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ABSTRACT

Met Éireann, the Irish Meteorological Service, has generated a very high resolution (2.5-km horizontal

grid) regional climate reanalysis for Ireland called the Met Éireann Reanalysis (MÉRA). MÉRA spans

the period from 1981 to 2015 and was produced using the shared ALADIN–HIRLAM numerical weather

prediction system. This article includes comparisons with the ERA-Interim and Uncertainties in Ensembles

of Regional Reanalyses (UERRA) datasets, analysis of data assimilation outputs, precipitation comparisons,

and a focus on extremes of wind and rainfall. The comparisons with the reanalysis datasets show that

MÉRA provides a high-quality reconstruction of recent Irish climate and benefits from the use of a very high

resolution grid, in particular in relation to wind and precipitation extremes.

1. Introduction

Climate reanalysis is a well-established approach for

recreating past climate, monitoring climate in real time,

and for the validation and calibration of numerical

weather prediction (NWP) models. Reanalysis datasets

have uses outside of meteorology and climatology as

they are generated using a fixed version of an NWP

model that utilizes historical observations and they

produce parameters that are physically consistent and

often not routinely observed. Thus, climate reanalyses

have the potential to extend the knowledge gained from

current observation networks.

The concept of atmospheric reanalysis originated with

the production of datasets by ECMWF and GFDL

(acronyms not expanded in this paper can be found at

https://www.ametsoc.org/pubsacronymlist) for the 1979

GlobalWeather Experiment (Fleming et al. 1979). Since

then, the production of global reanalysis datasets has

become a well-established activity. Examples of such

datasets include the ECMWF Reanalysis (ERA) series

[ERA-15 (Gibson et al. 1997), ERA-40 (Uppala et al.

2005), ERA-Interim (Dee et al. 2011), and ERA-5

(Hersbach and Dee 2016)], JMA’s Japanese Reanalysis

(JRA) series [JRA-25 (Onogi et al. 2007) and JRA-55

(Kobayashi et al. 2015)] and NASA’s Modern-Era

Retrospective Analysis for Research and Applications

(MERRA) series [MERRA (Rienecker et al. 2011) and

MERRA-2 (Gelaro et al. 2017)]. The production of

new reanalysis datasets has benefited from advances in

data assimilation techniques, better use of observations,

improved forecast models, and higher-resolution model

configurations. The coupling of atmosphere–land–ocean

systems or Earth systemmodels (e.g., ECMWF’s ERA-20C

and ERA-20CM; Hersbach et al. 2013; Poli et al. 2013)

and improved use of atmospheric composition in-

formation, such as CMIP5 (Taylor et al. 2012) data, have

enhanced the quality of reanalysis datasets. More re-

cently, reanalysis uncertainty has been estimated using

ensemble techniques, for example in ERA-5 (Hersbach

and Dee 2016).

Because of computational constraints, global rean-

alyses cannot be run at the very high resolutions

required to resolvemesoscale processes. However, high-

resolution regional reanalyses can be produced using

limited-area NWPmodels (LAMs). LAMs can be run at

higher temporal and spatial resolutions so that focus can

be put on near-surface parameters, weather extremes,

and frequency distributions of weather parameters. In

particular, the analysis of extremes provides a rigor-

ous test of the performance of reanalysis datasets and

the utilization of reanalyses in this area is extremely

useful for planning and emergency management. High-

resolution regional reanalyses have already been pro-

duced for Europe, Asia, and North America. Examples

Denotes content that is immediately available upon publica-

tion as open access.

Corresponding author: Eoin Whelan, eoin.whelan@met.ie

SEPTEMBER 2018 WHELAN ET AL . 2179

DOI: 10.1175/JAMC-D-17-0354.1

� 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).

https://www.ametsoc.org/pubsacronymlist
mailto:eoin.whelan@met.ie
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses


include a regional reanalysis covering the European

continent at 6-km horizontal resolution (COSMO-

REA6; Kaiser-Weiss et al. 2015; Bollmeyer et al. 2015),

the High Resolution Limited Area Model (HIRLAM)

reanalysis (Dahlgren et al. 2016), the Indian Monsoon

Data Assimilation and Analysis regional reanalysis

project (Mahmood et al. 2018), and the North American

Regional Reanalysis (Mesinger et al. 2006). The Arctic

System Reanalysis (ASR) series [ASRv1 (Bromwich

et al. 2010) and ASRv2 (Bromwich et al. 2010)] has pro-

duced reanalyses of the Arctic climate. Of late, more lo-

calized regional reanalyses have been produced for the

Baltic Sea (Luhamaa et al. 2011), theNetherlands (Stepek

et al. 2015), and Iceland (Nawri 2014), with recent Euro-

pean projects, such as European Reanalysis and Obser-

vations for Monitoring (EURO4M; Klein Tank 2010)

andUncertainties in Ensembles ofRegionalReanalyses

(UERRA; European Commission 2017), combining

results from several European regional reanalyses to

include estimations of uncertainties.

Despite the availability of reanalysis datasets for

Europe, no very high resolution (mesoscale) reanalysis

dataset had been produced for Ireland. We have run

the HIRLAM–ALADIN Research on Mesoscale Op-

erational NWP in Euromed (HARMONIE–AROME)

canonical configuration of the sharedALADIN–HIRLAM

NWP system, hereinafter HARMONIE-AROME, on a

2.5-km horizontal grid for the 35-yr period 1981–2015

with the aim of improving our knowledge of Ireland’s

climate and its weather extremes. This reanalysis

dataset, called the Met Éireann Reanalysis (MÉRA),

was produced using the same domain as has been used

operationally by Met Éireann from 2011 to 2018. The

domain covers Ireland, the United Kingdom, and an

area of northern France (Fig. 1c). The extra orographic

information gained by using the 2.5-km grid can be

appreciated when compared with the (global) ERA-

Interim (;79km; Fig. 1a) and UERRA HARMONIE–

ALADIN (;11km; Fig. 1b) grids. The MÉRA project

was completed in early 2017, and the dataset was pub-

lished in May 2017.

