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Abstract  1 

The Cork Public Bike System was opened in December 2014. This system consists of a total of 330 bikes 2 

across 31 stations in Cork, with the scheme serving all the main trip attractors in the city. By using datasets 3 

of all trips taken in the scheme during 2015 and 2016, a number of new spatial and temporal variables were 4 

assigned to all 560,000 trips that have been used for the analysis in this research, in addition to a journey 5 

time that has been predicted by Google Maps for each individual route combination. These journey times 6 

from Google Maps were then compared with the actual journey times recorded in the dataset to create a 7 

new variable called Extra Travel Time. 8 

 9 

Trips to and from stations that had a lower number of shops within walking distance were also found to be 10 

likely predictors of the trips with lowest extra travel time. The stations with above average public transport 11 

links also are associated with quicker trips suggesting that users of public bikes will take quick, direct 12 

journeys if they are trip-chaining with other transportation modes such as bus or rail.  13 

 14 

1. Introduction and context  15 

 16 

Cork is a small city in the South-West of Ireland and is the second largest city in Ireland in terms of 17 

population with approximately 125,657 people living in the city (CSO, 2017). Cork currently has no light 18 

rail system in place and is only served by one heavy rail station, Cork Kent which is located on the North-19 

East corner of the city with both commuter services to Mallow, Midleton and Cobh and InterCity services 20 

to Dublin and Tralee in operation. There are also a number of local bus services and there is also a bus 21 

station on the quays in the city centre. The introduction of the bike scheme in Cork is seen as a policy 22 

intervention to increase cycling in the city in order for Cork to have a broader range of transportation 23 

services, as both the Smart Travel (Department of Transport, 2009a) and National Cycling Policy 24 

Framework (Department of Transport, 2009b)  have outlined the introduction of public bike systems to 25 

Irish urban areas as key future transport developments in Ireland. The two of these documents have set a 26 
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target of 10% of nationwide trips to be by bicycle by 2020, and the public bike system in Cork (along with 1 

the other systems in Galway and Limerick) has been implemented to assist in reaching these bold targets. 2 

 3 

As it has been two years since the scheme opened, there has been some research into different aspects of 4 

how the scheme has been performed. Caulfield et al (2017) examined the usage patterns in a smaller sized 5 

city (Cork), in order to see if smaller cities can derive benefits from public bike systems and provide a 6 

prominent role in these cities. The research discovered that in Cork habitual trip patterns are found among 7 

regular uses and average trip times are mostly short in duration. It was also established that longer trips 8 

were more likely to take place in better conditions along with other insights into the dynamics of a smaller 9 

than usual public bike system. This paper used data from the first calendar year (2015) of operation while 10 

the research conducted in this paper has continued building upon the knowledge of the Cork system with 11 

the supplementation of the 2016 data. The primary research objectives were then defined and are as 12 

follows: 13 

• How much influence spatial and temporal variables have on the variation in journey times of all the 14 

different route combinations; 15 

• How the journey times of different trips compare with the journey times predicted by Google Maps; 16 

and 17 

• How the number of trips in the scheme varies with time  18 

These research objectives were established to contribute to the existing literature of public bike systems and 19 

to assist policy makers and system operators in their planning processes of public bike system design and 20 

improvement, and could possibly argue the case for GPS tracking in the next generation of systems. 21 

 22 

Other studies have shown that by using GPS tracking in a bike sharing scheme can result in more in-depth 23 

analysis and rich data on how these schemes are used (Wergin and Buehler, 2017; Broach et al, 2012; Hood 24 

et al, 2011). The cost involved in fitting bikes with GPS and the data protection issues concerned with this 25 

tracking may render wide scale tracking unfeasible. The approach presented in this paper tries to bridge the 26 

gap between rental times and travel times by comparing these using Google Maps travel times.  The 27 

findings are a first step and further research in other cities would be interesting to compare against the 28 

findings from Cork.  This is important because no information exists in this scheme, or in several others 29 

world wide, that measures the route taken by the cyclist.  Comparing the recorded travel time with that of 30 

the anticipated travel time from Google Maps provides an indication the speed differences in the trips and 31 

that some cyclists may have taken more indirect and perhaps safer routes across the city.  32 

