
LEABHARLANN CHOLAISTE NA TRIONOIDE, BAILE ATHA CLIATH TRINITY COLLEGE LIBRARY DUBLIN
OUscoil Atha Cliath The University of Dublin

Terms and Conditions of Use of Digitised Theses from Trinity College Library Dublin 

Copyright statement

All material supplied by Trinity College Library is protected by copyright (under the Copyright and 
Related Rights Act, 2000 as amended) and other relevant Intellectual Property Rights. By accessing 
and using a Digitised Thesis from Trinity College Library you acknowledge that all Intellectual Property 
Rights in any Works supplied are the sole and exclusive property of the copyright and/or other I PR 
holder. Specific copyright holders may not be explicitly identified. Use of materials from other sources 
within a thesis should not be construed as a claim over them.

A non-exclusive, non-transferable licence is hereby granted to those using or reproducing, in whole or in 
part, the material for valid purposes, providing the copyright owners are acknowledged using the normal 
conventions. Where specific permission to use material is required, this is identified and such 
permission must be sought from the copyright holder or agency cited.

Liability statement

By using a Digitised Thesis, I accept that Trinity College Dublin bears no legal responsibility for the 
accuracy, legality or comprehensiveness of materials contained within the thesis, and that Trinity 
College Dublin accepts no liability for indirect, consequential, or incidental, damages or losses arising 
from use of the thesis for whatever reason. Information located in a thesis may be subject to specific 
use constraints, details of which may not be explicitly described. It is the responsibility of potential and 
actual users to be aware of such constraints and to abide by them. By making use of material from a 
digitised thesis, you accept these copyright and disclaimer provisions. Where it is brought to the 
attention of Trinity College Library that there may be a breach of copyright or other restraint, it is the 
policy to withdraw or take down access to a thesis while the issue is being resolved.

Access Agreement

By using a Digitised Thesis from Trinity College Library you are bound by the following Terms & 
Conditions. Please read them carefully.

I have read and I understand the following statement: All material supplied via a Digitised Thesis from 
Trinity College Library is protected by copyright and other intellectual property rights, and duplication or 
sale of all or part of any of a thesis is not permitted, except that material may be duplicated by you for 
your research use or for educational purposes in electronic or print form providing the copyright owners 
are acknowledged using the normal conventions. You must obtain permission for any other use. 
Electronic or print copies may not be offered, whether for sale or otherwise to anyone. This copy has 
been supplied on the understanding that it is copyright material and that no quotation from the thesis 
may be published without proper acknowledgement.



Monte Carlo Simulation for 
Global Illumination

William Leeson

A thesis subm itted for the degree of 
Doctor of Philosophy in Computer Science 

University of Dublin, Trinity College 
Department of Computer Science 

February 23, 2001



Acknowledgement s

I would like to  thank Cinty Broadhead and Mark “Sparks” Dennehy and my 
parents without whose help this thesis would never have been understandable. 
Also I would like to thank my supervisor Carol O ’Sullivan for putting up with 
me for the last 2 years and helping to  make my papers more readable. Thanks 
also go to my original supervisor Steven Collins without whom I would never 
have been able to get into global illumination in the first place. Finally my lab 
mates Leo Talbot and Gareth Bradshaw for the odd frag fest at lunch time and 
their invaluable criticism without which I would not have strived to do better. 
I would also like to thank my parents again for putting up with me for the last 
4 years when I should have been working at a “real” job earning money.



Summary

The aim of global illumination is to produce a realistic image that is indistin­
guishable from a real image of tha t scene in the least amount of time. This is 
achieved by modelling the physical laws th a t govern light propagation. Global 
illumination effects have been used in films and computer games to create more 
immersive environments. Unfortunately, the time taken to render a physically 
correct image is far higher than with more conventional three dimensional com­
puter graphics. This not because the processes are very different but because 
more evaluations of certain operations such as visibility determ ination are re­
quired. The high computational costs can be addressed by either improving the 
efficiency of the algorithms or by parallelising them. Many of the current global 
illumination algorithms are limited in the types of scenes they can render and 
the surface models th a t can be used. Usually an im portance sampling function 
has to  be designed for each surface model. W ithout this function the algorithm 
will not perform well. In addition, as scenes get more complex, the performance 
of some algorithms begins to falter.

The principal contributions of this work are a framework which uses m athe­
matical concepts, two different adaptive integration methods are use to solve the 
rendering and potential equations, a parallel rendering scheme is devised which 
uses stratified sampling, a Metropolis sampling method is created which uses 
density estimation rather than integration and finally a scheme for compressing 
the particles produced by the Metropolis sampling method.

This thesis first presents a modular, extendible, flexible and object oriented 
framework which is able to cope with the many different types of global illumi­
nation algorithms. The framework was designed so tha t many algorithms could 
be added with relative ease. It is based on mathematical concepts such as in­
tegration and function evaluation, which are common to all global illumination 
methods.

Monte Carlo techniques have been applied in the past to the problem of 
global illumination. However, many previous techniques have been unable to 
cope with a large range of scene types and surface representations. To improve
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this situation, two numerical integration algorithms have been modified and 
used to render images. Two adaptive algorithms are proposed: One is derived 
from the VEGAS algorithm which uses importance sampling, and the second is 
based on stratified sampling.

In order to speed up the rendering of scenes, a generic and flexible parallel 
algorithm has been devised which uses stratification to break up the problem 
domain. This enables it to be used without modification with the new adaptive 
algorithms, among others. By changing the parameterisation of the problem 
domain, the partitioning can be used to create greater coherency and also to 
facilitate the rendering of large scenes.

Finally, Metropolis sampling is applied in a novel way to distribute photons, 
either on the surfaces of the scene or on the film plane, using the potential or 
rendering equation. By using density estimation methods on these samples the 
illumination is reconstructed. Due to the correlation present in the samples 
produced by the Metropolis algorithm, the particle stream may be compressed. 
To aid compression the particle data is rearranged so that compressible regions 
are more readily identifiable.
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Chapter 1 

Introduction

This thesis deals with the subject of Global Illumination. Its goal is to  produce 
a two dimensional image tha t appears realistic to the viewer, given adequate 
input data which describes the geometric and surface properties of the scene and 
viewing device. By using the physical laws governing light propagation more 
realistic imagery can be produced. The more physically correct an illumination 
model is the more likely th a t it will appear realistic to  a viewer. In its earliest 
use only simple shading models and hidden surface algorithms were used, these 
featured in films such as “Tron” (see Figure 1.1) and “The Last S tar F ighter” . 
Todays blockbuster films such as “The Abyss” which won awards for its special 
effects, “Star Wars” , “Titanic” and “The M atrix” ah use more sophisticated 
techniques to  create stunning effects. Thanks to early pioneering companies 
such as Newtek, even low budget TV shows such as Babylon 5 and S tar Trek 
feature stunning visual effects. Pixar has led the way in computer animation 
with its well known animation “Luxo J r.” which earned many awards and for its 
feature film “Toy Story” which was a box office hit. These films were produced 
using their Renderman package.

Today nearly all films feature computer graphics effects to some degree. Even 
computer games feature realistic imagery which is used to better immerse the 
player in the virtual environment. Computer games such as Quake and Unreal 
use a global illumination technique called radiosity to pre-calculate shadows 
and lighting. Today many rendering packages are available to the public, some 
of which are free. This has increased awareness and interest in rendering and 
global illumination and as a result a  demand for ever better and more realistic 
images has arisen. People are starting to make home grown movies known 
as Machinima, using game engines such as Quake where the characters are 
actors controlled by players. This is becoming popular as people can produce 
virtual movies on cheap PCs. New software is being developed by a number

1



2 C H APTER 1. IN TR O D U C TIO N

Figure 1.1: Early computer graphics from the Film Tron

of companies specifically to cater for this type of film production. Many of 
the cartoons appearing on TV today are done entirely using com puter graphics 
such as S tar Ship Troopers and ReBoot. However, to date very few of these 
productions use a  full global illumination capable rendering system. This makes 
it relatively easy to  distinguish the diiference between scenes using computer 
graphics and those without. This is mainly due to  the speed and memory 
costs of global illumination techniques which at the moment are impractical 
for large animations. New possibilities are created by global illumination and 
the adoption of these methods to  create an ever more believable environment is 
inevitable.

1.1 Stages Of Rendering

Global Illum ination is different from most of the other fields in com puter graph­
ics in th a t it uses fixed models which m ust be solved. The problems involved 
bring together m any different subjects including programming, m athem atics 
and psychology in order to  solve what initially appears to  be a simple problem. 
Early realistic graphics research primarily dealt with local illumination, which 
was a  visibility problem i.e. “Can I see the light from this point?” or “Can the 
viewer see this point?” Global Illumination is an extension of this concept to 
- “Can I see this object via reflection or refraction from another object?” This 
is however a  very simplified view of global illumination. The complete process 
can be split into three stages

• M od elling: This is the first stage in any image synthesis process. A 
three dimensional scene must be constructed. This is done by specifying 
the geometric models of objects, along with their reflective and refractive
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surface properties and textures. Lights are added to the scene and also 
cameras whose configurations can be specified in a number of ways. The 
specifications can be entered in a variety of forms, usually with the aid 
of a modelling program. This stage is very im portant as badly designed 
scenes can also impair the visual realism of the image produced.

•  R endering: Early attem pts at rendering dealt with wire frame or solid 
filled representations, where the main goal was hidden surface removal. 
Photo realistic image synthesis deals with the solution of complex equa­
tions. This can be split into two parts: A view independent stage and a 
view dependent stage. The first deals with the construction of the light­
ing in a three dimensional space which can be later viewed using a view 
dependent method. View dependent methods deal with the construction 
of a 2D image given the position of the viewer. They can use information 
from the view independent stage or construct a solution independently. 
There are a variety of rendering algorithms tha t can be used to  produce 
images but most are only suitable for solving limited fighting situations 
and can be very slow depending on the accuracy and level of realism used.

• Tone R eproduction: This involves converting the physical quantities 
used to  represent the light incident on the film plane into an image that 
a human observer would perceive from the same data  or input in the real 
world. This stage to some extent leaves the area of physics and starts to 
deal with the psychology of perception.

In any image generation program these steps can be combined. In fact the final 
two stages are usually mixed to some extent, as the Tone Reproduction helps to 
point out the importance of regions in the image plane with respect to  a human 
observer. This helps to  lower the computational demands which can be very 
high for some methods.

1.2 Applications

Photo realistic image synthesis has many potential uses in industry.

• F ilm s and T V : Recently many films have featured state of the art photo 
realistic effects. This is an area of particular promise for global illumina­
tion as the goal of a film is to immerse the viewer in a fictitious world and 
this is an area where computer graphics excel. Computer graphics can 
be used to visualise scenarios which are either too expensive or impossi­
ble to  create in reality. One of the first TV programs to  feature realistic 
computer generated imagery was Babylon 5, a science fiction program.
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It featured space battles consisting of hundreds of ships rather than the 
limited numbers that could be achieved with conventional model-based 
motion control techniques.

• Architecture: The design of buildings is very important. To assess the 
aesthetics usually an artist’s representation of the building is used. This 
method unfortunately can be very misleading. The use of global illumi­
nation to synthesise photographs of the building is a more accurate and 
believable approach. Currently a few rendering packages are available to 
assess the aesthetics of a building, one such package is Lightscape.

• Lighting: The optimal placing of lights and windows in a building is 
very important. Global illumination can be used to help maximise the 
contribution of a light to a scene and also to enhance the natural lighting 
of a building, by testing various configuration of lights. The object is to 
minimise the number of lights as well as making them more effective and 
therefore decreasing the cost of lighting the building. Another area of use 
is in designing stage lighting to create dramatic sets for theatres and films.

• Games: Companies are striving to achieve ever more realistic and im­
pressive imagery for use in games. The more realistic a game appears 
the more readily the viewer gets immersed in the game, the ultimate goal 
being to produce cinematic quality imagery. Lighting and global illumi­
nation effects are used to create atmosphere. Some of the most immersive 
experiences in games involve using lighting effects, for instance switching 
off the lights, making low intensity lighting settings or using fog.

• Art: Computers recently have been used to create amazing pictures and 
animations. The realistic imagery made possible with global illumination 
could also be used to produce art.

• Others: There are many possible uses of realistic imagery, such as in 
virtual reality flight and driving simulators for training, and many more.

Moore’s law predicts that the power of computers double every 18 months 
and this still holds. Thus, today’s rendering algorithms which were once too 
slow to be practical can now be run by any off-the-shelf computer. It is therefore 
conceivable that the global illumination algorithms of today which are too slow 
for today’s computers will become practical in a few years. In fact current games 
now feature global illumination techniques to a limited extent. Ray tracing 
once the slowest of rendering methods can now be done in real time [87, 88]. 
Recently, 3D acceleration hardware has undergone a dramatic upheaval, and 
what was once only available in the domain of the professional is now available
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to  all cheaply. This has produced a massive growth in innovations and advances 
of realistic imagery and some of this hardware can be used to  accelerate global 
illumination problems.

1.3 O bjectives and scope

The aim of this thesis is to produce global illumination algorithms which are:

• physica lly  correct: Able to represent and produce physically correct 
data

• robust: Able to  solve all situations

• efficient: Fast a t producing results with low memory overheads

• effective: Able to  create accurate estimates in the minimum time.

Another goal is to produce a framework for construction of these algorithms 
which is:

• in tu itive: easy for both the user and developer to use

•  fast: at producing images and at constructing rendering systems

• expandable: to  the extent th a t new methods and techniques can be 
added easily

• m odular: so th a t each component is separate and can be used inter­
changeably.

1.4 T hesis Overview

C hapter 2 P rob lem  D escrip tion  This chapter describes the problem do­
main and various ways used to describe light transport and other associated 
concepts using mathematical models. To achieve this the physics of light and 
light transport are described. Then a number of models used in global illumi­
nation are described in detail.

C hapter 3 P rob lem  Solution  Reviews the m athematical methods used to 
help solve the problems presented in the previous chapter. A description of 
methods for solving integral equations and density estimation m ethods are in­
cluded.
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Chapter 4 Parallel M ethods A review of parallel methods and terminology 
is presented. Details of various concepts and types of scheduling algorithms are 
described with their potential advantages and disadvantages. The final part 
includes a review of current parallel techniques used in global illumination.

Chapter 5 A lgorithm s A number of new algorithms and the framework 
used to construct them are presented. The design, construction and reasons 
for the development of these are explained. A series of adaptive algorithms are 
presented which use integration to solve the global illumination problem. Next 
a parallel method is used to accelerate the previous methods as well as some 
particle tracing methods. Finally density estimation and Metropolis methods 
are described which can be used in conjunction with the adaptive methods or 
on their own to solve global illumination scenarios.

Chapter 6 R esults An analysis of the algorithms described in the previ­
ous chapters in terms of efficiency, effectiveness and memory consumption is 
provided.

Chapter 7 Conclusions and Future Work Here the main ideas presented 
in the thesis are summarised and potential areas for further investigation and 
research are highlighted.



Chapter 2

Problem  Description

Global illumination is the physical simulation of light in an environment, with 
the goal of producing a synthetic image of a scene th a t appears identical to 
th a t which an observer in the real world would experience. Unfortunately, 
representing the whole experience is not possible in all situations and may not 
always be desirable, hence the image a camera would record is often the preferred 
goal. To properly simulate the lighting in a room, the entire environment of 
the room must be taken into account. To obtain this image both the physical 
aspects involved and the psychology of perception need to  be taken into account. 
To calculate the amount of light reaching a point in space, a model must be 
created which is capable of describing the physical process in sufficient detail 
such that all the desired effects can be simulated. It was not until about 1984 
with the introduction of the radiosity methods by researchers in Fukuyama and 
Hiroshima Universities [86] in Japan and at the Program of computer graphics 
a t Cornell University [45] in the United States, tha t physically correct global 
illumination models were developed. These methods were restricted to having 
only diffusely reflecting surfaces. Later, with the introduction of the rendering 
equation [63], less restrictive global illumination methods became possible. In 
order to generate a realistic image of an environment as seen through a camera, 
a mathematical model of how light interacts with an environment is needed. 
W hat follows is the construction of a simple model of light th a t describes its 
interaction with an environment. It uses some physics to describe light and 
those properties which are relevant to the effects we wish to  reproduce. These 
concepts are then represented in mathematical equations which we will use 
later. The following discussion is based on that in “Radiosity and Realistic 
Image Synthesis” [19].

7
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2.1 M odelling the Objects

Modelling objects in a scene, such as chairs and desks, is done using geometry 
such as polygons, spheres and param etric patches. Using combinations of these 
primitives, complex scenery can be built up. By assigning properties to the 
surfaces, a sufficiently accurate representation of many real world objects can be 
created. Using this representation and a model for the interaction of light with 
th is environment the illumination of any surface in the scene may be estim ated.

2.2 Basic Optics

Light is a  form of electromagnetic radiation, formed by coupled electric and 
m agnetic fields which are perpendicular to  the direction of propagation and 
which form a sinusoidal wave (see Figure 2.1). The frequency of oscillation of 
this wave determines its wavelength. These waves can have many properties, 
for instance light may be:

p o la r ised  meaning th a t the electric and magnetic fields may have a single 
orientation;

coh eren t meaning tha t the light contains a  fixed frequency.

Light can be described or modelled on three different levels;

g eo m etr ica l or ray op tics model light a t a basic level of reflection and re­
fraction;

w ave or physica l op tics describe light effects such as diffraction, interference 
and dispersion. This model describes light interaction with objects of sizes 
near the wavelength of light;

q u a n tu m  or p h o to n  op tics model light using photons which are particles 
th a t  have both  wave and particle properties given by ray and wave optics 
respectively.

Geometrical optics is the most suitable model for use in global illumination 
because it deals with light a t the macroscopic level. This assumption is very 
im portant, as it hmits the optical phenomena we can model. This is because 
geometrical optics cannot handle effects such as interference, diffraction and 
dispersion, for this we need wave optics.
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Figure 2.1: Light Wave

2.3 R adiom etry

Radiometry is the science of physical measurement of electromagnetic energy. 
The radiometric unit of energy is the joule and for power is the w att (equivalent 
to joules per second).

2.3.1 Energy Conservation

Conservation of energy is an im portant principle th a t must be taken into account 
in any light transport model. Energy must be conserved on two scales:

globally  The total power radiated into a system by light sources must equal 
tha t absorbed by objects. This absorbed energy flows out as heat energy 
in most cases.

loca lly  Energy flowing into a region of space must equal tha t leaving the region.

2.3.2 Solid A ngle

The angle subtended by a circular arc of length I is equal to l / r,  this is known 
as a radian. Using a similar concept, the idea of an angle can be extended into 
the three dimensional world to  get a /r^  (see Figure 2.2) where a is the area 
of a patch on the surface a unit sphere. The units of this quantity are called 
steradians or radians squared. A differential solid angle duj is thus

dA
doj =  —  =  sin 9d9d(j}

2.3.3 U nits and N otation

Before we can quantitively discuss how light intraction is modeled some symbols 
and units need to be defined. The symbols used for the m athem atical notation
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Figure 2.2: Solid Angles

dco,

Figure 2.3: Directions

are given in Table 2.1 and the units in Table 2.2. The diagram in Figure 2.3 
shows the concepts the symbols relate to.

2.3.4 Radiance

In the case of rendering systems the quantum nature of light is usually not 
considered. Instead the radiant energy per unit time, or radiant power rather 
than the number of particles, is used as the flux. This value is the photon volume 
density times the energy of a single photon and is called the radiance L. Thus 
radiance is the power per unit projected area perpendicular to the ray per unit 
sohd angle in the direction of the ray, and thus its units are W m ~ ‘̂ .

2.3.5 Radiant Flux Density

The radiant flux can be considered as either incoming or outgoing. When in­
coming it is called the Irradiance E  which is the radiant energy per unit area 
incident onto a surface with a fixed orientation. It is calculated by integrating
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A area
X position
(jO solid angle
0 zenith angle
<t> azimuth angle
E irradiance
L radiance
B radiosity
A wavelength

diffuse coefficient x for wavelength A

(a) Symbols

i incoming
0 outgoing
r reflected
t transmitted
d diffuse
s specular

(b) Subscripts

Table 2.1: Notation Tables

W W atts
m metres
sr steradians

Table 2.2: Table of Units

the incoming radiance Lj over a hemisphere as follows

E = Li cos Oidwi (2.1)
  du>i
~~ d A

du i  (2 .2 )

Where cos didoji defines a projected area on the base of the sphere. The outgoing 
radiant flux density, called the Radiosity B , is the inverse of the irradiance term. 
Radiosity is defined as the energy per unit area that leaves a surface. Thus it 
can be found also by integrating over the hemisphere. This time we integrate 
outgoing radiance L q over the hemisphere fig

B  = Jq LoCOsOoduio (2.3)
duJc 
d A~  ^  (2.4)

Both radiosity and irradiance can be expressed as the energy per unit area with 
units of W m ^'^.

2.4 Modelling Reflection and Transmission

Describing reflection and transmission of light from a surface is an im portant 
consideration in any illumination model. For a complete description of light 
interaction at a surface you would need to take into account florescence, polar-
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isation, phosphorescence and many more effects. However in order to simplify 
these models, simple geometrical optics are generally used.

2.4.1 Reflection and Refraction

Reflection is defined as the process by which light incident on a surface leaves 
that surface from the same side. Refraction being the opposite process by which 
light incident on a surface leaves that surface from the opposite side. Materials 
can be categorised into two distinct types, conductors and insulators. The 
conductors are said to absorb light energy and are characterised by complex 
indices of refraction, whereas insulators do not absorb any light energy and 
they are characterised by non-complex indices of refraction. Conductors are 
non-transparent, examples of such materials are metals; insulators on the other 
hand are generally transparent substances such as glass.

T h e B i-D irec tio n a l R eflection  D istr ib u tio n  F u nction  B R D F

From experimentation, it has been observed that the light reflected from a 
surface is proportional to the light incident E{Cji) on that surface:

dLj. oc dE{ui)

The hi-directional reflection distribution function (BRDF) describes the reflec­
tion of light from a surface, and is given by the following:

(2.5)
Li[uJi) cos0idu>i

where w* is the incoming solid angle, is the reflected solid angle and L 
represents the corresponding radiances and 6i is the angle between the surface 
normal and the incoming solid angle (see Figure 2.4). The BRDF is therefore 
the ratio of incident radiance in a given solid angle to the reflected radiance. 
The BRDF may have some of the following properties:

1. The Helmholtz reciprocity principle: If based on physical laws, the BRDF 
will remain unchanged if the incoming and outgoing directions are re­
versed.

2. Anisotropic: If the incoming and outgoing directions are fixed and the 
surface rotated, then the percentage of reflected light may change.

3. Isotropic: If the incoming and outgoing directions are fixed and the surface 
rotated, then the percentage of reflected light will not change.
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COf

Figure 2.4: BRDF parameters

W hat follows are a few examples of BRDFs which are commonly used in ren­
dering systems. For the purposes of simplicity and clarity the wavelength de­
pendence of these functions will be ignored. In order to have the functions 
vary according to wavelength A the coefficients kx), can be made a function of 
wavelength.

B R D F M odel for Perfect Reflection The properties of a perfect reflector 
are

•  9r =  Oi

•  (pj. =  cf>i ±  TT

where the subscripts i and r represent incoming and outgoing directions and 9 
and (j) are from the spherical coordinate system introduced previously. That is 
to say, the reflected vector {[Or,(t>r]) is in the plane given by the incident vector 
([^i) 0i]) and the normal to the surface, and the incoming radiance ( L j )  is equal 
to the outgoing radiance (Lr). Thus the BDRF can be expressed as

/ r . ( w j  -)■ U r )  =  k s ^  ±  7^)) ( 2 . 6 )
cos di

Where ks^ is the portion of reflected light. Note that this BRDF uses the delta 
function 5{x), which has the following properties:

• 6{x) =  0 if X 7̂  0

•  f Z c ^ ( ^ ) d x  =  1

• -y )/(a :)d x  = /(y)
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In nature however, perfect mirrors are never found as they always contain imper­
fections which causes the rays be distributed about the reflected ray. Normally 
the Presnel formulae for reflection are used to vary the kgX term, these are 
discussed in Appendix A

B R D F  M odel for Perfect Diffuse Reflection This is a model which scat­
ters light uniformly in all directions and is a constant given by

friUi ^  ^  (2.7)
7T

where kd is a coeflicent which describes the portion of light reflected by the 
surface. As in the model for perfect reflection, perfectly diffuse surfaces do not 
occur in nature.

Phong B R D F  M odel for Glossy R eflection This is a BRDF which is 
based on the original Phong shading model [97]. Although the original imple­
mentation of the model is not a valid BRDF (as physical constraints were not 
taken into its design) , Lafortune and Willems [71] have created a valid BRDF 
model which gives similar looking surface finishes.

f r i ^ i  W o) =  — -  - h  k s ) ^  —r  COs”  Q (2.8)
7T ZTT

a  is the angle between the perfect specular reflective direction and the outgoing 
direction. Values larger than 7t / 2  should be clamped, to avoid getting any 
negative cosine values, k^^ and kd^ are the specular and diffuse coefficients 
and n the specular exponent. Energy conservation is guaranteed if and only if 
k d x  +  k s ^  <  1 .

