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Abstract. Users within a limited geographic area can form service-
sharing communities using the services deployed on their mobile devices.
Creating Quality of Service (QoS) optimal service compositions in such
decentralised and dynamic environments is challenging because of the
service providers’ mobility and the inherent dynamism in the available
services. Existing proposals for mobile environments either use template-
matching composition or require a-priori knowledge about the QoS ob-
jectives’ weights, which limits the composition’s flexibility in such en-
vironments. This paper presents a stigmergic-based approach to model
the decentralised, flexible and dynamic service interactions of providers
in a mobile environment. A nature-inspired optimisation mechanism is
used to approximate the set of QoS optimal compositions that result
from these interactions. To facilitate adaptation of the composite during
execution, we introduce a procedure that encourages the exploration of
service composition configurations that emerge as a result of providers’
mobility. We evaluate the performance of the proposed approach with
a no-adaptation variant, a Dijkstra-based, a Greedy and a Random ap-
proach. The results show that the proposed approach can obtain superior
solutions compared with current optimisation methods for flexible service
composition in mobile environments at the cost of increased overhead.
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1 Introduction

Recent developments in wireless communications technologies allow the mobile
users within a limited geographical area to share services deployed on their mo-
bile devices to form a service-sharing community, which can enable new service-
based applications. Such applications are generally distributed among several
devices since a single device is not capable of executing an entire application.
For example, a smart route planner for users in a mall can be opportunisti-
cally provisioned by exploiting the ad-hoc interactions of a personal-shopper’s
phone, a nearby car’s satellite navigator, and the mall’s information kiosk to en-
able the requested functionality [8,17]. Apart from the functional requirements,
this composition process should create solutions with the best possible QoS. In
the envisioned environment this is challenging because services may fail, their
qualities may decline because of the mobility of devices, or functionally similar
services with better QoS may appear during the execution of the composition.
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Most service composition proposals use a template-matching approach to pro-
vision QoS optimal configurations. This approach relies on functionally-equivalent
services, but with different QoS, to be optimally assigned to a predefined work-
flow of tasks. Such an exactly-defined request affects the composition’ flexibility
when the environment is dynamic [8]. The services can be combined in an input-
output dependency graph, where each node corresponds to one service, and an
edge is a matching between two connected services. Planning-based algorithms
can be used to find paths in this graph using goal-driven approaches [8]. Without
QoS consideration, the shortest path is normally identified. With QoS consid-
erations, finding an optimal path is difficult. The shortest path might not be
optimal, since a longer path may have better QoS. The providers’ mobility and
the dynamism in services deployed on their devices may affect the search [30].

The existing QoS optimisation mechanisms for planning-based service com-
position in mobile environments require a-priori knowledge about QoS objec-
tives’ weights, and use exact or heuristics methods to find one optimal solution.
This requirement reduces the composition’ flexibility, and does not allow for dif-
ferent quality trade-offs to be thoroughly investigated. Also, the exact or heuris-
tics methods trade optimality for computational efficiency, or vice-versa [7].
Nature-inspired metaheuristics address these limitations by constructing one or
more solutions and gradually improve these through an iterative process. How-
ever, the existing proposals are limited to template-matching composition [16]
or require a centralised perspective [26,28]. Mobile environments need flexible
interactions, which may benefit from decentralised processing.

Stigmergic coordination has been used successfully in finding QoS optimal
routes in networks with frequent link disconnections, and rapid topology changes
such as Mobile (Vehicular) Ad-Hoc Networks [25]. However, the existing stigmergy-
based proposals are limited to template-matching composition [16]. An efficient
and effective QoS optimisation method for planning-based service composition
that can quickly find a set of QoS optimal compositions in a mobile environment
is required to provide higher utility with acceptable overhead.

This paper presents a stigmergic-based approach to model the decentralised,
flexible service interactions in a mobile environment. New compositions (with
better QoS) may emerge as a result of providers’ mobility. The main contribu-
tions of this paper are: (1) a nature-inspired optimisation method to approximate
the set of QoS optimal compositions; (2) to facilitate composition adaptation
during execution, a procedure that encourages the exploration of new service
composition configurations that emerge as a result of providers’ mobility. We
evaluate the performance of the proposed approach and compare the results with
a no-adaptation variant, a Greedy, a Dijkstra-based and a Random approach.
The proposed approach can obtain superior solutions compared with existing
optimisation methods for flexible service composition in mobile environments.

