provides this service to multiple concurrent

clients.

The purpose of this chapter is to consider how designs might be developed

within our formal method and not to develop new ones. In fact, the dictionary

is a very standard structure and it is likely that the designs we develop

have been studied comprehensively. Nevertheless, in order to gain a clear

appreciation of our formal method, we followed through the development in

this chapter without particular reference to existing work.

1Other names for this type of structure include look-up table, symbol table and array.

193

CHAPTER 7. A DEVELOPMENT IN OOMPA

In Section 7.1 we determine the behavioural requirements of a concur-

rent dictionary. We use sequential process specifications to develop two

behavioural specifications for such a dictionary object in Section 7.2. In

Section 7.3 we provide two Oompa classes whose objects will satisfy the

specifications. We summarise the chapter in Section 7.4.

7.1 Behavioural Requirements of a Concur-

rent Dictionary

In this section, we establish the behavioural requirements on Oompa objects

which implement a concurrent dictionary. The first step is to give a precise

characterisation of what a dictionary actually is. Next, we consider what it

means to be a dictionary object. We will provide an interface that such an

object must implement and describe the semantics of the dictionary’s meth-

ods. This is non-trivial, so we simplify the task by first giving the behavioural

requirements of a sequential dictionary. We then define the behaviour of a

concurrent dictionary object partially in terms of the behaviour of the se-

quential dictionary object.

7.1.1 Abstract Data Type for a Dictionary

In order to characterise the notion of a dictionary formally, but abstractly, we

will use an abstract data type. This captures the pure functional behaviour

of the operations without any implementation details. We will assume that

the information is of type Value and is indexed by elements of type Key. For

simplicity, we assume that Value includes an element ⊥ which we will use to

194

CHAPTER 7. A DEVELOPMENT IN OOMPA

indicate “no value”. Then, the abstract data type Dict is given by:

Dinit : Dict

get : Dict×Key→ Value

set : Dict×Key × Value→ Dict

get(Dinit, k) = ⊥ ∀k ∈ Key

get(set(D, k, v), k′) =



v k′ = k

get(D, k′) otherwise
∀k, k′ ∈ Key, v ∈ Value

This definition defines a type, Dict, and an instance of that type, Dinit, which

corresponds to a dictionary in its initial state. It also gives the specification

of two functions, get and set.

7.1.2 Sequential Object-Oriented Dictionary

Before attempting to describe the rather complex behaviour of a concurrent

object-oriented dictionary, it is preferable to consider the consequences of

object-orientation without concurrency. Unlike the abstract data type, which

was defined in pure functional terms, a dictionary object has independent

state and side-effecting operations.

We will use the following Oompa interface for dictionary objects:

interface Dictionary

{

// returns the current value associated with key k

get?(k:Key)!<v:Value>

// associates value v with key k

set?(k:Key,v:Value)!<>

}

195

CHAPTER 7. A DEVELOPMENT IN OOMPA

The behaviour of objects which implement this interface can be expressed

using notation similar to Oompa’s labelled transition system: An invocation

on the dictionary’s get method can be written
o.get?〈k〉

x
�� and its reply is writ-

ten
x!〈v〉 �� . An invocation on the dictionary’s set method can be written

o.set?〈k,v〉
x

�� and its reply is written
x!〈〉 �� . Although, an actual dictionary is

likely to have internal behaviour represented by silent actions, our require-

ments will only need to discuss these four observable actions. Rather than

using sequences of actions, therefore, we will use traces, which are sequences

of observable actions only.

Our behavioural requirements are of two sorts. First, there are require-

ments that insist that the dictionary object be able and willing to perform

certain actions. For example, we will want the dictionary object to eventu-

ally reply to an invocation on its get method. Second, there are requirements

that constrain the sequences of actions that the dictionary object may per-

form. For example, we will want the reply that the dictionary object sends

to be a meaningful response.

As can be seen from the abstract data type, a set operation on one key

does not affect the behaviour of the dictionary with respect to other keys.

Moreover, performing a get operation should not affect the behaviour of the

dictionary. One expected behaviour of a dictionary object, therefore, is that

that operations on different keys do not affect each other. This observation

helps us simplify the constraints, since we can write them in terms of the

subsequences for each key.

Given a trace t, let πk(t) be the subsequence consisting of just the invo-

cations on key k and their replies. We will want the following predicates on

196

CHAPTER 7. A DEVELOPMENT IN OOMPA

a trace t on key k:

GetGetk(t) = ∀s, s′, x, x′, v, v′.
((t = s

o.get?〈k〉
x

�� x!〈v〉 �� o.get?〈k〉
x′

�� x′!〈v′〉 �� s′)⇒ v = v′)

SetGetk(t) = ∀s, s′, x, x′, v, v′.
((t = s

o.set?〈k,v〉
x

�� x!〈〉 �� o.get?〈k〉
x′

�� x′!〈v′〉 �� s′)⇒ v = v′)

InitGetk(t) = ∀s, x, v.((t = o.get?〈k〉
x

�� x!〈v〉 �� s)⇒ v = ⊥)
The following are the requirements we put on the dictionary object’s

behaviour. The first and fourth requirements constrain the behaviour and

the second and third requirements oblige the dictionary to perform certain

behaviours.

1. The dictionary will only ever perform one of the actions:

o.get?〈k〉
x

�� ,
o.set?〈k,v〉

x
�� ,

x!〈v〉 �� ,
x!〈〉 ��

where, in the first two actions, x is required to be a new name.

2. If the dictionary performs the action
o.get?〈k〉

x
�� then it next performs

x!〈v〉 �� for some v.

3. If the dictionary performs the action
o.set?〈k,v〉

x
�� then it next performs

x!〈〉 �� .

4. If the dictionary can perform trace t, then

∀k.(GetGetk(πk(t)) ∧ SetGetk(πk(t)) ∧ InitGetk(πk(t)))

A sequential object which behaves according to all these requirements

should be considered an acceptable sequential dictionary object.

197

CHAPTER 7. A DEVELOPMENT IN OOMPA

7.1.3 Concurrent Object-Oriented Dictionary

In this section we extend the approach and describe the behavioural require-

ments of a concurrent object-oriented dictionary. Again, we can consider the

behaviour of the dictionary in terms of traces of the four actions
o.get?〈k〉

x
�� ,

x!〈v〉 �� ,
o.set?〈k,v〉

x
�� and

x!〈〉 �� . Intuitively, we will be requiring the same

properties of this dictionary; those expressed by the predicates GetGet(·),
SetGet(·) and InitGet(·). However, there are two main reasons why the

predicates will not apply directly to the concurrent dictionary objects.

Firstly, the predicates we defined in the previous section only apply to

traces where none of the invocation-reply pairs overlap. We will call such

traces lined-up and write LinedUp(t) if t is a lined-up trace. All of the

traces of a sequential dictionary object are lined-up but we cannot make this

assumption about a concurrent dictionary object.

Secondly, the predicates from the previous section only apply to traces

where all (or all but the last) of the invocations have been replied to. We

will call such a trace completed and write Completed(t) if t is a completed

trace. In the concurrent case, we need to take unreplied invocations into

consideration: when considering a given trace, it may contain invocations

representing operations which have been performed but have not yet replied.

To handle the case where two or more invocation-reply pairs are inter-

leaved, we observe that the processing of a request is atomic from the per-

spective of traces — no trace of a correct dictionary object would allow a

partially performed request to be observed. Consequently, we can view an

overlapping trace as representing some lined-up trace where the order of the

invocations-reply pairs in the latter represent the order that the requests

were processed in the former. To handle incomplete traces, we view them as

initial subtraces of some complete trace.

198

CHAPTER 7. A DEVELOPMENT IN OOMPA

We write t
 s if t can be transformed into s by interchanging any

neighbouring actions except moving an invocation before a reply or moving

a reply before its corresponding invocation. We use
 to find all the possible

lined-up traces that it might represent; it allows interleaving invocation-reply

pairs to be reordered in any of the possible lined-up ways:

PossTraces(t) = {s | LinedUp(s) ∧ t
 s}

Our requirement on a trace is therefore that it can be completed and

interpreted as some lined-up trace which satisfies the predicates for sequential

dictionary objects. Formally, we will use the following predicate on a trace

t:

∃t′.(Completed(tt′) ∧ ∃s ∈ PossTraces(tt′).
∀k.(GetGetk(πk(s)) ∧ SetGetk(πk(s)) ∧ InitGetk(πk(s))))

The requirements we give for the concurrent dictionary resemble those

we gave for the sequential case. Aside from using the new predicate, there

are a few other differences. Firstly, we can no longer require the dictionary

object to reply directly after receiving a request. Instead, requirements 2

and 3 insist that it replies eventually. Secondly, a new concurrent request

may arrive at any stage, so requirement 5 insists that the dictionary object

is willing to receive them.

The requirements are as follows:

1. The dictionary will only ever perform one of the actions:

o.get?〈k〉
x

�� ,
o.set?〈k,v〉

x
�� ,

x!〈v〉 �� ,
x!〈〉 ��

where, in the first two actions, x is required to be a new name.

2. If the dictionary performs the action
o.set?〈k,v〉

x
�� , then it will eventually

be willing to perform the action
x!〈〉 �� .

199

CHAPTER 7. A DEVELOPMENT IN OOMPA

3. If the dictionary performs the action
o.get?〈k〉

x
�� , then it will eventually

be willing to perform the action
x!〈v〉 �� .

4. If the dictionary can perform trace t, then

∃t′.(Completed(tt′) ∧ ∃s ∈ PossTraces(tt′).
∀k.(GetGetk(πk(s)) ∧ SetGetk(πk(s)) ∧ InitGetk(πk(s))))

5. The dictionary should always be willing to perform both
o.get?〈k〉

x
�� and

o.set?〈k,v〉
x

�� actions.

An Oompa object which behaves according to all these requirements

should be considered an acceptable concurrent dictionary object.

7.2 Behavioural Specification for a Concur-

rent Dictionary

Our next step is to derive sequential process specifications which describe

the behaviour of an Oompa object implementing a concurrent dictionary.

7.2.1 Specification

We now specify processes whose behaviour obeys the requirements by pro-

viding a suitable sequential process specification. As before, we derive this

incrementally, considering the requirements one by one.

Our initial specification accommodates requirement 1 by limiting the pos-

sible form of actions of our system and ensuring that new channel names are

chosen. An important aspect of our current approach to specification be-

comes clear at this point: we must also provide for the possibility for internal

200

CHAPTER 7. A DEVELOPMENT IN OOMPA

reconfigurations. The dictionary is likely to need some internal processing

and this may change its future observable behaviour. We cannot know what

ways the dictionary will need to configure itself, so we initially allow for an

arbitrary number. So our initial specification is:

Dspec0
def
=

k∈Key,x∈N
o.get?〈k〉

x
�� Dspec0

&
(k,v)∈Key×Value,x∈N

o.set?〈k,v〉
x

�� Dspec0

&
v∈Value,x∈N

x!〈v〉 �� Dspec0

&
x∈N

x!〈〉 �� Dspec0

&
i∈N

�� Dspec0

Our second specification accommodates requirements 2 and 3 by enforcing

the correct use of return channels. We need to tie requests to their replies,

so the dictionary will need to carry around some kind of state. We will index

states with two sets which store the channel names on which replies must be

made.

R1 ⊆ N R2 ⊆ N

Our specification becomes:

Dspec1R1,R2

def
=

k∈Key,xnew

o.get?〈k〉
x

�� Dspec1R1∪{x},R2

&
(k,v)∈Key×Value,xnew

o.set?〈k,v〉
x

�� Dspec1R1,R2∪{x}

&
v∈Value,x∈R1

x!〈v〉 �� Dspec1R1�{x},R2

&
x∈R2

x!〈〉 �� Dspec1R1,R2�{x}

&
i∈N

�� Dspec1R1,R2

In Appendix D, we show that Dspec0 % Dspec1∅,∅.
Unfortunately, this specification does not actually guarantee requirements

2 and 3. Because of the outer meet, the terms for replying are still optional.

201

CHAPTER 7. A DEVELOPMENT IN OOMPA

Also, even if the outer meet was strengthened to a choice, the silent actions

mean that a process which repeatedly performs a silent action and no other

(called a livelocking process) is an implementation. As we continue deriving

the specification, however, these problems will be resolved and requirements

2 and 3 will then be guaranteed.

We now wish refine Dspec1 to give a specification whose processes satisfy

requirement 4, i.e. their traces satisfy the predicate:

∃t′.(Completed(tt′) ∧ ∃s ∈ PossTraces(tt′).
∀k.(GetGetk(πk(s)) ∧ SetGetk(πk(s)) ∧ InitGetk(πk(s))))

Consider how requests progress in a dictionary object. In general, it will

be a three phase process:

• arrival �� • processing
�� • reply

�� •

We will need the state of the dictionary accommodate the four points in this

diagram. We need to store requests which have arrived but have not yet

been processed and requests which have been processed but have not yet

been replied to. The most general way of storing this information will be

with sets, as all information except the presence or absence of an element is

abstracted away. We will use the sets

In1 ⊆ N ×Key
Out1 ⊆ N × Value
In2 ⊆ N ×Key × Value

Out2 ⊆ N

where In1 and Out1 are for get requests and In2 and Out2 are for set requests.

We now index specifications with a quadruple of state values:

Dstate = (In1,Out1, In2,Out1)

202

CHAPTER 7. A DEVELOPMENT IN OOMPA

There are six ways in which this state can change: A get or set request can

arrive, a reply to a get or set request can be issued and a get or set request

can be processed. We use the following six functions to describe these state

changes.

f1(Dstate, x, k) = (In1 ∪ {(x, k)},Out1, In2,Out2)

f2(Dstate, x, k, v) = (In1,Out1, In2 ∪ {x, k, v},Out2)
f3(Dstate, x, v) = (In1,Out1 � {(x, v)}, In2,Out2)

f4(Dstate, x) = (In1,Out1, In2,Out2 � {x})
f5(Dstate, x, k, v) = (In1 � {(x, k)},Out1 ∪ {(x, v)}, In2,Out2)

f6(Dstate, x, k, v) = (In1,Out1, In2 � {(x, k, v)},Out2 ∪ {x})
Our new specification is:

Dspec2Dstate
def
=

k∈Key,xnew

o.get?〈k〉
x

�� Dspec2f1(Dstate,x,k)

&
(k,v)∈Key×Value,xnew

o.set?〈k,v〉
x

�� Dspec2f2(Dstate,x,k,v)

&
(x,v)∈Out1

x!〈v〉 �� Dspec2f3(Dstate,x,v)

&
x∈Out2

x!〈〉 �� Dspec2f4(Dstate,x)

&
(x,k)∈In1,v∈Value

�� Dspec2f5(Dstate,x,k,v)

&
(x,k,v)∈In2

�� Dspec2f6(Dstate,x,k,v)

In Appendix D, we show that Dspec1∅,∅ % Dspec2Dstate0
where Dstate0 =

(∅, ∅, ∅, ∅).
We still haven’t specified the actual processing of requests; the value

returned to a get request can be any value in Value. However, our new spec-

ification is a useful intermediate stage: the traces of a process satisfying this

specification do come close to satisfying the main predicate. Consider an

action sequence of such a process and the order in which the silent actions

representing the processing requests occur in it. A trace of that action se-

quence can be completed and lined up in such a way that the order of the

203

CHAPTER 7. A DEVELOPMENT IN OOMPA

invocation-reply pairs in the resulting trace matches the order that the silent

actions occurred.

Our next specification must ensure that the silent actions which represent

the processing of the requests guarantee the predicates GetGetk(·), SetGetk(·)
and InitGetk(·). Because we are working forward from the previous speci-

fication, we need only think of behaviour in terms of lined-up traces. The

obvious thing to do is to make the dictionary’s state include some kind of

“dictionary logic”. We will represent this by an instance of the dictionary

abstract data type.

Dict : Dict

We now index specifications with the quintuple:

Dstate = (Dict, In1,Out1, In2,Out1)

The functions which act on this state value are the following:

g1(Dstate, x, k) = (Dict, In1 ∪ {(x, k)},Out1, In2,Out2)

g2(Dstate, x, k, v) = (Dict, In1,Out1, In2 ∪ {x, k, v},Out2)
g3(Dstate, x, v) = (Dict, In1,Out1 � {(x, v)}, In2,Out2)

g4(Dstate, x) = (Dict, In1,Out1, In2,Out2 � {x})
g5(Dstate, x, k, v) = (Dict, In1 � {(x, k)},Out1 ∪ {(x, v)}, In2,Out2)

g6(Dstate, x, k, v) =

(set(Dict, k, v), In1,Out1, In2 � {(x, k, v)},Out2 ∪ {x})

204

CHAPTER 7. A DEVELOPMENT IN OOMPA

and our specification becomes:

Dspec3Dstate
def
=

k∈Key,xnew

o.get?〈k〉
x

�� Dspec3g1(Dstate,x,k)

&
(k,v)∈Key×Value,xnew

o.set?〈k,v〉
x

�� Dspec3g2(Dstate,x,k,v)

&
(x,v)∈Out1

x!〈v〉 �� Dspec3g3(Dstate,x,v)

&
x∈Out2

x!〈〉 �� Dspec3g4(Dstate,x)

&
(x,k)∈In1,v=get(Dict,k)

�� Dspec3g5(Dstate,x,k,v)

&
(x,k,v)∈In2

�� Dspec3g6(Dstate,x,k,v)

Let Dict⊥ associate ⊥ with every key and let Dstate⊥ = (Dict⊥, ∅, ∅, ∅, ∅).
Clearly, the InitGetk(·) predicate is realised by making the initial dictionary
value be Dict⊥. It is quite easy to show that Dspec2Dstate0 % Dspec3Dstate⊥ and

we only briefly discuss it in Appendix D.

To accommodate requirement 5, we need to restructure the specification.

The receipt of requests need to be strengthened so they are always available

for the environment. The kind of strengthening we do here is a minimum

strengthening (similar to that mentioned on page 176), so we leave the other

terms optional by adding a 0.

Dspec4Dstate
def
=

k∈Key,xnew

o.get?〈k〉
x

�� Dspec4g1(Dstate,x,k)

�
k∈Key,v∈Value,xnew

o.set?〈k,v〉
x

�� Dspec4g2(Dstate,x,k,v)

� (
(x,v)∈Out1

x!〈v〉 �� Dspec4g3(Dstate,x,v)

&
x∈Out2

x!〈〉 �� Dspec4g4(Dstate,x)

&
(x,k)∈In1,v=get(Dict,k)

�� Dspec4g5(Dstate,x,k,v)

&
(x,k,v)∈In2

�� Dspec4g6(Dstate,x,k,v)

& 0)
One reason why the 0 is necessary is that, when the four sets In1, Out1,

205

CHAPTER 7. A DEVELOPMENT IN OOMPA

In2 and Out2 are all empty, the specification would become a choice one of

whose arguments was an empty meet. Since ' is a zero of �, the specification
would be unimplementable. In Appendix D, we show that Dspec4Dstate⊥ %
Dspec5Dstate⊥.

Our final specification manages the 0 and splits the specification into two

cases. Firstly, if the set In1, In2, Out1, and Out2 are all empty, then the only

thing the dictionary can do is accept requests:

Dspec5Dstate
def
=

k∈Key,xnew

o.get?〈k〉
x

�� Dspec5g1(Dstate,x,k)

�
k∈Key,v∈Value,xnew

o.set?〈k,v〉
x

�� Dspec5g2(Dstate,x,k,v)

However, when at least one of the sets In1, In2, Out1 and Out2 is non-

empty, we should be willing to do something other than just wait for new

requests. The most general approach to this is simply to leave the meet of all

those terms and remove the 0. This ensures that at least one of the available

actions can be performed.

Dspec5Dstate
def
=

k∈Key,xnew

o.get?〈k〉
x

�� Dspec5g1(Dstate,x,k)

�
k∈Key,v∈Value,xnew

o.set?〈k,v〉
x

�� Dspec5g2(Dstate,x,k,v)

� (
(x,v)∈Out1

x!〈v〉 �� Dspec5g3(Dstate,x,v)

&
x∈Out2

x!〈〉 �� Dspec5g4(Dstate,x)

&
(x,k)∈In1,v=get(Dict,k)

�� Dspec5g5(Dstate,x,k,v)

&
(x,k,v)∈In2

�� Dspec5g6(Dstate,x,k,v))

It is quite easy to show that Dspec4Dstate⊥ % Dspec5Dstate⊥ and we only briefly

discuss this in Appendix D.

Many different dictionary behaviours fit under this specification. For

example, by relevant strengthenings, we could insist that if the dictionary

206

CHAPTER 7. A DEVELOPMENT IN OOMPA

has a reply ready, then it must allow the environment to choose that action.

By further strengthenings, we could make the dictionary process a value and

reply before any other values are processed.

Regrettably, a deficiency of our notion of refinement means that our spec-

ification does not cover all acceptable dictionaries. The problem is that we

have not given silent actions any special treatment — they are considered

as normal actions. This makes our specification a little too strict, since a

refining process cannot perform new (but insignificant) internal actions. In

the next section we present an alternative specification whose behaviours

also satisfy the requirements. Although both the specification above and the

alternative can be expressed in sequential process specifications, neither is a

refinement of the other and there is no common ancestor of which both are

refinements. We discuss this in more detail in Section 7.4.

7.2.2 Alternative Specification

In this section we give an alternative specification for concurrent dictionary

objects. The difference in the specification is that the processing of set re-

quests is broken into two silent actions. Most significantly, we can allow get

requests to be processed while a set request is underway. The derivation of

the specification is very similar to the previous case, so we omit most of the

details.

We use the specifications Dspec0 and Dspec1R1,R2
as before. We do need

a new version of Dspec2 to reflects the extra silent actions we are assigning

to the processing of set requests. However, it is the fourth specification that

reflects the most interesting change: the state carried by the specifications

need to record the details of a set request which is underway. To the state

values carried by Dspec3, we add a new state component to accommodate

207

CHAPTER 7. A DEVELOPMENT IN OOMPA

this information. As there can only be one pending set request, this is a set

which either contains a single triple or is empty2:

Pending ∈ N ×Key ×Value

We index specifications with the following state value:

Dstate = (Dict, In1,Out1, In2,Pending,Out2)

and define the following functions on those state values:

h1(Dstate, x, k) = (Dict, In1 ∪ {(x, k)},Out1, In2,Pending,Out2)

h2(Dstate, x, k, v) = (Dict, In1,Out1, In2 ∪ {(x, k, v)},Pending,Out2)
h3(Dstate, x, v) = (Dict, In1,Out1 � {(x, v)}, In2,Pending,Out2)

h4(Dstate, x) = (Dict, In1,Out1, In2,Pending,Out2 � {x})
h5(Dstate, x, k, v) =

(Dict, In1 � {(x, k)},Out1 ∪ {x, v}, In2,Pending,Out2)

h6(Dstate, x, k, v) =

(Dict, In1,Out1, In2 � {(x, k, v)},Pending ∪ {(x, k, v)},Out2)
h7(Dstate, x, k, v) =

(set(Dict, k, v), In1,Out1, In2,Pending � {(x, k, v)},Out2 ∪ {x})
2Alternatively, we could have used a sum type, e.g. Pending ∈ N ×Key×Value+Unit,

corresponding to a maybe value as used, for example, in Haskell [Jon03]

208

CHAPTER 7. A DEVELOPMENT IN OOMPA

Our new fourth specification will be:

Dspec3
′

Dstate
def
=

k∈Key,xnew

o.get?〈k〉
x

�� Dspec3
′
h1(Dstate,x,k)

&
(k,v)∈Key×Value,xnew

o.set?〈k,v〉
x

�� Dspec3
′
h2(Dstate,x,k,v)

&
(x,v)∈Out1

x!〈v〉 �� Dspec3
′
h3(Dstate,x,v)

&
x∈Out2

x!〈〉 �� Dspec3
′
h4(Dstate,x)

&
(x,k)∈In1,v=get(Dict,k)

�� Dspec3
′
h5(Dstate,x,k,v)

&
(x,k,v)∈In2,Pending=∅

�� Dspec3
′
h6(Dstate,x,k,v)

&
(x,k,v)∈Pending

�� Dspec3
′
h7(Dstate,x,k,v)

Following a sequence of specifications similar to in that in Section 7.2, we

derive our final specification. If the sets In1, Out1, In2, Pending, Out2 are all

empty, then

Dspec5
′

Dstate
def
=

k∈Key,xnew

o.get?〈k〉
x

�� Dspec5
′
h1(Dstate,x,k)

�
(k,v)∈Key×Value,xnew

o.set?〈k,v〉
x

�� Dspec5
′
h2(Dstate,x,k,v)

Otherwise,

Dspec5
′

Dstate
def
=

k∈Key,xnew

o.get?〈k〉
x

�� Dspec5
′
h1(Dstate,x,k)

�
(k,v)∈Key×Value,xnew

o.set?〈k,v〉
x

�� Dspec5
′
h2(Dstate,x,k,v)

� (
(x,v)∈Out1

x!〈v〉 �� Dspec5
′
h3(Dstate,x,v)

&
x∈Out2

x!〈〉 �� Dspec5
′
h4(Dstate,x)

&
(x,k)∈In1,v=get(Dict,k)

�� Dspec5
′
h5(Dstate,x,k,v)

&
(x,k,v)∈In2,Pending=∅

�� Dspec5
′
h6(Dstate,x,k,v)

&
(x,k,v)∈Pending

�� Dspec5
′
h7(Dstate,x,k,v))

209

CHAPTER 7. A DEVELOPMENT IN OOMPA

7.3 Designs for a Concurrent Dictionary

In this section, we consider how Oompa objects might satisfy the specification

for the dictionary. Our method is not sufficiently developed to support a

formal refinement that will take us from sequential process specifications to

Oompa programs. However, we can use our theory to “invent and verify”

such programs.

We will provide two implementations of a concurrent dictionary, one for

each of the specifications. In fact, we will use an extended Oompa which

supports a few features we have chosen not to formalise. We believe that a

version in pure Oompa would obscure the designs we present.

1. We will allow the abstract data type Dict defined in Section 7.1.1 to be

used as an Oompa type.

2. We will allow the expressions representing operations on the abstract

data type, get(d, k) and set(d, k, v), to be used in value positions. We

will imagine that they get reduced to the corresponding result exactly

when all their parameters are replaced by values.

3. We will use an informal approach to locking. We will provide primitives

“acquire lockname” and “release lockname”, both of which take a

single silent action when performed.

Both designs are quite simple, as we intend them to illustrate the rela-

tionship between Oompa programs and sequential process specifications. In

Section 7.3.5, we consider how we might provide more sophisticated designs.

210

CHAPTER 7. A DEVELOPMENT IN OOMPA

7.3.1 A Standard Design

We first provide a very standard design for the dictionary. Our design is a

class with a pure functional dictionary attribute, access to which is locked in

both get and set requests. The Oompa class which embodies our design is:

class Dictionary_Design_1

{

dict:Attr{Dict}

get?(k:Key)!<v:Value>

{

acquire lock

dict?d

release lock

return!<get(d,k)>

end

}

set?(k:Key,v:Value)!<>

{

acquire lock

return!<>

dict?d

dict!set(d,k,v)

release lock

end

}

}

211

CHAPTER 7. A DEVELOPMENT IN OOMPA

A notable feature of this design is that the set method replies before

the actual request has been processed. This is a technique called an early

return [Jon92]. In Oompa, when a client invokes a method, it blocks until

it receives a reply; an early return means that the client is released as soon

as possible and can, therefore, get more work done. This technique has the

disadvantage that there is more code in the locked region and, hence, less

parallelism in the dictionary object. Of course, a design where the return

was put after the locked region would also satisfy the specification.

7.3.2 Justifying the Standard Design

Our approach to justifying that objects of this class actually implement the

dictionary specification is as follows. First, we consider the possible config-

urations which represent the states of such an object. Then, we present se-

quential process expressions which are weakly bisimilar to the configurations

but also formally satisfy the specification. Thus, we know the configurations

and the specification lie in the implementation relation ≈sãt .

Consider a configuration which represents an instance of a dictionary

object, o. An obvious observation is that all of its agents must be code

from either a get or a set method. Thus, its agents fit into the following

212

CHAPTER 7. A DEVELOPMENT IN OOMPA

classification:

gets




K1
i = o[acquire lock . . .] i ∈ 1..n1

K2
i = o[dict?d . . .] i ∈ 1..n2

K3
i = o[release lock . . .] i ∈ 1..n3

K4
i = o[x4

i !〈v4i 〉 . . .] i ∈ 1..n4

K5
i = o[end] i ∈ 1..n5

sets




K6
i = o[acquire lock . . .] i ∈ 1..n6

K7
i = o[x7

i !〈〉 . . .] i ∈ 1..n7

K8
i = o[dict?d . . .] i ∈ 1..n8

K9
i = o[dict!D9

i . . .] i ∈ 1..n9

K10
i = o[release lock . . .] i ∈ 1..n10

K11
i = o[end] i ∈ 1..n11

We can refine this, as we know that at most one agent can be holding the

lock on the dictionary at any one time. Thus, we know that there is only one

of the agents K2
i , K

3
i , K

7
i , K

8
i , K

9
i and K

10
i . Moreover, there is no point in

distinguishing a K5
i agent from a K11

i agent. Using
�≡, we can reorganise a

configuration of the dictionary object into the following form:

Kstate = K1|Kget|K4|K6|Kset|Kend



∅
o := [dict �→ D]

where the agents in K1 are newly invoked get methods:

K1 =
o[acquire lock dict?d release lock x1

1!〈get(d, k1
1)〉 end] | . . .

o[acquire lock dict?d release lock x1
n1
!〈get(d, k1

n1
)〉 end]

The agents in K4 are get methods which have performed their access:

K4 = o[x4
1!〈v41〉 end] | . . . o[x4

n4
!〈v4n4

〉 end]

213

CHAPTER 7. A DEVELOPMENT IN OOMPA

The agents in K6 are newly invoked set methods:

K6=

o[acquire lock x6
1!〈〉 dict?d dict!set(d, k6

1, v
6
1) release lock end] |

...

o[acquire lock x6
n6
!〈〉 dict?d dict!set(d, k6

n6
, v6n6

) release lock end]

Kget is either Nil or contains a single agent of one of the forms:

(i) o[dict?d release lock x!〈get(d, k)〉 end]
(ii) o[release lock x!〈v〉 end]

The agent in Kset is either Nil or has one of the forms:

(i) o[x!〈〉 dict?d dict!set(d, k, v) release lock end]

(ii) o[dict?d dict!set(d, k, v) release lock end]

(iii) o[dict!D′ release lock end]

(iv) o[release lock end]

The agents in Kend are get or set methods which have finished their work.

Kend = o[end] | . . . o[end]

We will show that our configuration Kstate is weakly bisimilar to the

following sequential process expression:

pDstate
def
= �k∈Key,xnew

o.get?〈k〉
x

�� pg1(Dstate,x,k)

4 �k∈Key,v∈Value,xnew
o.set?〈k,v〉

x
�� pg2(Dstate,x,k,v)

4 �(x,v)∈Out1

x!〈v〉 �� pg3(Dstate,x,v)

4 �x∈Out2

x!〈〉 �� pg4(Dstate,x)

4 �(x,k)∈In1,v=get(Dict,k),Out2=∅ �� pg5(Dstate,x,k,v)

4 �(x,k,v)∈In2,Out2=∅ �� pg6(Dstate,x,k,v)

It is not difficult to show that pDstate⊥ sãt Dspec5Dstate⊥ . To show that Kstate⊥

≈ pDstate⊥ we need to construct a bisimulation. To do so, we will define

214

CHAPTER 7. A DEVELOPMENT IN OOMPA

a projection from the possible configurations of the object into the state

components of the sequential process expression above.

Given a configuration, Kstate, we define the following:

π1(Kstate) =




set(D, k, v) if Kset is in state (i) or (ii)

D′ if Kset is in state (iii)

D otherwise

π2(Kstate) = {(x1
i , k

1
i) | i ∈ 1..n1}

π3(Kstate) = {(x4
i , v

4
i) | i ∈ 1..n4}

∪




{(x, get(D, k))} if Kget is in state (i)

{(x, v)} if Kget is in state (ii)

∅ otherwise

π4(Kstate) = {(x6
i , k

6
i , v

6
i) | i ∈ 1..n6}

π5(Kstate) =



{x} if Kset is in state (i)

∅ otherwise

We then define π as follows:

π(Kstate) = (π1(Kstate), π2(Kstate), π3(Kstate), π4(Kstate), π5(Kstate))

We now show the following is a weak bisimulation between configurations

Kstate and pπ(Kstate):

S = {(Kstate, pπ(Kstate)) | ∀Kstate}

The definition of weak bisimulation is on page 114. To show that S is a weak
bisimulation, we examine each pair, (Kstate, pπ(Kstate)), and show that

• For each action that Kstate can perform to reach Kstate′, pπ(Kstate) can

perform an experiment with the same visible action to reach pπ(Kstate′).

• For each action that pπ(Kstate) can perform to reach p′, Kstate can per-

form an experiment with the same visible action to reach some Kstate′

where p′ = pπ(Kstate′).

215

CHAPTER 7. A DEVELOPMENT IN OOMPA

We reason somewhat informally but everything considered here can be fully

formalised.

First we consider the actions of Kstate:

• o.get?〈k〉
x

�� : a new get request arrives and a new K1 agent is created.

This is simulated by pπ(Kstate) performing
o.get?〈k〉

x
�� .

• o.set?〈k,v〉
x

�� : a new set request arrives and a new K6 agent is created.

This is simulated by pπ(Kstate) performing
o.set?〈k,v〉

x
�� .

• x!〈v〉 �� : a reply to a get request is issued and a K4 agent is converted

into a Kend agent. This is simulated by pπ(Kstate) performing
x!〈v〉 �� .

• x!〈〉 �� : a reply to a set request is issued. There must have been a Kset

agent in state (i) which is changed to state (ii). So π5(Kstate) = {x}
and the action can be simulated by pπ(Kstate) performing

x!〈〉 �� .

• �� : a K1 agent acquires the lock and becomes a Kget agent in state

(i). This can occur only when there are no other Kget or Kset agents.

Let (x, k) be the values in that K1 agent and let v = get(π1(Dstate), k).

The action is simulated by pπ(Kstate) performing a silent action and

becoming state pg5(π(Kstate),x,k,v). It can perform this action because

(x, k) ∈ π2(Kstate) and π5(Kstate) = ∅.

• �� : a Kget agent in state (i) becomes an Kget agent in state (ii).

This is simulated by pπ(Kstate) doing nothing.

• �� : aKget agent in state (ii) becomes anK4 agent. This is simulated

by pπ(Kstate) doing nothing.

• �� : a K6 agent acquires the lock and becomes a Kset agent in state

(i). This can occur only when there are no other Kget or Kset agents.

216

CHAPTER 7. A DEVELOPMENT IN OOMPA

Let (x, k, v) be the values in that K6 agent. The action is simulated by

pπ(Kstate) performing a silent action and becoming state pg6(π(Kstate),x,k,v).

It can perform this action because (x, k, v) ∈ π4(Kstate) and π5(Kstate)

= ∅.

• �� : a Kset agent in state (ii) or (iii) becomes a Kset agent in state

(iii) or (iv) respectively. This is simulated by pπ(Kstate) doing nothing.

• �� : a Kset agent in state (iv) becomes a Kend agent. This is simu-

lated by pπ(Kstate) doing nothing.

• �� : a Kend agent is removed. This is simulated by pπ(Kstate) doing

nothing.

Now we must reason that Kstate can simulate any of the actions per-

formed by pπ(Kstate).

• o.get?〈k〉
x

�� leading to state pg1(π(Kstate),x,k). This is simulated by Kstate

performing
o.get?〈k〉

x
�� , whereby a new K1 agent is created.

• o.set?〈k,v〉
x

�� leading to state pg2(π(Kstate),x,k,v). This is simulated by Kstate

performing
o.set?〈k,v〉

x
�� , whereby a new K6 agent is created.

• x!〈v〉 �� leading to state pg3(π(Kstate),x,v). If the pair (x, v) is in π3(Kstate)

by virtue of belonging to aKget agent, then Kstate may need to perform

one or two silent actions to process this get request. After this, or if

the values already belonged to a K4 agent, Kstate can now perform

the action
x!〈v〉 �� , converting the K4 agent into a Kend agent.

• x!〈〉 �� leading to state pg4(π(Kstate),x). So π5(Kstate) = {x} and there
is a Kset agent in state (i) containing the corresponding x. Therefore

217

CHAPTER 7. A DEVELOPMENT IN OOMPA

Kstate can perform the action
x!〈〉 �� , converting this Kset agent from

state (i) to state (ii).

• �� leading to state pg5(π(Kstate),x,k,v) where v = get(π1(Kstate), k).