 33 
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2. Bike Sharing in Cork  1 

 2 

Cycling in Ireland, like many other countries, has seen increases over the past decade. The numbers cycling 3 

in the major cities in Ireland (Dublin, Cork and Galway) are all on the increase (Caulfield, 2014).  This 4 

increase can be attributed to a number of factors.  In 2009, a number of policies were introduced in Ireland 5 

to encourage this growth in cycling.  A tax-free loan bicycle purchase scheme called “Cycle to Work 6 

Scheme”.  This was introduced to enable the public to purchase bikes with an up to 50% discount and some 7 

research has shown this scheme to have been one of the main factors behind the increase in cycling in 8 

Ireland (Caulfield and Leahy, 2011).  Also in 2009, the first bike sharing scheme in Ireland opened in 9 

Dublin.  The success of the scheme in Dublin resulted in the opening of the Cork Bikes Scheme. The Public 10 

Bike System was officially opened in Cork in December 2014 after the success of the Dublinbikes scheme 11 

which launched in 2009. The Cork system consists of a total of 330 bikes across 31 stations in Cork city, 12 

with the scheme serving all the main trip attractors in the city centre and University College Cork (National 13 

Transport Authority, 2017).  Caulfield et al (2017) completed the first study on the Cork Bikes scheme 14 

showing that the majority of in the scheme were less than 6 minutes and frequent users had the lowest 15 

travel times.  Figure 1 details a map of the Cork Bikes scheme – section 5 provides more detail on the 16 

locations and turnovers of these bike stations.  17 

 18 
Figure	1	Cork	Bikes	Locations	19 

 20 

3. Literature Review 21 

 22 

Public bike systems around the world have attracted plenty of attention in the literature over the last 23 

number of years, as they are a sustainable mode of public transportation which can easily be integrated in 24 
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the existing transportation network in their respective cities. After deciding to conduct this research on the 1 

Cork public bike system, the first objective was to do a comprehensive search for all the literature on public 2 

bike systems. The terms "public bikes" and "bike sharing" were searched and a total of 63 journal articles 3 

from recent years were downloaded and reviewed. These relevant journal articles were categorised into: 4 

Public Bike System Design; Public Bike System Maintenance; Public Bike Usage; User Surveys; and 5 

Impacts of Public Bike Systems. As the topic of this research falls under Public Bike Usage, the literature 6 

review in this article will primarily focus on this category. The existing articles that are grouped into the 7 

category of Public Bike Usage can also be subcategorised into User Demographics, Typology of Users, 8 

Usage and Stations, Travel Patterns and External Factor Influences. 9 

 10 

3.1 Travel Patterns 11 

Travel patterns in public bike systems tend to vary in both time and space and are usually related as spatio-12 

temporal patterns. Corcoran et al (2014) analysed the impact weather and calendar events have on these 13 

spatio-temporal patterns in public bike usage by analysing data from the Brisbane CityCycle system. The 14 

weather variables that were analysed were temperature, rainfall and wind speed and the calendar events that 15 

were analysed were weekends, public holidays and school holidays, and these variables were used to create 16 

a model that can predict travel patterns within the system. Faghih-Imani & Eluru (2016) have also analysed 17 

the New York CitiBike system in order to examine the impacts of spatio-temporal interactions. 18 

  19 

O’Brien et al (2014) used data mining techniques on a wide range of public bike systems around the world. 20 

They have used the data to create a large database of each of the systems that analyses the variation in 21 

usage and infers the likely demographics which can be used to classify each system based on the spatial 22 

variations. They propose a wide range of applications which can be used from their new data source that 23 

includes rebalancing approaches, identifying areas for new bike stations or cycle lanes and better targeting 24 

for new members. Demand estimation can also be determined from data mining which is demonstrated by 25 