This paper is a successor to an earlier paper (Gleeson

et al. 2017), which summarized the progress of the

project, and provides a more complete evaluation of

the dataset, including a study of how well the dataset

captures extremes of wind and precipitation. It is laid

out as follows. Section 2 provides details on the model

configuration and MÉRA simulations carried out.

Section 3 describes the inputs used by the model. The

performances of the data assimilation system and

forecast model are evaluated in sections 4 and 5. This

paper finishes with discussions and conclusions in

section 6.

2. Model description

The following model description parallels that of

Gleeson et al. (2017) but is outlined in greater detail

and included here for completeness. The application of

the NWP system used to produce the MÉRA dataset

is summarized in the process diagram in Fig. 2 and is

described in more detail below.

a. The forecast model

The sharedALADIN–HIRLAMNWP system is used

for operational weather forecasting by 26 national me-

teorological services in Europe and North Africa that

form the HIRLAM and ALADIN consortia. Pottier

(2016) summarizes 42 limited area configurations of the

system used by the consortia members and a history of

the collaboration between the ALADIN and HIRLAM

partners is provided in the introduction of Bengtsson

FIG. 1. (a) ERA-Interim (79-km grid spacing), (b) UERRA HARMONIE–ALADIN (11-km grid spacing), and (c) MÉRA

(2.5-km grid spacing) orographies.
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et al. (2017). The HARMONIE–AROME canonical

configuration of version 38h1.2 of this system, based on

Seity et al. (2011), was used for the MÉRA project. The

MÉRA setup uses a 540 3 500 horizontal grid on a

Lambert conformal projection with 2.5-km spacing at

the center and 65 vertical levels. The lowest level is at

12m, with a nominal model top at 10 hPa and an in-

tegration time step of 60 s. ALADIN nonhydrostatic

dynamics (Bénard et al. 2010), nonhydrostatic meso-

scale (Meso-NH) physics (Lafore et al. 1998), and the

Surface Externalisée (SURFEX) externalized surface

scheme (Masson et al. 2013) are used. Further details on

the dynamical core and physics and surface parameter-

izations are provided.

HARMONIE–AROME is a mesoscale, spectral,

nonhydrostatic model with a dynamical core developed

by the ALADIN consortium (Bubnová et al. 1995;

Bénard et al. 2010). It is based on the fully compress-

ible Euler equations. The evolution of the equations

is discretized in time and space using a two-time-level,

semi-implicit, semi-Lagrangian (SL) discretization scheme

on an A grid and a mass-based hybrid pressure terrain-

following coordinate (Simmons andBurridge 1981; Laprise

1992). Most prognostic variables have a spectral repre-

sentation based on a double Fourier decomposition

and a vertical discretization based on finite differences

(Simmons and Burridge 1981). Horizontal diffusion

is applied both by linear spectral diffusion and non-

linear flow-dependent diffusion, which acts through

SL advection and, thus, was given the name semi-

Lagrangian horizontal diffusion (Vá�na et al. 2008;

Bengtsson et al. 2012).

A more in-depth discussion of the physics and surface

parameterizations can be found in Seity et al. (2011),

Masson et al. (2013), Bengtsson et al. (2017), and

Termonia et al. (2017). Shortwave and longwave radia-

tion, clouds and cloud microphysics, turbulence, and

shallow convection are parameterized in the model.

Using a 2.5-km grid spacing, deep convection is ex-

pected to be approximately resolved and explicitly

represented by the model’s nonhydrostatic dynamics.

There is, thus, no parameterization of deep convection.

The schemes used in HARMONIE–AROME are de-

scribed below and summarized in Table 1.

The default shortwave (SW) radiation parameteriza-

tion is theMorcrette scheme fromECMWF’s Integrated

Forecasting System (IFS) cycle 25R1 containing six

spectral intervals. The default longwave (LW) radiation

scheme contains 16 spectral bands and uses the Rapid

Radiative Transfer Model of Mlawer et al. (1997). Both

the SW and LW schemes are described in Morcrette

(1991) and ECMWF (2003). The microphysics scheme

used in AROME-France and HARMONIE–AROME

is a one-moment bulk scheme, which uses a three-class

ice parameterization, referred to as ICE3, originally

developed for Meso-NH (Pinty and Jabouille 1998;

Lascaux et al. 2006). The scheme used to compute sed-

imentation is described in Bouteloup et al. (2011).

The Cuxart–Bougeault–Redelsperger (CBR) scheme

(Cuxart et al. 2000; Seity et al. 2011) is used to param-

eterize subgrid turbulence. This scheme is based on a

prognostic turbulent kinetic energy equation with a di-

agnostic mixing length as described in Bougeault and

Lacarrère (1989). Shallow convection is parameterized

using the eddy-diffusivity mass-flux (EDMFm) frame-

work (de Rooy and Siebesma 2008). The differences

between EDMFm and the eddy diffusivity Kain–Fritsch

(EDKF) scheme that is the default in AROME-France

are described in Bengtsson et al. (2017).

Surface processes in HARMONIE–AROME are

handled by the SURFEX (version 7.2) externalized

surface scheme (Masson et al. 2013). SURFEX is a

modeling platform, mainly developed by Météo-France
in collaboration with the scientific community, and

comprises a set of physical models for natural land sur-

faces, urban areas, lakes, and oceans.

FIG. 2. Process diagram of the MÉRA system.