For this to occur, π5(Kstate) = ∅. If there is any current Kget or Kset

agent (the latter must be in a state subsequent to (i)), then Kstate can

perform a number of silent actions to remove that agent and thereby

release the lock. Since (x, k) ∈ π2(Kstate), we know there is a K1

agent with the appropriate values. Therefore, Kstate can perform a

silent action and convert that K1 agent into a Kget agent in state (i).

• �� leading to state pg6(π(Kstate),x,k,v). For this to occur, π5(Kstate) =

∅. If there is any currentKget orKset agent (the latter must be in a state

subsequent to (i)), then Kstate can perform a number of silent actions

to remove that agent and thereby release the lock. Since (x, k, v) ∈
π4(Kstate), we know there is a K6 agent with the appropriate values.

Therefore, Kstate can perform a silent action and convert thatK6 agent

into a Kset agent in state (i).

Thus, S is a weak bisimulation. This means that the implementation rela-
tion holds between the configurations of the objects of the class we presented

and the specifications Dspec5Dstate.

7.3.3 An Alternative Design

A design which implements the second specification emphasises the internal

parallelism of Oompa objects. We choose not to lock access to the dictio-

nary in get requests at all, although this prohibits the use of early returns3.

3An implementation where get requests could occur in parallel with a set request which

has not been processed, but has already replied, has a clearly different behaviour than any

218

CHAPTER 7. A DEVELOPMENT IN OOMPA

Nevertheless, by moving the return outside the locked region, we gain more

parallelism in the dictionary object. This design is suitable for situations

where the frequency of get requests exceeds the frequency of set requests

(which seems plausible). Our alternate design is as follows.

class Dictionary_Design_2

{

dict:Attr{KeyValueDict}

get?(k:Key)!<v:Value>

{

dict?d

return!<get(d,k)>

end

}

set?(k:Key,v:Value)!<>

{

acquire lock

dict?d

dict!set(d,k,v)

release lock

return!<>

end

}

}

allowed by our requirements.

219

CHAPTER 7. A DEVELOPMENT IN OOMPA

7.3.4 Justifying the Alternative Design

Consider a configuration which represents an instance of a dictionary object,

o. Its agents fit into the following classification:

gets




K1
i = o[dict?d . . .] i ∈ 1..n1

K2
i = o[x2

i !〈v2i 〉 . . .] i ∈ 1..n2

K3
i = o[end] i ∈ 1..n3

sets




K4
i = o[acquire lock . . .] i ∈ 1..n4

K5
i = o[dict?d . . .] i ∈ 1..n5

K6
i = o[dict!D6

i . . .] i ∈ 1..n6

K7
i = o[release lock . . .] i ∈ 1..n7

K8
i = o[x8

i !〈〉 . . .] i ∈ 1..n8

K9
i = o[end] i ∈ 1..n9

We can refine this, as we know that at most one agent can be holding the

lock on the dictionary at any one time. Thus, we know that there is only one

of the agents K5
i , K

6
i , and K

7
i . Moreover, there is no point in distinguishing

a K3
i agent from a K9

i agent. Using
�≡, we can reorganise a configuration of

the dictionary object into the following form:

Kstate = K1|K2|K4|Kset|K8|Kend



∅
o := [dict �→ D]

where the agents in K1 are newly invoked get methods:

K1 = o[dict?d x1
1!〈get(d, k1

1)〉 end] | . . . o[dict?d x1
n1
!〈get(d, k1

n1
)〉 end]

The agents in K2 are get methods which have performed their access:

K2 = o[x2
1!〈v21〉 end] | . . . o[x2

n2
!〈v2n2

〉 end]

220

CHAPTER 7. A DEVELOPMENT IN OOMPA

The agents in K4 are newly invoked set methods:

K4=

o[acquire lock dict?d dict!set(d, k4
1, v

4
1) release lock x4

1!〈〉 end] |
...

o[acquire lock dict?d dict!set(d, k4
n4
, v4n4

) release lock x4
n4
!〈〉 end]

The agent in Kset is either Nil or has one of the forms:

(i) o[dict?d dict!set(d, k, v) release lock x!〈〉 end]
(ii) o[dict!D′ release lock x!〈〉 end]
(iii) o[release lock x!〈〉 end]

The agents in K8 are get methods which have performed their access:

K8 = o[x8
1!〈〉 end] | . . . o[x8

n8
!〈v8n8

〉 end]

The agents in Kend are get or set methods which have finished their work.

Kend = o[end] | . . . o[end]

We will show that our configuration Kstate is weakly bisimilar to the

following sequential process expression:

qDstate
def
= �k∈Key,xnew

o.get?〈k〉
x

�� qh1(Dstate,x,k)

4 �k∈Key,v∈Value,xnew
o.set?〈k,v〉

x
�� qh2(Dstate,x,k,v)

4 �(x,v)∈Out1

x!〈v〉 �� qh3(Dstate,x,v)

4 �x∈Out2

x!〈〉 �� qh4(Dstate,x)

4 �(x,k)∈In1,v=get(Dict,k)
�� qh5(Dstate,x,k,v)

4 �(x,k,v)∈In2,Pending=∅ �� qh6(Dstate,x,k,v)

4 �(x,k,v)∈Pending
�� qh7(Dstate,x,k,v)

where the definitions of functions h1, . . . h7 are given on page 208.

It is not difficult to show that qDstate⊥ sãt Dspec5
′

Dstate⊥ . To show that

Kstate⊥ ≈ qDstate⊥ we need to define a weak bisimulation. We now show that

221

CHAPTER 7. A DEVELOPMENT IN OOMPA

we can obtain a meaningful projection from configurations of the above form

into the state components of the sequential process expression above. Given

such a configuration Kstate, we define the following:

π1(Kstate) = D

π2(Kstate) = {(x1
i , k

1
i) | i ∈ 1..n1}

π3(Kstate) = {(x2
i , v

2
i) | i ∈ 1..n2}

π4(Kstate) = {(x4
i , k

4
i , v

4
i) | i ∈ 1..n6}

π5(Kstate) = {x8 | i ∈ 1..n8}

∪


{x} if Kset is in state (iii)

∅ otherwise

π6(Kstate) =




{(x, k, v)} if Kset is in state (i)

f(D,Kset) if Kset is in state (ii)

∅ otherwise

In the definition of π6, we must be careful if theK
set is in state (ii), since there

are no explicit k and v values in the agent. We use the function f(D,Kset)

to obtain such values as follows: First compare the dictionary value D′ in the

agent with the value D. If they differ, then the key value pair at which they

differ (this occurs at most once) provides our k and v. If they are identical,

then the update won’t affect the dictionary, so we can pick an arbitrary key

value pair, k and v, which agrees with D. f(D,Kset) returns (x, k, v) where

x is obtained from the agent in Kset.

We then define π as follows:

π(Kstate) =
(π1(Kstate), π2(Kstate), π3(Kstate),

π4(Kstate), π5(Kstate), π6(Kstate))

We now show the following is a weak bisimulation between Kstate and

qπ(Kstate):

S = {(Kstate, qπ(Kstate)) | ∀Kstate}

222

CHAPTER 7. A DEVELOPMENT IN OOMPA

Given a pair (Kstate, qπ(Kstate)), we check weak simulation by considering

all actions of one component and making sure that the other component can

perform an experiment with the same visible action.

First we consider the actions of Kstate:

• o.get?〈k〉
x

�� : a new get request arrives and a new K1 agent is created.

This is simulated by qπ(Kstate) performing
o.get?〈k〉

x
�� .

• o.set?〈k,v〉
x

�� : a new set request arrives and a new K4 agent is created.

This is simulated by qπ(Kstate) performing
o.set?〈k,v〉

x
�� .

• x!〈v〉 �� : a reply to a get request is issued and a K2 agent is converted

into a Kend agent. This is simulated by qπ(Kstate) performing
x!〈v〉 �� .

• x!〈〉 �� : a reply to a set request is issued and a K8 agent is converted

into a Kend agent. This is simulated by qπ(Kstate) performing
x!〈〉 �� .

• �� : a K1 agent accesses the dictionary and becomes aK2 agent. Let

(x, k) be the values in the K1 agent and let v = get(D, k). The action

is simulated by qπ(Kstate) performing a silent action and becoming state

qh5(π(Kstate),x,k,v). It can perform this action because (x, k) ∈ π2(Kstate)

and v = get(π1(Kstate), k).

• �� : a K4 agent acquires the lock and becomes a Kset agent in state

(i). This can occur only when there is no other Kset agent. Let (x, k, v)

be the values in the K4 agent. The action is simulated by qπ(Kstate)

performing a silent action and becoming state qh6(π(Kstate),x,k,v). It can

perform this action because (x, k, v) ∈ π4(Kstate) and π6(Kstate) = ∅.

• �� : a Kset agent in state (i) becomes a Kset agent in state (ii). This

is simulated by qπ(Kstate) doing nothing.

223

CHAPTER 7. A DEVELOPMENT IN OOMPA

• �� : a Kset agent in state (ii) becomes a Kset agent in state (iii). Let

(x, k, v) = f(D,Kset). The action is simulated by qπ(Kstate) performing

a silent action and becoming state qh7(π(Kstate),x,k,v). It can perform this

action because (x, k, v) ∈ π6(Kstate).

• �� : a Kset agent in state (iii) becomes a K8 agent. This is simulated

by qπ(Kstate) doing nothing.

• �� : a Kend agent is removed. This is simulated by qπ(Kstate) doing

nothing.

Now we must reason that Kstate can simulate any of the actions per-

formed by qπ(Kstate).

• o.get?〈k〉
x

�� leading to state qh1(π(Kstate),x,k). This is simulated by Kstate

performing
o.get?〈k〉

x
�� , whereby a new K1 agent is created.

• o.set?〈k,v〉
x

�� leading to state qh2(π(Kstate),x,k,v). This is simulated by Kstate

performing
o.set?〈k,v〉

x
�� , whereby a new K4 agent is created.

• x!〈v〉 �� leading to state qh3(π(Kstate),x,v). This is simulated by Kstate

performing
x!〈v〉 �� , whereby a K4 agent is converted into a Kend agent.

• x!〈〉 �� leading to state qh4(π(Kstate),x). This is simulated by Kstate per-

forming
x!〈〉 �� , whereby a K8 agent is converted into a Kend agent.

• �� leading to state qh5(π(Kstate),x,k,v) where v = get(π1(Kstate), k).

Since (x, k) ∈ π2(Kstate), we know there is a K1 agent with the ap-

propriate values. Therefore, Kstate can perform a silent action and

convert that K1 agent into a K2 agent.

224

CHAPTER 7. A DEVELOPMENT IN OOMPA

• �� leading to state qh6(π(Kstate),x,k,v). For this to be occur, we know

that π6(Kstate) = ∅. Therefore, if there is a Kset agent, it must be

in state (iii) and can perform a silent action to release its lock. Since

(x, k, v) ∈ π4(Kstate), there must be a K
4 agent with the appropriate

values. Therefore, Kstate can perform a silent action and convert the

that K4 agent into a Kset agent in state (i).

• �� leading to state qh7(π(Kstate),x,k,v). Thus π6(Kstate) = {(x, k, v)}
and, consequently, there must be a Kset agent in state (i) or (ii). Thus,

Kstate can perform one or two silent actions to convert this into a Kset

agent in state (iii).

Thus, S is a weak bisimulation. This means that the implementation rela-
tion holds between the configurations of the objects of the class we presented

and the specifications Dspec5
′

Dstate.

7.3.5 Further Development

The designs we presented in Section 7.3.1 and 7.3.3 are intended to illustrate

our development method. However, as actual designs for a concurrent dic-

tionary they are quite unsophisticated. Both designs involve a single object

which manages the whole dictionary. They require the entire dictionary to be

locked all at once. We briefly consider here some more sophisticated designs

for a concurrent dictionary that would also satisfy the specification.

Rather than having a single object manage the dictionary, we could split

the dictionary into separate objects, each of which would have responsibility

for only a subset of the set of keys. This gives us a much finer control over

locking and would allow us to share the task of running the dictionary to

many distributed machines. Designs of this sort are considered in [Jon92].

225

CHAPTER 7. A DEVELOPMENT IN OOMPA

One such design would involve a set of Oompa objects arranged as a

linked list. Each object in the list would manage a single key value pair.

Set and get requests can concurrently traverse the list looking for the object

managing their key.

Another very standard design for a dictionary would be a binary search

tree, although we would need to assume that the set of keys has some kind

of ordering on it. In this design, the objects are arranged in a binary tree

formation and, as in the previous design, each object is responsible for a

single key value pair. The core property of this design is the following: if an

object, o, is managing key, k, then

• all the objects in the left subtree beneath o are managing keys less than
k and

• all the objects in the right subtree beneath o are managing keys greater
than k.

Again, many concurrent requests can be operating on the tree at any instant.

7.4 Summary

In this chapter, we demonstrated how Sequential Process Expressions and

Oompa might be used in actual development. We derived two designs for a

very standard structure, a concurrent dictionary.

The first step was to discover the behavioural requirements of a concurrent

dictionary object. We started with the abstract data type of a dictionary,

which defines the abstract behaviour of its get and set operations. Before

tackling concurrency, we provided the requirements for a sequential dictio-

nary object. We were then able to give the requirements for a concurrent

dictionary object.

226

CHAPTER 7. A DEVELOPMENT IN OOMPA

Our next step was to give a specification of behaviour that satisfied those

requirements. Using sequential process specifications, we derived two speci-

fications for the behaviour of a concurrent dictionary. Unfortunately, there

was no generalisation of both specifications in our language.

Lastly, we provided two Oompa classes, one for each specification, which

embody our designs for a concurrent dictionary. We considered the objects

that these classes define and we were able to show that those objects lie in

the implementation relation (≈sãt) with their specification.

227

Chapter 8

Conclusions and Future Work

The goal of this research was to provide support for the modelling and de-

velopment of distributed object-oriented systems. We decided to provide a

special-purpose formal method to this end. Although our formal method is

in an early stage of development, our research has lead to the development

of two components, Oompa and sequential process specifications. In this fi-

nal chapter, we review our achievements and discuss how we might take the

research forward.

We review the contents of the thesis in Section 8.1 and consider future

work in Section 8.2.

8.1 Overview

In this section, we review the material we presented in this thesis.

Our first task was to frame our problem by choosing an interpretation of

“distributed object-oriented systems”. Because of its generality, we decided

to base our interpretation on the CORBA object model.

We commenced the thesis proper with a review of the current state of

228

CHAPTER 8. CONCLUSIONS AND FUTURE WORK

the art. We considered various methods which we divided into three classes:

state-based approaches to concurrency, process calculi and concurrent object-

oriented approaches. We evaluated the methods as approaches to our prob-

lem but, ultimately, found that they did not precisely satisfy our require-

ments.

The bulk of the material in this thesis was concerned with Oompa. All

formal methods need a language for representing the concepts they work

with. We intended to discuss designs for distributed object-oriented systems

so, in line with our decision to avoid a semantic gap, we defined a language

which embodies many of the features of those systems. Oompa is an object-

oriented language whose objects support multiple concurrent invocations.

Our presentation of Oompa consisted of three parts: the static system,

which defines the syntax of Oompa programs, the dynamic systems, which

define their behaviour and the type system, which guarantees their type cor-

rectness. In defining Oompa’s static and dynamic systems, we gave a thor-

ough consideration to issues of naming and devised some algebraic techniques

such as isolated sum (see Appendix A) and ρα-constructions (see Appendix B,

Section B.1). In defining Oompa’s type system, we produced a minimal type

system suitable for languages with objects and channels. We supplied this

type system with a way of handling mutually referential class and interface

definitions, the expansion function (see Section 5.2.3).

In order to discuss and manipulate behaviour, we also developed a be-

havioural specification language called sequential process specifications. We

gave its syntax and defined its semantics in terms of a notion of satisfaction.

Although similar, we showed that the language is semantically different to

CSP (see Section 6.4.2). Most significantly, we defined a form of refinement

for our language which allows specifications to be developed incrementally.

229

CHAPTER 8. CONCLUSIONS AND FUTURE WORK

The refinement steps of such a development can be formally verified and,

importantly, can be justified in terms of requirements (see Section 6.6 and

Section 7.2). We described how the behaviour of Oompa programs can be

specified with sequential process specifications.

We indicated how our formal method might support development by pro-

ducing two designs for a concurrent dictionary object. First, we derived

behavioural requirements for such a dictionary object by semi-formal reason-

ing about its traces. From these requirements, we were able to incrementally

develop two behavioural specifications using sequential process specifications.

Lastly, we provided two Oompa class definitions and proved that their objects

were implementations of the specifications. These Oompa classes represent

two simple designs for a concurrent dictionary objects.

8.2 Future Work

In this section, we describe some possible future work.

The are many ways that our work on the language Oompa could be

extended. Considering first the static system, we note that our current

approach to naming requires many very similar results to be proved from

scratch. We believe that there should be a good generalisation of our nam-

ing techniques. Finding one would hopefully simplify many of the proofs

in Appendix B. Alternatively, a full investigation of the approaches we dis-

cussed in Section 4.2.2 might lead us to take advantage of their techniques.

A useful extension to Oompa’s static system would be the addition of an

expression language. Currently, Oompa’s computational syntax is minimal

and implementing algorithms of any sophistication involves numerous encod-

ings. An expression language would make Oompa programs much easier to

230

CHAPTER 8. CONCLUSIONS AND FUTURE WORK

write. There are two ways this might be done. One way would be to extend

Oompa itself by providing new syntactic forms and rules in the operational

semantics to give them behaviour. Alternatively, we could define sugarings

from an enriched Oompa syntax to the base language described in this thesis.

Considering Oompa’s dynamic systems, we note that the single result we

proved about the relationship between the two operational semantics is only

one of many. We chose this result as it guarantees that the labelled transition

system is consistent with the reduction system. Proving further relationships

that hold between them would strengthen our theory. For example, we could

show that all reductions have an analogous silent transition in the labelled

transition system.

Oompa’s labelled transition system requires the use of an equivalence sys-

tem. Even though we do take advantage of it in Chapter 7, this feature does

make reasoning over proof trees awkward. Many comparable systems in the

literature (e.g. the labelled transition system of the π-calculus camstpc) pro-

vide a labelled transition system which does not require equivalence. It might

be worth developing a third operational semantics without this requirement.

The main reason we do require an equivalence system is to ensure that agents

have access to their object’s state. Without the ability to manipulate con-

figurations using equivalence, we might need to consider transitions which

describe access or update operations. Of course, this might be interesting in

its own right.

Oompa’s configuration-based dynamic system uses weak bisimulation to

identify equivalent behaviour. However, weak bisimulation (as we discussed

in Section 6.2.1) is only one possibility and there are many alternative be-

havioural equivalences we could have chosen. Weak bisimulation was a con-

servative choice, since it is relatively strong and it is unlikely that we would

231

CHAPTER 8. CONCLUSIONS AND FUTURE WORK

ever want to be more discriminating. Another way of taking our work further

would be a full investigation of alternatives. This might lead us to prefer a

weaker equivalence more suited to the systems we wish to discuss.

Although intended to represent designs for distributed object-oriented

systems, Oompa has no explicit notion of distribution. We could augment

Oompa with explicit distribution and there are examples of how this can

be done in the literature [CG98, Car94, RH98]. One way would be to add

a notion of location and ensure Oompa objects reside at separate locations.

Location names might be values which can then be communicated. Locations

become interesting when we limit communication between them or allow a

location or an inter-location communication to fail. The particular choice

of how we might do this is likely to be heavily influenced by the CORBA

standard.

Sequential process specifications, as defined in this thesis, are only a step

on the way to the behavioural specification language we are looking for.

Ultimately, we plan on developing a language with a similar support for

refinement but which has the flexibility and power of the π-calculus. This is

likely to require a thorough reworking of the material of Chapter 6.

With regard to the language we have presented, however, there are a

few useful extensions we could make. One particularly appropriate change

would be to add support for object behaviour as standard. In our example

in Chapter 7, we had to explicitly manage the fact that our specifications

represented the behaviour of an object.

There are two obvious ways of taking our theory of refining simulation

forward. Refining simulation is not complete with respect to refinement. We

could seek to strengthen it, perhaps to handle more cases or even to make

it complete. Also, we could try to define an algorithm to find refinement

232

CHAPTER 8. CONCLUSIONS AND FUTURE WORK

simulations. Inspiration could be taken from our work on Oompa’s subtyping

system, where an algorithm is provided to determine whether a simulation

holds between two infinite structures.

Clearly, this thesis only presents the start of a formal method. Much work

will need to be done to build it into a full method. Considered as a devel-

opment method, a key feature to add would be support for deriving Oompa

programs from specifications. We also proposed our method for modelling

but we have not, as yet, explored this use. For both development and mod-

elling, further case studies must be done to develop techniques and evaluate

the method as a whole.

One task that might greatly increase the usability of our formal method

would be the development of tools. Currently, an Oompa parser and parts

of a pretty-printer have been written using the Haskell programming lan-

guage [Jon03]. The automation of well-formedness and type safety checking

would be desirable. It would also be useful to be able to animate the dynamic

systems.

233

Appendix A

Isolated Sum

For many of the proofs in Appendix B it will be necessary to build renamings

with specific properties, usually by composing other renamings. A situation

can arise where two renamings we wish to apply potentially interfere with

each other. This short appendix presents our way of managing this, called

isolated sum, which constructs a composition of yet more renamings. To

avoid long composition expressions, we provide this construction with a no-

tation that we find intuitive.

Section A.1 gives the definition of isolated sum and proves that it has the

properties we require. In Section A.2, we elaborate some of the theory of

isolated sum. Section A.3 generalises it from two to an arbitrary number of

renamings.

A.1 Definition

Say the sets A and B are disjoint. We will often want renamings whose effect

is to manipulate the two sets independently. In general, the changes we wish

to apply to one set may interfere with the other, so we provide a way of

234

APPENDIX A. ISOLATED SUM

temporarily isolating them.

Say A and B are finite sets of names such that A � B. Say ρ1 and ρ2
are renamings such that Aρ1 � Bρ2. We define the isolated sum of ρ1 and

ρ2 with respect to A and B as

ρ1|A + ρ2|B = δAρ1 ◦ ρ2 ◦ δB ◦ δAρ1 ◦ ρ1 ◦ δB

where δAρ1 shoves Aρ1 and δB shoves B.

We will refer to the sets A and B in an isolated sum ρ1|A + ρ2|B as the
isolated sets. Note that the restrictions in an isolated sum are part of the

whole expression and not part of the summands. The following diagram

illustrates how isolated sum enables two potentially interfering renamings to

be performed “simultaneously”.

names
new

names
new

δB ρ1Aδ δB ρ2 ρ1Aδρ1

N N N N N N N

ρ1
�
�
�

�
�
�

A
ρ2
�
�
�

�
�
�

B+

ρ1A

ρ2B
A

B

We say that two renamings ρ1 and ρ2 agree on a set A if, for all n ∈ A,
we have nρ1 = nρ2. We will write this as ρ1 -A ρ2.

Lemma A.1.1

1. ρ1|A + ρ2|B -A ρ1.

235

APPENDIX A. ISOLATED SUM

2. ρ1|A + ρ2|B -B ρ2.

Proof: Say n ∈ A. Then

n(ρ1|A + ρ2|B)
= 〈 definition of isolated sum, choosing δAρ1 and δB appropriately 〉
nδBρ1δAρ1δBρ2δAρ1

= 〈n /∈ Change(δB)〉
nρ1δAρ1δBρ2δAρ1

= 〈nρ1δAρ1 /∈ Change(δB)〉
nρ1δAρ1ρ2δAρ1

= 〈nρ1δAρ1 /∈ Change(ρ2)〉
nρ1δAρ1δAρ1

= 〈δAρ1−1 = δAρ1〉
nρ1

The case for n ∈ B is similar. �

Corollary A.1.2 (A ∪B)(ρ1|A + ρ2|B) = Aρ1 ∪ Bρ2

A.2 Some Properties of Isolated Sum

The behaviour of an isolated sum on a name which is outside its isolated sets

is unreliable but it has nice properties when we restrict attention to those

sets. To support reasoning about isolated sums, we use agreement to capture

the notion of “equality on the isolated sets”.

When an isolated sum ρ1|A + ρ2|B and a renaming ρ agree on the sum’s
isolated sets, i.e. ρ1|A + ρ2|B -A∪B ρ, then we will just say that they agree.
Where there is no ambiguity we will drop the set marking on the relation

and write this as either ρ1|A + ρ2|B - ρ or ρ - ρ1|A + ρ2|B.

236

APPENDIX A. ISOLATED SUM

Lemma A.2.1 ρ|A + ρ|B - ρ

Lemma A.2.2 ρ1|A + ρ2|B - ρ2|B + ρ1|A

Lemma A.2.3

1. If ρ1 -A ρ2 then ρ1|A + ρ|B - ρ2|A + ρ|B.

2. If ρ1 -B ρ2 then ρ|A + ρ1|B - ρ|A + ρ2|B.

Lemma A.2.4 If ρ1 - ρ2 then ρ2 - ρ1.

In general, agreement is not transitive because isolated sums may have

different isolated sets. However, if we are careful, the following result allows

us to reason in a similar way.

Lemma A.2.5 Say that ρ - ρ1|A + ρ2|B and ρ1|A + ρ2|B - ρ′. Then

ρ -A∪B ρ′.

Lemma A.2.6

1. ρ ◦ (ρ1|A + ρ2|B) - (ρ ◦ ρ1)|A + (ρ ◦ ρ2)|B

2. (ρ1|A + ρ2|B) ◦ ρ - (ρ1 ◦ ρ)|Aρ−1 + (ρ2 ◦ ρ)|Bρ−1

Proof:

1. Since ρ1|A + ρ2|B is well defined, we can conclude that A � B and

Aρ1 � Bρ2. Thus, since ρ is bijective, we have Aρ1ρ � Bρ1ρ so the
isolated sum (ρ ◦ ρ1)|A + (ρ ◦ ρ2)|B is well defined.

Say n ∈ A. Then

237

APPENDIX A. ISOLATED SUM

n(ρ ◦ (ρ1|A + ρ2|B))
= 〈definition of composition〉
n(ρ1|A + ρ2|B)ρ

= 〈by Lemma A.1.1〉
nρ1ρ

= 〈definition of composition〉
n(ρ ◦ ρ1)

= 〈by Lemma A.1.1〉
n((ρ ◦ ρ1)|A + (ρ ◦ ρ2)|B)

The case where n ∈ B is similar.

2. Since ρ1|A + ρ2|B is well defined, we can conclude that A � B and

Aρ1 � Bρ2. Thus, since ρ is bijective, we have Aρ−1 � Bρ−1 so the

isolated sum (ρ1 ◦ ρ)|Aρ−1 + (ρ2 ◦ ρ)|Bρ−1 is well defined.

Say n ∈ Aρ−1. Then

n((ρ1|A + ρ2|B) ◦ ρ)
= 〈definition of composition〉
nρ(ρ1|A + ρ2|B)

= 〈by Lemma A.1.1〉
nρρ1

= 〈definition of composition〉
n(ρ1 ◦ ρ)

= 〈by Lemma A.1.1〉
n((ρ1 ◦ ρ)|Aρ−1 + (ρ2 ◦ ρ)|Bρ−1)

The case where n ∈ Bρ−1 is similar.

�

238

APPENDIX A. ISOLATED SUM

A.3 n-Ary Isolated Sum

We can define an n-ary version of isolated sum in terms of the binary oper-

ation by repeatedly applying the following rule:

ρ1|A1
+ · · · ρn|An

= (ρ1|A1
+ . . . ρn−1|An−1

)
∣∣∣
(A1∪···An−1)

+ ρn|An

We require the following condition to ensure that the n-ary isolated sum will

be well-defined:

∀i �= j . ((Ai � Aj) ∧ (Aiρi � Ajρj))

We can prove n-ary analogues of the properties of binary isolated sum.

Lemma A.3.1 For i ∈ 1..n,

ρ1|A1
+ · · · ρn|An

-Ai
ρi

Proof: We use induction on n. The base case is where n = 2 and this

follows directly from Lemma A.1.1. Say that n > 2 and assume that the

result is true for all m such that 2 ≤ m < n.
There are two cases for i. First, we consider the case where i = n.

ρ1|A1
+ · · · ρn|An

= 〈definition of n-ary isolated sum〉
(ρ1|A1

+ . . . ρn−1|An−1
)
∣∣∣
(A1∪···An−1)

+ ρn|An

-An 〈by Lemma A.1.1〉
ρn

as required in this case.

Second, we consider the case where 1 ≤ i < n.

239

APPENDIX A. ISOLATED SUM

ρ1|A1
+ · · · ρn|An

= 〈definition of n-ary isolated sum〉
(ρ1|A1

+ . . . ρn−1|An−1
)
∣∣∣
(A1∪···An−1)

+ ρn|An

-A1∪···An−1 〈by Lemma A.1.1〉
ρ1|A1

+ . . . ρn−1|An−1

Therefore we have:

ρ1|A1
+ · · · ρn|An

-Ai
〈Ai ⊆ A1 ∪ · · ·An−1〉

ρ1|A1
+ . . . ρn−1|An−1

-Ai
〈induction hypothesis〉

ρi

The transitivity of agreement on Ai gives the result. �

Corollary A.3.2 (A1 ∪ · · ·An)(ρ1|A1
+ · · · ρn|An

) = A1ρ1 ∪ · · ·Anρn

Lemma A.3.3 ρ|A1
+ · · · ρ|An

- ρ

The n-ary version of Lemma A.2.2 allows the permuting of summands.

Lemma A.3.4 If α is a permutation of 1..n, then

ρ1|A + · · · ρn|An
- ρ1α|A1α

+ · · · ρnα|Anα

Lemma A.3.5 If ρi -Ai
ρ′i for i ∈ 1..n then

ρ1|A1
+ · · · ρi|Ai

+ · · · ρn|An
- ρ1|A1

+ · · · ρ′i|Ai
+ · · · ρn|Bn

Lemma A.3.6 Say that ρ - ρ1|A1
+ · · · ρn|An

and ρ1|A1
+ · · · ρn|An

- ρ′.

Then ρ -A1∪···An ρ
′.

240

APPENDIX A. ISOLATED SUM

Lemma A.3.7

1. ρ ◦ (ρ1|A1
+ · · · ρn|An

) - (ρ ◦ ρ1)|A1
+ · · · (ρ ◦ ρn)|An

2. (ρ1|A1
+ · · · ρn|An

) ◦ ρ - (ρ1 ◦ ρ)|A1ρ−1 + · · · (ρn ◦ ρ)|Anρ−1

241

Appendix B

Technical Results for Oompa

In this appendix, we elaborate on the technical aspects of our presentation

of Oompa. Most importantly, the proofs of many results stated in chapters 3

and 4 are given here. When a result is restated, it is annotated with a

reference to the corresponding result in the body of the thesis and the page

number where it occurs.

Section B.1 provides the proofs of several properties of the α-equivalence

system for code. Also in this section is a description of a proof technique we

make use of many times called the ρα-construction. In Section B.2, we prove

some results about agents necessary for the rest of the appendix. Section B.3

gives the proofs for many of the results about configurations. We prove the

relationship between the two dynamic systems in Section B.4.

B.1 Results about Code

In this section we give the proofs of lemmas 3.5.1, 3.5.2 and 3.5.3.
3.5.1

p75Lemma B.1.1 For two pieces of code p1 and p2,

p1 ≡α p2 ⇒ FN(p1) = FN(p2)

242

APPENDIX B. TECHNICAL RESULTS FOR OOMPA

Proof: We use induction on the proof tree that ends with p1 ≡α p2. If
the last step is justified by an equivalence rule or congruence rule then the

argument is obvious. We provide one example where the last step is a change

of bound names rule.

Say the proof tree is an instance of CHNG-INV:

o.m!〈v1, . . . vn〉?(r1, . . . rn′) p ≡α o.m!〈v1, . . . vn〉?(r1ρ, . . . rn′ρ) pρ

where

FN(o.m!〈v1, . . . vn〉?(r1, . . . rn′) p) � Change(ρ)

Then

FN(o.m!〈v1, . . . vn〉?(r1ρ, . . . rn′ρ) pρ)
= 〈definition of FN(·)〉
(FN(pρ)� {r1ρ, . . . rn′ρ}) ∪ {o} ∪ FN(v1) ∪ . . .FN(vn)

= 〈by Lemma 3.4.5 and set theory〉
(FN(p)ρ� {r1, . . . rn′}ρ) ∪ {o} ∪ FN(v1) ∪ . . .FN(vn)

= 〈since ρ is bijective〉
(FN(p)� {r1, . . . rn′})ρ ∪ {o} ∪ FN(v1) ∪ . . .FN(vn)

= 〈(FN(p)� {r1, . . . rn′}) � Change(ρ)〉
(FN(p)� {r1, . . . rn′}) ∪ {o} ∪ FN(v1) ∪ . . .FN(vn)

= 〈definition of FN(·)〉
FN(o.m!〈v1, . . . vn〉?(r1, . . . rn′) p)

The second last step is justified by the fact that

FN(p)� {r1, . . . rn′} ⊆ FN(o.m!〈v1, . . . vn〉?(r1, . . . rn′) p)

�

243

APPENDIX B. TECHNICAL RESULTS FOR OOMPA

We use the proof of the following lemma to exemplify a technique we will

use repeatedly. For this first use, we will give all the details but, later, we

will leave out most of the steps. We call this technique a ρα-construction.

A ρα-construction will be applicable when we are using structural in-

duction to show that a pair of Oompa structures are α-equivalent. In each

case, we will construct a renaming, written ρα, which has two key properties.

Firstly, it will map the bound names of the outermost binder of one structure

to the bound names of the outermost binder of the other. Secondly, it will

leave the free names of the structures alone. In simple cases, ρα can be built

using composition but, in more complicated cases, ρα will be an isolated sum.

3.5.2

p75Lemma B.1.2 For a piece of code p and two renamings ρ1 and ρ2,

pρ1ρ2 ≡α p(ρ2 ◦ ρ1)

Proof: We use induction on the construction of the piece of code p. We

give two examples of the cases, which illustrate the argument in general.

Consider the case where p = c!〈v1, . . . vn〉 p′. Then

pρ1ρ2

= 〈expanding p〉
(c!〈v1, . . . vn〉 p′)ρ1ρ2

= 〈renaming procedure on ρ1〉
(cρ1!〈v1ρ1, . . . vnρ1〉 p′ρ1)ρ2

= 〈renaming procedure on ρ2〉
cρ1ρ2!〈v1ρ1ρ2, . . . vnρ1ρ2〉 p′ρ1ρ2

= 〈composition〉
c(ρ2 ◦ ρ1)!〈v1(ρ2 ◦ ρ1), . . . vn(ρ2 ◦ ρ1)〉 p′ρ1ρ2

≡α 〈induction hypothesis and CONG-SND〉

244

APPENDIX B. TECHNICAL RESULTS FOR OOMPA

c(ρ2 ◦ ρ1)!〈v1(ρ2 ◦ ρ1), . . . vn(ρ2 ◦ ρ1)〉 p′(ρ2 ◦ ρ1)
= 〈renaming procedure for (ρ2 ◦ ρ1)〉
(c!〈v1, . . . vn〉 p′)(ρ2 ◦ ρ1)

= 〈definition of p〉
p(ρ2 ◦ ρ1)

as required.

Consider the case where p = create o: ClT p′. Then

pρ1ρ2

= 〈expand p〉
(create o: ClT p′)ρ1ρ2

= 〈renaming procedure, choosing δ1 appropriately 〉
(create oδ1ρ1: ClT p

′δ1ρ1)ρ2

= 〈renaming procedure, choosing δ2 appropriately〉
create oδ1ρ1δ2ρ2: ClT p

′δ1ρ1δ2ρ2

and

p(ρ2 ◦ ρ1)
= 〈expand p〉
(create o: ClT p′)(ρ2 ◦ ρ1)

= 〈renaming procedure, choosing δ appropriately〉
create oδ(ρ2 ◦ ρ1): ClT p′δ(ρ2 ◦ ρ1)

Our goal will be to show that

create oδ(ρ2 ◦ ρ1): ClT p′δ(ρ2 ◦ ρ1) ≡α create oδ1ρ1δ2ρ2: ClT p′δ1ρ1δ2ρ2

We will use the change of bound names rule for create, CHNG-CRT, with a

renaming, ρα, which will map oδ(ρ2 ◦ ρ1) into oδ1ρ1δ2ρ2 and leave free names

245

APPENDIX B. TECHNICAL RESULTS FOR OOMPA

alone1. Let

ρα = ρ2 ◦ δ2 ◦ ρ1 ◦ δ1 ◦ δ ◦ ρ1−1 ◦ ρ2−1

We first show that ρα leaves free names untouched. Consider an instance

of a free name, n, occurring in create oδ(ρ2 ◦ ρ1): ClT p′δ(ρ2 ◦ ρ1). Due to
the fact that new names are chosen when the renaming procedure encounters

binders, free names in p′ are not affected by the shove δ. Moreover, any shoves

generated when the renaming (ρ2 ◦ ρ1) is applied to p′δ, will not affect free
names. Thus n = n′(ρ2 ◦ ρ1) for some name n′ which is free in p′. We show
that n /∈ Change(ρα).

nρα

= 〈definition of n′〉
n′(ρ2 ◦ ρ1)ρα

= 〈composition〉
n′(ρα ◦ ρ2 ◦ ρ1)

= 〈expand ρα〉
n′(ρ2 ◦ δ2 ◦ ρ1 ◦ δ1 ◦ δ ◦ ρ1−1 ◦ ρ2−1 ◦ ρ2 ◦ ρ1)

= 〈(ρ1−1 ◦ ρ2−1 ◦ ρ2 ◦ ρ1) = 1〉
n′(ρ2 ◦ δ2 ◦ ρ1 ◦ δ1 ◦ δ)

= 〈composition〉
n′δδ1ρ1δ2ρ2

= 〈choice of δ〉
n′δ1ρ1δ2ρ2

= 〈choice of δ1〉
1In this case, it is clearly easier to construct ρα manually as the transposition

(oδ(ρ2 ◦ ρ1) oδ1ρ1δ2ρ2)

We choose to use a more general approach in order to better illustrate the ρα-construction.