Ward B R D F  M odel for isotropic and anisotropic reflection The Ward 
BRDF model [134] is a more physically plausible model which can be used 
to model anisotropic as well as isotropic surfaces. The isotropic model is a 
simplification of the anisotropic model and is given by

f  + k  ̂ e x p (- ta n ^ ( i^ ))

where a  is the standard deviation (RMS) of the surface slope and 6h is the 
zenith angle of the vector halfway between the incoming 9i and outgoing do 
rays (see Figure 2.5). In order to ensure energy conservation, kd)̂  + kĝ  ̂ < 1; and 
the normalisation factor l/47ra^ is accurate as long as a  is not much greater
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Figure 2.5: Halfway Vector

than 0.2. The full model which supports anisotropic scattering is as follows

 ̂  ̂ , 1 exp (-ian ^ (9 /i(cos2(^ ) +  s in ^ (^ ))
^ W r)  ^  +  ®A ^ C O S  Oi COS Or 4 T T a x a y

(2 .10)

where and ay are the standard deviation of the surface slope in the x  and 
y directions at the tangent plane and (ph is the azimuth angle of the halfway 
vector (see Figure 2.5). In order to maintain energy conservation we require 
that kdx + < I and that <  1 and <C 1.

B i-d irection a l Transm ission D istr ib u tion  Function  (B T D F )

The definition of this function is exactly the same as that of the BRDF, except 
that this quantity describes the transmission of light through a surface instead 
of reflection from it. Thus the reflection term Lr is replaced by a transmission 
term Lt in Equation 2.5

fti^i —̂ wt) — y T ^  iTl (2-11)Li[u!i) cos tiidwi

B i-d irection a l Scatterin g  D istr ib u tion  Function (B S D F )

This is a combination of both the BRDF and the BTDF. By combining these 
two quantities, a complete description of all scattering events at an interface 
is obtained. Usually a BSDF is created by just combining the formulae for a 
BRDF and a BTDF. This is typically done for the diffuse and Phong models as 
follows

/(w j —)■ cJo) =  a r/r(W r —> l^t) (2-12)
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where cjr is the incoming light that is reflected into the viewing direction and 
u>t is the corresponding refracted light. To ensure energy conservation, the 
reflected and transmitted at coefficients should satisfy the following:

T h e R eflec ta n ce  E quation

If light is added from another direction, it has no influence on the amount 
of light reflected from other incident directions. This shows that reflectance 
behaves linearly, and so the total amount of light reflected by a surface in a 
specific direction is given by an integral on , the hemisphere over all possible 
incident directions. This ignores non-linear effects such as those produced by 
laser light, these effects are modelled by wave and quantum optics which are 
beyond the scope of this dissertation. The Reflectance Equation which describes 
the amount of light that is reffected through a solid angle is given by

JQ

Note the reffectance equation and the rendering equation which follow rely on 
the concept of integral equation which are discussed in detail in Appendix B.

2.5 Rendering Equation

The light leaving a surface consists of two parts, the emitted light and the re­
ffected or transmitted light. In general, the radiance of a surface is a function of 
both the position and viewing direction. Assuming that the geometry, emissive, 
reflective and transmissive properties of all surfaces are known, the radiance at 
each surface point in each direction can be determined. The light scattering 
at a surface point in a given direction could, in general, have come from any 
direction. Some of this light will come from the light sources and the remaining 
hght will come from other surfaces (see Figure 2.6). The radiance at a point is 
related to the radiance of all points visible to it. The equation describing these 
interdependencies has the general form

(2.13)

L{iOi oJo) — I f i^ i  LOo)Li{uii) cosOickui (2.14)

radiance(t/) == emit(j/) -I- I
Ja.\all surfaces

radiance(a;)scat(2/, x)dx

where y  and x each represent a point and a direction, radiance(i/) is the outgoing 
radiance at y, emit(y) is the emitted radiance at y and scat(y,a;) is the fraction 
of light between points y  and x. This, as can be seen, is an integral equation



2.5. RENDERING EQ U ATIO N  17

d(i>i

d(£).

dA

Figure 2.6: Ind irect Lighting

because th e  unknow n function radiance() appears bo th  ou tside and inside the 

integral.
In  order to  derive a global illum ination model, occlusion by, as well as light 

reflected from other surfaces m ust be considered. Therefore in th e  equation, 
radiance on one surface m ust be related  to  th a t on another:

Li{y, (2i^)  =  L o { x , u j o J V { x , y )

This re la tes th e  incident radiance on one surface a t y  to  the  radiance from  x. 
W here u>î  is th e  direction vector from y  to  x and is in the  opposite direction. 

T he function V{ x,  y)  is the  visibility function,

{1 if a; is visible from w,

0 otherwise.

R elating  a in tegral over all directions to  an integral over all surfaces is done by 

relating  the  solid angle subtended by the  source to  its p ro jected  surface area

cos 6i^dAj;
—  I 12\x-yr

C onverting to  a  pro jec ted  solid angle gives

duJî  cosOo^dAx =  G{x, y)dAx
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Letting
cos cos On,

G { x , y ) = G { y , x ) =  ^

and substituting into the reflectance equation yields

L { y , W i J =  /  f{coi  ̂ ^  ujoJL{x , i : j i JG{x , y )V{x , y )dA^
Js

Then finally taking into account the energy of the point on the surface,

+ J  f {L0 i ,^0joJL{x,uJ iJG{x,y)Vix ,y )dA^  (2.16)

This however, is not the only form of the rendering equation. There are many 
others. In fact this version is usually converted into a integral over all directions

L{y,(^iy) = Le{y,oji^)+ ujoJL{x,LOiJ{-(;ji^.n)dujiJ (2.17)
j Q i

This is not a complete hght transport model. Eff'ects such as participating 
media, where light is scattered and therefore attenuated as it travels through a 
medium, are beyond the scope of this thesis.

2.6 Potentia l Equation

Due to the optical properties of different surfaces, the light emitted from one 
surface in a given direction can illuminate many other surfaces. To be able 
to estimate this quantity, the potential equation [92, 89, 90] was introduced. 
Progressive radiosity [18] and particle simulation [94, 93, 91,15] are two methods 
which use the potential equation. The potential equation is an adjoint of the 
rendering equation and is based on the propagation of light starting from the 
light sources. It expresses the potential capability W  of any point and direction 
towards the illumination of another, this is expressed as follows:

W{y,UoJ=g{y ,c^oy)+ f{uo^-^i^ijW{x,iooJcoseo^dLOo^ (2.18)
JQo

Equation 2.18, although it looks very similar to the rendering equation 2.17, is 
not the same. The difference is that in the rendering equation y is the point 
visible to x  along an incoming direction at x  and integration is over the incoming 
hemisphere about x  (i.e. the direction of the rays). The function g{y,0Joy) is
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crucial to the exact meaning of the potential. When g{y,u)g^) is as follows:

f cos0oy iffx G Surfacefc 
=  I 0 otherwise

then W(x,ujo^) defines the potential ability of (y, WoJ to contribute to the total 
outgoing flux of the surface k in the environment. If on the other hand g{y,uJoy) 
is given as:

y 0 otherwise

W{y,uJoy) will now express the potential capability of {y,ijJoy) to contribute 
towards the radiance at {z,Wz).

2.7 Other work

There have been many alternative models for describing light transport, most 
of which are based on the potential and rendering equations given above. The 
Global Reflection Distribution Function (GRDF) [32] is a reformulation of both 
equations and is used to describe the hypothetical light transport between two 
arbitrary points and their associated directions in a three dimensional environ­
ment. This allowed the author to create a bi-directional path tracing [69, 73] 
implementation. Veach created another formulation based on ray paths to de­
scribe his alternative bidirectional path tracing algorithm [129] and also the 
Metropolis Light Transport algorithm [130] using a transport operator [128] 
which made symmetry and reciprocity in BRDFs the same thing.

There have also been many different BRDFs created that are more sophisti­
cated than those described previously. A number of surveys of many BRDFs in 
common use are available [113, 98, 116]. New BRDFs for metals are given by 
Kalos in [83], a formulation for a general BRDF was given by Neumann in [84], 
and another general BRDF formulation using non-linear parameters was given 
by Lafortune et al [74]. A method of representing BRDFs using wavelets was 
presented by LaJonde [75], and another discrete approximation using a geodesic 
sphere was shown by Gondel, Meyer and Newmann [44]. More recently a micro 
facet [8] based BRDF representation scheme has been proposed.

The number of variations described here serve to show the diversity of tech­
niques and methods used to describe many of the models used in light transport. 
Each technique has it own advantages and corresponding limitations as a result 
of the assumptions made in creating the model.
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Chapter 3

M ethods of Solution

This chapter presents a summary of the myriad of Monte Carlo and density 
estimation techniques th a t may be used to  solve global illumination problems, 
using the equations presented in the previous chapter. These methods provide 
a means of solving many of the problems described by the  models in the last 
chapter. The first section starts by introducing Monte Carlo integration m eth­
ods next the Markov Chain Monte Carlo method is described, this can be used 
to obtain samples according to a given function. This is followed by an explana­
tion of how these methods can be used on the models described in the previous 
chapter. Finally density estimation methods are detailed.

3.1 M onte Carlo M ethods

A definition of a Monte Carlo method would be one that involves defiberate use 
of random numbers in a calculation tha t has the structure of a stochastic process. 
A stochastic process is a sequence of states whose evolution is determined by 
random events.

3.1.1 M onte Carlo Integration

This section requires an understanding of some elementary probability theory 
covered in Appendix C. Given a set of random variables X1,X2,X3, . . .  ,Xn taken 
at random  from the PD F f {x) ,  a function G may be defined as

N

G = Ŷ A „ 5 „ ( x n )  (3 .1)
n = l

21
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where A„ £ R  and Qn may be a different function of a;„. Since each is a 
random variable, therefore J2gn{x) is also random. Thus the expectation of G 
is given by

E{G) = { G ) = E  Xn9n{xn?j (3-2)

Since the expectation is a linear operation this can become

N

E{G) = J2>^n{gn{Xn)) (3-3)
n = l

If all the Xn are independent then the variance of G is

var{G} =  (G2) -  (G)^
(3.4)

If all the gn{x) are identical and A„ = 1/A  ̂ then the expectation of G becomes 
the following

=  {g{x))

Now the function G is the average of g{x). G is said to be an estimator of 
(g{x)). In more general terms, a function G is an estimator of a quantity if its 
mean (G) is a usable approximation of that quantity. The variance of G is

var{G} =  var I  ^  ^  g{xn) |

= E4var{.(x)}N ‘2

=  ]yvar{5f(a ;)}

This means that as N  the number of samples of x  increases, the variance of 
the mean value of G decreases as 1/N.  This result leads to the central idea of 
Monte Carlo integration tha t an integral may be estimated by a sum.

/ OO

g{x)f{x)dx
■00
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Error in M onte Carlo Estim ators

23

It has been assumed th a t the variance of a random variable always exists. If 
it does not exist it is normally better to reform the problem, so that it does 
exist, otherwise the mean value will converge much more slowly. To show this.

X i ,x 2 , x s , . . .  ,XN are independent and all taken from the same distribution such 
th a t the expectation of each x  is /x, then as N  ^  oo, the average value of the 
x ’s converge to  /x

To estim ate the error assume th a t variance exists and use the Chebychev in­
equality. Assuming that an estim ator G, its mean (G) and variance varfG} all 
exist, then the Chebychev inequality says

where <5 is a positive number. This provides us with the means of estim ating the 
chances of generating a large deviation in the Monte Carlo calculation. Stronger 
statem ents about the deviation of an estimate than the Chebychev inequality 
exist. One such theorem is the Central Limit Theorem. This states tha t for 
any fixed value N ,  there is a PDF that describes the values of G th a t occur in 
the course of a Monte Carlo calculation. As TV oo, however, the central limit 
theorem shows th a t there is a specific limit distribution for the observed value 
of G. This distribution is the normal distribution

the law of large numbers is used. This implies tha t if the random variables

(3.8)

(3.10)

Letting G n  = Y^ndi^n)  the normal form variate is then given by

(Gâ  -  { g ) )

var{Gjv}5

^ / N { G N  -  (a ) )
[var{£f}]5

(3.11)



24 CHAPTER 3. METHODS OF SOLUTION

Miss

Figure 3.1: Hit or Miss Monte Carlo

then the limiting Cumulative Distribution Function(CDF) is given by

lim P{a < t]\i < b] = f 
TV^oo '  -  ~  '  Ja

eyip[—̂ ]dt
7 ^

(3.12)

By letting (P =  var{^} in equation 3.11 and substituting for t, this can be 
written as

/(G iv) =
1

: exp
N  ■

n {Gn  -  (g)) 2 1

(3.13)

The central limit theorem is a very good estimator of the probability of devia­
tions measured in units of a  but it only applies asymptotically. We now have the 
problem of determining how big N  has to be before the central limit theorem 
actually appUes. Some answers to this question are given in [136] and [64]. If we 
cannot determine this we can really only use the weaker Chebychev inequality.

3.1.2 D irect Sampling M onte Carlo M ethods

The following are examples of the two most primitive methods used in Monte 
Carlo integration. Normally they would not be used except as a control to test 
against other Monte Carlo schemes. However, when combined with one of the 
many variance reduction schemes, these methods become much more practical.

Hit or M iss M ethod

This is the most basic of the Monte Carlo Integration methods. To demonstrate 
this method consider a simple one dimensional integral where we assume that 
the integrand is bounded.
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0 < 9{x) < c 

a < X <b

Let (X, Y)  be a random vector uniformly distributed over the rectangle Cl with 
PDF

if { x , y ) e n  ,

I 0 otherwise .

W hat is the probability p  th a t the random vector (X, Y)  falls within the area 
under the curve g{x)? Denoting S  = {{x,y)  : y < g(x)}  and observing that the 
area under the curve g{x) is

area under ̂ (a;) =  a rea5  =  j  g{x)dx

a rea5  _  g(x)dx _  I  
areaO  c{b — a) c{b — a)

we obtain

P =

Let us assume th a t N  independent random vectors { X \ , > 1 ) , . . . ,  { X n , Yn ) are 
generated. The param eter p  can be estimated by

. N h

where N h  is the number of occasions on which g{Xi) > Y i , i  = 1,2, . .  . , N ,  i.e. 
the number of hits and N  -  N h  is the number of misses. We score a miss 
if g{x) < Yi , i  = 1 , 2 , . . .  , N  as depicted in Figure 3.1. Thus it follows th a t to 
estim ate the integral I  we take N  samples from the distribution, count the 
number of hits N h  and use the formula below

N h
I ^ e i = c { b - a ) - j ^  (3.15)

W hat follows is a sample implementation of this algorithm:

Algorithm

1. Generate a sequence of 2N  numbers.

2. Arrange the random numbers into N  pairs {Ui ,Ui ) , . . . ,  in any fashion

{Un ,Un )
such th a t each random number Uj  is used exactly once.

3. Compute X i  = a + Ui{b -  a) and g(Xi ) , i  =  1 , 2 , . . . ,  iV.

4. Count the number of cases N h  for which g{Xi) > cUi.
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Figure 3.2: Mean Sample Monte Carlo

5. Estimate the integral I  hy 6\ = c{h — a ) ^ .

M ean  S am p le M eth o d

Another way of computing the integral is to represent it as an expected value 
of some random variable.

assuming that f x { x )  is any PDF such that Jx{x)  > 0 when g{x) 7̂  0. Then

9{X)I  = E
f x i X )

where the random variable X  is distributed according to fx{x) .  If we use 
equation 3.14 as the PDF then

E[g{X)\ = and I  = {h -  a)E  [^ (̂X)]

An unbiased estimator of J  is its sample mean

1 ^
/ « 0 2  =  (6 - a ) - ^ 5(^ ,)  (3.16)' N i=\

The steps are as follows:

Algorithm

1. Generate a sequence of N  numbers.
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2. Compute X i  = a + Ui{b — a), i  = 1 ,2 , . . . ,TV.

3. Compute g{Xi) , i  = 1 ,2 , . . .  , N .

4. Compute the sample mean 62 = [b — a) ̂  9 {Xi) which estimates I.

3.1.3 Variance R eduction  Techniques

Variance reduction is simply the use of information tha t is known about a prob­
lem and cannot therefore be applied if nothing is known.

Im p ortan ce Sam pling

This m ethod just changes the samphng strategy from using a uniform variate 
over the region being sampled, to one over the function th a t is being estimated. 
Previously it was shown th a t

The best im portance function to use is obviously the function itself. Unfortu­
nately, in order to  derive this PDF we need to know the integral of the function. 
The Markov Chain Monte Carlo methods presented later, provide a means of 
generating a series of samples from an unknown function. This method is com­
monly used to  sample simple BRDFs such as the cosine lobe [71, 115] and for 
direct lighting calculations [114, 119, 115].

Stratified  sam pling

(3.17)

This is an unbiased estim ator of I  with variance given by

(3.18)

therefore I is estim ated using

(3.19)

This technique involves partitioning the domain of integration into subregions 
Di  and evaluating them as separate integrals i.e.
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Stratified sampling enables more sampling in the more important regions and 
also in the smaller regions which might have some known properties and hence 
can be integrated using another variance reduction technique. This method has 
not been used much in global illumination problems, but Dutre [34] did use it 
to partition light sources for sampling.

C ontrol Variates or Extraction of a regular part

This method is based on the principal that given a function f {x)  for which an 
estimate of the integral is required

If there is a function g{x) which approximates f {x)  and can be integrated analyt­
ically over the domain of integration, then the original integral can be rewritten 
as

This technique has been implemented in two ways by Lafortune. The first is 
using a global ambient term [72] and the second is a two pass algorithm using 
particle tracing to estimate the lighting in sections of the scene [70].

3.1.4 Generation of Random Variables and Samples

In order to  be able to sample functions, methods for generating random vari­
ates according to a given PDF are needed. To simplify the discussion of these 
techniques, it is assumed that all samples are taken from a 1-dimensional space. 
The extension of these techniques to greater dimensionality is straightforward.

Inverse Transform M ethod Given a CDF Fx  (x) for the distribution of the 
random variate X , the inverse of the CDF must be found. This inverse then 
gives

(3.21)
[f(x) -  9{x)] dx + C

Thus to estimate the new integral

(3.22)

X  = F ^ \Y ) (3.23)
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(a) D irect Sam pling (b) M arkov C hain

Figure 3.3: Calculating tt

The CDF can be generated from the PDF by integrating it

Fx{x) = j  fx{x)dx (3.24)

Thus to obtain a random variate according to Fx (x), generate a uniform random 
number Y  and evaluate The result is a random variate according
to Fx{x).  This method was used by Shirley and Wang to generate suitable 
sampling schemes for a variety of shapes [119, 133].

A cceptance-R ejection M ethod This algorithm is quite simple and allows 
the generation of a sample according to any PDF Fx {x) and is given by

Fx(x)  = Ch(x)g{x)

where C >1,  h{x) is also a PDF and 0 < g{x) < 1 . To generate a random 
variate according to Fx [x) , generate two random variates X  and Y  from J7(0,1) 
(a uniform random variate in the domain [0,1]) and h{x), respectively. If the 
inequality X  < g{Y) holds accept the variable, otherwise try again.

3.1.5 M arkov Chain M onte Carlo M ethods (M C M C )

A simple example of the use of the naive Monte Carlo approach is in the cal­
culation of 7T. To calculate tt to an arbitrary number of decimal places, simply 
generate random numbers in the unit square [0,1], then calculate how many 
of these are in a circle inscribed in the square, as shown in Figure 3.3a, this
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accept

reject

1

Figure 3.4: Move from Valid sample

is simply hit or miss Monte Carlo. It can be easily verified that the ratio of 
the number of samples in the square to those in the circle is given by tt/ 4 (see 
section 3.1.2).

Direct sampling Monte Carlo Methods such as the method for calculating tt 
just described are very useful but in order to use them effectively some knowl­
edge is required about the domain. Markov Chain Monte Carlo methods are an 
alternative way of creating samples from a function for which very little infor­
mation is known. Using our tt example again, we can illustrate the differences 
between the two techniques.

This time random numbers are used to produce a single sample in the square. 
Following this the random number generator is used to displace the point in a 
random direction (similar to Brownian Motion, see Figure 3.3b). However, 
what happens if the point is displaced outside the square? Do we simply keep 
displacing it until it returns to the square or ignore the displacement and try 
again? The solution to this problem is the key to the Markov Chain methods 
and as it turns out neither of the previously mentioned solutions are entirely 
correct. Instead the current valid sample is re-used and thus displaced again 
(see Figure 3.4). To see why this works, we’ll use the simple puzzle game shown 
in Figure 3.5. The task here is to create a perfect scrambling algorithm which 
generates any possible configuration of the puzzle with equal probability. One 
way to do this is using the naive algorithm which just breaks up the pieces and 
places them down in random order. However we are trying to generate a Markov 
Chain Monte Carlo (MCMC) alternative. We could just randomly move the 
blank square in a random direction but this does not produce all configurations 
with equal probability, due to the limitation of choices at the boundaries as 
shown in Figure 3.6. If the algorithm generates the configurations a, b and c 
with equal probabihties ^(o), <f(6) and ^(c), respectively, we can then derive a
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1 2 3

8
...

4

7 6 5

Figure 3.5: Sliding Puzzle

simple rate equation relating the ^ ’s to the transition probabiHties p{x y) 
where x  and y replace the various configurations of a, b and c. Given tha t ^(o) 
can only be generated from b, c or itself we get

^(a) =  $(a)p(a a) +  ^{b)p{b a) + C{c)p{c -> a) (3.25)

which gives

^(a)[l -  p{a -> a)] =  ^{b)p{b a) +  ^(c)p(c -)■ a) (3.26)

If we impose the condition th a t tells us tha t the empty square, once at a, can 
stay at a or move to  b or c.

1 =  p{a ->• a) +  p{a ->■ 6) +  p{c a) (3.27)

then substituting this into equation 3.25 gives:

^(a)p(a b) + ^{a)p{a -)■ c) =  ^(c)p(c a) + ^{b)p{b -)■ a) (3.28)

We can satisfy this equation by equating the braced terms separately giving the 
detailed balance condition

^{a)p{a ^  b) = ^ { b ) p { b a )  (3.29)

C(a)p(a ^  c) =  ^{c)p{c a) (3.30)

From this it can be seen th a t the simplest way of m aintaining the probability
is to  propose an equal probability of 1 /4  for any possible move, thus a t the corner 
we have to  be immobile (reject the move) with probability 1/2 and with 1 /4  
on the edges. So now looking back to the tt estimation problem we see th a t
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Figure 3.6: Puzzle Steps

anytime we cross the boundary we must remain immobile to maintain detailed 
balance (see Figure 3.4).

M etro p o lis  S am pling

Metropolis sampling is a form of importance sampling which produces an im­
portance function which tries to mimic the behaviour of the function being 
sampled. However, it only starts to do this after a certain number of samples 
are taken. The selection of samples is viewed as a Markov process in an equilib­
rium system with a distribution function f (x ) .  In this equilibrium, the values of 
the distribution function at different points are related by the detailed balance 
condition described previously:

f{x )A{x  -> x ' )T{x  -)■ x') =  f{x ')T{x '  -> x)A{x'  -)• x), (3.31)

where T ( x  x') is the transition rate from the state x  to the state x' and 
A{x x') expresses the probability of attempting a move from x  to x ' , called 
the proposal distribution. A  and T  together form the transition probability 
p{x y) from equation 3.30. Thus the samples are no longer taken randomly 
but by following a Markov Chain according to f{x).  These samples are accepted 
if the ratio of the transition satisfies

T{x x') f{x' )A{x'  -> x)
=  %)aI ̂  ~

where Q is a uniform random number in the region [0,1]. This results in

, . /  f { x ' ) A { x ' - ^ x ) \
T{x  ->■ x ) =  min  I 1, -j-. t t t t t ̂ V A { x ^ x ' ) f { x )  J (3.33)

The method works as follows:
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Algorithm

1 . generate a random vector Xi in the function domain Q

2 . if f {x i )  = 0 repeat step 1 , otherwise continue

3 . m utate Xi producing XiJ^i by random displacement

4. generate random  number Q

if ^  C* accept Xi+i otherwise use Xi+i = Xi

6. repeat steps 3 to  5

Usually for most situations A{xi  -> Xi+i) is symmetric and hence can be re­
moved from the equation. W hat we have described is the Metropolis-Hastings 
algorithm. There are some far more general forms of this kind of sampling th a t 
use measures rather than probabilities. This is beyond the scope of this review, 
for more information see [36].

3.1 .6  R e-p aram eterisa tion

Another way of increasing the performance of Monte Carlo techniques is to  re-
param eterise the functions you are using. Most of the best re-param eterisations
usually reduce the dimension and thus the effect of n-dimensional explosion. 
This in turn  increases the convergence of the technique. Direct sampling Monte 
Carlo with random sampling, does not seem to suffer badly from the n-dimensional 
explosion and hence a reduction in dimension does not produce as great an in­
crease in efficiency. Nevertheless, other parameterisations are possible. These 
tend to  be very specific to the problem domain. The following sections describe 
some common re-parameterisations used in global illumination.

E ye R ay Tracing

This is where the light path is parameterised via a path  starting at the eye which 
eventually reaches a light source. Approaches which use this param eterisation 
are usually called gathering methods since they seem to gather all light coming 
from the light source. This parameterisation is very good at solving for diffuse 
illumination such as shadows and colour bleeding but light focusing effects such 
as caustics are generally poorly estimated, usually due to the way the final ray to 
the light source is parameterised. This is the scheme used in most pa th  tracing 
schemes such with Kajiyas method [63].
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Figure 3.7; Bi-directional Path Tracing 

L ight R ay  Tracing

Using this a ray path is parameterised from the light source to the eye. This is 
basically the opposite of the previous method. Methods which use this parame- 
terisation are called shooting methods, since they appear to be firing light into 
the scene. This method excels at solving most lighting conditions but when used 
to  construct a path to areas which are difficult to hit (such as the film plane of a 
camera) it produces poor estimates. This is because the probability of success­
fully negotiating very small targets such as the camera aperture is very low. A 
number of different algorithms have used the light ray tracing parameterisation. 
The first of these was probably used in Arvo’s backward ray tracing [6], nearly 
all particle tracing techniques use this parameterisation [52, 62, 22, 131].

