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A

Prediction-Based Multi-Agent Reinforcement Learning in Inherently
Non-Stationary Environments

Andrei Marinescu, Ivana Dusparic, and Siobhán Clarke, Trinity College Dublin

Multi-agent reinforcement learning (MARL) is a widely researched technique for decentralised control in
complex large-scale autonomous systems. Such systems often operate in environments that are continuously

evolving and where agents’ actions are non-deterministic, so called inherently non-stationary environments.

When there are inconsistent results for agents acting on such an environment, learning and adapting is
challenging. In this paper we propose P-MARL, an approach that integrates prediction and pattern change

detection abilities into MARL and thus minimises the effect of non-stationarity in the environment. The en-

vironment is modelled as a time-series, with future estimates provided using prediction techniques. Learning
is based on the predicted environment behaviour, with agents employing this knowledge to improve their

performance in real-time. We illustrate P-MARL’s performance in a real-world smart grid scenario, where

the environment is heavily influenced by non-stationary power demand patterns from residential consumers.
We evaluate P-MARL in three different situations, where agents’ action decisions are independent, simul-

taneous, and sequential. Results show that all methods outperform traditional MARL, with sequential
P-MARL achieving best results.

Categories and Subject Descriptors: I.2.11 [Distributed Artificial Intelligence]: Multiagent systems

Additional Key Words and Phrases: Multi-Agent Systems; Reinforcement Learning; Environment Predic-

tion; Smart Grids
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1. INTRODUCTION

Advances in multi-agent algorithms have enabled large-scale systems to perform complex
tasks without requiring human assistance [Huebscher and McCann 2008]. Multi-agent sys-
tems (MAS) comprise multiple autonomous entities, known as agents, and can be used to
solve problems in a distributed manner, when centralised control becomes infeasible. Of-
ten, system autonomy is achieved by agents continuously learning from their interaction
with the environment and each other, rather than relying on predefined behaviours [Stone
and Veloso 2000]. One commonly-used computational approach to learning is reinforcement
learning (RL) [Sutton and Barto 1998]. Agents in Multi-agent RL (MARL) systems learn
suitable actions by trial and error, interacting with their environment to reach their goal,
which is to maximise their cumulative rewards (i.e., the total reward they receive in the
long run [Sutton and Barto 1998]), and can achieve this by collaborating with other agents.

However, an environment in which agents operate can be non-stationary, i.e., it might
evolve so that selected actions have an effect different from the previously learned one. Once
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previously unencountered situations occur, agents need to re-restart the learning process
(i.e., re-learn) in order to learn the new suitable actions to adapt to new situations, perform-
ing sub-optimally while doing so. Our hypothesis is that prediction of future environment
behaviour can provide agents with a sufficiently good a priori training model for offline
learning to improve their performance in online mode [Dusparic et al. 2013]. This paper
proposes Predictive-MARL (P-MARL), a MARL technique augmented with environment
prediction and pattern change detection capabilities to counter inherently non-stationary
environments that can be described as a time-series. We demonstrate the implementation of
P-MARL in a smart grid case study, with non-stationary energy usage patterns. We show
that P-MARL obtains improved performance over traditional MARL by using environment
forecasts to prepare for upcoming changes.

The rest of this paper is organized as follows: Section 2 introduces RL and reviews existing
work of MARL in non-stationary environments. Section 3 presents P-MARL, our proposed
approach for optimisation in non-stationary environments. Section 4 describes the appli-
cation of P-MARL in a smart grid case study, while Section 5 presents and analyses the
results obtained by our approach. Finally, Section 6 presents our concluding remarks and
avenues for future work.

2. BACKGROUND AND RELATED WORK

2.1. Reinforcement Learning

Reinforcement learning (RL) is a computational approach to learning from interaction with
the environment that enables an agent to learn how to perform well in an unknown envi-
ronment through a process of trial and error [Sutton and Barto 1998]. A reward is provided
to the agent for each action taken in a given state. This process is pictured as a Markov
Decision Process (MDP) in Fig. 1, where x is the state of the environment, s is the state
of the agent, a is the action taken by the agent and r is the reward received. The values
in the brackets represent the time-step (e.g., s(t − 1) is the state s at time-step t − 1 ).
The next state depends only on the agent’s current state s and action a, and not on any
previous actions taken or states encountered; this is known as the Markov property. Even
though some immediate actions may lead to higher rewards than others, an agent’s goal is
to maximise its long term reward. An agent needs to explore all states and actions combi-
nations in order to learn the highest rewarding sequence of actions that can be taken from
a particular state. This sequence is known as the agent’s policy. RL agent performance is
optimised once sufficient exploration through different states and actions is performed.

There are two main types of RL methods: ones that use models of the environment and
rely on planning, called model-based (e.g., Dyna-Q [Sutton 1990]), and ones that learn
through trial and error, called model-free (e.g., Q-learning [Watkins and Dayan 1992]).

If external changes occur in an environment, it will react differently to an agent’s actions,
therefore an agent’s learned information can become outdated. In such cases, we say that
the environment is non-stationary. When an environment in which an agent is acting is
non-stationary, an agent needs to re-learn in order to adapt to the new changes.

Model-based RL approaches use experience to model the environment’s reaction to an
agent’s actions, and thus agents are able to implement strategies based on the developed
model to maximise their performance. However, when the environment is inherently non-
stationary the accumulated experience becomes misleading, even if the Markov property
holds. Agents need to acquire new experience in order to learn a new model, and while
doing so the system underperforms. Model-free RL is not held back by an inaccurate model
of the environment, and does not need to accumulate experience for modeling it, however,
it will still perform suboptimally throughout the learning stage.
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Fig. 1: Reinforcement Learning: Agent and
Stationary Environment

Fig. 2: Reinforcement Learning: Agent and
Non-Stationary Environment

2.2. MARL in Non-Stationary Environments

When several RL agents interact within the same environment, the single agent RL problem
is extended to MARL. However, when such multiple self-interested learning agents inter-
act with each other the result of their actions on the environment becomes non-stationary,
as each agent acts in a non-stationary manner during the learning process (i.e., while it
is trying different actions in the same state). In addition, non-stationarity in the environ-
ment can arise independently from agents’ behaviours, i.e., through independent changes in
environment variables. Therefore, non-stationarity in MARL can arise for two reasons:

A. Agent-contributed non-stationarity: several agents are simultaneously exploring within
the same environment, therefore the effect of their individual actions is non-deterministic
since the environment reacts differently for each combination of actions.

B. Environment-induced non-stationarity: the environment continuously evolves by itself,
therefore the result of agents’ actions are also affected by the evolution of the environ-
ment independent from agents’ actions. Fig. 2 illustrates how this affects the typical RL
process (Section 2.1) from an MDP perspective, where environment state x(t) is now also
influenced by the non-stationary component ε(t), which represents the non-stationary
independent evolution of the environment.

Techniques that address agent-contributed non-stationarity mostly focus on modelling
other agents’ behaviours in order to predict their actions and their joint impact on the envi-
ronment [Claus and Boutilier 1998; Hu and Wellman 2003; Shoham et al. 2003; Laumônier
and Chaib-draa 2005; Elidrisi et al. 2014; Hernandez et al. 2013]. However, modelling the
behaviour of an opponent is not feasible in complex non-stationary environments, where
many agents act upon the environment and the effect of a single agent is not transparent.