246

APPENDIX B. TECHNICAL RESULTS FOR OOMPA

n′ρ1δ2ρ2

= 〈choice of δ2〉
n′ρ1ρ2

= 〈composition〉
n′(ρ2 ◦ ρ1)

= 〈definition of n′〉
n

The last few steps of this argument are due to the fact that that δ, δ1 and δ2

are shoves generated by the renaming procedure and so won’t affect the free

names of p′ and p′ρ1. So,

FN(create oδ(ρ2 ◦ ρ1): ClT p′δ(ρ2 ◦ ρ1)) � Change(ρα)

Hence, ρα can be legitimately used with the CHNG-CRT rule.

Now

p′δ(ρ2 ◦ ρ1)ρα
≡α 〈induction hypothesis twice〉
p′(ρα ◦ ρ2 ◦ ρ1 ◦ δ)

= 〈expand ρα〉
p′(ρ2 ◦ δ2 ◦ ρ1 ◦ δ1 ◦ δ ◦ ρ1−1 ◦ ρ2−1 ◦ ρ2 ◦ ρ1 ◦ δ)

= 〈(δ ◦ ρ1−1 ◦ ρ2−1 ◦ ρ2 ◦ ρ1 ◦ δ) = 1〉
p′(ρ2 ◦ δ2 ◦ ρ1 ◦ δ1)

≡α 〈induction hypothesis three times〉
p′δ1ρ1δ2ρ2

and, similarly,

oδ(ρ2 ◦ ρ1)ρα = oδ1ρ1δ2ρ2
We are finally in a position to use ρα.

247

APPENDIX B. TECHNICAL RESULTS FOR OOMPA

create oδ(ρ2 ◦ ρ1): ClT p′δ(ρ2 ◦ ρ1)
≡α 〈CHNG-CRT〉

create oδ(ρ2 ◦ ρ1)ρα: ClT p′δ(ρ2 ◦ ρ1)ρα

≡α 〈from above with CONG-CRT〉
create oδ(ρ2 ◦ ρ1)ρα: ClT p′δ1ρ1δ2ρ2

= 〈from above, oδ(ρ2 ◦ ρ1)ρα = oδ1ρ1δ2ρ2〉
create oδ1ρ1δ2ρ2: ClT p

′δ1ρ1δ2ρ2

as required. �
3.5.3

p75Lemma B.1.3 For two pieces of code, p1 and p2, and a renaming, ρ,

p1 ≡α p2 ⇒ p1ρ ≡α p2ρ

Proof: We use induction on the structure of the proof tree of p1 ≡α p2.
We provide two cases which illustrate the approach in general.

Consider the case where the last rule in the proof is CONG-RCV:

p′1 ≡α p′2
c?(r1:T1, . . . rn:Tn) p

′
1 ≡α c?(r1:T1, . . . rn:Tn) p

′
2

Now

(c?(r1:T1, . . . rn:Tn) p
′
1)ρ

= 〈renaming procedure, choosing δ1 appropriately〉
cρ?(r1δ1ρ:T1, . . . rnδ1ρ:Tn) p

′
1δ1ρ

and

(c?(r1:T1, . . . rn:Tn) p
′
2)ρ

= 〈renaming procedure, choosing δ2 appropriately〉
cρ?(r1δ2ρ:T1, . . . rnδ2ρ:Tn) p

′
2δ2ρ

248

APPENDIX B. TECHNICAL RESULTS FOR OOMPA

We use a ρα-construction to show that

cρ?(r1δ1ρ:T1, . . . rnδ1ρ:Tn) p
′
1δ1ρ ≡α cρ?(r1δ2ρ:T1, . . . rnδ2ρ:Tn) p

′
2δ2ρ

Let

ρα = ρ ◦ δ1 ◦ δ2 ◦ ρ−1

Then, using an argument as in the proof of Lemma B.1.2, we can show that

FN(cρ?(r1δ2ρ:T1, . . . rnδ2ρ:Tn) p
′
2δ2ρ) � Change(ρα)

which will allow us to use ρα in CHNG-RCV.

So,

p′2δ2ρρ
α

≡α 〈Lemma B.1.2〉
p′2(ρ ◦ δ1 ◦ δ2 ◦ ρ−1 ◦ ρ ◦ δ2)

= 〈(δ2 ◦ ρ−1 ◦ ρ ◦ δ2) = 1〉
p′2(ρ ◦ δ1)

≡α 〈induction hypothesis〉
p′1(ρ ◦ δ1)

≡α 〈Lemma B.1.2〉
p′1δ1ρ

and similarly

riδ2ρρ
α = riδ1ρ

for each i. Finally, we use ρα,

cρ?(r1δ2ρ:T1, . . . rnδ2ρ:Tn) p
′
2δ2ρ

≡α 〈CHNG-RCV〉
cρ?(r1δ2ρρ

α:T1, . . . rnδ2ρρ
α:Tn) p

′
2δ2ρρ

α

≡α 〈from above, with CONG-RCV〉

249

APPENDIX B. TECHNICAL RESULTS FOR OOMPA

cρ?(r1δ2ρρ
α:T1, . . . rnδ2ρρ

α:Tn) p
′
1δ1ρ

= 〈riδ2ρρα = riδ1ρ for each i〉
cρ?(r1δ1ρ:T1, . . . rnδ1ρ:Tn) p

′
1δ1ρ

as required.

Say that the proof tree is an instance of CHNG-ACC:

c?r p ≡α c?rρ′ pρ′

where FN(c?r p) � Change(ρ′). Now

(c?r p)ρ

= 〈renaming procedure, choosing δ1 appropriately〉
cρ?rδ1ρ pδ1ρ

and

(c?rρ′ pρ′)ρ

= 〈renaming procedure, choosing δ2 appropriately〉
cρ?rρ′δ2ρ pρ′δ2ρ

Use a ρα-construction with

ρα = ρ ◦ δ1 ◦ ρ′−1 ◦ δ2 ◦ ρ−1

to show

cρ?rδ1ρ pδ1ρ ≡α cρ?rρ′δ2ρ pρ′δ2ρ

as required. �

250

APPENDIX B. TECHNICAL RESULTS FOR OOMPA

The following technical lemma is needed for the proofs of lemmas B.2.1

and B.3.9.

Lemma B.1.4 Say Change(ρ) � FN(p). Then pρ ≡α p.

Proof: We use an induction on the structure of p. The only non-obvious

cases are the ones involving binders. These are illustrated by:

(new c:T p′)ρ

= 〈renaming procedure, choosing δ appropriately〉
new cδρ:T p′δρ

≡α 〈Lemma B.1.2 and CONG-NEW〉
new cδρ:T p′(ρ ◦ δ)

= 〈composition〉
new c(ρ ◦ δ):T p′(ρ ◦ δ)

≡α 〈CHNG-NEW〉
new c:T p′

The last step is since

Change(ρ ◦ δ) ⊆ (Change(ρ) ∪ Change(δ)) � FN(new c:T p′)

�

B.2 Results about Agents

Most results about agents stated in the body of the thesis follow directly from

the corresponding results for code, so we consider their proofs unnecessary.

Instead, this section proves some results about agents which are needed later

in this appendix.

251

APPENDIX B. TECHNICAL RESULTS FOR OOMPA

Lemma B.2.1 Say FN(g) ⊆ A and ρ1 -A ρ2. Then

gρ1 ≡α gρ2

Proof: Use an induction on the structure of g. The nil and parallel cases

are obvious. The case for primitive agents follows from Lemma B.1.4. �

Corollary B.2.2 Say ρ1 and ρ2 agree on FN(g). Then gρ1 ≡α gρ2.

The following result shows that α-equivalence and structural equivalence

are mutually non-interfering. Lemma B.2.4 proves that an instance of the α-

/structural equivalence relation can be split into an instance of α-equivalence

followed by an instance of structural equivalence (or vice-versa). We will need

this property for the proofs of lemmas B.4.7–B.4.10.

Lemma B.2.3

g1 ≡α g
�≡ g2 some g

⇔ g1
�≡ g′ ≡α g2 some g′

Proof: (⇒) We can use the proof tree of g1 ≡α g to give a function f≡α

which takes any agent with the same set of agents as g1 to an agent with the

same set of agents as g in an obvious way. It is easy to show that for any

agent g0 in its domain, we have g0 ≡α f≡α(g0).

Similarly, we can use the proof tree of g
�≡ g2 to give a function which

takes any agent with the same structure as g to an agent with the structure of

g2. It is easy to show that for any agent g0 in its domain, we have g0
�≡ f�≡(g0).

It can be seen that f≡α(f�≡(g1)) = g2. Use g
′ = f�≡(g1) as the required

intermediate agent. The case for (⇐) is similar. �

252

APPENDIX B. TECHNICAL RESULTS FOR OOMPA

Lemma B.2.4 For two agents g1 and g2 such that g1
�≡α g2, there exists

agents g and g′ such that

g1 ≡α g
�≡ g2

g1
�≡ g′ ≡α g2

Proof: We use induction on the proof of g1
�≡α g2. The only interesting

case is where the last step of the proof is EQV-TRN:

g1
�≡α g2 g2

�≡α g3
g1

�≡α g3
By the induction hypothesis, there must exist agents g′1, g

′′
1 , g

′
2 and g

′′
2 such

that

g1 ≡α g′1
�≡ g2 ≡α g′2

�≡ g3

g1
�≡ g′′1 ≡α g2

�≡ g′′2 ≡α g3

Now, by agent-
�≡-EQV-TRN, we have that g1 ≡α g′1

�≡ g′′2 . We can use

Lemma B.2.3 to give us g1
�≡ g ≡α g′′2 for some g. We can then use agent-

≡α-EQV-TRN to give us that g1
�≡ g ≡α g3 as required.

Similarly, by agent-≡α-EQV-TRN we have g1
�≡ g′′1 ≡α g′2. Lemma B.2.3

gives us g1 ≡α g′ �≡ g′2 for some g
′. Use agent-

�≡-EQV-TRN to give g1
�≡

g′ ≡α g3 as required. �

B.3 Results about Configurations

This section proves a number of results about configurations, most of which

were stated in the body of the thesis. The section is divided into three

subsections. Section B.3.1 gives properties of configurations under renaming.

Section B.3.2 gives properties of the α-equivalence system for configurations.

Lastly, Section B.3.3 gives properties of the structural equivalence system for

configurations.

253

APPENDIX B. TECHNICAL RESULTS FOR OOMPA

B.3.1 Configuration Renaming

This subsection gives the proofs of lemmas 4.2.2–4.2.4.

4.2.2

p101Lemma B.3.1 For a configuration K and renaming ρ,

FN(Kρ) = FN(K)ρ

Proof: This is similar to the proof of Lemma 3.4.5 on page 72. We

use induction on construction of K. The only interesting case occurs when

K = K ′{Φ∆ and this can be tackled like the case given for that lemma. �
4.2.3

p101Lemma B.3.2 For a configuration K and a renaming ρ,

STATE(Kρ) = STATE(K)ρ

Proof: We use induction on the structure of K. If K is either Nil or o[p]

then we are done, as the state will be empty.

Say that K = (K1|K2), then

STATE((K1|K2)ρ)

= 〈renaming procedure〉
STATE(K1ρ|K2ρ)

= 〈definition of STATE(·)〉
STATE(K1ρ) ∪ STATE(K2ρ)

= 〈induction hypothesis〉
STATE(K1)ρ ∪ STATE(K2)ρ

= 〈ρ is bijective〉
(STATE(K1) ∪ STATE(K2))ρ

= 〈definition of STATE(·)〉
STATE(K1|K2)ρ

254

APPENDIX B. TECHNICAL RESULTS FOR OOMPA

Say that K = K ′{Φ∆, then

STATE((K ′{Φ∆)ρ)
= 〈renaming procedure, choosing δ appropriately〉
STATE(K ′δρ{Φδρ∆δρ)

= 〈definition of STATE(·)〉
(STATE(K ′δρ) ∪ Dom(∆δρ))� Dom(Φδρ)

= 〈induction hypothesis and set theory〉
(STATE(K ′δ)ρ ∪ Dom(∆δ)ρ)� Dom(Φδ)ρ

= 〈induction hypothesis and set theory〉
(STATE(K ′)δρ ∪ Dom(∆)δρ)� Dom(Φ)δρ

= 〈ρ and δ are bijective〉
((STATE(K ′) ∪ Dom(∆))� Dom(Φ))δρ

= 〈choice of δ〉
((STATE(K ′) ∪ Dom(∆))� Dom(Φ))ρ

= 〈definition of STATE(·)〉
STATE(K ′{Φ∆)ρ

�
4.2.4

p102Lemma B.3.3 For a configuration K and a renaming ρ,

WF(Kρ)⇔WF(K)

Proof: We use induction on the construction of K. If K is either Nil or

o[p], then both K and Kρ will be well-formed.

Say that K = (K1|K2). Then

WF((K1|K2)ρ)

⇔ 〈renaming procedure〉
WF(K1ρ|K2ρ)

255

APPENDIX B. TECHNICAL RESULTS FOR OOMPA

⇔ 〈definition of WF(·)〉
WF(K1ρ) ∧WF(K1ρ) ∧ (STATE(K1ρ) � STATE(K2ρ))

⇔ 〈induction hypothesis twice and Lemma B.3.2 twice〉
WF(K1) ∧WF(K1) ∧ (STATE(K1)ρ � STATE(K2)ρ)

⇔ 〈ρ is bijective〉
WF(K1) ∧WF(K1) ∧ (STATE(K1) � STATE(K2))

⇔ 〈definition of WF(·)〉
WF(K1|K2)

Say that K = K ′{Φ∆. Then

WF((K ′{Φ∆)ρ)
⇔ 〈renaming procedure, choosing δ appropriately〉
WF(K ′δρ{Φδρ∆δρ)

⇔ 〈definition of WF(·)〉
WF(K ′δρ)

∧(STATE(K ′δρ) � Dom(∆δρ))
∧(OBJECTS(Φδρ) ⊆ (STATE(K ′δρ) ∪Dom(∆δρ)))

⇔ 〈induction hypothesis twice, Lemma B.3.2 twice and set theory〉
WF(K ′)

∧(STATE(K ′)δρ � Dom(∆)δρ)
∧(OBJECTS(Φ)δρ ⊆ (STATE(K ′)δρ ∪Dom(∆)δρ))

⇔ 〈ρ and δ are bijective〉
WF(K ′)

∧(STATE(K ′) � Dom(∆))
∧(OBJECTS(Φ)δρ ⊆ (STATE(K ′) ∪ Dom(∆))δρ)

⇔ 〈ρ and δ are bijective〉
WF(K ′)

∧(STATE(K ′) � Dom(∆))

256

APPENDIX B. TECHNICAL RESULTS FOR OOMPA

∧OBJECTS(Φ) ⊆ (STATE(K ′) ∪ Dom(∆))
⇔ 〈definition of WF(·)〉
WF(K ′{Φ∆)

�

B.3.2 α-Equivalence for Configurations

This subsection gives the proofs of lemmas 4.2.5–4.2.9.

4.2.5

p102Lemma B.3.4 For two configurations K1 and K2,

K1 ≡α K2 ⇒ FN(K1) = FN(K2)

Proof: Use an induction on the proof tree of K1 ≡α K2. The approach is

similar to Lemma B.1.1. �
4.2.6

p102Lemma B.3.5 For two configurations K1 and K2,

K1 ≡α K2 ⇒ STATE(K1) = STATE(K2)

Proof: We use induction on the structure of the proof tree of K1 ≡α K2.

The only interesting case is where the proof tree is an instance of the CHNG-

SCP:

K{Φ∆≡α Kρ{Φρ∆ρ

Then

STATE(Kρ{∆ρΦρ)

= 〈definition of STATE(·)〉
(STATE(Kρ) ∪ Dom(∆ρ))�Dom(Φρ)

= 〈Lemma B.3.2 and set theory〉

257

APPENDIX B. TECHNICAL RESULTS FOR OOMPA

(STATE(K)ρ ∪ Dom(∆)ρ)�Dom(Φ)ρ

= 〈ρ is bijective〉
(STATE(K) ∪Dom(∆))ρ� Dom(Φ)ρ

= 〈ρ is bijective〉
((STATE(K) ∪Dom(∆))� Dom(Φ))ρ

= 〈choice of ρ and Lemma 4.2.1〉
(STATE(K) ∪Dom(∆))� Dom(Φ)

= 〈definition of STATE(·)〉
STATE(K{Φ∆)

The second last step depends on the fact that FN(K{Φ∆) � Change(ρ) �
4.2.7

p104Lemma B.3.6 For two configurations K1 and K2,

K1 ≡α K2 ⇒WF(K1)⇔WF(K2)

Proof: We use induction on the structure of the proof tree of K1 ≡α K2.

Again, the only interesting case is where the tree is an instance of CHNG-

SCP:

K{Φ∆≡α Kρ{Φρ∆ρ

Then,

WF(Kρ{Φρ∆ρ)

⇔ 〈definition of WF(·)〉
WF(Kρ)

∧(STATE(Kρ) � Dom(∆ρ))
∧(OBJECTS(Φρ) ⊆ (STATE(Kρ) ∪ Dom(∆ρ)))

⇔ 〈induction hypothesis, Lemma B.3.2 and set theory〉
WF(K)

∧(STATE(K)ρ � Dom(∆)ρ)

258

APPENDIX B. TECHNICAL RESULTS FOR OOMPA

∧(OBJECTS(Φ)ρ ⊆ (STATE(K)ρ ∪ Dom(∆)ρ))
⇔ 〈ρ is bijective〉
WF(K)

∧(STATE(K) � Dom(∆))
∧(OBJECTS(Φ)ρ ⊆ (STATE(K) ∪ Dom(∆))ρ)

⇔ 〈ρ is bijective〉
WF(K)

∧(STATE(K) � Dom(∆))
∧(OBJECTS(Φ) ⊆ (STATE(K) ∪Dom(∆)))

⇔ 〈definition of WF(·)〉
WF(K{Φ∆)

�
4.2.8

p104Lemma B.3.7 For a configuration K and two renamings ρ1 and ρ2,

Kρ1ρ2 ≡α K(ρ2 ◦ ρ1)

Proof: We use an induction on the structure of the configuration K. If

K = Nil, then the result is obvious. If K = o[p], then the result follows in a

straightforward fashion from Lemma B.1.2.

Say that K = (K1|K2). Then

(K1|K2)ρ1ρ2

= 〈renaming procedure〉
(K1ρ1|K2ρ1)ρ2

= 〈renaming procedure〉
(K1ρ1ρ2|K2ρ1ρ2)

≡α 〈induction hypothesis twice and CONG-PAR〉
(K1(ρ2 ◦ ρ1)|K2(ρ2 ◦ ρ1))

259

APPENDIX B. TECHNICAL RESULTS FOR OOMPA

= 〈renaming procedure〉
(K1|K2)(ρ2 ◦ ρ1)

as required in this case.

Consider the case where K = K ′{Φ∆. Then

(K ′{Φ∆)ρ1ρ2
= 〈renaming procedure, choosing δ1 appropriately〉
(K ′δ1ρ1{Φδ1ρ1∆δ1ρ1

)ρ2

= 〈renaming procedure, choosing δ2 appropriately〉
K ′δ1ρ1δ2ρ2{Φδ1ρ1δ2ρ2∆δ1ρ1δ2ρ2

and

(K ′{Φ∆)(ρ2 ◦ ρ1)
= 〈renaming procedure, choosing δ appropriately〉
K ′δ(ρ2 ◦ ρ1){Φδ(ρ2◦ρ1)∆δ(ρ2◦ρ1)

Use a ρα-construction with

ρα = ρ2 ◦ δ2 ◦ ρ1 ◦ δ1 ◦ δ ◦ ρ1−1 ◦ ρ2−1

Then,

K ′δ(ρ2 ◦ ρ1)ρα

≡α 〈induction hypothesis twice〉
K ′(ρα ◦ ρ2 ◦ ρ1 ◦ δ)

= 〈expand ρα〉
K ′(ρ2 ◦ δ2 ◦ ρ1 ◦ δ1 ◦ δ ◦ ρ1−1 ◦ ρ2−1 ◦ ρ2 ◦ ρ1 ◦ δ)

= 〈(δ ◦ ρ1−1 ◦ ρ2−1 ◦ ρ2 ◦ ρ1 ◦ δ) = 1〉
K ′(ρ2 ◦ δ2 ◦ ρ1 ◦ δ1)

≡α 〈induction hypothesis three times〉

260

APPENDIX B. TECHNICAL RESULTS FOR OOMPA

K ′δ1ρ1δ2ρ2

Similarly

Φδ(ρ2 ◦ ρ1)ρα = Φδ1ρ1δ2ρ2

∆δ(ρ2 ◦ ρ1)ρα = ∆δ1ρ1δ2ρ2

Using an argument exactly as in Lemma B.1.2, we can show that

FN(K ′δ(ρ2 ◦ ρ1){Φδ(ρ2◦ρ1)∆δ(ρ2◦ρ1)) � Change(ρ
α)

Thus,

K ′δ(ρ2 ◦ ρ1){Φδ(ρ2◦ρ1)∆δ(ρ2◦ρ1)

≡α 〈CHNG-SCP〉
K ′δ(ρ2 ◦ ρ1)ρα{Φδ(ρ2◦ρ1)ρ

α

∆δ(ρ2◦ρ1)ρα

≡α 〈from above, using CONG-SCP〉
K ′δ1ρ1δ2ρ2{Φδ(ρ2◦ρ1)ρ

α

∆δ(ρ2◦ρ1)ρα

= 〈from above, the dictionaries are equal〉
K ′δ1ρ1δ2ρ2{Φδ1ρ1δ2ρ2∆δ1ρ1δ2ρ2

as required. �
4.2.9

p104Lemma B.3.8 For two configurations K1 and K2, and a renaming ρ

K1 ≡α K2 ⇒ K1ρ ≡α K1ρ

Proof: We use an induction on the proof tree of K1 ≡α K2. There is only

one interesting case, where the proof tree is an instance of CHNG-SCP:

K{Φ∆≡α Kρ′{Φρ
′

∆ρ′

261

APPENDIX B. TECHNICAL RESULTS FOR OOMPA

Now

(K{Φ∆)ρ = Kδ1ρ{Φδ1ρ∆δ1ρ

and

(Kρ′{Φρ′∆ρ′)ρ = Kρ
′δ2ρ{Φρ′δ2ρ∆ρ′δ2ρ

Use a ρα-construction with

ρα = ρ ◦ δ1 ◦ ρ′−1 ◦ δ2 ◦ ρ−1

An argument similar to previous proofs, using ρα, will show that

Kδ1ρ{Φδ1ρ∆δ1ρ
≡α Kρ′δ2ρ{Φρ′δ2ρ∆ρ′δ2ρ

as required. �
The following lemmas and corollaries justify many of the reasoning steps

used in the rest of this appendix.

Lemma B.3.9 Say Change(ρ) � FN(K). Then Kρ ≡α K.

Proof: We use an induction on the structure of K. The cases for nil and

parallel configurations are obvious. The case for a primitive configuration

follows from Lemma B.1.4. We give the case for when K = K ′{Φ∆.

(K ′{Φ∆)ρ
= 〈renaming procedure, choosing δ appropriately〉
K ′δρ{Φδρ∆δρ

≡α 〈Lemma B.3.7 and CONG-SCP〉
K ′(ρ ◦ δ){Φδρ∆δρ

= 〈dictionaries are equal〉
K ′(ρ ◦ δ){Φ(ρ◦δ)

∆(ρ◦δ)

≡α 〈CHNG-SCP〉
K ′{Φ∆

262

APPENDIX B. TECHNICAL RESULTS FOR OOMPA

The last step is since

Change(ρ ◦ δ) ⊆ (Change(ρ) ∪ Change(δ)) � FN(K ′{Φ∆)

�

Corollary B.3.10 Say ρ1 and ρ2 agree on FN(K). Then Kρ1 ≡α Kρ2.

Corollary B.3.11 Say FN(K) ⊆ A ∪ B and ρ1|A + ρ2|B - ρ. Then

K(ρ1|A + ρ2|B) ≡α Kρ

In the following lemma, we use the fact that agent configurations are

syntactically valid configurations.

Lemma B.3.12 Say g1{Φ1
∆1
≡α g2{Φ2

∆2
. Then, for some renaming ρ such that

FN(g2{Φ2
∆2
) � Change(ρ), we have

Φ2ρ = Φ1 ∆2ρ = ∆1 g2ρ ≡α g1

Proof: We use an induction on the proof tree of g1{Φ1
∆1
≡α g2{Φ2

∆2
. When

the proof tree is an instance of the EQV-RFL rule, the identity renaming

works.

Say that the last step of the proof tree is an instance of EQV-SYM:

g2{Φ2
∆2
≡α g1{Φ1

∆1

g1{Φ1
∆1
≡α g2{Φ2

∆2

By the induction hypothesis, there exists some ρ such that FN(g1{Φ1
∆1
) �

Change(ρ) and

Φ1ρ = Φ2 ∆1ρ = ∆2 g1ρ ≡α g2

263

APPENDIX B. TECHNICAL RESULTS FOR OOMPA

By Lemma B.3.4, we know FN(g1{Φ1
∆1
) = FN(g2{Φ2

∆2
) and, by Lemma 3.4.1,

we know Change(ρ) = Change(ρ−1) so

FN(g2{Φ2
∆2
) � Change(ρ−1)

Also

Φ2ρ
−1 = (Φ1ρ)ρ

−1 = Φ1

∆2ρ
−1 = (∆1ρ)ρ

−1 = ∆1

and

g2ρ
−1 ≡α (g1ρ)ρ−1 ≡α g1(ρ−1 ◦ ρ) = g1

Therefore we can use ρ−1 for this case.

Say the last step of the proof tree is an instance of EQV-TRN. Then,

since ≡α preserves structure, the tree must end as follows:

g1{Φ1
∆1
≡α g{Φ∆ g{Φ∆≡α g2{Φ2

∆2

g1{Φ1
∆1
≡α g2{Φ2

∆2

By the induction hypothesis, there must be renamings ρ1 and ρ2 such that

Φρ1 = Φ1 ∆ρ1 = ∆1 gρ1 ≡α g1

Φ2ρ2 = Φ ∆2ρ2 = ∆ g2ρ2 ≡α g

where FN(g{Φ∆) � Change(ρ1) and FN(g2{Φ2
∆2
) � Change(ρ2). Now, by

Lemma B.3.4, FN(g2{Φ2
∆2
) = FN(g{Φ∆) so

FN(g2{Φ2
∆2
) � (Change(ρ1) ∪ Change(ρ2))

Thus

FN(g2{Φ2
∆2
) � Change(ρ1 ◦ ρ2)

Also,

Φ2(ρ1 ◦ ρ2) = (Φ2ρ2)ρ1 = Φρ1 = Φ1

∆2(ρ1 ◦ ρ2) = (∆2ρ2)ρ1 = ∆ρ1 = ∆1

g2(ρ1 ◦ ρ2) ≡α (g2ρ2)ρ1 ≡α gρ1 ≡α g1

264

APPENDIX B. TECHNICAL RESULTS FOR OOMPA

so ρ1 ◦ ρ2 can be our required renaming.
Say the last step of the proof tree is an instance of CONG-SCP. Then the

tree must end as follows:

g1 ≡α g2
g1{Φ1

∆1
≡α g2{Φ2

∆2

where Φ1 = Φ2 and ∆1 = ∆2. The identity renaming will work in this case.

Consider the case where the proof tree is an instance of CHNG-SCP:

g1{Φ1
∆1
≡α g1ρ{Φ1ρ

∆1ρ

We know that FN(g1{Φ1
∆1
) � Change(ρ), so by reasoning similar to the case

for symmetry,

FN(g2ρ{Φ2ρ
∆2ρ
) � Change(ρ−1)

and

Φ1ρρ
−1 = Φ1

∆1ρρ
−1 = ∆1

g1ρρ
−1 ≡α g1

Thus, ρ−1 works for this case. No other cases fit, so we are done. �

B.3.3 Structural Equivalence for Configurations

This subsection gives the proofs for lemmas 4.2.10–4.2.13.

4.2.10

p106Lemma B.3.13 For two configurations K1 and K2,

K1
�≡ K2 ⇒ FN(K1) = FN(K2)

Proof: We use an induction on the proof tree of K1
�≡ K2. The two

interesting cases are FLATTEN and EXTRUDE.

Say the proof tree is an instance of FLATTEN:

K{Φ1
∆1
{Φ2
∆2

�≡ K{Φ1∪Φ2
∆1∪∆2

265

APPENDIX B. TECHNICAL RESULTS FOR OOMPA

Well,

FN(K{Φ1
∆1
{Φ2
∆2
)

= 〈definition of FN(·)〉
(FN(K{Φ1

∆1
) ∪ FN(∆2))�Dom(Φ2)

= 〈definition of FN(·)〉
(((FN(K) ∪ FN(∆1))� Dom(Φ1)) ∪ FN(∆2))� Dom(Φ2)

= 〈Dom(Φ1) � FN(∆2)〉
((FN(K) ∪ FN(∆1) ∪ FN(∆2))� Dom(Φ1))� Dom(Φ2)

= 〈set theory and definitions〉
(FN(K) ∪ FN(∆1 ∪∆2))�Dom(Φ1 ∪ Φ2)

= 〈definition of FN(·)〉
FN(K{∆1∪∆2

Φ1∪Φ2
)

where the third step is justified by a side condition of the FLATTEN rule.

Say that the proof tree is an instance of EXTRUDE:

K1|(K2{Φ∆)
�≡ (K1|K2){Φ∆

Then,

FN(K1|(K2{Φ∆))
= 〈definition of FN(·)〉
FN(K1) ∪ FN(K2{Φ∆)

= 〈definition of FN(·)〉
FN(K1) ∪ ((FN(K2) ∪ FN(∆))�Dom(Φ))

= 〈FN(K1) � Dom(Φ)〉
(FN(K1) ∪ FN(K2) ∪ FN(∆))� Dom(Φ)

= 〈definition of FN(·)〉
(FN(K1|K2) ∪ FN(∆))� Dom(Φ)

266

APPENDIX B. TECHNICAL RESULTS FOR OOMPA

= 〈definition of FN(·)〉
FN((K1|K2){Φ∆)

where the third step is justified by the side condition of the EXTRUDE rule.

�
4.2.11

p106Lemma B.3.14 For two configurations K1 and K2,

K1
�≡ K2 ⇒ STATE(K1) = STATE(K2)

Proof: We use an induction on the proof tree of K1
�≡ K2. Again, we only

examine the two interesting cases.

Say that the proof tree is an instance of FLATTEN:

K{Φ1
∆1
{Φ2
∆2

�≡ K{Φ1∪Φ2
∆1∪∆2

Well,

STATE(K{Φ1
∆1
{Φ2
∆2
)

= 〈definition of STATE(·)〉
(STATE(K{Φ1

∆1
) ∪ Dom(∆2))� Dom(Φ2)

= 〈definition of STATE(·)〉
(((STATE(K) ∪Dom(∆1))� Dom(Φ1)) ∪Dom(∆2))� Dom(Φ2)

= 〈Dom(∆2) ⊆ FN(∆2) and FN(∆2) � Dom(Φ1)〉
((STATE(K) ∪Dom(∆1) ∪Dom(∆2))� Dom(Φ1))� Dom(Φ2)

= 〈set theory〉
(STATE(K) ∪Dom(∆1 ∪∆2))� Dom(Φ1 ∪ Φ2)

= 〈definition of STATE(·)〉
STATE(K{∆1∪∆2

Φ1∪Φ2
)

Say that the proof tree is an instance of EXTRUDE:

K1|(K2{Φ∆)
�≡ (K1|K2){Φ∆

267

APPENDIX B. TECHNICAL RESULTS FOR OOMPA

Then,

STATE(K1|(K2{Φ∆))
= 〈definition of STATE(·)〉
STATE(K1) ∪ STATE(K2{Φ∆)

= 〈definition of STATE(·)〉
STATE(K1) ∪ ((STATE(K2) ∪ Dom(∆))�Dom(Φ))

= 〈STATE(K1) ⊆ FN(K1) and FN(K1) � Dom(Φ)〉
(STATE(K1) ∪ STATE(K2) ∪ Dom(∆))�Dom(Φ)

= 〈definition of STATE(·)〉
(STATE(K1|K2) ∪ Dom(∆))�Dom(Φ)

= 〈definition of STATE(·)〉
STATE((K1|K2){Φ∆)

where the third step is justified by the side condition of the EXTRUDE rule.

�
4.2.12

p106Lemma B.3.15 For two configurations K1 and K2,

K1
�≡ K2 ⇒WF(K1)⇔WF(K2)

Proof: We use induction on the proof tree ofK1
�≡ K2. The two interesting

cases are FLATTEN and EXTRUDE.

Say that the proof tree is an instance of FLATTEN:

K{Φ1
∆1
{Φ2
∆2

�≡ K{Φ1∪Φ2
∆1∪∆2

Then

WF(K{Φ1
∆1
{Φ2
∆2
)

⇔ 〈definition of WF(·)〉
WF(K{Φ1

∆1
)

268

APPENDIX B. TECHNICAL RESULTS FOR OOMPA

∧(STATE(K{Φ1
∆1
) � Dom(∆2))

∧(OBJECTS(Φ2) ⊆ (STATE(K{Φ1
∆1
) ∪Dom(∆2)))

⇔ 〈definition of WF(·)〉
WF(K)

∧(STATE(K) � Dom(∆1))

∧(OBJECTS(Φ1) ⊆ (STATE(K) ∪ Dom(∆1)))

∧(STATE(K{Φ1
∆1
) � Dom(∆2))

∧(OBJECTS(Φ2) ⊆ (STATE(K{Φ1
∆1
) ∪Dom(∆2)))

⇔ 〈definition of STATE(·)〉
WF(K)

∧(STATE(K) � Dom(∆1))

∧(OBJECTS(Φ1) ⊆ (STATE(K) ∪ Dom(∆1)))

∧(((STATE(K) ∪ Dom(∆1))� Dom(Φ1)) � Dom(∆2))

∧(OBJECTS(Φ2) ⊆
(((STATE(K) ∪Dom(∆1))�Dom(Φ1)) ∪Dom(∆2)))

⇔ 〈Dom(Φ1) � Dom(∆2) and OBJECTS(Φ2) � Dom(Φ1)〉
WF(K)

∧(STATE(K) � Dom(∆1))

∧((STATE(K) ∪ Dom(∆1)) � Dom(∆2))

∧(OBJECTS(Φ1) ⊆ (STATE(K) ∪ Dom(∆1)))

∧(OBJECTS(Φ2) ⊆ (STATE(K) ∪ Dom(∆1) ∪ Dom(∆2)))

⇔ 〈Dom(∆1) � Dom(∆2) and OBJECTS(Φ1) � Dom(∆2)〉
WF(K)

∧(STATE(K) � Dom(∆1))

∧(STATE(K) � Dom(∆2))

∧(OBJECTS(Φ1) ⊆ (STATE(K) ∪ Dom(∆1) ∪ Dom(∆2)))

∧(OBJECTS(Φ2) ⊆ (STATE(K) ∪ Dom(∆1) ∪ Dom(∆2)))

269

APPENDIX B. TECHNICAL RESULTS FOR OOMPA

⇔ 〈set theory〉
WF(K)

∧(STATE(K) � (Dom(∆1) ∪ Dom(∆2)))

∧((OBJECTS(Φ1) ∪OBJECTS(Φ2)) ⊆
(STATE(K) ∪ Dom(∆1) ∪Dom(∆2)))

⇔ 〈set theory〉
WF(K)

∧(STATE(K) � Dom(∆1 ∪∆2))

∧(OBJECTS(Φ1 ∪ Φ2) ⊆ (STATE(K) ∪Dom(∆1 ∪∆2)))

⇔ 〈definition of WF(·)〉
WF(K{Φ1∪Φ2

∆1∪∆2
)

Most of the reasoning steps depend on the side conditions of the FLATTEN

rule.