B i-D irec tio n a l P a th  Tracing

Bi-directional path tracing (see Figure 3.7) is an algorithm which takes into 
account the importance of both the viewing point and the light sources present 
in the scene. It does this by starting ray paths at both the eye and the light 
sources. These paths are then joined together and the light that travels along 
the resulting path computed. By varying the ratio of bounces between the eye 
and light paths, different lighting situations can be more accurately estimated. 
This technique can be used to construct single paths joining points on the film 
to light sources. There are two slightly different formulations for the use of this 
parameterisation, Veach’s method [129] and Lafortunes [69]. Their differences 
principally lies in how the results are combined and also their use of shadow rays.

Some other parameterisations that can be be applied are the surface to surface 
(the ray is parameterised by its start and end points on two surfaces, using their 
parametric surface coordinates), and solid angle parameterisations (the ray is 
parameterised by a position and a direction) of these equations (see Figure 3.8). 
Normally the best parameterisation to use is the solid angle formulation since it 
does not have any singularities (situations where the result goes to infinity, this
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(a) Surface to Surface (b) Solid Angle

Figure 3.8: Ray parameterisations

happens in the surface to surface variation when the d term  goes to 0 ) which the 
surface to  surface formulation does. When doing direct lighting or radiosity-like 
methods, the surface to surface param eterisation proves to be more practical 
despite its limitation.

3.2 Pseudo Random Variates

Choosing N points uniformly randomly in an n-dimensional space leads to  an 
error term  in Monte Carlo integration that decreases asymptotically as N ~ i . 
Thus each new point sampled adds linearly to an accumulated sum th a t will be­
come the function estimate. If points are chosen, say on a Cartesian grid, then 
the Monte Carlo method becomes a deterministic quadrature scheme whose 
fractional error decreases asymptotically fast as N~^.  Unfortunately, using a 
Cartesian grid limits the number of sample points. To enable adaptive Monte 
Carlo techniques where the number of samples is unknown, quasi-random se­
quences such as the Halton sequence can be used. This sequence is described in 
Section 3.2.1. These have been shown to reduce the variance in a similar m an­
ner. Quasi random variates have been used by Keller [65, 54, 6 6 ] with Radiosity 
based methods of solution and also on the viewing plane [53].

3.2.1 Quasi Random Sampling

Quasi random sampling deals with the use of a deterministic rather than  a ran ­
dom set of samples. The idea is to distribute as evenly as possible the samples 
through out the param eter space. As a side effect of the samples being deter­
ministic, error assessment cannot be based on probabilistic reasoning. Instead 
to  compare quasi random sequences the idea of discrepancy is used. This is basi­
cally used to  measure the effectiveness of a sequence. To compare quasi random  
sequences there are various discrepancy measures. When approxim ating the
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distribution function of the uniform distribution on [0,1]*, the discrepancy Dn 
is defined as the supremum error over all sub-rectangles of [0,1]*.

V an  D e r  C o rp u t

Let r  <  1 be an integer and also tha t m £ N  can be uniquely expressed in base 
r as m  = tto + a \r  +  a^r'^ +  . . .  +  where each a* G { 0 ,1 , . . . ,  r  — 1}, a/ ^  0 
and < m  < . The base r  radical inverse function is given by

4>r{m) = aor~^ +  air~^ +  +  . . .  +  air~^~^ (3.34)

The radical inverse function thus reflects the numbers through the decimal point. 
T he sequence Xi = 4>r{i) is called the Van der Corput sequence. It can be 
shown th a t Z?* =  0{n~^  logn), confirming th a t it is indeed an equidistributed 
sequence.

H a lto n  seq u en ces

The Van der C orput sequence is a quasi random  sequence for one dimension. 
To extend this to n  dimensions, the Halton sequence uses a different base or 
radix for each dimension. These bases must satisfy certain criteria so as to  avoid 
correlations. To achieve this, k bases r i , r 2 ,V3 , . . .  ,rk are chosen such th a t they 
are pairwise relatively prime. It is common to take the bases as being the first 
k primes. The i-th  element of the Halton sequence is given by

(0) • • • ) (l))- (3.35)

It can be shown th a t

D* < E
This implies th a t D* =  0 (w “ ^(logn)*) bu t now there is a dimensional effect 
implicit in the asym ptotic error ra te  for convergence. If we take the asym ptotic 
error ra te  for M onte Carlo to  be then

n “ ^(logr*)*/n~^/^ =  n"^/^(logn)*’ -> 0 as n  oo (3.37)

Thus the integration using the Halton sequence has a better asym ptotic error 
ra te for all dimensions but the  Monte Carlo m ethod does not have an explicit 
dependence on the dimension.
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H am m ersly  sets

The Hammersly set is a simple extension of the Halton sequence whereby the 
first dimensions sequence is given by i jn  instead of using a Van der Corput 
sequence. Thus, it is given by

(3.38)

It can be shown for the Hammersly set that

D* <
k - 1
V  Tl —  1

^  21ogri
(logn)*  ̂ ^  (logn)'' 2

(3.39)

which gives that Z?* =  0{n~^ (log n)*“ ^), which is better than that of the Halton 
sequence. However, to increase the number of points in the Hammersly set we 
must recompute the set, but if we use the Halton sequence we can simply reuse 
the points.

3.3 Solution of Integral Equations

So far methods of solving integrals using Monte Carlo Quadrature have been 
discussed. How are these methods used to solve integral equations? The fol­
lowing methods of approximating integral equations must obey the constraints 
that b{x), e and K{x,y)  (see Appendix B) must be Lesbesgue integrable i.e.

J  b'^{x)dx < oo 

jeH.)dx

j  j  K^{x,y)dxdy <

<  00

and that

1 ^ 1  < 1

3.3.1 Using Recursion

Given an integral operator K,  a solution is to recurse through the equation 
evaluating each term in succession, using any integration method suitable for
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evaluating that integral.

h = e + Kb

= e + K(e + Kb) (3.40)

= K{e + K{e + Kb))

This is the method used in distributed ray tracing [24]. It is analogous to 
gathering all the light incoming to a surface point. Unfortunately, this method
is very slow as it puts too much effort into solving rays which do not contribute
much to  the solution. Despite its slowness, it does produce very good looking 
images.

3.3.2 Inversion

The solution can also be obtained by inverting the operator I  — K.

b = { I - K ) ~ ^ e  (3.41)

Usually it is impractical to invert the integral operator except for very simple 
cases. For more complex cases such as global illumination problems, K  needs 
to be mapped to a finite dimensional domain as is done in Finite Element 
Methods (FEM). This is essentially the method used by matrix based radiosity 
approaches [86, 45]. These methods are not covered in this dissertation but for 
a comprehensive review with respect to image synthesis see [19].

3.3.3 Newm an Series Approximation

Approximate solutions to many integral equations can be found iteratively.
Starting with some initial guess =  e, subsequent approximations are de­
fined by

e +  (3.42)

If we start with =  e, then the approximation is the truncated series

= e + K e  + K^e + . . .  + K^e

where K^  denotes i successive applications of the integral operator K.  The 
sequence converges if the norm of the integral operator is less than 1

ll l̂l < 1
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where the  opera to r norm  is defined in term s of a function norm

IIJCII = maxb^o 

The Lp norm s are a  general class of fim ction norms

/ p a  \  i / p
ll/llp =  f ( x ) ^ - p " d x j

the  m ost com m on of which are the  L i, L 2 and th e  Loo norm s. The exact solution 

to  th e  in tegral equation  is given by the  N eum ann series

a
6 =  =Y^K^e

0

If ||K || >  1, th e  N eum ann series diverges. The N eum ann series is a gener­
alisation of th e  geom etric series for 1/(1  -  a). Not m any global illum ination 
techniques have m ade use of th is m ethod, however, Szirm ay-K alos’ stochastic  

ite ra tion  [123] is one such m ethod  which has.

3.4 E xpansion

E xpansion works by expanding out the  integral equation as follows

b = e + K b

= e + K{e  + Kb)  (3.43)

= e + K e  + K ‘’-{e + Kb)

Since th is  is essentially an infinite expansion, we end up w ith the  following 
N eum ann series

n
6 =  +  (3.44)

i= 0

If iC is a contraction  (i.e. =  0) then we are left w ith

n
b = ^ K ^ e  (3.45)

i=0

W here th e  first te rm  is the d irect emission, the second is the  light from  a  single

sca tte r and so on. T he expansion m ethod therefore describes th e  random  walk
m ethods such as p a th  tracing  [63] and bi-directional p a th  trac in g  [129, 69],
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3.5 D ensity  Estim ation

Density estimation deals with the construction of an estimate of a density func­
tion, using a set of sample points that have been drawn from an unknown prob­
ability density function. In our case, this is the estimate of the flux across a sur­
face given a set of photons (the samples), which are generated from the potential 
equation (the probability density function). There are two approaches to den­
sity estimation: parametric, where the data is drawn from a known parametric 
family of distributions such as the normal distribution; and the non-parametric 
where no such assumptions are made. In our discussion we are only interested 
in nonparametric density estimation because no parametric assumptions can be 
made about the samples that we are aware of.

3.5.1 M ethods for density estimation

What follows is an overview of various density estimation methods, this is 
adapted from that given in Silverman [121].

H istogram

The histogram is perhaps the most obvious density estimation method. It ba­
sically entails breaking the domain up into bins and counting the number of 
samples which fall into those bins. This is given by:

f ( x)  =  ^ ( n o .  of samples in same bin as x) (3.46)

where n represents the total number of samples and hi s  & measure of the size of 
the bin corresponding to the dimension used (e.g. length in 1-D, area in 2-D and 
volume in 3-D). Unfortunately, the histogram offers no smoothing and the results 
are particularly sensitive to the start position of the bins and also to the bin size. 
This can cause misleading results due to aliasing. However, these methods are 
very fast. The histogram has been used in a number of particle based methods 
such as Heckbert’s radiosity textures [52]. Collins’ splating technique [22] adds 
smoothing to  illumination maps, using a hybrid of histograms and the kernel 
estimator method mentioned later.

N aive E stim a to r

The naive estimator is a variant on the histogram method. The bins are no 
longer set a t fixed positions but instead centred around the point at which we 
are trying to estimate the density, known as the observation. This is given by
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the following

(no. of samples in { x -  h , x  + h])

where h and n  are the same as in the histogram method. This produces a better 
result than  the histogram but unfortunately is also not continuous.

K ernel E stim ator

The kernel estim ator is a more general form of the naive estim ator, where instead 
of treating all samples the same, a kernel function K  is used to  weight their 
contribution. The kernel is constrained such that

Normally the kernel is symmetric but this is not always the case. The kernel 
estim ator is given by the following

where n, h and x  are as in the previous methods and A"; represents a sample 
th a t was found inside the observation window. Sometimes with these types 
of estim ators h is called the window width, bandwidth or smoothing parameter. 
Just as the naive estim ator is considered as a sum of boxes, the kernel estima­
tor is considered a sum of bumps. These methods produce continuous density 
estimates, but they cannot deal effectively with the boundaries of a domain. 
This is because there are no samples beyond the boundary and therefore bias is 
introduced.

N earest N eigh b our

This m ethod is based on finding the k nearest neighbours to the observation 
position and using them  to estim ate the density

(3.48)

(3.49)

n + V.

(3.50)

where dk (t) is the distance to  the k nearest sample from the observation point 
t. Thus the overall smoothing is governed by the choice of k. This technique is 
used in Jensen’s photon m ap [61].
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Kernel K{u)
Uniform U(l«l  < 1)
Triangle ( i - H ) i ( H < i )
Epanechnikov ! ( i - u ^ ) i ( M < i )
Quartic 41(1 -  w‘̂ )"i(|«| < 1)
Triweight i ( i - « ^ r i ( M < i )
Gaussian
Cosinus fcos (fu)I(lttl < 1)

Table 3.1; Kernel Functions

V ariable K ernel

This approach is similar to the previous method but this time the smoothing is 
adapted to the local density of the data. This is given by

where h is the smoothing parameter, dj^k is the distance from X j  to the 
nearest point and t is the point at which we wish to estimate the density. Thus 
the samples in areas where there are relatively few samples will have flatter 
or wider kernels than those in more densely populated areas, which will have 
smaller kernels.

There are many other methods for determining a density estimate but we 
have chosen to focus on the above methods due to their simplicity and ease 
of implementation. For information about other methods see Silverman [121]. 
Bruce Walter also has an alternative density estimation method, based on re­
gression which gives a meaningful way to estimate the density at the boundaries 
of surfaces [131]-

3.5.2 Kernel Types

Up until this point kernels have been described but no details given about them. 
As already mentioned, a kernel is a function which expresses the contribution 
of a sample to a domain. There are many choices of function for a  kernel, 
but according to Silvermann no one kernel appears to give sufficiently better 
accuracy than any other, to make it the obvious choice. To develop this he 
suggests tha t the choice of kernel should be guided by the type of function that 
is being estimated. Table 3.1 and Figure 3.9 shows some sample kernel functions, 
the most popular of these tend to be the Epanechnikov or the Gaussian. Note 
that in the table I(p) represents the indicator of a relation, returning 1 if the 
relation p is satisfied and 0 otherwise.
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Figure 3.9: Kernel Shapes

Error and B ias

The problem now is with the reconstruction of the function. What is the best 
bandwidth to use? The most natural way of determining the error is to use the 
mean squared error. This is given by

M S E { } ) = E { f { x ) - f { x ) Y

=  { E { f { x ) Y  -  f { x ) f  +  v a r { f { x ) }

where /  is the estimation of the function. This is the sum of the squared bias 
and the variance at x.  Unfortunately there is a trade-off between bias and 
variance. By reducing the bias we increase the variance and vice versa. This 
bias is basically controlled by changing the bandwidth. We note that there 
are many other ways of measuring the error but this method is similar to the 
method used with integration schemes previously discussed and is therefore 
familiar and widely used in the graphics community. It does however leave out 
any perceptual properties, which are addressed directly by Walter [132]. To find 
the total error, the mean integrated square error is used, given by

M I S E { f )  = j  E{f ( x )  -  f { x ) f

=  j  ( E { /(x ) f  -  f { x ) f  + J var{f{x)}
(3.53)

where the MISE is the sum of the mean integrated square bias and the total 
variance. Using this formula Silvermann shows that the bias does not depend 
directly on the sample size but on the bandwidth and to a lesser extent on the 
kernel. This formula can be used to determine good parameters for the density 
estimation and the choice of kernel is dependent on the application. According 
to Collins [21] the Gaussian kernel appears to be the best choice. Consequently 
we have also used this as our primary kernel choice.
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3.6 Summary

The Monte Carlo techniques can be used in a number of ways to estimate values 
and sample functions used by our models. Monte Carlo techniques are useful in 
a wide range of applications, not just as methods of integrating equations. They 
can be used to sample functions and to estimate errors and their convergence 
rates can be determined. The main benefit of these techniques are the fact 
tha t in most cases their convergence criteria are not implicitly affected by the 
dimensionality of the problem, as almost all other numerical techniques are. For 
instance, the Simpson’s rule integration scheme has more accuracy per sample 
but only in one or two dimensions. Higher dimensions require n™ samples which 
explodes as the dimensions increase, whereas with Monte Carlo schemes each 
sample is generally independent of each other. Thus any variety of samples 
can be used to get an estimate. The benefits of the Monte Carlo methods 
do not stop there: Not only can they be used to estimate integrals but also 
to sample complex functions. These samples can then be used in a number 
of ways. The illumination across a surface can be estimated by using density 
estimation techniques, which have the ability to remove the noise caused by 
random sampling at the cost of introducing bias, or the samples can be used to 
improve an integration scheme via importance sampling. The noise produced 
by the random sampling process and the N ~ i  asymptotic convergence rate, are 
a thorn in the side of Monte Carlo methods especially where image synthesis 
is concerned, where a good estimate is required from a relatively small number 
of samples. On the other hand, by using various techniques these side-effects 
can be reduced usually at the cost of introducing correlations in the image or 
increasing the bias.



Chapter 4

Parallel Processing

Even for simple scenes global illumination calculations take a relatively long time 
to generate, compared to  non-realistic rendering methods. This is not because 
the techniques involved are th a t different, but because more computations such 
as ray casting are necessary in order to achieve more realistic images. Another 
difference is th a t the amount of data used and created during the rendering 
process is correspondingly higher, thus causing problems due to the limited 
memory on standard computers. To reduce the time taken to create images and 
to address the memory consumption of these algorithms, many parallel methods 
have been devised. By using more than  one computer, the computational load 
as well as the the memory load may be distributed. This speeds up rendering 
times and increases the amount of data  th a t can be used and created during 
rendering. Unfortunately, parallel rendering introduces its own problems which 
reduce its effectiveness. This means tha t the ideal speed and memory increase 
of n times for n machines can probably never be achieved, except in very simple 
cases. This chapter introduces some of the concepts, pitfalls and solutions used 
with parallel processing in relation to global illumination problems. A more 
detailed exploration of these issues may be found in [16].

4.1 Concepts

Parallel processing is the division of a task into a number of subtasks which 
can then be solved by separate processes. This usually involves some commu­
nication, even if only to  initialise the distribution of work. A simple analogy 
is to imagine planting potatoes: If two people perform the task it should be 
completed twice as fast as using one person. However, as more and more people 
start digging, problems start occurring due to  limited resources, such as the 
number of forks available. Eventually, there will not be enough room to dig.

45
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Similar problems are experienced when creating parallel programs.
Task dependencies are also a problem, as certain tasks are restricted by the 

order in which they can be performed. For example, planting the potatoes or 
creating the drills can only be performed after the field has been dug. Pipelin­
ing is one method used to combat the negative effects of dependencies. This 
method works well when a task consisting of a number of distinct stages needs 
to be executed repeatedly. Going back to our potato planting example, we can 
demonstrate the use of pipelining, the following being the dependent tasks;

1. dig patch,

2. create drill,

3. add manure,

4. add fertiliser,

5. plant potato,

6. cover potato with soil.

This is essentially a pipeline consisting of 6 stages. If we use 6 people we can 
start one person off digging. When they have finished a patch the next person 
starts creating a drill. After the initial part of the drill is created the next person 
adds the manure and so on until finally the last person creates the drill over 
the potato. This sets up a work pipeline, whereby each person starts after the 
other has performed his first task. The plan has a flaw, in that some tasks such 
as digging require more time than planting, but no task can be faster than any 
task that is ahead of it. Thus the pipeline is only as fast as the slowest task.

Another problem with parallel tasks is that they don’t necessarily scale well. 
Adding more processors will therefore not necessarily decrease the time taken 
to complete a job. This is known as the scalability of a task. Finally, all parallel 
tasks need some form of control to tell them what work to perform. There are 
two ways of solving this problem: One is to have a centralised controller or 
master, whereby one worker is in charge of all the the others. The alternative is 
to have distributed control, by allowing each worker to organise their own access 
to resources. For instance, in our example, allowing the first person that gets 
a spade to use it would be an example of distributed control, whereas having a 
foreman tell each worker what to do would be centralised control.

4.2 Classification

A classical sequential computer is based on the von Neumann architecture. This 
architecture consists of a processor, memory, an I/O  interface and various buses
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Figure 4.1: Von Neumann Architecture

connecting these units (see Figure 4.1). The processor is the unit responsible for 
fetching, decoding and executing instructions, which are retrieved from RAM. 
Most of today’s computers conform more or less to  this specification. Over the 
last few years many techniques from parallel processing have been exploited to 
increase performance. Pipelining was added to  the fetch, execute and decode 
cycle, as seen in Intel’s 80486 and M otorola’s 68020. Parallel execution has been 
added in the form of multiple execution units, such as integer or floating point 
units to  Intel’s Pentium  and M otorola’s 68060. Vector processing, whereby a 
single instruction is performed simultaneously on a vector of data  (usually held 
in a register), is another form of parallel execution. This has been added to 
the von Neumann architecture in Intel’s Pentium MMX [95, 13] series and the 
Motorola PowerPC as AltiVec [30]. This feature provides great performance 
gains, where large arrays of similar data  need to  be processed. Lastly, multi­
ple processing elements (P E ’s) are becoming more common. This is known as 
Symmetric Multi-Processing. This is beginning to emerge as an alternative way 
to improve the performance of desktop computers by allowing tasks to be truly 
run in parallel, not just concurrently via time sharing.

4.2.1 Flynn’s Taxonomy

There have been many different parallel architectures proposed, many of which 
have been realised. This has led to  the desire to  create a classification for these 
systems. One of the most widely known, if not used, classification schemes is 
F lynn’s Taxonomy [37], despite being criticised heavily for being too simple. 
However, because of its simplicity and the fact that various details concerning 
parallel architectures are not really an overwhelming concern to  m any program ­
mers, it is widely used. The classification basically breaks parallel architectures 
into four main categories;
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•  SISD Single Instruction Single D ata - this is basically the von Neumann 
architecture as found in all PCs which execute instructions sequentially 
on a single d a ta  stream.

• SIMD Single Instruction Multiple Data - these machines apply a single in­
struction to  multiple da ta  streams, for instance the In tel’s MMX [95, 13] 
and M otorola’s AltiVec [30] instruction set. Other notable examples in­
clude array processors such as the Connection Machine [57], the Goodyear 
Massively Parallel Processor (M PP), also vector processors such as the 
NEC SX l and the Fujitsu FACOM VP-200.

•  MISD Multiple Instruction Single D ata - although no architecture falls 
into this category, some architectures seem similar to this concept such as 
systolic arrays.

• MIMD M ultiple Instruction Multiple D ata  - this is essentially a group of 
processing elements which apply their own instructions to  their own da ta  
stream . The SMP machines or a network of PCs would be in this group. 
These systems are classified as tightly coupled if the degree of interaction 
between processors is high, or loosely coupled if it is low. There are three 
m ethods of achieving this goal (see Figure 4.2); One is shared memory as 
is found in many SMP configurations where all processors share a  com­
mon address space. The second is a distributed memory system  where 
each processor has its own private memory and communicates by passing 
messages via a communication path  such as a network of PCs. T he third 
is a hybrid of the two previous types, called a distributed shared memory 
system. For large numbers of processors, shared memory systems are not 
feasible since there are too many contention problems. D istributed sys­
tem s present a  similar problem, but by creating dedicated links between 
processors the contention issues can be reduced, thus making such an ap­
proach more feasible. To distinguish between a cluster of workstations 
and sets of interconnected dedicated processors with memory nodes, the 
term  parallel system  is used to  refer to the dedicated system. Distributed 
system  is used to  refer to  the cluster of work stations. The distinguishing 
factors between these two systems are the com putation-to-com m unication 
ratio  and the cost, the cluster of workstations having a  higher commu­
nication overhead and being cheaper to  assemble. Examples of MIMD 
com puters include SGI’s Origin series, which is a distributed shared mem­
ory system. It has both  local memory and shared memory which is used 
to  communicate with o ther processors. The IBM S P /2  is a loosely coupled 
system which uses a custom designed high speed network along which PEs 
communicate.
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Figure 4.2: Shared Memory Systems

The most powerful computer at the time of writing is ASCI Red, which is 
a distributed memory, MIMD, message-passing supercomputer. Currently it 
consists of 9536 Pentium II Xeons in its core system, which gives it a peak 
performance of 3.15 Terra-flops. This system was designed to be highly scaleable 
with respect to both the number of processing units and also the communication 
bandwidth. The current arrangement is not yet at the limits of its design, 
according to its developers.

4.3 Tools for M IM D System s

A number of tools have been created to aid the programmer in creating portable 
parallel applications. The two main tools used are the Parallel Virtual Ma­
chine [10] (PVM) and the Message Passing Interface [3] (MPI). These tools pro­
vide a set of common functions which can be implemented on a variety of MIMD 
architectures, such that the programmer need not worry about the subtleties of 
the system they are using, while at the same time providing an acceptable level 
of optimisation.

4.3.1 Message Passing Interface (MPI)

The MPI library is an Aplication Programming Interface (API) based on the 
message passing paradigm, which is used widely on certain classes of parallel 
machines, especially those with a distributed memory architecture. MPI is 
a standard which attempts to make use of the most attractive features of a 
number of existing message passing systems, rather than selecting one of them 
and adopting it as the standard. The goals of the MPI standard are as follows 
(from [1]):

• Design an API (not necessarily for compilers or a system implementation 
library).
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• Allow efficient communication: Avoid memory-to-memory copying and 
allow overlap of computation and communication. Offload communication 
to a coprocessor, where available.

• Allow for implementations that can be used in a heterogeneous environ­
ment.

• Allow convenient C and Fortran 77 bindings for the interface.

• Assume a reliable communication interface: the user need not cope with 
communication failures. Such failures are dealt with by the underlying 
communication subsystem.

• Define an interface that is not too different from current practice, such as 
PVM, NX, Express, p4, etc., and provides extensions that allow greater 
flexibility.

• Define an interface that can be implemented on many vendor’s platforms, 
with no significant changes in the underlying communication and system 
software.

• Semantics of the interface should be language independent.

• The interface should be designed to allow for thread-safety.

M PI was used for all the parallel algorithms presented in this thesis.