In situations where the environment itself is complex and non-stationary, agents’ learning
cannot converge to stationary policies, therefore gaining knowledge about the environment
can be key to successful implementation of MARL [Klügl et al. 2005]. Techniques that
consider non-stationary environments do so by creating partial models of the environment
[Doya et al. 2002; Choi et al. 2001]. However, these do not address continuously evolving
environment dynamics, where previously defined models are not reliable. RL with Context
Detection (RL-CD) [Silva et al. 2006] attempts to address environment dynamics with a
context detection-based approach that builds on multiple partial models. Multiple models
are continuously evaluated against a specific environment dynamic, and the model perform-
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ing best is chosen to further dictate actions. If no model performs satisfactorily, RL-CD
triggers learning a new model for the particular environment dynamics. The new model
is triggered only when an agent consistently performs sub-optimally. In SOILSE [Salkham
and Cahill 2010], fluctuations in environment behaviour are continuously monitored by a
moving average filter. Once a change is detected, SOILSE’s learning parameters are changed
in order to allow agents to adapt to the new conditions.

In each of these solutions, the system needs to explore the suitability of actions while
learning. Overall system performance is affected during this time, which is not suitable
in many real-world applications, such as industrial processes or vehicular traffic. Training
offline can improve performance [Tesauro et al. 2006], but is directly affected by the quality
of information provided. Such information can be provided by using prediction, as discussed
next.

2.3. Prediction in Non-Stationary Environment

P-MARL is aimed at non-stationary environments whose behaviour can be modelled as a
time-series, and as such can benefit from advanced time-series analysis techniques. Such
environments can be found in financial markets (e.g., predicting stock trends, detecting
financial market meltdowns), meteorology (e.g., detecting seasonality in weather patterns),
process monitoring (e.g., detecting abnormal operating performance), control engineering
(e.g., load balancing based on model predictive control), signal processing and electric en-
ergy consumption (e.g., estimating future energy needs of end-users). A time-series is a
discrete sequence of points set at fixed time intervals whose values represent successive
measurements of a specific variable. This variable, denoted here as property x of an en-
vironment behaviour over an interval of length t, can be defined as (x1, x2, ..., xi, ..., xt) ,
where xi is the measurement of the property x taken at time i. Widely-used approaches for
predicting future values of time-series (from the example, values xt+1, xt+2, ...) include sta-
tistical auto-regressive methods [Box and Jenkins 1970], Artificial Neural Networks (ANNs)
[Zhang et al. 1998] and fuzzy logic [Brown and Harris 1994].

Statistical auto-regressive methods are established methods for time-series prediction in
weakly stationary or non-stationary time-series, with the auto-regressive moving average
(ARMA) model being first introduced [Whittle 1951], and later popularised together with
auto-regressive integrated moving average (ARIMA) as Box-Jenkins approaches [Box and
Jenkins 1970]. The models analyse random processes and linearly relate the output of the
prediction system based on previous values of the time-series. The series is decomposed
through a formula that relates individual coefficients with the former chosen n values.
ARMA and ARIMA additionally have a moving average part, where another set of coeffi-
cients is considered for the moving average model component. While ARMA can be used
with weak-stationary systems, ARIMA applies differencing on a non-stationary time series,
thus removing the non-stationary component and treating the result as stationary.

While directly predicting future behaviour can be very efficient, most successful tech-
niques combine several methods to improve overall results. Among them, one of the most
noticeable and effective additions is the classification of historical behaviour into different
sets, generally accomplished using self-organising maps (SOM) [Kohonen 1990], k-means
clustering [Hartigan and Wong 1979], or support vector machines [Cortes and Vapnik 1995].
These techniques rely heavily on past behaviour, but key environmental variables (i.e., fac-
tors that impact the behaviour of the environment, such as the passing of a cloud affecting
the current temperature) can also play an important role. Monitoring the key variables can
help estimate future changes in the environment.

So far, as presented in Section 2.2, most of the focus in MARL has been on predicting
agent behaviour instead of environment behaviour. In this paper, the main contribution
stems from the use of advanced prediction techniques for determining future non-stationary
environment behaviour in the learning process of MARL. Previous methods that include
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environment-related information in MARL only address change-detection, but not future
behaviour prediction, i.e., they do not provide any information about the future evolution
of the environment when it evolves towards previously unencountered situations.

2.4. Requirements for MARL in Non-Stationary Environments

Table I: Adaptation under Environment-Induced Non-Stationarity

Previously encountered dynamics New dynamics

Behaviour
Change

Detection

Detected through change in rewards
[Choi et al. 2001; Doya et al. 2002]

RL-CD: Uses memory for known
models, learns new models online [Silva

et al. 2006]
SOILSE: Trigger re-learning when

change detected [Salkham and Cahill
2010]

Behaviour
Prediction

Memory based approaches (keep
previous models of environments and

switch based on change in reward) [Choi
et al. 2001; Doya et al. 2002]

X

A summary of the state of the art in non-stationary environments is presented in Table
I. Current optimisation techniques are designed to address previously encountered environ-
ment dynamics; agents can only adapt to new environment dynamics by learning online
(e.g., RL-CD, SOILSE), and have no means to predict the behaviour of new environment
dynamics or pretrain for it. To address these limitations, without losing any of the func-
tionalities current techniques can provide, a multi-agent system deployed in non-stationary
environments should:

— Req. 1 support agents taking optimal actions in the current environment state (i.e., fulfil
the basic MARL requirement of learning optimal actions);

— Req. 2 detect environment behaviour changes;
— Req. 3 predict environment behaviour: if a change in environment behaviour is detected,

it should identify the type of change occurring, and re-predict the environment’s future
dynamics;

— Req. 4 support agents pretraining (i.e., learning offline) for possible future environment
dynamics even if these have not been encountered previously.

In the next section we describe P-MARL’s design and how it meets these requirements.

3. P-MARL

P-MARL’s goal is to improve MARL performance when the environment is continuously
evolving, and learned information becomes outdated. Unlike solutions that react after
changes in the environment are detected (e.g., RL-CD and SOILSE), P-MARL allows agents
adapt to new situations, minimising underperformance that might arise from such outdated
learned information. By predicting future environment behaviour, agents can learn optimal
policies offline, using a simulation of the environment. This is a key difference from RL-CD,
which is model-based, i.e., it learns a new model at run-time and therefore performs subop-
timally while doing so. In P-MARL, agents are better prepared to handle upcoming changes
in the run-time environment after training in a simulated environment, before applying this
synthetic knowledge at run-time.

Our solution employs multiple autonomous RL agents, and is, therefore, a decentralized
approach. Centralized solutions to multi-agent optimisation in resource allocation problems
are not feasible, as the time needed to solve a problem grows exponentially with the number
of agents involved [Busoniu et al. 2008]. Furthermore, such solutions rely on one unit, with
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corresponding single-point of failure issues. In P-MARL, agents are agnostic with respect to
from where the prediction comes. Depending on the scale and communication capabilities
of the underlying system, it is possible to perform simulations/predictions centrally, on
a dedicated agent, or on any of the participating agents, or have multiple agents take
responsibility for their sub-regions.