Say that the proof tree is an instance of EXTRUDE:

K1|(K2{Φ∆)
�≡ (K1|K2){Φ∆

Then,

WF(K1|K2{Φ∆)
⇔ 〈definition of WF(·)〉
WF(K1)

∧WF(K2{Φ∆)
∧(STATE(K1) � STATE(K2{Φ∆))

⇔ 〈definition of WF(·) and STATE(·)〉
WF(K1)

∧WF(K2)

∧(STATE(K2) � Dom(∆))
∧(OBJECTS(Φ) ⊆ (STATE(K2) ∪ Dom(∆)))

270

APPENDIX B. TECHNICAL RESULTS FOR OOMPA

∧(STATE(K1) � ((STATE(K2) ∪Dom(∆))� Dom(Φ)))

⇔ 〈STATE(K1) ⊆ FN(K1), FN(K1) � Dom(Φ)
and OBJECTS(Φ) ⊆ Dom(Φ)〉

WF(K1)

∧WF(K2)

∧(STATE(K2) � Dom(∆))
∧(OBJECTS(Φ) ⊆ (STATE(K1) ∪ STATE(K2) ∪ Dom(∆)))
∧(STATE(K1) � (STATE(K2) ∪Dom(∆)))

⇔ 〈definition of STATE(·) and set theory〉
WF(K1)

∧WF(K2)

∧(STATE(K2) � Dom(∆))
∧(OBJECTS(Φ) ⊆ (STATE(K1|K2) ∪ Dom(∆)))
∧(STATE(K1) � STATE(K2))

∧(STATE(K1) � Dom(∆))
⇔ 〈definition of WF(·) and set theory〉
WF(K1|K2)

∧((STATE(K1) ∪ STATE(K2)) � Dom(∆))
∧(OBJECTS(Φ) ⊆ (STATE(K1|K2) ∪ Dom(∆)))

⇔ 〈definition of STATE(·)〉
WF(K1|K2)

∧(STATE(K1|K2) � Dom(∆))
∧(OBJECTS(Φ) ⊆ (STATE(K1|K2) ∪ Dom(∆)))

⇔ 〈definition of WF(·)〉
WF((K1|K2){Φ∆)

Most of the reasoning steps depend on the side conditions of the EXTRUDE

rule. �

271

APPENDIX B. TECHNICAL RESULTS FOR OOMPA

4.2.13

p106Lemma B.3.16 For two configurations, K1 and K2, and a renaming, ρ,

K1
�≡ K2 ⇒ K1ρ

�≡ K1ρ

Proof: We use induction on the proof tree of K1
�≡ K2. Again, the two

interesting cases are FLATTEN and EXTRUDE.

Say the proof tree is an instance of FLATTEN:

K{Φ1
∆1
{Φ2
∆2

�≡ K{Φ1∪Φ2
∆1∪∆2

Then

(K{Φ1
∆1
{Φ2
∆2
)ρ

= 〈renaming procedure, choosing δ2 appropriately〉
(K{Φ1

∆1
)δ2ρ{Φ2δ2ρ

∆2δ2ρ

= 〈renaming procedure, no shove necessary due to choice of δ2〉
(Kδ2{Φ1δ2

∆1δ2
)ρ{Φ2δ2ρ

∆2δ2ρ

= 〈renaming procedure, choosing δ1 appropriately〉
Kδ2δ1ρ{Φ1δ2δ1ρ

∆1δ2δ1ρ
{Φ2δ2ρ
∆2δ2ρ

≡α 〈by change of bound names and congruence; δ given below〉
Kδ2δ1ρδ{Φ1δ2δ1ρδ

∆1δ2δ1ρδ
{Φ2δ2ρ
∆2δ2ρ

where δ shoves Dom(Φ1δ2δ1ρ) ∩ (Dom(Φ2δ2ρ) ∪ FN(∆2δ2ρ)). We introduce

δ to flatten the above configuration. It is designed to guarantee the side

conditions of the FLATTEN rule, giving the following.

Kδ2δ1ρδ{Φ1δ2δ1ρδ
∆1δ2δ1ρδ

{Φ2δ2ρ
∆2δ2ρ

�≡ Kδ2δ1ρδ{Φ1δ2δ1ρδ∪Φ2δ2ρ
∆1δ2δ1ρδ∪∆2δ2ρ

Two of the side conditions follow immediately from the choice of δ:

Dom(Φ1δ2δ1ρδ) � Dom(Φ2δ2ρ)

Dom(Φ1δ2δ1ρδ) � FN(∆2δ2ρ)

272

APPENDIX B. TECHNICAL RESULTS FOR OOMPA

The third side condition requires some reasoning. Let F = FN(K{Φ1
∆1
{Φ2
∆2
).

Here, we write type and state dictionaries in place of their domains to reduce

visual complexity.

∆1 � ∆2

⇒ 〈set theory〉
(∆1 ∩ (F ∪ Φ2)) � ∆2

⇒ 〈δ2 is a bijection〉
(∆1 ∩ (F ∪ Φ2))δ2 � ∆2δ2

⇒ 〈 by set theory (∆1 ∩ (F ∪ Φ2))δ2 ⊆ Fδ2 ∪ Φ2δ2

and Fδ2 ∪ Φ2δ2 � Φ1δ2

so (∆1 ∩ (F ∪ Φ2))δ2 � Φ1δ2

and therefore (∆1 ∩ (F ∪ Φ2)δ2 � Change(δ1) 〉
(∆1 ∩ (F ∪ Φ2))δ2δ1 � ∆2δ2

⇒ 〈ρ is a bijection〉
(∆1 ∩ (F ∪ Φ2))δ2δ1ρ � ∆2δ2ρ

⇒ 〈 since (∆1 ∩ (F ∪ Φ2))δ2δ1ρ � Φ1δ2δ1ρ

we have (∆1 ∩ (F ∪ Φ2))δ2δ1ρ � Change(δ) 〉
(∆1 ∩ (F ∪ Φ2))δ2δ1ρδ � ∆2δ2ρ

⇒ 〈 by choice of δ, observing Dom(∆2) ⊆ FN(∆2) and using logic 〉
(∆1 ∩ (F ∪ Φ2))δ2δ1ρδ � ∆2δ2ρ

∧ Φ1δ2δ1ρδ � ∆2δ2ρ

⇒ 〈set theory〉
(∆1 ∩ (F ∪ Φ2))δ2δ1ρδ � ∆2δ2ρ

∧ (∆1 ∩ Φ1)δ2δ1ρδ � ∆2δ2ρ

⇒ 〈set theory〉
(∆1 ∩ (F ∪ Φ2 ∪ Φ1))δ2δ1ρδ � ∆2δ2ρ

⇒ 〈∆1 ⊆ (F ∪ Φ2 ∪ Φ1)〉

273

APPENDIX B. TECHNICAL RESULTS FOR OOMPA

∆1δ2δ1ρδ � ∆2δ2ρ

Thus the third side condition holds and by transitivity we have

(K{Φ1
∆1
{Φ2
∆2
)ρ

�≡ Kδ2δ1ρδ{Φ1δ2δ1ρδ∪Φ2δ2ρ
∆1δ2δ1ρδ∪∆2δ2ρ

Now considering the right-hand side, we have

(K{Φ1∪Φ2
∆1∪∆2

)ρ

= 〈renaming procedure, choosing δ′ appropriately〉
Kδ′ρ{(Φ1∪Φ2)δ′ρ

(∆1∪∆2)δ′ρ

We will now use a ρα-construction to show that

Kδ2δ1ρδ{Φ1δ2δ1ρδ∪Φ2δ2ρ
∆1δ2δ1ρδ∪∆2δ2ρ

≡α Kδ′ρ{(Φ1∪Φ2)δ′ρ
(∆1∪∆2)δ′ρ

and transitivity will give the desired result.

We define ρα as an isolated sum:

ρα = 1|Fρ + (δ ◦ ρ ◦ δ1 ◦ δ2 ◦ δ′ ◦ ρ−1)
∣∣
Φ1δ′ρ

+ (ρ ◦ δ2 ◦ δ′ ◦ ρ−1)
∣∣
Φ2δ′ρ

To show that the isolated sum is well-formed we show that the isolated sets

we use have the correct disjointness properties. First,

FN(Kδ2δ1ρδ{Φ1δ2δ1ρδ∪Φ2δ2ρ
∆1δ2δ1ρδ∪∆2δ2ρ

)

= 〈by Lemma B.3.13〉
FN((K{Φ1

∆1
{Φ2
∆2
)ρ)

= 〈by Lemma B.3.1〉
FN((K{Φ1

∆1
{Φ2
∆2
))ρ

= 〈definition of F 〉
Fρ

= 〈 by Lemma B.3.13, since K{Φ1
∆1
{Φ2
∆2

�≡ K{Φ1∪Φ2
∆1∪∆2

〉
FN((K{Φ1∪Φ2

∆1∪∆2
))ρ

274

APPENDIX B. TECHNICAL RESULTS FOR OOMPA

= 〈by Lemma B.3.1〉
FN((K{Φ1∪Φ2

∆1∪∆2
)ρ)

= 〈the configurations are equal〉
FN(Kδ′ρ{(Φ1∪Φ2)δ′ρ

(∆1∪∆2)δ′ρ)

The well-formedness conditions for the domain sets are Fρ � Φ1δ
′ρ, Fρ �

Φ2δ
′ρ and Φ1δ

′ρ � Φ2δ
′ρ and the well-formedness conditions for the co-

domain sets are Fρ � Φ1δ2δ1ρδ, Fρ � Φ2δ2ρ and Φ1δ2δ1ρδ � Φ2δ2ρ . The

proofs of these conditions are similar to the proof of the side condition for

the FLATTEN rule we gave above, so we omit them.

We can use ρα in the CHNG-SCP rule since it agrees with 1 on Fρ and,

hence, leaves free names alone. This gives:

Kδ′ρ{(Φ1∪Φ2)δ′ρ
(∆1∪∆2)δ′ρ≡α Kδ′ρρα{

(Φ1∪Φ2)δ′ρρα

(∆1∪∆2)δ′ρρα

Naturally (Φ1 ∪ Φ2)δ
′ρρα = (Φ1δ

′ρ ∪ Φ2δ
′ρ)ρα = Φ1δ2δ1ρδ ∪ Φ2δ2ρ.

Using various properties of isolated sum, we have

ρα ◦ ρ ◦ δ′

= 〈definition of ρα〉
(1|Fρ
+(δ ◦ ρ ◦ δ1 ◦ δ2 ◦ δ′ ◦ ρ−1)|Φ1δ′ρ

+(ρ ◦ δ2 ◦ δ′ ◦ ρ−1)|Φ2δ′ρ) ◦ ρ ◦ δ′

- 〈Lemma A.2.6〉
(ρ ◦ δ′)|Fρρ−1δ′

+(δ ◦ ρ ◦ δ1 ◦ δ2 ◦ δ′ ◦ ρ−1 ◦ ρ ◦ δ′)|Φ1δ′ρρ−1δ′

+(ρ ◦ δ2 ◦ δ′ ◦ ρ−1 ◦ ρ ◦ δ′)|Φ2δ′ρρ−1δ′

= 〈Fρρ−1δ′ = F , Φ1δ
′ρρ−1δ′ = Φ1 and Φ2δ

′ρρ−1δ′ = Φ2〉
(ρ ◦ δ′)|F
+(δ ◦ ρ ◦ δ1 ◦ δ2 ◦ δ′ ◦ ρ−1 ◦ ρ ◦ δ′)|Φ1

275

APPENDIX B. TECHNICAL RESULTS FOR OOMPA

+(ρ ◦ δ2 ◦ δ′ ◦ ρ−1 ◦ ρ ◦ δ′)|Φ2

- 〈Lemma A.2.3〉
ρ|F
+(δ ◦ ρ ◦ δ1 ◦ δ2)|Φ1

+(ρ ◦ δ2)|Φ2

We derive two statements of agreement from this. Firstly

ρα ◦ ρ ◦ δ′
- 〈from above〉
ρ|F + (δ ◦ ρ ◦ δ1 ◦ δ2)|Φ1

+ (ρ ◦ δ2)|Φ2

- 〈Lemma A.2.3〉
(δ ◦ ρ ◦ δ1 ◦ δ2)|F + (δ ◦ ρ ◦ δ1 ◦ δ2)|Φ1

+ (δ ◦ ρ ◦ δ1 ◦ δ2)|Φ2

- 〈 Lemma A.2.1 〉
(δ ◦ ρ ◦ δ1 ◦ δ2)

and secondly

ρα ◦ ρ ◦ δ′

- 〈from above〉
ρ|F + (δ ◦ ρ ◦ δ1 ◦ δ2)|Φ1

+ (ρ ◦ δ2)|Φ2

- 〈Lemma A.2.3〉
(ρ ◦ δ2)|F + (δ ◦ ρ ◦ δ1 ◦ δ2)|Φ1

+ (ρ ◦ δ2)|Φ2

- 〈reorder, desugar the ternary sum and use Lemma A.2.1〉
(ρ ◦ δ2)|Φ2∪F + (δ ◦ ρ ◦ δ1 ◦ δ2)|Φ1

Since FN(K) ⊆ F ∪ Φ1 ∪ Φ2 we can use Corollary B.3.10 to give

K(ρα ◦ ρ ◦ δ′) ≡α K(δ ◦ ρ ◦ δ1 ◦ δ2)

Similarly, since FN(∆1) ⊆ F ∪ Φ1 ∪ Φ2, we have

∆1(ρ
α ◦ ρ ◦ δ′) = ∆1(δ ◦ ρ ◦ δ1 ◦ δ2)

276

APPENDIX B. TECHNICAL RESULTS FOR OOMPA

Since FN(∆2) ⊆ F ∪ Φ2 we have

∆2(ρ
α ◦ ρ ◦ δ′) = ∆2(ρ ◦ δ2)

We can summarise the facts so far as

Kδ′ρρα ≡α Kδ2δ1ρδ

(Φ1 ∪ Φ2)δ
′ρρα = Φ1δ2δ1ρδ ∪ Φ2δ2ρ

(∆1 ∪∆2)δ
′ρρα = ∆1δ2δ1ρδ ∪∆2δ2ρ

Using CONG-SCP, we have

Kδ′ρρα{(Φ1∪Φ2)δ′ρρα

(∆1∪∆2)δ′ρρα≡α Kδ2δ1ρδ{Φ1δ2δ1ρδ∪Φ2δ2ρ
∆1δ2δ1ρδ∪∆2δ2ρ

The result follows by transitivity.

Say the proof tree is an instance of EXTRUDE:

K1|(K2{Φ∆)
�≡ (K1|K2){Φ∆

Now

(K1|(K2{Φ∆))ρ
= 〈renaming procedure〉
K1ρ|(K2{Φ∆)ρ

= 〈renaming procedure, choosing δ1 appropriately〉
K1ρ|(K2δ1ρ{Φδ1ρ∆δ1ρ

)

≡α 〈CHNG-SCP and CONG-PAR; δ given below〉
K1ρ|(K2δ1ρδ{Φδ1ρδ∆δ1ρδ

)
�≡ 〈EXTRUDE, by choice of δ〉
(K1ρ|K2δ1ρδ){Φδ1ρδ∆δ1ρδ

where δ shoves FN(K1ρ) ∩ Dom(Φδ1ρ). Also

277

APPENDIX B. TECHNICAL RESULTS FOR OOMPA

((K1|K2){Φ∆)ρ
= 〈renaming procedure, choosing δ2 appropriately〉
(K1|K2)δ2ρ{Φδ2ρ∆δ2ρ

= 〈renaming procedure〉
(K1δ2|K2δ2)ρ{Φδ2ρ∆δ2ρ

= 〈Change(δ2) � FN(K1)〉
(K1|K2δ2)ρ{Φδ2ρ∆δ2ρ

= 〈renaming procedure〉
(K1ρ|K2δ2ρ){Φδ2ρ∆δ2ρ

The third step is since δ2 shoves a subset of Dom(Φ).

A typical ρα-construction with

ρα = (δ ◦ ρ ◦ δ1 ◦ δ2 ◦ ρ−1)

gives us

(K1ρ|K2δ2ρ){Φδ2ρ∆δ2ρ
≡α (K1ρ|K2δ1ρδ){Φδ1ρδ∆δ1ρδ

from which the required result is easily obtained. �

B.3.4 Labelled Transition System

In this section, we provide the proofs of lemmas 4.2.14 and 4.2.15.

4.2.14

p112Lemma B.3.17 Say K1 and K2 are configurations such that

Γ,Φ � K l1

l2
�� K ′

for any labels l1 and l2. Then

STATE(K) = STATE(K ′)

278

APPENDIX B. TECHNICAL RESULTS FOR OOMPA

Proof: We use an induction on the proof tree of Γ,Φ � K l1

l2
�� K ′. There

are only two interesting cases.

Say that the proof tree is an instance of the create object rule:

Γ,Φ � o[create o′: ClT p] �� o[p]{{o′:ClT}
{o′:=∅}

This adds an entry to the state dictionary of the right-hand configuration.

However, since it also binds it with an entry in the type dictionary, the state

doesn’t change across the transition.

Say that the last step of the proof is an instance of the scope restriction

rule:

Γ,Φ ∪ Φ′ � K l1

l2
�� K ′

Γ,Φ � K{Φ′
∆

l1

l2
�� K ′{Φ′

∆

The induction hypothesis gives us STATE(K) = STATE(K ′). Then,

STATE(K{Φ′
∆)

= 〈definition of STATE(·)〉
(STATE(K) ∪Dom(∆))�OBJECTS(Φ′)

= 〈induction hypothesis〉
(STATE(K ′) ∪ Dom(∆))�OBJECTS(Φ′)

= 〈definition of STATE(·)〉
STATE(K ′{Φ′

∆)

as required in this case. �
4.2.15

p112Lemma B.3.18 Say K1 and K2 are configurations such that

Γ,Φ � K l1

l2
�� K ′

for any labels l1 and l2. Then

WF(K)⇒WF(K ′)

279

APPENDIX B. TECHNICAL RESULTS FOR OOMPA

Proof: We use induction on the proof tree of Γ,Φ � K l1

l2
�� K ′. Most of

the cases are obvious, so we only give three cases.

Say that the last step of the proof tree is an instance of the scope restric-

tion rule:

Γ,Φ ∪ Φ′ � K l1

l2
�� K ′

Γ,Φ � K{Φ′
∆

l1

l2
�� K ′{Φ′

∆

Then the induction hypothesis gives us WF(K)⇒WF(K ′).

WF(K{Φ′
∆)

⇒ 〈definition of WF(·)〉
WF(K)

∧(STATE(K) � Dom(∆))
∧(OBJECTS(Φ′) ⊆ (STATE(K) ∪ Dom(∆)))

⇒ 〈induction hypothesis and Lemma B.3.17〉
WF(K ′)

∧(STATE(K ′) � Dom(∆))
∧(OBJECTS(Φ′) ⊆ (STATE(K ′) ∪ Dom(∆)))

⇒ 〈definition of WF(·)〉
WF(K ′{Φ′

∆)

as required in this case.

Say that the proof tree is an instance of the create object rule:

Γ,Φ � o[create o′: ClT p] �� o[p]{{o′:ClT}
{o′:=∅}

Then

WF(o[create o′: ClT p]) = true

and

280

APPENDIX B. TECHNICAL RESULTS FOR OOMPA

WF(o[p]{{o′:ClT}
{o′:=∅})

⇔ 〈definition of WF(·)〉
WF(o[p])

∧(STATE(o[p]) � Dom({o′ := ∅}))
∧(OBJECTS({o′: ClT}) ⊆ (STATE(o[p]) ∪Dom({o′ := ∅})))

⇔ 〈definitions of the various functions〉
(true ∧ true ∧ true)

⇔ 〈logic〉
true

Say that the last step of the proof tree is an instance of the communication

rule:

Γ,Φ � K1
c!〈v1,...vn〉 �� K ′

1 Γ,Φ � K2
c?〈v1,...vn〉 �� K ′

2

Γ,Φ � K1|K2
�� K ′

1|K ′
2

So we have

WF(K1|K2)

⇔ 〈definition of WF(·)〉
WF(K1)

∧WF(K2)

∧STATE(K1) � STATE(K2)

⇔ 〈induction hypothesis and Lemma B.3.17〉
WF(K ′

1)

∧WF(K ′
2)

∧STATE(K ′
1) � STATE(K ′

2)

⇔ 〈definition of WF(·)〉
WF(K ′

1|K ′
2)

�

281

APPENDIX B. TECHNICAL RESULTS FOR OOMPA

B.4 Flatten and the Relationship

In this section we give the proofs of results 4.3.1–4.3.5. These results prove

properties of the Flatten algorithm and establish the relationship between the

configuration-based dynamic system and the agent-based dynamic system.
4.3.1

p119Theorem B.4.1 For a configuration K,

WF(K)⇒ K
�≡ Flatten(K)

Proof: We use an induction on the structure of K. The two base cases

are easy:

K = Nil
�≡ Nil{∅∅ = Flatten(K)

K = o[p]
�≡ o[p]{∅∅ = Flatten(K)

Say that K has the form K ′{Φ∆ and that Flatten(K ′) = g′{Φ′
∆′. Then

Flatten(K) = g′δ{Φ′δ∪Φ
∆′δ∪∆

where δ shoves (Dom(Φ) ∪ FN(∆)) ∩Dom(Φ′). Since WF(K) we know that

WF(K ′) by the definition of WF(·). Thus, the induction hypothesis applies
to K ′. Therefore

K ′

�≡ 〈induction hypothesis〉
Flatten(K ′)

= 〈assumption〉
g′{Φ′

∆′

≡α 〈CHNG-SCP; FN(g′{Φ′
∆′) � Change(δ)〉

g′δ{Φ′δ
∆′δ

By choice of δ, we have the following two properties:

Dom(Φ′δ) � Dom(Φ)

Dom(Φ′δ) � FN(∆)

282

APPENDIX B. TECHNICAL RESULTS FOR OOMPA

Since we know Dom(∆) ⊆ FN(∆), the second of these gives us Dom(Φ′δ) �
Dom(∆). Now

Dom(∆)

� 〈WF(K)〉
STATE(K ′)

= 〈Lemma B.3.14〉
STATE(g′δ{Φ′δ

∆′δ)

= 〈definition of STATE(·)〉
(STATE(g′δ) ∪ Dom(∆′δ))�Dom(Φ′δ)

= 〈STATE(g′δ) = ∅, since agents have no state〉
Dom(∆′δ)� Dom(Φ′δ)

Since we know Dom(∆) � Dom(Φ′δ) we get

Dom(∆′δ) � Dom(∆)

These properties justify the following reasoning and also reassure us that, in

this case, well-formed configurations can be flattened without a clash between

state dictionaries.

K ′{Φ∆
�≡ 〈from above, using CONG-SCP〉
g′δ{Φ′δ

∆′δ{Φ∆
�≡ 〈FLATTEN〉
g′δ{(Φ′δ)∪Φ

(∆′δ)∪∆

Hence

K
�≡ Flatten(K)

as required.

283

APPENDIX B. TECHNICAL RESULTS FOR OOMPA

Next, consider the case where K has the form (K1|K2) and say that

Flatten(K1) = g1{Φ1
∆1
and Flatten(K2) = g2{Φ2

∆2
. Then

Flatten(K1|K2) = (g1δ1|g2δ2){Φ1δ1∪Φ2δ2
∆1δ1∪∆2δ2

where δ2 shoves FN(g1{Φ1
∆1
)∩Dom(Φ2) and δ1 shoves (FN(g2δ2)∪Dom(Φ2δ2)∪

FN(∆2δ2)) ∩ Dom(Φ1).

Since WF(K), we know that WF(K1) and WF(K2) by the definition

of WF(·). Thus, the induction hypothesis applies to K1 and K2. Using

arguments similar to the above case, we know that

K1
�≡ g1δ1{Φ1δ1

∆1δ1

K2
�≡ g2δ2{Φ2δ2

∆2δ2

By the choice of δ1, we know that

Dom(Φ1δ1) � Dom(Φ2δ2)

Dom(Φ1δ1) � FN(∆2δ2)

Using arguments similar to the above case, we have

STATE(K1) = Dom(∆1)�Dom(Φ1)

= Dom(∆1δ1)� Dom(Φ1δ1)

STATE(K2) = Dom(∆2)�Dom(Φ2)

= Dom(∆2δ2)� Dom(Φ2δ2)

Since WF(K), we also know that STATE(K1) � STATE(K2). Thus,

Dom(∆1δ1)�Dom(Φ1δ1) � Dom(∆2δ2)� Dom(Φ2δ2)

But then

Dom(∆1δ1)� Dom(Φ1δ1)

⊆ 〈definitions〉

284

APPENDIX B. TECHNICAL RESULTS FOR OOMPA

FN(g1δ1{Φ1δ1
∆1δ1

)

= 〈Lemma B.3.4〉
FN(g1{Φ1

∆1
)

� 〈choice of δ2〉
Dom(Φ2δ2)

Consequently, Dom(∆1δ1)� Dom(Φ1δ1) � Dom(∆2δ2). Using Dom(Φ1δ1) �
Dom(∆2δ2) from above gives us

Dom(∆1δ1) � Dom(∆2δ2)

This property reassures us that well-formed configurations can be flattened

without a clash between state dictionaries. The properties we have estab-

lished above justify the following reasoning.

(K1|K2)
�≡ 〈induction hypothesis and CONG-PAR〉
(g1{Φ1

∆1
|g2{Φ2

∆2
)

≡α 〈CHNG-SCP and CONG-PAR〉
(g1{Φ1

∆1
|g2δ2{Φ2δ2

∆2δ2
)

�≡ 〈EXTRUDE; FN(g1{Φ1
∆1
) � Dom(Φ2δ2)〉

(g1{Φ1
∆1
|g2δ2){Φ2δ2

∆2δ2

≡α 〈CHNG-SCP, CONG-PAR and CONG-SCP〉
(g1δ1{Φ1δ1

∆1δ1
|g2δ2){Φ2δ2

∆2δ2
�≡ 〈PAR-ABL and CONG-SCP〉
(g2δ2|(g1δ1{Φ1δ1

∆1δ1
)){Φ2δ2

∆2δ2
�≡ 〈EXTRUDE and CONG-SCP; FN(g2δ2) � Dom(Φ1δ1)〉
(g2δ2|g1δ1){Φ1δ1

∆1δ1
{Φ2δ2
∆2δ2

�≡ 〈FLATTEN〉
(g2δ2|g1δ1){Φ1δ1∪Φ2δ2

∆1δ1∪∆2δ2

285

APPENDIX B. TECHNICAL RESULTS FOR OOMPA

�≡ 〈PAR-ABL and CONG-SCP〉
(g1δ1|g2δ2){Φ1δ1∪Φ2δ2

∆1δ1∪∆2δ2

Thus

K
�≡ Flatten(K)

as required. �
We will need the following two technical lemmas2.

Lemma B.4.2 Say that Flatten(K) ≡α g1{Φ1
∆1
. Then

Flatten(K{Φ∆) ≡α g1ρ{Φ1ρ∪Φ
∆1ρ∪∆

for some/for any renaming ρ satisfying Dom(Φ) � Dom(Φ1ρ) and FN(∆) �
Dom(Φ1ρ).

Proof: Say

Flatten(K) = g′{Φ′
∆′

Flatten(K{Φ∆) = g′δ{Φ′δ∪Φ
∆′δ∪∆

Now g′{Φ′
∆′≡α g1{Φ1

∆1
so, by Lemma B.3.12, there exists some renaming ρ′ such

that

Φ1ρ
′ = Φ′ ∆1ρ

′ = ∆′ g1ρ
′ ≡α g′

For the “for some” case, let ρ = δ ◦ ρ′. Then

g1ρ{Φ1ρ∪Φ
∆1ρ∪∆

= 〈definition of ρ〉
g1(δ ◦ ρ′){Φ1(δ◦ρ′)∪Φ

∆1(δ◦ρ′)∪∆

2It is interesting to observe that Lemmas B.4.2 and B.4.3 seem to have the ∃/∀ property
discussed by Gabbay and Pitts [GP99] for formulas involving the choice of fresh names.

They introduce the quantifier “ N” to capture this notion.

286

APPENDIX B. TECHNICAL RESULTS FOR OOMPA

≡α 〈Lemma 4.1.8 and CONG-SCP〉
g1ρ

′δ{Φ1ρ′δ∪Φ
∆1ρ′δ∪∆

≡α 〈properties of ρ′, Lemma 4.1.9 and CONG-SCP〉
g′δ{Φ′δ∪Φ

∆′δ∪∆

For the “for any” case, say that ρ has the required properties. Let F =

FN(Flatten(K{Φ∆)). We use a ρα-construction. Let

ρα = 1|F + (δ ◦ ρ′ ◦ ρ−1)
∣∣
Φ1ρ

+ 1|Φ

We can use ρα to show that

g1ρ{Φ1ρ∪Φ
∆1ρ∪∆≡α g′δ{Φ

′δ∪Φ
∆′δ∪∆

as required. �

Lemma B.4.3 Say that

Flatten(K1) ≡α g1{Φ1
∆1

Flatten(K2) ≡α g2{Φ2
∆2

Then

Flatten(K1|K2) ≡α (g1ρ1|g2ρ2){Φ1ρ1∪Φ2ρ2
∆1ρ1∪∆2ρ2

for some/for any ρ1 and ρ2 satisfying

FN(g1{Φ1
∆1
) � Dom(Φ2ρ2)

Dom(Φ1ρ1) � FN(g2ρ2)

Dom(Φ1ρ1) � Dom(Φ2ρ2)

Dom(Φ1ρ1) � FN(∆2ρ2)

Proof: Say

Flatten(K1) = g′1{Φ
′
1

∆′
1

Flatten(K2) = g′2{Φ
′
2

∆′
2

Flatten(K1|K2) = (g′1δ1|g′2δ2){Φ
′
1δ1∪Φ′

2δ2
∆′

1δ1∪∆′
2δ2

287

APPENDIX B. TECHNICAL RESULTS FOR OOMPA

Now, g′1{Φ
′
1

∆′
1
≡α g1{Φ1

∆1
and g′2{Φ

′
2

∆′
2
≡α g2{Φ2

∆2
so, by Lemma B.3.12, there are

renamings ρ′1 and ρ
′
2 such that

Φ1ρ
′
1 = Φ′

1 Φ2ρ
′
2 = Φ′

2

∆1ρ
′
1 = ∆′

1 ∆2ρ
′
2 = ∆′

2

g1ρ
′
1 ≡α g′1 g2ρ

′
2 ≡α g′2

For the “for some” case, let ρ1 = δ1 ◦ ρ′1 and ρ2 = δ2 ◦ ρ′2. Then

(g1ρ1|g2ρ2){Φ1ρ1∪Φ2ρ2
∆1ρ1∪∆2ρ2

= 〈definition of ρ1 and ρ2〉
(g1(δ1 ◦ ρ′1)|g2(δ2 ◦ ρ′2)){Φ1(δ1◦ρ1)∪Φ2(δ2◦ρ2)

∆1(δ1◦ρ1)∪∆2(δ2◦ρ2)

≡α 〈Lemma 4.1.8, CONG-PAR and CONG-SCP〉
(g1ρ

′
1δ1|g2ρ′2δ2){Φ1ρ1δ1∪Φ2ρ2δ2

∆1ρ1δ1∪∆2ρ2)δ2

≡α 〈Lemma 4.1.9, CONG-PAR and CONG-SCP〉
(g′1δ1|g′2δ2){Φ

′
1δ1∪Φ′

2δ2
∆′

1δ1∪∆′
2δ2

For the “for any” case, say that ρ1 and ρ2 have the required properties.

Let F = FN(Flatten(K1|K2)). We use a ρ
α-construction. Let

ρα = 1|F + (δ1 ◦ ρ′1 ◦ ρ1−1)
∣∣
Φ1ρ1

+ (δ2 ◦ ρ′2 ◦ ρ2−1)
∣∣
Φ2ρ2

We can use ρα to show that

(g1ρ1|g2ρ2){Φ1ρ1∪Φ2ρ2
∆1ρ1∪∆2ρ2

≡α (g′1δ1|g′2δ2){Φ
′
1δ1∪Φ′

2δ2
∆′

1δ1∪∆′
2δ2

as required. �
4.3.2

p119Lemma B.4.4 For a configuration K and a renaming ρ,

Flatten(Kρ) ≡α Flatten(K)ρ

Proof: We use an induction on the structure of K. This is obvious for the

case where K = Nil.

Consider the case where K = o[p]. Then

288

APPENDIX B. TECHNICAL RESULTS FOR OOMPA

Flatten(o[p]ρ)

= 〈renaming procedure〉
Flatten((oρ)[pρ])

= 〈Flatten algorithm〉
(oρ)[pρ]{∅∅

= 〈renaming procedure〉
o[p]ρ{∅∅

= 〈renaming procedure〉
(o[p]{∅∅)ρ

= 〈Flatten algorithm〉
Flatten(o[p])ρ

as required in this case.

Consider the case where K = K ′{Φ∆. Say Flatten(K ′) = g′{Φ′
∆′. Then

Flatten(K) = g′δ{Φ′δ∪Φ
∆′δ∪∆

so

Flatten(K)ρ

= 〈by above〉
(g′δ{Φ′δ∪Φ

∆′δ∪∆)ρ

= 〈renaming procedure, choosing δ1 appropriately〉
g′δδ1ρ{(Φ

′δ∪Φ)δ1ρ
(∆′δ∪∆)δ1ρ

Now

(K ′{Φ∆)ρ
= 〈renaming procedure, choosing δ2 appropriately〉
K ′δ2ρ{Φδ2ρ∆δ2ρ

289

APPENDIX B. TECHNICAL RESULTS FOR OOMPA

and

Flatten(K ′δ2ρ)

≡α 〈induction hypothesis twice〉
Flatten(K ′)δ2ρ

≡α 〈Lemma B.3.7〉
Flatten(K ′)(ρ ◦ δ2)

= 〈assumption〉
(g′{Φ′

∆′)(ρ ◦ δ2)
= 〈renaming procedure, choosing δ3 appropriately〉
g′δ3(ρ ◦ δ2){Φ

′δ3(ρ◦δ2)
∆′δ3(ρ◦δ2)

Therefore, by Lemma B.4.2, we know that there is some renaming ρ′ such

that

Flatten(K ′δ2ρ{Φδ2ρ∆δ2ρ
) ≡α g′δ3(ρ ◦ δ2)ρ′{Φ

′δ3(ρ◦δ2)ρ′∪Φδ2ρ
∆′δ3(ρ◦δ2)ρ′∪∆δ2ρ

We use a ρα-construction. Let F = FN(K ′{Φ∆) and

ρα = 1|Fρ
+(ρ ◦ δ1 ◦ δ ◦ δ3 ◦ δ2 ◦ ρ−1 ◦ ρ′−1)

∣∣
Φ′δ3(ρ◦δ2)ρ′

+(ρ ◦ δ1 ◦ δ2 ◦ ρ−1)|Φδ2ρ
As before, we can use ρα to show that

g′δδ1ρ{(Φ
′δ∪Φ)δ1ρ

(∆′δ∪∆)δ1ρ
≡α g′δ3(ρ ◦ δ2)ρ′{Φ

′δ3(ρ◦δ2)ρ′∪Φδ2ρ
∆′δ3(ρ◦δ2)ρ′∪∆δ2ρ

from which the required result is easily obtained.