4.3.2 Parallel Virtual Machine (PVM )

PVM, as its name implies, is different from MPI in that instead of being an 
API, it tries to form a virtual parallel machine. It is not a standard as such, but 
a system developed by researchers at Oak Ridge National Laboratory, and may 
be used to create parallel solutions to a given problem. For further information 
concerning the differences between MPI and PVM refer to [39]. PVM is based 
upon the following principles (from [2]);

• User configured host pool - the setup of the parallel machine is configured 
by a user who selects the machines they wish to use.

• Transparent access to hardware - the machines making up the PVM may 
be seen as a set of generic processing elements, or instead the specific 
capabilities of each machine may be queried and used.

• Computation is process based - the unit of parallelism being the task.

• Explicit message passing model - tasks cooperate by passing messages 
between each other.



4.4. PA R ALLE L PRO G RAM M ING  ISSUES 51

• The abihty to  support a heterogeneous environment.

• Multiprocessor support.

4.4 Parallel Programming Issues

A parallel program consists of a number of subtasks, each of which may run 
on a separate processor, using some form of communication to  coordinate their 
efforts. The coordination effort usually introduces some new types of program 
bugs th a t mainly affect parallel programs. With serial programs it is easy to 
determine the location of a  bug, because the bugs are directly related to the 
program itself, whereas in a parallel program they can be introduced by the 
coordination effort. This situation is especially difficult to  debug when large 
numbers of processors are involved. A common bug th a t occurs is known as 
deadlock, which occurs when a processor is made to wait indefinitely for an 
event th a t will never occur. Contention over a resource such as memory is a 
common cause of deadlock (see Figure 4.3). Another problem, perhaps more 
difficult to  detect and fix, is tha t of data consistency. It is caused by the fact 
th a t data is distributed among a number of processors which may modify the 
data, thus causing differences between the data on each processor. A number 
of methods are used to  solve these problems, such as:

• keeping the d a ta  constant,

• dividing the da ta  amongst the processors such that there is no duplication,

• fetching and storing data  to  and from one location.

Serial algorithms can devote one hundred percent of their processing time to 
the problem. Parallel implementations on the other hand must dedicate a per­
centage of their tim e to communicating with other processors. For this reason, 
some processors may become idle while they wait for data  or tasks. In order 
to  produce an effective parallel algorithm, this computation to communication 
ratio must be maximised.

4.4.1 Tasks

The process of dividing a problem amongst many processors creates a number 
of tasks which need to  be performed. Tasks are simply the units of com putation 
assigned to  each processor. The task granularity is the am ount of com putational 
effort required to  complete a task, and is directly related to  the com putation to  
communication ratio. The more time required to complete a task, the less suited
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Figure 4.3: Deadlock as other PE ’s wait for I/O  Bus

it may be to a parallel system, while a smaller granularity will cause more time 
to be devoted to scheduling issues because tasks are completed more rapidly.

4.4 .2  D ata

Many of the problems that can be solved by parallel methods create and use 
large amounts of data, which may not fit in the memory of a single processor. 
One way of using parallel processors to help solve this problem is to divide the 
data amongst the processors such that the total memory available is the sum 
of the memory available to each processor. However, now the communication 
overheads may become bigger as tasks must be migrated to where the data is 
or vice versa. This causes idle time while data or tasks are being transfered. It 
is the job of the scheduling algorithm to reduce this delay to a minimum, thus 
making the parallel algorithm more efficient.

4.5 Evaluation of Parallel Im plementations

The only real reason for using a parallel implementation in global illumination is 
to speed up the solution of a problem. Therefore time taken to complete a par­
allel algorithm is a good measure for determining the benefits of this approach. 
Other measures such as efficiency and speed-up give insights into the scalability 
of an algorithm. Comparing parallel implementations can be difficult, especially 
if completely different hardware is used in each case. The optimisations present 
in a serial program may not always be usable in a parallel scenario, thus making 
comparisons more difficult. A common misconception is that adding more pro­
cessors to a solution will always obtain the result faster, which is not always the 
case. The realisation penalty is the effect caused by the communication over­
heads of an algorithm. As you add more processors, progressively more time is 
wasted communicating, until eventually the communication overheads actually 
start to  make the algorithm slower. This effect can be caused by:
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a lg o r ith m ic  p e n a lty  - due to the nature of the algorithm. The more inher­
ently sequential the algorithm, the less capable it will be as a parallel 
algorithm,

im p le m e n ta t io n  p e n a lt y  - the time a processor spends doing non-useful com­
putation. Two processors solving a problem twice as fast involves them 
spending all of their time working on the problem, which we know is vir­
tually impossible to achieve.

4.5.1 Perform ance M etrics

The solution time of a parallel implementation is a  simple way of evaluating 
it. If more detailed analysis of a parallel implementation is needed, a range of 
metrics must be used to  compare and contrast different approaches.

S p e e d -u p

The ratio of time taken on a uniprocessor system to the time taken on the 
multiprocessor system can be expressed as

elapsed time on uniprocessor system ,, , .
speed-up =  ^ ^ --------  (4.1)

elapsed time on multiprocessor system

The term linear-speedup is used when the solution time on a n-processor sys­
tem  is n  times faster than  the solution on the uniprocessor. We say a parallel 
implementation has suffered speed-down if it is slower than the uniprocessor 
implementation. If the multiprocessor version is faster than hnear speed-up it 
is said to  have super-linear speed-up. This would seem an impossible scenario 
but it can be caused by the removal of paging due to the large memory needed 
by a problem, combined with the fact that more than one processor is working 
on the problem. Another case where super-linear speed-up might occur is due 
to  the better use of cache, caused by the improved coherency of a parallel im­
plementation. There are two ways to obtain the time taken by a uniprocessor, 
by timing;

1. an optimised sequential algorithm on a single processor or,

2. a parallel implementation on one processor.

The first method is applied in most cases where comparison is used, as normally 
the parallel algorithm is not as efficient as the sequential version. W hen deter­
mining the scalability, using the second timing would give a more meaningful 
result.
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E fficiency

The efficiency measures the average performance of just one of the processors in 
a parallel computation. This then enables us to determine the overheads caused 
by the parallel algorithm. It is obtained by

. speed-up x 100
emciency = ----- ;------ —-------------number or processors

From this we can gauge what percentage of the total time each processor spends 
on the actual computation of the problem, and therefore how scalable it might 
be.
Using all these performance metrics, one should be able to predict the ideal 
number of processors that should be used with any parallel algorithm. This op­
timum is not solely dependent on the algorithm used, but also on the problem 
one is trying to solve. However, by examining graphs of the speed-up for in­
creasing numbers of processors, it is possible to see when adding more processors 
would definitely be detrimental.

4.5.2 M odels for Parallel Algorithm s

Over the years, various models have been proposed for the estimated perfor­
mance of parallel algorithms. In 1967 Amdahl developed what is now called 
“Amdahl’s law” , which attempts to give a upper bound on the speed-up of an 
algorithm due to its properties. His model is as follows:

maximum speed-up = -------------------------------------(4.3)

where s is the time spent on sequential parts, p  the time spent on parallel parts 
and n the number of processing elements. The total time taken by an algorithm 
on a single processor is s -hp =  1. Amdahl’s law gives some rather negative 
forecasts for large numbers of processors. Gustafson [49] proposed that the size 
of a problem is hardly ever independent of the number of processors as assumed 
by Amdahl’s law. His model is represented by the following

, (s + pn)
maximum speed-up = ----------- . (4.4)

s -\-p

Gustafson’s model predicts a nearly linear speed-up when the problem size is 
increased by adding more processing elements. However, it does not apply in all 
cases, since usually the problem size is predetermined, and just the processing 
time needs to be reduced. This situation is typical of global illumination prob­
lems. Thus for fixed size problems, Amdahl’s law is probably more applicable.



4.6. PROBLEM DECOMPOSITION 55

80

S = 0.75 p = 0 .2 5 ------
TO

s = 0,75 p =0-2560

Q. 50a
ID

40

a .
CO

20

10

0
100 0 20 60 SO 10040

Processors Processors

(a) Amdahl (b) Gustafson

Figure 4.4: Maxmum speed-up using Amdahl and Gustafson’s laws

4.6 Problem  Decom position

There are two principal ways a parallel problem can be broken up, either by 
exploiting the inherent parallelism in the algorithm itself, called algorithmic 
decomposition, or by using the fact that the problem domain can be split up 
into many parts to  which the algorithm can separately be applied. This is called 
domain decomposition.

4.6.1 A lgorithm ic D ecom position

The algorithmic decomposition of a program involves rewriting the original al­
gorithm or, better still, creating a completely new algorithm. This can be quite 
an involved process and requires explicit knowledge of the parallel features of the 
system. The decomposition can be quite low level, for instance using MMX or 
AltiVec instructions to  exploit instruction level parallelism, known as dataflow. 
A fork and join  m ethod is feasible if you have something like SMP (see Fig­
ure 4.5). Despite the difficulties involved, significant speed-ups can be achieved 
with these types of decompositions. Unfortunately, not all problems can be 
solved efficiently by such parallel algorithms.

4.6.2 D om ain D ecom position

Domain decomposition is far easier to apply than algorithmic decomposition as 
it does not involve changing the algorithm in any way. Instead it subdivides the 
domain of the problem into small segments which can be solved independently. 
A simple example of this is the problem of integrating a function. Note th a t
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Figure 4.5: Algorithmic Decomposition

integration in two dimensions determines the area under a curve. It is therefore 
obvious that breaking this large curve up into n  smaller ones and determining 
the area under each of these curves, then finally summing these areas, determines 
the area under the original curve. The domain decomposition method can be 
broken into two main methods from which hybrids [103, 107, 105] can be formed. 
These methods are:

D a ta  D riven  - This method involves breaking up the data between the P E ’s 
involved such that each one gets a portion of the total data. This method 
unfortunately requires either prior knowledge of the data or a prepro­
cessing pass to gain such knowledge. Since the data is divided among 
the processors, tasks must now be migrated to the PE that has the data 
required for the task.

D e m a n d  D riv en  - The demand driven method divides the work and not the 
data between the PEs. Thus each one is no longer stuck with a given 
portion of the data. This has the effect of requiring that the data be 
moved around if it does not fit entirely on a single PE.

4.7 Scheduling Issues

The key to the efficient use of these methods is in scheduling, so that the com­
munication overheads are minimised in such a way that no PE is left idle. This 
is often easier said than done. There are two categories of scheduling algorithms:

s ta tic  - The assignment of tasks or data is done before the program begins at 
compile time. This method assumes that knowledge of the complexity of 
each task is known at compile time.
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d y n am ic  - The da ta  or tasks are redistributed during the execution of the 
program. This is achieved by a method called load balancing, whereby 
tasks are transfered from heavily loaded PEs to lightly loaded ones.

4.8 Parallel M ethods and Global Illumination

Ray-based global illumination methods such as path tracing appear to be em- 
barrisingly parallel, making them ideal candidates for use with parallel com­
putation. The obvious strategy of dividing the image space into a number of 
segments and assigning these to each PE works very well. This can be done using 
static or dynamic [55] load balancing schemes. Sometimes the memory needed 
to  store a scene and its intermediate data is far too large. In order to  solve 
this problem, the scene can be divided among a number of PEs. This creates 
a data driven rendering scheme [48, 108, 104, 9]. The main problem associated 
with d ata  driven schemes is tha t PEs can remain idle for long periods of time, 
because the region of the scene they hold is only accessed infrequently, such as 
areas which are in shadow. Areas which are visible or contain lights are accessed 
much more frequently, making it hard to balance the workload. Thus there is 
a trade-off between having equal amounts of scene and having equal processing 
loads. Cost prediction schemes have been devised [109] so that scenes can be 
divided based on their workload. To remedy this situation, hybrid schemes have 
also evolved which contain both da ta  and demand driven parallel schemes [106]. 
To minimise the communication overheads, caches [104, 58], level of detail and 
coherence [126] have all been used. These either ehminate the communication 
or reduce the am ount of data  th a t must be sent.

For FEM  based global illumination methods, data driven schemes are most 
widely used such as virtual walls [4] and visibility masks [4]. However, solutions 
which use parallel versions of the m atrix methods such as Jacobi iteration. 
Southwell relaxation [47] or group itterative methods [111] provide an alternative 
means of acceleration. There are also parallel methods based on hierarchial 
radiosity [120].
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Chapter 5 

Algorithm s

5.1 Introduction

This chapter presents a series of tools and adaptive schemes which are used 
to solve global illumination problems. The initial section presents a rendering 
framework, which allows various algorithms to be easily implemented and used 
to help solve the many complex problems involved. This is then followed by a 
description of some “intelligent” sampling schemes, which sample the parameter 
domain of the function they are used with. These create better sample sets for 
use with integration and density estimation problems. The final section presents 
some density estimation methods, which are used to reconstruct illumination 
information that has been stored as a series of particles or samples distributed, 
using MCMC, throughout the environment.

5.2 Framework

Very often, researchers are only interested in a small area within graphics, such 
as surface modelling or scene query acceleration. However, in order to start 
their research, a substantial effort has to be put into creating a rendering sys­
tem capable of supporting their needs. They can either use an existing system 
or create a new one. Both of these approaches seem to require significant time, 
in either constructing the system or learning how to use and change an existing 
one. Another problem with creating a rendering component is caused by the 
use of statistics. This makes it hard to determine if the algorithm is working 
correctly since the results are stochastic. One approach to checking this is to 
import test scenes from other rendering systems and compare the results. \'i- 
sual comparison is not very accurate and often the effects caused by a bug don’t 
show up until much later on even after the algorithm was thought to be work-
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ing. Comparing results with others is often very difficult and generally requires 
actually recoding other algorithms so that they fit in with your approach. This 
introduces bugs and so could end up being different from that of the original 
implementation. Since these are not the focus of the creator’s research, very 
httle effort is extended towards these algorithms. W hat’s needed is a frame­
work for constructing a rendering system that separates all these components 
so tha t they can be swapped in and out of the system without the framework 
having to be aware of this. This way algorithms can easily be compared and 
tested. Also an extensive set of tools are needed for visualising various compo­
nent types, such as scene acceleration structures and ray directions. This way 
the user can easily see what is happening as the program is running, without 
having to use a debugger to view the data structures and interpret the data 
themselves. This framework must not restrict or force the user to think in a 
certain way or do significant extra work just to make their algorithm fit into the 
framework. They must be able to code in the same manner as before. Thus the 
user should only have to understand the part of the framework concerned with 
their area, rather than have to know everything about the entire framework. 
The code re-use made possible by the object oriented and modular techniques, 
are a very important part of the framework and help with this task.

On another note, despite all efforts to find models and techniques which 
are suitable for all scenarios, these have not been developed as yet. Therefore 
a framework should provide a means of allowing all methods and models to 
coexist simultaneously. This is so that a system or user can choose the ap­
propriate method or model to suit a specific scenario. Many frameworks don’t 
split methods of solution from the problems they are trying to solve. A classic 
example of this is the use of integration techniques in radiosity or Monte Carlo 
path tracing programs where the function to be integrated is embedded in the 
integrator. Thus each time you create a new method you must also recreate 
the necessary parts of the function. This limits the areas where you can use 
the method and it makes testing far harder. However, for the following reasons 
it is sometimes desirable to separate these. Firstly the increased visibility of 
mathematical components make it easier to solve specific problems. Secondly, 
separating the description from the solution contributes to smaller, reusable 
components, which can be combined and tested with greater ease.

W hat follows describes a rendering framework called EFFIGI (Efficient Frame­
work For Implementing Global Illumination) [77], that uses interfaces which 
express both geometric concepts alongside mathematical ones, using object- 
oriented and component object methods. It also handles other concerns that 
potential users might have, such as object description and scene acceleration. 
The framework created differs from most other frameworks by mapping many
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global illumination concepts to mathematical ones rather than the reverse, mak­
ing it far easier to implement mathematical techniques. This is because the 
physics have already be translated into mathematical models so they can be 
simulated on a computer. However, translating mathematical techniques into 
their physical counter parts is far harder and also very specific to the physical 
scenario thus reducing their applicability.

5.2.1 Previous W ork

Many mathematical models are used in image synthesis, the rendering equa­
tion [63] being one example. These mathematical models are solved by a vari­
ety of techniques. By simplifying these, easier and faster methods of solution 
may be found. For instance the radiosity equation [18] is a simplified form of 
the rendering equation that can be solved using finite element methods such 
as Galerkin [137] or point collocation [19] methods. This simplification lim­
its the types of environment that can be described. More general descriptions 
like the rendering equation (see Figure 5.1) need more general methods of so­
lution such as Monte Carlo integration. Some of the methods come directly 
from numerical techniques such as Metropolis [130] or Galerkin methods, others 
such as bi-directional path tracing [129, 69] are derived from the nature of ray 
paths. Most methods have the common property that they are described using 
mathematics.

Various architectures have been devised to handle this situation. Some have 
been tied to a specific technique [23, 67, 117, 134, 131], others have been general 
enough to allow a variety of rendering techniques. The Cornell “testbed for 
image synthesis” [124] is a toolbox that can be used to construct a rendering 
package but is not object-oriented. Glassners “Spectrum” architecture [43] is an 
object-oriented framework based on signal processing. The Vision system [122] 
is capable of most rendering methods as is the RenderPark system [11].

5.2.2 D esign

The basic design of the frame work is to model the mathematical concepts used 
to solve global illumination problems. It is done this way because it is easier 
to map global illumination descriptions into mathematical ideas, than to map 
mathematical methods into physical concepts. The reason being that mathe­
matical abstractions, such as adaptive integration methods, were derived using 
the abstract mathematical descriptions and hence do not appear to have intu­
itive physical interpretations. This also improves the generality and promotes 
reuse of methods as they are no longer designed to be used within one area, 
because they retain their original mathematical generality. The use of math-
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ematical ideas also provides far greater flexibility and brings intuitiveness to 
the framework since everybody understands mathematics to some degree. For 
instance one could combine functions represented in the framework by addition, 
subtraction, multiplication etc. Then this combination could be integrated. In 
fact, this is how many complex functions such as BSDF’s are built within the 
framework.

The design of the EFFIGI framework is motivated by several key factors. It 
is fully object-oriented, thus enabling increased flexibility and code re-use. The 
abstractions are based not on physical concepts such as radiance and radiosity 
but instead on their mathematical foundations. In order to make development 
easier there is a means of testing components. The time taken to generate a 
picture is very important, so speed has been taken into consideration throughout 
all phases of the design process.

O b ject O rien ted  D esign

Object oriented techniques [26] are used to decompose the rendering process 
into simple manageable parts. The interfaces that arise from this fit into four 
main groups:

• mathematical for sample generation, function evaluation and integration.

• scene and object management for ray queries, meshing and path genera­
tion.

• data storage to support data structures such as linked lists, k-d trees [12] 
and vectors.

• setup for object initialisation and setup.

W ithin each of these groups, various sets of interfaces are provided. For a 
full list of interfaces see Table 5.1.

M ath Scene Setup Data
ISampler I ln te r s e c t IRenderer IC ontainer

IFunction IShape I ln te r fa c e IV ector
I ln te g r a to r IMesh U n i t i a l i s e ITree
IG enerator IRay I L is t

IRootFinder IlluminationM ap
IWarp IPathGenerator

lEvent
lE ventStore

Table 5.1; Interfaces in Framework
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Figure 5.1: The Rendering Equation

M a th e m a tic a l F o u n d a tio n

The abstraction of m athem atical concepts provides generic access to  various 
algorithms, allowing a “pick-and-mix” approach to choosing a suitable tech­
nique. This abstraction is im portant in image synthesis, because many models 
use mathem atically-based methods. For example, the light propagation model 
used in rendering utilises sampling and integration. EFFIGI provides explicit 
support for these ideas, by translating concepts such as functions, integration 
and sampling into interfaces. The learning curve for the users of such a frame­
work will not be steep, since users are typically well-aware of the m athem atical 
ideas involved.

The most common interfaces used are the Ilntegrator and IFunction  in­
terfaces. These are usually used to represent the various parts of our image 
synthesis model. The IFunction interface can be used to represent surface re­
flection models or to evaluate ray paths. When used by an Ilntegrator the 
to tal light reaching a point can be estimated. Figure 5.1 shows how this can 
be encapsulated within another function interface to represent the rendering 
equation.

The param eters of the inner most function represent the direction (0, (p) tha t 
the ray goes when it strikes a surface as in the case shown. They are equally 
likely to  represent a surface and coordinates on it {s,u,v),  if a surface form of 
the rendering equation is used. This configuration represents a distributed ray 
tracer since the function is recursive. A more efficient implementation would 
expand the inner function and use it to represent n bounces, where n  is the  first 
param eter, thus creating a path  tracer. To allow this the function interface pro­
vides m ethods which disclose this information. The IFunction interface is given 
in Figure 5.2. This interface enables functions to  be evaluated, and provides 
information describing the limits of the domain of the function and the range of 
the result. The Ilntegrator interface is shown in Figure 5.3. It provides a means
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struct IFunction : IUnknown 
{
virtual integer GetDimension(void) const =  0; 
virtual real Evaluate(const real *p_parameters) =  0; 
virtual void GetDomain(real *p_min,real *p-max) const =  0; 
virtual void GetRange(real *pjtnin,real *p_max) const =  0;

};

Figure 5.2: IFunction interface 

struct Ilntegrator : IUnknown 
{
virtual void SetSamples(integer samples) =  0; 
virtual real Integrate(const real *pjnin,

const real *p_max,IFunction *p_func) =  0;
};

Figure 5.3: Ilntegrator interface

of evaluating an integral over a region in the functions domain, and setting the 
number of samples needed.

T estin g  F acilities

An important feature of the framework is its facility to test components for 
compliance with a given specification. For instance, a Bi-directional Scattering 
Distribution Function (BSDF) should be physically plausible; a scene acceler­
ation scheme should support all the required features, and provide the same 
intersection information as another scheme given the same data; an interface 
should produce valid responses to a specified set of inputs. Previously, it was 
necessary to run components with a complete setup, and then attem pt to iden­
tify artefacts in the output. Now users can run the testing components with 
default setups, allowing rapid identification and location of errors. This speeds 
up the development process significantly. It is also possible for users to quickly 
ensure that the interfaces provided can support any new components that they 
may wish to add to the framework. There are also visualisation tools for viewing 
the rendering process. For instance Figure 5.4 shows a component tha t allows 
you to see the rays as they are fired either from lights or the view plane.

S crip tin g  L anguage

In order to create an easy, high level way to configure the system a very basic 
scripting language was created. This language basically enables the creation, 
destruction, configuration and linking of the various components used in the
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Figure 5.4: Ray Viewer

system. The language bears some resemblance to C + + . It can be used to modify 
any component, enabling scenes to be setup or scene files from other rendering 
packages to be loaded using a component that provides this. In this way users 
can try  various setups very quickly and easily with out having to  compile and 
build a setup using lower level constructs. This makes setting up diagnostic and 
analysis setups very easy. Since speed is not of the essence during setup and 
configuration the language can be very high level and interpreted which reduces 
the number of errors and bugs that occur. The scripting language means the 
user no longer has to  compile their components with the entire framework, but 
can instead create it separately as a shared library. Thus relinquishing the need 
to  try  and fit their code into the build hierarchy of the code base. This simplifies 
the integration of components and speeds up the compilation time.

5.2.3 Im plem entation

The Component Object Model [68, 110] was used in EFFIGI to provide a consis­
tent interface for creation and destruction of components, and to  provide Run 
Time Type Information (RTTI). For an in depth discussion of COM see [68] and 
[110]. It allows the use of shared libraries or DLLs'  ̂ which gives the framework 
the ability to have a “plug-in” style component architecture without any extra 
work by the programmer.

To date, EFFIG I has been used to implement many of the m ajor rendering 
methods in use today. It can be configured to use a multitude of different tech­
niques with ease. The framework can be used in two ways, via a simple scripting 
language or by using a programming language that supports COM such as C + + . 
W hat follows are some example setups using the scripting language th a t  illus-

Mn UN IX th ey  are  called  shared  libraries in W indows dynam ic link lib raries o r D LL’s. 
T hese enab le  th e  sharing  of com piled code by allowing libraries to  be  dynam ically  loaded  at 
run tim e.
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Figure 5.5; BRDF composition

trate  some typical uses of the framework. Each configuration is presented with 
a diagram showing the communication Unks between the components that make 
up the method.

Im p lem en ta tio n  o f  a B R D F

The implementation of a BRDF using the framework is very different from 
many of the other frameworks available. Because the framework is expressed 
using functions, to create a BRDF one needs to combine a series of functions 
together. For instance, to create a Phong BRDF [71] a diffuse cosine lobe must 
be combined with a specular one; To add texture to this, the diffuse cosine lobe 
is multiplied by a texture function, e.g. a linearly interpolated function taking 
the surface coordinates (u,v) as parameters. Then another function may be 
used to perturb the specular power according to the surface position (see Fig­
ure 5.5). This provides a very expressive way of creating BRDFs, allowing not 
only the developer to create many custom BRDF’s, but also the user. All this 
functionaUty is provided by a series of components which support the IFunction 
interface.

P a th  Tracer

The path tracer [63] is constructed from a few basic components as shown in 
Figure 5.6. Direct Lighting is achieved using an IFunction interface which eval­
uates rays from the light to the point in question. This is then called from inside 
the path evaluator. Each box represents a component which can be substituted 
at run time, and thus a variety of configurations are possible. The picture 
shown in Figure 5.7 was rendered using a VEGAS [80] style integrator with a 
directional path generator and a surface to surface direct lighting function.