SEPTEMBER 2018 WHELAN ET AL . 2181



Exchanges of energy between the land surface and the

atmosphere in the nature tile are modeled by the In-

teractions between Soil, Biosphere, and Atmosphere

(ISBA) scheme with a three-level force–restore approach

(Boone et al. 1999). Tiles representing natural land sur-

faces are subdivided into patches depending on the vege-

tation type. However, only one patch is used in the version

in MÉRA, which means that the energy budgets for all of

the vegetation types present in ISBA are aggregated. The

Exchange Coefficients from Unified Multicampaign Esti-

mates (ECUME) scheme by Belamari (2005) is used over

water for the sea tile. The inland water tile, which com-

prises rivers and lakes, is described by theCharnock (1955)

formula. The fourth tile, urban regions, is simulated using

the Town Energy Balance (TEB) model (Masson 2000)

b. Data assimilation

Data assimilation is used to calculate the initial state

of the surface and atmosphere for an NWP (forecast)

model using observations in addition to a priori model-

state information, called the background. The MÉRA

reanalysis uses a 3-h cycle to progress the model state

forward in time. Every three hours, observations are

combined with information from the previous 3-h fore-

cast to produce an estimate of the state of the surface

and atmosphere. Optimal interpolation (OI) techniques

are used to produce the surface analysis, and three-

dimensional variational data assimilation (3D-Var) is

used to produce the upper-air analysis for each cycle. An

analysis window of 3 h centered on the analysis time is

used by 3D-Var, with observations reported within this

time window being assimilated. Only observations at the

analysis time are assimilated by the surface OI assimi-

lation scheme. The observations assimilated by MÉRA

are described in further detail in section 3a.

The OI assimilation scheme used to update MÉRA

surface and soil parameters is described in Giard and

Bazile (2000) and implemented in the SURFEX model

(Masson et al. 2013). Soil temperature and moisture

values are updated using screen-level observations of

temperature and humidity from ‘‘SYNOP’’ reports. Fol-

lowing Giard and Bazile (2000), the soil analysis formu-

lation can be generalized as

DX
i
5aT

i DT2m
1aH

i DH2m
,

where Xi are the soil analysis variables (temperature T

and moisture H) for the surface (subscript s) and an

average soil value (subscript p), D is the analysis in-

crement, and aT/H
s/p are the OI coefficients. The aT/H

i for

soil temperature are constant, and the aT/H
i for soil

moisture depend on the diurnal cycle and vegetation

fraction. More detail on the formulation of the OI co-

efficients can be found in Giard and Bazile (2000) and

Mahfouf et al. (2009). AnOI snow analysis is carried out

once per day at 0600 UTC using observations of snow

depth from SYNOP reports. The OI scheme does not

perform an analysis of the sea surface temperature

(SST) or sea ice concentration (SIC). Instead, ERA-

Interim SST and SIC values are interpolated to the

MÉRA grid and used directly by the model.

The atmospheric state is updated using HARMONIE–

AROME’s implementation of 3D-Var, as described

in Fischer et al. (2005), which benefits from the original

incremental implementation of 3D-Var in ECMWF’s

IFS (Courtier et al. 1998). The incremental formulation

minimizes the cost function J:

J(dx)5 0:5dxTB21dx1 0:5(Hdx2 d)TR21(Hdx2 d) ,

where x is the model state vector, dx is the model-state

increment, and, at the cost function minimum, the

analysis increment dxa is added to the background xb.

Here,B andR are the background error and observation

error covariance matrices, respectively; H is a linear

approximation of the observation operator H (not the

same as the moisture variable above), and d, the in-

novation vector, is defined as

d5 y2Hxb ,

where y is the observation vector. The derivation of the

background error covariance matrix, B is described in

Brousseau et al. (2011). The error statistics used by the

MÉRA 3D-Var assimilation system are based on dif-

ferences between 6-h forecasts from a four-member

ensemble of downscaled IFS ensemble forecasts run

for 40 cycles. As noted in Gleeson et al. (2017), deriving

TABLE 1. Physics parameterizations used by MÉRA.

Parameterization Scheme Reference

Radiation LW16, SW6 Morcrette (1991); ECMWF (2003)

Turbulence CBR Cuxart et al. (2000); Bougeault and Lacarrère (1989)

Microphysics ICE3 Pinty and Jabouille (1998)

Sedimentation — Bouteloup et al. (2011)

Shallow convection EDMFm de Rooy and Siebesma (2008)

Deep convection —

2182 JOURNAL OF APPL IED METEOROLOGY AND CL IMATOLOGY VOLUME 57



the structure functions would benefit from using forecast

data that span the diurnal cycle and are from different

seasons. Also, longer forecast integrations may be re-

quired to produce more realistic convective-scale spec-

tra, as noted in Arriola et al. (2016).

Observations within 100km of the lateral boundaries are

excluded from the data assimilation system. This is to

prevent the wraparound of spurious analysis increments

due to the biperiodic formulation of the model and the use

of a narrow (11 grid point) extension zone (Lindskog et al.

2010). Aircraft data are thinned to about 25km to avoid

violating the assumption of independent observations er-

rors made in the 3D-Var formulation. The observation

error statistics used by 3D-Var are defined for each ob-

servation type at standard pressure levels and interpolated

to the observation heights in the observations preprocess-

ing step. These values have been estimated by statistically

evaluating the performance of observations in operational

data assimilation systems over long periods of time using

methods, as described in Desroziers et al. (2005).

Large-scale information from the ERA-Interim lat-

eral boundary conditions (LBC) are used to adjust the

background information before the 3D-Var step, as

described in Dahlgren (2013). This method of blending

larger scales from the nesting model is used instead of

adding an extra term Jk to the cost function (Guidard

and Fischer 2008).

c. Production and output

This description of the reanalysis dataset production

parallels that of Gleeson et al. (2017). Seven parallel

simulations were set up to run for 6 yr at a timewith a 1-yr

spinup period for each simulation. Therefore, each

spinup year (1985, 1990, 1995, 2000, 2005, 2010) overlaps

with corresponding production year; the overlapping

years were used to evaluate the spinup process of subsoil

parameters. A spinup period of 1 yr was deemed neces-

sary to allow deep soil parameters to reach an equilibrium

(see Gleeson et al. 2017).

