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Weather observations are routinely used to analyse the past climate. Climate reanalyses may also be used for
this purpose. These give a numerical description of the recent climate and are produced by combining models
with weather observations. They contain estimates of atmospheric parameters such as air temperature, pressure
and wind at different heights above the ground, and surface parameters such as precipitation, soil moisture
content and temperatures, and sea-surface temperature. Because they are carried out using a fixed version of a
forecast model and a data assimilation system which utilises historical observations, they produce parameters
that are physically consistent and often not routinely observed. Thus, climate reanalyses have the potential to
extend the knowledge gained from current observation networks.

Over the past few years researchers at Met Éireann have produced a climate reanalysis dataset, called MÉRA
- Met Éireann Reanalysis, for the period 1981-2017 for an area covering Ireland, the UK and northern France.
This dataset was launched in May 2017 and currently has over 100 users in Ireland, the U.K., Germany, the
Netherlands, Canada and the U.S. On May 17th 2018 we held the first workshop for users of the data. The
workshop consisted of 15 very interesting talks spread across sessions on climate applications, precipitation
and hydrology, energy, waves and storms. Short papers on a number of these talks are included in this workshop
proceedings.

Further scientific information on MÉRA can be found in the following publications:

Gleeson, E., Whelan, E., and Hanley, J.: Met Éireann high resolution reanalysis for Ireland, Adv. Sci. Res., 14,
49-61, https://doi.org/10.5194/asr-14-49-2017, 2017.
https://www.adv-sci-res.net/14/49/2017/asr-14-49-2017.pdf

Whelan, E., E. Gleeson, and J. Hanley: An evaluation of MÉRA, a high resolution mesoscale regional reanal-
ysis. J. Appl. Meteor. Climatol., 57, 2179-2196, doi:10.1175/JAMC-D-17-0354.1, 2018.
https://journals.ametsoc.org/doi/abs/10.1175/JAMC-D-17-0354.1

For access to the data, please e-mail mera@met.ie.
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Towards a Definitive Historical High-Resolution Climate 

Dataset for Ireland 

Jason Flanagan1, Paul Nolan1 

1Irish Centre for High-End Computing 

1 Introduction 

 

There is a strong and constant demand from various sectors for long-term, high-resolution (both 

temporal and spatial), gridded climate datasets. In Ireland, such datasets have traditionally been based 

on station observations and are therefore subject to several shortcomings. For instance, there is a lack 

of representivity in regions with few observing stations whilst station data are prone to error and/or 

missing values. Reanalyses do not suffer from such drawbacks and represent a viable alternative to 

observations for the production of gridded datasets. In 2017, Met Éireann completed a 36-year 

simulation (MÉRA) at 2.5 km resolution for the period 1981-2016 (Gleeson et al, 2017; Whelan et al, 

2018) using the shared ALADIN-HIRLAM numerical weather prediction system. The MÉRA dataset, 

which is stored as a series of 3-hour and 33-hour forecasts, have been archived by Met Éireann at 1-

hour intervals. A full description of the available data and a selection of uncertainty estimates is given 

in Whelan et al. (2017) and Gleeson et al. (2017), respectively. Seperately, the Irish Centre for High-

End Computing (ICHEC) has recently performed two high-resolution simulations of the Irish climate. 

The simulations were achieved with the Regional Climate Models COSMO-CLM5 and WRF v3.7.1 at 

maximum resolutions of 1.5 km and 2 km respectively. The datasets produced contain both hourly and 

daily outputs for an array of sub-surface, surface and atmospheric fields for the period 1981-2016. 

Although at lower spatial resolution than the ICHEC datasets, the MÉRA dataset has the distinct 

advantage of having been produced with the aid of a data assimilation component. Here, we present 

analyses that evaluate uncertainty estimates at various scales for several climate variables from the 

three model datasets and give example-appropriate skill scores. The validation results presented here 

form part of ongoing research aimed at the production of definitive, high-resolution, gridded Irish 

climate datasets for the period 1981-present. 

 

2 Model Outputs 

 

Several model outputs have been validated using station, gridded and satellite observations from a 

variety of sources. The climate variables tested include precipitation, 2 m temperature, 10 m wind 

speeds, relative humidity, mean sea level pressure and global irradiance.   

Precipitation 

Gridded datasets of observed daily (09-09 UTC) accumulated precipitation at 1 km resolution that 

cover the Republic of Ireland (ROI) (Walsh, 2012) and Northern Ireland (NI) (Tanguy at al., 2016) for 

the period 1981-2015 have been obtained from Met Éireann and the Centre for Ecology and 

Hydrology in the UK. An area-averaging algorithm has been applied to transform the gridded 

observations to each of the three model grids and to facilitate the calculation of bias, mean absolute 

error (MAE) and standard deviation (STD) (Table 1) and various skill scores (Table 2). With the 

exception of NI bias, the MÉRA dataset displays least error and variance. Similarly, for the majority 

of skill scores and thresholds examined, MÉRA outperforms both WRF and COSMO-CLM. 

A similar uncertainty analysis has been performed utilising hourly station observations from 25 Met 

Éireann synoptic stations. Overall biases (found by treating all 25 time series as one time-ordered 
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dataset) for each model were less than 0.01 mm whilst overall MAE and STD values were 0.177 mm, 

0.176 mm, 0.155 mm and 0.326 mm, 0.327 mm, 0.294 mm for COSMO-CLM, WRF and MÉRA 

respectively.       

Table 1: 24-hour rainfall accumulation (mm) uncertainty estimates found for each model through 

comparison with ROI and NI (values in parentheses) gridded observation datasets. 

(mm) COSMO-CLM: ROI (NI) WRF: ROI (NI) MÉRA: ROI (NI) 

Bias 0.182 (0.366) 0.238 (0.207) 0.094 (0.420) 

MAE 4.067 (3.893) 3.241 (3.336) 2.602 (2.656) 

STD 6.667 (6.317) 5.671 (5.664) 4.547 (4.493) 

Table 2: A selection of 24-hour rainfall accumulation skill scores at various thresholds found for each 

model through comparison with ROI and NI (values in parentheses) gridded observations.  

  Threshold (mm) – NI values in brackets 

Skill Score Model 0.1 1.0 5.0 10.0 20.0 30.0 50.0 

Accuracy 

COSMO-CLM 
0.91 

(0.91) 

0.74 

(0.74) 

0.73 

(0.72) 

0.82 

(0.83) 

0.94 

(0.95) 

0.98 

(0.99) 

0.997 

(0.998) 

WRF 
0.89 

(0.90) 

0.77 

(0.75) 

0.78 

(0.76) 

0.86 

(0.86) 

0.96 

(0.96) 

0.99 

(0.99) 

0.998 

(0.999) 

MÉRA 
0.89 

(0.91) 

0.80 

(0.80) 

0.83 

(0.81) 

0.89 

(0.88) 

0.96 

(0.97) 

0.99 

(0.99) 

0.998 

(0.999) 

Frequency Bias 

COSMO-CLM 
0.98 

(0.99) 

0.93 

(0.97) 

0.99 

(1.05) 

1.11 

(1.18) 

1.35 

(1.35) 

1.53 

(1.56) 

1.98 

(2.17) 

WRF 
0.99 

(0.99) 

0.96 

(0.97) 

1.03 

(1.03) 

1.14 

(1.13) 

1.30 

(1.23) 

1.39 

(1.31) 

1.58 

(1.72) 

MÉRA 
0.98 

(1.00) 

0.95 

(1.02) 

1.02 

(1.10) 

1.11 

(1.21) 

1.18 

(1.24) 

1.14 

(1.18) 

1.11 

(1.16) 

Hit Rate 

COSMO-CLM 
0.94 

(0.95) 

0.80 

(0.81) 

0.63 

(0.63) 

0.52 

(0.50) 

0.38 

(0.35) 

0.30 

(0.36) 

0.20 

(0.15) 

WRF 
0.94 

(0.94) 

0.82 

(0.81) 

0.68 

(0.64) 

0.57 

(0.51) 

0.42 

(0.33) 

0.33 

(0.24) 

0.21 

(0.13) 

MÉRA 
0.93 

(0.95) 

0.83 

(0.86) 

0.73 

(0.74) 

0.64 

(0.63) 

0.48 

(0.46) 

0.39 

(0.35) 

0.27 

(0.15) 

False Alarm Rate 

COSMO-CLM 
0.82 

(0.84) 

0.45 

(0.50) 

0.21 

(0.23) 

0.12 

(0.12) 

0.04 

(0.03) 

0.01 

(0.01) 

0.002 

(0.001) 

WRF 
  0.73 

(0.77) 

0.34 

(0.40) 

0.17 

(0.18) 

0.09 

(0.09) 

0.03 

(0.02) 

0.01 

(0.01) 

0.001 

(0.001) 

MÉRA 
0.61 

(0.69) 

0.25 

(0.35) 

0.13 

(0.16) 

0.07 

(0.08) 

0.02 

(0.02) 

0.01 

(0.005) 

0.001 

(0.001) 

Hanssen-Kuiper 

(KSS) 

COSMO-CLM 
0.12 

(0.11) 

0.34 

(0.32) 

0.42 

(0.40) 

0.41 

(0.38) 

0.35 

(0.32) 

0.29 

(0.25) 

0.19 

(0.14) 

WRF 
0.21 

(0.17) 

0.48 

(0.41) 

0.51 

(0.46) 

0.48 

(0.41) 

0.39 

(0.31) 

0.32 

(0.24) 

0.21 

(0.13) 

MÉRA 
0.32 

(0.26) 

0.58 

(0.52) 

0.60 

(0.59) 

0.57 

(0.55) 

0.46 

(0.44) 

0.38 

(0.34) 

0.27 

(0.15) 

Equitable Threat 

(ETS) 

COSMO-CLM 
0.05 

(0.05) 

0.19 

(0.18) 

0.26 

(0.25) 

0.24 

(0.22) 

0.17 

(0.16) 

0.13 

(0.11) 

0.07 

(0.05) 

WRF 
0.11 

(0.09) 

0.30 

(0.25) 

0.34 

(0.30) 

0.29 

(0.24) 

0.21 

(0.16) 

0.16 

(0.11) 

0.09 

(0.05) 

MÉRA 
0.17 

(0.15) 

0.39 

(0.35) 

0.43 

(0.40) 

0.37 

(0.34) 

0.27 

(0.25) 

0.22 

(0.19) 

0.15 

(0.07) 
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2 m Temperature 

A similar analysis of 2 m temperature (ROI only) has been performed at hourly and daily time-scales 

utilising Met Éireann synoptic station and gridded observations (Table 3).  

As with precipitation, MÉRA is the better performer of the three. The skill scores shown in Table 2 

have also been calculated for 2 m daily mean temperature (not shown) at 6 thresholds (-5, 0, 5, 10, 25 

and 20°C). The results confirm the pattern seen in Table 3 with MÉRA showing greater skill for the 

majority of score and thresholds tested. 

Table 3: Overall hourly and daily mean (in parentheses) 2m temperature (°C) uncertainty estimates 

found through comparison with Met Éireann synoptic station and (ROI only) gridded observations. 

(°C) COSMO-CLM WRF MÉRA 

Bias -0.18 (-0.36) -0.30 (-0.63) -0.11 (-0.38) 

MAE 1.33 (1.19) 1.30 (1.18) 0.81 (0.89) 

STD 1.19 (1.49) 1.33 (1.33) 0.91 (1.04) 

10 m Winds 

Hourly time series of 10 m wind speeds from 23 Met Éireann synoptic stations – winds are not 

measured at the Markree and Phoenix Park stations – have been compared to each of the 3 model 

outputs. The MÉRA dataset has lowest MAE and STD at 17 and 22 of the 23 stations, respectively. A 

summary (where all 23 station time series are treated as a single dataset) is given in Table 4. 