(Médard de Chardon & Caruso, 2015). Oliveira et al (2016) in their methodology used a historical dataset 26 

of the New York CitiBike system to visually analyse the spatio-temporal travel patterns of the system. By 27 

mapping a pixel-orientated timeline the authors identified several patterns in the spatial and temporal 28 

domain, which could then also be applied to other systems in other cities. These visualisations can aid in 29 

analysing the travel patterns in large public bike systems, specifically for public bike system administrators, 30 

rebalancing researchers and big data analysts. 31 

 32 
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3.2 External Factor Influences 1 

The usage of public bike systems can be influenced by external factors such as the cycling infrastructure 2 

network, the built environment, land use and the variation in demand. There have been numerous papers 3 

written on these external factors which will be discussed in this sub-section. Fuller et al (2012) assessed the 4 

impact of a public transportation strike on public bike usage. The authors analysed public bike data from 5 

London on two separate days where there was a strike on the London Underground system and compared it 6 

with data from days of regular service. On the first day of the strike there was approximately a 30% 7 

increase in trips while on the second day there was almost a 100% increase. These results show that by 8 

limiting transportation options, people will shift to public bike usage. 9 

  10 

Faghih-Imani and Eluru (2014) examined numerous external factors that could affect public bike usage 11 

which included cycling infrastructure, meteorological conditions, built environment, land use and temporal 12 

characteristics. By analysing the usage data from the Montreal BIXI system they were able to develop a 13 

model that assesses the influence that each of these factors has, which can then be used for modifying other 14 

systems in order to maximise their usage. Several studies have also developed similar models which assess 15 

these conditions which also contribute to the knowledge of how external factors influence public bike usage 16 

(Tran et al, 2015; Mateo-Babiano et al, 2016; Wang et al, 2016). 17 

  18 

Zhao et al (2014) aimed to examine what influences the effectiveness of public bike systems in Chinese 19 

cities by considering the data of 69 different public bike systems. Ridership in these systems and turnover 20 

rate seemed to be influenced by external factors such as population density, government expenditure and 21 

the number of bike stations. Interestingly, they also found that the adoption of integrated travel cards that 22 

could be used for public bikes in addition to other transportation systems can significantly increase public 23 

bike usage due to ease of use, and should be considered for future schemes by policy makers. 24 

  25 

As discussed, Faghih-Imani and Eluru (2014) examined the external factors influencing public bike usage. 26 

The authors furthered there research (Faghih-Imani and Eluru, 2016) in order to see how public bike system 27 

infrastructure, i.e. the number of bike stations and their capacities, can influence usage (using the Montreal 28 

BIXI system as the case study). They have taken a different approach within their research for this journal 29 

article as they postulate that previously developed models over-estimate the influence of infrastructure on 30 

ridership as the installation process is rarely considered. Their new model accounts for this bias and takes 31 

installation into account, and the results from this model support their hypothesis which demonstrates that 32 

installation of the infrastructure should also be taken into account of future models for system design. 33 
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 1 

3.3 How this Research will Complement the Existing Literature 2 

After reviewing each of the journal articles, it has been discovered that there has been little focus on the 3 

variation of journey times in public bike systems, which is why this research project has been undertaken. 4 

Some of the articles in this review on public bikes thus far have focussed on historical data which has also 5 

been investigated by Romanillos  et al, (2016) in their review of big data and cycling but as far as this 6 

literature review reaches, there has been no investigation into how journey times vary due to different 7 

factors. This research will therefore contribute to the sub-topic of Public Bike Usage, by examining the 8 

different spatial and temporal factors that may be influencing variation in journey times across the Cork 9 

system.  10 

 11 

4. Methodology 12 

 13 
4.1 Data Collection by the National Transport Authority 14 

The original datasets that are used in this research have been provided by the National Transport Authority 15 

(NTA) of Ireland. The datasets were provided in two separate files, one set for 2015, which contained 16 

approximately 290,000 trip records, and the other for 2016, which contained approximately 309,000 trips. 17 

