Stigmergy-Based QoS Optimisation for Flexible
Service Composition in Mobile Communities

Andrei Palade, Siobhan Clarke
School of Computer Science and Statistics, Trinity College Dublin, Ireland, {paladea,siobhan.clarke} @scss.tcd.ie

Abstract—Mobile users can form a service-sharing community
within a geographic area by using their mobile devices. Finding
Quality of Service (QoS) optimal service compositions in such
mobile environments is challenging because of the inherent
dynamism in services deployed on mobile devices. Existing
service composition proposals for mobile environments either
use template-matching composition or require a-priori knowledge
about the QoS objectives’ weights, which limits the composition
flexibility in such environments. This paper introduces a QoS
optimisation mechanism for planning-based service composition
in mobile environments, where mobile software agents use stig-
mergic coordination to iteratively explore parts of the distributed
service composition space to approximate a set of QoS optimal
configurations. We present a mechanism that minimises the
exploration of previously identified non-optimal solutions to
encourage exploration of different parts of the service space. We
evaluate the performance of the proposed approach and compare
the results with a baseline variant, a Dijkstra-based, a Greedy
and a Random approach. The results show that the proposed
approach can achieve higher utility compared to the evaluated
proposals at the cost of increased overhead.

Index Terms—Mobile, QoS-Aware Service Composition

I. INTRODUCTION

In mobile environments, how to efficiently construct QoS
optimal service compositions is a challenging task. Compo-
sition participants may fail or may provide different QoS
levels [1]. Most composition proposals solve the QoS optimal
service composition problem using template-matching, where
functionally-equivalent services, but with different QoS, are
optimally assigned to a predefined workflow of tasks. Such an
exactly-defined request affects the flexibility of composition
when the environment is dynamic. The available services
can be dynamically combined in an input-output dependency
graph, where each node corresponds to one service, and
an edge represents a syntactic matching between the two
connected services. Planning-based algorithms can find a path
in this graph from the initial state to a goal state [2]. Without
QoS consideration, the shortest path is normally identified.
With QoS considerations, finding an optimal path is difficult.
The shortest path might not be optimal, since a longer path
may have better QoS. Also, the inherent dynamism in services
deployed on mobile devices may affect the search [2].

Existing planning-based proposals require a-priori knowl-
edge about the QoS objectives’ weights. These proposals use
exact or heuristics methods to find QoS optimal compositions,
with computational efficiency and optimality implications [3].
Metaheuristics can balance the trade-off between computa-
tion efficiency and optimality, but existing proposals either
are limited to template-matching composition or require a

centralised perspective [4]. However, mobile environments
need flexible interactions which may benefit from decen-
tralised processing. Stigmergic coordination has been used
successfully in finding QoS optimal routes in networks with
frequent link disconnections, and rapid topology changes such
as Mobile (Vehicular) Ad-Hoc Networks [5]. However, the
existing stigmergy-based composition mechanisms are limited
to template-matching composition. An efficient and effective
QoS optimisation method for planning-based service com-
position that can quickly find a set of QoS optimal service
configurations in a mobile environment is required.

The contributions of this paper are: (1) an approximate,
stigmergy-based QoS optimisation mechanism for decen-
tralised, planning-based service composition; (2) a mechanism
that minimises the exploration of previously identified non-
optimal solutions to encourage exploration of different service
composition configurations.

II. PROPOSED MECHANISM

The proposed QoS optimisation method is inspired by
the Ant Colony Optimisation [5]. The mechanism uses a
decentralised architecture, which allows service composition
configurations to adapt in mobile environments. Both service
requesters and providers are mobile. Using a service discovery
component, a user’s request can be functionally modelled
as a service dependency graph. A node in the graph can
function as a source, destination or intermediate node. The
source and destination node can be the service requester node.
The intermediate nodes are the composition participants. Each
intermediate node stores a list of addresses of the service
providers that can provide the next service in the graph. A
pheromone level is associated with each service provider in the
list. The amount of pheromone is associated with the quality
of the service. The agents modify this value, to communicate
the quality of solution to other agents that visit the node.

Forward agents and backward agents are used to itera-
tively traverse the graph. The forward agents move in the
graph using the intermediate nodes” probability routing tables:
Pp = #, where 7; is the pheromone level and D
represents the ‘service nodes, which are following the current
node in the graph. As they travel towards the destination
node, the forward agents collect paths’ QoS information. This
information contains the QoS of each service component in the
path and is added to the agent’s memory and aggregated. When
all the forward agents reach the destination node, the identified
paths are filtered using a non-dominated sorting technique

to identify the Pareto-optimal paths (optimal solutions). At
the destination node, forward agents become backward agents
only if their identified path is Pareto-optimal. As backward
agents move in the reverse path, the intermediate nodes modify
their pheromone matrix using: 7; = 7; + 7; * (Q1/1;) (positive
reinforcement) where 7; is the pheromone level, Q1 is a
constant and / is the length of the i-th path. To allow for new
paths to emerge, an evaporation procedure 7; = 7; * (1 — p)
is used. Heuristic information is not used in this work to
avoid expensive network state dissemination. To minimise the
exploration of previously identified non-optimal service con-
figurations, a new pheromone update mechanism is introduced.
This allows the backward agents associated with non-optimal
solutions to update the pheromone levels on the intermediate
nodes. This is done through 7; = 7; — 7; * (Q2/l;) (negative
reinforcement) combined with a [Tiin, Tmas| TESEL Strategy,
where T, and 7,4, are lower/upper bounds for pheromone
level and @)- is a constant, [is the length of the path.