Three-hourly analysis output is available. Forecast

model output is available for each forecast hour up to

33 h for the 0000 UTC forecast and to 3 h otherwise. A

small subset of the surface output is available at analysis

times and for each 3-h forecast while upper-air data are

available on pressure levels and a selection of near-

surface levels. The analysis and forecast output data are

summarized in Table 2 and described more compre-

hensively inWhelan et al. (2017). MÉRAdata are freely

available under the Creative Commons Attribution 4.0

International (CC BY 4.0) license. Access to the dataset

can be arranged with the authors.

3. Reanalysis inputs

a. Observations used

Conventional observations available in ECMWF’s

Meteorological Archival and Retrieval System (MARS

archive) were assimilated by MÉRA’s surface OI and

upper-air 3D-Var schemes. The reanalysis production

would have benefited from the assimilation of satellite

observations (radiances and scatterometer winds) and

radar observations (reflectivities), and HARMONIE–

AROME is capable of processing and assimilating these

observations. However, it was decided prior to produc-

tion that the gathering, preparation, testing, and moni-

toring of such observations was beyond the resources of

this project.

From 1981 to 2004 observations stored in the opera-

tional data assimilation stream were used, between July

2004 and November 2013 observations stored in the

delayed cutoff data assimilation stream were used, and

after November 2013 observations stored in the long-

window data assimilation stream were used. These data

sources were selected to reuse the conventional obser-

vations assimilated by the ERA-Interim project.

Observations of temperature at 2m (T2m) and relative

humidity at 2m (RH2m) from SYNOP reports were as-

similated every 3 h by the OI surface data assimilation

scheme with SYNOP snow-depth observations assimi-

lated once per day, as described earlier in section 2b. A

time series of theOI observation usage for the reanalysis

period is shown in Fig. 3a. There is an increase in the

TABLE 2. Summary of output available on pressure, height, and surface levels.

Level type Parameter Level

Pressure Temperature, wind, cloud, relative humidity,

and geopotential

100, 200, 300, 400, 500, 600, 700, 800, 850, 900, 925, 950,

and 1000 hPa

Height above ground Temperature, wind, and relative humidity 30, 50, 60, 70, 80, 90, 100, 125, 150, 200, 300, and 400m

Soil Temperature, moisture, and ice 0, 20, and 300 cm (below the surface)

Surface Precipitation diagnostics Surface

Diagnostic Screen-level parameters 2 and 10m for winds and gusts

Surface Radiative and nonradiative fluxes Surface

Top of atmosphere Radiative and nonradiative fluxes Nominal top of atmosphere
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number of SYNOP reports assimilated by MÉRA

throughout the reanalysis period increasing from about

1000 observations per day in 1981 to about 4000 per day

in 2015. The seasonal variation in availability of SYNOP

snow observations can be seen also.

Observations of surface pressure (SYNOP, ‘‘SHIP,’’

and ‘‘BUOY’’), surface winds (SYNOP and SHIP over

sea), upper-air temperatures (‘‘TEMP,’’ ‘‘AIREP,’’

and ‘‘AMDAR’’), winds (TEMP, ‘‘PILOT,’’ AIREP,

and AMDAR), and humidity (TEMP) were assimi-

lated every 3 h. Aircraft Communications Addressing

and Reporting System (ACARS) aircraft reports were

not used because of a bug in the observation pre-

processing step of the data assimilation system.

Figure 3b shows the number of observations assimi-

lated by MÉRA’s 3D-Var classified by observation

variable, and Fig. 3c shows the observation num-

bers classified by observation type. As reported by

Dahlgren et al. (2016), there is a drop in the number of

upper-air data stored in the MARS archive during 2002

and a brief dip in AIREP observation numbers at the

end of 2014. There is an increase in the availability of

AIREP observations from the 1990s with the initiation

of the AMDAR Programme and a decrease in the

availability of PILOT wind observations. The number

of radiosonde observations increases during the first

20 years of the reanalysis period and decreases again

over the following 5 years as reflected in the decrease

in the number of humidity observations assimilated

(Fig. 3b).

b. Climatology

The default surface land-cover physiography in

HARMONIE–AROME is based on the 1-km-resolution

‘‘ECOCLIMAP 2.2’’ database (Faroux et al. 2013). The

land surface characteristics contained in this database de-

fine the grid-scale surface SW albedo and LW emissivity.

The default surface topography is based on GTOPO30

(USGS 1997), and the clay and sand proportions are based

on IUSS Working Group WRB (2006).

HARMONIE–AROME uses monthly ‘‘climatologies’’

of aerosol optical depths (AOD) at 550nm of land, sea,

desert, and urban tropospheric aerosols from the Tegen

et al. (1997) climatology along with background strato-

spheric aerosols in a similar manner to the IFS model

(ECMWF 2013). These are distributed among the model

levels using the Tanré et al. (1984) climatological vertical

profiles for each aerosol type [see Gleeson et al. (2015)

and Toll et al. (2016)]. The spectral dependence of AOD,

single-scattering albedo, and asymmetry factor g for each

aerosol type is parameterized following Hess et al. (1998).

Monthly climatologies of ozone and a fixed composition

mixture of CO2, N2O, CH4, and O2 are also used.

c. Boundary conditions

MÉRA forecasts use ERA-Interim (Dee et al. 2011)

model-level data as LBCs with the Davies relaxation

scheme (Davies 1976) as described in Termonia et al.

(2017). Upper boundary conditions are also applied

in the same manner at the model top. ERA-Interim

FIG. 3. Daily counts of (a) of screen-level observations used by the OI surface data assimi-

lation system, (b) observations assimilated byMÉRA’s 3D-Var, and (c) observations classified

by report type assimilated in MÉRA. A 30-day running average is applied to all observation

time series data.
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data are read by the HARMONIE–AROME forecast

model every 3h using one-way nesting. As mentioned

in section 2b, ERA-Interim SST and SIC data are

interpolated to the MÉRA grid and used as lower

boundary conditions.