The data represents 731 days of operation (note 2016 was a leap year). Each of these datasets contained 18 

numerous variables for every single trip recorded within the Cork system in its first two full calendar years 19 

of operation such as the origin and destination stations, the time and date of when the bikes were taken out 20 

and returned, the distance between stations, whether the customer is an annual subscriber or using a 21 

temporary pass, a unique customer ID number and a bike ID number. The data provided for this research 22 

was anonymised so therefore no personal information on the name, age, gender, etc. of the users was 23 

provided in order to be in accordance with Irish data protection laws. The data also indicates if a refund 24 

was offered for the respective trip or if there was a fault such as the bike being returned immediately. 25 

  26 

These two datasets were then merged together to create a master dataset which was then filtered prior to the 27 

creation of new variables and evaluation of the data. All temporary pass trips were filtered out as they were 28 

considered to be trips taken by visitors to the city and would not reflect the patterns of native users which is 29 

what has been examined in this research. Next the trips that were deemed to be faulty by the operator and 30 

trips which were refunded were also filtered out. This resulted in the removal of approximately 4,500 31 

temporary pass trips and 35,000 faults or refunded trips. 32 

 33 
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4.2 Calculation of Spatial and Temporal Variables 1 

 A significant number of new spatial and temporal variables were calculated and attributed to each trip, 2 

and are listed below (Table 6 has a breakdown of the descriptive statistics of the variables examined):  3 

• Trip Duration: The time difference between when the bike was taken out from the origin station 4 

and when it is returned to the destination station. 5 

• Month: The month of the year the trip took place. 6 

• Season: Whether the trip took place in Winter (December - February), Spring (March - May), 7 

Summer (June - August) or Autumn (September - November). 8 

• Day: The day of the week which the trip took place. 9 

• Weekend: Whether the trip took place on either a weekday (Monday - Friday) or Weekend 10 

(Saturday - Sunday). 11 

• Hour: The time the trip took place rounded to the closest hour. 12 

• Time of Day: Whether the trip took place during the AM Peak (7am - 10am) or PM Peak (4pm - 13 

7pm) travel period, Inter-peak (10am - 4pm) travel period or Off Peak (7pm - 7am) period. 14 

• One-Way Street Start/End: Whether the street that the station is located on permits travel in one 15 

or two directions. 16 

• Interior/Exterior Start/End: Stations deemed to be on the outer perimeter of the system were said 17 

to be exterior stations, while the remaining stations were said to be interior stations. 18 

• Cycle Friendly Start/End: Whether the street that station is located on is deemed to be "Cycle 19 

Friendly" according to Google Maps. 20 

• Shops Start/End: The number of shops within a 5 minute walk of the station. 21 

• Restaurants Start/End: The number of restaurants within a 5 minute walk of the station. 22 

• Public Transport Links Above or Below Average Start/End: Whether the station has above or 23 

below public transport links in terms of number of bus stops within a 5 minute walking distance 24 

• Total Origin-Destination Pair Trips: The total number of trips that took place over the two-year 25 

period for that respective Origin-Destination pair. 26 

• Total User Trips: The total number of trips that the user for that respective trip took over the two-27 

year period. 28 

 29 

These new variables have been created primarily for the use of demonstrating the descriptive statistics of 30 

the system and for use as independent variables in both Stepwise Regression modelling and Multinomial 31 

Logistic (MNL) Regression modelling (discussed in later sub-sections). The authors did consider 32 

population and employment variables but the results they produced were not significant. 33 
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 1 

4.3 Google Maps Journey Times 2 

As the primary goal of this research is to examine the factors that influence journey time variation in the 3 

Cork system, the journey times obtained from the Google Maps journey planner perform an essential role 4 

in creating the dependent variable used for the MNL Regression modelling. As there are 31 bike stations 5 

located around Cork city this meant that there are a total of 961 different route combinations (in a 31 x 31 6 