The paper defines the QoS optimisation problem in planning-based composi-
tion in Section 2, presents the stigmergic modelling of composition, the proposed
QoS optimisation and adaptation procedure in Section 3, the implementation
and evaluation of these methods in Section 5, and the evaluation results in Sec-
tion 6. Section 7 presents the related work, and Section 8 concludes the paper.
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2 Problem Description

The services deployed on mobile devices in a geographic area such as a mall [8]
or an university campus [9] can be used to create new service-based applications.
To enable such applications, services can be clustered based on their syntactic
or semantic similarity using a Service-Specific Overlay Network [1]. Goal-driven
service composition using planning-based algorithms can automatically solve a
user’s request using the available services in these clusters [8].

Figure 1 shows the result to a user’s request, which is a service dependency
graph with three possible service composition solutions (paths): Py, Py and Ps.
In this example, the inputs of service S can be satisfied by the outputs of service
S1. When two or more nodes (services) in the graph share the same input, an
execution guidepost is created [8]. An execution guidepost G; = <R;q, D> is a
split-choice control element in the composition process that maintains a set of
execution directions (branches) D for a composition request R;4. Each element
in the set D is defined as d; = <id,w>, where j < |D|, w represents the set
services in the branch and id represents the identifier of the branch. For example,
at G two paths can complete the execution: Ps: {Sy — Sg} and {Ps — S7}. In
the envisioned environment, new service compositions can emerge as a result of
providers’ mobility. New nodes can be attached at runtime to the graph if they
can provide the required inputs/outputs [8,9].

Apart from the functional requirements, a composite service needs to satisfy
non-functional requirements. Given a set of QoS objectives, the challenge is how
to efficiently construct a composite service that maximises the satisfaction of
these QoS requirements. Such multi-objective optimisation problems are charac-
terised by several objectives that have to be optimised simultaneously. When a
user’s preferences about each objective weight are known, the task is to find the
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Fig. 1. A service dependency graph with 3 available service compositions (paths): Py,
P and P,. Paths Ps, Pi, Ps, Ps, Pr are alternative paths that can be selected at
execution time. Services Table shows the QoS for each service 7 in the graph, and Path
Table shows the aggregated QoS for each path. These values are aggregated using the
formulas in Table 1.
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Table 1. QoS aggregation formulas.

Parameter Aggregation Formula|Description
RT (Response Time) >t rt - response time of i-th service
Th (Throughput) min(th;) th - throughput of i-th service

service combination that can optimise a global utility function. However, when
this information is not available, compromises among multiple objectives need
to be made to identify the set of Pareto-optimal solutions. A Pareto-optimal
solution is a solution that is not dominated by any other solution in the set. The
population of such solutions form the Pareto-optimal set (Pareto-front) [14, 23],
and are generally identified using non-dominated sorting techniques [15].

While the QoS values of each service in the graph can generally be estimated
using existing QoS prediction mechanisms [27], finding valid paths in this dy-
namic graph is challenging. The QoS values of services may be time-dependent,
or services may become un-available because of the mobility of service providers.
In contrast to optimisation towards a static optimum, the goal in a dynamic en-
vironment is to track as closely as possible the dynamically changing optima [4].
Prior optimisation methods for planning-based service composition in mobile
environments used exact or heuristics algorithms to address this problem. Exact
algorithms can find the optimal solution, but lack scalability because of their
exponential complexity. Heuristics have polynomial complexity, but do not offer
any worst-case guarantees on how close the QoS values of the returned solutions
come to the QoS values of the Pareto-optimal ones [23]. Also, the existing pro-
posals require a centralised perspective, which, in the envisioned environment,
is a single point of failure or has the potential to cause processing and communi-
cation bottlenecks because of frequent state updates. Mobile environments need
flexible interactions, which may benefit from decentralised processing.