P h o to n  M ap

A Photon Map [61] is a preprocess which is used to create illumination maps 
(see Figure 5.8). These can be used with the path tracer configuration just 
described by using a modified path evaluator. These path evaluators query the 
illumination maps at a given point, obtaining an estimate of the incoming radi­
ance at that point. The photon generator can use all the samplers and warping
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Figure 5.6: Path Tracer Configuration

Figure 5.7: Path  Tracer Example Picture
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Figure 5.8: Photon Tracer Configuration

Figure 5.9: Photon Tracer Example Picture

schemes just like a path tracer, storing photons using an lEventStore interface. 
The component used to store the photons can use a k-d tree, qtiad tree or any 
other suitable structure, and might also directly support an IllluminationMap 
interface. Alternatively, it can provide some facility to convert it to a suit­
able structure for some other component which would provide the illumination 
map during the rendering phase. Figure 5.9 shows a Photon Map used in con­
junction with a path tracer, which in turn uses a Mean Sample Monte Carlo 
integrator [64] with a random sampler. The photons were generated from the 
light source using a Metropolis sampler which sampled the emission function 
L e { u ,  V,  A, Lo) of the light source to generate a sample set. A Metropolis sampler 
is a component based on the ISampler interface. It takes an IFunction interface 
and generates a set of samples, using the function as a basis for the PDF, this 
is done using the Metropolis [64, 130] method.

Irradiance M ap

An Irradiance Map [134] is a modified path evaluator, which caches radiance 
information in an illumination map, also using an lEventStore interface. It is
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Figure 5.10; Irradiance Map Example Picture
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Figure 5.11; Irradiance Map Configuration

possible to  re-use this interface, because the lEvent structure used with the 
event store dictates what is stored and what the information relates to. The 
lEvent interface provides a way to store information. By changing these events, 
different types of information can be stored, such as irradiance gradients or 
photons. Unlike producing a photon map, the irradiance map is not created 
during a preprocess but by a modified path evaluator (see Figure 5.11). Shown in 
Figure 5.10 is a picture generated using an Irradiance Map style path evaluator 
and a Mean Sample Monte Carlo integrator using a Hammersly [100] quasi­
random sample set.

R adiosity

Radiosity [19] is implemented as a preprocess, as in the Photon Map method. 
Similarly radiosity is stored in a component, this time using the IMesh interface. 
This interface supports the ideas of patches from which form factors can be cal-
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Figure 5.12; Radiosity Example Picture
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Figure 5.13: Radiosity Configuration

culated and radiosity stored. The component may support an IlluminationMap 
interface, or it may provide the ability to output a texture, or something that 
can be used by an illumination map component. The form factor is calculated 
using a component tha t supports an IFunction interface tha t takes two surfaces 
as properties, the parameters of which are the (u, v) surface coordinates on each 
surface. This enables the use of various integration schemes (see Figure 5.13 for 
the configuration used). Figure 5.12 is a radiosity illumination map rendered 
using a Mean Sample integrator with random sampling. The radiosity struc­
ture used a Metropolis sampler to integrate the form factor function using the 
visibility function as a basis for the PDF.

5.2.4 Scene management

The scene and object management interfaces allow a lot of modularity and the 
construction of objects is quite similar to that of the ray tracing framework by 
Arvo and Kirk [67]. Many different scene acceleration methods can be combined 
in a variety of ways, so as to construct a more optimal setup. For instance, 
SEADS grids [38] and octree [42] schemes can be used together or just over
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individual objects or areas where needed. The visuahsation facilities are very 
beneficial for examining exactly what a scene acceleration scheme is doing (see 
Figure 5.4). Testing for faults is facilitated by comparing results from two 
schemes. Objects can be constructed by grouping sub-objects together using 
the scene acceleration structures or via other components, which can then be 
assigned various properties and sampling schemes.

5.2.5 Use of Framework

All the methods th a t follow were developed using the EFFIG I framework. This 
allowed comparisons with other methods and made the development process 
quicker, since only the new modules needed to be implemented, thus reduc­
ing the am ount of coding and debugging necessary. It also facilitated the use 
of new techniques in ways which would never have been possible without the 
framework, for example Metropolis particle tracing, the VEGAS and stratified 
integration techniques as well as the method used for describing BRDFs, which 
are presented in this document. This was facilitated by the generic interfaces 
provided. The development process was simplified by the ability to  test the new 
techniques on simple functions, not necessarily related to global illumination for 
which the results were known. This means that any new technique created can 
be tested on simple functions, thus permitting greater confidence in the results 
th a t it produces, which is impossible with any other framework.

5.3 A daptive Integration Schemes

This section presents two different adaptive integration schemes, based on the 
stratified and im portance variance reduction schemes presented earlier. The 
stratified schemes would appear to be the best, since they correctly handle areas 
of high variance (see Figure 5.14), because areas of high value are not necessarily 
the most difficult regions to integrate. However, to date their use in computer 
graphics has been limited, and importance sampling is more commonly used. 
This is probably because importance sampling, which has been very successfully 
used for sampling BRDFs, is far easier to implement. Stratified sampling has 
been used to  split ray paths and break BRDFs into a diffuse and specular part 
for use with illumination [6, 20, 102], irradiance [134] and photon m aps [60]. 
Adaptive schemes seem to be a good idea for global illumination problems be­
cause of the uneven distribution of work and variance. These schemes, if set up 
properly can hopefully detect and cater for this unevenness, thus producing a 
better overall result.
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Figure 5.14: Two cases which highhght the problem with importance sampling

5.4 O ptim isations for A daptive Schem es

Unfortunately, the high dimensions experienced in global illumination makes 
the detection of regions of high variance difficult. In order to address this, the 
standard algorithms must get assistance in the form of prior information about 
the problem domain. Such information includes importance sampling schemes 
for BRDFs, the relative importance of each parameter and so on.

5.4.1 Simplification

The biggest problem with using adaptive sampling schemes is that they can 
incorrectly predict areas of importance. This can occur because they are only 
estimating areas of relevance using the limited set of information obtained during 
previous computations. In order to optimise such schemes, it has to be made 
easier for the adaptive schemes to single out regions of the parameter domain 
which are important, or need more work. This is done by re-parameterising our 
lighting function from the complex forms commonly used in many of today’s 
global illumination schemes to a simpler form. These complex algorithms tend 
to gather as much information as possible from each parameterisation, by trying 
to evaluate many paths in one query. This confuses adaptive algorithms, but 
can be solved by using functions that evaluate only one path at a time, instead 
of combining a series of paths. Techniques such as direct lighting on each ray 
hit can be used. Now rather than multiple effects appearing in one evaluation, 
only one possible effect can appear, leading to clear differences between areas 
which contribute and those that don’t (see Figure 5.15). This does not make 
the algorithm less efficient, as now fewer rays are shot and less rays will be 
used on paths with many bounces, whereas in normal path tracing equal effort 
IS put into sampling secondary and subsequent bounces, even though they do
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(a) Multiple Paths at once (b) Single Path

Figure 5.15: Reducing the number of paths evaluated

not contribute as much to the overall solution. The simpler formulation makes 
it easier to perform importance sampling, since each query evaluates only one 
path and therefore does a similar amount of work. It might seem that these 
ray parameterisations are reverting back to less efficient forms, but this is not 
necessarily true if the time to evaluate the function is factored into the sampling 
strategy. The situation is further improved now that evaluations are cheaper, 
since more evaluations can be made in less time from which more information 
about the parameter space can be derived. This in turn produces a better 
PDF estimate. Adaptive schemes suffer from the need to store potentially large 
volumes of data, which is exaggerated by global illumination problems due to 
the number of dimensions required to parameterise ray paths. The schemes 
presented below solve this problem by only storing information for limited sets 
of dimensions. An alternative way of reducing the storage cost is to reduce 
the dimensionality of the parameter space by re-mapping parameters. This 
unfortunately can only be done to a limited extent, although the reduction in 
storage costs are usually very good. A side effect of doing this is that now 
information about the problem domain has been merged, precisely the situation 
we wish to avoid. An example of this approach that can be used for surface to 
surface path tracing, is to merge the surface selection parameter s with either 
the u or V parameter used to determine a position on the surface giving:

s =  int (us)

u = us — s,
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which is a very good optimisation for use with quasi-random methods. The 
problem of dimensionality does not only effect the storage cost, but also makes 
it harder for the algorithm to find important regions. In order to alleviate 
the constraints on adaptive schemes caused by the high number of dimensions 
associated with our problem, a mixed approach is necessary whereby density 
estimation methods are used in conjunction with integration methods. The 
first two or three ray bounces are therefore handled by the adaptive integration 
schemes, which need a large amount of accuracy, then subsequent illumination 
is handled by density estimation methods.

As a last resort, but perhaps the most effective solution, user intervention 
may be used to highlight parameters and regions of potential importance.

5.4.2 Previous work

Keller demonstrated the use of quasi-random sampling [66, 53, 54, 65] with 
particle (or potential) based methods and with radiosity. Kajiya introduced 
two dimensional stratification schemes in his landmark paper about path trac­
ing [63]. The super sampling [82] strategies discussed by Mitchell show the 
advantages of stratified sampling schemes. The VEGAS [79, 80] method used 
in part by Dutre [34] applies some stratification techniques. Shirley’s work on 
Direct Lighting [114, 119, 118] demonstrates suitable sampling schemes and di­
vides the scene into two parts namely the light sources and all other objects. 
These techniques are either limited in the dimensions that they can stratify or 
have non-adaptive stratification schemes. The Miser [99, 100] algorithm reme­
diates these limitations but has never been applied to the problem of global 
illumination. A number of methods to do this have been devised such as a 5D 
Tree [72], adaptive probability functions [34] and importance driven path trac­
ing [59]. The use of these techniques has been restricted to estimating the local 
contribution of a light source, or constructing an adaptive PDF for the BSDF 
of surfaces in the scene.

5.5 VEG AS Adaptive Integration Algorithm

This method uses an adaptive PDF to choose the most important ray paths 
coming from the eye. The algorithm is a probabilistic “gathering” algorithm 
based on path tracing. Two sampling strategies are used: The first uses the 
BRDF of the surfaces to determine an importance weighting for the outgoing 
ray directions. The second uses an adaptive PDF to weight segments of the 
paths. Thus there is both a local importance sampling scheme and a global one. 
The PDF for the global scheme is initialised as a uniform sampling function
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but is refined during the execution of the algorithm. The construction of the 
refined PDFs is based on the VEGAS algorithm [80, 79], which allows for adap­
tive multidimensional integration. In this manner the algorithm progressively 
“learns to integrate” .

Im portance and stratified sampling methods unfortunately require detailed 
knowledge of the function’s behaviour to be of use. However, it is possible 
to use information generated in a previous integration to reduce the variance 
in subsequent cases. The VEGAS algorithm [80, 79] is a multi-pass adaptive 
sampling algorithm th a t also provides support for both stratified and importance 
sampling. I t is normally used in particle physics simulations but the following 
will dem onstrate its usefulness in image synthesis. The algorithm adaptively 
constructs a multidimensional weight function w that is separable:

where p  is the PD F and Wx,Wy,Wz ■ ■ ■ are the individual weight functions for 
each dimension. It is a multi-pass method because, in order to  construct the 
weight function, coarse initial estimates of the separate functions need to  be 
found. Further passes are made to refine these weight functions, thus improving 
the overall estim ate. The optimal separable weight function can be shown 
to be

Equation 5.2 presents a means for creating each separable w'eight function using 
Monte Carlo estim ation methods. Each dimension of the domain of integration 
is initially divided into K  equal sized partitions, giving a to tal of K d  bins, 
this minimises the storage costs. As samples are taken from the function the 
corresponding value is deposited into one of the K  bins in each dimension. 
After each iteration the bins are reassigned according to either the importance 
or variance of each partition, enabling partitions with a higher contribution or 
variance to get more samples. Importance samples are generated by choosing a 
bin at random  in which a sample is then generated. Thus, initially each sample 
is chosen uniformly with respect to the integration domain, but as the bins are 
altered on each iteration they are gradually drawn from the function. On the 
other hand, in stratified sampling an equal number of samples are drawn from 
each bin, so K f  samples are needed where Ki  is the number of partitions in 
each dimension and n is the dimension of the function. The PD F is a stepwise 
function which is initially uniform over the whole domain. It is then updated  
after each iteration by adjusting the size of the bins or step functions and, 
since each interval has a equal chance of being selected {j^),  more samples are

p  oc w{x,  y , z , . . . ) =  w^{x)wy{y)wz{z). . . (5.1)

(5.2)



76 CHAPTERS.  ALGORITHMS
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Figure 5.16; Initial PDF (left) and PDF after a number of iterations (right) 

concentrated in the important areas (see Figure 5.16). The probability is given

(size being the length in 2D, area in 3D etc.). This type of control over the 
PDF allows it to adapt more closely to the function it is sampling since the 
bins can move as well as change size to adapt to the function. This adaptive 
scheme is hard to implement in more than one dimension because adjusting the 
positions and sizes of the bins becomes increasingly difficult, due to the effect 
on neighbouring bins. A kd-tree [12] was used by Dutre [34] to  create a similar 
structure for 2D sampling. However only one division can be altered on the first 
iteration. When a good position is found this division is fixed, and then child 
divisions are created and modified.

Another way to generate an adaptive PDF is to use a unit hypercube. Here, 
every sample taken is recorded and later used to construct a cumulative density 
function which is then used to generate samples [59]. However, the extent to 
which this can adapt is determined by the number of grid increments N  along 
each axis. N  in turn is limited by the total number of integrand evaluations M  
allowed per iteration:

where n is the dimensionality. This is a serious limitation with the higher 
dimensions required in global illumination problems.

5.5.1 Algorithm

by
(5.3)

where K  is the number of divisions and Axi  is the size of the division

(5.4)

The problem in global illumination is given in the rendering equation. To solve 
this equation a number of discrete paths are chosen at random. This is in most
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W H IL E  i < N
I F  i % update  =  0

F O R  E A C H  weight function 
IF ID  O R  2D

se tup  stepwise using current estim ates 
E L S E  IF  3D or above

se tup  hypercube using current estim ates 
E N D  IF  

E N D  F O R  
E N D  IF
G en era te  sam ple according to giobai weight function  
F O R  E A C H  weight function i

sto re  result in appropriate bin 
E N D  F O R  

E N D  W H IL E

Figure 5.17; Adaptive sampling algorithm

situations very inefficient, as it is better to sample paths which contribute more, 
or to  sample in areas which decrease the variance. For this reason, most imple­
mentations of path  tracing and similar Monte Carlo algorithms use im portance 
sampling, exploiting knowledge of BRDF to sample ray directions. This algo­
rithm  helps path  tracing methods to sample paths more effectively, by taking 
into account the paths where the incoming flux is greater.

The algorithm uses a combination of the methods described previously. A 
separable weight function is constructed as in the VEGAS algorithm. However, 
rather than  using a one dimensional weight function for each dimension, a series 
of multidimensional functions are created. These are used to construct the over­
all multidimensional weight function, which is then used to sample the paths. 
Since the most prominent errors in path tracing occur on the first and second 
bounce, these are the areas for which we generate our adaptive PDF. The user 
can configure the dimensionality of the sub-functions used to construct the mul­
tidimensional weight function and limit its total dimension. The following is a 
typical grouping of variables for which sub-functions may be defined:

w avelength lens l^*bounce

{ A ,{u ,v ) ,{u ,v ) ,  { v ^  , {0,(t>) }
film lightsource

Thus, we have a series of one or multi-dimensional PDFs, which the algorithm  
generates and uses to sample segments of the path. These PDFs are created 
using a hypercube for dimensions greater than two, or the stepwise function for 
lower dimensions. The algorithm is shown in Figure 5.17.

As mentioned the algorithm differs from the original VEGAS algorithm  in 
th a t it is not constrained to  use only one dimensional sub-PDFs but a series 
of PDFs of differing dimensions. The equations for this new form are a simple 
extension to  the original proofs for the VEGAS algorithm. The optim al densities
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for a separable PDF are given by

where oj* is the parameter of domain fin etc.

. . .  ,a;”) =  -J (5̂ ĝ
....<]

The result for puf,{uil,.. ■ ,u>̂ ) is similar. Thus the following is used to estimate 
the contribution of each bin in the case of importance sampling

 ̂ Y. (5.7)
X6[xt>xt+Aa;j]

where Axj is the width of partition i and /  is the function to be integrated. For 
stratified sampling the variance of each bin is used this is calculated as

A¥)^-¥-
Given these equations we can now generate a series of partitions that may 
be used to sample the function. The method for doing this depends on the 
criteria that we are using. For importance sampling we wish to make each box 
contribute the same amount and for stratified sampling each box should have 
the same variance. Stratified sampling is only practical with a small number of 
dimensions due to dimensional explosion. The algorithm shown in Figure 5.18 
can be used to rearrange the size of the partitions so as to achieve either of these 
goals, by storing either integral estimates or variances in the bins.

Figure 5.19 shows the VEGAS algorithm used to integrate the function sin^ 
using importance sampling. It used five iterations of the algorithm just de­
scribed. Note tha t in the diagrams the width of the box represents the impor­
tance of a region. The height in this case is the estimated value of the function 
in that region generated after the region was subdivided. A perfect solution for 
importance sampling would have each box occupy an area of equal value, thus 
all boxes should be the same height. The noise present in naive Monte Carlo 
integration is interfering with the construction of the bins hence the inaccurate 
results, represented by the small variations in the height of each bin. To avoid 
rapid destabilising changes to the PDF, a number of different approaches are 
used: A smoothing function is passed over the results for each bin, this function 
hnearly interpolates the results thus averaging out the noise. This is generally
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to t a l  =  0 
f o r  e a c h  b in
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i  =  j  —  0  

8  =  0.0 
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7 + +

E N D  W H I L E
m in  =  min  +  (l.O — J )  Ad
t m a x i  =  min
i + +

W H I L E  (z <  n  -  1) 
tm i n i  =  min  
t m a x j  =  b i n n - i - m a x  
F O R  E A C H  bin

b in i  -min =  tmin j 
bin* .m ax  =  tm a x i  

E N D  F O R

Figure 5.18: Rebinning Algorithm

good if there is a low number of samples. Figure 5.20 shows the results for 
sind  using linear interpolation to smooth the function. Smoothing is not always 
enough therefore damping is used to control the amount of adaption. Two dif­
ferent methods can be used to do this. Firstly transition from the old to  the 
new can be dam ped by limiting the amount of change possible, this allows a 
smoother more stable PD F to evolve (see Figure 5.21). We have a choice of two 
equations for this, the first being

{I -  r)di + rpi = di, (5.9)

where r is the ratio  between the original value di^ and the proposed value 
P i .  This equation combines the new estimates with a set ratio of the previous 
estimate. This is only possible for the hypercube method. The second m ethod 
is taken from the original VEGAS method, which uses the following formula to  
dampen the am ount of change:

where di is the estim ate for bin i and a  is used to control the am ount of change. 
A graph showing how this function varies with di and a  is shown in Figure 5.23. 
Finally, by combining the damping with the smoothing, a b e tte r solution is 
obtained as shown in Figure 5.22.

Despite producing initial good effects, especially with small numbers of sam-
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Raw

Processing

Figure 5.19; Series of PD F’s by VEGAS algorithm for sin0 using raw data
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Figure 5.20: Series of PD F’s by VEGAS algorithm for sind using smoothed 
data



55

li.

'^for
C/,,̂ PL'tig



Ti
me

 
St

ep
s

5.5. VEGAS AD APTIVE INTEGRATION ALGORITHM 83

Raw Smoothed

Processing

Damped

Figure 5.22: Series of PD F’s by VEGAS algorithm for sin9 with damping and 
smoothing
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Figure 5.23: Graph showing VEGAS damping function

pies, as the solution becomes more accurate negative effects of both procedures 
appear. The smoothing allows a number of different configurations to masquer­
ade as a good solution. This tends to happen as the PDF is close to optimal 
(where most boxes only differ by a small amount). These differences get filtered 
out with the noise and hence don’t contribute to the boxes (see Figure 5.24). 
Similar effects happen with the damping algorithm which tend to ignore low 
valued boxes (see Figure 5.25), but the error is not as pronounced.

Damping is far more beneficial when used with the stratified version of the 
VEGAS algorithm, whereas smoothing appears to work better with the impor­
tance based scheme. This is because the estimation of the variance is far more 
chaotic than the estimate of the integral which is calculated using

/(¥)■-¥■
To illustrate this. Figures 5.26,5.27, 5.28 and 5.29 show various combinations 
of smoothing and damping on sind when used with the stratified version of 
the VEGAS algorithm. Notice how with the unprocessed data the stratification 
appears to shift radically between each iteration and in the smoothed version this 
effect is lessened somewhat. However, the dampened version produces a much 
more stable partitioning, the best version being the one which is both dampened 
and smoothed. Figures 5.30 and 5.31 illustrate the problems with smoothing 
and damping when large numbers of samples are used. Damping can cause 
the low valued areas to be underestimated. However, such excessive numbers of 
samples are almost never used in global illumination. If this problem does occur, 
the damping or smoothing can be switched off after a number of iterations to



5.5. VEGAS ADAPTIVE INTEGRATION ALGORITHM 85

Raw

D-<v
cn
<u
a
H

Smoothed

Processing

Figure 5.24: G raph showing errors caused by smoothing in \E G A S  algorithm
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Figure 5.25:
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Graph showing errors caused by damping in VEGAS algorithm
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attain  better convergence. Unfortunately there is no way to recognise this in 
global illumination problems. Knowing the form of the importance function is 
the same as knowing function, in simpler integration problems the smoothness of 
the function could be used. This is not a good technique for global illumination 
as almost nothing is known about the function in question.

The key to the VEGAS algorithm lies in the combination of the results 
from each iteration. This is done by using the estimated variance to  weight the 
contribution of each iteration. This is achieved as follows

(5.12)
2 ^ i= 0  Vi

where Vi is the variance of iteration i and is the estim ate for the integral, n 
the number of iterations and the overall result is given by a.

5.6 Stratified Integration M ethods

Stratified sampling works by splitting up the domain of integration into sub- 
regions which are then integrated separately. This allows more samples to  be 
taken in a sub-region where they are needed. Splitting is a form of partitioning 
which divides or splits ray paths. This is used to good effect with the direct 
lighting [119] method which splits a path to fire a ray at the light source. An­
other m ethod of stratification commonly used in rendering systems is th a t of 
dividing BRDFs into a specular and diffuse part which are then solved sepa­
rately. Unfortunately this technique requires knowledge of the BRDF or scene 
but havS been successfully employed in the Radiance rendering system [134]. The 
two previous methods are based on a technique called splitting [5] where by ray 

paths are split.
The following new algorithms achieve stratification via a different approach, 

by breaking up the domain of interest into a number of different regions which 
are trea ted  separately. This approach is novel in tha t rather than  splitting ray 
path  in two it divides the possible set of ray paths (see Figure 5.32). Thus 
partitioning defines the possible set of directions a ray path can travel, whereas 
splitting just breaks a single path into two directions which may or may not be 
the same. These techniques serve to reduce the overall variance of the estimate. 
However stratified sampling techniques can be used in another ŵ ay, this is to 
facilitate parallel rendering. So rather than stratifying the problem to reduce 
the variance, other criteria which pose problems to parallel rendering such as 
communication overhead, data  locality and ray coherence are used as stratifi­
cation criteria. While this approach on its own does not directly improve the
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Processing

Figure 5.26: Stratified VEGAS algorithm without processing
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Figure 5.27: Stratified VEGAS algorithm with smoothing
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Figure 5.28: Stratified VEGAS algorithm with damping
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Figure 5.29; Stratified VEGAS algorithm with smoothing and damping
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Figure 5.30: Stratified VEGAS algorithm errors due to smoothing
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Figure 5.31: Stratified VEGAS algorithm error due to Damping
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(a) Partitioning (b) Splitting

Figure 5.32: Partitioning a domain is not the same as Sphtting a ray

convergence, it does improve the efficiency of the parallel technique, which in 

turn speeds up rate of convergence. Partitioning can thus be put to various 

uses. W hat follows is a discussion of some algorithms and metrics which guide 

these algorithms and the theory behind them.

5.6.1 Theory

In order to decide where to  direct samples to estimate the integral of a function 

/ ,  knowledge about the function’s behaviour is needed. One way of doing this 
is to  break it up into a series of sub-integrals:

(5.13)

where ( / )n i  is the estim ate for the function over region and {f)Q^ is the 
estim ate for the function over region ^ 2 . It can be easily shown that the variance 

of this is equal to
Va r { f ) '  =  Var{ f )^^  +  Var{ f )^^.  (5.14)

Thus, to reduce the overall variance we need to  reduce the variance of the 

estim ate for region 1 or 2. Using equation 5.14 we can show that

(5.15)

It follows that to  reduce the overall variance we have to reduce the variance of 

each sub-integral. The variance of the estimator V a r { f ) ,  which measures the 

square of the error of the Monte Carlo Integration, is related to the true variance 

of the function by
V a r { f )

V a r { f )  = N (5.16)
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where N  is the total number of samples used, giving us the following

where N q . is the number of samples used in region i. Equation 5.15 is therefore 
minimised by

Noi _

Since standard Monte Carlo methods are not being used, equation 5.18 may not 
hold so instead the following is used:

"  E".o Var{!)„
Vi, (5,19)

where a  is an arbitrary scalar value. Empirical experiments have shown th a t 
when the equation is used to access sample opportunities recursively, a  w 2 
gives the best estimates. Further details, including the derivation of the pre­
vious equations, can be found in [99, 100]. This, however, is not the prefect 
solution in global illumination as there can be significant time differences in 
evaluating various samples. Simply estimating the variance may not be a suffi­
cient optimisation if the samples which improve the accuracy of the result take 
significantly longer to evaluate, thereby reducing the gains of using a better 
set of samples. In order to address these concerns the time taken to  evaluate 
samples in a given region must be considered and worked into the equation. 
An example of where samples take longer is when we partition the path length 
param eter. This param eter specifies the length of the path thus requiring more 
time to  evaluate for bigger values i.e longer paths.