Origin-Destination matrix) that could be taken on a public bike at any given time. By entering the 7 

coordinates for the origin and destination stations for each of these 961 routes into the Google Maps 8 

journey planner (Google Developers, 2016), an expected journey time is returned for driving, public 9 

transport, cycling and walking. Every single cycling journey time was recorded for all of the routes which 10 

were then attributed as a new variable to all of the trips in the dataset, based on their respective origin and 11 

destination combination. 12 

  13 

By then subtracting the expected Google Maps journey time from each actual observed trip duration, a new 14 

variable called Extra Travel Time was created which essentially was the difference between the two 15 

journey times, where a positive value indicated a trip that took longer than what Google Maps suggests and 16 

a negative value represented a trip that was quicker than the suggested Google Maps journey time. These 17 

values were segmented into quartiles based on how fast or slow these trips were compared to a predicted 18 

journey time. Table 1 demonstrates the four quartiles of journey time variation, which were used as the 19 

dependent variable for the principal MNL regression model.  The results show that a large number of trips 20 

are quicker as estimated by Google Map. The reasons for this are explored in the MNL regression model.  21 

 22 
Table	1	Journey	Time	Variation	23 

Journey Time Variation 
 Frequency Percent Cumulative Percent 
Valid More than 46 seconds quicker 139667 25.0 25.0 

Between 46 seconds quicker and 35 seconds slower 139470 24.9 49.9 
Between 35 seconds and 2 minutes 26 seconds slower 140020 25.0 74.9 
More than 2 minutes 26 seconds slower 140296 25.1 100.0 
Total 559453 100.0  

 24 

4.4 Multinomial Logistic Regression Modelling 25 

 The principal modelling approach that has been used to analyse the trip data and examine different trends 26 

is Multinomial Logistic Regression Modelling. MNL Regression is a type of modelling process which uses 27 

multiple equations to regress k categories of a dependent variable to multiple independent variables, 28 

estimating k - 1 logit equations (Statistics Solutions, 2017). SPSS compares each combination of k 29 
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categories but just produces results for comparisons with either the first or last dependent variable category 1 

by default.  2 

 3 

The accuracy of the results produced is determined by the Nagelkerke R2 value which is a pseudo R2 4 

measure which is adjusted from the Cox and Snell R2 (IBM Knowledge Center, 2017). This pseudo R2 5 

value explains the proportion of variance of the dependent variable that is explained by the independent 6 

variables, by comparing the log likelihood of the model to the log likelihood of a baseline model. The 7 

interactions between the variables were tested for multicollinearity and the results found that none existed. 8 

 9 

5. Results & Discussion 10 

5.1 Descriptive Statistics 11 

5.1.1 Station Turnover  12 

The first set of results presented in this chapter are the descriptive statistics of the Cork system which 13 

provide an overview of operation in its first two full calendar years of operation. Fig. 2 and Fig. 3 illustrate 14 

how the bike stations in the system differ in terms of station turnover, i.e. which stations have the highest 15 

frequency of trips as an origin station or a destination station. The busiest stations that trips tend to start and 16 

end from are on the outskirts of the city, notably at Kent Station (rail station) and the three stations that 17 

surround University College Cork (University Area), which are two major trip attractors in the city. The 18 

stations also near St. Patrick's Street and the quays were found to be busy due to the high density of 19 

restaurants and retail outlets in these areas. Some of the stations associated with less frequent usage are 20 

generally located in areas in the city that have a lower population density or in close proximity to each 21 

other, for example Clontarf Street and Lapp's Quay stations are only located 60m from each other. 22 

 23 
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 1 
Figure	2	Trips	Originating	from	each	Station	(Total	number	of	trips	in	2015,	2016)	2 

 3 

 4 
Figure	3	Trip	Destinations	per	Station	(Total	number	of	trips	in	2015,	2016)	5 

 6 

5.1.2 Trip Distribution by Duration & Journey Time Variation 7 

Fig. 4 displays the distribution of trip durations that are made in the Cork system. The mean trip duration is 8 

7.1 minutes with a standard deviation of 4.5 minutes, and follows a relatively normal shape with a slight 9 

tail for extremely long trips. Less than 3% of the trips in the dataset had a trip duration of over 30 minutes 10 

which is the threshold for which the user begins to be charged for their rental time. These trips are not 11 