Table 4: Overall hourly 10 m wind speed (m/s) uncertainty estimates for each model through 

comparison with 23 Met Éireann synoptic station time series. 

(m/s) COSMO-CLM WRF MÉRA 

Bias 0.85 0.07 0.29 

MAE 1.89 1.67 1.27 

STD 2.30 2.24 1.65 

Relative Humidity 

Hourly time series from 24 Met Éireann synoptic stations have been used to determine relative 

humidity uncertainty estimates (including percentage errors PE (and their standard deviations) and 

correlations). Data from Sherkin Island were excluded from this analysis due to the appearance of 

several multi-week periods of spurious measurements within the time series. MÉRA out-performs 

both COSMO-CLM and WRF at each station. Table 5 summarises the (overall) results found.  

Table 5: Overall hourly relative humidity (%) uncertainty estimates (plus correlations) found through 

comparison with time series from 24 Met Éireann synoptic stations. 

(%) COSMO-CLM WRF MÉRA 

Bias (STD) -2.86 (5.85) 0.95 (6.61) -0.42 (3.59) 

MAE (STD) 7.58 (3.53) 7.67 (3.93) 5.47 (2.19) 

PE (STD) -2.75 (7.64) 2.16 (8.92) -0.04 (4.72) 

| PE | (STD) 9.39 (4.94) 9.83 (6.08) 6.89 (3.33) 

Correlation 0.66 0.57 0.80 

Mean Sea Level Pressure 

Mean sea level pressure uncertainty estimates and correlations have been determined for all 25 Met 

Éireann synoptic stations. The MÉRA dataset shows lowest MAE and STD and highest correlation at 

all stations (not shown). A summary of the results found is given in Table 6.  

Table 6: As in Table 5 but for mean sea level pressure (hPa) at 25 Met Éireann synoptic stations. 

(hPa) COSMO-CLM WRF MÉRA 

Bias (STD) -0.87 (2.56) -0.20 (2.39) 0.03 (0.51) 

MAE (STD) 1.96 (1.87) 1.69 (1.70) 0.37 (0.36) 

PE (STD) -0.09 (0.25) -0.02 (0.24) 0.003 (0.05) 
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| PE | (STD) 0.19 (0.19) 0.17 (0.17) 0.04 (0.04) 

Correlation 0.98 0.98 1 

Global Irradiance 

Both satellite and station data have been used to determine hourly, daily and annual average global 

irradiance (GI) uncertainty estimates. The average annual (1998-2011, only) and hourly (Oct. 2010 – 

Dec. 2015, only) satellite datasets were obtained from the Photovoltaic Geographical Information 

System (PVGIS) (Huld et al., 2012) and EUMETSAT, respectively, whilst the daily data were 

obtained from 18 Met Éireann stations. A summary of the results are given in Tables 7-9. At each 

timescale, MÉRA has the lowest error – the daily analysis has been performed for COSMO-CLM and 

MÉRA only. 

Table 7: Hourly GI uncertainty estimates (kWh/m2) found through comparison with EUMETSAT 

10/2010 – 12/2015 satellite data. 

(kWh/m2) COSMO-CLM WRF MÉRA 

Bias 0.008 0.079 -0.003 

MAE 0.103 0.127 0.086 

STD 0.094 0.113 0.088 

Table 8: Overall daily GI uncertainty estimates (MJ/m2) found through comparison with observations 

from 18 Met Éireann stations.  

(MJ/m2) COSMO-CLM MÉRA 

Bias 0.167 0.122 

MAE 0.809 0.589 

STD 1.189 0.855 

Table 9: Average annual GI uncertainty estimates (expressed as a percentage) found through 

comparison with PVGIS 1998-2011 satellite data. 

(%) COSMO-CLM WRF MÉRA 

Bias 2.83 29.17 -0.81 

MAE 3.58 29.17 3.48 

STD 3.47 4.76 4.46 
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High-Resolution Gridded Datasets of Hydroclimate Indices 

for Ireland 

Christopher Werner1, Paul Nolan1, Owen Naughton2 

1Irish Centre for High-End Computing 
2Trinity College Dublin 

 

1 Introduction 

 

There is constant demand from industry, research and government agencies for high quality, long-

term, gridded datasets of hydroclimatic variables for conducting climate research. These have 

applications in a wide variety of fields such as agriculture, hydrology, public health, energy, planning 

and studies in observed climate change trends and vulnerability. Variables such as evapotranspiration 

and soil moisture conditions are crucial in ensuring water sustainability, monitoring groundwater 

recharge, agronomic management and the management of flood and drought risk. Numerical weather 

prediction (NWP) models, can be used to reanalyse historic weather conditions and produce spatially 

and temporally homogeneous, multi-decadal gridded datasets. This article describes the application of 

three NWP models to produce the first gridded climate datasets of key hydroclimatic variables in 

Ireland, namely reference evapotranspiration, actual evapotranspiration and soil moisture deficits. The 

Met Éireann Re-Analysis (MÉRA) dataset (Gleeson et al, 2017; Whelan et al, 2018) has been used in 

this study, alongside the COSMO-CLM5 and WRF v3.7.1, which have been produced by researchers 

at the Irish Centre for High End Computing (ICHEC), and cover a period of 1981-mid 2018 for 

MÉRA, and up to 2017 for COSMO-CLM and WRF. MÉRA has a resolution of 2.5 km, whereas 

COSMO-CLM and WRF have higher resolutions of 1.5 km and 2 km respectively, but lack the data 

assimilation techniques used in MÉRA. 

 

2 Methodology 

Reference evapotranspiration (ET0) was calculated using the Penman Monteith equation, which is 

considered to be the international best practice. ET0 was calculated using variables from all three NWP 

datasets and interpolated to the 22 synoptic stations across Ireland. ET0 was calculated from weather 

observations. As each of the models had biases in the input variables, these had to be corrected. The 

timeseries for each location was split corresponding to months of the year, from which a least squared 

estimator could be applied to each month creating a line of best fit. The correction factors therein were 

then interpolated onto the corresponding model grids, to derive a definitive ET0 dataset for each 

model.  

Following this, actual evapotranspiration (ETa) and soil moisture deficits (SMD) were calculated using 

the Hybrid Soil Moisture Deficit Model (HSMD) which has been implemented at Met Éireann since 

2006. Its current commercial version has three drainage classes (well, moderate, poor) and assumes a 

uniform drainage class across the country, resulting in three maps for SMD each corresponding to a 

unique drainage class. A newer version, with two additional drainage classes (imperfect, excessive), 

has been implemented for this study, resulting in five maps of ETa and SMD corresponding to each 

drainage class. High resolution (1km spatial resolution) precipitation datasets were used as inputs to 

the HSMD model. Additionally, the indicative soil drainage map for Ireland has been used to create a 

sixth map which gives a more realistic estimate of the drainage conditions at each location. All of 
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these datasets have been produced for daily, monthly, seasonal and annual timesteps, including 

averages and summed values where applicable. 

 

3 Results 

Reference Evapotranspiration (ET0) 

Following the corrections, all models were found to perform with a high degree of accuracy and were 

in good agreement with ET0 values calculated from weather observations. Prior to validation, it was 

expected that MÉRA would outperform both WRF and COSMO-CLM datasets due to the advantage 

of data assimilation. COSMO-CLM and WRF were however expected to add value due to the higher 

spatial resolutions (1.5 km and 2 km, respectively) compared to MÉRA (2.5 km). Table 1 shows that 

MÉRA outperforms both the WRF and COSMO-CLM models for both root mean square error 

(RMSE) and correlation coefficients across all 22 synoptic stations, each of which has been validated. 

Figure 1 shows average annual sums of ET0 across the country for COSMO-CLM, WRF and MÉRA 

models. 

Table 1:Errors in daily and yearly accumulated values of ET0 for 1981-2017using an overall weighted 

average across 22 stations. 

 RMSE Standard Deviation Correlation Coefficient 

Model COSMO

-CLM 
WRF MÉRA COSMO

-CLM 
WRF MÉRA COSMO

-CLM 
WRF MÉRA 

Daily 0.442 0.402 0.337 0.882 0.937 0.924 0.892 0.913 0.939 

Annual 24.164 21.293 20.402 12.301 14.035 14.813 0.561 0.678 0.755 

 

Figure 1: Average Annual ET0 maps for COSMO-CLM, WRF (1981-2017) and MÉRA (1981-2016).  

Actual Evapotranspiration (ETa) 

ETa has higher applicability to environmental impact assessments, groundwater recharge and other 

aspects of hydrological modelling. In total, six datasets have been produced for ETa corresponding to 

each of the five drainage classes in the HSMD model and the indicative soil drainage map. Table 2 

shows errors in ETa for well drained soils and shows that MÉRA outperforms COSMO-CLM and 

WRF. As for ET0, the modelled values for ETa correspond well with values calculated from the 

HSMD model. The same analysis was carried out for the moderately drained and poorly drained 

classes. Figure 2 shows average annual sums of ETa across the country for COSMO-CLM, WRF and 

MÉRA using the indicative soil drainage map. 
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Table 2: Errors in daily and yearly accumulated values of ETa for well drained soils for 1981-2016 

using an overall weighted average across 22 stations 

 RMSE Standard Deviation Correlation Coefficient 

Model COSMO
-CLM 

WRF MÉRA COSMO
-CLM 

WRF MÉRA COSMO
-CLM 

WRF MÉRA 

Daily 0.378 0.347 0.291 0.713 0.740 0.735 0.874 0.896 0.927 

Annual  18.024 16.148 15.597 22.759 21.624 20.947 0.745 0.785 0.805 

 

 

Figure 2: Average Annual indicative ETa maps for COSMO-CLM, WRF and MÉRA. 

Soil Moisture Deficits 

As with ETa, soil moisture deficits (SMD) these have been calculated using the HSMD model for five 

drainage classes. There is a very good match between SMD calculated using observations and 

modelled SMD using high-resolution precipitation data. Additionally, the models themselves are in 

excellent agreement and there is only a small difference in errors. For well drained soils using MÉRA, 

RMSE values range from 0.339 mm in January to 2.324 mm in June. For most drainage classes, 

MÉRA still outperforms both WRF and COSMO-CLM both for RMSE and correlation coefficents. 

The exception is the poorly drained soil class, where values for MÉRA are noticably lower than WRF, 

COSMO-CLM and the values calculated from weather observations. For this drainage class, WRF is 

the best performer. Figure 3 shows indicative mean monthly SMD using the indicative soil drainage 

map. 
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Figure 3: Mean Monthly SMD for all soil drainage classes using WRF, COSMO-CLM and MÉRA 

(1981- 2016) 

4 Summary 

 
High resolution gridded datasets of reference evapotranspiration (ET0), actual evapotranspiration (ETa) and 

soil moisture deficits (SMDs) have been produced using inputs from three NWP models. Reference 

evapotranspiration (ET0) was calculated using modelled data as input to the Penman Monteith equation, in 

line with international best practice, and the current ET0 calculation method used by Met Éireann and 

repeated for actual evapotranspiration (ETa) and soil moisture deficits (SMDs). The results have shown that 

all models performed well and have been able to capture hydrological variables to a high degree of 

accuracy. Datasets derived from MÉRA input variables proved to be the most accurate. These datasets will 

be available online so that they can be utilised by the general public, policy makers and researchers. Any 

queries can be directed to christopher.werner@ichec.ie.  
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1 Introduction 

 

Late blight of potato is caused by the oomycete Phytophthora infestans and is a major pathogen of the 

Irish and European potato crop. Annual losses in the European Union have been estimated at more than 

€1 billion (Haverkort et al., 2008). The first objective of this research project is to analyse the relative 

humidity data of the MÉRA reanalysis dataset (Gleeson et al, 2017; Whelan et al, 2018). Relative 

humidity is of significance in plant health and physiology, occurrence of disease and hence agricultural 

economic yield. Comparison with historical meteorological data recorded at Irish weather stations will 

enable any bias in the MÉRA data set to be quantified. Other variables to be considered include 

temperature, total precipitation and the derived effective blight hours (EBH). The results will provide 

valuable historical information on potato late blight risk by location in Ireland. This project will build 

on the work of Bourke (1953) and Keane (1982) who published the average accumulated effective blight 

hours for the period 1957 to 1981 for Ireland. It will also supplement that of contemporary researchers 

Cucak et al. (2017) and Samala et al. (2017). 