3.1. P-MARL Design

P-MARL uses a reinforcement learning algorithm known as Q-Learning [Watkins and Dayan
1992], which was chosen for its simplicity as it does not require predefined models of the
environment. Q-Learning is formally defined as:

Q(st, at)← Q(st, at) + α
[
rt+1 + γ max

a
Q(st+1, a)−Q(st, at)

]
(1)

where Q(st, at), the Q-value, is the expected discounted reward in state st after taking
action at and following a certain policy afterwards [Watkins and Dayan 1992], α is the
learning rate, rt+1 is the immediate reward received at the next time-step for taking action
at in state st, γ is the discount factor, and maxaQ(st+1, a) is the maximum expected Q-
value that can be achieved from state st+1 after taking an action a. The two parameters α
and γ influence how much the algorithm learns from new experience and how much weight
a delayed reward holds, respectively. In this paper, we use the classical tabular format of
Q-learning, based on Eq. 1, where the Q-value of each state-action combination is stored
in a table. Furthermore, we also employ softmax action selection [Sutton and Barto 1998],
where the RL algorithm gradually moves from exploration to exploitation as a parameter
entitled temperature is decremented. When the temperature is high, actions are almost
equiprobable, but as the temperature value decreases, softmax action selection becomes
similar to greedy selection.

In Q-Learning with softmax action-selection, once an agent moves towards the exploita-
tion stage, it attempts to maximise its overall reward (i.e., Q-Value) by choosing the most
long-term rewarding action from state st. Once sufficient exploration is performed, action
at is considered to be the optimal action from this state. In the case of stationary environ-
ments, the transition to state st+1 is a function f of the action taken at time t, assuming
that we already are in a known state st:

st+1 = f(st, at) (2)

In a non-stationary environment, where a change has just occurred, an agent takes action
at in state st, expecting to maximise its long term reward by moving into state st+1. We con-
sider a fully observable environment at state st, therefore within the MDP framework, but
which at the same time has a non-stationary evolution, therefore is non-deterministic. Envi-
ronments that are not fully observable should be addressed under the POMDP framework
[Kaelbling et al. 1998]. 1 Since the environment considered in this paper is non-stationary,
it influences the result of action at, and the new state reached is instead s′t+1. Therefore
s′t+1 is a function of both the agent’s action and the environment’s independent behaviour:

s′t+1 = f(at, xt+1) (3)

Thus, value xt+1 affects the outcome s′t+1 together with action at. In stationary environ-
ments xt+1 can be learned and integrated in the rewarding scheme, so Eq. 3 can be reduced

1POMDPs are outside the scope of this paper, and the application of P-MARL to POMDPs needs to be
evaluated separately.
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to Eq. 2. However, when the environment changes, the previously integrated value xt+1 can
be radically different from the actual state of the environment. In this case, action at can
lead towards a suboptimal state with a different reward than expected, so Q-values need
to be readjusted. In such situations, further exploration is needed for the Q-Values to be
re-learned until an optimal set of actions is found again. Here, environment evolution needs
to be taken into account separately to improve the agent’s performance. As such, in an
environment defined as time-series, we have:

xt+1 = x̄t+1 + εt+1 (4)

where x̄t+1 is the already integrated value in Q-Learning, and εt+1 is the difference
between the integrated value of the environment and the one actually occurring due to the
environment’s independent evolution. From Eq. 3 and Eq. 4 we can deduce that:

s′t+1 = f(at, x̄t+1 + εt+1) (5)

where εt+1 impacts the time-series evolution as well. However, since εt+1 is a scalar value
as we are addressing environments which can be defined as time-series, and considering the
function f as being of additive nature, Eq. 5 can be written as:

s′t+1 = f(at, x̄t+1) + εt+1 (6)

If |εt+1| << |x̄t+1| (i.e., the estimation error of the time-series behaviour is very small),
the Q-values obtained by employing x̄t+1 should not affect the choice of actions as the
state reached s′t+1 = st+1, but this assumption does not usually hold for non-stationary
environments, where εt+1 can be large. This fact is key to our approach. We want to
provide an estimate x̂t+1 to closely match xt+1, the future environment behaviour. This
can be used to train an RL agent offline, within a simulation of the environment based
on the estimate. Note that there is an important difference between our simulation of the
environment and the model of the environment in model-based approaches, for example in
Dyna-Q [Sutton 1990]. Dyna-Q builds a model of the environment from experience and it is
able to predict the next state and reward based on current state and action. Our approach
is model-free, and does not build a model or explicitly predict the next state or reward;
we instead simulate the environment outside of the agent framework, and let the RL agent
implicitly learn suitable actions for this simulation.

P-MARL employs advanced forecasting techniques for non-stationary environments,
where a close estimate x̂t+1 can be predicted, so that x̂t+1 ≈ xt+1.

Our chosen application environment is inherently non-stationary. In mathematical terms,
this means that the underlying generating function of the environment changes over time.
The problem is simplified by modelling the outcome of the generating function of the envi-
ronment based on recently observed behaviour. At every time step t, there is historic data
available:

xH = (x1, x2, ..., xt)

where xi is the state of the environment x at time i. We predict xt+1 considering past
observations. This is a difficult task, since a non-stationary environment does not present
fully repeatable patterns. Moreover, the uncertainty present in the environment needs to
be accounted for separately, as anomalous events in the environment can lead to unex-
pected changes. The accuracy of predictions is critical in the training process of agents, as
inaccurate predictions can make the agents take sub-optimal actions.

Depending on the speed of changes occurring in the environment, prediction systems need
to:
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Fig. 3: P-MARL Algorithm Structure

(1) Periodically update the model of the future states of the time-series based on the most
recently observed samples (we have selected this approach as inspired by work in [Widmer
and Kubat 1996]);

(2) Trigger the generation of a new model of future time-series states once a pattern change
detection mechanism notices an unexpected shift from the model’s expected behaviour
(as suggested in [Alippi and Roveri 2008]).

The second part is more challenging. The new model is proposed based on a pattern-
matching mechanism that should provide a close match, based on similar previously en-
countered behaviour. This in turn provides additional information in generating a better
model.

Fig. 3 illustrates the P-MARL architecture, which integrates environment prediction (via
Primary Prediction and Pattern Change Detection/Matching components) with offline sim-
ulation, to provide additional knowledge to the MAS component, as follows.

3.2. Prediction

P-MARL’s time-series prediction system has two main components. The primary prediction
component provides environment estimates periodically, forwarded to the MARL component
as a training base. In parallel, once an estimate has been provided by the primary prediction
component, its accuracy is continuously evaluated against the real-time behaviour of the
environment by the Pattern Change Detection and Matching Component.