Consider the case where K = (K1|K2) and

Flatten(K1) = g1{Φ1
∆1

Flatten(K2) = g2{Φ2
∆2

Then

Flatten(K1|K2) = (g1δ1|g2δ2){Φ1δ1∪Φ2δ2
∆1δ1∪∆2δ2

290

APPENDIX B. TECHNICAL RESULTS FOR OOMPA

so

Flatten(K1|K2)ρ = ((g1δ1|g2δ2){Φ1δ1∪Φ2δ2
∆1δ1∪∆2δ2

)ρ

= (g1δ1|g2δ2)δρ{(Φ1δ1∪Φ2δ2)δρ
(∆1δ1∪∆2δ2)δρ

Now

(K1|K2)ρ = K1ρ|K2ρ

So

Flatten(K1ρ)

≡α 〈induction hypothesis〉
(g1{Φ1

∆1
)ρ

= 〈renaming procedure, choosing δ′1 appropriately〉
g1δ

′
1ρ{Φ1δ′1ρ

∆1δ′1ρ

and

Flatten(K2ρ)

≡α 〈induction hypothesis〉
(g2{Φ2

∆2
)ρ

= 〈renaming procedure, choosing δ′2 appropriately〉
g2δ

′
2ρ{Φ2δ′2ρ

∆2δ′2ρ

Therefore, by Lemma B.4.3, we can chose two renamings ρ1 and ρ2 with

appropriate properties such that

Flatten((K1|K2)ρ) ≡α (g1δ′1ρρ1|g2δ′2ρρ2){Φ1δ′1ρρ1∪Φ2δ′2ρρ2
∆1δ′1ρρ1∪∆2δ′2ρρ2

We use a ρα-construction. Let F = FN(K1|K2) and

ρα = 1|Fρ
+(ρ ◦ δ ◦ δ1 ◦ δ′1 ◦ ρ−1 ◦ ρ1−1)|Φ1δ′1ρρ1

+(ρ ◦ δ ◦ δ2 ◦ δ′2 ◦ ρ−1 ◦ ρ2−1)|Φ2δ′2ρρ2

291

APPENDIX B. TECHNICAL RESULTS FOR OOMPA

We use ρα in the typical way to show

(g1δ1|g2δ2)δρ{(Φ1δ1∪Φ2δ2)δρ
(∆1δ1∪∆2δ2)δρ

≡α (g1δ′1ρρ1|g2δ′2ρρ2){Φ1δ′1ρρ1∪Φ2δ′2ρρ2
∆1δ′1ρρ1∪∆2δ′2ρρ2

from which the required result is easily obtained. �
4.3.3

p119Theorem B.4.5 Say that K1 and K2 are configurations such that K1 ≡α K2,

and that

Flatten(K1) = g1{Φ1
∆1

Flatten(K2) = g2{Φ2
∆2

Then, for some renaming ρ such that FN(g2{Φ2
∆2
) � Change(ρ) we have

Φ2ρ = Φ1 ∆2ρ = ∆1 g2ρ ≡α g1

Proof: We use an induction on the proof tree of K1 ≡α K2. The case for

EQV-RFL is obvious.

Consider the case where the last step of the proof tree is an instance of

EQV-SYM:

K2 ≡α K1

K1 ≡α K2

By the induction hypothesis there is some renaming, ρ, such that

Φ1ρ = Φ2 ∆1ρ = ∆2 g1ρ ≡α g2

and

FN(g1{Φ1
∆1
) � Change(ρ)

Well, FN(g1{Φ1
∆1
) = FN(g2{Φ2

∆2
) using results B.3.4, B.3.13 and B.4.1. Also

Change(ρ) = Change(ρ−1), so

FN(g2{Φ2
∆2
) � Change(ρ−1)

292

APPENDIX B. TECHNICAL RESULTS FOR OOMPA

Now

Φ1ρ
−1 = (Φ2ρ)ρ

−1 = Φ2(ρ
−1 ◦ ρ) = Φ2

∆1ρ
−1 = (∆2ρ)ρ

−1 = ∆2(ρ
−1 ◦ ρ) = ∆2

and, using lemmas 4.1.9 and 4.1.8,

g1ρ
−1 ≡α (g2ρ)ρ−1 ≡α g2(ρ−1 ◦ ρ) = g2

Therefore ρ−1 can be our required renaming.

Say the last step of the proof tree is an instance of EQV-TRN:

K1 ≡α K K ≡α K2

K1 ≡α K2

and say that Flatten(K) = g{Φ∆. Then, by the induction hypothesis, there
are renamings ρ1 and ρ2 such that

Φρ1 = Φ1 ∆ρ1 = ∆1 gρ1 ≡α g1

Φ2ρ2 = Φ ∆2ρ2 = ∆ g2ρ2 ≡α g

and

FN(g{Φ∆) � Change(ρ1)

FN(g2{Φ2
∆2
) � Change(ρ2)

Again, by results B.3.4, B.3.13 and B.4.1 we have, FN(g2{Φ2
∆2
) = FN(g{Φ∆) so

FN(g2{Φ2
∆2
) � Change(ρ1) ∪ Change(ρ2)

Hence

FN(g2{Φ2
∆2
) � Change(ρ1 ◦ ρ2)

Now

Φ2(ρ1 ◦ ρ2) = (Φ2ρ2)ρ1 = Φρ1 = Φ1

∆2(ρ1 ◦ ρ2) = (∆2ρ2)ρ1 = ∆ρ1 = ∆1

g2(ρ1 ◦ ρ2) ≡α (g2ρ2)ρ1 ≡α gρ1 ≡α g1

293

APPENDIX B. TECHNICAL RESULTS FOR OOMPA

Therefore ρ1 ◦ ρ2 can be our required renaming.
Consider the case where the last step of the tree proof is an instance of

CONG-PAR:

K ′
1 ≡α K ′

2 K ′′
1 ≡α K ′′

2

(K ′
1|K ′′

1) ≡α (K ′
2|K ′′

2)

Say

Flatten(K ′
1) = g′1{Φ

′
1

∆′
1

Flatten(K ′
2) = g′2{Φ

′
2

∆′
2

Flatten(K ′′
1) = g′′1{Φ

′′
1

∆′′
1

Flatten(K ′′
2) = g′′2{Φ

′′
2

∆′′
2

Flatten(K ′
1|K ′′

1) = (g′1δ1|g′′1δ′1){Φ
′
1δ1∪Φ′′

1 δ
′
1

∆′
1δ1∪∆′′

1 δ
′
1

Flatten(K ′
2|K ′′

2) = (g′2δ2|g′′2δ′2){Φ
′
2δ2∪Φ′′

2 δ
′
2

∆′
2δ2∪∆′′

2 δ
′
2

By the induction hypothesis, there are renamings ρ and ρ′ such that

Φ′
2ρ = Φ′

1 ∆′
2ρ = ∆′

1 g′2ρ ≡α g′1

Φ′′
2ρ

′ = Φ′′
1 ∆′′

2ρ
′ = ∆′′

1 g′′2ρ
′ ≡α g′′1

Let F = FN(Flatten(K ′
2|K ′′

2)) and let

ρα = 1|F + (δ1 ◦ ρ ◦ δ2)|Φ′
2δ2
+ (δ′1 ◦ ρ′ ◦ δ′2)|Φ′′

2 δ
′
2

Then F � Change(ρα) and we can show

(g′2δ2|g′′2δ′2)ρα ≡α g′1δ1|g′′1δ′1
(Φ′

2δ2 ∪ Φ′′
2δ

′
2)ρ

α = Φ′
1δ1 ∪ Φ′′

1δ
′
1

(∆′
2δ2 ∪∆′′

2δ
′
2)ρ

α = ∆′
1δ1 ∪∆′′

1δ
′
1

which is sufficient for the result in this case.

Say the last step of the proof tree is an instance of CONG-SCP:

K ′
1 ≡α K ′

2

K ′
1{Φ∆≡α K ′

2{Φ∆

294

APPENDIX B. TECHNICAL RESULTS FOR OOMPA

Say

Flatten(K ′
1) = g1{Φ1

∆1

Flatten(K ′
2) = g2{Φ2

∆2

Flatten(K ′
1{Φ∆) = g1δ1{Φ1δ1∪Φ

∆1δ1∪∆

Flatten(K ′
2{Φ∆) = g2δ2{Φ2δ2∪Φ

∆2δ2∪∆

By the induction hypothesis, there is some renaming ρ such that

Φ2ρ = Φ1 ∆2ρ = ∆1 g2ρ ≡α g1

Let F = FN(Flatten(K ′
2{Φ∆)) and let

ρα = 1|F + (δ1 ◦ ρ ◦ δ2)|Φ2δ2
+ 1|Φ

Then F � Change(ρα) and

(Φ2δ2 ∪ Φ)ρα = Φ1δ1 ∪ Φ (∆2δ2 ∪∆)ρα = ∆1δ1 ∪∆ g2δ2ρ
α ≡α g1δ1

as required in this case.

Say the last step of the proof tree is an instance of ALPHA-COD:

p1 ≡α p2
o[p1] ≡α o[p2]

Then

Flatten(o[p1]) = o[p1]{∅∅
Flatten(o[p2]) = o[p2]{∅∅

The identity renaming will work in this case.

Say the tree proof is an instance of CHNG-SCP:

K{Φ∆≡α Kρ′{Φρ
′

∆ρ′

Say that

Flatten(K) = g′{Φ′
∆′

Flatten(K{Φ∆) = g′δ{Φ′δ∪Φ
∆′δ∪∆

295

APPENDIX B. TECHNICAL RESULTS FOR OOMPA

By Lemma B.4.4

Flatten(Kρ′) ≡α (g′{Φ′
∆′)ρ′ = g′δ′ρ′{Φ′δ′ρ′

∆′δ′ρ′

so, by Lemma B.4.2, we can find ρ′′ such that

Flatten(Kρ′{Φρ′∆ρ′) ≡α g′δ′ρ′ρ′′{Φ
′δ′ρ′ρ′′∪Φρ′

∆′δ′ρ′ρ′′∪∆ρ′

Let F = FN(Flatten(Kρ′{Φρ′∆ρ′)) and let

ρα = 1|F + (δ ◦ δ′ ◦ ρ′−1 ◦ ρ′′−1
)
∣∣∣
Φ′δ′ρ′ρ′′

+ ρ′−1
∣∣∣
Φρ′

We can use ρα to show that

(Φ′δ′ρ′ρ′′ ∪ Φρ′)ρα = Φ′δ ∪ Φ
(∆′δ′ρ′ρ′′ ∪∆ρ′)ρα = ∆′δ ∪∆

(g′δ′ρ′ρ′′)ρα ≡α g′δ

as required in this case. �
4.3.4

p119Theorem B.4.6 Say K1 and K2 are configurations such that K1
�≡ K2 and

that

Flatten(K1) = g1{Φ1
∆1

Flatten(K2) = g2{Φ2
∆2

Then, for some renaming ρ such that FN(g2{Φ∆) � Change(ρ) we have

Φ2ρ = Φ1 ∆2ρ = ∆1 g2ρ
�≡α g1

Proof: We use an induction on the proof of K1
�≡ K2. As many of the

cases can be approached exactly as in Theorem B.4.5, we only consider those

cases which differ.

Say that the last step of the proof tree is ALPHA. Then the result follows

directly from Theorem B.4.5.

296

APPENDIX B. TECHNICAL RESULTS FOR OOMPA

Say that the proof tree is an instance of PAR-ID:

K|Nil �≡ K

and that Flatten(K) = g{Φ∆. Then

Flatten(K|Nil) = (g|nil){Φ∆

We can use the identity renaming, since (g|nil) �≡α g.
Say that the proof tree is an instance of PAR-ABL:

K1|K2
�≡ K2|K1

Say

Flatten(K1) = g1{Φ1
∆1

Flatten(K2) = g2{Φ2
∆2

Flatten(K1|K2) = (g1δ1|g2δ2){Φ1δ1∪Φ2δ2
∆1δ1∪∆2δ2

Flatten(K2|K1) = (g2δ
′
2|g1δ′1){Φ2δ′2∪Φ1δ′1

∆2δ′2∪∆1δ′1

Let F = FN(K2|K1) and let

ρα = 1|F + (δ2 ◦ δ′2)|Φ2δ′2
+ (δ1 ◦ δ′1)|Φ1δ′1

Then

(g2δ
′
2|g1δ′1)ρα ≡α (g2δ2|g1δ1)

�≡α (g2δ2|g1δ1)

and

(Φ2δ
′
2 ∪ Φ1δ

′
1)ρ

α = Φ1δ1 ∪ Φ2δ2

(∆2δ
′
2 ∪∆1δ

′
1)ρ

α = ∆1δ1 ∪∆2δ2

Say the tree proof is an instance of PAR-ASS:

(K1|K2)|K3
�≡ K1|(K2|K3)

297

APPENDIX B. TECHNICAL RESULTS FOR OOMPA

Say

Flatten(K1) = g1{Φ1
∆1

Flatten(K2) = g2{Φ2
∆2

Flatten(K3) = g3{Φ3
∆3

Flatten(K1|K2) = (g1δ1|g2δ2){Φ1δ1∪Φ2δ2
∆1δ1∪∆2δ2

Flatten((K1|K2)|K3) = ((g1δ1|g2δ2)δ12|g3δ3){(Φ1δ1∪Φ2δ2)δ12∪Φ3δ3
(∆1δ1∪∆2δ2)δ12∪∆3δ3

Flatten(K2|K3) = (g2δ
′
2|g3δ′3){Φ2δ′2∪Φ3δ′3

∆2δ′2∪∆3δ′3

Flatten(K1|(K2|K3)) = (g1δ
′
1|(g2δ′2|g3δ′3)δ′23){Φ1δ′1∪(Φ2δ′2∪Φ3δ′3)δ

′
23

∆1δ′1∪(∆2δ′2∪∆3δ′3)δ
′
23

Let F = FN(K1|(K2|K3)) and let

ρα = 1|F
+(δ12 ◦ δ1 ◦ δ′1)|Φ1δ′1

+(δ12 ◦ δ2 ◦ δ′2 ◦ δ′23)|Φ2δ′2δ
′
23

+(δ3 ◦ δ′3 ◦ δ′23)|Φ3δ′3δ
′
23

Then

(g1δ
′
1|(g2δ′2|g3δ′3)δ′23)ρα

�≡α (g1δ1|g2δ2)δ12|g3δ3
(Φ1δ

′
1 ∪ (Φ2δ

′
2 ∪ Φ3δ

′
3)δ

′
23)ρ

α = (Φ1δ1 ∪ Φ2δ2)δ12 ∪ Φ3δ3

(∆1δ
′
1 ∪ (∆2δ

′
2 ∪∆3δ

′
3)δ

′
23)ρ

α = (∆1δ1 ∪∆2δ2)δ12 ∪∆3δ3

as required in this case.

If the proof tree is an instance of EMPTY, then the identity renaming

will work, since Flatten(K{∅∅) = Flatten(K).
Say that the proof tree is an instance of FLATTEN:

K{Φ1
∆1
{Φ2
∆2

�≡ K{Φ1∪Φ2
∆1∪∆2

Say that

Flatten(K) = g{Φ∆
Flatten(K{Φ1

∆1
) = gδ1{Φδ1∪Φ1

∆δ1∪∆1

Flatten(K{Φ1
∆1
{Φ2
∆2
) = gδ1δ2{(Φδ1∪Φ1)δ2∪Φ2

(∆δ1∪∆1)δ2∪∆2

Flatten(K{Φ1∪Φ2
∆1∪∆2

) = gδ′{Φδ′∪Φ1∪Φ2

∆δ′∪∆1∪∆2

298

APPENDIX B. TECHNICAL RESULTS FOR OOMPA

Let F = FN(K{Φ1∪Φ2
∆1∪∆2

) and let

ρα = 1|F + (δ2 ◦ δ1 ◦ δ′)|Φδ′ + δ2|Φ1
+ 1|Φ2

Then

gδ′ρα
�≡α gδ1δ2

(Φδ′ ∪ Φ1 ∪ Φ2)ρ
α = (Φδ1 ∪ Φ1)δ2 ∪ Φ2

(∆δ′ ∪∆1 ∪∆2)ρ
α = (∆δ1 ∪∆1)δ2 ∪∆2

as required in this case.

Say that the proof tree is an instance of FLATTEN:

K1|(K2{Φ∆)
�≡ (K1|K2){Φ∆

Say

Flatten(K1) = g1{Φ1
∆1

Flatten(K2) = g2{Φ2
∆2

Flatten(K2{Φ∆) = g2δ2{Φ2δ2∪Φ
∆2δ2∪∆

Flatten(K1|(K2{Φ∆)) = (g1δ
′
1|g2δ2δ′2){Φ1δ′1∪(Φ2δ2∪Φ)δ′2

∆1δ′1∪(∆2δ2∪∆)δ′2

Flatten(K1|K2) = g1δ
′′
1 |g2δ′′2{Φ1δ′′1 ∪Φ2δ′′2

∆1δ′′1 ∪∆2δ′′2

Flatten((K1|K2){Φ∆) = (g1δ
′′
1 |g2δ′′2)δ{(Φ1δ′′1∪Φ2δ′′2)δ∪Φ

(∆1δ′′1∪∆2δ′′2)δ∪∆

Let F = FN(K1|K2{Φ∆) and let

ρα = 1|F + (δ′1 ◦ δ′′1 ◦ δ)|Φ1δ′′1 δ
+ (δ′2 ◦ δ2 ◦ δ′′2 ◦ δ)|Φ2δ′′2 δ

+ δ′2|Φ

Then

(g1δ
′′
1 |g2δ′′2)δρα

�≡α (g1δ
′
1|g2δ2δ′2)

((Φ1δ
′′
1 ∪ Φ2δ

′′
2)δ ∪ Φ)ρα = Φ1δ

′
1 ∪ (Φ2δ2 ∪ Φ)δ′2

((∆1δ
′′
1 ∪∆2δ

′′
2)δ ∪∆)ρα = ∆1δ

′
1 ∪ (∆2δ2 ∪∆)δ′2

as required in this case. �
Lemmas B.4.7–B.4.10 are necessary for the proof of Theorem B.4.11.

They give us an internal view of the shape of a subsystem which can perform

299

APPENDIX B. TECHNICAL RESULTS FOR OOMPA

a labelled action. We only provide the proof of Lemma B.4.7 as the others

are similar.

Lemma B.4.7 Say K1 and K2 are configurations such that

Γ,Φ � K1
c!〈v1,...vn〉 �� K2

and

Flatten(K1) = g1{Φ1
∆1

Flatten(K2) = g2{Φ2
∆2

then there is some renaming ρ such that FN(g2{Φ2
∆2
) � Change(ρ) and

Φ2ρ = Φ1

∆2ρ = ∆1

g1
�≡ o[c!〈v1, . . . vn〉 p]|g

g2ρ
�≡α o[p]|g

Proof: We use an induction on the proof tree of

Γ,Φ � K1
c!〈v1,...vn〉 �� K2

Say that the proof tree is an instance of SND:

Γ,Φ � o[c!〈v1, . . . vn〉 p] c!〈v1,...vn〉 �� o[p]

Well

Flatten(o[c!〈v1, . . . vn〉 p]) = o[c!〈v1, . . . vn〉 p]{∅∅
Flatten(o[p]) = o[p]{∅∅

then

o[c!〈v1, . . . vn〉 p] �≡ o[c!〈v1, . . . vn〉 p]|nil
o[p]

�≡α o[p]|nil
So, with ρ as the identity renaming, we have the result for this case.

300

APPENDIX B. TECHNICAL RESULTS FOR OOMPA

Say that the last step of the proof tree is an instance of EQV-LFT:

K1
�≡ K2 Γ,Φ � K1

l1

l2
�� K ′

1

Γ,Φ � K2
l1

l2
�� K ′

1

Say

Flatten(K1) = g1{Φ1
∆1

Flatten(K ′
1) = g′1{Φ

′
1

∆′
1

Flatten(K2) = g2{Φ2
∆2

Since K1
�≡ K2 we have K2

�≡ K1. Thus, by Theorem B.4.6 there exists some

renaming ρ such that

Φ1ρ = Φ2 ∆1ρ = ∆2 g1ρ
�≡α g2

Also, by the induction hypothesis, there is some renaming ρ′ such that

Φ′
1ρ

′ = Φ1 ∆′
1ρ

′ = ∆1

and

g1
�≡ o[c!〈v1, . . . vn〉 p]|g

g′1ρ
′ �≡α o[p]|g

Then

g2
�≡α 〈choice of ρ〉
g1ρ

�≡ 〈Lemma 4.1.6〉
(o[c!〈v1, . . . vn〉 p]|g)ρ

= 〈renaming procedure; {c, v1, . . . vn} � Change(ρ)〉
(oρ)[c!〈v1, . . . vn〉 pρ]|(gρ)

301

APPENDIX B. TECHNICAL RESULTS FOR OOMPA

At this point, we’ll need the following sublemma.

Sublemma 1 Say

g
�≡α o[c!〈v1, . . . vn〉 p]|g1

then

g
�≡ o[c!〈v1, . . . vn〉 p′]|g′1

where

p′ ≡α p g′1 ≡α g1

Proof of Sublemma: By Lemma B.2.4 we know

g
�≡ g′ ≡α o[c!〈v1, . . . vn〉 p]|g1

and by the nature of ≡α system, we know that

g′ = o[c!〈v1, . . . vn〉 p′]|g′1

for some p′ and g′1 such that

p′ ≡α p g′1 ≡α g1

as required. �
Thus, by this sublemma

g2
�≡ (oρ)[c!〈v1, . . . vn〉 p′]|g′

where

p′ ≡α pρ g′ ≡α gρ

Let ρα = ρ ◦ ρ′. Then

Φ′
1ρ
α = Φ2 ∆′

1ρ
α = ∆2

302

APPENDIX B. TECHNICAL RESULTS FOR OOMPA

g′1ρ
α

≡α 〈Lemma 4.1.8〉
g′1ρ

′ρ
�≡α 〈choice of ρ′ and Lemma 4.1.11〉
(o[p]|g)ρ

= 〈renaming procedure〉
(oρ)[pρ]|(gρ)

≡α 〈above, ALPHA-COD and CONG-PAR〉
(oρ)[p′]|g′

as required.

Say that the last step of the proof is an instance of EQV-RHT:

K ′
1

�≡ K2 Γ,Φ � K1
l1

l2
�� K ′

1

Γ,Φ � K1
l1

l2
�� K2

Say

Flatten(K1) = g1{Φ1
∆1

Flatten(K ′
1) = g′1{Φ

′
1

∆′
1

Flatten(K2) = g2{Φ2
∆2

Since K ′
1

�≡ K2, Lemma B.4.6 means that there is some renaming ρ such that

Φ2ρ = Φ
′
1 ∆2ρ = ∆

′
1 g2ρ

�≡α g′1

By the induction hypothesis, applied to the right subtree, there is some

renaming ρ′ such that

Φ′
1ρ

′ = Φ1

∆′
1ρ

′ = ∆1

g1
�≡ o[c!〈v1, . . . vn〉 p]|g

g′1ρ
′ �≡α o[p]|g

303

APPENDIX B. TECHNICAL RESULTS FOR OOMPA

Let ρα = ρ′ ◦ ρ. The result easily follows by using ρα.
Say that the last step of the proof tree is an instance of PAR:

Γ,Φ � K1
l1

l2
�� K2

Γ,Φ � K1|K l1

l2
�� K2|K

Say

Flatten(K) = g{Φ∆
Flatten(K1) = g1{Φ1

∆1

Flatten(K2) = g2{Φ2
∆2

Flatten(K1|K) = (g1δ1|gδ′1){Φ1δ1∪Φδ′1
∆1δ1∪∆δ′1

Flatten(K2|K) = (g2δ2|gδ′2){Φ2δ2∪Φδ′2
∆2δ2∪∆δ′2

By the induction hypothesis, there is some renaming ρ such that

Φ2ρ = Φ1

∆2ρ = ∆1

g1
�≡ o[c!〈v1, . . . vn〉 p]|g′

g2ρ
�≡α o[p]|g′

Let F = FN(Flatten(K2|K)) and let

ρα = 1|F + (δ1 ◦ ρ ◦ δ2−1)
∣∣
Φ2δ2

+ (δ′1 ◦ δ′2−1
)
∣∣∣
Φδ′2

Then

(Φ2δ2 ∪ Φδ′2)ρα = Φ1δ1 ∪ Φδ′1
(∆2δ2 ∪∆δ′2)ρα = ∆1δ1 ∪∆δ′1

and

g1δ1|gδ′1
�≡ 〈Lemma 4.1.6 and CONG-PAR〉
(o[c!〈v1, . . . vn〉 p]|g′)δ1|gδ′1

= 〈renaming procedure; {c, v1, . . . vn} � Change(ρ)〉

304

APPENDIX B. TECHNICAL RESULTS FOR OOMPA

((oδ1)[c!〈v1, . . . vn〉 pδ1]|g′δ1)|gδ′1
�≡ 〈PAR-ASS〉
(oδ1)[c!〈v1, . . . vn〉 pδ1]|(g′δ1|gδ′1)

Using arguments about isolated sum similar to those in Lemma B.3.16 gives

us

(g2δ2|gδ′2)ρα

= 〈renaming procedure〉
g2δ2ρ

α|gδ′2ρα
�≡α 〈isolated sum splits〉
g2ρδ1|gδ′1

�≡α 〈from above with CONG-PAR〉
(o[p]|g′)δ1|gδ′1

= 〈renaming procedure〉
((oδ1)[pδ1]|g′δ1)|gδ′1

�≡ 〈PAR-ASS〉
(oδ1)[pδ1]|(g′δ1|gδ′1)

as required.

Say that the last step of the proof is an instance of SCP:

Γ,Φ ∪ Φ′ � K1
l1

l2
�� K2

Γ,Φ � K1{Φ′
∆

l1

l2
�� K2{Φ′

∆

Say

Flatten(K1) = g1{Φ1
∆1

Flatten(K2) = g2{Φ2
∆2

Flatten(K1{Φ′
∆) = g1δ1{Φ1δ1∪Φ′

∆1δ1∪∆

Flatten(K2{Φ′
∆) = g2δ2{Φ2δ2∪Φ′

∆2δ2∪∆

305

APPENDIX B. TECHNICAL RESULTS FOR OOMPA

By the induction hypothesis, there is some renaming ρ such that

Φ2ρ = Φ1

∆2ρ = ∆1

g1
�≡ o[c!〈v1, . . . vn〉 p]|g

g2ρ
�≡α o[p]|g

Let F = FN(Flatten(K2{Φ′
∅)) and let

ρα = 1|F + (δ1 ◦ ρ ◦ δ2−1)
∣∣
Φ2δ2

+ 1|Φ′

Then

(Φ2δ2 ∪ Φ′)ρα = Φ1δ1 ∪ Φ′

(∆2δ2 ∪∆)ρα = ∆1δ1 ∪∆
g1δ1

�≡ (o[c!〈v1, . . . vn〉 p]|g)δ1
= oδ1[c!〈v1, . . . vn〉 pδ1]|gδ1

g2δ2ρ
α �≡α (o[p]|g)δ1

�≡α oδ1[pδ1]|gδ1
as required. �

Lemma B.4.8 Say K1 and K2 are configurations such that

Γ,Φ � K1
c?〈v1,...vn〉 �� K2

and

Flatten(K1) = g1{Φ1
∆1

Flatten(K2) = g2{Φ2
∆2

then there is some renaming ρ such that FN(g2{Φ2
∆2
) � Change(ρ) and

Φ2ρ = Φ1

∆2ρ = ∆1

g1
�≡ o[c?(r1:T1, . . . rn:Tn) p]|g

g2ρ
�≡α o[p{|v1/r1 . . . vn/rn|}]|g

306

APPENDIX B. TECHNICAL RESULTS FOR OOMPA

Lemma B.4.9 Say K1 and K2 are configurations such that

Γ,Φ � K1
o′.m!〈v1,...vn〉

x:T
�� K2

and

Flatten(K1) = g1{Φ1
∆1

Flatten(K2) = g2{Φ2
∆2

then there is some renaming ρ such that FN(g2{Φ2
∆2
) � Change(ρ) and

Φ2ρ = Φ1

∆2ρ = ∆1

g1
�≡ o[o′.m!〈v1, . . . vn〉?(r1, . . . rn′) p]|g

g2ρ
�≡α o[x?(r1:T1, . . . rn′:Tn′) p]|g

Lemma B.4.10 Say K1 and K2 are configurations such that

Γ,Φ � K1
o′.m?〈v1,...vn〉

x:T
�� K2

and

Flatten(K1) = g1{Φ1
∆1

Flatten(K2) = g2{Φ2
∆2

then there is some renaming ρ such that FN(g2{Φ2
∆2
) � Change(ρ) and

Φ2ρ = Φ1

∆2ρ = ∆1

g2ρ
�≡α o′[p{|v1/r1, . . . vn/rn, o

′
/this, x/return|}]|g1

Our main result of this section means that any internal action taken by

a configuration can be simulated by some reaction of its flattened form.

307

APPENDIX B. TECHNICAL RESULTS FOR OOMPA

4.3.5

p120Theorem B.4.11 Say K1 and K2 are configurations such that

Γ,Φ � K1
�� K2

and

Flatten(K1{Φ∅) = g1{Φ1
∆1

Flatten(K2{Φ∅) = g2{Φ2
∆2

then there is some renaming ρ such that FN(g2{Φ2
∆2
) � Change(ρ) and

Γ � g1{Φ1
∆1
−→ g2ρ{Φ2ρ

∆2ρ

Proof: We use induction on the proof tree of Γ,Φ � K1
�� K2. EQV-

LFT, EQV-RHT, PAR and SCP can all be dealt with as in the proof of

Lemma B.4.7. Say the proof tree is an instance of END:

Γ,Φ � o[end] �� Nil

So

Flatten(o[end]{Φ∅) = o[end]{Φ∅
Flatten(Nil{Φ∅) = nil{Φ∅

Use the identity renaming and

Γ � o[end]{Φ∅−→ nil{Φ∅

This gives the result for this case. The case for FRK is similar.

Say that the proof tree is an instance of NEW:

Γ,Φ � o[new c: ChT p] �� o[p]{{c:ChT}
∅

Then

Flatten(o[new c: ChT p]{Φ∅) = o[new c: ChT p]{Φ∅
Flatten(o[p]{{c:ChT}

∅ {Φ∅) = o[p{|c′/c|}]{{c′:ChT}∪Φ
∅

308

APPENDIX B. TECHNICAL RESULTS FOR OOMPA

The second statement above is true because the shove the Flatten algorithm

chooses will exchange c with some new name c′. Use the identity renaming

and

Γ � o[new c: ChT p]{Φ∅−→ o[p{|c′/c|}]{{c′:ChT}∪Φ
∅

to give the result. The case for CRT is similar to this case.

Say that the proof tree is an instance of UPD:

Γ,Φ � o[a!v p]{∅{o:=f} �� o[p]{∅{o:=f†[a�→v]}

Then

Flatten(o[a!v p]{∅{o:=f}{Φ∅) = o[a!v p]{Φ{o:=f}
Flatten(o[p]{∅{o:=f†[a�→v]}{Φ∅) = o[p]{Φ{o:=f†[a�→v]}

Use the identity renaming and

Γ � o[a!v p]{Φ{o:=f}−→ o[p]{Φ{o:=f†[a�→v]}

to give the result. The case for ACC can be dealt with like the last two cases.

Say the proof tree ends with an instance of COM:

Γ,Φ � K1
c!〈v1,...vn〉 �� K2 Γ,Φ � K ′

1

c?〈v1,...vn〉 �� K ′
2

Γ,Φ � K1|K ′
1

�� K2|K ′
2

Say

Flatten(K1) = g1{Φ1
∆1

Flatten(K2) = g2{Φ2
∆2

Flatten(K ′
1) = g′1{Φ

′
1

∆′
1

Flatten(K ′
2) = g′2{Φ

′
2

∆′
2

By Lemma B.4.7 and Lemma B.4.8, there exist renamings ρ and ρ′ such that

Φ2ρ = Φ1 Φ′
2ρ

′ = Φ′
1

∆2ρ = ∆1 ∆′
2ρ

′ = ∆′
1

309

APPENDIX B. TECHNICAL RESULTS FOR OOMPA

and

g1
�≡ o[c!〈v1, . . . vn〉 p]|g

g2ρ
�≡α o[p]|g

g′1
�≡ o′[c?(r1:T1, . . . rn:Tn) p

′]|g′

g′2ρ
′ �≡α o′[p′{|v1/r1, . . . vn/rn|}]|g′

Also

Flatten(K1|K ′
1) = (g1δ1|g′1δ′1){Φ1δ1∪Φ′

1δ
′
1

∆1δ1∪∆′
1δ

′
1

Flatten(K2|K ′
2) = (g2δ2|g′2δ′2){Φ2δ2∪Φ′

2δ
′
2

∆2δ2∪∆′
2δ

′
2

Flatten((K1|K ′
1){Φ∅) = (g1δ1|g′1δ′1)δ′′1{(Φ1δ1∪Φ′

1δ
′
1)δ

′′
1 ∪Φ

(∆1δ1∪∆′
1δ

′
1)δ

′′
1

Flatten((K2|K ′
2){Φ∅) = (g2δ2|g′2δ′2)δ′′2{(Φ2δ2∪Φ′

2δ
′
2)δ

′′
2 ∪Φ

(∆2δ2∪∆′
2δ

′
2)δ

′′
2

Let F = FN(Flatten((K2|K ′
2){Φ∅)) and let

ρα = 1|F
+(δ′′1 ◦ δ1 ◦ ρ ◦ δ2 ◦ δ′′2)|Φ2δ2δ′′2

+(δ′′1 ◦ δ′1 ◦ ρ′ ◦ δ′2 ◦ δ′′2)|Φ′
2δ

′
2δ

′′
2

+1|Φ
Then

((Φ2δ2 ∪ Φ′
2δ

′
2)δ

′′
2 ∪ Φ)ρα = (Φ1δ1 ∪ Φ′

1δ
′
1)δ

′′
1 ∪ Φ

(∆2δ2 ∪∆′
2δ

′
2)δ

′′
2ρ
α = (∆1δ1 ∪∆′

1δ
′
1)δ

′′
1

Now

(g1δ1|g′1δ′1)δ′′1
= 〈renaming procedure〉
g1δ1δ

′′
1 |g′1δ′1δ′′1

�≡ 〈Lemma 4.1.6〉
(o[c!〈v1, . . . vn〉 p]|g)δ1δ′′1
| (o′[c?(r1:T1, . . . rn:Tn) p

′]|g′)δ′1δ′′1
= 〈renaming procedure, choosing δ and δ′ appropriately〉
(oδ1δ

′′
1)[c!〈v1, . . . vn〉 (pδ1δ′′1)] | (gδ1δ′′1)

310

APPENDIX B. TECHNICAL RESULTS FOR OOMPA

| (o′δ′1δ′′1)[c?((r1δδ′):T1, . . . (rnδδ
′):Tn) (p′δδ′1δ

′δ′′1)] | (g′δ′1δ′′1)
�≡ 〈several structural equivalence rules〉
(oδ1δ

′′
1)[c!〈v1, . . . vn〉 (pδ1δ′′1)]

| (o′δ′1δ′′1)[c?((r1δδ′):T1, . . . (rnδδ
′):Tn) (p′δδ′1δ

′δ′′1)]

| ((gδ1δ′′1) | (g′δ′1δ′′1))

and

(g2δ2|g′2δ′2)δ′′2ρα
= 〈renaming procedure〉
(g2δ2)δ

′′
2ρ
α|(g′2δ′2)δ′′2ρα

�≡α 〈choice of ρα〉
(g2ρ)δ1δ

′′
1 |(g′2ρ′)δ′1δ′′1

�≡α 〈Lemma 4.1.11〉
(o[p]|g)δ1δ′′1 | (o′[p′{|v1/r1, . . . vn/rn|}]|g′)δ′1δ′′1

= 〈renaming procedure〉
(oδ1δ

′′
1)[pδ1δ

′′
1] | (gδ1δ′′1)

| (o′δ′1δ′′1)[(p′{|v1/r1, . . . vn/rn|})δ1δ′′1] | (g′δ1δ′′1)
�≡α 〈renaming procedure, using δ and δ′ from above〉
(oδ1δ

′′
1)[pδ1δ

′′
1] | (gδ1δ′′1)

| (o′δ′1δ′′1)[(p′δδ1δ′δ′′1){|v1/(r1δδ′), . . . vn/(rnδδ′)|}] | (g′δ1δ′′1)
�≡ 〈several structural equivalence rules〉
(oδ1δ

′′
1)[pδ1δ

′′
1]

| (o′δ′1δ′′1)[(p′δδ1δ′δ′′1){|v1/(r1δδ′), . . . vn/(rnδδ′)|}]
| ((gδ1δ′′1) | (g′δ1δ′′1))

311

APPENDIX B. TECHNICAL RESULTS FOR OOMPA

It is not difficult to show, using the rules of the reaction relation, that

Γ �
(oδ1δ

′′
1)[c!〈v1, . . . vn〉 (pδ1δ′′1)]

| (o′δ′1δ′′1)[c?((r1δδ′):T1, . . . (rnδδ
′):Tn) (p′δδ′1δ

′δ′′1)]

| ((gδ1δ′′1) | (g′δ′1δ′′1))




(Φ1δ1 ∪ Φ′
1δ

′
1)δ

′′
1

∪ Φ
(∆1δ1 ∪∆′

1δ
′
1)δ

′′
1

−→
(oδ1δ

′′
1)[pδ1δ

′′
1]

| (o′δ′1δ′′1)[(p′δδ1δ′δ′′1){|v1/(r1δδ′), . . . vn/(rnδδ′)|}]
| ((gδ1δ′′1) | (g′δ1δ′′1))




(Φ1δ1 ∪ Φ′
1δ

′
1)δ

′′
1

∪ Φ
(∆1δ1 ∪∆′

1δ
′
1)δ

′′
1

which, using EQV-LFT and EQV-RHT, gives our result in this case.