 

2 Previous analysis of effective blight hours 

 

The Irish Rules as developed by Bourke (1953) have formed the basis of potato blight forecasting since 

the 1950s in Ireland and take into account the effect of temperature, relative humidity and the presence 

of precipitation during a defined period on the epidemiology of the blight causing pathogen 

Phytophthora infestans. Met Éireann currently uses a revised version of Bourke’s ‘Irish Rules’ and 

synoptic weather maps to predict when blight-favourable conditions are due to arrive. Since the ‘Irish 

Rules’ original conception, the pathogen responsible for potato late blight has evolved in to new 

genotypes, become resistant to certain fungicides and is active at a greater temperature range. 

Researchers at Teagasc are currently conducting a research study to elucidate changes in the life cycle 

of the pathogen and to propose a revised blight model for Ireland (Cucak et al., 2017). 
 

The value of an accurate blight model is that it should enable growers to move from a predominantly 

calendar based spraying schedule, to one where fungicides are used only where necessary in advance of 

a blight period. This is important from both an economic and environmental standpoint and meets the 

growing demand from national and EU legislation for growers to more fully adopt an integrated 

pest/pathogen management (IPM) approach (Lamichhane et al., 2016). However, reliance on a blight 

model has risks. The pathogen is incredibly virulent and once it is established it may result in significant 

loss of the potato crop. Organic farmers are particularly vulnerable to crop losses as shown in Finland 

in 2004 where no marketable yield of maincrop organic potatoes were harvested due to a late blight 

epidemic (Schepers & Spits, 2005).  
 

The link between the activity of the pathogen and humidity has been long established (Bourke, 1993). 

This was reaffirmed by Iglesias et al. (2010) who, in a study comparing different models and spore 

concentrations, found that the meteorological parameters with the greatest influence on the pathogen are 

minimum temperature and humidity. Samala (2017) found a reduced potato crop yield in years of high 

annual rainfall. The proposed study builds on the work regarding accumulation of effective blight hours 
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(EBH) by Keane (1982) and a preliminary study by de Lacey (2014). 

Analysis of Keane (1982) 

Keane (1982) through climatic analysis over a period of 25 years (1957 – 1981) found that some areas 

of Ireland consistently experienced high EBH with a low coefficient of variation. He made the case that 

in regions such as this regular spraying was advisable, whereas in areas of consistently low EBH 

spraying according to a warning system could be more economically beneficial.  His analysis showed a 

clear north-south gradient in EBH accumulations with an increase in values near the coast. Minimum 

values were found in the south midlands and parts of the east of Ireland, where a 10-day cohort analysis 

across the blight season (May – Sep) showed year-on-year regular blight free periods when spraying to 

a calendar would be unnecessary. The analysis used 14 synoptic weather stations.   

 

Figure 1: Average (1957-81) accumulations of effective blight hours, May to Sept. (Keane, 1982). 

Keane estimated the cost of a routine 14-day spray schedule on Ireland’s 40,000 hectares of potatoes 

between May and September in 1982 at £2.8 million (£10 per hectare per application). Since 1982 the 

acreage of potatoes has reduced and according to Bord Bia it is now 12,000 ha maintained by 600 

growers (https://www.bordbia.ie). De Wolf and van der Klooster (2006) estimate the average cost of late 

blight control chemicals at 370 €/ha, which would provide an estimate of €4.4 million in costs of control 

chemicals in Ireland. To put the problem of late blight into perspective, losses in the EU equate to €1 

billion; a significant proportion of the farm gate price of €6 billion and consumer price of €15 billion 

(Haverkort, 2008).  

Analysis of de Lacey (2014) 

The current planned analysis of the MÉRA dataset builds on a preliminary study of blight risk in west 

Cork by de Lacey (2014), where meteorological data, provided by Met Éireann for Sherkin Island and 

Newforge Belfast weather stations, were analysed for EBH over a three year period, 2010 to 2012. 

During the year with the lowest rainfall (2010), widely reported as a dry year for Ireland, Sherkin Island 

experienced the highest humidity of the three year period. Comparison with meteorological data for 

Belfast showed that in extract in 2010 Belfast experienced the lowest humidity of the three years. To 

confirm the analysis a qualitative comparison was made of blight warning reports issued by Met Éireann 
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for Sherkin Island and DARD (the Department of Agriculture and Rural Development) for Belfast, 

where modified Smith infection periods are reported. The occurrence of the high levels of humidity at 

Sherkin Island would suggest that Sherkin Island and the surrounding area in west Cork were at a greater 

risk to infection by P. infestans even during 2010, a relatively dry year.  

 
Figure 2:    EBH for Sherkin Island vs. Met Éireann blight warning reports for 2010 (de Lacey, 2014). 
 

 
Figure 3:    EBH for Belfast vs DARD infection periods for 2010 (de Lacey, 2014). 

 

The high value of EBHs for Sherkin Island is consistent with the observations of Keane who found this 

area of Ireland to experience average annual accumulations of EBH in excess of 400 hours, with the 

area around Belfast experiencing the lowest in Ireland at less than 150 hours. De Lacey (2014) 

conjectured that the high EBH observed on Sherkin Island, associated with a relatively dry year, was 

due to sea fog. Sea fog brings moist, cool, humid conditions, suitable for the germination of the P. 

infestans sporangia, and may also act as transport for sporangia and potentially the spread of late blight. 
 



 J. de Lacey, E. Lettice 
 

 

 

16 

 

 

Figure 4: Sea fog intrusion, mainland adjacent to Sherkin Island, West Cork. 

 

3 Planned analysis and applications 

 

Our study aims to repeat the analysis of Keane (1982) using the MÉRA reanalysis data to extend Keane’s 

previous 25 year analysis of EBH (1957 – 1981), a further 35 years to 2016. Will we observe the same 

spatial distribution of EBH?  What is the relationship between the individual variables of temperature, 

relative humidity, precipitation and EBH for different regions of Ireland? The results of our analysis of 

the MÉRA reanalysis dataset for blight risk will have implications not only for commercial growers but 

also help to inform backyard growers.  

 

Zwankhuizen (1998) identified allotments as a minor source of blight for farmers. In 2009 a pandemic 

in the United States was caused by a single wholesale nursery distributing infected tomato transplants 

across the Northeast and mid-Atlantic regions of the United States (Fry et al., 2012). The synchronous 

release resulted in 13 states being infected with late blight. The driver was mainly a lack of knowledge 

regarding potato late blight, on the part of the plant nurseries and backyard growers. As a result of the 

analysis of the MÉRA data, information will be available to backyard growers regarding the historic risk 

of blight for their location.  Backyard growers in areas of significant risk, who are growing organically, 

can be encouraged to adopt resistant cultivars to prevent the spread of blight to neighbouring farms. 

Scenario analysis by Pically et al. (2016) found that engagement of all stakeholders and a change in 

market demand to resistant potatoes, would result in a reduction in the severity of blight outbreaks. 

 

A further application is that the knowledge gained from the analysis will help to inform the release of 

BlightLink (http://blightlink.com/) a mobile application, which provides hourly, location specific, 

forecast information regarding blight risk for growers. In areas where the variability of EBH is found to 

be consistently high, growers will be advised that the App will act only as a fore-warning of ensuing 

blight periods. In areas with low variability and low blight risk, BlightLink may act to reduce 

unnecessary sprays of fungicide, particularly when combined with the function of enabling users to 

report blight outbreaks, therefore providing additional information on blight pressure in an area. This is 

particularly important in the light of future erratic weather pattern predictions (Samala, 2017). 

 

Observations of pests and pathogens have shown a movement towards the poles at a rate of 2.7 ± 

0.8 km yr−1 since the 1960s (Bebber et al., 2013). Potato late blight has been highlighted as a potential 

threat to global food security, particularly when one considers the recent observations in Europe of more 

virulent genotypes, the global reliance on the potato crop (3rd largest crop), and the increase in acreage 

worldwide (https://www.teagasc.ie/crops/crops/potatoes). The analysis of the MÉRA reanalysis dataset 

may reveal the impact of climate change on the risk of late potato blight for Ireland, provide a benchmark 

for ongoing monitoring, and inform future adaptations to climate change.  

 

Websites: 

BlightLink – https://blightlink.com 

Bord Bia website - https://www.bordbia.ie/consumer/aboutfood/veg/potatoes/pages/default.aspx/ 

Teagasc - https://www.teagasc.ie/crops/crops/potatoes/potato-blight-disease/ 
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1 Introduction 

 

There is a growing concern that atmospheric emissions of gaseous nitrogen (N) compounds, such as 

ammonia, from the agricultural industry, are negatively impacting plant biodiversity in natural 

ecosystems in Ireland (Henry & Aherne, 2014; Stevens et al., 2011; Wilkins & Aherne, 2016; Wilkins 

et al., 2016).  Atmospheric emissions ultimately return to the Earth’s surface via deposition, either in 

rainfall (wet deposition) or by dry fallout (dry deposition).  Globally, elevated N deposition has been 

demonstrated to have a negative impact on plant species diversity (Bobbink et al., 2010; Roth, et al., 

2015; Wallis de Vries et al., 2017), suggesting that N deposition may directly impact national 

commitments under the Habitats Directive (European Commission, 2015).  The National Emission 

Ceilings Directive (NEC Directive) has recently required all member states to establish a network of 

ecosystem sites to evaluate the impact of air pollutants on natural or semi-natural ecosystems (EEA, 

2016a); national ammonia emissions are perhaps of most concern in this respect. 

Effectively evaluating the impact of air pollutants, including ammonia, on natural ecosystems 

requires accurate estimates of wet and dry atmospheric deposition. In Ireland, wet N deposition is 

widely monitored; Met Éireann has actively monitored precipitation since the late 1950s at a number 

of monitoring stations (Tierney, 1967; Mathews & McCaffrey, 1977). There are currently five stations 

monitoring wet deposition (Belmullet, Johnstown Castle, Malin Head, Oak Park, and Valentia 

Observatory).  However, dry N deposition is not easily measured, and is generally estimated from the 

product of air concentration and deposition velocity (i.e. the rate at which gases or particles are 

transferred to a given surface, Vd).  Air concentrations of certain pollutants (including ammonia) have 

been measured in Ireland (e.g., de Kluizenaar & Farrell, 2000), whereas estimates of Vd have been 

taken from generalised landscape-based literature values (Henry & Aherne, 2014; Wilkins & Aherne, 

2016; Wilkins et al., 2016), which vary considerably for ammonia (Schrader & Brümmer, 2014).  

High resolution maps of Vd would greatly improve estimates of dry and total deposition, in particular 

for nitrogen species. 