4. Data assimilation performance

In general, the performance of the surface (OI) and

upper-air (3D-Var) data assimilation systems ismeasured

by comparing departure statistics. The background de-

parture is the distance of the background (model state)

Hxb from the observations y. The analysis departure is the

distance of the analysis Hxa from y. Analyses that are

closer to the observations than the background are a first

indication that a data assimilation system is performing

well. These departure statistics are used to assess how

well MÉRA assimilated the observations provided to the

data assimilation systems. To further evaluate the per-

formance of the 3D-Var data assimilation system, the

analyses are compared with independent observations.

The quality of the forecast is the ultimate measure of the

quality of its initial conditions: the analysis. We did not

investigate forecast quality sensitivity to changes in the

data assimilation system.

a. OI performance

Time series of departure statistics produced by the OI

surface data assimilation system have been used to

evaluate the performance of the surface analyses pro-

duced by MÉRA (Fig. 4). By applying a 30-day running

mean to the departure statistics, annual variations in the

departure statistics are more easily identified.

Time series of means and standard deviations of de-

parture statistics forT2m andRH2m observations used by

MÉRA surface analyses indicate that MÉRA surface

analyses were consistently closer to these observations

than the background. There is a consistent T2m back-

ground departure throughout the period indicating a

cold bias of approximately 0.2K in the background. This

bias has been attributed to the fact that the forecast

model produces too much low cloud and fog (Bengtsson

et al. 2017; de Rooy 2014). Figure 4a shows a seasonal

variation in the magnitude of the mean T2m background

departure with larger biases occurring during the winter.

This seasonal variation is less clear in the T2m standard

deviation time series (not shown). Time series of mean

departure statistics for RH2m (Fig. 4b) also show that the

analyses were consistently closer to observations, with a

moist background bias in the summer and a dry bias in

the winter.

b. 3D-Var performance

Departure statistics have been used to evaluate the

performance of MÉRA’s 3D-Var data assimilation

system in the same way as the assimilation of surface

observations. The 3D-Var updates geopotential using

surface observations of pressure. Time series of mean

departures are shown in Fig. 5a. Analyses of geopotential

are closer to observed values than the background with a

reduction in the magnitude of departures when a greater

number of SYNOP and AIREP observations are assimi-

lated later in the reanalysis period. Similar results can be

seen for temperature observations fromaircraft (Figs. 5b,c).

The quality of (mainlyAMDAR) aircraft observations in

the lower atmosphere (below 700hPa) is consistent

(Fig. 5b) with average values of observed minus analyzed

temperature departures close to 0K. Background and

analysis departure time series for aircraft observations of

temperature above 400hPa (Fig. 5c) indicate that, in

general, 3D-Var performs well for the assimilation of

aircraft temperature observations. However, the in-

troduction ofAMDARobservations in the 1990s resulted

in an increase in mean background departure values

FIG. 4. Mean background departures (O2B; red) and analysis departures (O2A; blue) for

(a) T2m and (b) RH2m produced by MÉRA’s OI surface data assimilation system. A 30-day

running average is applied.
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(1993–98) above 400 hPa (Fig. 5c,d). These larger de-

parture values, for this period, are due to AMDAR tem-

perature observations with gross errors not being rejected

by the 3D-Var quality control software. These erroneous

observations were from specific aircraft that produced the

reports. The fraction of aircraft with these biases de-

creases significantly after this period. There is also a

noticeable shift in the aircraft temperature departure

values in 2002 that coincides with a drop in data avail-

ability asmentioned in section 3a. The quality ofAMDAR

observations is discussed further in Petersen (2016).

Background and analysis departures for radiosonde

temperature and humidity observations are shown in

Fig. 6. Analyses of temperature appear to perform well

with departures smaller than the background departures

(Figs. 6a,b). However, known biases present in radio-

sonde observations are well documented (Haimberger

2007; Haimberger and Andrae 2011). Sources of such

biases include instrument type, reporting practices, and

radiative heating in the upper troposphere. Radiosonde

observations are assimilated byMÉRAas presented in the

MARS archive with no corrections applied. Temperature

biases caused by radiative heating can be identified by

subtracting midnight background departures (O 2 B00)

from midday background departure (O 2 B12) values.

Such biases seem to be present for radiosonde data before

1990 above 100hPa (Fig. 7a). The temperature radiation

bias calculated for the Valentia radiosonde at 100hPa is

shown in Fig. 7b. Use of a homogenized radiosonde

dataset such as RadiosondeObservation CorrectionUsing

Reanalyses (RAOBCORE) or Radiosonde Innovation

Composite Homogenization (RICH) (Haimberger et al.

2012) would improve the quality of analyses in the upper

troposphere. Radiosonde observations of humidity above

300hPa are not assimilated by MÉRA because they were

deemed to be of insufficient quality. Time series of stan-

dard deviations of humidity background and analysis de-

partures (Figs. 6c,d) suggest that analyses of humidity

below 300hPa are of good quality.

Analysis performance has been further verified using

geopotential height observations from TEMP reports.

These observations are not assimilated and, as such, can

be classified as being independent of the reanalysis data

assimilation process. Figure 8 shows a time series of the

average differences between root-mean-square error

(RMSE) of MÉRA background geopotential height

values [RMSE(O2B)] and analysis geopotential height

values [RMSE(O 2 A)]. Positive values of these

FIG. 5. Mean background departures (O2B; red) and analysis departures (O2A; blue) for

(a) SYNOP geopotential, (b) aircraft (AIREP and AMDAR) temperatures below 700 hPa,

and (c) aircraft temperatures above 400 hPa produced by MÉRA’s 3D-Var. (d) The O 2 B

values for AIREP reports (green) and AMDAR reports (purple) above 400 hPa. A 30-day

running average is applied.
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differences indicate lower RMSE(O 2 A) values. On

average, MÉRA’s 3D-Var improves the model state

above 700hPa by up to 10m with some brief periods

(before 1990 and in 2007) during which the average

quality is slightly degraded above 200 hPa by 3D-Var.