Say the last step of the proof tree is an instance of MTH:

Γ,Φ � K1
o′.m!〈v1,...vn〉
x:ChT

�� K2 Γ,Φ � K ′
1

o′.m?〈v1,...vn〉
x:ChT

�� K ′
2

Γ,Φ � K1|K ′
1

�� (K2|K ′
2){{x:ChT}

∅

Say

Flatten(K1) = g1{Φ1
∆1

Flatten(K2) = g2{Φ2
∆2

Flatten(K ′
1) = g′1{Φ

′
1

∆′
1

Flatten(K ′
2) = g′2{Φ

′
2

∆′
2

By Lemma B.4.9 and Lemma B.4.10, there exist renamings ρ and ρ′ such

that

Φ2ρ = Φ1 Φ′
2ρ

′ = Φ′
1

∆2ρ = ∆1 ∆′
2ρ

′ = ∆′
1

and

g1
�≡ o[o′.m!〈v1, . . . vn〉?(r1, . . . rn′) p]|g

g2ρ
�≡α o[x?(r1:T1, . . . rn′:Tn′) p]|g

g′2ρ
′ �≡α o′[p′{|v1/s1, . . . vn/sn, o

′
/this, x/return|}]|g′1

312

APPENDIX B. TECHNICAL RESULTS FOR OOMPA

Also

Flatten(K1|K ′
1) = (g1δ1|g′1δ′1){Φ1δ1∪Φ′

1δ
′
1

∆1δ1∪∆′
1δ

′
1

Flatten(K2|K ′
2) = (g2δ2|g′2δ′2){Φ2δ2∪Φ′

2δ
′
2

∆2δ2∪∆′
2δ

′
2

Flatten((K2|K ′
2){{x:T}∅) = (g2δ2|g′2δ′2)δx{(Φ2δ2∪Φ′

2δ
′
2)δx∪{x:T}

(∆2δ2∪∆′
2δ

′
2)δx

Flatten((K1|K ′
1){Φ∅) = (g1δ1|g′1δ′1)δ′′1{(Φ1δ1∪Φ′

1δ
′
1)δ

′′
1∪Φ

(∆1δ1∪∆′
1δ

′
1)δ

′′
1

Flatten((K2|K ′
2){{x:T}∅ {Φ∅) = (g2δ2|g′2δ′2)δxδ′′2{((Φ2δ2∪Φ′

2δ
′
2)δx∪{x:T})δ′′2∪Φ

(∆2δ2∪∆′
2δ

′
2)δxδ

′′
2

Let F = FN(Flatten((K2|K ′
2){{x:T}∅ {Φ∅)), let δ′x shove {x}∩ (F ∪Dom((Φ1δ1∪

Φ′
1δ

′
1)δ

′′
1 ∪ Φ)) and let

ρα = 1|F
+(δ′′1 ◦ δ1 ◦ ρ ◦ δ2 ◦ δx ◦ δ′′2)|Φ2δ2δxδ′′2

+(δ′′1 ◦ δ′1 ◦ ρ′ ◦ δ′2 ◦ δx ◦ δ′′2)|Φ′
2δ

′
2δxδ

′′
2

+(δ′x ◦ δ′′2)|{x:T}δ′′2
+1|Φ

Then

(((Φ2δ2 ∪ Φ′
2δ

′
2)δx ∪ {x:T})δ′′2 ∪ Φ)ρα = (Φ1δ1 ∪ Φ′

1δ
′
1)δ

′′
1 ∪ {xδ′x:T} ∪ Φ

(∆2δ2 ∪∆′
2δ

′
2)δxδ

′′
2ρ
α = (∆1δ1 ∪∆′

1δ
′
1)δ

′′
1

Now

(g1δ1|g′1δ′1)δ′′1
= 〈renaming procedure〉
g1δ1δ

′′
1 | g′1δ′1δ′′1

�≡ 〈Lemma 4.1.11〉
(o[o′.m!〈v1, . . . vn〉?(r1, . . . rn′) p]|g)δ1δ′′1 | g′1δ′1δ′′1

�≡ 〈renaming procedure and structural equivalence laws〉
(oδ1δ

′′
1)[o

′.m!〈v1, . . . vn〉?((r1δδ′), . . . (rn′δδ′)) (pδδ1δ′δ′′1)]
| ((gδ1δ′′1) | (g′1δ′1δ′′1))

313

APPENDIX B. TECHNICAL RESULTS FOR OOMPA

To avoid the complexity of showing how ρα affects the two parallel agents,

we skip several steps in the following calculation.

(g2δ2|g′2δ′2)δxδ′′2ρα
= 〈renaming procedure〉
(g2δ2)δxδ

′′
2ρ
α|(g′2δ′2)δxδ′′2ρα

�≡α 〈lemmas 4.1.11 and 4.1.8 and equivalence laws〉
(oδ1δ

′′
1)[(xδ

′
x)?((r1δδ

′):T1, . . . (rn′δδ
′):Tn′) (pδδ1δ′δ′′1)]

| o′[p′{|v1/s1, . . . vn/sn, o
′
/this, (xδ

′
x)/return|}]

| ((gδ1δ′′1) | (g′1δ′1δ′′1))

It is not difficult to show, using the rules of the reaction system, that

Γ �
(oδ1δ

′′
1)[o

′.m!〈v1, . . . vn〉?((r1δδ′), . . . (rn′δδ′))
(pδδ1δ

′δ′′1)]

| ((gδ1δ′′1) | (g′1δ′1δ′′1))




(Φ1δ1 ∪ Φ′
1δ

′
1)δ

′′
1

∪ Φ
(∆1δ1 ∪∆′

1δ
′
1)δ

′′
1

−→
(oδ1δ

′′
1)[(xδ

′
x)?((r1δδ

′):T1, . . . (rn′δδ
′):Tn′) (pδδ1δ′δ′′1)]

| o′[p′{|v1/s1, . . . vn/sn, o
′
/this, (xδ

′
x)/return|}]

| ((gδ1δ′′1) | (g′1δ′1δ′′1))




(Φ1δ1 ∪ Φ′
1δ

′
1)δ

′′
1

∪{xδ′x:T} ∪ Φ
(∆1δ1 ∪∆′

1δ
′
1)δ

′′
1

which, using EQV-LFT and EQV-RHT, gives the result in this case. �

314

Appendix C

Technical Results for the Type

System

This appendix provides the proofs of results relating to Oompa’s type theory.

It is structured into four sections. Section C.1 deals with Oompa’s type trees,

Section C.2 considers subtyping, Section C.3 establishes the soundness of

the type safety system with respect to the agent-based dynamic system and

Section C.4 does the same for the configuration-based system.

C.1 Type Tress

In this section, we give the proofs of Lemma 5.2.2 and Theorem 5.2.3.
5.2.2

p136Lemma C.1.1 EVΓ (T) is finite and can be calculated with finite applications

of the look-up function eΓ(·) for any finite Γ, T and V .

Proof: Consider the evaluation as a tree, where an application of the

expansion function labels the nodes. Consider such a node EV
′

Γ (T
′). Let

SubTerms[T] give the set of proper subterms of a type T 1. We use the tuple

1Not the same as the function Sub[·] defined on page 323

315

APPENDIX C. TECHNICAL RESULTS FOR THE TYPE SYSTEM

(#V ′,#SubTerms[T′]) as a metric, with the following ordering:

(t1, t2) ≤ (t′1, t′2) if t1 ≥ t′1 or t1 = t′1 and t2 ≤ t′2

As we move down through the tree, either the first argument grows or it stays

the same and the second shrinks. The first argument is bounded above by

#V plus the number of occurrences of type variables in Γ, which is certainly

finite. The second is bounded below by 0. �
In order to prove Theorem C.1.3, we define a recursive function which, for

a given n, is like TreeΓ(·) except that it only performs n recursive unfoldings
and definition look-ups. We augment the language L with the symbol “⊥0”,

and label nodes with this symbol at the point where an nth unfolding or

look-up would previously occur. The different cases are as follows:

Tree0Γ(rec t.T)(Λ) = ⊥0

Treen+1
Γ (rec t.T)(π) = TreenΓ(T{|rec t.T/t|})

Tree0Γ(t)(Λ) = ⊥0

Treen+1
Γ (t)(π) = TreenΓ(eΓ(t))(π)

The functions TreenΓ(·) can be viewed as finite approximations to the function
TreeΓ(·)2.

Lemma C.1.2 TreeΓ(T)(π) = Tree
n
Γ(T)(π) for all n > |π|

Proof: We use induction on the length of π. The base cases are when

π = Λ. Consider the structure of T . The base cases for the guarded types and

the case for signature types are all the same, since TreeΓ(T) and Tree
n
Γ(T)

are the same on these types.

2Using finite approximations to prove a result such as Lemma C.1.2 might be considered

old fashioned. An alternative approach might use a co-inductive technique instead.

316

APPENDIX C. TECHNICAL RESULTS FOR THE TYPE SYSTEM

Say T = t, some variable. Then, since n > 0 we have:

TreeΓ(t)(Λ) = TreeΓ(eΓ(t))(Λ)

TreenΓ(t)(Λ) = Treen−1
Γ (eΓ(t))(Λ)

In this case both will equal to Intfm, as that will be the outermost type

constructor of eΓ(t).

Say T = rec t.T ′. Then T ′ is guarded and since n > 0 we have:

TreeΓ(rec t.T
′)(Λ) = TreeΓ(T

′{|rec t.T ′
/t|})(Λ)

TreenΓ(rec t.T
′)(Λ) = Treen−1

Γ (T ′{|rec t.T ′
/t|})(Λ)

These will be the same, as the two functions are the same on guarded types,

giving us the result in this case.

The inductive cases occur when π = iπ′. Again we consider the structure

of T .

Say T = t, some variable. Then if eΓ(t) has signature types SgT1, . . .SgTk

where k ≥ i we have

TreeΓ(t)(π) = TreeΓ(eΓ(t))(iπ
′) = TreeΓ(SgTi)(π

′)

TreenΓ(t)(π) = Tree
n−1
Γ (eΓ(t))(iπ

′) = Treen−1
Γ (SgTi)(π

′)

In this case they are equal by the induction hypothesis. In the case where

eΓ(t) has less than i signatures both are undefined.

Say T = rec t.T ′ and T ′ has immediate subterms T1, . . . Tk where k ≥ i.
Then T ′ is guarded and

TreeΓ(rec t.T
′)(π) = TreeΓ(T

′{|rec t.T ′
/t|})(iπ′)

= TreeΓ(Ti{|rec t.T
′
/t|})(π′)

TreenΓ(rec t.T
′)(π) = Treen−1

Γ (T ′{|rec t.T ′
/t|})(iπ′)

= Treen−1
Γ (Ti{|rec t.T

′
/t|})(π′)

317

APPENDIX C. TECHNICAL RESULTS FOR THE TYPE SYSTEM

and these are equal by the induction hypothesis. In the case where T ′ has

less than i immediate subterms both are undefined.

The guarded cases and the case for signature types are all the same. Say

T is some guarded type with immediate subterms T1, . . . Tk where k ≥ i.

Then

TreeΓ(T)(iπ
′) = TreeΓ(Ti)(π′)

TreenΓ(T)(iπ
′) = Treen−1

Γ (Ti)(π
′)

These are the same by the induction hypothesis. In the case where T has

less than i immediate subterms both are undefined. �
5.2.3

p136Theorem C.1.3 Γ |= S = E∅
Γ(S)

Proof: We have to prove

TreeΓ(S) = TreeΓ(E
∅
Γ(S))

We prove this by showing that for any n and set of variables V ,

TreenΓ(S) = Tree
n
Γ(E

V
Γ (S))

by induction on n. The theorem statement follows from Lemma C.1.2, since

for any argument sequence π we can pick n = |π|+ 1 and V = ∅.
The base case is where n = 0. We use another induction on the con-

struction of S. If S = Long or S = Char, then EVΓ (S) = S. The trees are

obviously the same in these cases.

If S = t, there are two subcases. If t ∈ V then EVΓ (S) = S and again

the trees are the same. If t /∈ V then EVΓ (t) = rec t.E
V ∪{t}
Γ (eΓ(t)). But

then, given π, we have that Tree0Γ(t)(π) and Tree
0
Γ(rec t.E

V ∪{t}
Γ (eΓ(t)))(π)

are either both ⊥0 if π = Λ or both undefined. Thus the trees are the same.

318

APPENDIX C. TECHNICAL RESULTS FOR THE TYPE SYSTEM

If S = rec t.T , then EVΓ (S) = rec t.E
V ∪{t}
Γ (T) and, given π, we have that

Tree0Γ(rec t.T)(π) and Tree
0
Γ(rec t.E

V ∪{t}
Γ (T))(π) are either both ⊥0 if π = Λ

or both undefined. So the trees are the same.

If S = Chan〈T1, . . . Tn〉, then EVΓ (S) = Chan〈EVΓ (T1) . . .E
V
Γ (Tn)〉. The

trees are the same since:

Tree0Γ(S)(Λ) = Chann

Tree0Γ(E
V
Γ (S))(Λ) = Chann

Tree0Γ(S)(iπ) = Tree0Γ(Ti)(π)

Tree0Γ(E
V
Γ (S))(iπ) = Tree0Γ(E

V
Γ (Ti))(π)

The last two are equal by the local induction hypothesis. The other inductive

cases for S are like this channel case.

We now consider the cases when n > 0. Again, we use another induction

on the construction of S. If S = Long or S = Char then S = EVΓ (S), so the

trees must be the same. Note that we won’t be able to use the local induction

hypothesis in the cases for S = t and S = rec t.T . The main induction

hypothesis will be sufficient. If S = t and t ∈ V then since EVΓ (t) = t, the

trees are the same.

If S = t where t /∈ V , then

EVΓ (S) = E
V
Γ (t) = rec t.E

V ∪{t}
Γ (eΓ(t))

and

TreenΓ(rec t.E
V ∪{t}
Γ (eΓ(t))) = Tree

n−1
Γ (E

V ∪{t}
Γ (eΓ(t)){|rec t.E

V ∪{t}
Γ (eΓ(t))/t|})

Also

TreenΓ(t) = Treen−1
Γ (eΓ(t))

= Treen−1
Γ (E

V ∪{t}
Γ (eΓ(t)))

by the induction hypothesis.

319

APPENDIX C. TECHNICAL RESULTS FOR THE TYPE SYSTEM

Therefore, it will be sufficient to show that the following two trees are

equal:

Treen−1
Γ (E

V ∪{t}
Γ (eΓ(t)){|rec t.E

V ∪{t}
Γ (eΓ(t))/t|})

Treen−1
Γ (E

V ∪{t}
Γ (eΓ(t)))

It is easy to see that the only place they could differ is at the subtrees where

E
V ∪{t}
Γ (eΓ(t)) has a free occurrence of t. For one such occurrence the two

subtrees will have the form:

Treen−1−m
Γ (rec t.E

V ∪{t}
Γ (eΓ(t)))

Treen−1−m
Γ (t)

for some m ≥ 0 (m will be the number of rec operators the interpreta-

tion function will have passed through). We rely on the convention that

bound variables are renamed to guarantee that none of the free variables of

rec t.E
V ∪{t}
Γ (eΓ(t)) will be captured when it is substituted into E

V ∪{t}
Γ (eΓ(t)).

Thus, no substitution generated when the Tree function encounters the rec

operator will apply to it. This justifies the form of the first subtree above.

By the induction hypothesis applied to the second subtree:

Treen−1−m
Γ (t) = Treen−1−m

Γ (E
V ∪{t}
Γ (t))

= Treen−1−m
Γ (rec t.E

V ∪{t}
Γ (eΓ(t)))

Thus, these subtrees are the same. Thus the main trees must be equal.

Say S = rec t.T and use the variable convention to make sure that t is

chosen different to any other name in the system. Then

TreenΓ(E
V
Γ (S))

= 〈by the definition of EVΓ (·)〉
TreenΓ(rec t.E

V ∪{t}
Γ (T))

= 〈by the definition of TreenΓ(·)〉
Treen−1

Γ (E
V ∪{t}
Γ (T){|rec t.E

V ∪{t}
Γ (T)/t|})

320

APPENDIX C. TECHNICAL RESULTS FOR THE TYPE SYSTEM

Also,

TreenΓ(rec t.T)

= 〈by the definition of TreenΓ(·)〉
Treen−1

Γ (T{|rec t.T/t|})
= 〈main induction hypothesis〉
Treen−1

Γ (E
V ∪{t}
Γ (T{|rec t.T/t|}))

Therefore, it will be sufficient to show that the following two trees are

equal:

Treen−1
Γ (E

V ∪{t}
Γ (T){|rec t.E

V ∪{t}
Γ (T)/t|})

Treen−1
Γ (E

V ∪{t}
Γ (T{|rec t.T/t|}))

These trees will have the same “upper structure” and they could only differ

at the subtrees where T has free variables. There are two cases.

Consider an occurrence of t in T . The subtrees at this point will have the

form

Treen−1−m
Γ (rec t.E

V ∪{t}
Γ (T))

Treen−1−m
Γ (E

V ∪U∪{t}
Γ (rec t.T))

for some m ≥ 0 and set of variables U . Again, we rely on the convention that
bound variables are renamed to guarantee that none of the free variables of

rec t.T are captured when it is substituted into T . Thus, no substitution

generated when the Tree function encounters the rec operator will apply to

it.

The first subtree is equal to

Treen−1−m
Γ (EVΓ (rec t.T))

and by the induction hypothesis twice this is equal to

Treen−1−m
Γ (rec t.T) = Treen−1−m

Γ (E
V ∪U∪{t}
Γ (rec t.T))

321

APPENDIX C. TECHNICAL RESULTS FOR THE TYPE SYSTEM

Thus in this case, the subtrees are the same.

Next, consider an occurrence of s in T , where s �= t. The subtrees at this
point will be

Treen−1−m
Γ (E

V ∪U∪{t}
Γ (s)ρ1 . . . ρk)

Treen−1−m
Γ (E

V ∪U∪{t}
Γ (s){|rec t.E

V ∪{t}
Γ (T)/t|}ρ1 . . . ρk)

where ρ1 . . . ρk are substitutions generated when the Tree function encoun-

ters the rec operator. As t was chosen different from any other name, the

extra substitution in the second subtree can be dropped — it won’t apply to

anything. Thus, these subtrees are the same, and hence the main trees are

the same.

Say S = Intf{SgT1, . . .SgTm}. Then

EVΓ (S) = Intf{EVΓ (SgT1), . . .E
V
Γ (SgTm)}

The trees are the same, since:

TreenΓ(S)(Λ) = Intfm

TreenΓ(E
V
Γ (S))(Λ) = Intfm

TreenΓ(S)(iπ) = TreenΓ(SgTi)(π)

TreenΓ(E
V
Γ (S))(iπ) = TreenΓ(E

V
Γ (SgTi))(π)

The last two are equal by the local induction hypothesis. The other inductive

cases for S are all like this one, so we’re done. �

C.2 The Subtyping System

This section establishes the termination, completeness and soundness of the

subtyping system, results 5.3.1, 5.3.2 and 5.3.3 respectively.

322

APPENDIX C. TECHNICAL RESULTS FOR THE TYPE SYSTEM

C.2.1 Termination

We need the following technical construction to facilitate some of our proofs.

We define a function Sub[·], which gives the set of subterms of a closed type
including recursive unfoldings:

Sub[Chan〈T1, . . . Tn〉] = {Chan〈T1, . . . Tn〉}
∪ Sub[T1] ∪ . . .Sub[Tn]

Sub[InCh〈T1, . . . Tn〉] = {InCh〈T1, . . . Tn〉}
∪ Sub[T1] ∪ . . .Sub[Tn]

Sub[OuCh〈T1, . . . Tn〉] = {OuCh〈T1, . . . Tn〉}
∪ Sub[T1] ∪ . . .Sub[Tn]

Sub[Intf{SgT1, . . .SgTn}] = {Intf{SgT1, . . .SgTn}}
∪ Sub[SgT1] ∪ . . .Sub[SgTn]

Sub[m?(S1, . . . Sn)!〈T1, . . . Tn′〉] = {m?(S1, . . . Sn)!〈T1, . . . Tn′〉}
∪ Sub[S1] ∪ . . .Sub[Sn]
∪ Sub[T1] ∪ . . .Sub[Tn′]

Sub[rec t.T] = {rec t.T}
∪ {S{|rec t.T/t|} | S ∈ Sub[T]}

We also use Sub[S, T] to represent Sub[S] ∪ Sub[T].

Lemma C.2.1 For a finite closed type T , Sub[T] is finite

Proof: Sub[T] can have no more elements than the distinct subterms of

T . �
5.3.1

p140Theorem C.2.2 (Termination) The subtyping algorithm is terminating.

Proof: Consider the algorithm applied to �a S ≤ T where S and T are

closed. Consider a node in the proof tree Σ �a S ′ ≤ T ′. We claim that this

node satisfies the following three properties:

323

APPENDIX C. TECHNICAL RESULTS FOR THE TYPE SYSTEM

1. S ′ and T ′ are in Sub[S, T].

2. For every assumption U1 ≤ U2 ∈ Σ, both U1 and U2 are in Sub[S, T].

3. No assumption occurs in Σ more than once.

These properties clearly hold for the root node. We show that if the current

goal node satisfies them, then so do the premises.

In the cases of the SUB-RFL and SUB-ASS rules, there are no premises.

The cases for the channel subtyping rules and the SUB-SIG and SUB-INT

rules are all similar, so we describe only one. Consider the SUB-CHIN rule.

S = Chan〈S1, . . . Sn〉 ∈ Sub[S, T] so by the definition of Sub[·], S1, . . . Sn ∈
Sub[S, T] and T = InCh〈T1, . . . Tn〉 ∈ Sub[S, T], so T1, . . . Tn ∈ Sub[S, T].

This means that the first property holds for all the premises. This rule adds

no new assumptions, so the second and third property hold.

Consider the SUB-RECRHT rule. S ′ was in Sub[S, T] as it is one of

the types in the antecedent. T ′{|rec t.T ′
/t|} is in Sub[S, T], since rec t.T ′

is. Thus the first property holds. The second property comes from the

fact that the added assumption is exactly the antecedent, so both of its

elements are in Sub[S, T]. The third property comes from the fact that if we

added an assumption which was already there, it would have contradicted

the algorithm order, which stipulates that the SUB-ASS rule be attempted

before the SUB-RECRHT rule. The SUB-RECLFT rule can be dealt with

similarly.

We now associate a measure with each node. Let

M(Σ �a S ≤ T) = (n,m)

where n is the number of assumptions in Σ and m is the maximum nesting

of brackets in either S or T . We say that (n,m) > (n′, m′) if n < n′ or else

n = n′ and m > m′.

324

APPENDIX C. TECHNICAL RESULTS FOR THE TYPE SYSTEM

It is easy to see that at any application of the rules, the measure of

any of the premises is less than that of the antecedent. The SUB-RFL and

SUB-ASS rules do not generate any new premises, the SUB-RECLFT and

SUB-RECRHT rules add an assumption and the other rules all reduce the

maximum nesting of brackets in their types. The measure of a goal cannot

decrease for ever, as the number of assumptions is bounded by (#Sub[S, T])2

and the second component must stay greater than zero. Thus the algorithm

must terminate. �

C.2.2 Completeness

In this section, we need another technical construction.

Call a subtype algorithm statement, Σ �a S ≤ T , sound if

• Tree(S) ≤ Tree(T)

• Tree(U1) ≤ Tree(U2) for each U1 ≤ U2 ∈ Σ.

Lemma C.2.3 If a statement, Σ �a S ≤ T , is sound, then it matches the

antecedent of one of the rules of the subtyping algorithm and the premises of

the rule are all sound.

Proof: Let Σ �a S ≤ T be a sound statement. If S = T then the SUB-RFL
rule applies and there are no premises. If S ≤ T ∈ Σ then the SUB-ASS rule
applies and there are no premises.

Suppose S ≤ T /∈ Σ. Say neither S nor T are of recursive form. Since

the statement is sound, Tree(S) ≤ Tree(T), so there is some tree simulation
R such that (Tree(S),Tree(T)) ∈ R. For this to be the case, R must satisfy

the conditions of a tree simulation and we consider those conditions as they

apply to Tree(T)(Λ).

325

APPENDIX C. TECHNICAL RESULTS FOR THE TYPE SYSTEM

If T = Long, then Tree(T)(Λ) = Long0 and hence Tree(S)(Λ) = Long0,

so S = Long. Therefore, S = T and we have dealt with this case above.

We pick T = InCh〈T1, . . . Tn〉 as an example of the other non-recursive
cases. They can all be tackled in a similar way. If T = InCh〈T1, . . . Tn〉, then
Tree(T)(Λ) = InChn. Hence, by the definition of Oompa tree simulation,

either Tree(S)(Λ) = InChn or Tree(S)(Λ) = Chann. It follows that S is

either InCh〈S1, . . . Sn〉 or Chan〈S1, . . . Sn〉, and that Tree(Si) = Tree(S)(i) ≤
Tree(T)(i) = Tree(Ti). Either the SUB-ININ or SUB-CHIN rules will match

Γ �a S ≤ T and the premises will all have the form Σ �a Si ≤ Ti. Σ is the

same as for the antecedent, so the premises are sound as required.

Suppose S is of recursive form, say S = rec s.S ′. Then SUB-RECLFT ap-

plies. This rule has one premise of the form Σ ∪ {S ≤ T} �a S ′{|rec s.S ′
/s|} ≤

T . The new assumption, S ≤ T , has Tree(S) ≤ Tree(T) since the original

judgement was sound. Also, Tree(rec s.S ′) = Tree(S ′{|rec s.S ′
/s|}) and the

right hand side of the judgements, T , has not changed, so the trees of the

premise types are still the same. Thus the premise is sound. The case when

T is of recursive form is similar. �

Lemma C.2.4 Say S and T are closed types and Tree(S) ≤ Tree(T). Then
�a S ≤ T .

Proof: If Tree(T) ≤ Tree(S) then �a S ≤ T is sound. The algorithm can-

not return false on a sound statement since, by Lemma C.2.3, any premises of

any sound statement are also sound and therefore matched by a rule. Since

the algorithm is terminating by Theorem C.2.2, it must return true. �
5.3.2

p140Theorem C.2.5 (Completeness) If Γ |= S ≤ T then Γ � S ≤ T .

Proof: Γ |= S ≤ T means TreeΓ(S) ≤ TreeΓ(T). But by Theorem C.1.3,

Tree(E∅
Γ(S)) = TreeΓ(S) ≤ TreeΓ(T) = Tree(E∅

Γ(T))

326

APPENDIX C. TECHNICAL RESULTS FOR THE TYPE SYSTEM

Both of E∅
Γ(S) and E

∅
Γ(T) are closed, so by the Lemma C.2.4, the algorithm

will affirm �a E∅
Γ(S) ≤ E∅

Γ(T) which is what Γ � S ≤ T means. �

C.2.3 Soundness

The following lemma describes a property usually called weakening .

Lemma C.2.6 Σ �a S ≤ T implies Σ ∪ Σ′ �a S ≤ T .

Proof: This is obvious after an inspection of the rules. �

Lemma C.2.7

1. Suppose �a rec s.S ≤ T and (rec s.S ≤ T) /∈ Σ . Then

Σ ∪ {rec s.S ≤ T} �a U1 ≤ U2 implies Σ �a U1 ≤ U2

2. Suppose �a S ≤ rec t.T and (S ≤ rec t.T) /∈ Σ . Then

Σ ∪ {S ≤ rec t.T} �a U1 ≤ U2 implies Σ �a U1 ≤ U2

Proof: We only prove this for the first case. Use induction on the length

of a derivation of Σ ∪ {rec s.S ≤ T} �a U1 ≤ U2.

Say the last rule used was the SUB-ASS rule. There are two cases. If

U1 ≤ U2 ∈ Σ, then the rule still applies with the smaller premise Σ. Say

U1 = rec s.S and U2 = T . Now, we know �a rec s.S ≤ T , so using the

Lemma C.2.6 we have Σ �a rec s.S ≤ T .
In the cases where the last rule is not the SUB-ASS rule, the premises

are all of the form Σ′ ∪ {rec s.S ≤ T} �a U ′
1 ≤ U ′

2. Any assumption added in

Σ′ not in Σ will definitely not be rec s.S ≤ T , therefore rec s.S ≤ T /∈ Σ′.

Thus the induction hypothesis applies to the premise, giving us Σ′ �a U ′
1 ≤ U ′

2.

The last rule will still apply, giving us Σ �a U1 ≤ U2 as required. �

327

APPENDIX C. TECHNICAL RESULTS FOR THE TYPE SYSTEM

Lemma C.2.8

1. If �a rec s.S ≤ T then �a S{|rec s.S/s|} ≤ T

2. If �a S ≤ rec t.T and S is not of recursive form

then �a S ≤ T{|rec t.T/t|}

3. If �a rec s.S ≤ rec t.T then �a S{|rec s.S/s|} ≤ T{|rec t.T/T |}

Proof:

1. Consider the last rule used in �a rec s.S ≤ T . It is either SUB-RFL
or SUB-RECLFT and we consider the SUB-RFL case first, so T =

rec s.S. Also by SUB-RFL, we have

{S{|rec s.S/s|} ≤ rec s.T} �a S{|rec s.S/s|} ≤ S{|rec s.S/s|}

Using the SUB-RECRHT rule, this gives us

�a S{|rec s.S/s|} ≤ rec s.S

as required in this case.

Next we consider the case where the last rule used was SUB-RECLFT.

So, the tree had the form:

{rec s.S ≤ T} �a S{|rec s.S/s|} ≤ T
�a rec s.S ≤ T

We can use Lemma C.2.7 to remove the assumption from the an-

tecedent, giving us �a S{|rec s.S/s|} ≤ T as required in this case.

2. Similarly to part 1, the two cases which can apply are SUB-RFL and

the SUB-RECRHT and they can be dealt with in the same way. The

extra condition on this case means we can avoid considering the case

where the last rule was SUB-RECLFT.

328

APPENDIX C. TECHNICAL RESULTS FOR THE TYPE SYSTEM

3. We use part 1 and then part 2 to give the result.

�

Lemma C.2.9 If S and T are closed and guarded types such that �a S ≤ T ,
then Tree(S) ≤ Tree(T).

Proof: Let

R = {(Tree(S),Tree(T))| �a S ≤ T where S and T are guarded}

We claim that R is a tree simulation.

Assume (Tree(S),Tree(T)) ∈ R. We go through the conditions of what
it means to be a tree simulation, depending on the construction of T . Say

that T = Chan〈T1, . . . Tn〉. Then Tree(T)(Λ) = Chann. The only rules

that could establish �a S ≤ T are either SUB-RFL or SUB-CHCH. The

first case is obvious and the second means that S = Chan〈S1, . . . Sn〉. Thus
Tree(S)(Λ) = Chann.

For R to work, we need both

(Tree(S)(i),Tree(T)(i)) ∈ R
(Tree(T)(i),Tree(S)(i)) ∈ R

Now Tree(S)(i) = Tree(Si) and Tree(T)(i) = Tree(Ti). The premises of the

rule give us �a Si ≤ Ti and �a Ti ≤ Si. By Lemma C.2.8 we can unfold Si
and Ti into guarded terms S

′
i and T

′
i such that �a S ′

i ≤ T ′
i . �a S ′

i ≤ T ′
i and

�a T ′
i ≤ S ′

i, so (Tree(S
′
i),Tree(T

′
i)) ∈ R and (Tree(T ′

i),Tree(S
′
i)) ∈ R. By

the definition of the Tree function, unfolding a type does not affect it’s tree,

so we have (Tree(S)(i),Tree(T)(i)) ∈ R and (Tree(T)(i),Tree(S)(i)) ∈ R.
This gives us this case.

Since S and T are guarded the other cases are all very similar to the one

given. �

329

APPENDIX C. TECHNICAL RESULTS FOR THE TYPE SYSTEM

5.3.3

p140Theorem C.2.10 (Soundness) If Γ � S ≤ T then Γ |= S ≤ T .

Proof: Γ � S ≤ T means �a E∅
Γ(S) ≤ E∅

Γ(T). E
∅
Γ(S) and E

∅
Γ(T) are closed

and by Lemma C.2.8 we can unfold them to give guarded types S ′ and T ′

such that �a S ′ ≤ T ′. By Lemma C.2.9, this gives us Tree(S ′) ≤ Tree(T ′).

Now, by the definition of the Tree function, unfolding does not affect trees,

so Theorem C.1.3 gives us TreeΓ(S) ≤ TreeΓ(T), which is what Γ |= S ≤ T
means. �

We will need the following lemma in the proof of Theorem C.3.6.

Lemma C.2.11 Say Γ � S ≤ T and Γ � T ≤ U . Then Γ � S ≤ U .

Proof: By soundness, we know that Γ |= S ≤ T and Γ |= T ≤ U .

By inspection of the rules of tree simulation, it is clear that tree simulation

is transitive. This means that Γ |= S ≤ U . By completeness, we have

Γ � S ≤ U as required. �

C.3 Soundness of the Type Safety System

In this section, we provide the proofs of results 5.4.1–5.4.4.

We introduce an abbreviation to help with the readability of the proofs

of the following theorems. Every object o given a type in the type dictionary

must be given a class type. Say o:C ∈ Φ and say C’s definition in Γ is

class C {a1: AtT1 . . . an: AtTn mdef1 . . .mdefn′}

Then we let Atto be the set of attribute typings of o’s class, i.e.

Atto = {a1: AtT1, . . . an: AtTn}

330

APPENDIX C. TECHNICAL RESULTS FOR THE TYPE SYSTEM

5.4.1

p145Lemma C.3.1 If Γ ��d g{Φ∆ then Γ � g{Φ∆ is not type violating.

Proof: Say o[p] is an agent in g. We know Γ ��d g{Φ∆, so Γ,Φ � g and
therefore Γ,Φ ��d o[p]. We consider the form of o[p]. Say that o[p] is invoking

a method m of an object o′, i.e. p = o′.m!〈v1, . . . vn〉?(r1, . . . rn′) p′. Thus we
have

Γ,Φ ∪Atto ��d o′.m!〈v1, . . . vn〉?(r1, . . . rn′) p′

By DTS-INV, this means that we must have

Γ,Φ ∪ Atto � o′: Intf{m?(T1, . . . Tn)!〈T ′
1, . . . T

′
n′〉}

and Γ,Φ ∪ Atto � vi:Ti for each 0 ≤ i ≤ n.
Now from the first statement, we can conclude that o′’s class in Φ must

have a method m with signature type m?(S1, . . . Sn)!〈S ′
1 . . . S

′
n′〉 where Γ �

Ti ≤ Si for each i. Thus the agent cannot be performing a feature or arity
mismatch. Using the TAS-SUB rule of the typing system, we have

Γ � Ti ≤ Si Γ,Φ ∪ Atto � vi:Ti
Γ,Φ ∪Atto � vi:Si

Hence the agent isn’t performing a value mismatch. This means that the

agent isn’t type violating.

The cases for the send and receive are similar. Next, we consider attribute

update. Say o[p] is updating an attribute a, i.e. p = a!v p′. Thus we have

Γ,Φ ∪ Atto ��d a!v p′

By DTS-UPD, we must have Γ,Φ∪Atto � a: Attr{T} and Γ,Φ∪Atto � v:T .
Thus, we know that o’s class must have an attribute a of type Attr{T}. So
the agent isn’t performing either a feature mismatch or a value mismatch.

331

APPENDIX C. TECHNICAL RESULTS FOR THE TYPE SYSTEM

The case for attribute access is similar. It follows that no agent in the

system is type violating, so Γ � g{Φ∆ isn’t type violating. �

Lemma C.3.2 If Γ,Φ � p then Γ,Φ ��d p.

Proof: A proof tree in the static type safety system is also a proof tree in

the dynamic type safety system. In each of the four rules which have changed,

we can use an identity substitution to justify instances of their standard form

in the dynamic type safety system. �
5.4.2

p145Lemma C.3.3 If Φ0 � Γ then Γ ��d gΓ{Φ0

∅ .

Proof: We know that the state is fine, since it is empty. We have to

consider the initial agents.

Let {C1, . . . Cn} be those classes in the definition set Γ which have a

method with signature main?()!〈〉 and let the bodies of those methods be
p1, . . . pn. Then, gΓ = dummy1 [p1]| . . . dummyn [pn]. By the requirements

for the initial system, we know that Ci has no attributes and pi doesn’t

use return. Since Φ0 � Γ, we know Γ,Φ0 � Ci for all i. Thus, Γ,Φ0 �
main def where main def is the method definition of the main method of

Ci. Hence Γ,Φ0 � pi and by Lemma C.3.2 we have Γ,Φ0 ��d pi. This gives
us Γ,Φ0 ��d dummyi [pi] for all i and, hence, Γ,Φ0 ��d gΓ. Finally, we can say
Γ ��d gΓ{Φ0

∅ as required. �

C.3.1 Preservation of Dynamic Type Safety

Before tackling the main results of this section, we need to prove certain

properties of the dynamic type safety system.

332

APPENDIX C. TECHNICAL RESULTS FOR THE TYPE SYSTEM

Lemma C.3.4

1. Weaken: If Γ,Φ ��d p and Φ � Φ′ then Γ,Φ ∪ Φ′ ��d p.

2. Strengthen: If Γ,Φ ∪ Φ′ ��d p and none of the names in Φ′ occur in p

then Γ,Φ ��d p.