 

The processes that contribute to the Vd of a gas or particle onto a given surface, particularly a 

heterogeneous surface, are complex, and influenced by the characteristics of the particle type, the 

qualities (e.g., roughness) of the receptor surface, and the micro-climate at the site of deposition 

(Hicks et al., 2016; Petroff et al., 2008; Pryor et al., 2008; Wesely & Hicks, 2000). Deposition velocity 

can be inferred from eddy correlation measurements; however, this method has a number of 

challenges (Businger, 1986; Finkelstein & Sims, 2001; Pryor et al., 2008). There is a reliance on 

computer modelling to estimate Vd. The ‘Big Leaf’ model developed by Zhang and others (Petroff & 

Zhang, 2010; Zhang & He, 2014; Zhang et al., 2001; Zhang et al., 2003) has been shown to perform 

well compared to Vd measurements (Szinyei et al., 2018; Zhang et al., 2001; Zhang et al., 2002), and 

has been widely applied (Adon et al., 2013; de Vos & Zhang, 2012; Flechard et al., 2011; Yu et al., 

2013).  This model does, however, require a number of meteorological input variables (Table 1), 

previously unavailable at high-spatial resolution on a national scale.  The publication of Met Éireann’s 

climate re-analysis dataset, MÉRA, (Gleeson et al., 2017; Whelan et al, 2018) has made mapping of Vd 

on a national scale possible. 
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Here we demonstrate how the recently published MÉRA climatological dataset can be used to estimate 

Vd for 31 gaseous species, including ammonia, and three particulate size classes, leading to high 

spatial resolution national maps. In combination with observations of the atmospheric concentration of 

gases and particles, these velocities can be used to generate national dry deposition maps for 

atmospheric pollutants.  

 

2 Methods 

 

The Vd model requires hourly inputs for nine climatic variables (Table 1), the landcover (for 26 

landcover types) and location (latitude) where the climatic variables were observed or estimated. 

Climatic input data for the model were predominantly sourced from Met Éireann’s climate reanalysis 

project (Gleeson et al., 2017). Climate reanalysis data are available from 1981 to mid-2018 at a 2.5 km 

resolution for Ireland produced using the ALADIN-HIRLAM numerical weather prediction system 

(www.hirlam.org).  In the current study, the Vd model was run at three-hour intervals for each 2.5 km 

grid point across Ireland for the period June 2013 to July 2014, which coincided with the operation of 

a national ammonia monitoring network (Doyle et al., 2017). The Big Leaf model requires 

proportional area data for 26 landcover classes, which were calculated for each 2.5 km grid using 

landcover data extracted from the CORINE 2012 map (1:250 000) (EEA, 2016b). Snowfall was 

assumed to be zero; cloud fraction was set to 1 (100% cover) as the MÉRA data were unavailable at 

the time of the study. However, model results were not sensitive to cloud cover under the climate 

conditions typical to Ireland. 

 

Table 1: Inputs required by the ‘Big Leaf’ dry deposition velocity model and their data sources 

PARAMETER SOURCE 

Temperature at 2 m MÉRA 

Surface temperature MÉRA 

Precipitation rate MÉRA 

Windspeed at 10 m MÉRA 

Surface pressure MÉRA 

Humidity MÉRA 

Solar irradiance MÉRA 

Cloud fraction Set to 1  

Snow depth Assumed to be zero 

Landcover CORINE 2012 

 

3 Results and discussion 

 

Annual averaged dry deposition velocity maps were created from the model output (average of 3,408 

3−hourly estimates) on a 2.5 km × 2.5 km grid, which represents the highest spatio-temporal 

resolution Vd maps for Ireland to date.  In general, annual average Vd for ammonia (NH3), sulphur 

dioxide (SO2), ozone (O3) and nitrogen dioxide (NO2) show higher values in upland areas along the 

west coast, particularly Donegal, Mayo, Galway and Kerry and in eastern regions such as the Wicklow 

Mountains (Figure 1).  The influence of climatic factors is clear in these annual maps, as regions with 

higher Vd coincide with regions of greater windspeed, which appeared to be a particularly influential 

driver of Vd. Elevated Vd is also clearly seen during events with elevated wind speeds in the east-west 

and north-south vectors in the time-series dataset; for example, 03:00 hours on June 6, 2013 illustrated 

an elevated Vd response to east-west gusts beginning to make their way eastward across the country 

(Figure 2).  Annual average Vd values during 2013–2014 for Ammonia (NH3) and Sulfur Dioxide 

(SO2) were 0.808 and 0.758 cm s–1 respectively; Ozone (O3) and Nitrogen Dioxide (NO2) represent 

lower Vd at 0.399 and 0.348 cm s–1 respectively (Table 2). 
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It is important to note that the national average annual Vd values do not represent site-specific Vd 

because average values summarise all landcover classes across the country and are influenced by the 

proportion of grasslands in Ireland. It is also crucial to recognise that areas of high dry Vd do not 

necessarily correspond to areas of high dry deposition; it is possible to have regions that experience 

high dry Vd but low pollutant air concentrations, resulting in low dry deposition.   

 

 

Table 2: Summary statistics for annual ammonia (NH3), sulphur dioxide (SO2), ozone (O3), and 

nitrogen dioxide (NO2) dry deposition velocity (cm s –1) for Ireland during the period June 2013 to 

July 2014 

 NH3 NO2 O3 SO2 

Mean 0.808 0.348 0.399 0.758 

Median 0.737 0.354 0.403 0.691 

Minimum 0.073 0.023 0.028 0.069 

Maximum 1.698 0.711 0.837 1.608 

Standard deviation 0.186 0.084 0.098 0.177 

 

 

The 3-hourly modelled Vd shows high temporal variability. For example during the first week of July 

2013 in Glendalough National Park, Wicklow (located in an area of high annual average Vd, see Figure 

1),  Vd ranged from less than 0.5 cm s−1 to nearly 2.5 cm s−1 (Figure 3).  The lowest Vd values were 

observed on July 3, and coincided with a calm period with low east–west and north–south windspeeds 

in the MÉRA dataset.  In addition, landscape-based Vd values exhibit a similar range for different 

habitat types (e.g. 0.5 cm s−1 for grasslands versus 2.5 cm s−1 for deciduous woodlands), highlighting 

the importance of site-specific and time-specific Vd estimates.  

 

Figure 1: Annual average dry deposition velocity (cm s–1) of ammonia (NH3), sulphur 

dioxide (SO2), ozone (O3), and nitrogen dioxide (NO2) for Ireland. 
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Figure 2:  Elevated dry deposition velocity (Vd) response to westerly winds on June 2, 2013 at 03 00 

UTC. 

 

 

 
 

Figure 3:  Modelled dry deposition velocity (cm s–1) for ammonia (NH3), sulphur dioxide (SO2), ozone 

(O3), and nitrogen dioxide (NO2) at Glendalough National Park in Wicklow, Ireland during the first 

week of July 2013. 

 

 

4 Conclusions 

MÉRA data were used to model dry deposition velocities for 31 gaseous species and 3 particulate 

matter size classes on a 2.5 km grid across Ireland at 3,408 3-hourly intervals for one annual cycle.  

The resulting series of dry deposition velocity maps demonstrated the influence of meteorology and 

land cover on the seasonal deposition velocities for gaseous and particulate species.    

High-resolution Vd estimates are only one part of the requirements for estimating dry deposition, 

which is the product of Vd and air concentrations.  There is a growing need for accurate estimates of 

total N deposition as cattle density increases in response to the Department of Agriculture, Food, and 

the Marine’s Food Harvest 2020 (DAFM, 2010), concurrent with commitments under the NEC 

Directives for Member States to evaluate and report on the impact of air pollutants to semi-natural 

ecosystems, and the reporting of habitat status under the Habitats Directive. 
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1 Introduction

A 24 GHz METEK Micro Rain Radar (MRR) has been in operation at the University of the Highlands and
Islands, Lews Castle, Stornoway (Hebrides, Scotland) since 2015 (see Figure 1). Located at 58◦N in one of the
most frequently rained-upon regions of Britain (with an annual average of ~280 raindays per year), Stornoway
lies fully exposed to all weather systems approaching from the North Atlantic Ocean. Similar to western Ireland,
there is a very high correlation between the North Atlantic Oscillation (NAO) Index and monthly precipitation
anomalies.

This part of north-western Scotland has already seen increases in the order 40% in winter precipitation over
the past 40 years (Barnett et al., 2006, Graham 2012). Such gains in precipitation were not expected until the
latter half of the 21st century according to climate change model scenarios for the region (Jenkins et al., 2008),
and are significantly greater than the expected response of the Clausius-Clapeyron saturation vapour pressure
relationship to a modest surface temperature warming of 0.5◦C over the same 40 year period. Therefore,
careful and accurate monitoring of precipitation in this sensitive climatic region is paramount for detection and
attribution of the manifestations of climate change.

This short paper presents the results of a preliminary investigation into how a combination of the Stornoway
Lews Castle MRR and nearby ground-based rain gauges may be used to validate the high resolution MÉRA total
precipitation dataset (Glesson et al., 2017; Whelan et al., 2018) for the Stornoway and NW Scotland region. At
least four rain gauges are available in close proximity for the ground truthing of the MRR, conventional Met
Office radar and reanalysis data. The MRR measures echo reflectivity (dBZ), fall velocity (m/s) and Doppler
velocity (m/s) with a derived precipitation rate (mm/h) based on estimated droplet size spectra distributions.

2 The Stornoway Micro Rain Radar (MRR)

The principal motivation behind the installation and operation of the Stornoway MRR is the NASA Global
Precipitation Mission (Hou et al., 2014), Stornoway being a key mid-latitude site in the calibration of space-
based estimates of rainfall detection and intensity. The Stornoway MRR operates continuously in Frequency
Modulation (FM) mode at 24 GHz, with a saw tooth signal sending a vertical pulse of radiation, which is back-
scattered (reflected) by hydrometeors (snow, hail, sleet, rain) and possibly aerosols. The vertical resolution of
reflection can be adjusted to between 30-100 m, with a maximum vertical height penetration of 3.1 km. Data
are averaged over time bins of one minute, meaning the MRR has a spatial and temporal resolution of up to
one magnitude greater than traditional meteorological radars. As the wavelength of the radiation (~1.3 cm)
is greater than the droplet size, than amount of back scatter is proportional to the 6th power of the droplet
radius. Furthermore, since freezing heights above Stornoway often lie close to the surface, and are rarely above
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Figure 1: The 24 GHz METEK Micro Rain Radar (MRR) installed at the University of the Highlands and
Islands, Stornoway, Scotland.

Table 1: MÉRA, MRR and local rain gauges accumulated precipitation totals for 30 June 2015
Observation Total (mm)
MÉRA Stornoway (single point only): 6.9
MÉRA whole island (max) 20.5
Micro Rain Radar (MRR) 20.0
Rain gauge No. 1 18.4
Rain gauge No. 2 18.6
Rain gauge No. 1 19.0

3000m, the bright band (~freezing altitude) is easily detected from the resulting Fall Velocity and Doppler shift
measurements.

3 Case Study: MRR, MÉRA and UK Met Office radar for 30 June 2015

The Stornoway MRR was installed on 15 June 2015, and a comparison between its data, that of MÉRA, the UK
Met Office’s Plan Position Radar (PPI) product (Met Office, 2003) and three local rain gauges was attempted
for the date of 30 June 2015, as a preliminary study. There was no shortage of rain during summer 2015 in
Stornoway (as it was one of the wettest and dullest summers of the past two centuries!). The results of this
initial comparison are listed in Table 1, as well as shown in accommpanying Figures 2 and 3.