3 QoS Optimisation Mechanism

Stigmergic coordination, exhibited by the social insects to coordinate their ac-
tivities, can be used to enable service-based applications in mobile environments.
A set of mobile software agents interact with the environment by encoding
application-specific information as pheromone to achieve certain tasks. These
agents achieve collaboration and self-organisation by exchanging pheromone and
performing several pheromone operations. A service is composed by a group of
service agents that can form an organisation in order to collaborate. We use this
abstraction to model the decentralised, flexible service interactions in a mobile
environment. We are extending the notation used by Moustafa et al. [16] to ac-
count for the forward-backward motion of the mobile agents, which is used to
reinforce the optimal paths [21].

Definition 1. Service Agent (sa). A tuple sa = <id, F’>, where id is the
agent’s identifier and F is the pheromone store used during composition.

Definition 2. Pheromone Store (F). A tuple F = <id, f>, where id is the
identifier of the direction and f is the pheromone value associated with that di-
rection.
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Definition 3. Memory Store (M). A set M = {say,...,sa,} where each

element in the set is a service agent.
Definition 4. Mobile Agent (ma). A tuple ma = <id, M >, where id is the

identifier of each agent, and M is the memory store associated with that agent.

The proposed QoS optimisation method is inspired by Ant Colony Opti-
misation [25]. The mechanism uses a decentralised architecture, which allows
service composition configurations to adapt in mobile environments. A service
composition request is satisfied by a requester service agent. Using a service
discovery component, a user’s request can be functionally modelled as a service
dependency graph (Figure 1). Each service in the service dependency graph is
modelled using a service agent. A node in the graph is a service agent, and can
function as a source, destination or intermediate node. The source and destina-
tion node can be the service requester agent. The intermediate nodes are the
composition participants. Each intermediate node (service agent) stores a list of
addresses of the service agents that can provide the next service in the graph. A
pheromone level is associated with each service agent in the list. The quantity of
pheromone is associated with the quality of the service provided by that service
agent.

For each service composition optimisation task, a set of mobile agents is
used. The mobile agents communicate through the pheromone store of each
service agent. The mobile agents modify this value, to communicate the quality
of solution to other mobile agents that visit the node. The number of mobile
agents is task dependent. For simplicity, this number is set to the number of
nodes in the service dependency graph. This number can affect the overhead, as
well as the performance of the optimisation method. In this work we focus on
the impact of the environment variables on the optimisation mechanism.

The mobile agents can iteratively traverse the graph in a forward-backward
motion. The forward moving mobile agents use the intermediate nodes’ proba-
bility routing tables to advance in the graph:
_

S

where d is a branch in the set of branches D (as defined in Section 2), and 7
is the pheromone level associated with the first node (service agent) from branch
d. As they travel towards the destination node, the forward agents collect paths’
QoS information. This information contains the QoS of each service component
in the path and is added to the agent’s memory store and aggregated. When all
the forward agents reach the destination node, the identified paths are filtered us-
ing a non-dominated sorting technique [15] to identify the Pareto-optimal paths
(optimal solutions). At the destination node, forward agents become backward
agents only if their identified path is Pareto-optimal. As backward agents move
in the reverse path, the intermediate nodes modify their pheromone store using:
T = 7i + 7 x (Q/l;) (positive reinforcement) where 7; is the pheromone level,
Q@ is a constant and [ is the length of the i-th path. To allow for new paths to
emerge, an evaporation procedure 7; = 7; x (1 — p) is used. Heuristic information
is not used in this work to avoid expensive network state dissemination.

Py (1)
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4 Adaptation Procedure

To facilitate composition adaptation during execution, a procedure that encour-
ages the exploration of new service composition configurations that emerge as
a result of providers’ mobility is required. The stigmergic optimisation mecha-
nism can converge to the optimal solution by selecting the path with the highest
pheromone value. However, the envisioned environment introduces two addi-
tional challenges to finding the optimal configuration: (1) services in the service
dependency graph may join or leave at any time because of the mobility of the
providers; (2) the QoS of the services offered by such providers may vary in time.
Therefore adaptation procedure must be promoted to effectively address these
issues.