These periods for which the analysis degrades the model

statemay be due to radiosonde temperature observation

biases that have already been described.

5. Reanalysis performance

The quality of near-surface parameters produced by the

MÉRA reanalysis and its ability to recreate past weather

extremeswasmeasured against conventional observations.

MÉRA data have been compared with the ERA-Interim

(79-km grid) and UERRA HARMONIE–ALADIN

(11-km grid) reanalysis datasets. The HARMONIE–

ALADIN dataset was generated as part of the UERRA

project using the same model version as MÉRA and is

hereafter referred to as UERRA. Gridded ERA-Interim

and UERRA data were retrieved from ECMWF’s

MARS archive with point data extracted for the obser-

vation locations. Data were extracted at observation

locations using bilinear interpolation. A selection of

near-surface parameters were validated against in situ

SYNOP observations and the quality of precipitation

forecasts was assessed by comparison with observations

from Met Éireann’s rainfall observation network. Maps

of available SYNOP observations for two dates in 1985

and 2015 are shown in Figs. 9a and 9b. There is a no-

ticeable increase in the density of the SYNOP network

over the reanalysis period, as already shown in Fig. 3c.

Figure 9c shows the typical coverage and density of

daily precipitation observations used to evaluate the

reanalysis performance. These observations typically

number between 300 and 500 and are the basis of the

gridded monthly precipitation observations used to

validate monthly accumulations of precipitation produced

by MÉRA, ERA-Interim, and UERRA. Observations

from rainfall stations on higher ground or in more remote

locations are collected on a monthly basis. MÉRA is val-

idated using average error (bias), average standard de-

viation, and the Heidke skill score (HSS) (Heidke 1926;

FIG. 6. Radiosonde temperature (a) background departures and (b) analysis departures at standard pressure

levels. The lighter yellow colors indicate departure values closer to zero (i.e., model temperature closer to observed

temperatures). (c),(d) The reduction in specific humidity standard deviation. A 30-day running average is applied.

White areas indicate missing data.

FIG. 7. (a) Radiosonde temperature background departures at

0000 UTC subtracted from 1200 UTC background departures for

observations at 50 hPa, shown in brown, and observations at

100 hPa, shown in orange, for all radiosondes observations assim-

ilated by MÉRA. (b) As in (a), but showing Valentia Observatory

observations at 100 hPa. A 7-day running average is applied.
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Hyvärinen 2014) to compare the three reanalysis datasets.

The HSS is a categorical skill score with one indicating a

perfect forecast and zero indicating no skill.

Particular attention is given to the quality of near-

surface (10m) winds and daily precipitation accumula-

tions. In general, severe weather events in Ireland are

related to strong winds produced by Atlantic storms or

accumulations of precipitation that lead to winter flooding.

An evaluation of MÉRA surface (including spinup) and

upper-air parameters is provided in Gleeson et al. (2017).

a. Near surface

We have compared MÉRA forecasts of surface pres-

sure with observations from synoptic reports. Figure 10

shows the standard deviation of MÉRA 0000 UTC 0-

(analysis), 3-, 6-, 12-. and 24-h forecasts for 1981–2015.

The quality ofMÉRA forecasts is very consistent, with a

general improvement in forecast quality toward the end

of the reanalysis period. This improvement can be at-

tributed to the increase in the number of observations

assimilated by MÉRA.

To compareMÉRAwith other reanalysis datasets, we

have verified 3-h forecasts from MÉRA, ERA-Interim,

and UERRA with synoptic observations available within

the MÉRA domain (i.e., observations from Ireland, the

United Kingdom, and northern France). It was only pos-

sible to include 3-h forecasts from the 0000 and 1200 UTC

cycles because 3-h forecasts are unavailable for other

ERA-Interim forecast cycles.

Verification results are shown for the years 1981–2015

for mean sea level pressure (MSLP) (Fig. 11a) and 2-m

temperature (Figs. 11b,c). The figures show the standard

deviation of MÉRA, ERA-Interim, and UERRA 3-h

forecasts relative to observations where a 3-month

running average is applied for both visualization pur-

poses and the identification of any seasonal trends.

Overall, the results indicate that MÉRA performs con-

sistently over the time period. It performs similarly to

ERA-Interim and UERRA for MSLP (Fig. 11a), with

all three reanalyses showing a reduction in the standard

deviation of MSLP from about 0.5 hPa at the start of

the period (1981–1990) to less than 0.4 hPa near the

end (2010–15). MÉRA outperforms ERA-Interim and

UERRA (Figs. 11b,c) in terms of the standard deviation

of 2-m temperature forecasts. There is an increase in

the ERA-Interim and (to a lesser extent) UERRA 2-m

FIG. 8. Average differences betweenRMSEof background geopotential heights [RMSE(O2B)]

and analysis geopotential heights [RMSE(O 2 A)] compared with observations available in

TEMP reports. Positive values (red colors) indicate that RMSE(O2 A) values are lower than

RMSE(O2B) and that the analysis values of geopotential height are of improved quality when

compared with geopotential height observations.

FIG. 9. Typical maps of observations used to validate MÉRA forecasts. SYNOP observations at (a) 1200 UTC 1 Jun 1985 and

(b) 1200 UTC 1 Jun 2015. (c) Map of daily precipitation observations produced by Met Éireann for 1 Jun 1985.
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temperature standard deviation values from about 1990.

The number of observations available from the SYNOP

network for verification increased from that time with

many new observation sites positioned near coasts or on

higher ground (Fig. 9). The number of SYNOP stations

sited above 250m increased from 5 in 1985 to 42 in 2015.