From Table 1, it can be seen that the MRR total accumulated precipitation for 30 June 2015 was 20.0 mm. The
equivalent local rain gauge values were 19.0 mm, 18.6 mm and 18.4 mm, respectively. These slightly lower rain
gauge totals are easily accounted for by wind loss or splashing, which is expected to be common at the exposed
location of Stornoway. The equivalent Met Office PPI radar total for grid pixels surrounding Stornoway are in
the range 15-20 mm.
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Figure 2: Height versus time plots of the Stornoway MRR on 30 June 2015 for as follows; Top panel: Fall
Velocity (m/s); Middle Panel: Precipitation Intensity (mm/h; Bottom panel: Raw radar relfectivity (dBZ).

Figure 3: MÉRA total 3-hourly accumlated precipitation from 1800 UTC to 2100 UTC on 30 June 2015.
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4 Summary and Conclusions

It is clear that significant precipitation changes are currently afoot in northwestern Scotland. The Stornoway
MRR, in combination with MÉRA offer new research opportunities towards the study and analysis of these
changes. Whilst the agreement found for the case study of 30 June 2015 is very promising, it is clear in this
case that a longer time series of data are needed for a comprehensive climatological analysis and for valida-
tion of MÉRA with the MRR and other ground observations. Precipitation is largely a stochastic mesoscale
phenomenon, and it would therefore be interesting to see if direct assimilation of this very high resolution
radar data product into meteorological models might be possible and advantageous, or if it may continue to
pose complications, such as previously with GPS/GNSS high resolution precipitable water vapour fields (e.g.
Guerova et al., 2003).
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1 Introduction

This study examines some uses of reanalysis datasets for analysing aspects of weather which are relevant
for renewable energy in Ireland. Firstly, the skill of MÉRA (Glesson et al., 2017; Whelan et al., 2018) at
representing observed daily mean 10 m wind speed is compared to two global reanalyses (ERA-Interim and
MERRA-2).Combining wind and solar power production has the potential to reduce the overall variability of
renewable energy generation. The statistical relationship between daily mean 10 m wind speed and daily total
global shortwave radiation (SW) is analysed using Pearson’s correlation coefficient. The correlation values
calculated using reanalysis data are compared to observed values. Temporal variability of wind speeds has a
large impact on wind power production. The ability of the respective reanalyses to replicate observed wind
speed variability is investigated. This analysis is performed for different time periods (1-hour, 3-hour and
12-hour ramping).

All analysis is performed across a common validation period of 1982-2007 and the nearest grid point in each
reanalysis is used to compare to observations.

2 Results

10 m Wind Speed

The accuracy of the 10 m wind speed is assessed using skill scores such as: mean error (ME), root mean square
error (RMSE) and anomaly correlation coefficient (ACC). This analysis is performed for each of the three
reanalyses.

The ME and RMSE for daily mean 10 m wind speed at seven Irish synoptic stations are presented in Figure
1. A positive bias is generally apparent at inland stations in MÉRA and at all stations for the global reanalyses
(ERA-Interim and MERRA-2). MÉRA generally performs the best; it has the lowest ME and RMSE at five
of the seven stations studied. MÉRA also has the best ACC scores at all seven stations (not shown). A large
negative bias is apparent at Malin Head for MÉRA. Meanwhile large positive biases exist in ERA-Interim for
Dublin and Valentia. These are most likely attributed to land/sea discrepancies.

Wind-Solar Correlation

Monthly wind-solar correlation values for each dataset are shown in Figure 2. These are averaged across the
same seven stations shown in Figure 1. The correlation values calculated using reanalysis data tend to be further
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Figure 1: Skill scores (ME (bars) and RMSE (dots)) for daily mean 10 m wind speed at each station for MÉRA
(red), ERA-Interim (green) and MERRA-2 (blue).

from zero than observations, indicating that they tend to overestimate the strength of the inverse relationship
between wind speed and shortwave radiation. MERRA-2 moves closer to observations in the second half of
the year (Fig. 2), but in general none of the reanalyses outperform the rest when considering all of the stations.
This overestimation may need to be considered if reanalysis data are used to assess a site for combined wind
and solar power generation.
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Figure 2: Monthly Pearson’s correlation values between daily mean 10 m wind speed and daily total SW
averaged for all seven stations. Observations (black), MÉRA (red), ERA-Interim (green) and MERRA-2 (blue)
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Figure 3: Ramping of 10 m wind speed over 3 hours at Kilkenny for MÉRA (left column), ERA-Interim (centre)
and MERRA-2 (right column). The top row are contoured scatter plots of reanalysis ramps vs observed ramps,
with best-fit line (dashed grey). The bottom row are histograms of 3 hour wind ramps for MÉRA(red), ERA-
Interim (green), MERRA-2 (blue) and observations (black).

10 m Wind Speed Ramping

Temporal changes in wind power over a certain time horizon are referred to as wind ramping events. In this
study, ramping of 10 m wind speed is examined at the seven synoptic stations shown in Figure 1. The results
for 3 hour ramping at Kilkenny are presented in Figure 3 and Table 1. This is the shortest time period where all
three reanalyses can be compared (ERA-Interim data are only available at 3-hourly resolution). In terms of point
verification, all three reanalyses appear to struggle to match specific ramping events present in observations.
This is indicated by the slope of best-fit lines being different from unity and low Pearson correlation (r) values
in the scatter plots in Figure 3. These were similar to previous findings in Cannon et al. 2015.

The histograms in Figure 3 are used to assess the ability of the reanalyses to replicate the observed climato-
logical distribution of wind ramping. MÉRA agrees best with the observations. Both global reanalyses tend to
over predict small changes in wind speed and do not produce enough large ramp events. This is also illustrated
when analysing the statistics shown in Table 1. The standard deviation and 5th and 95th percentiles of MÉRA
are closer to the observed values than the two global reanalyses. The poor performance of global reanalyses for
ramping over short time periods was also found in (Cradden et al. 2017) for the MERRA-2 reanalysis.

When the analysis is repeated for hourly ramping events, comparing MÉRA and MERRA-2, similar results
are found. The MÉRA histogram again agrees best with the observations, with MERRA-2 exhibiting a thin-
tailed distribution which underestimates extreme ramps. For studying wind ramping, MÉRA appears to add the
greatest value when examining the climatology of ramping events over short time periods (e.g. ≤ 6 hours).
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Table 1: The standard deviation (σ2), 5th (P05) and 95th (P95) percentiles of 3 hour ramping events of 10 m
wind speed at Kilkenny.

Observations MÉRA ERA-Interim MERRA-2
σ2 1.691 1.538 1.141 1.314
P05 -2.572 -2.533 -1.90 -2.091
P95 2.572 2.395 1.813 2.178

3 Summary

• MÉRA performs best for 10 m wind speed at the majority of stations.

• All reanalyses tend to overestimate the strength of the inverse relationship between 10 m wind speed and
shortwave radiation.

• MÉRA outperforms global reanalyses at capturing the temporal variability of 10 m wind speed over
shorter time periods.
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1 Introduction

The renewable energy sector in Ireland continues to grow as we strive towards reduced emissions targets.
However, due to the irregular nature of weather, the sector faces challenges in producing enough energy when
demand is high, or curtailing energy production when demand is low. Understanding the relationship between
weather and energy demand is an important step towards improving the balance between power supply and
demand at these key times. The purpose of this study is to introduce a model that can be used to investigate the
relationship between the variability of energy demand and weather in Ireland.

2 All Ireland Electricity Demand Profile

All Ireland daily electricity demand data from January 2011 to December 2016 was obtained from the Single
Energy Market Operator (SEMO). Figure 1 (left) shows this total demand profile, which can be broken into
its low frequency and high frequency components. The low frequency component can be described as the
combination of an annual trend and seasonal trend. Demand changes on an annual basis due to a variety of
factors including climatic differences, Gross Domestic Product (GDP), electricity prices, technology evolution
and societal changes. Seasonal variability of demand is driven by the cyclic changes in temperature and daylight
hours throughout the year. The high frequency component of demand is driven by weather changes, day of the
week and public holidays. Typically less electricity is consumed on weekends and public holidays.

Following Cradden and McDermott (2018) the low frequency component of demand can be represented by a
second order Fourier Series y fitted to the daily demand data January 2011 - December 2016:

y = y + a1 cos(ωt) + b1 sin(ωt) + a2 cos(2ωt) + b2 sin(2ωt),

where ω = 2π
365 , y is a rolling 365-day mean and a1, b1, a2, b2 are Fourier coefficients. This Fourier fit is

shown in Figure 1 (left). Subtracting the Fourier fit, y, from the total demand profile gives the high frequency
component of demand, see in Figure 1 (right). This will be referred to as the residual demand and used to study
the weather-driven component of the electricity demand.

3 Extreme Demand Profiles

The upper 90th percentile (≥ 90%) and lower 10th percentile (≤ 10%) of residual demand are used here
to represent high and low extreme residual demand events respectively. The yearly and monthly profiles of
extreme residual demand events (not shown) highlight the influence of public holidays on demand with a large
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Figure 1: Left: Total daily electricity demand (–) and the Fourier Series fit representing the low frequency com-
ponent of demand (- -). Right: Residual daily electricity demand, representing the high frequency component
of demand.

number of extreme low residual demand days in December, presumably due to the Christmas break. While the
extreme high residual demand days are most frequent in winter months and in 2011 and 2016, indicating the
influence of weather on demand (winter 2011 was particularly cold).

4 Residual Demand Model

Multi-Variate Regression Model

Residual demand can be modelled by a multi-variate linear regression model similar to that used by Cradden
and McDermott (2018), based on models by Taylor and Buizza (2003) and Bloomfield et al (2016).

The regression formula is given by:

DR = aTe + bTe
2 + cCloud+ dWind+ eDay + fHol+ gXmas+ ε,

where DR is residual demand, Te is effective temperature, Cloud is the cloud amount, Wind is wind speed,
Day is a number representing day of the week, Hol is a true/false variable representing a public holiday,
Xmas is a true/false variable representing the Christmas period (23rd December - 4th January), ε represents
the model error and a, b, c, d, e, f, g are the model constants.

Effective temperature represents the tendency for demand to lag actual temperature changes, also effective tem-
perature squared is included to capture the typically non-linear relationship between temperature and demand.
Effective temperature is defined:

Te(tn) =
1

2
T(tn) +

1

2
T(tn−1),

where tn represents the nth time step (day), and tn−1 the previous time step (day).

The true/false variables Hol and Xmas, have a value of 1 when true and 0 when false. The Day variable
is actually represented by five true/false variables representing mid-week days Tuesday/Wednesday/Thursday
(since these days tend to have similar demand profiles) and individual days Monday, Friday, Saturday and
Sunday.

eDay = e1Mon+ e2MidWeek+ e3Fri+ e4Sat+ e5Sun.
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Each of the five Day variables have a value of 1 when true and 0 when false.

With a focus on extreme demand events, the model was trained for winter. Using daily average weather obser-
vations at Dublin Airport on winter days between December 2011 and February 2016, the model was trained
using a non-linear least squares method. Dublin observations were chosen to represent the highest density pop-
ulation centre in Ireland. The model obtained an R2 value of 0.89 implying that it captures Irish daily demand
profiles well. One month of the model fit (January 2016) is shown in Figure 2 (top).

Weather Driven Component of Demand

Once the regression model has been trained, the Day, Hol and Xmas variables can be removed to form a new
model for weather-driven demand,

Dweather ∼ DR − eDay − fHol− gXmas.

Figure 2 (bottom) shows the modelled weather-driven demand for one month (January 2016).
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Figure 2: Residual daily demand for January 2016 (–) with the full multi-variate linear regression model (top
– –) and the reduced model representing weather-driven demand (bottom –.–.).