3. Switch:

If Γ,Φ ∪ {v:T} ��d p and Γ,Φ � v′:T then Γ,Φ ∪ {v:T} ��d p{|v
′
/v|}.

4. Rename: If Γ,Φ∪{v:T} ��d p then Γ,Φ∪ {v′:T} ��d p{|v
′
/v|} for new v′.

5. Weaken 2: If Γ,Φ∪{v:T} ��d p and Γ � T ′ ≤ T then Γ,Φ∪{v:T ′} ��d p.

Proof: Cases 1–3 can be proved by a standard inductive argument on the

structure of proof trees.

Case 4 is proved in terms of the first three. Say Γ,Φ ∪ {v:T} ��d p then
Γ,Φ ∪ {v:T} ∪ {v′:T} ��d p by Weaken. Γ,Φ ∪ {v:T} ∪ {v′:T} � v′:T

by TAS-ASS, so Γ,Φ ∪ {v:T} ∪ {v′:T} ��d p{|v
′
/v|} by Switch and Γ,Φ ∪

{v′:T} ��d p{|v
′
/v|} by Strengthen.

Case 5 is proved in terms of the first four. Say Γ,Φ ∪ {v:T} ��d p and
Γ � T ′ ≤ T . Then Γ,Φ ∪ {v:T} ∪ {v′:T ′} ��d p for some new v′ by Weaken.
By TAS-ASS, we have Γ,Φ ∪ {v:T} ∪ {v′:T ′} � v′:T ′ and by TAS-SUB,

we have Γ,Φ ∪ {v:T} ∪ {v′:T ′} � v′:T . We use Switch to give us Γ,Φ ∪
{v:T} ∪ {v′:T ′} ��d p{|v

′
/v|}. Next, Strengthen to Γ,Φ ∪ {v′:T ′} ��d p{|v

′
/v|}

and Rename v′ back to v to give Γ,Φ ∪ {v:T ′} ��d p. �

Lemma C.3.5 If we have Γ,Φ ��d ∆ and Φ � Φ′, then Γ,Φ ∪ Φ′ ��d ∆.
5.4.3

p145Theorem C.3.6 If Φ0 � Γ and Γ ��d g{Φ∆ and Γ � g{Φ∆−→ g′{Φ′
∆′ then Γ �

g′{Φ′
∆′.

Proof: We use induction on the proof tree of Γ � g{Φ∆−→ g′{Φ′
∆′. There are

ten cases to consider.

333

APPENDIX C. TECHNICAL RESULTS FOR THE TYPE SYSTEM

Left Equivalence

Say the last step of the proof tree was an instance of EQV-LFT:

g′′ ≡ g Γ � g′′{Φ∆−→ g′{Φ′
∆′

Γ � g{Φ∆−→ g′{Φ′
∆′

The equivalence of g and g′′ means that they differ only in the reordering and

regrouping of their constituent agents. This reordering and regrouping will

not affect type safety, so we have Γ ��d g′′{Φ∆. Thus, the induction hypothesis
applies to the right-hand subtree, giving us Γ ��d g′{Φ′

∆′, as required.

Right Equivalence

Say the last step of the proof tree was an instance of EQV-RHT:

g′′ ≡ g′ Γ � g{Φ∆−→ g′′{Φ′
∆′

Γ � g{Φ∆−→ g′{Φ′
∆′

The induction hypothesis will apply to the right-hand subtree, giving us

Γ ��d g′′{Φ′
∆′. However, by the equivalence of g′′ and g′, we have Γ ��d g′{Φ′

∆ .

Parallelism

Say the last step of the proof tree was an instance of PAR:

Γ � g1{Φ∆−→ g′1{Φ′
∆′

Γ � (g1|g2){Φ∆−→ (g′1|g2){Φ′
∆′

where g = (g1|g2) and g′ = (g′1|g2). By the premise of the theorem, we have
Γ ��d (g1|g2){Φ∆ giving us Γ,Φ ��d (g1|g2) and Γ,Φ ��d ∆. So we have Γ,Φ ��d g1
and Γ,Φ ��d g2. Thus the induction hypothesis applies to the subtree, giving
us Γ ��d g′1{Φ′

∆′. Therefore Γ,Φ′ ��d g′1 and Γ,Φ′ ��d ∆′. The type dictionary, Φ, is

only enlarged by the operational semantics, so we can use Lemma C.3.4, case

334

APPENDIX C. TECHNICAL RESULTS FOR THE TYPE SYSTEM

1, to weaken Γ,Φ ��d g2 to give us Γ,Φ′ ��d g2. Hence Γ,Φ′ ��d (g′1|g2). Thus we
have Γ ��d g′{Φ′

∆′ as required.

End

Say the proof tree is an instance of END. This case is trivial as nil is a type

safe agent and the state remains unchanged.

Fork

Say the proof tree is an instance of FRK:

Γ � o[fork{p1} p2]{Φ∆−→ o[p1]|o[p2]{Φ∆

By the premise of the theorem Γ ��d o[fork{p1}p2]{Φ∆ so Γ,Φ ��d o[fork{p1}p2]
and Γ,Φ ��d ∆. From the former we have Γ,Φ ∪ Atto ��d fork{p1}p2. By the
DTS-FRKrule, we know that Γ,Φ∪Atto ��d p1 and Γ,Φ∪Atto ��d p2. Therefore
Γ,Φ ��d o[p1] and Γ,Φ ��d o[p2] and thus Γ,Φ ��d (o[p1]|o[p2]) The state remains
unchanged, so Γ ��d (o[p1]|o[p2]){Φ∆, as required.

New Channel

Say the proof tree is an instance of NEW:

Γ � o[new c: ChT p]{Φ∆−→ o[p{|c′/c|}]{Φ∪{c′:ChT}
∆

where c′ is the new channel name “chosen” by the axiom. By the premise

of the theorem, we have Γ ��d o[new c: ChT p]{Φ∆, so Γ,Φ ��d o[new c: ChT p],
and Γ,Φ ��d ∆. Thus we have Γ,Φ ∪ Atto ��d new c: ChT p. By the DTS-

NEW rule, we have Γ,Φ ∪ Atto ∪ {c′′: ChT} ��d p{|c
′′
/c|}. By Lemma C.3.4,

case 4, we can use a different new name, so we pick c′, giving us Γ,Φ ∪
Atto ∪ {c′: ChT} ��d p{|c

′
/c|}. Then Γ,Φ ∪ {c′: ChT} ��d o[p{|c

′
/c|}]. We can

335

APPENDIX C. TECHNICAL RESULTS FOR THE TYPE SYSTEM

weaken Γ,Φ ��d ∆ to give Γ,Φ ∪ {c′: ChT} ��d ∆ by Lemma C.3.5. Hence

Γ ��d o[p{|c
′
/c|}]{Φ∪{c′:ChT}

∆ as required.

Communication

Say the proof tree is an instance of COM:

Γ �
o1[c!〈v1, . . . vn〉 p1] |
o2[c?(r1:T1, . . . rn:Tn) p2]



Φ

∆

−→ o1[p1] |
o2[p2{|v1/r1, . . . vn/rn|}]



Φ

∆

By the premise of the theorem, we have

Γ ��d o1[c!〈v1, . . . vn〉 p1]|o2[c?(r1:T1, . . . rn:Tn) p2]{Φ∆

so we must have both

Γ,Φ ∪Atto1 ��d c!〈v1, . . . vn〉 p1
Γ,Φ ∪ Atto2 ��d c?(r1:T1, . . . rn:Tn) p2

The first of these, by the DTS-SND rule, gives us

Γ,Φ ∪Atto1 � c: OuCh〈S1 . . . Sn〉

and Γ,Φ ∪ Atto1 � vi:Si for 1 ≤ i ≤ n, and the second gives us

Γ,Φ ∪Atto2 � c: InCh〈T1 . . . Tn〉

The only way we could assign these two types to c in the typing system would

be if Γ � Si ≤ Ti so we also have Γ,Φ ∪Atto1 � vi:Ti using TAS-SUB.
The proof tree of Γ,Φ∪Atto2 ��d c?(r1:T1, . . . rn:Tn) p2 has a right subtree

which concludes Γ,Φ∪Atto2 ∪{r′1:T1 . . . r
′
n:Tn} ��d p2{|r

′
1/r1 . . .

r′n/rn|}. Then,

336

APPENDIX C. TECHNICAL RESULTS FOR THE TYPE SYSTEM

since the vi have suitable typings in Φ, we can apply Lemma C.3.4, case 3 and

case 2 to use the vi instead of the ri to give Γ,Φ∪Atto2 ��d p2{|v1/r1 . . . vn/rn|}.
Thus Γ,Φ ��d o2[p2{|v1/r1 . . . vn/rn|}].

Also, Γ,Φ ∪ Atto1 ��d c!〈v1, . . . vn〉 p1 has a right subtree which concludes
Γ,Φ ∪ Atto1 ��d p1 so Γ,Φ ��d o1[p1]. Using this and the above result, gives

us Γ,Φ ��d o1[p1]|o2[p2{|v1/r1 . . . vn/rn|}]. The state remains unchanged, so we
have Γ ��d o1[p1]|o2[p2{|v1/r1 . . . vn/rn|}]{Φ∆ as required.

Method Invocation

Say the proof tree is an instance of INV:

Γ � o[o1.m!〈v1, . . . vl〉?(s1, . . . sn) p]


Φ

∆

−→ o[x?(s1:T1, . . . sn:Tn) p] |
o1[p1{|v1/r1, . . . vl/rl, o1/this, x/return|}]



Φ′

∆

where Φ′ = Φ∪{x: Chan〈T1, . . . Tn〉} and x is the return channel “chosen” by
the axiom. The main premise gives us Γ ��d o[o1.m!〈v1, . . . vl〉?(s1, . . . sn) p]{Φ∆,
so Γ,Φ ��d o[o1.m!〈v1, . . . vl〉?(s1, . . . sn) p], and hence we have

Γ,Φ ∪ Atto ��d o1.m!〈v1, . . . vl〉?(s1, . . . sn) p

From this, we can conclude the following three facts:

Γ,Φ ∪ Atto � o1: Intf{m?(S1, . . . Sn)!〈S ′
1, . . . S

′
l〉} (A)

Γ,Φ ∪ Atto ∪ {x′: Chan〈S ′
1 . . . S

′
n〉} ��d x′?(s1:S ′

1, . . . sn:S
′
n) p (B)

Γ,Φ ∪Atto � vi:Si (C)

Now o1:C ∈ Φ and the fact that the invocation rule applied means that C

must have a method with a signature of the form

m?(r1:U
′
1 . . . rl:U

′
l)!〈y1:T1 . . . yn:Tn〉

337

APPENDIX C. TECHNICAL RESULTS FOR THE TYPE SYSTEM

By (A), using the subtyping system, we know that

Γ � m?(U ′
1 . . . U

′
l)!〈T1 . . . Tn〉 ≤ m?(S1, . . . Sn)!〈S ′

1, . . . S
′
l〉

which means that Γ � Si ≤ U ′
i and Γ � Ti ≤ S ′

i.

By (B), using DTS-RCV, we have

Γ,Φ ∪Atto ∪ {x′: Chan〈S ′
1 . . . S

′
n〉} ∪ {s′1:S ′

1 . . . s
′
n:S

′
n} ��d p{|s

′
1/s1 . . .

s′n/sn|}

By using Lemma C.3.4, case 2, we can remove x′’s typing from the context,

to give Γ,Φ ∪ Atto ∪ {s′1:S ′
1 . . . s

′
n:S

′
n} ��d p{|s

′
1/s1 . . .

s′n/sn|}. We can now

use Lemma C.3.4, case 5, to strengthen the typings of the s′i, giving us

Γ,Φ ∪ Atto ∪ {s′1:T1 . . . s
′
n:Tn} ��d p{|s

′
1/s1 . . .

s′n/sn|}. Now use Lemma C.3.4,
case 1, to give us

Γ,Φ ∪ Atto ∪ {x: Chan〈T1 . . . Tn〉} ∪ {s′1:T1 . . . s
′
n:Tn} ��d p{|s

′
1/s1 . . .

s′n/sn|}

from which, using DTS-RCV, we can conclude

Γ,Φ ∪Atto ∪ {x: Chan〈T1 . . . Tn〉} ��d x?(s1:T1 . . . sn:Tn) p

Thus Γ,Φ ∪ {x: Chan〈T1 . . . Tn〉} ��d o[x?(s1:T1 . . . sn:Tn) p].

By (C), we know that {vi:Ui} ∈ Φ and that Γ � Ui ≤ Si. Therefore, by
Lemma C.2.11, Γ � Ui ≤ U ′

i . Now we know that o1 has a method with a

signature m?(r1:U
′
1 . . . rl:U

′
l)!〈y1:T1 . . . yn:Tn〉 and if it has code p1, we know

that

Γ,Φ0 ∪ {r1:U ′
1 . . . rl:U

′
l} ∪ {return: OuCh〈T1 . . . Tn〉} ∪ {this:C} � p1

We bring this into the dynamic type safety system and apply Lemma C.3.4

to give

Γ,Φ0 ∪ {v1:U1 . . . vl:Ul} ∪ {x: Chan〈T1 . . . Tn〉} ∪ {o1:C}
��d p1{|v1/r1 . . . vl/rl, x/return, o1/this|}

338

APPENDIX C. TECHNICAL RESULTS FOR THE TYPE SYSTEM

and again

Γ,Φ ∪ Atto ∪ {x: Chan〈T1 . . . Tn〉} ��d p1{|v1/r1 . . . vl/rl, x/return, o1/this|}

Thus

Γ,Φ ∪ {x: Chan〈T1 . . . Tn〉} ��d o1[p1{|v1/r1 . . . vl/rl, x/return, o1/this|}]

Putting this and the earlier fact together, we have

Γ,Φ ∪ {x: Chan〈T1 . . . Tn〉} ��d
o[x?(s1:T1 . . . sn:Tn) p]|
o1[p1{|v1/r1 . . . vl/rl, x/return, o1/this|}]

The state hasn’t changed, so we have Γ ��d g′{Φ′
∆′ as required.

Object Creation

Say the proof tree is an instance of CRT:

Γ � o[create o1:C p]



Φ

∆

−→ o[p{|o′1/o1|}]


Φ ∪ {o′1:C}
∆ ∪ {o′1 = ∅}

where o′1 is the new object name “chosen” by the axiom. From the main

premise of the theorem we have Γ ��d o[create o1:C p]{Φ∆ which gives us both
Γ,Φ ��d o[create o1:C p] and Γ,Φ ��d ∆. So Γ,Φ ∪ Atto ��d create o1:C p.

This implies that Γ,Φ ∪ Atto ∪ {o′′1:C} ��d p{|o
′′
1/o1|}. So by Lemma C.3.4,

case 4, we can use o′1 instead o
′′
1 to give Γ,Φ∪Atto ∪ {o′1:C} ��d p{|o

′
1/o1|} so

Γ,Φ ∪ {o′1:C} ��d o[p{|o
′
1/o1|}]. The addition of the empty assignment to the

typing state, will not affect it’s dynamic type safety, so we have:

Γ ��d o[p{|o
′
1/o1|}]{Φ∪{o′1:C}

∆∪{o′1=∅}

as required.

339

APPENDIX C. TECHNICAL RESULTS FOR THE TYPE SYSTEM

Attribute Access

Say the proof tree is an instance of ACC:

Γ � o[a?r p]{Φ∆−→ p{|v/r|}{Φ∆

where v = ∆(o)(a). The premise of the theorem gives us Γ ��d o[a?r p]{Φ∆ so

we have Γ,Φ ��d o[a?r p] and Γ,Φ ��d ∆ . From the first statement, we can infer

Γ,Φ ∪ Atto ��d a?r p. By DTS-ACC, this implies Γ,Φ ∪ Atto � a: Attr{T}
and Γ,Φ ∪ Atto ∪ {r′:T} ��d p{|r

′
/r|} . Since the state is dynamically type

safe, we have Γ,Φ∪Atto ∪ {r′:T} � v:T . Then by Lemma C.3.4, case 3 and
case 2, Γ,Φ ∪ Atto ��d p{|v/r|}. So Γ,Φ ��d o[p{|v/r|}]. Thus Γ ��d o[p{|v/r|}]{Φ∆
as required.

Attribute Update

Say the proof tree is an instance of DTS-UPD:

Γ � o[a!v p]{Φ∆−→ o[p]{Φ∆′

where o ∈ Dom(∆) and ∆′(o1)(a1) = ∆(o1)(a1) if o1 �= o or a1 �= a and

v otherwise. The premise of the theorem gives us: Γ ��d o[a!v p]{Φ∆ from

which we deduce Γ,Φ ��d o[a!v p] and Γ,Φ ��d ∆ . From the first of these we

get Γ,Φ ∪ Atto ��d a!v p. By DTS-UPD, this gives us Γ,Φ ∪ Atto � v:T ,

Γ,Φ ∪ Atto � a: Attr{T} and Γ,Φ ∪ Atto ��d p . This last point gives us

Γ,Φ ��d o[p]. Considering state, we can see that Γ,Φ ��d ∆′, since v is appro-

priately typed. This, with the above dynamic agent type safety statement,

gives us Γ ��d o[p]{Φ∆′ as required.

That was the last of the axioms, so we’re done. �

340

APPENDIX C. TECHNICAL RESULTS FOR THE TYPE SYSTEM

5.4.4

p145Theorem C.3.7 (Type Safety) If Φ0 � Γ and Γ � gΓ{Φ0

∅ =⇒ g{Φ∆ then

Γ ��d g{Φ∆ is not type violating.

Proof: This follows from Lemma C.3.3 and Theorem C.3.6, using an

obvious inductive argument on the derivation of Γ � gΓ{Φ0

∅ =⇒ g{Φ∆. �

C.4 Configurations and the Type System

In this section, we provide the proofs of Theorem 5.4.5 and Corollary 5.4.6.

Lemma C.4.1

Γ,Φ � v:T ⇒ Γ,Φρ � vρ:T

Proof: By a simple induction on the proof tree of Γ,Φ � v:T . �

Lemma C.4.2

Γ,Φ ��d ∆⇒ Γ,Φρ ��d ∆ρ

Proof:

Γ,Φ ��d ∆
⇒ 〈dynamic type safety of state dictionaries〉
∀o ∈ Dom(Φ).∃C.
(o:C ∈ Φ
∧class C {a1 : Attr{T1}, . . . gn : Attr{Tn}} ∈ Γ
∧∀a ∈ Dom(∆(o)).(∃i.a = ai ∧ Γ,Φ � o(a):Ti))

⇒ 〈renaming, set theory, logic〉
∀o′ ∈ Dom(Φρ).∃C.
(o′:C ∈ Φρ

341

APPENDIX C. TECHNICAL RESULTS FOR THE TYPE SYSTEM

∧class C {a1 : Attr{T1}, . . . gn : Attr{Tn}} ∈ Γ
∧∀a ∈ Dom(∆ρ(o′)).(∃i.a = ai ∧ Γ,Φρ � o′(a):Ti))

⇒ 〈dynamic type safety of state dictionaries〉
Γ,Φρ ��d ∆ρ

�

Lemma C.4.3

Γ,Φ ��d p⇒ Γ,Φρ ��d pρ

Proof: By induction on the proof of Γ,Φ ��d p. We only consider one case
here.

Say that the last step of the proof is an instance of the new channel rule

Γ,Φ ∪ {c′:T} ��d p′{|c
′
/c|}

Γ,Φ ��d new c:T p′

So p = new c:T p′, hence

pρ = (new c:T p′)ρ

= new (cδρ):T (p′δρ)

Say that cδ = c′′, and let c′′′ be new. We note that pδ = p{|c′′/c|} because the
shove will only effect c. Then, by the induction hypothesis three times, we

have

Γ, (Φ ∪ {c′:T})(c′c′′)ρ(c′′c′′′) ��d (p′{|c
′
/c|})(c′c′′)ρ(c′′c′′′)

i.e.

Γ,Φρ ∪ {c′′′:T} ��d p′{|c′′/c|}ρ(c′′c′′′)
= p′δρ{|c′′′/c′′|}

We can apply the dynamic type safety rule for new channel to this to give

Γ,Φρ ��d new c′′:T p′δρ

= new cδρ:T p′δρ

= (new c:T p′)ρ

342

APPENDIX C. TECHNICAL RESULTS FOR THE TYPE SYSTEM

which gives us the result in this case. �

Lemma C.4.4

Γ,Φ ��d g ⇒ Γ,Φρ ��d gρ

Proof: If g = nil, then the result is obvious, so we assume that g contains

one or more primitive agents. Say o[p] ∈ g. Then Γ,Φ ��d o[p] so Γ,Φ ∪
Atto ��d p so, by Lemma C.4.3, we have Γ,Φρ ∪ Attoρ ��d pρ. This means that
Γ,Φρ ��d oρ[pρ] i.e. Γ,Φρ ��d (o[p])ρ. Since this is true for all the agents of g,
we have our result. �

Corollary C.4.5

Γ ��d g{Φ∆⇒ Γ ��d gρ{Φρ∆ρ

Proof: This is an immediate consequence of lemmas C.4.4 and C.4.2. �
5.4.5

p146Theorem C.4.6 Say Φ � Γ and Γ,Φ ��d K then

1. If Γ,Φ � K �� K ′ then Γ,Φ ��d K ′.

2. If Γ,Φ � K c!〈v1,...vn〉 �� K ′ then Γ,Φ ��d K ′.

3. If Γ,Φ � K c?〈v1,...vn〉 �� K ′ and c?〈v1, . . . vn〉 is a type safe reception in

Γ,Φ, then Γ,Φ ��d K ′.

4. If Γ,Φ � K o.m!〈v1,...vn〉
x:T

�� K ′ then Γ,Φ ��d K ′.

5. If Γ,Φ � K o.m?〈v1,...vn〉
x:T

�� K ′ and o.m?〈v1, . . . vn〉 is a type safe reception
in Γ,Φ, then Γ,Φ ��d K ′.

Proof: Consider the first case. Say

Γ,Φ � K1
�� K2

343

APPENDIX C. TECHNICAL RESULTS FOR THE TYPE SYSTEM

and

Γ,Φ ��d K1

and

Flatten(K1{Φ∅) = g1{Φ1
∆1

Flatten(K2{Φ∅) = g2{Φ2
∆2

Then

Γ ��d g1{Φ1
∆1

By Theorem B.4.11, there exists some renaming ρ such that

Γ � g1{Φ1
∆1
−→ g2ρ{Φ2ρ

∆2ρ

By Theorem C.3.6, we know

Γ ��d g2ρ{Φ2ρ
∆2ρ

and by Lemma C.4.5, this means

Γ ��d g2{Φ2
∆2

i.e.

Γ ��d Flatten(K2{Φ∅)
which means Γ,Φ ��d K2 as required.

Now consider the second case. So we have

Γ,Φ � K1
c!〈v1,...vn〉 �� K2

and

Γ,Φ ��d K1

and

Flatten(K1) = g1{Φ1
∆1

Flatten(K2) = g2{Φ2
∆2

Flatten(K1{Φ∅) = g1ρ1{Φ1ρ1∪Φ
∆1ρ1

Flatten(K2{Φ∅) = g2ρ2{Φ2ρ2∪Φ
∆2ρ2

344

APPENDIX C. TECHNICAL RESULTS FOR THE TYPE SYSTEM

By Lemma B.4.7, we know there exists a renaming ρ such that

Φ2ρ = Φ1

∆2ρ = ∆1

g1
�≡ o[c!〈v1, . . . vn〉 p]|g

g2ρ
�≡α o[p]|g

Now

Γ ��d g1ρ1{Φ1ρ1∪Φ
∆1ρ1

so

Γ,Φ1ρ1 ∪ Φ ��d ∆1ρ1

Γ,Φ1ρ1 ∪ Φ ��d g1ρ1

so

Γ,Φ1ρ1 ∪ Φ ��d (o[c!〈v1, . . . vn〉 p]|g)ρ1
hence

Γ,Φ1ρ1 ∪ Φ ��d (oρ1)[c!〈v1, . . . vn〉 (pρ1)]
Γ,Φ1ρ1 ∪ Φ ��d gρ1

Thus

Γ,Φ1ρ1 ∪ Φ ∪Attoρ1 ��d c!〈v1, . . . vn〉 (pρ1)

from which we can conclude

Γ,Φ1ρ1 ∪ Φ ∪ Attoρ1 ��d pρ1

Γ,Φ1ρ1 ∪ Φ ��d oρ1[pρ1]

Γ,Φ1ρ1 ∪ Φ ��d oρ1[pρ1]|gρ1
Γ ��d (oρ1[pρ1]|gρ1){Φ1ρ1∪Φ

∆1ρ1

Let

ρα = (ρ2 ◦ ρ−1 ◦ ρ1−1)
∣∣
Φ1ρ1

+ 1|Φ
Then, by Lemma C.4.5, we have

Γ ��d (oρ1[pρ1]|gρ1)ρα{(Φ1ρ1∪Φ)ρα

∆1ρ1ρα

345

APPENDIX C. TECHNICAL RESULTS FOR THE TYPE SYSTEM

which gives us

Γ ��d g2ρ2{Φ2ρ2∪Φ
∆2ρ2

i.e.

Γ ��d Flatten(K2{Φ∅)

which means Γ,Φ ��d K2 as required. �
5.4.6

p147Corollary C.4.7 If Γ,Φ ��d K1 and Γ,Φ � K1
L1

L2

�� K2 and all the receptions

in L1 are type safe, then Γ,Φ ��d K2.

346

Appendix D

Simulations

This appendix provides many of the simulations mentioned in the main text.

The definition of satisfying simulation can be found on page 167. The defi-

nition of refining simulation can be found on page 178.

Section D.2 gives the satisfying simulations used in the Scheduler example

of Chapter 6. Section D.1 gives the refining simulations used in that exam-

ple. In Section D.3, we give the refining simulations used for the concurrent

dictionary example of Chapter 7.

D.1 Refining Simulations for the Scheduler

Example

First we justify the statement Sched0 % Sched1
∅, given the definitions:

Sched0 def
=

j∈1..n
bj .Sched

0 &
i∈1..n

ai.Sched
0

Sched1
X

def
=

j∈X
bj .Sched

1
X−j &

i/∈X
ai.Sched

1
X∪i

347

APPENDIX D. SIMULATIONS

where X ⊆ {1..n}. We use the following refining simulation:

{(Sched0, Sched1
X) | X ⊆ {1..n}}

∪ {(
j∈1..n

bj .Sched
0 &

i∈1..n
ai.Sched

0, Sched1
X) | X ⊆ {1..n}}

∪ {(
j∈1..n

bj .Sched
0,

j∈X
bj .Sched

1
X−j) | ∅ �= X ⊆ {1..n}}

∪ {(
i∈1..n

ai.Sched
0,

i/∈X
ai.Sched

1
X∪i) | {1..n} �= X ⊆ {1..n}}

∪ {(bj .Sched0, bj .Sched
1
X−j) | j ∈ X ⊆ {1..n}, }

∪ {(ai.Sched0, ai.Sched
1
X∪i) | i /∈ X ⊆ {1..n}, }

Next we justify the statement Sched1
∅ % Sched2

∅ given the definition:

Sched2
X

def
=

j∈X
bj .Sched

2
X−j � (

i/∈X
ai.Sched

2
X∪i & 0)

We use the following refining simulation:

{(Sched1
X , Sched

2
X) | X ⊆ {1..n}}

∪ {(
j∈X
bj .Sched

1
X−j &

i/∈X
ai.Sched

1
X∪i, Sched

2
X) | X ⊆ {1..n}}

∪ {(
j∈X
bj .Sched

1
X−j ,

j∈X
bj .Sched

2
X−j) | ∅ �= X ⊆ {1..n}}

∪ {(
i/∈X
ai.Sched

1
X∪i,

i/∈X
ai.Sched

2
X∪i) | {1..n} �= X ⊆ {1..n}}

∪ {(bj.Sched1
X−j , bj .Sched

2
X−j) | j ∈ X ⊆ {1..n}}

∪ {(ai.Sched1
X∪i, ai.Sched

2
X∪i) | i /∈ X ⊆ {1..n}}

Now we consider the statement Sched2
∅ % Sched3

∅ given the definition:

Sched3
X

def
=




j∈X
bj .Sched

3
X−j �

i/∈X
ai.Sched

3
X∪i if X �= {1..n}

j∈X
bj .Sched

3
X−j otherwise

348

APPENDIX D. SIMULATIONS

We use the following refining simulation:

{(Sched2
X , Sched

3
X) | X ⊆ {1..n}}

∪ {(
j∈X
bj .Sched

2
X−j � (

i/∈X
ai.Sched

2
X∪i & 0), Sched3

X) | X ⊆ {1..n}}
∪ {(

j∈X
bj .Sched

2
X−j,

j∈X
bj .Sched

3
X−j) | ∅ �= X ⊆ {1..n}}

∪ {(
i/∈X
ai.Sched

2
X∪i & 0,

i/∈X
ai.Sched

3
X∪i) | {1..n} �= X ⊆ {1..n}}

∪ {(
i/∈X
ai.Sched

2
X∪i & 0, 0) | X = {1..n}}

∪ {(
i/∈X
ai.Sched

2
X∪i,

i/∈X
ai.Sched

3
X∪i) | {1..n} �= X ⊆ {1..n}}

∪ {(bj .Sched2
X−j, bj .Sched

3
X−j) | j ∈ X ⊆ {1..n}}

∪ {(ai.Sched2
X∪i, ai.Sched

3
X∪i) | i /∈ X ⊆ {1..n}}

Next we consider the statement Sched2
∅ % Sched4

1,∅ given the definition:

Sched4
i,X

def
=

j∈X
bj .Sched

4
i,X−j � (

(k/∈X,k=i)
ak.Sched

4
k+1,X∪k & 0)

where i ∈ {1..n}. We use the following refining simulation:

{(Sched2
X , Sched

4
i,X) | X ⊆ {1..n}, i ∈ {1..n}}

∪ {(
j∈X
bj .Sched

2
X−j � (

i/∈X
ai.Sched

2
X∪i & 0), Sched4

i,X) | X ⊆ {1..n}}
∪ {(

j∈X
bj .Sched

2
X−j,

j∈X
bj .Sched

4
i,X−j) | ∅ �= X ⊆ {1..n}, i ∈ {1..n}}

∪ {(
k/∈X
ak.Sched

2
X∪k & 0,

(k/∈X,k=i)
ak.Sched

4
k+1,X∪k & 0)

| {1..n} �= X ⊆ {1..n}, i ∈ {1..n}}
∪ {(

k/∈X
ak.Sched

2
X∪k,

(k/∈X,k=i)
ak.Sched

4
k+1,X∪k)

| {1..n} �= X ⊆ {1..n}, i /∈ X}
∪ {(0, 0)}
∪ {(bj .Sched2

X−j, bj .Sched
4
i,X−j) | j ∈ X ⊆ {1..n}}

∪ {(ak.Sched2
X∪k, ak.Sched

4
k+1,X∪i)

| {1..n} �= X ⊆ {1..n}, i ∈ {1..n}, i = k /∈ X}

349

APPENDIX D. SIMULATIONS

Lastly, we consider the statement Sched4
1,∅ % Sched5

1,∅ given the definition:

Sched5
i,X

def
=




j∈X
bj .Sched

5
i,X−j � ai.Sched5

i+1,X∪i i /∈ X

j∈X
bj .Sched

5
i,X−j i ∈ X

We use the following refining simulation:

{(Sched4
i,X , Sched

5
i,X) | X ⊆ {1..n}, i ∈ {1..n}}

∪ {(
j∈X
bj .Sched

4
i,X−j � (

(k/∈X,k=i)
ak.Sched

4
k+1,X∪k & 0), Sched5

i,X)

| X ⊆ {1..n}, i ∈ {1..n}}
∪ {(

j∈X
bj .Sched

4
i,X−j,

j∈X
bj .Sched

5
i,X−j) | ∅ �= X ⊆ {1..n}, i ∈ {1..n}}

∪ {(
(k/∈X,k=i)

ak.Sched
4
k+1,X∪k & 0, ai.Sched5

i+1,X∪i)

| {1..n} �= X ⊆ {1..n}, i /∈ X}
∪ {(

(k/∈X,k=i)
ak.Sched

4
k+1,X∪k & 0, 0) | {1..n} �= X ⊆ {1..n}, i ∈ X}

∪ {(
(k/∈X,k=i)

ak.Sched
4
k+1,X∪k, ai.Sched

5
i+1,X∪i)

| {1..n} �= X ⊆ {1..n}, i /∈ X}
∪ {(0, 0)}
∪ {(bj .Sched4

i,X−j, bj .Sched
5
i,X−j) | X ⊆ {1..n}, j ∈ X}

∪ {(ak.Sched4
k+1,X∪k, ai.Sched

5
i+1,X∪i)

| X ⊆ {1..n}, i ∈ {1..n}, k /∈ X, k = i}

D.2 Satisfying Simulations for the Scheduler

Example

First we justify the statement design1 sãt Sched1
∅ where we convert design

1

to normal form as follows:

d1
1

def
= a1.d

1
2 d1

2
def
= a2.d

1
3 d1

3
def
= b2.d

1
4 d1

4
def
= b1.d

1
1

350

APPENDIX D. SIMULATIONS

We use the following satisfying simulation:

{(Sched1
∅, d

1
1), (Sched

1
∅, a1.d

1
2),

(
j∈∅
bj .Sched

1
∅−j &

i/∈∅
ai.Sched

1
{i}, a1.d

1
2), (

i/∈∅
ai.Sched

1
{i}, a1.d

1
2),

(a1.Sched
1
{1}, a1.d

1
2), (Sched

1
{1}, d

1
2), (Sched

1
{1}, a2.d

1
3),

(
j∈{1}

bj .Sched
1
{1}−j &

i/∈{1}
ai.Sched

1
{1,i}, a2.d

1
3),

(
i/∈{1}

ai.Sched
1
{1,i}, a2.d

1
3), (a2.Sched

1
{1,2}, a2.d

1
3),

(Sched1
{1,2}, d

1
3), (Sched

1
{1,2}, b2.d

1
4),

(
j∈{1,2}

bj .Sched
1
{1,2}−j &

i/∈{1,2}
ai.Sched

1
{1,2,i}, b2.d

1
4),

(
j∈{1,2}

bj .Sched
1
{1,2}−j , b2.d

1
4), (b2.Sched

1
{1}, b2.d

1
4),

(Sched1
{1}, d

1
4), (Sched

1
{1}, b1.d

1
1),

(
j∈{1}

bj .Sched
1
{1}−j &

i/∈{1}
ai.Sched

1
{1,i}, b1.d

1
1),

(
j∈{1}

bj .Sched
1
{1}−j , b1.d

1
1), (b1.Sched

1
∅, b1.d

1
1)}

Next we consider the statement design2 sãt Sched1
∅ where we convert

design2 to normal form as follows:

d2
1

def
= a1.d

2
2 d2

2
def
= b1.d

2
1

We use the following satisfying simulation:

{(Sched1
∅, d

1
1), (Sched

1
∅, a1.d

2
2),

(
j∈∅
bj .Sched

1
∅−j &

i/∈∅
ai.Sched

1
{i}, a1.d

2
2), (

i/∈∅
ai.Sched

1
{i}, a1.d

2
2),

(a1.Sched
1
{1}, a1.d

2
2), (Sched

1
{1}, d

2
2), (Sched

1
{1}, b1.d

2
1),

(
j∈{1}

bj .Sched
1
{1}−j &

i/∈{1}
ai.Sched

1
{1,i}, b1.d

2
1),

(
j∈{1}

bj .Sched
1
{1}−j , b1.d

2
1), (b1.Sched

1
∅, b1.d

2
1)}

We justify the statement that design1 sãt/ Sched2
∅ by showing that no sat-

isfying simulation can exist which contains (Sched2
∅, d

1
1). Say Q is such a

351

APPENDIX D. SIMULATIONS

satisfying simulation. As a consequence of the definition of satisfying simu-

lation, it is easy to show that we must have (Sched2
{1}, a2.d

1
3) ∈ Q. This leads

us to having (
j∈{1}

bj .Sched
1
{1}−j � (

i/∈{1}
ai.Sched

1
{1,i} & 0), a2.d1

3) ∈ Q,
which fails the satisfying simulation property. This is a contradiction, so we

conclude that design1 sãt/ Sched2
∅.