 
 

11 

included in Fig. 4 in order to enhance the graphical display of the distribution. Fig. 5 then shows the 1 

distribution of the Extra Travel Time Variable which essentially demonstrates the distribution of the 2 

"quickness" of each trip, as the duration of each individual trip is compared against the expected journey 3 

time for that route on Google Maps journey planner. The mean of this distribution of this variable is 1.3 4 

minutes longer than Google Maps with a standard deviation of 4.1 minutes.  5 

 6 

 7 
Figure	4	Trip	Duration	Distribution	8 

 9 

 10 
Figure	5	Extra	Travel	Time	Distribution	11 

 12 
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5.1.3 Trip Distribution by Time 1 

The usage of the public bikes also heavily depends on different temporal characteristics, with the time of 2 

day being the most significant factor that influences the number of trips taken, and the day of the week and 3 

month of the year also having an effect to some extent. As seen from Fig. 6 the distribution of trips 4 

throughout the day follows a typical transportation time distribution with two peaks seen in both the 5 

morning and evening periods. Interestingly there are also a high number of trips during the inter-peak 6 

period with trips taken less frequently at the off-peak times from 9pm onwards. Fig. 7 shows for weekend 7 

the traditional morning and evening peaks are gone and a more even distribution of trips occurs.  8 

 Fig. 8 demonstrates that there is not a significant difference in the number of trips on different weekdays 9 

but at the weekend there is a considerable drop in the number of trips taken with Saturdays and Sundays 10 

being the least popular day for using the bikes. Fig. 9 shows the number of trips taken each month but 11 

importantly has also been segregated by the year as 2015 does not give a fair representation of the number 12 

trips each month, due to the system only being implemented in December 2014 meaning that there was a 13 

much lower number of trips recorded in the first few months. By examining the monthly data from 2016, it 14 

is apparent that the Autumnal months from September to November have the highest frequency of trips. As 15 

previously stated Cork has a large University (18,000+ students) and an Institute of Technology (12000+ 16 

students), this increase in September and November may be due to the large number of students returning 17 

to the city.  As the dataset does not include any information on the users it is not possible to confirm this 18 

assumption.  19 

 20 
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 1 
Figure	6	Trip	Distribution	by	Hour	of	the	Day	–	Weekday	2 

 3 
Figure	7	Trip	Distribution	by	Hour	of	the	Day	–	Weekend	4 

 5 

 6 
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 1 
Figure	8	Trip	Distribution	by	Day	of	the	Week	2 

 3 

 4 
Figure	9	Trip	Distribution	by	Month	&	Year	5 

 6 

5.2 MNL Regression Models (Journey Time Variation as Dependent Variable) 7 

 The MNL Regression model summarised in Table 4 has been developed using Journey Time Variation as 8 

the dependent variable. The model has a Nagelkerke R2 value of 0.257, suggesting that these independent 9 

variables included in the model explains over one quarter of the variance of these different categories of 10 

journey time variation. Although this value may seem low, it is noteworthy that the purpose of each trip is 11 

not known nor the identity or demographics of each user, meaning that the spatial variables and other 12 

variable types included in the model do predict the variance in journey times to a reasonable extent as each 13 
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of them are deemed to be significant in the full modelling results. In this model the reference category is 1 

trips that are more than 2 minutes 26 seconds slower than what Google Maps insinuates as the expected 2 

journey time for the safe cycling route time between two bike stations. The other three categories that are 3 

compared with this reference category are trips that are more than 47 seconds quicker than Google Maps 4 

(Category 1), trips that are between 46 seconds quicker and 35 seconds slower (Category 2) and trips that 5 

are between 34 seconds and 2 minutes 26 seconds slower (Category 3). 6 

 7 
Table	2	MNL	Regression	Model	8 

  