5 MÉRA: Spatial Patterns of Weather on Extreme Demand Winter Days

This model for weather-driven demand was then used to study spatial patterns of extreme demand days in
MÉRA (Glesson et. al., 2017; Whelan et al., 2018). The upper 90th percentile (≥ 90%) and lower 10th
percentile (≤ 10%) of weather-driven demand days are used to represent extreme high and low weather-driven
demand events, respectively. Figure 3 shows the 2 m temperature, 10 m wind speed and total cloud amount
anomalies (from their climatology) averaged over extreme high and low weather-driven demand days. High
weather-driven demand days are anomalously cold, with lighter than usual winds, and generally less cloudy
than usual, while low weather-driven demand days are anomalously warm, with stronger winds and more cloud
cover than usual. As a first approximation, these weather patterns can be likened to negative and positive winter
NAO patterns for the high and low weather-driven demand cases, respectively.

35



L. Cooke, C. Sweeney

Figure 3: MÉRA 2 m temperature (left), 10 m wind speed (middle) and total cloud amount (right) anomalies
averaged across extreme high (top) and low (bottom) weather-driven demand days in winter.

6 Conclusions and Future Work

This study implements and validates a regression model that can extract the weather-driven component of
electricity demand. Further, the spatial patterns of extreme weather-driven demand days have been identified
using MÉRA. This model combined with MÉRA has the potential to explore many interesting problems. Future
work includes plans to improve the model by using MÉRA data to train it, specifically by weighting weather
variables over large population centres. Furthermore, this model can be refined to represent hourly demand
so that spatial patterns associated with extreme demand at key times of the day can be analysed. Finally,
investigations into the demand response to extreme weather events will be carried out.
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1 Introduction 

 

The continued addition of renewable energy sources (e.g. wind and solar) to the existing electricity grids 

will require a much better understanding of the natural spatiotemporal variability of atmospheric 

conditions. This in turn requires reliable gridded reanalysis products with good spatial and temporal 

coverage.  

 

Here, we use Met Éireann’s high-resolution reanalysis gridded dataset, MÉRA (Gleeson et al, 2017; 

Whelan et al, 2018), to analyse the links between atmospheric circulation patterns such as the North 

Atlantic Oscillation (NAO), the East Atlantic (EA) and Scandinavian (SCAND) patterns, for both 

wind speeds and incident shortwave (SW) radiation, in Ireland and the UK. For brevity, we restrict the 

results here to the NAO. We have performed the same analysis using the previously published lower 

resolution gridded datasets (e.g. MERRA2 and ERA-interim) to assess the advantages of MÉRA’s 

higher resolution. Finally, we use MÉRA to assess the co-variability of the winter season wind and 

solar resources, and how these are linked to the NAO. All analyses were performed for the winter 

season (DJF), for the common period of 1982-2008, which is covered by the reanalysis and 

observational datasets used. The final section of the paper is restricted to considering MÉRA data only 

and this spans the longer period 1982-2016. 

2 Large-scale pressure anomaly patterns  

Teleconnection patterns are persistent, recurring large-scale patterns of atmospheric pressure and 

circulation anomalies. Some of these patterns have been linked with the low-frequency variability of 

various meteorological parameters in Europe, including parameters relevant to energy production (e.g. 

wind speed, rainfall, cloudiness surface incoming solar radiation) and energy demand (e.g. temperature). 

These patterns, having a stochastic nature over time, oscillate between positive and negative phases, 

with each associated with different atmospheric conditions. In the last few years, an increasing number 

of studies have related the seasonal and inter-annual variability of renewable power production and 

energy demand to some of these climate patterns and successfully explain why a given year or season 

was more/less (e.g.) windy than the average local conditions or why energy demand was higher/lower. 

These types of links between climate variability and renewable energy resources need to be assessed 

further and better understood as the share of wind and solar energy increases.  

  

Figure 1: Spatial structure of the NAO teleconnection pattern. Scale reflects the SLP anomalies 

associated with each pattern. Patterns were derived from the ERA-interim reanalysis. 
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3 Results 

Correlation maps: NAO-SW radiation 

Pearson correlation scores between winter SW radiation and the NAO index were computed (Figure 2). 

Across both Ireland and the UK, a zonal gradient in the correlation scores is evident. In most of the 

western sectors of both islands, the surface incoming SW radiation varies negatively with the NAO 

index (anomalously high SW radiation in winters with a low NAO index), but that relationship weakens, 

loses significance and even changes sign (in the east UK mainland) zonally across the islands. The 

gradient is more noticeably captured by MÉRA (upper and lower right-hand plots below) and is also 

noticeable in the observational record (lower left-hand plot). 

ERA-interim        MERRA-2     MÉRA 

 

 

Figure 2: Pearson correlation scores (R x 100) between winter (DJF) SW radiation and the NAO index, 

for the period 1982-2008. The upper correlation maps show the scores obtained using the global 

horizontal SW radiation from the reanalysis datasets. The lower left-hand plot shows the scores obtained 

using weather station SW radiation observations. The lower right-hand plot is a close-up zoom of the 

upper right-hand plot (MÉRA).  

Correlation maps: NAO-wind speed (h = 10 m) 

Figure 3 represents the same analysis as Figure 2 but for wind speeds instead of incident SW radiation. 

A predominantly positive relationship between wind variability and the NAO was known for this 

geographical domain. However, the MÉRA dataset (upper and lower right) shows much greater detail, 
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including orographic effects on wind speed that are not captured by the two coarser resolution reanalysis 

products. 

       ERA-interim           MERRA-2          MÉRA 

 

 
 

Figure 3: Pearson correlation scores (R x 100) between winter (DJF) 10 m metre wind speeds and the 

NAO index, for the period of 1982-2008. The upper correlation maps illustrate the scores obtained 

using wind speeds from the three reanalysis products. The lower left-hand plot shows the scores 

obtained using wind speed observations from meteorological stations. The lower right-hand plot is a 

close-up zoom of the top right plot (MÉRA) for the island of Ireland. 

 

Correlation maps: Wind-solar relationships according to NAO phase 

In Figure 4 below, the right-hand plot is a correlation map showing the relationship between the winter 

wind speeds and SW radiation. In most western parts of Ireland and the UK the incident SW radiation 

decreases as the average seasonal wind speed increases. In the southeast of Ireland, there appears to be 

no significant relationship between SW radiation and wind speeds.  

For the island of Ireland, using every MÉRA grid point, we have plotted (left) the wind and solar 

anomalies for every winter season of the period 1982-2016 and have colour coded each data point 

according to the NAO phase of the winter that it represents. Although there is some overlap between 

anomalies (i.e. different winters and therefore NAO phases) it is clear that for most of Ireland, a 

positive (negative) NAO is associated with positive (negative) wind speed anomalies and negative 

(positive) incident SW radiation anomalies.  
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Figure 4: (Left) Wind speed and SW radiation normalised anomalies for every grid point of the island 

of Ireland. The anomalies are coloured according to the NAO phase – red (blue) refers to anomalies 

occurring in the negative (positive) phase of the pattern. Black refers to a weak/neutral NAO phase. 

(Right) Pearson’s correlation score between wind speed (at a height of 100 meters) and SW radiation. 

Both plots cover the 1982-2016 period. 

 

4 Summary 

 

 General agreement between all three reanalysis datasets on the impact of large scale pressure 

patterns on winter wind speed and SW radiation (results shown here are only for the NAO). 

o As expected, the high resolution MÉRA reanalysis product offers a much more detailed 

assessment and allows orographic effects to be detected. 

 Significant impact of the NAO on both winter wind speeds and incident SW radiation. 

 Some degree of anti-correlation between wind and solar resources in Ireland and the UK, with 

a west to east change in the strength and sign of the correlation. 

 

5 References 

Colantuono, Giuseppe, Yimin Wang, Edward Hanna and. Robert Erdélyi. Signature of the North 

Atlantic Oscillation on British solar radiation availability and PV potential: the winter zonal seesaw. 

Solar Energy 107 (2014): 210-219. 

 

Cradden, Lucy C., Frank McDermott, Laura Zubiate, Conor Sweeney, and Mark O’Malley. A 34-year 

simulation of wind generation potential for Ireland and the impact of large-scale atmospheric pressure 

patterns. Renewable energy 106 (2017): 165-176. 

 

Gleeson, E., Whelan, E., and Hanley, J.: Met Éireann high resolution reanalysis for Ireland, Adv. Sci. 

Res., 14, 49–61, doi:10.5194/asr-14-49-2017, 2017. 

 

Whelan, E., E. Gleeson, and J. Hanley: An evaluation of MÉRA, a high resolution mesoscale regional 

reanalysis. J. Appl. Meteor. Climatol., In press, https://doi.org/10.1175/JAMC-D-17-0354.1, 2018. 

 

 

 



S. Liu, L Hermida González, A. M. Foley, P. G. Leahy

Wind energy production backcasts based on a high-resolution
reanalysis dataset

Samuel Liu1, Lucía Hermida González2, Aoife M. Foley3, and Paul G. Leahy1,2

1School of Engineering, University College Cork, Ireland
2Environmental Research Institute, University College Cork, Ireland

3School of Aeronautical and Mechanical Engineering, Queens University Belfast, Belfast, Northern
Ireland

1 Introduction

The power outputs of renewable energy sources, such as wind, are variable in response to changing weather
conditions. Forecasts of wind generation are therefore useful in order to help system operators schedule and
dispatch generators in order to balance supply and demand at all times, to help energy traders predict supply
and price movements on electricity markets, and to assist wind farm owners to schedule maintenance outages
to minimise loss of output [Foley et al., 2012, Mc Garrigle and Leahy, 2015].

In recent years, as the proportion of total generation from variable, non-synchronous renewable energy sources,
such as wind and solar photovoltaics, has increased. As a result, many new applications are emerging tha
require accurate wind energy forecasts. For example, the increase in the penetration of renewable energy
sources in many systems has led to electricity market reforms, including penalties for producing over or under
the scheduled quantities. New hybrid wind-storage power plants have been deployed; the owners of these assets
have to make decisions on when to store energy and when to release energy when trading on futures markets.
The elimination of payments to renewable generators for energy curtailed for operational reasons by system
operators is a further motivation for more accurate forecasting of wind generation.

Numerical weather prediction reanalysis data have been widely used in wind energy studies. Examples include
large-scale wind resource analysis [Pryor et al., 2006] and wind energy backcast simulations for electricity
market integration studies. The success of such studies is highly dependent on the accuracy of the datasets
used. The relatively coarse horizontal spatial resolution of many reanalysis datasets, such as ERA-Interim (c.
80 km), limits their usefulness in such studies. The advent of high-resolution, regional datasets, such as Met
Éireann’s MÉRA reanalysis [Gleeson et al., 2017, Whelan et al., 2018], allows for more detailed backcasts to
be developed, with corresponding improvements in accuracy. The 2.5 km horizontal resolution of MÉRA,
in combination with its previously-reported low bias compared to ERA-Interim 10 m wind speeds, makes it
ideal for wind energy production estimation, because the spatial resolution is sufficient to resolve some terrain
effects.

The increase in accuracy of numerical weather prediction (NWP) forecasts in recent years has led to a significant
performance improvement in wind energy forecasting. The HARMONIE-AROME configuration of the shared
ALADIN-HIRLAM system used by Met Éireann and other meteorological agencies runs with a grid spacing of
2.5 km, which allows for resolution of some localised influences on wind speeds which would not be possible
in models with coarser spatial resolution. As the resolution of MÉRA is the same as that of the operational
HARMONIE-AROME model used by Met Éireann, the results of this MÉRA backcasting exercise should
provide insight into the capability of the operational model to resolve local effects on wind power generation.

41



S. Liu, L Hermida González, A. M. Foley, P. G. Leahy

In this study, we investigate the accuracy of wind energy production backcasts for a wind farm location in
Ireland derived from MÉRA data. The results of various bias correction schemes are introduced, with the
overall results showing good prediction accuracy even when relatively simple corrections, such as the Kalman
filter, are applied.