3.2.1. Primary Prediction Component. The primary prediction component uses both recent
historic values of previous environment behaviour and key environment variables that in-
fluenced the environment’s historic behaviour in order to provide an estimate of future
behaviour. The model is a hybrid solution mainly comprising ANNs and ARIMA, taking
advantage of these techniques’ strengths for time-series prediction. A specific implementa-
tion of the hybrid solution for the smart grid domain is presented in Section 4, where further
details are given on each of these techniques. As determined in our previous study [Mari-
nescu et al. 2014b], some methods are more effective at specific subcomponents of time-series
than others, and a combined solution is more accurate overall at predicting the complete
time-series. For example, given an estimate with a horizon of 5 time-points (x̂t+1, ..., x̂t+5),
sub-technique A could be suited for elements x̂t+1 and x̂t+3 while sub-technique B could
be suited for elements x̂t+2, x̂t+4 and x̂t+5. The best performance of sub-techniques needs
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to be investigated on the specific training dataset to achieve maximum possible accuracy
[Marinescu et al. 2014b]. In general, a method consistently achieving higher accuracy than
others over a time-series segment would be selected to forecast it. Considering a forecast of
a set length, its comprising segments can be forecasted individually by the most suitable
methods, and then combined to provide an ensemble forecast. For example, in our initial ex-
periments on the energy demand-side management prediction data, ANN performed well on
non-linear data, such as morning/evening energy demand peaks, while ARIMA performed
well on linear data, such as mid-day/late night energy demand. The prediction algorithm
continues to monitor the suitability of the methods used for different segments of data, and
evaluates their accuracy and switches methods as appropriate at fixed time intervals.

3.2.2. Pattern Change Detection and Matching Component. This component detects when the
prediction model fails to provide accurate estimates of the future state of the environment.
The current behaviour of the environment is evaluated by a self-organizing map (SOM)
[Kohonen 1990]. SOMs are a form of ANN trained through unsupervised learning. Data is
clustered into separate classes based on similarity. An initial set of previously encountered
environment values are used for the training of the map.

A SOM has a number of classes available for classification, which are decided at the
implementation stage. These depend on the approximate number of different types of sam-
ples. Once the training process is finished, each new sample fed into the SOM is assigned
into one of the classes. Since there can be many different classes within a SOM, a design
choice was to group these into two main categories: normal classes, encompassing most of
the samples, and anomalous classes, comprising samples that are outside of the ordinary
[Marinescu et al. 2014a]. The SOM is initially trained with historical data; new samples
are classified by the SOM based on similarity with existing clusters. If the new sample is
classified into an anomalous category, further measures need to be taken.

A predicted horizon (x̂t, x̂t+1, ..., x̂t+h), provided by the primary prediction component,
is used to detect anomalies. The initial assumption is that for this horizon, the environment
behaviour will not be different to predicted, i.e., anomalous. As the environment evolves
from time t to time t + i between (t, ..., t + h), we overlap the recently acquired informa-
tion about the environment over the predicted horizon. Therefore, the sequence becomes
(xt, xt+1, ..., xt+i, x̂t+i+1, ..., x̂t+h). At each time t+i the newly obtained sequence is inserted
into the SOM. If the sequence is deemed to be anomalous, further adjustments need to be
made since the previous historic data can result in inaccurate predictions. The sequence
obtained so far is then compared with similar sequences from the corresponding anomalous
class, and a closest match is found based on k-nearest algorithm; this match is used to fill
in the remaining time-points in the sequence from the current time t+ i. Fill-in points are
adjusted according to the correlated current environment variables. If the behaviour is not
deemed anomalous, no re-prediction will be executed. If the environment behaviour identi-
fied as anomalous does not lead to an actual anomaly (i.e., it was a false positive detection),
the re-prediction and matching processes will still be executed, but the resulting prediction
will not be significantly different from the one provided before anomaly detection. Therefore
the performance of the agents will not be negatively affected.

In short, the hypothesis is that the closest previously encountered sample from the
matched class of anomalies will increase prediction accuracy by triggering a new estimate
which is particular to anomalous cases.

3.3. The Multi-Agent System

As illustrated in Fig. 3, and detailed in Algorithm 1, a final estimate of the environment’s fu-
ture expected behaviour is provided by the prediction module to the MAS agents. The MAS
agents evaluate their performance based on this expected future behaviour and recalibrate
their state-action values. This is a simulated, off-line process of exploration-exploitation,
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repeated by the agents until solutions converge, and they are ready to operate in online
mode. The simulation process means they are better prepared to achieve a best-response
function to the expected future behaviour of the environment. Even though the actual envi-
ronment they face may be somewhat different from the estimate, the hypothesis is that the
previously obtained knowledge will help them perform well in conditions similar to the ones
provided by the estimate. In the case of Q-Learning, this translates to obtaining Q-values
that allow agents to maintain the same policy both for the estimate and for the actual
environment, since the environment states are expected to be approximated in a similar
way.

ALGORITHM 1: P-MARL Algorithm

foreach new prediction do
envVars ← updateEnvData();
histData ← updateHistoricBehaviour();
prediction ← makeInitialPrediction(envVars,histData);
evaluatePrediction(prediction,currentEnvBehaviour);
if no significant change detected then

finalPrediction ← prediction
else

anomalyType ← matchChangeType();
finalPrediction ← repredict(anomalyType,envVars,histData);

end
for each agent do in parallel

reward agent based on decision and influence on env status;
update Q-Values;

end
exploit learned info on actual env;

end

Once each agent receives a prediction of the environment behaviour, several types of
learning can occur during the exploration stage of agents, depending on the communication
restrictions imposed on the system:

1. single agents acting separately on the environment : during exploration, each agent
reaches a policy solely based on the effects occurring on the environment due to its
own actions. An agent cannot see any of the effects of other agents on the environment.
While the environment is updated only locally, the final state of the environment will
aggregate all actions taken, but this aggregated state is not accessible to agents (e.g.,
several slot-machines players attempting to win money from a casino). This is the case
with most severe communication restrictions.

2. multiple agents acting simultaneously on the environment : during exploration an agent’s
action on the environment is taken into account together with the cumulative effect of all
agents’ actions. The agent can see this cumulative effect of all agents’ actions only after it
has chosen an action, therefore agents choose actions simultaneously. This case assumes
that there is only post-communication towards the agents, coming from an environment
update once all agents have taken action (e.g., the stock market, where brokers take
actions simultaneously).

3. multiple agents acting sequentially on the environment : during exploration agents take
decisions at each time-step in a sequential manner (e.g., an auction, where only the
current bid matters and not previous ones). An agent will see the cumulative result
of the previous agents’ actions on the environment, and then decide which action to
take. Once it has taken a decision, the updated cumulative effect on the environment
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is passed on to the following agent. The order of this sequence is random at each-time
step, therefore no agent is favoured during the length of a learning episode. This form
of interaction requires an underlying protocol to maintain ordering between the agents
and avoid overlapping decisions.

3.4. P-MARL and the Requirements for Optimisation in Non-Stationary Environments

Section 2.4 listed a set of requirements for optimisation in non-stationary requirements,
based on the existing approaches and the gaps in their applicability. P-MARL, as presented
in this section, meets those requirements as follows:

— Req. 1 Taking optimal actions in the environment is enabled by the Multi-Agent System
component (Section 3.3). Agents use Q-learning to learn suitable actions for each of their
states. Actions are pre-learnt offline, in a simulation facilitated by the prediction and
simulation components, and further adjusted to new environment conditions online.