To facilitate composition adaptation during execution, and allow other parts
of the solution space to be explored, we use a pheromone smoothing scheme.
This scheme allows identified optimal paths to be reinforced with lesser phero-
mone [22]. This allows for other (some previously marked as non-optimal) paths
to be explored. Each element in the pheromone store is updated as follows:

Tij' = Tij +5*(Tmax —Tij) (2)

where 7;; is the new pheromone level, 7;; is the previous pheromone level, &
is a smoothness coefficient and 7,4, is the maximum pheromone level that can
be associated with this path.

While evaporation adopts a uniform discount rate for every node, the pher-
omone smoothing technique places a greater reduction in the reinforcement of
pheromone concentration on the optimal path(s), by reducing the rate of rein-
forcement of dominant paths [21]. Previous research showed that such technique
can prevent the generation of dominant paths. Stuzle and Hoos [22] introduced a
similar mechanism to solve the travelling salesman problem, but in a stationary
environment. Also, this approach showed promising results in a dynamic, but
stationary Wireless Sensor Networks environment [5].

In the envisioned environment, the topology of the service dependency graph
can change continuously. The devices on which the services are deployed may
move out of range, or may be power depleted. If these services are part of the
optimal service composition paths, when the environment changes, other paths
in the service dependency graph may become optimal during the execution of the
composition. Also, new service composition may emerge because of the mobility
of users, which may have more optimal QoS.

In this paper, we are proposing this approach as an adaptation handling
procedure for planning-based service composition in mobile environments. Each
service agent is allocated with two pheromone update rules, which will be ex-
ecuted periodically. These rules are the evaporation and pheromone smoothing
of each element in the pheromone store.
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Fig. 2. PS (A) metric. Example of space dominated (in orange) by a given Pareto set
(points X1, Xa, X3, X4 and X5) when two objectives are minimised.

5 Implementation and Evaluation

The proposed QoS optimisation method is implemented and evaluated using the
Simonstrator platform [19]. The proposed QoS optimisation algorithm, both with
and without the adaptation handling, produces a set of solutions for each traver-
sal of the service dependency graph. First, we evaluate how well the proposed
QoS optimisation mechanism approximates the set of Pareto-optimal solutions.
We perform the evaluation with and without adaptation handling. Second, we
measure utility of the produced solutions and the introduced overhead of the
proposed QoS optimisation mechanism, with and without adaptation handling.
We compare the results with a Dijkstra-based, a Greedy and a Random ap-
proach. The two objectives considered in this evaluation are the response time
and the throughput, but multiple objectives can be considered such as battery
lifetime of devices and service availability. We assume that each node in the
service dependency graph stores the estimated QoS value.

5.1 Performance metrics

PS (A) - Size of dominated space: This metric was introduced by Zitzler
and Thiele [35] and indicates how well the Pareto-optimal set is approximated
by the set of solutions A. Here, the set A contains only non-dominated solutions.
The greater the size of the space dominated, the closer the solutions are to the
Pareto-optimal set [26]. This metric is calculated as follows:
S(A

PS(A) = 31z Iilvf)az 17> and 3)

S(A) = (Maz I — 1) * (Maz IT —y1) + Y i o(Maz I — ;) * (yic1 — yi)

where Max I and Maxz II are the maximum values of Objective I and Ob-
jective II. These two values are used to create the Reference Point Xg. As an
example, Figure 2 shows the composition of set A, which is a Pareto front made
of 5 points. The dominated space is given by the orange surface.

Utility This metric indicates the overall satisfaction of QoS requirements of
a service composition configuration [2]. Certain QoS values such as response
time are considered negative criteria and need to be minimised to increase user
satisfaction, whereas others such as throughput are considered positive criteria
and need to be maximised.



8 Andrei Palade, Christian Cabrera, Gary White, Siobhan Clarke

Q:m”*Qz Qi—Q;”m ; max __ )min
Usmin = { QU =@ Uymax = { Q7" -Q"" Qi @ _ 70 (4)
1 1 ZfQ;mam _ Q;rmn =0

where Q; is a QoS value, and Q7" and Q** are the minimum/maximum
QoS values available for @;. Equation 5 computes the utility of each service

composition configuration as follows:
n

Utilityy =y U; x W; (5)
1

where W; represents the importance weights assigned to the i-th metric. Each
weight is a number in the range [0, 1] and the sum of all weights is equal to 1.
In this evaluation, all objectives carry an equal weight.