5.6.2 Stratified Sampling Algorithm

The Miser [100] algorithm is based on a technique called recursive stratified 
sampling [99]. This version of the Miser algorithm is essentially a hybrid between 
the original VEGAS algorithm and the original Miser algorithm, thereby gaining 
the benefits of both approaches. It differs in seven ways from the original by 

providing;

• new metrics to estimate the variance,

• a weight for each dimension,

• specification of an initial level of sub-division,

• dithered splitting of dimensions.
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• an arbitrary number of divisions per level,

• estimate reuse if necessary (similar to VEGAS method),

• sensible partitioning of dimensions based on VEGAS technique or original 
Miser algorithm.

A number of different metrics can be used to estimate the variance. These are 
the greatest difference metric, maximum value metric and Monte Carlo estima­
tion. The greatest difference metric uses the difference of the squares of the 
maximum and minimum values for a region rather than the actual estimate. 
This is given by

= [max{f{xi)) -  mi n{ f {x i ) ) f  , (5.20)

where x* is one of the N  samples allocated to determine the variance. This 
estimate is biased as the number of samples is increased, but since there should 
be an approximately equal number of samples in either of the sub-regions being 
tested, this is acceptable.

The maximum value metric is based on the greatest difference metric (and 
hence is also biased), but we assume the lowest value is always zero so we only 
need the highest. This metric is given by

Var{ f ) ^  = [max{f{xi ) ) f  . (5.21)

Lastly, Monte Carlo estimation of the second moment Var{f)Q can be used, 
which is calculated using

-

i=0

This gets increasingly inaccurate as the number of samples drops, and suffers 
from the slow convergence associated with Monte Carlo methods.

Since the algorithm is using samples to determine a suitable stratification, 
it makes sense to  use this information not just to determine which dimension to 
split, but also to  choose where to split the chosen dimension, or even whether 
to split it in more than one place. This allows as much information to be 
gained from samples as possible. For instance, usually regions of high variance 
do not just occur in one area (e.g. two light sources in a scene would cause 
spikes in two different solid angles). Also, in global illumination areas of high 
variance tend to be in small regions of the domain, so splitting the domain 
in half does not effectively partition the regions of high variance. To facilitate 
these requirements our algorithm uses a series of n  bins for each dimension. The

2 = 0

(5.22)
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d im e n s io n

Figure 5.33: Dithering divisions between bins

variance and estimate for each bin of each dimension is determined. W hen a 
dimension is chosen an approximation of how the variance is distributed across 
tha t dimension will have been determined. Thus the algorithm now has an 
indication as to where it should split the domain and into how many parts. 
This is achieved using the partitioning scheme from the VEGAS algorithm, the 
variance being used as the subdivision criteria.

In order to provide a more adept solution to the rendering equation, the user 
is able to  apply a weighting for each dimension. This helps the stratification 
algorithm to choose which dimension to split, especially when it has to  pick 
one randomly or when the variances do not differ by much. For instance, it 
is generally better to split dimensions which correspond to primary rays since 
they tend to  affect the result more than parameters which alter rays on later 
bounces. The weights allow us to indicate the importance of each dimension to 
the stratification algorithm.

Dithering can be used to divide the region into unequal sized sub-regions 
rather than  evenly spaced ones, this reduces the correlation caused by the uni­
form subdivision scheme. This is achieved by shifting the dividing line between 
two bins left or right by a fraction of the overall width of the bin using a random 
value (see Figure 5.33). This technique is only used when the original Miser bin­
ning scheme is used as the VEGAS algorithms approach generally proves more 

effective due to  its adaptability.

Due to  the fact th a t in rendering we tend to use relatively low numbers of 
samples because of the cost of evaluating the rendering equation, we cannot 
always afford to  throw away samples. To help improve our estimates, the algo­
rithm  has the ability to reuse the samples used in estimating the variance, to 
provide another estim ate for the integral. This tends to produce biased results. 
However, with low numbers of samples the results obtained give a better overall 
estimate. These two estimates are combined by the ratio  of their variances,
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Figure 5.34: Stratification Algorithm

similar to the method used in the VEGAS algorithm.
The final alteration is to provide an initial level of subdivision before any 

adaptive subdivision starts, like jitter sampling in n dimensions, this reduces 
the effect of badly estimated variances. Unfortunately, as a side effect it will 
also reduce the gains caused by good estimates, because the samples are initially 
spread evenly throughout the domain of integration.

The algorithm works as follows: Given an initial number of points N,  use a 
portion of these to estimate the variance across the function being integrated. 
The estimate of the variance is obtained for each dimension. Pick the dimension 
with the largest overall variance and divide it into n sub-regions using the infor­
mation in the bins. Repeat the algorithm in these new regions until a specified 
number of divisions has occurred or there are not enough samples to continue, 
in which case integrate normally over these regions (see Figure 5.34).

5.6.3 Sample Sequences

To improve the convergence of Monte Carlo integration, random and quasi­
random sequences are constructed based on linear congruential and radical in­
verse methods. The quasi random sequences help to improve the convergence 
because they, by their nature, tend to spread their sample set over a given 
domain.

Due to the way that some quasi-random sequences are generated (such as 
the Halton and Hammersly sets), the higher order dimensions will have a greater 
jump between samples than lower order dimensions. This will affect the error, 
due to the fact that the bigger the prime used to generate the sequence, the 
larger the jump will be. The effect can be minimised by mapping parameters 
which contribute more, to a dimension which is sampled with a sequence gen-
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erated from a smaller prime. The improvement is due to the better spread 
achieved with lower order primes, and is related to  the discrepancy which was 
described in section 3.2.1. This is why quasi-random sets are not good with high 
dimensional problems especially when low numbers of samples are used (see Fig­
ure 5.35). It is therefore recommended that secondary bounces should use higher 
primes than  primary bounces. This has the effect of producing strong correla­
tion between pixels, because the same samples are used in each pixel, making 
the images look bad even though the error in the calculation is lower. As the 
number of samples increase, this effect decreases and produces images in which 
there is almost no visible noise or correlation effects. Figure 5.36 illustrates this, 
an edge-enhancement algorithm is used to highlight the effect. Scrambling of 
the quasi-random samples can be used to trade the correlation for noise. The 
quasi-random number sequences also have deterministic error bounds which are 
unfortunately tied to the dimension of the function being integrated, these are 
better in nearly all cases than the standard random sampling strategies accord­
ing to the discrepancy associated with each.

5.6.4 Stratification as a method for Parallel Computation

To date there have been many parallel approaches for ray based global illumi­
nation methods. These methods have adopted a demand driven, da ta  driven or 
a hybrid scheme. Most approaches have looked at parallelising the process at 
the image level or the scene traversal level. Rarely has the scheduling of tasks 
resulted in a  new algorithm being created or significant alterations to  an existing 
one to make the program more effective in parallel. The greatest problem with 
creating a parallel ray tracing method is in finding and exploiting any coherency 
th a t a given algorithm may contain, and this is very important for data driven 
methods. Techniques such as breath first ray tracing [96] which attem pt to 
re-order the access to the scene and buffering techniques which wait for enough 
queries to  warrant further processing [96] create coherence by reordering work. 
These m ethods have typically not been done by changing the algorithm itself 
but by caching and buffering requests and or data for later computation. This 
algorithm unlike previous approaches does not try to find coherency, but rather 
attem pts to  create it by using Monte Carlo techniques. This is different from 
other approaches [96, 105] which attempt to re-schedule tasks by using caching 
techniques. By partitioning the sampling domain, ray paths can be made more 
coherent because this forces samples or ray paths to pass through similar re­
gions of the scene. This means that rays now travel in “shafts” or “bundles” 
and techniques such as pyramid clipping [127] and shaft culling [50] can be used 
to  exploit this, previously such methods were only possible on prim ary rays.
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Figure 5.35: Two dimensional plot of successive dimensions of a 100 sample 
quasi-random sequence
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Figure 5.36: Correlation effects due to quasi-random sampling with varying 
numbers of samples

Since a smaller subset of the scene is now being queried rather than  the random 
access of random sampling, processor caches and virtual memory become far 
more effective as these partitions can be limited to areas of the scene which fit 
in real memory thereby reducing the amount of paging. Thus for small scenes 
super-linear speedup may be achievable given a sufficient processor cache size.

U sin g  Stratified  Sam pling

This algorithm is based on Monte Carlo path tracing and uses the idea of inte­
grating over a section of the domain of integration. By splitting up the domain 
of integration, ray paths can be focused on set regions of the scene. This en­
ables it to  sample over a smaller region of the scene, which for instance would 
fit in main memory. When finished sampling this region it can then alter the 
domain and repeat the sampling process over a new region. This would typi­
cally cause new areas of memory to be paged into active memory and others 
to be paged out. By minimising this paging, the efficiency of the algorithm 
will be increased. The technique used allows the parallel scheduling algorithm 
to be removed from within the global illumination computations and a high 
level approach to  be adopted. It is high level as it does not deal with details 
of rendering such as ray queries or BRDF evaluation but instead the solution 
of the whole equation. This is more modular and can thus be applied to many 
more methods since it controls the parallel computation from a high level rather 
than  by using a low level method which is entirely hidden from the rest of the 
program. There is however a price to be paid because of the high level of this 
approach, as fine level of control and optimisation is not always possible as with
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access ratio

Figure 5.37; Voxel Access vs Time for Random Access

lower level approaches. Figure 5.37 shows the percentage of accesses over time, 
and Figure 5.38 is a graph which displays the access to the voxels of a scene 
using a completely random Monte Carlo process. Figure 5.39 shows the voxels 
of the scene where their size represents the ratio between the number of times 
they were accessed and the voxel with the most accesses.

From examining the previous graphs, it can be clearly seen that the voxel 
access is spread quite evenly throughout the scene, with the exception of areas 
around the light source or camera. These areas have a far higher number of 
accesses than anywhere else. This is because all ray paths must at least start in 
those voxels. When a naive stratification scheme is applied to the standard par­
ticle tracing approach just used, the coherency of rays over time can be changed 
significantly. By breaking up the directions rays are permitted to travel in and 
where they are allowed to start, shafts or beams of ray paths are created. These 
beams increase the coherency of rays since many of them are now travelling
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Figure 5.38: Voxel vs Percentage Accesses for Random Access

Figure 5.39: Voxel Accesses for Random Access
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access ratio

Figure 5.40: Voxel Access vs Time for Solid Angle Partitioning

in similar directions and intersecting with the same objects. This coherency is 
shown in Figure 5.40. Examining the overall number of accesses between the 
two methods shows that approximately the same number of accesses were made 
to each voxel with perhaps a slightly more uniform distribution caused by the 
partitioning scheme (see Figure 5.41) due to the uniform like sampling caused 
by partitioning. The differences between these distributions are quantified by 
Mitchell [82].

Applying this partitioning scheme with path tracing is almost identical to 
applying it to particle tracing. In fact the camera and film just provide an 
automatic initial partitioning and hence already possess a high level of coherency 
so partitioning is probably unnecessary for the primary ray. Pyramid clipping 
has been used to  exploit this [127]. Subsequent rays however, need a high level 
of partitioning but unfortunately less samples are available so the number of 
possible partitions that can be used is reduced. Even small numbers of partitions
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Figure 5.42: Voxel Access vs Time for Random Access
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Figure 5.43: Beam split due to ray hitting different surfaces

will produce an improvement in coherency especially if the scene is largely fiat 
or uses polygons. This is because rays coming from the camera are already 
partitioned into the pryamids caused by pixels any further partitioning futher 
constrins these ray thereby increasing partitioning.

P aram etarisin g  th e R ay P ath  for S tratification

Unfortunately, using naive stratification of the ray direction will not work for 
all scenes, due to a number of factors. The direction of the samples is depen­
dent on the normal at the point of intersection and thus on the shape of the 
surface itself (see Figure 5.44). This causes beams to either converge to nar­
rower beams, which is good for coherency, or to diverge and spread out which 
reduces coherency. If the rays in these beams strike different objects they may 
be scattered in completely different directions (see Figure 5.43) once again re­
ducing coherency. In order to reduce this, enabling a sensible splitting of the 
domain of integration for our algorithm, axis aligned bounding boxes are used 
to parameterise the ray paths instead of the ray direction. These could be the 
voxels of a Spatially Enumerated Auxiliary Data Structure (SEADS) grid [38] 
or the bounding boxes [112] of clusters of objects in our scene. This provides us 
with a way of intelligently parameterising the domain of integration. Thus, by 
selecting groups of axis aligned boxes which are then sampled (see Figure 5.45), 
a group of paths can be specified. Each of these boxes is parameterised by two 
variables {u,v). The order of the boxes specifies the order in which rays will 
hit the objects. If the ray does not hit anything in the box it simply returns 
zero, thus maintaining coherency. Another possible parameterisation is to use a 
unified polar coordinate system which is very simple to use, but makes sampling 
BRDFs more difficult.

One of the problems with using classical ray tracing methods (i.e. distributed 
ray tracing [24, 118, 133]) is that many rays must be shot at each light source to 
estimate the hght incoming to a point. These rays will be fired into the scene,
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Figure 5.44: Beam diverges due to ray hitting curved surface

Figure 5.45; Sampling An Axis Aligned Boundmg Box



108 CHAPTER 5. ALGORITHMS

(b) Random(a) Stratified

Figure 5.46: Stratification using Bounding Boxes vs Random Ray Directions

possibly accessing non-local memory. The path tracing methods have introduced 
ways to minimise this, by firing a single shadow ray to a randomly chosen light 
source on each bounce. This still causes a split in the ray path which causes 
random data to be required. However, the bi-directional path tracing method 
provides a potential solution to this, where each ray path ends on a light source 
thus reducing the need for shadow rays entirely. Another approach is to  use 
the single path evaluation methods used with the previously described adaptive 
schemes. Ray paths which contribute to the illumination of a point on the 
film can now easily be described. By partitioning this parameterisation, which 
objects or parts of the objects are accessed can be effectively controlled. The 
virtual memory system of the host operating system will be able to effectively 
manage which region of the scene needs to be in memory. Thus there is no need 
to transmit any scene information to each computer, since each will load it into 
virtual address space by using memory mapped files which can store very large 
amounts of data (typically around 4Gb for PC ’s and most 32bit computers) as if 
they were in main memory. A scheme whereby scene information is transmitted 
when necessary could be used but this was not attempted.

The key to how the parallel method works is in the conversion of the pa­
rameter domain into a series of sub domains which can be solved later. To do 
this each dimension i is broken into a number of segments n,-, this then creates 
a total of sub-domains which can be distributed among the available
processing elements. The simplest way to iterate through these is simply to 
calculate the total number of sub-domains and assign a given number to each 
one. An ordered string of these numbers represents a entire partition. This 
string can be converted to a single number by multiplying each number in the 
ordered string by its offset, similar to converting a number between different
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bases, except now each digit has a different base. This can be done using

where Vn is the integer representing the ordered string of length n  and Si the 
integer representing the segment of the grouping. These numbers can then 
simply be converted back into a sub-domain by the following

which gives a segment number Sj for each parameter or dimension i of the 
domain of interest. This can easily be converted to the actual sub-domain for 
processing. The scheme reduces the amount of information th a t has to  be sent 
between processing elements, in this case just two integer values for the range of 
sub-domains, allowing a small work queue size that can be efficiently managed, 
so reducing the time wasted during rescheduling.

The scheduling is separated from the partitioning and only deals with the 
integer ranges described. This allows for a variety of scheduling algorithms to 
be used. Currently a mix of static and work stealing algorithms as well as 
a simple demand driven scheme have been implemented. The work stealing 
initially sends every PE an equal portion of the work. Then later, when a PE 
runs out of work, it signals all the others PEs to send their task list, allowing 
the largest queue to be split in the ratio of the number of elements processed 
between it and the PE which has no work left. If any other PEs have no work, 
this procedure is repeated. While this is not a perfect load balancing algorithm, 
it does not suffer too badly due to the fact that rendering speed depends not only 
on the processor, but also on the scene. This scheme keeps the communication 
to  a minimum. The static scheme uses the estimated power of each PE to 
estim ate the proportion of the scene it should receive. Using a cost prediction 
algorithm [109] in conjunction with this may improve performance, but this has 
not been attem pted. Many other schemes such as the diffusive methods [25] or 
some work stealing schemes may prove better at scheduling the work load.

V iew  D ep en d en t approach

The final problem tha t must be dealt with is how to split our domain. If the axis 
aligned bounding boxes are used then various combinations of n sets of boxes 
can be selected. If the boxes are too big, this causes large areas of the scene

Vo =  Si
n (5.23)

Vn =  SiVi 
i=0

(5.24)
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to be used due to the solid angle subtended. To avoid this a SEADS (Spatially 
Enumerated Auxiliary Data Structure) grid [38] is used which creates boxes 
of uniform size thus reducing the spread of rays through the scene (see Figure 
5.46). Accordingly the form of the rendering equation used ends up as follows:

Li{x) = L e(x)+ f  x,ujo)Li{x)^ ^ (5.25)
Js Ip ~ ^ W

Where Li is the radiance incoming to x, S  is the set of all occupied voxels, 
p is the bidirectional scattering distribution function (BSDF) with w being the 
i incoming or o outgoing direction, 6 the angle between the surface normal 
and the incoming or outgoing ray, x  and x' are points on surfaces and V{x,x' )  
expresses the visibility between the two points. This is essentially the surface to 
surface form of the rendering equation which uses a rejection sampling scheme to 
sample objects. Any empty voxels can be ignored, reducing the set of partitions 
that need to be processed. This is an important optimisation because the more 
voxels involved the more partitions needed such that there are n'̂  combinations. 
Thus the user must be wary of combinational explosion, a common problem 
with stratified sampling schemes.

Each PE is assigned a region of the image and a group of voxels from the 
boss. This is represented by two integers which are sent to the PE. The results 
are returned after all processing has been completed, thereby avoiding the extra 
communication costs of transmitting the results immediately. The extra cost 
incurred by transmitting the results immediately are because more than one 
partition may be assigned to a single pixel.

V iew  In d ep en d en t approach

The partitioning scheme described previously is not only applicable to inte­
gration based view independent schemes, but also to particle tracing methods. 
Since particle paths are described by a series of parameters, they can be split 
using the partitioning method. The modularity and flexibility of the framework 
allows the stratification technique to be combined easily with particle tracing 
methods. These methods work very well with stratification especially since the 
particle paths do not have to be joined to the eye as in the view-dependent 
approaches. A far greater number of samples are available, so more dimensions 
can be stratified with finer divisions. The view independent approach differs 
mainly in the use of the potential equation rather than the rendering equation 
used in the previous method. This allows the break up of the entire parameter 
space to proceed as before, using the same scheduling algorithm to control the 
work load. The images this time are not the final picture but the illumination
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maps or photon maps used to describe the illumination across the surfaces of 
the scene. The particle tracing approach would seem to favour a data distri­
bution approach. Due to the volume of particle data generated (in excess of 
100MB usually, see Figure 5.51), while the program is running in relation to the 
scene size it seems better to migrate the scene to the task rather than the other 
way around. Even small scenes require large volumes of particle data. Trans­
m itting the data leads to increased costs as the particles used generally carry 
more information than their counterparts used to reconstruct the illumination 
on the surfaces. This is because once a particle has been stored on a surface, all 
unnecessary information is stripped away. Thus the stratification approach is 
used to constrain the particle paths to smaller areas of the scene. This enables 
a demand driven approach which has some of the properties of a data  driven 
scheme. A number of issues arise regarding the density information th a t has 
been stored. If this data has to be moved with the scene this will cause problems 
for, as previously noted, this data tends to be larger than the size of the actual 
scene. Thankfully this is not necessary for the density representation schemes 
used, which are the illumination map and the photon map. D ata from these two 
representations can be combined after the particle pass has been completed, so 
each map is kept local to the PE and only at the end is the data  combined. 
The particle data for the photon map is very easy to combine, since photons are 
just stored and later combined to form a kd-tree for each photon m ap or used 
to  create an illumination map. Thus at the end of the particle tracing pass, the 
particle da ta  for each photon map can be merged before the kd-tree is created. 
The illumination map is even easier to combine, since depending on how it is 
used, either a count of the number of particles hitting a patch on its surface or 
the energy deposited on a patch is stored. Thus these structures can be com­
bined by adding the values stored in the patches together. Then both schemes 
can be normalised, as the scale factor is just a single number which can easily 
be communicated to  all the other nodes. This approach suffers from the same 
limitations as the path tracing methods in that as the path length gets longer, 
more of the scene is traversed, thus effectively reducing its efficiency especially 

with large scenes.

5.6.5 Problem s and Solutions

The biggest problem with the stratification method is tha t it has a hard time 
dealing with very long path  lengths. However, since long paths do not contribute 
much to  the final result (due to the light absorbed or lost via other means on 
each bounce), this is not a huge problem and there are a number of ways of 
getting around it. These involve using the illumination maps created by the
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Figure 5.47; Algorithm Stages

first pass as light sources in the second, thus extending the length of the ray 
paths. This approach is similar in some ways to  radiosity methods, which fire 
light from patches, treating all surfaces as light sources. In this manner the path  
length can be extended to  arbitrary lengths without causing excessive paging. 
This has not been implemented as yet.

5.7 Markov Chain Monte Carlo Simulation

The MCMC methods are another group of methods which are widely used in 
com putational physics. They are generally used to  generate a series of samples 
from a complex function for which it is hard to  determine a PD F. Unlike the 
previous two approaches it is not an adaptive scheme in th a t is does not learn 
about the function however it does respond to changes in the values returned 
by the function. The algorithm consists of three phases (see Figure 5.47) [78]: 
F irst a particle tracing phase shoots particles into the scene and representative 
d a ta  is gathered. Next follows a processing phase where this particle d a ta  is 
converted into a  form th a t can be used during the rendering phase. Finally the 
rendering phase is used to  display the final image. This structure is similar to 
framework presented in [131].

5,7.1 Particle Tracing Phase

The algorithm uses the M etropolis-Hastings sampling m ethod described in a 
previous chapter with either the potential or rendering equation to  build up 
a series of samples th a t express the illumination across a  surface. Since the 
M etropolis m ethod generates the samples according to  the potential function 
W [ x , u j ) ,  the distribution of the particles should converge to  the distribution of 
real photons. Hence, by obtaining the density of these particles, the flux on a 
surface can be estimated.

A simple algorithm for the Metropolis method was presented in section 3.1.5
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the method used a mutation function to generate new samples. Unfortunately, 
using this Metropolis sampling method directly with an integral over path space 
proves to  be very slow. This is because for each sample generated the entire 
function must be evaluated, thus n  ray queries are needed which slow down 
the calculations. Instead, the integral must be broken down into smaller sub­
parts which can be executed relatively quickly. The Metropolis method should 
execute one ray query per mutation if its efficiency is to be comparable with 
other methods. Ray paths are parameterised by a set of variables;

•  direction (ff, <̂ ) for each ray i in the path

• wavelength A

• film position (u,v)

• path  length /.

M utating these directly one variable at a time is inefficient, so a path  is m utated 
by changing only its tail or final ray instead. This can be done by removing the 
tail, adding a new tail or changing the current one. To do this the following 
param eters are displaced:

1. prim ary ray {path length wavelength A, direction (0,(/>), film (u,^;)}

2. other rays {path length I, direction {0,cl)) }

1 is only used if the path length is one and 2, is used in all other cases. I allows 
us to  alter the path length and hence increases, decreases or keeps the path 
length the same. This is always performed first following which the subsequent 
values are used to  perturb the tail produced. This way of m utating the path 
obeys the detailed balance condition of equation 3.31 because the probability of 
going from ^  to  -B is the same as going from B  to A. Each tail is m utated by 
a set portion of the extents of its parameter domain as follows

= (2AxCj -  Ax) + Xj, (5.26)

where Xj  ̂ denotes element j  of x  produced on mutation i, C,j is a random variable 
generated for element j  and A x  the maximum displacement amount for element 
j .  In order to keep the number of ray queries at a minimum, the path length 
can only be changed by {—1,0,1} and does not follow the continuous process 
of equation 5.26. If any of the mutated values step outside the bounds of their 
param eter range, the entire sample must be rejected and the previous value 

used.
The algorithm can use multiple Markov Chains to avoid getting stuck in any 

region, thus increasing the effective convergence to the real distribution with
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(a) Variable Kernel (b) Fixed kernel

Figure 5.48; Types of Support

difficult scenes. Unfortunately, this has the side effect of wasting more samples 
due to the start-up bias. To reduce the number of wasted samples the step size 
must be increased giving noisier results. Ideally one wants the smallest step size 
possible to reduce the noise, but this increases the correlation between successive 
samples, thus in turn increasing the number of samples before convergence. 
Determining the number of samples to reject for start-up bias is difficult at 
best. A good rule of thumb is as follows: If the largest scale of the parameter 
space is L, and the proposal distribution A{a b) has a maximum step size 
of e, then at least T  a  {L/e)^ iterations are needed to obtain an independent 
sample. This agrees with much of the MCMC (Markov Chain Monte Carlo) 
literature.