III. IMPLEMENTATION AND EVALUATION

Each service in the graph is initialised with response time
and throughput from the WS-Dream [6]. The evaluation is
limited to two objectives, but multiple objectives can be
considered such as battery lifetime and service availability. The
user’s request is a route planner application [2], provisioned
using the services on the mobile devices in user’s proximity.
For simplicity, the service dependency graph is represented as
a k-ary tree with 8, 16, 32 and 64 paths available. Each node
corresponds to one mobile (physical) node. The nodes move at
a speed of 7.5 to 13.5 m/s. The environment’s properties are:
size - 1000*1000 m, communication range - 250 m, movement
model - Gauss Markov. Two variants of the proposed QoS opti-
misation mechanism ACO1 (uses only positive reinforcement)
and ACO?2 (uses positive and negative reinforcement with the
reset strategy) are evaluated using Simonstrator (an event-
based simulator for mobile environments). These algorithms
produce a set of Pareto-optimal solutions. We use weighted
sum to merge all the objectives into a single objective (both
objectives have equal weight) to be able to compare the
utility [4] and overhead with SimDijkstra [7], GoCoMo [2],
and Random. To initialise ACOl and ACO2 we use the
following values: o = 0.1, p = 0.01, ; = 10 and Q5 = 10.
Initially, 7 is 10. The interval [Tynin, Timaz] i set to [1,20].

IV. RESULTS AND FUTURE WORK

Figure la shows the improvement in utility as the number
of iterations of ACOl and ACO2 increases from 50 to 250
iterations, and number paths available is set to 64. In the
full set of experiments (not illustrated for space reasons),
we also report the utility values when 8, 16, 32 paths are
available. The utility is calculated using the configurations
produced by ACO1 and ACO?2 in the past 50 iterations, and
the single configuration produced by SimDijkstra, GoCoMo
and Random. By increasing the number of iterations, ACO2
achieves a higher utility than ACO1. When 64 paths are
available, the difference between ACO2 and ACO1 increases
from 2% after 50 iterations to 12% after 250 iterations. When

1
0.8

0.6

0.4

+
0

50 100 150 200 250

Iterations
ACO2

=1 RANDOM = RANDOM

(a) Utility. (b) Overhead.

Fig. 1. Figure la shows the utility of solutions produced by the evaluated
algorithms when 64 paths are available. Figure 1b shows the overhead when
various number of paths. The results are averaged over 30 executions.

16 and 32 paths are available, the utility difference between
the two variants increases from 3% at 50 iterations to 10%
after 250 iterations. The lowest difference in utility between
the two variants is when only 8 paths are available and
the number of iterations is 50. However, as the number of
iterations is increased to 250 iterations, the difference in utility
between ACO2 and ACO1 increases to 3%. The SimDijkstra
and Random have the lowest utility for all runs. GoCoMo
performs comparably to the ACO variants.

Figure 1b shows the overhead (number of exchanged mes-
sages) after 250 iterations as the number of available paths
in the service dependency graph varies. In GoCoMo, a global
state mechanism periodically disseminates network state to all
participating nodes, which explains the high overhead. This
mechanism is not used in SimDijkstra and Random and the
overhead introduced by these two algorithms is insignificant.
However, the utility of solutions of these algorithms is con-
siderably lower than the utility produced by ACO variants and
GoCoMo. ACO1 and ACO?2 introduce a higher overhead than
the other approaches because of the large number of agent
messages. This number is task dependent, and, for simplicity,
it was set to the number of nodes in the service dependency
graph. Tuning this parameter would likely reduce the overhead,
though this needs to be verified. The overhead introduced by
ACO2 compared to ACOL is insignificant.

The proposed QoS optimisation mechanism obtains more
optimal solutions than the evaluated optimisation approaches
for decentralised, planning-based service composition in mo-
bile environments. The proposed reinforcement mechanism
can produce service composition configurations of higher util-
ity than positive-only reinforcement in mobile environments.

ACKNOWLEDGMENT
This work was funded by SFI under grant 13/IA/1885.

REFERENCES

[1] Z. Wang, D. Huang, H. Wu, Y. Deng, A. Aikebaier, and Y. Teranishi,
“Qos-constrained sensing task assignment for mobile crowd sensing,” in
GLOBECOM. 1EEE, 2014.

[2] N. Chen, N. Cardozo, and S. Clarke, “Goal-Driven Service Composition
in Mobile and Pervasive Computing,” IEEE TSC, vol. 11, no. 1, 2018.

[3] S. Chattopadhyay and A. Banerjee, “Qos constrained large scale web
service composition using abstraction refinement,” IEEE TSC, 2017.

[4] Q. Wu, F. Ishikawa, Q. Zhu, and D.-H. Shin, “QoS-Aware Multigranular-
ity Service Composition: Modeling and Optimization,” IEEE Transactions
on Systems, Man, and Cybernetics: Systems, vol. 46, no. 11, 2016.

[5] L. Wang and J. Shen, “A systematic review of bio-inspired service
concretization,” IEEE TSC, vol. 10, no. 4, 2017.

[6] Z. Zheng, Y. Zhang, and M. R. Lyu, “Investigating QoS of Real-World
Web Services,” IEEE TSC, vol. 7, no. 1, 2014.

[71 W. Jiang, S. Hu, and Z. Liu, “Top K query for qos-aware automatic
service composition,” IEEE TSC, vol. 7, no. 4, 2014.

35

! | ‘ |
8 | |
8 16 32 64

Number of Paths
ACO2

Utility (%)
Overhead (# Messages)
o

mACO1
=GOCOMO

® SimDijkstra mACO1

= GOCOMO

u SimDijkstra