Next we show that design2 sãt Sched2
∅. We use the following satisfying

simulation:

{(Sched2
∅, d

2
1), (Sched

2
∅, a1.d

2
2),

(
j∈∅
bj .Sched

2
∅−j � (

i/∈∅
ai.Sched

2
{i} & 0), a1.d2

2),

(0, 0), (
i/∈∅
ai.Sched

2
{i} & 0, a1.d2

2),

(a1.Sched
2
{1}, a1.d

2
2), (Sched

2
{1}, d

2
2), (Sched

2
{1}, b1.d

2
1),

(
j∈{1}

bj .Sched
2
{1}−j � (

i/∈{1}
ai.Sched

2
{1,i} & 0), b1.d2

1),

(
j∈{1}

bj .Sched
2
{1}−j , b1.d

2
1), (

i/∈{1}
ai.Sched

2
{1,i} & 0, 0),

(b1.Sched
2
∅, b1.d

2
1)}

Now we justify the statement design3
X sãt Sched3

∅ given the definition:

design3
X

def
=




∑
j∈X bj .design

3
X−j + a(minX).design

3
X∪(minX) if X �= {1..n}

∑
j∈X bj .design

3
X−j otherwise

352

APPENDIX D. SIMULATIONS

We use the following satisfying simulation:

{(Sched3
X , design

3
X) | X ⊆ {1..n}}

∪ {(Sched3
X ,

∑
j∈X bj .design

3
X−j + a(minX).design

3
X∪(minX)) | X �= {1..n}}

∪ {(Sched3
X ,

∑
j∈X bj .design

3
X−j) | X = {1..n}}

∪ {(
j∈X
bj .Sched

3
X−j �

i/∈X
ai.Sched

3
X∪i,

∑
j∈X bj .design

3
X−j + a(minX).design

3
X∪(minX)

)

|X �= {1..n}}
∪ {(

j∈X
bj .Sched

3
X−j ,

∑
j∈X bj .design

3
X−j) | �= X ⊆ {1..n}}

∪ {(
i/∈X
ai.Sched

3
X∪i, a(minX).design

3
X∪(minX)) | X �= {1..n}}

∪ {(bj .Sched3
X−j, bj .design

3
X−j) | j ∈ X ⊆ {1..n}}

∪ {(ai.Sched3
X∪i, ai.design

3
X∪(minX)) | X �= {1..n}, i = (minX)}

Next we justify the statement design4
1 sãt Sched4

1,∅. We convert design
4
i

to normal form using:

d4
1,i

def
= ai.d

4
2,i d4

2,i
def
= bi.d

4
1,i+1

353

APPENDIX D. SIMULATIONS

We use the following satisfying simulation:

{(Sched4
i,∅, d

4
1,i) | i ∈ {1..n}}

∪ {(Sched4
i,∅, ai.d

4
2,i) | i ∈ {1..n}}

∪ {(
j∈∅
bj .Sched

4
i+1,∅−j � (

(k/∈∅,k=i)
ak.Sched

4
k+1,{k} & 0), ai.d4

2,i)

|i ∈ {1..n}}
∪ {(

(k/∈∅,k=i)
ak.Sched

4
k+1,{k} & 0, ai.d4

2,i) | i ∈ {1..n}}
∪ {(

(k/∈∅,k=i)
ak.Sched

4
k+1,{k}, ai.d

4
2,i) | i ∈ {1..n}}

∪ {(ai.Sched4
i+1,{i}, ai.d

4
2,i) | i ∈ {1..n}}

∪ {(Sched4
i+1,{i}, d

4
2,i) | i ∈ {1..n}}

∪ {(Sched4
i+1,{i}, bi.d

4
1,i+1) | i ∈ {1..n}}

∪ {(
j∈{i}

bj .Sched
4
i+1,{i}−j � (

(k/∈{i},k=i)
ak.Sched

4
k+1,{k} & 0), bi.d4

1,i+1)

|i ∈ {1..n}}
∪ {(

j∈{i}
bj .Sched

4
i+1,{i}−j , bi.d

4
1,i+1) | i ∈ {1..n}}

∪ {(
(k/∈∅,k=i)

ak.Sched
4
k+1,{k} & 0, 0) | i ∈ {1..n}}

∪ {(bi.Sched4
i+1,∅, bi.d

4
1,i+1) | i ∈ {1..n}}

∪ {(0, 0)}

Lastly, we justify the statement that design5
1,∅ sãt Sched5

1,∅ given the def-

inition:

design5
i,X

def
=




∑
j∈X bj .design

5
i,X−j + ai.design

5
i+1,X∪i i /∈ X

∑
j∈X bj .design

5
i,X−j i ∈ X

354

APPENDIX D. SIMULATIONS

We use the following satisfying simulation:

{(Sched5
i,X , design

5
i,X) | X ⊆ {1..n}, i ∈ {1..n}}

∪ {(Sched5
i,X ,

∑
j∈X bj .design

5
i,X−j + ai.design

5
i+1,X∪i) | X ⊆ {1..n}, i /∈ X}

∪ {(Sched5
i,X ,

∑
j∈X bj .design

5
i,X−j) | X ⊆ {1..n}, i ∈ X}

∪ {(
j∈X
bj .Sched

5
i,X−j � ai.Sched5

i+1,X∪{i},
∑
j∈X bj .design

5
i,X−j + ai.design

5
i+1,X∪i)

|X ⊆ {1..n}, i /∈ X}
∪ {(

j∈X
bj .Sched

5
i,X−j,

∑
j∈X bj .design

5
i,X−j) | X ⊆ {1..n}}

∪ {(ai.Sched5
i+1,X∪{i}, ai.design

5
i+1,X∪i) | X ⊆ {1..n}, i /∈ X}

∪ {(bj .Sched5
i,X−j, bj .design

5
i,X−j) | X ⊆ {1..n}, j ∈ X}

D.3 Refining Simulations for Chapter 7

To show that Dspec0 % Dspec1∅,∅ we use the following simulation:

{(Dspec0,Dspec1R1,R2
) | R1,R2 ⊆ N}

∪ {(
k∈Key,x∈N

o.get?〈k〉
x

�� Dspec0

&
(k,v)∈Key×Value,x∈N

o.set?〈k,v〉
x

�� Dspec0

&
v∈Value,x∈N

x!〈v〉 �� Dspec0

&
x∈N

x!〈〉 �� Dspec0

&
i∈N

�� Dspec0,

Dspec1R1,R2
) | R1,R2 ⊆ N}

∪ {(
k∈Key,x∈N

o.get?〈k〉
x

�� Dspec0,

k∈Key,xnew

o.get?〈k〉
x

�� Dspec1R1∪{x},R2
) | R1,R2 ⊆ N}

∪ {(
(k,v)∈Key×Value,x∈N

o.set?〈k,v〉
x

�� Dspec0,

355

APPENDIX D. SIMULATIONS

(k,v)∈Key×Value,xnew

o.set?〈k,v〉
x

�� Dspec1R1,R2∪{x}) | R1,R2 ⊆ N}

∪ {(
v∈Value,x∈N

x!〈v〉 �� Dspec0,

v∈Value,x∈R1

x!〈v〉 �� Dspec1R1�{x},R2
) | R1,R2 ⊆ N ,R1 �= ∅}

∪ {(
x∈N

x!〈〉 �� Dspec0,

x∈R2

x!〈〉 �� Dspec1R1,R2�{x}) | R1,R2 ⊆ N ,R2 �= ∅}

∪ {(
i∈N

�� Dspec0,
i∈N

�� Dspec1R1,R2
)}

∪ {(o.get?〈k〉
x

�� Dspec0,
o.get?〈k〉

x
�� Dspec1R1∪{x},R2

)

| R1,R2 ⊆ N , k ∈ Key, x new}
∪ {(o.set?〈k,v〉

x
�� Dspec0,

o.set?〈k,v〉
x

�� Dspec1R1,R2∪{x})

| R1,R2 ⊆ N , (k, v) ∈ Key × Value, x new}
∪ {(x!〈v〉 �� Dspec0,

x!〈v〉 �� Dspec1R1�{x},R2
)

| R1,R2 ⊆ N , v ∈ Value, x ∈ R1}
∪ {(x!〈〉 �� Dspec0,

x!〈〉 �� Dspec1R1,R2�{x}) | R1,R2 ⊆ N , x ∈ R2}
∪ {(�� Dspec0, �� Dspec1R1,R2

)}

Let Dstate0 = (∅, ∅, ∅, ∅). To show that Dspec1∅,∅ % Dspec2Dstate0 , we use

a refining simulation which requires a non-trivial equivalence step. The two

subprocesses of Dspec2 which are meets of silent actions need to be matched

with a single meet of silent actions in Dspec1. Let S(Dstate) = In1+In2 and

for s ∈ S(Dstate) let

m(Dstate, s) =



f5(Dstate, x, k, v) if s = (x, k) ∈ In1 and v ∈ Value
f6(Dstate, x, k, v) if s = (x, k, v) ∈ In2

356

APPENDIX D. SIMULATIONS

Clearly, we can map S(Dstate) to a subset of N. Thus

Dspec2Dstate ≡
k∈Key,xnew

o.get?〈k〉
x

�� Dspec2f1(Dstate,x,k)

&
(k,v)∈Key×Value,x new

o.set?〈k,v〉
x

�� Dspec2f2(Dstate,x,k,v)

&
(x,v)∈Out1

x!〈v〉 �� Dspec2f3(Dstate,x,v)

&
x∈Out2

x!〈〉 �� Dspec2f4(Dstate,x)

&
s∈S(Dstate)

�� Dspec2m(Dstate,s)

To relate the specifications we use the following projection

π(Dstate) = (π1(In1) ∪ π1(Out1), π1(In2) ∪Out2)

where π1 projects out the first element of a tuple.

To show that Dspec1∅,∅ % Dspec2Dstate0
we use the following simulation:

{(Dspec1π(Dstate),Dspec
2
Dstate) | ∀Dstate}

∪ {(
k∈Key,xnew

o.get?〈k〉
x

�� Dspec1R1∪{x},R2

&
(k,v)∈Key×Value,xnew

o.set?〈k,v〉
x

�� Dspec1R1,R2∪{x}

&
v∈Value,x∈R1

x!〈v〉 �� Dspec1R1�{x},R2

&
x∈R2

x!〈〉 �� Dspec1R1,R2�{x}

&
i∈N

�� Dspec1R1,R2
,

Dspec2Dstate) | ∀Dstate, (R1,R2) = π(Dstate)}
∪ {(

k∈Key,xnew

o.get?〈k〉
x

�� Dspec1R1∪{x},R2
,

k∈Key,xnew

o.get?〈k〉
x

�� Dspec2f1(Dstate,x,k))

| ∀Dstate, (R1,R2) = π(Dstate)}
∪ {(

(k,v)∈Key×Value,xnew

o.set?〈k,v〉
x

�� Dspec1R1,R2∪{x},

357

APPENDIX D. SIMULATIONS

(k,v)∈Key×Value,xnew

o.set?〈k,v〉
x

�� Dspec2f2(Dstate,x,k,v))

| ∀Dstate, (R1,R2) = π(Dstate)}
∪ {(

v∈Value,x∈R1

x!〈v〉 �� Dspec1R1�{x},R2
,

(x,v)∈Out1

x!〈v〉 �� Dspec2f3(Dstate,x,v))

| ∀Dstate, (R1,R2) = π(Dstate)}
∪ {(

x∈R2

x!〈〉 �� Dspec1R1,R2�{x},

x∈Out2

x!〈〉 �� Dspec2f4(Dstate,x)) | ∀Dstate, (R1,R2) = π(Dstate)}

∪ {(
i∈N

�� Dspec1R1,R2
,

s∈S(Dstate)

�� Dspec2m(Dstate,s)) | ∀Dstate, (R1,R2) = π(Dstate)}

∪ {(o.get?〈k〉
x

�� Dspec1R1∪{x},R2
,

o.get?〈k〉
x

�� Dspec2f1(Dstate,x,k))

| ∀Dstate, (R1,R2) = π(Dstate), k ∈ Key, x new}
∪ {(o.set?〈k,v〉

x
�� Dspec1R1,R2∪{x},

o.set?〈k,v〉
x

�� Dspec2f2(Dstate,x,k,v))

| ∀Dstate, (R1,R2) = π(Dstate), (k, v) ∈ Key ×Value, x new}
∪ {(x!〈v〉 �� Dspec1R1�{x},R2

,
x!〈v〉 �� Dspec2f3(Dstate,x,v))

| ∀Dstate, (R1,R2) = π(Dstate), (x, v) ∈ Out1}
∪ {(x!〈〉 �� Dspec1R1,R2�{x},

x!〈〉 �� Dspec2f4(Dstate,x)) | ∀Dstate, (R1,R2) = π(Dstate), x ∈ Out2}
∪ {(�� Dspec1R1,R2

,

�� Dspec2m(Dstate,s)) | ∀Dstate, (R1,R2) = π(Dstate), s ∈ S(Dstate)}

It is easy to show that Dspec2Dstate0
% Dspec3Dstate⊥. Relate the specifica-

tions with a projection which discards the Dict component of the state.

To show that Dspec3Dstate % Dspec4Dstate again requires a non-trivial equiv-

358

APPENDIX D. SIMULATIONS

alence:

Dspec4Dstate ≡ (
k∈Key,xnew

o.get?〈k〉
x

�� Dspec4f1(Dstate,x,k)

�
(k,v)∈Key×Value,x new

o.set?〈k,v〉
x

�� Dspec4f2(Dstate,x,k,v))

� ((
(x,v)∈Out1

x!〈v〉 �� Dspec4f3(Dstate,x,v)

&
x∈Out2

x!〈〉 �� Dspec4f4(Dstate,x)

&
(x,k)∈In1,v=get(Dict,k)

�� Dspec4f5(Dstate,x,k,v)

&
(x,k,v)∈In2

�� Dspec4f6(Dstate,x,k,v))

& 0)
We use the following refining simulation

{(Dspec3Dstate,Dspec
4
Dstate) | ∀Dstate}

∪ {(
k∈Key,xnew

o.get?〈k〉
x

�� Dspec3f1(Dstate,x,k)

&
(k,v)∈Key×Value,xnew

o.set?〈k,v〉
x

�� Dspec3f2(Dstate,x,k,v)

&
(x,v)∈Out1

x!〈v〉 �� Dspec3f3(Dstate,x,v)

&
x∈Out2

x!〈〉 �� Dspec3f4(Dstate,x)

&
(x,k)∈In1,v=get(Dict,k)

�� Dspec3f5(Dstate,x,k,v)

&
(x,k,v)∈In2

�� Dspec3f6(Dstate,x,k,v),

Dspec4Dstate) | ∀Dstate}
∪ {(

k∈Key,xnew

o.get?〈k〉
x

�� Dspec3f1(Dstate,x,k),

k∈Key,xnew

o.get?〈k〉
x

�� Dspec4f1(Dstate,x,k))

| ∀Dstate}
∪ {(

(k,v)∈Key×Value,xnew

o.set?〈k,v〉
x

�� Dspec3f2(Dstate,x,k,v),

(k,v)∈Key×Value,xnew

o.set?〈k,v〉
x

�� Dspec4f2(Dstate,x,k,v))

359

APPENDIX D. SIMULATIONS

| ∀Dstate}
∪ {(

(x,v)∈Out1

x!〈v〉 �� Dspec3f3(Dstate,x,v),

(x,v)∈Out1

x!〈v〉 �� Dspec4f3(Dstate,x,v))

| ∀Dstate}
∪ {(

x∈Out2

x!〈〉 �� Dspec3f4(Dstate,x),

x∈Out2

x!〈〉 �� Dspec4f4(Dstate,x))

| ∀Dstate}
∪ {(

(x,k)∈In1,v=get(Dict,k)

�� Dspec3f5(Dstate,x,k,v),

(x,k)∈In1,v=get(Dict,k)

�� Dspec4f5(Dstate,x,k,v))

| ∀Dstate}
∪ {(

(x,k,v)∈In2

�� Dspec3f6(Dstate,x,k,v),

(x,k,v)∈In2

�� Dspec4f6(Dstate,x,k,v))

| ∀Dstate}
∪ {(o.get?〈k〉

x
�� Dspec3f1(Dstate,x,k),

o.get?〈k〉
x

�� Dspec4f1(Dstate,x,k))

| ∀Dstate, k ∈ Key, x new}
∪ {(o.set?〈k,v〉

x
�� Dspec3f2(Dstate,x,k,v),

o.set?〈k,v〉
x

�� Dspec4f2(Dstate,x,k,v))

| ∀Dstate, (k, v) ∈ Key × Value, x new}
∪ {(x!〈v〉 �� Dspec3f3(Dstate,x,v),

x!〈v〉 �� Dspec4f3(Dstate,x,v))

| ∀Dstate, (x, v) ∈ Out1}
∪ {(x!〈〉 �� Dspec3f4(Dstate,x),

360

APPENDIX D. SIMULATIONS

x!〈〉 �� Dspec4f4(Dstate,x))

| ∀Dstate, x ∈ Out2}
∪ {(�� Dspec3f5(Dstate,x,k,v),

�� Dspec4f5(Dstate,x,k,v))

| ∀Dstate, (x, k) ∈ In1, v = get(Dict, k)}
∪ {(�� Dspec3f6(Dstate,x,k,v),

�� Dspec4f6(Dstate,x,k,v))

| ∀Dstate, (x, k, v) ∈ In2}

It is relatively straightforward to show Dspec4Dstate % Dspec5Dstate.

361

Bibliography

[Abr96] J.-R. Abrial. The B-book: assigning programs to meanings.

Cambridge University Press, 1996.

[AC91] Roberto M. Amadio and Luca Cardelli. Subtyping recursive

types. In Conference Record of the 18th Annual Symposium on

Principles of Programming Languages (POPL ’91), pages 104–

118. ACM Press, January 1991.

[AC96] Martin Abadi and Luca Cardelli. A Theory of Objects. Springer-

Verlag, 1996.

[AdBKR89] Pierre America, Jaco de Bakker, Joost N. Kok, and Jan Rutten.

Denotational semantics of an object-oriented language. Infor-

mation and Computation, 83(2):152–205, 1989.

[Ame87] Pierre America. Inheritance and subtyping in a parallel object-

oriented language. In Jean Bezivin et al., editor, European Con-

ference on Object-Oriented Programming (ECOOP ’87), vol-

ume 276 of Lecture Notes in Computer Science, pages 234–242.

Springer-Verlag, 1987.

[Ame89] Pierre America. Issues in the design of a parallel object-oriented

language. Formal Aspects of Computing, 1:366–411, 1989.

362

BIBLIOGRAPHY

[Ame91] Pierre America. Designing an object-oriented programming

language with behavioural subtyping. In W. P. de Roever

J. de Bakker and G. Rozenberg, editors, Foundations of Object-

Oriented Languages, volume 489 of Lecture Notes in Computer

Science, pages 60–90. Springer-Verlag, 1991.

[Bac90] R. J. R. Back. Refinement calculus, part II: Parallel and reac-

tive programs. In Stepwise Refinement of Distributed Systems:

Models, Formalisms, Correctness, volume 430 of Lecture Notes

in Computer Science, pages 67–93. Springer-Verlag, 1990.

[Bac92] R. J. R. Back. Refinement of parallel and reactive programs.

Technical Report Caltech-CS-TR-92-23, Computer Science De-

partment, California Institute of Technology, 1992.

[Bar80] H.P. Barendregt. The Lambda Calculus, its Syntax and Seman-

tics. North-Holland Publishing Company, 1980.

[BB90] Gérard Berry and Gérard Boudol. The chemical abstract ma-

chine. In Matthew Hennessy and James Riely, editors, Con-

ference Record of the Symposium on Principles of Programming

Languages (POPL ’90), pages 81–94. ACM Press, January 1990.

[BBS97] Ralph-Johan Back, Martin Büchi, and Emil Sekerinski. Action-

based concurrency and synchronization for objects. In Proceed-

ings of the Fourth AMAST Workshop on Real-Time Systems,

Concurrent, and Distributed Software (ARTS), volume 1231 of

Lecture Notes in Computer Science, pages 248–262. Springer-

Verlag, 1997.

363

BIBLIOGRAPHY

[BCP97] Kim B. Bruce, Luca Cardelli, and Benjamin C. Pierce. Com-

paring object encodings. In Theoretical Aspects of Computer

Software (TACS), Sendai, Japan, September 1997.

[BD01] H. Bowman and J. Derrick, editors. Formal Methods for Dis-

tributed Processing, A Survey of Object-oriented Approaches.

Cambridge University Press, September 2001.

[BKS97] Marcello M. Bonsangue, Joost N. Kok, and Kaisa Sere. An ap-

proach to object-orientation in action systems. Technical Report

150, Turku Centre for Computer Science, December 1997.

[BN83] A. D. Birrell and B. J. Nelson. Implementing remote proce-

dure calls. In Proceedings of the ACM Symposium on Operating

System Principles. ACM Press, 1983.

[BS95] Michael L. Brodie and Michael Stonebraker. Migrating Legacy

Systems: Gateways, Interfaces and the Incremental Approach.

Morgan Kaufmann Publishers Inc., 1995.

[BS99] Martin Büchi and Emil Sekerinski. Refining concurrent objects.

Technical Report 298, Turku Centre for Computer Science, Au-

gust 1999.

[BvW98] Ralph-Johan Back and Joakim vonWright. Refinement Calculus

— a systematic introduction. Springer-Verlag, 1998.

[Car94] Luca Cardelli. Obliq: A language with distributed scope. Tech-

nical Report 122, Digital Equipment Corporation, Systems Re-

search Center, 1994.

364

BIBLIOGRAPHY

[Car96] Luca Cardelli. Type systems. ACM Computing Surveys,

28(1):263–264, 1996.

[CG98] Luca Cardelli and Andrew D. Gordon. Mobile ambients. In Pro-

ceedings of First International Conference of the Foundations of

Software Science and Computation Structures (FOSSACS ’98).

Springer-Verlag, 1998.

[CJ95] Pierre Collette and Cliff B. Jones. Enhancing the tractability of

rely/guarantee specifications in the development of interfering

operations. Technical Report UMCS-95-10-3, Computer Sci-

ence, University of Manchester, 1995.

[dB72] N. de Bruijn. Lambda calculus notations with nameless dum-

mies, a tool for automatic formula manipulation, with applica-

tion to the Church-Rosser theorem. In Indagationes Mathemat-

icae, volume 34, pages 381–392, 1972.

[dNH84] Rocco de Nicola and Matthew Hennessy. Testing equivalence

for processes. Theoretical Computer Science, 60:109–137, 1984.

[dNH87] Rocco de Nicola and Matthew Hennessy. CCS without τ ’s. In

Proceedings of the International Joint Conference on the The-

ory and Practice of Software Development (TAPSOFT ’87), vol-

ume 249 of Lecture Notes in Computer Science, pages 138–152.

Springer-Verlag, 1987.

[Dur00] J. R. Durbin. Modern Algebra: an Introduction. John Wiley &

Sons, Inc., 4th edition, 2000.

[EE98] G. Eddon and H. Eddon. Inside Distributed COM. Microsoft

Press, 1998.

365

BIBLIOGRAPHY

[FFMS01] Cédric Fournet, Fabrice Le Fessant, Luc Maranget, and Alan

Schmitt. The JoCaml language beta release: Documentation and

user’s manual. Institut National de Recherche en Informatique

et Automatique, January 2001.

[FG02] C. Fournet and G. Gonthier. The join calculus: a language for

distributed mobile programming. In Proceedings of the Applied

Semantics Summer School (APPSEM), Caminha, volume 2395

of Lecture Notes in Computer Science, pages 268–332. Springer-

Verlag, 2002.

[FGL+96] Cédric Fournet, Georges Gonthier, Jean-Jacques Lévy, Luc

Maranget, and Didier Rémy. A calculus of mobile agents. In

Proceedings of the 7th International Conference on Concurrency

Theory (CONCUR ’96), pages 406–421. Springer-Verlag, 1996.

[For00a] Formal Systems (Europe) Ltd. FDR2 User Manual, May 2000.

[For00b] Formal Systems (Europe) Ltd. ProBE User Manual, May 2000.

[FPT99] Marcelo Fiore, Gordon Plotkin, and Daniele Turi. Abstract

syntax and variable binding. In Proceedings of the 14th Annual

Symposium on Logic in Computer Science (LICS ’99), pages

193–202. IEEE Computer Society Press, 1999.

[GH98] Andrew B. Gordon and Paul D. Hankin. A concurrent object

calculus: Reduction and typing. In Proceedings of the Interna-

tional Workshop on High-Level Concurrent Languages (HLCL

’98). Elsevier ENTCS, 1998.

[GP99] Murdoch Gabbay and Andrew Pitts. A new approach to ab-

stract syntax involving binders. In G. Longo, editor, Proceedings

366

BIBLIOGRAPHY

of the 14th Annual Symposium on Logic in Computer Science

(LICS ’99), pages 214–224, Trento, Italy, 1999. IEEE Computer

Society Press.

[Hen87] Martin C. Henson. Elements of Functional Languages. Com-

puter Science Texts. Blackwell Scientific Publications, 1987.

[Hoa84] C. A. R. Hoare. Communicating Sequential Processes. Prentice-

Hall, 1984.

[Hon00] Kohei Honda. Elementary structures in process theory (1) sets

with renaming. Journal of Mathematical Structures in Com-

puter Science, 10:617–663, October 2000.

[HT91] Kohei Honda and Mario Tokoro. An object calculus for asyn-

chronous communication. Lecture Notes in Computer Science,

512:133–147, 1991.

[III97] Robert John Hathaway III. The object FAQ, Decem-

ber 1997. http://www.cyberdyne-object-sys.com/oofaq2/

index.htm.

[Jef00] Alan Jeffrey. A distributed object calculus. In Proceedings of the

7th International Workshop on Foundations of Object Oriented

Languages (FOOL 7), 2000.

[Jon90] Cliff B. Jones. Systematic Software Development Using VDM.

Prentice-Hall International, 2nd edition, 1990.

[Jon92] C. B. Jones. An object-based design method for concurrent pro-

grams. Technical Report UMCS-92-12-1, Department of Com-

puter Science, University of Manchester, 1992.

367

BIBLIOGRAPHY

[Jon93a] Cliff B. Jones. Constraining interference in an object-based de-

sign method. In Proceedings of the International Joint Con-

ference on the Theory and Practice of Software Development

(TAPSOFT ’93), volume 668 of Lecture Notes in Computer Sci-

ence, pages 136–150. Springer-Verlag, 1993.

[Jon93b] Cliff B. Jones. A pi-calculus semantics for an object-based de-

sign notation. In Proceedings of the 4th International Confer-

ence on Concurrency Theory (CONCUR ’93), volume 715 of

Lecture Notes in Computer Science, pages 158–172. Springer-

Verlag, 1993.

[Jon93c] Cliff B. Jones. Reasoning about interference in an object-based

design method. In J. C. P. Woodcock and P. G. Larsen, editors,

Proceedings of 1st International Symposium of Formal Methods

Europe (FME ’93), volume 670 of Lecture Notes in Computer

Science, pages 1–17. Springer-Verlag, 1993.

[Jon94] Cliff B. Jones. Process algebra arguments about an object-based

design notation. In A Classical Mind, pages 231–245. Prentice-

Hall, 1994.

[Jon03] Simpon Payton Jones. Haskell 98: Language and Libraries, the

Revised Report. Cambridge University Press, April 2003.

[Jon81] C. B. Jones. Development Methods for Computer Programmes

Including a Notion of Interference. PhD thesis, Oxford Univer-

sity, Computing Laboratory, UK, June l981.

[KS98] Josva Kleist and Davide Sangiorgi. Imperative objects and mo-

bile processes. In D. Gries and W.-P. de Roever, editors, IFIP

368

BIBLIOGRAPHY

Working conference on Programming Concepts and Methods,

pages 285–303. Chapman and Hall, 1998.

[LR88] L.B.Wilson and R.G.Clark. Comparative Programming Lan-

guages. Addison Wesley, 1988.

[LSV99] Lúıs Lopes, Fernando Silva, and Vasco T. Vasconcelos. TyCO

User’s Manual, Version 0.2. University of Lisbon, April 1999.

[Mey97] Bertrand Meyer. Object-oriented software construction.

Prentice-Hall, Inc., 2nd edition, 1997.

[MH99] V. Matena and M. Hapner. Enterprise Java Beans Specification,

version 1.1. Sun Microsystems, December 1999.

[Mil80] Robin Milner. A Calculus for Communicating Systems, vol-

ume 92 of Lecture Notes in Computer Science. Springer-Verlag,

Berlin, 1980.

[Mil89] R. Milner. Communication and Concurrency. Prentice Hall

International Series in Computer Science. Prentice Hall, 1989.

[Mil91] Robin Milner. The polyadic π-calculus: a tutorial. LFCS Report

Series ECS-LFCS-91-180, University of Edinburgh, 1991.

[Mil99] Robin Milner. Communicating and Mobile Systems: the π-

calculus. Cambridge University Press, 1999.

[MPW89a] Robin Milner, Joachim Parrow, and David Walker. A calculus of

mobile processes, Part I. LFCS Report Series ECS-LFCS-89-85,

University of Edinburgh, June 1989.

369

BIBLIOGRAPHY

[MPW89b] Robin Milner, Joachim Parrow, and David Walker. A calculus

of mobile processes, Part II. LFCS Report Series ECS-LFCS-

89-86, University of Edinburgh, June 1989.

[Nie92] Oscar Nierstrasz. Towards an object calculus. In Mario Tokoro,

Oscar Nierstrasz, and Peter Wegner, editors, Proceedings of the

ECOOP’91 Workshop on Object-Based Concurrent Computing,

volume 612, pages 1–20. Springer-Verlag, 1992.

[Nie93] Oscar Nierstrasz. Composing active objects. In G. Agha,

P. Wegner, and A. Yonezawa, editors, Research Directions in

Object-Based Concurrency, pages 151–171. MIT Press, 1993.

[Ode94] Martin Odersky. A functional theory of local names. In Proceed-

ings of 21st Annual Symposium on Principles of Programming

Languages (POPL ’94), pages 48–59. ACM Press, 1994.

[OMG91] OMG. CORBA 1.0 Specification, October 1991.

[OMG98] OMG. CORBA 2.2 Specification, February 1998.

[OMG01] OMG. OMG Unified Modelling Language Specification, Septem-

ber 2001.

[Öve00] Gunnar Övergaard. Formal Specification of Object-Oriented

Modelling Concepts. PhD thesis, Department of Teleinformatics,

Royal Institute of Technology, Stockholm, November 2000.

[PG00] Andrew M. Pitts and Murdoch Gabbay. A metalanguage for

programming with bound names modulo renaming. In Mathe-

matics of Program Construction, pages 230–255, 2000.

370

BIBLIOGRAPHY

[Pie98] Benjamin C. Pierce. Programming in the Pi-calculus, March

1998. http://citeseer.nj.nec.com/pierce97programming.

html.

[Pit01] Andrew M. Pitts. Nominal logic, a first order theory of names

and binding. In 4th International Symposium on Theoretical As-

pects of Computer Software (TACS ’01), volume 2215 of Lecture

Notes in Computer Science, pages 219–242. Springer-Verlag, Oc-

tober 2001.

[Plo81] G. D. Plotkin. A structural approach to operational semantics.

Technical Report DAIMI FN-19, Aarhus University, 1981.

[PS93a] Benjamin Pierce and Davide Sangiorgi. Typing and subtyping

for mobile processes. In Proceedings of the 8th Annual IEEE

Symposium on Logic in Computer Science (LICS ’93), pages

376–385. IEEE Computer Society Press, June 1993.

[PS93b] Andrew M. Pitts and Ian D. B. Stark. Observable properties of

higher order functions that create local names, or: What’s new?

In Proceedings of 18th International Symposium on Mathemat-

ical Foundations of Computer Science, volume 711 of Lecture

Notes in Computer Science, pages 122–141. Springer-Verlag,

1993.

[PS95] Joachim Parrow and Davide Sangiorgi. Algebraic theories for

name-passing calculi. Journal of Information and Computation,

120(2):174–197, 1995.

371

BIBLIOGRAPHY

[PT94] Benjamin C. Pierce and David N. Turner. Simple type-theoretic

foundations for object-oriented programming. Journal of Func-

tional Programming, 4(2):207–247, 1994.

[PT95] Benjamin C. Pierce and David N. Turner. Concurrent objects

in a process calculus. In Takayasu Ito and Akinori Yonezawa,

editors, Proceedings Theory and Practice of Parallel Program-

ming (TPPP 94), pages 187–215, Sendai, Japan, 1995. Springer

LNCS 907.

[PT98] Benjamin C. Pierce and David N. Turner. Pict: A programming

language based on the pi-calculus. CSCI Technical Report 476,

Indiana University, March 1998.

[RH98] James Riely and Matthew Hennessy. A typed language for dis-

tributed mobile processes. In Conference Record of the 25th

Symposium on Principles of Programming Languages (POPL

’98), pages 378–390, New York, NY, 1998.

[Ros98] A. W. Roscoe. The Theory and Practice of Concurrency. Pren-

tice Hall, 1998.

[San92] Davide Sangiorgi. Expressing Mobility in Process Algebras:

First-Order and Higher-Order Paradigms. PhD thesis, Depart-

ment of Computer Science, Edinburgh University, 1992.

[San96] Davide Sangiorgi. An interpretation of typed objects into typed

π-calculus. Technical Report RR-3000, Inria, Institut National

de Recherche en Informatique et en Automatique, 1996.

372

BIBLIOGRAPHY

[Sch94] Fred B. Schneider. A role for formal methodists. In Fourth

International Workshop on Dependable Computing for Critical

Applications, pages 29–30, January 1994.

[SL96] Jean-Guy Schneider and Markus Lumpe. Modelling objects in

pict. Technical Report IAM-96-004, Institute for Computer Sci-

ence and Applied Mathematics, University of Berne, January

1996.

[SL00] Jean-Guy Schneider and Markus Lumpe. A metamodel for

concurrent, object-based programming. In Christophe Dony

and Houari A. Sahraoui, editors, Proceedings of Languages

et Modèles à Objets ’00, pages 149–165, Mont Saint-Hilaire,

Québec, January 2000.

[Smi99] Graeme Smith. The Object-Z Specification Language. Advances

in Formal Methods. Kluwer Academic Publishers, December

1999.

[Smi01] Graeme Smith. State-based approaches: from Z to object-Z. In

H. Bowman and J. Derrick, editors, Formal Methods for Dis-

tributed Processing: a Survey of Object-Oriented Approaches,

pages 105–125. Cambridge University Press, 2001.

[Spi92] J. M. Spivey. The Z Notation: A Reference Manual. Prentice

Hall, 2nd edition, 1992.

[Str91] B. Stroustrup. The C++ Programming Language. Addison-

Wesley, 1991.

[SW01] Davide Sangiorgi and David Walker. The π-Calculus: A Theory

of Mobile Processes. Cambridge University Press, 2001.

373

BIBLIOGRAPHY

[SWM96] George Shepherd, Scott Wingo, and Dean D. McCrory. MFC

Internals: Inside the Microsoft Foundation Class Architecture.

Addison-Wesley, May 1996.

[TB02] Malcolm Tyrrell and Andrew Butterfield. Typing and subtyping

for an object-oriented process algebra. Technical Report TCD-

CS-2002-08, Department of Computer Science, Trinity College,

Dublin, February 2002.

[THS96] J. Threet, J. Hale, and S. Shenoi. A process calculus for dis-

tributed objects, 1996. Submitted to 15th Symposium on Prin-

ciples of Distributed Computing (PODC ’96).

[Vas94a] V. T. Vasconcelos. Typed concurrent objects. In Proceedings

of 8th European Conference of Object-Oriented Programming

(ECOOP ’94), volume 821 of Lecture Notes in Computer Sci-

ence. Springer-Verlag, 1994.

[Vas94b] Vasco T. Vasconcelos. Recursive Types in a Calculus of Objects.

Transactions of the Information Processing Society of Japan,

35(9):1828–1836, September 1994.

[Vas01] Vasco T. Vasconcelos. TyCO Gently. University of Lisbon, 2001.

[VB98] Vasco T. Vasconcelos and Rui Bastos. Core-TyCO: The lan-

guage definition, version 0.1. Technical Report TR-98-3, Depar-

tamento de Informática, Faculdade de Ciências da Univeridade

de Lisboa, March 1998.

[vdL89] Rick F. van der Lans. The SQL standard: a complete reference.

Academic Service, Schoonhoven, The Netherlands, 1989.

374

BIBLIOGRAPHY

[vG97] R.J. van Glabbeek. Notes on the methodology of CCS and CSP.

Theoretical Computer Science, 177:329–349, 1997.

[Wal95] David Walker. Objects in the pi-calculus. Information and

Computation, 116:253–271, 1995.

[WF91] Andrew K. Wright and Matthias Felleisen. A syntactic approach

to type soundness. Technical Report COMP TR91-160, Depart-

ment of Computer Science, Rice University, April 1991.

[WRW96] A. Wollrath, R. Riggs, and J. Waldo. A distributed object model

for the Java system. In 2nd Conference on Object-Oriented Tech-

nologies & Systems (COOTS), pages 219–232. USENIX Associ-

ation, 1996.

[XdRH97] Qiwen Xu, Willem-Paul de Roever, and Jifeng Hi. The rely-

guarantee method for verifying shared variable concurrent pro-

grams. Formal Aspects of Computing, 9(2):149–174, 1997.

375