5.7.2 Processing Phase

During this phase the stored photons are converted from clusters of photons 
into a data structure which can be easily and quickly referenced by the render­
ing method. Two different approaches to representing the illumination across 
the surfaces of the scene have been implemented: the photon map and the il­
lumination map. Due to the fact that the storage costs of a photon map tend 
to be relatively high, illumination maps are used for any surfaces where it is 
possible to do so. However, the photon maps NN(Nearest Neighbour) technique 
is ideally suited to the Metropolis density estimation method. This is because 
less photons will be distributed in poorly lit areas and high numbers of photons 
will be found in bright areas and, as mentioned earlier, each photon carries the 
same energy. Thus effects such as caustics will come out more accurately as 
they have will have a large number of particles to represent them, as a side 
effect areas which are not very bright will have fewer particles and therefore 
less definition. Uniform grid illumination maps do not pick up artefacts such as
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(a) Roof (b) Floor

Figure 5.49; Particle Distribution for MCMC Method for Cornell Box

caustics well unless they are of a very high resolution, and high resolution maps 
leave areas of low photon densities looking very noisy (see Figures 5.49 and 
5.50). To compensate for this, a NN-like method is used as a post-process on 
the illumination map in order to reduce this effect. This makes the low density 
areas use bigger support areas, effectively lowering the resolution of the map in 
these areas. However, a suitable resolution still must be chosen, otherwise too 
much memory is wasted or not enough detail is obtained. To implement these 
post-processes we use two different schemes (see Figure 5.48):

• Fixed Kernel

• Variable Kernel

These methods have been used before by Collins [20] and Walter [132]. The 
Fixed Kernel method uses one of the kernels described earlier to “paint” a 
sample onto the illumination map using a fixed bandwidth. The variable kernel 
scheme works by continually increasing the size of the support area according 
to the local density (these methods are described in a previous chapter and also 
in [121]). In order to speed up the variable kernel method, a fixed kernel or 
histogram method is used in a first pass to render the local density into a buffer 
of the same or different resolution as the illumination map. These values are 
then used as the local density for the variable kernel method. Finally, to convert 
the given density to  a flux, the density is multiplied by the total power of all 

the light sources.

5.7.3 Rendering Phase
To render the final image a pure path tracing method combined with quasi­
random sampling or one of the adaptive schemes is used to  remove any noise from
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Figure 5.50: Particle Distribution for Random Sampling Method for Cornell 
Box

the image. This phase works by performing path tracing until an illumination 
map or photon map is hit, at which stage the flux is read from the map and 
the resulting irradiance returned. If greater accuracy or definition is needed the 
illumination maps can be used only after the ray bounce.

5.7.4 KD-Trees and MCMC m ethods

Using the previously described method with the photon map presents a num­
ber of problems. Normally when using a photon map with random sampling, 
the particles are very rarely the same because they are distributed randomly. 
Therefore, it is relatively safe to assume that no particles occupy the same po­
sition. If they do, their power can simply be combined to produce one particle. 
The MCMC methods do not distribute particles randomly, they reuse samples 
in order to distribute them according to a specified function. This means that 
there will be many particles which are identical. To handle this situation an 
extra field has to  be added to the kd-tree to record duplicates. This is similar 
to the power field used with the random sampling method except it is an inte­
ger. Unfortunately, this increases the size of the event structure, but since more 
than 20 rejections is unusual, 1 byte is sufficient to represent this quantity. As 
there can be many duplicate particles, it means there will not be as many par­
ticle instances recorded as with the standard method, where nearly all particles 
are different. To keep the size of the photon map to a minimum, a number of 
different representations for photons are allowed, depending on the properties 
of the surface assigned to the map. If a surface parameterisation is available, 
a 2 dimensional coordinate scheme can be used to identify particle positions. 
For diffuse surfaces, the incoming direction of the particles can be removed.



5.7. M A R K O V  CHAIN M O N TE CARLO SIMULATION 117

struct {
float x,y,z; 
char tag; 
char count; 
char theta,phi; 
char wavelength;

} glossy_photon_big; 
struct {

float u,v; 
char tag; 
char count; 
char theta,phi; 
char wavelength;

} glossy_photon_small; 
struct {

float x,y,z; 
char tag; 
char count; 
char wavelength;

} difl^use_photon-big; 
stru ct {

float u,v; 
char tag; 
char count; 
char wavelength;

} difi^use_photon-Small;

/ /  surface position (12 bytes) 
/ /  discriminator (1 byte)
/ /  number of particles (1 byte) 
/ /  incoming direction (2 bytes) 
/  /  wavelength (1 byte)

/ /  surface position (8 bytes)
/ /  discriminator (1 byte)
/ /  number of particles (1 byte) 
/  /  incoming direction (2 bytes) 
/ /  wavelength (1 byte)

/ /  surface position (12 bytes) 
/ /  discriminator (1 byte)
/  /  number of particles (1 byte) 
/ /  wavelength (1 byte)

/  /  surface position (8 bytes)
/ /  discriminator (1 byte)
/  /  number of particles (1 byte) 
/ /  wavelength (1 byte)

Figure 5.51: Examples of photons structures

These small changes can result in big differences in the sizes of the photon maps 
produced and therefore the number of particles that can be stored. Figure 5.51 
shows a selection of some of the different particle representations used. Note the 
fact th a t glossy particles or illumination maps don’t store the exact incoming 
direction but a discrete version, because there is rarely a need for such accuracy 
except in the case of specular surfaces. These are better solved using pure path 
tracing and therefore not good candidates for use with an illumination map.

' W hen using density estimation techniques near boundaries such as the edge 
of a polygon, more samples tend to be drawn from one side of the query point 
because more samples are available from there, due to the query radius crossing 
the boundary of the polygon. This leads to an increase in the size of the support 
area and thus lowers the density, causing inaccurate estimates to be made where 
the region of influence extends beyond the edge of the sample domain (see 
Figure 5.52). This is known as the boundary bias and for most statistical 
purposes is not a huge problem as it is generally the centre of the domain tha t 
is of interest. For global illumination, it causes problems because the whole
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Figure 5.52; Boundary Bias

domain is important. The effect can be reduced by adding more samples, but 
it can never be eliminated by doing this. In images which use the photon map 
to  represent the illumination across a surface, it shows up as a dark band near 
the edges of surfaces. Walter [132] has presented a solution to this edge effect 
which uses a density estimation technique based on linear regression.

5.7.5 Film Plane M etropolis Density Estim ation

A novel use of the MCMC methods is to produce a density map for the film, 
instead of on the surfaces of the scene. A resolution independent representation 
of the “image” can be generated. Although the images may appear blurry 
relative to more classical integration based approaches, as more samples are 
added, this effect disappears and provides an implicit form of anti-aliasing. The 
user is also given a higher degree of control over the number of samples used to 
create an image. Now, instead of the usual width x height x n number of samples 
needed, the exact number used can be specified. Avoiding this dimensional 
explosion was one of the main reasons for using Monte Carlo approaches in the 
first place. This scheme is similar to that of Veach [130], but instead of using 
integration methods, density estimation is used. A similar scheme that used 
integration instead of density estimation was presented by Dutre [31]. This 
suffered from dimensional explosion and produced poor results. Using density 
estimation on the film is not a new idea either, as Suykens [35] proposed a 2 
pass filtering scheme using the Epanechnikov kernel. Perhaps a more compelling 
advantage to using this technique is that now brighter areas tend to get more 
samples than areas which are relatively dark. Thus if this is combined with tone 
operators and other similar schemes, samples should be directed to areas which 
are important to the viewer. Additionally, the sheer number of samples that can 
be used to solve one problem may create a better solution than integration based
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struct{
float u,v; 
char tag; 
char count;

} image_sample;

/ /  surface position (8 bytes)
/ /  discriminator (1 byte)
/ /  number of particles (1 byte)

Figure 5.53; Film plane sample structure

methods. Previously, relatively small numbers of samples were used to solve a 
number of sub-problems (integration on the pixel), compared to what other 
sciences such as physics use with Monte Carlo methods. This effectively means 
tha t the law of large numbers is not applicable to the schemes, which makes the 
error bounds greater because they are now bound by the Chebychev inequality 
and the methods are therefore less effective. Lastly, as the photons are being 
stored on a single surface, only a 2D representation need be used to  record the 
photon’s location, and the wavelength need not be recorded as the process can 
work in CWj x y z  space using a photon map for each dimension. This provides 
the ability to store more photons and also reduces the size of the search space 
from 4 dimensions to just 2. Thus the storage costs are just 10 bytes per photon 
instance, which is smaller than for the other schemes previously described.

5.7.6 Sample Distribution Strategies

There are three possible strategies for developing an algorithm to distribute 
samples on the imaging plane. The first is to use the potential equation to pa- 
rameterise particle paths originating from the light source and term inating on 
the film. The Second approach involves using the rendering equation to start a 
ray path  on the film and trying to join it to a light source via direct lighting. 
Thirdly, by combining these approaches using bi-directional path tracing (as in 
Veach’s Metropolis light tracing), the benefits of the two previous approaches 
may be combined. The direct sampling approach, whereby a ray is fired at 
either the light source or the imaging plane, can in some situations be quite 
ineffective. This is especially true for pinhole cameras when used with light ray 
tracing, where the path to the film plane is very restricted. Each different ap­
proach has its merits which are similar to their integration based counterparts. 
This tim e however, enough samples can be used so that the law of large numbers 
is applicable. The process is also restartable so we can keep re-using old runs, 
thereby further improving the image. Since the particles can be stored different 
resolution images can be generated independent of the imaging process. How­
ever, as the number of samples increases, so do the storage costs, but particles 
can be saved to  disk and then recalled when needed to create the final image. 
If the final image size is fixed, the samples can be added on the fly to  the image
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thus requiring no intermediate storage. This results in a loss of flexibility, as 
the intermediate representation is lost, so no sophisticated density estimation 
methods can be used to render the image, such as the variable kernel method.

5.7.7 M utation Strategies

The possible effective mutation strategies for this use of the Metropolis method 
are far larger than that of the previous methods. The only real restriction that 
limits the mutation strategies is that it is more beneficial if the ray intersecting 
the imaging plane is moved frequently. This stops the algorithm focusing too 
much on a single pixel or area. The simplest possible strategy is to perturb all 
elements of the parameter space by a random amount, thus guaranteeing that 
the position of the sample on the image plane is only infrequently the same 
value. As a side effect, it causes very large changes to the ray path for anything 
but very small changes to the parameters with eye path based schemes. Using 
light path tracing therefore seems a good idea, as only the ray incident on the 
film need be mutated each time. This allows a smaller number of ray queries to 
be made, similar to the view independent approach.

5.7.8 Handling the Boundary Bias

As mentioned previously, the boundary bias causes visible artifacts in pictures 
which use density estimation methods. For the film density estimation method 
there is a simple and effective solution: The film plane is made larger than 
needed, and the excess is cut away thereby removing the incorrectly estimated 
areas. Thus the estimates are generated correctly and do not show any boundary 
bias artifacts. There are two ways of doing this, the first being to just cut away 
the dark band around the image once it has been produced. This will waste 
some computation time but is tiny compared to the time taken to generate the 
image. The second method is to generate the image in an area smaller than the 
image plane such, that any density queries will always fit on the image plane.

5.7.9 Parallel Com putation with MCMC

A parallel implementation of the Metropolis method is possible by running mul­
tiple chains simultaneously on separate PEs. Coherency is improved by allowing 
only small changes or perturbations to the parameter. This stops the rays from 
randomly accessing the scene and makes them gradually travel through the scene 
in small steps thus increasing coherency. The smaller the change the greater 
the coherency, but more evaluations are needed before samples are drawn from 
the actual PDF thus necessitating a longer startup period.
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5.7.10 Compressing stored data

The random nature of the data generated by Monte Carlo sampling appears at 
first to be unsuitable for use with data compression techniques. However, data 
produced by the Metropolis technique is correlated and therefore susceptible 
to compression. The smaller the allowed perturbations, the more effective the 
compression will be as the numbers will only vary in their least significant digits, 
thus producing repeating groups of bytes (see Figure 5.54). Additionally, the 
count element stored with each data element contains many repeated strings, 
and is compressible with a simple run length encoding [138, 27] scheme. Fig­
ure 5.55 and 5.56 show the distribution of counts for a sitting room scene and 
the Cornell box. This can be further improved by rearranging the data. Many 
compression algorithms use rearrangement to improve compression but none 
did so successfully for our case. Using rearrangement and the already present 
correlation, the data can be compressed using the deflate [28] algorithm which 
applies Huffman encoding [100, 29] and LW77. The rearrangement of the data 
makes it easier for the algorithm to identify repeated items within the data 
stream. To do this, the data is saved as strips of x ’s, y ’s etc rather than  as 
individual particles. Thus repeated entities are close together (see Figure 5.57). 
For instance, the wavelengths for n  particles are saved together, thus repeated 
strings of the same wavelength occur for particles in the same ray path. The 
compression algorithm can easily identify these, and affords some compression 
even for completely random sampling. This is very minimal because the wave­
length is encoded into a byte and represents only a small portion of the particle 
data. Thus the storage costs are reduced as well as the time spent on I/O .

R ather than rewrite this code, the zlib [81] compression library used by the 
gzip program  and the bz21ib used with the bzip2 program have been used. The 
bz21ib library tends to give a better compression ratio. The algorithm uses 
buflFers to  store the data until a user specified amount is reached, a t which time 
the d ata  is compressed and written to disk. Usually this is set at 2MB and when 
full, the da ta  is saved as strips of each element. The is especially effective for 
the particle count as there tends to be a large sequence of ones which compress 
very well, even using a simple run length encoding scheme. So far, compression 
has not been used with the kd-tree as it makes it very slow. Perhaps a caching 
scheme would help improve the performance, but for large numbers of data 

items the kd-tree becomes prohibitively slow anyway.
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repeated string

altered string

Figure 5.54: Correlation causes repeated strings which can be compressed
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Figure 5.55: Distribution of counts for the sitting room scene
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Figure 5.56: Distribution of counts for the Cornell box scene
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count

Figure 5.57: D ata arranged as rows in memory is saved as strips
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Chapter 6

Results

6.1 Rendering Framework

EFFIG I has been successfully used to implement many of the latest techniques 
in image synthesis including Monte Carlo techniques such as the Metropolis 
m ethod and bidirectional path tracing. It is extremely flexible and provides a 
means of easy augmentation using both source code and shared libraries. The 
use of interfaces in the framework allows easy extension of many older methods 
without having to completely re-implement them. As all the modules can be 
provided as a shared library, only the modules actually referenced are loaded 
thus reducing the memory footprint of the system.

Implementers are also allowed to experiment with various ideas (for example 
sampling schemes) without having to alter any code. If the code is written in a 
generic way it can be used with many of the other components, thus extending 
the entire system. This encourages the user to break up any objects they create 
into many reusable parts so that they can be used with the other elements of the 
system. This has resulted in greater flexibility, more code reuse, and a powerful 

rendering environment.

C om parisons

Although comparing frameworks is difficult, the following attem pts to  highlight 
some of the differences between our framework and two others introduced in 
Section 5.2.1 which share similar objectives.

R enderP ark  is an object oriented rendering framework which is freely avail­
able to  the public. Both it and EFFIGI divide the set of rendering techniques 
into view dependent or view independent, and this dictates how they are im­
plemented. The strength of RenderPark is its extensive suite of Radiosity al-

125
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gorithm s. However, it lacks the m athematical basis of EFFIG I, meaning th a t 
integration and other m athem atical methods cannot be changed easily. In ad­
dition, scene acceleration has been implemented using utility functions th a t do 
not support any common form of interface, and as yet this system does not 
support tex ture maps, only allowing a single colour and BRDF to  be assigned 
to  a  surface.

V is io n  is another object-oriented rendering framework which, like EFFIG I, 
derives its geometry subsystem from the Ray Tracing Kernel [67]. Vision uses 
a physically based object-oriented abstraction of the rendering process, and 
can render bo th  physically and non-physically correct systems. However, it 
specifies fixed m athem atical models for some interfaces th a t cannot be changed 
by the programmer, for instance the VolumeLighting subsystem. In addition, 
the sampling interfaces have been fragmented for use with different techniques.

Table 6.1 presents a summary of the features in the frameworks: EFFIGI, 
Vision and RenderPark.

features EFFIG I Vision Render Park
Physically based yes yes yes
Radiosity Progressive

Refinement
many many

Object Oriented yes yes mostly
Plug-ins yes yes no
M athem atical basis yes no no
Object Model COM CORBA no
Parallel Com putation yes no no
Particle Tracing and 
density estim ation

many no some

View Dependent M ethods many many many

Table 6.1; Framework Features

6.2 Analysis of M ethods of Solution

In this section the various algorithms described in the previous chapter will 
be analysed to  see if they improve the efficiency and convergence of the global 
illumination process. A number of test scenes are used to  create a variety of 
scenarios in which to  test the algorithms.

6.2.1 Error Analysis

To show the ra te  of convergence and the approxim ate error of the techniques 
described previously, the root mean square (RMS) error is used. The RMS error
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is calculated as follows:

P
(6 .1)N

where N  is the number of pixels or regions, Lp is the value of a region p  in 
the image being tested, and ire/p is the corresponding value of th a t region 
in the ideal image. By graphing this quantity with respect to the number of 
samples, the rate of convergence can be shown and by graphing with respect 
to the tim e taken, the efficiency of the scheme can be illustrated. These are 
the main metrics that are used to show the superiority of one algorithm over 
another. To generate the image maps necessary to be able to  use this algorithm 
the illumination maps are rendered into one large array of values where each 
individual map is arranged in a linear fashion one after the other. For standard 
view dependent path tracing schemes the image buffer was used. In the case of 
the density estimation viewing methods the density map was just rendered to a 
buffer using a histogram.

The perceptual issues involved in accessing images or illumination maps have 
not been taken into account except to the extent that one image may appear 
smoother or less noisy than another. Analysing the perceptual issues involved 
are beyond the scope of this document.

6.2.2 Test Images

In order to assess the relative merits of each individual scheme and their com­
binations, a series of test images has been produced. These vary in complexity 
and try  to  test the algorithms in contrasting situations. Also, some standard 
scenes with which many people are familiar with have been reconstructed so as 
to  provide a reasonable reference. The scenes used are as follows;

• Cornell Box: The Cornell box [46] is a very simple scene consisting of 
two different coloured and sized boxes standing in a cube containing a 
square light on the ceiling. This is a classic radiosity test scene used 
to  dem onstrate colour bleeding effects. The entire scene usually consists 
of diffuse surfaces but sometimes the taller box is made specular. This 
produces a caustic on the ceiling. The two versions of the Cornell box are 

shown in Figure 6.1.

• Ring: The ring scene consists of a silver ring sitting on the floor in a 
cuboid shaped room which produces an epicycloid shaped caustic on the 
floor due to a light on one of the walls (see Figure 6.2). This is another 
classic scene used to test how well a rendering system handles caustics.
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(a) Specular (b) Diffuse

Figure 6.1: Cornell Boxes

Figure 6.2: Right: Ring consisting of 1028 polygons. Left: Illumination Map 
from floor.
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Figure 6.3: Right: glass of water consisting of 14,613 polygons Image. Left: 
Illumination Map from the floor.

Figure 6.4: Sitting Room

• Glass of Water: As another test of a tenderer’s ability to  produce caustics, 
a large glass of water standing on the floor of yet another cube shaped 
room was rendered. A light on the far wall casts a caustic on the floor 
and wall on the opposite side of the box (see Figure 6.3).

• Sitting Room: This is a more complex scene consisting of a sofa, an arm­
chair and a table with a glass top, facing a television set (see Figure 6.4). 
There axe two windows in the scene which are used to illuminate the room. 
The detail in the room is very high, as even the aerial and buttons on the 
television are present, along with plug sockets and power leads.

• Office scene: A complex diffuse environment with many indirect lighting 
effects is shown in Figure 6.5. This scene was provided by Leo Talbot.
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Figure 6.5: OfRce

6.2.3 View Dependent M ethods

This section compares the three view dependent methods with naive Monte 
Carlo path tracing for a number of scenes. The graphs of convergence results 
are shown in Figures 6.6, 6.7 and 6.8. These clearly show the convergence of 
each scheme. The reference scenes were all generated using about 16384 samples 
per pixel (the average number of samples to render a picture in 12 hours i.e. a 
night), with a resolution of 100 x 100 for the Cornell box scenes and 128 x 91 
(this gives the image the aspect ratio of normal 35mm camera photograph) for 
the sitting room scene. All results were generated using a PII 350Mhz with 
128MB RAM running FreeBSD.

The first graph shown in Figure 6.6 shows the convergence of the three new 
methods presented against standard random sampling. The poor initial results 
for the VEGAS method are because a number of samples, 800 in this case, are 
needed before it can properly adapt. Since the random sampling already has 
a relatively good local sampling scheme, due to cosine sampling it performs 
better initially. The Stratified and MCMC methods do very well. However the 
stratified method is constrained by the number of samples it requires, due to 
combinatorial explosion, but it adapts better initially due to the better spread 
of samples through the problem domain.

In order to test a more difficult scene, a BRDF was used without its sam­
pling scheme. This was done by using the Phong BRDF on the tall box in 
the specular Cornell box scene. This tests the algorithm’s ability to adapt in 
comparison with a standard path tracer. The graph in figure 6.7 shows that the 
adaptive algorithms and the MCMC algorithms perform far better than ran­
dom sampling. The MCMC algorithm in particular does very well, because it 
can place the samples wherever it wishes, thus focusing more effort on problem
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Figure 6.7: Specular Cornell Box Convergence Results

areas.
The sitting room was used to test the algorithms in a more complex environ­

ment. The graph in Figure 6.8 shows that the three new algorithms performed 
equally well. Once again the stratified algorithm is restricted by the number of 
samples it must use, hence the limited number of points. It would appear that 
the more complex the scene, the better these algorithms do, and this seems 
to hold for other scenes rendered. The VEGAS and Metropolis techniques 
are very effective for reducing the apparent noise in scenes, especially where no 
useful im portance sampling schemes are available. Figure 6.9 shows the pic­
tures generated by the these two methods and one using naive Monte Carlo 
path tracing. A table comparing all the view dependent methods is shown in 
table 6.2 and 6.3. Notice that although the VEGAS and Metropolis methods 
have the same error characteristics for the sitting room the pictures are very 
differet. This is because VEGAS algorithm puts an equal amount of work into 
each pixel but the MCMC one does not. The MCMC algorithm, because of the 
way it samples the problem domain, is strongly attracted to  lights. This can be 
a problem for some scenes, because samples are drawn away from other areas
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Figure 6.8: Sitting Room Convergence Results

(a) Naive (b) VEGAS (c) Metropolis

Figure 6.9: Cornell Boxes generated using different methods taking about 23 
minutes each

to sample the light source, which can be wasteful in some situations. There is a 
number of solutions to this problem: One is to split the image into two regions, 
those with light sources and those without. This can produce a better distri­
bution of samples where the light sources cause a problem; Another method is 
to ignore lights when hit by the primary or eye ray and use a separate pass to 
“paint” them in later.

6.2.4 View  Independent M ethods

This section compares the ability of the two particle tracing methods to create 
illumination maps. To do, this the two Cornell boxes, the ring and the office 
scene with a glossy floor are used. For the Cornell box scenes, an illumination 
map was applied to all surfaces with a resolution of 50. For the ring scene, illu­
mination maps were used with a resolution of 50 x 50 but no map was applied 
to the ring because it is specular and the map was therefore not necessary, as 
pure path tracing is better suited to its solution. Finally, for the office, the
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Samples VEGAS Stratified Metropolis

Table 6.2: Visual Comparison using differing methods for Specular Cornell Box

Samples Naive VEGAS Stratified Metropolis

256

512

1024

2048

Table 6.3: Visual Comparison using differing methods for Sitting Room
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minimum illumination texel size was specified as 0.005 and every surface was 
assigned an illumination map producing 9060 texels in total. All the reference 
illumination maps were created using 1024 million particles with standard par­
ticle tracing. The results were generated using a PIT 350Mhz with 128MB RAM 
running FreeBSD.

The diffuse Cornell Box scene was used to test the MCMC algorithm in an 
environment that the standard particle tracing algorithm can handle very well, 
due to efficient sampling strategies. As expected, it performed better than the 
MCMC algorithm (see Figure 6.10). As a second test, the specular Cornell 
box was used, with the sampling strategy for the specular box removed. The 
standard particle tracer was still better (see Figure 6.11), but the difference 
in efficiency had narrowed. This may seem surprising at first, but since the 
interaction in the box is largely diffuse and the light is almost directly over the 
glossy surface, the cosine sampling used by default works quite well. Next, for 
the ring scene, the results for the MCMC were better initially but converged 
to the same value (see Figure 6.12). Thus there is no real advantage gained 
by using the MCMC algorithm with large numbers of particles for this scene. 
In order to create a better test, the office scene was altered so that the floor 
was now glossy, thus creating a non-ideal situation for the random sampler. 
As expected, the MCMC algorithm performed significantly better. Figure 6.14 
shows these results. As a visual comparison of the results, the illumination maps 
are shown in Figure 6.13. These pictures used lOM particles to  generate the 
illumination maps.

6.3 Parallel Analysis

In this section, the gains achieved by using stratification to divide up the scene 
between PEs are analysed. The graphs show the scalability of the algorithms.
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Figure 6.11: Particle Tracing Specular Box Convergence Results
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Figure 6.12: Particle Tracing Ring Convergence Results

(a) Random Sampling (b) MCMC Sampling

Figure 6.13: Comparison of Illumination Maps for Office scene with glossy floor 
using lOM particles
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The speed-up was calculated using the time to run the parallel algorithm on 
one processor. The scenes were rendered on a cluster of 16 PII 450Mhz with 
256Mb RAM each running Redhat Linux.