— Req. 2 Detecting changes in the environment is done by the Pattern Change Detection and
Matching Component (Section 3.2.2). This enables P-MARL to detect when environment
prediction (as provided by the Primary Prediction Component, Section 3.2.1) differs from
the actual environment behaviour.

— Req. 3 Future environment behaviour is estimated by the Primary Prediction Component
(Section 3.2.1). When changes from expected environment behaviour occur, the Pattern
Change Detection and Matching Component is able to detect and classify the type of
change in the environment and trigger reprediction, which is executed by the Primary
Prediction Component. This is done to enable prediction of environment dynamics even
when changes from expectations occur.

— Req. 4 Pre-training for new dynamics (i.e., previously unencountered) is enabled by the
Environment Simulation component (Fig. 3). Re-predicted behaviour is simulated within
this component, and enables agents to adjust their preferred actions before acting online.

P-MARL detects changes in the environment (Behaviour Change Detection), and predicts
environment behaviour (Behaviour Prediction) for both previously encountered dynamics
and new dynamics, without losing any of the features of the existing approaches to op-
timisation in non-stationary environments. Behaviour prediction in the new environment
dynamics is enabled, which was not possible with other existing MARL approaches to
non-stationary environments (see Table I). Optimisation in newly-encountered dynamics is
further improved by enabling offline instead of online learning implemented by the exist-
ing approaches, which reduces the negative impact on the environment during the training
phase.

4. SMART GRID CASE STUDY

Smart energy grids are a good example of systems operating in non-stationary environ-
ments, which can be modelled as a time-series. Environment non-stationarity in energy
grids is caused both by non-stationary energy usage (e.g., energy use depends on the time
of day, day of the week, weather), and non-stationary renewable energy generation, which
depends on weather. In this case study, we apply P-MARL specifically to Demand Side
Management (DSM). DSM techniques attempt to reduce peak-time energy usage by re-
scheduling deferrable loads to times when the baseload (i.e., non-deferrable energy load) is
lowest. These deferrable loads can be controlled by intelligent agents organized in a multi-
agent system (MAS) and learn how to schedule energy usage to achieve their objectives,
while avoiding peak-time energy usage.

4.1. Multi-Agent Systems and the Smart Grid

Several DSM solutions using MAS have been proposed, with particular focus on electric
vehicle (EV) charging, which have high power consumption but charging time flexibility.
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Examples include: agent-based control algorithms based on grid prices and emergent coor-
dination of agents [Ramchurn et al. 2011]; imbalance cost reductions through a multi-agent
solution for coordinated plug-in hybrid EVs [Vandael et al. 2011]; EV fleets as virtual
power plants for energy trading in wholesale markets [Kahlen et al. 2014]; and research into
individual EVs, which benefit from smart charging strategies based on learning agents [Val-
ogianni et al. 2014]. However, the proposed approaches do not account for potential changes
in the baseload (e.g., unexpectedly cold weather leading to additional electric heating in
the home), and so do not adapt, leading to sub-optimal performance if the baseload does
change.

We evaluate P-MARL in a standard DSM scenario, where EVs in a community of house-
holds try to optimise their battery charging. The EVs coordinate their usage with other
EVs to decrease peak-energy usage and best utilize night-time energy usage troughs. We
monitor and predict energy baseload, and aim to improve agent charging performance by
providing accurate baseload predictions.

4.2. Primary Prediction Component Configuration

In the smart grid scenario, EVs arrive home in the evening and depart in the morning. EV
agents need to be aware of periods of low demand while they are home in order to be as cost
effective as possible. In a non-stationary environment, though, such a priori knowledge is
not available, as environment conditions may directly influence demand. An initial analysis
of how the environment evolves needs to be performed to provide the input required to con-
figure the primary prediction component, and thereby provide the environment predictions
that the EV agents need. In general, the defining characteristic of a relevant environment
is examined in relation to other environment variables, and any dependent variables found
should also be employed in the prediction component. Furthermore, seasonal patterns and
trend lines in the time-series representation need to be addressed when customising the
prediction model.

Short-term load forecasting (STLF) focuses on day-ahead demand forecasting, providing
an estimate every 24 hours. This is appropriate for power demand estimates, as energy
demand is seasonal at day level. Such forecasts rely on historic values of previous power
demands, and also on other data such as weather variables (temperature, humidity), day
of the week and public holidays [Gross and Galiana 1987]. While weekdays and weekends
differ significantly in terms of demand patterns, each weekday also poses somewhat different
characteristics. Anomalous days (from a demand perspective) also occur, mostly because
of public holidays but also because of other unexpected reasons, such as snap cold periods.
These anomalous days need to be accounted for separately.

P-MARL’s forecasting method is a hybrid solution exploiting the best features of sev-
eral forecasting techniques: Artificial Neural Networks, Neuro-Fuzzy Networks and auto-
regression. The hybrid solution uses as input previously recorded power demands, past
day’s temperature and humidity information, temperature and humidity forecasts for the
day to be predicted, and day of the week information. The output is the next day’s power
demand estimate, provided as a sequence of 24 data points, one for each hour of the day.

In the neural network, the input neurons are divided as follows:

— 24 neurons used for previous load input, one for each hour of the day
— 5 neurons are used for the day code input, for each day of the week (weekends are excluded)
— 14 neurons are used for weather forecast input along the day, 8 for temperature and 6 for

humidity; more inputs were chosen for temperature because of its higher correlation with
energy consumption

The output layer comprises 24 neurons, which represent the short term load forecast.
Each of the output neurons provides a demand estimate belonging to an hour of the day,
in consecutive order.
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Baseload demand prediction is based on the weather forecast for the day to be predicted,
together with the historical recorded demand occurring over the same day of the previous
week. The reason for choosing the load belonging to the same day of the week for prediction
(e.g., previous Tuesday is used for predicting the following Tuesday) is that each day of the
week tends to have a particular demand shape.

The ARIMA model, another key component of the prediction system, is based on a whole
week’s recorded demand, occurring before the day to be forecasted. Thus, a total of 120
(5x24) coefficients are taken into account in the model, one for each hour of the week
[Marinescu et al. 2014b].

This technique relies only on the analysis of the time-series representation of the envi-
ronment’s behaviour. In this particular case study, the forecasted energy load is provided
as input. However, the technique can be similarly used for other domains, for example: in
vehicular traffic control, by providing traffic flow forecasts to traffic light agents; in cloud
computing, by employing a daily forecast of expected computational load to resource al-
location agents; or data traffic information forecasts provided to telecommunications node
agents for these to decide routing tables. Prediction of future behaviour from any given
dataset can be provided by a hybrid combining several best-performing techniques specific
to a domain, as described here for the smart grid scenario. Alternatively, it can be provided
using only a single technique, if, based on the data sample available, it provides a suitable
level of accuracy. Any of the state of the art time-series analysis techniques, as discussed
in Section 2.3, can be integrated into P-MARL, as only the behaviour prediction is needed,
regardless of the techniques and algorithms used to obtain it.