It was possible to correct for model orography errors

using an adiabatic lapse-rate correction. This correction

was applied to ERA-Interim (light blue; Fig. 11b) and

UERRA (light green; Fig. 11c) forecasts for fairer

comparison. The lapse-rate correction improves ERA-

Interim standard deviations from about 1.7 to 1.5K after

1990 but has little effect, on average, when applied to

UERRA 3-h forecasts. In terms of 2-m temperature

biases, identified in section 4, MÉRA outperforms

ERA-Interim and UERRA, with a running mean bias

of 60.2K as compared with 60.4K and 60.6K for

UERRA and ERA-Interim, respectively. Both MÉRA

and UERRA used ERA-Interim LBCs, which place

constraints on larger atmospheric scales. Thus, the dif-

ferences in biases and standard deviations in MSLP for

MÉRA, UERRA, and ERA-Interim are small.

b. Winds

Figure 11d shows the standard deviation of MÉRA,

ERA-Interim, and UERRA 3-h forecasts relative to the

FIG. 10. Standard deviations of MSLP 3- (red), 6- (orange), 12- (green), and 24-h (blue)

forecasts produced by MÉRA 0000 UTC runs compared with observations from SYNOP

reports. A 3-month running average is applied.

FIG. 11. (a) Standard deviations of MÉRA (red), ERA-Interim (blue), and UERRA (green)

3-h forecasts of MSLP. (b) Standard deviations of ERA-Interim (blue), corrected ERA-Interim

(light-blue, ERA-I*), andMÉRA (red) 3-h forecasts of T2m. (c) Standard deviations of UERRA

(green), correctedUERRA(light green,UERRA*), andMÉRA3-h forecasts ofTT2m. (d)As in

(a), but for 10-m wind speeds. A 3-month running average is applied.
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corresponding synoptic observations. Again, a 3-month

averaging is applied. A similar increase in 10-m wind

speed standard deviations (as noted in section 5a) is seen

for all datasets after 1990. The results of this comparison

show that MÉRA performs consistently for the re-

analysis period. According to this measure, MÉRA

outperforms both ERA-Interim and UERRA. Again,

this improvement can be attributed to the improved

orographic representation that comes with higher model

resolution.

However, this measure of near-surface wind quality

applies a lot of averaging to the data, and information on

extremes is not clear from these statistics. Figure 12a

shows the relative frequency distribution of 10-m wind

speeds from 3-h forecasts of 0000 and 1200 UTC

model runs in comparison with observations from (land)

SYNOP reports. The bins were chosen so that their cut-

offs coincided with the limits of the wind speed ranges on

the Beaufort scale. ERA-Interim overpredicts winds

speeds at 10m over 5ms21 and, as a consequence of this

shifted wind speed distribution, matches well with higher

wind speeds (over 15ms21). UERRAoverpredicts lower

wind speeds (5–10ms21) and underpredicts higher wind

speeds (over 10ms21). MÉRA shows similar character-

istics to UERRA with an overprediction of lower wind

speeds and an underprediction of higher wind speeds.

The relative frequency of MÉRA wind speeds matches

the relative frequency of observed wind speeds for all of

the data bins. The HSS for wind speeds for the period

1981–2015 are shown in Fig. 12b. TheHSS was calculated

for all 3-h forecasts from 0000 and 1200 UTCmodel runs

(1981–2015) for the three datasets. While there is little

difference between the HSS values for MÉRA and

UERRA for lower winds speeds, the forecast skill, as

measured by the HSS, of MÉRA over ERA-Interim and

UERRA can be clearly be seen for higher winds speeds

(over 10ms21).

c. Precipitation

Precipitation forecasts produced by MÉRA, ERA-

Interim, andUERRAwere compared with observations

of 24-h accumulations of precipitation recorded by Met

Éireann’s network of (approximately 400) rainfall sta-

tions (0900–0900 UTC). For MÉRA the accumulations

from the 9- and 33-h forecasts from the 0000 UTC runs

were used to calculate the 24-h accumulations for the

same validity periods as the observations. The 30-h

ERA-Interim forecasts only cover the period from

0000 to 0600 UTC the following day. For this reason, the

0900–0900 UTC precipitation forecasts shown for ERA-

Interim consist of the sum of the 9–24-h accumulation

and the 0–9-h accumulation of the following day.

UERRA is similar to ERA-Interim in that 24- and 9-h

forecasts had to be used to generate the 0900–0900 UTC

precipitation totals. The construction of daily accumu-

lations of precipitation in this manner has been shown to

produce good-quality estimates (Landelius et al. 2016),

once spinup forecast data are not used. For MÉRA, a

single long forecast each day was produced for practical

reasons.

Figure 13 shows areal comparisons of monthly pre-

cipitation [for winter: December–February (DJF)]

averaged over the period 1981–2015. The MÉRA,

UERRA, and ERA-Interim datasets were compared

to gridded observations of monthly accumulations of

precipitation; the observations were projected onto

each model domain by conservatively averaging the

accumulations in each model grid box, in order to

make appropriate comparisons between each model

and the observations. Table 3 lists statistics comparing

seasonal biases and standard deviations for MÉRA,

UERRA, and ERA-Interim precipitation accumula-

tions. Whereas MÉRA biases are smallest for the au-

tumn and winter seasons, the higher-resolution

reanalyses, MÉRA and UERRA, overpredict spring

and summer precipitation. ERA-Interim precipitation

biases for spring and summer are very close to 0mm.