N % Trips more than 47 seconds 
quicker than google maps 

Trips 46 – 35 seconds 
slower than google maps 

Trips 34 - 146 seconds 
slower than google maps 

 Intercept   -1.057** -0.439** -0.071* 
One-
Way 
Start 

No 173472 31.0 -1.430** -0.288** -0.048** 
Yes 385981 69.0 0b 0b 0b 

One-
Way 
End 

No 172282 30.8 -0.910** -0.321* -0.066** 
Yes 387171 69.2 0b 0b 0b 

Interior/ 
Exterior 
Start 

Interior 211332 37.8 -0.332** -0.352** -0.163** 
Exterior 348121 62.2 0b 0b 0b 

Interior/ 
Exterior 
End 

Interior 235594 42.1 0.248** 0.119** -0.055** 
Exterior 323859 57.9 0b 0b 0b 

Cycle 
Friendly 
Start 

No 383914 68.6 1.365** 0.238* 0.024* 
Yes 175539 31.4 0b 0b 0b 

Cycle 
Friendly 
End 

No 395234 70.6 0.494** 0.222* 0.127** 
Yes 164219 29.4 0b 0b 0b 

Shops 
Start 

6 Shops or less 276984 49.5 2.202** 0.691** 0.220 
7 - 12 Shops 72590 13.0 1.818* 0.851** 0.108 
13 - 31 Shops 99798 17.8 1.295** 0.504** 0.097 
32 Shops or 
more 

110081 19.7 
0b 0b 0b 

Shops 
End 

6 Shops or less 260977 46.6 0.996** 0.698* 0.328 
7 - 12 Shops 67250 12.0 0.773** 0.443** 0.207 
13 - 31 Shops 98454 17.6 0.390* 0.170** 0.139 
32 Shops or 
more 

132772 23.7 
0b 0b 0b 

Restaur
ants 
Start 

6 Restaurants 
or less 

250900 44.8 
-0.507** -0.232** -0.138 

7 - 16 
Restaurants 

102036 18.2 
-0.813** -0.482** -0.284 

17 - 30 
Restaurants 

98389 17.6 
-0.708** -0.047** 0.043 

31 Restaurants 
or more 

108128 19.3 
0b 0b 0b 

Restaur
ants 
End 

6 Restaurants 
or less 

233070 41.7 
-1.261** -0.532** -0.162 

7 - 16 
Restaurants 

99236 17.7 
-0.670* -0.464** -0.287 

17 - 30 
Restaurants 

101302 18.1 
-1.008** -0.595* -0.206 
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31 Restaurants 
or more 

125845 22.5 
0b 0b 0b 

Public 
Transpo
rt Links 
Start 

Below 
Average  

333049 59.5 
-0.747** -0.225** -0.043 

Above 
Average  

226404 40.5 
0b 0b 0b 

Public 
Transpo
rt Links 
End 

Below 
Average  

328226 58.7 
-0.373** -0.100** 0.083 

Above 
Average  

231227 41.3 
0b 0b 0b 

Distanc
e 

718 m or less 84730 15.1 1.013** 1.493* 0.709 
719 - 1087 m 118428 21.2 1.242* 1.302** 0.814 
1088 - 1596 m 149259 26.7 0.548** 0.872** 0.571 
1597 m or 
more 

207036 37.0 
0b 0b 0b 

Total 
Origin-
Destinat
ion Pair 
Trips 

0 - 500  130698 23.4 -0.517** -0.469** -0.476 
501 - 1000  129145 23.1 -0.340** -0.298** -0.449 
1001 - 2000  159745 28.6 -0.042* -0.178* -0.293 
Over 2000  139865 25.0 0b 0b 0b 

Total 
User 
Trips 

7 Trips or less 7334 1.3 -2.374** -1.710** -1.059 
8 - 26 Trips 31721 5.7 -1.392** -0.973** -0.571 
27 - 81 Trips 104679 18.7 -0.799** -0.548** -0.289 
82 Trips or 
more 