Overhead The overhead measures the number of exchanged messages between
the nodes used during the composition. This metric includes all the types of
messages that are exchanged, including retransmission or probing messages.

5.2 Evaluated Algorithms

We chose several QoS optimisation mechanisms designed for planning-based ser-
vice composition to compare their utility and overhead with our proposed model.
Each algorithm was implemented in the simulator. Also, two versions of proposed
QoS optimisation were formalised:

1. ACO: the implementation of the QoS optimisation mechanism described in
Section 3, without the adaptation procedure.

2. E-ACQO: an extension to ACQO, which uses the proposed adaptation proce-
dure introduced in Section 4.

An important limitation of the selected baseline algorithms is that they re-
quire user’s QoS preferences and they produce a single solution, whereas the
proposed QoS optimisation mechanism can does not have a requirement for user
input (for QoS weights) and may produce a set of solutions. We use the util-
ity metric to select a single solution from the set of Pareto-optimal solutions
produced by ACO and E-ACO algorithms. We compare the utility values and
overhead with the existing proposals for QoS optimal service composition in
mobile environments:

1. SimDijkstra: an exact algorithm that uses a Dijkstra-based algorithm to
find the shortest path in the service dependency graph [11]. The execution
of the algorithm finishes when the end node is reached.

2. GoCoMo: a heuristics-based algorithm that uses a Greedy-based approach
to select the path with the highest utility value to the user. It uses monitors
to collect QoS of potential paths. Probes are sent regularly to update the QoS
information from the leaf nodes to each guidepost in the service dependency
graph [8].
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3. Random: randomly selects the next service in the service dependency graph.
This algorithm shows the expected value of a random solution and provides
a baseline that the specialised algorithms should easily outperform [13].

5.3 Test case generation

For the purpose of evaluation, we use a scenario based on an adaptive route
planner application [8]. Such an application can be built using services provided
by the available (mobile) devices in the environment. Many services can pro-
vide similar functionality and more than one service composition configuration
may be available. The composition with the optimal QoS should be selected to
maximise user satisfaction of non-functional requirements.

The response time and throughput of the final composite service were mea-
sured. These values are used to compute the utility of the final composition plan.
For ACO and E-ACQO, we also measure the size of the dominated space based on
a reference point fixed using the best QoS values for response time and through-
put. In this evaluation, the reference point was set to the highest throughput
plus 5 units and the lowest response time minus 0.1 units. For each algorithm
presented in Section 5.2 we also measured the ovearhed. To minimise the impact
of external factors on our results, the presented algorithms were executed 100
times per problem instance to compute the averages.

5.4 Environment Setup

The mobile devices in the environment move at a speed of 7.5 to 13.5 m/s. The
other environment’s properties are: size - 1000¥*1000 m, communication range -
250 m, and movement model - Gauss Markov. Each device is set to offer one
service. Each service has QoS values. We use a QoS dataset to initialise the
QoS of each service participant, which consists of a matrix of response time and
throughput values for 339 users by 5,825 services [34]. To address the dynamism
in the services available in the environment, these QoS values are randomly
changed after every service iteration by multiplying every QoS value with a ran-
dom number in the interval [0.9, 1.1]. For simplicity, only QoS discrete numerical
values are considered in this work.

In ACO and E-ACO a number of parameters need to be set before running
the algorithm such as the number of mobile agents, the factor «, parameter
@, the pheromone coefficient p, and the initial pheromone level in each node. A
larger number of mobile agents improves the convergence rate, however, overhead
is introduced. We set the number of mobile agents to be equal to the number
of nodes in the service dependency graph. The other parameters are initialised
as follows: @ = 0.9 , p = 0.01, Tynitiar = 10.0, and @ = 10. The adaptation
procedure is initialised using 7,4, = 20.0 and § = 0.5. The smoothing rate is
set to (evaporation rate) * 0.5.