2 Data and methods

The chosen wind farm site is on relatively flat terrain in the midlands of Ireland, and has a site mean wind speed
of 7.7 m s−1 at 100 m above ground according to the Sustainable Energy Authority of Ireland’s wind atlas1.
There are eighteen 2,000 kW turbines on the site, each with a hub height of 95 m. Wind speed measurements
from a meteorological mast on the site were supplied by the site operator.

Data processing

We use horizontal wind speed components at 10 m and 100 m levels from the MÉRA (Met Éireann ReAnalysis)
dataset as inputs to the wind energy forecast model. Interpolation of wind data, u, at the four nearest grid cells,
(1,1; 1,2; 2,1; 2,2), to the location of the wind farm, uloc, was achieved by using a least squares method (Eqn.
1).

uloc = a u1,1 + b u1,2 + c u2,1 + d u2,2 (1)

10 m wind speeds were initially provided by Met Éireann, and these were extrapolated to turbine hub height
using the power law and an assumed shear coefficient of α=0.143. When 100 m wind speeds became available
for download, these were then used as inputs to the wind energy forecast. Prediction intervals of 3 h and 24 h
were selected from the MÉRA dataset. Wind speeds at hub height were then transformed to wind generation
time series by applying a speed-to-power transformation based on the turbine manufacturer’s power curve.
The power curve was scaled to match the wind farm’s maximum export capacity. No attempt was made to
incorporate the effects of turbine wake interactions or outages.

Historic generation output values at 30-minute time resolution were obtained from the Single Electricity Market
Operator’s website 2. Local measurements of wind speed at 95 m height and ten-minute time resolution were
also provided by the wind farm operator for 2016.

Data corrections

Several approaches were used reduce the bias and other errors in the wind energy forecast model. A persistence
correction was applied in the first instance. Its purpose was to provide a lagging bias correction, and a simple
benchmark correction against which to measure other more sophisticated methods.

The next level of forecast correction was the application of threshold corrections to the persistence-corrected
wind energy time series. Because the persistence correction is a lagging correction, it may lead to physically
unrealistic output values (e.g. power values that exceed the capacity of the wind farm, or negative values).
These were removed by employing a simple thresholding approach; i.e. where values exceed the maximum
export capacity of the wind farm, they are set to the maximum export capacity, and where values are negative
they are assigned a value of zero.

The Kalman filter, a more sophisticated forecast correction method, was then employed. The Kalman filter is an
optimal estimator for linear dynamical systems [Faragher, 2012]. “Optimal” in this case implies that the least
squares prediction error is minimised. That makes it ideal for use in applications such as position estimation
from noisy data, and bias correction of wind forecasts [Louka et al., 2008, Sibuet Watters and Leahy, 2011,

1SEAI wind atlas, http://maps.seai.ie/wind/
2Single Electricity Market Operator Dynamic Reporting Tool, http://www.sem-o.com/marketdata/Pages/dynamicreports.aspx
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(a) (b)

Figure 1: Wind generation backcast derived from (a) “raw” MÉRA data (red) and (b) persistence-corrected
MÉRA data with threshold corrections applied (red) for February 2014. Actual generation values are shown in
blue.

Figure 2: Wind speed backcast derived from MÉRA data with Kalman filter correction for January 2016.

Cassola and Burlando, 2012]. In this case, the Kalman filter was used to derive a state vector x̂(t) to minimise
the bias in the forecast time series.

Several error metrics were used to evaluate the performance of the overall system, including: mean error (ME
or bias), normalised mean absolute error (NMAE) and root mean squared error (RMSE).

3 Results

Sample time series of uncorrected, bias-corrected and threshold-corrected wind generation backcasts are pre-
sented in Figs. 1 and 2. The Kalman filter was applied to both wind power and wind speed time series, with
better performance observed on wind speed time series (Fig. 2). The Kalman-corrected wind speed time series
were subsequently transformed to wind power.

A sensitivity analysis was carried out in order to determine the most sensitive parameters in the wind genera-
tion model. Four factors contributing to the overall uncertainty of the output were selected and adjusted, and
the corresponding changes in the output accuracy were calcluated. The four factors were: shutdown of three
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(a) (b)

Figure 3: (a) Sensitivity analysis of the wind generation forecast (% errors) to model parameters. (b) Improve-
ments in RMSE over “raw” MÉRA-based forecasts (blue circles) for different prediction intervals (3 h & 24 h)
of 10 m and 100 m wind speeds.

turbines (“O&M”), derating of the power curve by 1% (“power curve”), variation in the value of shear exponent
(α) for vertical extrapolation by 0.07, and the choice of spatial interpolation (single nearest neighbour versus
weighted combination of four nearest neighbours) to the target wind farm location (“downscaling”). The re-
sulting changes in RMSE, NMAE and ME are presented in Fig. 3a. The results show that the shear exponent
for vertical extrapolation was the most sensitive factor examined in the analysis.

4 Discussion and Conclusions

Using the uncorrected MÉRA wind speeds for wind generation backcasting produces good results despite the
simplicity of the wind energy forecast model. Fig. 1a shows that, even without any corrections to the raw MÉRA
data, a simplistic speed-to-power conversion produces realistic values for wind farm generation output. This
underlines the high accuracy of wind speeds in the MÉRA dataset. Application of relatively simple corrections
(persistence and threshold cutoffs, Fig. 1b) further improves the model performance, with a visible reduction
in bias (Fig. 3b and Table 1 ).

Table 1: Root mean squared error (MWh) of wind energy backcasts derived from uncorrected (“raw”) MÉRA
wind speeds and from various corrections applied to MÉRA data, for 10 m and 100 m wind speeds and 3 h and
24 h prediction intervals.

Raw Persistence Persistence + Thresholds Kalman
100 m, T+3 h 7.94 5.48 5.20 6.04
10 m, T+3 h 6.99 5.60 5.33 6.44
100 m, T+24 h 6.84 8.38 6.88 4.78
10 m, T+24 h 6.64 9.52 7.25 6.76

In general, the model performance is consistent across all error parameters used in this study, and in particular
for the mean error. Forecasts for the T+3 h prediction interval are only slightly more accurate than for the
T+24 h prediction interval. The Kalman-corrected forecasts based on 10 m wind speed data produce lower
errors, especially much lower bias, than those based on the 100 m wind speeds. As expected, the Kalman filter
is efficient at eliminating systematic biases such as those introduced by vertical extrapolation of wind speeds.
This is also consistent with the results of the initial parameter sensitivity analysis. The performance of the
various forecast corrections are summarised in Fig. 3b and Table 1.
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The Kalman filter applied to MÉRA data produces good results for each error metric and in particular reduces
the systematic bias. The advantage of the Kalman filter is also seen for the longer prediction interval (T+24 h;
Table 1) where it has the lowest RMSE of the four approaches. Noise at longer prediction intervals is more
likely to approach a Gaussian distribution which is one of the assumptions underlying the Kalman filter. Thus,
the Kalman filter efficiency depends more on the nature of the forecast errors than the overall accuracy of the
backcast. Furthermore, access to measured wind speed data is key for good performance of the Kalman filter
performance as these assist the model update step used for bias correction.

The results of this wind energy generation forecasting exercise demonstrate that the accuracy of wind speeds
from high resolution reanalysis datasets such as MÉRA should make such datasets extremely valuable in wind
resource assessment. Further work will concentrate on more sophisticated corrections such as the extended
Kalman filter which should further reduce the errors in wind generation forecasts derived from MÉRA wind
speeds.
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1 Introduction

Unlike conventional power stations that can operate anywhere continuously to meet demand, renewable energy
technology is dependent on local weather conditions which can be highly variable. Therefore, spatial analysis
of shortwave (SW) radiation is essential in planning of viable locations for solar energy generation. Reanalysis
data can be used in regions where observations are sparse, such as SW radiation observations in Ireland. The
accuracy of reanalysis data must be assessed before use. If an element of the error is systematic, then there is
potential to reduce this error through post-processing techniques.

SW radiation is the main parameter used in the generation of solar energy. It is produced by the sun but can
be reflected by clouds (~24%) or absorbed by aerosols (~17%) before it reaches the surface. This makes SW
radiation variable on high-resolution temporal and spatial scales. Here the daily accumulated SW radiation
is compared to seven Irish weather observing stations for the period 1982-2007. The spatial pattern of SW
radiation around Ireland is also compared to satellite data. The common weather patterns associated with large
error events are also investigated.

2 Skill Scores

Figure 1: Mean Error (bars) and RMSE (dots) in SW radiation for seven weather observing stations in Ireland
(1982-2007) for three reanalysis datasets; MÉRA (red), ERA-Interim (green) and MERRA-2 (blue).
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In Ireland typical winter values of daily SW radiation are approximately 3 MJ/m2 and summer values are
approximately 16 MJ/m2. Standard skill scores including mean error (ME), root mean square error (RMSE),
anomaly correlation coefficient (ACC) and Pearson’s correlation are used to assess the accuracy of SW radiation
estimated by three reanalyses - MÉRA, ERA-Interim and MERRA-2. The results are shown in Figure 1. MÉRA
has the lowest ME at all stations. ERA-Interim values of RMSE are often the best, although are comparable
with MÉRA at some stations. ERA-Interim and MERRA-2 overestimate SW radiation at all stations, which is
consistent with previous studies (Zhang et al, 2016; Boilly and Wald, 2015). MÉRA also overestimates SW
radiation except at Atlantic facing stations (Valentia, Belmullet and Malin Head) where there is a negative bias.
This may be due to how the model expresses water content in the atmosphere column.

When skill scores are averaged over all 7 stations MÉRA has the best ME and ACC, while results are compara-
ble with ERA-Interim for RMSE and Peason’s correlation. High Pearson’s correlation values (>0.9) show that
all reanalyses capture the variability well.

3 Spatial Patterns

The SW radiation spatial patterns are shown in Figure 2. Satellite data is used as a refernce. There is a variation
in the north-south direction which is expected as SW radiation varies with latitude. There is also an east-west
variation which is highlighted by the contrast in SW radiation values over land and sea. SW radiation values
are larger over the sea than over land. Previous studies often exclude SW radiation values over the sea. MÉRA
performs best at representing the spatial pattern observed in the satellite data. ERA-Interim also does well in
capturing this pattern, but the patterns are less pronounced in MERRA-2.

Figure 2: Spatial pattern of average summer total daily SW irradiance for Satellite, MÉRA, ERA-Interim and
MERRA-2.

4 Post-processing

A linear-least squares post-processing technique shows improvement in skills scores (Figure 3). The largest
improvements in ME and RMSE are found in the low-resolution reanalyses, which originally had the larger
errors. ME is reduced to close to zero in all three reanalyses and at all stations. There is also a reduction in
RMSE after post-processing, although the improvement is not as large as that of ME.

47



E. Doddy, C. Sweeney, F. McDermott

Figure 3: Mean Error (bars) and RMSE (dots) for the seven synoptic stations in Ireland for SW radiation
(1982-2007) for the three reanalyses; MÉRA (red), ERA-Interim (green) and MERRA-2 (blue). The grey bars
and dots in the background are the original values before post-processing, as shown in Figure 1, for comparison.

(a) (b)

(c) (d)

Figure 4: MSLP anomalies in ERA-Interim averaged over all large negative SW radiation error events and large
positive SW radiation error events in MÉRA. Temperature at 500 hPa anomalies in ERA-Interim averaged over
all large negative SW radiation error events and large positive SW radiation error events in MÉRA.

5 Large Error Events - Common Weather Patterns

Finally, we investigate if there are common weather patterns associated with days when large errors occur in
SW irradiance. The 200 largest positive and negative error events for each station are selected. The model has
large error events in the months from March to October inclusive, there are no large error events in winter. This
is because SW irradiance values are relatively low in winter.