415719 74.3 
0b 0b 0b 

N 559,453 

-2 log likelihood at convergence 213319.603 

Log Likelihood ratio test  2.660 

Nagelkerke R2 0.257 

Chi-squared statistic 154209.6 

Degrees of Freedom 87 
a. The reference category is: More than 2 minutes 26 seconds slower. 1 
b. Reference terms 2 
*. This has a significance p-value > 0.01. 3 
**. This has a significance p-value > 0.05. 4 
 5 

 From examining Table 6 in closer detail, each individual independent variable can be inspected and 6 

evaluated for their contribution in predicting the journey time variation among the trips. One-Way starts 7 

and ends to each trip were associated with the quicker trips indicating that cyclists may be more 8 

conservative with their cycling speeds when there is two-directional traffic. To a lesser extent trips that 9 

commenced at one of the exterior stations, and trips that ceased at interior stations were also linked with the 10 

more direct, quicker trips. Remarkably stations that were on roads considered to be "Cycle Friendly" by 11 

Google Maps were related to slower trips which may contradict the evidence from the existing literature. 12 

However the argument could be proposed that "Cycle Friendly" streets are travelled at slower speeds 13 

because there isn't the pressure on cyclists on public bikes to sustain cycling speeds similar to adjacent 14 

traffic. There may be other explanations for this result, but as the database does not have a track on the 15 

route on which the cyclist takes.  16 
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 Trips to and from stations that had a lower number of shops within walking distance were also found to 1 

be likely predictors of the trips with lowest extra travel time, however the converse is apparent for the 2 

number of restaurants within walking distance of stations. The number of shops at the origin station has a 3 

larger influence on the quickness of trips than the number of shops at destination stations, while the number 4 

of restaurants at destination stations had a higher influence. The stations with above average public 5 

transport links also are associated with quicker trips suggesting that users of public bikes will take quick, 6 

direct journeys if they are trip-chaining with other transportation modes such as bus or rail.  7 

 The three non-spatial variables that are included in this model are also excellent predictors of journey 8 

time variation of trips in the Cork system. The frequency of the origin-destination pair is also linked to 9 

slower trips, and this may be due to the lack of available bike stands at the destination station or possibly a 10 

high passenger footfall around the stations during busy periods. Also as expected the most frequent users of 11 

the public bikes are efficient with their cycling speeds as they are the user types that are making the trips 12 

with lowest extra travel time, while users who have taken 7 trips or less over the two-year period are much 13 

more likely to be in the slowest category of trips. 14 

 15 

6 Conclusion 16 

As seen from the MNL Regression modelling results, the variation in the journey times of different trips 17 

depends on a number of different spatial variables, such as whether the origin and destination bike stations 18 

are on one-way streets, are deemed to be "Cycle Friendly" or are an interior or exterior station in Cork city. 19 

The number of shops, restaurants and public transport links also influence journey time variation, and each 20 

of these variables can be examined for their strength as predictors in the results tables.  21 

 The Journey Time Variation variable is based on predicted journey times from the Google Maps journey 22 

planner, and these predicted journey times have proven to be similar to those journey times experienced on 23 

actual trips on the Cork public bikes. It would be interesting to see this journey planning tool being used in 24 

further research in order to assess its accuracy when measuring against actual trip journey times, but based 25 

on this research alone the journey times that were recorded from Google are precise in their predictions. 26 

 27 

 There are a number of recommendations that can be made for future work on this topic. As previously 28 

mentioned there could be more investigation into the comparisons of actual recorded trip journey times 29 

from public bike systems, but in relation to the theme of journey time variation in public bike systems there 30 

is a significant amount of more research that could be done in this area. As this research has been purely 31 

statistical analysis of the trip database in Cork, only 25.7% of the variance in the data could be explained by 32 

the spatial variables. However, a survey could be administered to the annual subscribers of the scheme in 33 



 
 

18 

order to categorise the different trip purposes and other things such as age, gender, etc. to see if these 1 

factors could also explain the variation in different journey times. Another idea for future research would 2 

be the use of GPS to track different users on the public bikes which would provide a great deal of detail and 3 

understanding to the underlying aspects of journey time variation that have not been considered here. 4 

 5 
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