4.3. Pattern Change Detection and Matching Component Configuration

In situations involving uncertainty, quality of service guarantees cannot be provided. Even
if previous models generate accurate predictions, there are particular times when forecasts
fail to closely match actual behaviour. In smart grids, anomalous situations are caused
by anomalous events such as unexpected climate phenomena or particular socio-economic
events. The pattern change detection component makes the system more robust in the face
of such events.

Once the prediction model provides a forecasting estimate for the next day, the actual
demand is compared with the estimate along the first few hours of the morning (the evening
part is the period of highest demand and needs to be accommodated for). The custom SOM
used for classification in this case comprises four classes: two classes for normal days (one
for cold/winter days and one for warm/summer days), and two anomalous classes (one for
public holidays and one for other particular days).

If significant deflections from the actual demand occur, the day will be classified in one
of the anomalous classes. In this case, the pattern change detection mechanism triggers
reprediction, since the demand estimate is regarded as flawed. A match is chosen based on
similarly previously encountered patterns, which are found in a database of historic record-
ings. After the self-organising map classifies the type of uncertainty detected it provides the
closest previously encountered match from the fitting class.

The reprediction component is based on an ANN which adjusts its historic load input
part (24 neurons, one for each hour of the day) to a combination between the actual demand
observed so far of the anomalous day (7:00-14:30 interval) and the remaining demand from
the closest match provided by the SOM component (14:30-23:30 interval). This constructed
sequence is input to the ANN, which also takes into account current weather and day of
week conditions to provide another forecast of the day. It is expected that the results will
be more accurate for the evening demand interval.

This technique can be used to detect changes and adjust independently of the application
domain. For example, when new vehicle traffic patterns are detected, these can be matched
with some known situations (e.g., traffic in rainy conditions) and this information can be fur-
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ther used by agents for calibration; when high traffic is generated by a particular webpage,
this can be matched with patterns occurring after exposure to social media, for agents to
allocate additional server resources; or when there is high traffic in a particular telecommu-
nication network area due to a social event, additional telecom stations can be temporarily
dispatched. Selection of normal and anomalous classes for the SOM is straightforward, with
a little knowledge of the domain.

4.4. P-MARL System Implementation

P-MARL integrates the prediction and pattern change components with a MARL system.
The RL process is implemented using W-Learning [Humphrys 1995], which combines two Q-
Learning objectives: (1) sufficiently charge an EV for the next day’s trip considering the time
available for charging, and (2) avoid generating peaks in demand. W-learning is a technique
for multi-policy action selection, where each policy is implemented as a Q-learning process,
and which works by minimizing the loss that any of its comprising Q-learning process can
incur when their nominated action is not being executed.

In our case, the agent is rewarded more for the first objective than for the second one, as
otherwise the agent would avoid charging at all. By combining both objectives, the agent
should only generate demand during times of low energy usage. Once the agent achieves
the minimum charge required for the daily trip, the reward for charging decreases, so that
peak-avoidance can be prioritized.

The environment forecast provided by the prediction components is used to find the
times of lowest energy usage. Since we employ tabular Q-learning, for the agent’s state
aggregation the forecasted load is analysed and afterwards discretized into ten different
levels (or RL states), depending on the amount of power used. State aggregation is necessary
because otherwise there are an infinite number of possible states between minimum load
and maximum load (e.g., the [0-300]kW interval). The lowest discretized states will present
the highest reward to the agent, therefore encouraging it to charge during intervals of low
demand. However, the load levels are expected to change also due to the action of other
agents in the environment, therefore the reward will also depend on their actions.

In general, when employing an environment described through time-series, rewards for
actions should be given depending on the state of the environment (i.e., depending on
whether an action was taken during low/high load).

4.5. Benchmark: Optimal Centralised Solution

We have defined the Pareto optimal performance of this problem to evaluate against P-
MARL. Our optimal centralized solution aims to optimise the following cost function:

minF (x) = min

m∑
j=1

[
n∑

i=1

(
xij + Cj

)]
xij (7)

where F (x) is the cost function, n the total number of EVs, m the total hours available
for charging (assuming the same availability schedules for EVs), xij the charging decision
of vehicle i at time j (0 for not charging & 1 for charging), and Cj the initial cost of energy
at time j (based on baseload). This is a binary integer programming problem, therefore
NP-complete [Karp 1972]. While a centralised solution is not feasible in most situations
when a problem is NP-complete, it is guaranteed to be optimal with respect to a defined set
of constraints, and so is an interesting benchmark for comparison purposes. We solve this as
a valley-filling problem, using the approach presented in [Gan et al. 2011]. The problem is
solved centrally, by pre-calculating the static solution for the day ahead. Each EV is taken
in turn, the minimum amount of charging slots required is computed, and then charging
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slots are allocated in the periods of low demand. Each EV incrementally updates the overall
demand until all EV charging slots are allocated.

The best performance that can be achieved by the MARL technique should have the same
aggregated effect as the valley-filling algorithm. In order to evaluate the optimality of the
MAS solution we used a formula derived from the mean absolute percentile error (MAPE).
This is shown in Eq. 8.

M =
1

m

m∑
j=1

(
1− |Xj − X̂j |

TotalNoOfEV s

)
(8)

where Xj is the total number of EVs charging at time-slot j, and X̂j the optimal amount
of EVs that should be charging at time-slot j. Note that this formula actually represents
the complement of error, as opposed to MAPE.

5. EXPERIMENTAL RESULTS

Power demands from a community of 230 households are employed, as recorded by an
Irish smart meter trial [Comission for Energy Regulation, Ireland 2011]. This is roughly
the number of houses provided for by a typical 630 kVA residential transformer [Marinescu
et al. 2013]. We have also assumed an EV penetration rate of 40% [Nemry and Brons
2010], resulting in a total of 90 EVs. A daily trip is considered to be 50 km [EPA 2008],
while the EV specifications are based on the Nissan Leaf characteristics [U.S. EPA Fuel
Economy Information 2014]. The vehicles can choose 15 minutes charging slots anytime
between 18:00-09:00. This smart grid scenario was implemented in GridLAB-D, a power
distribution system simulator [U.S. Department of Energy at Pacific Northwest National
Laboratory 2014], where a standard charging rate of 1.4 kW was used.

Three sets of experiments are presented here, with different levels of interaction be-
tween agents and environment. These reflect the cases presented in Section 3.3. For these
experiments we chose an anomalous day from the dataset, in order to identify P-MARL
performance differences between employing only the primary prediction component and a
combined system that also involves pattern-change detection and matching abilities.

All 90 EV agents begin the training sessions with a state of charge (SOC) of 0% (i.e.,
empty battery). Their purpose is to sufficiently charge for the next day’s trip. Agents are
trained offline over a period of 100 days, in a simulation of the environment. The simulation
is based on a prediction of the environment’s future behaviour. After the training session,
agents are tested on the actual environment. Each set of experiments is performed 10 times
and averaged.