The dependence of the algorithm on communication can be seen as the 
number of processors increases (see Figure 6.15 and 6.16). This is because 
as more processors are added, more data must be transfered. This data is 
either the image or the illumination maps. In the case of non-particle based 
representations, the amount of data increases by the number of processors, since 
the complete buffer must be transfered at the end. For these scenes the size of 
the image buffer was only 256 x 183 which is relatively small. Larger images 
would obviously incur a greater penalty. The amount of data transfered could 
be minimised by determining what surfaces were hit during the processing and 
then only transmitting the one which changed. The sitting room scene was an 
example of a view dependent method using parallel stratification. From the 
graph in Figure 6.15 it would appear that it is close to linear speed-up. The 
task distribution among the processors appears to be very even, as shown in 
Figure 6.4. The same stratification strategy was applied to a particle tracing 
solution for the office scene, and the speed-up is shown in Figure 6.16. The 
speed-up is not as good as in the previous example. After 4 PEs, the results 
seem to fall off a bit. This is because PE 5 appears to be in use (due to non­
exclusive access to the cluster). This is verified by the task distribution where 
PE  5 has always completed less tasks (see Figure 6.4). The test was not re-run 
because it is very rare tha t no other tasks are using the cluster. It also serves 
to demonstrate the effectiveness of the scheduling algorithm in identifying load 
imbalances.
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Table 6.4: Task Distribution for Sitting Room
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6.4 Compression Analysis

We now analyse the benefits of compressing the data produced by the MCMC 
methods proposed, in terms of speed of execution and memory requirements. 
In order to demonstrate the benefits of compression, the rendering pipeline has 
been split into two stages: the particle gathering phase where the particle data 
is saved, and the rendering phase where the data is read from disk and converted 
to a suitable form such as an illumination map or a picture. The Cornell box 
and the sitting room scene have been used to obtain these results. The first set 
of results graph the amount of compression that is achieved, showing the relative 
sizes in bytes of compressed and uncompressed particle data. Figure 6.17 shows 
the results for the Cornell box and Figure 6.18 the results for the sitting room 
scene. These graphs clearly demonstrate the reduction of storage costs tha t is 
possible. In order to compress the data, some processing power is expended but 
the loss of processing power is negligible compared to the time required to load 
or save the data. Figures 6.19 and 6.20 show that the overheads required to 
save the d ata  are virtually non-existent. Since writing to  disk is a non-blocking 
operation, there will not be much time saved while writing data, unless very large 
chunks are written which overflow the buffers. Timing I/O  operations is difficult
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Figure 6.20: Saving Results For Sitting Room

as they are largely operating system(OS) controlled, thus to show the time spent 
writing and tha t spent processing, a graph of the process time and the real time 
taken is shown. This helps to highlight the processing time lost to compression 
versus that lost to I/O . As is evident, the buffering performs very well, causing 
hardly any delay when saving, just the time required to copy the data to a buffer. 
Despite the success of the buffering, the times for the compressed particle data 
are not very different. Obviously copying data into system space incurs some 
overheads. The final set of graphs shown in Figures 6.21 and 6.22 show the 
time taken to load and perform a histogram density estimation. The histogram 
was chosen because it was simple and fast and therefore would not interfere with 
the loading results we are interested in. Loading is a blocking I/O  operation 
and thus buffering has little effect, so compression schemes should do well here. 
Using non-blocking reads would improve the results, but at least twice as much 
main memory would be required. Once again, the system and user time are 
shown to highlight the time spent processing and the time spent loading. The 
time spent loading has been reduced by a few seconds which increases with the 
number of particles.
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6.5 Analysis of Results

The results show that the adaptive schemes for large numbers of samples are 
better than standard path tracing, even when importance sampling is applied. 
This is shown in Figures 6.6, 6.7 and 6.8. Other adpative schemes by Dutre [34], 
LaFortune [72] and Jensen [59] showed similar resuts but were constrined to 
adapt only to specific parts of the problem. This is clearly demonstrated by the 
first graph in Figure 6.6, where after a given number of samples the adaptive 
scheme becomes more effective than the naive scheme. For difficult scenes espe­
cially when there is no good importance function available, the adaptive schemes 
are better in terms of both convergence and visual aspects (reduced noise in the 
image) (see Figures 6.7, 6.8 and 6.9). The Metropolis particle tracing scheme 
presented, although not better for scenes which have adequate importance sam­
pling already provided, are better for difficult scenes for which such functions 
cannot be provided. In these cases, the visual noise in the illumination maps is 
reduced, and the convergence rate is significantly better than the naive method 
(see Figures 6.14 and 6.13). When used on the film plane to create images of 
the scene, the Metropolis method is also very good, but it suffers from some 
drawbacks. The worst of these is its attraction to bright areas such as light 
sources. Although this reduces the overall error in the image, the visual impact 
is impaired. This is because tone operators [125, 76] usually map these regions 
to white. A second problem is that of configuring the Metropolis scheme, as 
even small changes to the mutation parameter can have big a impact on per­
formance and also these parameters are different for each scene. Figure 6.23 
shows a number of different configurations for the film Metropolis method on 
the glass scene. Light sources do not appear to be a problem in the particle 
tracing variant, because sampling a point on a light source has almost no cost, 
as no ray queries are needed. The results for the stratification approach for 
parallel computation show that it produces very good speed ups and can be ap-
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plied to nearly all the techniques presented to some degree. The load balancing 
is good at evenly distributing the load between processors. One problem does 
remain, which is determining the best order to pick voxels such that coherency 
is maximised, which are currently chosen in index order.
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Chapter 7

Conclusions and Future 
Work

The techniques presented in this thesis belong to  a domain of computer graphics 
called realistic image synthesis. This involves the construction of a 2D image 
of a scene which could have been produced by a camera, given sufficient in­
put data, in the form of scene geometry and surface properties. The principal 
contributions of this work are a framework which uses mathem atical concepts, 
two different adaptive integration methods are used to solve the rendering and 
potential equations, a parallel rendering scheme is devised which uses stratified 
sampling, a Metropolis samphng method is created which uses density estima­
tion rather than integration and finally a scheme for compressing the particles 
produced by the Metropolis samphng method.

7.1 Framework

First a framework is presented which enables the construction of algorithms and 
techniques suitable for global illumination. This breakup of components using 
m athem atical concepts with which many users should be familiar, increases 
the reuseability of components because of this abstraction. The framework 
provides a modular and object oriented approach to constructing a rendering 
system. This was facilitated by using the underlying m athematical concepts as 
a basis for the design of interfaces within the framework. The component object 
model (COM) was used as a means of providing run time loading of components 
and type information which is language independent. To further improve the 
system, a simple scripting language was used to enable the configuration of 
many different rendering systems without the need for recompilation and also as
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a means of inputing scene and other data. To aid developers and researchers in 
the construction of new methods, various visualisation and analysis components 
were provided. These allow the user to easily see what the system is doing and 
therefore to improve error detection.

7.2 Integration Algorithms
Two adaptive Monte Carlo integration techniques were used to improve the effi­
ciency of various tasks used in the rendering system. When used to integrate the 
rendering equation, the algorithms can adapt to complex scenes, directing the 
samples so that the error in the estimate is minimised. However, these schemes 
require the application of special considerations so that they can better pre­
dict the important regions. Complex ray queries which attempt to evaluate too 
many paths a t once tend to confuse these schemes, so simplified path evaluation 
schemes are created which only evaluate a single ray path at a time. The dimen­
sionality of the global illumination equations represent a problem for adaptive 
and quasi-random schemes. To reduce their dimensionality, intermediate data 
was produced using density estimation methods.

The first adaptive approach used is derived from the VEGAS algorithm. 
This scheme can use either a stratified or an importance based sampling stra t­
egy. Modifications were made to facilitate the needs of global illumination where 
complex integrals consisting of the evaluation of combinations of 1 to 4 dimen­
sional sub-functions are required. The VEGAS algorithm tries to create a com­
bination of sampling strategies which accounts for these functions. To do this 
a mixture of methods were used to divide the integration domain and highlight 
their significance.

The second method used stratified sampling to break up the domain of 
integration into a number of variable size segments which were assigned an 
equal number of samples. Unfortunately, due to the limited number of samples, 
only a small number of subdivisions were possible. Two approaches were used 
to divide the parameter domain: A blind stratification scheme which can be 
used to evenly divide the parameter space, or alternatively a number of samples 
can be used to  estimate the variance and thus guide the subdivision and sample 
allocation.

These two schemes provide robust methods of solving global illumination 
problems, even when no suitable importance schemes can be used with the 
BRDFs of the scene. This allows users more freedom in the surface types they 
can render, as suitable sampling schemes are no longer a constraint, and en­
hances the systems ability to render complex and difficult scenes. The freedom 
in the range of surface models is because the adaptive schemes create their own
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sampling functions. They also adapt to  the scene detecting areas of high and low 
contribution or variance, this makes them more efficient with complex scenes 
where the radiance is distributed less evenly.

7.3 Density Estim ation methods

Two radically different methods are used to generate a distribution of particles 
on the surfaces of the scene. The first uses a blind stratification method to 
equally distribute the samples around the scene, thus each particle contributes 
a different amount, but the particles are evenly distributed through the envi­
ronment. The other method uses the Metropolis method to deposit particles 
according to the potential equation. This results in the particles being of equal 
weight, which reduces the storage costs as their power is no longer recorded this 
reduces the photon storage size by about 4 bytes. However, they are no longer 
equally distributed but tend to congregate in areas where there is more light. 
A new mutation strategy for the directional param eterisation of the ray path 
is presented. This minimises the number of ray queries needed, thus making it 
practical to use. To create a path at most only one ray query is needed, rather 
than the n  queries needed to create a entirely new path.

Classical integration based view independent methods allow only very few 
samples to be assigned to the estimation of individual pixels, which hmits their 
effectiveness. An alternative method uses the Metropolis algorithm to distribute 
particles or samples on the image plane, allowing large numbers of samples to 
be used in one calculation. This method is used with many of the differing 
forms of path tracing. The image is produced using density estimation on the 
samples generated on the image plane. The algorithm can be run a number of 
times, thereby accumulating more particles and increasing the accuracy of the 
resulting image. Since it is resolution independent, the results generated from a 
small preview can be used. Due to the correlation of samples, compression can 
be used on the particle stream produced, allowing significantly more particles 

to be stored.

7.4 Parallel M ethods

The coherency of ray path tracing was improved by using stratification to  parti­
tion the ray path  into segments, this limits there access to fixed smaller areas of 
the scene. These segments were then assigned to different processing elements. 
This method is used with either particle tracing or eye path tracing methods, 

with little or no modifications.
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The Metropolis method is used in parallel methods by running a number of 
different chains on separate processors. By minimising the amount of mutation 
to a ray path, the amount of coherency can be increased because the change in 
ray path is smaller and hence take longer to change position, but at the cost of 
increasing the startup bias. This results in more samples being wasted before 
unbiased samples can be drawn from the chain.

7.5 Future Work
The rendering framework created an environment capable of implementing the 
many rendering algorithms and methods associated with image synthesis, and 
is not overly complicated. The user and not just the developer is able to use 
the environment and tailor it to their needs. To this end, the scripting lan­
guage should be enhanced, so that more common high level languages such as 
LISP, Perl or Python can be used. This will allow both users and developers 
to improve the functionality of the program more easily. Adding the Compo­
nent Object Request Broker Architecture [56] (CORBA) and the Distributed 
Component Object Model [110] (DCOM) to the framework would also prove 
very beneficial as many people do not like one or the other of these systems. 
These systems allow the use of components or objects on remote machines, with 
out the programmer or user having to be aware of this. Therfore CORBA and 
DCOM would allow remote management and control of the system so a user 
need no longer access the render farm directly. Additionally, the ability to use 
the framework from remote locations would be useful.

Every global illumination researcher working on rendering algorithms hopes 
to produce a single algorithm which can solve all rendering problems effortlessly. 
To date no such technique exists. Even the Metropolis method which was a holy 
grail for a time has its pitfalls. The main problem lies in the fact that only very 
small numbers of samples are used to solve these problems (even a thousand 
samples is a very small number). If the n x  m  subproblems of determining the 
colour of each pixel are replaced with one big problem, the law of large numbers 
will be applicable. With this in mind, adaptive algorithms, which barring a 
few papers have been largely ignored to date, will become far more important. 
Using the VEGAS importance sampling method with particle tracing methods 
should therefore produce good results. Also, the expansion schemes seem an 
interesting alternative to the current inversion and iterative methods. To date, 
the use of Z-Buffer hardware has been separated from the more realistic ray 
tracing methods. This need not be so, because the Z-Buffer methods essentially 
perform many ray queries at once and should be suitable for accelerating not 
just the primary rays but also particle tracing and distribution ray tracing. The
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MCMC methods are the current state of the art, and so far only the simplest 
of these, the Metropolis method, has been used. There are many variations 
which could prove far better than the primitive variant presented: Prop and 
Wilson’s [101, 135] exact sampling or Gibbs sampling [40] sound very promising. 
The solution to a better rendering algorithm may not lie purely with Monte 
Carlo methods. Instead, more integration of analytic methods such as Arvo’s 
irradiance tensors [7, 17] seems a good idea. A hybrid scheme, whereby the 
type of samples used is changed from points to surfaces, would reduce noise in 
images and the number of samples needed.

Perceptual issues, while beyond the scope of this thesis, present many m eth­
ods for highlighting redundant computation. The density estimation methods 
described previously are very effective at producing smooth images, but at the 
cost of introducing bias which replaces the noise. Silvermann suggests some 
multi-pass approaches which would seem to increase the accuracy of these meth­
ods. A simple enhancement to  the current system is to  generate PDFs during 
the particle tracing phase for use in the rendering phase. This scheme has been 
investigated by Dutre [33, 34] and Lafortune [72]. Quasi-random sequences have 
been shown to be very effective, but so far only the simpler sampling stra te­
gies have been implemented. In particular, {t, s}-sequences and lattices would 
appear to offer a lot of promise [85, 36].

Parallel approaches, even with small numbers of computers, can produce 
effective speedups, but not many rendering systems support more than giving 
each machine a different frame to render. Rarely is the scene database dis­
tributed between processors, which would enlarge the size of available memory. 
In relation to the schemes presented here, new path param eterisation schemes 
might improve coherency. Using octrees, BSP trees or Bounding Boxes or some 
hybrid might prove effective. Shaft culling [50] or pyramid clipping [127] could 
definitely be used to accelerate the traversal of the scene. Adding true scene 
distribution and parallel loading to the framework to decrease loading and scene 
preprocessing times would be beneficial.

As presented, the work in this thesis creates a state of the art rendering 
system which is not restricted to any particular scene type. It is capable of 
producing accurate view dependent and independent solutions to  the render­
ing and potential equations. Future additions to this work will help ensure 
th a t it becomes a more capable and usable tool for solving global illumination 

problems.
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Appendix A

Fresnel Formulae for 
Reflection and Refraction

These equations are derived using M axwell’s equations a t a surface boundary, by 
m aking sure th a t  energy and continuity constraints are satisfied after reflection 
and refraction. For the  derivation, see [14], The formulae s ta te  th a t  the  am ount 
of light energy reflected and refracted a t an interface is a  function of the  wave­
length of the  light, the geom etry of the surface and the angle of incidence. The 
Fresnel formulae, because they use the index of refraction to  calculate a m a te ­

rials reflective and refractive properties, are dependent on wavelength; however 
to  simplify the formulae the index of refraction will be taken as being constant. 

Due to  the fact th a t they are derived from M axwell’s equations, the Fresnel 
equations are w ritten  in term s of the polarisation of light. At th e  interface be­

tween two m aterials, light moves from one index of refraction to  another N -2

■ 'I

Figure A .l: Ray a t an interface between m edium s
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(see Figure A .l) . From this the relative index of refraction can be calculated as

N 2 

m  +  j«2

Using complex arithm etic this can be expanded to

]V =  2̂ + T]i ~  j K i  
rji +  jKi T)2 +  JK2 

_  r}2r]i + K2 K1 .t]iK2- ri2Ki 
rii+  k \  ^ r il+

Using N  -T j  + jK  &s the relative index of refraction, the Fresnel formula is as 
follows:

+ P  -  2a cos $i + cos^ 9i
Fi_ = o2 4- 6  ̂ +  2a cos di +  cos^ 6i
^  ^  + b  ̂ ~  2a sin &i tan 9i +  sin^ 6i tan^ 6i

^ +  6  ̂+  2a sin tan  9i + sin^ 6i tan^ 9i

where 6i is the angle of incidence and a and b are given by

2a^ = y  (t]‘̂ -  -  sin^ 9i)^ +  + (rj  ̂+ kP -  sin^ 9i)

2b  ̂ — \j{rp -  -  sin^ 9i)^ + — {rf + — sin^ 6i)

The above gives the Fresnel coefficient for reflection where F±_ is the perpen­
dicular and î ii is the parallel component of the light wave (see Figure 2.1). 
For unpolarised light the average of these values is used, for polarised light
combinations of these value are used according to  the ratio of the parallel and
perpendicular vector. For transm ission in a perfect medium there is no absorp­
tion, hence

F r  +  F t  =  l  (A.l)

To determ ine the irradiance we m ust compensate for the fact th a t the ray has 
been refracted through a  medium, and thus its solid angle has been changed. 
This m ust be compensated for by

transmission coefficient — Ft ( — ] (A.2)
\ V i J

Note th a t the Fresnel functions are not BRDFs, they are used as a  coefficient 
with the perfect BRDF.



Appendix B

Integral Equations

Image synthesis rehes on the concept of integral equations, so the following 
appendix describes some terms, properties and definitions used in this thesis. An 
integral equation is characterised by the fact tha t the function to  be determined 
b appears both inside and outside the integral. Such equations are of the form

p t2

b{s) = e{s) + /  K,{s,t)b{t)dt (B .l)
Jt i

Integral equations are categorised into two main types these are as follows; 

V olterra equation have variable limits of integration:

b{s) = e{s) + [  n{s,t)b{t)dt (B.2)
J a

Fredholm  equations have constant limits of integration:

b{s) = e{s) + [  K{s,t)b{t)dt (B.3)

An integral equation is said to be of the first kind if the left hand side is equal to
zero, and homogeneous if h{s) =  0. For each class of integral equation there are
a number of methods used to solve the equation. When the boundary conditions 
or the equation become too complicated, numerical methods are usually used. 
/t(s, t) is called the kernel of the integral equation and its format determines the 

m ethod of solution

S ym m etric : K{s,t) =  K{t,s)

C on volu tion  ty p e  : n{s,t)  is a function of (s — t)

Separable : if K{s,t) =  k i(s)k 2 (̂ )
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S ingu lar : if K(s,t) —)■ oo for some s, or when the Umits are infinite.

For global illum ination the class of integral equation is the Fredholm equation of
the  second kind as this is the  form the rendering and potential equations take. 
This equation has the  general form

where e and the  kernel k are given, b is to  be determined, and a  and /3 are 
constant lim its of integration. This is a Fredholm integral equation because 
the  unknown function b{s) appears outside the integral. Most integral equation 
properties generalise when the domain variables s and t are multi-dimensional. 
T he above equation is abbreviated as

where K  denotes the integral operator which, when applied to  a function b, 
yields the following:

(Kb){s) =  dtK{s,t)b{t)

For every operator k there exists a t least another operator k* called the adjoint 
operator. The adjoint operators satisfy the following condition.

if i f ^g)  =  0 the functions are said to  be orthogonal. Given a function and 
function adjoint to it

Thus there are a  number of ways of computing F  since the adjoint is not unique.

amples of integral operators which are adjoint. Formally, our integral equation

(B.4)

b==e + Kb (B.5)

( « ( / ) , r )  = («*(/*),/) (B.6)

where ( / ,  g) denotes the inner product, given by

(B.7)

f  = a + K  

f*  = b + K

we can see th a t

(B.8)

The rendering equation and the potential equation described previously are ex-
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B.5 can be rewritten

( /  - K ) b  = e

where I  is the identity operator.
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Appendix C

Probability

This appendix covers the basic probability theory tha t is needed to  understand 
some of the algorithms and concepts presented in this thesis. Most of the 
information presented has been adapted from [136] and [64],

C .l Random Events

Monte Carlo methods are a numerical stochastic process, tha t is to say they are a 
sequence of random events. Random events can be divided into two categories 
namely elementary and composite events. Elementary events are ones which 
cannot be broken down into still simpler random events where as composite 
ones can be. For each outcome Ek of an elementary event with a countable set 
of outcomes there is associated a probability pk such that

0 <  P a <  1

If an outcome never occurs Pk = 0 and if it always occurs pk = 1. Another way 
of expressing an events probability is

P{Ek) ^Pk

The following are some properties of probabilities

1. P { E i  and|or E j }  < pi + pj

2. Ei  and Ej  are said to be mutually exclusive events iff Ei  Ej .  If Ei  

and Ej  are mutually exclusive then

(a) P { E i  and E j }  =  0

(b) P { E i  or E j }  -  P i + p j
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3. A whole class of events is said to  be exhaustive if all possible events have 
been enum erated i.e.

P {  some Ej}  =  = 1
i

4. T he probability of a specific outcome of two events (E i,F j)  is called the 
jo int probability for Ei  and Fj.

5. Two Events Ei and Fj are said to  mutually exclusive if pij = Pu-P2j

6. Suppose Ei  and Fj are not independent, then the joint probability can be 
written

Pij ~  'P ik j  

Pij

Pij

= p{i)
S / t  Pik .

(C .l)

p{i) is called the marginal probability for event Ei,  th a t is the probability 
th a t event Ei does in fact occur, what ever the second event may be, 
therefore

i i k

=  1

and

P{i) = Pii- 

The same is tru e  for the  second event.

7. The second factor of equation C .l is the conditional probability

P{j\i) =  -Ylk Pik

it is the probability for event E j  occurring given th a t event Ei has already 
occurred.

C.1.1 D iscrete Random Variables

The outcome of a random  event can be m apped to  a numerical value. These 
values may have some meaningful value or be purely logical. These values Xi 
are associated with every elem entary event Ei and are called random variables.



C .l. R A N D O M  E V E N T S 159

The expectation or stochastic mean value is defined as

{x} = E (x) = Y^PiXi (C.2)
i

The nth  moment of x  is defined as,

(a;") =
i

{x)  =  ' ^ P i X i  =  yU 
i

H is called the expected mean value. The central moments of x  are given by

idnix)) = { { x - ^ f )

= Y ^ P i{ x i-  P-T
i

The second central moment is called the variance and denoted by

varja;} — {{x -  p)"̂ )

= J2pi{xi -  p f
i

=  ^  
i

= {x̂ ) -  {x?

The square root of the variance is a measure of the dispersion of the random 
variable. It is called the standard deviation or standard error. Another impor­
tan t quantity is the covariance which is a measure of the degree of independence 
of two random variables and is given by

cov{x,y} = (xy) -  {x){y)

A quantity related to the covariance and the variance is the correlation coeffi­

cient
. s coy{x,y}

[var{a:}var{2/}J =

where — 1 <  p < 1
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C.1.2 Continuous Random Variables

Continuous random variables present a small problem in that a single event or 
point on its own cannot have any probability but zero, thus we can only ever refer 
to a probability over an given region because the sum total of all probabilities 
must add up to one. This gives rise to distribution functions. Given x  a real, 
continuous random variable,

a distribution function or cumulative distribution function (CDF) is defined as

This distribution function may be differentiable on certain intervals in which 
case a probability density function (PDF) may then be defined as

Thus the integral of this is a CDF The mean value of a continuous random 
variable is defined as

where f {x)  is the probability density function for x and the PDF has the nor­
malisation property

Thus the moments may be defined in a similar manner to the discrete case

From this the variance and covariance may be deduced. The joint probability 
may also be defined for the continuous case

— o o  <  X  <  CO

F{x)  =  P{a random selection of X  gives a value less than x}  (C.5)

(C.6)

’OO

(C.7)
xf {x)dx

— OO

— OO

The expectation of any function is defined as

/ OO

g{x)f{x)di
■OO

{9n{x))  =  E { g - { x ) ) - [ E { g i x ) ) r

F{x,  y) =  P { X  < x , Y  < y }
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called a bivariate distribution. Again the PDF can be obtained in a 
similar manner to  tha t of the discrete case as

= (C.8)oxoy

and from this the expected value of any function of x  and y is given by

E{g{x,y))  = {g{x,y))
f  (C.9)

= / }{x,y)g{x,y)dxdy

The covariance and correlation coefficient of any continuous random variables
X  and y  can be again defined by replacing sums with integrals. If the variables
are correlated, the joint PDF as in the discrete case may be w ritten as

here the marginal PDF is given by

m{x) = j  f {x , y)dy

The first factor in equation C.IO is the conditional probability, th a t is to  say 
given y, x  may be sampled from

f { x \ y )

f  f {x , y)dy

Equation C.IO can easily be generalised to handle more correlated random vari­
ables. In equation C.IO for a given value of y the random variable x  has the 
conditional PDF

I s _  f { x , y )  _  f [ x , y )
J  f {x , y )dy  m{x)

The expectation of the conditional PDF called the conditional expectation, for 

fixed y  is

E[x\y)  =  j  yf{x\y)dy

f y f { x , y ) d y  
f  f {x,y' )dy'  
J y f { x , y ) d y  

mix)

The conditional expectation is a function of a random variable and is therefore
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also a random variable. Therefore an expectation of E{x\y) can be found too.
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