6 Results

6.1 Size of dominated space

Figure 3 shows how the size of the dominated space achieved by ACO and E-
ACO evolves as the number of iterations is increased. The size of the dominated
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Fig. 3. Evolution of PS (A) metric (defined in Section 5.1) after 250 iterations for
different number of paths (higher is better).

space indicates how well the Pareto-optimal set is approximated by the identified
solutions. The greater the size of the space dominated, the closer the solutions are
to the Pareto-optimal set. This metric was defined in Section 5.1. We show the
results of this evaluation for the cases when the number of available paths (size
of the solution space) is 16, 32, 64, and 128. When 16 paths are available, the size
of the dominated space for ACO is 63.32% after 10 iterations and decreases to
60.54% after 250 iterations, whereas for E-ACO maintains a level of 64%. When
the number of paths increases to 32, ACO obtains 64.07% after 10 iterations and
decreases to 60.56% after 250 iterations, whereas E-ACO slowly increases from
64.35% to 64.76%.

Both ACO and E-ACO increase the size of their dominated space as the
number of available paths increases. For example, when 128 paths are available
ACO achieves 67.59% and E-ACO achieves 66.96%. However, ACO maintains
the same decreasing slope and achieves 64.51% after 250 iterations, whereas E-
ACO achieves 68.45% after 250 iterations. We also report that when the size of
the solution space is 64, ACO achieves 67.05% after 10 iterations and 62.90%
after 250 iterations, whereas E-ACO achieves 66.96% after 10 iterations and
68.45% after 250 iterations.

6.2 Utility

Figure 4 shows the results of the utility evaluation as the number of available
paths (service composition configurations) is increased. We show the results of
this evaluation for the cases when the number of available paths (size of the
solution space) is 16 (Figure 4a), 32 (Figure 4b), 64 (Figure 4c), and 128 (Fig-
ure 4d). The utility is calculated using the configurations produced by ACO and
E-ACO in the last 5 iterations, and the configurations produced by SimDijkstra,
GoCoMo and Random. This metric was defined in Section 5.1. Both objectives
have equal weights.

By increasing the number of iterations, two trends can be observed for ACO
and E-ACO: (1) the utility of both increases as the number of paths increases,
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Fig. 4. The utility of solutions produced by the evaluated algorithms (higher is better)
after 250 iterations for different number of paths. The results are averaged over 100
executions.

and (2) the utility of ACO is higher than the utility of E-ACO after 100 itera-
tions. This difference decreases as the number of paths increases. When 16 paths
are available, ACO achieves an utility of 86.58% and E-ACO achieves an utility
of 80.38%. This decreases to 93.26% for ACO and 88.52% for E-ACO, when 128
paths are available. The SimDijkstra and Random algorithms have the lowest
utility for almost all runs. GoCoMo performs comparably to ACO and E-ACO.

6.3 Overhead

Figure 5 shows the overhead (number of exchanged messages) after 250 iterations
as the number of available paths in the service dependency graph varies. In
GoCoMo, a global state mechanism periodically disseminates network state to
all participating nodes, which explains the high overhead. This mechanism is
not used in SimDijkstra and Random and the overhead introduced by these two
algorithms is insignificant. However, the utility of solutions of these algorithms is
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Fig. 5. The overhead when various number of paths are available (lower is better). The
results are averaged over 100 executions.

considerably lower than the utility produced by ACO and E-ACO and GoCoMo.
ACO and E-ACO introduce a higher overhead than the other approaches because
of the large number of agent messages. This number is task dependent, and, for
simplicity, it was set to the number of nodes in the service dependency graph.

Tuning this parameter would likely reduce the overhead, though this needs to
be verified.