The load from the same day of the previous week and three different load predictions
are provided in each set of experiments as input to P-MARL: simple prediction (no pattern
matching), anomaly-matching prediction (SOM Prediction), and perfect prediction (i.e., the
estimate is the same as the actual environment behaviour). The load of the previous week
is used in a traditional MARL implementation, which is based only on previously encoun-
tered situations. Perfect prediction represents an idealised situation, where the environment
induced non-stationarity is removed from the MARL problem. This latter case is used only
for comparison purposes, to differentiate between the levels of performance achievable by
the first two prediction types.

The evening and early morning periods of an anomalous day used, together with its
predictions and the same day of the previous week, are illustrated in Fig. 4. The anomalous
day occurs in December 2010; a comparison with other winter days reveals a higher amount
of energy usage in the anomalous day. This anomaly occurs because of an unexpected cold
front advancing from the North Atlantic, which caused increased power usage. The previous
day and simple prediction underestimate the actual demand, while the SOM reprediction
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Fig. 4: Predictions of an Anomalous Day

overestimates the demand. In this case SOM reprediction takes a more conservative measure.
The previous day has a forecasting error of 14.87% MAPE, simple prediction achieves a
forecasting error of 7.65% MAPE, while SOM reprediction achieves 4.66% MAPE. These
results show that significant increase in forecasting accuracy can be obtained using P-
MARL’s primary prediction component, and even further improvements by using pattern
change detection, matching and re-prediction.

18:00 21:00 00:00 03:00 06:00 09:00
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Time of Day

P
ow

er
 D

em
an

d 
(W

)

 

 

Baseload
Previous Day
Simple Prediction
SOM Reprediction
Perfect Prediction

Fig. 5: Single EV Charging
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Fig. 6: EVs Charging Separately

Before considering the multi-agent scenario, as a preliminary study we have first validated
our algorithm’s ability to address a non-stationary environment when applied at single-
agent level (i.e., focusing only on environment-induced non-stationarity without the impact
of agent-contributed non-stationarity). We investigated the impact of different levels of
accuracy of non-stationary environment prediction, considering only one EV agent within
a single household. For this, we have scaled down the community’s demand to approximate
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the demand of one house. Fig. 5 presents the results obtained by the EV agent while training
on the four different types of estimation for the day’s demand. Note that the curves when
employing the three predictions (i.e., simple prediction, SOM reprediction, and perfect
prediction) fully overlap.

When training on the previous day, which has lower demand, the EV agent fails to charge
sufficiently 60% of the time given 10 trials. This can be noticed also in Fig. 5, as the EV
trained on the previous day starts charging too late and stops charging too early, since
it incorrectly assumes that the demand is too high at those times. On the other hand,
accuracy differences between the three predictions in this particular scenario do not impact
the performance of a single agent. When using any of the predictions for training, the EV
agent will charge sufficiently 100% of the time.

In the following sections we investigate the impact of prediction accuracy on overall P-
MARL performance. The summary of the results are presented in two tables. Table II shows
the Pareto efficiency of the MARL solutions with regard to an optimal cumulated demand
pattern; the optimal performance is defined by an aggregate behaviour where agent charge
precisely the amount necessary for their daily trip while generating perfectly smoothed
demand on aggregate. Table III presents the percentage of EVs achieving their target charge
during the allocated charging interval.

Table II: Algorithms Efficiency in Different Prediction Conditions

MARL Agent Interaction
Pareto Performance

MARL P-MARL
Prev. Day Simple Pred. SOM Repred. Perfect Pred.

1. Separate Actions 83.22% 83.22% 75.78% 83.22%
2. Simultaneous Actions 78.94% 86.95% 85.88% 86.71%
3. Sequential Actions 97.76% 94.24% 93.68% 95.20%

Table III: Percentage of EVs Charged Before Departure

MARL Agent Interaction
Percentage of Charged EVs

MARL P-MARL
Prev. Day Simple Pred. SOM Repred. Perfect Pred.

1. Separate Actions 100% 100% 100% 100%
2. Simultaneous Actions 16.4% 95.7% 100% 100%
3. Sequential Actions 82.3% 83.9% 100% 100%

Case 1: EVs Charging Separately (Fig. 6). Each agent has a view only of its local envi-
ronment, and is only aware of its own impact on the overall system performance. As each
EV adds a relatively small load to the overall energy load, regardless of the load and load
prediction, each EV perceives that there is enough capacity for it to charge. Therefore, in
all prediction method cases, all EVs end up fully charged 100% of the time (Table III). As a
consequence, multiple vehicles end up charging simultaneously, increasing the overall load,
which achieves only up to 83% Pareto optimality regardless of the prediction method used
(Table II). The SOM method generates a peak earlier, which affects its Pareto efficiency even
more, since it tends to overestimate the demand (see Fig. 4). EVs therefore start charging
once the load goes under their initial expectations. We have performed additional tests on
statistical signficance through two-tailed t-tests (where results were considered to be statis-
tically significant if their p-value is lower than 0.05). The performance differences in terms
of Pareto performance between simple prediction/perfect prediction and SOM reprediction
are statistically significant, with a p-value of 1.21e− 11 over the 10 different runs. Since all
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vehicles end up charged all the time there is no statistical difference between numbers of
charged vehicles.
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Fig. 7: EVs Charging Simultaneously
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Fig. 8: EVs Charging Sequentially

Case 2: EVs Charging Simultaneously (Fig. 7). In this case, all agents are aware of their
aggregated impact on the environment, and all agents take actions simultaneously, taking
the overall impact in the account. The results show the impact and importance of accuracy
of prediction on the end performance in such a scenario. In terms of Pareto optimality, both
simple and SOM reprediction result in 7% improvement over using the previous day’s load
as prediction (Table II). In terms of battery charge, when using previous day’s load, only
16.4% of EVs achieve the required charge. Using simple prediction significantly improves
that to 95.7%, while SOM reprediction achieves the required charge on 100% of EVs, same
as the perfect prediction (Table III). The difference in Pareto performance between perfect
prediction and SOM reprediction runs is statistically significant, with a p-value of 0.0058,
while simple prediction and SOM reprediction runs failed to show any significant differences,
with a p-value of 0.10. In terms of percentage of vehicle charged, the difference was noticed
to be statistically significant between simple prediction and the SOM reprediction/perfect
prediction cases, with a p-value of 0.0002.

Case 3: EVs Charging Sequentially (Fig. 8). In this case, agents take actions one after
another, so each EV is aware of the aggregated impact of all of the previous agents on
the power demand, before deciding whether to charge or not. Accuracy of prediction does
not have a substantial impact on Pareto optimality of the solution, and less accurate
prediction sometimes even results in better performance (Table II). Since simple prediction
underestimates demand, and some agents charge more than required, the aggregate demand
will get closer to the optimal line. However, in terms of meeting agents’ objectives, again
only SOM reprediction achieves the required charge on 100% of EVs, while using previous
day load and simple reprediction do so only for 82.3% and 83.9% of EVs, respectively
(Table III). The difference between SOM results and the ones obtained by using simple
prediction are statistically significant, with a p-value of 1.25e − 7. The Pareto optimality
differences between the two situations are very small, however still statistically significant,
with a p-value of 0.0005. Also, there is statistically significant difference between perfect
prediction runs and SOM reprediction runs, with a p-value of 2e-9 with regard to Pareto
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optimality.