ERA-Interim data are used to examine the large-scale common weather patterns which occurred during these
events. Initial analysis, as shown in Figure 4, suggests that mean sea level pressure (MSLP) shows a high
positive anomaly compared to a 30-year climatology for positive error (model overestimates SW irradiance)
events and a negative anomaly for negative error (model underestimates SW radiation) events. Simultaneously,
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a positive anomaly is observed in temperature at 500 hPa to the north of Ireland while a negative anomaly is
observed south of Ireland for positive error events. The reverse is observed with a weaker gradient for negative
error events.

6 Summary

• MÉRA generally yields better skill scores.

• A simple post-processing technique reduces systematic errors in all reanalyses.

• MÉRA captures the spatial variability of SW irradiance best.

• Future work includes:

– Principle component analysis (PCA) on weather patterns for large error events.

– Novel adaptive spatial multivariate post-processing methods.
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1 Introduction

This study looks at extreme waves, defined as waves of larger than expected amplitude, in the waters off the
west coast of Ireland. These extreme events can manifest as transitory waves of great height, or as prolonged
sea states of great energy. The force of waves during these events can pose a threat to the effective and safe
management of offshore operations. Though both manifestations of extreme waves bring more energy, Wave
Energy Converters (WECs) are very sensitive to these situations, especially if they are deployed in unshel-
tered locations. An excess of such energy could be disastrous to a WEC, leading to fatal structural damage,
component malfunction, mooring system failure and more. Therefore, the knowledge of extreme sea states
or individual waves is essential for WEC design, deployment and operation. This study can be used also for
decision-making regarding wind turbine accessibility, which is highly dependent on the wave period and at-
mospheric conditions. We are interested in the storm events of winter 2013/2014 off the west coast of Ireland
which caused serious and widespread coastal damage and a record 23.4 m maximum individual wave height
(significant wave height of over 15 m) at the M4 wave buoy off the coast of Donegal. A study by Matthews et
al. (2014) showed that the winter of 2013/2014 was the stormiest in the last 143 years. This winter experienced
beach changes (Masselink et al., 2016), severe hurricane strength winds, above average rainfall amounts and
notable storm surges (Met Office: Winter storms: December, n.d.; Met Office: Winter storms: January, n.d.;
Met Office: Winter 2013/14, n.d.; Met Éireann: December, n.d.; Met Éireann: January, n.d; Met Éireann: Win-
ter, n.d.) causing a lot of coastal damage, transport disruption, inland flooding, felled trees, and power losses
across the Atlantic coast of Europe and recorded human fatalities in Ireland and UK. We used the third gen-
eration WAVEWATCH III wave model (Tolman , 2014) version 4.18 in an unstructured formulation (Roland,
2008), and driven by MÉRA (Met Éireann ReAnalysis) 10 m winds (Gleeson et al., 2017; Whelan et al., 2018)
and ERA-Interim directional wave spectra (Dee et al., 2011). The wave model has a high-resolution grid (up
to 225 m resolution in the nearshore) with approximately 20000 nodes. The analysis of the winter storms
of 2013/2014 includes maps and time-series of various wave parameters outputted hourly (wave energy flux,
peak wave direction, and peak wave period). These wave parameters describe the wave characteristics which
are important to wave energy conversion (average energy available for extraction, the direction of incoming
waves, and wave frequency/period). The model results are validated against buoy data in order to provide a
high quality, high-resolution hindcast of the wave events during winter 2013/2014.

2 Methodology

The bathymetry in Fig. 1 was generated using a Digital Elevation Model (DEM) for Ireland (Gallagher et
al., 2014). The unstructured triangular grid (see Fig. 1) has a varying resolution of 10 km offshore to 225 m
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J. Janjić, S. Gallagher, and F. Dias

nearshore (Gallagher et al., 2016). WAVEWATCH III is driven hourly with MÉRA 10 m wind forcing fields
with a 2.5 km horizontal resolution and European Centre for Medium-Range Weather Forecasts (ECMWF)
ERA-Interim 2–D wave spectra with a temporal resolution of 6 h in 10 points around the boundary of the
model.

Figure 1: The WAVEWATCH III model unstructured grid and bathymetry (Gallagher et al., 2016).

For brevity, we chose to show two major storms in February 2014: (i) an unnamed storm on the 1st and (ii) the
"Darwin" storm on the 12th. Each of these storms is described and discussed in detail in the Results sections
below. We give an overview of the storms importance and weather and wave conditions on the day of the
storm. We analyse time series of the significant wave height and maps of the significant wave height (Hs), peak
wave period (Tp), and peak wave direction (Dp). We examine wind speeds and directions in three locations
taken from The Unified Climate and Synoptic Observation Network (TUCSON): Malin Head, Mace Head, and
Sherkin Island (only ones of most significance to the storms analysis have been shown). These are Automatic
Weather Stations (AWS) which are part of Met Éireann’s synoptic weather observation network. These stations
were chosen for analysis because they are both close to the coastline and the wave measurement locations.

Table 1: Statistical parameters for Hs

Location name CC σA (m) σB (m) Bias (m) Slope SI n
Kinsale 0.97 1.81 1.86 0.1 0.94 0.13 2151
Killard 0.94 1.92 2.21 0.09 0.82 0.17 1487
M4 0.95 1.68 2.27 0.32 0.82 0.15 821

3 Results

We validated the model by comparing it to the available buoy data in three locations: M4 Irish Weather Buoy
Network buoy (55, –9.99) off the northwest coast, Killard off Co. Clare (52.774, –9.587), and Kinsale Energy
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Gas Platform (51.37, –7.945)) off the south coast. In Fig. 2 we show the time series comparison at the Kinsale
Energy Gas Platform. The values of the statistical parameters for Hs at different locations are summarised in
Table 1. These parameters are defined as follows: Pearson correlation coefficient (CC), standard deviation of
the model (σA) and measured value (σB), bias, slope, scatter index (SI), and number of records (n).

Figure 2: Timeseries of significant wave height from December 2013 to March 2014 comparing observations
from the Kinsale Energy Gas Platform (51.37, –7.945) radar and modelled values.

(a) Sherkin Island – 1st February 2014 (b) Mace Head – 12th February 2014

Figure 3: Observations from Met Éireann Synoptic (TUCSON) stations for wind speeds and gusts (kt) (top
panels) and direction (◦) (bottom panels). Top panels: Red = wind speed (kt); Blue = wind gust (kt). For
context, horizontal lines show mean speed boundaries on the Beaufort scale. Force 6 "Strong breeze" (22 kt);
Force 8 "Gale" (34 kt); and Force 10 "Storm" (48 kt). Note the different scales for wind speed.

For parameter definitions see Janjić et al. (2018). The model reproduced the extreme wave events well, only
slightly underestimating the peak wave heights during the passing storms. The agreement could be improved by
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J. Janjić, S. Gallagher, and F. Dias

feeding the model with hourly ECMWF operational archive 2-D wave spectra in more points on the boundary
of the model.

The storm on the 1st of February is a result of a deep low pressure system of 955 hPa. This storm stands out from
the rest of the February storms because of the coastal flooding and damage it caused across Ireland, particularly
Co. Cork (O’Brien et al., 2018). The winds were strong gale or storm force with south to southwest direction
(Met Éireann: February, n.d). Observations from Met Éireann Synoptic (TUCSON) stations at Sherkin Island
(Fig. 3a) show that the mean wind speed reached values of 54 kt (100 km/h) and gust of 68 kt (126 km/h).
A large rogue wave was recorded by the Killard Electricity Supply Board (ESB) buoy with a maximum wave
height of 28.08 m in the Hs of 12.34 m sea state on the 1st Feb at 1100 UTC (O’Brien et al., 2018).

Figure 4: Maps of a) significant wave height (m) with vectors representing wind speed (m/s) and direction (◦)
and the center of the low pressure system "L" of 955 hPa, b) peak wave direction (◦), and c) peak wave period
(s) at 1200 UTC on the 1st of February 2014.

The Darwin storm, associated with a deep low pressure system of 955 hPa (see Fig. 5a) over Ireland, was the
most severe storm of winter 2013/14. A maximum mean wind speed of 117 km/h was recorded at Mace Head
(Fig. 3b) and maximum gusts of 156 km/h at Shannon Airport (hurricane force winds) which are the season’s
highest, with a south to southwest direction (Met Éireann: February, n.d). It is interesting to note that between
1300 UTC and 1400 UTC at Mace Head a significant jump in the wind speed and gust values was recorded
indicating that the storm front was passing at this time over the station. The direction of the wind changed
significantly in approximately 5 hours, again, indicating the passing of the storm. On the 12th of February the
Kinsale Energy Gas Platform wave radar measured a maximum wave height of 25 meters (Mc Grath, 2015;
O’Brien et al., 2018).

Although these two storms share similarities, such as the minimum sea level pressure value and strong winds,
they were very different as well. The 1st February storm approached Ireland as an almost fully developed
storm, slowly weakening from its peak reached in the early morning hours of the day (around 0200 UTC).
The "Darwin" storm on the other hand experienced an explosive growth in Irish nearshore waters (around
0900 UTC) followed by fast abatement (Mc Grath, 2015). The 1st February storm covered a larger area than
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the "Darwin" storm which was in comparison smaller, slightly stronger and very focused. Therefore, these
differences are the reason behind the two different sea states that resulted from these storms.

Figure 5: Maps of a) significant wave height (m) with vectors representing wind speed (m/s) and direction (◦)
and the center of the low pressure system "L" of 955 hPa, b) peak wave direction (◦), and c) peak wave period
(s) at 1200 UTC on the 12th of February 2014.

The maximum Hs of 15 m occurred at 1200 UTC on the 1st February with Tp 16–18 s and Dp of 270◦–300◦

(northwest – oceanographic convention). The maximum Hs can be found to the right of the storm propagation
where the strongest winds are (Fig. 4). We can see that the high energy sea state is widespread, which comes
from the fact that this storm was a larger scale storm which was already developed as it propagated towards
Ireland, creating large waves on the way. The direction of the most energetic waves corresponds to the direction
of the strongest winds (Fig. 3a). The wave period indicates that the dominant waves (highest waves) are long
swell.

The weather conditions on the 12th of February caused waves with a maximum Hs of 11.5 m, Tp of 12–16 s
and Dp of 270◦–300◦ (northwest – oceanographic convention). Again, area with the highest Hs matches the
area with the strongest winds and this area is as expected very narrow and focused just as the area of strong
winds is (Fig. 5). The direction of the strongest waves matches the direction of the winds. The wave period of
the most energetic waves is lower when compared to the first storm, indicating that these may be closer to wind
sea than swell, generated nearer to the coastline.

4 Conclusions

In order to reproduce the wave events of winter 2013/14, we used the WAVEWATCH III model forced with
MÉRA 10 winds and ECMWF ERA-Interim 2-D wave spectra. We simulated December 2013, January, and
February 2014 of this winter and we analysed two events on the 1st and 12th February. Keeping in mind that
the model underestimates Hs when compared to measurements, the maximum Hs of 15 m was reached by the
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model on the 1st of February at 1200 UTC. These two events show different atmospheric conditions resulting
in different sea states that can be equally dangerous. We can have a highly widespread and energetic sea state,
a more focused and unexpected energetic state, and among these sea states it is possible to even have rogue
waves, highly energetic and unexpected waves. Phenomenal sea-states occurred off the west coast of Ireland
during the winter of 2013/2014, and these extreme wave events need to be taken in account not only in the
stage of WEC design, deployment, and operation but also to improve our understanding and forecasting of
these extreme coastal hazards.
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