7 Related Work

Most QoS-aware service composition mechanisms use a template-matching ap-
proach where the user’s request is a predefined set of abstract tasks and the goal
is to find an assignment of services to pre-defined abstract tasks to maximises a
QoS-related user benefit. Such approaches used exhaustive search, genetic algo-
rithms [6], linear and integer programming [32, 3, 2] to select, for each task, an
optimal service candidate from a functionally-equivalent list of candidates.
Planning-based service composition was introduced to address the functional
limitation of the template-matching model. However, the existing proposals have
limited support for non-functional requirements in mobile environments. They
use exact and heuristic approaches to find an optimal QoS composition plan.
GraphPlan [30], SimDijkstra [11], and Rodriquez et al. [20] presented a Dijkstra-
based algorithm to find compositions paths that satisfy users’ QoS objectives
subject to constraints. To improve resilience of the composition, Jiang et al. [11]
return the top-k optimal paths. However, these works do not address the dynamic
nature of a mobile environment. GoCoMo [8] and Kalasapur et al. [12] use a
heuristics approach based on greedy selection to find the service composition
configuration with the highest utility to the user. These planning-based service
composition approaches require a-priori knowledge about the user’s objectives,
which reduces the flexibility of composition in a dynamic environment.
Nature-inspired metaheuristics have been designed to address challenges that
are common in large-scale, dynamic and decentralised networks [10]. Such al-
gorithms can support self-organisation, self-configuration, and collaboration in
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changing environmental conditions. They can dynamically adapt to ensure end-
to-end communication between devices and provide efficient management of
available resources. These algorithms can balance the trade-off between com-
putation efficiency and optimality [21], and can obtain a set of solutions having
two important properties: good convergence and diversity in solutions. The con-
vergence represents the distance to the set of Pareto-optimal solutions. The di-
versity property refers to obtaining a uniform-spaced set of solutions to indicate
a good exploration of the search space without losing any valuable informa-
tion [14]. Such methods are approximate because they start from constructing
one or more complete solutions and gradually improve these solutions during
the iterative process. This makes it possible to track the quality of the solutions
found during each iteration, and stop as soon as acceptable results are identified.

The existing stigmergic-based proposals for QoS-aware composition used
ACO-based algorithms to identify the set of optimal solutions. MO_ACO [33]
use an ideal vector with the best QoS value to guide the exploration of solution
space and identify the path with the highest utility. Wu and Zhu [29] combine
a transaction-aware service composition and a QoS-aware service composition
model to find the optimal candidate for each abstract task. AACO [24] adjusts
the pheromone evaporation factor at runtime based on the dynamics of the en-
vironment. ACO-WSC [31] present an ant-colony optimisation to minimise the
length of the composition plans when composition participants are cloud services.
However, these proposals do not maintain populations of non-dominated solu-
tions. MOACO4WS [18] uses a reset strategy to address adaptation in dynamic
environments. The existing proposals either are limited to template-matching
composition [28,16] or require a centralised perspective [26].

8 Conclusion and Future Work

The main contributions of this work are a nature-inspired optimisation method
to approximate the set of QoS optimal compositions when composing services
deployed on mobile devices, and an adaptation procedure to facilitate the explo-
ration of new service composition configurations (with potentially better QoS)
that emerge as a result of providers’ mobility. The existing proposals for service
composition in such environments are limited to template-matching composition
or require a-priori knowledge about the QoS objectives’ weights. Previous work
in service composition showed that template-matching composition can limit the
flexibility of composition when the environment is dynamic. Also, new services
may emerge as a results of mobility of providers, and the requirement of user
input may affect the time of providing the user with new service composition
configurations. The proposed mechanism is designed for planning-based service
composition, and does not require user input. The mechanism, with and without
using the adaptation procedure, is evaluated in a dynamic scenario where various
number of compositions can be created. In our evaluation, we control this num-
ber to measure the performance of the proposed QoS optimisation mechanism,
and compare the results with GoCoMo, SimDijkstra and a Random approach.
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The results show that the proposed QoS optimisation mechanism can achieve
a higher utility at the cost of increased overhead compared to the existing base-
line proposals for planning-based service composition for mobile environments.
Also, the results show that the proposed adaptation procedure improves the ap-
proximation of the set of QoS optimal service composition configurations that
emerge as a results of providers mobility. The decrease in utility of solutions
when the adaptation procedure is used can be motivated by the selection of
weights that are used to evaluate this metric. However, the adaptation proce-
dure can achieve a better approximation of the Pareto-optimal solutions than
the no-adaptation variant. In our future work will explore the case when differ-
ent utility weights are used. Also, in our future work we will investigate how the
number of agents used in ACO and E-ACO affects the overhead.
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