We observe the difference between the single-agent and multi-agent cases; in the single-
agent case, different predictions used did not have any impact on the charging outcomes, as
the EV ended up fully charged during all the trials for all prediction types. However, when
multiple agents are involved, the accuracy of prediction can make the difference between
agents reaching their charging objective or not, as can be seen in Table III. This confirms
the requirement for very accurate predictions of the environment’s behaviour, as achieved
by complex time-series prediction methods used by P-MARL.

5.1. Results Analysis

The quality of prediction and an agent’s level of interaction with the environment and
other agents has a high impact on the aggregate P-MARL performance. When agents are
not informed of the effect of other agents’ decisions (case 1), the aggregate demand has
negative consequences on the environment. The peak demand that results in this case (as
can be seen in Fig. 6 around midnight) forces the scheduling of additional power generation
units, or even a blackout at neighbourhood level. This peak effect is noticeable regardless
of the level of prediction accuracy.

Once agents have access to aggregate charging decisions (case 2), they notice their cumu-
lative effect. When their aggregated behaviour leads to peaks, agents will back-off at the
next time-step. The problem is that they can all resume charging two time-steps later as
they register a low demand once all have backed off. This alternating behaviour is illus-
trated in Fig. 7 and noticeable in particular when using previous day load as prediction and
in the simple prediction situation. Here, since the night-time prediction is underestimated,
agents believe that their aggregate behaviour is generating new peaks. This is not the case
in reality, and as a result some agents do not achieve their target charge because they expect
time-slots of lower demand to follow (as seen in Table III).

Informing agents of the cumulative effect of other agents before making their own decision
leads to a considerable performance improvement (case 3). Peak demand is avoided, and
agents’ aggregate performance closely matches the optimal line, as illustrated in smooth
lines in Fig. 8. In this case prediction quality also affects the number of EVs achieving
their target SOC. Some EVs trained on the previous day and simple prediction cases do
not charge enough before their departure, despite the high Pareto efficiency achieved on
aggregate. This is because some of the first agents to make a decision still decide to charge
even though their SOC is sufficient for their trip, as they are rewarded when the load is
low enough to allow that. Therefore, some of the following agents that are not sufficiently
charged, and that are about to make a decision, will encounter a load state where they
believe that charging negatively impacts the grid, resulting in them avoiding charging.

An investigation of the 10 different runs reveals consistent results in case 1 and 3. In
case 2 there is a larger amount of variability involved, in particular during midnight and
morning hours. Some time-slots with higher variability occur because of the effect agents
have when acting in bulk. If all agents charge in these particular time-slots, their aggregate
demand can result in peak demand, a situation in which all agents are penalised. They will
immediately back off in this situation for the next time-slot, but will start again for the one
after.

In summary, P-MARL provides improved performance over the traditional MARL ap-
proach with regard to the most important criteria: agents achieving their charging objec-
tives. When SOM reprediction is provided and agents interaction exists (case 2 and 3),
all P-MARL agents achieve their objectives, as opposed to only 16.4% of agents in simul-
taneous MARL and 82.3% in sequential MARL. In terms of Pareto efficiency, P-MARL
performance is similar to MARL, except for the simultaneous actions case: here MARL
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performs considerably worse. This is because MARL agents consistently back-off as they
erroneously assume that their bulk charging is generating peaks in demand.

6. CONCLUSIONS AND FUTURE WORK

This paper presented P-MARL, a novel approach which extends MARL by integrating ad-
vanced time-series analysis techniques to address inherently non-stationary environments.
The effect of environment-induced non-stationarity is reduced through prediction and
pattern-change detection and matching techniques, which provide agents with additional
information about the upcoming behaviour of the environment. In effect, these extensions
enable MARL to reduce the time needed for online learning, and minimise the negative
impact agents have on the environment while learning how to optimise their behaviour in
the new environment conditions.

P-MARL can be applied to non-stationary environments whose behaviour can be char-
acterised as time-series, and whose future behaviour is not completely random. In other
words, where external influencing factors render the environment’s behaviour as somewhat
predictable through additional information sources. In this paper, we used a smart grid
scenario as an example of such an environment, and have shown that P-MARL obtains sig-
nificant improvements over MARL in a simulation of residential energy demand response.

P-MARL has a number of limitations we plan to address in our future work. For ex-
ample, it includes an online environment simulation component, which assumes an online
connection between agents in the simulation environment. If agents cannot interact within
a simulation of the environment, their performance is reduced to the first type of interaction
presented, single-agents acting separately, reducing the benefits that are achievable by the
use of P-MARL. This could be addressed by providing alternative communication abilities,
such as agents exchanging messages directly in order to inform others of their decisions.

Another assumption in the evaluation of P-MARL was that all agents have the same
global objectives, in addition to an individual local objective. However, the MAS agents
could have conflicting objectives, or even involve malicious agents, therefore the convergence
of P-MARL in such conditions should be investigated. We plan to base a solution to this
problem on multi-objective RL optimization techniques such as DWL [Dusparic and Cahill
2010], rather than plain Q-learning.

The performance of P-MARL will also be evaluated in other non-stationary environments,
for example, as discussed in Section 4.2, vehicular traffic, network traffic, and load balancing.
Previous experience with portability of RL-based algorithms across domains with similar
characteristics (such as, for example, DWL, which has been applied in smart grids, urban
traffic control [Dusparic and Cahill 2010], and smart camera networks [Rudolph et al. 2014])
leads us to expect a relatively similar process.

Finally, as discussed in Section 2.2, non-stationarity in MARL can be environment-
induced or contributed by the interacting agents; P-MARL addresses only environment-
induced non-stationarity. Integration of P-MARL with the presented state of the art tech-
niques for addressing agent-contributed non-stationarity should be investigated, to provide
a complete solution to optimisation in non-stationary environments.
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Franziska Klügl, Manuel Fehler, and Rainer Herrler. 2005. About the role of the environment in multi-agent
simulations. In Environments for multi-agent systems. Springer, 127–149.

Teuvo Kohonen. 1990. The self-organizing map. Proc. IEEE 78, 9 (1990), 1464–1480.
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Stijn Vandael, Nelis Boucké, Tom Holvoet, Klaas De Craemer, and Geert Deconinck. 2011. Decentralized
coordination of plug-in hybrid vehicles for imbalance reduction in a smart grid. In The 10th International
Conference on Autonomous Agents and Multiagent Systems-Volume 2. International Foundation for
Autonomous Agents and Multiagent Systems, 803–810.

Christopher JCH Watkins and Peter Dayan. 1992. Q-learning. Machine learning 8, 3-4 (1992), 279–292.

Peter Whittle. 1951. Hypothesis testing in time series analysis. Vol. 4. Almqvist & Wiksells boktr.

Gerhard Widmer and Miroslav Kubat. 1996. Learning in the presence of concept drift and hidden contexts.
Machine learning 23, 1 (1996), 69–101.

Guoqiang Zhang, B Eddy Patuwo, and Michael Y Hu. 1998. Forecasting with artificial neural networks::
The state of the art. International journal of forecasting 14, 1 (1998), 35–62.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

View publication statsView publication stats

https://www.researchgate.net/publication/317159555