The plots in the first column of Fig. 13 show themonthly

observed DJF precipitation averaged over the period

1981–2015 on the ERA-Interim, UERRA, and MÉRA

grids; the plots in the second columns show the

FIG. 12. (a) Relative frequency of observed (black), ERA-

Interim (blue), UERRA (green), and MÉRA (red) 10-m wind

speeds. (b) HSSs for ERA-Interim, UERRA, and MÉRA fore-

casts. Both (a) and (b) use forecasts and observations for the period

1981–2015.
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corresponding precipitation from each model while the

third column shows the difference between each model

and the observations. The coarse ERA-Interim grid

mainly underpredicts monthly precipitation, particu-

larly overmountainous areas where the biases are on the

order of 50mm. Both UERRA and MÉRA also un-

derpredict the precipitation over mountains because of

mismatches in orography; the 2.5- and 11-km grid

spacings cannot account for mountain peaks contained

within a grid box. UERRA underpredicts precipita-

tion over most of the country whereas MÉRA over-

predicts the total by ;10–20mm, with the exception

being over high ground. As anticipated, the higher-

resolution MÉRA shows a noticeable improvement

over the coarser-resolution ERA-Interim and UERRA

reanalyses, which underestimate precipitation over the

MÉRA domain by up to ;50mm month21. As be-

fore, this can be attributed to model resolution and

FIG. 13. Monthly mean DJF precipitation for the period 1981–2015. Observations projected onto (a) the ERA-Interim grid,

(b) ERA-Interim, and (c) ERA-Interim minus observed. (d)–(f) As in (a)–(c), but for UERRA. (g)–(i) As in (a)–(c), but

for MÉRA.
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the mesoscale physics parameterizations that resolve

convection in MÉRA. The bias patterns for MÉRA are

similar for each season (not shown), that is, negative

biases over high ground and positive biases elsewhere.

Figure 14a shows the relative frequency distribution

of monthly mean DJF 0900–0900 UTC precipitation

accumulations for the models and observations. ERA-

Interim overpredicts light precipitation and under-

predicts extremes. MÉRA and UERRA both match

the relative frequency distribution quite well for higher

accumulations with MÉRA underpredicting moderate

(5mm) daily accumulations. As with the analysis of

10-m wind speeds, we have calculated the HSS for 24-h

accumulated precipitation forecasts for each of the

three reanalysis datasets, ERA-Interim, UERRA, and

MÉRA, to measure their forecast skill (Fig. 14b). There

is little difference in skill for lower accumulations (less

than 10mm), with MÉRA performing better than

UERRA for more extreme (greater than 25mm) pre-

cipitation accumulations.

We use the 9- and 33-h precipitation forecasts from

the 0000 UTC MÉRA runs to determine the 0900–

0900 UTC 24-h rainfall accumulations; that is, we

neglected the first few hours of rainfall forecasts,

which are deemed to be inaccurate as the model is still

spinning up. This assumption is justified by Fig. 15, in

which the 24-h accumulations are compared with

those computed using successive 3-h forecasts cover-

ing the same periods. At first glance, it seems that

using the 3-h forecasts reduces the biases over inland

and nonmountainous regions (Fig. 15c). However, this

apparent improvement arises because the 3-h fore-

casts produce a much drier climatology at all locations

(see Fig. 15d).

6. Conclusions and discussion

A basic analysis of some of the output from MÉRA

was presented in Gleeson et al. (2017) and is extended

in this paper, in particular in relation to data assim-

ilation and extremes of wind and precipitation. We

have shown that the HARMONIE–AROME data

assimilation system and forecast model perform well

and consistently when compared with point observa-

tions. MÉRA’s advantage over UERRA, one of the

highest-resolution regional reanalyses for Europe, is also

illustrated for a selection of surface parameters and

we show that, using appropriate skill scores, MÉRA is

better at recreating extremes of wind and precipitation.

ERA-Interim data have been included in these compari-

son for completeness.

MÉRA is the highest-resolution, regional reanalysis

dataset for Ireland and the United Kingdom and is

being widely used in academia and industry. The ongo-

ing analysis and use of MÉRA data will promote im-

provements to Met Éireann’s operational NWP suite.

The next generation of regional reanalyses within the

Copernicus Climate Change Services has commenced

with Production of a Regional Reanalysis for Europe

(PRECISE) producing a 5-km reanalysis for Europe and

the Copernicus Arctic Regional Reanalysis (CARRA)

TABLE 3. Precipitation statistics (1981–2015) for MÉRA and UERRA listing seasonal biases and standard deviations when compared

with gridded precipitation accumulation observations. Winter is defined as December–February, spring as March–May, summer as June–

August, and autumn as September–November.

MÉRA UERRA ERA-Interim

Bias (mm) Std dev (mm) Bias (mm) Std dev (mm) Bias (mm) Std dev (mm)

Winter 20.5 19.8 218.3 20.9 218.0 13.2

Spring 8.6 13.4 20.9 12.5 0.2 12.3

Summer 1.4 15.1 32.3 10.3 20.2 13.3

Autumn 22.8 19.2 212.0 16.7 217.1 12.2

FIG. 14. As in Fig. 12, but for 0900–0900 UTC 24-h precipitation

accumulations.
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producing a 2.5-km reanalysis for two Arctic domains.

Production of a 12-km regional reanalysis for Australia

[Bureau of Meteorology Atmospheric High-Resolution

Regional Reanalysis for Australia (BARRA)], with

multiple mesoscale 1.5-km reanalyses driven by the

12-km data, has commenced. These, and other future

regional reanalyses, will benefit from the enhanced use

of observations as well as developments in reanalysis

methods such as improvements in data assimila-

tion algorithms and the use of ensemble techniques.

A future regional reanalysis for Ireland would also

benefit from these developments as well as the use of

LBCs from future global reanalyses.
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FIG. 15. Monthly mean DJF precipitation for the period 1981–2015. (a) Observations projected on the MÉRA

grid. (b) MÉRA data for which the 0900–0900 UTC 24-h accumulations were calculated by summing the accu-

mulations from relevant successive 3-h forecasts. (c) MÉRA (sum of 3-h forecasts) minus observed. (d) MÉRA

(sum of 3-h forecasts) minus MÉRA using 24-h forecasts.
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